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Abstract|The implementation and design of modern car
dynamics controller or driver assistance systems require
suitable as well as high accurate dynamics models. The
Parameters of such models are generally unknown and have
to be identi�ed and used to design the controller systems.
This paper presents a vehicle's model, by removing conven-
tional simpli�cation and coupling the lateral and roll car
dynamics. The resulting Model is high nonlinear in its pa-
rameters, thus the methods of nonlinear optimization are
used for its identi�cation. The sensitivity analysis in fre-
quency domain is used to improve the convergence of the
algorithms. The application of the developed technique on
experimental data demonstrates the accuracy of the consid-
ered model, as well as the successful implementation of the
identi�cation method.

Keywords|Vehicle Dynamics, Vehicle Control, Identi�ca-
tion, Nonlinear Optimization, Sensitivity Analysis.

I. Introduction

In the sector of transportation and highway, several pro-
grams have been developed over the last few years by tak-
ing advantages of recent technologies in mechatronics and
computer science. The aim of these programs, such ESP
(Electronic Stability Program) or X-by-Wire Systems, is
to increase the passenger safety and to improve the dy-
namic behaviour of transportation systems. The driver
assistance systems are generally real-time and embedded
controller, which are designed in subject to the vehicle's
dynamics models. It's obvious that the quality and eÆ-
ciency of the whole program depends on the accuracy of
the related models and the precision of their parameter
estimation. The two last mentioned requirements are the
subject of this paper. The related research occurs within
the scope of a cooperation between the Volkswagen AG and
the hannover center of mechatronics.
Majority of previous research on vehicle motion control

or vehicle model identi�cation were based on either strictly
lateral [2], [8], [14] or strictly roll [1], [15], or pure longitu-
dinal [1] dynamics models. It is known, however, that the
vehicle dynamics are not independent in those directions.
It was shown in [14], that the identi�cation of pure lateral
dynamics model yields inconsistent and operating point de-
pendent model parameters. Other very recent works fo-
cused on coupling the longitudinal with the lateral motion
[3], [11]. The importance of coupling the roll and lateral
dynamics for the purpose of motion controller's design were
demonstrated in [5] and [9].
In section II we present a vehicle dynamics model, which
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is based on coupling the lateral and roll DOF's over the
tire's slip angels. We remove several conventional simpli�-
cation on vehicle dynamics, such stationary tire behaviour
and the bicycle model assumption.
In respect to the identi�cation, the study of the model's

identi�ability and sensitivity follows in section III. This
study occurs by analyzing the sensitivity functions and the
transformation of the jacobi-matrices in the frequency do-
main. The identi�cation methodology is presented in sec-
tion IV. Its successful application to measurements of two
car types are then illustrated in section V

II. Vehicle Dynamics Model

As mentioned in the introduction, many studies on vehi-
cle's model identi�cation assume wide model simpli�cation
[2], [3], [12]. In this chapter we will remove some of those
assumptions and present a more complex dynamics model
for vehicle's motion.

A. Tire Dynamics

Most common tire model for lateral forces considers a
linear stationary relation between the lateral tire force Fy
and the slip angle �: Fy = c��, where c� is the tire cor-
nering sti�ness. It is known, that this assumption is valid
only for slow changing slip angles [6]. Thus a dynamic tire
model has to be considered, in order to design a suitable
controller for critical driving situations, at high steering
frequencies. The following �gure describes such a model.
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Fig. 1. dynamic tire model

The de�nition of a tire lateral sti�ness cy yields the fol-
lowing di�erential equation for the nonstationary lateral
force:

_Fy +
cy

c�
vFy = cyv� (1)

one obtains two tire's parameters, which have lately to



be identi�ed: the cornering sti�ness c� and the tire delay
constant lT = c�

cy

B. Roll Dynamics

The roll dynamics of vehicle has been studied in many
literature with varying complexity. For the purpose of con-
troller design, models have to be simple and accurate as
possible. For lateral dynamics identi�cation and control, it
is important to consider also the roll dynamics, since both
are coupled in reality [5], [14]. The schematic model is
shown in �gure 2. One distinguishes the sprung mass ma

from the masses of front and rear axis muf and mur.
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Fig. 2. roll dynamics

ma is suspended on four damper-, four spring- and two
stabilisator- devices. The dynamic equation of the roll mo-
tion is then :

J���+(df +dr) _�+(cSTf +cSTr+cf +cr)� = mahway (2)

with the damping constants:

df =
s2

4
(dfl + dfr); dr =

s2

4
(drl + drr); (3)

the spring's roll sti�ness:

cf =
s2

4
(cfl + cfr); cr =

s2

4
(crl + crr); (4)

Summarizing the terms in the equations yields the follow-
ing simple di�erential motion equation of the vehicle's roll
dynamics:

J���+ d� _�+ c�� = mahway (5)

where suÆxes f, r, l, r represent respectively front, rear,
left and right. Variables and Parameters in these and sub-
sequent equations are de�ned in Table I.

