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Relationship between infinite eigenvalue assignment
for singular systems and solvability
of polynomial matrix equations

Abstract - Two associated problems: the problem of infinite
eigenvalue assignment and the problem of solvability of
polynomial matrix equations are considered. Necessary and
sufficient conditions for the existence of solutions to the
problems are established. The relationship between the
problems are discussed and some applications from the
field of the perfect observers design for singular linear
systems are presented.

1. INTRODUCTION

It is well-known [1,7,11,6,9] that if a pair (A, B) of
standard linear system X= AX+ BU is controllable then
there exist a state-feedback gain matrix K such that

det[l s— A+ BK]= p(s), where

p(s)=s"+a, s +..+as+a, isagiven

arbitrary n degree polynomial. By changing K we may
modify arbitrarily only the coefficients a,,a,,...,a, , but

we are not able to change the degree n of the polynomial
which is determined by the matrix | S. In singular linear

systems we are also able to change the degree of the closed-
loop characteristic polynomials by suitable choice of the
state-feedback matrix K. The problem of finding of a state-
feedback matrix K such that  det[Es— A+BK]=a #0

(a is independent of S) has been considered in [3,2].

The polynomial equation approach to linear control systems
has been considered in many papers and books [8-10,6].

In this paper a new approach to solve the problems will be
proposed. The problem of infinite eigenvalue assignment is
closely related with the problem of finding a solution
X=1,, Y=K to the polynomial matrix equation
[Es— A]X +BY =U(s) for an unimodular matrix U(s)
with detU (s)=a .

Necessary and sufficient conditions for the existence of a
solution (X,Y) to the polynomial matrix equation will be

established. The relationship between the problems will be
discussed and some applications from the field of the
perfect observers design for singular linear systems will be
presented.

MAIN AUTHOR AFFILIATION INFORMATION GOES HERE.

2. PROBLEM FORMULATION

Let R™ be the set of Nx M real matrices and R" = R™.

Consider the continuous-time linear system

Ex= Ax+ Bu
(1

where X= c;x’ Xxe R" and ue R™ are the semistate and
t

input vectors and E, Ae R™,Be R™™. The system (1) is
called singular if detE =0 and it is called standard when
detE=0.

It is assumed that rank E =r < n,rank B =m and the pair
(E, A) is regular, i.e.

det[Es— A]# 0 for some seC
()
(the field of complex numbers)

Let us consider the system (1) with the state-feedback

u=v-Kx
(3)

where Ve R" is a new input and K € R™ is a gain
matrix.

From (1) and (3) we have
Ex = (A— BK)Xx+ Bv
“)
Problem 1. Given matrices E, A B of (1) and nonzero
scalar ¢ (independent of S). Finda K € R™ such that

det[Es— A+ BK]=«
(5)

Let R™[s] be the set of Nxm polynomial matrices in S

with real coefficients and U(S) € R™[S] be a unimodular
matrix such that detU (s) =« .
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Then (5) can be written as

det{[ Es— A B]R"(}} =detU(s) (1, - the identity matrix)

(6)
and
[Es—- AIX +BY =U(s)
(7
where
X=1, and Y=K
3

Therefore, the following problem associated with Problem
1 can be formulated as follows.

Problem 2. Given the matrices ES— A B and U(S) with
detU(s) =« . Find a solution X,Y satisfying (8) of the

polynomial matrix equation (7).

In this paper necessary and sufficient conditions for the
existence of solutions to the problems will be established
and procedures for computation of K will be proposed.
The relationship between the problems will be also
discussed.

3. SOLUTION OF THE PROBLEM 1

It is well-known [1,6] that the system (1) is completely
controllable if and only if

rankl[Es— A B]=n for all finite seC
(9a)

and
rank[E,B]=n
(9b)

The solution of the problem 1 is based on the following
lemma [2].

