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Abstract

A definition of the zero structure of an n-D polynomial
matrix is developed from previous work by Zerz, and
the nature of its invariance is established.

1 Introduction

Structural (algebraic) invariants play a crucial role in
control systems analysis, since such an invariant fre-
quently encapsulates some particular system property.
Thus in classical multivariable theory [8] the zeros of a
polynomial matrix are basic to the study of, for exam-
ple, system stability, controllability and observability.
The analysis of a system is frequently aided by trans-
forming it to some simpler (reduced) but equivalent
form, and in this the extent to which structural in-
variants are invariant under such transformations is an
important issue. The relevant indicators of a system’s
behaviour must not be changed by such action, if the
conclusions of the reduced system’s behaviour are to
remain valid for the original system.

In contrast to classical multivariable systems theory,
the analysis of mutidimensional (n-D) systems is much
less developed, in part due to dislocation in the inter-
pretation of invariants, in the strict algebraic sense, as
indicators of specific system properties. Zerz [11], how-
ever, has made solid the connection between the zero
structure of an n-D polynomial matrix, and the con-
trollabiltiy and observability (in a behavioral setting)
of the system it represents. This paper refines this
definition of zero structure [11], and presents results
concerning its invariance with repect to a transforma-
tion which has particular relevance to the n-D systems
setting [6], [7].

2 Preliminary Definitions

Let F be a field. The ideal generated by the poly-
nomials f1, . . . , fs ∈ F [x1, . . . , xn], denoted by I =
〈f1, . . . , fs〉, is defined as

〈f1, . . . , fs〉

� {
s∑

i=1

uifi|ui ∈F [x1, . . . , xn], i = 1, . . . , s}

S = {f1, . . . , fs} is then called a generating set for I.

Definition 1. The VARIETY defined by the ideal I =
〈f1, . . . , fs〉, denoted VF̄ (I), is defined to be the set of all
solutions in F̄ (where F̄ denotes the algebraic closure
of F ) of the system of algebraic equations

f1 = 0, f2 = 0, . . . , fs = 0 (1)

i.e. VF̄ (I) � {a = (a1, . . . , an) ∈ F̄n;
fi(a) = 0, i = 1, . . . , s}

Any a ∈ VF̄ (I) is called a ZERO of f1, . . . , fs.

Invariably the fields F we shall use are R and C. C
is algebraically closed, while R̄ = C. It is noted that
VF̄ (〈f1, . . . , fs〉) =

⋂s
i=1 VF̄ (〈fi〉).

Lemma 1. VF̄ (I) = ∅ if and only if 1 ∈ G, where G
is some Gröbner basis for the ideal I [1]. (i.e. given
polynomials f1, . . . , fs, then there are no solutions to
the system f1 = 0, f2 = 0, . . . , fs = 0 in F̄n if and only
if {1} is the reduced Gröbner basis for I.)

Definition 2. The set S = {f1, . . . , fs} is said to be
zero coprime if there exists no value a = (a1, . . . , an) ∈
F̄n such that f1, . . . , fs are identically zero.

It follows that S = {f1, . . . , fs} is zero coprime iff
VF̄ (I) = ∅ where I � 〈f1, . . . , fs〉.

Definition 3. S = {f1, . . . , fs} is said to be factor
coprime if there exists no g ∈ F [x1, . . . , xn], which is a
common divisor of f1 . . . , fs.
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Generally in the case of polynomials in more than one
indeterminate, factor coprimeness does not imply zero
coprimeness,. i.e. it is only in the case n = 1 that the
variety defined by the ideal generated by a set of 1-D
polynomials is empty coincides precisely with the set of
the 1-D polynomials being factor coprime. In general
where n > 1, even if the set of polynomials is factor
coprime, the variety defined by this set of multivariate
polynomials might not be empty, unless the polynomi-
als are additionally zero coprime. A result used in the
sequel is

Lemma 2. Let g, h ∈ F [x1, . . . , xn] and suppose that
g divides fih, written g|fih, for i = 1, . . . , s where S =
{f1, . . . , fs} is a factor coprime set of polynomials, then
g|h.

