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ABSTRACT

The very general robust stability condition is discussed and
specialized for a generic two-degree of freedom control
system. In case of a specific controller design procedures, it
is shown how the time-delay mismatch influences the
reachable robustness and performance measures.
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1. INTRODUCTION

An important area of research in control theory is the design
of feedback controllers for systems which have significant
uncertainties in the plant and the explicit incorporation of
model uncertainties in the design of high performance
control systems. These uncertainties can result from a lack
of precision in mathematical modeling of the plant and/or
changes in the plant parameters with time. This leads to
methods for designing robust stability and performance.
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Fig. 1 Closed-loop with an ARS regulator

For open-loop stable LTI processes a good framework for
designing all realizable stabilizing (ARS) control to use a
regulator given by (see in Fig. 1)
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where the "parameter" Q ∈ S  ranges over all proper

(Q ω = ∞( )  is finite), stable transfer functions [1]. This is

the Youla- (Y  or Q )-parametrization of all stabilizing
regulators and Q  is the Y-parameter:
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Q  is anyway the transfer function from r  to u  and the
closed-loop transfer function is
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is linear (and hence convex) in Q .

2. ROBUST STABILITY OF Y-PARAMETRIZED
CONTROL LOOPS

Be M  the model of the process. Assume that the discrete-
time process and its model are factorizable as

S S S S S z d= =+ − + −
−     and  M M M M M z d= =+ − + −

− m (4)

where S+ and M +  mean the inverse stable (IS), S−  and M−

the inverse unstable (IU) factors, respectively. z d−  and

z d− m  correspond to discrete time delays, which are the

integer multiple of the sampling time, usually z zd d− −= m

is assumed. (To get a unique factorization it is reasonable to
ensure that S−  and M− are monic, i.e., S M− −( ) = ( ) =1 1 1,

having unity gain.) It is important that the inverse of the

term z d−  is not realizable, because it would mean an ideal

predictor z d . These assumptions mean that S S z d
− −

−=  and

M M z d
− −

−= m  are uncancelable invariant factors for any
design procedure. Introduce the additive

∆ = −S M    ;   ∆+ + += −S M    ;     ∆− − −= −S M (5)

and relative
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model errors. It is easy to show that the characteristic
equation using the ARS regulator is (for d d= =m 0)

M M+ − = 0 (7)

if a ˆ ˜Q M M Q=( )+ −
−1

 parameter is applied, i.e., if someone

tries to cancel both factors. This means that the zeros of the
IU factor will appear in the characteristic equation and cause
unstability. This is why these zeros (and the time delay
itself) are called invariant uncancelable factors.



To investigate the robust stability of the closed-loop shown
in Fig. 1 first the transfer function of an auxiliary closed-
loop should be introduced similarly to (3) where the model

M  is used instead of S  and a regulator ˆ ˆR R M= ( )  based on

the model, i.e.
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where
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The well known robust stability condition [1] has several
forms, here such form is shown, which is mostly used in

iterative ID and control schemes. If   l is stable then R̂
stabilizes S , if

Ẑ l <1    or   Ẑ ≤ 1

l
    or    l ≤ 1

Ẑ
    ∀ω (10)

(If the system is discrete-time then ∀ω  means

ω π π∈ [- ), .) The inequality 
  
Ẑ l <1 is sometimes referred

as
design

factor

modeling

factor
× <1 (11)

This condition has an interesting interpretation, because the
first term is only influenced by the identification procedure
and depends on the actual plant behavior, whereas the second
one is influenced by the control design and the assumed
plant model, but independent of the modeling error. To tell
the truth this shaping condition does not mean too much:

namely for small ω it is generally true that Ẑ ≅ 1,

therefore here   l <1 is enough. For large ω, where

Ẑ <<1, relatively bad model is also acceptable with   l >1.

However, for the medium frequency range, where Ẑ  has a

maximum   l  must be minimal.

The robust stability condition has a more serious form,
when S  and M  have the same number of unstable poles

and same unit-circle poles, then if ˆ ,R M( )  is stable and

either

  
Ẑ l <1     ω π π∈ [- ), (12)

or

Z l <1     ω π π∈ [- ), (13)

then ˆ ,R S( )  is stable and vice versa. For the ARS regulator

(10) gives 
 
Q̂ M l <1, i.e.,

  

Q̂ M < 1

l
     or     l < 1

Q̂ M
     ∀ω (14)

Thus the robust stability strongly depends on the model M

and how the Y-parameter Q̂  is selected.

