
1

On actuators/sensors placement for collocated
flexible plates

G. Caruso

ITC-CNR, viale Marx 43 - 00137 Roma, Italy

S. Galeani, L. Menini

Dip. di Informatica, Sistemi e Produzione - Univ. Roma Tor Vergata

via del Politecnico, 1 - 00133 Roma, Italy

Abstract—The problem of optimal placement of actuators

and sensors for a collocated flexible structure is studied. For

a given number of available piezoelectric patches of fixed

dimensions to be bonded on the plate, the best locations

are looked for in order to maximize the modal controllabil-

ity and observability of the structure. A related problem,

leading to an optimal actuator and sensor placement for a

reduced order model, is also taken into account.
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I. Introduction

The problem of optimal placement of actuators and sen-
sors for flexible structures has been the subject of much
research in recent years (see e.g. [2], [3], [4] and references
therein). As usual in optimization problems, the actual
meaning of “optimal placement” is strongly related to the
criterion of optimality adopted, which in turn ultimately
relies on the real world problem under study: for example,
the problem studied in [2] aims at choosing the actuators
and sensors locations optimizing an LQR or LQG perfor-
mance index, i.e., the eventual aim of actuators/sensors
placement is in connection with the design of an LQR or
LQG controller; in [3], a structural testing problem is stud-
ied under the assumption that the actuators and sensors
used for testing cannot be placed in the actual locations
on which disturbances act and performance output is mea-
sured, so that the considered optimization aims at identi-
fying actuators/sensors locations such that the modal con-
trollability and observability in testing conditions is as close
as possible to the modal controllability and observability
experienced from the disturbance input to the performance
output in operation conditions; in [4], the optimization of
spatial H2 controllability was considered in order to obtain
a highly controllable structure in an average sense, with the
constraint of guaranteeing some minimum modal controlla-
bility and observability on each low frequency mode (i.e.,
on each mode in the bandwidth of interest for vibration
reduction) and the additional constraint of guaranteeing
some maximum modal controllability and observability on
few additional high frequency modes (in order to attenuate
spillover effects from the modes outside the bandwidth of
interest for vibration reduction).

In this paper, a numerical study is performed with the
aim of designing an experimental setup for testing both ac-
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tive and passive control algorithms for steel plates actuated
and sensed via collocated piezoelectric actuators/sensors.
For a given number of available piezoelectric patches of
fixed dimensions to be bonded on the plate, the best loca-
tions are looked for in order to maximize the modal con-
trollability and observability of the structure. In particular,
given a model considering several low frequency modes of
the plates, two cases often encountered in real world appli-
cations are considered: in the first case the optimal loca-
tions are chosen as the ones guaranteeing the highest modal
controllability/observability for all the modes in the model,
whereas in the second case it is assumed that a lower order
model is sought for control purposes, and then in order to
limit spillover effects the optimal locations are identified as
those providing the largest gap between the controllabil-
ity and observability of the low frequency, reduced order
model and the controllability and observability of the ne-
glected modes.

II. Simplified modelling

A simplified model based on Kirchhoff-Love theory is
here considered in order to describe the dynamic of the
piezoactuated plate, whose thickness is h, Young modulus
E, Poisson ratio ν and whose density is ρ. It is assumed
that the piezoelectric patches bonded on the plate are thin
enough, and then have negligible influence on the shape of
the eigenmodes and on the values of the eigenfrequencies.

A modal analysis of the dynamical problem is performed,
by expanding all the unknown quantities as a linear com-
bination of the structural eigenfunctions. For simplicity,
simply supported boundary conditions are chosen for the
plate, so that the eigenfunctions can be analytically de-
termined. For different boundary conditions, the modal
shapes can be numerically evaluated using a finite element
code, or the analysis can be performed using an appropriate
set of Rayleigh functions [6].

