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Hybrid Modeling Based Adaptive Neural Controller
Anton Andrášik, Alois Mészáros and Sebastião Feyo de Azevedo

Abstract—In this paper, a new control technique for non-
linear control based on hybrid modeling is proposed. The
control system utilizes the well-known gradient descent, but
the learning rate is adapted in each iteration step in order
to accelerate the speed of convergence. It is shown that
the selection of the learning rate results in stable training
in the sense of Lyapunov. Advantages of this technique are
illustrated by simulations where a continuous flow stirred
biochemical reactor is chosen as a case study.

Keywords—neural control, PID controller, hybrid model-
ing

I. Introduction

THE design of most neural control schemes is based on
gradient optimisation such as Back-Propagation for

the training of weights. Although some nonlinear con-
trol problems can be handled by using these neural control
schemes, in tasks for nonlinear systems with high nonlin-
earities and large uncertainties, the existing neural control
schemes are severely inadequate. Major drawbacks of us-
ing neural networks in controlling real systems are that the
ability of the neural network to adapt to system changes is
too slow and there remains some degree of error.
Here we will present a new control strategy based on an
indirect adaptive control, where the model of the controlled
process is represented by hybrid neural network. Just a few
parameters of the neural controller are adapted on-line us-
ing a special, stable training algorithm in the sense of Lya-
punov. To demonstrate the feasibility and the performance
of this control scheme, a continuous-flow stirred biochem-
ical reactor model has been chosen as a simulation case
study. Simulation results demonstrate the usefulness and
the robustness of the control system proposed.

II. Hybrid neural networks

By combining black box techniques with a physical
model framework, hybrid models are obtained that com-
bine first principles knowledge with the ability to deal with
complex, poorly understood behavior. A partial model is
derived from simple physical considerations (such as mass
or energy balances), while a black box technique is used to
augment the model. Hybrid models are especially suited to
describe highly nonlinear behavior over a large operating
domain. Examples are models of batch or fed-batch pro-
cesses, cyclic processes or distributed parameter processes,
such as plug flow reactors.
Combining black box techniques with physical equations
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has received some attention since the early 1990’s. There
are several approaches to hybrid modeling discussed in lit-
erature [1]. In [2], a hybrid model of a fed-batch biore-
actor is developed, in which an artificial neural network
augments the performance of a parametric model that de-
scribes the specific kinetic rates, such as biomass growth
and substrate consumption. The combined output of the
parametric model and the ANN is processed by an out-
put model which calculates the system state. In compari-
son with conventional approaches the hybrid modeling is a
powerful tool for process modeling, particularly when lim-
ited theoretical knowledge of the process is available [3].
However, for the hybrid neural network model, target

outputs are not directly available. In this case, the known
partial process model can be used to calculate a suitable er-
ror signal that can be used to update the network’s weights.
The observer error between the structured model’s predic-
tions and the actual state variable measurements can be
“back-propagated” through the known set of equations and
translated into an error signal for the neural network com-
ponent.
Let’s consider a process described by differential equa-

tion
dy

dt
= f(y(t), u(t), w) (1)

where f is a nonlinear vector function of the system in-
puts u(t), the system outputs y(t) and some parameters w,
which we assume to be represented by means of a neural
network. In order to train the neural network (black-box
part of the hybrid model), pair of input/output data vec-
tors (u,y) must be available, e.g., as a set of past measure-
ments. The training consists in adaptation of network’s
weights w in such a way that the sum of the squared devi-
ations between the output data predicted by the network
yi and the corresponding target data y∗i becomes minimal

J =
1
2

N∑
i=1

(yi − y∗i )
2 (2)

The usual way to minimize J is to use gradient procedures,
like the steepest-descent algorithm. Weights in the n-th
step of this iterative process are changed in the direction
of gradient

wij,n+1 = wij,n − α
∂J

∂wij,n
(3)

In consideration of equation (2) the derivation of J with
respect to wij,n gives

∂J

∂wij,n
=

N∑
i=1

[
(yi − y∗i )

∂yi

∂wij,n

]
(4)

Now the problem consists in determining the derivatives
∂y
∂w . One possibility is a method called sensitivity approach.
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This approach is based on a concept developed in systems
engineering [4]. The main idea of this method is to incor-
porate the weights as additional variables to the differential
equation

dy

dt
= f (y(t), u(t), w) (5)

During the training phase, this differential equation must
be solved for fixed u(t). Differentiation of equation (5) with
respect to weights gives

d

dt

(
∂y

∂w

)
=

∂f∂y

∂y∂w
+

∂f

∂w
(6)

with initial condition

∂y

∂w

∣∣∣∣∣
t=0

= 0 (7)

