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Abstract—This paper presents a control system for under-

actuated manipulators based on output feedback nonlinear

H∞ control, where only the position is available. Experi-

mental results are also presented.

I. Introduction

Parametric uncertainties and exogenous disturbances in-
crease the difficulty of reference tracking control for robotic
manipulators. Additionally, actuator fault can suddenly
occur during the manipulator control and, if the robot is
working in hazardous or unstructured environment, the
movement must be completed according to the manipu-
lator fault configuration. Among the actuator fault types,
the free torque fault, where the torque supply in the motor
of each joint breaks down suddenly, can turn the system
uncontrolled with the possibility of damage for the ma-
nipulator components. When a free torque fault occurs
the fully actuated manipulator changes to a underactuated
configuration. This kind of mechanical system, with less
actuators than degrees of freedom, is of interest of many
researchers [1], [2], [3], [4]. A control strategy for under-
actuated manipulator was first proposed in [1]. Following
that strategy, firstly all the passive joints (without actua-
tors) are controlled to the desired final position and then,
with the passive joints braked, the active ones (with actu-
ators) are controlled. In [2], three possibilities of selecting
the joints to be controlled in each phase are proposed. In
the above references, the control strategies were based on
state feedback control, positions and velocities. In this pa-
per, we apply the output feedback nonlinear H∞ control
technique for underactuated manipulators, using only po-
sition measurements.

Nonlinear H∞ control consists in guarantee that the L2

gain between the disturbance and the output be bounded
by an attenuation level γ. The development of the linear
parameter varying (LPV) technique, considered in this pa-
per, provides a systematic way to design controllers that
schedule on varying parameters of the system and satisfy
the L2 gain condition [6]. The nonlinear dynamics can be
represented as LPV system with the parameters as function
of the state, namely, quasi-LPV representation.

In most cases, when only the position is measured di-
rectly, the velocity signal is obtained via position deriva-
tive, and controllers based on state feedback are used. Also,
in most cases, it is need to use filters in this velocity to
avoid noises, that can generate delays. An output feedback

control system can be used in order to avoid this problem
since one can use only the available states in the synthesis
of the controller without affecting its performance. [5] and
[6] show methodologies to obtain such controllers for LPV
systems.

This paper is organized as follows: the output feedback
H∞ control via a quasi-LPV representation is presented
in Section II; in Section III, the quasi-LPV representation
of the underactuated manipulator is showed; and results
using this technique, and obtained from the experimental
manipulator UArm II, are presented in Section IV. We
denote C1(<m,<n) as the set of continuously differentiable
functions that map <m to <n. The Euclidean norm of a
vector is denoted by ‖.‖, i.e., ‖z‖

2
= zT z for z ∈ <k. The

notation L2 will be used for bounded energy signals, i.e.,

L2(0,T) =
{

w :
∫ T

0
‖w(t)‖

2
dt <∞

}

.

II. Output feedback nonlinear H∞ control via

quasi-LPV representation

In this section, the output feedback H∞ control prob-
lem for LPV systems is presented. A parameter dependent
controller, that stabilizes the closed loop and guaranties
that the L2 gain between the disturbance and the output
be bounded by an attenuation level γ, is considered. This
problem can also be defined for special LPV systems where
the parameters are some of the states of the system, named,
quasi-LPV systems. Consider the LPV system:

ẋ = A(ρ(t))x+B11(ρ(t))d1 +B12(ρ(t))d2 +B2(ρ(t))u

e1 = C11(ρ(t))x+D1111(ρ(t))d1 +D1112(ρ(t))d2

e2 = C12(ρ(t))x+D1121(ρ(t))d1 +D1122(ρ(t))d2 + u

y = C2(ρ(t))x+ d2 (1)

where d1 ∈ <
nd1 , d2 ∈ <

nd2 , e1 ∈ <
ne1 and e2 ∈ <

ne2 .
Assume that the underlying parameter ρ varies in the

allowable set

F ν
P =

{

ρ ∈ C1(<+,<m) : ρ(t) ∈ P, |ρ̇i| ≤ νi, i = 1, . . . ,m
}

where P ⊂ <m is a compact set and {νi}
m
i=1 are non-

negative numbers.
The system (1) has L2 − gain ≤ γ if



∫ T

0

‖e(t)‖
2
dt ≤ γ2

∫ T

0

‖d(t)‖
2
dt

for all T ≥ 0 and all u ∈ L2(0,T) with the system starting
from x(0) = 0.

