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Abstract— In this note a set of preliminary results on the
control of a large-scale continuous-time plant with decen-
tralized multirate sampled-data control network system is
proposed. Sufficient conditions for the solvability of the de-
centralized control network problem are given in terms of
the continuous-time plant. The multirate sampling mech-
anism and the use of a local network enlarge the class of
plants to be stabilized with decentralized controllers.
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I. Introduction

THE stabilization problem of a large-scale plant with
independent decentralized controllers has been deeply

investigated [1]-[6]. Digital solutions such as multirate de-
centralized controllers have been studied in [7]-[9]. A mul-
tirate control scheme of a plant is characterized by dig-
ital time-invariant controllers operating on each channel
with different sampling rates. A continuous-time plant
with such a multirate sampling mechanism can be effi-
ciently modelled by a periodic discrete-time system [10].
Therefore, the results on analysis and control of periodic
discrete-time systems can be used for solving different mul-
tirate control problems.

The purpose of this note is to present a preliminary set
of conditions for the existence of a stabilizing decentralized
controller of a large-scale continuous plant. This problem
has been analyzed in [7], for the case of single-rate sam-
pling in each input-output plant channel, and in [8], for
a discrete-time plant. A different approach has been pro-
posed in [11] with data exchange among the output chan-
nels of the plant. A generalization of this solution has
been here investigated, a continuous-time plant is consid-
ered with the input and the measured output of each plant
channel updated and sampled respectively with the same
time intervals, the measured outputs connected to a lo-
cal area network for the data exchange among the output
channels of the plant. In general, the input-output channels
have sampling rates. The main tools for deducing the exis-
tence conditions are based on the algebraic approach devel-
oped for the class of periodic systems (see, e.g., [12], [13])
and here specified and adapted to the class of multirate
sampled-data systems. A set of sufficient conditions for the
solvability of the decentralized control network problem is
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proposed. This result shows that the multirate sampling
mechanism and the use of a local network enlarge the class
of plants to be stabilized with decentralized controllers.

II. Preliminaries

Consider a linear time-invariant continuous-time plant
Σc, characterized by σ input-output channels and described
by

ẋc(t) = Ac xc(t) +
σ∑

i=1

Bc
i uc

i (t) (1)

yc
j(t) = Cc

j xc(t), j = 1, . . . , σ (2)

where xc(t) ∈ IRn is the state, uc
i (t) ∈ IRpi , i = 1, . . . , σ,

are the control inputs, yc
j(t) ∈ IRqj , j = 1, . . . , σ, are the

measured outputs. The stabilization problem of Σc with
a decentralized continuous-time control system, constituted
by σ independent controllers with input yc

i (·) and output
uc

i (·), i = 1, . . . , σ, has a solution if and only if Σc is sta-
bilizable and detectable and all the 2σ − 2 complementary
subsystems are weakly complete, i.e. Σc has no unstable
fixed modes (see, e.g., [1], [3]).

Now, for solving the stabilization problem by a decentral-
ized multirate control system consider a multirate control
scheme of system Σc, where each input-output channel op-
erates with its own sampling and hold rate, different from
the other ones, i.e. the measured output yc

i (·) of the chan-
nel i, with i ∈ {1, . . . , σ}, is sampled with a period NiTc

and the control input uc
i (·) of the same channel is connected

with a zeroth order circuit whose hold interval is NiTc, with
Ni ∈ �Z+ and Tc ∈ IR. Denote with ω the least common
multiple of the integers Ni, i = 1, . . . , σ. Without loss of
generality, it is assumed that the greatest common divisor
of the integers Ni, i = 1, . . . , σ, is equal to 1 and all the
samplers and hold circuits are synchronized at time t = 0.

