
   
Abstract-- Neural networks have been shown  as an efficient 
tool in optimisation problems in general, and in control ones in 
particular. For this reason, Engineering students should 
properly learn this tool in subjects as Optimal Control or 
Intelligent Control. In this way, a planning for neural 
networks teaching is proposed in this paper, using  a Java-
Based toolkit (Evenet 2000) that allows to design and train 
neural networks with arbitrary architecture.  
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I. INTRODUCTION 

Currently, neural networks are widely used as an efficient 
method in many subjects such as optimisation problems and 
pattern recognition [1][5]. In this way, students of 
Engineering courses should properly learn this tool, 
particularly in subjects such as Optimal Control or 
Intelligent Control. During theoretical classes students 
should learn some teorethical aspects of neural networks 
(definition, structure, topologies or learning methods). 
Howevwe, after these classes, it would be very pedagogical 
for these courses to use a tool (or better, several tools) to 
train different neural networks using several training 
methods. With this tool, students can visualise the neural 
networks power in a practical way. 

 
For this aim, there are several tools for neural networks 
training such as MATLAB Neural Networks Toolbox, 
NNSYSID, NNCTRL [6] or SNNS. However, most of them 
are not sufficiently general or they are not user-friendly 
enough. Frequently, its users cannot visualise the training of 
a neural network with arbitrary architecture and/or 
implement new training methods in an easy way. 
Evenet2000 [3,4], a Java-Based neural network toolkit 
developed at University of La Laguna, offers these 
advantages. This tool is based on an approach introduced by 
Wan and Beaufays to derive gradient algorithms for time-
dependent neural networks, by using Signal Flow Graph 
theory. This approach consists of a set of simple block 
diagram transformation and manipulation rules. However 
with Evenet-2000 users do not need to know these rules. 
Moreover, the designed structure makes it not limited to 
gradient-based algorithms.  
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The aim of this article is to present a planning for neural 
network teaching by using Evenet2000. Because this tool 
has interesting aspects for both neural networks teachers and 
researchers, it is briefly described in section 2. In section 3, 
teaching planning is detailed and conclusions are shown in 
section 4. 
 

II. DESCRIPTION OF THE TOOL 

 
Regarding the gradient algorithms in neural networks, 
several researchers [2],[7],[8] have shown that there is a 
reciprocal nature to the forward propagation of the states 
and the backward propagation of gradient terms. This 
reciprocity appears in all network architectures. Based on 
these properties, and using Signal Flow Graph theory, they 
have deduced a general method for automatic determination 
of the gradient in an arbitrary neural network. In this paper 
we will apply the Wan and Beaufays approach.  
 
The first step involves representing the arbitrary network as 
a block diagram. There are five basic blocks:  
 

• summing junctions  
• branching points 
• univariate functions 
• multivariate functions 
• time-delay operators.  

 
For example, a neuron can be seen as a summing junction 
followed by a univariate function such as sigmoid or tanh.   
 
From this block diagram, an adjoint network can be built by 
reversing the flow direction in the original network, 
performing a set of transformation rules. This philosophy 
suggests object-oriented programming as implementation 
method. So, Java, the most popular and powerful object-
oriented language has been chosen for development of the 
toolkit.  
 
Evenet-2000 consists of three basic parts: a calculation 
library, a user-friendly interface and a graphic neural 
network editor.  
 
Evenet-2000 calculation library develops theory shown 
above. Every basic element is assigned an object that 
implements easily the adjoint method. 

 
The basic elements are not sufficient for a complete library. 
They must be joined to other types of objects that 
implement arbitrary neural network trainings. For this, 
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Evenet-2000 calculation library follows the UML diagram 
shown in Figure 1. 
 
With this implementation, training and optimization 
problems have been uncoupled from the neural network 
structure specification. Problem object sets the chosen 
neural network structure, the learning algorithm and the 
criterion function (problem object is the connection among 
these objects). In this structure, the problem object sets the 
network inputs, asks the neural network object for the 
output vector. Then asks the criterion function to calculate 
the error vector, and finally the neural network calculates 
the gradient vector. Once this process has finished, the 
problem object sends the gradient vector to the algorithm. It 
calculates a new weight vector, by asking the problem 
object for cost function value. Unidimensional (1-D) 
optimisation could be required, so 1-D algorithms have been 
included. These steps are repeated until the design 
conditions are reached.  
 
This calculation library can be used independently from the 
rest of the program. However, although the calculation 
library is complete and easy to use, people not used to 
object-oriented programming could not make the most of it. 
Because of this, the tool has been improved with a user-
friendly interface. This way, students in our planning do 
need to learn objet-oriented programming at all.   
 
This interface allows training directly a multilayer 
perceptron (MLP). When this case is selected from program 
main menu, a frame like the shown in Figure 2 appears. 
From its menu bar, desired learning method, criterion 
function, optimisation algorithm and other training 
parameters can be selected. 
 
When training pairs have been loaded, the network is ready 
to be trained. Initial weight set can be fixed also. When the 
training finishes, users can study a frame showing the 
training error evolution and the difference between the 
desired and obtained outputs (Figure 3). The error and the 
iteration number after the training are shown in their 
respective text fields, and results can be saved in a text file 
that can be analysed later. 
 

