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Abstract. This paper presents a method of adaptation 
achieved by adding a lead-lag compensator to a 
principal controller and by adapting parameters of 
the lead-lag compensator rather than the parameters 
of the principal controller. The parameters, gain and 
lead time constant, are adapted by using an integral 
criterion and a sensitivity model derived at first for 
the second order reference model and then applied to 
the high-order systems of similar dynamic 
characteristics. A proposed hybrid adaptation 
algorithm has been tested in the angular speed 
control loop of a permanent magnet synchronous 
motor (PMSM) drive, and the simulation results 
confirmed its effectiveness in spite of its simplicity. 
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1. Introduction 
 

Many control solutions still use controllers with 
fixed parameter values. These values guarantee a 
desired system performance only in a certain range 
around the operating point. If a process (control 
object) is characterized by large dead-times, 
stochastic process disturbances, continuous 
parameter variations, varying production levels and 
other sources of unbalanced control response, 
commissioning may often be difficult. 

Providing that process parameters are first 
identified from collected process inputs and outputs, 
controller computation and adjustment can be 
automated in many ways [1, 2, 3, 4]. For example, 
auto-tuning controllers are adaptive controllers 
whose functions involve an on-line process 
parameter identification and controller parameter 
computation. Self-tuning controllers also include 
controller adjustment. These controllers adapt their 
parameters in an automatic way by means of a 
process parameter estimator, and thus may control 
even the most difficult control loops. 

The other way of adapting principal controllers 
is to use a reference model as a model for a desired 

dynamic behavior. This philosophy is present in 
various model reference-based adaptive control 
(MRAC) schemes [5, 6]. A full-order reference 
model can provide the best impact of the adaptation 
mechanism, but reduced-order reference models are 
usually preferred because of a simpler design and 
implementation [7]. Very often a second-order 
reference model is used to determine the desired 
dynamic characteristics of a high-order system with 
similar dynamic characteristics. Adaptation 
mechanisms in MRAC schemes are dominantly non-
linear devices, which may generate an additional 
signal (signal adaptation) or change principal 
controller parameters (parameter adaptation). 

In this paper we present an adaptive control 
scheme containing a principal controller and a lead-
lag compensator whose parameters, gain coefficient 
and lead time constant, are adapted by using an 
integral criterion and a sensitivity model derived for 
a second order reference model. This control scheme 
represents further improvement of control schemes 
described in [8, 9, 10], where only integral criterion-
based adaptation was discussed. Adjustments of both 
gain and lead time constant are adapted on-line by 
using functions that relate their changes to the 
changes of the integral criterion and the sensitivity 
functions. The integral criterion is calculated as the 
ratio of integrals (areas) determined by a model 
reference response and a system response. The 
sensitivity functions describe the influence of lead-
lag compensator parameters on the system response. 

The proposed control scheme has been applied 
to the angular speed control loop of a PMSM drive. 
The simulation results show its effectiveness in case 
of very large changes of system parameters. Due to 
its apparent simplicity, the proposed adaptive control 
scheme can be implemented in any contemporary 
control equipment. 
 
 
2. The structure of an adaptive system 
 

Let us assume for an unknown, time-varying, 
probably non-linear and stable process that its 
dynamics in a selected operating point could be 



 

approximated well enough with the second-order 
transfer function: 
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where GP(s) is referring to the process and GA(s) to 
its approximation. 

By changing the operating point, system 
parameters may change. This would impose the need 
for extensive controller commissioning in various 
operating points, unless adaptive control is applied. 

For the purpose of adaptation, let us use a 
second-order reference model to define a desired 
behavior of the adaptive closed-loop control system: 
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where UR(s) and YM(s) are the reference model input 
and output, respectively, while TM and KM are the 
model time constant and the gain (Fig. 1.).  
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Fig. 1. The structure of a 2nd-order reference model. 
 

The reference model response can be assumed 
as "nominal" dynamics. A decision which adaptation 
algorithm would be appropriate for the studied 
system depends on many factors; desired system 
precision and dynamics, on-line computational 
power, noise level, non-linearities encountered in the 
system, accuracy of the linearized model, etc. 