The corresponding discrete-time state-space model Σd

of the multirate sampled-data system is characterized by σ
input-output channels and given by the series connection
of ω-periodic systems Σ̃i, i = 1, . . . , σ, which describe the
mechanism of zeroth hold circuits, with Σ̂, which represents
the sample-data system associated to Σc ([14], [15]). The
ω-periodic system Σ̃i of the channel i, with i ∈ {1, . . . , σ},
has the following form:

x̃i((k + 1)Tc) = Si(k) x̃i(kTc) + Si(k)ui(kTc) (3)
uc

i (kTc) = Si(k) x̃i(kTc) + Si(k)ui(kTc) (4)
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where k ∈ �Z+, x̃i(kTc) ∈ IRpi is the state, ui(kTc) ∈ IRpi

is the input of channel i of Σd, Si(k) := (Ipi
− Si(k)), Ipi

denotes the identity matrix of dimension pi, and Si(·) is an
ω-periodic matrix given by:

Si(k) := diag{σi(k)}, (5)

σi(k) :=
{

1, k = jNi,
0, k �= jNi,

j ∈ �Z+. (6)

The ω-periodic system Σ̂, with σ input-output channels,
has the following form:

xc((k + 1)Tc) = eAcTc xc(kTc) +
σ∑

i=1

Bd
i uc

i (kTc) (7)

yj(kTc) = Tj(k)Cc
j xc(kTc), j = 1, . . . , σ (8)

where k ∈ �Z+, Bd
i :=

∫ Tc

0
eAc(Tc−θ)Bc

i dθ and Tj(·) is an
ω-periodic matrix given by:

Tj(k) := diag{τj(k)}, (9)

τj :=
{

1, k = iNj ,
0, k �= iNj ,

i ∈ �Z+. (10)

Then, the ω-periodic discrete-time model Σd of the mul-
tirate sampled-data system is given by:

x((k + 1)Tc) = A(k)x(kTc) +
σ∑

i=1

Bi(k)ui(kTc) (11)

yj(kTc) = Cj(k)x(kTc), j = 1, . . . , σ (12)

where k ∈ �Z+,

x(kTc) := [x̃1(kTc)′ x̃2(kTc)′ . . . x̃σ(kTc)′ xc(kTc)′]′ ∈ IRñ,

with ñ := n +
∑σ

i=1 pi, is the state, and the ω-periodic
matrices A(·), B(·) and C(·) have the following form:

A(k) =




S1(k) 0 · · · 0 0

0 S2(k) · · · 0 0
..
.

..

.
. . .

..

.
..
.

0 0 · · · Sσ(k) 0

Bd
1S1(k) Bd

2S2(k) · · · Bd
σSσ(k) eAcTc




Bi(k) = [ 0 · · · 0 Si(k)′ 0 · · · 0 (Bd
i Si(k))′ ]′

Cj(k) = [ 0 0 · · · 0 Tj(k)Cc
j ].

III. Problem statement

Given the plant Σc and the set of sampling and hold
circuits corresponding to the σ channels, consider a control
network scheme characterized by linear discrete-time local
controllers Ci, for i = 1, . . . , σ, making use not only of the
measured output yi(·) of the local channel i, but also of
the other outputs connected by a local network, as shown
in Fig.1. The idea is that each controller takes information
from all the σ channels, in order to avoid the possible lack
of the structural properties required for the decentralized
solution to the stabilization problem of Σd.

The different sampling periods of the σ channels and
the time delay of the data transmission on the network
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Fig. 1. Decentralized control network architecture.

make impossible, for each controller Ci, with i ∈ {1, . . . , σ},
the real-time acquisition of the measured outputs yj(·), for
j = 1, . . . , σ and j �= i. Controller Ci, at sampling time ti,
acquires the last sample yj(tj) of output channel j, with
tj < ti, j = 1, . . . , σ and j �= i. The delay on the acquisition
is modelled keeping memory of the samples of each chan-
nel for a time delay d := maxi,j=1,...,σ, k=1,...,ω−1(dij(k)),
where dij(k) is the ω-periodic time shift, at time k, between
the sampling time at channel i and the sampling time at
channel j, for i, j = 1, . . . , σ. The extended ω-periodic sys-
tem Σ, whose representation let model this mechanism, is
given by

x̄((k + 1)T ) = Ā(k) x̄(kT ) +
σ∑

i=1

B̄i(k)ui(kT ) (13)

ȳj(kT ) = C̄j(k) x̄(kT ), j = 1, . . . , σ (14)

with the extended state and outputs

x̄(kTc) :=




x(kTc)
xc((k − 1)Tc)

.

