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Abstract— In this note a set of preliminary results on the
control of a large-scale continuous-time plant with decen-
tralized multirate sampled-data control network system is
proposed. Sufficient conditions for the solvability of the de-
centralized control network problem are given in terms of
the continuous-time plant. The multirate sampling mech-
anism and the use of a local network enlarge the class of
plants to be stabilized with decentralized controllers.
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Stabilization.

I. INTRODUCTION

HE stabilization problem of a large-scale plant with

independent decentralized controllers has been deeply
investigated [1]-[6]. Digital solutions such as multirate de-
centralized controllers have been studied in [7]-[9]. A mul-
tirate control scheme of a plant is characterized by dig-
ital time-invariant controllers operating on each channel
with different sampling rates. A continuous-time plant
with such a multirate sampling mechanism can be effi-
ciently modelled by a periodic discrete-time system [10].
Therefore, the results on analysis and control of periodic
discrete-time systems can be used for solving different mul-
tirate control problems.

The purpose of this note is to present a preliminary set
of conditions for the existence of a stabilizing decentralized
controller of a large-scale continuous plant. This problem
has been analyzed in [7], for the case of single-rate sam-
pling in each input-output plant channel, and in [8], for
a discrete-time plant. A different approach has been pro-
posed in [11] with data exchange among the output chan-
nels of the plant. A generalization of this solution has
been here investigated, a continuous-time plant is consid-
ered with the input and the measured output of each plant
channel updated and sampled respectively with the same
time intervals, the measured outputs connected to a lo-
cal area network for the data exchange among the output
channels of the plant. In general, the input-output channels
have sampling rates. The main tools for deducing the exis-
tence conditions are based on the algebraic approach devel-
oped for the class of periodic systems (see, e.g., [12], [13])
and here specified and adapted to the class of multirate
sampled-data systems. A set of sufficient conditions for the
solvability of the decentralized control network problem is
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proposed. This result shows that the multirate sampling
mechanism and the use of a local network enlarge the class
of plants to be stabilized with decentralized controllers.

II. PRELIMINARIES

Consider a linear time-invariant continuous-time plant
3¢, characterized by ¢ input-output channels and described
by

i(t) ACzC(t) + Z B us(t) (1)

yi(t) = Ciac(t),

where z¢(t) € IR" is the state, u§(t) € RV, i = 1,...,0,
are the control inputs, y5(t) € R%,j = 1,...,0, are the
measured outputs. The stabilization problem of ¥¢ with
a decentralized continuous-time control system, constituted
by o independent controllers with input y$(-) and output
u$(+),i = 1,...,0, has a solution if and only if X is sta-
bilizable and detectable and all the 2 — 2 complementary
subsystems are weakly complete, i.e. 3¢ has no unstable
fixed modes (see, e.g., [1], [3]).

Now, for solving the stabilization problem by a decentral-
ized multirate control system consider a multirate control
scheme of system ¢, where each input-output channel op-
erates with its own sampling and hold rate, different from
the other ones, i.e. the measured output y$(-) of the chan-
nel ¢, with ¢ € {1,...,0}, is sampled with a period N;T,
and the control input u$(-) of the same channel is connected
with a zeroth order circuit whose hold interval is N, T, with
N; € ZT and T, € IR. Denote with w the least common
multiple of the integers N;, i = 1,...,0. Without loss of
generality, it is assumed that the greatest common divisor
of the integers N;, i = 1,...,0, is equal to 1 and all the
samplers and hold circuits are synchronized at time t = 0.

The corresponding discrete-time state-space model %¢
of the multirate sampled-data system is characterized by o
input-output channels and given by the series connection
of w-periodic systems ¥;, i = 1,...,0, which describe the
mechanism of zeroth hold circuits, with ¥, which represents
the sample-data system associated to X¢ ([14], [15]). The
w-periodic system 3; of the channel 4, with i € {1,...,0},
has the following form:

%i((k—‘rl)Tc) =
uf(KT,) =

j=1,....0 (2)



where k € Z*1, 7;(kT.) € R is the state, ul(kT) € R¥
is the input of channel i of X4, S;(k) := (I,, — S;(k)), I
denotes the identity matrix of dlmensmn Di, and Si(+) is an
w-periodic matrix given by:

diag{o;(k)},
I 17 k:]Nu
oilk) = {0, k£ NG,

The w-periodic system f), with ¢ input-output channels,
has the following form:

