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A Pencil Equivalent of a General 2-D Polynomial
Matrix
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Abstract— In this paper, it is shown that any arbitrary
2-D polynomial matrix is equivalent to a pencil form. The
exact form of both the matrix pencil and the transformation
linking it to the original matrix are established.
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I. INTRODUCTION

Matrix pencils play an important role in the theory of
1-D linear systems, see for example Rosenbrock [1], Vergh-
ese [2], Hayton et al. [3] and Karampetakis et al. [4]. In
the 2-D case, matrix pencils arise in the description of 2-D
singular state space systems such as those studied by for
example Kaczorek [5]. The reduction of an arbitrary 2-D
polynomial matrix to pencil form was first studied by Pugh
et al.[6]. Their procedure consists of the application of a
two stage algorithm which involves the removal of factors
from certain matrices to ensure that the transformations
linking the original matrix with the final matrix pencil are
polynomial. The method does not give a priori the form
of neither the resulting 2-D matrix pencil nor the transfor-
mation linking it to the original polynomial matrix. In the
present work, it will be shown that every 2-D polynomial
matrix is equivalent to a pencil form and the exact form
of both the matrix pencil and the transformation linking
it to the polynomial matrix will be given in terms of co-
efficient matrices of the original polynomial matrix. The
transformation linking the original matrix with its associ-
ated pencil is shown to be zero coprime equivalence. This
type of equivalence has been studied by Levy [7] , John-
son [8] and Pugh et al. [9] and has been shown by Pugh
et al. [10] to provide the connection between all least or-
der polynomial realizations of a given 2-D transfer function
matrix.

II. 2-D MATRIX PENCIL

Consider the following 2-D singular state space system
as studied by Kaczorek [5]:

Ex(i + 1, j + 1) =A1x(i + 1, j) + A2x(i, j + 1)
+ A0x(i, j) + B1u(i + 1, j)
+ B2u(i, j + 1) + B0u(i, j) (1)

y(i, j) =Cx(i, j) + Du(i, j) (2)

where x(i, j) is the state vector, u(i, j) is the input vector,
y(i, j) is the output vector, E,A0, A1, A2, B0, B1, B2, C,
D are real constant matrices of appropriate dimensions and
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E may be singular. Then, taking the 2−D z-transform of
(1) and (2) and assuming zero boundary conditions yields[

szE − sA1 − zA2 −A0 −sB1 − zB2 −B0

C D

] [
x(s, z)
u(s, z)

]
=

[
0

y(s, z)

]
(3)

The polynomial matrix over R[s, z],

szE − sA1 − zA2 −A0 (4)

in (3), is called a 2-D matrix pencil.
Definition 1: Two matrices Q(s, z) and M(s, z) of ap-

propriate dimensions, are said to be zero left coprime if
the compound matrix

[
Q(s, z) M(s, z)

]
has full rank

for all complex values of the indeterminate pair (s, z).
Similarly, P (s, z) and N(s, z), of appropriate dimensions,
are said to be zero right coprime if the compound matrix[

PT (s, z) NT (s, z)
]T has full rank for all complex val-

ues of the indeterminate pair (s, z).
Definition 2: Two matrices P (s, z) and Q(s, z) ∈

P(m,n), where P(m,n) denotes the class of (r+m)×(r+n)
polynomial matrices where m,n are fixed positive inte-
gers and r is variable and ranges over all integers greater
than max(−m,−n), are said to be zero coprime equivalent
(z.c.e.) if they are related by the following

M(s, z)P (s, z) = Q(s, z)N(s, z) (5)

where Q(s, z), M(s, z) are zero left coprime and P (s, z),
N(s, z) are zero right coprime.

Zero coprime equivalence is an extension of Fuhrmann’s
[11] strict system equivalence from the 1-D to the 2-D set-
ting and has been found to preserve important polynomial
matrix properties.

Lemma 1: (Pugh et al. 1996) : Suppose that two poly-
nomial matrices P (s, z) and Q(s, z) ∈ P(m,n), are related
by z.c.e. and let ε

[P ]
1 , ε

[P ]
2 , . . . , ε

[P ]
h , where h = min(r[P ] +

m, r[P ] + n), denote the invariant polynomials of P and
ε
[Q]
1 , ε

[Q]
2 , . . . , ε

[Q]
k , where k = min(r[Q] + m, r[Q] + n), de-

note the invariant polynomials of Q, then

ε
[P ]
h−i = ciε

[Q]
k−i for i = 0 , 1 , . . . ,max(k − 1 , h − 1 ) (6)

where ε
[P ]
j = 1 , ε

[Q]
j = 1 for any j < 1, ci ∈ R\{0}.

