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A Class of Numerical Algorithms for Efficient
Approximation of Maximum Entropy Estimates of
Probability Density Functions

A. Balestrino, A. Caiti, A. Noe’, F. Parenti

Abstract— A class of algorithms for approximation of the
maximum entropy estimate of probability density functions
on the basis of a finite number of sampled data is intro-
duced. The algorithms are presented as a finite sequence in
order of increasing accuracy and decreasing computational
efficience; the last element of the sequence is the exact maxi-
mum entropy estimate. Numerical and applicative examples
are reported.

Keywords— Maximum entropy, probability density func-
tion, estimation.

I. INTRODUCTION

ANY engineering and scientific applications require

the estimation of the probability density function
(p.d.f.) of a random variable from a finite number of real-
izations. In measurement systems, for instance, such esti-
mate gives a complete sensor characterization at different
operating conditions. In other instances, one maybe in-
terested in estimating the interval of variation of a given
variable with a prescribed confidence level (as, for instance,
”the 95% confidence interval”). In this case the whole prob-
ability density function of the variable has to be known a
priori (e.g., gaussianity of the p.d.f.) or estimated from the
available data.

In its seminal work, Jaynes [1] has introduced the prin-
ciple of maximum entropy as the underlying theoretical
basis to tackle the p.d.f. estimation problem when the a
priori knowledge is only available through moments of the
p.d.f itself. Jaynes approach leads to the most uniform (or
unbiased) p.d.f. estimate conditioned on the available a
priori information. From a computational point of view,
the application of the maximum entropy principle leads
to the casting and solution of a nonlinear optimization
problem. Several variations of standard optimization al-
gorithms have been implemented for the solution of such
problem [2], [3], [4]. Related problems have also been in-
vestigated: [2] discusses the inverse problem of determining
the set of constraints that optimally describes the observed
samples accordingly to the MinMax measure [5]; [6] and [7]
have discussed conditions on the moment constraints that
guarantees the existence and uniqueness of a maximum en-
tropy p.d.f.

Much less explored, at least to the authors knowledge,
is the study of numerical schemes for the approzimation
of the maximum entropy estimate. Such study can be of
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interest in situations in which the p.d.f. is required on-
line: if this is the case, the solution of the nonlinear op-
timization problem may be too computational demanding,
while approximated solutions, obtained with faster com-
putational schemes, may be more appropriate. One such
situation, that has motivated the present research, is that
of on-line localization and tracking of autonomous vehicles
when measurement errors are unknown but bounded, with
known worst case bound. Standard algorithms from set-
membership theory are employed to determine the feasible
set in which the vehicle is located [8], [9]; however, more
information could be obtained by estimating on line the
p.d.f. of some of the observed variables within the bounds
determined by the set-membership algorithms. Since the
estimate has to be produced on-line, efficiency in the nu-
merical computation is critical for the proper integration
of the p.d.f. estimate in the localization and tracking algo-
rithms.

With this background and motivations, in this paper a
class of approximating schemes for the maximum entropy
estimate of the p.d.f. from a finite number of samples is
introduced. The proposed algorithms are all based on the
construction of the approximating function as a linear com-
bination of basis functions; the basis functions are selected
exploiting a partial amount of the available information on
the problem. As the amount of problem-dependent infor-
mation on the basis functions choice increases, the com-
putational efficiency decreases and the approximation ac-
curacy increases. When all the available information on
the problem is used, the algorithm is reduced to the exact
maximum entropy estimate. Some preliminary results on
this line of research have been reported in [10], in particu-
lar comparing the approximations obtained and the corre-
sponding computational time with simulated data. In this
paper a more general formulation of the approach is pro-
posed, and the methods are applied to field data obtained
with a GPS system.

