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Abstract— Necessity to study primarily discrete-time systems
follows from new axioms of a recently submitted alternative
system theory which introduces newly reviewed causality law
into basic system definitions. The system definitions are based
on quite new system paradigms stemming from attentive ob-
servations and resulting in an axiomatic system theory with
correctly and uniquely defined notions. Continuous-time systems
are then regarded as limit cases of suitable sequences of discrete-
time systems. This limit process is called the continualization
procedure. The new approach to system theory provides various
cybernetic problems with surprisingly clear and easy solutions.

I. I NTRODUCTION

The continuous-time systems should be studied only as limit
cases of suitable sequences of previously defined discrete-time
systems as follows from the system paradigms of recently
submitted new approach to system theory [5]. This is due to
the fact that we are able to obtain only a finite number of
independent observations while studying the system properties
in the real world. When a continuous-time system is given in
the context of a cybernetic task, to exhaustively describe its
properties is necessary to find such a sequence of discrete-time
systems together with all causal dependencies, that converges
(in a particular sense) to the given continuous-time system.
This extension to infinite sets cannot be based on observations
but has to be postulated by appropriate limit process called the
continualization procedure.

The most general cybernetic system is believed to be
the stochastic causal system. However, since the terms of
causality law, causal probability, causal function easily defined
in the discrete-time domain are losing their meanings in the
continuous-time domain, full attention has to be given to the
process of system continualization.

II. STOCHASTIC CAUSAL SYSTEM

The system trajectory is according to real observations gen-
erated in a sequence of certain segments, which are determined
by an ordered decompositionD of the definition domainD
of the system trajectorys (see [5]). Each segments | D(k,l)

is according to the principle of causality law generated (not
necessarily in the deterministic way) by its comprehensive
immediate causes | C(k,l), whereas for each of these relations
the causality law is required to hold. Such an approach assures
an unambiguous system trajectory description. The causal

systemCS is then defined as an ordered triplet

CS = (T, V, C), (1)

where the set of all system causal relationsC was added to
the general abstract systemS = (T, V ) defined in [5].

If we admit an axiom that each segments | Dk,l of the
system trajectorys ∈ Ω (Ω is a set of all system trajectories)
is generated by its comprehensive immediate causes | C(k,l)

in a stochastic way, we can extend the causal system with
a setP of all probabilistic mappingsP (k,l) and define the
stochastic causal system as an ordered quadruplet

PCS = (T, V, C,P), (2)

where the setP consists of parametric probabilities

P (k,l)(s | D(k,l) : s | C(k,l)), (3)

k = 0, 1, 2, · · · , e, l = 1, 2, · · · , m.

P (k,l) is called the causal probability of the systemPCS, see
[5] for more details.

III. C ONTINUALIZATION OF DISCRETE SYSTEMS

The extension (continualization) of discrete-time models of
real systems to uncountable infinite sets, mostly given in terms
of continuous real-number intervals, is considerable only if the
necessarily missing knowledge of the system properties can be
amended to these larger sets in a suitable fashion. The time
continuity of either the real system model or its trajectory is
thus only a hypothesis but not an experimentally proved fact of
the matter. The cybernetic continuous-time system is therefore
to be derived from a discrete-time system.

A. Extension of the time-points set

Let us suppose that there is given a general causal system
CS0 defined on a time-points setT0

T0 = {0, h0, 2h0, 3h0, · · · , n0h0}, (4)

where

h0 = ti − ti−1, i = 1, 2, · · · , e (5)

and
n0h0 = te. (6)



The time-points set can be extended by inserting a new
time point between each two ones ofT0 in the middle of their
distance - see figure 1. In this way the equidistance of time
points is protected also in a new time-points setT1

T1 = {0, h0
2 , 2ho

2 , 3ho

2 , · · · , n1
h0
2 } = (7)

