
 
Abstract-- The paper presents one methodology of the
controller design for an unstable time delay system. The
proposed method based on the polynomial approach and the
pole assignment method yields a class of CT controllers
ensuring setpoint tracking as well as load disturbance
attenuation. The time delay term is approximated by the first
order Padé approximation. The control configuration with
two feedback controllers is considered. The resulting
controllers obtained via polynomial Diophantine equations are
stable ones. Three methods of the closed-loop pole assignment
are used.  Simulation results are presented to illustrate the
proposed method.

Index terms-- time delay system, time delay approximation,
polynomial method, pole assignment

I. INTRODUCTION

The existence of a time delay in input-output relations is a
common property of many technological processes. Plants
with a time delay can often not be controlled using usual
controllers designed without a consideration for a presence
of a dead-time. The control responses using such
controllers then tends to destabilize the closed-loop system.
A part of technological processes containing a time delay in
input-output relations can be unstable. There exist various
ways to the control of such systems. While some methods
issue from several modifications of the Smith predictor [1,
2], other methods employ PI, PID [3, 4] or PI-PD [5]
control strategies.

The paper presents one methodology of the controller
design for unstable time delay systems. The method is
proposed for an unstable first order time delay system
(FOTDS) in conjunction with the first order Padé
approximation of the time delay term. Preferable behaviour
of this approximation in comparison with an application of
the numerator and the denominator approximations has
been demonstrated by authors of this paper in [7]. The
control system configuration with two feedback controllers
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is used. An application of only single feedback controller
(so called 1DOF configuration) is unsatisfactory for
controlling unstable time delay systems, as shown in [7]. To
derive of controllers, the polynomial approach, e.g. [6 ],
and the pole assignment method are applied. The procedure
is proposed for three choices of the characteristic
polynomial of the closed-loop. One of these forms, based
on the LQ control technique, was described in detail in [8].
The resulting controllers obtained via polynomial
Diophantine equations are stable and proper. Even though
any method based on a time delay approximation cannot
guarantee the control system stability in general, the
simulation results document a usability of the proposed
method providing stable control responses of a good quality
also for a higher ratio between the time delay and the
unstable time constant of the controlled system.

II. APPROXIMATE TRANSFER FUNCTION

The transfer function of an unstable FOTDS has the form
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where K  > 0 is the gain, τ > 0 is the time constant and
τd > 0 is the time delay.  Using the 1/1 - order Padé
approximation of the time delay term
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in (1), the approximate transfer function takes the form
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and  τd ≠ 2τ .

Note that a higher order approximation leads to  higher
degrees of the numerator and the denominator in the
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approximate transfer function and, consequently, to more
complex resulting controllers.

III. CONTROL SYSTEM DESCRIPTION

The control system configuration is depicted in Fig. 1. In
the  scheme, w is the reference signal, v  is the load
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Fig. 1. Control system.

disturbance, e is the tracking error, u0 is the controller
output, y is the controlled output and  u is the control input.
Both w and v  are considered  to be step functions with
transforms
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The transfer function GA  represents the strictly proper
approximate transfer function (3) in the general form
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The transfer functions of controllers are
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where prq ~and,~ are polynomials in s.

IV. APPLICATION OF THE POLYNOMIAL METHOD

The controller design described in this section follows from
the polynomial approach. The general conditions required
to govern the control system properties are formulated as
follows:

♦ Strong stability of the control system (in addition to the
control system stability, also the stability of a controller
is required).

♦ Internal properness of the control system.
♦ Asymptotic tracking of the reference.
♦ Load disturbance attenuation.

