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Minimum Cost Optimal Control:
An Application to Flight Level Tracking

John Lygeros

Abstract—In earlier work we established a link between fi-
nite time viability and invariance for continuous systems and
the viscosity solutions to partial differential equations which
are variants of the standard Hamilton-Jacobi equation. In
this paper we show how these results can be applied to ad-
dress the problem of ensuring that an aircraft does not devi-
ate from the flight level assigned to it by air traffic control.
The application illustrates the advantages of the proposed
viability characterisation: it makes the numerical solution
of the problem easier!

Keywords—Optimal control, reachability, invariance, flight
control, numerical methods.

I. Introduction

Because of their importance in applications ranging from
engineering to biology and economics, questions of reach-
ability, viability and invariance have been studied exten-
sively in the dynamics and control literature. Most re-
cently, the study of these concepts has received renewed
attention through the study of safety problems in hybrid
systems. Reachability computations have been used in this
context to address problems in the safety of ground trans-
portation systems [12], [15], air traffic management sys-
tems [11], [25], [26], flight control [16], [21], etc.

Direct characterisation of reachability concepts is one of
the topics addressed by viability theory [1]. The develop-
ment of computational tools to support the numerous via-
bility theory methods is an ongoing effort (see, for exam-
ple, [6]). An alternative, indirect approach to reachability
questions is using optimal control methods. In this case,
the reachable, viable, or invariant sets are characterised as
level sets of the value function of an appropriate optimal
control problem. Using dynamic programming, the value
function can in turn be characterised as the solution to a
partial differential equation.

In earlier work we have demonstrated how reachabil-
ity questions can be encoded as optimal control problems
where the cost is the minimum of a function of the state
over a given horizon [13], [14]. The objective of the con-
troller is either to maximise this quantity (SupMin prob-
lem), or to minimise it (InfMin problem). We also showed
how to characterise the two value functions as viscosity so-
lutions to first order partial differential equations, which
are variants of the standard Hamilton-Jacobi equation. An
overview of these results is given in Section II.

The main advantage of this approach is that the result-
ing partial differential equations have very good properties
in terms of their numerical solution. The value functions
of the optimal control problems we use can be shown to
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be uniformly continuous. Moreover, they are characterised
as solutions to partial differential equations in the stan-
dard Hamilton-Jacobi form, with continuous Hamiltonians
and simple boundary conditions. Therefore, very efficient
algorithms developed for this class of equations [22], [23],
[19], [17], whose properties have been extensively tested in
theory and in applications, can be directly applied to our
problem.

In this paper we demonstrate how one can take advan-
tage of these properties to numerically solve a problem of
flight level tracking. The problem is to ensure that an
airliner does not deviate excessively from the flight level
assigned to it by air traffic control. Excessive deviations
are dangerous since they may bring the aircraft in conflict
with other aircraft moving at different flight levels (and
typically different directions). At the same time, the air-
craft has to ensure that it maintains certain bounds on its
speed and flight path angle (to avoid stall, for reasons of
passenger comfort, etc.) In Section III we show how all
these constraints can be encoded in an appropriate Sup-
Min optimal control problem. We then use the numerical
algorithms of [22], [23] coded by [19], [17] to compute the
solution to the problem.

II. SupMin and InfMin Optimal Control

A. Statement of the Problems

Consider a continuous time control system,

ẋ = f(x, u) (1)

with x ∈ R
n, u ∈ U ⊆ R

m, f(·, ·) : R
n × U → R

n, a
function,

l(·) : R
n → R, (2)

and an arbitrary time horizon, T ≥ 0. Let U[t,t′] denote
the set of Lebesgue measurable functions from the interval
[t, t′] to U . To eliminate technical difficulties we impose
the following standing assumption.

Assumption 1: U ⊆ R
m is compact. f and l are bounded

and uniformly continuous.
Under Assumption 1 system (1) with initial condition
x(t) = x ∈ R

n admits a unique solution x(·) : [t, T ] → R
n

for all t ∈ [0, T ], x ∈ R
n and u(·) ∈ U[t,T ].

