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Abstract— In this paper, we introduce a novel approach of
estimating the waveform of planar waves impinging on array
of antennas. Our approach concurrently addresses issues in
Space-Time Adaptive Processing design: 1) array gain, 2) system
uncertainties–include gain and phase response errors introduced
by receiver channel and antenna location perturbation–and 3) mu-
tual coupling. A pre-processor consisting of a Kalman filter and
shooting point method is constructed to mitigate the degrading ef-
fects of these uncertainties in radar systems. The results of the
simulations show that the pre-processor can isolate discrete inter-
ferers and jammers and can reject clutter and system uncertain-
ties.

Index Terms—Kalman filter, Space-Time Adaptive Processing

I. INTRODUCTION

I N radar systems, Space Time Adaptive Processing (STAP) is
utilized to detect the presence, and to pin-point the location

and the velocity of small, maneuverable target in the presence
interference and noise. The interference may include natural
as in ground and weather clutters, deliberate as in jammers and
coincidental presence of another discrete scatterer. The STAP
weights applied to the received signals are designed to preserve
the target signal while rejecting the effects of the interference
signals and noise. STAP is used in conjunction with spatially
separated array antennas emitting coherent pulses. The spatial
separations of the antennas are essential to provide the spatial
processing dimension. Repetitive identical pulses provide the
temporal processing dimension.

Some issues that STAP designers are concerned with in op-
timizing their algorithms are array gain, sensor perturbations,
mutual coupling and finite sampling. Incorrect methods of deal-
ing with these issues lead to performance below optimum level.

The environment of the desired signal is surrounded by spa-
tially separated interferences and uncorrelated measurement re-
ceiver noise. Existing methods of dealing with discrete interfer-
ers and jammers involve placing nulls on the beamformer in the
direction of the interferences. The drawbacks of nulls on the
beamformers are the reduction of available degree of freedom
and the decrease of the array gain [1]. In fact, some researchers
[i.e.8, 9] discourage insertion of constraints, i.e. null contraints,
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on the spatial weights vector because it may loose the orthog-
onality property of the transformation matrix from space-time
domain to beam-space domain.

Errors in the modeling of the antenna and receiver channel
characteristics lead to incorrect derivation of the weight vec-
tor of the STAP. Sensor modeling uncertainties due to antenna-
location perturbation and gain and phase response errors are
currently being compensated by adding diagonal loading on the
spatial covariance matrix of the measured signals. The amount
of loading added is arbitrarily assigned and is not representa-
tive of the actual system. Receiver channels, which distort the
received signal as it propagates in the circuitry (modulator, low
pass filter, A/D converter, matched filter), are partially compen-
sated by attempting to equalize the channel effect. The errors
in the calibration of the channel amplify the amplitude and add
distortion in the phase of the received signal.

Array theory neglects the effect of mutual coupling. How-
ever, it has been shown in the literatures [2, 3], that the response
of an isolated antenna difference considerably with array of an-
tennas. The degradation of array performance with mutual cou-
pling has been shown in [4, 5, 6].

Our approach to solve these concerns is by appending a
Kalman filter utilizing a shooting point method as a pre- pro-
cessor to the beamformer. Its functions are to reject the errors
due to sensor perturbations, gain and phase response errors, mu-
tual coupling, and isolated and null directional interference if it
exists. It is a recursive method operating on the actual range bin
under test.

The paper is organized to show how the format of the sig-
nal prior to the STAP process. Section II starts by defining
the signal transmitted by the array and the reflected planar
wave. Events, such as system uncertainties and mutual cou-
pling, which distort the received signals, are discussed. Section
III discusses the insertion of the pre-processor to the conven-
tional STAP radar process. Section IV derives the Kalman filter
used in the pre-processor. And Section V shows simulation re-
sults of our approach.

II. SYSTEM MODEL

1) Propagating signals: In a phase-array antenna (refer to
[7, 10, 11] for a more complete derivation), a narrow-band emit-
ted signal, e(t), consists of a pulse modulated by a sinusoid with
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carrier frequency fc

e(t) =
√

2PeE(t) cos(2πfct) (1)

where Pe is the transmission power and E(t) is the envelop
of the pulse. All the transmitted pulses are identical and are
periodically transmitted at constant Pulse Repetition Frequency
(PRF) within a Coherent Processing Interval (CPI).

