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Controller Tuning for Integrating Processes with 
Time Delay 

Part III: The Case of First Order plus Integral 
plus Dead-Time Processes  

Kostas G.Arvanitis, George Syrkos, Iakovos Z.Stellas, and Nick A.Sigrimis, Member, IEEE 

Controller tuning for FOLIPDT processes has received mo-
derate attention in the past. Few tuning rules for PI/PID con-
trollers have been reported in the literature, for this type of 
processes. Known PI/PID controller-tuning methods for 
FOLIPDT processes are based in ultimate cycle information 
[9], on minimization of IAE [10] and ITAE [11] criteria, on 
direct synthesis approaches [5] and on robust control techni-
ques [12]-[14]. Alternative modified controller structures, 
(such as two degree of freedom controllers, series controllers 
with derivative filtering, non-interacting controllers, control-
lers with special set-point weighting, etc.) have also been pro-
posed and tuned (see [6] and the references therein). Most of 
these tuning rules yield large overshoot and settling time, as 
well as poor robustness. 

  
Abstract— In this paper, Pseudo-Derivative Feedback (PDF) 

controllers are designed for first order plus integral plus dead-
time (FOLIPDT) processes. Simple methods for tuning the PDF 
feedback controller are presented. The PDF control structure 
and the proposed tuning methods ensure smooth closed-loop res-
ponse to set-point changes, fast regulatory control and satisfa-
ctory robustness against parametric uncertainty. The proposed 
methods require small computation effort and they are particu-
larly useful for on-line applications. Simulation results show that 
our methods are favorably compared to the already known PI/ 
PID controller tuning methods for FOLIPDT processes. 
 

Index Terms— Pseudo-derivative feedback, controller tuning, 
process control, integrating processes, dead-time processes, first-
order lag. 
 The goal of the third part of the present paper on controller 

tuning for integrating processes with time delay, is to extend 
the control and tuning method presented in [15] for the control 
of IPDT processes, to the case of FOLIPDT processes. In 
particular, the “pseudo-derivative feedback” (PDF) controller 
configuration, first proposed in [16], is investigated here as an 
alternative means of tuning simple two and three controllers 
for FOLIPDT processes, with enhanced set-point tracking ca-
pabilities. Two alternative methods for tuning PD-0F and PD-
1F controllers for FOLIPDT processes are proposed in the 
paper. Similarly to the IPDT process case, the first set of the 
proposed PD-0F and PD-1F tuning rules relies on accurate 
approximations of the delay term through first order Taylor 
and Padé expansions, respectively, and of the crossover fre-
quency of the Nyquist plot of the loop transfer function. The 
second sets of the proposed PD-0F and PD-1F controller set-
tings, relies on the approximation of the delay term through 
first order Taylor expansion and on an alternative more accu-
rate approximation of the crossover frequency. The tuning 
rules are expressed in terms of adjustable parameters, which 
can be appropriately selected, either to achieve a desired dam-
ping ratio for the closed-loop system or to ensure the mini-
mization of classical integral criteria, such as the integral of 
squared error (ISE) criterion, the integral of squared error plus 
normalized square controller output deviation (ISENSCOD) 
criterion [17], and the integral of squared error plus the 
normalized squared derivative of the controller output 
(ISENDCO) criterion, for either set-point tracking or regula- 

I. INTRODUCTION 

I NTEGRATING processes are frequently encountered in the 
process industries. Many chemical and agricultural proces-

ses can be modeled, for the purpose of designing controllers, 
by an integrator plus dead-time (IPDT) model [1]-[6]. This 
model is able to represent the dynamics of many systems over 
the frequency range of interest for simple three-term control-
lers. However, in some cases, IPDT model is inadequate to 
model process dynamics. For example in the case where the 
process has both large and small time constants, a simple 
IPDT model cannot capture system behavior. In this case, 
alternative types of integrating models with time delay must 
be used to adequately represent process dynamics. Among 
them, the first order lag plus integral plus dead time 
(FOLIPDT) has received great attention in the past [5]-[8]. 
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Fig. 1. The general PDF control structure.  
 
tory control. It is worth noticing that, in contrast to the case of 
IPDT models, here the adjustable parameters minimizing inte-
gral criteria are functions of the ratio of the process time delay 
and the process time constant. 

