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†INESC-ID, R. Alves Redol 9, 1000-029 LISBOA, Portugal

Abstract: This paper presents and proves two sufficient conditions dealing with the
uniform exponential stability of an unstable discrete linear time invariant model,
rendered stable through appropriate feedback control, when interrupted observations
of the plant state occur. The state is assumed to be available and directly measured
by sensors. The first sufficient condition establishes a linear relation between the total
time when at least one of the sensors’ measure is not available (Tu), and the total
time when all sensors’ measures are available (Ta), bounding Tu in order to say the
closed loop system is uniformly exponentially stable. The second sufficient condition
establishes another linear bound between each “unavailability” time interval Tui and
the previous “availability” time interval Tai−1 , in order to state that the Euclidean
norm of the plant state, at the end of each Tui interval, is a monotonic descent series.
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1. INTRODUCTION

In recent years the mass advent of digital com-
munication networks and systems has boosted
Teleoperation integration in feedback control sys-
tems. Applications like unmanned vehicles (Hall-
berg et al., 1999) or Internet based real time
control (Overstreet et al., 1999) provide significant
examples raising, in turn, new problems.

1 Part of this work has been done under the project
POSI/SRI/39643/2001, under the IIIrd EC Framework
Program, and under a 3 years teaching leave given by EST-
Setúbal/IPS. Corresponding author: Tel.: +351.213100322.
E-mail address: rvilela@est.ips.pt

This paper deals with one of such problems: if the
communication channel through which feedback
information passes is not completely reliable, sen-
sors’ measurements may not be available to the
controller during some intervals of time (“unavail-
ability” time Tu). In such a situation, one has
to couple the controller with a block, hereafter
called supervisor, which is able to discriminate be-
tween situations of signal “availability” and “un-
availability”, and to generate an estimate of the
plant’s state during this “unavailability” interval.
Methods for detection and estimation for abruptly
changing systems (Tugnait, 1982) can be applied
in the problem considered here. For that purpose
an algorithm based on Bayesian decision could be
implemented, for example.
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Fig. 1. Block diagram of a discrete control system
with interrupted observations.

Fig.1 represents a block diagram of a discrete
control system with interrupted observations. The
supervisor decides whether the state x(k) is being
correctly measured by the sensors or not, and
commands the switch signal σ(k). During the time
intervals in which the sensors do not provide a
reliable measure of the actual plant state (it is
admitted that the state coincides with the output)
one possibility is to replace it by an estimate
x̂(k) obtained from a plant model. This yields
a loss of performance with respect to the ideal
situation in which the sensors are always available,
and may pose stability problems if the plant is
open-loop unstable. Moreover if the plant model
has modelling uncertainties δA, and if the state’s
measurements x(k) are disturbed by δx(k). It is
shown that, with the above described scheme, the
controlled plant will be stable if the time interval,
during which at least one of the sensors’ measure
is unavailable, is somehow “small”, and that the
Euclidean norm of the state x(k), at the end of
each Tui interval, is a monotonic descent series.

Somehow related with the problem of temporary
sensor “unavailability” presented in this paper
is the problem of data packet dropout, and the
problem of network-induced delay, in Networked
Control Systems (Zhang et al., 2001).

This paper is organized in five sections and two
Appendices. After this introduction, section 2
refers a possibility for a supervisor algorithm,
even though it is not studied in detail. Section
3 presents two theorems with sufficient conditions
for uniform exponential stability of the controlled
plant under the occurrence of interrupted obser-
vations. In section 4, simulation examples are pre-
sented in order to illustrate the two previous the-
orems. These simulation examples highlight the
supervisor performance on the detection of the
interrupted observations, and include an unsta-
ble discrete linear time invariant plant of second
order. Section 5 draws conclusions and in Appen-
dices A and B the two theorems are proved.

