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Estimation error in adaptive prediction of Hidden
Markov Processes

Laszb Gerencar, Gabor Molrar-Saska.

Abstract—The purpose of this paper is to provide explicit results If X and) are finite, sayX| = N, || = M, then we have
on the almost sure asymptotic performance of adaptive encoding
and prediction procedures for finite-state Hidden Markov Models. P(Yy =tn,... Yo =90 Xn = xp,... Xog = 20) =
In addition, Rissanen’s tail condition [15] will be verified, from
which a lower bound for the mean-performance of universal en- n
coding procedures will be derived. An example for binary HMMs H P(Y; = yi| X; = z;).
will be given. The results of this paper are based on [11]. o

Keywords: Hidden Markov Models, maximum-likelihood esti- N this case we will use the following notations
mation, adaptive encoding, adaptive prediction, stochastic com-

plexity. P(Y, =yl Xy, =x) =b"(y), B*(y) = diag(b" (y)),
wherei = 1,..., N, and* indicates that we take the true value
I. INTRODUCTION of the corresponding unknown quantity.

Hidden Markov Models have become a basic tool for mod- Let Q* be the transition matrix of the unobserved Markov

eling stochastic systems with a wide range of applicability. F&rocess{Xn), 1.€.
a general introduction see [18]. The estimation of the dynam- o
ics of a Hidden Markov Model is a basic problem in applica- 4

tions. A key element in the statistical analysis of HMM-s ig key quantity in estimation theory is the predictive filter de-
a strong law of large numbers for the log-likelihood functioryneq by

= P(X,11 =j|Xn =19).

see [12], [13], [4]. An alternative tool that has been widely P = P(Xng1 = j|Yn, ..., Yo). 1)
used in linear system identification is theoryimixing pro- - _ o
cesses. The relevance of this theory is established in [11] usW§iting p;, 1 = (p3l1,- ... piY1)T, the filter process satisfies

a random-transformation representation for Markov-proces$gg Baum-equation

(see [10]). The advantage of this approach is that, under suit- . T e .

able conditions a more precise characterization of the estima- Ppy1 = Q" B*(Ya)py), (@)
tion error-process can be obtained, which, in turn, is crucial for . . )

the analysis of the performance of adaptive prediction, see [ﬁheriew 'Si the n(zrmahzmg °per2§°r- far = 0’, z # 0 set
The purpose of this paper is to provide explicit results on i)’ =2'/3.; 27, see [1]. Hergy' = P(Xo .:**7)' N
almost sure asymptotic performance of adaptive encoding n(%n practu_:g, th.e tfa”S.'“OE probability matrid” and the Nt~
prediction procedures for finite-state Hidden Markov Modelf%'a probability distributiony;, of the unobserved Markov chain

In addition, Rissanen'’s tail condition [15] will be verified, from in’]L) and t:e ;Ond':mnal piﬁbabrlllltr;ﬁrgy)poi tt?]? c;bser\;a;N
which a lower bound for the mean-performance of univers gnssidegrutehecgaﬁ)maee Sgtsign i?‘/l ; mo(r)e éne(:al ssnseeaso €
encoding procedures will be derived. To illustrate the resuft§ q 9

we consider the simplest case, the binary HMM. Prp1 = w(QTB(Yn)an 3)

Il. HIDDEN MARKOV MODELS with initial conditionpy = ¢, where( is a stochastic matrix,

We consider Hidden Markov Models with a general staf@ 's a probability vector ont', and B(y) = diag(t'(y)) is a

. llection of conditional pr ilities.
spaceX and a general observation or read-out sgeceBoth o ect.o of conditiona P obab .t es . .
. . Continuous read-outs will be defined by taking the following
are assumed to be Polish spaces, i.e. they are complete, separas... o
. conditional densities:
ble metric spaces.
Def.|n|t|on I_I.l: The pair(X,,, Y,) is a H|dQen Markov pro- P(Y, € dy|X, = z) = b (y)A\(dy),
cess if(X,,) is a homogenous Markov chain, with state space
X and the observatior(§;,) are conditionally independent andyhere) is a fixed nonnegatives-finite measure. Let
identically distributed giveri.X,, ). _
N . B*(y) = diag(b™(y)),
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we deal with continuous read-out, which includes the finite caseProposition I11.1: Let (X,,) be a Markov chain with state

in a natural manner. spaceX, whereX is a Polish space, and assume that the Doe-
We will take an arbitrary probability vectaras initial con- blin condition is valid form = 1. Furthermore leg : X — R

dition, and the solution of the Baum equation will be denotdue a bounded, measurable function. ThglX,,) is an L-

by pn(q). mixing process.
A key property of the Baum equation is its exponential sta-
bility with respect to the initial condition. This has been estab- IV. ESTIMATION OF HIDDEN MARKOV MODELS

lished in [12] for continuous read-outs. Here we state the resul
for HMM-s with a positive transition probability matrix:

