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Abstract

This paper presents an adaptive control scheme for systems with unknown output
backlash. A new compact dynamical backlash inverse model is used in conjunction
with a PD controller to improve the tracking performance of systems with a backlash
hysteresis affecting the output of a plant. The new backlash inverse model is imple-
mented in continuous-time and is continuously differentiable. The suggested scheme
handles the case where the value of backlash spacing is known, as well as the case
when the backlash spacing is unknown. For the latter case, an adaptive update law is
developed to estimate the unknown backlash spacing. The stability of the closed-loop
system is shown using Lyapunov arguments. Simulation results show that the control
methodology greatly improves tracking performance over a PD type controller.

I. Introduction

In many systems, performance is greatly compromised by the presence of hard
nonlinearities such as friction and backlash. An essential task in designing controllers
is to counter the undesirable effects of such nonlinearities. For instance, one of the
major problems that arise when using gears is the problem of backlash. Backlash in
gears caused by the fact that gears do not mesh exactly leaving some spacing between
gears teeth. During motion reversal the spacing causes the load gear to momentarily
lose contact with the driving gear, hence causing tracking error. Combating backlash



can be achieved by either tightly meshing gears, which inherently increases friction
and may lead to jamming, or by using very precise gears which, in many cases, is
cost prohibitive. If gear backlash is not accounted for, it will result in the degrada-
tion of system performance and will reduce positioning accuracy. In addition, the
fact that backlash is a multi-valued nonlinearity, it usually leads to internal energy
storage which frequently causes instability and self sustained oscillations. Backlash
like hysteresis can appear in actuators, such as hydraulic servo-valves, give rise to
limit cycling and instability. Adaptive compensation is the most appropriate tech-
nique to handle the uncertainty in the backlash parameters; however, since backlash
is not a differentiable nonlinearity, recent nonlinear control design methodologies such
as backstepping cannot be applied. Recently, there have been newly proposed con-
trol schemes that address the problem of backlash. The majority of previous work
concentrated on compensating for input backlash whereby the backlash nonlinearity
precedes the plant input [1, 2, 3, 4, 5]. One exception is the discrete time imple-
mentation of the backlash inverse proposed in [6] for the case where the backlash
nonlinearity preceded the actual output of the plant.

In this paper, we present a new continuous-time approximate backlash inverse to
handle system with output backlash. A continuous-time adaptive backlash inverse
controller is developed to handle the case where the backlash parameter is unknown.
The control methodology is simple and can be combined with standard control meth-
ods. The results obtained are the global boundedness of the tracking error of a one
degree-of-freedom (DOF) system. The use of a single adaptation gain without the
need to know apriori an estimate of the backlash parameter makes the method effi-
cient. The advantage of the new adaptive backlash inverse scheme is its continuous
differentiability thereby making it an attractive choice to be combined with advanced
control methods such as adaptive backstepping. Simulations results for the case
where the backlash parameter is known and the case where it is unknown show great
improvement in the reduction of the tracking error.

II. Backlash and the Exact Right Backlash Inverse

Consider a gear mounted directly on a DC motor driving another gear. The two
gears are meshed with backlash spacing equal to 2B. Backlash nonlinearity can be
described as



. [mbn if0,>0 & 6,>0 & 6,=m(0, — B),
0 = if0,<0 & 6,<0 & 6, =m0, +B) (1)

0 otherwise

where 60,(t) = 6,,(t) — B means that the gears teeth are in contact for the upward
direction and 6,(t) = 6,,(t) + B for the downward motion (see Figure 1 (a)). Mean-
while, m is the slope of the lines which captures the gears ratio. In many applications
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Figure 1: (a)Backlash hysteresis. (b) Ideal backlash inverse.

an encoder that measures the position (i.e. the angle 6,, ) of the motor are mounted
directly on the motor before the measurement gets affected by the backlash nonlin-
earity. Similarly, another encoder would be mounted on the load side to measure the
angle of the load (i.e. #;) which is affected by backlash. Therefore, it is reasonable to
assume that the plant states are measurable and available for feedback.

