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Abstract: The main objective of this work is to 
investigate the chaotic behavior motion of a dynamic 
model consisting of a flexible rotating beam with a 
constant angular velocity, θ , about the Z-axis. This 
dynamic model is based on a beam with an isotropic 
material and a geometric nonlinear deformation. A 
continuous system is considered in the analysis-approach. 
Both of the in-plane and the out-of-plane transverse 
deformations are included. They are also represented by 
the mode shape function of the beam. Thus, the dynamic 
model is defined by ordinary differential equations with 
two degrees of freedom ( ). The governing 
differential equations are two coupled Duffing's 
equations. Dynamic numerical simulation methods are 
used to obtain the time history, phase portrait, Laypunov 
exponent, power spectrum, Poincare' maps and their 
fractal dimensions.  
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1-Introduction: It is well known that a dynamical 
system with nonlinear governing equations may exhibit a 
chaotic response at a certain combination of the excitation 
amplitudes and the system parameters. Over the past three 
decades, a numerous amount of theoretical calculations, 
simulations and experiments have been investigated on 
various nonlinear systems. This is in order to understand 
chaos and routes to chaos in such systems [1-6].  The 
dynamics of the rotating beam was the subject of many 
investigations [7-10]. The dynamics of a rotating structure 
is governed by a set of nonlinear differential equations, 
which exhibit a strong coupling between the reference 
displacement and the elastic deformations. The nonlinear 
inertia coupling between the rigid body and the elastic 
displacement manifests itself strongly in problems where 
mechanical systems are made of lightweight components 
and operate at a relatively high speed. EL-Absy and 
Shabana [21], developed a dynamic model for an Euler-
Bernoulli rotating beam, and examined the nature of 
coupling between the rigid body and the elastic 
displacement. They examined the effect of the stability of 
the elastic modes on the stability of the rigid body motion 
of a rotating beam, analytically and numerically. 
Furthermore, they examined the effect of the geometric 
stiffness on the dynamic stability of a rotating beam. In 
this paper, the equations of motion (represented in the 

matrix form) of an Euler-Bernoulli rotating beam, subject 
to an external excitation force, are derived. This was 
achieved using both the Hamiltonian principle and the 
assumed mode method. Both the in-plane and the out-of-
plane transverse deformations are included and they are 
represented by the mode shape function of the beam. 
When both the in-plane and the out-of plane transverse 
deformations are considered, the dynamic model is 

 and the governing differential equations are 
two coupled Duffing's equations. Dynamic numerical 
simulation methods are used to obtain the time history, 
phase portrait, Laypunov exponent, power spectrum, 
Poincare' maps and their fractal dimensions.  
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2-Kinematics: Figure (1}, shows O, the origin of a set 
of mutually perpendicular axes OX, OY and OZ, which 
are fixed in an inertial reference frame. Another set of 
mutually perpendicular axes, Ox, Oy and Oz, attached to 
one of the beam end points. This model consisted of a 
beam rotating with a constant angular velocity about the 
Z-axis. The global position vector of an arbitrary point P 
on the considered beam can be expressed by: 

rAr p =                      (1) 

o θ

z y

P x

X

Y

 
Figure 1: The Rotating Beam Model 
 
where, r  indicates the local position vector of the point, 
P, in the deformed state (with respect to the fixed system-
coordinates), and A indicates the transformation matrix, 
which defines the orientation of the body reference. The 
transformation matrix A is defined by: 
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The position vector r can be written as: 
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fuur += 0      (3) 
where, the position vector of P, in the undeformed state 

0u , and the deformed position vector of P, with respect 

to the beam fixed coordinate fu , are represented by:  

[ 000 xu = ]   (4) 
 

[ ]{ ff qS
q
q

S
S

w
v
u

u =























=
















=

3

2

3

2

0
0
00

} (5) 

 
where, u , v  and w

2q

 are the axial, in-plane and out-of-
plane deformations with respect to the xyz coordinates, 
respectively, and  and q  are the time dependent 
elastic generalized coordinates of the deformable beam. 
The overall generalized coordinates of the beam can be 
expre

