

Abstract-- Neural networks have been shown as an efficient
tool in optimisation problems in general, and in control ones in
particular. For this reason, Engineering students should
properly learn this tool in subjects as Optimal Control or
Intelligent Control. In this way, a planning for neural
networks teaching is proposed in this paper, using a Java-
Based toolkit (Evenet 2000) that allows to design and train
neural networks with arbitrary architecture.

Index Terms-- Neural networks, software tools, education

I. INTRODUCTION

Currently, neural networks are widely used as an efficient
method in many subjects such as optimisation problems and
pattern recognition [1][5]. In this way, students of
Engineering courses should properly learn this tool,
particularly in subjects such as Optimal Control or
Intelligent Control. During theoretical classes students
should learn some teorethical aspects of neural networks
(definition, structure, topologies or learning methods).
Howevwe, after these classes, it would be very pedagogical
for these courses to use a tool (or better, several tools) to
train different neural networks using several training
methods. With this tool, students can visualise the neural
networks power in a practical way.

For this aim, there are several tools for neural networks
training such as MATLAB Neural Networks Toolbox,
NNSYSID, NNCTRL [6] or SNNS. However, most of them
are not sufficiently general or they are not user-friendly
enough. Frequently, its users cannot visualise the training of
a neural network with arbitrary architecture and/or
implement new training methods in an easy way.
Evenet2000 [3,4], a Java-Based neural network toolkit
developed at University of La Laguna, offers these
advantages. This tool is based on an approach introduced by
Wan and Beaufays to derive gradient algorithms for time-
dependent neural networks, by using Signal Flow Graph
theory. This approach consists of a set of simple block
diagram transformation and manipulation rules. However
with Evenet-2000 users do not need to know these rules.
Moreover, the designed structure makes it not limited to
gradient-based algorithms.

 Department of Física Fundamental y Experimental,

Electrónica y Sistemas. University of La Laguna. Spain.

The aim of this article is to present a planning for neural
network teaching by using Evenet2000. Because this tool
has interesting aspects for both neural networks teachers and
researchers, it is briefly described in section 2. In section 3,
teaching planning is detailed and conclusions are shown in
section 4.

II. DESCRIPTION OF THE TOOL

Regarding the gradient algorithms in neural networks,
several researchers [2],[7],[8] have shown that there is a
reciprocal nature to the forward propagation of the states
and the backward propagation of gradient terms. This
reciprocity appears in all network architectures. Based on
these properties, and using Signal Flow Graph theory, they
have deduced a general method for automatic determination
of the gradient in an arbitrary neural network. In this paper
we will apply the Wan and Beaufays approach.

The first step involves representing the arbitrary network as
a block diagram. There are five basic blocks:

• summing junctions
• branching points
• univariate functions
• multivariate functions
• time-delay operators.

For example, a neuron can be seen as a summing junction
followed by a univariate function such as sigmoid or tanh.

From this block diagram, an adjoint network can be built by
reversing the flow direction in the original network,
performing a set of transformation rules. This philosophy
suggests object-oriented programming as implementation
method. So, Java, the most popular and powerful object-
oriented language has been chosen for development of the
toolkit.

Evenet-2000 consists of three basic parts: a calculation
library, a user-friendly interface and a graphic neural
network editor.

Evenet-2000 calculation library develops theory shown
above. Every basic element is assigned an object that
implements easily the adjoint method.

The basic elements are not sufficient for a complete library.
They must be joined to other types of objects that
implement arbitrary neural network trainings. For this,

A Planning for Neural Networks Teaching in Control
Using a Java-Based Toolkit

E.J. Gonzalez, A. Hamilton, L. Moreno, R.M. Aguilar, R.L. Marichal

Evenet-2000 calculation library follows the UML diagram
shown in Figure 1.

With this implementation, training and optimization
problems have been uncoupled from the neural network
structure specification. Problem object sets the chosen
neural network structure, the learning algorithm and the
criterion function (problem object is the connection among
these objects). In this structure, the problem object sets the
network inputs, asks the neural network object for the
output vector. Then asks the criterion function to calculate
the error vector, and finally the neural network calculates
the gradient vector. Once this process has finished, the
problem object sends the gradient vector to the algorithm. It
calculates a new weight vector, by asking the problem
object for cost function value. Unidimensional (1-D)
optimisation could be required, so 1-D algorithms have been
included. These steps are repeated until the design
conditions are reached.

