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I. INTRODUCTION

This paper proposesa novel approachto studying well-
posed linear systemsvia their reciprocal systems.A well-
posedlinear systemhasgeneratingoperatorsA, B, C' thatare
typically unboundedperatorsUnderthe genericassumption
that 0 € p(A), this well-posedlinear system possessesi
reciprocalsystemwith the correspondingeneratingoperators
A=1 A7'B, —CA~" thatareall boundedIn Curtain[3], [4]
andCurtainand Sasang5] this connectiorhasbeenexploited
to solve certaincontrol problemsfor well-posedinear systems
by shaving that they are equivalentto correspondingontrol
problemsfor the reciprocal systems.Due to the bounded
natureof thegeneratorsthe problemsfor thereciprocalsystem
are easierto solve andthesesolutionscan be translatedback
to solutionsfor the original well-posedlinear system.This
approachworks perfectlyfor stablewell-posediinear systems
[3], [5], but for unstablesystemsone needsto imposesome
extra assumptionsin Opmeerand Curtain [12] it is shovn
that, under a certain condition (see (11.9)), optimal control
problems(with a coercive costfunctional)for (unstablewell-
posedlinear systemshave a solutionif andonly if the corre-
spondingreciprocaloptimal control problemhasa solution.In
this case the costoperatoiis the solutionof a Riccatiequation
involving only boundedoperators Sinceit is known that for
well-posedinear systemsthe expectedRiccatiequationis not
alwayswell-defined,this resultis significant. The aim of this
paperis to obtain new sufiicient conditionsfor (11.9) to hold
and so ensurethat the resultsof [12] apply.

Il. RECIPROCAL SYSTEMS OF WELL-POSED LINEAR
SYSTEMS

First we review the conceptof a reciprocalsystemthatwas
introducedin Curtain [3], [4] for a well-posedlinear system
¥ with the generatingoperatorsA, B, C' andtransferfunction
G underthe genericassumptiorthat 0 € p(A). A generates
a strongly continuoussemigroup?’(¢) on a Hilbert spaceZ,
U,Y areHilbert spaces(C' € £(D(A),Y), A~'B € L(U, Z),
and B andC' areadmissiblecontroland obsenation operators
with respectto 7'(-), i.e., given = > 0 thereexistsay > 0
suchthat

/ |CT(t)2|2dt < ~||2||? for all z € D(A),
0

and for arny 7 > 0 thereexists a g > 0 such that for all
u € Ly(0,7;U)

||/ t) Bu(t) dt||? </3/ [ (2)])? dt.

If B,C areadmissibleoperatorswith respecto 7'(-), thenwe
definethe obserability mapC™ € £(7,L2(0,7;Y)) andthe

controllability map B™ € £(Ly(0, 7; U),
Cz(t) =
B u = / T(r — s)Bu(s)dsu € Ly(0, 7; U) (11.2)

0

7Z) by
CT(t)z for 0<t<r,z€ D(A) (I.1)

The transfer function is determinedup to an arbitrary
constantfor s, 8 in someright-half plane by the following
expression

G(s) — G(f) =

If the right-handsideis uniformly boundedin norm on some
right half-planethen A, B, C, G(p) defineawell-posedinear
systemwith transfer function G. The transfer function is
independentbof the choice of g and (I.3) can be extended
analyticallyto p, (A4), the largestcomponenbf the resohent
set that containsan interval [r, o). It also hasan extension
to all s, € p(A) (see Stafans and Weiss [16]), but this
extensionneednot equalthe analyticextensionof the transfer
function outside p (4). A simple example illustrating this
is given in Curtain and Zwart [2, Example4.3.8]. To avoid
confusionwe resene the namecharacteristicfunctionandthe
symbol & for this extension.