3. A GENERIC TWO-DEGREE OF FREEDOM
CONTROL SYSTEM

The generic two-degree of freedom (GTDOF) system [2] is
used here which is based on the Youla-parametrization [1],
providing ARS controller for open-loop stable plants and
capable to handle the plant time-delay.
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Fig. 2 The generic TDOF (GTDOF) control system

A GTDOF control system is shown in Fig. 2, where
y u yr , ,  and w  are the reference, process input, output and

disturbance signals, respectively. The optimal A R S
regulator of the GTDOF scheme [3] is given by
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where

Q Q P K P G So w w w w w= = = +
−1 (16)

is the associated Y-parameter [4] furthermore

Q P K P G Sr r r r r= = +
−1 ; K G Sw w= +

−1 ; K G Sr r= +
−1 (17)

assuming that the process is factorable by (4). Here Pr  and

Pw are assumed stable and proper transfer functions
(reference models). An interesting result was [5] that the
optimization of the GTDOF scheme can be performed in
H2 and H∞ norm spaces by the proper selection of the

serial Gr  and Gw  embedded filters.

It is interesting to note that the continuous-time equivalent
form of the regulator (15) is

R
P K

P K S

Q

Q S

P G S

P G S e so
w w

w w

o

o

w w

w w

=
−

=
−

=
−

+
−

−
−1 1 1

1

τ (18)

where τ  is the time-delay of the plant and τ m is the time-
delay of the model and formally



S S S S S e s= =+ − + −
− τ   and  M M M M M e s= =+ − + −

− τm (19)

4. ROBUST STABILITY OF GTDOF CONTROL
SYSTEMS

The model based R̂o  and Q̂o can be obtained from (15) and

(16) by simply substituting S+ and S−  with M +  and M−.

It is also necessary to substitute z d−  by the model time

delay z d− m . Analyze the basic robust stability condition
(14) obtained for the Y-parametrized ARS regulators in case
of the generic scheme, where the optimal regulator is given

by (15) and Q̂ P G M= +
−

w w
1 from (16). We get

Q̂M P G M M P G M z dl l l= = <+
−

−
−

w w w w
m1 1  for  ∀ω (20)

or in the other form (using that z d− =m 1)

  

l ≤
−

1 1

P G Mw w

     for     ∀ω (21)
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Fig. 3 The limiting condition for the relative model
accuracy   l

In case of an IS plant with time-delay, when M− =1 and

therefore Gw =1, this robust stability condition is very
simple

  

l ≤ 1

Pw

     for     ∀ω (22)

i.e., the limiting right side depends only on the inverse of
the Pw, which is the reference model for the regulatory
property of the GTDOF system. So having known the
design requirement Pw we got a direct inequality
determining the necessary relative model accuracy to ensure
robust stability. Assuming a simple first order reference
model

P
sw

w1 + T
= 1

(23)

the limiting right side condition 1 Pw  is shown in Fig. 3.

This limiting condition is very mild, because for low
frequencies it is 100% and even increasing for high
frequencies. It is important to note, if the relative model
accuracy   l is known, then (22) gives a reachable limit for
the design performance.

For IU plants the right side of (21) is determined by two

factors. The first is 1 Pw  which was discussed above. The

second term is the inverse of the product G Mw − . Here M−

is the model of the IU invariant factor S− , which does not

depend on us. The purpose of Gw  is to attenuate the

influence of the invariant factor M− (and the true S− ) using

an optimization in H2 or H∞ norm space. So depending on

the frequency characteristics of G Mw −  the original 1 Pw

limit could be slightly or drastically modified. The most
unwanted case is when G Mw −  gives a high gain at the

cross-over frequency.

5. MODEL ERRORS FROM PLANT TIME-DELAY
MISMATCH

Some controller design methodology, mostly for discrete-
time systems, include the time-delay of the plant also into
the parameters. Unfortunately relatively few papers [6], [7],
[8]and [9] can be found dealing with the influence of the
accuracy of the apriori knowledge or estimate of the time-
delay, which is sometimes called the time-delay mismatch
problem. In the sequel the influence of the time-delay
mismatch on the robustness and performance will be
discussed.

As a practical example let us compute the relative model
error l for an IS plant, where the model uncertainty comes
only from a time-delay mismatch. The delay-free term is
assumed to be known exactly, so M− =1 and M S+ += . In
this case

  
l l= = = − = − = −+
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Assume an equivalent continuous time plant with time-
delay τ  and a model with time-delay τ m. The analogous
equivalence means

l l= = −−
τ

τe s∆ 1 (25)

where ∆τ τ τ= − m . The robust stability condition (19) for
the continuous time case is now



  
sup sup w

ω
τ

ω

τω ωl = − ≤ ( )−e Pj∆ 1 1 (26)

Assume a first order reference model

P
sw

w1 + T
= 1

(27)

and using the first order Taylor expansion of the exponential
term one can get a good approximation of (26) for small
deviations

1− ≤τ
τ τ
m wT

(28)

The interpretation of (28) is very simple: for small Tw,
which means high closed-loop performance, the model time
delay τ m must be close to the true delay τ . So it is
obtained that the admissible time-delay mismatch is limited
by the inverse of the performance. It could be furthermore
very interesting how this limit influences the robustness of
the loop.

