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Abstract—. An optimal tracking problem is considered for
an open-loop SISO sampled-data system. It is assumed that
the reference signal is known in advance over an interval τ .
A rigorous frequency-domain solution is presented on basis
of the Laplace transform in continuous time. Formulae for
the degrees of numerator and denominator of the optimal
controller are given. The dependence of the cost function
on the preview interval is investigated and a lower bound is
obtained for the performance criterion.
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I. Introduction

IN some problems, for instance, in control of robot ma-
nipulators and terrain following for flying vehicles, the

desired trajectory of the system motion is known in ad-
vance over an interval τ . In this case, the information on
“future” values of the input (called preview) can be ex-
ploited for decreasing the tracking error.

Previously, the problem of preview control was consid-
ered mostly for time invariant continuous and discrete-time
systems (see [1-5] and references therein). Much less at-
tention was paid to analogous problems for sampled-data
systems. A similar problem of delayed signal reconstruc-
tion for open-loop sampled-data systems was considered
in [6-7] where the system performance was evaluated by
the H∞-norm of the corresponding operator. These pa-
pers demonstrated great problems in constructing equiva-
lent discrete state-space models for sampled-data systems
with arbitrary delays and preview.

Below it will be shown that the problem of preview track-
ing reduces to a computational scheme which incorporates
elements with transfer functions of the form esτ . Thus,
when such a sampled-data system is investigated in contin-
uous time, it becomes infinite-dimensional. This fact leads
to great difficulties in its analysis and design. Such well-
known techniques of direct sampled-data system design as
“lifting” [8] and ”FR-operator” [9] do not cope with this
task, because so far they have not been adapted for time-
delay systems.

This paper presents a rigorous solution of an open-loop
preview tracking problem for SISO sampled-data system on
basis of the frequency-domain theory of digital systems [10],
which makes it possible to take into account networks like
esτ without any approximation [11-12]. As distinct from
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[6-7], we use the L2-norm of the tracking error, i.e., the in-
tegral quadratic error between desired and actual outputs,
as an optimality criterion. The solution is based on the
Wiener-Hopf method for sampled-data systems [10]. The
proposed method takes into account restrictions on control
power and holds for arbitrary τ rather than for an integer
multiple of the sampling period.

The paper is organized as follows. A formal statement
of the problem is given in Sec. 3. There is constructed an
equivalent computational scheme for the preview tracking
problem. This system incorporates pure delay networks
rather than a preview unit and provides for the same value
of the cost function.

In Sec. 4 an equivalent discrete model is constructed for
the original sampled-data optimization problem.

In Sec. 5 a complete solution to the L2-optimal sampled-
data tracking problem is presented, including an algorithm
for synthesis of the optimal digital filter, formulas for de-
termination of its order and minimal value of the cost func-
tion.

In Sec. 6 the dependence of the cost function on the value
of the preview interval τ is investigated, including limiting
properties as τ → ∞. An explicit expression is given for
the lower bound for the L2-norm of the tracking error. As
distinct from the stationary discrete-time case [4], [13], it
is impossible to attain a zero cost function in the limit
as τ → ∞, even without restrictions imposed on control
power. This is caused by the fact that digital filters in
sampled-data systems can use only the values of the input
signal at the sampling instants rather than the complete
signal history.

II. Notation

Let T be the sampling period, ζ
4
= e−sT the unit delay

operator and ω
4
= 2π/T the sampling frequency.

The asterisk denotes the Hermitian conjugate function
such that, for the scalar case,

F ∗(s)
4
= F (−s) , F∗(ζ) = F(ζ−1) .

Real rational functions in s and ζ will be called stable, if
they are analytic in Re s ≥ 0 and |ζ| ≤ 1, respectively.
Also, polynomials in ζ are called stable if they have no
roots inside the closed unit disk.

Introduce, for any real rational function F (s), the dis-
placed pulse-frequency response

ΦF (s, t)
4
=

1
T

∞
∑

k=−∞

F (s + kjω) ekjωt (1)



and the discrete Laplace transform [10]:

DF (s, t)
4
=

1
T

∞
∑

k=−∞

F (s + kjω) e(s+kjω)t (2)

DF (ζ, t)
4
= DF (s, t) |exp(−sT )=ζ .

Denote the monic denominator of the function DF (ζ, t)
by dF (ζ) and its degree by δ(F ) = deg dF .

By a quasipolynomial we mean a rational function in ζ
free of poles except for, possibly, ζ = 0.

