
 

  
Abstract— The mathematical model used for real time 

supervising of the primary cooling process combines two types of 
solidification models: the Hills model used for the range of speed 
typical of nominal regimes and a model based on an analytical 
solution of the equation which provides the dynamics of the 
variation of the solidifying shell thickness. The second model 
implied some simplifications concerning the limit conditions and 
is used in the manoeuvre regimes where extremely reduced 
casting speed values are requested. The Hills solution, which 
indicates the non-dimensional thickness of the strand, was turned 
into a neural model. The two methods are combined in a unitary 
one using a Sugeno type of fuzzy technique, the fuzzification 
variable being the casting speed. 
 

Index Terms—Continuous casting, Primary cooling, Fuzzy 
logic, Neural networks. 
 

I. INTRODUCTION 
Continuous casting is the process whereby molten metal is 

solidified into a “semi finished” billet, bloom, slab or beam 
blank. Nowadays, continuous casting is the predominant way 
by which steel is produced in the world. Continuous casting is 
used to solidify most of the 750 million tons of steel, 20 
million tons of aluminum, and many tons of other alloys 
produced in the world every year [1]. Figure 1 presents the 
typical scheme of the steel continuous casting process. The 
primary cooling is assured by the mold. This is made of 
chromium plates that are cooled with water under pressure and 
have an oscillatory moving, being supplied with powdered flux 
on the liquid steel surface. 

The main role of the mold is to form the solidified steel 
crust having the thickness that enables a safe secondary 
cooling system by spraying water along the strand. 

In the case of cast charges, the casting speed may vary from 
values close to 0, when the tundish is replaced without 
interrupting the process, to superior ones that are limited by 
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the danger of the perforations of the solidified crust at the 
mold output. Under the circumstances, the estimation, in a 
dynamic regime and based on a mathematical model, of the 
solidified shell thickness at the mold output is important in 
order to monitor the process. Restrictions concerning the data 
processing resources imposed by the system functioning in real 
time make impossible the use of complex models integrated 
through the finite element method [3], [4]. Besides, 
uncertainties concerning real limit conditions diminish the 
usefulness of complex models approached through numerical 
analysis.  

 
Fig.1.  The continuous casting process 

 
The present method of analysis of the mold thermal regime 

is based on the Hills method of a model where the III-rd type 
of limit conditions is accepted. This solution is materialized in 
a nomogram, which allows the identification of the solidified 
shell thickness at the mold output within the range of current 
values of speed casting. Nevertheless, when manoeuvring the 
installation the casting speed may exceed the range of values 
within which the nomogram of the Hills model can be used. 
On the other hand, the model based on the I-st type of limit 
conditions offers a general analytical solution, which can 
describe the dynamics of the solidification process for any 
kind of speed casting. [2] 
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mold where the Hills model and the model obtained after 
correcting the analytical solution are combined using fuzzy 
techniques of Sugeno type [5], the fuzzification variable being 
the casting speed. 

The paper is structured as follows: the second section 
contains a description of the thermal regime and of the limit 
conditions in the mold. The third section presents analytical 
models of the solidification process based on the I-st and III-rd 
type of limit conditions. The fourth section presents simplified 
models for the control of the primary cooling process. The 
fifth section presents the implementation of the estimator of 
the solidifying shell thickness using a Sugeno type of fuzzy 
block, and the last section contains the conclusions. 

 

II. THE MOLD DESCRIPTION 
The four plates of the mold have cooling channels with 

water under pressure. In order to compensate the constriction 
of the steel in the mold which could lead to a loss of contact: 
steel crust-mold wall (with important effects on the thermal 
transfer), the broad surfaces are 0.9%/m conical. In order to 
have an initial correct formation of the solidifying shell the 
mold has an oscillatory movement. The magnitude and the 
frequency of the oscillations influence the period of time 
necessary to form the first crust. It is therefore necessary that 
during the descendant movement of the oscillation the medium 
speed of the mold should be 30% bigger than the strand speed.  

During the casting, the molten steel is permanently covered 
with lubricant powder whose thickness reaches 1…1.5 cm 
depending on the casting speed. The lubricant is transforming 
so that it may have -in a static regime- a configuration of the 
mold-lubricant-steel system similar to the one shown in Figure 
2. 