2. DETECTION AND ESTIMATION

One possibility for modelling sensors’ measures
interruptions is to consider that each observa-
tion (sensors’ measures) x(k) (it is assumed that
xmin ≤ x(k) ≤ xmax), made at discrete time
k, occurs under hypothesis H0 with probability
p0, close to one, or under hypothesis H1 with
probability 1−p0, close to zero. Under hypothesis
H0 the observation is equal to the value of the
state x(k), added by zero mean white Gaussian
noise of (constant) variance σ2

e . Under hypothesis
H1 a measure interruption occurs. In this case the
observation is no longer related to the state x(k),
but, instead, is given by a random variable η(k)
with a probability density function (p.d.f.) which
is uniform in the range of measurement, from xmin

to xmax.

According to a Bayesian approach, in order to de-
tect that a given observation is actually noise, the
probability of both hypothesis, given the observa-
tions, is computed. They are, then, compared, and
if the probability associated with hypothesis H1

is greater than the one associated with hypothesis
H0 it is decided that a measurement interruption
has occurred. Under this decision, the observation
is discarded and replaced by a forecast x̂(k) of the
true value of x(k), made from a plant model.

3. UNIFORM EXPONENTIAL STABILITY
RESULTS

The plant of Fig.1 is described in the state-space
form by

x(k + 1) = (A + δA)x(k) + bu(k)

y(k) = Cx(k) (1)

with x ∈ Rn, accessible for direct measurement
(C = In, where In is the identity matrix with
dimension n × n), u ∈ R, A, δA and b of appro-
priate dimensions, and (A, b) controllable. More-
over, δA represents the modelling uncertainties.
It is assumed the plant is time invariant and the
controller is a state feedback of the signal z(k),
yielded by the sensor

u(k) = r(k)− Lz(k) (2)

where L is a vector of feedback gains. z(k) =
x(k) + δx(k) during the interval when all sensors
are working properly, and z(k) = x̂(k) when
measuring interruptions take place. The state
disturbances being represented by δx(k).
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Fig. 2. Operation time line with “availability”
intervals alternating with “unavailability” in-
tervals.

Define the plant closed loop dynamics matrix as

AδL := (A + δA)− bL = Aδ − bL (3)

and the model closed loop dynamics matrix as

AL := A− bL (4)

Furthermore, define the plant open and closed
loop transition matrices

Φδ(k, k0) := Ak−k0
δ (5)

ΦδL(k, k0) := Ak−k0
δL (6)

and the model open and closed loop transition
matrices

Φ(k, k0) := Ak−k0 (7)

ΦL(k, k0) := Ak−k0
L (8)

Consider the time line of operation divided in
alternate intervals where all sensors operate cor-
rectly (Tai , with i = 0, 2, 4, ...), and where, at
least, one of them fails (Tui , with i = 1, 3, 5, ...)
being replaced by the model estimate (see Fig.2).
Note that the index i does not represent discrete
instants of time, but is rather used to enumerate
both the “availability” and the “unavailability”
intervals. Let k0 denote the beginning of one such
intervals. It is assumed that the first interval cor-
responds to an “availability” interval, and that
the intervals are open at their end. The sate x̂(k)
of the model is made equal to the last available
observation of the state x(k) when an interrupted
observation occurs.

Theorem 1 Consider the closed loop system
of Fig.1 with the unstable model in open loop
(bounded by ‖Φ(k, k0)‖ ≤ δ′βk−k0 , with δ′ ≥ 1
a finite positive constant, and β > 1), rendered
stable, through proper design of L, in closed loop
(‖ΦL(k, k0)‖ ≤ γλk−k0 , with γ ≥ 1 a finite posi-
tive constant, and 0 ≤ λ < 1). Consider, also, that
ξ := ‖b‖, ϕ := ‖L‖, and that model uncertainties
are bounded (‖δA‖ ≤ ∆). The system with initial
condition x(0) = x0 is uniformly exponentially
stable provided that the total “unavailability” time
Tu, up to discrete time k inside the “unavailabil-
ity” interval Tui , is

Tu < − i + 1
2

log
(
δ′

(
1 + ξϕγ

β+δ′∆−λ

)
γ
)

log(β + δ′∆)
−

Ta
log(λ + γ∆)
log(β + δ′∆)

and

∆ <
1− λ

γ

Theorem 2 Under the premisses of Theorem
1, ‖x(Ti+1−1)‖, for i = 1, 3, 5, ..., is a monotonic
descent series provided that the “unavailability”
interval Tui is

Tui
< −

log
(
δ′

(
1 + ξϕγ

β+δ′∆−λ

)
γ
)

log(β + δ′∆)
−

Tai−1

log(λ + γ∆)
log(β + δ′∆)

and

∆ <
1− λ

γ

A proof of these two theorems is presented in the
Appendices.