This calculation library can be used independently from the
rest of the program. However, although the calculation
library is complete and easy to use, people not used to
object-oriented programming could not make the most of it.
Because of this, the tool has been improved with a user-
friendly interface. This way, students in our planning do
need to learn objet-oriented programming at all.

This interface allows training directly a multilayer
perceptron (MLP). When this case is selected from program
main menu, a frame like the shown in Figure 2 appears.
From its menu bar, desired learning method, criterion
function, optimisation algorithm and other training
parameters can be selected.

When training pairs have been loaded, the network is ready
to be trained. Initial weight set can be fixed also. When the
training finishes, users can study a frame showing the
training error evolution and the difference between the
desired and obtained outputs (Figure 3). The error and the
iteration number after the training are shown in their
respective text fields, and results can be saved in a text file
that can be analysed later.

Evenet-2000 user-friendly interface allows users to train
MLP or recurrent with no code. But this interface has not
taken advantage of the possibility of training a neural
network with an arbitrary architecture. For getting this
purpose, a graphic editor has been included in the tool. This
editor, whose frame is shown in Figure 4, can be selected

Criterion Function

Problem

Neural Network Learning Algorithm 1-D Algorithm

1
1

1
1

1

1

1

1

Fig. 1. Evenet-2000 Calculation Library Diagram

Fig. 2: Evenet-2000 MLP Frame (Fragment)

Fig. 3: Desired and obtained output

from the program main menu.

This graphic editor allows creating an arbitrary neural
network. Users only have to select its elements from the
menu and connect them. Its designs can be saved in a text
file and loaded as new elements (modularity), developing
their own neural network library this way. This text file can
be modified without the help of the editor and loaded by
other window of the toolkit, similar to the MLP training one
described above. This way, neural networks buil t following
any arbitrary architecture can be designed and trained with
no code. This is a great advantage for the users and
particularly for engineering teachers, since they are not
forced to make any complicated calculations.Moreover,
students are offered a tool they can visualise neural
networks theory with.

III . PLANNING

In this section, the proposed planning of neural network
teaching for engineering students is presented. After
theoretical classes where students learn some neural
networks aspects [5] as its definition, structure, topologies
and several learning methods, teachers present them several
procedures as practical experiences. They can be divided
into two blocks: a basic block where students can visualise
the theoretical aspects they have learnt and a more complex
block where neural networks are applied to a control
problem.

First of all , students are shown the ability of the neural
networks of learning patterns. As example, a 4-layers MLP
(1, 3,3, 1 and 1 neurons in each layer) is taken. From
Evenet2000 menu bar, students selects the training
parameters such as initial learning rate (for this example,
0.25), limit of steps (1000), limit of error (1E-4) – when one
of these limits are reached, the training is stopped – learning
method (Descent Gradient), 1-D optimisation (none),
activation function (Sigmoid), criterion function (Cuadratic)
and initial weight set (random). A pattern file which
implements the function y(x) = x is loaded. This pattern file
consists of 11 patterns (0<x<1, step = 0.1). After this

selection, students train the network. They should obtain a
graphic similar to the shown in Figure 5.

This way, students can visualize how the error decreases.
Evenet2000 offers the possibil ity of testing if the network
has been well trained. Students check the outputs for several
inputs, included or not in the original pattern file (last ones
are the most interesting ones), confirming that the network
has learnt the proposed function (Fig. 6)

Once the test has finished, students are suggested to vary
some training parameters as learning rate, network topology
or number of patterns. An il lustrative case is obtained when
learning rate is excessively big. As can be seen in Figure 7,
the error evolution presents some peaks in graphic error.

Fig. 4: Graphic Editor Frame (Fragment)

Error

Step

Fig 5: Training error evolution

Fig 6: Training test for
proposed example

Error

Step

Fig 7: Training with High Learning Rate

Students are asked for the reason of these peaks, testing
their knowledge.