When the emitted signal reaches an object, a wave is reflected
towards the antenna array of the form

r(t) =
√

2PrE(t− τ) cos(2πfc(t− τ)) (2)

where Pr is the power of the received propagating wave, and
τ is the round-trip delay in terms of the distance between the
array and the target and speed of light c.

Equation 2 goes through the receiver channel of the antenna
to arrive with s(t):

s(t) =
√

2Prej2πfc
2vrad

c t =
√

2PrejωDt (3)

where ωD is known as the Doppler frequency.
Equation 3 contains the information about the object that re-

flected the planar wave. The reflected power is proportional to
the size of the target and the Doppler frequency describes the
motion of the target with respect to the array platform. The
presence of the target is declared by comparing Pr to a thresh-
old value and the motion is determined from non-zero Doppler
frequency. It is important to note that Equation 3 is the desired
signal that STAP algorithms try to estimate.

2) Received signals: Each of the antenna and its receiving
channel amplifies the impinging signal as a function of the ar-
rival direction of the planar wave:

G(θ, φ) =




γ1(θ, φ)ejψ1(θ,φ)

γ2(θ, φ)ejψ2(θ,φ)

...
γN (θ, φ)ejψN (θ,φ)


 (4)

where γi and φi are the gain and phase response, respectively,
of the ith antenna and its corresponding channel.

The signal impinging on each antenna in a vector form is

s(t, r) =




s(t− τ0)
s(t− τ1)

...
s(t− τN−1)


 (5)

where r is the array location matrix, τi is the time delay of
the propagating signal to reach the ith antenna in an N element
array, and s(t) is the signal that would have been received at the
origin ( XYZ plane of the array ). It can be further simplified as

s(t, r) = s(t)V(k) (6)

where V(k) is known as the spatial steering vector and k is
known as the wavenumber given by

V(k) =




e−jk
T r 0

e−jk
T r 1

...

e−jk
T rN



, k = −2π

λ




sin θ cosφ
sin θ sinφ

cosφ


 (7)

and ri is the XYZ coordinate of the ith antenna.
s(t) as defined in (3) incorporates the information of the re-

flected planar wave, V(k) contains the spatial characteristics of
the antenna array and k contains the statistics of the source of
the signal.

If the signal is sampled at the same speed as the PRF within
a M-pulse CPI, then the well known space-time data, y(t), is
acquire:

y(t) = |s(t)|T(ωD) ⊗ V(k) (8)

where ⊗ represents Kronecker product and the temporal steer-
ing vector, T (ωD), is given by

T (ω̄) =
[

1 ej2πω̄ ej4πω̄ · · · ej(M−1)πω̄
]T

(9)

3) System uncertainties: Combining Equations (3), (4), and
(7), the spatial sample of a single reflected signal from a target
object to the antenna can be summarized by:

x(t) = γ(θ, φ)ejψ(θ,φ)e−jr
T ks(t). (10)

Equation (10) is the ideal signal that would be received if the an-
tenna characteristic and response are accurately modeled. Un-
fortunately, circumstances, including sensor perturbation, gain
and phase errors and mutual coupling, arise that will cause it to
deviates from this ideal case.

a) Sensor perturbation: Sensor perturbation exists when
the antenna is located in a place away from the designed value.
Sensor perturbation may occur when the platform of the an-
tenna is temporarily tilted in an angle during operation. This
is common when the array platform is placed on an airplane,
which encounters constant turbulence.

The mathematical equations of the sensor perturbation are

(rx)i = (rx)ni + (�rx)i (11)

(ry)i = (ry)ni + (�ry)i (12)

(rz)i = (rz)ni + (�rz)i (13)

where subscript i represents ith antenna in the array, superscript
n represents nominal value, and (�rx), (�ry), and (�rz) are
the position perturbation in the X,Y,Z plane respectively.

