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Relationship between infinite eigenvalue assignment  

for singular systems and solvability  
of polynomial matrix equations 

  
  

2. PROBLEM FORMULATION Abstract - Two associated problems: the problem of infinite 
eigenvalue assignment and the problem of solvability of 
polynomial matrix equations are considered. Necessary and 
sufficient conditions for the existence of solutions to the 
problems are established. The relationship between the 
problems are discussed and some applications from the 
field of the perfect observers design for singular linear 
systems are presented. 

 
Let mnR ×  be the set of mn×  real matrices and 1×= nn RR . 
Consider the continuous-time linear system  
 
                                                      
(1) 

BuAxxE +=

  
where  

dt
dxx = ,  and  are the semistate and 

input vectors and 

nRx∈

AE

mRu ∈

nn RB ∈ mnR ××∈ ,, . The system (1) is 
called singular if det 0=E  and it is called standard when 

0det ≠E .  

1. INTRODUCTION 
 

It is well-known [1,7,11,6,9] that if a pair ( )BA,  of  
standard linear system  is controllable then 
there exist a state-feedback gain matrix K such that  

BuAxx +=

[ ] ( )spBKAsI n =+−det , where  It is assumed that rank mBranknrE =<= ,  and the pair 
 is regular, i.e. ),( AE( ) 01

1

1 ... asasassp n

n

n ++++= −

−
 is a given  

arbitrary n degree polynomial. By changing K we may 
modify arbitrarily only the coefficients a  but 
we are not able to change the degree n of the polynomial 
which is determined by the matrix . In singular linear 
systems we are also able to change the degree of the closed-
loop characteristic polynomials by suitable choice of the 
state-feedback matrix  K. The problem of finding of a state-
feedback matrix  K such that     det[

110 ,...,, −naa

]

sIn

0≠=+− αBKAEs  
(α  is independent of  s)  has been considered in [3,2]. 

 
                0]det[ ≠− AEs  for some C∈s                  
(2) 
                                   (the field of complex numbers) 
 
Let us consider the system (1) with the state-feedback 
 
           u                                     
(3) 

Kxv −=

 The polynomial equation approach to linear control systems 
has been considered in many papers and books [8-10,6]. where mRv ∈  is a new input and nmRK ×∈  is a gain 

matrix. In this paper a new approach to solve the problems will be 
proposed. The problem of infinite eigenvalue assignment is 
closely related with the problem of finding a solution 

, nIX = KY =
BY =+

( ) α=s

 to the polynomial matrix equation 
 for an unimodular matrix U  

with . 
[ ]AEs −

det
( )sUX

U
)(s

From (1) and (3) we have  
 
  BvxBKAxE +−= )(                           
(4) 
 
Problem 1. Given matrices  of (1) and nonzero 

scalar  

BAE ,,
α  (independent of s). Find a nmRK ×∈  such that Necessary and sufficient  conditions for the existence of a 

solution  to the polynomial matrix equation will be 
established. The relationship between the problems will be 
discussed and some applications from the field of the 
perfect observers design for singular linear systems will be 
presented. 

),( YX  
  α=+− ]det[ BKAEs                           
(5) 
 
Let  be the set of  polynomial matrices in  s  
with real coefficients and U  be a unimodular 
matrix such that 

][sR mn× mn×
)(s ][sR nn×∈

α=)(sUdet . 
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Then (5) can be written as 

)(det],[det sU
K
I

BAEs n =
















− (  - the identity matrix) 
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nI

and  
         [                               
(7) 

)(] sUBYXAEs =+−

where 
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nIX = KY =                           
(8) 
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Therefore, the following problem associated with Problem 
1 can be formulated as follows. 
                                                                                         

(10b) Problem 2. Given the matrices  and U  with BAEs ,− )(s
α=)(det sU . Find a solution  satisfying (8) of the 

polynomial matrix equation (7). 
YX , with  of full row rank and  

nonsingular. 
1,2111 ,...,, −kkAAB kkEE ,...,22

In this paper necessary and sufficient conditions for the 
existence of solutions to the problems will be established 
and procedures for computation of  K  will be proposed. 
The relationship between the problems will be also 
discussed. 

 
Theorem 1. Let the condition (2) be satisfied and the 
matrices  of (1) be transformed to the forms (10). 
There exists a matrix  K  satisfying the condition (5) if and 
only if 

BAE ,,

 i)   the subsystem (  is singular, i.e. ),, 111 BAE3. SOLUTION OF THE PROBLEM 1 
  
                                            
(11a) 

0det 1 =EIt is well-known [1,6]  that the system (1) is completely 
controllable if and only if 

  
             for all finite nBAEsrank =− ],[ C∈s            
(9a) 

ii)  if n  then the degree of the polynomial  00 >
     det[ ]00 AsE −  is zero, i.e. 

and                   rank                                   
(9b) 

nBE =],[                deg 0]det[ 00 =− AsE  for n                  
(11b) 

00 >

 
 The solution of the problem 1 is based on the following 

lemma [2]. Proof. (compare with [2]) 
  
Necessity. From (5) and (10a) we have Lemma 1. If the condition (2) is satisfied then there exist 

orthogonal matrices U  such that  V,      

  
α=−+−

=+−
−− ]det[]det[detdet

]det[

00111

11 AsEKBAsEVU
BKAEs

 

(12) 

          

                         

(10a) 

mn
nn

nn

RB
RAE
RAEB

UB

AsE
AsE

VAEsU

×
×

×

∈
∈
∈









=









−

−
=−

1

00

11

1
00

111

00

11

,
,
,

,
0

,
0

*
][

 
where nmRKVK ×∈=  and det[ ] 100 =− AsE  if 00 =n . 
From (12) it follows that the condition (5) holds only if the 
conditions (11) are satisfied. 
  
