
 1

A Distributed Blackboard-based Control System for
Modular Self-Reconfigurable Robots

T. L. Lau H. Y. K. Lau Albert Ko

The University of Hong Kong
Department of Industrial and Manufacturing Systems Engineering

Pokfulam Road, Hong Kong SAR, China
e-mails: aux1496@hkusua.hku.hk

Abstract

 Modular Self-Reconfigurable (MSR) robots are
made up of identical mechatronic modules that can be
assembled into a variety of structures to facilitate different
kind of works. The controlling of MSR robots is similar to
the control of a distributed cooperating system, in which
all modules must be coordinated correctly to complete a
common task.

In this paper we discuss the implementation of the
distributed blackboard architecture for locomotion control
of a MSR robot. We have used computer to construct a
model of the MSR robot and used it to demonstrate the
capability of a simple rule-based blackboard control
system in coordinating a group of modules to perform a
common task using purely local control rules and through
communication between neighboring modules.

Keywords

Self-Reconfigurable Robots, Modular Robots, Blackboard
Systems, Distributed Autonomous Systems, Locomotion
Control.

1. Introduction

Modular Self-Reconfigurable (MSR) robots
[4][16][18][14][12][6][9] are robots made up of many
identical but independent mechatronic modules that can be
disconnected and reconnected autonomously and to
rearrange into different structures that can facilitate the
robot to complete its tasks more effectively. Each
individual module is a self-contained unit equipped with its
own processor to control the module’s movement and to
facilitate communication with neighboring modules.

MSR robots’ ability in self-reconfiguration makes
them particularly useful for applications in unstructured,
remote and hazardous environment such as deep sea
exploration, space exploration, urban rescue, mining,
intelligent material handling and military intelligence.
Since all modules are identical, if any module in a system
is damaged; the robot can simply discard the damaged

module and quickly replace it with another one located
nearby. This functionality gives MSR robots a distinctive
advantage over conventional robots in repairing itself
while far from home on a mission.

In spite of all the advantages MSR robots has to offer,
there are many challenges to overcome before these robots
can have practical applications outside of research. One of
the biggest challenges is to develop decentralized control
system that does not require a designated leader for
coordination. The rationale for not having a centralized
controller (a leader) is to avoid a MSR robot (i.e. the group
of connected mechatronic modules) from having a
concentrated (specific weak point, i.e. the leader,) weak
point of failure and to achieve total homogeneity in
module design.

Because of the unique advantages distributed control
systems has to offer for self-reconfigurable robots,
researchers around the world have examined many
different approaches to the mechatronic and control
algorithm design of different kinds of MSR robots. Butler
et al. at Dartmouth College [5] proposed a distributed goal
recognition technique called “Trace” to generate global
shape using only local knowledge and local
communication. Unsal et al. [15] at Carnegie Mellon
University have presented a multi-layered planner for the
motion of modules with a combination of distributed
approaches at the high-level with low-level pre-defined
rules for trajectory motions. Bojinov et al. at PARC [3]
applied multi-agent control to randomly generated stable
structures based on local rules.

In this paper we will present the application of a
distributed blackboard-based system for controlling the
locomotion of a 5-module MSR robot based on limited
local information. Blackboard-based systems are systems
built on a model in which a number of experts cooperate in
solving a particular problem [13]. Blackboard systems are
inherently suitable for MSR robots due to the following
key attributes [4][13]:

Modularity – the arrangement of blackboard system

components (knowledge source, blackboards,
independent processors, etc.) is highly flexible, and
can be arranged in self-contained groups of modules.

 2

Merging of Knowledge – decisions are reached by
consulting with multiple experts. Each module of the
robot can be treated as an expert in the problem
solving process.

Continuous Problem Solving – solutions are built

incrementally and continuously over time, hence,
there is always a current best solution. This is
particularly useful for the robot to handle unexpected
events.

Parallel Processing – the modularity of many knowledge

sources in the system generates a coarse-grained
parallelism at the module level.

Totally Distributed Design – the system has no leader, no

teacher, nor any centralized elements, therefore no
concentrated (specific) weak point of failure.

Through the incorporation of the abovementioned

characteristics, the proposed 5-module MSR robot has
been built and tested in a computer simulated environment
using MATLAB. Details of system design, experiment
setup and test results are presented in the following order.
Section 2 provides an overview of the blackboard analogy,
different blackboard architectures, and advantages of
employing blackboard systems in MSR robots. Section 3
presents the simulation setup, model design, locomotion
control and communication scheme. Section 4 proposes the
future plan of our research and a conclusion is given in
Section 5.

