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Abstract— In this paper, pseudo-derivative feedback control-

lers, which are designed and tuned in order to control integrator 
plus dead time (IPDT) processes, are analyzed in terms of robust-
ness. The robustness analysis reported in the paper, is performed 
in terms of the structured parametric uncertainty description. 
This analysis constitutes a basis, for a comparison of the control 
and tuning methods presented in [1], with existing tuning me-
thods for conventional PI/PID controllers of IPDT processes. 
This comparison reveals that the proposed control and tuning 
methods provide satisfactory robustness, and offer larger para-
metric stability margins than those provided by most of the exi-
sting tuning methods. 
 

Index Terms— Pseudo-derivative feedback, controller tuning, 
integrating processes, dead-time processes, robust stability, stru-
ctured parametric uncertainty. 
 

I. INTRODUCTION 

I N the past, integrator plus dead time (IPDT) process model 
has been the focus of interest by many control and process 

designers (see [2]-[4] and the references therein). This increa-
sed interest stems from the simplicity of this model and its 
ability of adequately representing process dynamics. More-
over, since, most of the controller implementations in process 
industry is of the PI/PID type, simple controller tuning for 
IPDT processes has received an adequate attention in the past 
(see [4]-[12] and the references therein). A common feature of 
the existing PI/PID tuning methods for IPDT processes is that 
they give large overshoot in the servo response of the closed-
loop system [1]. To avoid such an overshoot and to obtain a 
smoother closed-loop response to set-point changes, it has 
been proposed to use setpoint weighting or a controller confi-

guration with filtered derivative or finally set point filters [3], 
[4], [11], [12]. 

An alternative way to reduce the closed-loop system over-
shoot, is to use the pseudo-derivative feedback (PDF) configu-
ration [13], instead of that of a PI/PID controller, in order to 
control IPDT processes. The PDF structure avoids abrupt res-
ponses to set point changes, because naturally ramps the con-
troller effort, since it internalizes the pre-filter that one would 
apply in the PI/PID control configuration, to reduce overshoot. 
In the first part of this paper [1], two simple types of PDF 
controllers, namely the PD-0F controller and the PD-1F con-
troller are analyzed and simple methods for tuning their set-
tings are presented. As it has been shown by simulation in [1], 
the proposed control and tuning methods provide also fast 
regulatory control and sufficient robustness against parametric 
uncertainty. 

The purpose of this second part of the paper is to perform a 
thorough analysis of PD-0F and PD-1F controllers, which are 
designed and tuned in order to control integrator plus dead 
time (IPDT) processes, in terms of robustness. The analysis of 
robustness of PDF controllers presented in this paper is based 
on the performance of the loop transfer function and on the 
structured parametric uncertainty description. Structured un-
certainty is preferred to use in the analysis instead of the un-
structured uncertainty description, due to the conservative na-
ture of the later. Based on this analysis, a comparison of the 
control and tuning methods presented in [1], with existing 
tuning methods for conventional PI/PID controllers of IPDT 
processes, is accomplished. This comparison reveals that the 
proposed control and tuning methods provide satisfactory 
robustness, and offer larger parametric stability margins than 
those provided by most of the existing tuning methods. 
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PD-1F Controller Settings for IPDT models 
The PD-1F controller parameters can be chosen as 
 

[ ] 1
P dK)316(16K −−= γ  (6a) 

[ ] 12
I Kd)316(4K −

−= γγ  (6b) 

( )[ ] 1
d K)316(8K −−−= γγ  (6c) 

 
where γ is an adjustable parameter, whose value can be spe-
cified in order to obtain a desired damping ratio fοr the closed-
loop system or to minimize classical integral criteria (see [1], 
for details). 

Fig. 1. The general PDF control structure.  
 
KD,1=Kd≠0 and KD,i=0, for i=2,…,n-1. As it has been shown in 
[1], for IPDT process models of the form 

  
GP(s)=Kexp(-ds)/s (1) 

III. ROBUSTNESS OF PD-0F AND PD-1F CONTROLLERS UNDER 
PARAMETRIC UNCERTAINTY 

 
where K and d are the process gain and the time delay, 
respectively, the loop transfer function is given by 

 
( )

2
IP

L s
)dsexp(KsKK

)s(G
−+

=  (2) 

In order to study the robustness of the proposed tuning me-
thods, we consider the structured uncertainty description given 
by the following equations 

 
)r1(KK Knomact +=   ,  )r1(dd dnomact +=  (7)  

 in the case of the PD-0F controller, while in the case of the 
PD-1F controller is given by 

 
( )

2
IP

2
d

L s
)dsexp(KsKsKK

)s(G
−++

=  (3) 

where Knom and dnom are the nominal values of the parameters 
and rK and rd are the relative uncertainties. In this case, the real 
plant has the following transfer function 

 

s
e)r1(K

)s(G
s)r1(d

Knom
act,P

dnom +−+
=  (8)  

In [1], based on approximations of the delay term through 
first order Taylor and Padé expansions and of the crossover 
frequency of the Nyquist plot of the loop transfer function, the 
following PD-0F and PD-1F controller settings have been 
proposed. 

