
> IV04-02 < 
 

1

Adaptive control based on  
plant-parameterization using δ-models 
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Abstract—The paper focuses on adaptive control of nonlinear 

technological processes. It uses the modified iterative scheme of 
the closed-loop identification and control design based on plant-
parameterization. The modification enables to identify the whole 
plant using only one coefficient and without the necessity of 
reducing the order of a new plant-model. Moreover, instead of 
using a least squares algorithm, only a simple formula for 
identification is used. In addition, introduction of δ-models helps 
to cope with numerical instabilities of discrete models occurring 
when a sampling interval is being shortened. The proposed 
algorithm is verified using simulation experiments. 
 

Index Terms—adaptive control, closed-loop identification, 
delta models, iterative methods, Youla-Kucera parameter. 
 

I. INTRODUCTION 

F AST progress in computer technology during last several 
decades has enabled to implement sophisticated control 

strategies (such as adaptive and robust control) that are able to 
cope with nonlinearity and uncertainty of technological 
processes. All these algorithms, however, when implemented 
into PCs, IPCs (industrial PCs) or PLCs (programmable 
logical controllers) has to be discretized. This fact gives rise to 
problems with a sampling interval. It is usually chosen 
according to the dynamics of a controlled process but 
presence of nonlinearity and uncertainty forces us to shorten 
it. Unfortunately, as generally known, shortening of a 
sampling interval causes numerical instabilities of discrete 
models. One way of avoiding the problems is introducing “δ-
models” [9], [10]. The basic property and the great advantage 
of δ-models is that when shortening a sampling interval, δ-
operator converges to the derivative operator. This fact simply 
means that δ-models approach to continuous-time models 
when the sampling interval is sufficiently short. 

This paper focuses on practical implementation and 
enhancement of latest achievements in the field of adaptive 
and robust control. It utilizes the iterative approach to 
identification in the closed loop and control design [3], [13]. 
The method is based on plant-parameterization, also called 
“dual Youla-Kucera parameterization”, see e.g. [1], and its 
modification [8], [2], [7]. It uses fractional description in the 

ring of stable and proper rational transfer functions (RPS), and, 
one of the main advantages of the algorithm is that a new 
model of the process is estimated without the necessity of 
consequent reduction of its order. Also, the whole plant is 
identified only by very few parameters, and for the 
identification, stable-filtered signals are used. 

This work “improves” the method from a practical point of 
view so that it can easily be implemented into PCs, IPC or 
PLCs. Then, all necessary signals can be measured in such 
short time-intervals (compared to the dynamics of a controlled 
process) that they can be considered as continuous, and what 
is essential, without the necessity of facing numerical 
problems of discrete models. In addition, as shown in 
illustrative section of this paper, the method can be 
“simplified” so that we can avoid using the least squares 
identification algorithm and what is more, the whole plant can 
be identified only by one simple parameter representing the 
difference between the real plant and a model. 

The first section of the paper describes the basics of the 
used iterative identification and control technique, second part 
focuses on the algorithm itself, and a useful modification 
follows. Next part introduces δ-models and final section 
illustrates the procedure of transforming the algorithm into  
δ-representation when controlling simple nonlinear system. 
The paper concludes providing some simulation results and 
summarizing main contributions of the approach.  

 

II. METHODOLOGY 

A. Basic principles 
Consider a feedback control set-up as shown in Fig. 1, 

where y, u, e, r are signals of controlled output, control input, 

control error and the reference; n represents additive output 
noise and d is a disturbance signal. Next, let P stands for a 
transfer function of a plant and C for a controller 
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Fig. 1.  Classical feedback control set-up  
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with N, D and X, Y coprime transfer function from ϕ , 

where ϕ denotes the set of stable and proper rational transfer 
functions (RPS). Then, by coprimeness, a stabilizing controller 
can be found using so-called Bezout identity [15] as  
a particular solution of diophantine equation 
can be found using so-called Bezout identity [15] as  
a particular solution of diophantine equation It can easily be proved that the substitution with input u, n 

and output y implies  
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Fig. 2.  Alternative set-up of a closed-loop  