The effect of the piezoelectric actuators consists of shear
forces, exerted on the plate along the actuator boundaries
and proportional to a control voltage Va applied between
the piezoelectric electrodes; these forces result in line mo-
ments applied on the plate. In particular, by neglecting
the mechanical stiffness of the thin piezoelectric patches,
the actuating shear force per unit length f i

a exerted by the
i−th actuator is given by

f i
a = −e31V

i
a , (1)
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where Ri(·, ·) is the characteristic function relevant to the
i−th piezoelectric actuator, which is equal to 1 if the point
x, y belongs to the i−th piezoelectric patch and zero else-
where, V i

a is the control voltage on the i−th piezoelectric
actuator and e31 = e31 − c31e33/c33; e31, e33, c31 and c33

are piezoelectric constants according to Voigt notation and
the usual assumption of negligible normal stresses in the
piezoelectric patches has been enforced [1].

The sensing voltage Vs which can be measured between
the electrodes of a piezoelectric sensor is given by the fol-
lowing expression

V i
s = −

1

Ai

h

2

∫

[
hi

ε33
e31∆(w)]dA, (2)

where Ai is the area of the i piezoelectric sensor, hi is
its thickness, w is the plate mid plane deflection and
ε33 = ε33 + e2

33/c33 is the clumped piezoelectric capac-
ity. Moreover ∆ is the Laplace operator and e33 is another
piezoelectric constant. The actuated plate equation can be
written as

D∆2w + ρh
∂2w

dt2
=

na
∑

k=1

(−
h

2
e31V

k
a ∆(Rk(x, y))), (3)

where D = Eh3/(12(1 − ν2)) is the plate stiffness.
The solution of (3) can be given the following expansion:

w(x, y, t) =

+∞
∑

p=1

+∞
∑

q=1

αpq(x, y)βpq(t), (4)

where, for simply supported boundary conditions and a
plate of dimensions a × b, the (p, q)−th eigenmode can be
analytically obtained as

αpq(x, y) = C0 sin
(πpx

a

)

sin
(πqy

b

)

, (5)

and C0 is a normalization constant. Taking C0 = 2√
ρhab

,

the modal coordinate βpq(t) is the solution of

β̈pq(t) + Kpqβpq(t) =

NP ZT
∑

i=1

γi
pqV

i
a , (6)

and the output voltages can be expressed as

V i
s =

+∞
∑

p=1

+∞
∑

q=1

ηi
pqβpq(t), (7)

where, defining Γ(x1, x2, w) := cos (wπx1)−cos (wπx2) and
denoting by ap, bp the length and the width of the piezo-
electric patch and by hp its thickness,

Kpq =
D

ρh

(

(pπ

a

)2

+
(qπ

b

)2
)2

,

γi
pq = −C0KP

(

pb

qa
+

qa

pb

)

Γ(xi,1, xi,2, p/a)Γ(yi,1, yi,2, q/b),

ηi
pq = −C0KS

(

pb

qa
+

qa

pb

)

Γ(xi,1, xi,2, p/a)Γ(yi,1, yi,2, q/b),

KP = −
h

2
e31,

KS = −
hp

apbp

e31

ε33

h

2
.

TABLE I

Physical parameter values.

h [m] 0.0015
E [GPa] 210
µ [] 0.3
ρ [kg/m3] 7850
ha [m] 0.000127
c11 [GPa] 133
c12 [GPa] 77.5
c13 [GPa] 87
c33 [GPa] 127
c44 [GPa] 26.7
e15 [C/m2] 13.37
e31 [C/m2] -7.22
e33 [C/m2] 15.10
ε11 [nF/m] 9.97
ε33 [nF/m] 8.70

TABLE II

First eigenfrequencies and gaps.

p q Freq. (Hz) ∆ freq. ∆ freq. (rel.)
1 1 322 328 1.01
2 1 650 309 0.47
1 2 960 237 0.24
3 1 1198 90 0.07
2 2 1289 547 0.42
3 2 1836 128 0.06
4 1 1964 59 0.03
1 3 2024 328 0.16
2 3 2353 250 0.10
4 2 2603 297 0.11
3 3 2900 49 0.01
5 1 2950 - -

