
1

Control of State Tree Structures
Chuan Ma and W. M. Wonham

Abstract— It is well known that the nonblocking supervi-
sory control problem is NP-hard, subject in particular to
state space explosion that is exponential in the number of
system components. In this paper we propose to manage
complexity by organizing the system as a State Tree Struc-
ture (STS). STS are an adaptation of state charts to super-
visory control theory. Based on STS we present an efficient
recursive algorithm that can perform nonblocking supervi-
sory control design (in reasonable time and memory) for
systems of state size 1024 and higher.

Keywords— State Tree Structure (STS), Discrete Event
System, Nonblocking Supervisory Control, Symbolic Com-
putation, Recursive Algorithm.

I. Introduction

THE central problem of supervisory control theory
(SCT) is that of optimal nonblocking supervisory con-

trol [1]. This problem is well known to be NP-hard [2]:
specifically it is unlikely that any algorithm can be found
to solve it that circumvents state space explosion that is
exponential in the number of system components. This
means that realistic industrial problems (say with state set
sizes of 1020 and higher), if formulated naively, may well
exceed the computational capacity available.

It is therefore attractive to explore structured system ar-
chitectures with the property that, if the given system can
be modelled in the selected framework, the required com-
putations can be carried out with greater efficiency than
by a naive ‘monolithic’ approach. Apart from the effort
needed to adapt a specific structural form to the system
to be modelled, the price to be paid may include relaxing
the (monolithic) requirement of optimality, viz. maximal
permissiveness of controlled behavior. However, as long as
controlled behavior is ‘legal’ and nonblocking, some reduc-
tion in permissiveness may well be acceptable for the sake
of increased tractability. In addition, structured modelling
may confer advantages of model transparency and modifi-
ability. One instance is Leduc’s [3] Hierarchical Interface-
based Supervisory Control theory (HISC).

Statecharts [4] offer a compact representation of hierar-
chy and concurrency in finite state machines (FSM). Here
the system state set is structured top-down into successive
layers of cartesian products (AND superstates) alternat-
ing with disjoint unions (OR superstates). On this basis,
Wang [5] introduced State Tree Structures consisting of a
hierarchical state space or State Tree, equipped with dy-
namic modules called holons (inspired by [6] and [7]). Go-
hari [8] formalized Wang’s model in linguistic terms. In [5],
however, AND states had to be converted by synchronous
product of factors into OR states at a higher level before
computations could effectively be carried out; and [8] was

The authors are with the Systems Control Group, Dept. of Electri-
cal and Computer Engineering, University of Toronto, ON, Canada
M5S 3G4. E-mail: (cma, wonham)@control.utoronto.ca.

similarly restricted to a purely OR state expansion. By
contrast, in this paper we treat both AND and OR states
on an equal footing, and in AND states allow shared events
among the factors. Statecharts also underlie the Asyn-
chronous Hierarchical State Machine (AHSM) model of [9],
but the shared events among AND components were ruled
out. Marchand et al. [10] introduce another simplified ver-
sion of statecharts, the Hierarchical Finite State Machines
(HFSM). But HFSM rule out shared events, are appar-
ently restricted to be OR structures at the topmost level,
and allow only specifications of forbidden state type.

Control design with STS depends on efficient compu-
tational representation. Borrowing from symbolic model
checking [11] we employ binary decision diagrams [12]
(BDDs). In [13] BDDs were used for a DES with 106 states;
by means of STS hierarchies encoded with BDDs we report
on a version of the AIP example [16], [3] having on order
1024 states.

II. State Tree Structure

Let X be a finite set of objects, called states. Let x ∈
X and Y = {x1, x2, . . . , xn} ⊂ X, x �∈ Y . If x can be
represented by the union (Cartesian product) of states in
Y , we call x an OR (AND) superstate and each xi an OR
(AND) component of x. Also call x a parent of any xi and
xi a child of x. All other states in X are called simple
states. Say X is a structured state set. Formally, we define
M : X → {and, or, simple} as the mode function and E :
X → 2X as the expansion function such that

E(x) :=
{

Y, if M(x) ∈ {and, or}
∅, if M(x) = simple

,

where ∅ denotes the empty set. Let R ⊂ X. Write MR :
R → {and, or, simple} as the restriction of M to R, and
ER : R → 2R as the restriction of E . The reflexive and
transitive closure of E is written E∗. That is, E∗(x) − {x}
is the set of all descendants of x, while x is an ancestor of
states in E∗(x) − {x}.

