
1

Matlab–Based Toolbox for Analysing
Differential Linear Repetitive Processes
Artur Gramacki, Jaroslaw Gramacki, Krzysztof Galkowski, Eric Rogers, David H. Owens

Abstract— A short overview of a Matlab–based toolbox de-
veloped to support the control-related analysis of a subclass
of nD systems called differential linear repetitive processes
(LRP) is the subject of this paper. Its main functional-
ity covers two different areas. First the toolbox allows one
to build discrete approximations of continuous–time LRPs
and then perform analysis/simulation verification studies.
All tasks use a graphical environment, with typical Win-

dows components. In the second area continuous–time lin-
ear repetitive processes can be numerically solved using nu-
merical methods for solving ordinary differential equations.
This required the development of some Matlab–based func-
tions (so called M–files) which extensively use the Matlab
ODE Suite mechanizm. The two mentioned areas are fully
integrated together. In this paper we also document some
details of the data format specifications used in the toolbox

and on the adoption of original Matlab ODE solvers for solv-
ing LRP’s. Moreover we show many (not presented so far in
print) implementation details concerning ODE solvers used
in the context of repetitive processes.

Keywords— Linear repetitive processes, Matlab toolbox,
Matlab ODE Suite, Ordinary differential equations

I. Introduction

THE essential unique characteristic of a repetitive, or
multi–pass, process (LRP) is a series of sweeps or

passes through a set of dynamics defined over a fixed and
finite duration termed the pass profile. On each pass, an
output, termed the pass profile, is produced which acts as a
forcing function on, and hence contributes to the dynamics
of the next pass profile.

The explicit interaction between successive pass profiles
is the source of the novel control (and numerical) problem
for these processes in that the output sequence of pass pro-
files can contain oscillations that increase in amplitude in
the pass to pass direction. Details can be found in [1].

The 2D systems structure of a repetitive process arises
from information propagation in (i) the pass to pass direc-
tion, and (ii) along a given pass. By definition, the pass
length is of finite duration and does not change value from
pass to pass. In a so–called differential linear repetitive pro-
cess, the dynamics along the pass evolve as a continuous
function of the (temporal or spatial) independent variable
and the evolution from pass to pass is, in effect, discrete.
So–called discrete linear repetitive processes differ from dif-

Artur Gramacki and Jaroslaw Gramacki are with the Department
of Electronics and Computer Science,University of Zielona Gora,
Poland, A.Gramacki[J.gramacki]@iie.uz.zgora.pl

Krzysztof Galkowski is with the Department of Control and
Computation Engineering, University of Zielona Gora, Poland,
K.Galkowski@issi.uz.zgora.pl

Eric Rogers is with Department of Electronics and Computer Sci-
ence, University of Southampton, UK etar@ecs.soton.ac.uk

David H. Owens is with Department of Automatic Control and
Systems Engineering, University of Sheffield, UK

ferential processes only in the fact that the evolution of the
dynamics along a pass is also discrete. Differential and dis-
crete linear repetitive processes are (arguably) the most
important sub–class of repetitive processes from both the
theoretical and applications standpoints and are the sub-
ject of this paper. The notation for variables in this paper
is of the form yk(t), 0 < t < α, where y is the (possibly
vector valued) variable under consideration, k is the pass
index or number, and α is the finite pass length. Figure
1 gives schematic illustration of the evolution of the dy-
namics of a repetitive process. The simplest possible case

���

N���º�FRQVW��

W

a��� �FRQVW��

W W��
N��

N

Fig. 1. Schematic illustration of the dynamics of a repetitive process.

is where only the previous pass profile contributes to the
current one and such processes are termed unit memory.
For an extension to so–called non–unit memory LRP’s see
[1].

Clear links exist between differential repetitive processes
and so–called discrete–continuous 2D systems which have
recently been the subject of detailed investigations, see,
for example, [2]. A key difference, however, arises from the
fact that the pass length of a repetitive process is always
finite (α on Figure 1) and this is the basic reason why
most results for the latter area either do not transfer at
all or only after substantial modifications to the repetitive
process setting.