Suppose a m-dimensional parameter dependente con-
troller KP :

ẋk = AK(ρ(t), ρ̇(t))xk +BK(ρ(t), ρ̇(t))y

u = CK(ρ(t), ρ̇(t))xk +DK(ρ(t), ρ̇(t))y (2)

where ρ ∈ F ν
P and xk(t) ∈ <

m is the controller state. Note
that the controller depends on ρ and ρ̇.

Defining xTclp(t) = [xT (t) xTk (t)], e
T (t) = [eT1 (t) eT2 (t)]

and dT = [dT1 (t) dT2 (t)], then the closed loop LPV system
is given by:

ẋclp = Aclp(ρ(t), ρ̇(t))xclp +Bclp(ρ(t), ρ̇(t))d

e = Cclp(ρ(t), ρ̇(t))xclp +Dclp(ρ(t), ρ̇(t))d

where

Aclp =

[

A(ρ) +B2(ρ)DK(ρ, ρ̇)C2(ρ) B2(ρ)CK(ρ, ρ̇)
BK(ρ, ρ̇)C2(ρ) AK(ρ, ρ̇)

]

Bclp =

[

B11(ρ) B12(ρ) +B2(ρ)DK(ρ, ρ̇)
0 BK(ρ, ρ̇)

]

Cclp =

[

C11(ρ) 0
C12(ρ) +DK(ρ, ρ̇)C2(ρ) CK(ρ, ρ̇)

]

Dclp =

[

D1111(ρ) D1112(ρ)
D1121(ρ) D1122(ρ) +DK(ρ, ρ̇)

]

Lemma II.1: [5] Given the open loop LPV system, Equa-
tion 1 and the performance level γ > 0. If there exist an
integer m ≥ 0, a function W ∈ C∞ and continuous matrix
functions (AK , BK , CK , DK) such that W (ρ) > 0 and




E(ρ) W (ρ)Bclp(ρ, β) γ−1CT
clp(ρ, β)

BT
clp(ρ, β)W (ρ) −Ind

γ−1DT
clp(ρ, β)

γ−1Cclp(ρ, β) γ−1Dclp(ρ, β) −Ine



 < 0

(3)
where

E(ρ) = AT
clp(ρ, β)W (ρ) +W (ρ)Aclp(ρ, β) +

s
∑

i=1

(

βi
∂W

∂ρi

)

for all ρ ∈ P and |βi| ≤ νi, i = 1, · · · , s, then the closed
loop LPV system with the controller KP defined in (2) is
stable and has L2 − gain ≤ γ.
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To simplify the notation, denote:

[

D111.(ρ)
D112.(ρ)

]

=

[

D1111(ρ) D1112(ρ)
D1121(ρ) D1122(ρ)

]

[

D11.1(ρ) D11.2(ρ)
]

=

[

D1111(ρ) D1112(ρ)
D1121(ρ) D1122(ρ)

]

Theorem II.1 ([5]) Given the LPV system, Equation (1),
and the compact set P . A controller KP will be found
if and only if there exist matrix functions X ∈ C∞ and
Y ∈ C∞, such that for all ρ ∈ P , X(ρ) > 0, Y (ρ) > 0, and





Ê(ρ) X(ρ)CT
11(ρ) γ−1B̂(ρ)

C11(ρ)X(ρ) −Ine1
γ−1D111.(ρ)

γ−1B̂T (ρ) γ−1DT
111.(ρ) −Ind



 < 0, (4)





Ẽ(ρ) Y (ρ)BT
11(ρ) γ−1C̃T (ρ)

BT
11(ρ)Y (ρ) −Ind1

γ−1DT
11.1(ρ)

γ−1C̃(ρ) γ−1D11.1(ρ) −Ine



 < 0, (5)

[

X(ρ) γ−1In
γ−1In Y (ρ)

]

≥ 0 (6)

where

Ê(ρ) = −

m
∑

i=1

±

(

νi
∂X

∂ρi

)

+ Â(ρ)X(ρ) +

X(ρ)Â(ρ)T −B2(ρ)B
T
2 (ρ), (7)

Ẽ(ρ) =
m
∑

i=1

±

(

νi
∂Y

∂ρi

)

+ ÃT (ρ)Y (ρ) +

Y (ρ)Ã(ρ)T − CT
2 (ρ)C2(ρ) (8)

and
Â(ρ) = A(ρ)−B2(ρ)C12(ρ)

B̂(ρ) = B1(ρ)−B2(ρ)D112.(ρ)

Ã(ρ) = A(ρ)−B12(ρ)C2(ρ)