3

ssed as follows: 
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where  is defined as the rigid angular displacement. 
The velocity of P can be obtained by differentiating 
equation (3) with respect to time, so that: 

θ

{ }Tvp qLr && =     (7) 

where,  is the generalized velocity of the beam and 

 is defined as: 
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in which: 
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3-Kinetic Energy: The kinetic energy of the beam is 
given by: 
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where,  is defined as the constant mass density and  
is the global velocity of any arbitrary point P on the 
beam. Substituting equation (7) into equation (10) yields 
to: 
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in which: 
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where, 
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In this case, the vectors  and  are reduced to 
scalars: 

2q 3q

32 qq == 32 qq   (14) 
Also, the following shape function matrix describes the 
deformation of the beam: 
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The components ,  , and  of the mass 
matrix are defined as: 
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In terms of the components of the mass matrix, the kinetic 
energy of the beam can be written in the following form: 
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4-Strain Energy 
The strain energy is not given by the same 

expression for the linear deformation and the geometric 
nonlinear case. For the linear deformation, the quadratic 
terms in the strain displacement relationship are 
neglected. However, the quadratic terms have to be 
retained in considering geometric nonlinearity. In this 
work, the nonlinear strain displacement is considered. 
Thus, the strain energy of the elastic beam is given by: 

∫= dVU xxσε
2
1    (17) 

For an isotropic material 
xx E εσ =     (18) 

 
where, E is the modulus of elasticity, σ is the normal 
stress and ε is the strain. Substituting equation (18}) 
into equation (17) yields to: 
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Using a nonlinear strain displacement relation including 
the quadratic terms, the normal strain can be written as: 
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Using the shape matrix function defined by equation (15), 
the above equation can be written in the following form: 
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5-Evolution Equations: The equations of motion can be 
obtained by using Lagrange's formulation as follows: 
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where, T is the kinetic energy, U is the strain energy and 

 is the generalized external force vector associated 
with the generalized coordinates. By performing the 
operation indicated in equation (22), the equations of 
motion can be represented in the following matrix form: 
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6-Numerical Results and Discussions: Direct 
numerical integration of the equation of motion is always 
an attractive option in finding the solution of nonlinear 
differential equation. The very remarkable algorithms to 
obtain time history, phase portrait, Lyapunov exponent, 
power spectrum, Poincare’ maps and fractal dimension 
have been developed by Parker et al  [22]. In this paper, 
equations (23) have been simulated using the fifth and the 
sixth order Runge Kutta Verner algorithm. The analysis 
started by considering both of the in-plane and the out-of-
plane transverse deformations. The dynamical model is a 
2nd. D.F., and the governing differential equations are two 
coupler Duffing’s equations. The effect of varying the 
angular velocity, the amplitude of the excitation force and 
the damping coefficient were studied in detail. In the 
following analysis, a flexible beam of length l = 0.5 m, 

mass density ρ = 7800 kg/m3, modules of elasticity E = 
2* 1011 N/m2 and area moment of inertia I were 
considered. The beam is assumed to have a circular cross 
section of diameter d = 0.01 m. The effect of the 
gravitational force is neglected and ω is considered to be 
ω = 1.0. The analysis of this model takes a lot of time and 
effort to know the routes of chaos. Hence, to reach this 
aim and the time analysis, all parameters are fixed except 
one was varied until the chaotic response occurred. Then 
another parameter is varied while the others kept fixed 
and so on. 
 

