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Abstract--A three-level hierarchical optimization algorithm 

in separable non-convex large-scale system is presented in 

this paper, which converts the original problem into a 

separable multi-objective optimization problem. And then 

the non-inferior frontier is convexified and the global 

optimal solution of the original problem is selected from the 

set of non-inferior solutions. A theory based on this 

algorithm is established and its convergence is proved. 

Digital simulation demonstrates that this algorithm brings 

about good control results.    
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1.  INTRODUCTION 

M Ulti-level optimization theory has been developing 
rapidly in the past three decades. Its important 

contribution lies in that it has solved the problems of 
incidence and coupling among subsystems as it is 
successfully applied in the field of large-scale system. 
Substantially, multi-level optimization algorithm is in 
mathematics defined as how to decompose and solve 
large-scale optimization control problem provided with a 
special configuration. The definition of decomposition is 
to decompose the whole system into several simple 
subsystems to be solved independently. As incidence 
exists among subsystems, popularly, the solution to each 
subsystem fails to be the solution to the whole system. 
Sometimes they even contradict each other. 
Consequently, in order to obtain the solution to the whole 
system, we have to harmonize these solutions to the 
subsystems according to the whole objective and 
incidence constraints in large-scale system[1].     

Global optimization was a challenging question 
confronted by many scientists and technicians all along. 
As the multi-level optimization algorithm uses decisive 
search in both up-level and down-level, it is unavoidable 
to run into local optimization as for non-convex 
problems. Thus many convexification methods were put 

forward to solve the difficult problem. However, all these 
methods have affected the separability of the objective 
function and made the problem more complicated. In this 
paper, the author proposed a three-level hierarchical 
optimization algorithm, which converts the original 
problem into a separable multi-objective optimization 
problem. The non-inferior frontier is then convexified 
and the global optimal solution of the original problem is 
selected from the set of non-inferior solutions of 
multi-objective optimization problem. 

 
2.   PROBLEM DESPICTION 

Consider separable optimization problem in 
large-scale system as follows: 
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where 
xi         decision variable of the ith subsystem 
fi         objective function of the ith subsystem 
gi         convex vector function as constraint 
Some problems, like complex industrial process, 

management system and resource distribution, can be 
expressed the same form as problem (1). So it is 
important to study the solution algorithm of problem (1). 

Primal-dual decomposition can decompose problem 
(1) into N subsystems provided with minimum 
dimensions and carry out parallel solution. Assume that 
Lagrange function of problem (1) are given as follows: 
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When objective function and its constraints are 
provided with convex configuration, optimal solution of 



problem (1) can be rewritten as  
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By all appearances, two-level optimization 
algorithm can be used to obtain the optimal solution for 
problem (1~3). For a fixed  Lagrange coefficient λ, let 
down-level algorithm solve N subsystems independently 
as follows: 

)]()(min[ ii
T
iii xgxf λ+  

Then the results are fed back up-level and up-level 
algorithm will update Lagrange coefficient λ. In this 
way, we can obtain the global optimal solution of the 
original problem through continual information exchange 
between up-level and down-level. It is the convergent 
condition of algorithm that Lagrange function is convex 
to x at the optimal point (x*, λ*). For non-convex 
problem, Bertsekas D P[2] thought of the problem in his 
paper as follows:  
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where ||gi(xi)|| is Archimedean normal number. Bertsekas 
D P has proved that Lagrange function of problem (4) is 
strictly convex to x in the arbitrarily small domain of x* 
when c trends infinity. As a result, primal-dual 
decomposition can be used to approach the optimization. 
But crossing items caused by convexification method 
affected separability in large-scale system and separable 
action of primal-dual decomposition didn’t bright into 
play. Tanikawa A and Mukai H[3] put forward a class of 
algorithm which approach crossing items with linear 
function in their paper. But it can’t ensure algorithmic 
convergence. Tatjewski P and Engelmann B[4] made use 
of sequence convexification method in their paper. For 
Lagrange function is convexified locally in these 
methods, the solution is only the local optimal one. In 
this paper, Lagrange function isn’t convexified. We adopt 
multi-objective optimization technique and take 

advantage of the pth power[5] for convexification of 
non-inferior frontier. As the worth of this method, it 
doesn’t affect separability of large-scale system and 
ensures that global optimal solution can be obtained in 
the case of convex constraints domain. 
 