The extent of the errors due to (�rx), (�ry), and (�rz) can
be shown to be:

e−j[(rx)n
i ,(ry)n

i ,(rz)n
i ]kj

2π
λ

(�rx)i sin θ cosφ (14)

e−j[(rx)n
i ,(ry)n

i ,(rz)n
i ]kj

2π
λ

(�ry)i sin θ sinφ (15)

e−j[(rx)n
i ,(ry)n

i ,(rz)n
i ]kj

2π
λ

(�rz)n cosφ) (16)

.
b) Gain and phase errors: Gain and phase response oc-

curs when the antenna and/or its corresponding receiver chan-
nel drifts performance over time and/or the responses has been
inaccurately measured in the lab because the process of gener-
ating angles of the directional waves is an estimate. The gain
and phase errors can be modeled as:

γ(θ, φ)i = γ(θ, φ)in(1 + �γ(θ, φ)i) (17)

ψ(θ, φ)i = ψ(θ, φ)ni + �ψ(θ, φ)i (18)
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where �γ(θ, φ) and �ψ(θ, φ) are the gain and phase errors,
respectively. Similarly, it can be shown that faults contributed
by these errors are:

γ(θ, φ)nne
ψ(θ,φ)n

n�ψn (19)

γ(θ, φ)nne
ψ(θ,φ)n

nj�γn (20)

c) Mutual coupling: Mutual coupling in the receiver
mode occurs when portion of the planar wave received by
neighboring antennas is retransmitted and is received by the an-
tenna as part of the original planar wave. The coupling between
antennas is proportional to the impedance, Z, parameters of the
array and is determined by the voltage-current relationship

[
v1 v2 · · · vN

]T = Z
[
i1 i2 · · · iN

]T
(21)

where vj is the voltage at jth antenna port, ij is the current
flowing in the antenna’s circuitry, and Z is given by




zL + z11 z12 · · · z1N
z21 zL + z22 · · · z2N

... · · · . . .
...

zN1

... · · · zL + zNN




(22)

where zL is the load impedance, zkk is called self impedance
and zjk, j �= k is mutual impedance measured with the follow-
ing equations:

zjj =
vj
ij

∣∣∣
vk=0,j �=k

, zjk =
vj
ik

∣∣∣
Ii=0

(23)

Normalizing Z with zL:




1 + z11
zL

z12
zL

· · · z1N

zL
z21
zL

1 + z22
zL

· · · z2N

zL

... · · · . . .
...

zN1
zL

... · · · 1 + zNN

zL




(24)

where zjk/zL is the coupling contribution of the kth antenna
to jth antenna. Notice that the mutual coupling matrix depends
only on the configuration and response of the antenna and is
independent on the received signal.

III. PRE-PROCESSOR

As shown in Figure 1, the pre-processor is a Kalman filter
utilizing a shooting point method. The inputs to the Kalman
filter are spatial samples for a fixed time of the received sig-
nal. The Kalman filter propagates through antenna measure-
ment (the first N elements of the space-time data which has the
same format as Equation (8)) to estimate corrupted signals due
model uncertainties, mutual coupling and noise. The shooting
point method is used to propagate backward and estimate the
initial state of the Kalman filter for the new set of spatial sam-
ples in the next sampling time (the next noisy N elements of
the space-time data)). The initial state of the Kalman filter is a
vector of estimate of all discrete scatterer including the desired
target signal.
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time  t
2

Initial state
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Fig. 1. Pre-processor block diagram

The estimate state converges to a solution independent of
the initial conditions within several forward (Kalman Filter)-
backward (Shooting Point Method) iterations. The states of the
shooting point methods are signals of both target and interfer-
ence, which the direction of the source is known.

The signals passed from the pre-processor to the beamformer
consist of only the estimated target signal or the estimated target
signal corrupted only by other discrete interferer not accounted
for in the pre-processor. Directional discrete interferences that
are estimated by the pre-processor are not passed to the beam-
former. In addition, the effects of thermal noise, sensor per-
turbation, and coupling has been suppress before signals are
passed.

