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Abstract—Many controlling algorithms were developed to Il. PROCESSIDENTIFICATION

satisfy designer's assumption that controlled process is stable, . - . . .
optimal, adaptive etc. Only few of them should be used in the ARMA model without coefficientby for identification is

real-time, on-line adaptation or implemented into Programmable Used. ARX should be used too, but this model could enough
Logic Controller. Algorithms based on neural networks were represent identified process as can be seen in (1)
successfully tested as for the process control as for the process 1 9 3 1
identification. In simulation, quantization effect given by A/D and (=71 = biz7" +bez7" + b3z _ Ym(z™) 1)

D/A converter is very often left out. Quantization effect influences 1+a1z71 +a9272 +azz=3 UM(z—l)

identified process transfer function and controller possibilities.

In this case, controller controls the process inaccurate and

often with oscillations than without quantization. This paper A. Classical Identification with LD-FIL Matrix Decomposition
shows a comparison between two identification methods. On-  Recursive Least mean Square (RLS) method is used for on-

line identification (in the real time) based on neural networks ;o jqentification in many articles and papers [2]. Usual form
and a classical identification are implemented in adaptive LQ ’

controller with three types of A/D and D/A converters at least With the vector of parametet, and covariance matri€; |
be closer in simulation the real process controlling. could be written as

Index Terms— Adaptive controller, optimal controller, ARMA Oiv1 =0; + Cir10i11 (yz‘+1 — ‘PiT+19i) 2
model, LD-FIL decomposition, Matlab. T 1
Cit1=Ci— Civit1 (1 +¢i11Cipir1)  ¢i11Ci (3)

where i denotes the discrete time;; denotes vector of
|. INTRODUCTION inputs and outputs ang;,; denotes current output.
ARMA model should be rewritten to mathematical model
Two methods for identification are used. Both of thery,, — %,Tﬂgi + € where g, is often called the regression
satisfied assumptions: future implementation into PLC aR@ctor ande is the error. The parameter vector is solved to
real-time solution. The first one, algorithm based on neurﬁﬁnimize |east_square loss function in step
networks is used in comparison with the classical RLS method
augmented by LD-FIL matrix decomposition. LD-FIL as a 0; = (®/ @) @Y, = C;9]Y; (4)
classical robust algorithm could be used mainly for its ath
tributes: numerically stable algorithm and easy implementati%
for on-line solution. Neural networks were used with highly
popular error back-propagation learning algorithm. This paper 01 = Cis1[®], 0it1][Yi,vis1]" (5)
is not focused on identification as a stand-alone part withou o
controlling, but inseparable part of the adaptive LQ controllef ereCyyy Is given by
ARMA model is identified in the closed loop. Identified Ciy1 =[O} ®; + piy10141)
transfer f,unctlc')n is used' in each step in LQ'controIIer.. LQ _ Gi+1Di+1GiT+1 (6)
controller’s action value, input to the process, is solved in the
real-time. In regulation, the step response is not the only singleLD-FIL (lower-diagonal-upper) decomposition algorithm
scale for the measurement of the control quality. Disturbanceuld be used in form as it is illustrated in (7)

cancellation and curse of the action value are other powen‘{lCll C12 0131 l 1 0 01 [dl 0 0] [1 012 913]

ere ® denotes regression matrix and; denotes output
ctor. Next step + 1

spales. Both identification method; for threg diﬁ‘erentquant.iz “Co1 Co2 Co3 giz 1 0010 do 0[]0 1 gog
tion effects are cor_npared further in the _artlcl_e_. In_conclusmn,cg1 32 C33 gi3 gos 1 0 0dsllo o 1
advantages and disadvantages of the identification based on @)
neural networks in comparison with the classical identificatiomhere G, ; denotes lower triangular matri>(,?riT+1 denotes
are presented [4]. upper triangular matrix and,,; denotes diagonal matrix.