Proposition 11.1: Assume that) > 0 andb®(y) > 0 for all
z,y. Letq, ¢’ be any two initializations. Then

Lrhis section gives a brief outline of the maximum likeli-
hood estimation of Hidden Markov Models. Consider a Hidden
Markov Proces$X,,,Y,, ), where the state spaégis finite and
the observation spagg is continuous, a measurable subset of
2n(q) — pu(d) v < C( = 8)"lq — d|lrv, (4) R<. Assume that the transition probability matrix and the con-
ditional read-out densities are positive, g% > 0 andb™ > 0
where|| [|ry denotes the total variation norm ade § < 1. for all 4,y. Then the procesgX,,,Y,,) satisfies the Doeblin-
If @ is only primitive, i.e.QQ” > 0 with some positive integer condition.
r > 1, then (4) holds with a randoid. Let the invariant distribution oft’ ber and the invariant dis-
Next we are going to introduce the notion of Doeblintribution of ¥ x ) ber. Then
condition (see [2]): ‘ ‘
Definition 11.2: If there exists an integer > 1 such that 7' (dy) = vib™ (y)\(dy), (5)
P™(x,A) > dv(A)isvald forallz € X andA € B(X) :
with some probability measurg then we say that the Doeblin-Wheren* denotes the components of Furthermore let the
condition is satisfied. running value of the transition probability matidxand the run-

Now let (X,,,Y,) be a Hidden Markov process and assuming value of the conditional read-out densities be also positive,

that the state spac® and the observed spageare Polish. Le.Q > 0,b'(y) > 0, respectively.

Lemma ll.1: Assume that the Doeblin condition holds for With the notatiorp;, = P(X,, =i|Y;,_1,...,Y;) we have
the Markov chain X,,). Then the Doeblin condition holds for
(Xn Yn) as We”r( ) Pn+1 = W(QTB(KL)pn) = f(}/napn)

We use capital letters for random variables and lower cases for
[ll. M ARKOV CHAINS AND L-MIXING PROCESSES their realizations, i.eX is a random variable andis a realiza-
Now we are going to introduce a class of processes callé@n of X. The only exception ip, where the meaning depends
L-mixing processes which have been used extensively in tbethe context.
statistical analysis of linear stochastic systems, see [6]. The logarithm of the likelihood function is
Definition 111.1: A stochastic procesgX,,) (n > 0) taking

n—1
its values in an Euclidean spacelit-bounded if for ally > 1
P 1= Z log p(Yk|Yk—1, - - - Yo, 0) + log p(yo, 0).
M, = supEl/qHXan < 00. k=1
n>0 .
Let (%) and (F) be two sequences of monoton increasinf€"€ thek-th term fork > 1 can be written as
and monoton decreasingalgebras, respectively such thag i . i i
: / 1 b (i) P(i|y—1, -, y0,0) =1 b .
and.F;" are independent for all. ngi: () P (il Yo,0) ngi: (v)Pk

Definition 111.2: A stochastic procesgX,,) taking its values
in a finite-dimensional Euclidean spacdiamixing, if itis M- Now write

bounded and with 9(y,p) =log > _b(y)p’, (6)
Yq (T) = sgp El/qHX’n - E(X”|f;_—7') Hq then we have
we have al
s log p(yns - +,90,0) = > 9(yx, pr) +logp(yo, 0).  (7)
T(q) = 3 74(7) < 0. ot
7=0 . . L. . . g
The following lemma is useful in checking whether a process is It is easy to see that the Doeblin condition is not satisfied for
L-mixing or not. the proces$X,,Y,, p,), thus Proposition 1.1 is not applica-

Lemmalll.l: Let X be a random variable as above wittble directly. For this reason we look for a different characteri-
E| X4 < oo for all ¢, and letG C F be ac-algebra and;  zation of (X,,, Yy, py).

is aG measurable random variable. Then we have TheoremIV.1: Consider a Hidden Markov ModéKX,, Y,,),
. . where the state spack is finite and the observation spage
EYX - B(X|9)||* < 2B X —n|4. is continuous, a measurable subseRéf Let Q, Q* > 0 and

The following proposition shows the importance of the pi(y), b*/(y) > 0 for all 4,y. Let the initialization of the pro-
mixing processes. cess(X,,Y,) be random, where the Radon-Nikodym derivate
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of the initial distributionry w.r.t the stationary distribution is Theorem 1V.4: Under the condition of Theorem IV.3 we have
bounded, i.e.