.

.
xc((k − d)Tc)


, ȳj(kTc) :=




yj(kTc)

y1(lk1Tc)

.

.

.
yj−1(lkj−1Tc)

yj+1(lkj+1Tc)

.

.

.
yσ(lkσTc)




lki :=
{

k − Ni, k = hNi,
Ni[k/Ni], k �= hNi, k = hNj ,

h ∈ �Z+, i, j = 1, . . . , σ, i �= j (15)

where [·] is the integer part function, x̄(kTc) ∈ IRn̄, with
n̄ := (d + 1)n +

∑σ
i=1 pi, ȳj(kTc) ∈ IRq̄, with q̄ :=

∑σ
j=1 qj ,

and
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Ā(k) :=


S1(k) 0 · · · 0 0 0 · · · 0 0

0 S2(k) · · · 0 0 0 · · · 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
0 0 · · · Sσ(k) 0 0 · · · 0 0

Bd
1S1(k) Bd

2S2(k) · · · Bd
σSσ(k) eAcTc 0 · · · 0 0

0 0 · · · 0 In 0 · · · 0 0
0 0 · · · 0 0 In · · · 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
0 0 · · · 0 0 0 · · · In 0




B̄i(k) := [ 0 · · · 0 Sj(k)′ 0 · · · 0 (Bd
i Si(k))′ 0 · · · 0 ]′

C̄j(k) :=




0 · · · 0 Ti(k)Cc
j 0

0 · · · 0 0 C̃1(k)

.

.

.
. . .

.

.

.
.
.
.

.

.

.
0 · · · 0 0 C̃j−1(k)

0 · · · 0 0 C̃j+1(k)

.

.

.
. . .

.

.

.
.
.
.

.

.

.
0 · · · 0 0 C̃σ(k)




with

C̃h(k) :=
[
T̃1(lkh)Cc

h T̃2(lkh)Cc
h · · · T̃d(lkh)Cc

h

]
T̃m(lkh) :=

{
1, lkh = k − m,
0, lkh �= k − m,

h = 1, . . . , σ, m = 1, . . . , d. (16)

Making use of the notations above introduced, the consid-
ered control problem is here stated.

Decentralized Multirate Control Network Prob-
lem (DMCNP) The stabilization problem of Σc by a
decentralized multirate control network system consists of
finding for each input-output channel a linear discrete-time
periodic local controller Ci with period ω/Ni and of the form

x̂i((h + 1)NiTc) = F i(h)x̂i(hNiTc) + Gi(h)ȳi(hNiTc)
(17)

ui(hNiTc) = Hi(h)x̂i(hNiTc) (18)

such that the ω-periodic closed-loop system given by Σd and
independent controllers Ci, for i = 1, . . . , σ, is asymptoti-
cally stable.

In order to analyze the solvability conditions of the
introduced problem, the time-invariant representation of
the extended multirate sampled-data system Σ is here
recalled. The state transition matrix of Σ is expressed
by Φ̄(k, k0) := Ā(k − 1)Ā(k − 2) . . . Ā(k0) with k > k0,
k, k0 ∈ �Z+, and Φ̄(k, k) := In for all k ∈ �Z+. For any
initial time k0 ∈ �Z+, the output response of the ω-periodic
system Σ for k ≥ k0, to given initial state x̄(k0) and con-
trol functions ui(·), can be expressed throughout the time-
invariant associated system of Σ at time k0, denoted by Σ

k0

[16]. This time-invariant state-space representation of Σ is
similar to the lifted representation of an input-output peri-
odic operator considered in [17] and [18]. For an arbitrary
time k, system Σ

k
is represented by

x̄k(h + 1) = Ēk x̄k(h) +
σ∑

i=1

J̄k
i uk

i (h) (19)