A. Hybrid model of the bioprocess

The initial phase of an adaptive control is usually the
model acquisition of the controlled process. The non-linear
model describing the response of Saccharomyces cerevisiae,
known as baker’s yeast, has been used for the process
dynamic simulation. This mathematical model, adopted
partly from work of [5] and extended to the present dy-
namical structure [6] is based on limited oxidation ca-
pacity of yeast leading to a switchover from oxidative to
oxido-reductive metabolism. The model is well behaved
for the description of cell growth on glucose as substrate,
during the simulation of the control experiments. We found
it as an appropriate tool for the data acquisition needed to
train the hybrid network. Structure of the hybrid model
consisting of neural network and available information of
the process is depicted in Fig. 1.
Simplified mass balance of the fermentation process con-
sists of the following differential equations

dX

dt
= µX − q

Vl
X (8)

dS

dt
= −k1µX − q

Vl
(S − Sin) (9)

where X is the biomass concentration, S is the substrate
concentration, q is the substrate flow rate, Vl is volume of
the liquid phase and Sin is the initial substrate concentra-
tion. With respect to equation (5), we can formally write
the model as

f = µX − q

Vl
X (10)

The biomass concentration X is the modelled variable.
Gradients ∂f

∂y and
∂f
∂w have the form

∂f

∂y
=

∂f

∂X
= µ+X

∂µ

∂X
− q

Vl
(11)

∂f

∂w
= X

∂µ

∂w
(12)

These two terms are inserted into the sensitivity equa-
tion (6), leading to

d

dt

(
∂X

∂w

)
=

(
µ+X

∂µ

∂X
− q

Vl

)
∂X

∂w
+X

∂µ

∂w
(13)

Now we have one differential equation which computes the
gradient ∂X

∂w necessary to optimize weights during iteration
steps: equations (3) and (4). Unknown partial derivations,
∂µ
∂X and

∂µ
∂w in sensitivity equation, depend on the chosen

neural net structure and can be evaluated by using the
backpropagation method.
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Fig. 1. Structure of the hybrid model of the fermentation process

The mathematical model of the biochemical process was
used to generate data sets for training hybrid network and
neural controller, respectively. The substrate flow rate q
was used as a manipulated variable for generating data.
The hybrid network with 7 hidden neurons and structure
as in Fig. 1 was fed with training data set and it was trained
using sensitivity approach. The comparison of testing data
and network predictions is depicted in Fig. 2

Fig. 2. Modeling of the bioprocess using the hybrid network

III. Control system design

The proposed control system uses two feedforward neu-
ral networks, one in a role of the process model and the



3

second network as an inverse dynamic model of the pro-
cess. Inverse dynamics identification is defined as finding
the inverse mapping of a system [7]. It is useful to know the
inverse dynamics of a plant in order to control it. Then, in
an ideal situation, the dynamics of the controller could sim-
ply be made equal to the plant inverse dynamic. For our
case we’ll consider an approach adopted by [8] called direct
or generalised inverse learning. A neural network is fed by
outputs from the plant and directly taught to generate the
plant input that produced those outputs, as illustrated in
Fig. 3. Error between the desired and actual output of the
network is used to adjust the network weights.
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Fig. 3. Architecture of the proposed inverse model of the plant

However, inverse dynamic models are prone to giving in-
correct results if the plant has nonlinearities. To prevent
the control system to make permanent control error we sug-
gest to incorporate so-called PID neurons into the neural
controller as shown in Fig. 4. There are three neurons in-
stead of common bias, where inputs to neurons are control
error, sum of control error and deviation of control error.
Connections between PID neurons and the output of the
neural network are evaluated by weights called wP , wI and
wD. These weights are trained on-line using special type
of optimizing algorithm described in the next section. The
whole control scheme is depicted in Fig. 5.
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Fig. 4. Neural controller supplemented with PID neurons for on-line
learning
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Fig. 5. Block diagram of the proposed control system

A. Convergence of the learning algorithm

The basic idea behind the training consists in on-line
tuning of the PID weights of the neural controller in such
a way that the control error will converge to zero. The
principle of the proof is adopted from [9] where the stabil-
ity of neural predictor is based on proper selection of the
learning rate. Finding of the bounds of the learning rate is
accomplished using discrete Lyapunov function.
Let’s consider a discrete Lyapunov function given by