II. Background

The state space model of a linear differential repetitive
process with constant pass length has the following, com-
monly known, form [1]

ẋk+1(t) = Âxk+1(t) + B̂uk+1(t) + B̂0yk(t)

yk+1(t) = Ĉxk+1(t) + D̂uk+1(t) + D̂0yk(t). (1)

Here, on pass k, xk(t) is the n × 1 state vector, yk(t) is
the m × 1 pass profile vector, uk(t) denotes the r × 1 vec-

2

tor of control inputs and Â, B̂, B̂0, Ĉ, D̂, D̂0 are matrices of
appropriate dimensions.

To complete the process description, it is necessary to
specify the state and pass initial conditions, i.e. the initial
state vector on each pass xk+1(0), k ≥ 0 and the initial
pass profile (i.e. on pass number 0) y0(t), 0 ≤ t ≤ α. The
simplest possible choice is

xk+1(0) = dk+1, k ≥ 0

y0(t) = f(t), 0 ≤ t ≤ α (2)

where dk+1 is an n × 1 vector with constant entries and
f(t) is an m × 1 vector whose entries are known functions
of t.

Clearly the first requirement of a systems theory for these
processes is a stability theory and associated computation-
ally feasible tests. Such a theory already exists and details
can, for example, be found in [3], [4], [5], [1], [6], [7].

Two different approaches can be used in order to evalu-
ate equations (1). The first one of these is to discretize the
continuous–time model to obtain its discrete–time equiva-
lent in the form

xk+1(p + 1) = Axk+1(p) + Buk+1(p) + B0yk(p)

yk+1(p) = Cxk+1(p) + Duk+1(p) + D0yk(p) (3)

with boundary conditions

xk+1(0) = dk+1, k = 0, 1, . . .

y0(p) = f(p), p = 0, 1, . . . , α − 1 (4)

where p = {0, 1, · · · , α − 1} and the matrices
A, B, B0, C, D, D0 are computed from those of (1) by
formulas determined by the particular numerical approxi-
mation (i.e. discretization) method used. The approximate
solution generated from (3) and (4), should be as close as
possible (in a well defined sense) to the exact solution ob-
tained from (1) and (2) (assuming that it is known or may
be calculated with negligible errors. A process described by
these last two equations is termed a discrete linear repet-
itive process and for further details on the numerical ap-
proximation of linear repetitive processes see for example
[8], [9], [10], [11], [12]. (These references also make clear
why a discrete linear repetitive process is the most natural
approximation of a differential process.)

The second approach uses the fact that the first equa-
tion in (1) is a commonly encountered ordinary differen-
tial equation. A novel feature here is that the last factor
yk(t) in (1) can be interpreted (in computational terms) as
an additional input sequence (similar as the second factor
uk+1(t) in (1)). Moreover this term has boundary value
condition and is specified for the first pass as y0(t). Note
also that the presence of the second variable k in (1) means
that in numerical terms the problem here reduces to solving
a 1D differential equation iteratively k times.

The well known Matlab package includes a very power-
ful mechanism, termed the Matlab ODE Suite, which may
be easily used in this task. In particular, after some pro-
gramming work it can be successfully adopted for solving

differential repetitive processes. More details on the Matlab

ODE Suite can, for example, be found in [13], [14].
The two approaches mentioned above are fully supported

by a Matlab–based toolbox specially designed and imple-
mented as a computer tool for the analysis of linear repet-
itive processes and some of its features are detailed in sec-
tion III.

III. The Matlab Toolbox

A. Toolbox Overview

The core of the Matlab toolbox provides the following
classes of functions:
• Generally Applicable Functions (written as typical Mat-

lab M–files) – essentially all the necessary inputs (e.g. con-
trol inputs, initial conditions, initial pass profile, the ma-
trices defining a state space model, discretization period,
etc.) are prepared manually by the user using a specially
developed collection of functions. These functions are, of
course, very similar to those found in standard Matlab

toolboxes, such as Control Toolbox but they differ in some
obvious details which are dictated by the structure of LRP.
In the toolbox there are also functions for numerical solving
the equations of 1 which are, from pure mathematical point
of view, ordinary differential equations, and as such can
be solved by commonly known numerical methods. Next,
these solutions can be treated as reference ones to, for ex-
ample, verify a discretized model of (3) and hence of an
approximate solution generated by (3) and (4).
• A User Friendly Graphical Interface – this has been de-
signed to run from within Matlab . During operation, it
is possible, for example, to modify parameters of the model
being simulated to view 2D and 3D plots of, say, the re-
sulting sequence of pass profiles etc.
Additional information on the toolbox can be found in [15].