  
1D Y N X⋅ + ⋅ =1D Y N X⋅ + ⋅ = . (3) . (3)  

nuPy M +⋅= . (6)   
 When one stabilizing controller is found, then the set of all 

controllers that stabilize P can be expressed as  
When one stabilizing controller is found, then the set of all 

controllers that stabilize P can be expressed as  
  

SNY
SDXCS ⋅−

⋅+
= , (4) 

Now, the task is to identify a true nonlinear plant in the 
closed-loop from noise-contaminated measurements of u and 
y. As stated above, the key-identification idea is to identify the 
parameter S rather than the coefficients of PM. To see that this 
is a standard open-loop identification problem observe from 
Fig. 2 following relationships related to signals x and z (used 
for identification of the parameter S):   

 
where S is an arbitrary parameter from ϕ. This approach, 

called “Youla-Kucera parameterization” greatly facilitates 
design of controllers. 

 
yXuYrXdYx ⋅+⋅=⋅+⋅=  (7) 

Dual problem to finding all stabilizing controllers if only 
one is known is finding all plants stabilized by the one 
controller. Again, consider the control set-up from Fig. 1 with 
fractional description of a nominal plant and a controller 
according to (1), (2), and suppose that Bezout equation (3) 
holds. Then, the set of all plant models stabilized by the one 
controller C is given by 

 
uNyDz ⋅−⋅=  (8) 

 
( ) nXSDxSz ⋅⋅−+⋅= . (9) 
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Again, S is an arbitrary parameter representing a stable and 

proper transfer function. This approach, when the plant is 
parameterized, also called “dual Youla-Kucera 
parameterization”, is near to closed-loop identification in the 
presence of noise and consequently to adaptive control. Let us 
explain this fact more. 

The last equation is the most significant for the 
identification. In this formula, signals x and z are measurable 
on the closed loop via  (7) - (8), and if n is independent of r 
and d, then x and n are independent processes. Also S∈ϕ, i.e. 
it is stable. Hence, the identification of S is a standard open-
loop identification problem. 

B. Algorithm of adaptive control 
Here, let us show how the ideas above help us to prepare 

the algorithm of adaptive control. First, let the time axis be 
divided into intervals, so that during the k-th interval, the 
control input into the plant is driven by a controller C k. Next, 
let there be a nominal model P k of the plant P stabilized by 
the controller. Employing P k = P, which leads to S = 0 (and 
shows that coprime factors of P k approximately equal to those 
of the real system), the following algorithm of adaptive 
control based on iteration of these steps can be prepared:  

The basics of closed-loop identification with the help of 
dual Y-K parameterization were independently given by 
several authors [5], [4], [12], [11]. The key-idea is to directly 
identify Y-K parameter “S” instead of classical identification 
of model coefficients. The most important fact is that this is  
a standard open-loop identification problem. In addition, 
estimated models of the process are guaranteed to be 
stabilized by the currently proposed controller.  

1) For the model of the process, P k, a stabilizing controller 
is computed using Bezout equation (3): 

 
The choice of the plant model according to (5) and 

substitution into Fig. 1 yields the alternative set-up of the 
closed loop as shown in Fig. 2. 

1k k k kD Y N X⋅ + ⋅ = , (10) 
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2) the auxiliary signals x and z are formed as Then, the combination of (8) and  (9) with (15) yields the 
following equation  

uNyDz
yXuYx

kk

kk

⋅−⋅=

⋅+⋅=
, (11) DNNDS ⋅−⋅=

 
MM , (17) 

  
3) then, these signals are used for identification of S  

(in a least squares algorithm) with the output error  
 

xSz ⋅−=ε , (12) 

which is the “key-one” in modification of the original 
algorithm. All steps are identical to the original version except 
for step 4). Here, the new transfer function of the identified 
model is computed using (17): 
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where x is the input and z the output signal. 
 