IV. STATE ESTIMATOR

The Kalman filter is constructed from the signal models (sim-
ilar derivation has been done in [12, 13]) derived in Section II
condensed in a matrix form as:

X = Z(G+ �G) � (V + �V )S (25)

where � denotes Hadamard product, Z is given by Equation
(24), G by Equation (4), �G by Equations (19), and (20), V by
Equation (7), �V by Equations (14), (15), and (16) and S by
Equation (3). It is assumed that �rx, �ry , �rz , �γ(θ, φ), and
ψ(θ, φ) to have Gaussian distribution.

The Kalman filter is used primarily to filter out the contribu-
tion of �G, �V and Z of the received signal. It uses apriori
knowledge of the distribution of �G and �V to determine the
error signals and uses Z to decouples the measured signals. The
shooting point method uses the states of Kalman filter to esti-
mate the actual waveforms of the reflected signals.

The system and measurement models for the Kalman filter
assuming the major source of mutual coupling for the antennas
are its two immediate neighbors:

xk+1(t) = Φkxk(t) + wk(t) k ∈ [0, N − 1](26)
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zk(t) = Hkxk(t) + vk(t) k ∈ [1, N ] (27)

x0 (x̄0, Px0), wk (0, Qk), vk (0, Rk) (28)

where
• xk ε R

3M×1 is the state vector containing three s(t) re-
ceived by three different antennas and M is the number of
target and interference signals. The second M elements of
xk is the s(t) by the kth antenna and the first and third M
elements of xk are the s(t)s of the immediate neighbors of
the kth antenna.

• Φk ε R3M×3M is the state transition matrix defined by:

Φ(k) = diag [vk+1 � v∗k] (29)

Φk =




Φ(k − 1) 0 0
0 Φ(k) 0
0 0 Φ(k + 1)


 (30)

where vTk is the kth row of the vector manifold matrix in
Equation (7) and v0 is column vector of 1s.

• wk is an additive white processing noise consisting of

w(k) = �ψk + j�γk + j(�rx)k 2π
λ

sin θ cosφ (31)

+j(�ry)k 2π
λ

sin θ sinφ+ j(�rz)k 2π
λ

cosφ

and wk is defined by

wk =



w(k − 1)
w(k)

w(k + 1)


 (32)

• zk ε R
1×1 represents the sample measured by the kth an-

tenna
• Hk ε R

1×3M is the measurement matrix defined by
[
βkGk−1 Gk αkGk+1

]
(33)

where Gk is the kth row of the gain and phase response
matrix in Equation (4); and βk and αk are the strength
of the neighboring coupling and can be obtained from the
elements of the impedance matrix in Equation (22).

• vk is an additive white measurement noise describing ther-
mal and mechanical noise present on the antenna.

The processing noise sequencewk(t) and measurement noise
sequence vk(t) are independent of each other and have Gaus-
sian distribution with zero means and covariances:

E
[
wi(t)wTj (t)

]
= Q δij (34)

E
[
vi(t)vTj (t)

]
= R δij (35)

The spatial update propagation of the filter states and covari-
ance matrix is defined by the following equations:

x̂−k (t) = Φkx̂+
k−1(t) +Bkuk(t) (36)

P−
k (t) = ΦkP+

k−1(t)Φ
T
k +GkQkG

T
k (37)

where the x̂−k (t) and P−
k (t) are the state estimate and covari-

ance, respectively, of the kth array element before the measure-
ment is available.

Similarly, the measurement update propagation of the filter
states and covariance matrix is defined by the following equa-
tions:

Kk(t) = P−
k (t)(Hk(t)P−

k (t)HT
k (t) +Rk(t))−1 (38)

P+
k (t) = (I −Kk(t)Hk(t))P−

k (t) (39)

x̂+
k (t) = x̂−k (t) +Kk(t)(zk(t) −Hk(t)x̂−k (t)) (40)

where the Kk(t) is the Kalman filter gain and x̂+
k (t) and P+

k (t)
are the state estimate and covariance, respectively, of the kth

array element after the measurement is available.

V. REPRESENTATIVE EXAMPLES

Consider a 54 element planar circular array. The antenna-
locations are uniformly placed on the XY plane in a radius of 24
feet. Only the half 27 antennas facing the target object are active
in transmitting signals at 300 MHz and receiving propagating
waves.

