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Perturbation Analysis of Stochastic Fluid Models
with Respect to the Fluid Arrival Process
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Abstract—In this paper we study a Stochastic Fluid Model
(SFM) and derive sensitivity estimators for two performance
measures of interest (workload and loss volume) with re-
spect to the fluid inflow process. The derived estimators
are proved unbiased and are very easy implement. Such
estimators can be computed based on observable informa-
tion from a single sample path, thus, they can be used in
the control and optimization of queueing systems such as
communication networks and manufacturing systems.
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I. Introduction

In this paper we adopt a Stochastic Fluid Model (SFM)
for the control and optimization of queueing systems, such
as communication networks and manufacturing systems,
and analyze two performance measures of interest (work-
load and loss volume) as functions of the fluid inflow pro-
cess. SFMs have been used extensively in various contexts,
e.g., analyzing manufacturing or communication systems
(see [1], [2], [3] and references therein).

In this paper we follow the approach used in [4], [5] and
derive sample derivatives of the two measures (loss volume
and workload) with respect to a parameter θ that controls
the fluid inflow process (For more information on sample
derivatives and Infinitesimal Perturbation Analysis (IPA)
please refer to [6], [7]). The same model is also investigated
in [4], [5]. In [4] we derive derivatives of the performance
measures with respect to the buffer size. In [5] we general-
ize those results and derive sample derivatives with respect
to various control parameters that affect the buffer capac-
ity, as well as the fluid arrival and departure processes. An
assumption made in [5] is that any discontinuities of the
arrival process (as a function of time) are independent of
the control parameters. In this paper, we derive one-sided
derivatives for the same performance measures but with re-
spect to a control parameter θ that affects the jump points
of the inflow process; for example in a computer network
setting with ON/OFF sources, the parameter θ may affect
the instants when the ON to OFF or OFF to ON transi-
tions occur. More specifically, we assume that the duration
of each ON period is given by a distribution with a location
parameter θ and derive the sensitivities of the loss volume

C.G. Panayiotou is with the Dept. of Electrical and
Computer Engineering, University of Cyprus, Nicosia, Cyprus.
Email:christosp@ucy.ac.cy, corresponding author.

C.G. Cassandras and G. Sun are with the Dept. of Manufactur-
ing Engineering, Boston University, Boston, MA. Email:cgc@bu.edu,
gsun@bu.edu. They are supported in part by the National Science
Foundation under Grant EEC-00-88073, by AFOSR under contract
F49620-01-0056, and by ARO under under grant DAAD19-01-0610.

and workload with respect to θ. Similar sensitivities with
respect to the arrival process are also investigated in [8]
for multiclass systems. However, in [8] the authors assume
that θ is a scale rather than a location parameter of the
distribution. Furthermore, [8] deals only with the sensitiv-
ity of the workload while in this paper we also derive the
sensitivity of the loss volume.

The contribution of this paper consists of the derivation
of sample derivative estimates of the performance measures
of interest (workload and loss volume) with respect to a
location parameter of the distribution of the duration of
the ON period. These estimates are distribution invariant
and can be computed based on observable information from
a single sample path, thus they can be used for on-line
control.

II. The Stochastic Fluid Model (SFM)
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Fig. 1. System Model

The SFM setting is based on the fluid-flow world-view
where “liquid molecules” flow in a continuous fashion. The
basic SFM, used in [4] and shown in Fig. 1, consists of
a single-server preceded by a fluid storage tank and it is
characterized by five stochastic processes, all defined on a
common probability space (Ω,F , P ) and labelled as follows:
{α(t)}: the input flow rate (inflow) to the SFM.
{β(t)}: the service rate, i.e., the maximum fluid discharge
rate from the server.
{δ(t)}: the actual fluid discharge rate from the server,
{x(t)}: the buffer occupancy or buffer content, i.e., the
amount of fluid in the buffer,
{γ(t)}: the overflow rate due to a full buffer.

The above processes evolve over a given time interval
[0, T ] for a given fixed 0 < T < ∞. We assume that the
inflow process {α(t)} is described by an ON/OFF source
as shown in Fig. 2. During the ON period the inflow rate
α(t) = α while during the OFF period α(t) = 0. The
duration of the ON and OFF periods are random variables
from an arbitrary distribution and we denote by ξk and ηk

the beginning and end of the kth ON period. Also, the
service-rate process {β(t)} is assumed to be constant, i.e.,
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Fig. 2. Typical sample path

β(t) = β for all t ∈ [0, T ]. We assume that α > β otherwise
no buffering will ever occur. Furthermore, we assume that
the buffer has a finite capacity b.

