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Robust stabilization of discrete linear repetitive
processes with application to a physical example

Wojciech Paszke, Krzysztof Ga lkowski, Eric Rogers, David Owens

Abstract— This paper considers the problem of stabilizing
an uncertain discrete linear repetitive process. Such proces-
ses are a distinct class of 2D linear systems which have many
practical applications. The main intrinsic feature which di-
stinguishes them from other classes of 2D linear systems is
that information propagation in one of the two independent
directions only occurs over a finite duration. This, in turn,
means that a distinct systems theory must be developed for
them. Based on a model of an industrial process (metal rol-
ling), robust stability and stabilization under norm-bounded
uncertainty in the model are studied. In particular, stabi-
lizing feedback control laws based on the solutions of linear
matrix inequalities are developed and illustrated by a nu-
merical example.

Keywords— linear repetitive processes, linear matrix ine-
qualities, robust stabilization, metal rolling

I. Introduction

Repetitive processes are a distinct class of 2D systems
of both system theoretic and applications interest. The es-
sential unique characteristic of such a process is a series of
sweeps, termed passes, through a set of dynamics defined
over a fixed finite duration known as the pass length. On
each pass an output, termed the pass profile, is produced
which acts as a forcing function on, and hence contributes
to, the next pass profile. This, in turn, leads to the uni-
que control problem for these processes in that the output
sequence of pass profiles generated can contain oscillations
that increase in amplitude in the pass-to-pass direction.

The analysis of linear repetitive processes has received
considerable attention in the literature — see, for example,
[9], [5], [8], [10]. Although these processes are well known,
many control design problems for them are still (relatively)
open. This stems from the fact that control of these proces-
ses using standard (or 1D) systems theory/algorithms fails
(except in a few very restrictive special cases) precisely be-
cause such an approach ignores their inherent 2D systems
structure, i.e. information propagation occurs from pass to
pass and along a given pass, and the pass initial conditions
are reset before the start of each new pass.

Metal rolling is one of a number of physically based pro-
blems which can be modeled as a linear repetitive pro-
cess [10]. In this paper, we use metal rolling as a basis
to illustrate numerically algorithms for solutions we de-
velop to currently open robust stability and stabilization
problems for the underlying sub-class of so-called discrete
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linear repetitive processes. Based on the state-space model
of such systems, robust stability and stabilization (using an
appropriately specified control law) conditions are solved
in terms of the feasibility of some linear matrix inequalities
(LMIs). These inequalities, in turn, can be solved with well
established effective numerical algorithms [2], [7]. Also, it
is shown that by incorporating additional LMI constraints
a solution with substantially better numerical properties
can be obtained.

Throughout this paper, the null matrix and the iden-
tity matrix with appropriate dimensions are denoted by 0
and I, respectively. Moreover, M > 0 denotes a matrix
M which is real symmetric and positive definite. The fol-
lowing well known results are extensively used throughout
the paper.

Lemma 1: Let Σ1, Σ2, Σ3 and ∆ be real matrices of
appropriate dimensions.

1. [6] For any ∆T ∆ ≤ I and a scalar ε > 0 the following
holds

Σ1∆Σ2 + ΣT
2 ∆ΣT

1 ≤ ε−1Σ1Σ
T
1 + εΣT

2 Σ2 (1)

2. (Schur complement) [1] For matrices Σ1, Σ2, and Σ3

where Σ1 > 0 and Σ3 = ΣT
3 then

Σ3 + ΣT
2 Σ−1

1 Σ2 < 0

if and only if

[
Σ3 ΣT

2

Σ2 −Σ1

]
< 0 or

[
−Σ1 Σ2

ΣT
2 Σ3

]
< 0 (2)

II. Metal rolling as a linear repetitive process

Metal rolling is an extremely common industrial process
where, in essence, deformation of the workpiece takes place
between two rolls with parallel axes revolving in opposite
directions. Figure 1 is a schematic diagram of the process
where one approach is to pass the stock (i.e. the metal to be
rolled to a pre-specified thickness (also termed the gauge or
shape)) through a series of rolls for successive reductions
which can be costly in terms of the equipment required.
A more economic route is to use a single two high stand,
where this process is often termed ‘clogging’.

