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Abstract 
 
 Modular Self-Reconfigurable (MSR) robots are 
made up of identical mechatronic modules that can be 
assembled into a variety of structures to facilitate different 
kind of works. The controlling of MSR robots is similar to 
the control of a distributed cooperating system, in which 
all modules must be coordinated correctly to complete a 
common task. 

In this paper we discuss the implementation of the 
distributed blackboard architecture for locomotion control 
of a MSR robot. We have used computer to construct a 
model of the MSR robot and used it to demonstrate the 
capability of a simple rule-based blackboard control 
system in coordinating a group of modules to perform a 
common task using purely local control rules and through 
communication between neighboring modules. 
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1. Introduction 
 

Modular Self-Reconfigurable (MSR) robots 
[4][16][18][14][12][6][9] are robots made up of many 
identical but independent mechatronic modules that can be 
disconnected and reconnected autonomously and to 
rearrange into different structures that can facilitate the 
robot to complete its tasks more effectively. Each 
individual module is a self-contained unit equipped with its 
own processor to control the module’s movement and to 
facilitate communication with neighboring modules. 

MSR robots’ ability in self-reconfiguration makes 
them particularly useful for applications in unstructured, 
remote and hazardous environment such as deep sea 
exploration, space exploration, urban rescue, mining, 
intelligent material handling and military intelligence. 
Since all modules are identical, if any module in a system 
is damaged; the robot can simply discard the damaged 

module and quickly replace it with another one located 
nearby. This functionality gives MSR robots a distinctive 
advantage over conventional robots in repairing itself 
while far from home on a mission. 

In spite of all the advantages MSR robots has to offer, 
there are many challenges to overcome before these robots 
can have practical applications outside of research. One of 
the biggest challenges is to develop decentralized control 
system that does not require a designated leader for 
coordination. The rationale for not having a centralized 
controller (a leader) is to avoid a MSR robot (i.e. the group 
of connected mechatronic modules) from having a 
concentrated (specific weak point, i.e. the leader,) weak 
point of failure and to achieve total homogeneity in 
module design. 

Because of the unique advantages distributed control 
systems has to offer for self-reconfigurable robots, 
researchers around the world have examined many 
different approaches to the mechatronic and control 
algorithm design of different kinds of MSR robots. Butler 
et al. at Dartmouth College [5] proposed a distributed goal 
recognition technique called “Trace” to generate global 
shape using only local knowledge and local 
communication. Unsal et al. [15] at Carnegie Mellon 
University have presented a multi-layered planner for the 
motion of modules with a combination of distributed 
approaches at the high-level with low-level pre-defined 
rules for trajectory motions. Bojinov et al. at PARC [3] 
applied multi-agent control to randomly generated stable 
structures based on local rules. 

In this paper we will present the application of a 
distributed blackboard-based system for controlling the 
locomotion of a 5-module MSR robot based on limited 
local information. Blackboard-based systems are systems 
built on a model in which a number of experts cooperate in 
solving a particular problem [13]. Blackboard systems are 
inherently suitable for MSR robots due to the following 
key attributes [4][13]: 

 
Modularity – the arrangement of blackboard system 

components (knowledge source, blackboards, 
independent processors, etc.) is highly flexible, and 
can be arranged in self-contained groups of modules. 
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Merging of Knowledge – decisions are reached by 
consulting with multiple experts. Each module of the 
robot can be treated as an expert in the problem 
solving process. 

 
Continuous Problem Solving – solutions are built 

incrementally and continuously over time, hence, 
there is always a current best solution. This is 
particularly useful for the robot to handle unexpected 
events. 

 
Parallel Processing – the modularity of many knowledge 

sources in the system generates a coarse-grained 
parallelism at the module level.  

 
Totally Distributed Design – the system has no leader, no 

teacher, nor any centralized elements, therefore no 
concentrated (specific) weak point of failure. 

 
Through the incorporation of the abovementioned 

characteristics, the proposed 5-module MSR robot has 
been built and tested in a computer simulated environment 
using MATLAB. Details of system design, experiment 
setup and test results are presented in the following order. 
Section 2 provides an overview of the blackboard analogy, 
different blackboard architectures, and advantages of 
employing blackboard systems in MSR robots. Section 3 
presents the simulation setup, model design, locomotion 
control and communication scheme. Section 4 proposes the 
future plan of our research and a conclusion is given in 
Section 5. 
 
