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Aliasing Probability Calculations
in Testing Sequential Circuits

E. Athanasopoulou and C. N. Hadjicostis

Abstract— This paper focuses on testing sequential cir-
cuits using a simple form of signature analysis as a com-
paction technique. More specifically, the paper describes
a systematic methodology for calculating the probability
of aliasing when a randomly generated test input vector
sequence is applied to a given finite state machine (FSM)
and the final FSM output is used to verify the functionality
of the FSM. We also explore how the aliasing probability
is affected when the output mapping (from the set of states
to the set of outputs) of the FSM under test changes.

Index Terms— Aliasing probability, response com-
paction, signature analyzer, finite state machines, Markov
models.

I. INTRODUCTION

Compaction techniques are employed at the testing
stage of a circuit to decrease the number of bits in the
original circuit response and hence reduce the test appli-
cation time and the memory requirements on the testing
circuitry [1], [2]. Figure 1 shows the basic structure
used in test compaction. The circuit under test (CUT)
is driven by a known sequence of test input vectors
����� ����� ���� ����. The possibly erroneous output vector
sequence of the circuit�� ������ ���� ������ ��� is fed into
a compactor, i.e., a finite state machine (FSM) whose
final output is thesignature of the CUT. Once a particular
test vector sequence has been randomly generated, the
error-free response���������� �������� of the CUT can
be pre-computed and its signature can be compared to
the signature obtained by applying the same test vector
sequence to the CUT; a disagreement between the error-
free and the obtained signature indicates the existence of
defects in the CUT.
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The information loss due to the compaction of a circuit
response can lead to situations in which the signature
of a faulty circuit matches the error-free signature. This
unwanted scenario allows a faulty circuit to pass the
testing process and is calledaliasing. Given a randomly
generated test vector sequence, the probability of aliasing
essentially determines how effective a particular com-
paction technique is.

For combinational circuits, the probability of aliasing
under various compaction methodologies (such as sig-
nature analysis, parity checking or transition count) has
been calculated (see, for example, [3]–[9] and [1], [2]
for an overview). However, the aliasing probability when
compaction techniques are used to testsequential circuits
has not explicitly been computed analytically yet.

In this paper we focus on analyzing a simple com-
paction method for testing a sequential circuit. More
specifically, we use the final output vector�� ��� as the
signature of the compaction method. In this simplified
scenario,aliasing occurs when the final output of a
faulty CUT agrees with the final output of its fault-
free response, i.e., when���� � �� ���. Similar concepts
appear in [10], [11] which address the error latency of a
fault when testing a sequential circuit. More specifically,
the error latency model (ELM) depends on theproduct
state table of the fault-free FSM and the faulty FSM.
The error latency of a fault is defined in [11] as the
number of input vectors that need to be applied to the
CUT while the fault is active before the first incorrect
output vector due to that fault is observed. The product
machine (which essentially keeps track of the fault-free
state and the faulty state) produces an output of “1” when
the first discrepancy between the fault-free and the faulty
FSM is observed.

The paper is organized as follows. In Section II we
introduce the necessary notation for our development and
in Section III we describe our fault model. In Section
IV we develop a methodology to calculate analytically
the probability of aliasing when an FSM is tested and
its final state is used as the signature. In Section V
we extend our methodology for calculating the aliasing
probability for the more general case when the final
output of the FSM under test is used as the signature.
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Fig. 1. Testing of a sequential circuit using a compactor.

Finally, conclusions and future directions are discussed
in Section VI.

II. NOTATION AND PRELIMINARIES

Let us consider a synchronous FSM described by a
set of states� � ��������� , a set of inputs� �
����������

, and a set of outputs� � ����������
. The

next state������ of the FSM is specified by its state����
and its input���� at time step� via thenext-state function
������ � Æ������ �����. To make the connection with the
Markov chains more transparent, we will denote the FSM
state at time step� by an� -dimensional binary indicator
vector ���� which has exactly one nonzero entry with
value equal to “1.” This single nonzero entry denotes the
state of the system (i.e., if the��� entry of ���� equals
“1,” then the FSM is in state�� at time step�). If input
�� is applied at time step�, then the state evolution of
the system can be captured by an equation of the form

���� �� � �������

where�� is the��� state transition matrix associated
with input ���� � ��. Specifically,�� is such that each
of its columns has exactly one nonzero entry with value
“1” (i.e., matrix�� has a total of� nonzero entries, all
with value “1”). A nonzero entry at the�	 ��� ���� position
of �� denotes a transition from state�� to state�� under
input��. (Clearly, the constraint that each row of�� has
exactly one nonzero entry simply reflects the requirement
that there can only be one transition out of a particular
state under a particular input.)