B. Data Format Specification

In its current form, the toolbox can, amongst other tasks,
simulate and display the response of differential and dis-
crete linear repetitive processes and construct, using a user
specified numerical integration technique, a discrete ap-
proximation to the dynamics of a differential process. Here
we describe the data structures used and related tasks nec-
essary to simulate a discrete model defined by (3) and (4).
The basic user supplied data required is as follows:

• the matrices which define the LRP model,
• the pass length α,
• the number of passes, say K, over which the simulation
is to run,
• the sequence of input vectors
uk(p), k = {0, 1, . . . K}, 0 ≤ p ≤ α,
• the initial state vector sequence xk(0), k = {0, 1, . . . K},
• the initial pass profile y0(p), 0 ≤ p ≤ α,
• the sampling period T .

Note: According to the convention adopted in the devel-
opment stage, the first pass is numbered 0 (zero).

Assuming this data has been supplied, the toolbox calcu-
lates:

3

• the state vector at each instant along each pass
xk(p), k = {0, 1, . . . K}, 0 ≤ p ≤ α,
• the pass profile at each instant along each pass
yk(p), k = {0, 1, . . . K}, 0 ≤ p ≤ α.

Given T , the number of points P at which computations
are performed along any pass is P = (α/T) + 1 subject to
the requirement that the remainder on evaluating α/T is
zero (since P must also be an integer).

Consider now the storage of the sequence of control vec-
tors u for each pass. A natural approach would be to store
values of control sequence for a given pass in an array of r
rows (number of inputs) and P columns (number of points).
Hence there are K passes and one should simply add a third
dimension to the array. Unfortunately, when the first re-
lease of the toolbox appeared, Matlab (version 4.2) did
not supported multidimensional (that is for n ≥ 3) arrays.
Hence the control sequences for each pass are stored in
one (potentially ’large’) two–dimensional array where each
pass occupies P respective columns. The same method is
used for the state initial state sequence x0, the initial pass
profile y0, the computed sequence of state vectors x, and
the computed sequence of pass profiles y. Figure 2 gives a
schematic illustration of the format of these matrices.

u= Pass 0
r × P · · ·

Pass K
r × P

x0=
Pass 0
n× 1 · · ·

Pass K
n× 1

y= Pass 0
m× P · · ·

Pass K
m× P

x= Pass 0
n× P · · ·

Pass K
n× P

y0 = Pass 0
m× P

Fig. 2. Format details of input and output vectors for linear repetitive
processes (vectors u, x0, y0, x, y). r – number of inputs, n – number
of states, m – number of pass profiles (outputs), P – number of points
on a given pass, K – number of passes.

To illustrate the computations, consider the discrete–
time process (3) defined by the following matrices

A =

1 −2 −1
3 −5 1
1 −2 0

 B =

1 2
−1 −2

3 −1

B0 =

1 1 1 1
2 2 2 2
−1 −1 −1 −1

 C =

1 1 1
0 0 0
1 1 1
0 0 0

D =

1 2
1 2
−1 −2
−1 −2

D0 =

1 1 1 1
−1 −1 −1 −1

1 1 1 1
−1 −1 −1 −1

(5)

here r = 2, n = 3, m = 4. Suppose also that α = 2, T = 1
and hence P = (α/T) + 1 = 3 and

x0 =

NaN 1 2
NaN 1 2
NaN 1 2

← x1

0

← x2

0

← x3

0

y0 =

1 1 1
1 1 1
1 1 1
1 1 1

← y1

0

← y2

0

← y3

0

← y4

0

u =

[

NaN NaN NaN 1 1 1 2 2 2
NaN NaN NaN 1 1 1 2 2 2

]