III. Statement of the problem

The block-diagram of the open-loop sampled-data sys-
tem under consideration is shown in Fig. 1. The system
includes a plant with transfer function F (s), actuator H(s)
and digital controller C(ζ) with a prefilter F0(s). The block
e−sτ1 simulates the pure delay in continuous networks and
the computational delay.

The transfer function of the hold element (not shown in
Fig. 1 for space economy) will be denoted as Gh(s). The
given solution is valid for any form of modulated impulse.

Let a reference signal r(t) be given as

r(t) =
{

0, t < 0
r0(t), t ≥ 0

where r0(t) is a function, and let it have the Laplace trans-
form R(s). Assume that the input signal is known in ad-
vance over the interval τ , and the input of the sampled-data
system is acted upon by “future” values of the signal r(t)
with preview τ , i.e., r(t + τ).

The task of the system is to restore, as close as possible,
some linear transformation ŷ(t) of the reference signal r(t)
given as a unit with stable transfer function Q(s).

In order to restrict the control signal, let us introduce
an ideal control signal û(t), which is the result of a trans-
formation of the reference signal r(t) by a linear network
with stable transfer function Qu(s) [10-15].

Then, the cost function may include the weighted sum of
integral square errors with respect to outputs and cotnrol:

J =

∞
∫

−∞

[y(t)− ŷ(t)]2 + ρ2 [u(t)− û(t)]2 dt

=

∞
∫

−τ

[y(t)− ŷ(t)]2 + ρ2 [u(t)− û(t)]2 dt (3)

where ρ2 is a nonnegative weighting coefficient. The prob-
lem consists in constructing a transfer function of an opti-
mal stable digital controller C(ζ) which ensures the mini-
mal value of the cost function J .

In [10] a constructive method was proposed to use the
Laplace transform for analysis and optimal synthesis of
sampled-data systems under deterministic disturbances.
But the problem is that the system at hand incorporates
a physically non-realizable unit performing the preview of
the input signal. Hence, even if the system has zero initial

energy, there are non-zero signals in the sampled-data sys-
tem for −τ ≤ t < 0, so it is impossible to use the ordinary
(unilateral) Laplace transform. Nevertheless, changing the
zero point of time, it is possible to construct an equivalent
physically realizable system which provides for the same
value of the cost function.

Indeed, let t̃ = t + σT , with

τ = σT − θ (4)

where σ is an integer and 0 ≤ θ < T . Then, for t̃ < 0 all
signals in the system are zero. Moreover, the criterion (3)
transforms to the form

J =
∫ ∞

θ

[

y(t̃)− ŷ(t̃)
]2

+ ρ2 [

u(t̃)− û(t̃)
]2

dt̃ .

Since all signals are zero for t̃ < θ, we obtain

J =
∫ ∞

0

[

y(t̃)− ŷ(t̃)
]2

+ ρ2 [

u(t̃)− û(t̃)
]2

dt̃ . (5)

Then, let us transform the system in Fig. 1 using the new
independent variable t̃. Since we changed the time zero-
point by an integer multiple of the sampling period and
the digital system is T -periodic, this operation causes no
phase shift of the sampling unit in the new system.

Using (4), we find that the unit Q is acted upon by the
signal r(t̃− σT ), while the sampled-data system gets r(t̃−
θ). These signals can be viewed as a result of the passage of
the signal r(t̃) through pure delay networks with transfer
functions e−sσT and e−sθ, respectively. The block-diagram
of an equivalent system is shown in Fig. 2. Here Σ denotes
the sampled-data system shown in the dashed box in Fig. 1.

Note that the system in Fig. 2 contains two pure delay
units instead of a preview block. All parts are now phys-
ically realizable and all signals are zero for t̃ < 0. Here-
inafter we will work only with the equivalent system shown
in Fig. 2. For brevity, we write t instead of t̃ everywhere.

It should be noted that the construction of the equivalent
system can also be justified on basis of the bilateral Laplace
transform in the corresponding strip of convergence [10].

IV. Equivalent discrete problem

Using Parseval’s formula, the cost function (5) can be
written as

J =
1

2πj

j∞
∫

−j∞

(Y − Ŷ )(Y − Ŷ )∗+ρ2(U−Û)(U−Û)∗ ds (6)

where Y (s), U(s), Ŷ (s), and Û(s) denote the Laplace im-
ages of the corresponding signals. Optionally, frequency-
dependent weighting functions can be used in (6) [10].