2. Blackboard Systems

2.1 An Overview

To visualize the idea of a Blackboard model, we can
visualize three experts sitting in a meeting room equipped
with a blackboard (Figure 1). The blackboard is viewable
to all experts at all time but only one piece of chalk is
available for writing. Without any particular order, expert
Beta goes up to the blackboard, picks up the only piece of
chalk and writes down her problem. Expert Alpha sees the
problem and writes on the blackboard what he thinks is
useful in solving the problem. Expert Delta analyzes the
information posted by Beta and Alpha and writes down his
opinion. This scenario is repeated continuously. Each
expert adds their knowledge to the blackboard, and
reevaluates their own opinion with respect to the new
information. Eventually the problem can be solved when
enough information is gathered. This model of a basic
blackboard system is shown in Figure 1.

There are three core components in a blackboard
system: one is the blackboard for communication purpose
and the other two are the independent knowledge source
and its associating processor. By arranging these
components in different configurations, unique blackboard

architectures can be designed to suit specific needs.
Distributed Blackboard architecture (DBB) [10], for
example, is designed for a low-bandwidth distributed
network environment. DBB systems have separate
blackboards for each expert and information exchange is
done between processors only. For faster operation, the
Blackboard Server architecture (BBS) [8] was developed
to eliminate multi access to the blackboard by designating
one expert as the server to read and write to the blackboard
and to channel information to other experts. Other
architectures include the Virtual Blackboard (VBB) [1] and
Shared Memory Blackboard (SMBB) [11]; each has a
distinct architecture and advantages over others in different
applications.

Figure 1: The basic architecture of a Blackboard System.

In the following section we will discuss why we
have chosen the Distributed Blackboard (DBB)
architecture as the control framework of our MSR robot
and present the basic architecture of the system.

2.2 Distributed BBS for MSR Robots
 When choosing a control system for our MSR robot,
we firmly respect several criteria to ensure the proposed
system can be easily implemented to our MSR robot under
development and is general enough to be implemented on
other decentralized MSR robots. These criteria are:

�
 Total Modularity – the system must be able to

implement on modules that are absolutely identical in
mechatronic design.

�

 High Expandability – the system must be able to
evolve into more intelligent systems, i.e. to incorporate
intelligent learning systems such as neural network.

�

 High Scalability – the system must be equally effective
in control and communication regardless of the number
of modules it is implementing on.

Processor
01

Processor
02

Processor
03

BLACKBOARD

Knowledge
Source 01

Knowledge
Source 02

Knowledge
Source 03

Expert Delta Expert Beta Expert Alpha

 3

With respect to the above requirements, the
Distributed Blackboard architecture (DBB) is the best
option for our application because it is inherently divided
into self-contained modules comprising all core
components, the blackboard, the processor, and the
knowledge source (total modularity). Like all other
blackboard systems, DBB systems can be programmed to
perform intelligent learning and reasoning (high
expandability), and communication performance is not
hindered by the number of modules within since DBB
systems can support data parallelism very well [2]. The
function of the three core components in each MSR robots’
modules can be roughly outlined as follow:

The Blackboard can be treated as a synchronized

temporary information storage that stores information
created locally or mirrored from other module’ s
blackboards through inter-module communication.
The stored information is synchronized among all
blackboards within the MSR robot, so each processor
has exactly the same common information to work on.

The Knowledge Source stores common knowledge that is

essential for the system to operate, such as rules for
controlling the movement of the module and for
evaluating the environment. This component is also
responsible for storing unique knowledge acquired
through learning during operations.

The Processor is the “brain” of each module, responsible

for decision making and communication with other
modules to update information on the blackboard(s).
Together with the knowledge source, a processor can
learn to acquire unique knowledge for problem
solving; hence it is capable of shaping its
corresponding module into an independent specialist.

The layout of a DBB system is illustrated in Figure 2.

Arrow lines indicate information flow and dotted lines
represent boundaries of modules. To understand how
information flows in a DBB system, let us consider the
sample system below.

When an external stimulus comes through the sensor
(e.g. a tactile sensor returning a contact signal) of a module
of the MSR robot that reaches processor_02 as a digital
signal, processor_02 will carry out two different
procedures for control and communication purposes. For
control purpose, processor_02 will evaluate the input
signal and execute the program command stored in the
knowledge source to direct the movement of the module or
to evaluate the environment. For communication purpose,
processor_02 will post the signal on blackboard_02 as a
new piece of information and pass the same information to
all directly connected neighbors, i.e. processor_01 and
processor_03. Processor_01 and processor_03 will post the
received information on their corresponded blackboards
and execute program command in respond to the signal. In

addition, processor_01 and processor_03 will pass again
the information to their neighboring processors, and
similarly, the neighboring processors will pass the
information to its neighbors. The information transmission
process continues until all modules have the same
information on their blackboard.