← u1

← u2

(6)

where the superscripts are used to denote the entries in
the corresponding vector. Here we have 3 states, 4 pass
profiles and 2 inputs. Then the resulting state and pass
profile vectors for the case of K = 3 are as follows

x =

NaN NaN NaN 1 7 16 2 7 19
NaN NaN NaN 1 2 10 2 5 4
NaN NaN NaN 1 −4 0 2 −7 12

← x1

← x2

← x3

y =

1 1 1 12 14 35 17 20 68
1 1 1 1 1 1 −1 −5 −47
1 1 1 2 4 25 7 10 58
1 1 1 −9 −9 −9 −11 −15 −57

← y1

← y2

← y3

← y4

(7)

where NaN (not a number) denotes entries in the relevant
matrices which are only necessary for computational infor-
mation purposes (the control sequence u and initial state
x0 are not defined for pass number 0 for (1) and (2)).

C. Solving Linear Repetitive Processes with Matlab ODE

Solvers

The Matlab ODE solver is a collection of Matlab–
based functions for the solution of initial value problems of
the commonly encountered form

y′ = F (t, y) (8)

over the time interval [t0, tf] with given initial values
y(t0) = y0. To solve (8) numerically, it is obviously neces-
sary to use the most appropriate numerical method for the
particular data encountered. A very extensive description
of such solvers can be found in, for example, [13] or the
original Matlab documentation [14].

To illustrate the Matlab ODE solvers in the repetitive
process setting we now detail how to solve numerically a
very simple example. This consists of 2 steps, the first of
which is to write a function M–file that models the desired
initial value problem (we call this function ode file). In the
second step we choose one of the Matlab’s solvers (the
one very commonly used is ode45) and pass our previously
written function M–file as an input parameter ode file.

Now consider the special case of (1)

Â =

[

−0.5 −0.7
0.7 −0.3

]

B̂ =

[

1 −1
0 2

]

B̂0 =

[

1.9
6.4

]

Ĉ =
[

0 0
]

D̂ =
[

0 0
]

D̂0 =
[

−0.7
]

. (9)

and for simplicity lets calculate only the first pass. Then
we can simple ”remove” the variable k from (1) an obtain

4

the 1D differential linear systems state space model

ẋ(t) = Âx(t) + B̂u(t) + B̂0y(t)

y(t) = Ĉx(t) + D̂u(t) + D̂0y(t). (10)

Now let the desired time span be [0 6], with initial condi-
tions: x1(0) = 1, x2(0), initial pass profile: y(t) = sin(t),
control sequence: u1(t) = 0, u2(t) = 1 for 0 ≤ t ≤ 6. The
M–file code below details our ode file for solving (10):

function dxdt = lrpodefile(t,x);
================================

% The model - the first eq. in (1)
% x’ = ax + bu + b0y
a=[-0.5 -0.7; 0.7 -0.3];
b=[1 -1; 0 2];
b0=[1.9; 6.4];
u=[0; 1];
y0=sin(t);
dxdt = a*x + b*u + b0*y0;

and then from Matlab prompt we write:

tode=[0 6];
x0ode=[1;0];
[tout,xout]= ode45(’lrpodefile’,tode,x0ode);
plot(tout(:,1), xout(:,1),’-o’);
hold on, grid on
plot(tout(:,1), xout(:,2),’-*’);
xLabel(’Time (sec.)’);
yLabel(’State values’);

Here tout is a column vector containing the time points
where the solution was computed, and xout is a matrix
having two columns and length(tout) rows. The tout

vector is usually not equally spaced because ode45 method
implements a variable step–size variant of original Runge–
Kutta method of orders 4 and 5 with error control on each
step.

Finally, the plot function plots the computed time re-
sponse for both two states (Figure 3). The small circles
and stars on the figure are the time points chosen by the
ODE solver. Note the ‘condensation’ of the points at the
beginning of time interval. In numerical methods we use
for solving differential equations, the algorithm employed
is usually a variable–step one where the local discretization
period h is adjusted to give the desired accuracy. (In the
example given here it usually alternates very significantly
on over the interval [0 6].)