The procedure to derive admissible controllers can be
carried out as follows:

Transforms of the controlled output and the tracking error
take the form (for simplification, the argument s is in some
equations omitted)
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Here,
( ))(~)()()(~)()( sqsrsbspsasd ++= (9)

is the characteristic polynomial with roots as poles of the
closed-loop.
Establishing the polynomial t as

)(~)()( sqsrst += (10)

and substituting (10) into (9), the condition of the control
system stability is ensured when polynomials p~  and t are
given by a solution of the polynomial Diophantine equation
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with a stable polynomial d on the right side.
With regard to transforms (4), an asymptotic tracking and
load disturbance attenuation are provided by divisibility of
both terms qbpa ~~ +  and p~  in Eq. (8) by s. This condition
is fulfilled for polynomials p~ and q~ in the form
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Subsequently, the transfer functions of controllers take
forms
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A stable polynomial p(s) in denominators of (13) ensures
the stability of ontrollers.
The control system satisfies the condition of internal
properness when the transfer functions of all its
components are proper. Consequently, the degrees of
polynomials q and r must fulfill inequalities

pq degdeg ≤ ,  1degdeg +≤ pr . (14)

Now, the polynomial t can be rewritten to the form
)()()( sqssrst += . (15)

Taking into account a solvability of (11) and conditions
(14), the degrees of polynomials in (11) and (15) can be
easily derived as

art degdegdeg == , 1degdeg −= aq ,
1degdeg −≥ ap ,  ad deg2deg ≥ .  (16)

Denoting deg a = n, polynomials t, r and q have the form
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and among of their coefficients equalities
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hold. Since by a solution of the polynomial equation (11)
only coefficients ti can be calculated, unknown coefficients
ri and qi can be obtained by a choice of selectable
coefficients 1,0∈β i  such that

iii tr β= ,  iii tq )1( β−=  for ni ,...,1= . (19)

The coefficients βi distribute a weight between numerators
of transfer functions Q and R. With respect to the transform
(7), it may be expected that higher values of βi will speed
up control responses to step references.

 Remark: If 1=βi for all i, the control system in Fig. 1
demotes to the 1DOF control configuration. If

0=βi for all i and  both reference and load disturbance
are step functions, the control system corresponds to the
2DOF control configuration.

For the specific approximate transfer function (3) with
2deg =a , the degrees of  polynomials are

2degdeg == rt , 1deg =q , 1deg ≥p , 4deg ≥d (20)

and the transfer functions of controllers take the form
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for 0, 21 ≠ββ .
The controller parameters then follow from solutions of the
polynomial equation (11) and depend upon coefficients of
polynomial d. The next problem here means to find a stable
polynomial d that enables to obtain the acceptable
stabilizing and stable controllers.

V. POLE ASSIGNMENT

A required control quality can be achieved by a suitable
choice of the polynomial d on the right side of the
polynomial equation (11). Generally, a stable polynomial
have the form
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where iii js ω+α=  and 0>α i  for all i. When 0=ωi  for
all i, the control responses with aperiodic character will be
obtained.
In this paper, three methods of the polynomial d
determination are presented. In all cases, particular
determination is realized for the specific approximate
transfer function with 2deg =a .
A: A quadruple pole of the closed-loop is chosen where the
polynomial d takes the form

4)()( assd += ,  α > 0. (23)

B: The polynomial d is composed of two factors as

2)()()( α+= ssnsd , α > 0 (24)

where n is a stable polynomial given by spectral
factorization
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where asterix denotes a conjugate polynomial.
Since 2degdeg == an , the degree of d is 4deg =d .
C: The polynomial d is a product of two factors
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where a+ represents a stable part of the polynomial a and g
is a stable polynomial obtained via spectral factorization
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Here, 1deg =+a , 31degdeg =+= ag  and 4deg =d .

 Remark: Spectral factorization (27) is well known from
the LQ control theory. There, the polynomial g is used
to minimization of the quadratic cost function
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 where )(te  is the tracking error, )(tu& is the control
input derivative and ϕ > 0 is the weighting coefficient.

Coefficients of the polynomial g arranged to the monic
form
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can be calculated from formulas
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VI. CONTROLLER DESIGN

In all cases, the design procedure leads to controllers with
transfer functions (13). The controller parameters were
obtained by a solution of the polynomial equation (11) with
right sides (23), (24) and (26). In behalf of shortness of the
writing, important equations and derived formulas for
considered cases are introduced in the form of the table in
the following order:

♦ Form of d(s).
♦ Forms of a+ or n.
♦ Formulas for computation of the controller parameters.
♦ Condition of the resulting controller stability.