= {0, h1, 2h1, 3h1, · · · , n1h1}, (8)

distance between elements of which is

h1 =
h0

2
, (9)

where obviously
n1h1 = te. (10)

For an arbitraryk − th step of the extension of the original
time points setT0, a sequence of time points sets is clearly
defined asTk,

Tk = {0, hk, 2hk, 3hk, · · · , nkhk}, k = 1, 2, · · · (11)

where
hk =

hk−1

2
=

h0

2k
(12)

and again
nkhk = te. (13)
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Fig. 1. Extension of the time-points set

Such a sequence of sets is increasing for everyh0 > 0. If
k → ∞ then the limit of an infinite ascending sequence of
sets is the unification,

lim
k→∞

Tk =
∞⋃

k=0

Tk, (14)

as shown in [1].
It is obvious from the construction of the setsTk that for

limk→∞ Tk from the equation (14) it holds⋃∞
k=0 Tk ⊂ 〈0 ; te〉, (15)⋃∞

k=0 Tk is a dense set in 〈0 ; te〉. (16)

(Topological) closure of the set
⋃∞

k=0 Tk is then to be

∞⋃
k=0

Tk = 〈0 ; te〉, (17)

as the declaration (16) holds. The sequence of setsTk from the
equation (11) converges to a dense subset of the continuous
interval 〈0 , te〉. A dense subset is ”large” enough to ensure
correctness of the following abstract thoughts. LetJ is an
interval in R and H is a dense subset ofJ . If f, g are two
continuous-time functions onJ thenf(x) = g(x) for x ∈ H
implies f = g on J . If f is a uniformly continuous function
on H then there exists the one and only extension off to the
whole J .

B. Causal system continualization

Suppose that a causal systemCS0 is given by the equation
(1). Our aim is to propose such a sequence of causal systems

CSk = (Tk, Vk, Ck), k = 0, 1, 2, · · · , (18)

that will converge fork →∞ to a continuous-time system

CS = (T, V, C). (19)

As for the set of time-pointsTk, it is given by equation
(11). According to the causal system definition [5], for each
k = 1, 2, 3, · · · it is necessary to define the whole set of
system attributesAk, state variablessk(t), t ∈ Tk together
with the definition domainVk as well as the setΩk of all
system trajectories and the setSk of all system events.

Naturally, the original system variables (e.g. system at-
tributes, state variables) corresponding to the systemCS0

should be tried to be preserved including their definition
domains and the decomposition of the setI0 (see [5] for more
details) for each arbitraryCSk, k = 1, 2, · · · . However, in
some special cases it is unavoidable to change the original
system variables as shown e.g. in [3] and being discussed later
in this paper.

The time-points setTk containsT0 as a subset and therefore
the definition domainD0 of the system trajectorys0 must be
redefined to the definition domainDk of the system trajectory
sk

Dk = Tk × Ik, (20)

including its decomposition fromD0 to

Dk = {D(i,j)
k | D(i,j)

k = T
(i)
k × I

(j)
k , T

(i)
k ∈ Tk, I

(j)
k ∈ Ik}, (21)

i = 0, 1, 2, . . . , e,

j = 1, 2, 3, · · · ,m,

where Ik is a partition of the setIk and Tk is an ordered
decomposition of the setTk ([5] for more details). The system
CSk can be now written as an ordered triplet from the equation
(18).

In this way we can proceed for anyk = 1, 2, · · · , whereupon
a sequence of causal system is obtained. The limit case of such
a sequence is fork → ∞ the continuous-time system from
the equation (19) defined on a dense subset of the interval
〈 0 ; te 〉. However, there arise some problems with the
cause-effect relation of the dynamic state variables definition
in the continuous-time domain because there is no time instant
t′, t′ 6= t > 0 which is immediately preceding to a time
instantt, t ∈ 〈0 ; te〉. Therefore, a higher attention should be
payed to stochastic properties of the stochastic causal system
during the process of continualization. On the other hand, there
is no difficulty with static state variables and, consequently,
there is no difficulty with the structural terms definition of
continuous-time systems either.



