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An alternative empirical emulator can be based on 
analytic neural networks [3]. A key advantage of analytic 
neural networks is that the function to be optimized is a 
quadratic function of the error and has one global optimum. 
This type of neural network has been successfully 
implemented in several industrial applications in The Dow 
Chemical Company [8].  

   
Abstract-- A novel methodology for the development of 
empirical emulators based on analytic neural networks and 
genetic programming is proposed. The capability of the 
analytic neural net-based emulator to detect unreliable 
predictions with a model disagreement indicator is of critical 
importance to process monitoring and optimization.  Genetic 
programming-based emulators generate explicit functional 
models that are more convenient for optimization and on-line 
implementation than black-box solutions. The advantages of 
the proposed methodology are illustrated with an industrial 
application in the chemical industry. 

Another approach for building a successful empirical 
emulator uses genetic programming [5]. By mimicking 
natural evolution and using genetic operators such as 
crossover and mutation, genetic programming delivers 
empirical models in a form of explicit analytic functions 
mapping process inputs to outputs. The main advantage of 
this type of emulators is its ease of implementation. 

 
Index Terms-- Empirical emulators, neural networks, genetic 
programming, process monitoring and optimization 

The development of empirical emulators for process 
monitoring and optimization based on analytic neural 
networks and genetic programming is described in this 
paper. They are used in a real chemical process in The Dow 
Chemical Company. 

I. INTRODUCTION 
Empirical emulators mimic the performance of first 
principle models by using various data-driven modeling 
techniques. The driving force to develop empirical 
emulators is the push for reducing the time and cost for new 
product or process development [1]. Empirical emulators are 
especially effective when hard real-time optimization of a 
variety of complex fundamental models is needed [2]. The 
increased robustness of modern data-driven techniques such 
as analytic neural networks [3], support vector machines 
[4], genetic programming [5], etc. is a reliable basis for 
accurate representation of the behavior of fundamental 
models. This makes it possible to substitute fundamental 
models with their empirical emulators and provides many 
opportunities for effective synergy of these two key 
modeling approaches. 

II. MOTIVATION FOR DEVELOPING EMPIRICAL EMULATORS 
The primary motivation for developing an empirical 
emulator of a first principle model is to facilitate the on-line 
implementation of a model for process monitoring and 
control.  Often times it may prove difficult or impractical to 
incorporate a first principles model directly within an 
optimization framework.  For example, the complexity of 
the model may preclude wrapping an optimization layer 
around it. Or, the model may be implemented in a different 
software/hardware platform than the Distributed Control 
System (DCS) of the process, again preventing its on-line 
use.  In other occasions, the source code of the model may 
not even be available.  In such circumstances, an empirical 
emulator of the fundamental model can be an attractive 
alternative.  An additional benefit is that there is a 
significant acceleration of the execution of the on-line 
model: the computational gain is on the order of 103 – 105 

times faster. 

Most of the known empirical emulators are 
implemented as “classical” neural networks based on a 
back-propagation learning algorithm [1], [6]. Their property 
of being universal approximators is a key theoretical result 
for successful emulation [7]. However, “classical” neural 
networks suffer from a number of problems such as: long 
computational time for training, convergence to local 
minima, sensitivity to weight initialization, too many 
tunable parameters, etc.  These problems put serious 
limitations on the quality of the developed empirical model, 
increase development time, and require experienced model 
developers.  

III. EMPIRICAL EMULATORS STRUCTURES 
The most obvious scheme for utilization of empirical 
emulators is for complete “replacement” of a fundamental 
model.  The key feature of this scheme, shown in Figure 1, 
is that the emulator represents the fundamental model 
entirely and is used as a stand-alone on-line application.  
This scheme is appropriate when the fundamental model 
does not include too many input variables and a robust and 
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parsimonious empirical model can be built from the 
available data generated by design of experiments (DOE). 
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Figure 1.  Empirical emulator as accelerator of fundamental 
models. 