The proper right backlash inverse is described in [4] and is restated here as follows:

éld if éld >0 and 9m = Hld + B,
) lf 0 <0 and 0, =0,— B,
O =40 O1a =0 (2)

g(T,t) ifeld>0 and szﬁld—B,
—g(r,t) if0y<0 and 0, =0,+ B,

where ¢(7, t) represents an instantaneous jump from one line to the opposite one by an
amount equal to 2BJ(7,t), the full backlash distance. The effect of g(r,t) is to force
0., to instantaneously skip the backlash spacing thereby eliminating the damaging
effect of loosing information when the driving gear is reversing direction while the
load one is not. By examining equation 1 (b) we can summarize the backlash inverse
function as follows:



Om(t) = 014(t) + f(t) = BL(6;a) (3)

where f(t) is given by

B e:ld >0
ft)=1{ -B O1a <0 (4)
F(t=) =0

where f(t—) indicates that no change should occur in the value of f(¢). This can be
described by f(t) = 0. By designing f(¢) we can make sure that the condition pro-
ducing backlash will be avoided [4]. The problem with the exact backlash inverse is
that it is discontinuous and nondifferentiable which is not desirable when performing
trajectory pattern matching. Therefore, in [4] suggestions for a smooth approxima-
tions to f(t) were presented and have been shown to add to the error in the mismatch
between the backlash and its inverse.

Lemma 1 [4]: The characteristic BZ(-) defined by 1 (b) is the right inverse of the char-

acteristic B(+) in the sense: B(BZ(0,4(t))) = 01a(to) gives B(BZ(0,4(t))) = O1a(t) ¥V t >
to.

Lemma 1 above states that if for some time ¢, the backlash inverse function is able

to invert the backlash then it serves a backlash inverse for all time thereafter.

ITI. Smoothly Differentiable Backlash Inverse Model

The model that will be presented here is based on developing a continuous-time
differentiable approximation to the right backlash inverse discussed above. Let 64
be the desired position to be tracked; moreover, let # be an approximate inverse
backlash signal of 0,4( i.e. 6%, = BI(6,4)), whereby the circumflex is used to distinguish
it from the ideal BZ(-) presented previously in [4]. The idea here is to design a
controller that makes the motor angle 6,, tracks 6 which is going to be the input
to the backlash nonlinearity at the output of the motor. Hence, when tracking is
achieved then 6, = 07, and the following is obtained

61 = B(0m) = B(6;,) = B(BL(61a)) = O1a + (1) (5)

where e(t) is the error in the mismatch between B(-) and BZ(-) which will be shown
to be bounded. Define the following dynamics



W = tanh(ky01) — —W (6)

B,
where B,, is the nominal backlash distance, ks > 0 used to ensure that the hyperbolic
tangent behaves like a signum function, and ¢ is a positive gain constant used for

stability purpose (will be shown shortly.) By examining the equilibrium points of
W (t), which can be obtained by setting W (t) = 0 as follows

B )
W = —ntanh(ksﬁld). (7)
o

Noting that the behaviour of hyperbolic tangent function tanh (k6,4 for a sufficiently
large ks can be approximated by

W= %Sgﬂ(ézd)- (8)

It is evident that oW (t) satisfies the first and second cases of f(t) defined in 4.

Meanwhile, by setting 6, = 0 in 6 results in

: o
W= W 9)

This shows that the W (t) is exponentially stable with W (¢) = 0 as its equilibrium
point. Therefore, the third condition in 4 is satisfied since oW () exponentially

approaches zero whenever 0 = O. Therefore, the inverse hysteresis model may
simply be written as
ft) = oWi(t)
0 (t) = 6(t)+ f(t) = BZ(014). (10)

If the value of the actual backlash distance B is not exactly equal to the nominal
value B,, then an adaptation will be used to correct for the mismatch (This will be
shown later.) It should be pointed out that the above backlash inverse is approximate
to the ideal inverse backlash model which involves a §(7,¢) which is captured by the
constant ¢ in the new model. The larger the o-parameter the sharper is the slope of
transitions in W (t). Ideally a delta function of amplitude 2B in the proper direction
would be necessary to exactly match the backlash behavior. Simulation results shows
that the new backlash inverse model improves performance greatly and achieves ex-
cellent reduction in the tracking error.