For the purposes of this paper, the duration of the ON
period is given by some distribution with a location pa-
rameter θ e.g., fτ (τ ; θ). The processes {α(t; θ)} and {β(t)},
along with the buffer size b, define the behavior of the SFM.
In particular, they define the buffer content, x(t; θ), the
overflow rate γ(t; θ), and the output flow δ(t; θ). Also, θ
is the variable parameter we will concentrate on for the
purpose of IPA. We will assume that if θ is perturbed by
∆θ, then, the duration of each ON period in α(t; θ) will
also change by ∆θ. This is precisely the definition of a
location parameter which implies symmetric distributions
like uniform, normal, etc. [7]. In this model, the instant
when the ON period starts does not depend on θ; only the
end of the period depends on θ which implies that if the
length on the ON period increases by ∆θ then the length
of the OFF period also decreases by ∆θ. Note that the
assumption that θ is a location parameter of the ON pe-
riod distribution is not very restrictive since the analysis
can be readily extended to scale parameters as well; simply
replace ∆θ by (X/θ)∆θ, where X is the random variable
describing the duration of the ON period.

Let A(t; θ) denote the net inflow process

A(t; θ) = α(t; θ)− β(t) (1)

The buffer content is defined by the following one-sided
differential equation,

dx(t; θ)
dt+

=





0, if x(t; θ) = 0 and A(t; θ) ≤ 0,
0, if x(t; θ) = b and A(t; θ) ≥ 0,
A(t; θ), otherwise

(2)
whose initial condition will be set to x(0; θ) = x0; for sim-
plicity, we set x0 = 0 throughout the paper. The overflow
rate γ(t; θ) is given by the following equation,

γ(t; θ) =
{

α(t; θ)− β(t), if x(t; θ) = b,
0, if x(t; θ) < b.

(3)

Since the input function {α(t; θ)} is piecewise constant and
{β(t)} is assumed constant (β), the state trajectory x(t; θ)
is piecewise linear and continuous in t, and the output
function γ(t; θ) is piecewise constant. Moreover, the state
trajectory can be decomposed into two kinds of intervals:
boundary periods (BP) and non-boundary periods (NBP).

Boundary periods are maximal intervals during which the
buffer is either empty (x(t; θ) = 0) or full (x(t; θ) = b).
Non-boundary periods are supremal intervals during which
the buffer is neither empty nor full (0 < x(t; θ) < b).

We will assume that the real-valued parameter θ is con-
fined to a closed and bounded (compact) interval Θ. Let
L(θ) : Θ → R be a random function defined over an appro-
priate probability space (Ω,F , P ). Strictly speaking, we
write L(θ, ω) to indicate that this sample function depends
on the sample point ω ∈ Ω, but will drop ω unless it is nec-
essary to stress this fact. In what follows, we will consider
two performance metrics, the Loss Volume LT (θ) and the
Work QT (θ), both defined over the interval [0, T ] by the
following equations:

LT (θ) =
∫ T

0

γ(t; θ)dt, (4)

QT (θ) =
∫ T

0

x(t; θ)dt. (5)

where, as already mentioned, we assume that x(θ; 0) = 0 at
the start of the interval [0, T ]. Observe that 1

T E [LT (θ)] is
the Expected Loss Rate over the interval [0, T ], a common
performance metric of interest (from which related metrics
such as Loss Probability can also be derived). Similarly,
1
T E [QT (θ)] is the Expected Buffer Content over [0, T ].

Our objective in the next section is the estimation of
the sample derivatives dLT (θ)/dθ and dQT (θ)/dθ. Fur-
thermore, we show that these estimates are also unbiased.