ȳk
j (h) = L̄k

j x̄k(h) +
σ∑

i=1

M̄k
jiu

k
i (h),

j = 1, . . . , σ (20)

where
Ē

k
:= Φ̄(k + ω, k),

J̄
k
i := [∆̄

k
i (0) . . . ∆̄

k
i (ω − 1)],

∆̄
k
i (�) := Φ̄(k + ω, k + � + 1)B̄i(k + �),

L̄
k
j := [Γ̄

k
j (0)

′
. . . Γ̄

k
j (ω − 1)

′
]
′
,

Γ̄
k
j (�) := C̄j(k + �)Φ̄(k + �, k),

M̄
k
ji :=


 Θ̄k

ji(0, 0) · · · Θ̄k
ji(0, ω − 1)

.

.

.
. . .

.

.

.
Θ̄k

ji(ω − 1, 0) · · · Θ̄k
ji(ω − 1, ω − 1)


 ,

Θ̄
k
ji(�, r) :=

{
0, � ≤ r,

C̄j(k + �)Φ̄(k + �, k + r + 1)B̄i(k + r), � > r,

�, r = 0, 1, . . . , ω − 1, i, j = 1, . . . , σ.

It is easy to see that, if x̄k(0) = x̄(k) and uk
i (h) =

[ ui(k + hω)′ . . . ui(k + ω − 1 + hω)′ ]′, i = 1, . . . , σ, for
all h ∈ �Z+, where �Z+ denotes the set of non-negative
integers, then x̄k(h) = x̄(k + hω) and ȳk

j (h) = [ ȳj(k +
hω)′ . . . ȳj(k + ω − 1 + hω)′ ]′, j = 1, . . . , σ, for all h ∈ �Z+.
Thus, ȳk

j (·), j = 1, . . . , σ, gives ȳj(·) in a lifted form over
each period, provided that uk

i (·), i = 1, . . . , σ, coincides
with the lifted form of ui(·) over each period. Moreover,
the characteristic polynomial of Ēk is independent of k,
and, by the periodicity of Σ, it characterizes the stability
of Σ [19]. For this reason the eigenvalues of Ēk are called
the eigenvalues of Σ.

IV. Main results

The solvability conditions for the decentralized problem
of periodic systems have been stated in [6]. These results
can be used for introducing the solvability conditions of
DMCNP in terms of periodic representation of the multi-
rate sampled-data system Σ. In order to introduce such
conditions, the following notations are needed.

A complementary subsystem ΣIJ of Σ, associated to the
sets I := {i1, . . . , iµ} and J := {j1, . . . , jν}, with I ∩ J =
∅ and I ∪ J = {1, . . . , σ}, has the form

x̄((k + 1)Tc) = Ā(k)x̄(kTc) + B̄I(k)uI(kTc) (21)
ȳJ (kTc) = C̄J (k)x̄(kTc) (22)

where B̄I(k) := [B̄i1(k) B̄i2(k) . . . B̄iµ
(k)] and C̄J (k) :=

[C̄j1(k)′ C̄j2(k)′ . . . C̄jν
(k)′]′.

The time-invariant representation Σ
k

IJ of ΣIJ has the

same structure of Σ
k

with matrices J̄k
I , L̄k

J and M̄k
JI de-

fined as J̄k, L̄k and M̄k, with B̄(k) and C̄(k) substituted
with B̄I(k) and C̄J (k) respectively.
Lemma 3.1. [6] The DMCNP admits a solution if and
only if:
(i) system Σ is stabilizable and detectable, i.e. for an ar-

bitrary k ∈ �Z+ and for all z outside the open unitary disk,

rank [ Ēk − zIn̄ J̄k ] = n̄, (23)

rank

[
Ēk − zIn̄

L̄k

]
= n̄; (24)
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(ii) the 2σ − 2 complementary subsystems Σ̄IJ are weakly
complete, i.e., for all I and J , for an arbitrary k ∈ �Z+

and for all z outside the open unitary disk,

rank

[
Ēk − zIn̄ J̄k

I
L̄k
J M̄k

JI

]
≥ n̄. (25)