3. MULTI-OBJECTIVE MODEL OF ORIGINAL PROBLEM 

Formulate multi-objective optimization problem as 
follows: 
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Theorem 1:  The global optimal solution of problem (1) 
must be non-inferior solution of problem (5). 

Proof:  Assume that  is the 

global optimal solution to problem (1). But it is not 
non-inferior solution to problem (5). So there is a 

feasible solution to make 

(i=1,2,…,N) and one inequality 

strictly comes into existence here at least. Due to 

, as the global optimal solution 

to problem (1), x
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* contradicts this conclusion. As a result, 
theorem 1 is proved. 
   Theorem 1 indicates that the global optimal solution 
to problem (1) must exist in the set of non-inferior 
solutions to multi-objective optimization problem (5). 
Thereby we must obtain non-inferior solution to problem 
(5). The effective method of obtaining non-inferior 
solutions is to solve single objective optimization 
problem as follows: 
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The total non-inferior solutions can be obtained by 
searching optimal weight wi in whole function domain. 
This conclusion requires that problem (5) is convex 



non-inferior frontier. When objective function fi(xi) is 
non-convex, not all the points in non-inferior frontier 
have their supporting plane. Thus it is impossible for 
problem (6) to produce all the non-inferior solutions. Li 
Duan[6] put forward a method of using the pth power 
and proved that there is a positive number q. When p>q, 
multi-objective optimization problem is convex 
non-inferior frontier as follows: 
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By all appearances, problem (7) is equivalent to 
problem (5). As its remarkable worth, problem (7) is 
convex non-inferior frontier. So weighting algorithm can 
be used to obtain all the non-inferior solutions as 
follows: 
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Where ω1=1,ωi≥0, i=2,3,…,N. 
 
     4.  SELECTING GLOBAL OPTIMAL SOLUTION 

   When ω>0, problem (7) is called non-degeneration. 
Degeneration problem denotes some weight factors ωi 
are 0, namely, corresponding objective functions in 
problem (5) don’t conflict each other. Getting rid of these 
objective functions, we can convert degeneration 
problem into non-degeneration problem. Only 
non-degeneration problem is discussed in this paper. 
According to a given weightω, the solution to problem 

(8) can be obtained as a function . ω is replaced 

by x

)(
^
ωx

i in function fi(xi) . We define as follows: 
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For weight ω  is a vector of N-1 dimensions, 
non-inferior frontier belongs to N-1 dimensions objective 
space. 
Theorem 2:  Assume that the solution associated with 
weight ω* in problem (8) is the global optimal solution, 
the optimization condition must come into existence as 

follows: 
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Apparently, given ω* can reach the minimum of 
problem (8). Used analytic differential, problem (10) can 
be rewritten by: 
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We define matrix A composed of row vectors 
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. Its order A=N-1. According to 

problem (10) and (11), both [1,1,…,1]T and 

 are included in the 

solutions space of Ax=0. And dimensions of the 
solutions space are N-order(A)=1. So two above vectors 
are in proportion and theorem 2 has been proved. 
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Let ▽f denote grads of the function  f at 

non-inferior frontier as follows: },...,,{ 21
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And then, we formulate a direction vector as follows: 
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According to Cauchy-Schwarz inequality, we have 



5.  EXAMPLES 
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Example 1 Consider a quarter of circularity in the first 

quadrant  is 

a multi-objective optimization problem of non-inferior 
frontier shown in Fig.1. By all appearances, it is 
non-convex in objective space {x
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1,x2}. But non-inferior 

frontier  is convex 

in objective space {  through the pth power 

transform, where p=2. 
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It indicates V(ω) is descendent direction of the function 
f. It is obvious that the optimization condition of theorem 
2 is satisfied when V(ω)=0. 