Property of Backlash Inverse State: Assume that 0 < £ < a. If [W(0)] < « for



any « real constant, then |[W(t)| < a V¢ > 0.
Proof. Consider the following Lyapunov function

W2
=5

Differentiating V' along the trajectories of its dynamics, we obtain

v

VW = W(tanh(kséld) —Bi )
= Wtanh(k,0,) —BiWZ. (11)

In addition, applying the inequality
S o, 1.y

b<— —b

ab < 2a + %

to the first term in 11, then the term can be bounded as

. o S 1 .
VW S _(B_n - §)W2 + 2—gtanh2(k501d). (12)

Since the hyperbolic tangent function can be upper bounded by 1 then by properly
choosing the values of o and ¢ to satisfy the inequality

o 1 1

J— > — —

B, 5 (c+ g)
ensures that Vi < 0. As a result all solutions of W (t) are bounded by a ball which
can be made arbitrarily small by a proper choice of o and ¢. This concludes the proof.

IV. Backlash Inverse for a System with a Known Output Backlash
Nonlinearity

Backlash distance in gears is usually supplied by the manufacturer of gears as
part of the specification of the device. Based on that an exact backlash inverse is
developed in this section to counter the effects that backlash has on tracking. The
system considered here consists of a DC motor with no friction driving a gear which is
connected to another (see Figure ??.) It is assumed that both 6,, and w,,, the motor
angle and velocity respectively, are available for feedback and that they are the input
to the backlash function. Meanwhile, 6;, the load angle, is the output of the backlash



function and is also measurable. The motor with backlash dynamics may be written

as
0 = w
Wm = T
y(t) = 6, = Backlash(0,,) = B(0,,). (13)

Let the position tracking error be defined as § = 6, — 0% where 07 is defined as
follows:

0: = BL(01) = 01 + oW (t) (14)
where 6,4 is the desired load trajectory and W (¢) is the inverse backlash dynamics
given by

o

W = tanh(kséld) B

W, (15)

where 2B, is the backlash spacing. Defining the following control law for the system
in Figure 13

r=0 — k0 k0 (16)

m

with a proper choice of k, and £, will ensure that 6, will asymptotically track 6;,.
As a result the stability of the closed-loop system is ensured.

Claim. We claim that the control law 7 will assure the closed loop stability and
boundedness of tracking error and hence minimizing the effects of backlash.

Proof. By applying the control laws in 16 to the system described by 13 we get

b = 0% — ko — k0 (17)

m
which leads to
0+ k,0 + k,0 =0. (18)
Hence, by choosing £, and k, to ensure that 18 is strict Hurwitz then 0 will asymp-
totically approach zero. As a result, 6, will track €7, exactly. Moreover, since 6 is
the inverse backlash of 6;; we get the following:

y(t) = 0, = B(0,,) = B(0%,) = B(BL(01)) = Oa + A (19)

7



Proposition: The unparameterizable part A = B(BZ(f;4)) — 0,4 of the control error is
bounded V t > 0.

Proof. Because the closed-loop system is asymptotically stable, the motor angle will
track the backlash inverse trajectory in finite time. When tracking is achieved, one
of the following three situations can occur:

L. If 6;, and 6, lie on the upward line of the backlash hysteresis, then oW (t) =
Bsgn(6,4) = B and

gl = 9;—B:9M—|—0W(t)—B
A = gl—gld:O'W(t)—B
= Bsgn(f) — B=0. (20)

2. If 0;, and 0; lie on the downward line of the backlash hysteresis, then oW (t) =
Bsgn(6,4) = —B and

gl = 9;+B:91d+0W(t)+B
A = gl—gld:O'W(t)—FB
— Bsgn(f;) +B =0 (21)

3. If 07, and 6, lie on the inner segment of the backlash hysteresis, then

0, = 0, + B,
= 0,4 oW(t)+ B, — B, € (—B, B)
A = 0,—0,=0W(t)+ By
IA| = |Bsgn(f4) + B,)| < 2B. (22)

This shows that in all three cases A is bounded since W (t) as shown earlier is BIBO
stable. Simulation results for the case of known backlash spacing are shown in section
VL

V. Adaptive Backlash Inverse Control of a D.C. Motor with Unknown
Output Backlash

In this section, we propose an adaptive backlash inverse controller for the case
where the backlash spacing B is not known exactly and only an approximate mea-
surement B, is available. The right backlash inverse discussed earlier is modified here

8
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Figure 2: System block diagram.

to generate a trajectory pattern that will reduce the backlash effect hence reducing
the position tracking error. An adaptive update law will be derived and used to cor-
rect for the mismatch between the actual B and the initial estimate B,,. The state
space model of a D.C. motor can be written as

O = Wi
Wp = T (23)

