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Abstract: In this paper, a simple method for the
computation of the parameters of a PI controller
which stabilize control system with fixed parameters
is given. The proposed method is based on plotting
the stabili ty boundary locus in the ( ip kk , )-plane and

then computing stabili zing PI controllers. The
method presented does not require sweeping over the
parameters and also does not need a linear
programming to solve a set of inequalities. Thus, it
has several important advantages over existing
results. The proposed method is also used to compute
all the parameters of a PI controller which stabilize a
control system with and interval plant family.
Examples are given to show the benefit of the
method presented.
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1. Introduction

There has been a great amount of research work on
the tuning of PI, PID and lag/lead controllers since
these types of controllers have been widely used in
industries for several decades (see [1-5] and
references therein). However, many important results
have been recently reported on computation of all
stabilizing P, PI and PID controllers after the
publication of work by Ho et al. [6-9]. A new and
complete analytical solution which is based on the
generalized version of the Hermite-Biehler theorem
has been provided in [6] for computation of all
stabilizing constant gain controllers for a given plant.
A linear programming characterization of all
stabilizing PI and PID controllers for a given plant
has been obtained in [7,9]. This characterization
besides being computationally efficient has revealed
important structural properties of PI and PID
controllers. For example, it was shown that for a
fixed proportional gain, the set of stabilizing integral

and derivative gains lie in a convex set. This method
is very important since it can cope with systems that
are open loop stable or unstable, minimum or
nonminimum phase. However, the computation time
for this approach increases in an exponential manner
with the order of the system being considered. It also
needs sweeping over proportional gain to find all
stabilizing PI and PID controllers which is a
disadvantage of the method. An alternative fast
approach to this problem based on the use of the
Nyquist plot has been given in [10-11]. An extension
of the method given in [7] to the lag/lead controller
structure has been given in [12]. A parameter space
approach using singular frequency concept has been
given in [13] for design of robust PID controllers.
More direct graphical approaches to this problem
based on frequency response plots have been given
in [14-15]. However, the frequency gridding has
become the major problem for this approach. On the
other hand, compensator design in classical control
engineering is based on a plant with fixed
parameters. In the real world, however, most
practical system models are not known exactly,
meaning that the system contains uncertainties. So,
in designing a control system for both stability and
performance robustness, it is always required to take
uncertainties into account. This requirement has
attracted the attention of many researchers over the
years to find solutions for the problems of robust
stability analysis and controller synthesis for
uncertain systems especially control systems with
parametric uncertainty. Much recent work on
systems with uncertain parameters has been based on
Kharitonov’s result [16] on the stabil ity of interval
polynomials. Kharitonov showed that for the interval
polynomial
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where ],[ iii aaa ∈ , ni ,.....,2,1= , the stability of the

set could be found by applying the Routh criterion to
the following four polynomials
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In this paper, a new approach is given for
computation of stabilizing PI controllers in the
parameter plane, ( ip kk , )-plane. The result of [11] is

used to avoid the problem of frequency gridding.
Thus, a very fast way of calculating the stabilizing
values of PI controllers for a given SISO control
system is given. The proposed method is then used
for computation of PI controllers for the stabilization
of interval systems.

The paper is organized as follows: The proposed
method is described in section 2. In section 3, the
computation of PI controllers for interval plant
stabilization is given. Concluding remarks are given
in section 4.

2. Stabilization Using a PI Controller

Consider the single-input single-output (SISO)
control system of Figure 1 where
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is the plant to be controlled and )(sC  is a PI
controller of the form
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The problem is to compute the parameters of the PI
controller of Eq. (4) which stabilize the system of
Figure 1.

Figure 1: A SISO control system

Decomposing the numerator and the denominator
polynomials of Eq. (3) into their even and odd parts,
and substituting ωjs = , gives
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The closed loop characteristic polynomial of the
system can be written as
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Then, equating the real and imaginary parts of )(s∆
to zero, one obtains
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and
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Then, Eq. (7) and Eq. (8) can be written as
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From this equation
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Solving these two equations simultaneously, the
stability boundary locus, ),,( ωip kkl , in ),( ip kk -

plane can be obtained. The stability boundary locus
divides the parameter plane ( ),( ip kk -plane) into

stable and unstable regions. Choosing a test point
within each region, the stable region which contains
the values of stabilizing pk  and ik  parameters can

be determined.

Example 1: Consider the control system of Figure
1 with transfer function
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which has 2 right-half plane poles and 2 right half-
plane zeros. From Eq. (11) and Eq. (12)
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The aim is to compute all the stabilizing values of

pk  and ik  which make the characteristic polynomial

of Eq. (6) Hurwitz stable. For a range of frequency,
the stability boundary locus can be easily computed.
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For example, for ],8.7,45.0[∈ω  ),,( ωip kkl  is

shown in Figure 2. From this figure it can be seen
that there are a few regions namely R1, R2, R3, R4
and R5 in which one needs to choose a test point in
order to find the stability region. For example,
choosing a test point within region R5 such as

13=pk  and 25=ik , it can be calculated that the

characteristic polynomial has two right half plane
complex roots, therefore, the system is unstable for
these values of parameters. Thus, the region R5 is
not a stability region. It has been computed that the
only stabilizing region is the region denoted by R1.
For example, for 5=pk  and 20=ik  within region

R1, the characteristic polynomial is

  20357154372)( 23456 ++++++=∆ sssssss

which is a stable polynomial. The all stabilizing
values of pk  and ik  are shown in Figure 3.