Now we can define the state tree by recursion.
Definition 1 (State Tree) A state tree is a 4-tuple

(X,xo,M, E), where
• X is a finite structured state set with X = E∗(xo),
• xo ∈ X is the root state.
ST = (X,xo,M, E) is a state tree if
1. (terminal case) X = {xo}, or
2. (recursive case) (∀xi ∈ E(xo))STxi = (E∗(xi), xi,ME∗(xi),
EE∗(xi)) is also a state tree, where (∀xi, xj ∈ E(xo), xi �=
xj)E∗(xi) ∩ E∗(xj) = ∅ and

⋃
xi∈E(xo) E∗(xi) = X − {xo}.

Say STxi is a child state tree of xo in ST, rooted by xi.
A well-defined state tree must also satisfy

(∀x ∈ X)M(x) = and & xi ∈ E(x) ⇒ M(xi) = or.

2

xo

x1 x2 x3

x11 x12 x31 x32 x33

x111 x112 x121 x122

∪∪

∪∪

∪ ∪

×

STx1 STx2 STx3

STx11 STx12

Fig. 1. Recursively define the State Tree ST

That is, all AND components must be OR superstates. We
assume all state trees are well-defined.

For convenience, say ST is the empty state tree if X = ∅,
and write ST = ∅.

�

An example is shown in Fig. 1.
Definition 2 (Sub State Tree) Let ST = (X,xo,M, E)

be a state tree, and let Y ⊆ X. subST = (Y, xo,MY , E ′)
is a sub state tree of ST if subST is a well-defined state
tree with E ′ : Y → 2Y defined by

{
E ′(y) := E(y), if MY (y) ∈ {and, simple}
∅ ⊂ E ′(y) ⊆ E(y), if MY (y) = or

,

for all y ∈ Y . Trivially, the empty state tree ∅ and ST
itself are sub state trees of ST. A proper sub state tree of
ST is one with Y ⊂ X. Denote by ST (ST) the set of all
sub state trees of ST.

�

Two examples of sub state trees are STβ and STσ in Fig. 5.
Let ST1,ST2 ∈ ST (ST). Define

ST1 ≤ ST2 iff ST1 ∈ ST (ST2).

That is, ST1 ≤ ST2 if and only if ST1 is a sub state tree of
ST2. One can prove that (ST (ST),≤) is a lattice in which
the meet and join of any two elements always exist. In
particular the bottom element ⊥ = ∅ and the top element

 = ST. Fig. 2 illustrates the meet operator. Notice that
x2 is not on ST3 because ST1 and ST2 do not agree on
any of x2’s descendants.

xo

xo

xo

x1

x1

x1 x2x2

x21 x22 x23

∪

∪

∪ =∧

ST1 ST2

ST3

Fig. 2. ST1 ∧ ST2 = ST3

Instead of the abstract concept of configuration in state-
charts, we use the simpler ST (ST) as the universe for the
behavior of STS. In our setting, an eligible event is capable
of transforming a sub state tree of ST into another one.

To measure the size of ST (ST), we introduce the func-
tion count, defined recursively along the sub state tree

ST1 ∈ ST (ST) such that count(ST1) :=




∏
∀xi∈E(xo) count(STxi

1), if M(xo) = and∑
∀xi∈E(xo) count(STxi

1), if M(xo) = or

1, if M(xo) = simple

Trivially, count(∅) = 0. Say subST is a basic sub state
tree of ST if count(subST) = 1. Write B(ST)(⊆ ST (ST))
for the set of all basic sub state trees of ST. A basic sub
state tree is the “smallest” nonempty element in ST (ST).
It is equivalent to a state of FSM in describing system
behavior. A simple way of defining the STS behavior is
to assign transitions to each element in B(ST). However,
the size of B(ST) can be so large for complex systems that
the assignment may be infeasible to carry out. Instead,
we introduce the concept of holon, the local behavior, and
then build the global behavior structurally.