A large subset of well-posed linear systems has a
more familiar expression for the transfer function. First
we need to define the Lambda-gtension of C by
Car = limy, AC(AT — A)~lz for z € D(C,), the
subsetof 7 for which the limit exists. ¥ is a regular linear
systemif for eachu € U, G(s)u hasthe limit Du as s
approachesinfinity along the positive real axis for some
D e L(U,Y). A, B,C, D arecalled the generatingoperators
of ¥ and the transfer function has the more familiar form

(B—s)C(sI — A)~Y(BI = A)~'B. (11.3)

G(s) = D+ Cx(sI — A)~'B for s in someright half-plane.
Its characteristidunction &(s) = D + Cx(sl — A)~'B for
s € p(A).

We introducethe following stability notions.
Definition 2.1: The well-posedsystem. with generating
operatorsA, B, C' andtransferfunction G is stableif
« it isinput stable thereexists a constant3 > 0 suchthat
for all u € L2(0, 00; U)

|| T <5 [l

« it is outputstable thereexists a constanty > 0 suchthat
for all z € D(A)
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« it is input-output stable the transfer function G ¢
Heo (L(U,Y)).

Remark2.2: Fromthe Paley-WienerTheoremA.6.21in [2]
output stability implies for every z € 7 the existenceof the
LaplacetransformC(-)z € Hy(Y) of CT(-)z € La(0, 00;Y).
In otherwords, C (s — A)~'z hasan analytic extensionto
C(s)z € Hz(Y) for all z € Z. Moreover, this extensionequals
C(sI — A)~'z for s € p(A) N CY, sincefor = € D(A)

e . 0
C(s)(sT — A)z = C=z can be extendedto C}, the domain



of analyticity of €. This then can be extendedto hold for
all z € Z. Similarly, output stability implies, for every z €
Z,u € U, the existenceof (z, B(-)u) € H, that satisfies
(z,B(s)u) = (z, (sT — A)~'Bu) for all s € CF np(A).
Remark2.3: For input stability the terminology B is an
infinite-timeadmissiblecontmol operator for 7'(-) is oftenused
and for output stability the terminology C' is an infinite-time
admissibleobservationopefator for 7'(-) is in use.(We shall
alsousethe terminology (A, B) is input stableand (A, C') is
outputstable.)
If X is outputstable,thenthe mapin (I1.1) makessensefor
7 =00 andC*® € L£(Z,Ly(0,00;Y). Similarly, if X is input
stable,B>* € £(L2(0,00;U), Z), where

T(s)Bu(s)ds for u € Ly(0,00;U).

B®u = lim
T—00 0
If B is an infinite-time admissiblecontrol operatoy then its
contollability gramian Lg € L£(Z) is definedby Lg
B (B*>)*. If C is an infinite-time admissibleobseration
operatoy thenits observabilitygramian L € £(Z) is defined
by Le = (C*®)*C™.

The essentialdifferencein Definition 2.1 to previous defini-
tions is that we have made no stability assumptionson A
andso it canhave spectrumin C}. However, in Curtain [4,
Lemma2.3] it wasshawvn thatfor a stablesystem(l1.3) holds
on C¥ n p(A); moreprecisely the following is true.
Lemma2.4: If the well-posed linear systemX. is either
input stable or output stable,then the transfer function has
an extensionto an analytic function on C}, (11.3) holds for
s, € CF N p(A) and the characteristidfunction equalsthe
transferfunctionin this region. Moreover, if X is regular, then
G(s) = D+ Ca(sI — A)™'B = &(s) for s € CF N p(A).

In Grabavski [7] it is shovn that C' is an infinite-time
admissibleobsenration operatorfor 7'(-) if and only if the
obsenationLyapunw equationhasa self-adjointnon-neyative
solution L € £(Z)

A*Lz+ LAz = -=C*Cz forall z € D(A). (1.4)

Moreover, the obsenability gramianL¢ is the smallestself-
adjoint non-ngjative solution. The key stepin the conceptof
a reciprocalsystemis to notice thatif 0 € p(A), then(ll.4)
hasa solutionif andonly if the following equationdoes

AL+ LA™ = —A—*C*CA~L (11.5)

This is the obsenability Lyapunw equation for the pair
(A=1, CA~"). Similarly, the control Lyapune equationfor
the infinite-time admissible B operator has a solution if
and only if the control Lyapunw equation for the pair
(A=', A='B) has (Hansenand Weiss [8]). Notice that the
operatorsA—', A='B, C A~ areall boundedIf we substitute
B =0 in (11.3), we obtain

B(s) ®(0)+ sC(sI — A)"'A™'B (11.6)
&(0) — CA‘l(él — AT ATIB. (IL7)

This motivatesthe following definition.