Lemma 1. If the condition (2) is satisfied then there exist
orthogonal matrices U,V such that

EIS_Al *
U[Es—A]V=[ 0 £ s—AJ’

B E R

ug=| | ErAERT B e
0 [E, A eRv™

(10a)

where the subsystem (E,A,B) is completely
controllable, the pair (E,A) is regular, E is upper

triangular and * denotes an unimportant matrix.
Moreover the matrices E, A and B, are of the forms

EI]S_A] EIZS_ AZ e Elks_ Ak
— E s— E s—
E‘S— — Al 22 AZ 2k Ak ,
0 _Az - Esks_ A.k
0 0 0 _A<.k—l EkkS_A«
Bll
0 |E.AeR™,ij=1..k
= BHeRﬁ\xm’iﬁ‘:n‘
0
(10b)

with B ,A,,..,A,, of full row rank and E_,...,E

nonsingular.

kk

Theorem 1. Let the condition (2) be satisfied and the
matrices E, A B of (1) be transformed to the forms (10).

There exists a matrix K satisfying the condition (5) if and
only if
i) the subsystem (E, A, B,) is singular, i.e.

detE =0
(11a)

ii) if n, > 0 then the degree of the polynomial
det[E,s— A] is zero, i.e.
degdet[E s—A]=0 for n >0
(11b)
Proof. (compare with [2])

Necessity. From (5) and (10a) we have

det[Es— A+ BK]=
detU " detV "' det[E s— A + BK]det[E,s— Al=a
(12)

where K = KV € R™ and det[E,s— A]=1ifn =0.

From (12) it follows that the condition (5) holds only if the
conditions (11) are satisfied.

Sufficiency. First let us consider the single-input (m=1)
case. In this case we have



_en 12 Tny
E] = 0 22 20 |2
0 0 "
[a, a, a,, a, b,
1 2 n-1 ny O
A- a, a a,, a, B=b-
,,,,,,, a o an A,
L 0 an| n-1 an|n1 O
(13)

where € #0,a, , #0 fori=2,.,n and b #0.

The condition (11a) implies that @ =0 . Premultiplying the
matrix [ES— A,b] by orthogonal row operations matrix

P it is possible to make zero the entries e_,e e of E

129 139°°*5 M

since € #0, i =2,...,n . By this reduction only the entries

of the first row of A will be modified.

0 0 0
E = REI =0 ezz 20 |2
070 (14
a a - a, a,
_ a, a, - a, a,|_
:P = " ] ’bI:Plt)lzbl
ATPAT 0 8 e, a,
L O O am ny -1 anlnl
Let
— 1 _ _ _
K =bf[—aﬁ.,—%.--,—a,m,.,l—an,] (15)

Using (12), (14) and (15) we obtain

det[Es—A +bk |-

0 0 -+ 0 1
-a, es-a, e,s-a,
o -a e,s-a,|
0 0 e,s-a,
=a,a,a,, B = o

(16)

where o = v detU detV det P det[E s— A]".

The considerations can be easily extended for multi-input
systems, M>1. In this case the matrix P of the
orthogonal row operations is chosen so that all entries of the
first row of E = PE, are zero. By this reduction only the

entries of A ,i=1..,K and B, will be modified. The

modified matrices will be denoted by A ,i=1,..,k and

B, .
Let

(17

The matrix E € R™ in (17) is chosen so that

0O 0 -~ 0 (=D™h
— - a * * *
Es-A+BK= % _
0 a, * *
0 0 a,. *
(18)
(* denotes unimportant entries)
h _ a(_l)Hl
a,a,.-9,,C

and c=detU "detV'detP"det[Es-A].
Using (12), (17) and (18) it is easy to verify that

det[Es— A+ BK]=cdet[Es— A + BK|=« O
(19)

Remark 1. For m>1 there exist many different matrices
K satisfying the condition (5).

Remark 2. If the order of system is not high (n<5) the
elementary row and column operations instead of the

orthogonal operations can be used.

Example 1. For the singular system (1) with

02 1 0 1 -1 0 1
o1 -1 2 o 1 2 0
E= ,A= )
0 0 -1 -1 0 1 -1
00 0 1 0 0 2 1
1 0
0 1
B:
0 0
0 0
(20)

find the gain matrix K € R** such that the condition (5) is
satisfied for ¢ =1.