Assume that weight ω used by the sth iteration 
denotesωs, the problem is considered as follows: 
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(a) nonconvex noninferior infrontier

the pth power
transformnoninferior

infrontier
noninferior
infrontier

(b) convex noninferior infrontier

Fig.1 nonconvex and convex noninferior frontier
 

So Lagrange function of equation (12) is given by 
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Example 2 Assume the objective function is given by Where Lagrange multiplier λj≥0. The dual function of 
equation (16) is expressed as  f(x)=f1(x1)+f2(x2)   
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TT xxxxxx ),(,),( 2221212111 ==  For a given λ, how to solve problem (17) is equivalent 
to how to solve problem (8). Therefore, λ and ω are 
same in essence and λ can be replaced by ω .  
According to adjustment formula associated with λ in 
equation (17), the (s+1)th iterative weight ω can be 
obtained as follows: 

The constraints are expressed as follows: 
x22-2x11-x12=0; x12-0.5(x21+x22)=0; 2x11+x12-2.25≤0 

Through introduction of slack variable, we can 
convert inequality constraints into equation constraints. 
Used analytical method, two optimal solutions of above 
problem are obtained as: x1=(0.28,0.3), x2=(-0.26,0.86); 
x1=(0.68,0.89), x2=(-0.47,2.25). The first solution’s 
performance index is 24.56 and the second is 35.77. 
Thus it is obvious that the first solution is the global 
optimal one. For a given p=1.7, firstly we convert 
problem (1) into problem (8) and adopt primal-dual 
decomposition obtaining the solutions. And then we 
adjust ω  with equation (18), where iterative error 

, initial valueω|| 21
pp ffe ω−= 0=0.5, step length 

s=0.8 and other values are 0. The system error e<0.001 
by five iterations and the global optimal solution is 
obtained eventually. Simulation indicates we can still 
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Where α = ββ 1. Finally 0=∂∂ ωH , namely, 

V(ω)=0. The solution associated with ω is the global 
optimal solution. Broadly speaking, in order to obtaining 
algorithm of problem (1), firstly, we use primal-dual 
decomposition to solve problem (8). And then weight ω 
is adjusted by equation (18).  
 



obtain the global optimal solution when we change the 
initial values ofωand other variables at random. 

 
          6. CONCLUSION 

In this paper, an algorithm of searching global 
optimal solution with multi-objective optimization 
technique has been presented for separable optimization 
problem whose objective is non-convex and constraints 
are convex in large-scale system. In fact, it is a 
three-level hierarchical optimization algorithm. Weight 
ω is adjusted at supreme level and Lagrange Multiplier 
λ is obtained at intermediate level. N subproblems with 
minimum dimensions are solved independently for given 
λ andω at undermost level. And the analytical action 
of primal-dual decomposition is exerted adequately at 
this level. Broadly speaking, even if there are incidence 
constraints in large-scale system, they don’t affect the 
convexification of constraints domain. Consequently, the 
above algorithm is still applicable to this class of 
large-scale system. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

REFERENCES 

[1] Lasdon L S. Optimization theory for large scale system[M]. London: 

Macmillan Company,1975. 

[2] Bertsekas D P. Constrained optimization and Lagrange multiplier 

methods[M]. Academic Press, 1982 

[3] Tanikawa A, Mukai H. A new technique for nonconvex primal-dual 

decomposition of a large scale separable optimization problem[J]. 

IEEE Transaction on automatic control, 1985, 30(2): 133~143. 

[4] Tatjewski P, Engelmann B. Two level primal-dual decomposition 

technique for large scale nonconvex optimization problems with 

constraints[J]. Journalof Optimization Theory and Applications, 

1995, 81(1): 306~326. 

[5] Li Duan. Zero duality gap for a class of nonconvex optimization 

problems[J]. Journal of Optimization Theory and Applications, 

1995, 85(2): 309~327 

[6] Li Duan. Convexification of noninferior frontier[J]. Journal of 

Optimization Theory and Applications, 1996, 88(1): 177~196 

 


	Conference Program
	Author Index
	Main Menu