Definition 2.5: Supposethat the well-posedlinear system
with generatingpperatorsA, B, C, D, transferfunction G and
characteristidunction & is suchthat0 € p(A). Its reciprocal
systemis the regular linear systemX_ with the bounded
generatingoperatorsA=', A='B, —C A=, &(0).

Remark2.6: (11.6) shows that the characteristicfunctions
of the well-posedlinear systemand its reciprocalsystemare
relatedby

&(s) (1.8)

6_(%) for s € p(A).

As remarkedearlier sucha relationshipmay not hold for the
transferfunctions.
In Opmeerand Curtain[12] it is shavn that a necessaryand
sufficient condition for relating a control problemfor a well-
posedsystemwith a control problemfor its reciprocalsystem
is that the following shouldhold at leastfor s in someright
half-plane.
. 1. 1
G(s) = G- (1) C(s) = —C-(5).

S s

(1.9)

In Curtain[4, Lemmaz2.3] it wasshown thatthis alwaysholds
for stablesystems.

Theoem 2.7: Supposethat A, B, C' are generatingopera-
tors of a well-posedlinear systemwith transferfunction G
andzerois in the resohentsetof A. Then

1) Cis aninfinite-time admissibleobsenation operatorfor

T(t) if andonly if CA~! is one suchfor T_(¢)
exp A™'t. If they areinfinite-time admissiblethentheir
obsenability gramiansare identical,and

4 1. 1
C(s)z = -C_(=)z for seCt, -7  (1.10)
’ S S
2) Bis aninfinite-time admissiblecontroloperatorfor 7'(t)
if and only of A='B is one suchfor T_(¢). If they
are infinite-time admissible,then their controllability
gramiansare identicaland
P 1 L1
(z,B(s)u) = —(2,B_(=)u) for scCr ucl,€ 7.
S S
3) If X is input or output stable,then G(s) = G_(é) for

s e Ct,
Y_ is.

4) ¥ is astablesystemif andonly if X_ is astablesystem.

andso Y. is input-outputstableif and only if

Il1. ADMISSIBLE FEEDBACKS

The main aim of this sectionis to obtain sufficient condi-
tionsunderwhich (11.9) holds.To achieve this we examinethe
effect of admissiblefeedbackson the reciprocalrelationship
and, in particular output stabilizing feedbacks.

Definition 3.1: The well-posedlinear system: with gen-
erating operatorsA, B, C' and transferfunction G is output
stabilizableif thereexists ' € £(D(A), U) suchthat

« A, B, [C; F] aregenerator®f awell-posedinear system
with transferfunction G” satisfyingG = [7;0]GT;



« [0,7] is an admissiblefeedbackoperatorfor GF', i.e.,
(I —[0,I1GT) hasa well-posedinverse,andthe closed-
loop systemZ® is well-posedwith semigroupgenerator
Aq andtransferfunction given by

G =G (1r-[0,nG")~". (11.11)

« Y° is outputstable.

Note that we have usedthe notation [M; N] for a column
block and[M, N] for a row block.

Remark3.2: Note that a regular linear systemis output
stabilizableif £ exponentially stabilizes(A, B) in the sense
of Rebarber{13]. Our definition of stabilizability is different
from thosein Stafans[15] andin Mikkola [10]. Ours does
not assumeuniform boundednessf the semigroup.