3 Zero Structures of Matrices

Let P (x) be a p × q n-D polynomial matrix, where x
denotes the n-tuple (x1, . . . , xn). For ease of presenta-
tion we shall assume that P (x) is of full rank and its
rank r is min(p, q).

There are various zero structures one can define for
P (x), but all definitions are based on the property that
a zero is associated with a rank reduction of the matrix.

Definition 4. The ith DETERMINANTAL DIVISOR
di(x) of the matrix P (x) is the greatest common divisor
of the ith order minors of P (x). The zeros of di(x), i =
1, . . . , r, are called the ith DETERMINANTAL ZEROS
of P (x).

This definition is the direct extension of the 1-D case
where it characterises exactly the situation in which a
1-D matrix loses rank. The simple example P (x) =
(x1 x2) has d1(x) = 1 and so has no determinantal
divisors. Nevertheless P (x) loses rank for x1 = x2 = 0.
We require a more complete definition.

For any p× q n-D polynomial matrix P (x), let m(i,j)

denote the i × i minors of P (x) where j = 1, . . . , ki =
p!

i!(p−i)!
q!

i!(q−i)! . Denote the ideals generated by the i× i

minors of P (x) by I
[P ]
i and write I

[P ]
i = diJ

[P ]
i , where

J
[P ]
i is the ideal generated by the set of polynomials

which result from the i× i minors of P (x) when the ith

determinantal divisor di(x) is removed. Clearly each
ideal J

[P ]
i is generated by a set of factor coprime poly-

nomials. This set may not be additionally zero coprime
which is the distinctive feature of n-D (n > 1), and the
situation which the previous simple example illustrates.
These considerations lead us to the following definitions
which are developed from Zerz [11].

Definition 5. The ith ORDER INVARIANT ZEROS
of an n-D polynomial matrix P (x), are the elements

of VF̄ (I [P ]
i ) (the variety defined by the ideal I

[P ]
i ), i =

1, . . . , r.

Definition 6. The ALGEBRAIC MULTIPLICITY of
an invariant zero a = (a1, . . . , an) ∈ F̄n is the non-
negative integer n(a) defined as

n(a) � r − rank P (a)

Rather loosely we say

Definition 7. The ith GEOMETRIC MULTIPLIC-
ITY δi(a) of an invariant zero a = (a1, . . . , an) is the
number of times a occurs in the variety VF̄ (I [P ]

i ).

The fact that every i×i minor can be written as a linear
combination of (i − 1) × (i − 1) minors has a number
of consequences which are summarised in 1-D by the
relationships

di(x)|di+1(x), i = 1, . . . , r − 1 (2)

In n-D the implications are

Theorem 1. If If P (x) is a p× q matrix then

I [P ]
r ⊆ · · · ⊆ I

[P ]
1

VF̄ (I [P ]
r ) ⊇ · · · ⊇ VF̄ (I [P ]

1 )

Proof. Clearly since any i × i minor can be expressed
in terms of (i− 1)× (i− 1) minors then

m(i,j) ∈ I
[P ]
i−1

Hence I
[P ]
i ⊆ I

[P ]
i−1 and the rest follows.

Corollary 1. If di(x) denotes the ith determinantal
divisor of P (x) then

〈dr〉 ⊆ · · · ⊆ 〈d1〉

VF̄ (〈dr〉) ⊇ · · · ⊇ VF̄ (〈d1〉)

Example 1. Consider the 3-D polynomial matrix given
by

P (x, y, z) =
[
x2 0 xy
0 z2 xz

]

The ideals generated by the first and second order mi-
nors are:

I
[P ]
2 = 〈x3z, x2z2,−xyz2〉 (3)

I
[P ]
1 = 〈x2, xy, xz, z2〉 (4)
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It is clear that I2 ⊂ I1, as every element of I2 can be
written in terms of elements in I1. Note that d2 =
xz, d1 = 1 and so 〈d2〉 ⊆ 〈d1〉. It follows then that