The output���� of the FSM at a given time step� is
generally a function of its present state���� and its input
����, i.e., it is captured by anoutput function ���� �

������ �����. Here, we focus on the special case when
this output function is restricted to be a mapping of the
set of states to the set of outputs, i.e.,���� � 
������.
This restricted model describes Moore machines while
the more general model describes Mealy machines. Our
results can be easily extended to cover Mealy machines
as well.

We assume that the input sequence applied to a
given FSM is white, i.e., that the inputs are statistically
independent from one time step to another and that
their probability distribution is fixed so that, at any
given time step�, input ���� � �� takes place with

probability �� (where
���

��� �� � �). Since the FSM
makes a transition to the next state depending on both
the present input and the present state, the FSM behaves
as a homogeneous Markov chain, i.e., a Markov chain
in which the transition probabilities are not a function of
time [12]. This Markov chain can be obtained from the
given FSM by assigning to each transition a probability
that depends on the probabilities of the primary inputs
that cause it (the only distinction is that the Markov
chain has no primary inputs, hence the transition depends
probabilistically only on the present state of the chain).

If we denote the state transition probabilities by��� �

�������� � ��������� � ����, the state transition matrix
of the Markov chain is given by� � ��������	��� and
captures how state probabilities evolve in time via the
evolution equation

���� �� � ������

Here,���� is an� -dimensional vector, whose��� entry
denotes the probability that the Markov chain is in state
�� at time step�. The� -dimensional probability vector
���� has elements that are nonnegative and sum to 1.
Clearly, the state transition matrix� of the Markov chain
can be written as

� �
���
���

�����

where�� and�� are the probability and state transition
matrix associated with input��.

Thestationary probability vector of the Markov chain
� � ��������� represents the frequencies with which
states are visited in the long run. For a connected FSM,
the corresponding Markov chain is irreducible and has a
unique stationary distribution vector that satisfies

�� � ��

This vector can be extracted either from the eigenvalues
of the transition matrix� or from simulation of a
particular FSM for typical input sequences.

In our analysis we will need to consider two FSMs
that operate in parallel, as well as the Markov chain that
describes their behavior. To capture this concisely, we
will make use of the Kronecker product notation [13].
The Kronecker product of an����� matrix� with an
����� matrix� is denoted by��� and is defined
as the partitioned matrix

��� �

�
�����

���� ���� ��� ����
�

���� ���� ��� ����
�

...
...

. . .
...

����� ����� ��� �����
�

�
�����
�
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where��� is the entry at the��� row, 	�� column position
of matrix�. Note that��� is of dimension�����
����.

III. FAULT MODEL

In our discussion we consider faults that affect the
transition behavior of the sequential circuit under test.
More specifically, we consider permanent transition
faults that cause the FSM to take, from a given state
and under a certain input, a transition to an incorrect
state. Such faults can be caused by various factors,
such as impurities and defects in materials, equipment
malfunctions, or human errors [1].

Let the CUT be an FSM with� states,�
 inputs, and
�� outputs. The sequence of applied test inputs vectors
����� ����� ���� ���� in Figure 1 is generated randomly so
that the test input vector at any given time step is chosen
independently from other steps. More specifically, we
assume that each input�� is chosen with probability��
at any given time step.

Suppose that a fault in the hardware implementation of
the FSM causes a fault in the state transition mechanism
under input��. More specifically, while a fault-free
FSM would take a transition from state�� to state��
under input��, this faulty FSM takes a transition from
state �� to state���. In terms of the transition matrix
model, the matrix�� that corresponds to input��
becomes corrupted, i.e., instead of a “1” at the (	 ��� ���)
position, there is a “1” at the (�	 ����� ���) position. In
effect, the state transition matrix��

� for the faulty FSM
is given by

��
� � �� �	��

where	� is the fault matrix with two nonzero entries:
a “��” at the (	��� ���) position and a “��” at the
(�	����� ���) position.