Parameters on the main diagonal mainly influence identificahere yil’l)(n) is the function signal of neuron in the
tion. previous layerl—1) at iterationn andw%) (n) is the synaptic

Well-known LD-FIL matrix decomposition is derived byweight of neuron;j in layer!. Numberp denotes inputs. The
lemma for matrix inversion (see 8§x;.; denotes lower- output function of neuror in layer! is sigmoid

triangular matrix 9

()
_ _ _ _ y; ' (n) = -1 (11)
(A+BCD)' =A~! - A-'B(C! ! 1+ exp(—v} (n))
—1 —1 —1
+DA™'B)" DA ®) or identity
then yy (n) = v} (n) (12)
Gi11D; 111G, = GD,G] — G,D,Gl i1 (1+¢f, -~ Hence, the error signal in the output layer (ile= L) is
T -1 T T
CeDiGipin) o GDiC () = dy(m) — 3" (n) (13

= G;i[D; — DG pip1(1+ ¢ GiD; - -

- where d;(n) is the j-th element of the desired signal. The
Gloi1) el GD; |G (1) J 9

weights are solved to minimize sum of squared errors

_ T T
= G; |D; — D;fif; Dzm G; (9 9E(n) _ 0&(n) Oej(n) dy;(n) Ov;(n)
_ o Owji(n)  Oe;j(n) By;(n) dvj(n) Ow;i(n)
where an auxilary vectof; is givenf; = Gy, [3], [5]. Ay, (n)
The third order ARMA model is used. = —ej(n) 3o, (n) yi(n) (14)
J

o Next step is given by backward computation where local
B. Identification Based on Neural Networks gradientss = —9& (n)/dw;:(n) is given by
The third order ARMA model is used in identification based
on neural networks. Neural network should be connected with 09 (n) = i )y (n) {1 - yﬁ»“(n)] (15)
process through its input and output only. Neural network i . .
dynamics is represented by step delays as Fig. 1 shows [41°" output layerL and sigmoidal output function and

o ) = o) [1 = 5 (0] D8V el ) @a6)
k

u(k). y(k)

Process

for hidden layeri. The synaptic weights of the network in
layer( are adjusted according to generalized delta rule (17)

Wi (n+ 1) = w () + a [0l (n) = w0 1)
+ 08 (n)y ™ () (7)

where« is the momentum constant amds the learning-rate
parameter. These parameters represent algorithm’s adjusting
parameters with influence on the rate of convergence. Param-
eters should be limited to intervéd, 1).

Fig. 1. The layout of identification based on Neural Networks. [1l. ADAPTIVE LQ CONTROLLER

. ) ) . LQ controller is solved according to identified ARMA
~ Now, the back-propagation learning algorithm is used {Qode| in each step and according to minimization of the
identify transfer function [1]. On-line algorithm works forquadratic performance [3], [5] and [6]. Identification ensures

pattern-by-pattern updating of weights. Algorithm consists @fyaptation in the real time. Quadratic performance is defined
cycles where initialization of weights should start. Rando

values with physical meaning instead of totally random values ‘

should be used for the weights. For example, the weight T ot T 9 N2
representing:; should be negative or the sumiaf, b, andbs J =x7Qxr + Z @y (wi = yi)” + qului — i)~ (18)
should be positive. Next step is given by on-line updating of =0+l

training examples. The algorithm for choice of samples shoulthere w; denotes desired valuey; denotes output of the

be used to improve identified model [7]. processu; denotes action value,) denotes action value for
Forward computation is the next step where the internaffset elimination and it is equal to desired value. Parameter
activity of each neuror in layer! is given by ¢y (g.) denotes weight for process output (input),denotes

» the first step while the minimization is used and denotes the
0} _Z 0} (1=1) minimum at the last step, + 7. Fig. 2 shows model in
v:'(n) = w:(n)y; n (10) . . 0
() il (=) =) MATLAB/Simulink.
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The quadratic performance can be rewritten to more suitable

Simulation model in MATLAB/Simulink.

