
   

     
Abstract— We consider a production facility that produces a 

single product to meet random demand. The system produces 
until stock reaches a certain level and accepts orders until back-
log reaches another level. The problem is to specify the critical 
stock and backlog levels that minimize the sum of customer rejec-
tion, backlog, and inventory carrying costs. The system is mod-
eled as a finite queueing system whose mean cost rate is convex in 
one control parameter and, under certain conditions, unimodal 
in the other. A simple algorithm is proposed to find the globally 
optimum design. Numerical results show that the joint admis-
sion/inventory control policy achieves higher profit than some 
commonly used production control policies. 
 

Index Terms—Production/inventory control, make-to-stock 
production systems, partly lost sales, global optimization. 
 

I. INTRODUCTION 
 In production control, questions of the type "when to start 
or stop producing" and "whether to accept or reject an incom-
ing order" are directly related to net profit, that is, revenue 
from sales less purchase, production, inventory carrying, and 
backlog costs. In this paper, we consider make-to-stock pro-
duction systems, which consist of a production facility, a 
buffer where finished items are stored, and a demand process. 
A common inventory control policy for make-to-stock systems 
is one that specifies a target value for the number of finished 
items. This value is called the base stock. When the buffer 
level reaches the base stock, the production facility is switched 
off. This policy ensures that the inventory cost is bounded. 
When the base stock is zero, the corresponding policy is called 
zero base stock or make-to-order policy. 
 Demand during the stockout period is usually either tightly 
controlled or uncontrolled, that is, customer orders are uncon-
ditionally either rejected or accepted (see, e.g., [1]-[3]). A 
strategy of accepted orders is known as the complete backor-
dering policy (CB) whereas rejection of orders corresponds to 
a lost sales policy (LS). When the production rate is less than 
the demand rate, CB cannot be profitable since the number of 
outstanding orders would grow without bound. An alternative 
admission control policy is to always accept customer orders 
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when stock is available and to accept or reject orders in a ran-
dom manner (e.g. by performing a Bernoulli experiment) dur-
ing stockouts independent of the current backlog [4]. We then 
have a randomized admission control policy (RAC). 
 CB and LS are opposite practices. In CB there is no bound 
on the number of outstanding orders whereas under LS back-
log is always zero. An intermediate admission policy is one 
that rejects orders when backlog reaches a certain limit and 
accepts them otherwise. The overall control policy of the sys-
tem is completely specified by two nonnegative integers, a 
base stock and a base backlog. This is the partly lost sales 
policy (PLS), which generalizes and outperforms CB and LS 
for systems with exponentially distributed processing and in-
terarrival times ([5], [6]). 
 In this paper, we provide a rigorous treatment of PLS and 
examine more general distributions. We prove that the mean 
cost rate of the system (customer rejection cost plus backlog 
and inventory carrying costs) is unimodal, though not always 
convex, in both the base stock and the base backlog. The de-
tailed proof of unimodality is given in [7]. The numerical re-
sults show that the proposed policy achieves higher profit than 
LS, CB, and RAC. This work is a start towards developing 
and treating rigorously similar strategies for complex produc-
tion networks. 

II. QUEUEING MODEL OF A MAKE-TO-STOCK PRODUCTION 
SYSTEM WITH PARTLY LOST SALES 

 Consider a production facility that produces a single prod-
uct. Customers arrive at random times and each customer re-
quests one unit of product. The times between successive cus-
tomer arrivals are independent random variables with mean 
1/λ. Processing times are also independent random variables 
with mean 1/µ. Finished items are stored in an output buffer. 
An arriving order that finds the buffer empty is either back-
logged or rejected; otherwise, it is satisfied immediately from 
the inventory. 
 The operation of the system is associated with three types of 
cost: 

P unit rejection cost, which includes the net revenue (sell-
ing price less cost of purchasing raw parts and process-
ing) per item and a penalty (if any) per customer re-
jected, 

h unit holding cost rate, which is the cost per unit time per 
finished item held in the buffer, 

b unit backlog cost rate, which is the cost per unit time of 
delay for a pending order. 