Using the technique of [10], Laplace transforms of the
signals y(t) and u(t) in the equivalent system shown in
Fig. 2 can be found as

Y (s) = FHe−sτ1GhDF0R(s,−θ)C
U(s) = He−sτ1GhDF0R(s,−θ)C
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Fig. 1. Sampled-data open-loop tracking system
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Fig. 2. Block diagram of an equivalent system

Images of the ideal signals are calculated in a classical way
as

Ŷ (s) = QRe−sσT , Û(s) = QuRe−sσT .

Decompose τ and τ1 as

τ = γT + ψ = σT − θ
τ1 = γ1T + ψ1 = σ1T − θ1

where γ, γ1, σ and σ1 are integers such that

0 ≤ θ < T , 0 ≤ θ1 < T
0 ≤ ψ < T , 0 ≤ ψ1 < T .

Note that
σ = γ + µ , σ1 = γ1 + µ1 (7)

with the notation

µ =
{

0 , θ = 0
1 , θ 6= 0 µ1 =

{

0 , θ1 = 0
1 , θ1 6= 0 . (8)

Then,

e−sτ1 = e−sσ1T esθ1

DF0R(s,−θ) = DF0R(s, (γ − σ)T + ψ)
= e(γ−σ)T DF0R(s, ψ) .

Hence,

Y Ŷ ∗ = es(γ−σ1)T FHesθ1R∗Q∗GhDF0R(s, ψ)C

UÛ∗ = es(γ−σ1)T Hesθ1R∗Q∗
uGhDF0R(s, ψ)C .

Using the above relations, after discretization and a passage
to the variable ζ [10] we find

J =
1

2πj

∮

Γ
(ACC∗ −BC −B∗C∗ + E)

dζ
ζ

(9)

where Γ is the unit circle passed anti-clockwise and

A(ζ) = DA0GhG∗h(ζ, 0)DF0R(ζ, ψ)DF0R(ζ−1, ψ)

B(ζ) = ζσ1−γDB0Gh(ζ, θ1)DF0R(ζ, ψ)
E(ζ) = DE0(ζ, 0)

A0(s) = (FF ∗ + ρ2)HH∗

B0(s) = (FQ∗ + ρ2Q∗
u)HR∗

E0(s) = (QQ∗ + ρ2QuQ∗
u)RR∗ .

In the general case, Qu and Q may have different poles. Let
dQ(ζ) and dQu(ζ) be the monic denominators of DQ(T, ζ, 0)
and DQu(T, ζ, 0), respectively. Then, denote by dQ1(ζ) the
least common multiple of dQ(ζ) and dQu(ζ). Let also δ1 =
deg dQ1 .

V. Controller design

Introduce the following assumptions:
A1. The functions R, F , H, F0, Q, and Qu are free of poles
in Re s > 0.
A2. The functions F0R, QR, and QuR are strictly proper.
A3. The functions H and FH are proper (or strictly
proper).

Notice that from A2 and A3 it follows that A0 is proper,
while B0 and E0 are strictly proper.

Calculating the discrete Laplace transforms
DA0GhG∗h(T, ζ, 0), DF0R(T, ζ, ψ), and DB0Gh(T, ζ, θ1),
we can write the functions A(ζ) and B(ζ) in the form [10]

A(ζ) =
α1

dFHd∗FH
· α2

dF0R
· α∗2
d∗F0R

(10)

B(ζ) =
βζσ1−γ

dFHd∗Q1R
· α2

dF0R
(11)

where α2(ζ) is a polynomial, while α1(ζ) and β(ζ) are
quasipolynomials. Moreover, since A0(s) is Hermitian self-
conjugated, we have α1(ζ) = α1(ζ−1) .



