
 
Abstract--The contribution is focused on µ-synthesis 
methodology applied to continuous-time systems with time 
delay. Robust design is considered as a problem of 
minimization of the peak of the structured singular value 
denoted µ-function. The evolutionary µ-synthesis consists of 
the pole placement control design based on polynomial 
Diophantine equations and a Differential Migration procedure 
for an optimization evaluation. The results are compared with 
controllers designed via the D-K iteration as a standard 
method for µ-synthesis. 

 

Index Terms—structured singular value, Differential 
Migration, evolutionary algorithms, time delay, controller 
design 
 

I. INTRODUCTION 
 
The robust control is one of the most frequent topics in the 
control theory. Recent years have brought non-traditional 
methods considering both structured and unstructured 
uncertainties. 
 
Some of the methods are based on H∞ approach in the ring 
of stable and proper transfer functions. These methods 
provide the measure that indicates robustness of designed 
controller. However, this measure evaluates only the robust 
stability. On the other hand, methods based on the Zames’ 
small gain theorem [10] yield both robust stability, and 
performance conditions. One of them is the structured 
singular value - µ (e.g. [2]) which consider the robust 
stability and performance objectives simultaneously. Two 
methods for the µ-synthesis were derived: the D-K iteration 
[3] and µ-K iteration [6]. The D-K iteration yields an 
optimal controller minimizing peak of the µ-function. 
However, the controller is usually a high order transfer 
function and for further application it is simplified via some 
kind of approximation. If the simplification is too 
substantial it can cause degradation of frequency properties 
of the controller and whole feedback loop. This problem 
can be resolved by the evolutionary µ-synthesis treated in 
this contribution. In this method the controller is designed 
through the algebraic approach with the pole placement 
principle and the position of the poles is tuned through the 
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newly developed evolutionary algorithm with the 
evaluation by the structured singular value. 
 
In this paper the evolutionary µ-synthesis and D-K iteration 
is applied to a system with time delay and the resulting 
controllers are compared. 
 

II. OUTLINE OF POLE PLACEMENT DESIGN 
 
The pole placement principle is one of traditional and well-
known methods for the controller design (e.g. [4, 5, 7, 8]) 
which is simple for derivation and tuning. Consider a one 
degree of freedom (1DOF) structure of the closed loop 
system depicted in Fig. 1 with two external inputs – the 
reference w and disturbance v, respectively. The output and 
tracking error is according to Fig. 1 in the form 
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where 
 dbqafp =+  (3) 
is the characteristic polynomial of the closed loop system in 
Fig. 1. 
 
 
 
 
 
 
 
 

Fig. 1. The structure of the 1DOF system. 
 
It can be proved that the asymptotic tracking of a reference 
is achieved if and only if the polynomial pfa is divisible by 
fw and v is rejected if pfa is divisible by fv. As a 
consequence, polynomials p, q are solutions to Diophantine 
equation (3). 

It is also desirable that transfer function 
fp

q
 is proper. The 

analysis of polynomial degrees in (3) for the most frequent 
case fw = f = s (stepwise reference) gives 
 ad deg2deg =  (4) 
A frequent choice for polynomial d is then 
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where ai > 0 are the tuning parameters of the controller 
design and d is a stable polynomial which ensures the 
stability of the system. 
 
As an example consider a nominal plant transfer function 
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Then equation (3) has the form 
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and by simple equating the coefficients at the like power of 
s at the left and right of (9) it can be obtained 
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Then the resulting controller is proper and has a 
“generalized PID” structure in the form 
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III. µ-SYNTHESIS 
 
Consider a family of plant transfer functions P~ . Suppose 
that the nominal plant transfer function is P and consider 
the perturbed plant transfer function in the form of 

( )PWP 21~
∆+= , where W2 is a fixed stable transfer function, 

the weight, and ∆ is a variable stable transfer function 
satisfying 1≤∆

∞
. 

 
Let S denote perturbed transfer function from the reference 
input w to tracking error e. Let W1 denote a weighting 
function and let the following performance condition be 
defined as 
 
 .11 <

∞
SW  (12) 

 
If condition (12) holds, then the behaviour of the closed 
loop can be changed through W1.  
 
The closed-loop feedback system can be transformed to that 
in Fig. 3, where M is the lower linear fractional 
transformation (LFT) on G(s) and controller K(s), i.e., 
 

 ( ) ( ) 21
1

221211 1 GGGG,FM −−+== KGKKl , (13) 
 
the other element of the system is 
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where G(s) is a generalized plant including the nominal 
plant and weighting functions, which can be parted to 
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Fig. 2 The structure of the feedback system with 
multiplicative uncertainty. 