 
2. Blackboard Systems 
 
2.1 An Overview 

To visualize the idea of a Blackboard model, we can 
visualize three experts sitting in a meeting room equipped 
with a blackboard (Figure 1). The blackboard is viewable 
to all experts at all time but only one piece of chalk is 
available for writing. Without any particular order, expert 
Beta goes up to the blackboard, picks up the only piece of 
chalk and writes down her problem. Expert Alpha sees the 
problem and writes on the blackboard what he thinks is 
useful in solving the problem. Expert Delta analyzes the 
information posted by Beta and Alpha and writes down his 
opinion. This scenario is repeated continuously. Each 
expert adds their knowledge to the blackboard, and 
reevaluates their own opinion with respect to the new 
information. Eventually the problem can be solved when 
enough information is gathered. This model of a basic 
blackboard system is shown in Figure 1. 

There are three core components in a blackboard 
system: one is the blackboard for communication purpose 
and the other two are the independent knowledge source 
and its associating processor. By arranging these 
components in different configurations, unique blackboard 

architectures can be designed to suit specific needs. 
Distributed Blackboard architecture (DBB) [10], for 
example, is designed for a low-bandwidth distributed 
network environment. DBB systems have separate 
blackboards for each expert and information exchange is 
done between processors only. For faster operation, the 
Blackboard Server architecture (BBS) [8] was developed 
to eliminate multi access to the blackboard by designating 
one expert as the server to read and write to the blackboard 
and to channel information to other experts. Other 
architectures include the Virtual Blackboard (VBB) [1] and 
Shared Memory Blackboard (SMBB) [11]; each has a 
distinct architecture and advantages over others in different 
applications. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: The basic architecture of a Blackboard System. 

 
 

In the following section we will discuss why we 
have chosen the Distributed Blackboard (DBB) 
architecture as the control framework of our MSR robot 
and present the basic architecture of the system. 
 
2.2 Distributed BBS for MSR Robots 
 When choosing a control system for our MSR robot, 
we firmly respect several criteria to ensure the proposed 
system can be easily implemented to our MSR robot under 
development and is general enough to be implemented on 
other decentralized MSR robots. These criteria are: 
 

�
 Total Modularity – the system must be able to 

implement on modules that are absolutely identical in 
mechatronic design. 

 
�

 High Expandability – the system must be able to 
evolve into more intelligent systems, i.e. to incorporate 
intelligent learning systems such as neural network. 

 
�

 High Scalability – the system must be equally effective 
in control and communication regardless of the number 
of modules it is implementing on. 
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With respect to the above requirements, the 
Distributed Blackboard architecture (DBB) is the best 
option for our application because it is inherently divided 
into self-contained modules comprising all core 
components, the blackboard, the processor, and the 
knowledge source (total modularity). Like all other 
blackboard systems, DBB systems can be programmed to 
perform intelligent learning and reasoning (high 
expandability), and communication performance is not 
hindered by the number of modules within since DBB 
systems can support data parallelism very well [2]. The 
function of the three core components in each MSR robots’  
modules can be roughly outlined as follow: 
 
The Blackboard can be treated as a synchronized 

temporary information storage that stores information 
created locally or mirrored from other module’ s 
blackboards through inter-module communication. 
The stored information is synchronized among all 
blackboards within the MSR robot, so each processor 
has exactly the same common information to work on. 

 
The Knowledge Source stores common knowledge that is 

essential for the system to operate, such as rules for 
controlling the movement of the module and for 
evaluating the environment. This component is also 
responsible for storing unique knowledge acquired 
through learning during operations. 

 
The Processor is the “brain” of each module, responsible 

for decision making and communication with other 
modules to update information on the blackboard(s). 
Together with the knowledge source, a processor can 
learn to acquire unique knowledge for problem 
solving; hence it is capable of shaping its 
corresponding module into an independent specialist. 

 
The layout of a DBB system is illustrated in Figure 2. 

Arrow lines indicate information flow and dotted lines 
represent boundaries of modules. To understand how 
information flows in a DBB system, let us consider the 
sample system below. 

When an external stimulus comes through the sensor 
(e.g. a tactile sensor returning a contact signal) of a module 
of the MSR robot that reaches processor_02 as a digital 
signal, processor_02 will carry out two different 
procedures for control and communication purposes. For 
control purpose, processor_02 will evaluate the input 
signal and execute the program command stored in the 
knowledge source to direct the movement of the module or 
to evaluate the environment. For communication purpose, 
processor_02 will post the signal on blackboard_02 as a 
new piece of information and pass the same information to 
all directly connected neighbors, i.e. processor_01 and 
processor_03. Processor_01 and processor_03 will post the 
received information on their corresponded blackboards 
and execute program command in respond to the signal. In 

addition, processor_01 and processor_03 will pass again 
the information to their neighboring processors, and 
similarly, the neighboring processors will pass the 
information to its neighbors. The information transmission 
process continues until all modules have the same 
information on their blackboard. 

Figure 2: Distributed Blackboard system (DBB). 
 