A holon is a generalized FSM with more than one initial
state.

Definition 3 (Holon) A Holon H is a 5-tuple

H := (X,Σ, δ,Xo,Xm),

where
• X, the finite state set, is the disjoint union of external
state set XE and internal state set XI .
• Σ, the event set, is the disjoint union of boundary event
set ΣB and internal event set ΣI . Of course, an event in Σ
can be controllable or uncontrollable.
• The transition structure δ : X × Σ → X is a partial
function; it is the disjoint union 1 of the internal transition
structure δI : XI × ΣI → XI and the boundary transition
structure δB ; δB is again the disjoint union of two transition
structures
– δBI : XE × ΣB → XI (incoming boundary transitions)
– δBO : XI × ΣB → XE (outgoing boundary transitions)

Write δ(x, σ)! if δ(x, σ) is defined. We require the transition
structure to be deterministic.
• Xo ⊆ XI is the initial state set, where Xo has only the
target states of incoming boundary transitions if δBI is
defined. Otherwise Xo is a selected nonempty subset of
XI . Formally,

Xo :=
{

{δBI(x, σ)|δBI(x, σ)!}, if XE �= ∅
Z, where ∅ ⊂ Z ⊆ XI , if XE = ∅

From now on , write δBI : XE × ΣB → Xo (pfn).
• Xm ⊆ XI is the marker state set, where Xm has only the
source states of the outgoing boundary transitions if δBO

is defined. Otherwise Xm is a selected nonempty subset of
XI . Formally,

Xm :=
{

{x|δBO(x, σ)!}, if XE �= ∅
Z, where ∅ ⊂ Z ⊆ XI , if XE = ∅

Write δBO : Xm × ΣB → XE (pfn).

�

3

4

5

0

6

32

1

XE

XI a

a

b

b

α

α

α

β
β

γ

Fig. 3. An example holon

An example holon is given in Fig. 3. Here XE = {4, 5, 6}
and XI = {0, 1, 2, 3}; ΣB = {α, β, γ} and ΣI = {a, b};
Xo = {0, 2}; Xm = {1, 2, 3}.

For each OR superstate y in the state tree ST =
(X,xo,M, E), a holon Hy = (Xy

E ∪ Xy
I ,Σy, δy,Xy

o ,Xy
m)

is said to be matched to y if
• internal structure matches, i.e., Xy

I = E(y).
• external structure matches. Let x be the nearest OR
ancestor of y on ST, i.e., x < y and M(x) = or. Then{

Xy
E = ∅, if x does not exist

Xy
E ⊂ E(x), if x exists

Suppose a holon Hx is also matched to the OR super-
state x. We say Hx is the parent holon of Hy and Hy

the child holon of Hx. Notice that if x exists, Xy
E ⊂ E(x)

implies that the superstate y cannot be a boundary state
in (Xx

o ∪ Xx
m), i.e., all boundary states of matched holons

must be simple states. This helps us to limit vertical com-
munication to be only between parent/child holons.

Definition 4 (Boundary Consistency) Let Hx = (Xx,
Σx, δx,Xx

o ,Xx
m) and Hy = (Xy,Σy, δy,Xy

o ,Xy
m) be the

holons matched to x and y, respectively. Hx is the par-
ent holon of Hy. As illustrated in Fig. 4, there are only

(a)

...

... ...