In practice, a number of models of this process can be
developed depending on the assumptions made on the un-
derlying dynamics and the particular mode of operation
under consideration. Here, however, we will restrict at-
tention to a linearized model of the dynamics of the case
shown schematically in Figure 2. In particular, following,
for example, [3] the model considered is a so-called discrete



2

PSfrag replacements

yk−1(t) yk(t)

Fig. 1. Metal rolling process

PSfrag replacements

FM (t)

M

M

y(t)

Zero Compression
separation

Spring λ1

λ2

Output sensor

yk−1(t) Metal strip

Roller

X

yk(t)

Fig. 2. Metal rolling process

linear repetitive process whose state space model is of the
form

xk(p + 1) = Axk(p) + Buk(p) + B0yk−1(p)

yk(p) =Cxk(p) + Duk(p) + D0yk−1(p),
(3)

Here on pass k, xk(p) ∈ R
n the state vector, yk(p) ∈ R

m

is the pass profile vector, uk(p) ∈ R
l is the vector of con-

trol inputs. To detail the structure for our metal rolling
example, first introduce

uk(p) = FM (p),

xk(p)=
[
yk(p − 1) yk(p − 2) yk−1(p − 1) yk−1(p − 2)

]T
,

A =




a1 a2 a4 a5

1 0 0 0
0 0 0 0
0 0 1 0


 , B =




b
0
0
0


 , B0 =




a3

0
1
0


 ,

C =
[

a1 a2 a4 a5

]
, D = b, D0 = a3.

(4)

where

a1 =
2M

λT 2+M
, a2 =

−M

λ2T +M
, a3 =

λ

λT 2+M

(
T 2+

M

λ1

)
,

a4 =
−2λM

λ1(λT 2+M)
, a5 =

λM

λ1(λT 2+M)
, b =

−λT 2

λ2(λT 2+M)
.

The systems variables in above expressions are: yk−1(t)
and yk(t), which denote thickness of the metal on the cur-
rent and previous pass respectively, M is the lumped mass
of the roll-gap adjusting mechanism, λ1 is the stiffness of
the adjustment mechanism spring, λ2 is the hardness of
the metal strip, λ = λ1λ2

λ1+λ2

is the composite stiffness of

the metal strip and the roll mechanism. Finally, FM (t) is
the force developed by the motor and T is sampling period.

In the design studies given here, the data used is λ1 = 600,
λ2 = 2000, M = 100 and T = 0.1. This yields λ = 461.54
and the following matrices in (4)

A=




1.9118 −0.0047 −1.4706 0.7353
1 0 0 0
0 0 0 0
0 0 1 0


 , B0 =




0.7794
0
1
0




B=




−2.2059 · 10−5

0
0
0


 , D= 2.2059 · 10−5, D0 = 0.7794,

C =
[
1.9118 −0.0047 −1.4706 0.7353

]
.

(5)

To complete the process description it is necessary to spe-
cify the pass length and the initial, or boundary, condi-
tions, i.e. the pass state initial vector sequence and the
initial pass profile. Here these are taken to be of the form

xk+1(0) = dk+1, k ≥ 0

y0(p) = y(p), 0 ≤ p ≤ α, (6)

where dk+1 is an n × 1 vector with constant entries and
y(p) is an m × 1 vector whose entries are known functions
of p.

III. Stability analysis

For processes described by (3) with boundary conditions
(6), several equivalent sets of necessary and sufficient con-
ditions for stability along the pass [10] have been reported
but the following set is required.

