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Some Results on Identification of Timed Event
Graphs in Dioids

C. A. Maia R. Santos-Mendes L. Hardouin

Abstract This paper deals with parametric SISO timed-
event graphs identification. First an appropriate model of the
graph is derived from the input-output transfer function. In
the following an identification algorithm is developed using
Residuation Theory. Some theoretical results are also provided.

Keywords : Discrete event dynamic systems, Timed Petri
nets, (max, +) algebra, Systems Identification.

I. I NTRODUCTION

Discrete Event Systems (DES) appear in many applications
in manufacturing, computer and communication systems and
are often described by the Petri Net formalism (see [1]).
If the concerned systems are characterized by delay and
synchronization phenomena, the Timed Event Graphs (TEG)
constitute interesting models. TEG are timed Petri nets in
which all places have single upstream and single downstream
transitions and therefore can be linearly described in dioid
algebra ([2], [3], [4]). This formulation has permitted many
important achievements on the control of TEG, as for instance
the internal model control [5], the closed-loop control via
output or state feedback ([6], [7]), and the predictive control
[8]. One should remark that the dioid formalism is useful in
DES contexts other than TEG control, as for example for the
modeling and control of continuous and hybrid Petri nets [9].

A central problem in TEG control is, as in classical control
theory for continuous dynamic systems, the identification of
the model. Boimond et al. [10] have proposed a parameter
identification method based on the system impulse response.
The approach considers two ARMA models: one for the
transient and another for the periodic behavior. Gallot etal.
([11], [12]) have considered the identification of the system
impulse response based on a decomposition of the system into
a sum of first order sub-systems (the impulse response is split
into a sum of so called simple elements). Menguyet al. [13]
have developed an algorithm for the non-parametric (direct)
identification of the system impulse response.

Representation of a dynamic system by an impulse response
usually requires an infinite number of parameters. However,
given a model structure, parametric models allow to represent
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a system with a finite number of parameters. This paper
proposes a new method for parametric identification based on
the knowledge of the model structure. First we develop an
appropriate TEG model and then the identification algorithm.
As one will notice, the method is not restricted to the case of
impulse response estimation, as in the previous cited papers,
and it can be used in other input conditions. The main
advantage is that the obtained model is closer, in a dioid sense,
to the actual system model than the one obtained by a direct
calculation of the greatest impulse response.

The paper is organized as follows. Section II introduces
some algebraic tools concerning the Dioid theory . Residuation
and Linear Systems Theory is presented in sections III and
IV respectively. In section V the identification method is
developed and section VI gives an illustrative example. A
conclusion is given in section VII.

II. D IOID THEORY

A dioid D is a set supplied with two internal operations
denoted by⊕ and⊗. The operation⊕ is idempotent (a⊕a =
a). The neutral elements of⊕ and⊗ exist and are represented
by ε ande respectively. The operation⊗ is distributed at left
and at right with respect to⊕ andε is an absorbing element
(ε ⊗ a = a ⊗ ε = ε, ∀a). In a dioid, a partial order relation
is defined bya � b iff a = a ⊕ b. As resultε is a bottom
element of the dioid because, for alla, a � ε.

A dioid D is said to be complete if it is closed for infinite
sums and if⊗ distributes over infinite sums. The greatest
element of a complete diodD noted by> is equal to

⊕
x∈D x.

The greatest lower bound of every setX of a complete dioid
D always exists andD is a distributive dioid if it is complete
and for all subsetsC of D, (

∧
c∈C c) ⊕ a =

∧
c∈C(c ⊕ a) and

(
⊕

c∈C c)∧a =
⊕

c∈C(c∧a), wherex∧y denotes the greatest
lower bound betweenx andy.

Example 1 (Zmax dioid ): Consider the setZ = Z ∪
{−∞,+∞} and define⊕ as the max operator and⊗ as the
classical sum+. This is a complete dioid in whichε = −∞,
e = 0 and> = +∞.

Theorem 1 ([2]): The implicit equationx = ax⊕b defined
over a complete dioidD admits x = a∗b as least solution,
wherea∗ =

⊕
i∈N

ai (Kleene star operator) witha0 = e.

Example 2 (Zmax[[γ]]) dioid): . The elements are given by
x(γ) =

⊕
k∈Z

x(k)⊗γk whereγ is a variable andx(k) ∈ Zmax.