Remark3.3: In the casethat X" hasboundedgenerating
operatorsand feedthroughoperator[D; D], [0; I] is an ad-
missible feedbackoperatorfor ¥ if and only if 7 — DF
has a boundedinverse. The closed-loopsystem¥* hasthe
generatingoperators

Aa = A+ B(I - Dp)~'C, B = B(I - D)7,
[C P = [C+ D(I - D")~'F; (1 - D")~'F],
D* = [D; D")(1— D).

Direct computations verify that the inverse of I —
0;1GF(s) = I — [0;116T(s) is (I — DF)=t — (I —
DF)=1F(sI — Ay)~'B(I — DF)~1, which is always uni-
formly bounded on some right half-plane, since A, is
boundedMoreover, theinverseof I—[0; I1&7 (s) existsfor all
s € p(4) N p(Aa). So,in additionto (I11.11) direct algebraic
computationshow that

& = &7 (1[0, 1167)! for s € p(A) N p(Aa).(111.12)

For the closed-loopsystemto have a well-definedreciprocal
systemwe need 0 € p(A.). The following result from
Salamon[14, Lemma 4.4] shaws that a sufficient condition
for this to hold is that 1 € p([0, 7]&(0).

Lemma3.4: Let ¥ be a well-posed linear system with
generatingperatorsd, B, C' andtransferfunctionG. Suppose
that thereexists an F € £(D(A),U) suchthat A, B, [C; F]
are generatorsof a well-posedlinear systemwith transfer
function G with G = [I;0]GF and [0, 7] is an admissible
feedbackoperatorfor G, If A, is the semigroupgenerator
of the closed-loopsystem,then
Aep(A) and 1€ p([0, 1187 (N)) = A € p(Au).

Remark3.5: A corollary of the abore lemmato systems
with boundedgeneratingoperatorsasin Remark3.3 is that if
A € p(A), then
1€ p([0, NS (V) if andonly if X € p(Ay).

The following lemma shows that if 0 € p(A), then the
condition 1 € p([0, I]&(0) is necessaryfor [0; 1] to be an
admissiblefeedbackoperatorfor 7.

Lemma3.6: Let =¥ be a well-posedlinear systemwith
generatingoperatorsA, B, [C; F], transferfunction G and
characteristidunction & and supposethat 0 € p(A). Then

1) [0; I]is anadmissiblefeedbackior thereciprocalsystem
v if andonly if D = I — [0; 16 (0) hasa bounded
inverse.

2) If D is boundedlyinvertible, then I — [0; []|GT(s) is
invertiblein £(U) for s in someright half-plane

3) If [0; 7] is an admissiblefeedbackoperatorfor X7, then
0e p(Acl)

Proof (1) This follows from Remark 3.3 since X has
boundedgeneratingoperatorsDenotethe closed-loopsystem
by ¥*¢% andits generatingoperatorsaccordingly
(2) Since0 € p(A) we cansubstitutes = 0 in (11.3) to obtain

&"(s) = &"(0)+s[C;F)(sT—A)"AT'B

= &"(0) - [C; F]A‘l(él —A™H) AR

- esf(%) for all s € p(A).

This equalsthe transferfunction on someright half-plane

andso we have for s in someright half-plane
0:1G" (s) = [0: 167 (5) = [0, N6"(1).  (1.13)

From part (1) we know that 7 — [0, I]&T()) hasa bounded
inverse if and only if D does and this inverse exists for
s € p(A71) N p(A™e¥). Now by Remark3.5 we know that
X e p(A™!) and 1 € p([0; N&T () = X € p(A™*"). So
p(A~1) C p(A™*™). Since A is an infinitesimal generator
1/p(A~") containsa right half-planeand so the sameholds
for 1/p(A™*"). Sofrom (11.13) we seethat I — [0; I]G'(s)
hasa boundedinversefor s in someright half-plane.
(3) If [0; 7] is an admissiblefeedbackoperatorfor 7', then
by part2 D~! hasa boundednverse.So by Lemma3.4 with
A =0 weobtain0 € p(Ay).