ﬂﬁK- (8) ZP(N%(éN—G*)>clogN))<oo,
dm N=1

Assume that for all, j € & wherec > 0 is an arbitrary constant

The basic idea of the proof is the following: let

. o Jp = glOgP(YiDQ—h---,Yo,9)|9:9*-
Then the procesg(Y,, p,) is L-mixing. 00
Remark IV.1: Since the positivity of implies that the sta- ) ] )
tionary distribution of X, ) is strictly positive in every state and T"en (J» — Jn1) is a bounded martingale difference. Then
the densities of the read-outs are strictly positive Condition (8§ind the results of Neveu, [14], we get the statement of the
is not a strong condition. For example for the random initializa0eorem.
tion we can take a uniform distribution oti and an arbitrary
set of\ a.e. positive density functiorg(y). V. ENCODING OF FINITE STATEHIDDEN MARKOV
To analyze the asymptotic properties of the right hand side MODELS
of (7) Theorem IV.1 seems to be relevant. Under the conditionsthe negative logarithm of the conditional probability
of Theorem IV.1g(y, p) is an L-mixing process and the law of
large numbers is valid for such processes, see [6]. This implies —log p(Yn|yn—1,---,y1,6)
the existence of the limit of (7).
Consider now dinite state-finite read-out HMM. This case can be interpreted as a code length, see [16]. An adaptive en-
follows from Theorem V.1, but the integrability condition (9)coding procedure is obtained if we et 6,,_;. Following [8]
is simplified due to the discrete measure. we get the following result:
TheoremIV.2: Consider the Hidden Markov Model TheoremV.1: Under the conditions of Theorem IV.3 we have
(Xn,Yn), whereX and) are finite. Assume that the process 1
(X,,Y,) satisfies the Doeblin condition. Let the running Eo-(sn) = 5 p(L +o(1)),
value of the transition probability matrig) be positive and
bi(y) > & > 0 for all i, y. Then with a random initialization on wherep = dim ¢, ands,, is
X x Y we have thay(Y,,, p,) is anL-mixing process. R .
Consider a finite state-finite read-out HMM, parameterized log p(yn|yn—1,---,y1,0n-1) +1og p(yn|yn—1, ..., y1,6%).
by 0, where|X| = N and|Y| = M and# containing the Furthermore
elements of the transition probability matrix and the read—ou{J N
probabilities. Thu# is anN? + NM — 2N dimensional vec- lim 1 Z Sy = p
tor with coordinates between 0 and 1. Furthermore let the ML N—ocolog N ~— 2
estimate of the true parametét be denoted byy. Due to with probability 1.

[12] the gradient processp,,(¢)/96 is also exponentially sta-  Tpjs result can be used for model selection for HMM-s, see
ble, thus the procesy(Y,,, p,(#))/00 is anL-mixing Process, o], [5]. Due to the validity of Rissanen’s tail condition the
see [11]. Similarly it can be shown thaitg(Y,,, p.(6)/06% is  following "converse theorem” is also true by virtue of the fun-
also anZ-mixing process. The arguments of [7] yield the folyamental theorem of the theory of stochastic complexity (cf.
lowing result. [15]):

Theorem V.3: Consider the. _Hidden Ma*rkov Model" TheoremV.2: Letg,(y1,...,yn) be an arbitrary sequence of
(Xn,Yy), where X and ) are finite. LetQ, Q" > 0 and compatible probability distributions and
b'(y),b**(y) > 6 > 0 foralli,y. Letdy be the ML estimate

/ | log (4)[5" (4) Mdy) < 0. ©)

of §*. Thenfx — 6* can be written as s = —108 gn(Yn, -, y1) +10gp(yn, ... y1,0).
1 N 5 Then
_ *\—1 — * . . p
(1(67) N; 2 108P(Yal Y1, Y0, 07) + 7, (10) liminf [ Fy(s),) > §

. . . except for a set of’s with Lebesgue-measure 0.
wherer,, = Oy (N1, i.e Nr, is M-bounded, and (6*) is
the Fisher-information matrix. _ . _ Theorem V.1 can be extended to performance indexes differ-

Akey point here is that the error term is Or (N ™7). This  gnt from the conditional entropy, such as adaptive prediction

ensures that all basic limit theorems, that are knpwn for theror. Let(y,,) be a binary process taking value 0 or 1. Let e.g.
dominant term, which is a martingale, are also validfor6*. i be the predictor defined by

The following result is that the tail-condition in Rissanen-
theorem, see in [15], for the error term of the estimatigris 5 (0) — 1 if ¢.(0) = p(yn = Lyn—1,--.,91,0) > %
satisfied. In(0) = 0 otherwise.



ESTIMATION ERROR IN ADAPTIVE PREDICTION OF HIDDEN MARKOV PROCESSES

Defineq) = Py« (Y, = 1|Y,—1,.. .,
Py« (Y, = 1|Y,—-1,...,Y7,0). Then the failure probability can
be expressed as

1/2

Py (Y (6) # V) = / (1= u)gdon(ga(6))+

0
1
/2
wheredy,, (¢, (0)) is the distribution ofz,, (6) underPy-.
Under the condition of Theorem IV.3,(¢,(6)) can be

shown to converge in distribution {a(¢(#)) having an invariant
distributionp(q, 0). Let

(1 - QZ)QndSDn(Qn(e» = Wn(e)a

W (0) = lim W, (6).