We introduce two optimal control problems with value
functions V1 : R

n × [0, T ] → R and V2 : R
n × [0, T ] → R

given by

V1(x, t) = sup
u(·)∈U[t,T ]

min
τ∈[t,T ]

l(φ(τ, t, x, u(·))) (3)

V2(x, t) = inf
u(·)∈U[t,T ]

min
τ∈[t,T ]

l(φ(τ, t, x, u(·))). (4)



The minimum with respect to time is well defined by con-
tinuity. In the first problem the objective of the input u is
to maximise the minimum value attained by the function
l along the state trajectory over the horizon [t, T ]. In the
second problem, on the other hand, the objective of u is
to minimise this minimum. For obvious reasons we will
subsequently refer to the first optimal control problem as
the SupMin problem and to the second problem as the
InfMin problem.

B. Connection to Reachability

Given the control system of equation (1), the horizon
T ≥ 0 and a set of states K ⊆ R

n, a number of questions
can be naturally formulated regarding the relation between
the set K and the state trajectories of (1) over the horizon
T . Problems of interest include the following.
Viability Does there exist a u(·) ∈ U[0,T ] for which the
trajectory x(·) satisfies x(t) ∈ K for all t ∈ [0, T ]?
Invariance Do the trajectories x(·) for all u(·) ∈ U[0,T ] sat-
isfy x(t) ∈ K for all t ∈ [0, T ]?
Reachability Does there exist a u(·) ∈ U[0,T ] and a t ∈ [0, T ]
such that the trajectory satisfies x(t) ∈ K?
As usual, Kc stands for the complement of the set K
in R

n. One would typically like to characterise the
set of initial states for which the answer to the viabil-
ity/invariance/reachability questions is “yes”. Or, more
generally, one would like to characterise the sets

Viab(t, K) = {x ∈ R
n | ∃u(·) ∈ U[t,T ] ∀τ ∈ [t, T ]

x(τ) ∈ K}
Inv(t, K) = {x ∈ R

n | ∀u(·) ∈ U[t,T ] ∀τ ∈ [t, T ]
x(τ) ∈ K}

Reach(t, K) = {x ∈ R
n | ∃u(·) ∈ U[t,T ] ∃τ ∈ [t, T ]

x(τ) ∈ K},

Notice that Reach(t, K) = (Inv(t, Kc))c, therefore, the in-
variance and reachability problems are duals of one another
and need not be treated separately.

There is in fact a direct connection between these sets
and the solutions to the SupMin and InfMin optimal
control problems. If we chose l(·) such that K = {x ∈
R

n | l(x) > 0} and L = {x ∈ R
n | l(x) ≥ 0} then one can

show the following.
Proposition 1: Viab(t, K) = {x ∈ R

n | V1(x, t) > 0} and
Inv(t, L) = {x ∈ R

n | V2(x, t) ≥ 0}.

C. Alternative Characterisations

We first point out that the set Inv(t, K) can be com-
puted using the standard Hamilton-Jacobi-Bellman equa-
tion (see [27], [16] for more on this observation). Consider
again that the closed set L = {x ∈ R

n | l(x) ≥ 0} and let

V3(x, t) = inf
u(·)∈U[t,T ]

l(x(T )).

A standard optimal control argument (see for example [10],
[7]) shows that V3 is a viscosity solution for the terminal

value problem

∂V3

∂t
(x, t) + inf

u∈U

∂V3

∂x
(x, t)f(x, u) = 0 (5)

with V3(x, T ) = l(x) over (x, t) ∈ R
n × [0, T ].

Proposition 2: For all (x, t) ∈ R
n × [0, T ], V2(x, t) =

minτ∈[t,T ] V3(x, τ). Moreover, Inv(t, L) =
⋂

τ∈[t,T ]{x ∈
R

n | V3(x, τ) ≥ 0}.
Proposition 2 shows that one can compute Inv(t, L) by solv-
ing a standard Hamilton-Jacobi-Bellman equation (5) and
then taking the intersection of the level sets of the solu-
tion (or, equivalently, computing the minimum of the value
function over time horizon [t, T ]).