4) A new transfer function of the identified model is 

computed using rel. (5): 
 

SXD
SYNP kk

kk
k

M ⋅−
⋅+

=+1 . (13) 

 

 
 5) Employing 
 

1+= k
M

k PP , (14) 

Now, what is important, if orders of D and DM, and also N 
and NM are chosen the same, then it is not necessary to reduce 
the order of a new plant model as in the original algorithm. 
This “smart” approach, which ensures that the order of a new 
plant model is under control, was introduced in [8], utilized 
for MIMO systems in [2] and further elaborated in [7], [6].  

D. Delta-representation  
6) the algorithm continues by step 1) with the new transfer 

function of the model, P k. 
In order to avoid numerical problems occurring when  

a sampling interval is shortened (after discretization of 
continuous-time systems), Middleton and Goodwin in [9] 
introduced a special type of discrete models originally defined 
as: 

The fact that parameters of the estimated model are close to 
the real process is easy to recognize from the record of S: If 
coefficients of this parameter converge to the zero value, then, 
the identified model represents a good approximation of the 
real system. In addition, the parameter S actually “describes” 
the difference between our estimated model and the true plant.  

 

0

1
T

z −
=δ , (19) 

The presented method, however, suffers from a drawback: 
computation of a new transfer function using (13) increases 
the order of the model so that consequent use of a reduction 
method is advisable. In order to avoid this complication, the 
original algorithm was slightly modified. 

 
where “z” represents the complex variable of Z-transform 

and T0 is a sampling interval. The main advantage of these 
models is that when shortening a sampling interval,  
δ-operator converges to the derivative operator, i.e. C. Modification of the algorithm 

 The modification is based on works [11], [14], and the 
method is directed towards the identification of coprime 
factors of PM employing the auxiliary signal x (measurable on 
the closed-loop and uncorrelated to the noise signal). From 
Fig. 2, (supposing n = 0), it is also possible to derive these 
formulas   

s
T

=
→

δ
00

lim . (20) 

 
Moreover, it can be proved that all models of the form 

defined as 
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xNSYNy
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where NM, DM  are coprime factors of the plant model (5)  
 

( )
( ) M

M
M D

N
SXD
SYNP =

⋅−
⋅+

= . (16) 

have the property of convergence to the derivative operator 
[10]. The most frequently used are the following ones 
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B. Preparation of the algorithm 
Model of the process in the continuous-time form was 

chosen as 
 

( )
0

0

ds
sPM +

= , (25) 

   
where the initial estimate of the constants n0, d0  needed to 

start the algorithm was obtained from a linearized model of 
the process as: n0(0)=0.6944 dm-2, d0(0) = 0.0020 s-1. 

 
All these models are generally called “δ-models”. In this 

paper, the first definition (19) was utilized to implement and 
improve the modified algorithm of adaptive control based on 
plant-parameterization. 

The stabilizing controller (providing also asymptotic 
tracking of the reference) was proposed using Bezout equation 
(3) in the form 

  

( )
s

xsx
sC 01 +⋅

= , (26) III. ILLUSTRATIVE EXAMPLE 

 A. Controlled process 
  with x1, x0  computed using these formulas Consider the plant to be controlled as depicted in Fig. 3. 
 

The process represents a tank for liquid with inflow q0 as 
the input variable and a level of liquid, h, as the state variable 
to be controlled; q1 is the outflow from the tank. Suppose  
a mathematical model of the process in the form [16] 

q0

h

q1  
Fig. 3.  Controlled process  
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where α is a real positive constant (used for the conversion 

into stable and proper rational transfer functions) chosen so 
that strong stability of the controller is ensured. The Youla-
Kucera parameter S used for the identification of the process 
was chosen in the form 

 

α+
=

s
s

sS 0)( . (28) 
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=+⋅
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01
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This choice enables us to identify the whole process using 
only the one coefficient s0, and what is more (as shown 
further), we can directly identify it using simple formula 
without the necessity of using a least squares algorithm. 