Figure 2: Distributed Blackboard system (DBB).

3. Locomotion Control

 In this section, a distributed control system based on
the DBB system for controlling the locomotion of the
5-module MSR robot is presented. The five modules are
arranged in a looped chain that resembles the shape of a
pentagon and can perform planar rolling like the tractor
belt of a tank. The purpose of this experiment is to
demonstrate how a simple rule-based blackboard control
system can coordinate a group of self-contained modules
to perform a common task using purely local control rules
executed at every module and through communication
between neighboring modules alone.

3.1 The Simulation

The mechatronic module we want to simulate in this
experiment is a two link mechanism connected by a hinge
joint. The simulated environment is assume to be
absolutely flat and has no obstacles in the robot’ s line of
motion. The simulation model was developed using
MATLAB. Figure 3 shows the basic structure of a single
module.

The links of the module are represented by 2 vectors
expressed in polar coordinates. The tail of the module (the
end of the rear link) is marked with a little square, the
origin of the module (where the two links join) is marked
with a circle, and the head of the module (front end of the
head link) is left unmarked to avoid confusion when
connected to another module. The two links of the module
are labeled as Head Link and Rear Link respectively. The

Blackboard
01

Blackboard
02

Blackboard
n

Processor
01

Processor
02

Processor
n

Knowledge
Source

 01

Knowledge
Source

 02

Knowledge
Source

 n

Module No. 2 Module No. 1 Module No. n

 4

angle between the rear link and the x-axis is called the
global angle; it increases in counter clockwise direction
with zero starting from the positive x-axis. The local angle
is the external angle between the rear link and the head
link, when this angle equals zero, the two links form a
straight line.

Figure 3: Computer simulated module.

 The initial stage of the simulation begins with all 5
modules connecting head to tail to form a closed loop. All
modules’ local angles are adjusted to equal value, hence
forming a perfect pentagon. Figure 4: shows the initial
stage of the model simulated in MATLAB.

Figure 4: Initial stage of the simulated MSR robot.

 To avoid the model from overlapping with the x-axis
during simulation, we have arbitrarily chosen y = 2 as the
ground and set initial position of the origin of module_1 at
(7, 2). Before any module can initiate a move, there are
certain information that all modules must submit to the
blackboard and cross evaluate. These information are:

Call-signs of the two neighboring modules –

In this experiment, all modules are assigned with a

call-sign and are capable of reading the neighboring
modules’ call-sign. These simple pieces of information
enable all modules to understand if the robot is
forming a close loop or an open-end structure.

Local angle –

By analyzing the value of all local angles together
with the order of each module’ s call-sign, the shape of
the robot can be determined by the processors.

Ground contact signal –

All modules are assumed to have a touch sensor at
their origin and can return a ground_contact signal if
the origin of the module is in contact with the ground.
In the simulation this is done by comparing the
y-value of each module’ s origin to the arbitrarily
defined ground at y=2.

3.2 Control Strategy

A pentagon resting on ground has 2 ground_contact
points and an upright trapezoid has three. If we
continuously transforming the robot between these two
stages in the same direction, we can produce a very simple
planar locomotion scheme to mobilize the simulated robot.
Figure 5 illustrates the main steps in the transformation
process.

Figure 5: Transformation between a perfect pentagon and
an upright trapezoid.

From stage A to B:

Starting from a perfect pentagon with 2
ground_contact points, the robot shifts its center of
gravity to the right by moving the three modules
without a ground_contact signal to the right.

From stage B to C:

To increase ground_contact points to three, the robot
lowers down the front tip to form an upright trapezoid.

From stage C to D:

In order to keeps the robot rolling to the right, stage C

 5

must transform again into a perfect pentagon. The
robot will give up one ground_contact at the back,
adjust its local_angle and shift center of gravity
towards the front.

From stage D to E:

While keeping the two ground_contact points
unmoved, all modules adjust their local_angle to
equal value (i.e. 72 degrees) to become a perfect
pentagon again.

One complete cycle of the above transformation

process is considered as one step.