In case of higher dimensionality and model 
complexity, a hybrid scheme of fundamental model and 
emulator integration is recommended (see Fig.2).  
Emulators based only on sub-models with high 
computational load are developed off-line using different 
training data sets. These emulators substitute the related 
sub-models in on-line operation and enhance the speed of 
execution of the original fundamental model. This scheme 
is of particular interest when process dynamics have to be 
taken into account in the modeling process. 
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Figure 2. Hybrid scheme of empirical emulators and 
fundamental models. 
     Finally, an item of special importance to on-line 
optimization is the scheme (shown in Fig.3) where the 
empirical emulator is used as an integrator of different 
types of fundamental models (steady-state, dynamic, fluid, 
kinetic, thermal, etc).   
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Figure 3. Empirical emulator as integrator and accelerator 
of fundamental models. 
 
In this structure, data from several fundamental models can 
be merged and a single empirical model can be developed 

on the combined data. The empirical emulator, as integrator 
of different fundamental models, offers two main 
advantages for on-line implementation [6]. The first 
advantage is that it is simpler to interface only the inputs 
and outputs from the models than the models themselves. 
More importantly, when constructing the data sets by DOE, 
the developer selects only those inputs/outputs that are 
significant to the optimization. Hence, the emulator is a 
compact empirical representation of only the information 
that is pertinent to the optimization. 

The second advantage is that one optimizer can address 
the whole problem, rather than trying to interface several 
separate optimizers. The optimization objectives, costs, 
constraints, algorithm, and parameters are more consistent, 
allowing the multi-model problem to be solved more 
efficiently. 

IV. CONTEMPORARY MACHINE LEARNING TECHNIQUES 
FOR BUILDING EMPIRICAL EMULATORS  

There are different modeling techniques to build empirical 
emulators (for current survey, see [9]). The majority of 
applications discussed in the literature are based on 
“classical” back-propagation neural nets [1], [2], [6]. 
Regardless of illustrating the validity of the approach, the 
delivered solutions have inefficient structures and cannot 
extrapolate well outside the training range. The last 
problem is of critical importance if scale-up of the emulator 
is necessary.   

Three contemporary machine learning techniques 
permit building empirical models (e.g., emulators) with 
robust performance and potential for good generalization 
outside the training range. The first technique is the analytic 
neural network [3]. Analytic neural nets are based on a 
collection of individual, feedforward, single layer neural 
networks, where the weights of the input to hidden layer 
have been initialized according to a fixed distribution such 
that all hidden nodes are active.  The weights of the hidden 
to output layer can then be calculated directly using least 
squares minimization techniques.  The advantage of this 
method is that it is fast and each neural network has a well-
defined, single, global optimum. Since the global optimum 
is guaranteed by design, it is no longer possible to get stuck 
in local minima and the learning algorithm is not iterative. 
As a result, the data-driven modeling process is 
significantly reduced and the developed empirical models 
are parsimonious. In addition, the use of a collection of 
networks gives more robust models, which includes a 
model disagreement indicator, based on the standard 
deviation of the output of the stacked neural nets. Such 
indicators enable the emulators to be “aware” of their own 
performance which is essential for any data-driven model, 
especially for on-line, real-time applications.  

The second technique for robust emulator building is 
symbolic regression performed by genetic programming 
(GP). GP-based symbolic regression is the mathematical 
analogue of natural selection, where numerous potential 
mathematical expressions are evolved, eventually resulting 
in a list of “the best and the brightest” analytical forms, 
according to a fitness selection objective function. The 



following unique features of GP are of special importance 
to industry [8]:  
1. no a priori modeling assumptions  
2. derivative-free optimization 
3. “natural” selection of the most important process inputs  
4. parsimonious analytical functions as a final result.  
 

