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Abstract— It is shown that if the number of plant outputs is
equal to at least half of the number of plant states then the
observer may be designed which in one step detects the true
value of the state. It is also shown that in multi-variable discrete-
time (DT) systems the LQ regulator based on the reduced order
Luenberger observer is optimal for adequate initial conditions
of the observer. The case of non-adequate initial conditions of
the observer is considered, too. Further on, the properties of
this regulator applied in the closed loop system with nonzero
excitations are analyzed. It this case the DT regulator based on
the observer which in one step detects the true value of the plant
state is optimal for transients, starting from the next step after
appearance of the excitations.

Index Terms— Linear-quadratic regulator; discrete-time; out-
put regulator; multi-variable systems; observers.

I. I NTRODUCTION

Linear-Quadratic Regulator (LQR) problem, in infinite hori-
zon, has usually the solution in the form of a static state
feedback control law and may be implemented when all the
state variables are available [3]. This observation concerns
continuous- and discrete-time, as well as single- and multi-
variable plants. When only the outputs of the plant are mea-
sured, the state feedback LQ control law may be implemented,
if an appropriate state observer is included in the system [1].

There is almost common conviction that LQ control problem
with output feedback may be solved by more modernH2

approach [5]. This conviction does not concern the problem
considered in the present paper. In theH2 approach applied
to the deterministic case there is the assumption about zero
initial conditions of the regulator, while in our considerations
nonzero initial conditions of the regulator play an essential
role.

In the present paper, first the observer which in one step
detects the true value of the plant state is considered. Then the
following question is researched: whether and in what sense
the observer based LQ regulator is optimal? The case of linear-
quadratic regulator (LQR) problem with output feedback, for
multi-variable discrete-time (DT) systems is considered.

It is shown that the LQ DT regulators based on the reduced
order Luenberger observer are optimal for adequate initial
conditions of the observer. The properties of these regulators in
the case of non-adequate initial conditions are also researched.
In this case the regulators with the observer detecting in one
step the true value of the plant state are optimal starting from

the next step after appearance of the excitations. It is also
shown that the properties of these regulators remain unchanged
for transients generated in the closed loop (CL) system with
nonzero excitations belonging to a determined general class.

The contribution of the paper is partly in deriving the
observer which in one step detects the true value of the plant
state, partly in showing that the regulator based on the reduced
order Luenberger observer with adequate initial condition is
optimal and partly in proving that the regulator based on
the derived observer, applied in the CL system with nonzero
excitations, generates the transients which are optimal, starting
from the next step after appearance of excitations.

II. LQ REGULATOR WITH STATE FEEDBACK

Let the DT state space model of a multi-variable plant takes
the form

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t) (1)

wherex, u andy are the vectors of state, input and output,n, r
andp-dimensional, respectively;A,B,C are constant matrices
of appropriate dimension andt = 0, 1, 2, ... is discrete time.

Assume thatA has a full rank i.e. rankA = n. This case
occurs when the DT equations (1) result from discretization
of a continuous-time model of the plant. This is very frequent
case in applications.

Let the quadratic performance index takes the form

J =
∞∑

t=0

[x′(t)Qx(t) + u′(t)Ru(t)] (2)

where the symmetric matricesQ = D′D and R are semi-
positive and positive definite, respectively. Assume, that the
pair (A,B) is controllable and the pair(A,D) is detectable.

The solution of the DT LQR problem (1), (2) in the form
of the state feedback is

u = −Kx (3)

where the gain matrixK is determined by

K = (R+B′SB)−1B′SA (4)

whereS is the solution of an appropriate algebraic Riccati
equation [3].



The minimal value of the performance index (2) for given
initial condition x(0) of the plant is

Jmin = x′(0)Sx(0) (5)

The closed-loop (CL) system is described by

x(t+ 1) = (A−BK)x(t) (6)

Let λ1, λ2, ..., λn be the poles of the CL system (6).

III. R EDUCED ORDER OBSERVER

The control law (3) may be implemented if all the state
components are available (measured). Further on, the case
when only the output variabley is available will be considered.
It is known that in this case the control law (3) may be
implemented if an appropriate observer estimating the state
is applied.