C̃(ρ) = C1(ρ)−D11.2(ρ)B2(ρ)

If the conditions are satisfied, then by continuity and
compactness, it is possible to perturb X(ρ) such that
the two LMIs (4 and 5) still hold and Q(ρ) = Y (ρ) −
γ−2X−1(ρ) > 0 uniformly on P . Define:

Ω(ρ) = −D1122(ρ)−D1121(ρ)[γ
2Ind1

−
DT

1111(ρ)D1111]
−1DT

1111(ρ)D1112,
Ā(ρ) = A(ρ) +B2(ρ)Ω(ρ)C2(ρ),

B̄1(ρ) = B1(ρ) +B2(ρ)Ω(ρ)D21,
C̄1(ρ) = C1(ρ) +D12Ω(ρ)C2(ρ),

D̄11(ρ) = D11(ρ) +D12Ω(ρ)C2(ρ),
D̄h(ρ) = [Ine

− γ−2D̄11(ρ)D̄
T
11(ρ)]

−1,
D̄t(ρ) = [Ind

− γ−2D̄T
11(ρ)D̄11(ρ)]

−1

and

F (ρ) = −(DT
12Dh(ρ)D12)

−1 ? [(B2(ρ)
+γ−2B̄1(ρ)D̄

T
11(ρ)Dh(ρ)D12)

TX−1(ρ)
+DT

12Dh(ρ)C̄1(ρ)],

L(ρ) = −[Y −1(ρ)(C2(ρ) + γ−2D21Dt(ρ)D̄
T
11(ρ)C̄1(ρ))

T

+B̄1(ρ)Dt(ρ)D
T
21] ? (D21Dt(ρ)D

T
21)

−1,

H(ρ, ρ̇) = −[X−1(ρ)AF (ρ) +AT
F (ρ)X

−1(ρ)

+
∑s

i=1
ρ̇i

∂X−1

∂ρi
+ CT

F (ρ)CF (ρ)

+(X−1(ρ)B̄1(ρ) + CT
F (ρ)D̄11(ρ))

?(γ−2I − D̄T
11(ρ)D̄11(ρ))

−1(B̄T
1 (ρ)X

−1(ρ)
+D̄T

11(ρ)CF (ρ))],



with AF (ρ) = Ā(ρ) + B2(ρ)F (ρ) and CF (ρ) = C̄1(ρ) +
D12(ρ)F (ρ). Let:

M(ρ, ρ̇) = H(ρ, ρ̇) + F T (ρ)[BT
2 (ρ)X

−1(ρ) +DT
12(C̄1(ρ)+

D12(ρ)F (ρ))][γ2Q(ρ)(−Q−1(ρ)Y (ρ)L(ρ)D21

−B̄1(ρ)) + FT (ρ)DT
12D̄11(ρ)]

?[γ−2I − D̄T
11(ρ)D̄11(ρ)]

−1[B̄T
1 (ρ)X

−1(ρ)+
D̄T

11(ρ)(C̄1(ρ) +D12(ρ)F (ρ))].

A m-dimensional proper controller KP that solve the
output feedback problem is given by:

AK(ρ, ρ̇) = Ā(ρ) +B2(ρ)F (ρ) +Q−1(ρ)Y (ρ)L(ρ)C2(ρ)
−γ−2Q−1(ρ)M(ρ, ρ̇),

BK(ρ) = −Q−1(ρ)Y (ρ)L(ρ),
CK(ρ) = F (ρ),
DK(ρ) = Ω(ρ).
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The proposed controller can be applied to a nonlinear
system represented in the quasi-LPV form:

ẋ = A(ρ(x))x+B11(ρ(x))d1 +B12(ρ(x))d2 +B2(ρ(x))u

e1 = C11(ρ(x))x+D1111(ρ(x))d1 +D1112(ρ(x))d2

e2 = C12(ρ(x))x+D1121(ρ(x))d1 +D1122(ρ(x))d2 + u

y = C2(ρ(x))x+ d2 (9)

where the parameter ρ contains some of the state variables.
A practical scheme using basis functions for X(ρ) and

Y (ρ), and gridding the parameter set P was developed to
solve the constraints (4), (5) and (6). First choose a set of

C1 functions {fi(ρ)}
M
i=1

as a basis for X(ρ)

X(ρ) =
M
∑

i=1

fi(ρ)Xi

where Xi ∈ Sn×n is the coefficient matrix for fi(ρ), and a

set of C1 functions {gi(ρ)}
M
i=1

as a basis for Y (ρ)