A variety of simulation studies have been performed in the 
paper and the performance of the proposed methods is compa-
red to that of known PI/PID controller tuning methods for 
FOLIPDT processes. The obtained results are rather satisfa-
ctory. In contrast to known conventional PI/PID tuning rules 
that result on large overshoot in the closed-loop response, the 
proposed controller structures and tuning methods ensure 
smooth response and satisfactory robustness against parame-
tric uncertainty. This enhanced performance is plausible 
without the need for setpoint weighting or the introduction of 
set point filters. The comparison also reveals that the proposed 
methods provide fast attenuation of step load disturbances, in 
addition to enhanced closed-loop response to set-point chan-
ges. Overall, the results of the present paper, together with its 
companions [15] and [18] provide the means for a rather 
simple and effective design of two and three term controllers 
for integrating/time delay processes. 
 

II. FOLIPDT PROCESSES AND THE PDF CONTROLLER 
STRUCTURE 

First order lag plus integral plus dead time (FOLIPDT) pro-
cesses are described by the following transfer function model 
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where K, T and d are the process gain, time-constant and time 
delay, respectively. The magnitude and the argument of the 
FOLIPDT model are given by 
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The PD-0F and the PD-1F controllers are special cases of 

the general PDF control structure, depicted in Fig. 1. More 
precisely, the PD-0F controller corresponds to the case where 
KD,i=0, for i=1,… ,n-1 and KD,0≡KP≠0, while the PD-1F con-

troller corresponds to the case where KD,0≡KP≠0, KD,1=Kd≠0 
and KD,i=0, for i=2,…,n-1. As it has been shown in [15], the 
PD-0F controller is equivalent to a standard PI controller with 
set-point filter of the form 1/(θs+1), with 

 
θ=ΚP/KI (3) 
 
while the PD-1F controller is equivalent to a standard PID 
controller with set-point filter of the form 1/(δθs2+θs+1), with 

 
pd K/K=δ  (4) 

 
Taking into account this equivalence, the loop transfer fun-

ction of a FOLIPDT system controlled by a PD-0F controller 
is given by 
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Similarly, the loop transfer function of a FOLIPDT system 

controlled by a PD-1F controller is given by 
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III. PD-0F AND PD-1F CONTROLLER TUNING FOR FOLIPDT 
PROCESSES 

Solving the equation arg(Gp(jωu)) = - π, we take 
 

uu
1 d

2
)T(tan ωπω −=−  (7) 

 
Equation (7) is obviously nonlinear and has no analytic so-

lution. Since the calculation of ωu is important for the deriva-
tion of rules for PD-0F controller tuning of FOLIPDT pro-
cesses, we next apply the approximation tan-1(x)≈x in (7). Sol-
ving the resulting equation yields 

 

d̂2uω ≈   ,  Tdd̂ +=  (8) 

 
For small values of T, the approximation 
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is next used in (5) to obtain 
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Using the same argument in the case of a PD-1F controller, 

we obtain the relation 
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Clearly, with these manipulations, relations (10) and (11) 

resemble to relations (4) and (7) reported in [15]. Since (8) 
also resembles to relation (2b) reported in [15], it is obvious 
that the problem of controller tuning for FOLIPDT processes 
with dead-time d, reduces to that of controller tuning for IPDT 
processes with an augmented time delay d̂ . Therefore, one 
can apply the methods presented in [15], in order to obtain the 
following settings for PD-0F and PD-1F controllers in the case 
of FOLIPDT processes: 

PD-0F Controller Settings for FOLIPDT models 
The PD-0F controller settings are selected as 
 

( ) Kd̂ˆ8
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where  is an adjustable parameter, which can be chosen as β̂
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in order to obtain a desired damping ratio for the second 
order approximation of (10), having the form 

desζ̂
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Alternative PD-0F controller settings can be obtained from 

the minimization of integral criteria. However, in contrast to 
what happens in the case of IPDT models, in the case of 
FOLIPDT processes, the optimal values of the parameter  
minimizing these integrals are not fixed. They depend on the 
dimensionless parameter u=d/T, and they can be easily obtai-
ned using simple optimization algorithms. Due to space limita-
tions, we do not present here the optimal values of the adjusta-
ble parameter 

β̂

β̂  and the minima of the integral criteria. We 
only present, in Table I of the Appendix, some simple esti-

mates of the functions β̂ (u), which have been obtained by 
fitting their optimal values. 