The paper is organized as follows: in the next section
the problem is formally stated, the maximum entropy p.d.f.
estimation approach is reviewed, and the numerical algo-
rithm for exact estimation described; in section 3 the im-
plemented approximating algorithms are described; in sec-
tion 4 the algorithms are applied to elevation data obtained
from a GPS system; finally, some conclusions are given.
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II. PROBLEM STATEMENT

Let f(z) be an unknown p.d.f. defined over a finite real
interval [a, b] and subject to the probabilty constraints:

b
/ f@)dz =1, fz)> 0V € [a,b] (1)

Let us suppose that k& moment constraints on f are
known in the form:

b
/ gr(@)f(x)dx =a, r=1,...,k (2)

with known functions g,(z) and known real constants a,.

The maximum entropy estimate of f(z) is obtained by
maximization of the Shannon entropy S(f) associated to f
subject to the constraints given by equations (1) and (2),
where the Shannon entropy is given by:

b
S(f) = - / f(2)In f(z)de (3)

Jaynes [1] has shown that the maximization of S(f) with
respect to f, subject to the constraints (1) and (2), leads
to the following analytical solution:

f(il?) — g~ Mo—Aigi (@) == Argn () (4)

where the Lagrangian multipliers A, - - -, Ay satisfy the fol-
lowing relations:

17 exp (= 25 Aigi (@) do = exp (20) (5)

f; gr(l‘) exp (_ Z?:l /\jgj(a?))da:

exp Ao

=a, j=1,---,k (6)

From a practical point of view, the determination of a
maximum entropy p.d.f. from available data is reduced to
the solution of the nonlinear system of k equations (6). Al-
though it has been shown that this is a nonlinear program-
ming problem of polynomial complexity, and that known
methods are available for its solution, the computational
cost associated to the determination of the maximum en-
tropy p-.d.f is such to preclude an on-line use of the estimate
(see [3] for a thourough discussion of several computational
approaches to the determination of the maximum entropy
p.d.f). The results obtained in this paper have been ob-
tained by applying a standard Newton-Raphson method.
In the next section some fast computational algorithms for
the approximated solution of the system (6) are proposed.

III. A CLASS OF APPROXIMATING ALGORITHMS

A series of algorithms to obtain approximated solutions
to the system (6) are now described. It is assumed through-
out the section that the functions g, in equation (2) have
the following form:

r:17"'7k (7)

The available data are the real constants a, in equation
(2) The proposed algorithms are based on the approxima-
tion of the p.d.f. f (see equation (4)) with a linear combi-
nation of basis functions:

k
flz) ~ Zﬂifi(l“) = f(=) (8)

For any given set of basis functions {f;}, the coefficients
Bi are determined by solving the following system of linear
equations:

Bi [P fu@)de + ...+ B [ falz)dz =1

By [ afi(@)da + ...+ B [ 2 folz)dz = ay
(9)

[ B f;x”fl(a:)da:-l-...+ﬂnf:a7”fn(a:)da: = ay,

The algorithms differ in the choice of the set of basis
functions. Before describing the choices suggested, it is
important to underline the relation between the approxi-
mating function f and the true maximume entropy p.d.f.
estimate f. Let the following notation be used, for any
generic function g(z) and any integer i:

b
E(g,2%) = / rig(z)dr (10)
Then by construction:

Since two functions are equal (but for a set of null mea-
sure) if all their moments are equal, it follows that f = f
as k — oo.

Algorithm Ag: the basis functions f; are taken as the
Tchebycheff polynomials, after normalization of the [a, b]
interval to the [0, 1] interval:

filz) =1
f2(z) =z
fi(@) =2zf;_1(z) — fj-2(z)

(12)
i=23,...

With this choice of basis functions, which is independent
from the available data (i.e., from the coefficients a,.), the
linear system (9) can be directly solved.

