
  
Abstract-- We describe a recently developed integrated software 
package called Descriptor System Toolbox (DSP), implemented 
under Mathematica. This new package is fully compatible with 
two other packages of Mathematica: Control System 
Professional an add on toolbox of Mathematica that is already 
in the 1.1 Version and Polynomial Control Systems recently 
developed by N. Munro [10]. The DSP uses the functions 
developed in these two packages in order to provide new tools 
for the analysis and synthesis of descriptor system 
representations also known us generalized state space 
descriptions. Additional functions are also provided for the 
manipulation of rational matrices that are quite useful in 
Control theory applications . 
 
Index terms  — descriptor systems, Mathematica computer 
algebra system, computer aided control systems design 
 

I. INTRODUCTION 

 
Consider a system described by a set of linear differential 
and/or algebraic equations of the form: 
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where , , , ,n n n m p n p mE A R B R C R D R× × × ×∈ ∈ ∈ ∈  and E 

possibly non-singular with det 0sE A− ≠ . Systems of the 

above form are usually called singular systems, descriptor 
systems, generalized state space systems, semistate systems 
etc. It is easily seen that when E is non-singular the system 
may be rewritten as 
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which is the well-known state space representation. Therefore, 
descriptor systems constitute a more general class of linear 
systems than state space systems. Descriptor systems appear in 
the modelling of many physical phenomena, such as 
engineering systems (power systems, electrical networks, 
aerospace engineering, chemical processes), social economic 
systems, network analysis, biological systems, etc.  An 
extended reference on descriptor systems may be found in [3], 
[5], [9]. 
 
Descriptor systems are part of a more general class of systems, 
named polynomial matrix descriptions (PMDs) described by 
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the following differential and algebraic equations: 
( ) ( )
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where : /d dtρ = , ( ) [ ]n n
A Rρ ρ ×∈ , ( ) [ ]n m

B Rρ ρ ×∈ , 

( ) [ ] p n
C Rρ ρ ×∈ , and ( ) [ ] p m

D Rρ ρ ×∈ .  

Note that in the case where 

( ) ( ) ( ) ( ), , ,A E A B B C C D Dρ ρ ρ ρ ρ= − = = =  

we get the class of descriptor systems, whereas for 

( ) ( ) ( ) ( ), , ,nA I A B B C C D Dρ ρ ρ ρ ρ= − = = =  

we get the class of state space systems. 
 
In case of state space systems, Mathematica has developed 
a well-known package named the Control Systems 
Professional (CSP). CSP [4] is a powerful tool for the 
analysis and synthesis of linear MIMO (multi-input, multi-
output) systems as well as SISO (single-input, single-
output) systems in both time and frequency domains. CSP 
has been widely accepted in control engineering, 
mechanical engineering, aerodynamics, satellite 
instrumentation, etc. Munro [10] has recently implemented 
an add-on package for CSP, named Polynomial Control 
Systems toolbox dealing with the general class of 
polynomial matrix descriptions. Some of the features of 
this new package are: a) Model Manipulation 
(transformation between various type of models, i.e. PMDs, 
state space systems, matrix fraction descriptions, b) System 
analysis i.e. study of the properties of the PMD such as 
controllability, observability, transmission zeros, invariant 
zeros, decoupling zeros etc., c) Multivariable system 
design, i.e. implementation of the Rosenbrock’s Direct and 
Inverse Nyquist array design methods and MacFarlane’s 
Characteristic locus method, e.t.c.. 
 