Remark3.7: In [3] asystemwascalledr-outputstabilizable
if it is outputstabilizableand 0 € p(A.). Lemma3.6 shavs
that this extra conditionis superfluous.

We shawv that the reciprocalrelationshipis presered under
admissiblefeedbacks.

Lemma3.8: Let ©F be a well-posedlinear systemwith
generatingoperatorsA, B, [C; F], transferfunction G and
characteristiéunction &”. Supposehat[0; 7] is anadmissible
feedbackoperatorfor ©7 thatproduceshe closed-loogsystem
¥ having the semigroupgeneratorA,;, transfer function
G°! and characteristicfunction &<. If 0 € p(A), then the
reciprocalsystemst? ©:¢t of ©F ©2¢! | respectiely, arewell-
definedand[0; 7] is an admissiblefeedbackoperatorfor
that producesthe closed-loopsystemX <. Moreover, if ¥ is
outputstabilizable thensois X _.

Proof Sincethecharacteristidunctionsandtransferfunctions
agreeon someright half-plane,from (I1l.11) and (1.8) we
deduce

62 (s) = 61(s)(1 - [0, 161 (s) "

(I1.14)

for 1/s in someright half-plane. From Lemma 3.4 0 ¢
p(Aq) andfrom Remark3.3 ¢ hasthe generatingoperators
A AZ B [0 FAG, 67 (0).

el



On the other hand, by parts 1 and 2 of Lemma 3.6, [0; /]

is an admissiblefeedbackoperatorfor £ with generating
operatorsA—!, A='B —[C; F]A~!, &7 (0). FromRemark3.3
the resulting closed-loop system ¥."¢* has the generating

operators

Arew = A=V ATIBDTTF AT, D =1 - [0; 1)187(0),

RBrew — A_lBD_l, prew — ®F(0)D_1,

Crev = —CAT + (L0167 (0D F AT,

Frev = —pTlpA-L

Moreover, from(111.12), for s € p(A~1) N p(A™**) we have
& (s) = &7 (s)(1 — [0, &7 ()" (1.15)

We now shaw thatfor 1/s in someright half-planethereholds

B (s) = &% (s). (111.16)

Comparing(lll.14) with (111.15) we seethat we needto shov
that 1/p(A™*") containsa right half-plane.From Lemma3.4
we have thatif X € p(A) = 1/p(A~") and T — [0; 16T ()
hasa boundedinverse,then A € 1/p(A”¢"). But

I—10; I]@F(/\) —[0; & (N)
andthis hasa boundednversefor A in someright half-plane.
Moreover, since A is an infinitesimal generatarits resohent
setcontainsa right half-plane.So1/p(A"*") containsa right
half-planeand we have showvn (111.16).
Since both ©¢ and ©"** have boundedoperatorswe can
concludethat their feedthroughoperatorsare equal,i.e.,

6°(0) = DI = D™ = &"(0)(1 - [0; 16" (0))
Sowe have
I—1[0; 11&°(0) = (1 — [0; &7 (0))7", (11.17)

and’ —[0; 71&°(0) hasthe boundednverse(T —[0; 717 (0).

But since0 € p(A) N p(A°), both & and & are analytic

in a neighbourhoodf the origin. Soin this neighbourhood
(1= 10;71&%(s)) ™" = T = [0; 16" (s),

andthe following equalitieshold at leastfor s in someright

half-plane

(I —1[0; &% (s))~" =T —[0; &7 (s)

&(s) = &7 (5)(1 — [0; 16 (5)) ™
But (111.15) alsoholds at leastin someright half-planesince
Anew and A~! are boundedoperatorsThus " = &< on
someright half-planeand
G"** = G° on someright half-plane (11.18)

Next we show that the output maps are equal. For s €
p(A™*) N p(A~") the outputmapof X" is given by

[Cmevw; Frev](sT — Amev) ™1 = (11.19)
—(I 4 & (s)[0; I))[CA™Y; FAT(sT — A)™!