Let us find a stable polynomial g(ζ) (up to the sign) as
a result of the factorization

gg∗ = α1α2α∗2 . (12)

Let also ν be the minimal nonnegative integer such that
β∗α∗2ζ

γ−σ1+ν and g∗ζν are polynomials in ζ.
Theorem 1: Let assumptions A1-A3 hold. Then,

i) the transfer function of the optimal digital filter ensuring
the minimum of the criterion (9) is given by

C(ζ) =
nc

dc
=

dFHF0P
gdQ1

(13)

where the polynomials P (ζ) and π(ζ) satisfy the polyno-
mial equation

g∗ζδP + dQ1Rπ = β∗α∗2ζ
γ−σ1+ν (14)

with π of minimal degree, i.e., deg π < ν;
ii) the optimal value of the cost function is

Jopt =
1

2πj

∮

Γ

(

ππ∗

gg∗
+ E − B1B∗

1

A1

)

dζ
ζ

(15)

where

A1(ζ) = DA0GhG∗h(ζ, 0) , B1(ζ) = DB0Gh(ζ, θ1)

iii) the degrees of the polynomials dc and nc are deter-
mined by the inequalities

deg nc ≤ χ + max(0, γ − γ1) (16)
deg dc ≤ χ . (17)

with χ = δFHF0R + δ1 − 1.
The proof of Theorem 1 can be given in analogy to the

proof in [16].

VI. Properties of the function Jopt(τ)

A. Properties of Jopt(τ) for ψ = const

Lemma 1: The following relation holds for any integer
k > 0:

Jopt(τ + kT ) ≤ Jopt(τ) .
Proof: Let C0(ζ) be the transfer function of the opti-

mal digital filter for some fixed τ . Then, as follows from
(9), the filter with transfer function ζkC0 provides for the
same value of the cost function for the preview interval
τ + kT . Using the decomposition

τ = γT + ψ

we find that for ψ = const the function Jopt(γT + ψ) de-
creases monotonically as γ increases.

B. Properties of Jopt(τ) for γ = const

Consider relations between the optimal solutions for dif-
ferent preview intervals τ ′ and τ ′′ such that

τ ′ = γT + ψ1 , τ ′′ = γT + ψ2 . (18)

Assume that

DF0R(ζ, ψ1) =
nψ1

dF0R
, DF0R(ζ, ψ2) =

nψ2

dF0R

where nψ1(ζ) and nψ2(ζ) are polynomials.
Lemma 2: Let the intervals τ ′ and τ ′′ satisfy (18) and

the polynomial nψ2 be stable. Then,

Jopt(γT + ψ2) ≤ Jopt(γT + ψ1) . (19)

If the polynomial nψ1 is also stable, equality holds in (19).
Corollary 1: If the numerator of the function DF0R(ζ, ψ)

is a stable polynomial for all ψ′s, the function Jopt(τ) is
a non-increasing piecewise constant function with possible
breaks at the points τγ = γT .

Proof: Expressions for the coefficients of the functional
(9) show that for varying ψ the cost functional depends
only on the product CDF0R(ζ, ψ).

Let C1(ζ) be the optimal controller for the preview in-
terval τ ′. Then, it can be easily checked that the controller

C2(ζ) =
nψ1

nψ2
C1

yields
C2DF0R(ζ, ψ2) = C1DF0R(ζ, ψ1)

and, therefore, the same value of the cost function. More-
over, the controller C1 is admissible, i.e., stable and physi-
cally realizable.

If the polynomial nψ1 is also stable, we can prove in a
similar way the equality which is inverse to (19).

If the numerator of the function DF0R(ζ, ψ) is a stable
polynomial for all ψ′s, then the equality

Jopt(γT + ψ1) = Jopt(γT + ψ2)

holds for all ψ1 and ψ2. Therefore, the function J(γT +ψ)
is constant for any fixed γ and 0 ≤ ψ < T .

C. Breaks of Jopt(τ)

As follows from the fomulae for the coefficients A and B
in the functional (9), these functions are continuous with
respect to ψ for 0 ≤ ψ < T . Due to the continuity of
the solution to the optimization problem, we find that the
function Jopt(τ) = Jopt(γT +ψ) is continuous for γ = const
and 0 ≤ ψ < T , i.e., it may have breaks only at the points
where ψ = 0.

If the pole excess of F0R is 1, then DF0R(ζ, ψ) can have
breaks at ψ = 0 [10]. Physically, this means that a discon-
tinuous signal acts upon the sampling unit. In this case,
the coefficients A and B in the integrand of (9) may change
with a jump. Such being the case, the problem becomes
non-robust in the sense that the optimal controller and
the minimal value of the cost function depend on the fact
whether the sampling unit fixes the signal at the moments
kT + 0 or kT − 0.
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Fig. 3. Transients for Example 1.