 A simple policy is used to control the number of finished 
items and pending orders. The facility stops production when 
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the output buffer contains s items and the system rejects an 
incoming order if the current number of backorders is c. Thus, 
s is the base stock and c is the base backlog. The problem then 
is to find s and c that minimize the mean cost rate of the sys-
tem, which is the sum of the mean rejection, holding, and 
backlog cost rates. We derive expressions for these costs by 
analyzing an equivalent queueing system. 
 The state of the system is described by an integer n, 
0 ≤ n ≤ s + c. When n ≤ s there are no pending orders and the 
output buffer contains s − n items. When n ≥ s the output 
buffer is empty and there are n − s orders to be satisfied. The 
system is modeled as a G/G/1/m queue with capacity 
m = s + c. The arrival and service completion times equal the 
customer arrival and production completion times respec-
tively. When n = 0 the queueing system is empty and its server 
idle. Correspondingly, in the original system, the output buffer 
is full, the production facility is stopped, and no pending or-
ders are present. In a dual fashion, when n = m the queueing 
system is full and all incoming arrivals are lost, whereas, in 
the original system, the output buffer is empty, c = m − s or-
ders are pending and all incoming orders are rejected. 
 Let pn be the stationary probability that the system is in 
state n, provided a steady state exists. Since exact analytical 
models for general G/G/1/m queues do not exist, we assume 
that the stationary probabilities are geometric except for cer-
tain boundary states. Specifically, we assume that 
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for m ≥ 4. In the above expressions, the stationary probabili-
ties of the internal states n, 2 ≤ n ≤ m − 2, form a geometric 
progression with parameter σ. The parameters α, β, γ, and δ 
are associated with the four boundary probabilities pn, n = 0, 1, 
m − 1, m. We assume that all parameters depend on the statis-
tics of the interarrival and service times but are independent of 
s, c, and m. Finally, Km is a constant arising from the normaliz-
ing equation ∑ =m

np0 1 . For brevity, we assume that σ ≠ 1. 
Then 
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 Equation (1) may not hold for values of m less than 4, since 
then there are no internal states. These cases can be analyzed 
separately using exact or approximate Markovian models with 
a small number of states which are computationally tractable.  
 There are a number of models whose stationary probabili-

ties have the form of Eq. (1). 
(a) Setting α = β = γ = δ = 1 and σ = λ/µ in Eq. (1) yields the 
stationary probabilities of the M/M/1/m queue. 
(b) For the approximation of G/G/1/m queues proposed in [8], 
the stationary probabilities are given by 
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where ρ = λ/µ and 
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N is an approximation of the mean number of customers in a 
G/G/1 queue for λ < µ and N' is the mean number of custom-
ers in the reversed G/G/1 queue with arrival rate µ and service 
rate λ when λ > µ. For λ = µ the limiting result of Eq. (3) is 
derived as ρ→1. Setting α = σ (1−ρ )/[ρ (1−σ )] and β = γ = δ 
= 1 in Eq. (1) yields Eq. (3). 
(c) As a final example, consider a discrete-time model, pre-
sented in [8], of a two-machine transfer line with constant 
processing times and geometrically distributed times between 
failures and times-to-repair. In that model, all events of inter-
est (production, failures, repairs) occur at times 1, 2, … In our 
setting, the second machine represents the production facility 
and the first machine models a demand pattern that consists of 
consecutive times during which customers place requests for 
one item per time unit followed by consecutive times during 
which no demand occurs. When n = m the first machine is 
blocked, that is, all incoming orders are rejected but the de-
mand pattern is not affected. Thus, for the first machine of this 
equivalent system, failures are time-dependent. However, 
when n = 0 the second machine is stopped and it cannot fail. 
Thus, the failures of second machine are operation-dependent. 
The stationary probabilities are derived in Section 6.6.1 of [8] 
and have the form of Eq. (1).  