The equations of the reduced order (Luenberger) observer
for the plant (1) have the form [5]

v̂(t+ 1) = Ev̂(t) + Fy(t) +Gu(t)
x̂(t) = V v̂(t) +Wy(t) (7)

wherex̂ and v̂ are the vectors of the plant state and observer
state estimates,n andm-dimensional respectively,m = n −
p; E, F , G, V , W are the constant matrices of appropriate
dimension; the choice ofE is such that its eigenvalues̄λi,
i = 1, 2, ...,m fulfill the inequality |λ̄i| < 1. Additionally,
there exists am× n matrix P fulfilling the equations

PA− EP = FC
G = PB
WC + V P = In

(8)

whereIn is n× n unit matrix.
To explain denote v = Px (9)

Multiplying both sides of (1) byP from left hand side and
accounting (8), (1) and (9) we obtain.

v(t+ 1) = Ev(t) + Fy(t) +Gu(t)
x(t) = V v(t) +Wy(t) (10)

Note that it is a freedom in choosing matricesE,F (and
eigenvaluesλ̄i) which guarantees the fast observer conver-
gence.

The CL system with dynamic output feedback LQ regulator
(DOFR) which may be implemented when only the outputy
is available is described by (1), (7) with accounting

u = −Kx̂ (11)

After transformations we obtain the description of the CL
system in the form

x(t+ 1) = (A−BK)x(t) +BKV ṽ(t)
ṽ(t+ 1) = Eṽ(t) (12)

ṽ(t) = v(t)− v̂(t) (13)

From the form of (12) it results the known fact that the CL
system with DOFR is of(n+m)-th order and has the poles
λ1, λ2, ..., λn, λ̄1, λ̄2, ..., λ̄m being the union of the poles of
the CL system (6) with LQ regulator and state feedback and
of the observer (7).

Neither v nor x appearing in (10) are known, but for any
initial conditions v̂(0) andx(0) of the equations (7) and (1),
respectively, we havêv(t) → v(t) and x̂(t) → x(t) when
t → ∞. Thus x̂(t) determined from (7) is the estimate of
x(t). Similarly v̂(t) → v(t) when t→∞.

In the case for which̄λi = 0. i = 1, 2, ...m the observer
has the finite time of decaying of̃v(t) to zero (smaller than
or equal tom). This kind of observer is called the dead-beat
observer.

Note that from the third equation of (7) it results that the
matricesW, C, V, P, n × p, p × n, n × m, m × n,
respectively, must have full ranks, that is rankW = p, rank
C = p, rank V = m, rankP = m. Taking this into account
we may formulate the following Lemma.

Lemma 1. Assume thatm = n − p ≤ p. Then for
E = 0 there exist the matricesP, F,G,W, V which fulfill
the equations (13).

Proof. Since maximal rank(FC) = p and m ≤ p then
we may choose the matrixF so that rank(FC) = m. The
maximal rank(PA) = m. Then for the chosenF there exist
the solutionP of the matrix equationPA = FC. Matrix G
results from the second equation of (8). MatricesV,W we
obtain from

[V W ] =
[
P
C

]−1

(14)

which results from the third equation of (8).
�

Corollary 1 The observer resulting from Lemma 1 with
E = 0 detects the true value of the statex(t) in one step.
That is, for any unknown initial statex(0) of the plant (1)
and any assumed initial condition̂v(0) of the observer (7) we
havex̂(t) = x(t) for t ≥ 1.

Proof. Note that for the observer (7) withE = 0, from
the second equation of (15) it resultsṽ(t) = 0 for t ≥ 1 i.e.
v̂(t) = v(t) for t ≥ 1. Therefore from the second equations
of (7) we obtainx̂(t) = x(t) for t ≥ 1.

�
The state space equations of the regulator based on the

reduced order observer, result from (7) and (11) and take the
form

v̂(t+1)=(E−GKV)v̂(t)+(F−GKW)y(t)
u(t) = −KV v̂(t)−KWy(t) (15)

IV. W HETHER AND IN WHAT SENSE THE RESEARCHED

REGULATOR IS OPTIMAL?