Silk) = (5)

(6)

jert.

e((k+1)T.) = e z°(kT,) —|—ZBd (kT.)

i=1

Ty(k) CS2°(KT,), j = 1,...,0

(7)
(8)

where k € Z*, B? = fOTC eA"(Te=0) Bedh and Ty(-) is an
w-periodic matrix given by:
Tj(k) = diag{r;(k)},

1, k= zNJ .
;o= ’ ’ z+.
Tj { 0, k#iN RS
Then, the w-periodic discrete—time model 2% of the mul-
tirate sampled-data system is given by:

o (KT, +ZB

y;(kTe) =

(9)
(10)

z((k+1)Te) ) us (KT%)

(11)

yi(kT.) = Cjk)x(kT.), j=1,...,0 (12)
where k € Z™T,
z(kT,) = [Z1(kT.) Zo(KT.) ... To(kT,) 2¢(kT.)') € R™,

with 7 := n+ Y7 | p;, is the state, and the w-periodic
matrices A(-), B(-) and C(-) have the following form:

S1(k) 0 0 0
0 Sa(k) - 0 0
A(k) = : : : :
0 0 So (k) 0
B¢Si(k) BgSa(k) B35, (k) eATe
B;(k) =0 0 Si(k) 0 0 (BIS;i(k)) ]

Cj(k):[O 0O --- 0 Tj(kz)C’;],

III. PROBLEM STATEMENT

Given the plant X¢ and the set of sampling and hold
circuits corresponding to the o channels, consider a control
network scheme characterized by linear discrete-time local
controllers C;, for ¢ = 1,...,0, making use not only of the
measured output y;(-) of the local channel 4, but also of
the other outputs connected by a local network, as shown
in Fig.1. The idea is that each controller takes information
from all the o channels, in order to avoid the possible lack
of the structural properties required for the decentralized
solution to the stabilization problem of %¢.

The different sampling periods of the o channels and
the time delay of the data transmission on the network
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Fig. 1. Decentralized control network architecture.

make impossible, for each controller C;, with ¢ € {1,...,0},
the real-time acquisition of the measured outputs y;(-), for
j=1,...,0 and j # i. Controller C;, at sampling time ¢,
acquires the last sample y;(t;) of output channel j, with
t; <t;,j=1,...,0andj # i. The delay on the acquisition
is modelled keeping memory of the samples of each chan-
nel for a time delay d := maz; j—1, . o k=1, w-1(di;j(k)),
where d;; (k) is the w-periodic time shift, at time &, between
the sampling time at channel ¢ and the sampling time at
channel j, for i,j =1,...,0. The extended w-periodic sys-
tem ¥, whose representation let model this mechanism, is
given by

z((k+1)T)

I
N
=
8l
=
=3
+
iy
=
&
£
=3

y;(KT) =

with the extended state and outputs

y; (KTe)
y1 (IFTe)
z(kTe) :
S (k-DT) | :
LU(/CTC) = R y](ch) = yjfl(lj71TC)
: (I T
xc((kfd)Tc) y]+1(lj+1 )
L ya(l;I?ch) -
lk: . k_va k:hNu
i T\ Ni[k/Ni], k+#hNik=hN;,
heZ", ij=1,....0, i#j (15)

where [] is the integer part function, Z(kT.) € IR", with
= (d+1)n+ X7 pi, ;(kT.) € RY, with := 3°7_, g,
and



A(k) =
r Si(k) 0 0 0 0 -+ 0 07
0 So(k) - 0 0 0 --- 0 0
0 0 5. (k) 00 0 0
BYS, (k) BES,(k) BiS, (k) e*Te 0 0 0
0 0 0 I, 0 0 0
0 0 0 0 I, 0 0
L o 0 . 0 0 0 ... I, 0l
Bi(k) := [o 0 S;(k) 0 --- 0 (BIS;(k) O 0]
ro0 - 0 Ti(k)CS 0 T
0 -~ 0 0 Ci (k)
Ci(k)=|o 0 0 Ok
0 -~ 0 0 Cjy1(k)
Lo .- 0 0 Gy (k) |
with
Cu(k) = [Tih)Cs T(H)Cs Ta(i)C ]
-~ k L 1, l’,j:k—m,
Tnlln) = {o, Ay —
h=1,...,0, m=1,...,d.  (16)

Making use of the notations above introduced, the consid-
ered control problem is here stated.