 
Suppose, now, that a PD-0F controller is designed for the 

nominal plant, and that it is tuned according to relations (4a), 
(4b). In this case, the actual loop transfer function is given by 

 
PD-0F Controller Settings for IPDT models ( ) s)r1(d

2
IPKnom

act,L
dnome

s
KsK)r1(K

)s(G +−++
=  (9) The PD-0F controller parameters can be chosen as 

 

([ 1222
P dK)8(4K

−
+−= απαπ ) ]

]

]
]

 (4a) 
 

( )( )[ 12222
I Kd)8(K

−
+−−= απααπα  (4b) 

Substituting (4a) and (4b) in (9) yields 
 

( )
s)r1(d

2

2
nom

2

nom

2

K

act,L
dnome

s
Ad

)(s
Ad
4r1

)s(G +−








 −
++

=

απαπ

 (10) 
 
where α is an adjustable parameter, whose value can be speci-
fied by the designer in order to obtain a desired damping ratio 
of the closed-loop system or to minimize classical integral 
criteria (see [1], for details). 

 

Alternative PD-0F Controller Settings for IPDT models 
The PD-0F controller parameters can alternatively be 

chosen as 
 

( )[ 1
P dK84K −−= β  (5a) 

where . The parameter values for which 
the controlled system will be marginally stable are those for 
which the Nyquist plot passes through the (-1,0) point. These 
values are close related to the parametric stability margin 
discussed in [14]. Using equation (10) and setting the real part 
equal to -1 and the imaginary part equal to 0 gives 

22)8(A απα +−=

( )[ 12
I Kd8K

−
−= ββ  (5b) 

 

[ ]
)(

d4
)r1(dtan 2

nom
2

dnom απα
ωπ

ω
−

=+  (11) 
 
where  is an adjustable parameter. 22 )( −−= παπαβ  
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)Bsin(d4)Bcos()(
Ad

r1
nom

22

22
nom

K ωπαπα
ω

+−
=+  (12) 

We now make use of the following approximation for the 
cosine function [15] 

 
 

1xx)xcos( 2
2

1 ++≈ µµ  (17a) where ω)r1(dB dnom += , or equivalently 
 

{ }
[ ]

[ ]{ }22
nom

4222
dnom

22
nom

222
nom

22

22
nom

K

d16)()r1(dcos
d)8()(

)Btan(d4)()Bcos(
Ad

r1 

ωπαπαω
ωαπααπα

ωπαπα
ω

+−+
+−−

=

+−
=+

 (13) 

( )
21

218
π

µ −
=   ,  ( )

π
µ 3222

2
−

=  (17b) 

 
and we obtain 
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( ) ( ) ( ) ( )
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−+
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

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



+

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22

2222
d4

2

2

1

222
K

1
r1

11
4

1
4

16

)8()(

r1                                          

Γπ
απα

πΓπµΓπµ

απααπα  (18)  
Thus, for a given value of the adjustable parameter α and a 

given value of the relative uncertainty in the time delay (rd), 
the value of the frequency ω that satisfies equation (11) is 
calculated first. Then, the maximum relative gain uncertainty, 
that can be tolerated without the closed loop system to become 
unstable, is calculated using equation (12). The set of equa-
tions (11) and (12) (or (13)) is a powerful robustness analysis 
tool since using these equation, we can calculate the exact 
values of the uncertainty, in the model parameters, for which 
the closed loop system becomes unstable. 

 
I Note that the fittings for the cosine function, provided by 

(17a) are exact at the points x=0, π/4, π/2. 
Equation (18) is an extremely accurate approximation and 

can be used even for controller synthesis, since it provides the 
controller parameter α for given values of the parameter 
uncertainties. 