In all of the simulations, we created one target object at
broadside (θ = 00, φ = 00) and four directional interference
sources at [(−450, 00), (−500, 00), (300, 00), (350, 00)]. The
target signal and each of the interference signals are uncorre-
lated. Each point source is generating as continuous sinusoidal
signal with varying amplitude and the frequencies are normal-
ized to

√
2 of the carrier frequency. White noise due to thermal

noise and vibrations of the sensors are added.
Three types of simulation scenario were constructed. The

first simulation scenario, Section V-A, describes the circular ar-
ray functioning in nominal mode. The second scenario, Section
V-B, describes a situation when the responses and configuration
of the array has been perturbed. And the third scenario, Section
V-C, depicts the array with system uncertainties and the inter-
fering signals are not completely modeled.

A. Without system uncertainties and complete knowledge of the
interferences

In this simulation, it is assumed that the antenna configu-
ration is perfectly modeled. All antenna locations are exactly
known with no sensor perturbation. Planar waves pass through
the antenna sensors with no amplification and no phase distor-
tion. Each of the antenna elements is isolated and no coupling
between elements occurs.

The direction of the target and the interference signals are
completely known. All the source signals is generated with
equipower at 0 dB. Background noise power of -30dB has been
formed. Figure 2 shows the target (left graph) and interfer-
ence (right graph) signals waveforms. All the estimated sig-
nals closely follow the desired signals. Only the target signal is
passed through to the beamformer. If the beamformer is Min-
imum Variance Distortionless Response MVDR, then the out-
put of the beamformer is the actual reflected target signal. The
interference signals are properly detected and rejected by the
pre-processor. Thus, no nulling operations are needed in the
beamformer for the interference signals.



5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5
Target signal

A
m

pl
itu

de

Time [sec]

reflected signal
estimated signal

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−2

−1.5

−1

−0.5

0

0.5

1

1.5
Intereference signals

A
m

pl
itu

de

Time [sec]

reflected signal
estimated signal

Fig. 2. Signal waveforms in a precisely modelled array and the Direction of
Arrival (DOA) of the interference signals are known.

B. With system uncertainties and complete knowledge of the
interferences

In this simulation, it is assumed that the array has antenna-
location perturbation and response mismodelling. The sensors
are displaced in the X, Y, Z plane with a variance of 10−3 m,
10−3 m, and 10−3 m respectively. The antenna gain and phase
response has been measured incorrectly with a variance of 10−3

times the unity gain and 50, respectively. Each antenna element
is experiencing coupling from its immediate neighbors with in-
tensity of 0.1 times the received power of its immediate neigh-
bors.

The direction of the target and the interference signals are
completely known. All the source signals are generated with
equipower at 0 dB. Background noise power of -30dB has been
formed.
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Fig. 3. Signal waveforms in a mismodeled array and the DOAs of the interfer-
ence signals are known.

Figure 3 is target (left) and interference (right) signal wave-
forms, respectively. The graphs in the figures exhibit similar
behaviors Figure 2 in Section V-B.

C. With system uncertainties and partial knowledge of the in-
terferences

Similar case as in V-B but two additional interference signals
at [(θ = −15, φ = 0), (θ = 25, φ = 0)] are introduced and are
intentionally not modeled in the pre-processor. The power of
the target and the four original interference signals remain at
0 dB and the two new interference signals are set at -20 dB.
Background noise power of -30dB has been formed. Figure 4 is
the target (left) and interference (right) signal waveforms. The
estimated signal waveforms deviate from the reflected signal
waveforms due to the mismodeling of the Kalman filter (refer to
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Fig. 4. Inaccurately modeled array and partial knowledge of the interference
signals.

[14]). However, it has been compensated for by the beamformer
as shown in the left graph of Figure 4 when the estimated signal
is process by an MVDR beamformer.

VI. CONCLUSION

The simulation shows that beamformers are not required to
set nulls on interference signals with known direction of arrivals
if the pre-processor is used. The waveforms of each propagat-
ing directional wave are accurately estimated and isolated by
the pre-processor.
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