Let the position tracking error be defined as § = 6, — 0%, where 07 is defined as
follows:

0, = BL(01a) = 010 + Bf (1) (24)

where B is a scaling factor which is used to adjust the value of B, by an adaptive
update law which will be discussed later. Furthermore, f(¢) is equal to oW (t) with
W (t) being the inverse backlash state given by

W = tanh(k,0.) — i;-mw (25)

Defining the following control law for the system in 23:

T =k — k& — k0 (26)

m
will result in an inner closed loop system dynamics as follows

6+ k0 + k0 = 0. (27)
By choosing £, and k, to make 27 strictly Hurwitz will ensure system stability and

results in 6, asymptotically tracking 6, the backlash inverse trajectory. Meanwhile,
the adaptation for (3 is chosen to be



B = —kye(t)oW (t) (28)
with e(t) = 6; — 6,3 which will be shown later to equal
e(t) = BoW (t). (29)

Equation 28 is chosen based on the analysis presented in [7] for the error model stated
in 29. The effect of the control law 26 and the adaptation law 28 is to stabilize the
closed loop system and ensures the reduction and boundedness of the tracking error
thereby greatly improving performance. To prove the previous statement consider
the following Lyapunov function

9~2 o2 ﬁ2
V:kp5+7+ 5 +ﬁ (30)

Differentiating V' along the trajectories of the closed loop system results in
. o . . 1~
V = kp99+d)u~;+WW+fﬁﬁ
= O(k,0+ 7 — &) — W(tanh(k,0,0) — BiW)
1. n
+= ﬁﬁ

Substituting for 7 above and utilizing the inequality in 12 yields

. 1 . 1 -~=x
V= ko — (Bi - %)WQ + gotanh?(kyfl) + 535 (31)

Replacing the update law for B results in
. 1 .
Vo< k(- Sywry S-tanh® (k)
<

B, 2
+ﬁ(—e(t)aW(t)).

As discussed earlier, the second term is negative as long as |W| > 2= where o can be
arbitrarily chosen. As for the last term in 32, one needs to examme what the error
parameterizations reduces to. Because of the shape of the backlash hysteresis one of
three situations may arise after tracking has been established by the inner loop. They
are as follows

1. If 8,; and 6, lie on the upward line of the backlash hysteres1s then both of 9; >0
and 6,, > 0. In addition oW (¢) = B,sgn(#s) = 3B,. Let the exact backlash

10



distance be rewritten as B = (3*B,, where 3* is the factor that exactly adjust
B,, to match B.

0, = gfn—B:qld—f-O'W(t)—B
e(t) = 0,} — Gld = ﬁO’W(t) — ﬁ*Bn

. If 0,4 and 91_ lie on the downward line of the backlash hysteresis, then both of
0, < 0and@,, <O0.

0, = g;kn—f—B:qld—f-O'W(t)—f—B
e(t) = 0 — 0= pPoW(t)+ 0" By
= (Busgn(0) + 8* B, = =3B, (33)

. If 6,4 changes sign then oW (t) will reverse its sign appropriately thereby pro-
viding the necessary jump needed to traverse the backlash distance. This will
result in a transient error due to the time needed for the motor to track the
sudden switching time of W (¢). Nevertheless, by properly designing the PD-
controller, the time needed for the motor to track 6, can be greatly reduced.
As a result, there are two cases to be considered here. First if éld goes from
positive to negative at ¢t = ¢, then oW () will equal to — BB, at tos

0 = 0,,(to) + BBy =g+ oW (to) + 3" By,
e(to) = gl - gld = O'W(to) +~ﬁ*Bn
e(toy) = —pB,+ ("B, =—0B, (34)

For the second case , when 6, goes from negative to positive, a similar argument
can show that e(to, ) = G5B, Therefore, because of the designed trajectory the
case where by the motor and load angle are on the inner segment will be avoided
by proper jumps from one parallel line to the next of the backlash hysteresis.

Therefore, based on the previous statements the tracking error may be written as

e(t) = BBsgn(f4) = BoW (t). (35)

This shows that in all three cases e(t) is bounded since W (#) as shown earlier is BIBO
stable. In addition, using e(t) = oW (t) allows the derivative of the Lyapunov in 32
to become

V< ki (- Dt Q%tanhZ(kséld) — (BoW (1) (36)

11



Since the hyperbolic tangent function can be upper bounded by 1 then by properly
choosing the values of o and ¢ to satisfy the inequality

o S 1 (c+ 1)

B, 2 ¢ S
ensures that V' < 0. Nevertheless, since oW (t) is a smooth approximation to signum
function a bounded error will be unavoidable. Simulation results for the system show
significant improvement of tracking error and a clear reduction in the backlash effect.