 
The evolutionary µ-synthesis is applied to a 1DOF system 
for the interconnection shown in Fig. 2. The D-K iteration is 
applied to the same structure. 
 
 
 
 
 

Fig. 3 The transformed closed-loop control system. 
 
The structured singular value of matrix M, denoted ( )M∆

~µ , 
is defined as 
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and if no ∆~  exists which makes ∆−

~MI  singular, let 
( ) 0~ =∆ Mµ  [1], where ( )∆

~σ  denotes the maximum singular 
value. The control objective is to find a stabilizing 
controller K minimizing H∞ norm of ( )M∆

~µ , i.e., 
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The following result is used for the robust performance test 
(see [1]): 
The feedback system has the robust performance, i.e., 
expression (12) holds, if and only if 
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at all frequencies. 
 

IV. DIFFERENTIAL MIGRATION 
 
The philosophy of this optimization algorithm is based on 
migration of individuals to cluster centres along perturbed 
trajectories. The clusters are the individuals concentrated 
around their centres, which are individuals with the lowest 
cost value. The individuals then jump to the cluster centres.  
The jump size is a random value from the interval defined 
by the jump range, which is a predefined parameter. The 
perturbation causes that the individuals migrate in 
subspaces perpendicular to the dimension which is reset. It 
is based on a simple idea that the local extremes are usually 
placed symmetrically along the axes of the migration space. 
The perturbation also suppresses degeneration of the 
population. These facts cause better robustness of the 
algorithm in comparison with algorithm without the 
perturbation. 
 
 
Verifications and tests proved that the DM (Differential 
Migration) is 60% faster at the same robustness than the 
older evolutionary algorithms, e.g. Differential Evolution 
[11, 12] and SOMA (Self-Organizing Migration Algorithm) 
[13]. The DM algorithm was applied to 2DOF and 1DOF 
systems with parametric uncertainties in [14] and [15] with 
reliable results. 
 
The simplified flow chart of the DM is outlined in Fig. 4. 
The first step of the algorithm is parameters definition. It is 
necessary to define individual, i.e., the range of optimized 
parameters, its type (continuous, discrete, integer), jump 
range – JR, accepted error – AE, maximum number of 
migration loops – ML, coefficient of perturbation – PRT, 
cost function – CF and cluster distance – CD. 
 
First a random population of individuals is generated. Each 
individual has assigned random parameters from the range 
defined in the previous step. Then the clusters are searched. 
The first cluster centre has assigned the first individual in 
the population. Then the next individual is selected and its 
pertinence to an existing cluster is checked by the condition 
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Parameters: 
CD  cluster distance, 
INDi  i-th coordinate of the individual, 
CCi i-th center of the cluster coordinate, 
UBi upper bound of i-th dimension, 
LBi lower bound of i-th dimension. 

 

If condition (19) holds and CF of the individual is higher 
than CF of the centre then the next centre is chosen. 
Otherwise the current centre is replaced by the individual. If 
pertinence to all the clusters is checked and the individual 
does not belong to an existing cluster, then the individual is 
chosen to be a new cluster centre. Note that the clusters are 
not an exactly defined set of individuals. Therefore it is not 
possible to consider parameter CD as distance of two 
exactly defined sets. The CD is just a parameter of the 
algorithm not a distance in mathematical sense. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 The simplified flowchart of the Differential 
Migration. 

 
Then the individuals migrate to all cluster centres. For each 
individual and cluster centre the direction vector DV  is 
calculated by expression 
 
 INDCCDV −= . (20) 
 
For each coordinate a random number from the range 1;0  
is generated. If the number is lower than PRT then the 
coordinate remain unchanged, otherwise 0 is assigned so 
that individual migrates in the subspace perpendicular to the 
reset dimension. The individuals then jump in the directions 
defined by PDV . Location of the jump is obtained from the 
expression 
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 JR;DVINDpoint jump P ∈⋅+= kk , (21) 
 
where k is a random number from JR. If the CF of the 

point jump  is lower than CF of the old IND  then the 

point jump  is assigned to IND  in the new population. If 
any of the parameters exceeds predefined range, then a 
random number from the range is assigned to this 
parameter. 
The algorithm repeats cluster searching and migration until 
number of loops exceeds ML, or if CF of the worst and best 
individual is lower than AE (see Fig. 4). 
 