The neutral elements areε(γ) =
⊕
k∈Z

ε(k) ⊗ γk and e(γ) =
⊕
k∈Z

e(k) ⊗ γk where
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ε(k) = −∞,∀k, ande(k) =

{
0 if k ≥ 0
−∞ otherwise.

Remark 1:The variableγ of dioid Zmax[[γ]] can be usually
regarded as a backshift operator in the event domain. It plays,
in the TEG study, a role similar to the operatorz−1 in the
applications ofZ − transform to discrete-time linear dynamic
systems .

The support of a seriesx(γ) in the dioidZmax[[γ]] is defined
assupp(x(γ)) = {k|x(k) 6= ε}.

Definition 1: The valuationval(x(γ)) of a seriesx(γ) is
defined as the greatest lower bound ofsupp(x(γ)).

III. R ESIDUATION THEORY AND DIOIDS

Residuation deals with solutions of equations of the type
f(x) = b by assuming thatf is an isotone map (a � b =⇒
f(a) � f(b)). In this section some results on this theory
are summarized. Further details can be found in Blyth and
Janowitz [14].

Define the subsolutions (supersolutions) of the equation
f(x) = b as the elements of the set{x|f(x) � b} ( {x|f(x) �
y}).

Definition 2 (Residual and residuated mapping):An
isotone mappingf : D → E , whereD and E are ordered
sets, is aresiduated mappingif for all y ∈ E there exists
a greatest subsolution for the equationf(x) = y (hereafter
denotedf ](y)). The mappingf ] is called theresidualof f .

Theorem 2 ([2], Residuation ):Let f : D → E be an
isotone mapping whereD and E are ordered sets, thenf is
residuated ifff ] is the unique isotone mapping such that

f ◦ f ](y) � y and f ] ◦ f(x) � x (1)

∀x ∈ D and∀ y ∈ E .
Theorem 3 ([2]): Let f : D → E where D and E be

complete dioids whose zero elements are respectively denoted
εD and εE . Then f is residuated iff f(εD) = εE and,
∀A ⊆ D, f(

⊕
x∈A

x) =
⊕

x∈A

f(x).

Theorem 4 ([2]): Mappings La : x 7→ a ⊗ x and
Ra : x 7→ x ⊗ a defined over a complete dioidD are both
residuated. Their residuals are isotone mappings denoted
respectively byL]

a(x) = a ◦\x = x
a

andR]
a(x) = x◦/a = x

a
.

Remark 2:These results can be extended to a matrix dioid
(see [2]).

It is important to notice that in a commutative dioidL]
a(x)

=R]
a(x).

The concept of dual residuation can be defined in similar
way from the equationf(x) = b.

Definition 3 ([2], Dual Residuation):An isotone mapping
f : D → E , whereD and E are ordered sets, is adually
residuated mappingif for all y ∈ E there exists the least
supersolution forf(x) = y. It is denotedf [(y) and it is called
the dual residualof f .

Theorem 5 ([2], Dual Residuation):Let f : D → E be an
isotone mapping whereD and E are ordered sets, thenf is
dually residuated iff [ is the unique isotone mapping such that

f ◦ f [(y) � y and f [ ◦ f(x) � x (2)

TABLE I

FORMULÆ OF RESIDUATION

a
x

a
� x (1)

a
ax

a
= ax (2)

(x ⊕ y) ◦− a = (x ◦− a) ⊕ (y ◦− a) (3)

(x ◦− a) ⊕ a = (x ⊕ a) (4)

(x ⊕ a) ◦− a = (x ◦− a) (5)

x ◦− (a ⊕ b) = (x ◦− a) ◦− b = (x ◦− b) ◦− a (6)

∀x ∈ D and∀y ∈ E .

Theorem 6 ([2]): The isotone mappingTa : x 7→ a ⊕ x
from a complete dioid into itself is dually residuated. Its dual
residual is denotedT [

a(x) = x ◦− a.
Remark 3:x ◦− a = ε ⇔ a � x.
The table I gives some useful equations involving the

residuation (◦− ), in dioids (see[2]).
Property 1: In the Zmax[[γ]] dioid, y(γ) ◦− x(γ) =

{
⊕
k∈Z

y(k)γk} ◦− {
⊕
i∈Z

x(i)γi} =
⊕
k∈Z

(y(k) ◦−

x(k))γk.
Proof: Directly from table I, formulæ (3) and (6),

and observing thaty(k)γk ◦− {
⊕
i>k

x(i)γi} = y(k)γk and

y(k)γk ◦− {
⊕
i≤k

x(i)γi} = (y(k) ◦− x(k))γk.