Table 1. Formulas for controller parameter computation.
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VII. SIMULATION RESULTS

The aim in this section is to investigate the applicability of
the proposed method to controlling the above considered
unstable first order time delay system. The simulations
were performed by MATLAB-Simulink tools. For all

simulations, the unit step reference w was introduced at
time t = 0 and the step load disturbance v at time tv. The
fixed parameters of the controlled time delay system were
chosen as K = 1 and τ = 4.
In most part of simulations, zero parameters β1, β2 in (19)
have been chosen. Subsequently, the control system
corresponds to the 2DOF configuration.
In this case, the controller parameters can be tuned by  a
single selactable parameter (α or ϕ).

A. Simulation Results for 4)()( assd +=

The control responses obtained by a choice of the
quadruple closed-loop pole are shown in Figs. 2 and 3.
These responses exhibit the large settling time and
expressive overshoots to the step reference for all α as well
as an oscillatory character for its higher values. Hence, this
form of d cannot be recommended for the control design.
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Fig. 2. Responses to step reference and load disturbance.
(τd = 2, v = - 0.1, tv = 270).
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Fig. 3. Responses to step reference.
(τd = 4).



B. Simulation Results for  2)()()( α+= ssnsd

The control responses for d in the above form are in Figs. 4
-6. The responses exhibit the significantly shorter settling
time in comparison with the case A. By a selection of the
suitable value of α, smooth responses without any
overshoots and with the aperiodic character can be
obtained. Clearly, for higher values of τd, smaller values of
α must be used. The responses in Fig. 6 document the
usability of the proposed method also for the ratio

1>ττd (here, 25.1=ττd ). Note that in many works this
ratio is constrained as 1<ττd .

C. Simulation Results for )()()( sasgsd +=

Now, the control responses in Figs. 7 and 8 document the
control of a similar quality as in the case B for the same
values of τd. In this case, the controller parameters can be
tuned by the single selectable parameter ϕ. Here, for higher
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Fig. 4. Responses to step reference and load disturbance.
(τd = 2, v = - 0.1, tv = 50).
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Fig. 5. Responses to step reference and load disturbance.
(τd = 4, v = - 0.05, tv = 100).

values of τd, greater values of ϕ must be chosen. A likeness
of step reference responses obtained in the case B (for α =
0.08) and C (for ϕ = 400) is evident from Fig. 9. However,

the responses to step load disturbance exhibit a smaller
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Fig. 6. Responses to step reference and load disturbance.
(τd = 5, v = - 0.05, tv = 200).
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Fig. 7. Responses to step reference and load disturbance.
(τd = 2, v = - 0.1, tv = 40).
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Fig. 8. Responses to step reference and load disturbance.
(τd = 4, v = - 0.05, tv = 130).



undershoot using the form C.

D. Effect of Parameters β

Simulation results shown in Fig. 10 demonstrate an
influence of the parameter β1 on the control responses. A
small value of β1 speeds up step reference responses but it
does not affect load disturbance responses. Other
simulations proved that a greater value of β1 leads to
overshoots and oscillations. The condition β2 = 0 in (19) is
necessary for the process here investigated. A nonzero
value of β2 leads to nonstrictly proper R and, consequently,
to great overshoots in step reference responses. Note that
establishing β2 = 0 and β1 ≠ 0, the transfer functions of
controllers take forms
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Fig. 9. Comparison of control responses.
(B: α = 0.08, C: ϕ = 400, v = - 0.05, tv = 120).
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Fig. 10. Responses to step reference and load disturbance.
(τd = 3, α = 0.2, v = - 0.1, tv = 60).

VIII. CONCLUSIONS

One method of control design for an unstable first order
time delay system has been solved and analysed. The
proposed method is based on the Padé  time delay
approximation. The controller   design  uses   the
polynomial synthesis   and   the controller setting employs
the closed-loop pole assignment method. Three methods of
a choice of the closed-loop characteristic polynomial were
studied and compared. The presented results proved a
usability of two methods which provide the control of a
good quality also for relatively high ratio between the time
delay and the controlled system time constant. The
procedure makes possible a tuning of the controller
parameters by most two selectable parameters. Using
derived formulas, the controller parameters can be
automatically computed. From this reason, the method
could also be used for an adaptive control.
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