3.3 Blackboard Communication
 Following Section 3.1 that describes the basic design
of the simulated robot and the setup of the simulation
environment; and Section 3.2 that describes the control
strategy, this section concentrates on how DBB system is
used in our simulation to control the movement of the
robot and to facilitate communication between modules. In
contrast to the board overview of the entire system in
section 3.1, and 3.2, here we will focus on the operation at
local level to see what exactly each module is doing and
what information is being exchanged.

Assuming all modules has already come to a
conclusion that they are connected in a closed loop. If
stage A (Figure 5) is to roll in a clockwise direction to the
right and transform itself into stage C; all modules with a
ground_contact signal will post a message on the
blackboard to see which module is the most appropriate to
initiate the move. The knowledge source of all eligible
modules will inform their associating processors to take
the initiative if their module is the closest to the intended
direction of motion. In this case module_1 (see Figure 4)
will take the initiative. Processor_1 of module_1 will
retrieve parameters of stage C (i.e. the ground_contact
signal, local_angle, and relative position within the system)
from the knowledge source and compare these parameters
with module_1’s current parameters. By substituting these
parameters into a set of preliminary rules, processor_1 will
be able to list what module_1 need to do to initiate the
transformation. These information will be broadcast to
other processors to update their blackboards.

When module_1 begins to adjust local_angle_1,
processor_1 will continuously post the latest reading of
local_angle_1 and alert all other modules when the
adjustment is done. Simultaneously, processor_2 of
module_2 acknowledges the intention of module_1 from
the blackboard, it will consult with its own knowledge
source to retrieve the corresponding duty for its position in
relation to module_1. While executing rules from the
knowledge source (e.g. closing up local_angle_2);
processor_2 will broadcast updated parameters of
module_2 to other processors in turn to update their
blackboards.

This process of evaluating information, posting

information, and adapting to new information will keep on
continuing in the remaining modules. The transformation
process from stage A to C will stop when all parameters
from each module are identical to the specific parameters
of stage C.

The control schemes for transforming from stage A
to C and stage C to E are basically identical. The only
difference is in gaining or losing one contact point after the
transformation. The reason to start the transformation cycle
from a perfect pentagon is to provide an obvious visual
check point during simulation. Any arbitrary shape such as
an inversed trapezoid will work just as fine. Figure 6 lists
all information broadcast on the blackboard during a
transformation from stage A to C, then from C to E.

M Information broadcast to the

blackboard

Descriptions

1

5

Ground_contact_1

Ground_contact_5

Transform from A to C

Bidding for initiative

1

1

1

Module_1 will Initiate

Decreasing local_angle_1

Wait for Module_2

ground_contact signal

Module_1 is the front most

modules in the direction of

action.

1

2

3

4

5

Adjust local_angle_1

Adjust local_angle_2

Adjust local_angle_3

Adjust local_angle_4

Adjust local_angle_5

All modules adjust local_angle

to facilitate Module_1’s

motion.

2 Ground_contact_2 Achieved 3 ground_contact

Transformation from A to C

completed

1

1

2

Fix local_angle_1

Module_1 give up initiative

Module_2 will initiate the next

transformation

Transform from C to E

Pass on initiative role to

module_2

5

1

2

3

4

5

Giving up ground_contact_5

Adjust until local_angle_1 = 72

Adjust until local_angle_2 = 72

Adjust until local_angle_3 = 72

Adjust until local_angle_4 = 72

Adjust until local_angle_5 = 72

Transform from

3 ground_contact (trapezoid)

to

2 ground_contact (pentagon)

Adjust all local_angle to 72 to

form a perfect pentagon

 Transformation complete when

all local_angle = 72

Figure 6: The far left column indicates to which module
the information belongs to. Each blocked roll represents
one round of information exchange.

4. Conclusion

 Before MSR robots can realize all of its compelling
promises, a flexible decentralized control system must first
be available. Multiagent systems have gained much
attention in recent years and have shown promising result
when applied to some lattice type MSR robots. The use of
distributed blackboard system to control the proposed
5-module, chain type MSR robot has successfully

 6

demonstrated the feasibility of using a simple rule-based
blackboard control system to execute simple locomotion
control such as traversing of level terrain.

With the design of the particular MSR robot shown
in this paper and the application of the blackboard-based
control scheme, the ability of coordinating a group of
agents (the module of the MSR robot) to carry out a
common task by executing purely local control rules (the
updating of the blackboards and performing corresponding
procedures for motion commands according to the current
state and constraints) and through communication between
neighboring modules alone is demonstrated through
MATLAB simulation.