Decentralized Multirate Control Network Prob-
lem (DMCNP) The stabilization problem of 3¢ by a
decentralized multirate control network system consists of
finding for each input-output channel a linear discrete-time
periodic local controller C; with period w/N; and of the form

Zi((h+ D)NT,) = F'(h)@;(hN;T.) + G*(h)y;(hN;T.)
(17)
(18)

u;(hN;T.) = H'(h)z;(hN;T.)

such that the w-periodic closed-loop system given by 2% and
independent controllers C;, for i =1,...,0, is asymptoti-
cally stable.

In order to analyze the solvability conditions of the
introduced problem, the time-invariant representation of
the extended multirate sampled-data system % is here
recalled. The state transition matrix of ¥ is expressed
by ®(k, ko) := A(k — 1)A(k — 2)... A(ky) with k& > ko,
k ko € Z*, and ®(k,k) := I, for all k € Z*. For any
initial time kg € Z™T, the output response of the w-periodic
system % for k > kg, to given initial state z(ko) and con-
trol functions u;(+), can be expressed throughout the time-

invariant associated system of ¥ at time kg, denoted by iko
[16]. This time-invariant state-space representation of 3 is
similar to the lifted representation of an input-output peri-
odic operator considered in [17] and [18]. For an arbitrary

time k, system " is represented by
*(h+1) =

E* Z%(h) + i: JEuk(h) (19)
=1

[eg
i [ sk ko k
gi(h) = LEzF(h)+ > MEuf(h),
=1
i=1,...,0 (20)
where
EF = <f>(k+w,k),
TE o= [AF(0) AF(w—1)),
AF () Bk +w, b+ €+ 1)Bi(k+0),
Ly = 50 CEEN
The) = Cj(k+0B(k+ k),
©3:(0,0) 6% (0,w — 1)
M= : 5 7
85 (w —1,0) 6F(w—1,w—1)
S 0, t<r,
Ot = {éj(k+e)‘i>(k+l,k+r+1)Bi(k+r), >r
lr=0,1,...,0w—1,4,j=1,...,0.

It is easy to see that, if z%(0) = z(k) and uf(h) =
[ui(k + hw) .. uw(k+w—1+hw)]),i=1,...,0, for
all h € Z*, where Z1 denotes the set of non-negative
integers, then z%(h) = z(k + hw) and gf(h) = [g;j(k+
hw) ... gilk+w—14+hw) ], j=1,...,0,forallh e Z*.
Thus, gj}%),j =1,...,0, gives g;(-) in a lifted form over
each period, provided that uf(-),i = 1,...,0, coincides
with the lifted form of u;(-) over each period. Moreover,
the characteristic polynomial of E* is independent of k,
and, by the periodicity of ¥, it characterizes the stability
of ¥ [19]. For this reason the eigenvalues of E* are called
the eigenvalues of X.

IV. MAIN RESULTS

The solvability conditions for the decentralized problem
of periodic systems have been stated in [6]. These results
can be used for introducing the solvability conditions of
DMCNP in terms of periodic representation of the multi-
rate sampled-data system X. In order to introduce such
conditions, the following notations are needed.

A complementary subsystem Y77 of ¥, associated to the

sets T := {i1,...,ipt and J := {j1,..., 5}, withZ N J =
pandZ U J ={1,...,0}, has the form
((k+1)T.) = A(k)z(kT.)+ Br(k)ur(kKT,) (21)
gJ(ch) = Cj(k)f(ch) (22)
where Bz(k) := [Bi, (k) By, (k) ... B;, (k)] and Cgz(k) :=
[C), (k) Cj, (K)" ... C, (k)]

The time-invariant representation i; 7 of ©77 has the
same structure of 3" with matrices JE, L% and M%, de-
fined as J*, L* and M*, with B(k) and C(k) substituted
with Bz (k) and C (k) respectively.

