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Department of Control and Instrumentation

Brno University of Technology
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Abstract— Many controlling algorithms were developed to
satisfy designer’s assumption that controlled process is stable,
optimal, adaptive etc. Only few of them should be used in the
real-time, on-line adaptation or implemented into Programmable
Logic Controller. Algorithms based on neural networks were
successfully tested as for the process control as for the process
identification. In simulation, quantization effect given by A/D and
D/A converter is very often left out. Quantization effect influences
identified process transfer function and controller possibilities.
In this case, controller controls the process inaccurate and
often with oscillations than without quantization. This paper
shows a comparison between two identification methods. On-
line identification (in the real time) based on neural networks
and a classical identification are implemented in adaptive LQ
controller with three types of A/D and D/A converters at least
be closer in simulation the real process controlling.

Index Terms— Adaptive controller, optimal controller, ARMA
model, LD-FIL decomposition, Matlab.

I. I NTRODUCTION

Two methods for identification are used. Both of them
satisfied assumptions: future implementation into PLC and
real-time solution. The first one, algorithm based on neural
networks is used in comparison with the classical RLS method
augmented by LD-FIL matrix decomposition. LD-FIL as a
classical robust algorithm could be used mainly for its at-
tributes: numerically stable algorithm and easy implementation
for on-line solution. Neural networks were used with highly
popular error back-propagation learning algorithm. This paper
is not focused on identification as a stand-alone part without
controlling, but inseparable part of the adaptive LQ controller.

ARMA model is identified in the closed loop. Identified
transfer function is used in each step in LQ controller. LQ
controller’s action value, input to the process, is solved in the
real-time. In regulation, the step response is not the only single
scale for the measurement of the control quality. Disturbance
cancellation and curse of the action value are other powerful
scales. Both identification methods for three different quantiza-
tion effects are compared further in the article. In conclusion,
advantages and disadvantages of the identification based on
neural networks in comparison with the classical identification
are presented [4].

II. PROCESSIDENTIFICATION

ARMA model without coefficientb0 for identification is
used. ARX should be used too, but this model could enough
represent identified process as can be seen in (1)

FM(z−1) =
b1z

−1 + b2z
−2 + b3z

−3

1 + a1z−1 + a2z−2 + a3z−3
=

YM(z−1)
UM(z−1)

(1)

A. Classical Identification with LD-FIL Matrix Decomposition

Recursive Least mean Square (RLS) method is used for on-
line identification in many articles and papers [2]. Usual form
with the vector of parametersθi+1 and covariance matrixCi+1

could be written as

θi+1 = θi + Ci+1ϕi+1

(
yi+1 − ϕT

i+1θi

)
(2)

Ci+1 = Ci −Ciϕi+1

(
1 + ϕT

i+1Ciϕi+1

)−1
ϕT

i+1Ci (3)

where i denotes the discrete time,ϕi+1 denotes vector of
inputs and outputs andyi+1 denotes current output.

ARMA model should be rewritten to mathematical model
yM = ϕT

i+1θi + ε whereϕi+1 is often called the regression
vector andε is the error. The parameter vector is solved to
minimize least-square loss function in stepi

θi = (ΦT
i Φi)−1ΦT

i Yi = CiΦT
i Yi (4)

whereΦT
i denotes regression matrix andYi denotes output

vector. Next stepi + 1

θi+1 = Ci+1[ΦT
i , ϕi+1][Yi, yi+1]T (5)

whereCi+1 is given by

Ci+1 = [ΦT
i Φi + ϕi+1ϕ

T
i+1]

−1

= Gi+1Di+1GT
i+1 (6)

LD-FIL (lower-diagonal-upper) decomposition algorithm
could be used in form as it is illustrated in (7)[ c11 c12 c13

c21 c22 c23

c31 c32 c33

]
=
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] [
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0 1 g23

0 0 1

]
(7)

where Gi+1 denotes lower triangular matrix,GT
i+1 denotes

upper triangular matrix andDi+1 denotes diagonal matrix.



Parameters on the main diagonal mainly influence identifica-
tion.