One can suppose that the reduced order observer (7) deter-
mines the accurate estimate of the state (i.e.x̂ = x) if the
initial condition v̂(0) of the observer is adequate to the initial
conditionx(0) of the plant state. Note, that the second formula
of (10) determines the transformation of the state[vT yT ]T to
the statex, which may be written in the form

x = [V W ]
[
v
y

]
(16)



Accounting the third formula of (8) we obtain the inverse
transformation in the form[

v
y

]
=

[
P
C

]
x (17)

Lemma 2. Optimality of the regulator. For the initial
conditionsx(0), v̂(0) fulfilling the relation

v̂(0) = Px(0) (18)

the regulator (15) based on the reduced order observer, applied
to the plant (1) is optimal in the sense that in the resulting CL
system the performance index takes the optimal value equal to
that obtained in the CL system with LQR and state feedback
(for the same initial condition of the plantx(0)).

Proof. From (17) and (18) it results that̂v(0) = v(0), then
ṽ(0) = 0 and from (12) we obtaiñv(t) = 0 which givesv̂(t) =
v(t) for any t ≥ 0. Accounting (7) and (10) we obtain̂x(t) =
x(t) for any t ≥ 0. Therefore the formula (11) determines
then the optimal control of the CL system with LQR and state
feedback.

�
The initial conditionv̂(0) determined by (18) is called the

adequate initial condition of the observer.
In the case when the initial condition of the observer is

non-adequate (i.e. it does not fulfill the dependence (18), the
properties of the CL system are somewhat different.

Lemma 3 about optimality of the regulator. In the case,
when the initial condition̂v(0) of the observer does not fulfill
(18), the regulator based on the reduced order observer with
E = 0, working in the CL system with plant (1) is optimal,
starting from timet = 1, i.e. we have

∞∑
t=1

[x′(t)Qx(t) + u′(t)Ru(t)] = x′(1)Sx(1) (19)

wherex(1) is the state of the plant resulting from applying a
non-optimal controlu(0) at timet = 0, while S is the matrix
appearing in (5).

Proof results from the fact that for the observer with the
matrixE = 0, a nonzero initial conditioñv(0) decays to zero
in one step. This means thatx̂(t) = x(t) for t ≥ 1.

�

Fig. 1. Closed loop system.

V. CLOSED LOOP SYSTEM WITH NONZERO EXCITATIONS

Consider the CL system shown in Fig. 1 with the plantG
(1) and regulator-observerR described by (7), (11). The CL
system fort ≥ 0 is described by the equations

x(t+ 1) = Ax(t) +Bu(t), y(t) = Cx(t) (20)

v1(t+ 1) = Ev1(t) + Fe(t) +Gu(t)
x1(t) = V v1(t) +We(t) (21)

u(t) = −Kx1(t) (22)

e(t) = y(t)− d∗(t)− w∗(t) (23)

andd∗(t), w∗(t) denote some given vector functions. Assume
that the initial condition of the plantx(0) = 0 and of the
observerv1(0) = 0, while the excitations take the form

d = d∗(t)1(t), w = w∗(t)1(t) (24)

where1(t) denotes the unit step function(1(t) = 1 for t ≥
0 and 1(t) = 0 for t < 0) and d∗(t), w∗(t) are somep–
dimensional vector functions, components of which describe
the disturbances and set points for particularp outputs of the
plant.

Assume that the vector functionsd∗(t), w∗(t) determined
in the interval−∞ < t <∞ would generate in the considered
CL system a ”steady state” in this interval (if the excitations
would be described by these functions in the interval−∞ <
t < ∞). The components of these vector functions may for
instance take the form of any constant and/or any periodic
functions. One can also consider a generalized ”steady state”
determined by the solutions of the equations (20)-(23) for any
given functionsd∗(t), w∗(t) determined in the interval−∞ <
t <∞.

Denote by the functionsx∗ = x∗(t), u∗ = u∗(t), y∗ =
y∗(t), e∗ = e∗(t), v1∗ = v1∗(t), x1∗ = x1∗(t) the solutions of
the equations (20)-(23) in the interval−∞ < t <∞. Further
on the signalsx∗, u∗, y∗, e∗, v1∗, x1∗ will play the role of
the reference signals and will determine the ”steady state” in
the system.