Theorem 1: [10] Discrete linear repetitive processes de-
scribed by (3) and (6) are stable along the pass if, and only
if, the 2D characteristic polynomial

C (z1, z2) := det

[
In − z1A −z1B0

−z2C Im − z2D0

]
, (7)

satisfies
C (z1, z2) 6= 0, ∀ (z1, z2) ∈ U

2
, (8)

where
U

2
= {(z1, z2) : |z1| ≤ 1, |z2| ≤ 1} . (9)
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Note that (8) gives the necessary conditions that r(D0) <
1 (asymptotic stability) and r(A) < 1 which should be ve-
rified before proceeding further with any stability analysis.

Next, define the following matrices from the state space
model (3)

A1 =

[
A B0

0 0

]
, A2 =

[
0 0
C D0

]
. (10)

Then we have the following sufficient condition for stability
along the pass of a process described by (3) and (6) in terms
of an LMI.

Theorem 2: [4] Discrete linear repetitive processes de-
scribed by (3) and (6) are stable along the pass if ∃ matrices
P > 0 and Q > 0 satisfying the following LMI

[
AT

1 PA1 + Q − P AT
1 PA2

AT
2 PA1 AT

2 PA2 − Q

]
< 0. (11)

As shown in the remainder of this paper, this theorem
provides an efficient basis for controller design in the case
when there is uncertainty in the process description (in a
sense to be defined next).

IV. Model with norm-bounded uncertainty

In all practically relevant cases there will be uncerta-
inty associated with the (linear) model used for analy-
sis/controller design. Hence robust control is also a key
aspect for these processes and is a subject for which rela-
tively few results are currently available. In this paper we
derive and illustrate on the metal rolling data controller de-
sign algorithms for the following model structure where the
basic assumption is that the uncertainty can be modeled as
an additive perturbation to the nominal model dynamics

xk(p + 1) =(A + ∆A)xk(p) + (B + ∆B)uk(p)

+ (B0 + ∆B0)yk−1(p)

yk(p) =(C + ∆C)xk(p) + (D + ∆D)uk(p)

+ (D0 + ∆D0)yk−1(p).

(12)

The matrices ∆A, ∆B, ∆B0, ∆C, ∆D, ∆D0 represent the
uncertainty in the modeling. These matrices are unknown
except for the facts that they have constant entries and are
norm-bounded, i.e. each matrix ∆M from the set {∆A,
∆B, ∆B0, ∆C, ∆D, ∆D0} satisfies

∆M = HFE (13)

where H and E are some known constant matrices with
compatible dimensions and F is an unknown, constant ma-
trix which satisfies

FT F ≤ I. (14)

To further simplify notation, introduce the so-called au-
gmented process and input matrices respectively for the
nominal model as

S =

[
A B0

C D0

]
, R =

[
B
D

]
. (15)

Then, noting the assumed uncertainty structure (13) and
(14) the following uncertainty matrices can be defined

∆S =

[
∆A ∆B0

∆C ∆D0

]
, ∆R =

[
∆B
∆D

]
. (16)

Also the uncertainty can now be modeled in the form

∆A1 =

[
∆A ∆B0

0 0

]
= Ĥ1FÊ

=

[
H̃1

0

]
F

[
E1 E2

]
,

(17)

and

∆A2 =

[
0 0

∆C ∆D0

]
= Ĥ2FÊ,

=

[
0

H1

]
F

[
E1 E2

] (18)

where

H̃1 =

[
H1

0

]

∆B1 =

[
∆B
0

]
= Ĥ1FE3 (19)

∆B2 =

[
0

∆D

]
= Ĥ2FE3. (20)

Note the that the non-zero parts of Ĥ1 and Ĥ2 both only
consist of the row vector H1.

V. Stability and stabilization of the uncertain

model

Applying the LMI sufficient condition for stability along
the pass given by (11), gives the following result for any
process where the uncertainty associated with the model
to be used for analysis is modeled by the structure defined
in the previous section.