 
3. Locomotion Control 
 
 In this section, a distributed control system based on 
the DBB system for controlling the locomotion of the 
5-module MSR robot is presented. The five modules are 
arranged in a looped chain that resembles the shape of a 
pentagon and can perform planar rolling like the tractor 
belt of a tank. The purpose of this experiment is to 
demonstrate how a simple rule-based blackboard control 
system can coordinate a group of self-contained modules 
to perform a common task using purely local control rules 
executed at every module and through communication 
between neighboring modules alone. 
 
3.1 The Simulation 

The mechatronic module we want to simulate in this 
experiment is a two link mechanism connected by a hinge 
joint. The simulated environment is assume to be 
absolutely flat and has no obstacles in the robot’ s line of 
motion. The simulation model was developed using 
MATLAB. Figure 3 shows the basic structure of a single 
module. 

The links of the module are represented by 2 vectors 
expressed in polar coordinates. The tail of the module (the 
end of the rear link) is marked with a little square, the 
origin of the module (where the two links join) is marked 
with a circle, and the head of the module (front end of the 
head link) is left unmarked to avoid confusion when 
connected to another module. The two links of the module 
are labeled as Head Link and Rear Link respectively. The 

Blackboard 
01 

Blackboard 
02 

Blackboard 
n 

Processor 
01 

Processor 
02 

Processor  
n 

Knowledge 
Source 

 01 

Knowledge 
Source 

 02 

Knowledge 
Source 

 n 

Module No. 2 Module No. 1 Module No. n 



 4 

angle between the rear link and the x-axis is called the 
global angle; it increases in counter clockwise direction 
with zero starting from the positive x-axis. The local angle 
is the external angle between the rear link and the head 
link, when this angle equals zero, the two links form a 
straight line. 

 
 
 
 

 

Figure 3: Computer simulated module. 
 

 
 The initial stage of the simulation begins with all 5 
modules connecting head to tail to form a closed loop. All 
modules’  local angles are adjusted to equal value, hence 
forming a perfect pentagon. Figure 4: shows the initial 
stage of the model simulated in MATLAB. 
 

Figure 4: Initial stage of the simulated MSR robot. 
 
 
 To avoid the model from overlapping with the x-axis 
during simulation, we have arbitrarily chosen y = 2 as the 
ground and set initial position of the origin of module_1 at 
(7, 2). Before any module can initiate a move, there are 
certain information that all modules must submit to the 
blackboard and cross evaluate. These information are: 
 
Call-signs of the two neighboring modules –  

In this experiment, all modules are assigned with a 

call-sign and are capable of reading the neighboring 
modules’  call-sign. These simple pieces of information 
enable all modules to understand if the robot is 
forming a close loop or an open-end structure. 

 
Local angle – 

By analyzing the value of all local angles together 
with the order of each module’ s call-sign, the shape of 
the robot can be determined by the processors. 

 
Ground contact signal – 

All modules are assumed to have a touch sensor at 
their origin and can return a ground_contact signal if 
the origin of the module is in contact with the ground. 
In the simulation this is done by comparing the 
y-value of each module’ s origin to the arbitrarily 
defined ground at y=2. 

 
3.2 Control Strategy 

A pentagon resting on ground has 2 ground_contact 
points and an upright trapezoid has three. If we 
continuously transforming the robot between these two 
stages in the same direction, we can produce a very simple 
planar locomotion scheme to mobilize the simulated robot. 
Figure 5 illustrates the main steps in the transformation 
process. 

 
Figure 5: Transformation between a perfect pentagon and 
an upright trapezoid. 
 
From stage A to B: 

Starting from a perfect pentagon with 2 
ground_contact points, the robot shifts its center of 
gravity to the right by moving the three modules 
without a ground_contact signal to the right. 

 
From stage B to C: 

To increase ground_contact points to three, the robot 
lowers down the front tip to form an upright trapezoid. 

 
From stage C to D: 

In order to keeps the robot rolling to the right, stage C 
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must transform again into a perfect pentagon. The 
robot will give up one ground_contact at the back, 
adjust its local_angle and shift center of gravity 
towards the front. 

 
From stage D to E: 

While keeping the two ground_contact points 
unmoved, all modules adjust their local_angle to 
equal value (i.e. 72 degrees) to become a perfect 
pentagon again. 

 
One complete cycle of the above transformation 

process is considered as one step. 
 
3.3 Blackboard Communication 
 Following Section 3.1 that describes the basic design 
of the simulated robot and the setup of the simulation 
environment; and Section 3.2 that describes the control 
strategy, this section concentrates on how DBB system is 
used in our simulation to control the movement of the 
robot and to facilitate communication between modules. In 
contrast to the board overview of the entire system in 
section 3.1, and 3.2, here we will focus on the operation at 
local level to see what exactly each module is doing and 
what information is being exchanged. 