(b)

xx

y

y

y1

y1

yn

yn zz1
zm∪∪∪∪∪∪

×××

Fig. 4. Relation between y and x

two possible cases
1. y ∈ E(x) = Xx

I as in case (a) of Fig. 4, or
2. (∃z,M(z) = and)y ∈ E(z) & z ∈ E(x) = Xx

I as in (b).
In both cases, there is exactly one representative superstate
of y in Xx

I . Denote the representative superstate ŷ by

ŷ =
{

y, if y ∈ Xx
I

z, if y ∈ E(z) and z ∈ Xx
I

Then the pair (Hx,Hy) is boundary consistent if

1δi : X × Σ → X, i = 1, 2 are disjoint if the sets
{(x, σ, δ1(x, σ))|δ1(x, σ)!} and {(x, σ, δ2(x, σ))|δ2(x, σ)!} are disjoint,
i.e., δ1, δ2 have no transitions in common.

• (State consistency) The external states of Hy are those
connected with the superstate ŷ at Hx, i.e.,

Xy
E = {a ∈ Xx

I |(∃σ ∈ Σx
I)δx

I (a, σ) = ŷ or δx
I (ŷ, σ) = a}.

• (Event consistency) The boundary events of Hy are in-
ternal events of Hx, i.e., Σy

B ⊆ Σx
I . More precisely, the

boundary events are those events which point to or leave
the superstate ŷ at Hx, i.e.,

Σy
B = {σ ∈ Σx

I |(∃a ∈ Xx
I)δx

I (a, σ) = ŷ or δx
I (ŷ, σ) = a}.

• (Boundary transition consistency) The incoming/outgoing
boundary transitions of Hy are consistent with those of the
superstate ŷ at Hx, i.e.,

(∀a ∈ Xy
E , σ ∈ Σy

B)(∃b ∈ Xy
o)(δy

BI(a, σ) = b iff δx
I (a, σ) = ŷ).

(∀a ∈ Xy
E , σ ∈ Σy

B)(∃b ∈ Xy
m)(δy

BO(b, σ) = a iff δx
I (ŷ, σ) = a).

�

It is very easy to verify boundary consistency. Intuitively,
it means you can “plug” the low level holon into the high
level holon without changing the boundary transitions of
its representative superstate in the high level.

Definition 5 (State Tree Structure (STS)) A state tree
structure (STS) is a 6-tuple (ST,H,Σ,∆,STo,ST m),
where
• ST := (X,xo,M, E) is a state tree;
• H := {Ha|a ∈ X & M(a) = or} is the set of holons
assigned to the OR superstates in ST;
• Σ is the set of events occurred in H;
• ∆ : ST (ST) × Σ → ST (ST) is the transition function;
• STo ∈ ST (ST) is the initial state tree;
• ST m ⊆ ST (ST) is the marker state tree set.

G = (ST,H,Σ,∆,STo,ST m) is a state tree structure if
1. (Boundary consistency) all parent-child pairs in H are
boundary consistent, and
2. (Loose coupling) events of inner transition structure can
only be shared among those holons matched to the children
of an AND superstate. Formally, for all superstates a �= b
with matching holons Ha,Hb ∈ H, we require

Σa
I ∩Σb

I �= ∅ ⇒ (∃z ∈ X,M(z) = and)a ∈ E(z) & b ∈ E(z).

�

Event sharing in a STS is bounded vertically by bound-
ary consistency and horizontally by loose coupling. This
modularity makes recursive synthesis of STS possible.

The dynamics of STS, given by the ∆ function, is defined
as follows. 2 Let ST1 ∈ ST (ST) and σ ∈ Σ. Define the
total function 3

∆(ST1, σ) := replace sourceG,σ(ST1 ∧ EligG(σ)).

EligG(σ) ∈ ST (ST) is the largest sub state tree of ST that
allows σ to happen. ST1∧EligG(σ) is also a sub state tree

2Space does not permit explanation in detail.
3∆(ST1, σ) is the empty state tree if σ cannot occur on ST1.

4

because (ST (ST),≤) is a lattice. If p is any source state
on the tree ST1 ∧ EligG(σ) such that δx(p, σ)! for some
holon Hx, the function replace sourceG,σ(·) just replaces p
by its target state δx(p, σ) to get another sub state tree. In
other words, ∆(ST1, σ) is the largest sub state tree (wrt.
≤) in which the system could reside if event σ occurred at
ST1. Because in general count(ST1) ≥ 1, one can look on
ST1 as the “symbol” of B(ST1), its set of basic sub state
trees. So ∆(ST1, σ) takes care of all transitions labelled by
σ in the set B(ST1), i.e., our ∆ function is computationally
more efficient than the δ function of FSM, which computes
only one transition at a time.