Taking Laplacetransformsof the perturbationformula for the
closed-loopbsenationmap (Weiss[18, (6.13)]) for s in some
right half-planewe obtain

C(s) = (I + G (s)[0; 1T)C" (s)

or equivalently

[C F(sT— Ag) ™Y = (T4 &% (s)[0; 1)) [C; F(sT — A)~!

With somealgebraicmanipulationsand substitutingl /s for s
this gives
[CclACl ,FClA

(I+ &% (s)[0; 1)) [CA™Y FATY (s — A™Y) 7!
= (I + &"¥(s)[0; I))[CA™Y; FA=Y(sT — A1) 7!
for 1/s in someright half-plane,wherewe have used(l11.16)

in the last step.So combiningthis last equationwith (111.19),
we obtain

Y(sl — AZY)~" =

—[C* AL} ,F”A (sl — AH~1 (11.22)
for 1/s in someright half-plane.Now, ass — 0,
[Cnew;Fnew](SI _ Anew)—lAnewZ - _[Cnew;Fnew]Z,

and [C4 A FEAS AW 2 — [C9; FeY)Amev z ass — 0.
Thus (111.20) implies that

[Cn,sw; Fn,sw] — _[C(tl; Fcl]An,sw. (”'22)

To shav that A”¢*¥ = A.; we considerthe resohent identity
for Anev = A=l 4 A-1BFnew
(8[ _ An,ew)—] _ (SI _ A—] )—1 —
sI — A—l)—lA—lBFnew(S[ _ Anew)—l
which holds for s € p(A™*" N p(A~
from (111.20) to obtain
(sT — A"~ (sT — A1 = (11.23)
—(sI — A TTAT'BFUY AL (sT — ALY
which now holds for 1/5 in someright half-plane. (Recall
that1/p(Am°*)N1/p(A~") containsa right half-plane).Now
we takeLaplacetransformatlonsf thesemigroupperturbation
formulain Weiss[18] to obtain
(sl—Acl)_1 —(SI—A)_1 =—(sI—-A)~
for s in someright half-plane.With somemanipulationghis
implies
(sI — A”)‘
—(sT — A~

1. Now we substitute

"BFEY(sT—Aug)™!

1 _ (SI_A;ZI)—1 —

1)—1A—1BFCIA6—11(S[_AC—11)—1

for 1/s in someright half-plane.Comparingthis with (111.23)
yields (sT — Ac‘ll)—1 = (sI — A™*¥)~! andsothe generators
areequaland (I11.22) yields

[Cnew; Fnew] — [Cil; FEI]

A sim|lartypeof agumentshaws that (s/ — A™*w) =1 gnew —
(s — AZ1) "1 B¢ for 1/s in someright half-planeand this
implies thatB”e“’ = AZ'B andxrev = ne,

Supposeow that X¢ is outputstable.ThenTheorem2.7 part
3 shaws that G and ¢! are analyticon Ci andfor s €
p(Aa) using(11.8), we have G°!(s) = &°!(s). But

Cél(s) = [cd Fe(sI — Ag)~
[C”l FPA (11 Aa)™,



andso

1 Sc 1 c c - —1y— 3¢
;C l(g) = _[C l; F I]Acll(SI - Acll) ! = C—l(s)
for s € p(AZ"). This containssomeright half-plane,and so
¢ hasan extensionto an H, function.

In Curtain[3] aslightly differentformulaof the closed-loop
generatorwas given. We shav that it equalsthe one found
here.

Corollary 3.9: Underthe sameassumptiongndnotationas
in Lemma,if ©F is regular with zero feedthroughoperatoy
thenthe generatorof the closed-loopsemigroupA,; satisfies

A—l

= AT ATTBRAALL (11.24)
Proof vF has the generating operators
A=V ATIB —[CA=1, FA™Y, —[CAA™'B; FAA~'B].