C. Sequence of linear stochastic causal system

The task of linear stochastic causal system continualization
has previously been solved as a part of the general system
theory [5], [6], [7]. However, it faced some terminology
problems with random variables convergence [5], [8], [3]. This
paper deals with a new approach based on the convergence (in
distribution) of cumulative probability distribution functions,
which completely describe properties of stochastic causal
systems. Generally, there is also a possibility that the limit to
a given sequence of systems does not exist. On the one hand,
it means that there is no diffusion system corresponding to the
given sequence of discrete-time systems. On the other hand, at
least one sequence of discrete-time systems can be found for
each diffusion system. Consequently, the set of discrete-time
systems can be, in a certain way, regarded as ”richer” than the
set of continuous-time systems.

At this point we can link the continualization procedure of
stochastic systems to the continualization of causal systems.
Suppose that there is a stochastic causal systemPCS0 given
according to its definition by an ordered quadruplet

PCS0 = (T0, V0, C0,P0) (22)

properties of which are described by causal probability density
function

f0(s0(t + h0) : s0(t)) =

=
1

(2π)
N
2 ·

√
detQ0

·

· e− 1
2 (s0(t+h0)−A0·s0(t))

T ·Q−1
0 ·(s0(t+h0)−A0·s0(t)), (23)

t, t + h0 ∈ T0,

with a probabilistic initial condition

f0(s0(0)) =
1

(2π)
N
2 ·

√
detQ0(0)

·

· e− 1
2 (s0(0)−m0(0))

T ·Q−1
0 (0)·(s0(0)−m0(0)), (24)

wheres0(t) ∈ RN is a state vector,t ∈ T0 , A0 is a real square
matrix of the corresponding dimension,Q0 is a conditional
covariance matrix of the system states0(t + h0) conditioned
by the state vectors0(t), m0 is a vector of the mean and
Q0(0) is a covariance matrix of the generally stochastic initial
condition of the systemPCS0.

In any arbitrary k − th step of general causal system
continualization a setTk was defined as well as the setsVk and
Ck were. Now, the setP0 is to be redefined toPk in such a
way that any systemPCSk has equal stochastic properties to
the original systemPCS0 for eachk = 1, 2, · · · and t ∈ T0.
From this reason we demand that

fk(sk(t + 2khk)|sk(t)) =fk(sk(t + h0)|sk(t)) =
=f0(s0(t + h0) : s0(t)), (25)

hk =
h0

2k
=⇒ 2khk = h0 (26)

t, t + h0 ∈ T0; k = 1, 2, · · · ,

or consequently

fk(sk(t + nkhk)|sk(t)) = fk(sk(t2)|sk(t1)) =
= f0(s0(t + n0h0)|s0(t)) = f0(s0(t2)|s0(t1)), (27)

nkhk = n0h0 =⇒ nk = 2kn0 (28)

n0, nk > 0; t, t + n0h0 ∈ T0,

with equal initial conditions

fk(sk(0)) =f0(s0(0)), (29)

fk(sk(0)) =
1

(2π)
N
2 ·

√
detQk(0)

·

· e− 1
2 (sk(0)−mk(0))T ·Q−1

k (0)·(sk(0)−mk(0)) (30)

wheremk is a vector of the mean andQk(0) is a covariance
matrix of generally stochastic initial condition of the system
PCSk. In consequence of (25), the equality of unconditioned
probability density functions must also hold

fk(sk(t)) = f0(s0(t)), t ∈ T0. (31)

From the above formulated demands expressed in equations
(25), (27), (29) and (31) it is subsequently possible to find out
(by comparing right sides of probability density functions in
the referred equations) parametersAk and Qk of the causal
probability density function

fk(sk(t + hk) : sk(t)) =
1

(2π)
N
2 ·

√
detQk

·

· e− 1
2 (sk(t+hk)−Ak·sk(t))T ·Q−1

k ·(sk(t+hk)−Ak·sk(t)), (32)

t, t + hk ∈ Tk,

which fully describes properties of the systemPCSk for each
k = 1, 2, · · · .