Unfortunately this approach will not work for the Sup-
Min problem. There are, however, other methods in the
optimal control literature that can be adapted to char-
acterise the set Viab(t, K). For example, one can treat
the problem as maximising the “exit time” from the set
K. It can be shown [10], [3] that this involves solving a
standard Hamilton-Jacobi-Bellman equation over the set
K (and possibly pieces of its boundary), with rather com-
plicated boundary conditions (e.g. “freezing” of the value
function at certain parts of the boundary of K). Moreover,
the value function will not be continuous in general. These
features suggest that numerical computations are likely to
be difficult with this approach.

Another approach was proposed in [25] in the context
of differential games. This approach involves a Hamilton-
Jacobi equation with a discontinuous Hamiltonian. Con-
tinuity of the Hamiltonian is desirable, because it greatly
simplifies both the theoretical analysis and the numerical
solution of the partial differential equation.

The approach most closely related to the one discussed
here is that of [5], [9], where a generalised version of the
SupMin optimal control problem is formulated and solved.
Related work on differential games includes [4] (extending
the results of [5]) and [18] (based on the classical results
of [8]). In [5] the value function of the problem is shown to
satisfy a set of discontinuous, quasi-variational inequalities.
Though this approach is conceptually appealing, the dis-
continuity and the implicit dependence of the Hamiltonian
on the value function severely limit its usefulness from the
numerical computation point of view (as the authors of [5]
point out). The authors of [9] simplify this characterisation
to a continuous variational inequality. In [9] specialised nu-
merical schemes were developed to exploit the continuity of
the Hamiltonian to numerically approximate the solutions
of the inequalities.

While all these approaches are sound in theory, none
is entirely satisfactory from the point of view of numeri-
cal computation. Some involve discontinuous Hamiltoni-
ans [5], [25], while others require discontinuous viscosity
solutions to be computed over complicated domains with
complicated boundary conditions [10], [3]. The best ap-
proach in this respect seems to be that of [9], which involves
a continuous value function charactersied as a viscosity so-
lution to a continuous variational inequality. The drawback
is that the characterisation is not in terms of a standard



Hamilton-Jacobi equation; this implies that specialised nu-
merical tools have to be developed. In the next section we
present a solution to the SupMin problem (and hence a
charactersiation of the set Viab(t, K)) where the Hamilto-
nian is not only continuous, but the equation is also is in
the standard Hamilton-Jacobi form and can therefore be
approached numerically using well established schemes for
solving these types of equation.

D. Solution to the SupMin Problem

The solutions to the SupMin and InfMin problems turn
out to be very similar; for the most part the only difference
between the two characterisations is replacing sup’s by inf’s
in the equations. Since the numerical example in the next
section relies on the SupMin characterisation, we give the
results only for this case. Results in this direction were
first reported in [13]; a complete discussion can be found
in [14].

First, we note that the value function V1 satisfies the
following version of the optimality principle.

Lemma 1: For all (x, t) ∈ R
n×[0, T ] and all h ∈ [0, T−t]:

1. V1(x, t) ≤ V1(x, t + h) and V1(x, T ) = l(x).
2. V1(x, t) = supu(·)∈U[t,t+h]

[min{minτ∈[t,t+h] l(x(τ)),
V1(x(t + h), t + h)}].
Lemma 1 makes two assertions. The first is that the
“value” of a given state x can only decrease as the “time to
go” increases. Starting from x the minimum value that l
experiences over a certain time horizon is less than or equal
to the minimum value that l would experience if we stopped
the evolution at any time before the horizon expires. The
second part of the lemma is a variant of the standard prin-
ciple of optimality: it relates the optimal cost to go from
(x, t) to the optimal cost to go from (x(t+h), t+h) and the
minimum value experienced by l over the interval [t, t+h].