IV. CALCULATION OF THE ALIASING
PROBABILITY

Recall that, in order to keep things simple, we treat
the final output of the FSM as its signature. More
specifically, we compare the final output of the faulty
FSM against the output of the fault-free FSM (under the
same input vector sequence). Therefore, by examining
the probabilistic relationship between the signature of
the faulty FSM under test and the signature of the fault-
free FSM, we can compute the probability of aliasing.
In this section, we initially study aliasing when the
output function
 implies an one-to-one correspondence
between the output of the FSM and its internal state (i.e.,
we study the case when the final FSM state serves as the
signature).

FSM

Faulty

FSM

Fault−Free

f
FSM H

q[L]

q [L]

i[L], ..., i[1], i[0]

Fig. 2. Simultaneous modeling of the fault-free and the faulty
operation of the FSM.

This description is summarized in Figure 2, where we
simultaneously apply the same test input vector sequence
to the fault-free and the faulty FSMs. The probability of
aliasing�
 in this case is given by

�
 � �	����� � �� ���� � �	����� � �� ����

�
��
���

�	����� � �� ��� � ����

The dotted system� in Figure 2 is an FSM with
�
 inputs and� � states and can be described in terms
of pairs of the form ���� ����, where �� captures the
state of the fault-free FSM and��� denotes the state
of the faulty FSM. The state of the FSM� at time
step � can be represented by a binary column vector
����� with �� entries and exactly one nonzero entry
with value “1,” which denotes the state of the system.
More specifically, we arrange the states of� in the or-
der ���� ���� ���� ���� ���� ���� �� �� ���� ���� ���� ���� �� �� ����
��� � ���� ���� ��� � �� �. Note that, if FSM� is in state
���� ���� at time step�, then the��� � ��� � ����� entry
of vector����� is equal to “1,” while every other entry
is equal to “0.” Incorporating this notation for the state
vector����� of FSM � , we notice that it is simply the
Kronecker product

����� � ����� �� ����

where���� is the binary indicator vector for the state of
the fault-free FSM and�� ��� is the vector for the state
of the faulty FSM in Figure 2.

As stated previously, the state transition matrix� of
the fault-free FSM and the state transition matrix�� of
the faulty FSM can be written as

� �
���
���

����� and �� �
���
���

���
�
��

We would also like to express the state transition matrix
�� of the FSM� in similar manner, i.e.,

�� �
���
���

����� �
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Using a well-known property of the Kronecker product
[13], it follows that

��������
�
��� ��� � ��� ��

�
�������� �� �����

Hence,

�� �
���
���

����� �
���
���

����� ��
�
�� �

� ����� �	�� �
���
���

����� �����

where	� is the fault matrix that corresponds to the state
transition fault under input��.

Let �� be a vector that satisfies

�� � �����

We can immediately distinguish between three cases:

1) If the matrix�� has a single eigenvalue at
 � �,
then the corresponding eigenvector�� denotes the
unique stationary distribution of the FSM. In this
case, the Markov chain corresponding to the FSM
� is irreducible and FSM� is connected, i.e.,
all states are reachable from each other through a
finite sequence of inputs.

2) If there are multiple solutions to equation�� �
����, then the stationary distribution is still well-
defined if we know the initial state of the FSM.
In this case, the Markov chain is reducible and the
FSM � is not connected.

3) If the matrix�� has� eigenvalues of unit magni-
tude given by
 � �

����

� , � � ��� �� 
� ���� ��� ���,
then the eigenvector that corresponds to
� � �
denotes the unique stationary distribution of the
FSM. The stationary distribution at time�, how-
ever, depends on the initial probability distribution
of the Markov chain (given by�����) and the value
of �� ��
 �� [12].

Due to space limitations we assume that
 � � is
the only eigenvalue of unit magnitude so that�� is
unique. Our discussion can easily be extended to the
more complicated cases listed above.

For a large number of steps� the probability of
aliasing can be calculated as the probability that the
FSM � ends up in a state of the form���� ���� � �
� � � . Hence, the aliasing probability�
 is given by
the sum of the entries of the stationary vector�� that
correspond to this type of states. This discussion leads
to the following proposition.