Note that for time-invariant systems the adjective
“uniform” is superfluous, and that for linear time-
invariant equations exponential stability is usually
understood as asymptotic stability. Nevertheless,
the exact terminology will be kept throughout this
paper.

4. SIMULATION EXAMPLES

Simulation examples are presented in order to
permit some critical comments on the two the-
orems, and are illustrated by an unstable discrete
linear time invariant plant of second order. All
the simulations are in discrete time with a sample
time of 1second, and refer to the discrete control
system of Fig.1.

Example 1 A second order system with open
loop poles in zo1 = 1.5 and zo2 = 0.95, closed loop
poles in zc1 = 0.9 and zc2 = 0.9, ∆ = 1.4e − 4,
γ = 15, λ = 0.95, δ′ = 5, β = 1.5, ξ = 1, and
ϕ = 0.89 is considered, originating α = 5, and
µ = 1.5. Clearly, the theorems’ conditions are
respected for Tu1 = 5 and Ta0 = 200. Fig.3 shows
the time evolution of log||x(k)+δx(k)||, with δx(k)
a Gaussian random variable with variance σx =
1e − 6, and log(||z(k)||) (top), and the “unavail-
ability” interval Tu1 , σ = 1 (bottom). Fig.4 high-
lights the differences between log||x(k) + δx(k)||
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Fig. 3. log||x(k)+δx(k)|| and log||z(k)|| for second
order system verifying the theorems (top).
Tu1 interval, σ = 1 (bottom).
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Fig. 4. Detail of Fig.3.

0 50 100 150 200 250
−10

−5

0

5

Time [sec.]

lo
g(

||x
+δ

x||)
  ;

  l
og

(e
v)

log(e
v
)           

log(||x+δ
x
||)

Fig. 5. log||x(k)+δx(k)|| and log(ev(k)) for second
order system.

and log(||z(k)||) during the “unavailability” in-
terval. Fig.5 represents the logarithm of the up-
per bound (ev(k)) given by (A.7) and (A.9) for
each “availability” and “unavailability” interval,
respectively, and log||x(k)+ δx(k)||. In particular,
from this last figure it is possible to conclude of the
conservativeness of the sufficient conditions (note
that it is the log(||.||) being represented). The next
example will highlight the sufficient character of
the theorems’ conditions.

Example 2 The same system as in the previous
example, with σx = 2e−3, but now the theorems’
conditions are violated in the sense that the time
relations between “availability” and “unavailabil-
ity” are not respected. Nevertheless, it can be seen
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Fig. 6. log||x(k)+δx(k)|| and log||z(k)|| for second
order system violating the sufficient condi-
tions (top). Tui

intervals, σ = 1 (bottom).

0 20 40 60 80 100 120 140 160
−4

−2

0

2

4

6

8

10

12

14

Time [sec.]

lo
g(

||x
+δ

x||)
  ;

  l
og

(e
v)

log(e
v
)           

log(||x+δ
x
||)

Fig. 7. log||x(k)+δx(k)|| and log(ev(k)) for second
order system.

(Fig.6) that the system as uniform exponential
stability and that ‖x(Ti+1− 1)‖, for i = 1, 3, 5, ...,
is a monotonic descent series. Fig.6 and Fig.7 are
equivalent to Fig.3 and Fig.5 in terms of signals
represented.

It is interesting to note that in a recent work
(Zhang et al., 2001), a similar conservative the-
oretical result regarding uniform exponential sta-
bility is reported, showing that longer intervals of
“unavailability” can be reached in practice and
that these theoretical results might be too conser-
vative for practical purposes.