Assuming all modules has already come to a 
conclusion that they are connected in a closed loop. If 
stage A (Figure 5) is to roll in a clockwise direction to the 
right and transform itself into stage C; all modules with a 
ground_contact signal will post a message on the 
blackboard to see which module is the most appropriate to 
initiate the move. The knowledge source of all eligible 
modules will inform their associating processors to take 
the initiative if their module is the closest to the intended 
direction of motion. In this case module_1 (see Figure 4) 
will take the initiative. Processor_1 of module_1 will 
retrieve parameters of stage C (i.e. the ground_contact 
signal, local_angle, and relative position within the system) 
from the knowledge source and compare these parameters 
with module_1’s current parameters. By substituting these 
parameters into a set of preliminary rules, processor_1 will 
be able to list what module_1 need to do to initiate the 
transformation. These information will be broadcast to 
other processors to update their blackboards.  

When module_1 begins to adjust local_angle_1, 
processor_1 will continuously post the latest reading of 
local_angle_1 and alert all other modules when the 
adjustment is done. Simultaneously, processor_2 of 
module_2 acknowledges the intention of module_1 from 
the blackboard, it will consult with its own knowledge 
source to retrieve the corresponding duty for its position in 
relation to module_1. While executing rules from the 
knowledge source (e.g. closing up local_angle_2); 
processor_2 will broadcast updated parameters of 
module_2 to other processors in turn to update their 
blackboards.  

This process of evaluating information, posting 

information, and adapting to new information will keep on 
continuing in the remaining modules. The transformation 
process from stage A to C will stop when all parameters 
from each module are identical to the specific parameters 
of stage C. 

The control schemes for transforming from stage A 
to C and stage C to E are basically identical. The only 
difference is in gaining or losing one contact point after the 
transformation. The reason to start the transformation cycle 
from a perfect pentagon is to provide an obvious visual 
check point during simulation. Any arbitrary shape such as 
an inversed trapezoid will work just as fine. Figure 6 lists 
all information broadcast on the blackboard during a 
transformation from stage A to C, then from C to E.  
 

M Information broadcast to the 

blackboard 

Descriptions 

1 

5 

Ground_contact_1 

Ground_contact_5 

Transform from A to C 

Bidding for initiative 

1 

1 

1 

Module_1 will Initiate 

Decreasing local_angle_1 

Wait for Module_2 

ground_contact signal 

Module_1 is the front most 

modules in the direction of 

action. 

1 

2 

3 

4 

5 

Adjust local_angle_1 

Adjust local_angle_2 

Adjust local_angle_3 

Adjust local_angle_4 

Adjust local_angle_5 

All modules adjust local_angle 

to facilitate Module_1’s 

motion. 

2 Ground_contact_2 Achieved 3 ground_contact 

Transformation from A to C 

completed 

1 

1 

2 

Fix local_angle_1 

Module_1 give up initiative 

Module_2 will initiate the next 

transformation 

Transform from C to E 

Pass on initiative role to 

module_2 

5 

1 

2 

3 

4 

5 

Giving up ground_contact_5 

Adjust until local_angle_1 = 72 

Adjust until local_angle_2 = 72 

Adjust until local_angle_3 = 72 

Adjust until local_angle_4 = 72 

Adjust until local_angle_5 = 72 

Transform from 

3 ground_contact (trapezoid) 

to 

2 ground_contact (pentagon) 

Adjust all local_angle to 72 to 

form a perfect pentagon 

  Transformation complete when 

all local_angle = 72 

Figure 6: The far left column indicates to which module 
the information belongs to. Each blocked roll represents 
one round of information exchange. 
 
 
4. Conclusion 
 
 Before MSR robots can realize all of its compelling 
promises, a flexible decentralized control system must first 
be available. Multiagent systems have gained much 
attention in recent years and have shown promising result 
when applied to some lattice type MSR robots. The use of 
distributed blackboard system to control the proposed 
5-module, chain type MSR robot has successfully 
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demonstrated the feasibility of using a simple rule-based 
blackboard control system to execute simple locomotion 
control such as traversing of level terrain. 

With the design of the particular MSR robot shown 
in this paper and the application of the blackboard-based 
control scheme, the ability of coordinating a group of 
agents (the module of the MSR robot) to carry out a 
common task by executing purely local control rules (the 
updating of the blackboards and performing corresponding 
procedures for motion commands according to the current 
state and constraints) and through communication between 
neighboring modules alone is demonstrated through 
MATLAB simulation. 

Most of our work devoted till now has been focusing 
on the demonstration of using distributed blackboard 
control system to coordinate a small group of modules to 
perform simple tasks. Our next step is to exploit the 
exceptional learning and reasoning capacity of the 
blackboard systems and to integrate feedbacks from 
distributed sensors to detect obstacles and uneven terrain.  
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