 
Fig. 2.  The configuration of the mold-lubricant-steel system: 1. mold; 

2. solidifying shell; 3. , 9. liquid steel; 4. liquid lu bricant;  5., 6. solidified 
lubricant; 7. burnt lubricant; 8. powdered lubricant.  

 
From the point of view of the thermal regime, the structure 

presented above determines a complex scheme of the heat 
transfer as shown in Figure 3. The power density extracted 
along the mold height is variable and depends on the type of 
lubricant (its viscosity) as well as the casting speed. The data 
presented above show that the uncertainties concerning the 

heat flux density are very important. 

 
Fig. 3.   The scheme of the heat transfer in the primary cooling zone 

 

III. ANALYTICAL MODELING OF THE SOLIDIFICATION PROCESS 
IN THE PRIMARY COOLING ZONE 

A. Estimation of the solidifying shell thickness during the 
primary cooling in the I-st type of limit condition 
In order to analyze the solidification process in the mold, it 

is considered a quantity of molten steel whose initial uniform 
temperature is known, Tli. At an initial moment t=0 the 
temperature x=0 becomes Ts0 below the solidification 
temperature Tsold as a result of the thermal transfer to the mold. 
At a certain moment t the distribution of the temperature is 
similar to the one shown in Figure 4 and the solidifying shell 
thickness is X(t). 

 
Fig. 4.  The temperature distribution during the solidification process in 

the mold: 1. copper mold cooled with water; 2. solidifying shell; 3. liquid.  
  
Taking into consideration that in the mold the solidifying 

shell thickness is small when compared to the thickness of the 
molten metal zone, the unstationary dynamic regime of the 
solidifying shell thickness can be treated making the 
hypothesis that the molten metal medium is semi-infinite (for 
x>X(t)). 

The unidirectional heat transfer is described in two different 
equations characteristic to the liquid and solid states. For the 
solidified zone the equation is: 
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where αs stands for the thermal diffusivity of the solid 
material. 

For the liquid zone the equation is similar: 
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where αl stands for the thermal diffusivity of the liquid 
material.  

The equations (1) and (2) have the following limit 
conditions: 
Ts(x)|x=0 = Ts0 ; t>0           (3) 
Tl(x)|x→∞ = Tli ; t>0  (4)                 (4)           (4) 

The limit condition characteristic to the solid-liquid 
interface is:  
Tl = Ts = Tsold  at x=X(t)             (5) 

The initial conditions are: 
Ts(x)|x=0, t=0 = Ts0 ; Tl(x)|x>0, t=0 = Tli            (6) 

The equation of the advance speed of the solidifying shell 
thickness that results from the equation of the thermal balance 
in the metal is: 
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The analytical solutions of (1) and (2) are: 
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where A1, B1, A2, B2 are integration constants which are 
obtained from the limit conditions and erfc(·) is the function 
complementary to the error.  

As Tsold=const, it implies that the sum of terms that contain 
the functions erf(·) and erfc(·) must be  constant. It only 
happens when X(t) is proportional to t :  

( ) 2 sX t .K. .tα=   (10) 
The equation used to identify the parameter K is the 

following: 
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=  stands for the heat capacity to the solid 

state. 
When the liquid reaches the melting point li soldT T= , (11) 

becomes: 
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The solution K of the non-lineal (11) equation is replaced in 

(10) and allows the identification in time of the variation of the 
solidifying shell thickness. Figure 5 shows the special 
distribution of the temperature in the solid state at different 
moments in time, obtained due to the model presented above. 
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Fig. 5.  The temperature in the solid state at different moments in time 

 

B. The estimation of the solidifying shell thickness 
dynamics during the primary cooling process in the III-rd 
type of limit conditions 
Classical approaches of the solidifying process modeling in 

the mold adopt the following hypotheses: 
I1 - The molten metal is homogeneous thermally speaking, 
so it is not considered a thermal gradient in the liquid; 
I2 - The heat transfer through thermal conductibility is 
negligible in the direction of the strand movement and it is 
produced only on the normal direction at the mold surface; 
I3 - The thermal transfer coefficient between the outer face 
of the solidifying shell and the mold wall is considered to be 
known and constant on the strand moving direction y.  
These hypotheses being considered, the thermal transfer 

model through conductibility in the solidifying shell is: 
2
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where t
dyV
dt

=  stands for the casting speed and X(y) 

represents the solidifying shell thickness at distance y from the 
metal output in the mold. 

