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Abstract: In this paper the problem of parameters estimation 
of AR process in the presence of noise uncertainty is 
considered. Off-line estimation method is based on empirical 
risk minimization (method important in theory of learning 
and generalization). It is supposed that properties of 
stohastic process is not known exatcly. More realistic 
assumptions is that we have apriori information about the 
class of distributions to which stochastic process belongs. In 
such situation philosophy of robust statistics is used. For 
1estimates consistency and asymptotic normality is proved. 
 
Kewords: Empirical risk, robust statistics, consistency, 
asymptotic normality   
 
 

I. INTRODUCTION 
 
The representation of a stochastic process by model dates 
back to an idea that was originated by Yule [1]. Next step 
was the observation that stationary stochastic process is 
decomposed into the sum of a deterministic and purely 
random component [2]. The deterministic component is 
perfectly predictable from the infinite past and has the 
form of finite combination of siuusoids. The purely 
random component can be represented as the output of 
linear system driven by white noise. Very large class of a 
stochastic processes can be represented by autoregressive 
models (AR). That kind of models is related to 
fundamental theorem in the decomposition of time series 
[2] and parameters of model can be computed by solving 
Yule-Walker equations (system of linear equations) [3]. 
The AR models have applications in: geophisics, speech 
processing, radars, weather prediction and in many others 
areas [4], [5]. It is extremely important prediction that 
theory of stochastic processes and recursive procedure for 
estimation will play in close future very important role in 
the development of quantum computers [6].  

In this paper we will consider autoregresive parameter 
estimation under the different assumptions in comparison 
with the standard approach. Namely, the most commonly 
used assumption is that the stochastic disturbance has 
Gaussian model. Beliefs in existence a kind of continuity 
principle according to which the results of inference 
would change only a small amount if the actual model 
deviated only a small amount from the assumed model 
are unjustified [7]. Estimation algorithms, based on the 
Gaussian model, have been found to be espicially 
ineficient when the real distribution belongs to the heavy 
tailed variety, giving rise to the occasionally very large 
outliers [8]. According to outliers type which can occur in 
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practice in this paper we will consider disturbance 
uncertainty in the form of innovation outliers [9]. 

In this paper we will consider identification of AR models 
when stochastic process is non-Gaussian. We use the 
iterative procedure (off-line identification). Tne 
minimized functional is nonlinear and includes a priori 
information about the probability distribution of 
observations. Namely, using game theory it is possible to 
find least favourable pdf within a prespecified pdf class P 
to which the real noise pdf belongs [7]. For such pdf 
asymptotic estimation error covariance matrix has a 
saddle point. In theoretical investigation of iterative 
algorithm we extend the results for scalar parameters 
[10], [11] on the case of AR models. It is proved 
consistency and asymptotic normality for estimated 
parameters. 
 
 

II. PROBLEM FORMULATION 
  
Let the system under consideration be described by a 
linear single input-single output AR model [12] 

 ( ) ( ) ( )ieiyqA =−1  (1) 
where 

 ( ) n
nqaqaqA −−− ++= ...1 1

1
1    ,   0≥n  (2) 

characteristic polynomial in backwards shift operator 1−q  
with unknown coeficients 

 [ ]n
T aa ...1=θ  

but with known orders n. Here ( ) 1Riy ∈  and   ( ) 1Rie ∈  
and   ( )ie   is stochastic process. The stochastic process 
( ){ }ie  has the properties  

( ){ } 0=Ε ie    ,   ( ){ } ∞<Ε ie 2  

where ( )⋅Ε  is mathematical expectation operator. 
Autoregressive model (1) can be rewritten in the next 
form 
 ( ) ( ) ( )ieiZiy T += θ  (4) 

where ( ) ( ) ( )[ ]niyiyiZ T −−−−= ...1  is vector of 
measurement. The main goal is parameters estimation 
based on minimization of next functional 
 
 ( ) ( ) ( )( ){ }θθ iZiyHEJ T−=  (5) 
 
where  11: RRH →  is a function which depends from 
distribution of stochastic process ( )ie . When exact 



  
 

