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The Inventory Problem: A Dynamic Programming
Approach.

Daniel Berovi¢, Richard Vinter

Abstract— This paper concerns an example from inven-
tory control which is studied in detail. The presence of an
end-point constraint causes the value function to be discon-
tinuous. Optimal controls are derived and an expression for
the lower semi-continuous value function is given. This is
confirmed to be the value function as it is shown to satisfy
a set of generalised Bensoussan-Lions type quasi-variational
inequalities, suitably interpreted for non-differentiable, ex-
tended valued functions.

Keywords— Optimal Control, Operations Research, Dy-
namic Programming, Impulse Control, Hybrid Control.

I. INTRODUCTION

HIS paper concerns a generalisation of the inventory

problem
Minimise fOT E(t, z(t))dt + N(v)
(Qo.0) subject to }
e de(t)/dt = f(t, 2(t)) + dv(t)/dt,
z(0) = =g,

investigated by Aubin [1], in which the differential equation
& = f(t, x) describes the evolution of a vector valued stock.
Impulse control action can be applied instantly to replenish
stock at discrete times. The jump set D is taken to be
D = N (the positive orthant of 3”). Control action
incurs a unit transaction cost which is independent of the
size of the stock increase. The cost function is chosen to
penalise deviations from the vector of desired stock levels
over the time horizon [0, 7.

Bensoussan and Lions [5] established the link between
the value functions for impulse-controlled systems and cer-
tain optimality conditions known as the Bensoussan-Lions
Quasi-Variational Inequalities (QVI) [5]. Subsequent re-
search in a deterministic framework allowed for both ‘or-
dinary’ and impulse control action, as in this paper; the
goal was to characterise value functions as unique continu-
ous uniformly bounded viscosity solutions of Bensoussan-
Lions type quasi-variational inequalities (QVI)’s (See [4],
[6] and [10]. These references concern infinite time horizon
problems, with discounted cost, not the finite time interval
problem of this paper.)

A distinctive feature of our formulation of the generalised
inventory problem is that it allows an endpoint constraint
on state trajectories. In consequence, we can expect the
value function to be discontinuous and even to have domain
a strict subset of the ‘initial conditions’ space. Viability
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theory can be used to link value functions and generalised
lower semi-continuous solutions to (QVI), even in this gen-
eral setting. Analytical tools have been developed for this
purpose by Aubin and his co-workers (see [2] and [3]).

Necessary and sufficient conditions for optimality are
stated for cases when the value function is lower semi-
continuous and bounded below.

The emphasis in this paper is not so much on new op-
timality conditions (indeed the key characterisation of the
value function for hybrid systems is easily derived, using
methods of Aubin [3] and Frankowska [7]), rather it is on
the solution to a specific inventory problem, illustrating
the use of the analytic machinery. The value function is
extended valued and fails to be continuously differentiable
on the interior of its effective domain. Our analysis pro-
vides a candidate for the value function, and confirms that
it is so by showing that it is the generalised, lower semi-
continuous solution to (QVT).

II. THE GENERALISED INVENTORY PROBLEM

The generalised inventory problem is as follows:

Minimise fOT L(t, z(t), u(t))dt +g(x(T)) + C’(v)

subject to

(Poeo) S dx(t)/dt = F(t,z(t),u(t)) +dv(t)/dt ae. tec[0,T],
u(t) € Q ae te[0,7],
l‘(to) = Xy,

the data for which comprise a non-negative number T
functions L : R x " xR = RN, f: R xRN x T - R
and d : " — R, an extended valued function ¢ : ®* —
RU{+o0}, sets Q@ C N™ and D C RN” and a point x5 € R".
A control policy (u,v) on the interval [a, b] C [0,T] com-
prises a measurable function w : [a,b] — R satislying

u(t) € Q a.e. t € [a,b]
and an impulse control v
v = {tla"'atN(v)agla"'agN(v)}

described by the number of impulses, a non-negative in-
teger N(v), the impulse times t1,...,%y(,) which are real
numbers such that ¢ <#; <.+ <iyq) < b, and the im-
pulses &1, ..., {n(y) at these times, which are vectors in ®”
such that & € D for i = 1,..., N(v). Notice that we allow
jump times to be coincident, since it may be favourable to
execute a large jump, which can be implemented as a sum
of jumps in the jump set D.