The limit condition of the solidifying shell is  

solds TT =  at )( yXx =              (14) 
The thermal balance equation at the solid-liquid interface is: 
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where tH∆  stands for the latent heat of solidification plus the 
heat excess due to the fact that the molten metal temperature is 
superior to Tsold. 



 

The limit condition x=0, i.e. the contact between the outer 
surface of the solidifying shell and the mold surface is: 
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where Tc stands for the mold temperature and hc is the thermal 
transfer coefficient between the outer face of the solidifying 
shell and the mold wall.  

The equations (13)-(16) form the mathematical model used 
by the Hills solution to calculate the solidifying shell thickness 
at the mold output. The Hills solution of the (13)-(16) model 
involves the use of process engineering information 
concerning the thermal transfer coefficient hc and is 
materialized in the function: 

( , )TY F Hξ= ∆            (17) 
given in a tabular form or on a graph  (Figure 6). In keeping 
with this solution, the following can be measured: 
- the non-dimensional distance in the moving direction: 
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- the latent heat plus the non-dimensional overheat: 
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Fig. 6.  The non-dimensional thickness dependence on the 

non-dimensional distance 
 

IV. SIMPLIFIED MODELS FOR THE CONTROL OF THE PRIMARY 
COOLING PROCESS 

A. Estimator Based on the Hills Solution 
The purpose is to approximate the Hills nomogram using a 

function.  
Two methods have been used: 
- polynomial regression;  
- the use of neural networks. 

In the case of the first method a polynomial expression of 
four degree has been used. Figure 7 shows the results of this 
model. The continuous line indicates the thickness dependence 

on the curve dimension from Figure 6, and the dotted line 
indicates the other kinds of dependence on the values of the 

TH∆  parameter. The graph shows that the function that has 
been identified, though it makes a good approximation of the 
range of values used in the identification, does not make a 
satisfactory extrapolation beside the [0,1 0,7] domain of the 

TH∆  variable (it can be remarked the tendency of a 
descendant evolution which contradicts the physical reality). 
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Fig. 7.  The result of the Hills nomogram approximation using a 

polynomial expression 
 

The second method used to approximate function (17) is a 
non-parametric method that uses neural networks. A 
two-layered neural network has been used, the input layer 
consisting of 7 neurons, the output layer of 1 neuron. The 
activation functions are tansig and respectively purelin. The 
structure of the network is given in Figure 8. 

 
Fig. 8.  The structure of the neural network 
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Fig. 9.  The result of the Hills nomogram approximation using 

a neural network 



 

Figure 9 shows the results obtained after using this method. 
It is to be noticed from the figure that the neural approximation 
method makes a good extrapolation beside the values used for 
training. The small errors that occur around the origin 
constitute its disadvantage. It is a small error as it is less 
important to estimate the thickness in the superior surface of 
the mold when compared to the thickness estimation in the 
middle area and especially at the output. Consequently, when 
using the Hills solution the estimator implementation will be 
based on the neural model. 

 

B. Estimator Based on the Analytical Solution of the 
Solidification Equation 
Figure 10 depicts the solidifying shell evolution according 

to the analytical model (10), (11) (the curves 1 correspond to 
three values of the Tli temperature) and according to the Hills 
model (curve 2). It is to be noticed that between the analytical 
model and the Hills one there are sensible differences during 
the stage of the solidifying shell formation, i.e. the analytical 
model leads to an overestimation of the initial solidification 
speed. It can be explained due to the simplifying hypotheses 
concerning the limit conditions that are accepted in the 
analytical model. Except for the initial area, it is to be noticed 
that in the middle and end areas of the mold the bending of the 
curves that describe the solidifying shell evolution are almost 
similar.  