1+

PD-1F Controller Settings for FOLIPDT models 
The PD-1F controller settings are selected as 
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where γ̂  is an adjustable parameter, which can be chosen as 
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in order to obtain a desired damping ratio desξ̂ for the second 
order approximation of (11), having the form 
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Alternative PD-0F controller settings can be obtained from 

the minimization of integral criteria. Table II of the Appendix, 
summarizes some simple estimates of the functions γ̂ (u), 
which minimize some of these integrals and which have been 
obtained by fitting the optimal values of the adjustable para-
meters, given by optimization algorithms. 

Approximation (9) is of course valid for small values of T 
or s, while, for large values of T, the actual closed-loop system 
may differ from those given by relations (14) or (18). Howe-
ver, as it can be easily seen by simulation, relations (12) and 
(16) provide acceptable PD-0F or PD-1F settings even for 
large values of T. A way to obtain a more satisfactory closed-
loop performance is the following: 

Rewrite (7) in the form 
 



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
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2
tanT ωπω  (19) 

 
and use the following approximation for the tan function 

 
tan(x) ≈ x + x2[π(0.5π - x)]-1 (20) 
 

Using (20) in (19) yields 
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provided that KI<1/(d2K). Clearly, inequality (25) provides the 
admissible range of the PD-1F controller parameter KP. 

We are now able to present a method for tuning the PD-1F 
controller parameters in the present case. The proposed me-
thod is as follows: 

 
Equation (21) provides a very accurate estimation of the 

crossover frequency. 2nd PD-1F Controller Tuning Method for FOLIPDT models 
Observe now that equation (6) can alternatively be written 

as As for KP, we choose the middle value of the allowed range 
given by the inequality (25). That is  
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or, by using (3), where 
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Observe now that if Kd is selected as 
 

I
2
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If θ is specified, then, the PD-1F controller settings can be 
obtained from (27), (3) and (22). Here, as for θ, it is proposed 
to choose 
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where ωu is given by (21) and γ1 is an adjustable parameter. 
With this choice, we obtain 
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After some easy manipulations, the above equation can be 

written as 
and 
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 The adjustable parameter γ1 can be selected appropriately in 

order to satisfy several design specifications for the closed- 
loop system. As in the case of IPDT processes, parameter γ1 
can be selected in such a way that a desired damping ratio ηdes 
is obtained for the second order approximation (24). In this 

Simulation results show that this kind of manipulation, 
leads to controller settings, which are more satisfactory in the 
case of large values of T, and they offer more acceptable 
closed-loop performance. 
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case, γ1 must be the minimum real root of the quadratic equa-
tion 

The Routh stability conditions about equation (34) yield 
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For the present method, alternative PD-1F controller set-

tings can be obtained from the minimization of integral crite-
ria. Table III in the Appendix summarizes some simple esti-
mates of the functions γ1(u), which minimize these integrals 
and which have been obtained by fitting the optimal values of 
the adjustable parameters, given by optimization algorithms. 

 
We next present an alternative method for tuning the PD-0F 

controller in the case of FOLIPDT processes. The proposed 
method is as follows: 

2nd PD-0F Controller Tuning Method for FOLIPDT models 
Now, returning to the problem of tuning PD-0F controllers, 

observe that equation (5) takes the form 
As for KP, we choose the middle value of the allowed range 

given by the inequality (35). That is 
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where or, by using (3), 
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Expanding F(s) in Mclaurin series and taking the second 

order approximation, we obtain  
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It is now proposed to choose θ, according to the following 
relation 
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where γ2 is an adjustable parameter and where x1 and x2 are 
given by (29b) and (29c). With this choice, we obtain the 
following settings for the PD-0F controller parameters 

Substituting (33) in (32) and taking into account (9), we 
finally obtain 
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The adjustable parameter γ2 can be selected appropriately in 
order to satisfy several design specifications for the closed- 
loop system. As in the case of IPDT processes, parameter γ2 
can be selected in such a way that a desired damping ratio 

des  is obtained for the second order approximation (34). In 
this case, γ2 must be the minimum real root of the quadratic 
equation 
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For the present method, alternative PD-0F controller set-  
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Fig. 2c. Legend as in Fig. 2a, but, now, with a setpoint filter of the form 
1/(θs+1) added in the PI controller configuration. 