We define a state trajectory corresponding to (u, v) to be
a piecewise Lipschitz continuous function y : [a,b] — R",
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continuous from the right on (a, b), satisfying

#(t) = J(t,z(1),u(t))

whose points of discontinuity are contained in the set
{t1,...,tn(@)} and are such that

w(tF) —(tT) = Y &

{j:t]‘:t}

a.e. 1 € [a,b],

for all t € {t1,...,tx()}. Here, z(t*) and x(t7) denote
the limit from the right and left respectively. (We interpret
t"=aift =aand tt = bift = b.) A process (y,u,v)
on [a,b] comprises a control policy (u,v) on [a,b] and an
associated state trajectory y. The underlying time interval,
for a control policy, state trajectory, etc., is taken to be
[0, 7], if not otherwise specified.

Accordingly, the evolution of the state between jump
times is governed by a differential equation with conven-
tional control term u, which we are free to choose. The
evolution of the system can also be controlled, however, by
applying a finite number of impulses over the relevant time
interval, each of which causes a jump in the state variable.

The optimal control problem is to minimise the cost func-
tion

Jowo(u,v) = / Lt (1), u(t))dt + g(x(T)) + C(v)

over control policies (u,v). Here z is the state trajectory
corresponding to (u,v), for which #(0) = #¢. The term
C(v) on the right side denotes the cost of the impulse con-
trol, namely

N(v)
C) = Y dig).

A control policy for (P +) which minimises the cost is called
an optimal control policy. An associated process is called
an optimal process.

II1I. CHARACTERISATION OF THE VALUE FUNCTION

Consider the generalised inventory problem (P .,). We
shall invoke the following hypotheses, in which f(t, T,u) =
(flt, 2, u), L(t, 2, u)).

(H1): £ is a compact set,
(H2): f is continuous and there exists k¥ > 0, ¢ > 0 such
that

|f(t,x,u)—f(t,x/,u)|§k|x—x/| and |f(t,a:,u)|§c

for allt € [0,T], z, 2’ € R, u € £,
(H3): L is bounded below on [0,7] x " x R™ and, for
each (¢,2) € R x N, the set

{(v,0) ER" xR : v=f(t,x,u), a > L(t,z,u)
for some u € Q}
1s convex,

(H4): d is continuous and there exists » > 0 such that
d(z) > r for all # € ®",

(H5): g is a lower semi-continuous extended valued func-
tion that 1s bounded below.

g(z) < gré%l{g(x +&)+d(&)} forallxeR™.

(H6): D is compact.

Comments on the Hypotheses (H!) and (H2)} ensure
that, corresponding to any control policy and initial state,
there exists a unique state trajectory. (H3)-(H4) and (H6),
together with the condition that g ts lower semi-continuous
and bounded below, ensure the existence of a minimiser for
(Po,z,). The role of (H5) is to exclude the possibility of a
gump in the optimal policy at the final time.

Embed (P ,) in the family of problems {(Pt,x) A (ARS
[0,7] x R"}. Here (P:,) denotes a modified version of
(Po,z,), in which the initial data (¢, z) replaces (0, o).

The value function V : [0, 7] x R = RU +{o0} is

V(t,z) = inf(P,) forall (t,z) €[0,T]x RN".
(The right side denotes ‘infimum cost of (P ;)’.)
Define the Hamiltonian function # : [0, 7] x R" x R":

Ht, x,p) = rrleigzl{p~f(t,x,u) —L(t,z,u)}.