III. Infinitesimal Perturbation Analysis (IPA)

As already mentioned, the sample path of this system is
partitioned in boundary (BP) and Non-Boundary (NBP)
periods. Let (µn, νn) denote the nth NBP where µn de-
notes the event buffer ceases to be empty or full and νn

denotes the event that buffer becomes empty or full. Simi-
larly, [νn, µn+1] denotes the nth BP. Note that in general a
NBP starts either when x(t) = 0 and α(t)− β(t) becomes
positive or when x(t) = b and α(t)−β(t) becomes negative.
In this case, since β(t) = β, a NBP starts at the beginning
of either an ON or OFF period at instants ξk or ηk for some
k. Also, a NBP may end during either an ON or OFF pe-
riod; it ends during an ON period if the buffer becomes full
at point φj or during an OFF period if the buffer becomes
empty at point ej for some j. Furthermore, we define

Ln(θ) =
∫ νn

µn

γ(t; θ)dt and L̄n(θ) =
∫ µn+1

νn

γ(t; θ)dt

Qn(θ) =
∫ νn

µn

x(t; θ)dt and Q̄n(θ) =
∫ µn+1

νn

x(t; θ)dt

Using the above partitioning, we can rewrite the objectives
as

LT (θ) =
N∑

n=1

Ln(θ) +
N̄∑

n=1

L̄n(θ) (6)

QT (θ) =
N∑

n=1

Qn(θ) +
N̄∑

n=1

Q̄n(θ) (7)
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where N is the number of NBPs and N̄ is the number of
BPs in the observation interval [0, T ]. Clearly, Ln(θ) = 0
for all n = 1, · · · , N since there is no overflow during a
NBP. Next we perturb the length of the ON period by
increasing the end point of each ON period ηk by ∆θ ≥ 0
to η′k = ηk + ∆θ, k = 1, 2, · · · and derive the change in
LT (θ) and QT (θ), ∆LT (θ) and ∆QT (θ) respectively.

∆LT (θ) =
N∑

n=1

∆Ln(θ) +
N̄∑

n=1

∆L̄n(θ) (8)

∆QT (θ) =
N∑

n=1

∆Qn(θ) +
N̄∑

n=1

∆Q̄n(θ) (9)

where

∆Ln(θ) =
∫ νn

µn

∆γ(t; θ)dt, ∆L̄n(θ) =
∫ µn+1

νn

∆γ(t; θ)dt

∆Qn(θ) =
∫ νn

µn

∆x(t; θ)dt, ∆Q̄n(θ) =
∫ µn+1

νn

∆x(t; θ)dt

and

∆γ(t; θ) = γ(t; θ + ∆θ)− γ(t; θ) (10)
∆x(t; θ) = x(t; θ + ∆θ)− x(t; θ) (11)

To evaluate the above differences, we re-index all points
ηk according to the NBP they belong to and write ηn,i to
indicate the ith occurrence of the source’s transition from
ON to OFF during the nth NBP; i = 1, · · · , Hn where
Hn is the number of such transitions. We reiterate that
a NBP can start with either a buffer ceases to be empty
or full event. In the case that the nth NBP starts with
a buffer ceases to be full event, the beginning of the NBP
coincides with a source transition from ON to OFF. In this
case, νn = ηn,1 and Hn includes this event as well (see
Fig. 3).
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Fig. 3. Boundary and non-boundary periods

Next we divide a NBP into a set of intervals
{

(µn, ηn,1)
⋃ {

Hn−1⋃

i=1

[ηn,i, ηn,i+1)

} ⋃
[ηn,Hn , νn)

}

and we will use the notation In,0 = (µn, ηn,1), In,i =
[ηn,i, ηn,i+1), i = 1, · · · ,Hn − 1, and In,Hn = (ηn,Hn , νn).
Also, for notational convenience we will use ηn,0 = µn,
and, ηn,Hn+1 = νn. In addition, we point out that
In,0 = (µn, ηn,1) exists only if the NBP starts after a ceased
to be empty event. If the NBP starts after a ceased to be

full event then In,0 is undefined. Furthermore, it is pos-
sible that Hn = 0 and in this case the NBP constitutes
a single interval (µn, νn). Finally, in every interval In,i,
i = 1, · · · ,Hn − 1 there is a point ξn,i which indicates the
instant that the inflow process switches from OFF to ON.

