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Abstract— This paper focuses on testing sequential cir-  The information loss due to the compaction of a circuit
cuits using a simple form of signature analysis as a com- response can lead to situations in which the signature
paction technique. More specifically, the paper describes of a faulty circuit matches the error-free signature. This
a systematic methodology for calculating the probability \,nwanted scenario allows a faulty circuit to pass the
of aliasing when a randomly generated test input vector testing process and is callatiasing. Given a randomly

sequence is applied to a given finite state machine (FSM) - o
and the final FSM output is used to verify the functionality generated test vector sequence, the probability of aliasing

of the FSM. We also explore how the aliasing probability €SSentially determines how effective a particular com-
is affected when the output mapping (from the set of states Paction technique is.
to the set of outputs) of the FSM under test changes. For combinational circuits, the probability of aliasing

- . nder vari m ion methodologi h ig-
Index Terms—Aliasing probability, response com- under various compactio ethodologies (such as sig

paction, signature analyzer, finite state machines, Markov nature analysis, parity checking or transition count) has
models. been calculated (see, for example, [3]-[9] and [1], [2]

for an overview). However, the aliasing probability when
compaction techniques are used to tegtiential circuits
I. INTRODUCTION has not explicitly been computed analytically yet.

. . . In this paper we focus on analyzing a simple com-
m ion hni re empl h ing .. . ) L
Compaction techniques are employed at the test %ctlon method for testing a sequential circuit. More

stage of a circuit to decrease the number of bits in tRE ecifically, we use the final output vectgy[L] as the

original circuit response and hence reduce the test a S1P . o o
ginal P : PRignature of the compaction method. In this simplified
cation time and the memory requirements on the testlngq . . .
enario,aliasing occurs when the final output of a

. . . . S
cwcwtry 11, 2] Flgu're ! ShOV\.’S the basic structur ulty CUT agrees with the final output of its fault-
used in test compaction. The circuit under test (CU ) .

ffee response, i.e., wher L] = y[L]. Similar concepts

is driven by a known sequence of test input vectors

i[0],1[1],...,i[L]. The possibly erroneous output vectof‘ppear in [10], [11] which address the error latency of a

sequence of the circuit /[0], y[L], ... y (L] is fed into ault when testing a sequential circuit. More specifically,

a compactor, i.e., a finite state machine (FSM) Whoéhe error latency model (ELM) depends on reduct

final output is thesignature of the CUT. Once a particular sFate table of the fault-free FSM and the faulty FSM.

'me error latency of a fault is defined in [11] as the
test vector sequence has been randomly generated, nu?nber of input vectors that need to be applied to the
error-free responsg[0],y[1],...,y[L] of the CUT can P PP

2D (iUT while the fault is active before the first incorrect
be pre-computed and its signature can be compared 10

the sianature obtained by apolving the same test vec%urtpUt vector due to that fault is observed. The product
g y appying machine (which essentially keeps track of the fault-free

sequence to the CUT; a disagreement between the error-
q o greem . § te and the faulty state) produces an output of “1” when
free and the obtained signature indicates the existence

of .
defects in the CUT. the flr_st discrepancy between the fault-free and the faulty
FSM is observed.
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probability pj, (where 34 pr = 1). Since the FSM
makes a transition to the next state depending on both
the present input and the present state, the FSM behaves
Fig. 1. Testing of a sequential circuit using a compactor. as a homogeneous Markov chain, i.e., a Markov chain
in which the transition probabilities are not a function of
time [12]. This Markov chain can be obtained from the
Finally, conclusions and future directions are discussgiven FSM by assigning to each transition a probability

ilL], ..., i[1], i[0] FSM yf[L], Y [1]1, y [0]
Under Test

Compactor ——

in Section VI. that depends on the probabilities of the primary inputs
that cause it (the only distinction is that the Markov
Il. NOTATION AND PRELIMINARIES chain has no primary inputs, hence the transition depends

probabilistically only on the present state of the chain).
Let us consider a synchronous FSM described by ajf we denote the state transition probabilitiesdy =
set of statesQ = {g;}i<i<y, @ set of inputsX = pr(qt+1] = ¢;)|(qlt] = ¢:)}, the state transition matrix
{zk}1<k<my, @nd @ set of outpul® = {y;}1<i<mo- TNe  of the Markov chain is given by = (a;)1<;j<y and

next statey[¢ +1] of the FSM is specified by its staig] captures how state probabilities evolve in time via the
and its inputz[t] at time steg via thenext-state function  gyolution equation

q[t + 1] = 0(q[t], z[t]). To make the connection with the
Markov chains more transparent, we will denote the FSM [t + 1] = Ax[t].