The value function is linked with functions which are
solutions, in some appropriate sense, to a Bensoussan-Lions
type quasi-variational inequality (QVI) for problem (P 4, ),
namely functions ¢ satisfying the conditions:

¢ —H(t,x,—¢y) > 0forall (¢,2) € (0,T) x 1" (1)
o(t, ) < mingep {d(t, & +&) +d(€)} (2)
for all (¢,2) € [0,T] x "

(¢r — H(t, 2, —¢z)).(¢ — mingep{¢ + d}) =0 (3)
for all (¢,2) € (0,T) x R"

é(T,x) = g(x) for all x € ®™ . (4)

Under hypotheses (H1)—(H6) the value function may fail
to be continuously differentiable. The value function 1s
lower semi-continuous in these circumstances, however. To
exploit this fact, it 1s necessary to interpret lower semi-
continuous functions which are said to satisfy (QVT).
There are a number of ways to do this. Our interpreta-
tion is based on the notion of the proximal sub-differential.
Given an open set @ C ®*, a function ¢ : @ — RU {400}
and a point ¥ € O such that ¢(y) < +oo, the prozimal
sub-differential of 1 at g, written 9¥+(y), is

OFY(y) = {neRNF : there exists M >0, ¢ > 0

such that ¥(y) —¢(y) > n-(y —¥)
~Mly—g|* forall y € g+ eB.}.

Definition 1: A function ¢ : [0,7] x £” — R U {+o0}
is said to be a lower semi-continuous solution of (QVI), if
it 18 lower semi-continuous and bounded below, and the
following conditions are satisfied

(a) for each (t,2) € (0,T) x R

go_%(ta$a_€l) Z 0 V(€0,€1)68P¢(t,$),
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(b) for each (¢, ) € [0,T] x N" such that ¢(¢, z) < o0,
¢(t, ) < gég{¢(t,x+5)+d(£)}.
(¢) for each (t,z) € (0,7) x N" such that

o(t,z) < +oo and ¢(t,z) < gréi%l{(/)(t,x—l—ﬁ)—l—d(ﬁ)}

we have

go_%(ta$a_€l) = 0 V(gOagl) E@P¢)(t,l‘),

(d) for each » € R"

liminf ¢(t',2') = ¢(T,z) = g(x),

t'1 T ¢! —x
(e) for each x € R™ such that

¢(0,7) < min {#(0, 2 +¢&) +d(€) }

we have
#(0,z) = liminf ¢(¢' 2').
t'0,z'—a

Notice that, when ¢ is of class C', then conditions
(a)—(e) reduce to conditions (1)—(4). Thus, lower semi-
continuous solutions, as we define them, reduce to classical-
sense solutions for sufficiently regular functions. (We use
here the fact that, for a C! function 1, we have 9y (y) =
(Vo))

The following theorem, which is simply proved, using
methods of Aubin [3] and Frankowska [7], gives conditions
under which the set of lower semi-continuous solutions to
(QVT) precisely captures the value function for problem
(POJD):

Theorem 1: Assume (H1)-(H6). Then the value func-
tion V : [0,7] x R* = RN U {400} is the unique lower
semi-continuous function to (QVT).

Theorem 1 provides a necessary and sufficient condition
for a lower semi-continuous function to be the value func-
tion: it must be a lower semi-continuous solution to (QVT).
If we are content with merely a sufficient condition along
these lines, namely a ‘verification theorem’, we can relax
the hypotheses (dropping the requirement that D is com-
pact) and state the condition in terms of a function sat-
1sfying just some of the defining conditions of lower semi-
continuous solutions to (QVI):

Proposition 1: Assume (H1)-(H5). TLet (x,u,v) be a
policy for (P s,). Suppose there exists a lower semi-
continuous function ¢ : [0,7] x R* — RN U {+oo} such
that

(d') for each (t,2) € (0,T) x R"

go_%(ta$a_€l) Z 0 V(€0,€1)68P¢(t,$),
(') for each (t,z) € [0,T] x R™ such that ¢(¢,z) < +00 |

o(t,2) < min {(t, 2+ &) +d(¢)] -

(d') for each # € R"

liminf ¢(t',2") = (T, z) = g(z).