From Lemma3.8 we have

At = A" = ATl ATIB(T 4+ FAATIB)"FATY
= A" — AT'B(I — FAAL'BYFA™" by (I1.17).

Soit remainsto shav that
AT'BEANAZY = ATV B(I — FAA'B)F AT

Applying Lemmas7.9 and 7.10in Weiss[18] to our closed-
loop systemx:*! givesfor all z € D(Fy).

Agxr = (A-I— BFA);E and Az = (Acl — BFA):L'.

But D(F,) containsD(A) andsowith z = A~'z andz € 7,
we obtainz = (A — BFA)A~!z andso

FAAc_llz = FAAc_ll(Acl —BFA)A_lz

FA™'2 — FAA;'BF A7z,

which completesthe proof.

Remark3.10: If ¥_ is ouput stabilizable,X neednot be,
as the characteristicfunction (1) neednot be uniformly
boundedon someright half-plane.However, in Curtain[3] it
is shavn that if B is a boundedoperatoy then X is output
stabilizableif andonly if ¥_ is outputstabilizable.

We now obtain sufficient conditionsthat ensurethat G hasa
unique analytic extensionto p(A) N CF that agreeswith its
characteristidunction.

Theoem3.11: Let ¥ be a well-posedlinear systemwith
generatingoperatorsA, B, C', 0 € p(A), transferfunction G
and characteristiduntion &. If X is output stabilizableand
U,Y arefinite-dimensionalthenG hasa uniqueextensionto
a function that, except for countablymary isolatedpoints, is
analyticon Ct and G = & in this region.

Proof Now X is output stable and so by Lemma 2.4,
G°l(s) = &°I(s) for s € p(Ax). From (11.11) it is readily
deducedhat on someright half-plane

(T+[0,1G) (I —[0,16") =1

= (I —[0, &) (I +[0,1G%).  (11.25)

Sincel+[0, I]G* is analyticon C , it hasonly isolatedzeros
andits inversehasat mostcountablesingularities saythe set
Ssing So I + [0, I]G°(s) hasa uniqueinversedefinedon
Ct/S*in9, Sincel0, I] is an admissiblefeedbackoperatorfor
»F, —[0, 1] is an admissiblefeedbackoperatorfor %< and
the following holds on someright half-plane

GI' =G I+ [0, 11GH~L. (11.26)

But 7 + [0, 7]G* hasa uniqueinverseon Ct /S*"9. Thus
(IN.26) shaws that G™ has an extension to a function
that is analytic on Cf /S*"9. This extension is unique
and it necessarilyagreeswith its characteristicfunction on
Cf /5%ima,

Remark3.12: In fact, we have shown thatif a systemwith
finite-dimensional/ andY is outputstabilizable,its transfer
function hasat mostcountablesingularitiesin C¥ .

We now shaw thatunderthe sameassumptiongsin Theorem
3.11the reciprocalrelationshipg11.9) hold.

Lemma3.13: Supposdhat A, B, C arethegeneratingper
atorsof the well-posedlinear system¥. with transferfunction
G and0 € p(A). If it is outputstabilizableandU andY are
finite-dimensionalthen (11.9) holds for all s € p(A) N C/,
where G_ is the transferfunction and C_ is the obsenation
map of the reciprocalsystem>:_.

Proof By Lemma3.8 ©F is also ouput stabilizable.So
from Theorem3.11 we have that both G and GF have
extensionsto functionsthatare analyticon C} /5”9, where
S*in9 js a countable set and these extensions agree with
their characteristicfunctions on CF /59, Taking Laplace
transformsof the perturbationformula in Weiss[18, (6.13)]
givesfor s in someright half-plane

C7(s) = (1 + G (s)[0; 11)C (5).