Here we propose an adaptation algorithm 
suitable for systems approximated with the transfer 
function (1). The adaptation mechanism is based on 
the reference model (2) and it tunes parameters of 
the added lead-lag compensator leaving the principal 
controller as it is. The principal controller can be any 
standard type of controller or any of advanced 
control algorithms such as neural network, fuzzy 
logic or hybrid controllers [10]. The structure of the 
adaptive closed-loop control system is shown in Fig. 
2. 

The transfer function of the lead-lag 
compensator 
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has two adaptive parameters, gain coefficient Kf and 
lead time constant Tf that are adjusted on-line by 
means of the adaptation algorithm.  

All changes in system parameters will be 
compensated by changes of these two parameters. 
Initial values of these parameters are one for gain Kf, 
and TM for the lead time constant Tf, so that the lead-
lag compensator has no influence on the control loop 
dynamics at the beginning of adaptation. 

 
 

3. The adaptation mechanism 
 
The aim of the proposed method is to determine 

on-line the lead-lag compensator parameters, which 
would enforce the closed-loop system to follow the 
reduced order reference model (2) as closely as 
possible. An adaptive gain coefficient Kf should 
reach the value which would provide convergence of 
the open-loop system gain to the value of the 
reference model gain KM (see Fig. 1). Similarly, an 
adaptive lead time constant Tf must compensate for 
a dominant process time constant, so that the lag 
time constant TM (that is equal to the reference 
model time constant) becomes a dominant one. 
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Fig. 2. The structure of the adaptive control system.



 

A recursive law for tuning the lead-lag 
compensator parameters has the following form: 
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where γK and γT are tuning coefficients, and ∆Kf and 
∆Tf are changes of the gain coefficient and the lead 
time constant, respectively.  

As mentioned before, initially Kf=1 and Tf=TM, 
so that the lead-lag compensator does not influence 
the system behavior at the beginning of tuning. 

There are two problems related to the viability 
of the tuning law (4). The first one is to find out how 
∆Kf and ∆Tf should vary with the system response 
changes. The second problem is how to find such 
tuning coefficients γK and γT in (4), which would 
guarantee the tuning stability and consequently, the 
overall stability of the closed loop system. 

To resolve these two problems, we need some 
well defined measure of system dynamics, and for 
this purpose, a reference model (2) can be used. 
Then we need to find such criteria which would link 
changes of parameters ∆Kf and ∆Tf with a changed 
system behavior taking a reference model behavior 
as the etalon. 

 
 

3.1. Sensitivity model-based adaptation 
 
One possible way to assess the influence of 

parameter variations on the system response is to 
build a sensitivity model and use so obtained 
sensitivity functions [11, 12]. When only the output 
of the system is considered, then the Kokotovic 
method of sensitivity points is preferable to the 
canonical system sensitivity model [12, 13]. With 
the aid of the Kokotovic method of sensitivity 
points, sensitivity model of reference model (2) 
shown in Fig. 1 can be derived. For the given model 
and its parameters semi relative sensitivity functions 
have the following form: 
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where  
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Sensitivity functions are obtained in the 
sensitivity points of the sensitivity model by adding 
a transfer functions block SMi(s). For the reference 

model (2), ( ) 1 , ( )
1

M
KM TM

M
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S s S s
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= = −

+
, and the 

block diagram of the corresponding sensitivity 
model is shown in Fig. 3.  
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Fig.3. A sensitivity model of the second-order reference 

model (2). 
 
In case of a stepwise unity change of the 

reference input, the resulting sensitivity functions 
ηKM(t) and ηTM(t) shown in Fig. 4 indicate that 
during the rise time the open-loop gain KM is more 
influential than a dominant time constant TM. When 
overshoot and peak time is considered, the influence 
of both parameters is almost leveled. 
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Fig.4. A second-order reference model response and 

sensitivity functions with respect to open-loop gain 
KM and time constant TM with nominal 
performance indices 5%, 0.025m mtσ = = [s]. 

 
In order to get sensitivity functions with respect 

to lead-lag compensator parameters, ηKf(t) and ηTf(t), 
the idea is to replace the sensitivity model of a 
closed-loop high-order system with the sensitivity 
model of the reference model (see Fig. 3). Then the 
system response y(t) becomes the input of the 
sensitivity model. 