Theorem 3: Discrete linear repetitive processes descri-
bed by (3) and (6) whose defining matrices have the uncer-
tainty structure of (13) and (14) are stable along the pass
if ∃ P > 0, Q > 0 and a positive scalar ε such that




−P PA1 PA2 H1

AT
1 Q − P + εET

1 E1 εET
1 E2 0

AT
2 −Q + εET

2 E1 εET
2 E2 0

HT
1 0 0 −εI


 < 0. (21)

Proof: The LMI condition of Theorem 11 can be rewritten
for the uncertain process of (12) as

[
ÂT

1 PÂ1 + Q − P ÂT
1 PÂ2

ÂT
2 PÂ1 ÂT

2 PÂ2 − Q

]
< 0 (22)

where

Â1 =A1 + ∆A1

Â2 =A2 + ∆A2.
(23)
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Applying the Schur complement (2) formula to the LMI of
(22) now yields




−P PÂ1 PÂ2

ÂT
1 P Q − P 0

ÂT
2 P 0 −Q


 < 0. (24)

Now apply to (24) the first result of Lemma 1, and note
(17) and (18) to obtain




−P + ε−1HHT PA1 PA2

AT
1 Q − P + εET

1 E1 εET
1 E2

AT
2 −Q + εET

2 E1 εET
2 E2


 (25)

Finally, by applying the Schur complement (2) to this last
expression we obtain the LMI condition (21). �

In this paper, a stabilizing control law over 0 ≤ p ≤ α,
k ≥ 0 of the form

uk(p) =
[

K1 K2

] [
xk(p)

yk−1(p)

]
= K

[
xk(p)

yk−1(p)

]
(26)

is sought, where K1 and K2 are appropriately dimensio-
ned matrices to be designed. In effect, this control law is
composed of the weighted sum of current pass state feed-
back and feedforward of the previous pass profile (see [4]
for further background on this form of control action).

The existence of stabilizing K1 and K2 can be characte-
rized in LMI terms as follows.

Theorem 4: Discrete linear repetitive processes descri-
bed by (3) whose defining matrices have the uncertainty
structure defined by (13) and (14) are stable along the
pass under control law (26) if ∃ a scalar ε > 0 and ma-
trices Y > 0, Z > 0, and N such that the following LMI
holds




−W +εĤ1Ĥ
T
1 +εĤ2Ĥ

T
2 A1W + B1N

WAT
1 +NT BT

1 Z − W
WAT

2 +NT BT
2 0

0 ÊW +E3N
0 0

A2W +B2N 0 0

0 WÊT +NT ET
3 0

−Z 0 WÊT +NT ET
3

0 −εI 0

ÊW +E3N 0 −εI




< 0

(27)

In this case, the matrix K is given by

K = NW−1. (28)

Proof: First, consider the stabilization problem in the
absence of uncertainty in the model. Then on applying
(26), the corresponding closed-loop system is

xk(p + 1) = (A + BK1)xk(p) + (B0 + BK2)yk−1(p)

yk(p) =(C + DK1)xk(p) + (D0 + DK2)yk−1(p).
(29)

Hence on using (11) it is clear that the closed loop process
is stable along the pass if ∃ symmetric matrices P > 0 and

Q > 0 satisfying the following matrix inequality
[

ÃT
1 PÃ1 + Q − P ÃT

1 PÃ2

ÃT
2 PÃ1 ÃT

2 PÃ2 − Q

]
< 0. (30)

where

Ã1 = A1 + B1K,

Ã2 = A2 + B2K.
(31)

Note that the matrix inequality (30) is not an LMI because
it is nonlinear with respect to its parameters. Consequently
apply the Schur complement (2) to yield



−P P (A1+B1K) P (A2+B2K)
(A1+B1K)T P Q − P 0
(A2+B2K)T P 0 −Q


 < 0. (32)

Now set P = W−1 and pre- and post-multiply (32) by
diag (W,W,W ), to obtain




−W (A1+B1K)W (A2+B2K)W
W (A1+B1K)T −W + Z 0
W (A2+B2K)T 0 −Z


 < 0,

(33)
where Z = WQW .