Denoting with Bc
I := [Bc

i1
Bc

i2
. . . Bc

iµ
] and Cc :=

[Cc
1
′ Cc

2
′ . . . Cc

n
′]′, the solvability condition can be stated

in terms of the given continuous time-invariant system Σc

if the sampling rates are chosen appropriate to system Σc.
Theorem 3.1. Given a continuous-time plant Σc which is
stabilizable and detectable, the DMCNP has a solution if:
(i) every pair (λc

a, λc
b) of distinct eigenvalues of Ac, with

Re[λc
a] = Re[λc

b] ≥ 0, has Im[λc
a − λc

b] �= ±2hπ/ωTc, for all
h ∈ �Z+;
(ii) the 2σ − 2 conditions

rank

[
Ac − λI Bc

I
Cc 0

]
≥ n (26)

are verified for all I and for each unstable eigenvalue λ of
Ac.

The proof of this theorem has been performed mak-
ing use of some results on the analysis of linear periodic
discrete-time systems [13], Jordan form of matrix Ac and
elementary operations on matrices of conditions (23), (24)
and (25).

The conditions of Theorem 3.1 are not related to the
multirate mechanism but only to the least common mul-
tiple of the sampling and hold intervals. The condition
(i) of Theorem 3.1 preserves the stabilizability and deter-
minability of system Σ and the fulfillment of condition (ii)
of Lemma 3.1 if condition (ii) of Theorem 3.1 is verified.

The design of the controllers Ci, for i = 1, . . . , σ, is per-
formed in three steps.
(Step 1) Making use of classical algorithms (see, e.g., [1],

[2], [4], [5], [20]), compute time-invariant decentralized con-
trollers C0

i for the stabilization of the time-invariant system
Σ

0
(the time-invariant representation of Σ at time t = 0).

(Step 2) Making use of the algorithm proposed in [21],
compute an ω-periodic realization Ci associated to C0

i .
(Step 3) Compute the discrete-time system Ci with sam-

pling rate NiTc corresponding the ω-periodic system Ci.

V. Numerical example

Consider a linear time-invariant continuous-time plant
Σc, characterized by σ = 2 input-output channels and de-
scribed by

ẋc(t) = Ac xc(t) + Bc
1 uc

1(t) + Bc
2 uc

2(t)
yc
1(t) = Cc

1 xc(t)
yc
2(t) = Cc

2 xc(t)

where

Ac =


 1 0 1

0 0 1
0 −1 0


 , Bc

1 =


 1

0
0


 , Bc

2 =


 0

1
1




Cc
1 = [ 0 1 0 ] , Cc

2 = [ 0 0 1 ]

and characterized by different sampling and updating pe-
riods, T1 = 2 sec and T2 = 3 sec.

For this plant the conditions for the existence of a simple
decentralized multirate control system designed without in-
formation exchange between the two output channels are
not verified, missing a solution for the decentralized control
problem.

On the contrary, the conditions of Theorem 3.1 for the
existence of a solution to the DMCNP are verified and a de-
centralized control multirate system can be implemented.
In this case, it is possible to design two independent single-
rate controllers C1 and C2, which guarantee the asymptot-
ical stability of the closed-loop system.

VI. Conclusions

The problem of stabilizing a large-scale continuous-time
plant characterized by different sampling and updating in-
tervals for each input-output channel of the plant has been
here analyzed.

A preliminary result for the development of a decentral-
ized digital control network system is introduced. The pos-
sibilities for stabilizing a large-scale continuous plant by a
decentralized digital control system are improved through-
out the output data exchange by using local networks.
Each local controller of the digital control scheme can make
use of the local sampled-data output measures and of some-
one or of all output measures of the other channels to avoid
the lack of structural properties.

This work introduces a set of preliminary results useful
for a future research on the analysis of the performances
of a decentralized control network in terms of robustness
and/or parameters uncertainties. Moreover, an interesting
problem to be analyzed is the problem related to the prob-
able asynchronism of data sampling and of data updating
among the various channels of a real digital decentralized
control network scheme, due to physical and/or technolog-
ical constraints.
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