Fig. 2a. Servo response for different methods for PI and PD-0F controller 
tuning, without the use of setpoint filters. Solid-black: first proposed method 
( =0.8); solid-blue: second proposed method (γβ̂ 2=0.8317); dot: S-method-I; 
dash: S-method-II; dash-dot: M-method. 
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Fig. 2d. Legend as in Fig. 2b, but, now, with a setpoint filter of the form 
1/(θs+1) added in the PI controller configuration, when the P-P method is ap-
plied. 

Fig. 2b. Servo response for different methods for PI and PD-0F controller 
tuning, without the use of setpoint filters. Solid-black: first proposed method 
( =0.8); solid-blue: second proposed method (γβ̂ 2=0.8317); dash: P-P 
method; dot: A-H method. 

 
thods for PD-0F controller tuning with the methods for PI con-
troller tuning reported in [9] (M-method), [10] (S-method), 
[11] (P-P method) and [5] (A-H method). The PI controller 
settings given by the M-method are KP=0.1377, θ=10.8715. S-
method provides the settings KP=0.1853, θ=11.1 (S-method-I) 
and KP=0.3173, θ=12 (S-method-II) (see [6] for details). The 
settings obtained from the application of the P-P method are 
KP=0.1991, θ=14.0007, while the A-H method yields KP= 
0.1182, θ=26.0568. The servo responses obtained by applying 
the M-method as well as the settings given by S-method-I and 
S-method-II are shown in Fig. 2a. The performance of the 
proposed controller, whose settings are given by relations (12) 
and (13) for desζ̂ =1 ( β̂ =0.8) as KP=0.1852, KI=0.0123 and by 

relations (39a), (39b), (40), for  (γ1~
des =ζ 2=0.8317) as KP= 

0.1974, KI=0.0132, are also given in Fig. 2a. Fig. 2b illustrates 
the servo responses obtained by the application of the P-P me-
thod and the A-H method together with those obtained by the 
proposed PD-0F controller structure and tuning method. From  

 
tings can be obtained from the minimization of integral crite-
ria. Table IV summarizes some simple estimates of the fun-
ctions γ2(u), which minimize these integrals and which have 
been obtained by fitting the optimal values of the adjustable 
parameters, given by optimization algorithms. 
 

IV. SIMULATION STUDIES 
In order to demonstrate the effectiveness of the proposed 

control structure and tuning methods for FOLIPDT processes 
and to provide a comparison with existing tuning formulas for 
conventional PI/ PID controller tuning, a numerical example is 
elaborated in this section. In this example, the FOLIPDT mo-
del parameters are K=1, T=1, d=2. 

We first proceed with a comparison of the proposed me- 
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Fig. 2e. Regulatory response for different methods for PI and PD-0F control-
ler tuning. Other legend as in Fig. 2a.  

Fig. 2g. Servo response under simultaneous parametric uncertainty. K=1, T=1, 
d=2 for controller design and K=1.4, T=1.4, d=2.8 in the process. Other le-
gend as in Fig. 2a. S-method-II gives unstable response.   
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 Fig. 2f. Regulatory response for different methods for PI and PD-0F controller 
tuning. Other legend as in Fig. 2b. Fig. 2h. Servo response under simultaneous parametric uncertainty. K=1, T=1, 

d=2 for controller design and K=1.4, T=1.4, d=2.8 in the process. Other le-
gend as in Fig. 2b.  

 
the above figures, it becomes clear that, with the exception of 
the A-H method, all conventional PI controller tuning methods 
give large overshoots, exceeding 50%. Moreover, the S-
method-II yields an oscillatory response. The A-H method 
yields the smallest overshoot among the conventional PI con-
troller tuning methods, but the settling time obtained is quite 
large. Our method is the best in terms of both overshoot and 
settling time. 

 
methods under comparison. Our methods give smaller over-
shoot, as compared to the M-method or the S-method-II, and 
give as fast response as the S-method-I and the P-P method. 
Finally, our methods are significantly better than the A-H me-
thod in terms of both overshoot and settling time. 