Writing this last inequality with the norm-bounded un-
certainties included in the model gives




−W (A1+B1K)W (A2+B2K)W
W (A1+B1K)T −W + Z 0
W (A2+B2K)T 0 −Z




+




0 (∆A1 + ∆B1K)W
W (∆A1 + ∆B1K)T 0
W (∆A2 + ∆B2K)T 0

(∆A2 + ∆B2K)W
0
0


 .

(34)

and the second term in this last inequality can be written
in the form

[
0 Ĥ1 Ĥ2

]



F 0 0
0 F 0
0 0 F







0 0 0

0 ÊW + E3N 0

0 0 ÊW + E3N




Making use of Lemma 1 we can now write



0 (∆A1 + ∆B1K)W
W (∆A1 + ∆B1K)T 0
W (∆A2 + ∆B2K)T 0

(∆A2 + ∆B2K)W
0
0




≤ diag
(
εĤ1Ĥ

T
1 + εĤ2Ĥ

T
2 , ε−1(E1W +E3N)T

×(E1W +E3N), ε−1(E2W +E3N)T (E2W +E3N)
)
.

The result then follows by an obvious (and hence note deta-
iled here) Schur complement (2) and congruence transform.
�
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A. Minimization of the condition number

A great advantage of an LMI approach is a possibility to
include many different specifications in the design problem.
In particular, it enables us to find the solution with many
design constraints —- a key aspect which is often a non-
trivial task to achieve with classical design methods.

As an example to illustrate the above observation, note
that to compute the controller matrices K1 and K2 it is
necessary to compute the inverse of the matrix W — a task
where numerical problems could well arise if this matrix is
badly scaled or almost singular. One option in this case
is to obtain the the solution with the smallest condition
number.

The problem of minimizing the condition number of the
matrix W can be formulated as a Generalized Eigenvalues
Problem (GEVP) [1] of the following form

minimize γ

subject to F (x) > 0, µ > 0, µI < W (x) < γµI
(35)

which can be solved by, for example, the LMI solver (for
example Matlab LMI Control Toolbox [2]). However, the
computational complexity of this approach is ‘quite high’
and it turns out that the so-called EVP [1] problem is more
efficient. This proceeds by re-formulating this last problem
as follows.
First, rewrite the LMI constraint F (x) > 0 and the positive
definite matrix W (x) from (35) as

F (x) = F0 +
m∑

i=1

xiFi, W (x) = W0 +
m∑

i=1

xiWi

Next, define the new variables ν = 1/µ and x̃ = x/µ, which
yields the following EVP problem:

minimize γ

subject to





νF0 +

m∑

i=1

x̃iFi > 0,

I < νW0 +

m∑

i=1

x̃iWi < γI

(36)

In the reminder of this paper we apply the results obtained
to the metal rolling example.

VI. Numerical Example

Consider the metal rolling process whose nominal model
for controller design/evaluation is defined by (12) and (5).
The matrices, which describe the uncertainty model (17)
and (18) are taken to be

H1 =




0.0170
0
0
0
0




, H2 =




0
0
0
0

0.0170




, E2 = 0.0480,

E1 =
[
0.1786 0.0714 0.0979 0.1919

]
, E3 = 7.7584 · 10−5

Application of the controller design procedure of Theorem 4
(27), one solution of the LMI for this example is

W =




5.6684 −2.1322 3.7439 −8.6996 0.3329
−2.1322 23.1669 −0.6607 5.0831 0.2097
3.7439 −0.6607 7.5433 0.9278 1.4752
−8.6996 5.0831 0.9278 24.9010 0.6378
0.3329 0.2097 1.4752 0.6378 2.3759




Z =




2.3563 −0.7834 1.4817 −3.7157 −0.2357
−0.7834 11.9855 −0.3760 1.7207 0.2058
1.4817 −0.3760 3.1808 0.6209 −0.0788
−3.7157 1.7207 0.6209 11.0339 0.3483
−0.2357 0.2058 −0.0788 0.3483 0.8386




N =1.0 · 104
[

0.6298 1.3710 −2.6457 2.7844 −0.2523
]
,

ε =51.1677.

and the corresponding controller matrix is

K = 1.0 · 104
[

7.8062 −0.0254 −4.7855 2.9978 0.9687
]
.