The first set of parameters was as follows; the 
amplitude of the excitation force, f1, varies from 0 to 100; 
the amplitude of the excitation force, f2 = 0; the damping 
coefficient, c = 0.1; the angular velocity, θ  = 100 
rad/sec; and the initial conditions, x

&

1 = 1,  = 0, x1x& 2 = 1 
 = 0. When f2x& 1 was increased, a small periodic motion 

appeared about the stable fixed point. By increasing its 
amplitude, the amplitude of the periodic motion increased 
until a sequence of period doubling bifurcation occurred. 
Further increase of f1 led to a chaotic behavior with 
strange attractors in the ( ) plane, but only led to 
fuzzy attractors in the ( ) plane. Hence, the 
damping coefficient had to be increased in order to 
achieve strange attractors in both planes, as shown in 
figures (2,3). 
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The Second set of parameters used in analyzing 

this system was the same as that used for the first set with 
 = 350 rad/sec. The results obtained for the second set 

were similar to those obtained for the first one, but both 
of the period doubling bifurcation and the occurrence of 
strange attractors were existed at lower value of f1, as 
shown in figures (4,5,6). The third set of parameters used 
in analyzing this system was the same as that used for the 
above two sets, with θ  = 550 rad/sec. The results 
obtained for this set were similar to those obtained for 
both of the above two sets, but both of the period 
doubling bifurcation and the occurrence of strange 
attractors were existed at a much lower value of f1, as 
shown in figures (7,8,9). 
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Figure 2: Poincare' maps indicating chaotic behavior at  = 100 rad/sec, fθ& 2 = 0.0, c = 0.11, f1  = 27 (a) Poincare' section 
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Figure 3: Poincare' maps indicating chaotic behavior at  = 100 rad/sec, fθ& 2 = 0.0, c = 0.11, f1  = 27 (a) Poincare' section 

 (b) Poincare' section  11 , xx & 22 , xx &
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Figure 4:Poincare' maps indicating chaotic behavior at θ  = 350 rad/sec f&

2 = 0.0, c = 0.13,f1 = 6.5 (a) Poincare' section 
(b) Poincare' section   11 , xx & 22 , xx &
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Figure 5: Poincare' maps indicating chaotic behavior at  = 350 rad/sec fθ& 2 = 0.0, c = 0.175, f1 = 7.5 (a) Poincare' section 

(b) Poincare' section   11 , xx & 22 , xx &
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Figure 6: Poincare' maps indicating chaotic behavior at  = 350 rad/sec fθ& 2 = 0.0, c = 0.109, f1 = 10 (a) Poincare' section 

(b) Poincare' section   11 , xx & 22 , xx &
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Figure 7: Poincare' maps indicating chaotic behavior at  = 550 rad/sec fθ& 2 = 0.0, c = 0.1, f1 = 2.5 (a) Poincare' section 

(b) Poincare' section   11 , xx & 22 , xx &
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Figure 8: Poincare' maps indicating chaotic behavior at  = 550 rad/sec fθ& ٢ = 0.0, c = 0.1, f١ = 5.5 (a) Poincare' section 

(b) Poincare' section   11 , xx & 22 , xx &
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Figure 9: (a) Phase portrait (b) Power spectrum (c) Time history indicating chaotic behavior at  = 550rad/sec fθ& 2 = 0.0, c = 
0.1, f1 = 5.5  
 
7-Conclusion: The aim of this study was to 
investigate the chaotic behavior motion of a 
flexible rotating beam with constant angular 
velocity, about the Z-axis. The beam considered 
was made of an isotropic material and had a 
geometrical nonlinear deformation. The in-plane 
and out-of-plane transverse deformations were 
represented by the mode shape function of the 
beam. This resulted in having two coupled 
Duffing's equations representing the motion of the 
beam. A study of this system was carried out for 
different values of its parameters. The results 
showed that, both the regular periodic solution and 
the chaotic behavior of the free-end of the rotating 
beam occurred at a certain combination of the 
system parameters. An interesting feature of this 
model (as shown by the numerical analysis) was the 
occurrence of a sequence of period doubling 
bifurcation, followed by chaotic behavior, at low 
values of the amplitude of the excitation force and 
high values of the angular velocity. Due to the very 
high simulation time that was required to run the 
coupled Duffing’s equations, a more simplified 
model (obtained using only the in-plane 
deformation), which involved one Duffing’s 
equation with one degree of freedom, was 
simulated. The numerical results obtained form this 
simplified model showed the existence of regular 
and chaotic motion, very similar to that obtained 
from the original system, but only occurring at 
slightly higher values of system parameters. 
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