Figure 2: Stability boundary locus

Figure 3: All stabilizing PI controllers

This example show that the method is very fast and
effective, however, frequency gridding becomes
important. An efficient approach to avoid frequency
gridding can be obtained by using the Nyquist plot
based approach of [11]. In this case, it is only
necessary to find real values of ω  that satisfy

    0)](Im[ =sG  (16)
where ωjs = . Thus, the frequency axis can be
divided into finite number of intervals and then by
testing each interval the stability region can be
computed. For example, consider a second order
system
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Form Eq. (11) and Eq. (12)
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The stability boundary locus for 100 frequency
points within ]10,0[∈ω  is shown in Figure 4. From
this figure it is not possible to determine the region
of stability. However, for )(sG  of Eq. (17), the real
frequency values which satisfy Eq. (14) is 0.77
rad/sec. Thus the frequency axis can be divided into
two intervals such as )77.0,0(∈ω  and

),77.0( ∞∈ω . For 100 points within ]9.0,0[∈ω ,

),,( ωip kkl  is shown in Figure 5 where it can be

seen that there are stabilizing values of pk  and ik

when )77.0,0(∈ω  as shown in Figure 5. For )(sG

of Eq. (13), 0)](Im[ =ωjG  for 65.7=ω . Thus, one
needs to plot stability boundary locus for ω
changing between 0 and 7.65. Then, stabilizing
region can be computed as shown in example 1.

.

Figure 4: Stability boundary locus
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Figure 5: Stability boundary locus

3. Interval Plant Stabilization

There are some important results in the literature
about stabilization of interval systems. For example,
in [17], it was shown that a constant gain controller
stabilizes an interval plant family if and only if it
stabilizes a set of eight of the extreme plants. In [18],
it was shown that a first order controller stabilizes an
interval plant if it stabilizes the set of extreme plants.
The best results regarding this subject were given in
[19-20] where it was proved that a first order
controller stabilizes an interval plant if and only if it
simultaneously stabilizes the sixteen Kharitonov
plants family. In [21], the generalized version of the
Hermite-Biehler theorem has been used for the
stabilization of interval systems. In this section,
instead of using Routh tables, which were used in
[19] in order to characterize all the parameters of a
first order controller which stabilize an interval plant,
the stability boundary locus is used to find all the
values of the parameters of a PI controller for which
the given interval plant is Hurwitz stable.

Consider a unity feedback system with a PI
controller of Eq. (4) and an interval plant
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where ],[ iii qqq ∈ , i=0,1,2,....,m and ],[ iii ppp ∈ ,

j=0,1,2,....,n. Let the Kharitonov polynomials
associated with )(sN  and )(sD  be respectively:
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and
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By taking all combinations of the )(sN i  and )(sD j

for i, j=1,2,3,4, the following sixteen Kharitonov
plants family can be obtained
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where i, j=1,2,3,4.

Define the set ))()(( sGsCS  which contains all the
values of the parameters of the controller )(sC

which stabilize )(sG , then the set of all the
stabilizing values of parameters of a PI controller
which stabilize the interval plant of Eq. (20) can be
written as
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where )(sGK  represents the sixteen Kharitonov
plant family which is given in Eq. (23).

Example 2: Consider the control system of Figure
1 with an interval transfer function
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where ]30,10[∈K , ]95,85[2 ∈a , ]2000,1900[1 ∈a

and ]3750,3450[0 ∈a . The objective is to calculate
all the parameters of a PI controller which stabilize

)(sG . Consider the first Kharitonov plant (i=1 and
j=1) which is

ssss
sG

3450200095

10
)(

23411
+++

=    (26)

Since 0)](Im[ 11 =ωjG  is only satisfied for
0263.6=ω  rad/sec, it is necessary to obtain stability

boundary locus for )0263.6,0(∈ω . Then, from Eqs.
(11) and (12)

24 2001.0 ωω +−=pk  (27)

and
24 3455.9 ωω +−=ik  (28)

All stabilizing values of pk  and ik  are shown in

Figure 6. Figure 7 shows the stability regions of the
eight Kharitonov plants (the interval plant of Eq. (25)
has eight Kharitonov plants since there are only two
Kharitonov polynomials for the numerator) where
the intersection of these regions, which can be
obtained from the stability region of )(21 sG  and
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)(23 sG  as shown in Figure 7, is the stabilit y region
which is shown in Figure 8.

Figure 6: Stability region for )(11 sG

Figure 7: Stability region for eight Kharitonov plants

Figure 8: Stability region for the interval plants of
Eq. (25)

4. Conclusions

In this paper, a new approach has been presented for
the computation of the boundaries of the limiting
values of PI controllers parameters that guarantee
stability. The approach is based on the stability
boundary locus which can be easily obtained by
equating the real and the imaginary parts of the
characteristic equation to zero. Computation of PI
compensator parameters for interval plant
stabilization has also been studied. The method
presented does not require sweeping over the
parameters. Also, it does not need linear
programming to solve a set of inequalities.
Therefore, the method has advantages over existing
results. Given examples clearly show the value of the
method presented.
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