Suppose, now, that a PD-0F controller is designed for the 
nominal plant, and that it is tuned according to relations (5a) 
and (5b). Then, the actual loop transfer function is given by 

In order to obtain an explicit relationship between the 
relative uncertainty of the model parameters and the adjustable 
parameter α, an approximate solution for the equations (11) 
and (13) is presented. To this end, rewrite equation (11) as 

 

 


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

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−
=+ −

)(
d4
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2
1

dnom απα
ωπ

ω  (14) )sG =
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 By performing a similar analysis as before we obtain 
and use the approximation  in the right 
hand side of (14) to obtain 

11 x5.0)x(tan −− −≈ π  

[ ]
β

ω
ω nom

dnom
d4

)r1(dtan =+  (19) 
 

ωπ
απαπω

nom
2

2

dnom d4
)(

2
)r1(d −

−≈+  
[ ]( )22

nom
2

dnom

22
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K d16)r1(dcos
d)8(

r1
ωβω

ωββ
++

−
=+  (20) 

  
The solution of the above equation is 
 

( )










 +−
−+

+
≈ 4

d
2

dnom

r1)(4
11

)r1(d4 π
απαπω  (15) 

Solving (19), according to the procedure presented above, 
yields 

 
( )











 +
−+

+
≈ 2

d

dnom

r14
11

)r1(d4 π
βπω  (21) 

 
 Finally, substitution of (15) into (13) yields 

Substituting (21) in (20) yields  
[ ]

( ) ( ) ( )
( ) 







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



+

−+
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2222
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1
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cos16

)8()(r1
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


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22

2
d

2K

1
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4
cos16

)8(r1

∆π
β

∆π

ββ  (22) 

 

2
d )r1(41

π
β

∆
+

−=  where 
 

 ( )
4

d
2 )r1)(41

π
απα

Γ
+−

−=  Using approximation (17) in (22), we finally obtain 
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4
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∆π
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ββ  (23) 

 
Equation (23) provides the controller parameter β for given 

values of the parameter uncertainties. 
Finally, suppose that a PD-1F controller is designed for the 

nominal plant, and that it is tuned according to relations (6a)-
(6c). In this case, it is not difficult to check that the actual loop 
transfer function is given by  

 
( )[ ] s)r1(d

2
nom

22
nomK

act,L
dnome

s)316(
4sd16sd)8(r1

)s(G +−

−
++−+

=
γ
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By performing a similar analysis as before, we obtain 
 

[ ] 22
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nom
dnom d)8(4

d16
)r1(dtan

ωγγ
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ω
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K

+
=

[ ]
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An approximate solution of (24) is given by 
 

[ ]
[ ]











 −++
−+

−++
≈ 2

d

dnom 4
8)r1(16

11
8)r1(16d

4
π

γγ
γ

πω  (26) 

 
and a relation analogous to relations (18) and (23), can be 
easily obtained by substituting (26) into (25) and then using 
approximation (17) in the resulting equation. 
 

IV. COMPARISON WITH EXISTING PI/PID TUNING METHODS 
In order to perform a comparison of our methods with 

known PI/PID tuning methods for IPDT processes, in terms of 
robustness, we next briefly review some of them, and in 
particular those reported in [2] (T-L method), [5] (C-method), 
[6] (K-L-A method), [7] (P-P method), [8], [9] (W-C method), 
[10] (V-method) and [12] (C-PS method). 

The methods reported in [2], [5], [6] and [7] for PI control-
ler tuning, propose controller settings of the following form 

 
)dK/(cK 1P =   ,  θ=c2d (27) 

 
where 

 
c1=0.4863  ,  c2=8.7527 (T-L method) 
c1=0.671  ,  c2=3.6547 (C-method) 
c1=0.6042  ,  c2=5 (K-L-A method) 
c1=0.5325  ,  c2=4.16 (P-P method) 
 

By considering the structured uncertainty description of the 
form (7) and by performing a similar robustness analysis for 

the methods reported in [2], [5], [6] and [7], we obtain 
 

( )[ ] ωω nom2dnom dcr1dtan =+  (28) 

[ ]{ }22
nom

2
2dnom1

22
nom2

K dc1)r1(dcosc
dcr1

ωω
ω

++
=+  (29) 

( ) 









 +
−+

+
≈

2
2

d

nomd c
)r1(16

11
dr14 π

πω  (30) 

 
In the methods reported in [8], [9] and [12] control-ler 

settings depend on adjustable parameters. 
In particular, in [12], the following rules for tuning a PI or a 

PID controller have been proposed: 

PI Controller Settings [12] 
 

dK)1
2

1

1
P α

α   ,  ( )
1

d15.0

1

1

−
+

=
α
α

θ  (31) 