Y (ρ) =
M
∑

i=1

gi(ρ)Yi

where Yi ∈ Sn×n is the coefficient matrix for gi(ρ).
If the matricesX(ρ) and Y (ρ), as given above, are substi-

tuted in (4), (5) and (6), the constraint turn to a set of LMI

in terms of the matrix variables {Xi}
M
i=1

and {Yi}
M
i=1

when
the parameter ρ is fixed. To solve this infinite dimensional
optimization problem, we can grid the parameter set P in
L points {ρk}

L
k=1

in each dimension. Since (4), (5) and (6)
consists of 2m+1 + 1 constraints, a total of (2m+1 + 1)Lm

matrix inequalities in terms of the matrices Xi and Yi have
to be solved.

There is no method known to find the basis functions for
the matrices X(ρ) and Y (ρ). The basis functions used in
Section IV where obtained by experimenting several func-
tions and choosing one that fits a solution.

The parameter set P was obtained using a developed
MatLab program that ask the boundary values and the
number of grids one wishes to use. This program is also
used to find the solution for (4), (5) and (6).

III. Quasi-LPV representation of a

underactuated manipulator

The dynamic equations of a robot manipulator can be
found by the Lagrange theory as

τ = M(q)q̈ + C(q, q̇)q̇ + F (q̇) +G(q) (10)

where q ∈ <n are the joint positions, M(q) ∈ <n×n is the
symmetric positive definite inertia matrix, C(q, q̇) ∈ <n×n

is the Coriolis and centripetal matrix, F (q̇) ∈ <n are the
frictional torques, G(q) ∈ <n are the gravitational torques
and τ ∈ <n are the applied torques. The parametric uncer-
tainty can be introduced dividing the parameter matrices
M(q), C(q, q̇), F (q̇) and G(q) into a nominal and a per-
turbed part:

M(q) = M0(q) + ∆M(q)

C(q, q̇) = C0(q, q̇) + ∆C(q, q̇)

F (q̇) = F0(q̇) + ∆F (q̇)

G(q) = G0(q) + ∆G(q)

where M0(q), C0(q, q̇), F0(q̇) and G0(q) are the nominal
matrices, and ∆M(q), ∆C(q, q̇), ∆F (q̇) and ∆G(q) are the
parametric uncertainties. A finite energy exogenous dis-
turbance, τd, can also be introduced. After these consider-
ations the Equation (10) becomes:

τ + δ = M0(q)q̈ + C0(q, q̇)q̇ + F0(q̇) +G0(q) (11)

with

δ = −(∆M(q)q̈ +∆C(q, q̇)q̇ +∆F (q̇) + ∆G(q)− τd).

Underactuated robot manipulators are mechanical sys-
tems with less actuators than degrees of freedom. For this
reason, the control of the passive joints (joint without ac-
tuator) is made considering the dynamic coupling between
them and the active joints (with actuator). Here, we con-
sider that the passive joints have brakes. The strategy is
control all the passive joints to reach the desired position,
applying torques in the active ones, and then turn on the
brakes. After that, all the active joints are controlled by
themselves.

Consider a manipulator with n joints, of which np are
passive and na are active joints. It is known [1] that, using
breaks, no more than na joints of the manipulator can be
controlled at every instant. Using this, we group the na
joints being controlled in the vector qc ∈ <

na . The remain-
ing joints are grouped in the vector qr ∈ <

n−na . There are
three possibilities of forming the vector qc [2]:
1. qc contains only passive joints: when np ≥ na and all
other passive joints, if any, are kept locked.
2. qc contains passive and active joints: all other passive
joints, if any, are kept locked.
3. qc contains active joints.

With these possibilities in mind we can define the control
strategy: first, choose the vector qc as the possibilities 1 or
2 (according to np), until all passive joints have reached



the desired position; second, choose qc as the possibility 3
and control the active joints to the desired position.

The dynamic equation (11) can now be partitioned as:

[

τa
0

]

+

[

δa
δu

]

=

[

Mar Mac

Mur Muc

] [

q̈r
q̈c

]

+

[

Car Cac

Cur Cuc

] [

q̇r
q̇c

]

+

[

Fa

Fu

]

+

[

Ga

Gu

]

(12)

where the indices a and u represent the active and free
(breaks not actioned) passive joints, respectively. Isolating
the vetor q̈r in the second line of (12) and substituting in
the first one, we have:

τa + δ = M0q̈c + C0q̇c +D0q̇r + F 0 +G0

with

M0(q) = Mac −MarM
−1
ur Muc

C0(q, q̇) = Cac −MarM
−1
ur Cuc

D0(q, q̇) = Car −MarM
−1
ur Cur

F 0(q̇) = Fa −MarM
−1
ur Fu

G0(q) = Ga −MarM
−1
ur Gu

δ(q) = δa −MarM
−1
ur δu.