Next we point out that any ηn,i = ηn,i(θ) is actually
a function of θ, while, ξn,i, i = 1, · · · , Hn, n = 1, 2, · · · ,
does not depend on θ. In the sequel, to simplify the nota-
tion, we drop the argument θ unless it is needed to make a
point, and use the “prime” notation to indicate quantities
in the perturbed sample, i.e., the sample path where θ is
increased to θ + ∆θ. For example, ηn,i(θ + ∆θ) = η′n,i,
x(t; θ + ∆θ) = x′(t) and so on. Furthermore, we define the
following quantities:
λn,i(t; θ) = λn,i(t): Loss volume during the ith interval t ∈
In,i and by definition λn,i(ηn,i) = 0, i = 0, · · · ,Hn, n =
1, 2, · · · .
and the corresponding perturbations:

∆λn,i(t) = λn,i(t; θ + ∆θ)− λn,i(t; θ)
= λ′n,i(t)− λn,i(t) for t ∈ In,i, (12)

∆λ̄n,i = λ′n,i(ηn,i+1)− λn,i(ηn,i+1) (13)

i = 0, · · · , Hn. An example of the nominal and perturbed
sample paths are shown in Fig. 4.
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Fig. 4. Nominal and perturbed sample paths

A. Perturbation in a Non-Boundary Period

Next we focus on the nth NBP and determine ∆Ln and
∆Qn in the interval (µn, νn). In the remaining of this sec-
tion, for notational convenience we drop the subscript n
unless it is needed avoid confusion. The interval (µ, ν) is
divided into a set of intervals I0, · · · , IH , and we assume
that ∆x(µ) = 0 (this is not always the case but as we will
show later, it is true in expectation and it doesn’t matter).
Furthermore, during a NBP x(t) < b and γ(t) = 0 therefore
Ln = 0 and as a result ∆Ln = L′n.

We start first from the interval I0 = (µ, η1) where it is
clear that ∆x(t) = ∆x(µ) = 0 for all t ∈ I0 since x(t)
is a continuous function of t and the sample paths of the
nominal and perturbed sample paths are identical. Conse-
quently, ∆λ̄0 = 0.

Remark 1: At this point notice that for NBPs where
H = 0, ∆x(t) = 0 for all t ∈ (µ, ν), thus such NBPs will
not contribute any perturbation to either the loss volume
or workload.
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Next, we investigate the interval I1 which we break into
three subintervals; (a) [η1, η

′
1) where perturbation is gener-

ated, (b) [η′1, ξ1) the remaining OFF period and (c) [ξ1, η2)
the following ON period. In our analysis we show how per-
turbations are generated in subinterval (a) and how they
are propagated in subintervals (b) and (c). For the subin-
terval [η1, η

′
1) = [η1, η1 + ∆θ) we identify two cases,

Case I: If x(η1) = b, then x′(η1) = b and ∆x(η1) = 0.
Since α > β then x′(t) = b for all t ∈ [η1, η

′
1) while x(t) < b,

and ∆x(t) for t ∈ [η1, η
′
1) is given by

∆x(t) = b− x(η1) +
∫ t

η1

βdτ = β(t− η1)

Note that this case is possible only at the beginning of a
NBP that starts with a cease to be full event. Furthermore,
the loss in this interval is

λ′1(t) =
∫ t

η1

(α− β)dt and λ′1(η
′
1) = (α− β)∆θ. (14)

Case II: If x(η1) < b, then there are two subcases as follows
II.a If b−x(η1) ≥ (α−β)∆θ then neither the nominal nor
the perturbed sample paths will become full and therefore,

∆x(t) = x(η1) +
∫ t

η1

(α− β)dτ − x(η1) +
∫ t

η1

βdτ

= α(t− η1)

and λ′1(t) = 0 for all t ∈ (η1, η
′
1).

II.b If b−x(η1) < (α−β)∆θ then, in the perturbed sample
path, the buffer will become full in this interval, i.e., η1 <
φ′1 ≤ η′1. Where φ′j indicates the time when the perturbed
sample path becomes full for the jth time, j = 1, 2, · · · . In
this case, for all t ∈ [η1, φ

′
1)

∆x(t) = α(t− η1)

while for all t ∈ [φ′1, η
′
1)

∆x(t) = b− x(φ′1) +
∫ t

φ′1

βdτ

= α(t− η1) + b− x(η1)− (α− β)(t− η1).

where we used x(φ′1) = x(η1)−β(φ′1−η1). Thus combining
the results for II.a and II.b above, we get

∆x(t) = α(t− η1)− [x(η1) + (α− β)(t− η1)− b]+ (15)

At this point, for notational convenience we define the
quantity

Y (t) = x(t) + ∆x(t)− b ≤ 0 (16)

Note that Y (t) ≤ 0 for any t ∈ [0, T ] because x′(t) =
x(t)+∆x(t) ≤ b since both nominal and perturbed sample
paths have the same buffer capacity b.