(37)
and the condition number of W is

cond(W ) = 118.7091. (38)

Using the condition number minimization procedure of (35)
now yields

W =1.0 · 10−14

×




0.3036 0.0003 0.0039 −0.0006 −0.0006
0.0003 0.3463 0.0011 −0.0004 0.0001
0.0039 0.0011 0.3225 −0.0002 0.0011
−0.0006 −0.0004 −0.0002 0.3494 −0.0002
−0.0006 0.0001 0.0011 −0.0002 0.2991




Z =1.0 · 10−14

×




0.0222 0.0000 −0.0001 −0.0012 −0.0004
0.0000 0.2308 0.0001 −0.0003 −0.0000
−0.0001 0.0001 0.0148 0.0008 0.0001
−0.0012 −0.0003 0.0008 0.2325 −0.0004
−0.0004 −0.0000 0.0001 −0.0004 0.0141




N =1.0 · 10−9
[
0.2596 −0.0013 −0.2109 0.1159 0.1031

]
,

ε =7.6410 · 10−12.

and the controller matrix now is

K = 1.0 · 104
[
8.6516 −0.0213 −6.6528 3.3300 3.4919

]

and the condition number of W is now

cond(W ) = 1.1693, (39)

which much less than in the previous design.
In the case of EVP procedure (36), the following result

is obtained

W =




1.0090 −0.0007 0.0119 0.0008 −0.0004
−0.0007 1.0484 0.0078 −0.0014 −0.0000
0.0119 0.0078 1.0210 −0.0045 0.0023
0.0008 −0.0014 −0.0045 1.0490 0.0001
−0.0004 −0.0000 0.0023 0.0001 1.0040



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Z =




0.0206 −0.0001 −0.0048 −0.0019 0.0032
−0.0001 0.6989 0.0002 −0.0009 −0.0000
−0.0048 0.0002 0.0154 0.0014 −0.0029
−0.0019 −0.0009 0.0014 0.6985 −0.0008
0.0032 −0.0000 −0.0029 −0.0008 0.0101




N =1.0 · 104
[

8.6695 −0.0848 −6.7136 3.5351 3.4979
]
,

ε =3.3934 · 103.

with corresponding controller matrix

K = 1.0 · 104
[

8.6699 −0.0213 −6.6696 3.3341 3.5025
]

and the condition number of W is now

cond(W ) = 1.0524, (40)

This is comparable to that obtained with the GEVP based
algorithm. Detailed simulation studies (omitted here for
brevity) have confirmed that better all round performance
is obtained with the design where the minimization of the
condition number of the matrix W is included.

In the reminder, the simulation study is presented which
confirms that the obtained controller works properly for
all models encountered by assumed uncertainty set. Be-
low for the controller of (37), the resulted closed loop mo-
del matrices for two choices of the matrix F (F = 0.97,
F = 0.1) together with simulations of a pass profile varia-
ble yk(p) are presented. Assume that there is no control
action, uk(p) = 0 and the boundary condition y0(p) = 1
and xp(0) = 0, p = 0, 1, . . . , α − 1. It is seen that in both
cases, the process has been stabilised.
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Fig. 3. Pass profile of the model (F = 0.97)
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Fig. 4. Pass profile of the model (F = 0.1)

VII. Conclusions

In this paper, we have developed new results on the ro-
bust control of discrete linear repetitive processes and illu-
strated them by application to the model of a metal rolling
process (one of the first physical examples to be recognized
as a repetitive process). By enhancing the design compu-
tations through minimization of the condition number of a
key matrix, it has also been shown that better numerical
properties (relative to the basic case) can be achieved. On
going work is aimed at robust controller design with per-
formance specifications and this will be reported on in due
course.
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