Remark 4:The associated dater (a nondecreasing trajec-
tory) to the seriesw(γ) = y(γ) ◦− x(γ) is given by
w(k) =

⊕
i≤k

(y(i) ◦− x(i)). As a result, ifw(γ) 6= ε(γ) then

w(val(w(γ))) = y(val(w(γ))).
Property 2: If y(γ) ◦− x(γ) 6= ε(γ) thenval(y(γ) ◦− x(γ))

≥ val(y(γ)).
Proof: Obtained by using property 1 and definition 1.

IV. L INEAR SYSTEMS THEORY

.
Given a TEG, it is possible to associate to each transition

a sequencex = {x(k)}k∈Z
where x(k) represents the date

of the kth firing of the transitionx. Such a sequence, usually
called a dater, is a nondecreasing function ofk. The trajectory
of the transitionx can also be represented by a formal series
x(γ) =

⊕
k∈Z

x(k) ⊗ γk wherex(k) ∈ Zmax .

The following example, which represents a workshop with
3 machines (M1 to M3), illustrates this idea.

Let u and y be respectively the daters of the input and
output transistions andx1 to x3 be the daters of the internal
transitions in TEG of figure 1. The system equations (3) gives
the relationship of these variables in the dioidZmax[[γ]] (when
there is no confusion, the operator⊗ will be omitted).
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Fig. 1. Example of Timed Event Graph (TEG)





x1(γ) = 6γx1(γ) ⊕ 3u(γ)
x2(γ) = 3γx2(γ) ⊕ 10u(γ)
x3γ = 4γx3(γ) ⊕ 6x1(γ) ⊕ 3x2(γ)
y(γ) = 4x3(γ)

(3)

y(γ) = (17 ⊕ 21γ ⊕ (25γ2)(6γ)∗)u(γ). (4)

This result can be generalized for every TEG. Baccelli et al.
[2] have shown that transfer functionh has periodic behavior
and the output of the system in theZmax[[γ]] dioid is given by

y(γ) = h(γ)u(γ). (5)

where

h(γ) = p(γ) ⊕ q(γ)γν(sγr)∗, (6)

with p(γ) =
⊕ν−1

i=0 pi γi, pi ∈ N, a polynomial which
describes the transient behavior of the system andq(γ) =⊕r−1

j=0 qj γj , qi ∈ N, a polynomial which represents a pattern.
This pattern is reproduced for eachr events and lastss time
units.

Baccelli et al. [2] also have shown that in the set of daters
one may write

y(k) =

k⊕

l=0

h(l) ⊗ u(k − l), (7)

whereh is the system impulse response (y = h whenu = e,
i.e., transitionu fires infinitely many times att = 0).

Property 3 ([2]): Let x andy be two daters, then the dater
x ◦\y exists and is given by[x ◦\y](k) =

∧
s∈Z

x(s) ◦\y(k + s).

V. I DENTIFICATION METHOD

This paper assumes that there exists a model for a TEG
SISO as expressed in equation (5). Its structure,i.e. parameters
ν and r (see equation (6)) are assumed to be known .
The purpose of the identification method is to estimate the
unknown polynomialsp(γ), q(γ) and the period durations.

Expanding equation (5) by using (6), one obtains

y(γ) = p(γ)u(γ) ⊕ q(γ)γνz(γ), (8)

wherez(γ) = (sγr)∗u(γ). This equation is a solution of the
affine equationz(γ) = (sγr)z(γ) ⊕ u(γ). Hence, the system
can be represented by the following equations in theZmax

dioid

z(k) = s ⊗ z(k − r) ⊕ u(k)
y(k) = p0u(k) ⊕ . . . ⊕ pν−1u(k − ν + 1)⊕

q0z(k − ν) ⊕ . . . ⊕ qr−1z(k − ν − r + 1)
(9)

with initial conditionsz(k) = u(k) = y(k) = ε for k < 0.
Taking inspiration from the classical identification theory

for the continuous variable dynamic systems [15],y(k) can
be rewritten as

y(k) = ϕT
k ⊗ θ, (10)

whereϕT
k = [u(k) . . . u(k−ν+1)z(k−ν) . . . z(k−ν−r+1)]

is the regression vector andθ = [p0 . . . pν−1q0 . . . qr−1]
T is

the parameter vector which will be estimated.
Therefore, for an observation of N input and output transi-

tion firings, one gets

Y = Φ ⊗ θ, (11)

where Φ = [ϕ0 . . . ϕN ]T is the regression matrix andY =
[y(0) . . . y(N)]T is the observed output vector.