Combining the two cases together we get

∆x(t) ={
α(t− η1)− [Y (η1) + (α− β)(t− η1)]

+ if x(η1) < b
β(t− η1) if x(η1) = b

(17)

for all t ∈ [η1, η
′
1) (note that ∆x(η1) = 0). Thus

∆x(η′1) =
{

α∆θ − [Y (η1) + (α− β)∆θ]+ if x(η1) < b
β∆θ if x(η1) = b

(18)
Furthermore,

∆λ1(η′1) = λ′1(η
′
1)

=
{

(α− β)∆θ if x(η1) = b

[Y (η1) + (α− β)∆θ]+ if x(η1) < b
(19)

Next, consider the interval [η′1, ξ1). During this interval,

x(t) =

[
x(η′1)−

∫ t

η′1

βdτ

]+

x′(t) =

[
x(η′1) + ∆x(η′1)−

∫ t

η′1

βdτ

]+

If this interval is fully contained in the NBP (i.e., the buffer
does not become empty), then x(ξ1) > 0. Furthermore,
x′(ξ1) > 0 (This can be easily seen from (18) since ∆θ ≥ 0
and Y (ξ1) ≤ 0 due to (16)) and thus, in this interval, there
is no perturbation generated or cancelled, therefore ∆x(t)
for t ∈ [η′1, ξ1) is given by

∆x(t)=∆x(η′1)

=
{

α∆θ − [Y (η1) + (α− β)∆θ]+ if x(η1) < b
β∆θ if x(η1) = b

(20)

Remark 2: If the buffer empties before the next ξ instant
implies that the NBP has ended with an empty period at
ν with ∆x(ν) = ∆x(η′1).

Finally, we investigate t ∈ [ξ1, η2) and identify two cases
where we exclude the case x(η2) = b because it implies that
the NBP has ended earlier. This case will be covered later
when we investigate BPs.
Case I: If b − x(η2) ≥ ∆x(η′1) then the perturbed sample
path will not overflow during this interval and therefore

∆x(t) = ∆x(ξ1) = ∆x(η′1) for all ξ1 ≤ t ≤ η2

and λ′1(t) = λ′1(η
′
1), ξ1 ≤ t ≤ η2.

Case II: If b−x(η2) < ∆x(η′1) then ξ1 ≤ φ′i < η2, for some
i = 1, 2 and therefore

∆x(t) =
{

∆x(ξ1) for ξ1 ≤ t < φ′i
∆x(ξ1)− (α− β)(t− φ′i) for φ′i ≤ t < η2

= ∆x(ξ1)− (α− β)
[
t− η2 +

x(η2) + ∆x(ξ1)− b

α− β

]+

where the term [·]+ is the loss volume in the perturbed
sample path. Combining the two cases for t ∈ [ξ1, η2) we
get

∆x(t) = ∆x(η′1)− (α−β)
[
t− η2 +

x(η2) + ∆x(η′1)− b

α− β

]+
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and at the end of the interval we get

∆x(η2) =





β∆θ − [x(η2) + β∆θ − b]+ if x(η1) = b

α∆θ − [Y (η1) + (α− β)∆θ]+

− [x(η2) + ∆x(η′1)− b]+ if x(η1) < b
(21)

and ∆λ′1 = λ′1(η
′
1) + [x(η2) + ∆x(η′1)− b]+. Substituting

λ′1(η
′
1) from (19) we get

∆λ′1 =





(α− β)∆θ + [x(η2) + β∆θ − b]+ if x(η1) = b

[Y (η1) + (α− β)∆θ]+

+ [x(η2) + ∆x(η′1)− b]+ if x(η1) < b
(22)

So far we have determined the perturbation in the buffer
content in the interval [µ, η2). The perturbation ∆x(η2)
will propagate to the remaining NBP so our objective is to
find the perturbation at any t in any interval Ik in the NBP,
k = 1, · · · , H. So, next we investigate the kth interval
Ik which, as before, is broken into three subintervals; (a)
[ηk, η′k) where perturbation is generated, (b) [η′k, ξk) the
remaining OFF period and (c) [ξk, ηk+1) the following ON
period. Due to space limitations we only present the final
results for each interval. For the subinterval [ηk, η′k) =
[ηk, ηk + ∆θ), we get