C. Lateral Dynamics

The dynamics equations of motion in terms of lateral
acceleration ay and yaw velocity _ can be written as

may = Fy;fl + Fy;fr + Fy;rl + Fy;rr (6)

Jz � = �lf (Fy;fl + Fy;fr) + lr(Fy;rl + Fy;rr) (7)
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Fig. 3. lateral dynamics

The system input is the steering wheel's angle ÆH . Con-
sidering the gear-ratio is and with the assumption of small
resulting front wheel's angle Æv = ÆH � i�1s and also small
slip angles �f , �r and �, the lateral forces can be obtained
from the tire dynamics model (equation 1). After build-
ing the time derivatives of lateral acceleration and the yaw
velocity, the lateral dynamics can be described by the fol-
lowing di�erential equations:

m _ay = �
v

lT;f
(Fy;fl + Fy;fr)�

v
lT;r

(Fy;rl + Fy;rr)

+c�f
v

lT;f
�f + c�r

v
lT;r

�r

(8)

Jz
d3

dt3
 =

vlf
lT;f

(Fy;fl + Fy;fr)�
vlr
lT;r

(Fy;rl + Fy;rr)

�c�f
vlf
lT;f

�f + c�r
vlr
lT;r

�r

(9)

D. coupled models

The coupling of lateral and roll dynamics can be achieved
by considering the vertical tire forces and their relation
to the lateral ones. This yields however an escalation of
the model complexity, which is desired neither in terms
of identi�cation nor in respect to control design. Another
physical e�ect can hence be used for this purpose. In fact
the roll motion contributes to the scaling down of the tire
slip angles:

�f = Æv �
lf
v
_ � � � hw

v
_�

�r = lr
v
_ � � � hw

v
_�

(10)

The substitution of eq. 10 in eq. 8 and eq. 9 yields
a high coupled di�erential equation system. Here is the
example for eq. 9:

Jz
d3

dt3
 � (c�f

l2f
lTf

+ c�r
l2r
lTr

) _ �

(c�f
lf
lTf

+ c�r
lr
lTr

)(vy + hw _�) = �c�fv
lf

lTf is
ÆH

v
lf
lT;f

(Fy;fl + Fy;fr)� v lr
lT;r

(Fy;rl + Fy;rr)

(11)



TABLE I

parameters and variables

Jz yaw inertia J� roll Inertia

lTf front delay c�f front stiffness

lTr rear delay c�r rear stiffness

c� roll stiffness d� roll damping

 yaw angle ay lat. accel.

� roll angle � vehicle slip

III. Model Identifiability and Sensitivity

The study of the identi�ability and sensitivity is the �rst
step of the identi�cation procedure. It informs, whether the
planned measurements will contain enough information for
the estimation of the parameter vector p. In the view of the
model complexity, the vehicle dynamics are subsequently
considered in frequency domain. In this chapter, an identi-
�ability study is brie
y presented. The following sensitivity
analysis allows to determine the e�ects of parameter, and
parameter changes on the model's response in frequency
domain.

A. model identi�ability

Identi�ability is a property of parametrization assuming
that there is a unique a priori system representation in-
dependently of the experimental data [3], [4]. There are
several methods for such a study. In [3] the identi�abil-
ity of the lateral dynamics sub-model was proved by using
the Taylor series approach [4]. Subsequently the Laplace
transform approach is used to prove the identi�ability of

the roll dynamics sub-model. The transfer function �(s)
ay(s)

in its canonial form is:

�(s)

ay(s)
= Hr(s;p) = mahw

J�1�

s2 + d�
J�
s+ c�

J�

(12)

With the known roll height hw and sprung mass ma, it
is easily to prove, that the set of equations binding the
canonial form of the transfer function with the unknown
model parameter has a unique solution. Thus the model
is structurally globally identi�able. The identi�ability (at
least local) of the whole coupled dynamics model can be
also easily proved by a numerical local approach proposed
in [4]. It consists into, producing �ctitious data by sim-
ulating the model with a nominal value of the parameter
vector. If the Estimation of the parameters by using a
second-order optimization method leads to stable results,
then the model is at least structurally locally identi�able.