In order to obtain an estimate of the parameterθ, an error
criterion is defined as

J(θ̃) =
⊕

k

(y(k) − ỹ(k)). (12)

Where the output of estimated model (ỹ(k) = Φ ⊗ θ̃) is
such thatỹ(k) ≤ y(k). This criterion means that the best
model must be as close as possible but less than the observed
output, i.e., the greatest̃θ such thatΦ ⊗ θ̃ � Y .

As a first step, variablez will be assumed known. Hence
an optimum estimator for the criterionJ(θ̃) can be obtained
by using Residuation Theory,

θ̂ =
⊕

Φ⊗θ̃�Y

θ̃ = Φ ◦\Y. (13)

Explicitly, the solution to this equation is given by

p̂i =
∧N

k=0 u(k − i) ◦\y(k), i ∈ [0 ν − 1],

q̂j =
∧N

k=0 z(k − ν − j) ◦\y(k), j ∈ [0 r − 1].
(14)

Remark 5: p̂i ≥ pi and q̂j ≥ qj since θ̂ is the greatest
solution of Φ ⊗ θ̃ � Y . Consequently,̂θ is a solution to
equation (11),i.e., Y = Φ ⊗ θ̂. This results implies that̂pi

and q̂j satisfies equation (9) fork = 1, ..., N . By setting
u(k) = +∞ for k > N (This means that no events occur
after k > N ), the equation (9) is satisfied for allk ∈ Z. So
one can also apply theγ transform, which leads to

y(γ) = p̂(γ)u(γ) ⊕ q̂(γ)γνz(γ). (15)

.
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Proposition 1: If the parameters is known and the input
signalu(γ) is sufficiently ”rich” ( i.e., e � u(γ) � h(γ)

h(γ) ) then
the above estimators will converge to the actual parameters,
preciselyp̂(γ) = p(γ) and q̂(γ) = q(γ).

Proof:
If e � u(γ) � h(γ)

h(γ) then h(γ) � y(γ) � h(γ) h(γ)
h(γ) =

h(γ)(see table I, equation (2) ). Ifs is assumed to be known,
z is also known. Moreover the proposed estimator always gives
p̂i ≥ pi and q̂j ≥ qj , howeverp̂i =

∧N
k=0 u(k − i) ◦\h(k) ≤

u(0) ◦\h(i) ≤ h(i) = pi (i < ν) becauseu(0) ≥ 0. The same
reasoning can be applied tôqj .

However, since variablez is unknown, one must estimate
it. If an estimate ofs (denotedŝ) is available, an estimate of
z (denotedẑ) is obtained iteratively, following equation (9),
by

ẑ(k) = ŝ ⊗ ẑ(k − r) ⊕ u(k). (16)

To estimate the period duration,s, one must remember that
the estimates given in equation (14) must satisfy the equation
(15) as explained in remark (5). Introducing a new variable
w(γ), this equation can be rewritten as

{
w(γ) = q̂(γ)γν(sγr)∗u(γ)
y(γ) = p̂(γ)u(γ) ⊕ w(γ).

(17)

A lower bound forw(γ) is given by the dual residuation:

w(γ)inf = y(γ) ◦− p̂(γ)u(γ). (18)

Therefore one has the following inequalities:

w(γ)inf � w(γ) ⇒ (sγr)∗w(γ)inf � (sγr)∗w(γ) � y(γ).
(19)

Hence,(sγr)∗ � w(γ)inf ◦\y(γ). Then in order to estimate
s one must study the set

S = {s ∈ N | (sγr)∗ � c(γ)}, (20)

wherec(γ) = w(γ)inf ◦\y(γ).
Remark 6:As w(γ)inf � y(γ) then c(γ) � e which

implies thatS is nonempty (s = 0 ∈ S).
Expanding the inequality(sγr)∗ � c(γ), one has





0 � c(0)
(sγr)1 � c(r)γr

...
(sγr)i � c(ir)(γr)i

...