III. MINIMIZATION OF THE MEAN COST RATE 
 In this section, we use the stationary probabilities from Eq. 
(1) to express the mean cost rate as a function of the base 
stock s and the system capacity m, where m = s + c. Then, we 
derive expressions for the optimal base stock for any fixed m. 
We also show that, under a rather mild condition, the objective 
function is unimodal in m. Although from numerical results it 
appears that this function may have a nonconvex, staircase 
shape, unimodality ensures that the global minimum can be 
tracked down by careful line search. This gives rise to an effi-
cient algorithm for computing optimal values of s and m. 
 Since in state n = 0 the production facility is stopped, the 
proportion of time the facility is busy, on the average, is 
1 − p0. A busy period is defined as the interval between a 
startup and a stoppage of the production facility. Whenever 



 
 

the level of the output buffer drops from s to s − 1 the facility 
is switched on and a new production cycle begins. When a 
part is completed and the buffer level reaches the base stock, 
the facility is stopped. From these observations, we see that 
each busy period of the facility contains an integer number of 
complete production cycles. These cycles are independent 
random variables with mean 1/µ. Therefore, the mean produc-
tion rate of the system is (1 − p0)µ. Since, in steady state, this 
quantity must equal the mean arrival rate of accepted orders, 
the mean rejection rate is λ − (1 − p0)µ and the mean rejection 
cost rate is P(λ − µ + p0µ ). Finally, the mean cost rate of the 
system is P(λ − µ ) + Pp0µ + hH + bB, where H is the mean 
number of finished items in the buffer and B is the mean num-
ber of pending orders. 
 Since P, λ, and µ are constant, minimizing the mean cost 
rate is equivalent to minimizing the objective function 
 

J(s, m) = Pp0µ + hH + bB 
 
for m = 0, 1, ... and s = 0, 1, ..., m. From Eq. (2) we obtain 
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and the objective function is written 
 
J(s, m) = Km[Pµα + h[1σ s−1 +…+ (s−2)σ 2 + (s−1)σβ +sα ] 
   +b[1σ s+1 +...+ (m−s−2)σ m−2 + (m−s−1)σ m−1γ  + (m−s)σ mδ ]] 
 
 Since the problem is two-dimensional, we solve it sequen-
tially. First, we minimize J(s, m) with respect to s for any 
fixed m and then we track down the optimal value of m. 
 For some fixed m, we seek a value sm for s such that the 
following inequalities hold simultaneously: 

 
J(sm, m) ≤ J(s', m), for every s' such that 0 ≤ s' < sm 

J(sm, m) < J(s', m), for every s' such that s' > sm 
 
Due to the special form of the boundary probabilities involv-
ing parameters α, β, γ, and δ, the expression of J(sm, m) for 
sm = 0, 1, m−1, or m differs from that for 2 ≤ sm ≤ m−2. The 
following theorem provides closed-form expressions for sm. 
 Theorem 1. For any fixed m, m ≥ 4, J(s, m) assumes its 
minimum value at the point sm, which is given by 
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where x denotes the largest integer less than or equal to x. 
 The proof of the above theorem is given in [7]. 
 Having found the optimal value sm for each m we minimize 
J(sm, m) with respect to m, where m∈{0, 1, …}. Clearly, when 
m = 0 the system does not operate and, therefore, s0 = 0 and 
p0 = 1. In that case, the objective function becomes 
J(0, 0) = Pµ and the mean cost rate of the system equals 
P(λ − µ) + J(0, 0) = Pλ, that is, the cost rate of rejecting all 
customers. For m = 1, 2, or 3 the optimal value sm and the cor-
responding value of the objective function can be found by 
exhaustive search since the number of candidate (s, m) pairs is 
small (s ≤ m). It then remains to minimize J(sm, m) on the set 
M = {4, 5, ...}. If the minimum is less than Pµ then the system 
is profitable, otherwise it pays more not to operate it. 
 First, we divide the set M into five subsets given by 
 
      M0 = {m∈M: sm = 0} 
      M1 = {m∈M: sm = 1} 
      M2 = {m∈M: 2 ≤ sm ≤ m − 2} 
      M3 = {m∈M: sm = m − 1} 
      M4 = {m∈M: sm = m} 
 
The problem then becomes one of finding 
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 Second, we show that J(sm, m) is unimodal on each set Mi. 
To prove unimodality, we assume that condition  
 