J
[P ]
2 = 〈x2, xz,−yz〉 (5)

J
[P ]
1 = 〈x2, xy, xz, z2〉 (6)

Now, for example −yz ∈ J
[P ]
2 , but /∈ J

[P ]
1 , since it

clearly cannot be expressed as a linear combination of
the elements of the generating set for J

[P ]
1 . Therefore

J
[P ]
2 � J

[P ]
1 . Also xy ∈ J

[P ]
1 but /∈ J

[P ]
2 , for the same

reason. Thus J
[P ]
2 � J

[P ]
1 This illustrates the non-

existence of a definite inclusion between the ideals J
[P ]
i .

4 The Invariance of Zeros

Whichever approach is adopted, say the clasical one of
[8] or the behavioral one of [9] one is lead invariably to
the study of polynomial matrices as a basic element in
much of the analysis of linear systems. The invariant
zeros of such matrices have implications in the study of
problems such as, for example, stability in n-D systems
theory [3], and controllability and observability of n-D
systems [11]. We wish to determine the nature of the
invariance of such zeros.

Definition 8. [10] Two p × q, p × l (respectively p ×
q, m × q) n-D polynomial matrices T (x), U(x) (resp.
T (x), V (x)) are said to be ZERO LEFT (resp. RIGHT)
COPRIME, written zlc (resp. zrc) in case

rank
(
T (x) U(x)

)
= p(

resp. rank
(
TT (x) V T (x)

)T = q
) (7)

∀ x ∈ F̄n.

An immediate consequence of the previous definition is

Theorem 2. [11] The p× q, p× l n-D polynomial ma-
trices T (x), U(x) are zlc iff

(
T (x) U(x)

)
possesses no

invariant zeros, with a similar statement holding for
zrc.

For many reasons it is necessary to transform a polyno-
mial (system) matrix to a simpler but equivalent form.
One fundamental equivalence transformation in the n-
D context, with rich properties from this point of view,
is the following [2], [6], [7].

Definition 9. Denote the class of (s+p)× (s+q) n-D
polynomial matrices by P(p, q), where s > −min(p, q).

P1(x), P2(x) ∈ P(p, q) are said to be ZERO COPRIME
EQUIVALENT (ZC-E) in case ∃ polynomial matrices
L(x), R(x) of appropriate dimensions such that

L(x)P1(x) = P2(x)R(x) (8)

with L, P2 zlc, and P1, R zrc.

One main result which is proved here for full rank ma-
trices (for simplicity) is

Theorem 3. Suppose that Pi(x) ∈ P(p, q), with di-
mensions pi×qi, i = 1, 2 where p1−q1 = p2−q2(= p−q)
are ZC-E according to the relation

M(x)P2(x) = P1(x)N(x) (9)

then
I
[P1]
h1−i = I

[P2]
h2−i, i = 0, . . . , h (10)

where h = min(h1 − 1, h2 − 1), h1 = min(p1, q1), h2 =
min(p2, q2), and where I

[·]
j denotes the ideal generated

by the j× j minors of the indicated polynomial matrix.
For any i > h, I

[P1]
h1−i = 〈1〉 or I

[P2]
h2−i = 〈1〉 in case

h1 − i > 0 or h2 − i > 0.

Proof. (Sketch) Assume the matrices P1, P2 have full
rank. From the coprimeness requirements of ZC-E ∃
polynomial matrices X(x), Y (x), W (x), Z(x) of appro-
priate dimensions such that

MX + P1Y = Ip1 (11)
WP2 + ZN = Iq2

From (9) and (11) it follows that(
W −Z
M P1

) (
P2 X
−N Y

)
=

(
Iq2 J
0 Ip1

)
(12)

where J = WX − ZY .