PID Controller Settings [12] 
 

dK)1(
4

K 2
1

2
1

P α
α

+
= , ( )

1
d15.0

1

1

−
+

=
α
α

θ , ( )
1

1 d125.0
α
α

δ
+

=  (32) 

 
By considering the structured uncertainty description of the 

form (7) and by performing a similar robust-ness analysis, in 
the case of a PI controller, we obtain 

 

( )[ ] ( )
)1(2

d1
r1dtan

1

nom1
dnom −

+
=+

α
ωα

ω  (33) 

( ) ( )
[ ] ( ) ( ){ }22

nom
2
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2
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22
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2
1

K

d114)r1(dcos
d11
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ωααααω
ωαα

++−+
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( ) 











+
+−

−+
+

≈ 2
1

2
d1

nomd )1(
)r1)(1(32

11
dr14 απ

απω  (35) 

 
while in the case of a PID controller we obtain 

 

( )[ ] ( )
( ) 22

nom
2

111
2
1

nom1
2
1

dnom d1)1(8
d14

r1dtan
ωαααα

ωαα
ω

+−−

+
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[ ] ( ){ }22
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2

1
4
1

2
dnom

22
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3
1

K d116)r1(dcos
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r1
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+++

+
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2
1 d118 ωααααΕ +−−=  

( )
( )













+

−+−
−+

−+
≈

)1(
1r43)1(8

11
d1r43 11

2
d111
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In [8], [9], the following rules for tuning a PID controller 

have been proposed: 

PID Controller Settings [8], [9] 
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dK)(f
1K
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P β
=   , )(df 12 βθ =   , )(f/d 13 βδ =  (39) ω ( )

( )










 −+
−+

−+
≈

2
2

3d

3dnom h
hr11611

hr1d4 π
π  

  where, for ζ1=1 
 

6208.05080.0)(f 111 += ββ  (40a) 
2235.19885.1)(f 112 += ββ  (40b) 
8194.10043.1)(f 113 += ββ  (40c) 

 
while, for ζ1= 2/2  

 
3904.07138.0)(f 111 += ββ  (41a) 
2076.14020.1)(f 112 += ββ  (41b) 

Before proceeding to the comparison of the above methods 
in terms of robustness, it should be noted that, although the 
sets of equations (11) and (13), (19) and (20), (24) and (25), 
(28) and (29), (33) and (34), (36) and (37), (43) and (44), (46) 
and (47) depend on dnom, the relation between the relative 
uncertainties rK and rd does not. This implies a universal 
robustness analysis. Moreover, it is worth noticing that all 
these sets of equations have the trivial solution ω=0 and rK=-1. 
This solution corresponds to the well-known fact that any sys-
tem with positive feedback is unstable and will not be conside-
red in our analysis. 

6999.14167.1)(f 113 += ββ  (41c) 
 

Note that that in [8], [9] the design specification is to obtain 
a closed-loop transfer function of the form 

 

)dsexp(
1ds2sd

1ds)12(
)s(G

1e
222

e

1e
CL −

++
++

=
ζττ

ζτ
 (42) 

 
By considering once again the structured uncertainty des-

cription of the form (7) and by performing a similar robustness 
analysis, as for the previous tuning methods, we obtain 

 

( )[ ] 22
nom1213

nom1312
dnom d)(f)(f

d)(f)(f
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ωββ
ωββ

ω
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2
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2
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1
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++

=+
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22
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
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
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≈

)(f)(f
1)r1)((f16
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)(f

1312
2
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13

ββπ
β

β
βπ

ω  

Consider now the IPDT process with K=1, d=1. In Fig. 2, 
the solutions of equations (11) and (13), (19) and (20), and 
(28), (29) for various values of the adjustable parameters α, β 
and c1, c2 are depicted. Note that as it is expected, the solu-
tions of equations (11), (13) and (19), (20) are identical. Clear-
ly, our method provides almost the same stability margins as 
the P-P method, while it offers larger parametric stability mar-
gins as compared to those offered by the C-method and the K-
L-A method. The T-L method gives the largest stability mar-
gins among the methods under comparison. Moreover, in Fig. 
3, the solutions of equations (11) and (13), (19) and (20), and 
(33), (34) for various values of the adjustable parameters α, β 
and α1 are depicted. Clearly, our method offers larger parame-
tric stability margins, as compared to that offered by the me-
thod in [12]. Finally, in Fig 4, the solutions of equations (24) 
and (25), (36) and (37), (43) and (44), and (46), (47) are 
depicted for various values of the adjustable parameters γ, α1 
and β1. Clearly, the W-C PID controller tuning method offers 
the largest parametric stability margins, while, for the same 
set-point tracking performance (which is obtained for γ= 
1.3333 and α1=1.4 or for γ=1.0309 and α1=1.3 and with the use 
of a set-point filter of the form 1/(θs+1) in the implementation 
of the PID control configuration, when the C-PS method is 
applied), the stability margins obtained by our method is lar-
ger than those obtained by the C-PS PID controller tuning 
method and comparable to those obtained by the V-method 
[10]. 