 
Fig. 10.  The solidifying shell evolution according to the analytical method 

(1A,1B, 1C, 1D curves) and the Hills model (Curve 2)  
 
Under the circumstances a revised analytical model has 

been created which allows the adjustment of solidification 
process initial dynamics so that the results might be identical 
to the ones given by the Hills model. The revised model 
contains an exponential term that is quickly annulated as time 
passes: qexp(-q1.t). Introducing two parameters makes the 
correction: q that establishes the correction weight and q1 that 
determines the period of time within which the correction 
operates. Consequently in the revised model equation (10) is 
replaced by the equation: 

1 1( ) 2 ( ( exp( ) ) exp( ) )s sX t .K. . q. q .t t .q. q .tα α= − + − −  (18) 
The values of the parameters q and q1 have been identified 

through adjustments. The revised analytical model results are 

similar to the Hills model (Figure 11) but it has the advantage 
that it enables the analysis of the system dynamics in the 
manoeuvre regimes when the casting speed has different 
values than the ones of the usual permanent regimes. 
Therefore, the dynamics of the variation of the solidifying 
shell thickness is described using a model similar to K t  law 
adding the corrections made to the initial regime. 

 
Fig. 11.  The solidifying shell evolution according to the Hills model  

(curve H) and the revised analytical model (curve A). 
 

V. THE IMPLEMENTATION OF THE ESTIMATOR OF THE 
SOLIDIFYING SHELL THICKNESS USING A FUZZY BLOCK OF 

SUGENO TYPE  
 
The fuzzy block used to combine the Hills and revised 

analytical model takes into consideration the characteristics of 
the two models described in the previous section. Thus the 
Hills model is used for the range of speed typical of nominal 
regimes, when high speed is preferred in order to obtain 
superior qualities; the analytical model is used in the case of 
manoeuvre regimes where extremely reduced casting speed is 
required. 

The fuzzy block has only one fuzzed variable, the casting 
speed, containing two linguistic terms Small and Big. The 
membership function for the casting speed is shown in Figure 
12.  

 
 
 
 
 
 
 
 
 
Fig. 12.  The membership functions of the Sugeno type of fuzzy block  
 
The output of the fuzzy block is represented by the 

solidifying shell thickness at the mold output: 
1 1 2 2X K X K X= ⋅ + ⋅            (19) 

where K1 and K2 are the membership degrees of the casting 
speed to the two linguistic expressions, and X1 and X2 stand for 
the thickness estimated using the analytical model and the 
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Hills one. 
Figure 13 presents the two working regimes. The graph 

allows noticing that in the case of small speed the Hills model 
does not permit a correct estimation (the non-dimensional 
distance ξ  goes out of the nomogram, see Figure 7) whereas 
in the case of large speeds, the results of the two models 
coincide. Figure 14 shows the evolution of the solidifying shell 
thickness at the mold output when the tundish is replaced (the 
casting speed is close to 0). 

The estimation algorithm of the solidifying shell thickness 
evolution along the mold height implies the following 
operations: 

- for each charge the variable Tsold can be calculated on the 
basis of the information concerning the steel composition; 

- for any attempt to determine the steel temperature in the 
tundish (the temperature is identified 4 times for each charge), 
the value of the K coefficient is actualized in the fundamental 
formula that provides the solidification dynamics. For this 
purpose, the equation (12) is solved in relation with K; 

- the model (18) is used in order to estimate the solidifying 
shell thickness at the mold output. The same variable can be 
calculated using the neural network given in the Figure 9. The 
fuzzy block gives the solidifying shell thickness at the mold 
output. 

The calculations are made at any moment of the sampling 
step of the real time supervising system. 

VI.  CONCLUSIONS 
The revised analytical system and the Hills one have 

identical results; there are differences only in the initial zone 
that is in the superior part of the mold. As the variable we are 
interested in is the solidifying shell thickness at the mold 
output, equality between the results of the two methods is 
obtained. The Hills model, implemented by a neural network is 
used in the case of the permanent functioning regime when 
Vt=const. In the case of the manoeuvre regimes, when the 
casting speed has great variations the non-dimensional 
distance going out of the Hills nomogram (Figure 7) the 
revised analytical model results are used. 
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Fig. 13.  The solidifying shell thickness at the mold output in two workings regimes 
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Fig. 14.  The solidifying shell thickness at the mold output when the tundish is replaced  
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