1) Derived probability density functions:Using the Marko-
vian properties of the system state we can write

fk(sk(t + nkhk)|sk(t)) =

=
∫

sk(t+(nk−1)hk)

fk(sk(t + nkhk) : sk(t + (nk − 1)hk))·

· fk(sk(t + (nk − 1)hk)|sk(t))dsk(t + (nk − 1)hk), (33)

in order to find conditional probability density function
fk(sk(t+nkhk)|sk(t)), t, t+2hk ∈ Tk. After the generalized
form of the integral from equation (33) has been found the
derived probability density functionfk(sk(t + nkhk)|sk(t))
can be rewritten in the following form

fk(sk(t + nkhk)|sk(t))=
1

(2π)
N
2 ·

√
det

∑nk−1
i=0 Ai

kQk(AT
k )i

·

·e
− 1

2

(
sk(t+nkhk)−A

nk
k

sk(t))T·
(∑nk−1

i=0 Ai
kQk(AT

k )i
)−1

·(sk(t+nkhk)−A
nk
k

sk(t))

)
,

(34)

t, t + nkhk ∈ Tk; nkhk = h0; nk > 0.



Using the equation (30) it is possible to find the unconditional
probability density functionfk(sk(t))

fk(sk(t)) = fk (sk(nkhk)) =

=

∫
sk(0)

fk(sk(nkhk)|sk(0)) · fk(sk(0))dsk(0) =

=
1

(2π)
N
2 ·

√
det M

·

· e−
1
2 (sk(nkhk)−A

nk
k

mk(0))T ·(M)−1·(sk(nkhk)−A
nk
k

mk(0))), (35)

M =
(
A

nk
k Qk(0)(AT

k )nk

)
+

nk−1∑
i=0

Ai
kQk(AT

k )i

nk > 0 ; t = nkhk ∈ Tk.

2) Parameters of systemPCSk: It follows from the equa-
tion (29) that

mk(0) = m0(0) (36)

and
Qk(0) = Q0(0) (37)

for every k = 1, 2, · · · . In ensuring the equality of equa-
tions (23) and (34) (as a special case ofnk = 2k), as
demanded in the equation (25) fort ∈ T0, it is possible to find
out parametersAk and Qk of the causal probability density
functions fk(sk(t + hk) : sk(t)) of the systemsPCSk by
comparing right sides of the mentioned equations. From the
comparison we obtain

A2k

k = A0 (38)

and
2k−1∑
i=0

Ai
kQk(AT

k )i = Q0; (39)

similarly, from the equation (27) it follows that fort ∈ T0 it
holds

Ank

k = An0
0 (40)

and
nk−1∑
i=0

Ai
kQk(AT

k )i =
n0−1∑
j=0

Aj
0Q0(AT

0 )j , (41)

wherenkhk = n0h0. Equations (38) and (39) are obviously
special cases of the equations (40) and (41) forn0 = 1 and
nk = 2kn0. Furthermore, from the equation (31) andt ∈ T0

it follows that

Ank

k mk(0) = An0
0 m0(0), (42)

and

Ank

k Qk(0)(AT
k )nk +

nk−1∑
i=0

Ai
kQk(AT

k )i =

= An0
0 Q0(0)(AT

0 )n0 +
n0−1∑
j=0

Aj
0Q0(AT

0 )j , (43)

wherenkhk = n0h0 = t. The equation (42) can be rewritten
to the form of the equation (40) using the equation (36). As
the implication (28) holds we can imply

Ank

k = A2kn0
k =⇒A2kn0

k = An0
0 (44)