 A(1−σ ) ≥ 0 and  D(σ −1) ≥ 0 (5) 
 
holds, where A and D are given by equations (2). Although the 
above condition may not hold for every G/G/1/m system, we 
have verified its validity for the three models examined in 
Section 2. 
 The following lemma establishes certain properties of the 
sets Mi and monotonicity of the optimal base stock sm. 
 Lemma 1. If condition (5) holds, then 
(a) the sets Mi are disjoint and convex; specifically 
 

Mi = {mi−1, mi−1 + 1, … mi − 1} 
 
where mi are the extreme solutions of the inequalities in Eq. 
(4) and are given by 
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if mi ≤ mi−1, then we have Mi = ∅; 
(b) if m and m + 1 belong to M2, then sm ≤ sm+1 ≤ sm + 1. 
 The proof of the above is given in [7]. Part (b) of Lemma 1 
offers an alternative approach to finding the optimal base 
stock for each m. From the definition of Mi, for m∈Mi, i = 0, 1, 
3, or 4, the optimal base stock is sm = 0, 1, m − 1, or m, respec-
tively. For the set M2, if sm−1 is the optimal base stock when 
the capacity of the system is m − 1, then sm is obtained by 
comparing the values of the objective function at s = sm−1 and 
s = sm−1 + 1. This reduces the search effort for sm.  
 In [7] we use Lemma 1 to prove the next result, which en-
sures that an appropriate local minimizer m of each subprob-
lem is also a global minimizer in the corresponding subset Mi. 
 Theorem 2. If condition (5) holds, then the function J(sm, m) 
is unimodal on each subset Mi, i = 0, …, 4. Specifically, sup-
pose a point m∈Mi exists such that  

J(sm, m) ≤ J(sk, k) for every k < m, k∈Mi, 
and J(sm, m) ≤ J(sm+1, m + 1).  

Then, 
 
 J(sm+1, m + 1) ≤ J(sk, k) 
 
for every k > m + 1, k∈Mi. 
 This theorem has an important algorithmic consequence. 
The optimal solution (s*, m* ) to the original problem can be 
tracked down as follows. 
Step 1. Compute the extreme points of all sets Mi = {mi − 1, …, 

mi − 1}. Set i = 0, J* = ∞ and go to Step 4. 
Step 2. If Ji

* < J*, then update the globally optimal values: 
J* = Ji

*, s* = si
*, and m* = mi

*. 
Step 3. Set i = i + 1. 
Step 4. If Mi = ∅ go to Step 3; otherwise set m = mi − 1. 
Step 5. Compute sm from Eq. (4) and J(sm, m). If m > mi − 1 and 

J(sm, m) ≥ Ji
*, then abort set Mi and go to Step 2; m − 1 is the 

optimal base stock for Mi. If m = mi − 1 or J(sm, m) < Ji
*, then 

initialize or update, respectively, the globally optimal pa-
rameters of set Mi: Ji

* = J(sm, m), mi
* = m, and si

* = sm. 
Step 6. Set m = m + 1. If m ≤ mi − 1 go to Step 5; otherwise go 

to Step 2. 

IV. NUMERICAL RESULTS 
 We compare the proposed partly lost sales policy (PLS) 
with the following policies: complete backordering (CB), lost 
sales (LS), and randomized admission control (RAC). 
 Let (s, c)PLC be a partly lost sales policy with a base stock s 
and a base backlog c. It turns out that CB is the same as (s, 
∞)PLC and LS is (s, 0)PLC. Another commonly used control 
policy is the zero base stock policy, denoted (0, c)PLC. The cost 
rate under such policy equals the cost rate incurred by the re-
verse system operating under a lost sales policy, (c, 0)PLC, and 
so it suffices to study the performance of LS. 
 We consider two production systems, an M/M/1/m queue 
and a G/G/1/m queue. The standard parameters for both sys-
tems are λ = 9.5, µ = 10, h = b = 0.5, and P = 10. 
 In the second system, the coefficients of variation of the 
interarrival times and the service times are both equal to 0.5. 
Using these values and an approximate method proposed by 

[8] we can compute the parameter σ and, by Eq. (3), the sta-
tionary probabilities for this system. 
 This method cannot be applied directly to systems operating 
under RAC. Thus, RAC was tested only for the M/M/1/m case, 
for which the mean cost rate has a closed form, by solving a 
simple Markov model. This model depends on s and the rejec-
tion probability during the stockout period. Optimal values for 
these parameters are computed by exhaustive search.  
 We investigate the effects of varying ρ = λ/µ, b, and h on 
the mean production cost rate. Figures 1 through 3 and Table I 
show the results for the M/M/1/m system and Figs. 4 through 6 
show the results for the G/G/1/m system. 
 