Jk =
1
2
(e2k + λ∆u2k) =

1
2
[(r − yM

k )
2 + λ(uk − uold)2] (14)

where r is the setpoint, yM
k is predicted value of the con-

trolled variable using the hybrid model, uk is estimated
manipulated variable as the output of the neural controller,
uold is the last action applied to the plant and k is an itera-
tion index. The variation of the discrete Lyapunov function
is given by

∆Jk = Jk+1−Jk =
1
2
(e2k+1−e2k)+

1
2
λ(∆u2k+1−∆u2k) (15)

where the setpoint error in the next sampling period is
estimated as

ek+1 = ek +∆ek = ek +

(
∂ek

∂ ~w

)T

∆~w (16)

The same holds for the change of the manipulated variable

∆uk+1 = ∆uk +

(
∂uk

∂ ~w

)T

∆~w (17)

As we tune just PID weight coefficients and activation func-
tion of the output neuron is linear (see Fig. 4), the change
of the manipulated variable in the next sampling period is
given by

∆uk+1 = ∆uk + ~BT∆~w (18)

where ~B is a vector of inputs to PID neurons.
The PID weights are adjusted in proportion to the nega-

tive gradient of their contribution to the control error. Un-
like the common “steepest descent”, learning rate in our
case isn’t constant. The change of the weight coefficients
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is given by

∆~w = −α
∂J

∂ ~w
= −α

(
∂J

∂ek

∂ek

∂ ~w
+

∂J

∂uk

∂uk

∂ ~w

)
=

= −α

(
ek

∂ek

∂ ~w
+ λuk

∂uk

∂ ~w

)
(19)

Let’s start with equation (15). Substituting for ek+1

from equation (16) and ∆uk+1 from equation (18) we have

∆J =
1
2


[
ek +

(
∂ek

∂ ~w

)T

∆~w

]2
− e2k+

+ λ

[(
∆uk + ~BT∆~w

)2
−∆u2k

]}
=

= ek

(
∂ek

∂ ~w

)T

∆~w +
1
2

[(
∂ek

∂ ~w

)T

∆~w

]2
+

+λ∆uk
~BT∆~wk +

1
2
λ
(

~BT∆~wk

)2
(20)

Next, let us substitute ∆~wk from equation (19) into equa-
tion (20), we find

∆J = −αe2k

∥∥∥∥∂ek

∂ ~w

∥∥∥∥2 − αλ∆ukek

(
∂ek

∂ ~w

)T

~B +

+
α2

2

[
ek

∥∥∥∥∂ek

∂ ~w

∥∥∥∥2 + λ∆uk

(
∂ek

∂ ~w

)T

~B

]2
−

−αλ∆ukek
~BT ∂ek

∂ ~w
− αλ2∆u2k‖ ~B‖2 +

+
α2

2
λ

[
ek

~BT ∂ek

∂ ~w
+ λ∆uk‖ ~B‖2

]2
(21)

Next modifications results in

∆J = −α

2
e2k

∥∥∥∥∂ek

∂ ~w

∥∥∥∥2
[
2− α

(∥∥∥∥∂ek

∂ ~w

∥∥∥∥2 + λ‖ ~B‖2
)]

−

− −αλ2

2
∆u2k‖ ~B‖2

[
2− α

(∥∥∥∥∂ek

∂ ~w

∥∥∥∥2 + λ‖ ~B‖2
)]

−

− αλ∆uk

(
∂ek

∂ ~w

)T

~Bek ×

×

[
2− α

(∥∥∥∥∂ek

∂ ~w

∥∥∥∥2 + λ‖ ~B‖2
)]

(22)

what leads to the following equation

∆J = −α

2

[
2− α

(∥∥∥∥∂ek

∂ ~w

∥∥∥∥2 + λ‖ ~B‖2
)]

×

×
(

ek
∂ek

∂ ~w
+ λ∆uk

~B

)2
(23)

Since the last term is always positive and α is a positive
number, we can conclude that the change of the Lyapunov

function is negative just in the case when[
2− α

(∥∥∥∥∂ek

∂ ~w

∥∥∥∥2 + λ‖ ~B‖2
)]

> 0 (24)

i.e.