Changes of the system output y(t) due to small 
variations of the system parameters are given in the 
time domain by the following: 
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where Kf0(0) = 1 and Tf0(0) = TM. 

Lead-lag compensator parameter variations ∆Kf 
and ∆Tf, which provide desired changes of the 
system response ∆y(t) may be computed directly 
from (7) if sensitivity functions ηKf(t) and ηTf(t) are 
known. The following strategy was adopted: gain Kf 
is adjusted in the moment when ηKf(t) reaches its 
maximum, while Tf is adjusted when the system 
response reaches the peak value y(tm): 
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Now, tuning coefficients γK and γT must be 

defined. In general, larger values of γK and γT cause 
larger changes of Kf and Tf. Smoother adaptation 
may be expected if tuning coefficients are in the 
range 0 < γK, γT ≤ 1. A care must be taken to choose 
a value of γT which would not cause a negative value 
for Tf. This would change the structure of the lead-
lag compensator and make the closed-loop system 
unstable. 

 
 

3.2. Integral criterion-based adaptation 
 
For tuning Kf and Tf, in [9] and [10] an integral 

criterion has been used (it is assumed that system 
noise has characteristics of white noise): 
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where y(t) is the unity step system response, and ti is 
an integration time.  

Integration time ti is treated as a parameter that 
satisfies condition y(ti) = a (Fig. 5.). In the studied 
case a corresponds to 63% of the imposed stepwise 
change of the reference input ur(t). 

If integral (9) is intended to be used as a 
measure of adaptation, the question arises how 
nominal process dynamics could be put in relation 
with the changes of Kf and Tf if the process is treated 
as a black box. Under such conditions, this is 
apparently a non-feasible task, and the answer to this 
question may be found in the reference model 
counterpart. 

The integral (9) of the reference model (2) has a 
form: 
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Fig. 5. Illustration of a reference model integral (IM) and a 

closed-loop system integral (I). 
 

Variations of KM and TM cause variations of 
IM(ti). Let us denote IM(ti) obtained for nominal 
reference model parameter values KM0 and TM0 as 
IM0. By varying KM and TM in a certain range around 
nominal values, it is possible to establish relations 
between {KM, TM, IM(ti)} and {KM0, TM0, IM0}. These 
relations obtained for different values of gain KM 
and time constant TM, are shown in Figs. 6 and 7, 
respectively. It must be pointed out that these 
relations can be calculated either prior (off-line) or 
during start-up (on-line) of the controller. 

 

 
 

Fig. 6. A relation between IM(ti) and a model gain KM. 



 

 
 

Fig.7. A relation between IM(ti) and a model time 
constant TM. 

 
Once having exact relations KM/KM0=f(IM/IM0) 

and TM/TM0=f(IM/IM0), and having an integral IM 
measured, we exactly know how much we must 
change KM and TM to enforce the integral IM to be 
equal to the nominal integral IM0. There is just one 
step more to obtaining an adaptation mechanism for 
the closed-loop system. Putting in relation integrals 
that are shown in Figs. 6 and 7, i.e. by substituting 
integral IM with the closed-loop system integral I(ti), 
aforementioned relations obtain the form 
Kf/KM0=f(I(ti)/IM0) and Tf/TM0=f(I(ti)/IM0). They 
directly determine a sign and a magnitude of ∆Kf 
and ∆Tf, which should enforce integral (9) to get as 
close as possible to the desired integral value (10).  

Since both relations have the same purpose, 
parameters Kf and Tf are adjusted alternatively, one 
parameter in each consecutive tuning iteration. This 
causes restrictions on the range of successfully 
compensated parameter variations. Accordingly, 
tuning coefficients γK and γT should be chosen to 
provide stable and smooth tuning. 

3.3. A hybrid adaptation algorithm 
 

In order to overcome noticed constraints of 
integral criterion-based adaptation of both 
parameters, two methods for tuning Kf and Tf have 
been combined, as shown in Fig. 8. 

Here Kf is tuned according to the integral-based 
criterion (Fig. 6 and relation (4)), while Tf is 
simultaneously tuned by using the sensitivity 
function ηTM and relation (8). 
 