∆x(t) = ∆x(ηk) + α(t− ηk)− [Y (ηk) + (α− β)(t− ηk)]+

(23)
where the term in [·]+ is the possible loss volume in the per-
turbed sample path. Note that (23) is similar to (17) with
the addition of the ∆x(ηk) which corresponds to the pertur-
bation propagated due to earlier perturbations. Therefore,
at the end of the interval

∆x(η′k) = ∆x(ηk) + α∆θ − [Y (ηk) + (α− β)∆θ]+ (24)

and
λ′k(η′k) = [Y (ηk) + (α− β)∆θ]+ .

Equation (24) suggests that the perturbation at η′k consists
of three parts. (a) ∆x(ηk) is the perturbation that has been
accumulated earlier. (b) α∆θ is the perturbation generated
at ηk and (c) [Y (ηk)+ (α−β)∆θ]+ is the possible overflow
in the perturbed sample path.

Next, consider the interval [η′k, ξk). Following earlier ar-
guments (see (20)) we find that for all t ∈ [η′k, ξk)

∆x(t) = ∆x(η′k)
= ∆x(ηk) + α∆θ − [Y (ηk) + (α− β)∆θ]+(25)

Finally, we investigate the subinterval [ξk, ηk+1). For
t ∈ [ξk, ηk+1) we get

∆x(t) = ∆x(ηk) + α∆θ − [Y (ηk) + (α− β)∆θ]+

− (α− β)
[
t− ηk+1 +

x(ηk+1) + ∆x(η′k)− b

α− β

]+

(26)

and at the end of the interval we get

∆x(ηk+1) = ∆x(ηk) + α∆θ − [Y (ηk) + (α− β)∆θ]+

− [x(ηk+1) + ∆x(η′k)− b]+ (27)

∆λk = [Y (ηk) + (α− β)∆θ]+ + [x(ηk+1) + ∆x(η′k)− b]+

(28)
Now we are ready to determine the change in workload

∆Qn and loss volume ∆Ln.
Lemma 1: During the nth NBP, the change in the work-

load is given by

∆Qn = (β − α)∆θ(νn − ηn,1)1[x(µn) = b]

+ α∆θ

Hn∑

i=1

(νn − ηn,i)

−
Hn∑

i=1

[Y (ηn,i) + (α− β)∆θ]+ (νn − ηn,i)

−
Hn−1∑

i=1

[
x(ηn,i+1) + ∆x(η′n,i)− b

]+ (νn − ηn,i)

(29)

where ∆x(η′n,i) is given by (24).
Proof: Due to space limitations, all proofs are omitted.

Lemma 2: During the nth NBP, the change in the loss
volume is given by

∆Ln = (α− β)∆θ1b +
Hn−1∑

i=1

[
x(ηn,i+1) + ∆x(η′n,i)− b

]+

+ [Y (ηn,1) + (α− β)∆θ]+ 10 +
Hn∑

i=2

[Y (ηn,i) + (α− β)∆θ]+

+

(
(β − α)∆θ1b + α∆θHn −

Hn−1∑

i=1

[Y (ηn,i) + (α− β)∆θ]+

−
Hn−1∑

i=1

[
x(ηn,i+1) + ∆x(η′n,i)− b

]+
)

1[x(νn) = b]

(30)

where 1b = 1[x(µn) = b] and 10 = 1[x(µn) = 0].

B. Perturbation in a Boundary Period

In this section we investigate the perturbation generated
in the boundary period [νn, µn+1]. Depending on the type
of boundary period we identify the following two cases.
Case I: x(t) = 0 for all t ∈ [νn, µn+1]. This period will
start with the event buffer becomes empty which can occur
only during an OFF period, i.e., at some time instant en =
νn, ηn,Hn < en < ξn,Hn . From the analysis of the NBP
(see (25)), we get that

∆x(νn) = ∆x(ηn,Hn) + α∆θ − [Y (ηn,Hn) + (α− β)∆θ]+

(31)
Furthermore, since x(νn) = 0, by definition x′(νn) =
∆x(νn) therefore for t ∈ [νn, µn+1]