α <
2(∥∥∂ek

∂ ~w

∥∥2 + λ‖ ~B‖2
) (25)

B. On-line tuning of PID weights

During the control phase it is necessary to synchronize
the following steps:
• data acquisition
• tuning of PID weights
• computation of new control action
The only unknown procedure is how to tune on-line the
PID weight coefficients. The key task is to determine the
learning rate α in order to speed up the optimization pro-
cess. First it is necessary to find the gradient ∂ek

∂ ~w . If we
suppose that the hybrid model is an exact model of the
plant then we can find this gradient using the stochastic
approximation approach [10].
For the algorithm is accomplished iteratively, it is con-

venient to describe it by the following steps:
1. perturbation of weight coefficient in positive direction
2. computation of neural controller response: qt
3. qt is the input in mass balance of hybrid network
4. computation of hybrid network response Xt+1, what is
prediction of the controlled variable at the next sampling
period
5. repeating 2-4 for negative perturbation of weight
6. repeating 1-5 for next weight coefficients (wI , wD)
7. computation the unknown gradient

∂ek

∂w
=

X−
t+1 −X+t+1
∆

where ∆ is the size of perturbation and +/- is an indication
of positive and negative direction
8. computation of the learning rate at the actual iteration

αk =
2c(∥∥∂ek

∂w

∥∥2 + λ‖ ~B‖2
)

where c ∈ (0, 1)
9. optimization of the PID weight coefficients

~wk = ~wk−1 − α
∂J

∂ ~w

10. computation of the objective function at actual itera-
tion

Jk =
1
2
[(r − yM

k )
2 + λ(uk − uold)2]

11. if Jk <(acceptable error) or number of iterations k >
kmax =⇒ jump to the next step; else k := k + 1 and jump
to step 1;
12. computation of new control action as a response of the
neural PID controller
13. application of new control action to the plant
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IV. Results

Two different approaches were carried out, for compari-
son. First, the inverse model of the process was used as a
nonadaptive controller, corresponding control structure is
shown in Fig. 6. The training data set generated by the
mathematical model [6] was used for inverse mapping of
the process. Inputs to the neural controller (Fig. 3) were
Xk+1, Xk and Xk−1, respectively. Two simulation exper-
iments were carried out. First, the controlled process was
simulated using the same biomodel parameters as used for
training the network. In the second case, the input sub-
strate concentration Sin was perturbed at each sampling
period in the range up to 20%. Simulation results for de-
terministic and stochastic system are depicted in Fig. 7 and
Fig. 8, respectively. From the experiment it is clear that
this type of controller is unable to control the process in a
case of imperfect inverse mapping.
The proposed adaptive neural controller was utilized as
the second method for the biomass control. The weights
of the neural controller were pretrained off-line using the
structure in Fig. 3 with 3 inputs and 5 hidden neurons.
To training the network, a modified back-propagation al-
gorithm with conjugate gradients was applied. During the
on-line control the modified structure shown in Fig. 4 was
used, where the first input to the network is setpoint in-
stead of unknown Xk+1. Just bias PID weight coefficients
have been adapted, rest weight coefficients have remained
constant and set on the values pretrained off-line. New
control action was optimized every 30 minutes on the basis
of the proposed algorithm. The results of control for both
the deterministic and stochastic systems are depicted in
Fig. 9 and Fig. 10, where setpoints were chosen the same
as in the first case, for comparison.
From the evolution of the learning rate α shown in Fig. 11
we can see that the optimization speed of the algorithm
was adapted till the end of the control process. Evolutions
of the tuned values of P, I and D weight coefficients are
depicted in Fig. 12.

PLANTz−1

z−2

q
k

k+1 k+1NEURAL

CONTROLLER

setpoint
X S

Fig. 6. Block diagram of the direct inverse control

V. Conclusions

A new method for adaptive nonlinear control of biochem-
ical processes has been presented in this report. The new
control law incorporates the ability for adaptation through
an adjustment of bias neurons and ensures offset-free per-
formance in the presence of unmeasured disturbances. For
the special type of control structure has been developed
the algorithm for on-line tuning of PID weight coefficients,

Fig. 7. Control behaviour of direct feedback controller for determin-
istic system

Fig. 8. Direct control of the bioprocess where Sin is perturbed in
the range of 20%

where the convergence of the algorithm is guaranteed by
proper selection of the learning rate.

The proposed neural control system performance has
been demonstrated using the nonlinear continuous bio-
chemical process as the case study. The obtained simula-
tion results have demonstrated good regulatory and track-
ing performance of the augmented adaptive controller in-
troduced. The advantage is obvious especially in the pres-
ence of disturbances or parameter uncertainties when it is
not possible to obtain a perfect inverse map of the process.
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Fig. 9. Control results obtained using on-line tuning of the neural
controller - deterministic system

Fig. 10. Adaptive neural PID control of the bioprocess where Sin is
perturbed in the range of 20%
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