form
io+T
T
J = Z Z; QZi7
i=ip0+1
where z} = [x;,w;,u)] and x] =

Output

Comparison

(19)

Silui, xi—1, wi,ud] =

_E Step H Equation Notes
tesed vab ki signal 1. H* = H,, — HL_H_,.H,, | recursively solves lost function
; N o .
st v | — o ¥ it - — 2. GDGT =H LD-FIL decomposition
s Quantizert > - _ .
T | oA D 3. u; = —Gup GuaXi_1 solves action value
L el Quantizerz

and the minimum is given for derivation by, equal to
zero at last stepy + 7'

min[Wi,47] = 24 7y (Haw

- HEIH;ulHuz)ZioJrTfl (24)
wherez] ;. isz}  ,_, withoutu, 71 and
H — |:guuguw:| (25)

We can simply see thaH is the symmetric matrix and
consecutively the next minimization stép+ 7 — 1 is defined

by

: and ! , min[W 1] = zi, p  H'Zi 171
Siz;—1 and weight matrixQ is more universal. The weight . Qz; (26)
matrix (22) is implemented to the quadratic performance fo+T—1 %o+ T—1

in equations (23), (24) and (26). This means the matrikhere matrixH* = H,, — H! H_,!H,, is defined at step
can realize the quadratic performance and even more as:@r T. Using LD-FIL decomposition (see (7)) for matr&
incremental weighting or an integral action. We will workinstead ofd, whereH = GDG™ we can rewrite the quadratic
with pseudo-state matri$ = [S,,S., S, S,o] defined by performance to the triangular factor quadratic norm
equations (20) and (21) where for our example, model’s order

. . - ,,01T 2
isn =r =3 and the coefficient, = 0. 1G[wi, i1, wi, wi] | 27)

T Now, it is simple to find control low:; with influences on the
Su = [ 100 b 0 0 ]T first row only of the minimization at step
S, = 000 0 1 0 (20)
S, = [ 00 0 0 . 0 1 ] o o
) ) where the minimum is giveiG,.x; _1||> andG..,, G, and
000...00 G, are sub-matrices ofx. Finally, the control low is given
100...00 by
0...0...00 e _G;jGu;cXi—l (29)
S, = |b1...bray...a, (21)
0...01...0 LQ is solved at the each one step ahead. Table | shows
A recursively solved LQ iteration algorithm.
LO...00...0-

Universal weight matrix should be written in many forms IV. SIMULATION RESULTS

to designer’s expectation [5], [6]. One example of universal Comparison of both type identifications and the potential
matrix shows equation (22) consequences of the skipped quantization effect are shown in
the simulation experiment on the process with transfer function

M qu —qu0... 0 0 —qu]
—Qu ¢ 0... 0 0 O F _ 2 30
0 0 qu... 0 0 0 50) = A0 s 712 (30)
Q=|0 00...qpy 0 —¢4 0 (22) where disturbance enters between process main dynadrgics
o i Q —qy 0 and additional, faster dynamids;> (e.g. servomechanism)
0 0 0...—gy—qy qy O 2
¢, 0 0... 0 0 qu Fa(s) = 10s + 1 (31)
The method for the minimization in the each step ahead is 1
known and it is described at the next equations (23), (24) and Fao(s) = (s+1)2 (32)
26 . .
(26) Fig. 3—10 show the process response and disturbance can-
Jio =2} 7187 QSziys7—1 =2, .p_Hz;17_1 (23) cellation together with controller action value. Figures show



both identification methods. The process output (every 1
sub-figures) and input (every lower sub-figures) are show
desired step set tp2 V at time20 s. Deterministic disturban
step set to+1 V at time 80 s. The sampling period was
to Ts = 1 s at the beginning. In Fig. 3, the classical F
identification in closed loop with LQ controller is shown.
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Fig. 3. Adaptive LQ controller with closed loop identification. The sam)
period isTs = 1 s. LD-FIL decomposition is used. A/D and D/A conver
are 12bits.