On the other hand MathWorks Inc, has developed the 
Control Systems package that together with Simulink is a 
numerically oriented environment for the analysis and 
synthesis of MIMO and SISO systems. Varga [15] has 
extended the functionality of the Control System Toolbox 
of Matlab by allowing the manipulation of descriptor 
systems which in turn became known as the Descriptor 
Systems Toolbox for Matlab. Sebek [11] developed the 
Polynomial System Toolbox for Matlab for the study of 
systems, signals and their analysis and design, employing 
advanced polynomial methods. 
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In order to extend the functionality of the CSP toolbox for 
Mathematica, while maintaining compatibility to the 
Polynomial Control Systems toolbox, we have developed a 
toolbox that allows: a) manipulation of polynomial and 
rational matrices i.e. solution of rational matrix 
Diophantine equations over several rings (polynomial, 
proper, proper and stable etc), b) manipulation of linear 
model descriptions i.e. descriptor systems and tools for 
transformation between various type of models such as 
state space systems, polynomial matrix descriptions etc., c) 
system analysis i.e. computations of various types of 
invariants such as decoupling zeros, system zeros and 
poles, controllability matrix, reachability matrix, 
observability matrix, etc. d) time domain responses i.e. 
state space and output responses to arbitrary input 
functions, e) synthesis and design techniques i.e. 
stabilizing compensator design, asymptotic tracking, pole 
assignment, etc. The methodology that has been used is 
known in the literature as the polynomial matrix approach. 
The “Polynomial matrix approach” for analysis and 
synthesis of linear multivariable control systems is a 
modern technique which is based on mathematical models 
of multivariable systems or processes which consist of sets 
of differential / difference and algebraic equations that 
govern the behavior of a system or process, relying heavily 
on the algebraic properties of polynomial matrices. Results 
and techniques on Polynomial Matrix Descriptions (PMDs) 
of linear systems can be found in [1, 2, 6, 8, 12, 13, 14, 16, 
17 and 18]. 
 

II. MATRIX MANIPULATION 

 
It is know that rational functions ring theory plays a crucial 
role in the Analysis and Synthesis of linear systems. 
Therefore, in this section, we introduce new functions for 
the study of rings of rational functions with poles in a 
prescribed region of the complex plane as well as for 
rational matrices with entries coming from these rings. We 
focus on a) the ring of rational functions with no poles in 
the complex plane (polynomials), b) the ring of rational 
functions with no poles at infinity (proper functions), c) the 
ring of rational functions with no poles in the extended 
right half complex plane (proper and Hurwitz stable 
rational functions) and d) the ring of rational functions 
with no poles outside the unit circle (proper and Schur 
stable rational functions). In the context of this section, we 
propose a set of functions that a) determine whether a 
rational function (or a matrix) belongs to a particular ring 
b) calculate the quotient and remainder of a division 
between two rational functions over a particular ring, c) 
compute the greatest common divisor and least common 
multiple of functions (rational matrices) over a particular 
ring, d) check whether two rational functions (matrices) 
are coprime over a particular ring, e) compute structural 
invariants of a rational matrix such as the Smith form of a 
rational matrix in a particular ring, the Smith - McMillan 

form of a rational matrix using unimodular matrices over a 
particular ring, f) determine particular and general 
solutions of rational matrix Diophantine equations over 
specific rings  (A(s)X(s)+B(s)Y(s)=C(s), 
X(s)A(s)+Y(s)B(s)=C(s), A(s)X(s)+Y(s)B(s)=C(s)), g) find 
generalized inverses of rational matrices (Moore – Penrose 
and Drazin inverse), i) compute finite and infinite Jordan 
pairs of polynomial matrices that are very useful in the 
analysis of polynomial matrix descriptions. In what 
follows, we present some illustrative examples of the above 
 
Example 1. Consider a PMD system described by the 
Rosenbrock system matrix:  
 

3 2 2

2 4 3 2 3 2

2 4 3 2 3 2

( ) ( )
( )

( ) ( )

1 2 1 0 0

3 2 4 4 2 2 3 0 0

3 1 4 4 1 2 2 1 0

0 0 1 0 1

0 0 0 1 0

T s U s
P s

V s W s

s s s s

s s s s s s s s s

s s s s s s s s

 = = − 
 + + +
 + + + + + + + + + 
 = + + + + − + + +
 

− 
 − 

 
The above system matrix may be defined using the 
Polynomial Control Systems package as follows: 
 
<<DescriptorControlSystems; 
t = {{s + 1, s^3 + 2s^2, s^2 + 1, 0}, 
{s^2 + 3s + 2, s^4 + 4s^3 + 4s^2 + s + 2, s^3 + 
2s^2 + s + 3, 0}, 
{s^2 + 3s + 1, s^4 + 4s^3 + 4s^2 - 1, s^3 + 2s^2 + 
s + 2, 1}, 
{0, 0, -1, 0}}; 
u = {{0}, {0}, {0}, {1}}; 
v = {{0, 0, 0, 1}}; 
ss = SystemMatrix[s, t, u, v] 
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In order to investigate the infinite structure of the system, we 
may use some of the functions of the Matrix Manipulation 
section i.e.: 
 