Lemma 3.1. [6] The DMCNP admits a solution if and
only if:

(i) system X is stabilizable and detectable, i.e. for an ar-
bitrary k € Z* and for all z outside the open unitary disk,

rank [ E¥ — 21 (23)

T
B ZI"} = 7; (24)

rank [ Fk



(ii) the 27 —2 complementary subsystems Y77 are weakly
complete, i.e., for all T and J, for an arbitrary k € Z*
and for all z outside the open unitary disk,

EF — 21, Jk _
rank = 2T | > (25)
Ly Mgz
Denoting with B := [Bf B, Bf | and C° :=

[Cs7 s’ ... CL'], the solvability condition can be stated
in terms of the given continuous time-invariant system ¢
if the sampling rates are chosen appropriate to system >.°.
Theorem 3.1. Given a continuous-time plant X.¢ which is
stabilizable and detectable, the DMCNP has a solution if:

(1) every pair (MG, A;) of distinct eigenvalues of A°, with
Re[XS] = Re[Af] > 0, has Im[AS — Af| # +2hw /wTy, for all
helZzt;

(ii) the 27 — 2 conditions

(26)

c _ c
rank [A M BI] >n

ce 0

are verified for all T and for each unstable eigenvalue A of
Ac.

The proof of this theorem has been performed mak-
ing use of some results on the analysis of linear periodic
discrete-time systems [13], Jordan form of matrix A¢ and
elementary operations on matrices of conditions (23), (24)
and (25).

The conditions of Theorem 3.1 are not related to the
multirate mechanism but only to the least common mul-
tiple of the sampling and hold intervals. The condition
(i) of Theorem 3.1 preserves the stabilizability and deter-
minability of system ¥ and the fulfillment of condition (i)
of Lemma 3.1 if condition (ii) of Theorem 3.1 is verified.

The design of the controllers C;, for : = 1,...,0, is per-
formed in three steps.

(Step 1) Making use of classical algorithms (see, e.g., [1],
[2], [4], [5], [20]), compute time-invariant decentralized con-

-0 e L .
trollers C, for the stabilization of the time-invariant system

5° (the time-invariant representation of 3 at time ¢ = 0).
(Step 2) Making use of the algorithm proposed in [21],

compute an w-periodic realization C; associated to E?.
(Step 3) Compute the discrete-time system C; with sam-

pling rate N;T, corresponding the w-periodic system C;.

V. NUMERICAL EXAMPLE

Consider a linear time-invariant continuous-time plant
3¢, characterized by ¢ = 2 input-output channels and de-
scribed by

z°(t) = A°z°(t) + By ui(t) + Bsus(t)
yit) = Craf(t)
ys(t) = C5a°()
where
1 0 1 1 0
A=0 0 1|,BS=|0]|,B5=]1
0 -1 0 0 1

cs=10 1 0], Cs5=[0 0 1]

and characterized by different sampling and updating pe-
riods, T1 = 2 sec and T, = 3 sec.

For this plant the conditions for the existence of a simple
decentralized multirate control system designed without in-
formation exchange between the two output channels are
not verified, missing a solution for the decentralized control
problem.

On the contrary, the conditions of Theorem 3.1 for the
existence of a solution to the DMCNP are verified and a de-
centralized control multirate system can be implemented.
In this case, it is possible to design two independent single-
rate controllers C; and Cs, which guarantee the asymptot-
ical stability of the closed-loop system.

VI. CONCLUSIONS

The problem of stabilizing a large-scale continuous-time
plant characterized by different sampling and updating in-
tervals for each input-output channel of the plant has been
here analyzed.

A preliminary result for the development of a decentral-
ized digital control network system is introduced. The pos-
sibilities for stabilizing a large-scale continuous plant by a
decentralized digital control system are improved through-
out the output data exchange by using local networks.
Each local controller of the digital control scheme can make
use of the local sampled-data output measures and of some-
one or of all output measures of the other channels to avoid
the lack of structural properties.

This work introduces a set of preliminary results useful
for a future research on the analysis of the performances
of a decentralized control network in terms of robustness
and/or parameters uncertainties. Moreover, an interesting
problem to be analyzed is the problem related to the prob-
able asynchronism of data sampling and of data updating
among the various channels of a real digital decentralized
control network scheme, due to physical and/or technolog-
ical constraints.
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