We next perform a comparison of the proposed PD-0F con-
troller tuning methods with the conventional PI controller tu-
ning methods mentioned above, in the case of regulatory con-
trol. The regulatory responses obtained by applying the M-
method and the S-method, are shown in Fig. 2e. Figure 2f illu-
strates the regulatory responses obtained by applying the P-P 
method and the A-H method. A unit step load change is assu-
med. The performance of the proposed PD-0F controller, who-
se settings are as in the case of servo control, is also given in 
Figs. 2e and 2f. From these figures, it becomes clear that the 
smallest error is provided by the S-method-II. Both the M-
method and the A-H method provide poor regulatory control, 
since their responses present large error and settling time. For  

As already mentioned above, the proposed PD-0F controller 
is equivalent to a PI controller with a set-point filter. There-
fore, it is fair to perform a comparison of the proposed PD-0F 
controller tuning methods with the abovementioned PI con-
troller tuning methods, in the case where a set point filter of 
the form 1/(θs+1), although not suggested in [9]-[11], is ad-
ded, in order to implement the control loop. Note that, in the 
sequel, no setpoint filter is used when the A-H method is 
applied, because this method relies on setpoint weighting, 
which is used instead of a set point filter. Figs. 2c and 2d, illu-
strate the servo responses obtained by the application of the  
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Fig. 2i. Regulatory response under simultaneous parametric uncertainty. Other 
legend as in Fig. 2g.  Fig. 3a. Servo response for different methods for PID and PD-1F controller 

tuning, without the use of setpoint filters. Solid-black: first proposed method 
( =1.3333); solid-blue: second proposed method (γγ̂ 1=1.1342); dash: M-
method; dot: Z-X-S-method; dash-dot: A-H method. 
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Fig. 2j. Regulatory response under simultaneous parametric uncertainty. Other 
legend as in Fig. 2h.  
 
regulatory control, our method is comparable to the S-method-
I and the P-P method, in terms of maximum error and settling 
time. In particular, the proposed control and tuning method 
gives results almost identical to those obtained from the appli-
cation of the P-P method for PI controller tuning. 

Fig. 3b. Servo response for different methods for PID and PD-1F controller 
tuning, without the use of setpoint filters. Solid-black: first proposed method 
( =1.3333); solid-blue: second proposed method (γγ̂ 1=1.1342); dash-black: T-
L-S method-I; dash-blue: T-L-S method II; dot: T-L-S-method-III; dash-dot: 
T-L-T method. 
 The robustness of the proposed PD-0F controller tuning me-

thods is studied by using a 40% simultaneous perturbation in 
K, T and d from their nominal values in the simulation (K=1.4, 
T=1.4, d=2.8), whereas the controller settings are those calcu-
lated for the process with nominal parameters (K=1, T=1, d= 
2). Figs. 2g and 2h illustrate the servo responses. The respon-
ses are obtained for the regulatory problem as shown in Figs. 
2i and 2j. Note that, with this simultaneous uncertainty, the S-
method-II gives unstable responses for both servo and regula-
tory control. It becomes obvious from Figs. 2g-2j that with the 
exception of the A-H method, the first proposed PD-0F con-
troller tuning methods give the best robust performance, in 
terms of both overshoot and settling time. The A-H method 
gives smaller settling time, but larger overshoot, as compared  

to our methods. 
We next perform a comparison of the proposed methods for 

PD-1F controller tuning of FOLIPDT processes with the me-
thods for PID controller tuning reported in [5], [9], [12]-[14] 
For the FOLIPDT model with parameter values K=1, T=1 and 
d=2, the PID settings given by the method in [9] (M-method) 
are KP=0.1036, θ=6.5491, δ=1.6373. The A-H method [5] 
provides the settings KP=0.1086, θ=27.1009, δ=0.1160 and the 
setpoint weighting parameter b=0.6353. The T-L-T method 
[12] gives KP= 0.1735, θ=14.624, δ=0.9316 and the derivative 
filter time constant Tf=1.7167. The T-L-S method [13] provi-
des the settings KP=0.146, θ=17.3266, δ=0.9423, Tf=1.1098 
(T-L-S-method-I), KP=0.2212, θ=11.7354 δ=0.9148, Tf=  
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Fig. 3e. Regulatory response for different methods for PID and PD-1F con-
troller tuning. Other legend as in Fig. 3a.  