TABLE I 
CONTROL PARAMETERS AND PERFORMANCE OF PRODUCTION CONTROL 

STRATEGIES FOR VARIOUS VALUES OF ρ  (M/M/1/m  SYSTEM) 
 ρ 0.875 0.925 0.975 1.025 1.075 1.125 

PLS s 5 7 11 16 23 30 
 c 30 22 16 11 8 5 
 Cost 2.56 3.87 5.85 8.44 11.61 15.38 

RAC s 5 8 13 18 24 31 
rejection pr. 0 0.01 0.08 0.16 0.24 0.34 

 Cost 2.59 4.43 6.93 9.45 12.38 15.93 
LS s 13 15 17 21 26 32 

 Cost 6.56 7.58 8.92 10.72 13.17 16.42 
CB s 5 8 27 - - - 

 Cost 2.59 4.44 13.69 ∞ ∞ ∞ 
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Fig. 1. Mean cost rate for an M/M/1/m system versus ρ. 
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Fig. 2. Mean cost rate for an M/M/1/m system versus b. 
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Fig. 3. Mean cost rate for an M/M/1/m system versus h. 
 
 The numerical results suggest that PLS incurs the smallest 
cost rate. For LS and CB, this result agrees with intuition since 
LS and CB are special cases of PLS. When ρ is close to 1, the 
costs of LS and CB are higher than that of PLS by 50%. When 
ρ is less than 1 (this includes the standard caseρ = 0.95), LS 
degrades significantly with increasing h and CB degrades with 
increasing b. For ρ→0, PLS achieves the same cost rate as 
CB. In this case, the mean backlog is very small and any effort 
to limit it would not achieve a substantial cost reduction. 
When ρ is much greater than one the cost rate achieved by 
PLS is approximately equal to the cost rate achieved by LS. In 
this case, customers arrive frequently and, therefore, the rejec-
tion cost rate is negligible compared to the backlog cost rate. 
Hence, the optimal base backlog for PLS tends to zero. In 
general, as the contribution of the backlog cost to the overall 
cost increases, the cost rate of LS converges to that of PLS and 
when b tends to zero PLS and CB perform alike. 
 Finally, from Figs. 1-3, we see that PLS and RAC have the 
same cost rates when b→0, ρ→0, or ρ >> 1. In the remaining 
cases PLS provides a cost reduction of 10-20% over RAC. 
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Fig. 4. Mean cost rate for a G/G/1/m system versus ρ. 
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Fig. 5. Mean cost rate for a G/G/1/m system versus b. 
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Fig. 6. Mean cost rate for a G/G/1/m system versus h. 
 

V. CONCLUDING REMARKS 
 The idea of coordinating admission and inventory decisions 
could be applied to production systems with setup times, sev-
eral demand classes, and complex production networks. For 
systems that incur a setup cost or setup delay during a startup 
of the production facility, a practical control policy would be 
to combine an (s, S ) inventory policy ([9], [10]) and the pro-
posed customer admission strategy. In an (s, S ) inventory pol-
icy, the production facility starts when the level of the output 
buffer drops to s and stops when it reaches S (the base stock 
policy is an (s − 1, s) inventory policy). Combining this policy 
and PLS requires three control parameters s, S, and c, and 
more elaborate tools to establish second-order properties of 
the objective function. Ha ([11], [12]) has studied the problem 
of stock rationing under CB or LS when there are several de-
mand classes with different profit or backlog cost structures. 
Each demand class is associated with a critical stock level 
above which we accept an incoming order under LS or satisfy 
a pending order from that class under CB. These two cases 
could be combined or somehow extended to a PLS policy. 
Future research will focus on such problems. Current research 
is underway on proving unimodality properties of PLS in 
flexible manufacturing systems, in which the production con-
trol policy is simple and the stationary probabilities have 
closed-form expressions. 
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