Considering only a finite number of modes in (6) and (7)
by imposing p = 1, . . . , Nx and q = 1, . . . , Ny, a finite di-
mensional linear time invariant system describing the plate
is obtained. In such a modal model, in order to take into
account the natural damping of the structure, it is custom-
ary to assume a small proportional damping (though this
damping does not appear in (6); in this paper, ζ = 0.01).
Actual values of the physical parameters for the plate and
piezoelectric patches under study are given in table I.

Using the model described above, the eigenfrequencies
(equal to

√

Kpq) of the first modes have been obtained;
in particular, Table II shows the first twelve lowest eigen-
frequencies, the corresponding values of (p, q), the gap be-
tween each eigenfrequency and the following one, and the
relative gap between each eigenfrequency and the following
one (obtained as the elementwise ratio between the forth
and the third column).

From the reported values, it seems reasonable to focus
the control efforts on frequencies below 1.5 kHz, i.e., to
consider M = 5 modes in a model of the system to be used
for control purposes. The resulting state space model will
have a state of dimension 10 and will be called the “reduced
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model” in the sequel. The eigenfunctions relative to the five
lowest frequency modes are represented in figures 1-5.

In fact, for the analysis to follow another model (which
will be called the “higher order model”) will also be of in-
terest. As a matter of fact, when a controller designed
on the basis of the reduced model is applied to the real
structure, spillover effects can appear due to the dynamics
neglected in the reduced model; such spillover effects will
be particularly evident if the actuators/sensors locations
leading to high controllability/observability levels for the
low frequency modes actually make some of the higher fre-
quency neglected modes even more controllable/observable
than the low frequency modes considered in the reduced
model. In order to study the effects of actuators/sensors
placement on higher frequency modes too, a representative
number of additional eigenmodes has been taken into ac-
count by choosing the values of the parameters Nx = 4
and Ny = 3; hence, the total number of modes contained
in the state space description of the higher order model is
N = Nx · Ny = 12, and its state has dimension 2N = 24.

In order to select the best locations for the collocated
piezoelectric actuators/sensors, the surface of the plate
has been divided in NCOL = a

ap
= 10 columns and

NROW = b
bp

= 10 rows, so that the rectangles resulting at

the intersection of each couple (column,row) have exactly
the size of a piezoelectric patch and can be considered as
a possible location. It should be noticed that even if such
a choice makes available only NCOL · NROW = 100 possi-
ble locations for each patch, the number of total possible
configurations that are to be checked when more actua-
tor/sensor pairs are to be placed rapidly increases with
the number NPZT of patches: in particular, taking into
account that a patch cannot be placed on top of another
patch and that the patches are indistinguishable from each
other,

(

100

2

)

= 4950 configurations are to be checked when

NPZT = 2, and
(

100

3

)

= 161700 configurations are to be
checked when NPZT = 3. In general, the number of config-
urations increases as

(

NROW ·NCOL

NP ZT

)

, and clearly such order
of magnitude cannot be significantly lowered even if sym-
metries among configurations are taken into account.

Depending on the chosen positions for the piezoelectric
patches, the resulting simplified models are characterized
by different controllability/observability levels. The next
two sections are devoted to choose the “best” positions for
the patches according to two indexes of interest in control
applications.

III. Optimal placement max (σ2M ): maximization
of the minimum singular value

The first approach considered in order to select the
“best” locations for the piezoelectric patches is simply
aimed to get a highly controllable/observable reduced
model (taking into account only the M = 5 lowest fre-
quency modes of the system). In order to achieve this
goal, the patch locations are selected which guarantee the
highest controllability/observability of the least control-
lable/observable mode, i.e., a maximization of the smallest
singular value of the controllability/observability gramians
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Fig. 1. The first eigenmode of the plate.
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Fig. 2. The second eigenmode of the plate.
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Fig. 3. The third eigenmode of the plate.
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Fig. 4. The fourth eigenmode of the plate.
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Fig. 5. The fifth eigenmode of the plate.

corresponding to each actuator/sensor configuration is per-
formed.