t"T o' —a

Assume, furthermore, that

50, z0) = / L{t, 2(t), u(t))dt + g(x(T)) + C(v) . (5)

Then (x,u,v) is an optimal process, and ¢(0,zg) is the
minimum cost for (P ¢, )-
IV. ANALYSIS OF A SPECIFIC INVENTORY PROBLEM

In this section we illustrate the application of the preced-
ing theory by using it to solve a special case of the inventory
problem, namely:

Minimise fOT |(t)|dt + N (v)

Fou subject to
(Eo.20) de(t)/dt = =1+ dv(t)/dt
z(0) = 2 and «(T) < 0.

Here, a control policy v is an impulse control

v o= {tla . 'atN(’U)agla .- agN(U)} )

giving rise to jumps 1, ..., En(y) In the state trajectory at
times ¢1,...,¢n(,) respectively. The jumps are required to
satisfy:

& >0 fori=1,...,N(v).

There is no conventional control component. In the present
context, we omit reference to a conventional control and
denote a process (z,v).

For this problem, the cost function is the sum of two
terms, both of which we want to keep small. The first is
the average stock level deviation. The other is the sum of
transaction charges for restocking; each intervention carries
a flat rate charge ‘1’; independent of the amount of new
stock. There must be no excess stock at the end of the
time period.

(Eo,»,) will be recognised as a special case of (P 4,), in
which n = 1,

L{x,u) = x|, f(.,.,.)=-1,d()=1, D =[0,)
and

x>0
x <0.

+oo f
9(x) = 1 g if

Define the functions V& : [0,7] x ® = RU {+o0}, N =
0,1,..., as follows.

+oo if x> (T-1)
Votz)y=4 W==of 422 i (T—)> >0 (6)
U2 _(T—1) if 0>
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and, for N > 1,
too if x> (T -1
T—t)—x)? z2 :
R N+ +5 f(T-2220
V (t,l‘) = N 4 (Z=t)=e 222
+ 2(2]\72+1) 7 2N
N 20 it — G >

Now define V : [0,7] x R = R U {+o0}:

inf
N=0,1,...

Vit,e) = VN, x) for (t,z) €[0,T] x R. (8)

Proposition 2: (The Value Function) Take V' to be the
function defined by (8). We have
inf(Etyx) =

Vi(t,z) forall (¢,2) €[0,7] x R,

i.e., V is the value function for (Eg 4, ).

(An Optimal Policy) There exists a non-negative integer
N such that
inf(Eo 4,) = VN (0, z) .

Let ]fl be the smallest such integer.
If N =0, then v = 0 is an optimal impulse control (for
Eyg). If N >0, then # < (T'—1t) and

vo= {tla"'atNagla"'agN}
is an optimal impulse control, where t1,... t5,&1,..., x5
are defined as follows.
A: —%l <z < (T —1). In this case,
INe 4+ T —1 , 2T —t—=a
o= Wedlot oy 200
2N +1 2N +1
forj=1,2,...,N,
20T —t—x)
g] = _
2N +1
. (Tr—t) :
B: v < —*55*. In this case,
T—1 -
t, = (j—l)x( N) forj=1,2,..., N,
T—1 T—1
6 = (el+ T2 ana g =20
forj=2,3,...,N.
Comments

(a): Minimising processes are not unique. For xq > T, it
is not possible to satisfy the constraints of (Eyq,). So, in
this case, all processes have the same cost “+oo’ and are
therefore optimal, in a trivial sense. Fven if xo < T, for
certain values of T' and xy there are two options for achiev-
ing the minimum cost (jumping a greater/lesser amount,
fewer/more times respectively). The control described in
Proposition 2 is the optimal control tnvolving the least num-
ber of jumps.

(b): A detailed analysis of the above representations of the
VN s provides explicit formulae for the minimising N in

103

equation (8). These formulae are rather complicated and
are omitted from this paper.