B. sensitivity study

The e�ects of parameter and parameter changes on the
response of the model can be determined by investigat-
ing the sensitivity matrix (or functions). Due to the com-
plexity of the di�erential equations and the dependency of
the system's response on di�erent steering frequencies, it's
reasonable to consider the system sensitivity in frequency

domain. One consider the state vector:

x =
�
ay _ �

�T
(13)

and the parameter vector

p =
�
Jz lTf lTr c�f c�r J� d� c�

�T
(14)

The sensitivity matrix is de�ned as:

S = @x
@p

; Sij =
@xi
@pj

(15)

By considering the relation

_sij =
d

dt
(
@xi
@pj

) =
@

@pj
(
d

dt
xi) (16)

one can deduce the di�erential equations of the sensitivity
sij by di�erentiating the state di�erential equations and
initial conditions with respect to the parameters (witch
are set to zero) and changing the order of di�erentiation
[4]. The laplacian transformation leads then to the trans-
fer function in respect to the model input ÆH :

(H)s;ij =
L(sij)

L(ÆH)
(17)

since the system input is supposed to be independent on
model parameters. This procedure is shown for the exam-
ple of the sensitivity functions s36, s37 and s38 of the roll
angle � in respect to the parameters J�, d� and c�. The
di�erential equations are:

J��s36 + d� _s36 + c�s36 = ���

J��s37 + d� _s37 + c�s37 = � _�

J��s38 + d� _s38 + c�s38 = ��

(18)

The transfer function of the roll angle in respect to the

steering angle H�(s) = �(s)
ÆH(s) is already known form the

motion equations. The transfer functions of the sensitivity
functions of equation (18) can be formulated as:

s36(s) = �
s2

J�s2+d�s+c�
H�(s) � ÆH(s)

s37(s) = �
s

J�s2+d�s+c�
H�(s) � ÆH(s)

s38(s) = �
1

J�s2+d�s+c�
H�(s) � ÆH(s)

(19)

The computation of the sensitivity functions seems to re-
quire higher model order. All the algebraic equations (e.g.
equation 18 ) have the same homogeneous form, so that ac-
tually the computation can be considerably simpli�ed [4].
The Figures 4, 5 and 6 show the resulting 24 sensitivity
functions in frequency domain. The pictured functions are
normalized with respect to the maximum of each ampli-
tude.
The computed "Gain Response" of the sensitivity func-

tions informs about the e�ects of parameter uncertainty on
the system output at a given steering frequency. Changes
of the moment of inertia J�, for e.g. would have more in-

uence in the range of fast steering maneuvers. Besides the
analysis could help to inform about the optimal frequency
range, where the identi�cation of the parameters can be
performed.
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IV. The Identification Technique

Since the considered dynamics model is nonlinear in its
parameter,a nonlinear least square problem is formulated
for its identi�cation. The following loss function is consid-
ered:

I(p) = fTQf (20)

where f is a vector of the three nonlinear functions f(l;p),
which describe the errors between measured and estimated
data (obtained from the dynamics model). The data con-
sists respectively in the lateral acceleration ay, the yaw

velocity _ and the roll angle �. Q is a diagonal weight ma-
trix, whose coeÆcients are determined with regard to the
sensitivity functions. The minimization of the loss function
yields the estimated parameter vector p̂. The principle of
the identi�cation procedure is depicted in �gure 7.
The used technique is a trust region method for nonlin-

ear optimization [12], [4], since the functions f(l) are not
available analytically. For this purpose, the formulation of
the hessian matrix H of the loss function is needed. The
entries of this matrix with respect to parameter i are:

Hij =
@2I(p)

@pi@pj
= 2

X
(
@f(l)

@pi

@f(l)

@pj
+ f(l)

@2f(l)

@pi@pj
) (21)

By taking the jacobian J of the nonlinear function vector
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Fig. 7. Model's identi�cation with optimization

f , the Hessian of the loss function becomes:

H = 2JTJ+ 2
X

(f(l)
@2f(l)

@pi@pj
) = 2JTJ+ 2S2nd (22)

where S2nd is a second order sensitivity matrix. Since no
statement can be met about S2nd, its computation becomes
necessary. This can be reached by implementing appro-
priate approximation or using a universal Newton method
[12]. The optimization algorithm is then derived from the
formulation of the general Newton method by:

pk = pk�1 � (JTk�1Jk�1 + 2S2ndk�1)
�1JTk�1fk�1 (23)

It exists several numerical methods for the computation
of the inverse of the hessian matrix, such the Cholesky
factorization or the formulation of a linear least squares
problem [12], [4].

V. Experimental Results

In this section, the application of the proposed nonlinear
identi�cation technique on experimental data is presented
and illustrated. The measurements are taken up to two
vehicle types. Vehicle No. 1 is a middle class car, while
vehicle No. 2 is a transporter.