 

knowladge about stochastic process is absent functional 
(5) can be replaced with the empirical functional 
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For parameters estimatin we use next procedure 
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k
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This estimate can be interpreted as a solution of next 
equations  
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Where ( ) ( )⋅′=⋅ Hψ . Described approach is known as a 
empirical functional method. As a special cases appear 
the maximum likelihood method and a least squares 
method. In this paper we want to find the conditions 
under which 

 ( ) ( )θθ JJii
=

∞→
lim  (9) 

Direct consequence of relation (9) is consistent estimates, 
i.e. 
 ( )

0
�lim θθ =

∞→

k
ii

   , w.p. 1 (10) 

Remark 1. In the literature one can find different 
assumptions about the properties of  ( )ie . Process ( )ie  
can be considered as a uniform bounded quantity [6], 
[13], i.e. 
 
 ( ) kie ≤   ,  [ )∞∈ ,0k  
The general description of ( )ie  can be presented in the 
form [14] 

 ( ) ( ) ( )ieieie 21 +=  

where ( )ie1  is Gaussian process and ( )ie2  is uniformly 
bounded. 

In many cases the main assumption is that ( )ie  has 
Gaussian distribution. As  explained in the introduction of 
this paper such assumption often is unjustified and more 
realistic assumption is that we have apriori information 
about the class of distributions to which the real process 
( )ie  belongs. Such approach will be considered in this 

paper. Two important classes of distributions are 
 
a) The gross error model 

( ){ }     , *1: *
*1 symmetricisGGPPF εεε +Φ−== ,   

b) The Kolmogorov model 

( ) ( ){ }*
*2    sup      : εε <Φ− xxPandsymmetricisPPF  

In both models Φ  is Gaussian distribution and *ε is 
known number in (0,1]. 
Remark 2. Uncertainty in the model (1) can be in the form 
of unmodeled dynamic which is dominated by 
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Two models are important 

a) AR models with structural uncertainty  
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where ( )11

−qH  is polynomial with unknown coefficients 
and orders and  1µ is constant. 
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b) AR model with slowly varying parameters 

( ) ( ) ( ) ( ) ( ) ( )ieniyinaiyiaty =−−++−−+ 1,...11,1  

with  ( ) 21 µθθ ≤−−i  ,  02 ≥µ   and 

( ) ( ) ( )[ ]1,,...1,11 −−=− inaiaiTθ  

In the [16] is considered problem of estimation in the 
presence of noise uncertainty and unmodeled dynamic. 

Remark 3. The identification in ∞H  in the presence of 
non-Gaussian noise is considered in [17]. 
 
 

III. CONSISTENT ESTIMATION 
 
The very important question is consistency of estimates. 
For estimates given by relations (6) and (7) we will prove 
next theorem. The proof of theorem is based on 
verification of conditions of  Theorem 1 from reference 
[10] where scalar case is considered. 
 
Theorem 1. Let us suppose that 

1°  ( )1−qA  is stable polynomial 

2° Random variables ( )ie  is uniformly bounded, 
independent, equaly distributed and belongs to 
apriori known a class of distributions 

3° Function  { }∞+∪→ 11: RRH  is nonnegative 
semicontinuous and finite except on set Lebesque 
measure zero and on set ( ){ }∞<∈= uHRuD ,1  

4° Set of parameters nRC ⊂θ  is compact 

5° for 1Ru ∈∀  is 

 ( ) ( ) ( )[ ] ( ) 0
1

>−+= ∫ uduHvuHvl
R

φ  

 and for θθ R∈∀ , different from 0θ  probability 
measure µ  satisfies  condition 

 ( ){ } 00, 0 >≠−θθµ TZZ  



  
 

 

6° A is closed interval, Q is open set and S is 
countable set 
Then 

( ){ } 1�lim 0 ==
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Proof: In the frame of proof we will verifay conditions of 
Theorem 1 which is proved for scalar case in [10]. 