The last feature has double benefits. On one hand, a 
simple empirical emulator often has better generalization 
capability and is more reliable for operation outside the 
training range.  On the other hand, process engineers and 
developers prefer to use non-black box empirical models 
and are much more open to take the risk to implement 
emulators based on functional relationships.  An additional 
advantage is the low implementation cost of such type of 
emulators, because they can be deployed directly in the 
existing DCS avoiding additional specialized software 
packages, which is typical for many commercially available 
neural network-based models.  

The third technique for robust emulator building is 
support vector machines (SVM). Some recent results show 
that by using a mixture between global (polynomial) and 
local (Radial Basis Function) kernels, empirical models 
with extremely good generalization capability can be built 
[10]. However, SVMs are still an area of active research 
and will not be covered in detail in this paper. 

V. A METHODOLOGY FOR EMPIRICAL EMULATORS 
DEVELOPMENT 

The objective of the proposed methodology is to optimize 
the advantages of the different technologies in order to 
build empirical emulators with high prediction quality with 
minimal development effort. The key steps of the 
methodology are as follows. 

A. Step 1: Define empirical emulator performance 
This step specifies the requirements for a successful 
empirical emulator such as expected accuracy of prediction 
relative to the fundamental model, detection of areas with 
unreliable model prediction, optimization constraints, off-
line or on-line model implementation, software 
environment, maintenance and support.     

B. Step2: Identify critical process variables 
Since the purpose of the empirical emulator is to capture the 
behavior of a complex fundamental model, only the most 
significant process variables have to be taken into account. 
However, reducing the complexity must not be at the 
expense of reduced accuracy of prediction. The selection of 
the critical variables is based on the nature of the problem 
and the existing fundamental model. In addition, factors 
such as the possibility for wide-range variable changes, 
influence on profit, availability of measurements, and 
statistical measures (correlation coefficients, R2, or variable 
importance in multivariate analysis) are taken into 
consideration.  

C. Step3: Planned Design Of Experiments (DOE) 
One advantage of empirical emulators is that the training 
data for building the emulator can be generated using 
design of experiments (DOE) strategies.  This allows a high 
degree of freedom in developing reliable data-driven 
models. Even though the “experiments” are performed in a 
virtual rather than a physical plant, executing the runs still 
demands time, resources and money; so judicious 
experiment selection is important.  Still, we have the luxury 
to do runs in regions where we may never be able to push a 
physical plant because of safety or economic constraints. 

The type of DOE (two-level, three-level, mixed-level, 
or fractional factorial designs [11]) depends on the number 
of critical variables and the expected nonlinear behavior of 
the response surface. It is also possible that the fundamental 
model cannot converge in all edges of the designed space 
and a new DOE sequence may need to be defined. 

D. Step4: Generate data sets 
This step delivers the source of data for empirical emulator 
development. In order to improve the quality and 
robustness of the designed model, the generation of the 
following three data sets is recommended: The “training 
data set” is used for training the neural net (classical or 
analytic) and for performing symbolic regression with GP. 
Usually, this is the data set that is generated by DOE and 
covers the maximal range of input variables. The second 
data set is the “test data set” which is used to validate the 
interpolation quality of the emulator and it is generated by 
random selection of input values within the training range. 
This data set is also used during the neural net development 
for selection of the optimal structure (the number of the 
neurons in the hidden layer), and it is used to validate the 
performance of the GP-generated analytical functions. The 
third data set is the “extreme-range data set” that checks the 
extrapolation capability of the emulator. Usually it includes 
several data points with critical inputs 10-20% outside the 
training range.  This data set is necessary to test if the 
model disagreement indicator (a type of confidence limit, 
discussed in more detail later) is able to detect “uncharted” 
territory and to raise alarm flags for invalid predictions 
outside the training range. Another purpose of the extreme 
data set is to test how the modeling performance degrades, 
especially in operational regions where possible future 
changes are expected. 