A simple example is shown in Fig. 5. We use the graphi-
cal notation of statecharts (see [4]) to draw our STS model
in (a). Its state tree is given in (b), while (c) and (d) dis-
play what the target state trees will be if event β and σ
occur at STβ and STσ, respectively.

a

0 2

1 3

d 1

5

d 3

c

4 d 2d 1 d 3b 1 b 2

R

B

dc

54

A

ba

30 1 2

d 1

b 1 b 2 d 2

5

R

B

d

A

ba

30 1 2

b 1 b 2

R

B

c

A

b

30 1 2

b 1 b 2 d 2

4

R

B

dc

A

ba

30 1 2

b

R
A B

db b1 2

d 2

(b) its state tree(a) an STS model

R

B

d

A

a

×

×

×

×

×

×

×

×

×

∪ ∪

∪ ∪

∪ ∪

∪ ∪

∪

∪ ∪

∪

∪

∪∪

∪

α β

β

γ

λ µ ττ

σ

∆(

∆(

, σ) =

, β) =

(c) ∆(STβ , β)

(d) ∆(STσ, σ)

Fig. 5. Example for the ∆ function

Following a dual route, we can define the function Γ,
which is more important for the synthesis of STS.

Definition 6 (Γ) Let ST1 ∈ ST (ST) and σ ∈ Σ. De-
fine

Γ(ST1, σ) := replace targetG,σ(ST1 ∧ NextG(σ)).

�

NextG(σ) := ∆(ST, σ) is the largest sub state tree
of ST that the event σ is targeting. The function
replace targetG,σ(·) just replaces target states with source
states to get a new sub state tree. Thus, Γ(ST1, σ) is the
largest sub state tree of ST that could reach a sub state
tree of ST1 if event σ occurs. Normally Γ(∆(ST1, σ), σ) �=
ST1. We call Γ a backward transition function.

III. Symbolic Representation of STS

A. Encode State Space

Let G = (ST,H,Σ,∆,STo,ST m) be a state tree struc-
ture with ST = (X,xo,M, E). A predicate P defined on
B(ST) (or simply on ST) is a function P : B(ST) → {0, 1}.
Also a predicate can be identified by a set of basic state
trees, say BP , such that BP := {b ∈ B(ST)|P (b) = 1}.

Let b ∈ B(ST). We say predicate P holds, or is satisfied
for b, i.e., b |= P if and only if b ∈ BP . Similarly, predicate
P holds, or is satisfied for ST1, i.e., ST1 |= P if and only if
B(ST1) ⊆ BP . Write Pred(ST) for the set of all predicates
defined on ST. Standard logic operators are defined in the
usual way:

(¬P)(b) = 1 iff P (b) = 0
(P1 ∧ P2)(b) = 1 iff P1(b) = 1 and P2(b) = 1
(P1 ∨ P2)(b) = 1 iff P1(b) = 1 or P2(b) = 1

We define a partial order on Pred(ST) from subset contain-
ment: P1 � P2 iff P1 ∧ P2 = P1; say P1 is a subpredicate
of P2. Under this definition, (Pred(ST),�) is a lattice.
The top element
 is identified with B� = B(ST) and the
bottom element ⊥ with B⊥ = ∅.

The following function Θ encodes a sub state tree of ST
to the predicate it satisfies.