Infinite system poles 
 
RingMcMillanForm[t, s, ForbiddenPolesArea -> 
InfinityPoint][[1]] // MatrixForm 
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Infinite transmission poles-zeros 



 
tf=v.Inverse[t].u 
RingMcMillanForm[tf, s, ForbiddenPolesArea -> 
InfinityPoint][[1]]  
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Infinite input-decoupling zeros 
 
sc = AppendRows[t, u] ; 
RingMcMillanForm[sc, s, ForbiddenPolesArea -> 
InfinityPoint][[1]]  
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Example 2. Consider a SISO system described by 
 

G (s )

u(s )
y (s )

 
 

where 
1

( )
( 1)

G s
s s

=
−

. In order to find a stabilizing 

compensator F(s) for the above system  
 

F (s )

G (s )

v (s ) u( s)+

-

y (s )

 
 
we must first compute a left and a right coprime proper 
and Hurwitz stable matrix fraction description of G(s). 
This can be easily done using the functions 
RingLeftMatrixFraction and RingRightMatrixFraction 
as follows  
 
tf = {{1/(s(s-1))}}; 
{A1, B1} = RingLeftMatrixFraction[tf, s, 
ForbiddenPolesArea -> HurwitzComplexPlane] 
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{B2, A2} = RingRightMatrixFraction[tf, s, 
ForbiddenPolesArea -> HurwitzComplexPlane] 
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The next step is to compute a particular proper and Hurwitz 
stable solution X1,Y1 of the left matrix Diophantine equation 
X1 A2 + Y1 B2 = I, using the function 
LeftDiophantineSolve. 

 
{D1, N1}=LeftDiophantineSolve[A2, B2, 
IdentityMatrix[1], s, ForbiddenPolesArea -> 
RightComplexPlane] 
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Then, the stabilizing compensator we are looking for is given 
by 
 
W = Array[f, {1, 1}]; 
F = (D1 - W.B1).Inverse[N1 + W.A1] // Factor 
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where f(1,1) is an arbitrary proper and stable function. 

III. LINEAR MODEL DESCRIPTION 

 
The aim of this section is to provide a set of functions for: a) 
the definition of descriptor systems in a way that conforms 
with CSP standards, b) the transformation between other 
objects such as state space system, polynomial matrix 
description, left or right matrix fraction description provided 
by CSP and PCS, c) the determination of special forms of 
descriptor systems such as Kalman controllable / observable 
form, Weierstrass canonical form, Kalman controllable / 
observable forms [7], strongly irreducible realizations and 
minimal realizations. We also provide right and left matrix 
fractions representations of a transfer function when the 
numerator and denominator matrices are either polynomial 
coprime matrices or proper coprime matrices or proper and 
Schur stable coprime matrices or proper and Hurwitz stable 
coprime matrices. This construction is very useful in synthesis 
problems such as stabilizing compensator design, asymptotic 
tracking etc. In what follows, we demonstrate the above 
functionality 
 
Example 3. Consider the polynomial matrix description of 
example 1. A descriptor state space representation of this 
system is given by 
 
dss=DescriptorStateSpace[ss] 
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A minimal realization of the above system can be easily 
obtained by using the MinimalRealization function 



 
MinimalRealization[dss] 
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We can easily see that the above system is already in the 
Weierstrass canonical form. 
 
Example 4. Define the descriptor state space system described 
by the following matrices 

[ ]
0 0 0 1 0 0 1

0 1 1 ; 0 2 0 ; 0 ; 0 0 1

1 0 0 0 0 1 0

E A B C

     
     = = = =     
          

 

The above system is defined as follows 
 
Em={{-13,17,-1},{-10,13,-1},{4,-5,1}} ; 
A=IdentityMatrix[3] ; 
B={{0},{0},{1}} ; 
Cm={{0,0,1}} ; 
ds=DescriptorStateSpace[Em,A,B,Cm] 
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The Weierstrass canonical form of the above system is given 
by 
 
WeierstrassCanonicalForm[ds] 
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Its transfer function matrix is 
 
tf=TransferFunction[ds] 
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A right proper matrix fraction description of the above transfer 
function is given by the pair of matrices determined as follows 
: 
 
RingRightMatrixFraction[tf, s,  

ForbiddenPolesArea ->InfinityPoint] 
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IV. SYSTEM ANALYSIS PROPERTIES 

 
In this section, we propose new functions for the determination 
of the structural invariants and properties of descriptor 
systems. Particularly  a) we determine various invariants of the 
system such as controllability, reachability and observability 
matrices, finite and infinite decoupling zeros (input, output, 
input-output), finite and infinite system poles and zeros, finite 
and infinite invariant zeros, finite and infinite transmission 
poles and zeros, b) we check system properties i.e. whether the 
descriptor system is controllable / reachable,  observable, 
stabilizable, detectable, stable, internally proper or internally 
stable. 
 