III. EQUIVALENCE TO PENCIL FORM

Let P (s, z) be an m× n polynomial matrix over R[s, z],
then P (s, z) can be written as :
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P (s, z) =
p∑

i=0

q∑
j=0

Pi,js
izj (7)

where Pi,j , i = 0, 1, ..., p, j = 0, 1, ..., q are m × n real con-
stant matrices.

Now consider the following constant matrices

E =
[

0n(pq−1),npq

Eq Eq−1 · · · E1

]
(8)

where

Ej =
[

Pp,j Pp−1,j · · · P1,j

]
, j = 1, 2, . . . , q. (9)

A0 = Diag(−In(pq−1), P0,0), (10)

A1 =

 0np(q−1),npq

0n(p−1),n(pq−p+1) In(p−1)

0m,np(q−1) −Pp,0 −Pp−1,0 · · · −P1,0

 ,

(11)
and

A2 =

 0np(q−1),np Inp(q−1)

0n(p−1),npq

A2,q A2,q−1 · · · A2,1

 (12)

where

A2,j =
[

0m,n(p−1) −P0,j

]
, j = 1, 2, . . . , q. (13)

Then, the [n(pq − 1) + m]× npq polynomial matrix

QP (s, z) = szE − sA1 − zA2 −A0 (14)

is the 2-D matrix pencil corresponding to the polynomial
matrix P (s, z).

IV. THEOREM 1

If P (s, z) is an arbitrary m × n polynomial matrix
over R[s, z] given by (7) and QP (s, z) is the corresponding
[n(pq − 1) + m]× npq 2-D matrix pencil , then P (s, z) and
QP (s, z) are related by the following z.c.e. transformation

M(s, z)P (s, z) = QP (s, z)N(s, z) (15)

where

M(s, z) =
[

0n(pq−1),m

Im

]
, N(s, z) =


N1

N2

...
Nq

⊗ In, (16)

⊗ denotes the Kronecker matrix product and

Nj =
[

sp−1zq−j sp−2zq−j · · · zq−j
]T

, j = 1, 2, . . . , q.
(17)

Proof: From the construction of QP (s, z), it can be
easily verified that

M(s, z)P (s, z) = QP (s, z)N(s, z) =
[

0n(pq−1),n

P (s, z)

]
(18)

Now it remains to prove that the matrices QP (s, z), M(s, z)
are zero left coprime and the matrices P (s, z), N(s, z) are
zero right coprime. This follows from the fact that the
minor obtained by deleting the columns n(pq−1)+1, n(pq−
1) + 2 . . . , npq of the matrix[

QP (s, z) M(s, z)
]

(19)

is equal to 1 and the minor obtained by deleting the rows
1, 2, . . . , npq of the matrix[

P (s, z)
N(s, z)

]
(20)

is equal to 1.

V. EXAMPLE

Consider the 3× 3 matrix P (s, z) over R[s, z] given by

P (s, z) ≡
[

P1(s, z) P2(s, z) P3(s, z)
]

(21)

where

P1(s, z) =

 −2(z + 1)s2 + (3z + 2)s− z + 2
3s2 − 1

(z − 1)s2 − (z − 2)s

 (22)

P2(s, z) =

 (z − 4)s− z + 4
−zs− 2z

(z + 2)s2 − 4z − 1

 (23)

P3(s, z) =

 s2 − 2
(z + 1)s2 − (z − 3)s− 3z + 1
−2zs2 − (5z + 2)s− 2z+

 (24)

Here m = n = 3, p = 2 and q = 1.
Using a Maple procedure, the invariant polynomials of
P (s, z) are computed as :

ε
[P ]
1 =ε

[P ]
2 = 1

ε
[P ]
3 =− (2z3 − 5z2 − 12z − 10)s6

−
(
8z3 + 20z2 + 25z − 12

)
s5

−
(
12z3 − 6z2 − 101z + 55

)
s4

+
(
21z3 − z2 + 42z + 16

)
s3 (25)