Fig. 3c. Legend as in Fig. 3a, but, now, with a setpoint filter of the form 
1/(δθs2+θs+1) added in the PI controller configuration, when the M-method 
and the Z-X-S method are applied.  
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 Fig. 3f. Regulatory response for different methods for PID and PD-1F con-
troller tuning. Other legend as in Fig. 3b.  Fig. 3d. Legend as in Fig. 3b, but, now, with a setpoint filter of the form 

1/(δθs2+θs+1) added in the PI controller configuration.   
settling time. The A-H method provides less overshoot (only 
20%), but it is the worst in terms of settling time. The propo-
sed PD-1F controller tuning methods provides smooth respon-
se and small settling time. Figs. 3c and 3d illustrate the servo 
responses obtained by the applying the above PID tuning me-
thods and the proposed PD-1F controller tuning methods, in 
the case where a set-point filter of the form 1/(δθs2+θs+1) is 
used in the PID control configuration, to reduce the overshoot. 
Note that, no setpoint filter is used when the A-H method is 
applied, because this method relies on setpoint weighting, 
which is used instead of a set point filter. Even in this case the 
proposed methods give smoother responses with satisfactory 
settling times. In particular, the proposed PD-1F controller tu-
ning methods give servo responses almost identical to that 
obtained from the application of the Z-X-L method for PID 
controller tuning. 

 
0.8964 (T-L-S-method-II) and KP=0.2999, θ=8.927, δ=0.888, 
Tf=0.5726. Finally, the Z-X-S method [14] provides the PID 
settings KP=0.2449, θ=12, δ=0.9167, Tf=0.551. The servo res-
ponses obtained by applying the M-method, the Z-X-S method 
and the A-H method, are shown in Fig. 3a. The performance 
of the proposed controller, whose settings are given by rela-
tions (16a)-(1c) for γ̂ =1.3333 ( ξ̂ des=1) as KP=0.4444, KI= 

0.0494, Kd= 0.5556 and for γ1=1.1342 (ξ
~

des=1) as KP=0.3056, 
KI=0.0278, Kd=0.3951, is also given in Fig. 3a. Fig. 3b illu-
strates the servo responses obtained by the application of the 
T-L-T method and the T-L-S method I-III together with those 
obtained by the proposed PD-1F controller tuning methods. It 
is noted that no set-point filter is used in order to implement 
the PID controller loop. Clearly, all known PID tuning me-
thods except the A-H method give excessive overshoot. More-
over, the M-method gives an oscillatory response with large  

The performance of the proposed PD-1F controller tuning 
methods and of the conventional PID controller tuning me- 
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Fig. 3i. Regulatory response under simultaneous parametric uncertainty. Other 
legend as in Fig. 3g. 

Fig. 3g. Servo response under simultaneous parametric uncertainty. K=1, T=1, 
d=2 for controller design and K=1.4, T=1.4, d=2.8 in the process. Other le-
gend as in Fig. 3a. The second proposed method gives an unstable response.  
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 Fig. 3j. Regulatory response under simultaneous parametric uncertainty. Other 
legend as in Fig. 3h. Fig. 3h. Servo response under simultaneous parametric uncertainty. K=1, T=1, 

d=2 for controller design and K=1.4, T=1.4, d=2.8 in the process. Other le-
gend as in Fig. 3b. The second proposed method and T-L-S-method-III give 
unstable responses.  

 
Figs. 3i and 3j. Note that, with the assumed simultaneous para-
metric uncertainty both the second proposed PD-1F controller 
tuning method and the T-L-S-method-III give unstable respon-
ses for both servo and regulatory control. It becomes obvious 
from Figs. 3g-3j that the first proposed PD-1F controller 
tuning method gives the best robust performance, in terms of 
both overshoot and settling time. 

 
thods mentioned above, in the case of regulatory control, is 
illustrated in Figures 3e and 3f. In the comparison, a unit step 
load change is assumed. From these figures, it becomes clear 
that both the M-method and the A-H method provide poor 
regulatory control, since their responses present large error 
and settling time. The smallest error is provided by the propo-
sed PD-1F controller tuning methods, which are the best in the 
case of regulatory control of FOLIPDT processes. 