A1  Let us introduce 

 ( )( ) ( )θθθ ,0 yfZeH T =−+  (11) 

and let us define sets 

 ( ){ }QAyfy ∈∀∈ θθ   ,  ,:  (12) 

 ( ){ }SQAyfy ∩∈∀∈ θθ   ,  ,:  (13) 

Suppose that exists 1y  such that  ( ) Ayf ∈θ,1  for  

SQ∩∈θ  and ( ) Ayf ∉θ,1  for Q∈∃ 1θ . One can find 
sequence nθθθ ,...,, 21  which belongs to set S such that 

1lim θθ =
∞→ nn

.                                                                                                                                                                                                   

From condition 4° of theorem follows 

 ( ) ( )111 ,,lim θθ yfyf nn
=

∞→
 (14) 

According with assumption ( ) Ayf n ∈θ,1  . The A is 
closed set (condition 6 of Theorem) and because 
( ) Ayf ∈11,θ . That is in contradiction with the initial 

assumption from where follows that sets which are 
defined with relations (12) and (13) are identical.  

A2  Using condition 3° of  theorem we have  

( )( ) ( )( )θθθθ
θ

−+→′−+
∈′

0inf TT
Q

ZeFZeH   wp1 (15) 

 if neighbourhood of  Q, which contains θ , is 
degenerated in { }θ  

A3  From condition 3° of theorem follows 

( )( ) ( ){ } ∞<−−+
−

eHZeHE T θθ0  ,  θθ C∈∀  (16) 

( )( ) ( ){ } ∞<−−+
+

eHZeHE T θθ0 ,

θθ C∈∀  (17) 

where ( )0,max uu =+  and  ( )0,min uu =−  

A4  From condition 5° of theorem we have 

 ( )( ) ( ){ } =−−+ eHZeHE T θθ0  

 ( )( ) ( )[ ] ( ) ( ) =−−+∫ ∫ ZddPHZeH T µθθθθ    0  

 ( )( ) ( ) 00 >−∫ dZZl T µθθ  (18) 

A5  Using assumption 4° of Theorem it is enough to 
prove condition A5 of  Theorem 1 from [10] 
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where ( )ωAI  is a set indicator funcrtion 
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Using condition 1° and 2° of  theorem Lipschitz condition 
for ( )uH  for Du ∈  is  

 ( ) ( ) ( ) ( ) ≤−−+=Ε ∫ ∈
dZeHZeZeh T

C
µθθ

θθ
0sup,  

 ( ) ( )∫ ∞<−+≤
∈

dZZeL T

C
µθθ

θθ
0sup  

where ( )∞<∈ ,0  is Lipschitz constant. 
Theorem is proved. 
 
Theorem 1 is possible to prove using ergodic theory of 
stochastic processes [18]. 
 
 

IV. ASYMPTOTIC NORMALITY OF ESTIMATES 
 
The next important step in the analysis of stochastic 
algorithms is a speed of convergence. That fact can be 
established by convergence of estimates in distribution. 
Results of such kind will be presented in the theorem in 
this section. 

We first will present two definitions. 

Definition 1 [19]. For large class of sets XU ⊂  and 
Θ⊂1D  exists contable set S of points Θ∈jθ  such that 

for UA ∈∃  and 1DQ ∈∃  set of points 

 ( ){ }QAg ∈∀∈ θωθω   ,  ,:  

differ from set 

 ( ){ }QSAg jj ∩∈∀∈ θωθω   ,  ,:  

onliy for subset of fixed set N which has P-measure zero 
and is independent from sets A and Q. That is separable 
stochastic process. 
 
Definition 2 [19]. Let us suppose that S is subset of set 
Θ . Mean squere variation of stochastic process ( )tX  on 
set S is supremum of next sums 

 ( ) ( ){ } 2
1

2
1∑ −+

j
jj tXtX  

for finite set of points { }jt  such that 1+< jj tt  and St j ∈  

for j∀ . 

We also, will formulate next result from [20] 

Result [20}. Suppose that S is closed subset on 1R  and 
( ) Sttx ∈,  is separable stochastic process continuous in 

mean square sense. Also, suppose that set S has inf 
St ∈0 . Then, for 0>∀ B  
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where L is variation of process on set S.  