Well-known LD-FIL matrix decomposition is derived by
lemma for matrix inversion (see 8)Gi+1 denotes lower-
triangular matrix

(A + BCD)−1 = A−1 −A−1B(C−1

+ DA−1B)−1DA−1 (8)

then

Gi+1Di+1GT
i+1 = GiDiGT
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where an auxilary vectorfi is given fi = GT
i ϕi+1 [3], [5].

The third order ARMA model is used.

B. Identification Based on Neural Networks

The third order ARMA model is used in identification based
on neural networks. Neural network should be connected with
process through its input and output only. Neural network
dynamics is represented by step delays as Fig. 1 shows [4].

Fig. 1. The layout of identification based on Neural Networks.

Now, the back-propagation learning algorithm is used to
identify transfer function [1]. On-line algorithm works for
pattern-by-pattern updating of weights. Algorithm consists of
cycles where initialization of weights should start. Random
values with physical meaning instead of totally random values
should be used for the weights. For example, the weight
representinga1 should be negative or the sum ofb1, b2 andb3

should be positive. Next step is given by on-line updating of
training examples. The algorithm for choice of samples should
be used to improve identified model [7].

Forward computation is the next step where the internal
activity of each neuronj in layer l is given by

v
(l)
j (n) =

p∑
i=0

w
(l)
ji (n)y(l−1)

i (n) (10)

where y
(l−1)
i (n) is the function signal of neuroni in the

previous layer(l−1) at iterationn andw
(l)
ji (n) is the synaptic

weight of neuronj in layer l. Numberp denotes inputs. The
output function of neuronj in layer l is sigmoid

y
(l)
j (n) =

2

1 + exp(−v
(l)
j (n))

− 1 (11)

or identity
y
(l)
j (n) = v

(l)
j (n) (12)

Hence, the error signal in the output layer (i.e.,l = L) is

ej(n) = dj(n)− y
(L)
i (n) (13)

where dj(n) is the j-th element of the desired signal. The
weights are solved to minimize sum of squared errors
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Next step is given by backward computation where local
gradientsδ = −∂E(n)/∂wji(n) is given by

δ
(L)
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j (n)
[
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]
(15)

for output layerL and sigmoidal output function and

δ
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for hidden layerl. The synaptic weights of the network in
layer l are adjusted according to generalized delta rule (17)

w
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]
+ ηδ

(l)
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whereα is the momentum constant andη is the learning-rate
parameter. These parameters represent algorithm’s adjusting
parameters with influence on the rate of convergence. Param-
eters should be limited to interval(0, 1).

III. A DAPTIVE LQ CONTROLLER

LQ controller is solved according to identified ARMA
model in each step and according to minimization of the
quadratic performance [3], [5] and [6]. Identification ensures
adaptation in the real time. Quadratic performance is defined
by

J = xT
T QxT +

i0+T∑
i=i0+1

qy(wi − yi)2 + qu(ui − u0
i )

2 (18)

where wi denotes desired value,yi denotes output of the
process,ui denotes action value,u0

i denotes action value for
offset elimination and it is equal to desired value. Parameter
qy (qu) denotes weight for process output (input),i0 denotes
the first step while the minimization is used and denotes the
minimum at the last stepi0 + T . Fig. 2 shows model in
MATLAB/Simulink.



Fig. 2. Simulation model in MATLAB/Simulink.

The quadratic performance can be rewritten to more suitable
form

J =
i0+T∑

i=i0+1

zT
i Qzi, (19)

where zT
i = [xi, wi, u

0
i ] and xT

i = Si[ui,xi−1, wi, u
0
i ] =

Sizi−1 and weight matrixQ is more universal. The weight
matrix (22) is implemented to the quadratic performance
in equations (23), (24) and (26). This means the matrix
can realize the quadratic performance and even more as an
incremental weighting or an integral action. We will work
with pseudo-state matrixS = [Su,Sx,Sw,Su0 ] defined by
equations (20) and (21) where for our example, model’s order
is n = r = 3 and the coefficientb0 = 0.