Under Assumption 1, the value function V1 turns out to
be bounded and uniformly continuous (see, for example,
Proposition 3.1 of [5]).

Lemma 2: There exists a constant C > 0 such that
|V1(x, t)| ≤ C and |V1(x, t)−V1(x̂, t̂)| ≤ C(|x− x̂|+(t− t̂)),
for all (x, t), (x̂, t̂) ∈ R

n × [0, T ].
Based on these two lemmas, the following characterisa-

tion of V1 was derived in [13].
Theorem 1: V1 is the unique bounded and uniformly

continuous viscosity solution of the terminal value prob-
lem

∂V

∂t
(x, t) + min

{
0, sup

u∈U

∂V

∂x
(x, t)f(x, u)

}
= 0

over (x, t) ∈ R
n×[0, T ] with boundary condition V (x, T ) =

l(x).
Finally, it is easy to show that if V1 is used to characterise

the set Viab(t, K) the result is independent of the function
l used to characterise the set K.

Proposition 3: Let l : R
n → R and l̂ : R

n → R be
two uniformly continuous, bounded functions such that
{x ∈ R

n | l(x) > 0} = {x ∈ R
n | l̂(x) > 0}. Let

V1 : R
n × [0, T ] → R and V̂1 : R

n × [0, T ] → R be the

viscosity solutions of the terminal value problem of The-
orem 1 with boundary conditions V1(x, T ) = l(x) and
V̂1(x, T ) = l̂(x) respectively. Then {x ∈ R

n | V1(x, t) >

0} = {x ∈ R
n | V̂1(x, t) > 0} for all t ∈ [0, T ].

III. Flight Level Control: A Numerical Study

To illustrate the application of the above results, we
consider the problem of maintaining an aircraft at a de-
sired flight level. Commercial aircraft at cruising altitudes
are typically assigned a flight level by Air Traffic Control
(ATC). The flight levels are separated by a few hundred
feet (e.g. 500 or 1000, depending on altitude and the type
of airspace). Air traffic moves in different directions at dif-
ferent flight levels (north to south in one level, east to west
in another, etc.). This arrangement is desirable because it
greatly simplifies the task of ATC: the problem of ensuring
aircraft separation, which is normally three dimensional,
can most of the time be decomposed to a number of two
dimensional (in some places even one dimensional) prob-
lems.

Changes in the flight level happen occasionally and have
to be cleared by ATC. At all other times the aircraft have to
ensure that they remain within certain bounds (e.g. ±250
feet) of their assigned level. At the same time, they also
have to maintain limits on their speed, flight path angle,
acceleration, etc. imposed by limitations of the engine and
airframe, passenger comfort requirements, or to avoid dan-
gerous situations such as aerodynamic stall. In this section
we formulate a a SupMin optimal control problem that
allows us to address such constraints.

A. Aircraft Model

We restrict our attention to the movement of the air-
craft in the vertical plane and describe the motion using
a point mass model. Such models are commonly used in
ATC research (see, for example, [16], [20]). They are fairly
simple, but still capture the essential features of aircraft
flight. The analysis presented here is an extension to three
dimensions of an aerodynamic envelope protection problem
studied in [16].

Three coordinate frames are used to describe the motion
of the aircraft: the ground frame (Xg–Yg), the body frame
(Xb–Yb) and the wind frame (Xw–Yw). The angles of rota-
tion between the frames are denoted by θ (ground to body
frame, known as the pitch angle), γ (ground to wind frame,
known as the flight path angle) and α (wind to body frame,
known as the angle of attack). V ∈ R denotes the speed of
the aircraft (aligned with the positive Xw direction) and
h its altitude. Figure 1 shows the different forces applied
to the aircraft: its weight (mg, acting in the negative Yg

direction), the aerodynamic lift (L, acting in the positive
Yw direction), the aerodynamic drag (D, acting in the neg-
ative Xw direction) and the thrust exerted by the engine
(T , acting in the positive Xb direction).