5. CONCLUSIONS

The paper presents and proves two sufficient con-
ditions that allow a time analysis of sensor “un-
availability” (interrupted observations) intervals,
bounding these intervals in order to state that
the plant of the system represented in Fig.1,
when controlled in closed loop, is uniformly ex-
ponentially stable. These results are proved un-
der the existence of modelling uncertainties and
plant state disturbances, and for an exponen-
tially bounded unstable plant. They are partic-
ularly related with practical situations of Teleop-
eration, when communication channels, through



which feedback information passes, are not com-
pletely reliable and sensor measurements may not
be available to the controller during some intervals
of time, raising systems stability problems.

The paper includes illustrative simulations with a
second order linear system (open loop unstable)
and shows graphically the application of the two
theorems, highlighting their sufficient condition
conservative character.
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Appendix A

Throughout the Appendix the term “stability”
will be used with the meaning of “uniform expo-
nential stability”, and the matrices norms are the
ones induced by the Euclidean norm of vectors,
being given by their largest singular value.

Consider the discrete time line represented in
Fig.2. The intervals where the sensors yield cor-
rect measures are designated as Tai , with i =
0, 2, 4, ..., and the intervals where the observations
are interrupted are designated as Tui , with i =
1, 3, 5, .... Let the discrete time instant k0 denote
the beginning of a generic interval.

During the time intervals Tai the plant state x(k)
evolves according to

x(k) =ΦδL(k, k0)[z(k0)− δx(k0)]−
k−1∑

j=k0

ΦδL(k, j + 1)b[Lδx(j)− r(j)]
(A.1)

On the other hand, during the time intervals Tui

the model state x̂(k) evolves according to

x̂(k) = ΦL(k, k0)z(k0) +
k−1∑

j=k0

ΦL(k, j + 1)br(j)

(A.2)
it is also known that

x(k) =Φδ(k, k0)x(k0)−
k−1∑

j=k0

Φδ(k, j + 1)b[Lx̂(j)− r(j)]
(A.3)

Replacing (A.2) in (A.3), the evolution of the
plant state x(k) is

x(k) =
(

Φδ(k, k0)−
k−1∑

j=k0

Φδ(k, j + 1)bLΦL(j, k0)
)

z(k0)−

Φδ(k, k0)δx(k0)−
k−1∑

j=k0

Φδ(k, j + 1)b

(
j−1∑

i=k0

LΦL(j, i + 1)br(i)− r(j)

)

(A.4)

Both r(k) and δx(k) are seen as inputs to the
overall closed loop system and they do not affect
the dynamics. The stability analysis is conducted
only with the terms that relate x(k) with z(k0) in
(A.1) and (A.4). For bounded model uncertain-
ties (‖δA‖ ≤ ∆) and considering ‖Φ(k, k0)‖ ≤
δ′βk−k0 , with β > 1 (this corresponds to as-
sume an unfavorable situation), it can be proved
(Rugh, 1996) that ‖Φδ(k, k0)‖ ≤ αµk−k0 , with
µ > 1, α = δ′, and µ = β + δ′∆. These means,
as expected, that if the model dynamics are open
loop unstable then also the plant dynamics will be
open loop unstable for any bound ∆ ≥ 0. A simi-
lar proof (Rugh, 1996) can be given for the stabil-
ity of the plant in closed loop since the model in
closed loop is stable, ‖ΦL(k, k0)‖ ≤ γλk−k0 , with
0 ≤ λ < 1. Therefore, if the model uncertainties
are bounded (‖δA‖ ≤ ∆), then ‖ΦδL(k, k0)‖ ≤
γ(λ + γ∆)k−k0 , with 0 ≤ ∆ < (1− λ)/γ.

An upper bound for each of the following expres-
sions must be found

‖x(k)‖ = ‖ΦδL(k, k0)z(k0)‖ (A.5)

‖x(k)‖ =
∥∥∥∥
(

Φδ(k, k0)−
k−1∑

j=k0

Φδ(k, j + 1)bLΦL(j, k0)
)

z(k0)
∥∥∥∥

(A.6)

Starting with (A.5)

‖x(k)‖ ≤ ‖ΦδL(k, k0)‖ · ‖z(k0)‖
≤ γ(λ + γ∆)k−k0‖z(k0)‖

(A.7)

and for (A.6)