Let us introduce next 

 ( )( ) ( ) ( )( )θνψθ ,, iiZiyq =  (21) 

 ( ) ( ) ( )θθν iZiyi T−=,  (22) 

Theorem 2. Suppose that next assumptions is valid 

1°  Zeros of polynomial ( )1−qA  are insaide of unit 
circle 

2° ( ){ }ie  is independent and equaly distributed 
stochastic process and ( ){ } 0=ieE  ,  and 

( ){ } ∞<= 22 σieE  

3° Vector function ( ) ( )( ){ }θθλ ,iyqE=  is 
continuously differentiable in point 0θ  and matrix 

( )0θλ∇  is nonsingular 

4° Matrix ( )( ) ( )( ){ }00 , , θθ iyqiyqE T  is nonsingular 
and finite 

5° Function ( )⋅ψ  is continuous with respect to θ , i.e. 
 ( )( ) ( )( ) 0,,lim =−′

→′
θνψθνψ

θθ
ii   wp1 

6° Exists ( ) 0, >δε  for which 
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7° Estimates of unknown parameters are consistent ,  
 i.e 
 ( )

0
�lim θθ =
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Then 

 ( )( ) ( )Γ→− ,0�
0 Ni

D
i θθ  

where ( )Γ,0N  is normal distribution with mean value 
equal to zero and covariance matrix 
 

 ( )( ){ }
( )( ){ }

( ) ( ){ }[ ] 12

2

,
, −

′
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θνψ
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Proof: Owing the problem with space the proof is 
omited! 
 
 

V. EXPERIMENTAL RESULTS 
 
In this part of paper we will use the Monte-Carlo 
simulation for experimental analysis of robust off-line 
estimation. Model of AR process has the form 
 
 ( ) ( ) ( )ieiyqq =+− −− 11 7.05.11  (23) 

Stochastic  process ( )ie  has a distribution 

 ( ) ( ) ( ) ( )100,01,01: NNie εε +−  (24) 

where ( )Σ,0N  is normal distriburion with zero-mean and 
varianca Σ . Here we use 01.0=ε  where ε  is degree of 
contamination. 

As a nonlinear function (nonlinear transformation of 
prediction error) we use a Huber function 

 ( ) { }{ } 









=−=

x
bxbxbxHU ,1min,max,minψ  (25) 

In this paper we will use 3=b . 

For experiments a population of 100 observation is used. 

For parameters estimation we combine two iterative 
preocedures. On first ten iterations we use gradient 
algorithm and after that, for increase speed of 
convergence, we use Gauss-Newton algorithm. 
 

H a1 a2 

0 0.000 0.000 
5 -0.959 0.176 
10 -1.060 0.261 
15 -1.110 0.310 
20 -1.140 0.337 
25 -1.170 0.365 
30 -1.180 0.383 
35 -1.510 0.713 
40 -1.510 0.713 

 
Table 1. Parameters estimation when linear 

estimation algorithm is used ( )( )xx =ψ  
 
 

H a1 a2 

0 0.000 0.000 
5 -0.790 0.519 
10 -1.400 0.364 
15 -1.135 0.664 
20 -1.510 0.633 
25 -1.490 0.727 
30 -1.530 0.723 
35 -1.500 0.706 
40 -1.500 0.706 

 
Table 2. Parameters estimation when nonlinear  

algorithm is used ( ) ( )xx HUψψ =  
 
Experimental results is presented in the next two tabelas. 
In the Table 1  are results when for non-Gaussian process 
( )ie  is used linear estimation algorithm ( )( )xx =ψ  and in 

the Table 2 for the same case used nonlinear (robust) 
algorithm where  ( ) ( )xx HUψψ = . For the second case we 
have better results. 
 
 

VI. CONCLUSION 
  
In this paper the problem of off-line parameters 
estimation of autoregresive model, in the presence of 
noise uncertainty, is considered. It is supposed that a 
priori is known only class of distribution to which 



  
 

 

stochastic process belongs. In such situation the 
methodology of robust statistics is used. Consistency and 
asymptotic normality for estimated parameters is proved.  
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