For illustrative purposes we also show a 3D plot (Figure
4) of the second state now treated as a regular repetitive
process which consists of K = 8 passes (plus pass number 0
which is the initial pass profile y0(k)). Note that horizontal
axis on Figure 3 shows continuous time (in seconds), while
on Figure 4 the axis labeled ”points on pass” is scaled in
discrete time points (α = 3, T = 0.2 → P = (α/T)+1 = 31
– from point number 0 to point number 30). Nevertheless,
Figures 3 and 4 are fully comparable. (A non–zero value

of matrix D̂0 for numerical convenience only.)
As noted in Section II, (1) will be solved k times (for

each pass) as a consequence of its 2–dimensionality. Here
we have two independent variables t and k, where the first
one t is continuous–time while the second one k is discrete
in nature and receives integer values. During an iterative
procedure for solving equation (1), where the former af-
fects the latter, some numerical stability problems may be

0 1 2 3 4 5 6
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time (sec.)

S
ta

te
 v

al
ue

s

x
1
1(t)

x
1
2(t)

Fig. 3. Response of the model described by (9) computed by numer-
ical solution of the equation (1).

0
2

4
6

8

0

10

20

30
−10

−5

0

5

10

passes

state: 2 total passes: 9

points on pass

Fig. 4. Second state for linear repetitive process described by (9).

expected together with a loss of accuracy in the final re-
sult. Also the possibility of obtaining stiff problems is much
higher, hence the model and its all initial values are known
only for the first stage (first pass) of computations.

The output results generated by theODE solver must
match exactly the LRP toolbox data specification described
in Section III-B and vice versa. To achieve this requirement
a form of adjustment (interpolation in this context) of the
data is required. The source files included in the next Sub-
section illustrate technical details here.

D. Matlab M–files

Function rodefile – this is a function M–file that mod-
els the first equation in (1). Note for lines with interp1
Matlab built-in function call where the interpolation of
lack vector elements is performed.

5

function [dx] = rodefile(t,x,flag,varargin);
==
% The function solves the following equation:
% dx/dt = A*x(t) + B*U(t) + B0*Y(t)
A= varargin{1}; B= varargin{2}; B0=varargin{3};
T=varargin{4}; % T must be monotonic! Regularly spacing not required.
U=varargin{5}; % Values of U at time points of T.
Y=varargin{6}; % Values of Y at time points of T.
% Local interpolation required.
low=find(T<=t); high=find(T>=t); p1=size(low,1);
test=0;
if ~isempty(high)

p2=high(1,1);
else p2=size(T,1);

if (t-T(size(T,1)))==eps; test=1; end
end
% Make interpolation to find the missing U(t).
% In these time points interpolation is not needed.
if t~=0 & t~=T(size(T,1)) & any(t==T)==0 & test==0

ut=interp1([T(p1) T(p2)],[U(p1,:); U(p2,:)], t);
else

ut=U(p1,:);
end
% Make the same for Y.
low=find(T<=t); high=find(T>=t); p1=size(low,1); test=0;
if ~isempty(high)

p2=high(1,1);
else

p2=size(T,1);
if (t-T(size(T,1)))==eps; test=1; end

end
if t~=0 & t~=T(size(T,1)) & any(t==T)==0 & test==0

yt=interp1([T(p1) T(p2)],[Y(p1,:); Y(p2,:)], t);
else

yt=Y(p1,:);
end
dx = zeros(size(A,1),1);
dx = A*x + B*ut’ + B0*yt’; % note for transpose

Function rsolve – this is a function M–file that makes
use of the previously shown rodefile function. Note for
the loop: for i=1:total passes, where the solutions for
every pass profiles are calculated and printed out to the
screen. Usage of functions rm2 d3d and rm3d 2d simpli-
fies the codes and also make the final resulting matrices
compatible with the data format specification detailed in
Section III-B.