The state is defined as:

xc =

[

q̇c
qc

]

. (13)

Hence, a quasi-LPV representation of the underactuated
manipulator can be defined as follows

ẋc = A(q, q̇)xc +B(q)u+B(q)δ (14)

with

A(q, q̇) =

[

−M
−1

0 (q)
(

C0(q, q̇) + F 0(q̇)
)

0
Ina

0

]

B(q) =

[

Ina

0

]

u = τa −D0(q, q̇)(q̇r −G0(q)).

To apply the technique described in Section II, the robot
manipulator has to be represented according to the Equa-
tion (9). Consider as system disturbances, the desired po-
sition, qdc , and the combined torque disturbance, δ, that is:
d1 = qdc and d2 = δ. The system outputs, e1 and e2, are the
position error, [qdc − qc], and control input, u, respectively.
The control output is the position error, y = [qdc −qc], since
we only have the position measure directly. Using these
definitions in (9), we avoid using the velocities of the joints
as a parameter, once we cannot measure them directly us-
ing the encoders available on the manipulator. Hence, the

robot system can be described by Equation (9) with:

A(ρ(xc)) = A(q)
B11(ρ(xc)) = B(q)
B12(ρ(xc)) = 0
B2(ρ(xc)) = B(q)
C11(ρ(xc)) = [0 − I]
C12(ρ(xc)) = 0
C2(ρ(xc)) = [0 − I]

D22(ρ(xc)) = 0
D1111(ρ(xc)) = 0
D1112(ρ(xc)) = I
D1121(ρ(xc)) = 0
D1122(ρ(xc)) = 0

D12(ρ(xc)) = [0 − I]
T

D21(ρ(xc)) = [0 − I]

where the matrices A(q) and B(q) are obtained by Equa-
tion (14), with q̇ = 0.

IV. Experimental Results

The proposed H∞ control was applied to our experimen-
tal underactuated manipulator UArm II (Underactuated
Arm II), designed and built by H. Ben Brown, Jr. of Pitts-
burgh, PA, USA (Fig. 1). This 3-link manipulator has
special-purpose joints containing each an actuator and a
brake, so that they can act as active or passive joints. The
manipulator configuration can be changed enabling or not
the DC motor of each joint. All possible configurations,
according to the active (A) and passive (P) joints location
in the arm, are accept: AAA, AAP, APA, PAA, APP and
PAP. For example, the configuration AAP means that the
joints 1 and 2 are active and 3 is passive.

Fig. 1. Underactuated Arm II.

The manipulator’s kinematic and dynamic nominal pa-
rameters, which are used to calculate the nominal matrices
M0(q), C0(q, q̇) (see Appendix) and F0(q̇) , are shown in
Table I, where Fi is the coefficient of a velocity-dependent
frictional term F0(q̇).

The underactuated configuration used to validate the
proposed methodology was the APA configuration, i.e., the
joint 2 is passive and the joints 1 and 3 are actives. For
this configuration, two phases of control are necessary to



TABLE I

Robot parameters.

i mi Ii Li lci Fi

(kg) (kgm2) (m) (m) (kgm2/s)
1 0.850 0.0075 0.203 0.096 0.28
2 0.850 0.0075 0.203 0.096 0.18
3 0.625 0.0060 0.203 0.077 0.10

control all joints to the set-point, as showed in Section III.
In the first phase, qc = [q2]

T , and, in the second one,
qc = [q1 q3]

T .
For the experiment, the initial position and the desired

final position were, respectively, q(0) = [0◦ 0◦ 0◦]T and
q(T 1, T 2) = [20◦ 20◦ − 20◦]T , where T 1 = [1.0] s and
T 2 = [5.0 5.0] s are the trajectory duration time for the
phases 1 and 2, respectively.

For the first phase, the parameters ρ chosen are the state
representing the position of the joint 2, i.e.:

ρ(xc) =
[

q2

]T
.