Consider the performance index in the form

J̄ =
∞∑

t=0

[x̄′(t)Qx̄(t) + ū′(t)Rū(t)] (25)

where x̄ = x − x∗ and ū = u − u∗ denote the deviations of
x and u from the reference signalsx∗ and u∗ appearing in
”steady state”.

Theorem 1 about optimality of the regulator . Regulator
(15) with the observer matrixE = 0, applied in the CL system
shown in Fig. 1, with plant (1) and excitations (24) generates
the control which minimizes the performance index (25) in
the intervalt ≥ 1, starting from the statēx(1) resulting from
the non optimal controlu(0). That is we have

∞∑
t=1

[x̄′(t)Qx̄(t) + ū′(t)Rū(t) = x̄′(1)Sx̄(1)] (26)

whereS is the matrix appearing in (5).



Proof. Accounting (23) in (21) and applying the super-
position principle we obtain

v1 = v − vd, x1 = x− xd (27)

where the functionsv = v(t) andx = x(t) result from solving
the equations

v(t+ 1) = Ev(t) + Fy(t) +Gu(t)
x(t) = V v(t) +Wy(t) (28)

and (20) with the controlu determined by (22) the outputy
determined by the second equation of (20) and initial condition
v(0) = 0; the functionsvd = vd(t) andxd = xd(t) result from
solving the equations

vd(t+ 1) = Evd(t) + F [d∗(t) + w∗(t]
xd(t) = V vd(t) +W [d∗(t) + w∗(t)] (29)

with vd(0) = 0. Denote also byv∗ = v∗(t) andvd∗ = vd∗(t)
the solutions of the first equations of (28) and (29), respec-
tively, with initial conditionsv∗(−∞) = 0 andvd∗(−∞) = 0.
From the second equations of (28) and (29) we obtain then
appropriately the variablesx∗ = x∗(t) andxd∗ = xd∗(t). We
have also similarly as (27)

v1∗ = v∗ − vd∗, x1∗ = x∗ − xd∗ (30)

where as previously the variables with super-star denote the
appropriate functions in ”steady state” corresponding to exci-
tationsd∗(t) i w∗(t). Let us note that fort ≥ 1 vd = vd(t) =
vd∗(t) = vd∗ andxd = xd(t) = xd∗(t) = xd∗. From here and
from (27) and (30) it results that fort ≥ 1

x̄1 = x1 − x1∗ = x− x∗ = x̄
v̄1 = v1 − v1∗ = v − v∗ = v̄

(31)

We also have

e∗ = y∗ − d∗ − w∗

ē = e− e∗ = y − d∗ − w∗ − (y∗ − d∗ − w∗) =
= y − y∗ = ȳ

(32)

The reference signalsx∗, u∗, y∗, e∗, v1∗, x1∗ fulfill the
equations (20)-(23) in the interval−∞ < t <∞. Subtracting
from the equations (20)-(23) (valid in the intervalt ≥ 0),
the same equations with substituted in them the reference
signals (valid in−∞ < t < ∞) and using (31) we obtain
the following equations valid in the intervalt ≥ 0

x̄(t+ 1) = Ax̄(t) +Bū(t), ȳ(t) = Cx̄(t) (33)

v1(t+ 1) = Ev̄1(t) + F ē(t) +Gū(t)
x̄1(t) = V v̄1(t) +Wē(t) (34)

ū(t) = −Kx̄1(t) (35)

Accounting (31) and (32) in (33)-(35) we obtain the equa-
tions

x̄(t+ 1) = Ax̄(t) +Bū(t), ȳ(t) = Cx̄(t) (36)

v̄(t+ 1) = Ev̄(t) + F ȳ(t) +Gū(t)
x̄(t) = V v̄(t) +Wȳ(t) (37)

ū(t) = −Kx̄(t) (38)

which are valid fort ≥ 1. From the second equation of (37)
and from (17) it results that the initial conditions̄x(1) and
v̄(1) fulfill the dependencēv(1) = Px̄(1). Thus from Lemma
1 it results that the control̄u(t) determined by (38) minimizes
performance index (25), which means that the equality (26) is
fulfilled.

�
Let us notice that the performance index (25) accounts only

the transients and does not take into account the accuracy in
the ”steady state” determined by the reference signals.