Detailed investigation of this limiting behavior needs
further numerical computations. Simple calculations give
that the sensitivity function of the GTDOF system having
time-delay mismatch for the discrete-time case is (assuming
Gw =1)
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and the continuous time equivalent follows as
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For Pw given by (27) the sensitivity function (30) becomes
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The well-known Nyquist stability margin (the simplest
robustness measure) is defined by

ρ ρ ρ ω ω
ω ω ω

m min min min1+ min1+= ( ) = ( ) = = ( ) =
∞

R R RS Y j
E

,
1 (32)

which is the distance between the point − +( )1 0 j  and the

closest point of the open-loop transfer function Y jω( ) . The

reciprocal value of the norm is E ∞ . Unfortunately there is

no simple analytical solution to obtain how the robustness
of the closed-loop depends on the time-delay mismatch and
on the performance. It is, however, possible to compute the

graphical plot of a complex functional relationship
ρ ρ τ τ τm min m w= ( ),T   with the help of MATLAB.

As a result Fig. 4 shows the function ρ τmin wT( )  for

τ τ τ τm , ,2= 0 5. . For the ideal τ τm =  (no mismatch) case

ρmin  depends only on our design goal (Tw) and on the
plant time-delay ( τ ), more exactly on their relative value
Tw τ . The best robustness measure is ρmin 0 0 5( ) = .  for

cases when the reference model Pw requires a very fast
transient response from the time-delay process and the
measure is ρmin ∞( ) =1, if τ  is negligible comparing to the

time lag of Pw. It can be well seen that either under- or
over-estimation of the time-delay causes considerable
decrease of the robustness. Virtually ρmin  is more sensitive
for over-estimation. (The left ends of the plots correspond to
the robust stability limit.) While the no mismatch case
provides an all stabilizing property for any performance
requirement, in case of a non zero time-delay mismatch one
can always expect the violation of the robustness stability
limit for higher performance design.
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Fig. 4 The function ρ τmin wT( )  for τ τ τ τm , ,2= 0 5.

complex functional relationshipIt may be more reasonable
to plot the function ρ τ τmin m( )  parametrized by Tw τ  as

Fig. 5 shows. One can see how extremely the robustness is
sensitive for high performance requirement, when Tw τ  is

small and how this sensitivity decreases when Tw τ  is
large for low performance design. It is also interesting to
observe, that for small mismatch the over-estimation of the
delay gives higher ρmin , however, for ρmin  is somewhat
more sensitive for large mismatch, as it was shown in
Fig. 4.

In a relatively wide range of Tw τ , the over-estimation of

the time-delay by τ τ∗  improves (i.e. increases) the ρmin

to ρmin
∗  according to the maxima of the curves observable

in Fig. 5. The over-estimation is less than 25% and the
improvement is marginal, less than 5% as Fig. 5 shows.



If we assume that the time-delay mismatch is less than 20%
in a practical case, the robustness degradation is always less
than 10% for Tw τ ≥ 0 5. , which can be well seen in
Fig. 5. So if we want to speed up the open-loop process to
a time constant, considerable less than the delay, then it can
be done only using a quite accurate knowledge of the time-
delay. Contrary, if someone can expect a considerable
variation in the time delay then only a less demanding
(slower) design is much more reliable and robust.

(The jags of both figures origin from the relative accuracy
of the numerical computations. Do not forget that the
Nyquist plot of a time-delay process has infinite number of
winds around the origin and sometimes even the radius of
the external wind is quite small. So it is not easy to find
such frequency scaling which provides to determine both
ρmin  (i.e. E ∞) and the robust stability limit at the same

time within a proper accuracy.)

The above results strengthen the conservative practical
design experience that the time-delay is practically
equivalent to an IU zero, i.e. invariant.
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6. CONCLUSIONS

The well-known robust stability condition is a very general
requirement, which is difficult to use for practical design
problems. In case of some specific controller design
procedures, however, it is possible to introduce such forms,
which are very useful in the evaluation of the applicability
and performance of the desired closed-loop. These
specifications are introduced in this paper for a GTDOF
control system. Then these results are applied to investigate
the influence of time-delay mismatch on the robust
stability.

Most of the widely applied identification and adaptive
control methods assume an apriori known time-delay. It is
not easy (although possible) to incorporate the iterative or
adaptive estimation of the delay into the recursive methods.
Therefore one can always assume a time-delay uncertainty or
mismatch at all practical applications. It was discussed here
how this mismatch influences the robustness degradation
and the reachable closed-loop performance.

The investigations show that bandwidth higher than the
bandwidth of the delay term (Tw < τ ) can be reached only
for a considerable lower robustness and at the same time a
much more accurate knowledge of the time-delay is
necessary. This corresponds to the practical design
experience that the corner frequency of a delay term
corresponds to an unstable zero, i.e., similarly invariant. So
the acceptable performance domain means Tw ≥ τ .

We found that a certain slight over-estimation of the time-
delay improves the robustness, however, a higher over-
estimation causes considerable robustness degradation again.
This observation can be used for model predictive
algorithms, too.
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