function [xout,yout,stat,stat2] = rsolve(a,b,b0,c,d,d0,u,x0,y0,T);
==
% Numerical solution of a k-th pass of a given LRP
% described by a differential equation of the form:
% x’(k+1,t) = a*x(k+1,t) + b*u(k+1,t) + b0*y(k,t)
% y(k+1,t) = c*x(k+1,t) + d*u(k+1,t) + d0*y(k,t)
odesolver =’ode45’;
% Accuracy. See the Matlab ODE Solvers guide.
RelTol=1e-3; AbsTol=1e-6;
if nargin~=10 error(’Wrong number of input arguments.’); end
options=odeset(’RelTol’,RelTol, ’AbsTol’,AbsTol,’MaxStep’,1000000);
disp(’ ’);
disp([’RelTol=’,num2str(RelTol),’ AbsTol=’,num2str(AbsTol)]);
disp(’ ’);
% The last element in vector ’t’ is assumed to be the pass length.
alpha=T(size(T,1));
p=size(y0,2);
total_passes=size(x0,2)-1;
stat2=cell(1,total_passes);
yode=y0’;
% Calculate for all passes
for i=1:total_passes

x0ode=x0(:,i+1)’; u3d=rm2d_3d(u,p);
uode=u3d(i+1,:,:); uode=permute(uode,[3,2,1]); uode=uode’;
% Call the solver for the first time.
[tout,xode,s]=
feval(odesolver,’rodefile’,T,x0ode,options,a,b,b0,T,uode,yode);
% Call the solver for the second time to
% determine the minimal and maximal step size used by the solver.
[ttemp,xtemp]=
feval(odesolver,’rodefile’,
[0 alpha],x0ode,options,a,b,b0,T,uode,yode);
minStepSize= min(abs(ttemp(1:size(ttemp)-1,1) -
ttemp(2:size(ttemp),1)));
maxStepSize= max(abs(ttemp(1:size(ttemp)-1,1) -
ttemp(2:size(ttemp),1)));
% Save the ode solver solution.

stat2{1,i}=[ttemp,xtemp];
yode=c*xode’ + d*uode’ + d0*yode’;
yode=yode’;
if i<10, ii=[num2str(i),’ ’]; else, ii=[num2str(i)]; end
disp([’Step ’,ii,’ done. Min step: ’,num2str(minStepSize),...

’ Max step: ’,num2str(maxStepSize),...
’ Statistics: ’,num2str(s’)]);

xout3d(i,:,:)=xode; yout3d(i,:,:)=yode; stat(i,:)=s’;
end
% Make output results compatible with the LRP Toolbox
% (see rm2d_3d.m)
xout = rm3d_2d([ones(1,size(xout3d,2),size(xout3d,3))*NaN; xout3d]);
yout = [ones(1,size(yout3d,2),size(yout3d,3))*NaN; yout3d];
yout(1,:,:)=y0’; yout = rm3d_2d(yout);

Function rm2d 3d – has an auxiliary meaning. Used in
rsolve function.

function [m3] = rm2d_3d(m2,p);
==============================
% Convertion from 2d-style LRP matrices to the 3d-style one.
if (nargin~=2), error(’Wrong number of input arguments.’); end
[row,col]=size(m2);
for i=1:row

for j=1:(col/p)
m3(j,:,i)=m2(i,p*(j-1)+1 : p*(j-1)+p);

end
end

Function rm3d 2d – has an auxiliary meaning. Used in
rsolve function.

function [m2] = rm3d_2d(m3);
===========================
% Convertion from 3d-style LRP matrices to the 2d-style.
% Converts a matrix created by rm2d_3d.m back to its 2d-style.
if (nargin~=1), error(’Wrong number of input arguments.’); end
[row,col,dim3]=size(m3);
for i=1:dim3

for j=1:row
m2(i,col*(j-1)+1 : col*(j-1)+col)=m3(j,:,i);

end
end

IV. Conclusions

In the paper we have first given a short introduction to
differential linear repetitive processes (details can be found
in the attached references list). Then we have presented
the Matlab–based toolbox for supporting analysis of these
processes with particular emphasis on a module of the tool-

box for direct solving the repetitive equations of (1) with
intensive use of the Matlab ODE Suite mechanism. Sim-
plified (but fully functional) Matlab M–files which realize
this task are included. A problem not investigated here is
the accuracy and numerical stability of calculated results.
This problem is currently under investigation and results
will be available in due course.