A. The Data Measurement

According to the sensitivity study in section III the steer-
ing angle as system input, should cover a frequency interval
up to at least 2.0 Hz. Such input is able to ensure optimal
excitation of all considered model parameters, and there-
fore a well conditioned identi�cation. For that reason, a
frequency sweep with a target frequency of about 2.2 Hz.



is chosen as a system input. The measurements were ac-
complished at di�erent constant vehicle forward velocities.
This helps avoiding the in
uence of the longitudinal dy-
namics, which were not taken into account in the model.

B. Dynamics estimation

The method of nonlinear optimization was applied on
the measurements. This yields the parameter vector p in
respect to the measured vehicle. The identi�ed parame-
ter are presented in the following section. The comparison
between the measured data of vehicle no.1 and the identi-
�ed model's output at a speed of 100 km/h is illustrated
in �gure 8.
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Fig. 8. comparison between measured and estimated vehicle's dy-
namics

As it can be seen, the identi�ed model is capable to re-
produce the measured data with high accuracy. This was
approved for all considered system output and is aÆrmed
by the comparison in frequency domain, which is shown
in �gure 9. In contrast to classic approaches of dynamics
modeling the proposed coupled model is able to reconstruct
the real vehicle's behaviour for a wide frequency range. The
representation of car lateral dynamics by means of the bi-
cycle model for e.g. is only available under strict assump-
tions, such as low steering frequencies and middle-ranged
car speed. This is a disadvantage for designing accurate
dynamics controller. The obtained good results in respect
to the presented coupled model is due to focusing on ac-
curate tire modeling. Taking account of the non station-
ary behaviour (equation 1) yields better reconstruction of

Frequency [Hz]

lateral acceleration

yaw velocity

roll angle

Fig. 9. comparison between the frequency response of real vehicle
and the respective identi�ed model

measured data for high steering frequencies. On the other
hand, the in
uence of the roll motion on the tire slip angles
(equation 10) have augmented the model's accuracy for low
driving speed.

C. Parameter Identi�cation

The results of the successful parameter identi�cation for
the two considered vehicles is listed in table 1. To vali-
date the availability of the presented approaches for both
dynamics modeling and identi�cation technique, it is inter-
esting to observe the model parameter, determined at dif-
ferent vehicle speed. By means of the experimental results
accomplished with Vehicle No.2, we focus on the impor-
tance of considering coupled car dynamics. For this pur-
pose, the identi�cation procedure is executed for a coupled
and a non-coupled dynamics models. The results are exem-
plarily depicted in �gure 10 and �gure 11, respectively for
the yaw Inertia and rear cornering sti�ness. These param-
eter are chosen, since they represent an important criteria
for evaluating the lateral dynamics behaviour and drive
stability and therefore in
uence the design of controller.
The results show, that ignoring the interaction between

the vehicle's roll and lateral dynamics yields nonconstant



TABLE II

identified parameters for two vehicles

pi unit vehicle no.1 vehicle no.2

Jz [kgm2] 2760 4820

lTf [m] 1.01 0.48

lTr [m] 0.56 0.81

c�f [kN] 105.1 118.3

c�r [kN] 174.9 205.6

J� [kgm2] 447 645

d� [Ns] 590 400

c� [kN] 210 822

v [km/h]

Fig. 10. identi�ed rear cornering sti�ness for coupled and non-
coupled dynamics at di�erent car speed

parameters for di�erent operating points. This e�ect was
observed in [14], for the identi�cation of truck's lateral dy-
namics. This case occurs, for all vehicles with high cen-
ter of gravity, since the roll motion contributes widely to
the vehicle's behaviour and can not be therefore neglected.
Non-stationary tire characteristics leads merely to better
reconstruction of measured data, but not to detect roll dy-
namics e�ects. At the other hand, positive roll motion
decreases tire slip angles (equation 10). The considered
vehicle can then be represented by a coherent dynamics
model, which is available for a wide range of speed and
steering frequencies.

v [km/h]

Fig. 11. identi�ed yaw Inertia for coupled and non-coupled dynamics
at di�erent car speed

VI. Conclusions

For the purpose of controller design for car dynamics,
complex dynamics have been took into account in order
to reproduce accurately real vehicle's behaviour. The ob-
tained model is high nonlinear in its parameter, thus a
suitable technique for its identi�cation has been proposed.
Nonlinear optimization with nonlinear least square ap-
proach and based on the trust region methods has been
successfully implemented. This procedure was adjusted
according to the sensitivity study of the model. The per-
formance of the identi�ed model was shown by means of
experimental data. The real car dynamics could been re-
constructed with high accuracy, for a wide range of steering
frequencies and vehicle's speed.
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