Algorithm Aj: the basis functions f; are taken so that
each of them is the solution of a simplified maximum en-
tropy estimation problem involving one of the known mo-
ments; in particular, the basis function f; is taken as solu-
tion of the following problem:
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4

— max f; fi(z)In f;(x)dx
Ji filz)dz =1

fab 2 fi(z)dx = a;

\

Applying Jaynes result to the problem (13), one obtains:

filw) = e o1k (14)

where the Ao, and A; are the solution of the following
nonlinear system:

fb e~ N dg =
a

a-fbe*)‘f“”jda: —fba:je*)‘f“”jdx = 0
J Ja a -

The computational advantage of this approach is that,
instead of solving one nonlinear system in &k unknowns,
one solves k nonlinear equations in one unknown, each one
independent from the others. These equations can be po-
tentially solved in parallel, though we have implemented
the algorithm sequentially. After the k& nonlinear equations
have been solved, the functions f; are determined, and the
linear system (9) can be solved.

Algorithm As: the basis functions f; are taken so that
each of them is the solution of a simplified maximum en-
tropy estimation problem involving two of the known con-
straints; in particular, any basis function f; is taken as
solution of the following problem:

[ —max f: fi(z)In fi(z)dz

f; fi(z)dx =1

f: 2P fi(z)dx = a,

fab 2 fi(z)dr = a,

\

Of course for each f; a different couple (ap,a,) must
be chosen. Each function f;, ¢ = 1,---,k solution of the
problem (13) is again given through Jaynes formalism and
the solution of a nonlinear system of dimension two. After
each f; has been determined, the linear system (9) can
be solved. As compared to Algorithm A;, Algorithm A,
has an additional computational burden due to the need of
solving k systems of nonlinear equations of dimension two
instead of one; moreover it requires the choice of the couple
(ap, aq) to be associated to each f;. In our implementation
this choice has been arbitrarily made; however, it may well
be the case that some choices are to be preferred in terms
of approximating precision or computational efficiency.

Following the same rationale, one can define Algorithms
As, Ay, -+, Ax. In the case of Algorithm A, one comes

back to the original maximum entropy estimate (4). It is
interesting to note that, with a fixed number £ of avail-
able moments, the class of algorithms proposed is a finite
sequence coinciding with the true maximum entropy esti-
mate at the end of the sequence. With a fixed algorithm
index j < k, the algorithm .4; will produce an approx-
imation f which is convergent to the maximum entropy
estimate f as the number k of available moments tend to
infinity.

_ One important point to note here is that in determining
f with the procedures described above, the natural prob-
ability constraint of equation (1) is not enforced anymore.
This loss of the probability constraints is due to the fact
that f is an approximation of f. It has to be remarked,
though, that f is convergent to f as the number of known
moments k increases, and f does respect the natural prob-
abilty constraints.

In the following section the approximating capabilities of
the proposed algorithms and their computational efficiency
will be investigated through application to field data from
a GPS system.

IV. FIELD DATA APPLICATION

The techniques described in the previous section have
been applied to altitude data collected with the portable
GPS 25LP Garmin. The sampling time of the instrument is
one reading per second. The data reported in figure 1 have
been gathered over a period of about 25 minutes, while
the instrument was moving along a flat terrain (i.e., main-
taining the same altitude) in the University of Pisa sur-
rounding. The fluctuations in the altitude measurements
are due not only to intinsic insturment uncertainties, but
also to the different satellite reception quality due to the
obstruction of city buildings. This is a common problem
for GPS systems in urban environments.

GPS altitude data
30 T T T

281

altitude (m)

0 200 400 600 800 1000 1200 1400 1600
time (s)

Fig. 1. Data samples obtained from the GPS instrument.
The true maximum entropy estimate has been computed
using four data moments (i.e, using mean, variance, skew-
ness and kurtosis information). In figures 2, 3 and 4 the
results obtained using algorithms A,, A, and A¢ respec-
tively are shown; for each algorithm, the approximations
obtained using two, three and four moments are shown. It
can be seen that increasing the number of moments em-
ployed the approximation error decreases. Moreover, as
expected, the smallest error with an equal number of mo-
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Fig. 2. Probability density function estimates from the data reported
in figure 1 obtained with Algorithm 0, based on the use of Tchebycheff
functions. Black line is the exact maximum entropy estimate obtained
using four moments. Dotted, dash-dotted and dashed lines are the
Tchebicheff approximations obtained using two, three and four data
moments, respectively.
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Fig. 3. Probability density function estimates from the data re-
ported in figure 1 obtained with Algorithm 1. Black line is the exact
maximum entropy estimate obtained using four moments. Dotted,
dash-dotted and dashed lines are the Algorithm 1 approximations
obtained using two, three and four data moments, respectively.