=⇒ A2k

k = A0 =⇒ Ak = A
1
2k

0 . (45)

Considering the powers(·)
1

n0 and (·)
1
2k in implications (44)

and (45), matricesA0 andAk, k = 1, 2, · · · must be positively
semidefinite.If the matrixA0 is not positively semidefinite,
there is either no diffusion system corresponding to the origi-
nally given linear stochastic causal system or it is necessary to
change the state variables of the systemPCS1 as shown e.g.
in [3]. If we redefine the original state variables then we must
also redefine the set of their domainV1, the set of all system
trajectoriesΩ1, the set of all eventsS1, domainD1 of the
system trajectorys1 as well as the set of all causal relations
C1 and the set of all probabilistic mappingP1. Further, we
can either proceed in the continualization procedure as if there
was no change of the system variables or we can regard the
systemPCS1 as an original systemPCS(1)

0 of a new system
sequencePCS(1)

k , k = 1, 2, · · · .
The equation (43) can be transformed to the same form as

the equation (41) because it holds

Ank

k Qk(0)(AT
k )nk = A2kn0

k Qk(0)(AT
k )2

kn0 =

= An0
0 Qk(0)(AT

0 )n0 = An0
0 Q0(0)(AT

0 )n0 . (46)

The matrix Ak from the causal probability density function
fk(sk(t + hk) : sk(t)) of the systemPCSk can be found
directly from the implication (45)

Ak = A
1
2k

0 . (47)

However, before findingQk it is useful to introduce a vector
vQi in order to evaluate the sums

∑n0−1
j=0 Aj

0Q0(AT
0 )j and∑nk−1

i=0 Ai
kQk(AT

k )i for any arbitraryn0, nk = 2kn0. vQi is
an equivalent notation to a covariance matrixQi of the causal
probability density functionfi(si(t+hi) : si(t)) of the system
PCSi, i = 0, 1, 2, · · · as it is given by the following scheme

vQi=[Q(1,1)
i , Q

(1,2)
i , · · · , Q

(1,N)
i ,

Q
(2,1)
i , Q

(2,2)
i , · · · , Q

(2,N)
i ,

· · · · · · , Q
(N,N)
i ]. (48)

Using the above constructed vectorvQk and the Kronecker’s
multiplication of matrices [2] it is possible to rewrite the
equation (41) into the form

nk−1∑
i=0

Ak(KR)
i · vQk =

n0−1∑
j=0

A0(KR)
j · vQ0, (49)

where generally

Ai(KR) = Ai ⊗Ai =⇒ Ai(KR)
j = Aj

i ⊗Aj
i ,

i = 0, 1, 2, · · · . (50)



and Ai ⊗ Ai means the Kronecker’s multiplication of the
matricesAi andAi. From the equation (49) we obtain

(Ak(KR)
nk − I)(Ak(KR) − I)−1 · vQk =

= (A0(KR)
n0 − I)(A0(KR) − I)−1 · vQ0, (51)

because it is generally known that

nk−1∑
i=0

Ak(KR)
i = (Ak(KR)

nk − I) · (Ak(KR) − I)−1, (52)

provided(Ak(KR) − I) is a regular matrix. Properties of the
matrix Ak, k = 1, 2, · · · are discussed in detail e.g. in [3]. If
(Ak(KR) − I) is regular then(A0(KR)

n0 − I) is also regular
and it holds

vQk = (Ak(KR) − I)(A0(KR) − I)−1 · vQ0, (53)

because

Ak(KR)
nk = A0(KR)

n0 . (54)

The vectorvQk is obviously of theN2 × 1 order. However,
according to the scheme (48) and thanks to the fact that
Q0 is the covariance matrix, it can be easily rewritten as a
real, symmetrical, positively semidefinite square matrixQk,
which can be the covariance matrix of the statesk(t + hk)
conditioned by given statesk(t) from the causal probability
density functionfk(sk(t+hk) : sk(t)) of the systemPCSk,
k = 0, 1, 2, · · · .