‖x(k)‖ ≤
∥∥∥∥Φδ(k, k0)−
k−1∑

j=k0

Φδ(k, j + 1)bLΦL(j, k0)
∥∥∥∥ · ‖z(k0)‖

≤
(

αµk−k0 +
k−1∑

j=k0

αµk−j−1ξϕγλj−k0

)
·

‖z(k0)‖
(A.8)

After some calculations

‖x(k)‖ ≤ αµk−k0

(
1 +

ξϕγ

µ− λ

)
‖z(k0)‖ (A.9)

Consider now that discrete time k is inside Tui =
[Ti, Ti+1 − 1]. Through the terms in (A.1) and
(A.4) that relate x(k) with z(k0), the plant state’s
x(k) relation with the initial condition x0, at this
time instant, is given by

x(k) =
(

Φδ(k, Ti)−
k−1∑

j=Ti

Φδ(k, j + 1)bLΦL(j, Ti)
)
·

ΦδL(Ti − 1, Ti−1) . . .

(
Φδ(T2 − 1, T1)−

T2−2∑

j=T1

Φδ(T2 − 1, j + 1)bLΦL(j, T1)
)
·

ΦδL(T1 − 1, 0) · z(0)
(A.10)

Therefore

‖x(k)‖ ≤
∥∥∥∥
(

Φδ(k, Ti)−
k−1∑

j=Ti

Φδ(k, j + 1)bLΦL(j, Ti)
)
·

ΦδL(Ti − 1, Ti−1) . . .

(
Φδ(T2 − 1, T1)−

T2−2∑

j=T1

Φδ(T2 − 1, j + 1)bLΦL(j, T1)
)
·

ΦδL(T1 − 1, 0)
∥∥∥∥ · ‖x0 + δx(0)‖

(A.11)

An upper bound for (A.11) is obtained through
the use of (A.7) and (A.9)

α

(
1 +

ξϕγ

µ− λ

)
µk−Ti · γ(λ + γ∆)(Ti−1)−Ti−1 . . .

α

(
1 +

ξϕγ

µ− λ

)
µ(T2−1)−T1 · γ(λ + γ∆)T1−1 =

[
α

(
1 +

ξϕγ

µ− λ

)
γ

] i+1
2

µTu · (λ + γ∆)Ta

(A.12)

In order for the controlled system to be stable, it
must be

[
α

(
1 +

ξϕγ

µ− λ

)
γ

] i+1
2

µTu(λ + γ∆)Ta < 1

(A.13)
which results in (recall that α = δ′ and µ = β +
δ′∆)

Tu <− i + 1
2

log
(
δ′

(
1 + ξϕγ

β+δ′∆−λ

)
γ
)

log(β + δ′∆)
−

Ta
log(λ + γ∆)
log(β + δ′∆)

(A.14)

q.e.d.

Note that since (β + δ′∆) > 1 and 0 ≤ (λ +
γ∆) < 1, then Tu has a crescent linear relation
with Ta.

Appendix B

Consider the Euclidean norm of x(k) at discrete
times k = Ti+1 − 1, and k = Ti−1 − 1, at
the end of the “unavailability” intervals Tui and
Tui−2 , respectively. In order for ‖x(Ti+1− 1)‖, for
i = 1, 3, 5, ..., to be a monotonic descent series, it
should verify

‖x(Ti+1 − 1)‖
‖x(Ti−1 − 1)‖ < 1 (B.1)

or, equivalently
∥∥∥∥
(

Φδ(Ti+1 − 1, Ti)−
Ti+1−2∑

j=Ti

Φδ(Ti+1 − 1, j + 1)bLΦL(j, Ti)
)
·

ΦδL(Ti − 1, Ti−1)
∥∥∥∥ < 1

(B.2)

Finally

α

(
1 +

ξϕγ

µ− λ

)
µTui · γ(λ + γ∆)Tai−1 < 1 (B.3)

and (recall that α = δ′ and µ = β + δ′∆)

Tui <−
log

(
δ′

(
1 + ξϕγ

β+δ′∆−λ

)
γ
)

log(β + δ′∆)
−

Tai−1

log(λ + γ∆)
log(β + δ′∆)

(B.4)

q.e.d.
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