ments employed is obtained with algorithm Ac. Finally,
in figure 5 the relative computational time of the approxi-
mating algorithms proposed are shown with respect to the
computational time of the true maximum entropy estimate.
It can be seen that in all case the reduction in computa-
tional time is quite effective, and it appears, at least in
this case, that algorithm A., offers the best compromise
between accuracy and computational efficiency.

V. CONCLUSIONS

A class of algorithms for computationally efficient ap-
proximation of the maximum entropy estimate of probabil-
ity density functions has been introduced. The proposed
algorithms are based on the construction of the approxi-
mating function as a linear combination of basis functions;
the basis functions are selected exploiting a partial amount
of the available information on the problem. Application
of the algorithms to experimental data has confirmed the
theoretical expectations.
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Fig. 4. Probability density function estimates from the data re-
ported in figure 1 obtained with Algorithm 2. Black line is the exact
maximum entropy estimate obtained using four moments. Dotted,
dash-dotted and dashed lines are the Algorithm 3 approximations
obtained using two, three and four data moments, respectively.
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Fig. 5. Relative computational time of the approximating algorithms
as a function of number of moments used, with the respect to the
true Maximum Entropy estimate computed with the same number of
moments. Cross is the computation time of Algorithm 0 (Tchebycheff
functions), circle the computation time of Algorithm 1 and asterisk
the computation time of Algorithm 2).

REFERENCES

[1] E.T. Jaynes, “Information theory and statistical mechan-
ics”,Phys. Rev, vol. 106, pp. 361-373.

[2] M. Srikanth, H.K. Kesavan, P.H. Roe, ”Probability density func-
tion estimation using the MinMax measure”, IEEE Trans. Sys.
Man Cyber. - part C, vol.30, n.1, pp. 77-82, 2000.

[3] X. Wu, ”Calculation of maximum entropy densities with appli-
cation to income distribution”, in revision to J. FEconometrics,
available on line at http://are.berkeley.edu/ximing/, 2002.

[4] D. Ormoneit, H. White, ”An efficient algorithm to compute
maximum entropy densities”, Econometric reviews, vol.18, n.2,
pp.127-140, 1999.

[5] J.N. Kapur, G. Baciu, H.K. Kesavan, " The MinMax information
measure”, Int. J. Sys. Sci., vol. 26, n.1, pp. 1-12, 1995.

[6] L.R. Mead, N. Papanicolau, "Maximum entropy in the problem
of moments”, J. Math. Phys., vol.25, n.8, pp.2404-2417, 1984.

[7] A. Tagliani, "Maximum entropy in the discrete generalized mo-
ment problem”, Statistica, vol. LX, pp. 59-72, 2000.

[8] M.Milanese, A. Vicino, ”Information based complexity and non-
parametric worst-case system identification”, J. Complezity, vol.
9, pp. 427-446, 1993.

[9] A.Caiti, A.Garulli, F.Livide, D. Prattichizzo, ”Set-membership
acoustic tracking of autonomous underwater vehicles”, Acta Acus-
tica/Acustica, vol. 88, pp. 648-652, 2002.

[10] A.Balestrino, A.Caiti, A.Noe’, F.Parenti, ”Maximum entropy
based numerical algorithms for approximation of probability den-
sity functions”, submitted to European Control Conference 2003,
Cambridge, UK, 2003.



	Conference Program
	Author Index
	Main Menu