The above derived parametersAk and Qk were not de-
termined uniquely, which follows from the solution to the
equation (38) (or (47)). Nonetheless, they satisfy all condi-
tions demanding equivalent stochastic properties of the system
PCS0 and PCSk for each k = 0, 1, 2, · · · on the time-
points setT0 because their behavior is onT0 described by
equivalent probability density functions. A class of systems
PCSk, which is determined by a class of setsPk, was
derived for different solutionsAk and Qk. The class of sets
Pk is according to the definition (see [5]) defined as sets of
all probabilistic mappings determined by causal probability
density functionsfk(sk(t + hk) : sk(t)) with corresponding
solutionsAk, Qk of the systemPCSk in above stated equa-
tions. These classes of systems form fork = 0, 1, 2, · · · an
infinite sequence and therefore there generally exist more than
one sequence of stochastic causal systemsPCSk converging
to the same diffusion system.

Without any loss of generality we can confine ourselves
to finding only one sequence of systems. Consequently, it is
possible to find only one solution ofAk andQk for eachk.

It is also sometimes useful if it holds that

fk(sk(t2)|sk(t1)) = fl(sl(t2)|sl(t1)), (55)

t2 = t1 + nkhk = t1 + nlhl

k > l, k = 1, 2, · · · , l = 0, 1, 2, · · · ,

t1, t2 ∈ Tl

for systems from the sequencePCSk converging to a partic-
ular diffusion system.

D. Linear stochastic causal system continualization
Suppose that a sequence of linear stochastic causal systems

is given. Furthermore, we derive an explicit solution to the
causal probability density functionfk(sk(t + hk) : sk(t)) of
the systemPCSk, k = 0, 1, 2, · · · parameters of which have
just been determined. Hence, the function from the equation
(34) is to be written as follows

fk(sk(t + nkhk)|sk(t)) = fk(sk(t2) | sk(t1)) =

1

(2π)
N
2 ·

√
det

∑nk−1
i=0 Ak(KR)

i · vQk

·

·e
− 1

2

(
sk(t+nkhk)−A

nk
k

sk(t))T·
(∑nk−1

i=0 Ak(KR)
i ·vQk

)−1
·(sk(t+nkhk)−A

nk
k

sk(t))

)
,

(56)

t1 = t; t2 = +nkhk,

t, t + nkhk ∈ Tk; nkhk = h0; nk > 0,

where we suppose that the vector
∑nk−1

i=0 Ak(KR)
i ·vQk is

rewritten into the covariance matrix according to the scheme in
equation (48) as discussed above. If we substitute the equation
(53) to the last equation the sum

∑nk−1
i=0 Ak(KR)

i ·vQk can
be expressed as

nk−1∑
i=0

Ak(KR)
i ·vQk = (Ak(KR)

nk − I)·(Ak(KR) − I)−1·

· (Ak(KR) − I)·(A0(KR) − I)−1 ·vQ0 =

= (Ak(KR)
nk − I)·(A0(KR) − I)−1 ·vQ0 =

= (A0(KR)

t2−t1
h0 − I)·(A0(KR) − I)−1 ·vQ0,

(57)

where we can write by analogy to the implication (54)

Ak(KR)
nk = A0(KR)

nk
2k = A0(KR)

t2−t1
h0 (58)

and where obviously

nkhk = t2 − t1. (59)

Now, the causal probability density function
fk(sk(t2) : sk(t1)) can be rewritten

fk(sk(t + nkhk)|sk(t)) = fk(sk(t2) | sk(t1)) =

1

(2π)
N
2 ·

√
det M

·

· e
− 1

2


sk(t2)−A

t2−t1
h0

0 sk(t1)

T

·(M)−1·

sk(t2)−A

t2−t1
h0

0 sk(t1)




,
(60)

where

M = (A0(KR)

t2−t1
h0 − I) · (A0(KR) − I)−1 · vQ0,

t1 = t; t2 = t + nkhk,

t, t + nkhk ∈ Tk; nkhk = h0; nk > 0.