The compact set , P , is defined as ρ ∈ [0, 20]◦. The
parameter variation rate is bounded by |ρ̇| ≤ [60◦/s]. Since
the value ρ̇ cannot be measured directly, and H(ρ, ρ̇) has a
term that depends on it, the matrix X(ρ) will be defined
as a constant, leading the ρ̇ dependency term to zero:

∑s
i=1

ρ̇i
∂X−1

∂ρi
= 0.

The basis functions chosen are then:

f1(ρ(x̃c)) = 1.

and
g1(ρ(x̃c)) = 1
g2(ρ(x̃c)) = cos(q2)
g3(ρ(x̃c)) = sin(q2).

The parameter space was divided in L = 9. The best
level of attenuation found was γ = 1.699.

For the second phase, the chosen parameters, that are
part of the state vector, were:

ρ(xc) =
[

q1 q3

]T

The compact set , P , is defined as ρ ∈ [0, 20]◦ ×
[0, 20]◦/s. The parameter variation rate is bounded by
|ρ̇| ≤ [60◦/s 60◦/s]. The basis functions chosen are:

f1(ρ(x̃c)) = 1.

and
g1(ρ(x̃c)) = 1
g2(ρ(x̃c)) = sin(q1) + cos(q1)
g3(ρ(x̃c)) = sin(q3) + cos(q3).

The parameter space was divided in L = 5 in each dimen-
sion. The best level of attenuation found was γ = 2.052.

Experimental results of joint positions and applied
torques are showed in the Fig. 2 and 3, respectively. The
joint positions are represented by:
• Solid line - joint 1;
• Dashed line - joint 2;
• Dot line - joint 3.
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Fig. 2. Joint position, quasi-LPV control, underactuated configura-
tion.
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Fig. 3. Applied torque, quasi-LPV control, underactuated configu-
ration.

V. Conclusion

An output feedback nonlinear H∞ control methodology
is applied to an experimental underactuated manipulator.
Experimental results have showed that the proposed tech-
nique is efficient in the position control of the robot system
even though the velocity is not available for the controller.
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Appendix

The matrices M and C for this kind of manipulator are
given by:

M =





M11 M12 M13

M21 M22 M23

M31 M32 M33





M11 = m1l
2
c1

+m2(l
2
1 + l2c2 + 2l1lc2cos(q2)) +

m3(l
2
1 + l22 + l2c3 + 2l1l2cos(q2) + 2l2lc3cos(q3)) +

2m3l1lc3cos(q2 + q3) + I1 + I2 + I3

M12 = m2(l
2
c2

+ 2l1lc2cos(q2)) +m3(l
2
2 + l2c3 + l1l2cos(q2))

m3(l1lc3cos(q2 + q3) + 2l2lc3cos(q3)) + I2 + I3

M13 = I3 +m3(l
2
c3

+ l1lc3cos(q2 + q3) + l2lc3cos(q3))

M21 = M12

M22 = I2 + I3 +m2(l
2
c2
) +m3(l

2
2 + l2c3 + 2l2lc3cos(q3))

M23 = I3 +m3(l
2
c3

+ l2lc3cos(q3))

M31 = M13

M32 = M23

M33 = I3 +m3(l
2
c3
)

and

C =





C11 C12 C13

C21 C22 C23

C31 C32 C33





C11 = −[(m2l1lc2sin(q2) +m3l1l2sin(q2) +

m3l1lc3sin(q2 + q3))q̇2 + (m3l1lc3sin(q2 + q3) +

m3l2lc3sin(q3))q̇3]

C12 = −[(m2l1lc2sin(q2) +m3l1l2sin(q2) +

m3l1lc3sin(q2 + q3))(q̇1 + q̇2) +

(m3l1lc3sin(q2 + q3) +m3l2lc3sin(q3))q̇3]

C13 = −[(m3l1lc3sin(q2 + θ3) +m3l2lc3sin(θ3))

(q̇1 + q̇2 + q̇3)]

C21 = (m2l1lc2sin(q2) +m3l1l2sin(q2) +

m3l1lc3sin(q2 + q3))q̇1 −m3l2lc3sin(q3)q̇3

C22 = −m3l2lc3sin(q3)q̇3

C23 = −m3l2lc3sin(q3)(q̇1 + q̇2 + q̇3)

C31 = (m3l1lc3sin(q2 + q3) +m3l2lc3sin(q3))q̇1 +

m3l2lc3sin(q3)q̇3

C32 = m3l2lc3sin(q3)(q̇1 + q̇2)

C33 = 0,

where mi, li, lci
, Ii, qi and q̇i, is the mass, the length, the

center of mass, the inertia momentum, the angular position
and the angular velocity of the i-link, respectively.
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