 

V. CONCLUSIONS  
In the third part of the present paper, simple methods for 

tuning PD-0F and PD-1F controllers for FOLIPDT processes 
have been proposed. Their performance has been compared 
with that of conventional PI/PID controller tuning methods. 
The comparison reveals that the proposed control and tuning 
methods are superior, as compared to the existing PI/PID tu-
ning methods in both servo and regulatory control problems, 

The robustness of the proposed PD-1F controller tuning 
methods is studied by using a 40% simultaneous perturbation 
in K, T and d from their nominal values in the simulation (K= 
1.4, T=1.4, d=2.8), whereas the controller settings are those 
calculated for the process with nominal parameters (K=1, T=1, 
d=2). Figs. 3g and 3h illustrate the servo responses. The res-
ponses are obtained for the regulatory problem as shown in  
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while they provide a more robust performance. 
Overall, taking into account the present analysis and the re-

sults reported in Parts I and II [15], [18], the proposed PDF 
controller and tuning methods offers better performance and 

robustness characteristics and give us the opportunity of ha-
ving a new insight in the problem of designing simple PI/PID-
like controllers for integrating processes with time delay. 
 

APPENDIX 

The following tables refer to the estimates of the optimal values of the adjustable parameters , β̂ γ̂ , γ1 and γ2.  
 

TABLE I 
ESTIMATES OF THE OPTIMAL VALUES OF  FOR VARIOUS INTEGRAL CRITERIA. β̂

Criterion Estimate of optimal (u) β̂ Comments 

ISE_SP 1.997-0.82781u+1.0002u2-0.72106u3+0.32269u4-0.092452u5+0.017215u6-0.0020706u7+0.00015505u8-6.5691×10-6u9 

+1.2025×10-7u10 
For 0<u<5.5 

ISE_SP 1.6281745-0.001171(u-5.5) For u≥5.5 
ISE_L 2.6302-2.1248u+2.5776u2-1.8511u3+0.82557u4-0.23641u5+0.044128u6-0.0053335u7+0.00040201u8-1.7164×10-5u9 

+3.1685×10-7u10 
For 0<u<4.1 

ISE_L 1.7110073-0.003554(u-4.1) For u≥4.1 
ISENSCOD_SP 1.5693+0.1066u-0.10101u2+0.05217u3-0.016147u4+0.0030412u5-0.00032187u6+1.2181×10-5u7+9.9698×10-7u8 

-1.2274×10-7u9+3.7365×10-9u10 
 

ISENSCOD_L 2.1054-0.76462u+0.79445u2-0.51826u3+0.21771u4-0.06u5+0.010927u6-0.0013006u7+9.717×10-5u8-4.132×10-6u9 

+7.6235×10-8u10 
For 0<u<4.6 

ISENSCOD_L 1.69667833406-0.00148768(u-4.6) For u≥4.6 
ISENDCO_SP 0.780651417+4.7464131(u-0.1) For 0<u<0.3 
ISENDCO_SP 1.729934-0.051535(u-0.3) For 0.3≤u<2 
ISENDCO_L 1.6505623-0.0034985(u-8) For u≥2 
ISENDCO_L 2.1806-0.60273u+0.3875u2-0.14955u3+0.034535u4-0.0042243u5+8.2395×10-5u6+5.0912×10-5u7-7.283×10-6u8 

+4.2603×10-7u9-9.5824×10-9u10 
 

 
 

TABLE II 
ESTIMATES OF THE OPTIMAL VALUES OF  FOR VARIOUS INTEGRAL CRITERIA. γ̂

Criterion Estimate of optimal (u) γ̂ Comments 

ISE_SP 1.2171+0.7339u+0.083449u2-0.14905u3+0.030257u4+0.0045567u5-0.0029943u6+0.00056821u7-5.4957×10-5u8 

+2.7505×10-6u9-5.6642×10-8u10 
 

ISE_L 1.5841+0.3101u+0.38841u2-0.4622u3+0.21918u4-0.060691u5+0.010771u6-0.0012466u7+9.1201×10-5u8-3.8302×10-6u9 

+7.0316×10-8u10 
 

ISENSCOD_SP 0.083709+2.2875u-0.18739u2-1.0059u3+0.79718u4-0.3036u5+0.067859u6-0.0093104u7+0.00077161u8-3.5473×10-5u9 

+6.9487×10-7u10 
For 0<u<4.5 

ISENSCOD_SP 2.444547-0.0146274714(u-4.5) For u≥4.5 
ISENSCOD_L 0.066485+2.0757u+1.0972u2-2.7957u3+1.9019u4-0.68418u5+0.14763u6-0.019733u7+0.0016016u8-7.2368×10-5u9 

+1.397×10-6u10 
For 0<u<4.0 

ISENSCOD_L 2.128638-0.00560812(u-4) For u≥4.0 
 

 
TABLE III 

ESTIMATES OF THE OPTIMAL VALUES OF γ1 FOR VARIOUS INTEGRAL CRITERIA. 