An optimal state trajectory is illustrated in Figure 1, for
the case T'=9 and zg = 0. Figure 2 provides a plot of the

f0>z>_T=0 (7) value function.

t=T

x
1
0.5
t
0 -
2 6\ _|--78
-05
-10]  No---77
Data: x0 =0, T=9 x=(t-T)/8

Fig. 1. An optimal state trajectory

The Value Function

Fig. 2. The Value Function

Proof of the proposition is broken down into stages, the
conclusions of each of which is summarised as a Lemma.
First, we state, without proof, some properties of the V’s,
all of which are straightforward consequences of the defin-
ing relationships (6) and (7). Define

A= A{{t,z2)€[0,T]xR:e<T—1}.
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Lemma 1: Fix t € [0, T] and an integer N > 0,
(a) dom (VY) = A. VN(.).) is the restriction to A of a
continuously differentiable function on 3 x R.
(b) The restriction of VN (¢,.) to [0, 00) is convex.
(¢) Define

T—1
Nty = —.
YN, 1) 2(N +1)
Then V¥ (¢,.) is decreasing on ( — 00, y(N,t)), increasing
on (y(N,t),oo) and

(T - 1)*

N+ ———".
Tiv T

VN (ty(N, 1) =

(d) VN (t,.) is constant on (— 00, —L%l), if N > 0.

Lemma 2: (a) V is a lower semi-continuous function,

bounded from below, and domV = A . The restriction
of V to A is locally Lipschitz continuous.
(b) Take any bounded subset D C A. Then there exists a
finite index set Jp C {0,1,2,...} with the property: cor-
responding to any point (¢, 2’) € D, there exists N € Jp
such that

V) =

Furthermore, (9) implies N > 1, if o < —(T —¢)~! — (T;t)
(¢) V(t,.) is decreasing on (—oo,0].
(d) V(T x) = ¥ o(x) forallzed.

Proof: The first part of (b) is true because the V"’s
are uniformly continuous on D and

lim inf{VN(t, z) :

N—oo

(t,2) € [0, T] x N} = +o0.

Examining the formula for V° and V! we see that, if z <
—(T—t)=t = L=L then V1(t,2) < VO(t, z). It follows that
Vt,z) < Vit,z) < VO(t,2). So we must have N > 1. (b)
is proved.
Property (a) follows from (b) and Lemma 1 (a). (c) is true
because V' (¢,.) inherits the monotonicity properties of the
V(t,.)’s on (—o0,0]. (d) follows from (6) and (7). |
Lemma 3: Take t € [0,T) and #,y € R such that z < y.
Then
Vit,e) < V(t,y)+ 1.
Proof:  We can assume that y < T — ¢ since, oth-
erwise, V(t,y) = +oo and the assertion is automatically
true. Suppose then that » <y < (T —1).

A: 0 <2 < T —t. In this case, in view of Lemma 2 (b),
there exists an integer N > 0 such that V (¢, z) = V¥ (¢, z).
We have

VNt 2) = V(¢ y)
max{VN'I'l(t, 0)— VN(t, ),
VN-H(tay) - VN(tay)}'

V(t,l‘)— V(tay) S
<

In the second line, we have used the fact that VN+1(¢,.) is
convex on [0,y] (Lemma 1 (b)) and therefore achieves its

maximum at an extreme point of the interval [0, y], namely
0 or y. But, by Lemma 1 (c),

VN+1(ta0) - VN(tay)
< N+1+ (0" _ n VN(T,y)
- 22N +3)  o<y'<T-t ’
(T —1)? (T -1
= N+1 — N — 1
+ +2(2N—|—3) AN +4 <
Also
T—1)—yP
VATt y) -Vt y) i+ N
a2
-0 -yP _
AN + 4
It follows that V(t,z) — V(t,y) < 1

B: z < 0. In this case, set ' = min{—L= —(T — )~ —
L=t} By Lemma 1 (d) and Lemma 2 (b) and (c)

V(t,z) < V(2 and V(t,2') = VN(t,2') for some N > 1.