Sufficiency. First let us consider the single-input )1( =m  
case. In this case we have  

where the subsystem (  is completely 
controllable, the pair (  is regular,  is upper 
triangular and * denotes an unimportant matrix. 

),, 111 BAE
)0A,0E 1E

    

Moreover the matrices  and  are of the forms 
11 , AE 1B
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(13) 
 
where e  for i  and b . 0,0 1, ≠≠ −iiii a 1,...,2 n= 011 ≠
 
The condition (11a) implies that e . Premultiplying the 
matrix  by orthogonal row operations matrix 

 it is possible to make zero the entries of  

since , i . By this reduction only the entries 

of the first row of  will be modified.   

011 =
],[ 111 bAsE −

0≠ii ,...,2=
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Let                         

              [
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nn aaaa

b
−−−−= −

]k                 (15) 

 
Using (12), (14) and (15) we obtain 
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(16) 
 
where 1

001 ]det[detdetdet −−= AsEPVUαα .  
 
The considerations can be easily extended for multi-input 
systems, . In this case the matrix  of the 
orthogonal row operations is chosen so that all entries of the 
first row of 

1>m 1P

11EP
,...,1=

1E =
iA i ,1

 are zero. By this reduction only the 
entries of  and  will be modified. The 

modified matrices will be denoted by 

k 11B

kiA i ,...,1,1 =  and 

11B . 
Let 
                   [ ]{ }EAAABK k

ˆ,...,, 11211

1

1 += −                        
(17) 
 
The matrix nmRE ×∈ˆ  in (17) is chosen so that 
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(* denotes unimportant entries) 
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and  c ]det[detdetdet 00

1

1

11 AsEPVU −= −−− . 
 
Using (12), (17) and (18) it is easy to verify that 
 

[ ] [ α=+−=+− KBAsEcBKAEs 111detdet ]          
(19) 
 
Remark 1. For  there exist many different matrices 
K satisfying the condition (5). 

1>m

 
Remark 2.  If the order of system is not high (n<5) the 
elementary row and column operations instead of the 
orthogonal operations can be used. 
 
Example 1. For the singular system (1) with        
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find the gain matrix 42×∈ RK  such that the condition (5) is 
satisfied for 1=α . 
In this case the pair (E,A) is regular and the matrices (20) 
have already the desired forms (10) with  
 



                                                                                          
(21)                 

BBAAEE === 111 ,, , 
2,13 == mn,2,4 211 ==== nnnn  and 

where the coefficients a  depend on 
the entries of  K. 

riKaii ,...,1,0),( ==
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Comparison of the coefficients at the like powers of  s  of 
(21) and (5) yields 
                          riKaKa i ,...,1,0)(,)(0 === α          
(22) 
Solving the equations (22) we may compute the entries of  
K.  
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4. SOLUTION OF PROBLEM 2 AND THE 

        RELATIONSHIP BETWEEN PROBLEMS 

 
Theorem 2. The problem 2 has a solution only if 
 
        nBAEsrank =− ],[  for all finite  C∈s              
(23)  
and Using the elementary row and column operations [6,7] we 

obtain )(sUEsD −=  is a real matrix independent of  s.          
(24) 
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Proof.  From the equality 
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 it follows that (5) implies (23). 

From (7) and (8) we have 
 
                 nnRDBKAsUEs ×∈=−=− )(                    
(26) 
 
Therefore, the equation (7) has a solution (8) only if (24) is 
satisfied.  

Taking into account that in this case  
           Example 2. Consider the problems for 

                
[ ]








 −
=








−−

−−
=

=







−

−
=

10
21

,
2111

5534

,,,
5.0000

0010ˆ

1

131211

B

AAAE
 

                                     

                         

(27) 

1,
0
1

,
01
10

,
00
01

=







=








=








= αBAE

and 
and using (17) we obtain 
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The problem 1 has a solution since for ][ 21 kkK =  we have 
 

          α=−=
−

−+
=+− 1

01
1

]det[ 2

21 k
kks

BKAEs   
 
If there exist a matrix K  satisfying (5) then it can be also 
computed by the use of the following procedure. 

for 212 =+= αk  and arbitrary k . 
1Compute the determinant 

 The problem 2 in the case a) has no solution since the 
condition (24) is not satisfied. The matrix ErankrasasasaBKAEs r

r
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r <++++=+− −
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sUEsD  is a polynomial matrix (not 

a real matrix). and  In the case b) the condition (24) is satisfied since the matrix 

 is real. 
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The Problem 2 has the solution  since ]20[=K Therefore we have the following theorem 
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BKAEs   Theorem 3. Let the matrices  E,A,B  satisfy the 
assumptions (9) and (26) and let the matrices be 
transformed to the forms (28). The equation (7) has a 
solution  X,Y  satisfying (8) if and only if 

and from comparison of the suitable entries we obtain 
.  2,0 21 == kk

                                     
22

~~ AD =                                        
(31) 

Let the matrices  and  B of (7) satisfy the conditions 
(23) and (24). 