If t2 > t1 then the limit case of the probability distribution
function corresponding to the equation (56) is (according to
the convergence in distribution [2]) trivial asA0 and hence
also A0(KR) are constant matrices. The case whent2 → t1
for k → ∞ (hk → 0+) is more interesting. From the
probability density function in equation (56) follows that the



random variablessk(·), or in fact their probability distribution
functions, do converge in distribution to a ”constant value”
s(t2) = s(t1) if t2 → t1, k →∞, i.e. to a degenerate random
variable cumulative probability distribution function of which
is

F (s(t2)) = 0 if s(t2) ≤ s(t1), (61)

F (s(t2)) = 1 if s(t2) > s(t1). (62)

It is desired to describe the probabilistic properties of
continuous-time stochastic systems by conditioned probability
density functionsf(s(t + dt)|s(t)) using a differential of the
stateds(t). Such systems are then called diffusion systems
if they satisfy some additional conditions [4]. Parameters
of f(s(t + dt)|s(t)) can be derived from the sequence of
stochastic causal systemsPCSk, k → ∞ using the vector
forward Kolmogorov’s partial differential equation (Fokker-
Planck’s equation) [4], [9]

∂f(s(t2), t2|s(t1), t1)
∂t2

= −
N∑

i=1

∂[αi(s(t2), t2) · f(s(t2), t2|s(t1), t1)]
∂si(t2)

+

N∑
i,j=1

1

2
· ∂2[βi,j(s(t2), t2) · f(s(t2), t2|s(t1), t1)]

∂si(t2)∂sj(t2)
,

(63)

wheref(s(t2), t2|s(t1), t1) is the limit case of the equation
(60) for t2 = t1 + ∆t, ∆t > 0, infinitesimal parameter
α(s(t2), t2) is called the drift coefficient and infinitesimal
parameterβ(s(t2), t2) is called the diffusion coefficient if
∆t → 0. Bothα(s(t2), t2) andβ(s(t2), t2) can be determined
by comparing left and right sides of the equation (63) after
the partial derivatives were found. Hence we obtain

α(s(t2), t2) = lim
∆t→0

1
h0

·A
t2−t1

h0
0 · lnA0 · s(t1) =

=
1
h0

· lnA0 · s(t1) (64)

because

A0(KR)

t2−t1
h0 → I as ∆t → 0 (65)

and

β(s(t2), t2) =
1
h0

·M−1 ·A0(KR)

t2−t1
h0 · lnA0(KR)·

· (A0(KR) − I)−1 · vQ0 ·M , (66)

where

M = (A0(KR)

t2−t1
h0 − I) · (A0(KR) − I)−1 · vQ0 (67)

and the vectorM is supposed to be in the form of corre-
sponding symmetric square matrix according to the scheme
(48). The equation (66) can be simplified using the relation

β(s(t2), t2) =
∂

∂t2
(ln M(t2))

T ·M(t2) (68)

into form

β(s(t), t) = lim
∆t→0

β(s(t + ∆t), t + ∆t) =

=
1
h0
·lnA0(KR) ·(A0(KR)−I)−1 ·vQ0. (69)

The properties of the derived diffusion system are then de-
scribed by the equation (63) and by coefficientsα(s(t2), t2)
andβ(s(t2), t2) from the equations (64) and (68), respectively.

IV. CONCLUSIONS

A new approach to the process of continualization was pre-
sented in this paper in terms of new approach to system theory.
All the system variables were, from principal reasons, defined
on finite sets only. Finally, under carefully chosen continuity
hypothesis the extension to infinite sets based on convergence
in distribution is straightforward and brings important results
in adequate description of continuous-time systems.
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