The ouput stability of £ shaws that €' is analytic on CF
andso C hasan extensionto a function thatis analytic on
Ct/S*n9 and similarly for CF. As in Remark2.2 for s €

p(A) N CF/S*"9 we have
Cl(s) = [C;F])(sl—A)"
= _é[c; F]A‘l(él— A=HT!
= %éf(%). (I1.27)

Note that S$*i"9 is a countableset and that the singularities
of [C; F](sI — A)~! and of [C; F]JA™Y(1] — A=!)~! are
containedin p(A). So the above equalitiesextend to s €
p(A) N CF andwe have proven the secondpart of (11.9).
Since " hasan extensionto a function that is analytic on
Ct /59, (11.3) canbe extendedto obtain

G7(s) = &7 (0) + sC" (s)A™'B for s e Ct /59,

Combining this with (111.27) and noting that the set S*i"9
is countable,shaws that the singularitiesof GF in Ct are



containedin p(A) N CH andsofor s € p(A) N CH we have

G (s) = &7 (0) + Cf(l)A‘lB. (11.28)
v . 5
Arguingin a similar fashionfor £ we obtain
Gl(s) =67 (0)+CF(s)A™'B (11.29)

for s € p(A~1)NCY. Sousing(11.8), (111.28) and(111.29) we
obtain | |
&(s) = G"(s) = GI (<) = 6" ()

S S

for s € p(A) N CF, which completeghe proof of (11.9).

The following example shows that both ' and Y needto
be finite-dimensionafor (11.9) to hold.
Example3.14: Let A be theright shift onl5(7Z) = 7. So

(Az)k (A_
U(A) = O-C(A) = {5 c C: |S| = 1} = O'(A_l) o

1
= Zk_1, Z)k = Zk41 and

O'C(A_l).
Moreover,
POO(A) = {5 cC: |5| >1}= pOO(A_l)'

For the input let U = Z and B = [. For the output take
Y = R and define Cz = z_;, We considerthe system
with boundedgeneratingoperatorsA, B, C, 0. This systemis

clearly exponentiallystabilizableandhenceouputstabilizable.
For example, ' = —27 shiftsthe spectruninto {s : Res < 1}

andsince A — 27 is boundedthe semigroupis exponentially
stable.We shall show that (11.9) doesnot hold.

To make the calculations easier we calculate the transfer
functions of the dual systemwhich has generatingoperators
A=Y C* = A='By, 1,0, where (Byu); = g xu. Its impulse
responses given by

o0

1 "
A7 41 _ —n-1" ¢
(6 A BO)k = HX_:OA n!()()yk
[oe) tn
= Zméo,k+n+1
n=0
t—k—l
—— for k otherwise 0.
T <0, 0

Sotaking Laplacetransformswe obtain
Gi(s), =s* for k<0, otherwise 0.

The reciprocal system has the generating operators
A= A= —CA~Y, —CA~! andits dual systemhasthe gen-
eratingoperatorsA, — By, A, — By.

The impulseresponseof the dual reciprocalsystemis

o0 t”
_§ :An+1_é‘0k
. n!
n=

00 fﬂ,
- 5 _'JO,k—n—l
n.
n=0

.tk‘—l

(—AEAtB())k =

otherwise 0.

Taking Laplacetransformswe obtainthe transferfunction of
the dual of the reciprocalsystemto be

G4 (s) = —s7% for k>0, otherwise 0.

So comparingthis with our calculationsabove for G, we see
thatwe never have G%(s) = G2 (1).

IV. HISTORICAL REMARKS

It appearsthat the conceptof a reciprocal systemfirst
appearedn the Russianliterature in the contet of nodes;
see,for example,the book by Livsic [9]. Partial relationships
betweenthe pairs A, B and A~!, BA~! have been used
by Fattorini and Triggiani in the study of controllability for
boundarycontrol systemsand by Grabavski and Callier in
their work on the circle criterion for boundary control via
Lyapunw stability andLur’e equationgsee[1]). However, the
closestconnectionwe areawareof is in the finite-dimensional
papers[6] by Fernandoand Nicholsonand[11] by Muscato,
Nunnari and Fortuna who used the conceptof reciprocal
systemsin the contet of stochasticbalancingand model
reduction.
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