Next exercises are focused on goodness of a unidimensional
optimization of the learning rate. Students select an
optimization method for a new training and compare its
results with the obtained with no optimization. As it was
expected, the number of necessary steps decreases.
However more calculations are made in each step, so
comparing the training time instead is a better choice. In this
step, students are asked again for the goodness of the
different algorithms.

These basic experiences may be complemented with studies
about recurrent networks and/or other topologies. For this
purpose, these topologies can be designed with the graphic
editor of the tool.

With this set of experiences, students have visualized the
aspects that they had learnt in theoretical classes, getting a
deeper knowledge of neural networks. Estimated time for
this first block of procedures is about 20 hours divided into
4-5 sessions.

On the other hand, with the second set of procedures,
students can learn about applications of neural networks in
problems more complex than learning of some patterns. In
the planning proposed in this paper, a simple but interesting
control problem has been chosen. There are two options for
the system to control: a real system (for example the tank
system shown in Figure 9) or a software-simulated one.
Procedures with real systems offer a great advantage.
Engineering students usually find more interesting to work
in the “real l ife” than with simulated systems. However, if
the system is not carefully chosen, its control could become
too difficult for a laboratory procedure. So it is
recommended a first or second order system. On the other
hand, working with simulated systems offers more variety
and are easier to debug.

In both cases, students should implement a control structure
like the shown in Fig 8. Parameters concerning to
proportional and integral terms of the controller (students
work with discrete equations) are supplied for a neural

network, trained through Evenet2000 modules. Students
should compare this control structure with a controller with
fixed proportional and integral terms. This way, they test the
goodness of neural networks for control systems.

Estimated time for this block of procedures is about 20
hours divided into 4-5 sessions.

IV. CONCLUSIONS

In this paper, a planning for the teaching of neural networks
in Engineering subjects is proposed. For this, Evenet2000, a
Java-based neural network toolkit, is used. This toolkit
allows students to design and train neural networks with
arbitrary architectures. In theoretical classes, students learn
aspects as definition, structure, topologies and several
learning methods. After these classes, two blocks of
procedures are proposed to students. In the first block,
students can visualise these theoretical aspects. The second
block is more complex and students apply neural networks
to a control problem. This block is proposed to students
more famili arised with object-oriented programming and
control systems.

Controller System

Neural Network

+

-

Fig 8: Control structure implemented in a control application.

Fig 9: Example of real plant for the second
proposed block of procedures

REFERENCES

[1] Acosta L., Marichal G.N., Moreno L., Rodrigo J.J., Hamilton A.,

Méndez J.A. (1999). Robotic system based on neural network
controllers. Artificial intelligence in Engineering, 13, number 4, pp
393-398.

[2] Campolucci P., Marchegiani A., Uncini A., Piazza F. (1997).
Signal-Flow-Graph Derivation of On-line Gradient Learning
Algorithms. IEEE International Conference on Neural Networks,
Houston (USA).

[3] González E.J., Moreno L., Hamilton A., Piñeiro J.D., Marichal R.,
Marichal, G.N. (2000). Evenet2000: A New Java-Based Neural
Network Toolkit. Proceedings of the Second ICSC Symposium on
Engineering of Intelligent Systems, Paisley, June 2000.

[4] Gonzalez E.J., Hamilton A., Moreno L., Sigut J., Marichal R.
(2001) Evenet-2000: Designing and Training Arbitrary Neural
Networks in Java. Bio-Inspired Applications of Conectionism,
Springer Verlag, Lectures Notes in Computer Science, 2085.

[5] Haykin, S. S. (1998) Neural Networks: A Comprehensive
Foundation. Prentice Hall.

[6] Nørgaard M., Ravn O., Poulsen N.K., Hansen L. K. (2000) Neural
Networks for Modell ing and Control of Dynamic Systems. Springer-
Verlag, London.

[7] Osowski S., Herault J. (1995) Signal Flow Graphs as an Eff icient
Tool for Gradient and Exact Hessian Determination. Complex
Systems, 9, 1995.

[8] Wan E. A. and Beaufays F. (1994) Relating real-time
backpropagation and backpropagation through time. An application
of flow graph interreciprocity. Neural computation, 6, number 2, pp.
296-306.

	Conference Program
	Author Index
	Main Menu