 
Finally, in [10] the following PID controller settings have 

been reported for controlling IPDT processes 
 

)dK/(hK 1P =   ,  θ=h2d  ,  δ=h3d (45a) 
h1=1.37  ,  h2=1.49  ,  h3=0.59 (45b) 

Finally, in order to compare the robustness of the proposed 
methods with the robustness offered, when an unstructured 
description of the uncertainty is used, we consider the solution 
of the robust performance problem with unstructured uncer-
tainty [16] 

 
A robustness analysis under the structured uncertainty des-

cription (7) yields  
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nom32

nom2
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where W(s) is the performance weight, S(s) and T(s) are the 
sensitivity and complementary sensitivity function, respective-
ly, and the multiplicative uncertainty description is given by 

 
( ) )()j(    ,)j(1)j(G)j(G mmmnom,Pact,P ωωωωω ≤+=  (49) 

  



> T7-041 < 
 

6

 

0

0.2

0.4

0.6

0.8

1

β1=2 , ζ1=1 

β1=2 , ζ1=0.707

β1=1 , ζ1=1 

β1=1 , ζ1=0.707

γ=1.0309 

γ=1.3333 

α1=1.3 

α1=1.4 

rd 

rk 

0 0.2 0.4 0.6 0.8 1

V method

 

 

0 
0.2 
0.4 
0.6 
0.8 

1 
1.2 
1.4 
1.6 
1.8 

2 

0 0.2 0.4 0.6 0.8 1

T-L method 

C method 

K-L-A method 

P-P method 

Proposed method 
α=0.8781 , β=0.8 

rd 

rk 

 Fig. 4. Parametric stability margins for the proposed PD-1F controller tuning 
method and the PID controller tuning methods reported in [8], [9], [10], [12].  Fig. 2. Parametric stability margins for the proposed PD-0F controller tuning 

method and the PI control-ler tuning method reported in [2], [5], [6] and [7].  
 troller exist as a solution of the robust stability problem is due 

to the conservative nature of the unstructured uncertainty des-
cription. If we apply the proposed method based on the stru-
ctured uncertainty description (7), we obtain β=0.6275 for 
rK=0.7 and rd=0.5, and the PD-0F controller settings solving 
the robust stability problem are KP= 0.5426 and KI=0.0851. 
Thus, the proposed method gives a feasible solution to the ro-
bust stability problem whereas the method based on the un-
structured uncertainty description, fails to solve the problem. 
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V. SIMULATION STUDIES 
Since a comparison, of the proposed tuning methods for 

PD-0F and PD-1F controllers has already been performed in 
Part I of the present paper [1], our aim here is to demonstrate 
the effectiveness of the proposed methods for robust tuning 
and to provide a comparison with the H∞ tuning based on the 
unstructured uncertainty description. To this end, the IPDT 
model with nominal parameter values K=1 %/min and d=1 
min is once again considered. 

Fig. 3. Parametric stability margins for the proposed PD-0F controller tuning 
method and the C-PS PI controller tuning method ([12]). 
 

Consider the IPDT process with K=1, d=1. Let the expected 
parametric uncertainty in the delay time be 50% and the un-
certainty in static gain be 70%. A description for the unstru-
ctured uncertainty is given by [17] 

 

[ ]{ }
d

dK
2

Km r1
  ,)r1(cos1)r1(2r)(

+
<+−++=

πωωω (50) 

)r1/(  ,2r)( dKm +≥+= πωω  (51) 

Suppose that our aim is to design a PD-0F controller for this 
process. The settings of PD-0F controller as obtained from the 
application of the proposed method are given by relation (20) 
for ζdes=1 (α=0.8781 or β=0.8) and have the values KP=0.7427, 
KI= 0.1520. On the other hand for α=1.8045 or β=1.4746 
(which corresponds to the minimum of the ISENDCO_SP cri-
terion) the respective settings are given as KP=0.8195, KI= 
0.3091. 