Su =
[

1 0 0 b0 0 . . . 0
]T

Sw =
[

0 0 0 0 . . . 1 0
]T

Su0 =
[

0 0 0 0 . . . 0 1
]T (20)

Sx =



0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 . . . 0 . . . 0 0
b1. . .br a1 . . .an

0 . . . 0 1 . . . 0
...

...
... 0

... 0
0 . . . 0 0 . . . 0


(21)

Universal weight matrix should be written in many forms
to designer’s expectation [5], [6]. One example of universal
matrix shows equation (22)

Q =



qu −qu 0 . . . 0 . . . 0 −qu

−qu qu 0 . . . 0 . . . 0 0
0 0 qu. . . 0 . . . 0 0
0 0 0 . . . qy 0 −qy 0
...

...
...

... 0 qy −qy 0
0 0 0 . . .−qy−qy qy 0

−qu 0 0 . . . 0 . . . 0 qu


(22)

The method for the minimization in the each step ahead is
known and it is described at the next equations (23), (24) and
(26)

Ji0 = zT
i0+T−1S

TQSzi0+T−1 = zT
i0+T−1Hzi0+T−1 (23)

TABLE I

LQ CONTROLLER SOLVED IN ITERATION ALGORITHM

Step Equation Notes

1. H∗ = Hxx −HT
uxH−1

uu Hux recursively solves lost function

2. GDGT = H LD-FIL decomposition

3. ui = −G−1
uuGuxxi−1 solves action value

and the minimum is given for derivation byui0+T equal to
zero at last stepi0 + T

min[Ψi0+T ] = z̄T
i0+T−1

(
Hxx

− HT
uxH−1

uu Hux

)
z̄i0+T−1 (24)

wherez̄T
i0+T−1 is zT

i0+T−1 without ui0+T−1 and

H =
[
HuuHux

HxuHxx

]
(25)

We can simply see thatH is the symmetric matrix and
consecutively the next minimization stepi0 +T −1 is defined
by

min[Ψi0+T ] = z̄T
i0+T−1H

∗z̄i0+T−1

+ zT
i0+T−1Qzi0+T−1 (26)

where matrixH∗ = Hxx − HT
uxH−1

uu Hux is defined at step
i0 + T . Using LD-FIL decomposition (see (7)) for matrixG
instead ofH, whereH = GDGT we can rewrite the quadratic
performance to the triangular factor quadratic norm

‖G[ui,xi−1, wi, u
0
i ]

T‖2 (27)

Now, it is simple to find control lowui with influences on the
first row only of the minimization at stepi

Guuui + Guxxi−1 = 0 (28)

where the minimum is given‖Gxxxi−1‖2 andGuu, Gux and
Gxx are sub-matrices ofG. Finally, the control low is given
by

ui = −G−1
uuGuxxi−1 (29)

LQ is solved at the each one step ahead. Table I shows
recursively solved LQ iteration algorithm.

IV. SIMULATION RESULTS

Comparison of both type identifications and the potential
consequences of the skipped quantization effect are shown in
the simulation experiment on the process with transfer function

FS(s) =
2

(10s + 1)(s + 1)2
(30)

where disturbance enters between process main dynamicsFS1

and additional, faster dynamicsFS2 (e.g. servomechanism)

FS1(s) =
2

10s + 1
(31)

FS2(s) =
1

(s + 1)2
(32)

Fig. 3–10 show the process response and disturbance can-
cellation together with controller action value. Figures show



both identification methods. The process output (every upper
sub-figures) and input (every lower sub-figures) are shown for
desired step set to+2 V at time20 s. Deterministic disturbance
step set to+1 V at time 80 s. The sampling period was set
to TS = 1 s at the beginning. In Fig. 3, the classical RLS
identification in closed loop with LQ controller is shown.

Fig. 3. Adaptive LQ controller with closed loop identification. The sampling
period isTS = 1 s. LD-FIL decomposition is used. A/D and D/A converters
are 12bits.