Most of our work devoted till now has been focusing
on the demonstration of using distributed blackboard
control system to coordinate a small group of modules to
perform simple tasks. Our next step is to exploit the
exceptional learning and reasoning capacity of the
blackboard systems and to integrate feedbacks from
distributed sensors to detect obstacles and uneven terrain.

Reference

[1] L.S. Baum, V. Jagannathan, and R.T. Dodhiawala,

(1989). The Erasmus System. In V. Jagannathan, R.T.
Dodhiawala and L.S. Baum, editors. Blackboard
Architectures and Applications, pages 347-370.
Academic Press, San Diego, CA, 1989.

[2] R. Bisiani, and A. Forin (1989). Parallelization of
Blackboard Architectures and the Agora System. In V.
Jagannathan, R.T. Dodhiawala and L.S. Baum, editors.
Blackboard Architectures and Applications, pages
153-178. Academic Press, San Diego, CA, 1989.

[3] H. Bojinov, A. Casal, and T. Hogg. Multiagent Control
of Self-reconfigurable Robots. In Proc. of the Intl.
Conf. on Multiagent Systems. IEEE, 2000.

[4] H. Bojinov, A. Casal, and T. Hogg. Emergent
Structures in Modular Self-reconfigurable Robots. In
Proc. of the Intl. Conf. on Robotics & Automation.
IEEE, 2000.

[5] Z. Butler, R. Fitch, D. Rus, and Y. Wang. Distributed
Goal Recognition Algorithms for Modular Robots. In
Proc. of the Intl. Conf. on Robotics & Automation.
IEEE, 2002.

[6] A. Castano, and P. Will. Mechanical Design of a
Module for Reconfigurable Robots. In Proc. of the Intl.
Conf. on Intelligent Robotics & Systems. IEEE, 2000.

[7] R.S. Engelmore and A.J. Morgan. Blackboard Systems.
Addison Wesley, Reading, UK, 1988.

[8] V. Jagannathan (1989). Realizing the Concurrent
Blackboard Model. In V. Jagannathan, R.T.
Dodhiawala and L.S. Baum, editors. Blackboard
Architectures and Applications, pages 85-97.
Academic Press, San Diego, CA, 1989.

[9] A. Kamimura, S. Murata, E. Yoshida et al.
Self-Reconfigurable Modular Robot – Experiments on

Reconfiguration and Locomotion. In Proc. of the Intl.
Conf. on Intelligent Robotics & Systems.. IEEE, 2001.

[10] V. R. Lesser, and D. D. Corkill, (1983). The
Distributed Vehicle Monitoring Testbed: A Tool for
Investigating Distributed Problem Solving
Networks. In R.S. Engelmore and A.J. Morgan,
editors. Blackboard Systems, pages 353-386.
Addison Wesley, Reading, UK, 1988.

[11] J. Rice, N. Aiello, and H.P. Nii (1989). See How
They Run…The Architecture and Performance of
Two Concurrent Blackboard Systems. In V.
Jagannathan, R.T. Dodhiawala and L.S. Baum,
editors. Blackboard Architectures and Applications,
pages 153-178. Academic Press, San Diego, CA,
1989.

[12] D. Rus, and M. Vona. A Physical Implementation of
the Self-reconfiguring Crystalline Robot. In Proc. of
the Intl. Conf. on Robotics & Automation. IEEE,
2000.

[13] D.G. Schwartz. Cooperating Heterogeneous Systems.
Kluwer Academic Publishers, Dordrecht, Nethlands,
1995.

[14] C. Unsal, and P.K. Khosla. Mechatronic Design of a
Modular Self-Reconfiguring Robotic System. In
Proc. of the Intl. Conf. on Robotics & Automation.
IEEE, 2000.

[15] C. Unsal, and P.K. Khosla. A Multi-Layered Planner
for Self-Reconfiguration of a Uniform Group of
I-Cube Modules. In Proc. of the Intl. Conf. on
intelligent Robots and Systems. IEEE 2001.

[16] S. Vassilvitskii, J. Kubica, and E. Rieffel. General
Reconfiguration Problem for Expanding Cube Style
Modular Robots. In Proc. of the Intl. Conf. on
Robotics & Automation. IEEE, 2002.

[17] M.J. Wooldridge. An Introduction to multiagent
systems. John Wiley & Sons, West Sussex, England,
2002.

[18] M. Yim, D.G. Duff, and K.D. Roufas. PolyBot: a
Modular Reconfigurable Robot. In Proc. of the Intl.
Conf. on Robotics & Automation. IEEE, 2000.

	Conference Program
	Author Index
	Main Menu