V. APPLICATION TO A TIME DELAY SYSTEM 
 
The design of the feedback controller is based on 
evolutionary approach with evaluation by µ-function. The 
DM searches a suitable pole placement, so that 

∞∆ )]}([{~ dQMµ  is minimal, where M is a generalized 

plant for a controller Q which is obtained from the 
expressions (10) for the nominal plant. The individual 
consists of parameters αi defining the nominal feedback 
system poles. The location of the poles is constrained at real 
axis in the left half-plane, so that the closed-loop system is 
aperiodic. 
 
Consider the family of plant transfer functions 
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To apply the multiplicative perturbation described above to 
the plant family (22), weight W2 must be established. The 
nominal plant can be defined as 
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Weight W2 must satisfy 
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that is, 
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Weight 2W  can be chosen as the envelope curve of 

function 1−− ωτje : 
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In Fig. 5 the Bode plot of weight 2W  and function 

1−− ωτje  for 10=τ  is shown. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5 Weight 2W  (dashed) and function 1−− ωτje  (solid). 

 
Weight W1 in the performance condition (12) can be easily 
derived from the sensitivity transfer function S and 
complementary sensitivity function T by the following 
procedure. Let 
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denote the required shape of S. Weight W1 is chosen so that 
it is less than S~1 . However, W1 cannot be equal to S~1  
since this would cause the performance condition 
unachievable. Thus for τ1 = τ2 = 20 weight W1 can be 
defined as follows 
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The Bode plot of W1, and S~1  is shown in Fig. 6. One can 

see that W1 is a simplified envelope curve of S~1 . 
 
Weight of noise is 
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The cost function is 

∞∆ ))]}IND(([{~ dQMµ  where M is the 

LFT on generalized plant G and controller K = Q. 
Parameters of the DM optimization: 
the individual was defined as 4 real parameters in the range 
of 0 to 20, jump range 4;2.0JR = , accepted error = 0, 
maximum number of migration loops ML = 10, number of 
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the individuals NP = 30, const. of perturbation PRT = 0.6, 
cost function CF = 

∞∆ ))]}IND(([{~ dQMµ , cluster distance 

CD = 0.25. 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6 Weight W1(dashed) and S~1 (solid). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7 The resulting structured singular value plot for the 
controller designed through the evolutionary approach. 

 
The µ-plot of the controller designed through the 
evolutionary approach does not exceed 1 (Fig. 7) and 
control objectives are met. The µ-plots of simplified 
controllers obtained via the D-K iteration are shown in Fig. 
8. One can see that the µ-plot is getting worse with the 
decreasing order of the controller. The µ-plot for the 
controller approximated by the 3rd order transfer function is 
considerably worse than in the evolutionary approach. 
 
The pole placement design gives: 
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and the feedback controller is: 
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The controller obtained via the D-K iteration was 
approximated by the 4th order transfer function. Since the 
parameters at low powers of s were almost equal to zero the 
resulting controller is the 3rd order transfer function: 
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Fig. 8 The µ-plot for the controllers designed via the D-K 

iteration approximated by 6th(solid), 4th (dashed) and 3rd 
(dot) order transfer function. 

 
 
 
 
 
 
 
 
 
 
 

Fig. 9 The feedback system used in simulation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 10 The simulation of the feedback system obtained via 
the D-K iteration and evolutionary approach. 
 
The simulation was applied to the feedback system in Fig. 
9. The stepwise response of the reference signal and 
disturbance is in Fig. 10. It can be seen that the evolutionary 
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µ-synthesis yields faster tracking and disturbance rejection 
than controller K obtained via the D-K iteration. 

VI. CONCLUSION 
 
The paper presents comparison of two different approaches 
to the continuous time controller design for time-delay 
systems. The developed method is based on some 
optimization of µ-function as a multivariable one. The 
optimal value of µ-function was obtained by the 
Differential Migration algorithm. The D-K iteration 
principle was applied as the second method for a 
comparison. The evolutionary µ-synthesis minimizes µ 
function directly for the controller with a given simple 
structure while the D-K iteration converges to the final 
value of µ via scaling matrices D, D-1 that increase the order 
of the resulting controller. That is why the µ plot of the 
simplified controllers obtained through the D-K iteration 
have higher peak value than the evolutionary one. The 
simulation results confirm that the simplified controller 
obtained by the evolutionary approach gives better 
responses from the point of view of tracking as well as 
disturbance rejection. 
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