Definition 7 (Θ) Denote by vx the state variable for
the OR superstate x . Let ST1 = (X1, xo,M1, E1) be a
sub state tree of ST. Define Θ : ST (ST) −→ Pred(ST)
recursively by Θ(ST1) :=



∧
y∈E1(xo) Θ(STy

1), if M(xo) = and∨
y∈E1(xo) ((vxo

= y) ∧ Θ(STy
1)), if M(xo) = or

1, if M(xo) = simple

,

where STy
1 denotes the child state tree of ST1 that is

rooted by y. Notice that if xo is an OR superstate, we
can exploit the tautology 4

(
∨

y∈E(xo)

(vxo
= y)) = 1

to simplify Θ(ST1).
�

For example, in (d) of Fig. 5,

Θ(STσ) := (vB = c) ∨ (vB = d ∧ vd = d2 ∧ vd2 = 4)

vB, vd, vd2 are state variables for states B, d, d2, respec-
tively. The variables for the OR superstates on the child

4This says that the predicate Θ(ST1) is independent of the state
variable vxo if all descendants of xo are on the state tree.

5

state tree STA
σ do not appear in Θ(STσ) because the above

tautology is being applied.
Now for any set BP of basic state trees, its predicate rep-

resentation is given by P :=
∨

b∈BP
Θ(b). If BP = B(ST1),

then P := Θ(ST1).
In the STS G, the initial predicate Po := Θ(STo), and

the marker predicate Pm :=
∨

∀STi∈ST m
Θ(STi). Now we

can rewrite the plant STS by G = (ST,H,Σ,∆, Po, Pm),
where STo and ST m are replaced by their predicate coun-
terparts.

B. Encode Γ

Let x be an OR superstate. Call vx the normal state
variable of x. Also denote by vx

′ the prime state variable
of x. In a transition relation, vx will be used to record
target state information, while vx

′ is for source states.
Following the method of [14], we encode the entire

set of transitions labelled by a given event σ as a triple
(Nσ,vσ,s,vσ,t). Nσ(vσ,s′,v) is the transition relation with
vσ,s′ the set of prime variables for the source states where
δ(·, σ)! and v the set of all variables in G. vσ,t is the set of
normal variables for those target states which δ(·, σ) hits
(takes a value).

Definition 8 (Γ̂) Let σ ∈ Σ. Let (Nσ,vσ,s,vσ,t) repre-
sent the transitions labelled with σ. Γ̂ : Pred(ST) × Σ →
Pred(ST) is defined by 5

Γ̂(P, σ) := (∃vσ,t(P ∧ Nσ))[vσ,s′ → vσ,s].

We can omitˆto write Γ(P, σ) if no ambiguity.
�

Notice that P [vσ,s′ → vσ,s] means replacing all prime vari-
ables in vσ,s′ by their respective normal variables in vσ,s.

Our computation of Γ is slightly different from the one
given in [14] but very computationally efficient because (1)
the expensive existential operator is applied to a smaller
variable set vσ,t instead of the entire variable set v; and
(2) we have a much smaller transition relation Nσ because
it does not have redundant terms such as (vx = vx

′) if vx

does not change value under any transition labelled by σ.

IV. Symbolic Synthesis of STS

A specification S will be given as a set of illegal sub
state trees of ST. Of course, S can be encoded by a suit-
able predicate P . Then our synthesis objective is to find
the largest subpredicate of ¬P that is nonblocking and con-
trollable.

In this section, we demonstrate our hierarchical control
of STS by the structural computation of the coreachability
predicate CR(G, P).

Definition 9 (CR(G, P)) Let P ∈ Pred(ST). The
coreachability predicate CR(G, P) is defined to hold all ba-
sic state trees that can reach bm |= Pm via trees satisfying
P , according to the inductive definition:
1. (bm |= Pm ∧ P) ⇒ bm |= CR(G, P)
2. b |= CR(G, P) & b �= ∅ & σ ∈ Σ & ∆(b′, σ) = b & b′ |=
P ⇒ b′ |= CR(G, P)

5For the detailed explanation of this formula, refer to [14].

3. No other basic state trees satisfy CR(G, P).

�

From the definition, we can immediately provide a ‘naive’
algorithm.

Algorithm 1: (Basic algorithm for CR(G, P))
1. Ko := P ∧ Pm.
2. Ki+1 := Ki ∨ (P ∧

∨
σ∈Σ Γ(Ki, σ)).