For a given realization (A,B,C,D) of an asymptotically
stable system, the controllability gramian WC and the ob-
servability gramian WO can be obtained as the unique sym-
metric, positive semidefinite solutions of the following Lya-
punov equations:

AWC + WCAT + BBT = 0,

AT WO + WOA + CT C = 0.

It is a well known fact [7], [5] that in order to have
a consistent indication of the levels of controllability and
observability of the modes of a system, it is not enough
to look at the controllability/observability gramians of a
generic realization of the system. In fact, in general a
given mode can be highly controllable and poorly observ-
able according to the gramians obtained for a given real-
ization, while being poorly controllable and highly observ-
able according to the gramians obtained for another real-
ization (such conclusion is immediate in the single input,
single output case: in such a case, it is easy to see that
(A,B,C,D) and (AT , CT , BT , DT ) are both realizations
of the same system, but the controllability/observability
gramians of the second realization are, respectively, the ob-
servability/controllability gramians of the first realization).

4’ 2’ 2” 4”
3’ 1’ 1” 3”

3 1 1”’ 3”’
4 2 2”’ 4”’

Fig. 6. max (σ2M), NPZT = 1. Optimal location (1), corresponding
symmetric locations (1’), (1”), (1”’); next three suboptimal locations
(2)(3)(4) and their symmetric locations.

However, it can be proven that among the class of equiva-
lent realizations of a system, there always exists a balanced

realization, i.e., a realization whose controllability and ob-
servability gramians are equal; hence, consistent informa-
tion can be obtained by considering a balanced realization,
for which the singular values of the controllability (equiva-
lently, observability) gramian simultaneously measure the
controllability and observability of the modes. As custom-
ary, the singular values of the controllability gramian of a
balanced realization with state of dimension 2M will be
denoted as σ1, . . . , σ2M , with σ2M being the smallest one.

Since the flexible plate has two axes of symmetry (the
two lines connecting the centers of the opposite sides of the
plate), for each configuration of the piezoelectric patches
(optimal or not) it will be possible to find either one or
three configurations (which in the sequel will be called
“symmetric locations” for brevity) leading to the same per-
formance: in particular, such symmetric locations can be
identified by a rotation of π radians around one axis of
symmetry, possibly followed by another rotation of π ra-
dians around the other axis of symmetry; moreover, there
will be only one symmetric location if the given location is
invariant under a single rotation of π radians around one
symmetry axis, or if it is invariant under two consecutive
rotations of π radians around two different symmetry axes,
whereas there will be three symmetric location otherwise.
The symmetry between optimal locations can be appreci-
ated in figure 6, where optimal locations are indicated with
(1), (1′), (1′′), (1′′′); the first suboptimal locations are indi-
cated as (2), (2′), (2′′), (2′′′) and so on. Notice that in the
subsequent figures, symmetric locations are not shown in
order to make the figure more readily understandable (but
they are of course present and can be obtained by means
of the previously described rotations).

The optimal configurations for the criterion max (σ2M )
and the cases NPZT = 1, 2 are studied in the next two
subsections.

A. NPZT = 1

In the simplest possible case where just one piezoelectric
collocated actuator/sensor pair has to be placed, the results
summarized in table III are obtained. From the reported
values, the following conclusions can be drawn:

• as could be expected, for any level of guaranteed control-
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TABLE III

Maximum smallest singular value σ2M , corresponding

largest singular value σ1 for NPZT = 1. [First 4

(sub)optimal locations]

σ2M σ1

0.3599 × 10−5 0.9014 × 10−5

0.2496 × 10−5 1.0949 × 10−5

0.1482 × 10−5 0.8296 × 10−5

0.1174 × 10−5 0.7160 × 10−5

lability/observability (as measured by σ2M ) four different
equivalent configurations can be considered, corresponding
to the two basic symmetries of the structure under study;
• the level of controllability/observability of the most con-
trollable/observable mode (as measured by σ1) for each
“optimal” configuration is not necessarily increasing with
the level of controllability/observability of the least con-
trollable/observable mode (as measured by σ2M ).