For any matrix Q let Qi1,...,ik

j1,...,jk
denote the k× k subma-

trix formed from rows i1, . . . , ik and columns j1, . . . , jk.
Consider then the following equation formed from ,(12)

(
Ei1,...,ik 0

M P1

)
︸ ︷︷ ︸

A

(
P2j1,...,jk

X

−Nj1,...,jk
Y

)
︸ ︷︷ ︸

B

=
(

P2
i1,...,ik

j1,...,jk
Xi1,...,ik

j1,...,jk

0 Ip1

) (13)

where k = h2, . . . , 1 if h1 > h2, and k = h2, . . . , h2 −
h1 + 1 if h2 > h1, and Ei1,...,ik is that matrix whose
r, sth element is 1 if s = ir, and zero otherwise.

Take determinants of of both sides of (13), and use the
Cauchy-Binet theorem to expand the left hand side.
This gives
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∑
m

|A1,...,p1+k
m1,...,mp1+k

| |Bm1,...,mp1+k

1,...,p1+k | = |P2
i1,...,ik

j1,...,jk
| (14)

Now the form of A indicates that any factor of A of the
type occurring in the left hand side of (14) for which
{i1, . . . , ik} is not a subset of {m1, . . . , mp1+k} is zero.
Thus all minors of A which occur in the left hand side
of (14) contain the columns {i1, . . . , ik}. Such a factor
is then expressible via Laplace expansion in terms of
products of minors of M and P1. The smallest minor
of P1 occuring in this Laplace expansion is of order p1+
k−p2(= h1 +k−h2). Thus |P2

i1,...,ik

j1,...,jk
| is expressible as

a linear combination of minors of P1 of order h1+k−h2

and greater. Since any minor can be expanded in terms
of lower order minors, it follows that |P2

i1,...,ik

j1,...,jk
| can be

written as a linear combination of the h1 +k−h2 order
minors of P1. It thus follows (on writing i = h2 − k)
that

I
[P2]
h2−i ⊂ I

[P1]
h1−i, i = 0, . . . , h (15)

By the symmetry property of the ZC-E relation

M ′P1 = P2N
′

where M ′(x), N ′(x) are p2×p1, q2×q1 polynomial ma-
trices, and M ′(x), P2(x) are zero left coprime, P1(x),
N ′(x) are zero right coprime. Applying the same pro-
cedure as above gives:

I
[P1]
h1−i ⊂ I

[P2]
h2−i

where i = 0, . . . , h, and so the theorem follows.

The theorem has a number of corollaries.

Corollary 2. If V (I) is the variety generated by the
ideal I, then under the conditions of Theorem 3

V (I [P1]
h1−i) = V (I [P2]

h2−i) for i = 0, 1, . . . , h (16)

and for any i > h, V (I [P1]
h1−i) = ∅ orV (I [P2]

h2−i) = ∅ in
case h1 − i > 0 or h2 − i > 0. Further if a ∈ F̄ is an
invariant zero of P1 with algebraic multiplicity n(a) and
geometric multilicities δh1−n(a)+1(a), . . . , δh1(a) then a
is a zero of P2 with identical algebraic and geometric
multiplicities.

Theorem 3 taken together with Lemma 2 gives

Corollary 3. Let d
[P1]
i , d

[P2]
i denote the ith determi-

nantal divisors of the matrices P1, P2 respectively, re-
lated as in theorem 3. Let V (〈d[P1]

i 〉), V (〈d[P2]
i 〉) de-

note the varieties defined by the ideals generated by
d
[P1]
i , d

[P2]
i then

d
[P1]
h1−i = cid

[P2]
h2−i

V (〈d[P1]
h1−i〉) = V (〈d[P2]

h2−i〉)

where i = 0, . . . , h, and ci ∈ R\{0}.