∆x(t) =
[
∆x(νn)−

∫ t

νn

βdt

]+

= [∆x(νn)− β(t− νn)]+

and for intervals that are long enough, ∆x(µn+1) = 0.
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Thus,

∆Q̄n =
∫ νn+

∆x(νn)
β

νn

(∆x(νn)− β(t− νn)) dt (32)

Furthermore, for b > 0, neither sample path will experience
any loss and therefore, ∆L̄n = 0.
Case II: x(t) = b for all t ∈ [νn, µn+1]. In this case,
since ∆x(t) ≥ 0, x′(t) = b and thus ∆x(t) = 0 for all
t ∈ [νn, µn+1]. Furthermore, γ(t) = γ′(t) = α − β and
therefore ∆L̄n = 0.

IV. Unbiasedness

First we present the following lemma (see [4] for the
proof) which is useful in establishing the fact that terms
involving [·]+ (as in Lemmas 1 and 2) do not contribute to
the derivative estimates of E [QT (θ)] and E [LT (θ)].

Lemma 3: Let ∆ and I be non-negative random vari-
ables and let f∆(x) be the pdf of I conditioned on ∆ with
f∆(x) ≤ C < ∞ for all x in the support of f∆(x). Then

E [∆− I]+ ≤ CE
[
∆2

]
(33)

Lemma 4:

[(α− β)∆θ + Y (ηn,Hn−1)]
+ ≤ (α− β)C∆θ2 (34)

for all n = 1, · · · , N .
Lemma 5:

[
∆x(η′n,i)− (b− x(ηn,i+1))

]+ ≤ (α− β)C̄∆θ2 (35)

for all i = 1, · · · ,Hn and n = 1, · · · , N .
Theorem 3: The (right) derivative of LT (θ) with respect

to the θ is given by

dE [QT (θ)]
dθ

= E
[
dQT (θ)

dθ

]

= E

[
N∑

n=1

(
(β − α)(νn − ηn,1)1b + α

Hn∑

i=1

(νn − ηn,i)

)]
.

(36)
Theorem 4: The (right) derivative of LT (θ) with respect

to θ is given by

dE [LT (θ)]
dθ

= E
[
dLT (θ)

dθ

]

= E

[
(α− β)

N∑
n=1

1b +
N∑

n=1

(αHn + (β − α)1b)1[x(νn) = b]

]

(37)

V. IPA Algorithms

Initialize: dL = 0, dQ = 0, dx = 0, τ = 0.
If at t NBP ends: buffer becomes full or empty
• If buffer becomes full : dL ← dL+dx. %notes 1 and 5
• dQ ← dQ + dx(t− τ) %see note 3
• dx = 0. %see note 2

If at t source transitions from ON to OFF:
• If buffer ceases to be full :

– dL ← dL + (α− β) %see note 4
– dx = β %see note 1

Else
– dQ ← dQ + dx(t− τ) %see note 3
– dx ← dx + α %see note 1
• τ = t
At the end of the observation interval,

dQT (θ)
dθ

= dQ and
dLT (θ)

dθ
= dL

Notes:
1. Perturbation generation. If the nth NBP starts with an
ON to OFF transition, then the perturbation in x(·) is β.
This can be seen from the second sum term of (37) where
one α due to the first ON to OFF transition is cancelled
by the (β − α) term. Furthermore, we arrive to the same
conclusion from (36) where the first term of the outer sum
is (β − α)(νn − ηn,1) while from the inner sum we get a
term α(νn − ηn,1). As a result, the net contribution is a
term β(νn − ηn,1). On the other hand, if the ON to OFF
transition does not occur at the beginning of the NBP, then
the perturbation is simply α (see the inner sum of (36)).
2. At the end of the NBP the perturbation is reset to zero.
3. Rather than saving all points ηn,i, i = 1, · · · ,Hn until
the end of the NBP in order to evaluate the inner sum of
(36) we recognize that

α

Hn∑

i=1

(νn − ηn,i) = α

Hn∑

i=1

i(ηn,i+1 − ηn,i)

and by convention we set ηn,Hn+1 = νn.
4. If a NBP starts with a cease to be full event, then there
is a term α − β contributed to the loss derivative (see the
first sum term in (37)).
5. If a NBP ends with a buffer becomes full event then
all generated contribution (accumulated due to the sec-
ond sum of (37) or the accumulator dx from the algorithm
above) will result in additional losses.
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