3. If Kn+1 = Kn, then CR(G, P) := Kn. Otherwise go to
step 2.

�

Our experience shows that the basic algorithm can succeed
for moderately complex systems with state space size as
large as 108. However, during the synthesis, the number of
BDD nodes in the intermediate predicates is much larger
than that in CR(G, P) (cf. also [15]). If we can “control”
the BDD size for intermediate predicates, we can handle
much bigger systems; to some extent this is achieved by
our second algorithm.

Algorithm 2 (Recursive algorithm for CR(G, P))
Let P,R ∈ Pred(ST). Denote CRx(G, P,R) as the
fixpoint for the superstate x such that for each bo |=
CRx(G, P,R), there is a sequence {bi|i = 0, 1, . . . , n} for
bo to reach bn |= R by local transitions in x and every bi

satisfies P . Precisely, we have
1: function CRx(G, P,R) =
2: K ← R
3: if M(x) = or then
4: repeat
5: K ′ ← K
6: K ← K ∨ (P ∧

∨
σ∈Σx

I
Γ(K,σ))

7: foreach y ∈ E(x) & M(y) ∈ {or, and}
8: K ← CRy(G, P,K)
9: until K ′ = K
10: else if M(x) = and then
11: repeat
12: K ′ ← K
13: foreach y ∈ E(x)
14: K ← CRy(G, P,K)
15: until K ′ = K
16: end CRx(G, P,K)
17: return K

�

Remark
1. CR(G, P) := CRxo(G, P, P ∧ Pm).
2. The computation takes care of two cases. If x is OR
state, line 4-9 computes the fixpoint. If x is AND state,
line 11-15 does the job. The computation will terminate as
the change of K is monotone and the system is finite.
3. It is a recursive algorithm. Each fixpoint CRx(G, P,K)
depends on (∀y)CRy(G, P,K), where y is a superstate-
child of x. All of x’s descendants must have been computed
too before getting CRx(G, P,K). The reason of choosing
this direction is twofold. First, we want to apply the tautol-
ogy (

∨
y∈E(x) (vx = y)) = 1 as early as possible, to control

the size of intermediate predicates. If y is a superstate un-
der x, we want to compute CRy(G, P,K) first to try to
quantify out the state variables inside y by applying the

6

above tautology, and therefore make it possible to apply
the above tautology to x too. Second, by having a largest
fixpoint CRx(G, P,K), we add into K as many basic state
trees as possible from the computation of transitions under
x. Then in the subsequent computation of another super-
state y, each call of Γ can add more basic state trees to
speed up the computation, because Γ is monotone in the
sense that K1 � K2 ⇒ (∀σ)Γ(K1, σ) � Γ(K2, σ).
4. This recursive algorithm requires iterations back and
forth between x and its descendants. The fewer the itera-
tions, the faster the algorithm terminates. Some efficient
techniques have been applied in our computer program to
limit the number of iterations.

V. AIP Example

The AIP example is first presented by Brandin et al.
in [16]. The whole system is modelled as the synchronous
product of 100 automata. Modular control has been ap-
plied to the synthesis. However, modular control is not
yet a completely formal method, because it involves hu-
man judgement during the synthesis, and so is error-prone.
In this example, we compute the controller without human
intervention.

Leduc et al. [3] successfully applied Hierarchical
Interface-based Supervisory Control theory to the AIP ex-
ample. That program could automatically synthesize a
controller for a simplified version of the AIP example,
where the maximum allowed number of pallets on external
loop 1 or 2 was limited to be one (the original requirement
was ten). However, without using symbolic computation,
the program exceeded memory when buffer size was in-
creased from 1 to 2.

We model the AIP example with Brandin’s original re-
quirement as a STS with state space of order 1024. Our
BDD-based program can automatically compute the con-
troller in around 45 minutes, using a fixed allocation of
memory (required by the BDD package we use) on an or-
dinary personal computer with Athlon CPU and 256MB
RAM. The BDD size of the intermediate predicates during
the computation of CR(G, P) is sampled and displayed in
Fig. 6. Notice that the BDD size is fairly well controlled,
the maximum size being just below 3 times that of the
resulting BDD.