 Consider now the case where a 20% uncertainty in the 
process gain and a 15% uncertainty in the process delay are to 
be tolerated. In order to obtain an H∞-PD-0F controller and to 
compare its performance with the proposed PD-0F controller 
tuning method, we next use the performance weight W-1= 
MP=3, and using equations (50) and (51), we solve the robust 
performance problem (48) for β=0.157. Its solution is KP= 
0.51, KI=0.02.  

Consider also that a PD-0F controller is designed for the 
nominal plant according to relations (5a) and (5b). Solving the 
robust stability problem, with the performance weight having 
the simplified form [18] 

 
3MW P

1 ==−  
 

In Fig. 5, the servo response of the PD-0F controller, which 
is tuned according to the proposed tuning method, is given, in  

gives no solution (i.e. there are no feasible controller settings, 
such that (48) to be satisfied). The fact that no feasible con- 
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Fig. 7. Servo response for different methods for PD-0F controller tuning, in 
case of 20% in process gain and 15% uncertainty in process delay. Other 
legend as in Fig. 5.  

Fig. 5. Servo response for different methods for PD-0F controller tuning, in 
case of nominal process parameters. Solid: Proposed method for α=0.8781 or 
β=0.8; dash: Proposed method for α=1.8045 or β=1.4746; dash-dot: H∞-
tuning.   
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 Fig. 8. Regulatory response for different methods for PD-0F controller tuning, 
in case of 20% in process gain and 15% uncertainty in process delay. Other 
legend as in Fig. 5. 

Fig. 6. Regulatory response for different methods for PD-0F controller tuning, 
in case of nominal process parameters. Other legend as in Fig. 5. 
  

analysis similar to that presented in Sections 3 and 4, for 
rd=0.15, the closed-loop system becomes conditionally stable 
for rK=1.1735. Thus, the actual stability margin is much larger 
than the stability margin calculated through the solution of the 
robust stability problem using the unstructured uncertainty 
description. This once again certifies, our conclusion about the 
conservativeness of the unstructured uncertainty description. 

the case where no uncertainty is present, together with that 
obtained from the application of the H∞-PD-0F controller. Fig. 
6 illustrates the respective regulatory responses. From this 
simulation, it is clear that the H∞-PD-0F controller gives the 
most conservative tuning. The reader should compare the res-
ponses obtained when the H∞-PD-0F controller is applied, 
with those obtained in [1], in the case of a PI controller with 
set-point filter tuned according to the T-L method or the C-PS 
method with α1=1.1 (see Figs. 3c and 3e in [1]), in order to 
realize how conservative is the H∞ tuning based on the unstru-
ctured uncertainty description. Figs. 7 and 8 illustrate the 
servo and the regulatory response, respectively in the case of 
the assumed simultaneous uncertainty. It is worth noticing 
that, with β>0.157, the robust performance problem (48), has 
no solution. That is for β=0.157, the system must be conditio-
nally stable for the assumed simultaneous parametric uncertai-
nty. However, as it can be easily checked by performing an  

 

VI. CONCLUSIONS 
The present paper investigates the robustness properties of 

PDF controllers, which are designed and tuned for controlling 
IPDT processes. The reported robustness analysis relies on the 
structured parametric uncertainty description, which is prefer-
red to apply here, instead of unstructured uncertainty, due to 
the conservative nature of the later. As it has been shown in 
the paper, the proposed control and tuning methods provide 
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satisfactory robustness, and offer parametric stability margins 
larger than those provided by most of the existing PI/PID tu-
ning methods. Taking into account the present analysis and the 
results reported in the companion paper [1], among existing 
tuning methods, only the method reported in [8], [9] really 
provides better results, in terms of closed-loop performance 
and stability robustness. 

Before closing, it is worth noticing that, in the preceding 
analysis of stability robustness, only variations in the parame-
ters of the model are addressed. However, since a simple mo-
del, as the IPDT model considered in this paper, is usually an 
approximation of a more complex process, variations in the 
process structure should also be addressed. In the case where 
the variation in the process structure is not very important, the 
analysis presented in this paper is sufficient. In the case where, 
the variation in the process structure is indeed very important, 
then, the unstructured uncertainty used in the performance cri-
terion given by equation (48), as well as the Internal Model 
Control approach reported in [16] (see Chapter 6 therein), can 
be used in order to settle this concern. However, a more tho-
rough analysis is needed, in order to fully address this pro-
blem, which is beyond the scope of this paper 
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