Since 2’ < —(Tz;t) and N is ‘minimising’
VN(t l‘/)—VNI(t l‘/) — N+(T_t)2_N/_(T_t)2
’ ’ 4N 4N’
< 0 forall N' > 1. (10)

Let M > 0 be an integer such that V(t,y) = VM (¢, y).
Then by Lemma 1 (c)

V(t,y) VM (t,y(t, M))
(r - 1y”

AM+1)°

v

The proof is completed by noting that, in view of (10), we
can now deduce that

Vit,z) = V(t,y) < VN 2') = VM (e, y(t, M))
(T —1)? (T —)?

= N _—
TN A4(M +1)

- M-

< 1.

Lemma 4: For each (t,2) €

Co—H(§, —¢e) > 0 forall (§,&) €’ Vit x).
Proof: Take any (t,z) € (0,T) x R. We can assume
that (¢t,z) € A, i.e. @ < T —1, since, otherwise, V(¢,2) =
+0o and there is nothing to prove. We know V(¢,2) =
VN (t, x) for some N > 0. Making use of the formulae for

VN above we can show, by means of simple calculations,
that

(0,7) x R

SV¥ (L) = £V () + e 20, (1)

(If (t,#) is a boundary point of A, the derivatives in the
formula are taken to be limits of values at neighbouring
interior points.)
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Take any (£o,€&1) € 9PV (¢, z). Then there exists M > 0
and € > 0 such that

V(e =Vt x) > (&0,&) () —(t )
—M|(t', &) — (t, x)|?
for all (t',2') € (t,z) + eB. Since V(t,z) = V¥ (¢, z) and
VN &) > V()
VN(t/a a') — VN(ta x) > (&0, &) ((t/’ ') — (1, x))
—M|(t',z") — (t, x)|?
for all (¢/,2') € (t, %)+ eB. Since V¥ is the restriction of a
continuously differentiable function to D, and, in the event

(t,x) is a boundary point of A, the normal cone to A at
(t,x)is {a(1,1) : a > 0}, we deduce that

ovhN gvN
(€0a€1) (Wa a$ )+a(1a1)

for some o > 0. Tt follows from Lemma 4 (a) and (b) that

N N

G-l &) (= O

Proof of Proposition 2 We show that the impulse control
v described in Proposition 1 is a minimiser. Here, we make
use of the sufficient condition of optimality provided by
Proposition 1, all hypotheses for the application of which
are satisfied by the data for problem FEp 4.

Identify the function ¢ of Proposition 1 with V| defined
by (8). Lemmas 3 and 4 establish that ¢ satisfies hypothe-
ses (a’) and (b') of Proposition 1.

Lemma 2 (d) tells us that V(T,.) = ¢(.). Since, however,
the restriction of V to domV (= {(t,#) : @ < T —1t}) is
continuous, we have

V(th ') =V(T,z) = g(xr) = g(z) forallzeR.

im
t'1 T ¢! —x
We see that hypothesis (d') of Proposition 1 is also satisfied.
Let N be a non-negative integer such that V(0,z) =
VY (0, 20). Simple calculations, treating each of the differ-
ent cases, ‘@g > T, ‘T > g > —(T)/2N’ and —T/2N >
xg, reveal that

V(0,20) = VN(0,20) = /0 (1) |dt + g(a(T)) + N (v) .

But this is (5) of Proposition 1. Tt follows from Proposition
1 that (x,v) is a minimiser and V(0,zp) is the minimum
cost for (Eo q,).

It remains to note that, for any (¢,z) € [0,7] x R, the
preceding analysis with 7" and z( replaced by T'— ¢ and =
respectively, establishes that V(¢,2) is the minimum cost
for (B¢ ). We have shown that V is the value function for

(EOJD)'
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(t,x)+a—a—$(t,x)—a+|x|) > 0.
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