In this case the pair (E,A) is regular and the matrices (20)
have already the desired forms (10) with



Ezz =[1]’E =[_1]’E33 =[1]

23

oy Tl

A’_] =[_1 0]’ Az =[1]a A‘za =[_1]’ Aaz =[2]7 A«s =[1]

Using the elementary row and column operations [6,7] we
obtain

1 -2 -3 1
I:)1:0 1 1 -1
0 0 1 0
0 0 0 1
[Es-A.B]-R[Es-AB]-
and
-4 3 5 -5 1 =2
| ros-1 -1 2 0 1
10 s-11-s 0 0
0 0 -2 s-10 O
Taking into account that in this case
E-lo o o oslAAAL-
0 0 0 -05 v

[4 -3 -5 5 E_1—2
-1 11 =20 o1

and using (17) we obtain
K=K=8'{A.A.A]El-
2 -2 -5 0
B {—1 o1 - 2.5}
If there exist a matrix K satisfying (5) then it can be also
computed by the use of the following procedure.

Compute the determinant

detfEs—- A+ BK]=as +a s +---+as+a,, r<rankE

2D
where the coefficients a =a (K),i =0,1,...,r depend on

the entries of K.
Comparison of the coefficients at the like powers of S of
(21) and (5) yields

a(K)y=a,a(K)=0,i=1..,r
(22)
Solving the equations (22) we may compute the entries of
K.

4. SOLUTION OF PROBLEM 2 AND THE

RELATIONSHIP BETWEEN PROBLEMS

Theorem 2. The problem 2 has a solution only if

rankl[Es— A B]=n for all finite seC
(23)
and
D=Es-U(s) is a real matrix independent of s

24

Proof. From the equality

I
Es- A+ BK =[Es- A B]{K"}
(25)
it follows that (5) implies (23).
From (7) and (8) we have
Es-U(s)=A-BK=DeR™
(26)

Therefore, the equation (7) has a solution (8) only if (24) is
satisfied. OO

Example 2. Consider the problems for

o o) o)
E= A= B=| |la=1
00 1 0 0
a)U(s)=L1) 2} b)U(s):[_Sa (IJ

The problem 1 has a solution since for K =[k Kk ] we have

(27)
and

s+k k-1
-1 0
for k, =1+« =2 and arbitrary K .

The problem 2 in the case a) has no solution since the
condition (24) is not satisfied. @ The matrix

det[Es— A+ BK] = =k -l=a




[s—1 -5
D=Es-U(s) =

is a polynomial matrix (not
| 0 -«

a real matrix).
In the case b) the condition (24) is satisfied since the matrix

0o 1],
D=Es-U(s)= O} is real.

-a
The Problem 2 has the solution K =[0 2] since

F+K &—q [s 1}
Es—- A+BK = =

-1 0 -a 0

and from comparison of the suitable entries we obtain
k =0k =2.00
Let the matrices E, A and B of (7) satisfy the conditions
(23) and (24).
If the system (E, A B) is completely controllable then by
Lemma 1 there exist orthogonal matrices P,Q such that

_Ell EIZ E/lk
E=PEQ=| 0 E, - E, |
0 0 E,

A A - A, 3
A=PAQ-= A A A ,B=PB= 0
0 A A

100 Ao A 0

(28)

with B e R"™™ A e R i=2,.,k of full row rank

and E ee R"™,i =2,...,K nonsingular.
Premultiplying the equation (7) with (8) by the matrix P,
postmulplying by the matrix Q and using (28) we obtain

P[Es— AJQ+ PBKQ=Es- A+BK =U(s)
(29)
where K =KQ and U(s) = PU(s)Q.
From the equality

P[Es—U(s)]Q=PDQ=D =Es-U(s)

it follows that if D is a real matrix then D is also a real

matrix.
Let D = 13' and A= é ,
D, A

N fxn NN (N )xn
where D,AeR"™D,,AeR"™

Then from (28) and (29) we have

and

(30)
Therefore we have the following theorem

Theorem 3. Let the matrices E,AB  satisfy the
assumptions (9) and (26) and let the matrices be
transformed to the forms (28). The equation (7) has a
solution XY satisfying (8) if and only if

D, =A
€2y
Proof. The necessity of (31) follows immediately from
(30). If the assumption (26) is satisfied then D is a real
matrix and D is also a real matrix. The matrix I§l is
nonsingular and from (30) we obtain

K=B'[A-D]
and
X=K=KQ'=B'[A-DIQ" O
(32)
Remark 3. From comparison of the Theorems 2 and 3 and
Example 2 it follows that the solvability conditions for

Problem 2 are more restrictive than for the Problem 1.