Simulation result shows that adaptive LQ controller ¢
work well for the sampling period’s = 1 s, but provided tr
sampling period decreases it reduces overshot and sc
time. Decreasing of the sampling period is very impo
for disturbance cancellation too. Because of this reasol
sampling period was set tB; = 0.1 s. Fig. 4 shows the RIL
identification in closed loop with LQ controller. A/D and C
converters are not used.
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Fig. 5. RLS identification with LD-FIL decomposition in closed loop with

LQ controller for 12bits A/D and D/A converter§s = 0.1 s.
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Fig. 6. Identification based on neural networks with the momentum constant

« = 0.01 and the learning-rate parametgr= 0.001 in closed loop with LQ
controller for 12bits A/D and D/A converter§s = 0.1 s.

The idea of decreasing sampling period has been already
justified. Problem becomes when the simulation is extended
with a quantization effect. A/D and D/A converters produce
the quantization effect in each real control processes. The
precise control input and process output values are reduced to
imprecise values according type of A/D and D/A converters.
For example, 12bits A/D or D/A converters limited 4010 V
reduce values witld valid positions divisible by).0048 V.

Fig. 5, 7 and 9 show the RLS identification with LD-FIL
decomposition in closed loop with LQ controller.

Fig. 6, 8 and 10 show the identification based on neural
networks in closed loop with LQ controller.

Three quantization effects given by A/D and D/A converters

Fig. 4. Adaptive LQ controller with closed loop identification. The samplin .
period isTs = 0.1 s. LD-FIL decomposition is used. A/D and D/A converters%re compared.

are not used.

« 12bits A/D and D/A converters;



« 10bits A/D and D/A converters;

« 8bits A/D and D/A converters.
Input to the process is limited t&10 V. Both identification
are used for the same set-up of LQ controller with purpo
the equivalent comparison.
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Fig. 7. RLS identification with LD-FIL decomposition in closed loop \
LQ controller for 10bits A/D and D/A converter§s = 0.1 s.
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1% 20 20 60 P 100 120 140 of better disturbance cancellation. Figures show the control
mslz) without quantization effect and three types of quantization
effects, given by A/D and D/A converters, influences adaptive
Fig. 8. ldentification based on neural networks with the momentum constaggulation. For 12bits A/D and D/A converters, both results
a = 0.01 and the leaming-rate parametgr=0.001 in closed loop with LQ - gre usable. Identification based on neural networks, according
controller for 10bits A/D and D/A converter§s = 0.1 s. R
to its input and output, has been much better adapted than
RLS identification with LD-FIL in comparison with 10bits
converters. For 10bits, results are usable, but RLS identifi-
cation with LD-FIL decomposition could not identify given
The presented paper showed where the closed loop on-lgystem in adaptive LQ controller without oscillations of input.
identification based on neural networks could be better usedr 8bits A/D and D/A converters, both results are useless.
than the classical identification. Both identification methodSutputs oscillate.
were used in adaptive LQ controller. In Fig. 3-10, the processldentification based on neural network with LQ controller
output and input together with disturbance response are showorks better according to input smoothness, output overshot
The sampling period was decreasedTi9 = 0.1 s because etc. The reasons way the identification based on neural net-

V. CONCLUSIONS



works has been more successful could be explained in several
ways:

1) error back-propagation algorithm works with the param-
eter momentum (the parameter momentum works as a
filter to avoid oscillations but similar filter added to the
classical controllers produces slower step response);

2) the classical identification sampling period cannot be too
short otherwise identification transfer function loses the
correct estimation of the real process;

3) the neural networks identification does not have to use
every samples as classical identification [7].

On the other hand, identification based on neural networks
needs initialization which is always problematic. Simulation
results are solved in MATLAB/Simulink. Algorithms are
prepared for implementation into PLC B&R. Identification
RLS with LD-FIL matrix decomposition has been already
successfully tested on the real physical models.
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