E. Step5: Emulator design 
The key step of the methodology includes two options: 

1) Emulator design based on neural networks 
This type of emulator is in the form of a black-box model. 
The designed neural network can be based on a variety of 
architectures (feedforward, recurrent, analytic, etc.) and 
numerous learning/optimization algorithms (back 
propagation, Levenberg-Marquadt, Gauss-Newton, etc.) 
[3], [7]. The critical design parameter that controls the 
prediction quality is the model complexity or the number of 
the neurons in the hidden layer. Usually this is determined 
empirically by selecting a neural network structure with the 
minimal prediction error on the test data set [7]. Due to the 



availability of a balanced data set from DOE and the good 
interpolation properties of the neural networks, this type of 
empirical emulator mimics the fundamental model with 
high fitness (R2 ~ 0.95-0.99). The development process is 
relatively fast, however, it requires specialized knowledge 
of neural networks. 

2) Emulator design based on symbolic regression 
The second option to mimic the behavior of fundamental 
models is by a set of nonlinear analytical functions. In 
contrast to the neural-network-based emulator the model is 
not a black-box but an explicit analytical function. It is a 
result of a simulated evolution based on the genetic 
programming algorithm [5]. The convergence of the 
algorithm toward high fitness functions can be improved if 
the initial set of functions includes transformations that 
reflect the chemistry and physics of the process. Since the 
source of the emulator is a fundamental model based on 
physico-chemical laws, appropriate functional 
dependencies (like the Arrhenius law) can be extracted and 
used in the symbolic regression generation.  
    Due to the random nature of the simulated evolution, it is 
necessary to repeat the design several times. The 
development process requires significant computational 
resources and the manipulation of several design 
parameters (population size, number of generations, number 
of reproductions per generation, probability for function 
selection as next node, etc.) Of special importance is the 
parsimony pressure parameter that controls the complexity 
of the generated functions.  

F. Step6: Off-line emulator validation 
The performance of the derived empirical model is tested 
off-line in as many scenarios as possible.  Usually, at this 
stage of development, the emulator is integrated with the 
optimization package. It is recommended that a complete 
set of test cases is performed, particulary with inputs on the 
edges of the training range and with different constraints.  

G. Step7: On-line emulator implementation 
In many cases the final implementation is an on-line 
empirical model. If the emulator is based on neural 
networks, specialized software may be required for on-line 
deployment (such as Process Insights from Pavilion 
Technologies, Inc., or NeurOnline from Gensym 
Corporation).  This can add additional cost to the emulator 
development and maintenance. In contrast, an empirical 
emulator based on symbolic regression can be directly 
implemented in the control system, precluding the need of 
specialized packages. 

VI. A CASE STUDY: AN EMPIRICAL EMULATOR FOR 
OPTIMIZATION OF AN INDUSTRIAL CHEMICAL PROCESS  

A. Problem definition 
A significant problem in the chemical industry is the 
optimal handling of intermediate products. Of special 
interest are cases where  intermediate products from one 
process can be used as raw materials for another process in 

different geographical locations. The case study is based on 
a real industrial application of intermediate products 
optimization between two plants in the Dow Chemical 
Company, one in Freeport, Texas and the other in 
Plaquemine, Louisiana.  The objective is to maximize the 
intermediate product flow from the plant in Texas and to 
use it effectively as a feed in the plant in Louisiana.  The 
experience of using a huge fundamental model for “what-
if” scenarios in planning the production schedule was not 
favorable because of the specialized knowledge required 
and the slow execution speed (~20-25 min/prediction).  
Empirical emulators are a viable alternative to solve this 
problem. The objective is to develop an empirical model 
which emulates the existing fundamental model with 
acceptable accuracy (with R2 ~ 0.9) and which can 
significantly speed up the calculation time (< 1 sec).  