Example 5. Consider the descriptor system presented in 
Example 4. The reachability matrix [14] of the above system is 
given by 
 
Rm=ReachabilityMatrix[ds] 
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Then, we can easily check whether its rank is equal or not to 
the dimension of the matrix E and therefore the reachability of 
the system.  
 
Rank[rm]==3 
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Similarly, the observability of the system can be easily checked 
as follows 
 
om=ObservabilityMatrix[ds]  
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Rank[om]==3 
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V. TIME DOMAIN RESPONSES 

 
In this section, we compute symbolically the smooth and 
impulsive state/output response of the descriptor system given 
input and initial conditions. 
  
Example 6. Consider the system of Example 4. Given the 
following initial conditions and input 



 
x0 = {1, 0,0}; 
ut = {DiracDelta[t]}; 

 
we get the following state space response and its plot 
 
xd=StateResponse[ds,ut,t,InitialConditions->x0] 
Plot[Evaluate[xd],{t,0,2},PlotStyle-> 
{RGBColor[1,0,0],RGBColor[0,1,0], 
RGBColor[0,0,1]}] 

 
������� ��

� ����� � ��� ��
	�������
���
�

������ ��
� ����� � ��� ��
	�������

� ��
�
����� � ��

� ����� ��� � �
	�������
���
�  

 

��� � ��� �

�	�

���

���

��

 

VI. DESIGN AND SYNTHESIS TECHNIQUES 

 
This section is divided into three parts: a) implementation of 
classical design methods for MIMO systems such as 
stabilizing compensator design, asymptotic tracking, model 
matching and disturbance rejection, b) descriptor system 
interconnections such as series, parallel, feedback and generic 
interconnection, and c) pole assignment techniques for 
descriptor system. 
 
Example 7. Consider the system in Example 4. The Smith 
McMillan form of the pencil is 
 
RingMcMillanForm[s*Em -A, s][[1]] 
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and its Smith McMillan form at infinity is  
 
RingMcMillanForm[s*Em -A, s, ForbiddenPolesArea -> 
InfinityPoint][[1]] 
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In order to assign the poles of the system to {-1, -2} by 
constant state feedback we use the following function: 
 
StateFeedbackGains[ds,{ -1, -2}] 

� � �� �� �  
where ds is the descriptor state space model obtained earlier. 
 

Example 8. Consider the SISO system presented in Example 
2. The Hurwitz stable stabilizing compensator for the above 
system is given by 
 
StabilizingCompensator[H,……..] 

2 2
,1,1 ,1,1 ,1,1 ,1,1 ,1,1

2
,1,1 ,1,1 ,1,1 ,1,1

28 52 16 161

4 12 5 4 4
d d d n n

d d d n

W s W W s W s W s

W s W W s W

+ + + −
+ + −

 

 
where the functions ,1,1 ,1,1,d nW W  are arbitrary Hurwitz and 

proper stable functions. Similarly, the Schur stabilizing 
compensators are given by 
 
StabilizingCompensator[H,……..] 

2 2
,1,1 ,1,1 ,1,1 ,1,1 ,1,1

2 3
,1,1 ,1,1 ,1,1 ,1,1 ,1,1

36 36 9 16 161

4 12 9 2 4 4
d d d n n

d d d d n

W s W s W W s sW
s

W s W s W W s sW

+ + + −
+ + + −

 

 
where the functions ,1,1 ,1,1,d nW W  are arbitrary Schur and 

proper stable functions 
 

VII. CONCLUSIONS 

 
The Descriptor State Space (DSS) package is a new package 
written in the Mathematica programming language and its 
primary aim is to extend the functionality of the Control 
Systems Professional package to handle descriptor state space 
representations. The DSS package is fully compatible to 
Control Systems Professional implemented by Wolfram 
Research and the Polynomial Control Systems written by Prof. 
Munro [10]. Most of the procedures used in DSS are symbolic 
and based on well established polynomial and algebraic theory 
results. Our package benefits from the accuracy of the 
symbolic manipulations and the powerful numerical engine 
provided by Mathematica. 
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