Corollary 2 . Regulator (15) with the observer matrixE =
0, applied in the CL system with the plant (1) and excitations
(24) generates fort ≥ 1 the optimal transients. The accuracy
of the ”steady state” must be analyzed, separately.

VI. EXAMPLE

Consider the plant with two-inputs two-outputs described
by

A =

 −a 0 0
0 −a1 0
0 0 a2

 , B =

 1 0
0 k12

0 k22


C =

[
k11 1 0
k21 0 1

]
(39)

where a = −0.8187, k11 = 0.3625, k21 = 0.1813, a1 =
−0.7515, k12 = 0.3728, a2 = −0.6703, k22 = 0.7253.

Assuming the quadratic performance index (2) with

Q = C ′C, R = r diag [1, 1], r = 0.001

we obtain the feedback control law (3) (usingdlqr of MAT-
LAB), where

K =
[

0.8049 2.7368 −1.2485
0.0055 −0.6751 1.2298

]
The CL system (6) has the polesλ1 = 0.0009, λ2 =
0.0148, λ3 = 0.7796.

The considered plant is of third order and has two inputs
and two outputs, thenm = 1 < p = 2. To design the observer
(7) with E = 0 we assumeF = [1 1] and from equations (8)
we obtain

P = [0.6642 1.3307 1.4918],

G = [0.6642 1.5781]

The matricesW andV of dimension3×2 and3×1 we obtain
from (14)

[W V ] =

 15.0112 16.8286 −11.2806
−4.4421 −6.1010 4.0896
−2.7211 −2.0505 2.0448


The equations (15) of the regulator–observer take the form

v̂(t+ 1) = 0.7792v̂(t+ 1)+[−0.7894 − 1.2739]y(t)

u(t) =
[

0.4401
0.3085

]
v̂(t)+

[
−3.3225 0.5920

0.2645 −1.6901

]
y(t) (40)



The state equation of CL system with zero excitations (for
analyzing stability) is[

x(t+ 1)
v̂(t+ 1)

]
=

=


−0.2785 −3.3225 0.5920 0.4401
−0.0785 0.8501 −0.6300 0.1150
−0.1526 0, 1919 −0.5555 0.2238
−0.5171 −0.7894 −1.2739 0.7792

[
x(t)
v̂(t)

] (41)

The CL system has the following polesλ1 = 0.0009, λ2 =
0.0148, λ3 = 0.7796, λ4 = 0.

From Theorem 1 it results that the CL system shown in Fig.
1 and composed of the plant (1), (39) and the regulator (40)
(in the latter equationsy is replaced bye) under excitations
(24) has optimal transients fort ≥ 1. It may be e.g.d∗i (t) =
[Ai sin(ωit+ ψi) + di]1(t), w∗i (t) = wi1(t), i = 1, 2, where
Ai, ωi, ψi, di, wi, i = 1, 2 are given. For the transients
appearing in the system the performance index (25) takes the
optimal value fort ≥ 1.

VII. C ONCLUSIONS

It is known, that the CL multi-variable DT system with the
observer based LQ regulator has the poles being the union of
those of the CL system with LQ regulator and state feedback
and those of the observer [1].

In the present paper the additional property of the mentioned
system has been noted. Namely, the regulator LQ based on
the reduced order Luenberger observer is optimal when the
observer starts from the adequate initial conditions.

The considerations concerning properties for the discussed
regulators, when they start from non-adequate initial condi-
tions of the observer, have the basic meaning utilized in further
considerations. A special case of the dead-bear observer is
considered, which in one step detects the true value of the
state. It is shown that this kind of the observer may be designed
if the number of the plant outputs is equal to at least half of
the number of the plant states. It is also shown that in the CL
system the discussed regulator with the considered observer
is optimal, starting from the next step following the initial
instance of time.

This property of the regulator is partially retained if the
regulator is applied in the CL system with prescribed nonzero
excitations appearing at timet = 0. In this case the property
concern the transients generated in the system after appear-
ance of the excitations. In this case the considered regulator
generates the transients which are optimal, starting from the
next step after appearance of the excitation.

In the case of the continuous-time systems the observer
based regulators has partially similar but somewhat different
properties [4].
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