It should also be stressed that, as will be discussed in
greater detail in section IV, the singular values σi, i =
1, . . . , 2M are not necessarily sorted according the eigenfre-
quencies of the plate, e.g. the most controllable/observable
mode in each considered configuration is not necessarily the
one associated with the lowest frequency.

B. NPZT = 2

When two piezoelectric collocated actuator/sensor pairs
have to be placed, the results summarized in table IV are
obtained for the configurations. In particular, each row of
the table is obtained for four different configurations of the
piezoelectric patches, that can be obtained as a basic con-
figuration and its symmetric locations. It turns out that,
among the 32 configurations corresponding to the values
in table IV, 8 configurations with different optimality lev-
els are characterized by a patch in position (3, 4) (marked
“A” in figure 7). Among these 8 configurations, (A-1) is
the best (corresponding to the first row of table IV), (A-2)
is the second best (corresponding to the second row of table
IV) and so on. The other 24 configurations corresponding
to the values in table IV are the symmetric locations of
those pictured in figure 7).

It may be interesting to notice that the position marked
“A” in figure 7 corresponds to the optimal location for the
optimization of σ2M with NPZT = 1.

IV. Optimal placement max(∆σ2M ): maximum gap
after σ2M

The second approach considered in order to select the
“best” locations for the piezoelectric patches takes into
account the possible occurrence of spillover effects. In
order to limit the spillover effects, the information pro-
vided by the high order model is used: in particular, the
patch locations are selected in such a way to maximize the
gap ∆σ2M = σ2M − σ2M+1 between the 2M−th and the
(2M + 1)−th singular value of the resulting balanced real-
ization.

When using ∆σ2M to measure the insensitivity of the

TABLE IV

Maximum smallest singular value σ2M and corresponding

largest singular value σ1 for NPZT = 2. [First 8

(sub)optimal locations]

σ2M σ1

0.7997 × 10−5 1.4762 × 10−5

0.7983 × 10−5 1.4783 × 10−5

0.7732 × 10−5 1.3644 × 10−5

0.7716 × 10−5 1.3646 × 10−5

0.7596 × 10−5 1.4758 × 10−5

0.7596 × 10−5 1.4799 × 10−5

0.7513 × 10−5 1.3646 × 10−5

0.7509 × 10−5 1.3643 × 10−5

5 1
8 3

A 4 7
2 6

Fig. 7. max (σ2M), NPZT = 2. Optimal location (A-1) and next
seven suboptimal locations (A-2)(A-8) [the symmetric locations hav-
ing the same level of optimality are not shown].

system to spillover effects, an additional constraint needs
to be enforced: in fact, since the singular values of the
gramian are sorted in decreasing order of magnitude, in
general there is no guarantee that the first 2M singu-
lar values correspond to the 2M eigenmodes having the
lowest eigenfrequencies. Hence, the “optimal” configura-
tion (leading to a reduced order system having minimum
spillover effects) can be identified by looking for the con-
figuration with the highest ∆σ2M and satisfying the addi-
tional constrain that the corresponding reduced order sys-
tem (obtained by balanced truncation [7], i.e., by consid-
ering only the first 2M states of the balanced realization)
contains exactly the M lowest frequency modes of the high
order system.

From a physical point of view, the “pathological” sit-
uation depicted in the previous paragraph (where a high
frequency mode substitutes a low frequency mode in the
reduced model obtained by balanced truncation) can be as-
sociated with an actuators/sensors configuration such that
the controllability and observability of the high frequency
mode is strongly enhanced, at the expenses of the control-
lability/observability of the lower frequency mode; for the
plate under study, this situation occurs for example when
NPZT = 1 and the patch is placed in the locations (2), (3)
and (4) in figure 6.