References

[1] E. Rogers and D.H. Owens, Stability analysis for linear repetitive
processes, vol. 175 of Lecture Notes in Control and Information
Science, Springer Verlag, Berlin, 1992.

[2] T. Kaczorek, “Singular 2D continuous-discrete linear systems,”
Bulletin Polish Academy of Science. Technical Sciences. Elec-
tronics and Electrotechnics, vol. 42, pp. 417–422, 1994.

[3] K. Galkowski, E. Rogers, A. Gramacki, J. Gramacki, and D.H.
Owens, “Stability and dynamic boundary condition decoupling
analysis for a class of 2–D discrete linear systems,” IEE Pro-
ceedings - Circuits, Devices and Systems, vol. 148, no. 3, pp.
126–134, 2001.

[4] J. Gramacki, Methods of testing stability and stabilization of
linear discrete repetitive processes, Ph.D. thesis, Technical Uni-
versity of Zielona Gora, Computer Eng. and Electronics Dept.,
1999, (in Polish).

[5] D.H. Owens and E. Rogers, “Stability analysis for a class of
2D continuous–discrete linear systems with dynamic boundary

6

conditions,” Systems and Control Letters, vol. 37, pp. 55–60,
1999.

[6] E. Rogers, K. Galkowski, A. Gramacki, J. Gramacki, and D.H.
Owens, “Stability and controllability of a class of 2–D linear
systems with dynamic boundary conditions,” IEEE Transac-
tions on Circuits and Systems – I. Fundamental Theory and
Applications, vol. 49, no. 2, pp. 181–195, 2002.

[7] E. Rogers, J. Gramacki, K. Galkowski, and D.H. Owens, “Stabil-
ity theory for a class of 2D linear systems with dynamic bound-
ary conditions,” Proceedings of the CDC–98, Tampa, USA, pp.
2800–2805, 1998.

[8] K. Galkowski, E. Rogers, A. Gramacki, J. Gramacki, and D.H.
Owens, “Higher order discretization methods for a class of 2–D
continuous–discrete linear systems,” IEE Proceedings – Circuits,
Devices and Systems, vol. 146, no. 6, pp. 315–320, 1999.

[9] A. Gramacki, Discretization of linear, differential repetitive pro-
cesses, Ph.D. thesis, Technical University of Zielona Gora, Com-
puter Eng. and Electronics Dept., 1999, (in Polish).

[10] A. Gramacki, “On a new method of discretization of differential
linear repetitive processes,” Bulletin of the Polish Academy of
Science, Technical Sciences, vol. 48, no. 14, pp. 539–560, 2000,
(in Polish).

[11] A. Gramacki, K. Galkowski, E. Rogers, and D.H. Owens, “Meth-
ods for the discretization of a class of 2D continuous–discrete
linear systems,” Proceedings of the CDC–99, Phoenix, USA,
December 1999, (CD–ROM).

[12] A. Gramacki, J. Gramacki, K. Galkowski, E. Rogers, and D.H.
Owens, “From continuous to discrete models of linear repetitive
processes,” Archives of Control Sciences, vol. 12, no. 1–2, pp.
151–185, 2002.

[13] L. F. Shampine and M. W. Reichelt, “The MATLAB ODE
Suite,” SIAM Journal on Scientific Computing, vol. 18-1, pp.
1–22, 1997.

[14] Inc. The MathWorks, Using MATLAB, Version 5, 24 Prime
Park Way, Natick, Massachusets 01760, 1998.

[15] K. Galkowski, E. Rogers, A. Gramacki, J. Gramacki, and D.H.
Owens, “Development of a MATLAB toolbox for a class of 2D
linear systems,” Systems Analysis–Modelling–Simulation, vol.
38, pp. 313–324, 2000.

	Conference Program
	Author Index
	Main Menu