Simulation result shows that adaptive LQ controller could
work well for the sampling periodTS = 1 s, but provided the
sampling period decreases it reduces overshot and solution
time. Decreasing of the sampling period is very important
for disturbance cancellation too. Because of this reason, the
sampling period was set toTS = 0.1 s. Fig. 4 shows the RLS
identification in closed loop with LQ controller. A/D and D/A
converters are not used.

Fig. 4. Adaptive LQ controller with closed loop identification. The sampling
period isTS = 0.1 s. LD-FIL decomposition is used. A/D and D/A converters
are not used.

Fig. 5. RLS identification with LD-FIL decomposition in closed loop with
LQ controller for 12bits A/D and D/A converters.TS = 0.1 s.

Fig. 6. Identification based on neural networks with the momentum constant
α = 0.01 and the learning-rate parameterη = 0.001 in closed loop with LQ
controller for 12bits A/D and D/A converters.TS = 0.1 s.

The idea of decreasing sampling period has been already
justified. Problem becomes when the simulation is extended
with a quantization effect. A/D and D/A converters produce
the quantization effect in each real control processes. The
precise control input and process output values are reduced to
imprecise values according type of A/D and D/A converters.
For example, 12bits A/D or D/A converters limited to±10 V
reduce values with4 valid positions divisible by0.0048 V.

Fig. 5, 7 and 9 show the RLS identification with LD-FIL
decomposition in closed loop with LQ controller.

Fig. 6, 8 and 10 show the identification based on neural
networks in closed loop with LQ controller.

Three quantization effects given by A/D and D/A converters
are compared:

• 12bits A/D and D/A converters;



• 10bits A/D and D/A converters;
• 8bits A/D and D/A converters.

Input to the process is limited to±10 V. Both identifications
are used for the same set-up of LQ controller with purpose of
the equivalent comparison.

Fig. 7. RLS identification with LD-FIL decomposition in closed loop with
LQ controller for 10bits A/D and D/A converters.TS = 0.1 s.

Fig. 8. Identification based on neural networks with the momentum constant
α = 0.01 and the learning-rate parameterη = 0.001 in closed loop with LQ
controller for 10bits A/D and D/A converters.TS = 0.1 s.

V. CONCLUSIONS

The presented paper showed where the closed loop on-line
identification based on neural networks could be better used
than the classical identification. Both identification methods
were used in adaptive LQ controller. In Fig. 3–10, the process
output and input together with disturbance response are shown.
The sampling period was decreased toTS = 0.1 s because

Fig. 9. RLS identification with LD-FIL decomposition in closed loop with
LQ controller for 8bits A/D and D/A converters.TS = 0.1 s.

Fig. 10. Identification based on neural networks with the momentum constant
α = 0.01 and the learning-rate parameterη = 0.001 in closed loop with LQ
controller for 8bits A/D and D/A converters.TS = 0.1 s.

of better disturbance cancellation. Figures show the control
without quantization effect and three types of quantization
effects, given by A/D and D/A converters, influences adaptive
regulation. For 12bits A/D and D/A converters, both results
are usable. Identification based on neural networks, according
to its input and output, has been much better adapted than
RLS identification with LD-FIL in comparison with 10bits
converters. For 10bits, results are usable, but RLS identifi-
cation with LD-FIL decomposition could not identify given
system in adaptive LQ controller without oscillations of input.
For 8bits A/D and D/A converters, both results are useless.
Outputs oscillate.

Identification based on neural network with LQ controller
works better according to input smoothness, output overshot
etc. The reasons way the identification based on neural net-



works has been more successful could be explained in several
ways:

1) error back-propagation algorithm works with the param-
eter momentum (the parameter momentum works as a
filter to avoid oscillations but similar filter added to the
classical controllers produces slower step response);

2) the classical identification sampling period cannot be too
short otherwise identification transfer function loses the
correct estimation of the real process;

3) the neural networks identification does not have to use
every samples as classical identification [7].

On the other hand, identification based on neural networks
needs initialization which is always problematic. Simulation
results are solved in MATLAB/Simulink. Algorithms are
prepared for implementation into PLC B&R. Identification
RLS with LD-FIL matrix decomposition has been already
successfully tested on the real physical models.
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