4. Simulation results 
 

The proposed hybrid adaptation algorithm has 
been tested in the angular speed control loop of a 
permanent magnet synchronous motor (PMSM) 
drive with a digital PI controller. The structure of the 
controlled process is shown in Fig. 9. 
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Fig.9. A block scheme of the controlled process. 
 

The nominal values of controlled process 
parameters are as follows: Kcc=1 A/V - current 
closed-loop gain, Tcc=0.05 ms – current closed-loop 
time constant, K=0.9837 Vs – motor constant, 
J=0.00176 kg⋅m2 – moment of inertia, B=0.000388 
Nms – viscous friction coefficient, Kt=0.063 V⋅s – 
tachometer gain and Tt=2.5 ms – tachometer time 
constant. 

 
 

Fig. 8. A block diagram of a hybrid adaptation algorithm. 



 

The second order reference model (2) dynamics 
is defined with the maximum overshoot σm=5.5% 
and the peak time tm=0.025s. The PI and lead-lag 
compensator parameters were determined for 
nominal process parameters. Simulation experiments 
were concerned with adaptation to large variations 
of the moment of inertia. In the first experiment J 
has been set 5 times larger than the nominal value, 
J=5·Jn. Fig. 10 shows development of process and 
reference model responses. A very large initial 
tracking error eM=yM-y is reduced several times after 
only two iterations (Fig. 11). 
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Fig.10.  Process and reference model responses from the 

start of adaptation, J=5·Jn. 
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Fig.11. Tracking error responses, J=5·Jn. 
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Fig.12. Convergence of the lead-lag compensator gain 

coefficient Kf  and lead time constant Tf, J=5·Jn. 

One may see in Fig. 12 that values of lead-lag 
compensator parameters converge to their steady-
state values in only two iterations. 

In the next experiment an open loop gain Ko has 
been increased 5 times. A rapid improvement of 
process responses is shown in Fig. 13 resulting in 
the swift reduction of the tracking error (Fig. 14). 
Also, initial oscillations in the system response have 
been completely eliminated. Convergence of 
parameter values is very fast and completed in only 
four iterations (Fig. 15). 
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Fig.13.  Process and reference model responses from the 

start of adaptation, 5·Kon. 
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Fig.14. Tracking error responses, 5·Kon. 
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Fig.15.  Convergence of the lead-lag compensator gain 

coefficient Kf  and lead time constant Tf, 5·Kon. 



 

5. Conclusions 
 

Besides well established model reference-based 
and process identification-based adaptive control 
schemes, there is still a room for development of 
other adaptive control structures which would be 
simple enough and effective enough to raise the 
level of principal controller performance.  

This paper presents a method of adaptation 
achieved by adding a lead-lag compensator to a 
principal controller and by adapting parameters of 
the lead-lag compensator rather than the parameters 
of the principal controller. The parameters, gain and 
lead time constant, are adapted by using an integral 
criterion and a sensitivity model derived at first for 
the second order reference model and then applied to 
the high-order systems of similar dynamic 
characteristics. 

Sensitivity functions used for adaptation of a 
lead time constant are obtained from the sensitivity 
model based on the Kokotovic method of sensitivity 
points. The integral criterion-based adaptation 
algorithm is calculated as the ratio of integrals 
(areas) determined by a model reference response 
and a system response.  

The proposed hybrid adaptation algorithm has 
been applied to the linearized model of the angular 
speed control loop of a permanent magnet 
synchronous motor (PMSM) drive controlled 
primarily with a digital PI controller. The simulation 
results have proved effectiveness of the controller in 
case of very large changes of system parameters 
(moment of inertia and open-loop gain). 

The proposed adaptive control method can be 
applied not only to linear, but also to non-linear 
principal controllers, providing that the controlled 
process dynamics can be described well enough with 
the reduced second order reference model.  

Regarding future work on the adaptive control 
scheme presented in this paper, an experimental 
verification on the laboratory setup of a servo drive 
should be made. Also, some other integral criteria 
such as ITAE and IAE should be taken into 
consideration for the purpose of convergence speed 
assessment. Stability issues should also be worked 
out in terms of finding such tuning coefficients 
which would guarantee the overall stability of the 
adaptive control system. 
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