Criterion Estimate of optimal γ1(u) Comments 

ISE_SP 1.1571+5.0775u-8.2021u2+6.6353u3-3.1355u4+0.92683u5-0.17635u6+0.02158u7-0.0016402u8+7.0439×10-5u9 

-1.3056×10-6u10 
For 0<u<4.5 

ISE_SP 2.124307-0.004844182(u-4.5) For u≥4.5 
ISE_L 1.178+4.5663u-7.0371u2+5.5784u3-2.6103u4+0.7679u5-0.1458u6+0.017833u7-0.0013561u8+5.83×10-5u9-1.0823×10-6u10 For 0<u<3.5 
ISE_L 2.2036-0.0033077(u-6.5) For u≥3.5 
ISENSCOD_SP -0.70861+7.4212u-8.1214u2+4.8168u3-1.7217u4+0.38998u5-0.056975u6+0.0053141u7-0.00030233u8+9.3969×10-6u9 

-1.1861×10-7u10 
For 0<u<4.5 

ISENSCOD_SP 2.1069751341-0.0017098(u-4.5) For u≥4.5 
ISENSCOD_L -0.1185+4.781u-3.9977u2+1.733u3-0.42245u4+0.057708u5-0.0038421u6+2.6386×10-5u7+1.078×10-5u8-4.2486×10-7u9  
ISENDCO_SP 0.05486+0.81662u-1.4989u2+1.1995u3-0.48464u4+0.11011u5-0.013386u6+0.00059665u7+3.8633×10-5u8 

-5.307×10-6u9+1.6437×10-7u10 
For 0<u<6.0 

ISENDCO_SP 2.1111-0.001025(u-6) For u≥6.0 
 

 
TABLE IV 
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ESTIMATES OF THE OPTIMAL VALUES OF γ2 FOR VARIOUS INTEGRAL CRITERIA. 

Criterion Estimate of optimal γ2(u) Comments 

ISE_SP 0.79001+2.114u-2.5601u2+1.8971u3-0.86871u4+0.25371u5-0.048068u6+0.0058771u7-0.00044707u8+1.9231×10-5u9 

-3.5718×10-7u10 
For 0<u<4.5 

ISE_SP 1.903177576+0.0181584(u-4.5) For u≥4.5 
ISE_L 0.99315+1.9536u-2.5157u2+1.9163u3-0.8893u4+0.26167u5-0.049809u6+0.0061098u7-0.00046593u8+2.0083×10-5u9 

-3.7368×10-7u10 
For 0<u<6.0 

ISE_L 1.96705757+0.01308189(u-6) For u≥6.0 
ISENSCOD_SP 0.48124+2.5549u-2.896u2+2.0495u3-0.91115u4+0.26094u5-0.048775u6+0.0059064u7-0.00044618u8+1.9095×10-5u9 

-3.5335×10-7u10 
For 0<u<4.0 

ISENSCOD_SP 1.87054524+0.021802(u-4) For u≥4.0 
ISENSCOD_L 0.73114+2.3461u-2.8509u2+2.0965u3-0.95252u4+0.27639u5-0.052089u6+0.0063413u7-0.00048064u8+2.0611×10-5u9 

-3.8178×10-7u10 
For 0<u<4.5 

ISENSCOD_L 1.916423116+0.018175439(u-4.5) For u≥4.5 
ISENDCO_SP 0.31373+3.7796u-5.0294u2+3.8589u3-1.7956u4+0.52906u5-0.10079u6+0.012369u7-0.00094357u8+4.0678×10-5u9 

-7.5694×10-7u10 
For 0<u<3.5 

ISENDCO_SP 1.86144723+0.021989(u-3.5) For u≥3.5 
ISENDCO_L 0.60896+3.0593u-3.9339u2+2.933u3-1.3353u4+0.38696u5-0.072771u6+0.0088395u7-0.00066864u8+2.8623×10-5u9 

-5.2941×10-7u10 
For 0<u<4.5 

ISENDCO_L 1.9283751+0.016846129(u-4.5) For u≥4.5 
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