The signals used for identification of parameter S (after 
conversion into RPS) take the form:  

where F is the section of the tank and c1, c2 are constants 
obtained from the real process. Next, let us introduce 
deviation variables defined as 
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(note that these signals represent stable filtration of the 

input and output signal). Further, the equation for calculation 
of new coefficients of the plant model has the form of (17): 

 
 where h s is the steady state level of liquid in the tank and 

qo
s is the steady state inflow into the tank. Constants 

corresponding to the real plant are: c1 = 1.53322.10-3 dm2/s,  
c2 = 3.31142.10-3 dm5/2/s, F = 1.44 dm2, hs = 1.5 dm,  
q0

 s = 0.006359 dm3/s and the inflow rate q0 can vary in the 
range from -0.006359 dm3/s  to  0.004161 dm3/s.  
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D. Simulation results C. Implementation of the algorithm 
For the simulation experiment, the sampling interval was 

chosen T0 = 6 s, and the period of adaptation (i.e. calculation 
of new model coefficients and consequent controller re-
design) was TA = 10.T0 = 60 s. The positive constant α was 
derived from the model coefficient d0 and was responsible for 
dynamics of the control and identification process. Let us add 
that the algorithm was stable even for far shorter sampling 
intervals. 

Now, in order to implement the algorithm of adaptive 
control and improve numerical aspects, let us transform it 
from continuous-time form into discrete one using δ-operator 
defined by (19). If we suppose that all signals are measured in 
such short intervals (compared to the dynamics of the 
controlled process) that they can be considered as continuous, 
then, we can utilize the formula (20) introducing δ-operator 
and simply substitute the derivative operator “s” by δ-operator 
defined e.g. by (19). Further, realize that the “z-variable” in 
the formula represents the shift operator and its inversion, z-1, 
represents one-step signal delay. Then, the method of 
adaptive control can be transformed into simple and easily 
programmable form as follows: 

 

1) For the model of the process given by rel. (25), the 
stabilizing controller (26) is computed using (27) and is 
implemented by this equation: 

 
( ) ( ) ( ) ( ) ( )11 1001 −⋅−⋅+⋅+−= kexTxkexkuku . (31) 

 
2) Computation of auxiliary signals x and z takes the form: 
 
( ) ( ) ( ) ( ) ( )
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Fig. 4.  New setpoint response of the plant output. See the influence of the 
positive constant α. 

 
3) Now, these signals are used for simple identification of 

parameter S:  
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4) Using the identified parameter s0 and (30), the new 

model coefficients are computed as: 
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 5) These new coefficients are used as the new estimate for 
the next iteration step. 

Recall that the constant T0 represents the sampling interval 
and can be chosen as short as possible to “catch” the 
continuous-time character and nonlinearity of the plant. For 
the start of the algorithm, see (34), we must ensure that  
x(k-1) ≠ 0. 
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Fig. 5.  Control input response. Again note how the positive constant α can 
influence smoothness of the control input. 
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Fig. 6. Identified Youla-Kucera parameter S for α = 0.002. Observe that the 
parameter converges to the zero value very soon, which means that very 
quickly, the identified model coefficients are close to the real plant. 

IV. CONCLUSION 
The proposed adaptive algorithm based on iteration 

technique provides effective identification method (the whole 
plant is identified only by one coefficient and using a simple 

formula and stable filtered signals). In addition, the process of 
identification and control can be influenced by one tunable 
constant and discrete implementation enables to use 
“extremely” short sampling intervals without the danger of 
numerical instability of the algorithm. Now, the task is to 
ensure good convergence of the iteration technique even if 
initial estimates of model coefficients are not known very 
precisely. 
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