state at time stepby an/N-dimensional binary indicator . . .
poy Y ere, w[t] is an N-dimensional vector, whosgé” entry

vector q[t] which has exactly one nonzero entry wit - o
value equal to “1.” This single nonzero entry denotes thdeenot(_es the probability that the_ Markov Cha.'?‘ IS in state
at time stept. The N-dimensional probability vector

state of the system (i.e., if thé" entry of q[¢] equals ¥ .
“1” then the FSM is in state; at time stept). If input w[t] has elements that are nonnegative and sum to 1.
fL‘k’ is applied at time step, then the state evolution OfCIearIy, the state transition matri of the Markov chain

the system can be captured by an equation of the forff" P& Written as

M;
qalt +1] = Axqlt], A=) prAg,
k=1
whereA,, is the N x N state transition matrix associated - -
with input z[t] = ;. Specifically,A;, is such that each wherep, and A, are the probability and state transition

of its columns has exactly one nonzero entry with valy@atrix associated with inputy,. _

“1” (i.e., matrix A, has a total ofV' nonzero entries, all The stationary probability vector of the !\/Iarkqv chal_n
with value “17). A nonzero entry at thg™, i*?) position vV = (vi)1§i§]y represents the frequencies with which
of A, denotes a transition from stajeto stateg; under states are VISIte.d in the long run. Fpr a cqnnected FSM,
inputa. (Clearly, the constraint that each rowAf, has the corresponding Markov chain is irreducible and has a
exactly one nonzero entry simply reflects the requiremetffidue stationary distribution vector that satisfies

that there can only be one transition out of a particular
state under a particular input.)

The outputy[t] of the FSM at a given time stepis This vector can be extracted either from the eigenvalues
generally a function of its present stafi¢] and its input of the transition matrixA or from simulation of a
x[t], i.e., it is captured by amutput function y[t] = particular FSM for typical input sequences.

A(q[t], z[t]). Here, we focus on the special case when In our analysis we will need to consider two FSMs
this output function is restricted to be a mapping of thinat operate in parallel, as well as the Markov chain that
set of states to the set of outputs, i.g[{] = A(¢q[t]). describes their behavior. To capture this concisely, we
This restricted model describes Moore machines whiveill make use of the Kronecker product notation [13].
the more general model describes Mealy machines. Ohie Kronecker product of ai¥; x M7 matrix A with an
results can be easily extended to cover Mealy machinds x M, matrix B is denoted byA ® B and is defined

as well. as the partitioned matrix

We assume that the input sequence applied to a
given FSM is white, i.e., that the inputs are statistically
independent from one time step to another and that A o B —
their probability distribution is fixed so that, at any : : : :
given time stept, input z[t] = x; takes place with ay,1B anoB ... ay B

Av=v.
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whereq;; is the entry at thé® row, 5 column position

of matrix A. Note thatA ® B is of dimension/V; N, x Fault-Free | q[L]
M M. ! i
12 i, o] FSM |
[1l. FAULT MODEL
! Faulty 9[L] TN
In our discussion we consider faults that affect th FSM ' FSMH

transition behavior of the sequential circuit under tes

More specifically, we consider permanent transitio..

faults that cause the.FSM to take’. .from a gl\{en Sta’lt:?g. 2. Simultaneous modeling of the fault-free and the faulty

and under a certain input, a transition to an incorregheration of the FSM.

state. Such faults can be caused by various factors,

such as impurities and defects in materials, equipment

malfunctions, or human errors [1]. This description is summarized in Figure 2, where we
Let the CUT be an FSM wittV states M inputs, and Simultaneously apply the same test input vector sequence