Evenet-2000 user-friendly interface allows users to train 
MLP or recurrent with no code. But this interface has not 
taken advantage of the possibility of training a neural 
network with an arbitrary architecture. For getting this 
purpose, a graphic editor has been included in the tool. This 
editor, whose frame is shown in Figure 4, can be selected 
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Fig. 1. Evenet-2000 Calculation Library Diagram 

 

Fig. 2:  Evenet-2000 MLP Frame (Fragment) 
 

Fig. 3: Desired and obtained output  
 



from the program main menu. 
 
This graphic editor allows creating an arbitrary neural 
network. Users only have to select its elements from the 
menu and connect them. Its designs can be saved in a text 
file and loaded as new elements (modularity), developing 
their own neural network library this way. This text file can 
be modified without the help of the editor and loaded by 
other window of the toolkit, similar to the MLP training one 
described above. This way, neural networks buil t following 
any arbitrary architecture can be designed and trained with 
no code. This is a great advantage for the users and 
particularly for engineering teachers, since they are not 
forced to make any complicated calculations.Moreover, 
students are offered a tool they can visualise neural 
networks theory with. 

III . PLANNING 

 
In this section, the proposed planning of neural network 
teaching for engineering students is presented. After 
theoretical classes where students learn some neural 
networks aspects [5] as its definition, structure, topologies 
and several learning methods, teachers present them several 
procedures as practical experiences. They can be divided 
into two blocks: a basic block where students can visualise 
the theoretical aspects they have learnt and a more complex 
block where neural networks are applied to a control 
problem.  
 
First of all , students are shown the ability of the neural 
networks of learning patterns. As example, a 4-layers MLP 
(1, 3,3, 1 and 1 neurons in each layer) is taken. From 
Evenet2000 menu bar, students selects the training 
parameters such as initial learning rate (for this example, 
0.25), limit of steps (1000), limit of error (1E-4) – when one 
of these limits are reached, the training is stopped – learning 
method (Descent Gradient), 1-D optimisation (none), 
activation function (Sigmoid), criterion function (Cuadratic) 
and initial weight set (random). A pattern file which 
implements the function y(x) = x is loaded. This pattern file 
consists of 11 patterns (0<x<1, step = 0.1). After this 

selection, students train the network. They should obtain a 
graphic similar to the shown in Figure 5. 
 
This way, students can visualize how the error decreases. 
Evenet2000 offers the possibil ity of testing if the network 
has been well trained. Students check the outputs for several 
inputs, included or not in the original pattern file (last ones 
are the most interesting ones), confirming that the network 
has learnt the proposed function (Fig. 6) 

 
Once the test has finished, students are suggested to vary 
some training parameters as learning rate, network topology 
or number of patterns. An il lustrative case is obtained when 
learning rate is excessively big. As can be seen in Figure 7, 
the error evolution presents some peaks in graphic error. 

Fig. 4: Graphic Editor Frame (Fragment) 
 

Error 

Step 

Fig 5: Training error evolution 

Fig 6: Training test for 
proposed example 
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Fig 7: Training with High Learning Rate 



Students are asked for the reason of these peaks, testing 
their knowledge. 
 
Next exercises are focused on goodness of a unidimensional 
optimization of the learning rate. Students select an 
optimization method for a new training and compare its 
results with the obtained with no optimization.  As it was 
expected, the number of necessary steps decreases. 
However more calculations are made in each step, so 
comparing the training time instead is a better choice. In this 
step, students are asked again for the goodness of the 
different algorithms.   
 
These basic experiences may be complemented with studies 
about recurrent networks and/or other topologies. For this 
purpose, these topologies can be designed with the graphic 
editor of the tool.  

 
With this set of experiences, students have visualized the 
aspects that they had learnt in theoretical classes, getting a 
deeper knowledge of neural networks. Estimated time for 
this first block of procedures is about 20 hours divided into 
4-5 sessions. 
 
On the other hand, with the second set of procedures, 
students can learn about applications of neural networks in 
problems more complex than learning of some patterns. In 
the planning proposed in this paper, a simple but interesting 
control problem has been chosen. There are two options for 
the system to control: a real system (for example the tank 
system shown in Figure 9) or a software-simulated one. 
Procedures with real systems offer a great advantage. 
Engineering students usually find more interesting to work 
in the “real l ife” than with simulated systems. However, if 
the system is not carefully chosen, its control could become 
too difficult for a laboratory procedure. So it is 
recommended a first or second order system. On the other 
hand, working with simulated systems offers more variety 
and are easier to debug.     

 
In both cases, students should implement a control structure 
like the shown in Fig 8. Parameters concerning to 
proportional and integral terms of the controller (students 
work with discrete equations) are supplied for a neural 

network, trained through Evenet2000 modules. Students 
should compare this control structure with a controller with 
fixed proportional and integral terms. This way, they test the 
goodness of neural networks for control systems.  

 
Estimated time for this block of procedures is about 20 
hours divided into 4-5 sessions. 

IV. CONCLUSIONS 

 
In this paper, a planning for the teaching of neural networks 
in Engineering subjects is proposed. For this, Evenet2000, a 
Java-based neural network toolkit, is used. This toolkit 
allows students to design and train neural networks with 
arbitrary architectures. In theoretical classes, students learn 
aspects as definition, structure, topologies and several 
learning methods. After these classes, two blocks of 
procedures are proposed to students. In the first block, 
students can visualise these theoretical aspects. The second 
block is more complex and students apply neural networks 
to a control problem. This block is proposed to students 
more famili arised with object-oriented programming and 
control systems. 
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Fig 8: Control structure implemented in a control application. 

Fig 9: Example of real plant for the second 
proposed block of procedures 
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