A force balance leads to the following equations of mo-
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Fig. 1. Coordinate frames and forces for the aircraft model.

tion

mV̇ = T cos(α) − D − mg sin(γ)
mV γ̇ = L + T sin(α) − mg cos(γ).

From basic aerodynamics, the lift and drag can be approx-
imated by

L =
CLSρV 2

2
(1 + cα) = aLV 2(1 + cα)

D =
CDSρV 2

2
= aDV 2,

where, CL, CD, and c are (dimension-less) lift and drag
coefficients, S is the wing surface area, ρ is the air density
and, as is commonly done in practice, the dependence of
the drag on the angle of attack has been suppressed.

A three state model with x1 = V , x2 = γ and x3 = h
suffices for our purposes. The system is controlled by
two inputs, the thrust, u1 = T , and the pitch angle1,
u2 = θ. We assume rectangular bounds on the inputs,
u ∈ U = [Tmin, Tmax]× [θmin, θmax]. After a small angle ap-
proximation on α (valid for airliners, which usually operate
around trimmed flight conditions) the equations of motion
become

ẋ = f(x, u) =


 −aD

m x2
1 − g sin(x2)

aL

m x1(1 − cx2) − g cos(x2)
x1

x1 sin(x2)




+




1
m
0
0


u1 +


 0

alc
m x1

0


u2

B. Cost Function and Optimal Controls

For safety reasons, certain combinations of speed and
flight path angle should be avoided, because they may re-
sult in aerodynamic stall. Part of the task of the Flight
Management System (FMS) is therefore to keep V and γ

1In practice, one can only control the second derivative of the pitch
angle using the aerodynamic surfaces. This makes the model weakly
non-minimum phase. We ignore this complication here.

within a safe “aerodynamic envelope”. Following [16], we
consider a simplified rectangular envelope; improvements
that can be introduced to make the envelope more real-
istic are discussed in [24], [25]. We require that Vmin ≤
x1 ≤ Vmax and γmin ≤ x2 ≤ γmax, for some Vmin ≤ Vmax

and γmin ≤ γmax. In addition, to ensure that the air-
craft does not stray away from its flight level we require
that hmin ≤ x3 ≤ hmax for some hmin ≤ hmax. We set2

K = [Vmin, Vmax] × [γmin, γmax] × [hmin, hmax].
To encode these constraints as a cost in a SupMin prob-

lem we define a function l(·) : R
3 → R by

l(x) = min{x1 − Vmin, Vmax − x1

x2 − γmin, γmax − x2,

x3 − hmin, hmax − x3}.

Notice that l(x) ≥ 0 for x ∈ K and l(x) < 0 for x �∈ K.
Clearly, l is Lipschitz continuous. To keep l bounded (and
since we are only interested in the behaviour around the
set K) we “saturate” the function l outside the set [Vmin −
δV, Vmax+δV ]×[γmin−δγ, γmax+δγ]×[hmin−δh, hmax+δh]
for some δV, δγ, δh > 0.

The problem is now in a form that we can apply the
results of Section II-D. The Hamiltonian of Theorem 1
becomes

H1(p, x) =min
{

0, p1

(
−aD

m
x2

1 − g sin(x2)
)

+ p2

(
aL

m
x1(1 − cx2) − g

cos(x2)
x1

)

+ p3x1 sin(x2)

+
1
m

p1û1 +
aLc

m
x1p2û2

}
.

The optimal controls are given by

û1 =
{

Tmin if p1 < 0
Tmax if p1 > 0

û2 =
{

θmin if p2 < 0
θmax if p2 > 0

(recall that x1 > 0). The singularities at p1 = 0 and p2 =
0 play very little role in the numerical computation and
so will not be investigated further here; a more thorough
treatment (for the 2 dimensional case with state x1 and x2)
can be found in [16].