My, outputs. The sequence of applied test inputs vectdgsthe fault-free and the faulty FSMs. The probability of

i[0],i[1], ...,i[L] in Figure 1 is generated randomly scliasing AP in this case is given by

that the test input vector at any given time step is chosen 4p — Pr{y[L] = y[L]} = Pr{q[L] = qs[L]}
independently from other steps. More specifically, we N

assume that each inpuj; is chosen with probability, = > Pr{q[L] = qf[L] = ¢}.

at any given time step. i=1

Suppose that a fault in the hardware implementation of The dotted systenf in Figure 2 is an FSM with
the FSM causes a fault in the state transition mechaniswfy inputs andN? states and can be described in terms
under inputz,,. More specifically, while a fault-free of pairs of the form(g;,q;), where ¢; captures the
FSM would take a transition from staig to stateq; state of the fault-free FSM ang; denotes the state
under inputz,,, this faulty FSM takes a transition fromof the faulty FSM. The state of the FSM at time
state¢; to stateg;. In terms of the transition matrix step¢ can be represented by a binary column vector
model, the matrixA,, that corresponds to input,, q[t] with N? entries and exactly one nonzero entry
becomes corrupted, i.e., instead of a “1” at tfig (i**) with value “1,” which denotes the state of the system.
position, there is a “1” at the({')"*,4"") position. In More specifically, we arrange the statesifin the or-
effect, the state transition matrik! for the faulty FSM der(q1,q1), (g1, 92), ---, (¢1,9~), (g2, ¢1), ---, (@2, 9N), -+,
is given by (gn,q1), -, (qn,qn). Note that, if FSMH is in state

A=A, +E,, (¢i,qi) at time stept, then the((i — 1)N + ') entry
whereE,, is the fault matrix with two nonzero entries:.Of vectorqh‘[‘t] y s equal to_ L Wh”e every other entry
a “—1” at the (j**,ith) position and a 41" at the is equal to “0.” Incorporating thls notat_lon fqr the state

Nth th " vector q[t] of FSM H, we notice that it is simply the
((4")",i"*) position.

Kronecker product

IV. CALCULATION OF THE ALIASING anlt] = qlt] ® qf[t],

_ PROBABILITY_ _ whereq]t] is the binary indicator vector for the state of
Recall that, in order to keep things simple, we treahe fault-free FSM andy[t] is the vector for the state
the final output of the FSM as its signature. Morgf the faulty FSM in Figure 2.
specifically, we compare the final output of the faulty As stated previously, the state transition matfixof

FSM against the output of the fault-free FSM (under th@e fault-free FSM and the state transition matiik of
same input vector sequence). Therefore, by examinifige faulty FSM can be written as

the probabilistic relationship between the signature of

MI MI
the faulty FSM under test and the signature of the fault- A=Y pAg, and A'=3 peAL
free FSM, we can compute the probability of aliasing. k=1 =1

In this section, we initially study aliasing when theye would also like to express the state transition matrix
output function\ implies an one-to-one correspondenca, of the FSM H in similar manner, i.e.,

between the output of the FSM and its internal state (i.e., My
we study the case when the final FSM state serves as the A=Y prAn,.
signature). =t



Using a well-known property of the Kronecker producis chosen independently between different time steps. If

[13], it follows that we treat the finaktate of S as its signature, then the
probability of aliasingAP is given by
Arqt] ® Ajayslt] = (Ap ® Ap)(alt] ® qyt]). N
Hence, AP = v ((i — 1)N + i),
M, M, i=1
Ap = D prAn =D pe(Ar®AL) = wherevy, is the stationary distribution off.
k=1 k=1
M;
= pm(An @ Ey) + Zpk(Ak ® Ay, V. THE GENERAL CASE AND AN EXAMPLE
k=1 In the previous section we calculated the probability
whereE,, is the fault matrix that corresponds to the statef aliasing under the assumption that the outputs of the
transition fault under input,,. FSM are in one-to-one correspondence with its states.
Let v}, be a vector that satisfies However, due to the specific structure of FSMs, the same
output can be produced by multiple states. Since there is
Vi = ApVh. no general way to determine the final state of the FSM

We can immediately distinguish between three cases:?Y 0Pserving its final output, the probability of aliasing
. . . in these cases will increase. In terms of Figure 2, the
1) If the matrix A, has a single eigenvalue at= 1,

then the corresponding eigenvectay denotes the outputs of the fault-free and the faulty FSM denoted by

unique stationary distribution of the FSM. In thisy[L] andy[L] respectively, are given by
case, the Markov chain corresponding to the FSM  y[L] = A(q[L]) and y/[L] = X(qs[L]).