D. Asymptotic properties of solution as τ →∞
Theorem 2: Let Jopt(γ, ψ) be the minimal value of the

cost function (9) for known γ and ψ. Then, there exists
the limit J∞ = limγ→∞ Jopt(γ, ψ), which is independent of
ψ. Moreover,

J∞ =
1

2πj

∮

Γ

(

E − B1B∗
1

A1

)

dζ
ζ

. (20)

The proof can be given in analogy to [16].
A special feature of the problem under consideration con-

sists in the fact that the input signal passes through the
sampling unit of the digital filter. Thus, the output of the
sampled-data system is influenced by the input values that
are fixed by the sampling unit at the moments tk = kT ,
where k is an integer. Quantization leads to a loss of infor-
mation, therefore it appears to be impossible to attain zero
cost functions in the limit as τ →∞ (i.e., when the whole
trajectory is known in advance) even when no restrictions
are imposed on the control power.

VII. Numerical examples

Example 1. Consider the system shown in Fig. 1 with

F (s) =
1

s + 1
, H(s) = F0(s) = 1

R(s) =
1
s

, Q(s) =
1

0.1s + 1
, τ1 = 1.5

T = 1 , τ = 2 , %2 = 0 .

Using the proposed technique, we obtain with the help of
the DirectSD toolbox for Matlab [17]

C(ζ) =
1.388 + 0.08392ζ − 0.2185ζ2 − 7.866 · 10−5ζ3

1 + 0.2534ζ − 1.151 · 10−5ζ2 .

This controller ensures J = 0.0761. Desired and actual
transients are shown in Fig. 3. The curve Jopt(τ) for the
system under investigation is shown in Fig. 4. In this case,
we have

DF0R(ζ,−0) =
−ζ

ζ − 1
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Fig. 4. Curve Jopt(τ) for Example 1.

DF0R(ζ, ψ) =
−1

ζ − 1
, +0 ≤ ψ < T .

Therefore, the conditions of Corollary 1 hold, and Jopt =
const for 0 ≤ ψ < T . Since the pole excess of F0R is 1,
the function DF0R(T, ζ, ψ) has a finite break for ψ = 0.
Hence, the function Jopt(τ) also has finite breaks at the
points τ = kT .

As the preview interval τ increases, the curve Jopt(τ)
asymptotically approaches the value J∞ = 0.06419 calcu-
lated by (20) (dashed line in Fig. 4). Circles denote the
values of Jopt(τ) for integer τ (which are multiples of the
sampling period).

Notice that for all τ the cost function is nonzero. This is
specific for sampled-data systems as distinct from station-
ary ones and caused by the properties of the sampling and
hold process.

Example 2. Consider the system investigated in Exam-
ple 1 with the input

R(s) =
1

s2 + s
.

The optimal digital filter

C(ζ) =
2.089− 0.8748ζ + 0.03911ζ2 − 7.501 · 10−6ζ3

1 + 0.2534ζ − 1.151 · 10−5ζ2

gives J = 0.03915. Desired and actual transients are shown
in Fig. 5. The curve Jopt(τ) for this system is shown in
Fig. 6. Now for ψ < 0.38 the function DF0R(ζ, ψ) has an
unstable numerator, for instance,

DF0R(ζ, 0) =
1.7183ζ

ζ2 − 3.718ζ + 2.718

while for ψ > 0.38 the zero of the function moves to the
stability region. Therefore, as follows from Lemma 2, the
function Jopt(τ) decreases for ψ < 0.38 and remains con-
stant for ψ > 0.38. Since the pole excess of F0R is 2, the
curve Jopt(τ) is continuous.

Circles denote the values of Jopt(τ) for integer τ . As
was expected, for a constant ψ the function Jopt(γT + ψ)
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Fig. 6. Curve Jopt(τ) for Example 2.

decreases monotonoulsy and, for any ψ, approaches J∞ =
0.008339 computed by (20) (dashed line in Fig. 6).

VIII. Conclusions

The paper deals with the problem of optimal tracking
using SISO sampled-data open-loop filters with preview.
A rigorous frequency-domain solution is proposed on basis
of the Laplace transform in continuous time. Expressions
are given for the direct determination of the degrees of the
numerator and denominator of the optimal digital filter
using initial data.

It is shown that the properties of the function Jopt(τ) de-
pend on the properties of the real rational function F0R. In
some cases, the curve Jopt(τ) can have finite discontinuities
at the points τ = kT .

For τ → ∞, the lower bound of the optimal cost is ob-
tained. It is demonstrated that, as distinct from the LTI-
case, it is impossible to attain zero cost in the limit as
τ → ∞, even if no penalties are imposed on the control
power.
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