B. Data preparation 
Ten input variables (different product flows) were selected 
by the experts from several hundred parameters in the 
fundamental model. There are 12 output variables that need 
to be predicted and used in process optimization. The 
assumption was that the behavior of the process can be 
captured with these most significant variables and that a 
representative empirical model could be built for each 
output. A 32-run Plackett-Burman experimental design with 
10 factors at four levels was used as the DOE strategy [11]. 
The training data set consisted of 320 data points. For 15 of 
these the fundamental model did not converge for three of 
the outputs. The test data set included 275 data points 
where the inputs were randomly generated within the 
training range. The extreme-range data set consisted of 181 
data points with some of the inputs at 8-10% outside the 
training range.  

C. Empirical emulator based on analytic neural 
networks 

Several runs with different numbers of hidden nodes were 
done and the results for all 12 emulators are summarized in 
Table 1. 
 
Table 1.  Performance of all emulators on training and test 
data. 
Output R2 NN Training R2 NN Test # Hidden nodes 
Y1 0.91 0.89 30  
Y2 0.994 0.989 20  
Y3 0.984 0.979 20  
Y4 0.987 0.981 20  
Y5 0.991 0.967 30  
Y6 0.999 0.999 1  
Y7 0.995 0.999 1  
Y8 0.995 0.993 10  
Y9 0.994 0.992 10  
Y10 0.992 0.993 1  
Y11 1 1 1  
Y12 0.997 0.989 20  

 



The structure of the neural network for each emulator 
includes 10 inputs and one output.  The same set of inputs 
is used for all emulators. Since single hidden-layer analytic 
neural networks are based on direct optimization, the only 
design parameter to be adjusted is the number of neurons in 
the hidden layer. A number of different structures (with 
between 1 and 50 hidden nodes) were constructed and each 
neural net was optimized based on the training data set.  
The optimal number of hidden nodes was then determined 
by applying each neural network to the test data set and 
selecting the structure with the minimal R2 value.  This 
procedure was repeated for each emulator. 
    One special feature of the analytical neural network is the 
method of initializing the random weights between the 
input and the hidden layer. In order to minimize the effect 
of randomization, it is possible to use a stack of many 
neural networks with the same complexity (i.e., with the 
same number of hidden nodes) for each emulator. In 
principle, combined predictors have better properties than 
individual models [12].  An advantage of this approach is 
that the final prediction is based on the average of all 
models in the ensemble. Of even greater practical 
importance is that the standard deviation between the 
individual predictors can be used to develop a model 
disagreement measure which is a type of a confidence 
indicator for the stacked neural net models and also adds 
some self-assessment capability to the emulator.  
    As it is shown in Table 1, all emulators have acceptable 
accuracy on the training and test data. An example of 
emulator performance for emulator Y5 is shown in Figure 4 
for the training data set and in Figure 5 for the test data set. 
In both cases, the stacked ensemble model disagreement is 
shown (at the bottom of the figures) on the same scale as 
the actual data and thus the range of its magnitude is 
relatively small. As expected, it is somewhat larger for the 
testing data.  
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Figure 4. Emulator Y5 actual and predicted values and 
model disagreement indicator based on training data. 
 
The performance varies between R2 0.89 for Y1 and the 
perfect fit for Y11. The neural network complexity also 
varies – from an almost linear structure of 1 hidden node 
for Y6, Y7, Y10, and Y11 to a structure with 30 hidden 

nodes for Y1 and Y5.  The prediction quality is good in all 
ranges and the model disagreement indicator is low. 
     The role of the model disagreement indicator is to detect 
areas where the predictions are unacceptable due to the 
degradation of neural net performance outside the training 
range.  This is illustrated in Fig. 6.  
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Figure 5. Emulator Y5 actual and predicted values and 
model disagreement indicator based on test data. 
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Figure 6. Model disagreement (MD) indicator and 
prediction error on the threshold of training data. 
 