+
(
26z3 + 63z2 + 160z − 3

)
s2

−
(
33z3 + 8z2 + 25z + 4

)
s

+ 8z3 − 9z2 − 30z + 12

Writing P (s, z) in the form (7), the coefficient matrices Pi,j

are given by

P0,0 =

 2 4 −2
−1 0 1
0 −1 3

 , P0,1 =

 −1 −1 0
0 −2 −3
0 −4 −2

 ,

P1,0 =

 2 −4 0
0 0 3
2 0 −2

 , P1,1 =

 3 1 0
0 0 −1
−1 0 −5

 , (27)



3

P2,0 =

 −2 0 1
3 0 1
−1 2 0

 , P2,1 =

 −2 0 0
0 −1 1
1 1 −2


Then, constructing the 6 × 6 2-D matrix pencil QP (s, z)
corresponding to (14) gives

QP (s, z) =
[

I3 −sI3

Q1(s, z) Q2(s, z)

]
(29)

where

Q1(s, z) =

 −2s− 2sz 0 s
3s −sz s + sz

−s + sz 2s + sz −2sz

 , (30)

Q2(s, z) = 2− z + 2s + 3sz 4− z − 4s + sz −2
−1 −2z 1− 3z + 3s− sz

2s− sz −4z − 1 3− 2z − 2s− 5sz


(31)

and the matrices E, A0, A1 and A2 corresponding to
(8, 10, 11 and 12) are given by

E =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−2 0 0 3 1 0
0 −1 1 0 0 −1
1 1 −2 −1 0 −5

 ,

A0 =


−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −2 −4 2
0 0 0 1 0 −1
0 0 0 0 1 −3

 ,

A1 =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
2 0 −1 −2 4 0
−3 0 −1 0 0 −3
1 −2 0 −2 0 2

 ,

A2 =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 1 0
0 0 0 0 2 3
0 0 0 0 4 2

 (32)

By virtue of Theorem 1, the polynomial matrix P (s, z) in
(21) and the 2-D matrix pencil QP (s, z) in (29) are related
by the zero coprime equivalence transformation

M(s, z)P (s, z) = QP (s, z)N(s, z),

where

M(s, z) =


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 , N(s, z) =


s 0 0
0 s 0
0 0 s
1 0 0
0 1 0
0 0 1

 (33)

In fact it can be easily verified that

M(s, z)P (s, z) = QP (s, z)N(s, z) =
[

03,3

P (s, z)

]
(34)

The matrices QP (s, z),M(s, z) are zero left coprime and
the matrices P (s, z), N(s, z) are zero right coprime since
the matrices[

QP (s, z) M(s, z)
]
,

[
P (s, z)
N(s, z)

]
(35)

have respectively a 6× 6 and a 2× 2 minor which is equal
to 1.

The invariant polynomials of QP (s, z) are :

ε
[QP ]
1 =ε

[QP ]
2 = ε

[QP ]
3 = ε

[QP ]
4 = ε

[QP ]
5 = 1

=ε
[P ]
1 = ε

[P ]
2 ,

ε
[QP ]
6 =− (2z3 − 5z2 − 12z − 10)s6

−
(
8z3 + 20z2 + 25z − 12

)
s5

−
(
12z3 − 6z2 − 101z + 55

)
s4

+
(
21z3 − z2 + 42z + 16

)
s3

+
(
26z3 + 63z2 + 160z − 3

)
s2

−
(
33z3 + 8z2 + 25z + 4

)
s

+ 8z3 − 9z2 − 30z + 12

=ε
[P ]
3 (36)

which is in accord with Lemma 1.

VI. CONCLUSIONS

In this paper, a 2-D matrix pencil equivalent of
a given arbitrary polynomial matrix has been developed.
The matrix obtained is one which arises in the context of
the theory of generalized state space 2-D systems. The
type and exact form of the equivalence linking the origi-
nal matrix with its associated pencil has been set out and
shown to be that of zero coprime equivalence. The result-
ing 2-D matrix pencil may have a larger size than the one
obtained by the algorithm given by Pugh et al. [6]. How-
ever the method presented in this paper has the advantage
of providing a priori both the form of the final 2-D matrix
pencil and the transformations relating it to the original
polynomial matrix.
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