Example 3. Find a solution (8) of the equation (7) with

[0 0 1 -1 1 0
E=|0 0 0,A=|1 2 -1},
0 10 0 2 1
0 1 -1 s
B=|1,U(S)=|0 -a 0

0 0 s-2 -1

(33)

In this case the assumptions (9) and (26) are satisfied and
the matrix
-1 1 0
D=Es-U(s)=| 0 a 0
0 2 1
(34)
is real.
The orthogonal matrices P,Q e R™ transforming (33) to

the forms (28) have the form



010 1 00
P=[1 0 0/,Q=|0 0 1
00 1 01 0
(35)
and
0 0 O]
EPEQ[O 1 0],
00 1]
- 1 -1 2
A:PAQ:P} -1 0 1}
A 0 1 2
- [1
I§=PB—{B}= 0
0 0
(36)

Using (30), (34) and (35) we obtain

(37

From (36) and (37) it follows that the condition (31) is
satisfied and the equation (7) with (33) has the solution X,
Y satisfying (8).

Using (32), (36) and (37) we obtain

X=K=B'[A-BR"=

100
I, -1, 2-a]0 0 1|=[, 2-a, -1]
01 0

(38)
It is easy to check that (38) and Y = | satisfy the equation
(7) with (33).

5. APPLICATIONS
Consider the singular system

Ex = Ax+ Bu
(39a)
y=Cx (39b)

where Xe R, Ue R" and y e R” are the semistate, input
and output vectors, respectively and
E,AcR",BeR",Ce R" with detE=0.

It is assumed that rankC = p and (2) holds.

The singular system

EX= AX-Bu—K(CX-Y),
X0)=%,XeR",KeR"
(40)

is called full order perfect observer of the system (39) if and
only if X(t) = X(t) for t >0 and any initial conditions X,
and X, of (39) and (40).

It was shown [4] that there exists a full-order perfect
observer (40) of the system (39) if the system is completely
observable, i.e.

rank{ ESC_: A} =n for all finite seC

rank{E} =n
C

In this case there exists a matrix K such that

(41a)
and

(41b)

det(Es—- A+ KCl=«
(42)
(a nonzero scalar independent of S)

Note that by transposition of (42) we obtain (5). Therefore,
the design problem of the

observer (40) for the system (39) has been reduced to the
Problem 1.

The design problem of reduced-order perfect observers and
of perfect functional

observers for the system (39) can be also reduced to the
Problem 1. [4,5]

Consider the singular system (39) with the state-feedback
(3). The transfer matrix of the closed-loop system described
by (4) and (39b) is given by T(S) = C[Es— A+ BK]'B. If
[Es— A+BK]=U(s) with U(S) unimodular then the
transfer matrix T(S)=CU '(S)B is a polynomial matrix.

Therefore, finding a solution (8) of (7) is equivalent to
finding a state-feedback gain matrix K such that the
closed-loop transfer matrix is polynomial.

6. CONCLUDING REMARKS.

Two associated problems: the problem of infinite
eigenvalue assignment and the problem of solvability of
polynomial matrix equations have been considered.
Necessary and sufficient conditions for the existence of
solutions to the problems have been established. The
relationship between the problems has been discussed and
some applications from the field of the perfect observers
design for singular linear systems have been presented. The
considerations have been illustrated by numerical examples.
With slight modifications the considerations can be



extended for singular discrete-time linear systems. An
extension of the considerations for two-dimensional linear
systems [6] is also possible.
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