AE,

 If the system  is completely controllable then by 
Lemma 1 there exist orthogonal matrices P,Q  such that 

),,( BAE
Proof.  The necessity of (31) follows immediately from 
(30). If the assumption (26) is satisfied then D  is a real 
matrix and D~  is also a real matrix. The matrix 

1

~B  is 
nonsingular and from (30) we obtain 
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(28) 
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1 ]~~[~~ −−− −=== QDABQKKX                 
(32) 
 
Remark 3. From comparison of the Theorems 2 and 3 and 
Example 2 it follows that the solvability conditions for 
Problem 2 are more restrictive than for the Problem 1.   

with   of full row rank 

and  nonsingular.  
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Example 3. Find a solution (8) of the equation (7) with 
 Premultiplying the equation (7) with (8) by the matrix  P, 

postmulplying by the matrix Q  and using (28) we obtain 

                              

(33) 
















−−
−
−

=















=
















−

−
=
















=

120
00

11
)(,

0
1
0

,
120
121

011
,

010
000
100

s

s
sUB

AE

α

 
      )(~~~~~][ sUKBAsEPBKQQAEsP =+−=+−     
(29) 
 
where  KQK =~  and U QsPUs )()(~ = . 
From the equality             
          )(~~~)]([ sUsEDPDQQsUEsP −===−    

In this case the assumptions (9) and (26) are satisfied and 
the matrix it follows that if  D  is a real matrix then D~  is also a real 

matrix.  
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where            nnnnn RADRAD ×−× ∈∈ )1~(
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~,~,~,~  is real. 
The orthogonal matrices  transforming (33) to 
the forms (28) have the form 

33, ×∈ RQP 
Then from (28) and (29) we have 
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is called full order perfect observer of the system (39) if and 
only if )()(ˆ txtx =  for t  and any initial conditions  
and  of (39) and (40). 
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(36) 

It was shown [4] that there exists a full-order perfect 
observer (40) of the system (39) if the system is completely 
observable, i.e.  
 

   for all finite n
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(41a) 
and 

                                       

(41b)   
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Using (30), (34) and (35) we obtain 
  
In this case there exists a matrix  K  such that 
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                           α=+− ]KCAEsdet[                          
(42) 
                   (a nonzero scalar independent of  s) 
 From (36) and (37) it follows that the condition (31) is 

satisfied and the equation (7) with (33) has the solution  X, 
Y  satisfying (8). 

Note that by transposition of (42) we obtain (5). Therefore, 
the design problem of the 
observer (40) for the system (39) has been reduced to the 
Problem 1.  Using (32), (36) and (37) we obtain 
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(38) 

The design problem of reduced-order perfect observers and 
of perfect functional 
observers for the system (39) can be also reduced to the 
Problem 1. [4,5] 
Consider the singular system (39) with the state-feedback 
(3). The transfer matrix of the closed-loop system described 
by (4) and (39b) is given by T BBKAEsCs 1][)( −+−= . If 

)(][ sUBKAEs =+−  with U  unimodular then the 
transfer matrix T

)(s
Bs)(1CU −s)( =  is a polynomial matrix. 

Therefore, finding a solution (8) of (7) is equivalent to 
finding a state-feedback gain matrix  K  such that the 
closed-loop transfer matrix is polynomial. 

It is easy to check that (38) and Y  satisfy the equation 
(7) with (33). 

3I=

 
5. APPLICATIONS 

 
 Consider the singular system 
6. CONCLUDING REMARKS.  

                                           
(39a) 

BuAxxE +=
 

                                                                               (39b) Cxy = Two associated problems: the problem of infinite 
eigenvalue assignment and the problem of solvability of 
polynomial matrix equations have been considered. 
Necessary and sufficient conditions for the existence of 
solutions to the problems have been established. The 
relationship between the problems has been discussed and 
some applications from the field of the perfect observers 
design for singular linear systems have been presented. The 
considerations have been illustrated by numerical examples. 
With slight modifications the considerations can be 

 
where ,  and  are the semistate, input 
and output vectors, respectively and 

 with det . 

nRx ∈

nn BR ×∈ ,

mRu ∈

mn CR ×∈ ,

pRy ∈

np×RAE ∈, 0=E
It is assumed that  and (2) holds.  pCrank =
The singular system 
 



extended for singular discrete-time linear systems. An 
extension of the considerations for two-dimensional linear 
systems [6] is also possible. 
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