The figure shows the trends of the model disagreement 
indicator (based on the standard deviation of 30 stacked 
neural networks each with 30 hidden nodes) and the 
prediction error around the threshold of the training data 
range for one of the key inputs. The upper threshold of the 
training range for this key input is 18 while the 3σ 
threshold for the model disagreement indicator is 124 
(based on the model disagreement on the test data).  It is 
observed that below the upper threshold of the training 
range for this input, the model prediction is relatively low.  
The prediction error is still acceptable even up to about 6% 
above this limit, where there is a sharp spike in the error.  
At the same time, the model disagreement indicator tracks 
the prediction error very well (the error spike is above the 
3σ threshold for the indicator). Therefore, this shows that 
the model disagreement threshold is a good metric of 
emulator performance. Furthermore, such an indicator can 



be easily implemented on-line, along with the emulator 
itself. 

D. Empirical emulators based on symbolic regression 
Due to the statistical nature of GP, several sets of simulated 
evolution runs need to be executed. The symbolic 
regression model is derived from a population size of 200 
potential functions that evolve during 300 generations with 
0.5 probability for random crossover, 0.3 probability for 
mutation of functions and terminals, 4 reproductions per 
generation, 0.6 probability for selecting a function as the 
next node, and correlation coefficient as the optimization 
criterion.  The initial functional set for the GP includes: 
{addition, subtraction, multiplication, division, square, 
square root, sign change, natural logarithm, exponential, 
and power}. The complexity of the final solution can be 
controlled through a parsimony pressure parameter that 
penalizes more complex functions with lower goodness of 
fit. A value of 0.05 is a good compromise between the 
complexity of the derived functions and their fitness.  An 
example of a GP-based symbolic regression emulator for 
Y5 is shown below where, x1 to x10 are the emulator inputs. 

(Equation 1): 

 
      The performance on the training data set (shown in 
Figure 7, R2 =0.94) and on the test data set are comparable.  
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Figure 7. Emulator Y5 actual and predicted values from 
symbolic regression on training data. 
       In summary, the performance of stacked analytic neural 
nets is generally better than that of GP-generated emulators 
(training R2 0.99 vs. 0.94; test R2 0.97 vs. 0.94). This is 
consistent with the theoretical property of neural nets being 
universal approximators. Still, the performance of GP-
generated functions is within acceptable accuracy of 
prediction. Deciding which method to use depends on the 
application: Stacked analytic neural nets offer the potential 
for self-assessment of unreliable model predictions and the 
model disagreement indicator, which are of critical 
importance for on-line process monitoring and 
optimization. Although they are faster to develop, they are 
somewhat slower in execution due to the fact that an 
ensemble of models needs to be calculated. On the other 
hand, symbolic regression-based emulators require much 
longer development time due to the computationally 

intensive GP algorithm and nontrivial model selection. 
However, end users are more comfortable optimizing the 
process with an analytical function, such as equation (1), 
than with black-box models. 

VII. CONCLUSIONS 
Empirical emulators mimic well the behavior of large 
fundamental models and effectively represent them in time-
critical applications in process monitoring and control. A 
novel methodology for the development of empirical 
emulators based on analytic neural networks and genetic 
programming is presented in this paper. The methodology 
systematizes the key steps for effective emulator 
development such as the identification of critical process 
variables, planning the fundamental model-based DOE, 
generation of training, test and “extreme” data sets, as well 
as issues regarding emulator design, off-line validation, and 
on-line implementation. The advantages of empirical 
emulators based on the proposed methodology, 
demonstrated in a real industrial application for 
intermediate product optimization between two chemical 
plants in The Dow Chemical Company are: 
1. Analytic neural network-based emulators have a black-

box structure derived from a direct optimization with 
guaranteed global optimum; 

2. The analytic neural network-based emulator 
development is very fast in comparison to back-
propagation neural networks; 

3. The use of stacked analytical neural networks improves 
the prediction quality and gives self-assessment 
capability based on a model disagreement indicator; 

4. GP-based symbolic regression generates emulators that 
represent the fundamental model with explicit 
functions which can be directly included in 
optimization packages for on-line implementation. 
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