C. Numerical Results

The resulting optimal Hamiltonian was coded in a nu-
merical tool developed at Stanford University [19], [17]
for computing viscosity solutions to Hamilton-Jacobi equa-
tions using the algorithms of [22], [23]. The results are
shown in Figures 2 and 5. The parameters used were
aL = 65.3Kg/m, aD = 3.18Kg/m, m = 160 · 103Kg,
g = 9.81m/s2, c = 6, θmin = −20◦, θmax = 25◦,

2Strictly speaking, to follow the development on Section II-B one
needs to assume that the set K is open. It is easy to see, however,
that allowing K to be closed makes no difference in this case.



Fig. 2. Level set of V1(x, 0) for T = 1s.

Fig. 3. Level sets of V1(x, 0) for T = 2s.

Tmin = 60 · 103N , and Tmax = 120 · 103N . They corre-
spond to an Airbus A330 aircraft cruising at 35000 feet.
The parameters used in the function l were Vmin = 92m/s,
Vmax = 170m/s, γmin = −20◦, γmax = 25◦, hmin = −150m,
hmax = 150m, δV = 5m/s, δγ = 2.5◦, δh = 10m. The
computation was performed on a 100× 100× 100 grid and
required 10298 seconds on a Pentium III, 800MHz proces-
sor running Red Hat Linux.

Figures 2 and 3 show the level sets Viab(0, K) = {x ∈
R

3 | V1(x, 0) ≥ 0} for two different values of the hori-
zon, T = 1.0s and T = 2.0s respectively. As expected
from Part 1 of Lemma 1, these sets are nested (the level
set “shrinks” as T increases). For T ≈ 2.0s the shrinking
stops; the level sets for values T ≥ 2 are all the same. The
general shape of the level sets suggests that certain states
(e.g. combining high altitude with high flight path angle,
low speed with high flight path angle etc.) are unsafe and
should be avoided. If the aircraft ever gets to such a state,
then, whatever the FMS does from then on, it will sooner

Fig. 4. Projection of T = 2s level set along x3 axis.

Fig. 5. Projection of T = 2s level set along x1 axis.

or later violate the flight envelope requirements. If the ini-
tial condition is inside the level set, however, unsafe states
can be avoided by applying the optimal controls of Sec-
tion III-B whenever the state trajectory hits the boundary
of the level set (see [21] for practical problems associated
with such a control strategy).

Better intuition about the unsafe states can be obtained
if the level set for T = 2.0s is projected along the three
axes. The projection along the x2 axis leads to the square
[Vmin, Vmax] × [hmin, hmax] in the x1–x3 plane. This sug-
gests that any combination of speed and altitude within
these bounds is safe for some value of flight path angle.
The projection along the x3 axis leads to the set shown in
Figure 4; the shape of the set is the same for all altitudes.
Combinations of low speed with high flight path angle and
high speed with low flight path angle are unsafe; the air-
craft is bound to violate the speed restrictions for such
combinations. The projection along the x1 axis is shown



in Figure 5. Combinations of high altitude with high flight
path angle and low altitude with low flight path angle are
unsafe for all speeds; the aircraft is bound to violate the
flight level limitations for such combinations. The situation
gets worse (i.e. the projection on the x2 − x3 coordinates
gets smaller) as the speed increases.

IV. Concluding Remarks

The aim of this paper was to demonstrate how the-
oretical results on the characterisation of minimum cost
optimal control problems can be useful in an air traffic
control context. We were able to exploit the advantages
of the characterisation of [13], [14] (namely, continuity of
the value function, continuity of the Hamiltonian, stan-
dard Hamilton-Jacobi for an simple terminal conditions)
to provide a numerical solution to the problem of prevent-
ing large deviations from a desired flight level, while at the
same time satisfying constraints on speed and flight path
angle.

Reachability and invariance can also be approached us-
ing tools from viability theory. Viability theory methods [1]
have recently been extended from continuous systems to a
broad class of hybrid systems known as impulse differential
inclusions [2]. Current research concentrates on relating
the results discussed here to the viability theory formula-
tion. In terms of applications, current work concentrates
on extending this approach to the problem of auto-rotative
landing for helicopters.
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