By means of an exhaustive search over the admissible
configurations identified in section II, the following results
have been obtained for the placement of NPZT = 1, 2 piezo-
electric patches.
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TABLE V

Maximum gap after smallest singular value.

∆σ2M

0.4489 × 10−5

0.4468 × 10−5

0.4429 × 10−5

0.3926 × 10−5

0.3908 × 10−5

0.3886 × 10−5

0.3877 × 10−5

4 7
1 2

A 3
5 6

Fig. 8. max (∆σ2M), NPZT = 2. Optimal location (A-1) and next
seven suboptimal locations (A-2)(A-8) [the symmetric locations hav-
ing the same level of optimality are not shown. Notice that (A-1),
(A-2) and (A-3) have just one symmetric location].

A. NPZT = 1

In the simplest possible case where just one piezoelectric
collocated actuator/sensor pair has to be placed, only one
location (and its three associated symmetric locations) sat-
isfies the constraint of having only low frequency modes in
the reduced order model, so that the optimization is triv-
ial. Quite remarkably, the resulting location agrees with
the best location identified for the case NPZT = 1, and
then can be considered optimal with respect to both cri-
teria max(σ2M ) and max(∆σ2M ). On the other hand, the
next three suboptimal locations (and their symmetric loca-
tions) listed in table III do not satisfy the mentioned con-
straint, and then can be supposed prone to spillover effects
unless a suitable design of the controller is performed.

B. NPZT = 2

When two piezoelectric collocated actuator/sensor pairs
have to be placed, the results summarized in table V and
figure 8 are obtained for the configurations (for the inter-
pretation of the table and the figure, see section III.B).
In particular, the first three rows of table V correspond
to the configurations (A-1), (A-2) and (A-3) of figure 8,
which admit only one symmetric location; on the contrary,
each of the following four configuration (A-4), (A-5), (A-6)
and (A-7) (listed in decreasing order of optimality) admits
three symmetric location providing the same level of opti-
mality. Contrary to what happens in the case NPZT = 1,
when NPZT = 2 there is no configuration (between the
ones considered in this paper) being optimal according to
both max(σ2M and max(∆σ2M ).

V. Conclusions

The numerical study conducted in this paper has lead to
the individuation of candidate “optimal” locations for the
placement of collocated piezoelectric sensor/actuator pairs
on a flexible plate. Two different optimality indexes have
been considered, one simply aimed at achieving a highly
controllable/observable reduced order model, and the other
also taking into account possible spillover effects. The cases
of one and two pairs have been investigated in detail.

When a single pair has to be placed, it turns out that the
optimal location obtained is such for both criteria, whereas
no solution which is suboptimal for the first index is feasible
in the optimization of the second index.

For the case with two pairs, the optimal solutions ob-
tained according to the first index are not optimal with
respect to the second index (leading to a structure proba-
bly prone to spillover effects). A possible approach in the
second case is then to choose the optimal solution with re-
spect to the second index, which is actually only slightly
suboptimal with respect to the first index.

Further work will be along the following paths:
• finer optimization: using a more refined finite element
formulation (taking into account additional information
about the structure, e.g. the increased mechanical stiff-
ness due to the piezoelectric patches), the optimal loca-
tions found in this work will be validated, and then the
sensitivity of the given locations to small displacement will
be explored, possibly leading to improved locations;
• study of configurations involving more piezoelectric
patches: as pointed out in the introduction, the quantity
of computation time and storage space needed when op-
timal locations are sought for multiple pairs dramatically
increases with the number of pairs. As a consequence, de-
velopments along this line will also include the generation
of enhanced code (possibly to be run on parallel machines)
to deal with the above mentioned difficulties;
• realization of the described experimental setup in our
laboratory.
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