Proposition 1: Let� be an FSM under test with� states
and assume that the randomly generated test input vector
sequence is long enough and that each test input vector

is chosen independently between different time steps. If
we treat the finalstate of � as its signature, then the
probability of aliasing�
 is given by

�
 �
��
���

������ ��� � ���

where�� is the stationary distribution of�.

V. THE GENERAL CASE AND AN EXAMPLE

In the previous section we calculated the probability
of aliasing under the assumption that the outputs of the
FSM are in one-to-one correspondence with its states.
However, due to the specific structure of FSMs, the same
output can be produced by multiple states. Since there is
no general way to determine the final state of the FSM
by observing its final output, the probability of aliasing
in these cases will increase. In terms of Figure 2, the
outputs of the fault-free and the faulty FSM denoted by
���� and�� ��� respectively, are given by

���� � 
������ and �� ��� � 
��� �����

For large�, the probability of aliasing is the probability
that FSM� ends up in a state of the form���� ����,
� � �� �� � � , for which 
���� � 
�����. The following
proposition is a generalization of Proposition 1.

Proposition 2: Let� be an FSM under test with� states
and assume that the randomly generated test input vector
sequence is long enough and that each test input vector
is chosen independently between different time steps. If
we treat the finaloutput of � as itssignature, then the
probability of aliasing�
 is given by

�
 �
��
���

�

��� such that
���� ��
�����

������ ��� � ����

where�� is the stationary distribution of� (which is
assumed to be unique).

Intuitively, we can think of the entries of the vector��
as the entries of an� �� table, where the (���� ������)
entry of such table represents the probability that FSM
� ends up in state���� ����. (This is shown in the table
below for� � � states.)

���� �� �� �� ��
�� ���

�� ��� ��� ��� ���
�� ��� ��� ��� ���
�� ��� ��� ��� ���
�� ��� ��� ��� ���

Clearly, the smallest possible probability of aliasing is
the sum of the diagonal entries of the table and denotes



5

the probability that both the fault-free and the faulty
FSM end up in the same state. This minimum value for
the aliasing probability is achieved if the mapping
 is
invertible. However, if the mapping results in the same
output for the states�� and��� , then the�
 will increase
and will be given by the sum of the diagonal entries, plus
the entry����� � ��� � ���, plus its symmetric entry
�����

� � ��� � ��.
Next, we calculate the aliasing probability for a par-

ticular FSM� with � � � states and�
 � 
 inputs that
occur with equal probability (�� � �� � ���). The state
transition matrices�� and�� corresponding to inputs
�� and�� are chosen to be

�� �

�
������

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

�
������
� �� �

�
������

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

�
������
�

We consider different number of outputs�� and three
different output functions
�, 
�, and
� as follows:

�� 
�����

�� ��
�� ��
�� ��
�� ��
�� ��
�	 �	
�
 �


�� 
�����

�� ��
�� ��
�� ��
�� ��
�� ��
�	 ��
�
 ��

�� 
�����

�� ��
�� ��
�� ��
�� ��
�� ��
�	 ��
�
 ��

We compute the�
 for each of the��� � �� �
�
 possible single transition faults that can occur under
input �� and we choose the worst case scenario, i.e., the
maximum�
 value. We do this for each of the three
different mappings
. The results are shown in the table
below.


� ����
� � ����
�


� ����
� � ��
���


� ����
� � ������

As the table confirms, if we use the mapping
� to map
the set of states to the set outputs, we get the smallest
possible aliasing probability. The reason is that there is
one-to-one correspondence between the states and the
outputs of the FSM. We reach the same conclusion if
we use any invertible mapping. If we use the mapping

� some pairs of states are mapped to the same output,
hence the aliasing probability increases. Lastly, if we use
the mapping
� four states are mapped to output�� and
three states are mapped to output�� and the aliasing
probability becomes very large.

VI. CONCLUSIONS AND FUTURE
DIRECTIONS

In this paper we have discussed an analytical method-
ology to calculate the probability of aliasing when testing
a sequential circuit. The compaction technique uses the
final output of the FSM under test as a signature. Our
analysis evaluates how aliasing probability changes for
different mappings from the set of states to the set of
outputs of the FSM.

Clearly, the next step is to apply more complex
compaction techniques to test sequential circuits. For
example, the compactor can be an FSM with known
initial state that receives as input the output of the FSM
under test. The output of the compactor after a large
number of states� can then serve as the signature of
the system.
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