H is irreducible and FSMH is connected, i.e.,

all states are reachable from each other througH §" 'a/9€L, the probability of aliasing is the probability
finite sequence of inputs. that FSM H ends up in a state of the forrty;, g;),

o ; N ;
2) If there are multiple solutions to equation, = L =%% =N, for Wh'ChI_A(q’_) = ;‘(q”)' The following
A, vy, then the stationary distribution is still well-Proposition is a generalization o Proposition 1.

defined if we know the initial state of the FSM.proposition 2: Let S be an FSM under test witlV states
In this case, the Markov chain is reducible and thgnd assume that the randomly generated test input vector
FSM H is not connected. sequence is long enough and that each test input vector
3) Ifthe matrixA;, hasD eigenvalues of unit magni-is chosen independently between different time steps. If
tude given by = e, d € {0,1,2,....,(D —1)}, we treat the finabutput of S as itssignature, then the
then the eigenvector that correspondsiip = 1 probability of aliasingAP is given by
denotes the unique stationary distribution of the N
FSM. The stationary distribution at timg how-  4p — 3 > vi((i — 1)N +4'),
ever, depends on the initial probability distribution i=1 ( such than(g )=A(q:))
of the Markov chain (given by, [0]) and the value
of (¢ mod D) [12].
Due to space limitations we assume that= 1 is
the only eigenvalue of unit magnitude so thef is
unique. Our discussion can easily be extended to tﬁ
more complicated cases listed above. - o o -
For a large number of steps the probability of ili\?vdfso?]%li Z’iiﬁzggg)- (This is shown in the table
aliasing can be calculated as the probability that the

wherev;, is the stationary distribution off (which is
assumed to be unique).

Intuitively, we can think of the entries of the vectoy,
s the entries of alV x N table, where thei(, (i')™™)
ﬁtry of such table represents the probability that FSM

FSM H ends up in a state of the forr(y;,¢;),1 < all | @1 | 2 | @3 | @
i < N. Hence, the aliasing probabilitd P is given by as[L]

the sum of the entries of the stationary vectgr that q vii | vig | vis | via
correspond to this type of states. This discussion leads 02 Vo1 | Voo | Vg | Vou
to the following proposition. q3 V31 | V3o | V33 | Vi3
Proposition 1: Let S be an FSM under test witlV states da Va1 | Va2 | V43 | Vad

and assume that the randomly generated test input ved@bearly, the smallest possible probability of aliasing is
sequence is long enough and that each test input vedtoe sum of the diagonal entries of the table and denotes



the probability that both the fault-free and the faulty VI. CONCLUSIONS AND FUTURE
FSM end up in the same state. This minimum value for DIRECTIONS
the aliasing probability is achieved if the mappiRgs | this paper we have discussed an analytical method-

invertible. However, if the mapping results in the samgioqy to calculate the probability of aliasing when testing

output for the stateg; andg;, then theAP will increase g sequential circuit. The compaction technique uses the
and will be given by the sum of the diagonal entries, plyg, g output of the FSM under test as a signature. Our
the entryv,,((i — 1)N + '), plus its symmetric entry gnajysis evaluates how aliasing probability changes for

va((@# = 1N +i). o - different mappings from the set of states to the set of
Next, we calculate the aliasing probability for a parpytputs of the FSM.

tiCU|al’ FSMS W|th N =7 states anM[ =2 inputS that C|ear|y’ the next Step is to apply more Complex

occur with equal probabilitys, = z» = 0.5). The state compaction techniques to test sequential circuits. For
transition matl’lceSA1 and A2 COI’I’eSpondll’lg to Il’lpu'[S example’ the Compactor can be an FSM with known

z1 andz; are chosen to be initial state that receives as input the output of the FSM

0010000 0100000 under test. The output of the compactor after a large
1000000 0000001 number of stated. can then serve as the signature of
0000001 0001000 the svstem

Ai;=]10001000|, Ay=({0000010 y :
T M
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