Suppose the ideal Ii generated by the i × i minors of
the n-D matrix P is written diJ

[P ]
i . Although we have

seen that no particular relation of inclusion holds be-
tween the ideals J

[P ]
i there is something that can be

said about the corresponding ideals of matrices P1 and
P2 related by ZC-E

Corollary 4. Let the matrices P1 and P2 be related as
in theorem 3,and the ideals J

[P1]
i and J

[P2]
i be as defined

above then

J
[P1]
h1−i = J

[P2]
h1−i

V (J [P1]
h1−i) = V (J [P2]

h2−i)

where i = 0, . . . , h.

Proof. By theorem 3 and corollary 3, we have:

d
[P1]
h1−iJ

[P1]
h1−i = cid

[P2]
h2−iJ

[P2]
h2−i (17)

for i = 0, . . . , h and hence the result follows

5 Implications for MFDs

The above results have an immediate implication for
matrix fraction descriptions of an n-D transfer function
matrix. For given a p×q, n-D transfer function matrix
G(x), it is known that if there exist a (left or right)
zero coprime MFD, then all coprime MFD’s (left and
right) of G(x) are zero coprime [2]. Hence we have

Theorem 4. Let G(x) be an n-D rational matrix which
possesses a zero coprime MFD. If

G(x) = N1(x)D−1
1 (x) (18)

= D−1
2 (x)N2(x)

are any coprime factorisations of G(x) then

I
[D1]
q−i = I

[D2]
p−i for i = 0, . . . ,min(p− 1, q − 1) (19)

where, for i > min(p−1, q−1), I
[D1]
q−i = 〈1〉, I [D2]

p−i = 〈1〉
in case q − i > 0 or p− i > 0.

I
[N1]
k = I

[N2]
k for k = 1, . . . ,min(p, q) (20)

Generally when an n-D transfer function matrix, G(x),
has an MFD which is other than zero coprime then
only restricted statements are available. The main re-
sult is that the coprimeness type of the MFD is latent
in its handedness. That is, for example if G(x) has
one minor (resp. factor) coprime left MFD then all co-
prime left MFDs are of this coprimeness type. Nothing
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can be inferred about the coprimeness of right MFDs
of G(x) which may be either (but not both) minor or
factor coprime. The main result above has utilised the
Bezout characterisation of zero coprimeness, and only
a restricted version of this is available in the case of mi-
nor coprimeness, while no such characteristaion exists
at all for factor coprimeness. In case G(x) has both left
and right MFDs of the minor coprimeness type then the
previous theorem may be extended to the following

Theorem 5. Let G(x) be a p× q n-D rational matrix
which possesses minor coprime left and right MFDs. If

G(x) = N1(x)D−1
1 (x) (21)

= D−1
2 (x)N2(x)

are any coprime factorisations of G(x) then

I
[D1]
q−i ⊇ Ψj(xj)qI

[D2]
p−i (22)

I
[D2]
p−i ⊇ Φj(xj)pI

[D1]
q−i (23)

where i = 0, 1, . . . , h, h = min(p − 1, q − 1), j =
1, . . . , n, and where I

[.]
n denotes the ideal generated by

the n × n minors of the indicated polynomial matrix.
Here Ψj(xj), Φj(xJ) j = 1, . . . , n are the n-D poly-
nomials, in which the indicated indeterminate is ab-
sent, given in the Bezout minor coprime characterisa-
tion [10],

N1Xj + D1Yj = Ψj(xj)Ip1 (24)
WjD2 + ZjN2 = Φj(xj)Iq2 (25)

for j = 1, . . . , n

Clearly analogous results hold for the ideals generated
by the minors of N1, N2.

6 Conclusions

The study of polynomial matrices lies at the heart of
much of linear systems analysis. Particularly the zero
structure of such matrices plays a vital role in the 1-D
theory, and the work of Zerz, for example, highlights
its importance in n-D theory. Here a certain zero struc-
ture is developed from [11] and is shown to be invariant
under the transformation of ZC-E. This is an important
result since ZC-E has been established ([6], [7]) as being
a fundamental transformation for the reduction of lin-
ear n-D systems. It also has immediate implications for
the structure of certain matrix fraction descriptions of
an n-D transfer function matrix, as has been described.
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