(21)

As result,s � c(ir)
i

, ∀i ≥ 1, an upper bound fors in N
is sup = min

i=1,...,∞
b c(ir)

i
c, wherebxc is the integer part ofx.

Moreoversup ∈ S because





(supγ
r)∗ = ( min

i=1,...,∞
b c(ir)

i
cγr)∗

=
⊕∞

j=0( min
i=1,...,∞

b c(ir)
i

cγr)j

� e ⊕
⊕∞

j=1(b
c(jr)

j
cγr)j

� e ⊕
⊕∞

j=1 c(jr)γjr

� c(γ)

(22)

Finally, the conclusion is thatsup is the greatest element of
S. Our proposition is to takês = sup as an estimator fors.
Some properties of this estimator are given below.

Lemma 1: If winf (γ) 6= ε thenval(winf (γ)) ≥ ν.
Proof:

val(winf (γ)) = val{y(γ) ◦− p̂(γ)u(γ)} = val{(w(γ) ⊕
p̂(γ)u(γ)) ◦− p̂(γ)u(γ)} = val{w(γ) ◦− p̂(γ)u(γ)} ≥
val(w(γ)) = ν (by formula (5), table I, and property 2).

Proposition 2: If e � u(γ) � h(γ)
h(γ) andwinf (γ) 6= ε then

ŝ = s.
Proof: ŝ = min

i=1,...,∞
b c(ir)

i
c and c(γ) = w(γ)inf ◦\y(γ).

By lemma 1,vw = val(winf (γ)) ≥ ν. As e � u(γ) �
h(γ)
h(γ) ⇒ y(γ) = h(γ) then winf (vw) = h(vw) (by us-
ing property 1 and observing remark 4). Thereforec(r) =

[w(γ)inf ◦\h(γ)](r) =
∧∞

j=0
h(r+j)

winf (j) ≤ h(r+vw)
winf (vw) = h(r +

vw) − h(vw) = s, becauseh(r + k) − h(k) = s whenk ≥ ν.
Finally, ŝ = min

i=1,...,∞
b c(ir)

i
c ≤ c(r) ≤ s. As ŝ ≥ s (since ŝ is

an upper bound fors) the conclusion is that̂s = s.

Remark 7: If winf (γ) = ε then y(γ) = p̂(γ)u(γ), ŝ = >
andq̂ = ε. This means that̂p(γ) is a good model for the TEG.

The following algorithm summarizes the identification
method.

Algorithm
begin

Collect N pairs of input and output dates (u(k), y(k));
p̂i =

∧N
k=0 u(k − i) ◦\y(k) i = 0, ..., ν − 1;

for k = 0, ..., N
(p̂(γ)u(γ))(k) =

⊕ν−1
i=0 (p̂i ⊗ u(k − i));

winf (k) =
⊕k

i=0{y(i) ◦− (p̂(γ)u(γ))(i)};
end

c(k) =
∧N−k

i=0 winf (i) ◦\y(k + i) for k = 0, ..., N ;
ŝ = min

i=1,...,L
b c(ir)

i
c whereL = bN

r
c;

ẑ(k) = ŝ ⊗ ẑ(k − r) ⊕ u(k) for k = 0, ..., N ;
q̂j =

∧N
k=0 ẑ(k − ν − j) ◦\y(k) for j = 0, ..., r − 1;

end

VI. I LLUSTRATIVE EXAMPLE

Consider the TEG model depicted in the figure 1, where
the structural parameters areν = 2 and r = 1. For an input
firing sequence given byu = [0 5 9 15 19 21] the output firing
sequence isy = [17 22 26 32 37 43]. The figure 2 shows those
sequences and the behavior in dashed lines when the input is
uh(γ) = h(γ) ◦\h(γ).

The application to the proposed method to the observed
date givesP (0) = 17, P (1) = 21, Q(0) = 25 ands = 6, that
is, the method converges to actual parameters of the system.
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Fig. 2. Example of Timed Event Graph (TEG)

One must note that the input condition does not satisfy the
requirements of proposition 2 (i.e. u � uh). This example
shows that the proposition is sufficient for the convergence
but not necessary.

VII. C ONCLUSION

The paper presents a parametric method for the identifica-
tion of SISO TEG. The method is not restricted to the case
of impulse input and it can be used in other input conditions.
Some theoretical results are obtained as the convergence to
the actual parameters in case of ”rich” input signal.
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