VI. Simulation Results

A. FEzxact Backlash Inverse for a Known Backlash Nonlinearity

Simulations for the system with a known backlash spacing equal to B = 1 degree
under the controller developed here were compared with simulation results obtained
for the same system under a PD-controller only. As can be seen form Figure 3 the
tracking error is drastically reduced when backlash inverse controller is used over a
PD-controller with the same gains. The gains £, and k, where equal to 404 and 40
respectively. Meanwhile, the o-parameter was set equal to 15. The improvement in
the output trajectory is further demonstrated in Figure 4 where 6;; = 20sin(wt) drawn
in a dashed line, moreover, the solid line shows the actual motor load angle tracking
performance. In comparison to the adaptive backlash inverse controller performance,
the dash/dot line plotted on the same figure represents the load tracking with only a
PD-controller to demonstrate the drastic improvement accomplished by our proposed
method. In addition, the inverse backlash signal of ;; defined as 6, is shown in
Figure 5 . It can be seen that an almost vertical displacement occurs at the points
where the input velocity 014 is changing its sign. Finally, the control effort is shown
in Figure 6(a), whereas The backlash inverse state oW () is shown in Figure 6(b).
Figure 6 shows that the backlash inverse dynamics are switching between the values
B and —B as expected.

B. Adaptive Control of a System with Unknown Backlash Nonlinearity

Simulations for the system with backlash amount of B = 1 degree under the
adaptive controller developed here were compared with simulation results obtained

12



for the same system under a PD-controller with backlash parameter unknown. The
simulations were performed with the nominal estimate of backlash spacing B, is
assumed to be equal to 0.8B degrees thereby underestimating the actual backlash
spacing. The tracking error under an adaptive backlash inverse controller is shown
in Figure 8. Note that the adaptive backlash inverse controller was applied after
five seconds from the start of the simulation. This was done to demonstrate the
level of improvement in the tracking performance of our proposed controller. The
tracking of the reference signal 6,y = 10sin(wt) is shown in Figure 9. As can be seen
form Figure 5 the tracking error is drastically minimized when the adaptive backlash
inverse controller is used as compared with a PD-controller with the same gains. The
gains k, and k, where equal to 404 and 40 respectively. Meanwhile, the o-parameter
was set, equal to 15. Note that B reaches its final value §* = 1.2 which is the required
factor needed to adjust B,. This confirms the fact that the inner closed-loop stability
is achieved regardless of what the estimate of 8.

VII. Conclusion

In this paper we have presented a new backlash inverse controller for the case
of output backlash nonlinearity. The new controller was applied to a D.C. motor
system which resulted in a great reduction in the load tracking error. The controller
then was modified for the case of unknown backlash spacing. The adaptive back-
lash inverse controller performed amicably well when applied to D.C. motor suffering
from unknown backlash nonlinearity. Stability proofs were presented based on the
Lyapunov method. Examples and simulations were presented to show the efficacy of
the proposed scheme.
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Angle (Degrees)

Figure 3: Tracking error (6, —6,4) , under an exact backlash inverse controller is shown
in solid, while the system tracking error under a PD controller is shown in dashed
line.

Figure 4: The system under exact backlash inverse (solid) tracking a desired trajectory
20 sin(wt) shown in (- -) line vs the tracking performance of the system under PD-

controller is shown (.-.) line.
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Figure 5: Motor angle tracking (solid) of backlash inverse trajectory 67, (dashed).
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Figure 6: Control effort.

0.5 1 1.5 2 2.5
Time (Seconds)

Figure 7: oW Backlash inverse dynamics
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Figure 8: Tracking error (y(t) — 6,4) with adaptive backlash inverse (solid) versus
PD-controller (dashed.) The adaptive backlash inverse was applied for ¢ > 5 seconds.
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Figure 9: Load angle (solid) tracking of a reference signal 10sin(27t) (dashed) under
adaptive backlash inverse controller.
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Figure 10: Evolution ofﬁ where §* = 1.2.
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