VI. Conclusions

In this paper, we introduced a state-based version of
Wang’s State Tree Structure (STS). In order to perform
control design efficiently, we employed a symbolic repre-
sentation of STS and developed a recursive algorithm that
succeeds with the AIP example having state space of or-
der 1024. The state space explosion problem is effectively
controlled.

The symbolic approach should clear the way for the in-
dustrial application of our STS framework. Work continues
on new recursive algorithms to make the synthesis faster
and less memory-consuming.

0 20 40 60 80 100 120 140
0

0.5

1

1.5

2

2.5
x 10

5

sample steps

|n
od

es
|

Fig. 6. The BDD size of intermediate predicates

References

[1] P. J. Ramadge and W. M. Wonham, “Supervisory control of a
class of discrete event processes,” SIAM J. Contr. Optim., vol.
25, no. 1, pp. 206–230, 1987.

[2] Peyman Gohari and W. M. Wonham, “On the complexity of
supervisory control design in the RW framework,” IEEE Trans-
actions on Systems, Man and Cybernetics, Special Issue on DES,
vol. 30(5), pp. 643–652, 2000.

[3] R.J. Leduc, M. Lawford, and W.M. Wonham, “Hierarchical
interface-based supervisory control: AIP example,” in Proc. of
the 39th Allerton Conf. on Comm., Contr., and Comp, October
3-5, 2001, pp. 396 – 405.

[4] D. Harel, “Statecharts: A visual formalism for complex systems,”
Science of Computer Programming, vol. 8, pp. 231–274, June
1987.

[5] B. Wang, “Top-down design for RW supervisory control theory,”
M.S. thesis, Department of Electrical and Computer Engineering,
Univ. of Toronto, 1995.

[6] Arthur Koestler, The Ghost in the Machine, Penguin Group
Ltd., 1989.

[7] Ling Gou, Tetsuo Hasegawa, and Peter Luh, “Holonic planning
and scheduling for a robotic assembly testbed,” in Proc. of the
fourth international conference on computer integrated manufac-
turing and automation technology, Oct. 10-12, 1994, pp. 142–149.

[8] Peyman Gohari and W. M. Wonham, “A linguistic framework for
controlled hierarchical DES,” in 4th International Workshop on
Discrete Event Systems (WODES ’98), IEE,, 1998, pp. 207–212.

[9] Y. Brave and M. Heymann, “Control of discrete event systems
modeled as hierarchical state machines,” IEEE Transactions on
Automatic Control, vol. 38, no. 12, pp. 1803–1819, Dec. 1993.

[10] H. Marchand and B. Gaudin, “Supervisory Control Problems
of Hierarchical Finite State Machines,” Proc. of the 41st IEEE
Conf. on Decision and Control, Las Vegas, Nevada USA, 2002,
pp. 1199–1204.

[11] J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.J.
Hwang, “Symbolic model checking: 1020 states and beyond,”
Information and Computation, vol. 98, pp. 142–170, June 1992.

[12] R.E. Bryant, “Graph-based algorithms for boolean function ma-
nipulation,” IEEE Trans. Computers, vol. 35, no. 8, pp. 677–691,
August 1986.

[13] G. Hoffmann and H. Wong-Toi, “Symbolic synthesis of supervi-
sory controllers,” in Proc. of 1992 American Control Conference,
Chicago, IL, USA, 1992, pp. 2789–2793.

[14] Sergey Berezin, Sérgio Campos and Edmund M. Clarke, “Com-
positional Reasoning in Model Checking,” in Lecture Notes in
Computer Science, vol. 1536, pp. 81–102, 1998.

[15] Z.H. Zhang and W.M. Wonham, “STCT: An efficient algorithm
for supervisory control design,” in Symposium on Supervisory
Control of Discrete Event Systems, Paris, July, 2001.

[16] B. Brandin and F. Charbonnier, “The supervisory control of the
automated manufacturing system of the AIP,” in Proc. Rensse-
laer’s 1994 4th Intl. Conf. on Computer Integrated Manufactur-
ing and Automation Technology, Troy, 1994, pp. 319–324.

	Conference Program
	Author Index
	Main Menu