Y1, 0*) and similarlyg,, = y
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For finiten the functioniV,, () is smooth ind. Assuming that 32932.

smoothness is inherited By (6) define

2

5= 5

(1]
(2]

(3]

W () 0—p-.

The adaptive predictor af, is defined as

(9n71)~

gn = Qn
[4]

We have the following result:
TheoremV.3: Under the conditions of Theorem V.1 we have[®!

B(Ty) = o (TrS*1(0%) ™" +o(1), )
n
[7]
whereT, = Pp(YVp(0n1) # Yy) — Pp-(YVy(6%) # V). i8]
Moreover
N [9]
* * 1
N—»oolOgNZ:: T, =TeS*I(0")~

with probability 1.

The invariant distribution ofp(¢(0)) in exact form even in
the simplest cases is unknown. Thus the theoretical value of
1(#*) and.S* is unknown. [11]

Consider an example for binary HMM, where the state space
X and the read-out spageis binary. Let

[10]

[12]
P(X;41 =0/X;=0)=03, P(X;41 =1|X; =1)=0.5
[13]
and (14
b°(0) = 0.99, b'(1) = 0.99
15]
be the true parameters of the model. Consider an adapt[lve

prediction using ML-method. On figure 1. the simulatiof®]

results for Theorem V.3 can be seen. Theoordinate de- [17]

notes the number of iterations and theoordinate stands for :
18

N
Uy = ) T,/logN.
n=1

REFERENCES

L.E. Baum and T. Petrie. Statistical inference for probabilistic functions
of finite state Markov chainsAnn. Math. Stat., 37:1559-1563, 1966.

R. Bhattacharya and E. C. Waymire. An approach to the existence of
unique invariant probabilities for markov processes. 1999.

Xi-Ren Cao and Han-Fu Chen. Perturbation realization, potentials, and
sensitivity analysis of Markov processéBEE Trans. Automat. and Con-

trol, 42:1382-1393, 1997.

R. Douc and C. Matias. Asymptotics of the maximum likelihood estima-
tor for general hidden markov modeBernoulli, 7:381-420, 2001.

L. Finesso, C.C. Liu, and P. Narayan. The optimal error exponent for
Markov order estimation.|EEE Trans. Inform. Theory, 42:1488-1497,
1996.

L. Gerencgr. On a class of mixing processe&ochastics, 26:165-191,
1989.

L. Gerencér. On the martingale approximation of the estimation error of
ARMA parametersSystems & Control Letters, 15:417-423, 1990.

L. Gerencér. On Rissanen’s predictive stochastic complexity for sta-
tionary ARMA processes.Satistical Planning and Inference, 41:303—
325, 1994.

L. Gerencér and J. Baikovicius. A computable criterion for model se-
lection for linear stochastic systems. In L. Keviczky and Canyasz,
editors,|dentification and System Parameter Estimation, Selected papers
from the 9th IFAC-IFORS Symposium, Budapest, volume 1, pages 389—
394, Pergamon Press,Oxford, 1991.

L. Gerencér and G. Molar-Sska. A new method for the analysis of
Hidden Markov Model estimates. IRroceedings of the 15th Triennial
World Congress of the International Federation of Automatic Control,
Barcelona, pages T-Fr—-M03, 2002.

L. Gerencsér, G. Molrar-Saska, Gy. Michaletzky, and G. Tusty. New
methods for the statistical analysis of Hidden Markov Models Pio-
ceedings of the 41th |EEE Conference on Decision & Control, Las Vegas,
pages WeP09-6 2272-2277., 2002.

F. LeGland and L. Mevel. Exponential forgetting and geometric ergod-
icity in hidden Markov models. Mathematics of Control, Sgnals and
Systems, 13:63-93, 2000.

B.G. Leroux. Maximum-likelihood estimation for Hidden Markov-
models.Sochastic Processes and their Applications, 40:127-143, 1992.

J. Neveu. Discrete-Parameter Martingales. North-Holland Publishing
Company, 1975.

J. Rissanen. Stochastic complexity and predictive modellkmals of
Satistics, 14(3):1080-1100, 1986.

J. RissanenSochastic complexity in statistical inquiry. World Scientific
Publisher, 1989.

J. Rissanen and S. Forchhammer. Partially hidden markov md&&E.
Trans. on Information Theory, 42:1253-1256., 1996.

] J. H. van Schuppen. Lecture notes on stochastic systems. Technical re-

port. Manuscript.



	Conference Program
	Author Index
	Main Menu

