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Neural networks application in an AISI 304L 
intergranular corrosion resistance analysis 

D. IACOVIELLO, F. IACOVIELLO  and M. MACARIO 

  
Abstract—Multi-Layer-Perceptron (MLP) neural network is 

here considered to predict susceptivity to intergranular corrosion 
resistance in an AISI 304 L austenitic stainless steel. Six different 
training algorithms are used. A tempering temperature of 600°C 
is assumed and 7 tempering duration are investigated (0, 10, 50, 
100, 300, 600 and 1000 hours). Intergranular corrosion resistance 
is investigated by means of electrochemical potentiokinetic 
reactivation test (EPR) performed between –500 and +200 
mV/SCE. Results show an excellent predictive capability of  the 
neural network based on the Levenberg-Marquardt training 
algorithm considering both activation and reactivation curves.  
 

Index Terms-- Neural network applications, Corrosion testing, 
Steel.  

I. INTRODUCTION 

I NTERGRANULAR corrosion in stainless steel is caused  by 
sensitization, a condition of local chromium decreasing: it 

precipitates in form of carbides (e.g. Cr23C6) along grain 
boundaries (1).  
 

 
 

Fig. 1.  Carbides M23C6 precipitation at grain boundaries [1]. 
 

Since chromium is the essential element in stainless steel 

corrosion resistance, chromium depleted grain boundaries are 
susceptible to a local attack, by corrosion that proceeds 
intergranularly. This phenomenon could be the result of  a 
careless heat treatment, or a welding operation; it is connected 
to a reheating in a critical temperature range or to a slow 
cooling from elevated temperatures. Austenitic stainless steels, 
critical temperatures range between about 500 and 800 °C. 
This range depends on chemical composition, as carbon or 
chromium content, with the lowest incubation time that 
corresponds to about 600-650°C. Degree of sensitization 
measurements are performed by both destructive and time 
consuming methods (e.g. ASTM A262 [2]), and non 
destructive, fast, quantitative, but partially standardized or not 
standardized electrochemical methods. Among partially 
standardized methods, the Electrochemical Potentiokinetic 
Reactivation methods (EPR) [3] are often used to investigate 
the degree of sensitization, allowing a quantitative analysis of 
this susceptibility (2).  
 

 
Fig. 2. Schematic polarization curves in single loop (a) and double loop (b) 
potentiodynamic reactivation. 
 

EPR methods render the functional dependence of current 
density in response to changes of applied potential [4]. Many 
types of EPR methods are available. Among them we can 
consider Single Loop- EPR (SL-EPR) test and Double Loop-
EPR (DL-EPR) test. In SL-EPR test the curve is a reverse 
curve, with the potential scan from positive to negative (2a). 
In DL-EPR  test the curve is polarized anodically at a given 
rate from the corroding potential to a potential in the passive 
area. This procedures leads to a passive layer formation on all 
the surface. Then the scanning direction is reversed and the 
potential is decreased at the same rate to the corroding 
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potential. This reactivation implies a preferential breakdown 
of the passive film corresponding to chromium depleted areas, 
where chromium carbides precipitation takes place (2b). DL-
EPR method has the advantage to be substantially independent 
on the surface finishing.  

 

In this investigation DL-EPR test is conducted on AISI 
304L austenitic stainless steel and the degree of sensitization 
is evaluated as Qr/Qp ratio  (Area under reactivation peak/Area 
under activation peak). 

Susceptibility to intergranular corrosion depends on the 
stainless steel chemical composition and its microstructure, on 
the heat treatment (e.g. tempering temperature  and duration 
(3)) and on the solution physical-chemical conditions  (e.g. 
chemical composition and temperature) [5]. It is quite difficult 
to characterize the influence of all the variables.  

Fig.4. Neuron functioning schematic representation. b represent an activation 
threshold to which the weighted input is compared; it is usually called bias. 

 
For the transfer function different choices are possible, 
with the aim of considering a limited function; the most 
common  choices  for the transfer function are the step 
function and the sigmoid; the latter has the advantage of being 
a derivable function. To use a neural network different phases 
are needed. In the project phase it is necessary to fix the layers 
number and the neurons numbers of each layer; in the training 
phase the synaptic weights are modified to minimize the 
difference between the real output of the network and the 
desired  one. The generalization phase allows to obtain 
significant output also with inputs different from the ones 
used in the training phase. 

f

An alternative approach to predicting stainless steel 
intergranular corrosion resistance is based on the utilization of 
artificial neural networks. Although the development of  
mathematical models began in 1960, and they are widely used 
in many fields such as control system or image analysis and 
classification [6]-[9], they are not so used in materials science. 

In this work we characterize the susceptibility to 
intergranular corrosion for an austenitic stainless steel AISI 
304L tempered at 600°C for different duration by means of 
DL-EPR test. We try to apply the artificial neural network 
approach, identifying a training algorithm characterized by a 
good predictive capability,  in order to simulate the 
sensitization phenomenon in AISI 304L . 

There are two different kind of training, the supervisioned 
and the non-supervisioned; the former is based on the 
availability of couples of input-output divided in two groups: 
the first one is employed for the training phase, the second for 
the generalization phase. In the non supervisioned training the 
network organizes its structure in such way that similar stimuli 
activate similar neurons as well as far stimuli activate far 
neurons. 

 

 

Depending on different applications we can consider 
various types of  neural networks; they differ each other 
essentially  for the structure and the  training  phase.  

The Multi-Layer-Perceptron (MLP) are the most used 
networks [12],[13]; these networks are characterized by 
different layers of the feed-forward type, which means that the 
output of each neurons is joined only to the neurons  of the 
successive layer and that there are no connections of the type 
feed-back (these are the connection between a neuron and the 
one of a previous layer); for example, if  there are n input, m 
output and q hidden neurons (5) we will have two weighting 
matrices  and W  of dimensions 1W 2 qn ×  and mq ×  
respectively. 

Fig. 3. Austenitic stainless steel AISI 304 TTT (Time-Temperature-
Transformation) curves for two different carbon content. The lower the carbon 
content, the higher the M23C6 carbides incubation time is. 

II. THE NEURAL NETWORKS 
The neural networks present a structure similar to the one of 

the human brain. The constitutive parts of a neural network 
are the input layer , the hidden layer  and the 
output layer  ; to each neurons input a different synaptic 

weight  is associated. Output values are 
obtained using the transfer function f. Hidden layer neuron 
output is equal to a weighted sum of input neurons, modified 
by means of the transfer function f. In Fig.4 the outline of the 
functioning of a neuron is represented [10],[11]. 

n,...,,i,xi 21=

n,...2
y
1= ,i,wi

Radial Basis Function (RBF) are networks of the type 
feed-forward;  they have only two layers: the first one is radial 
basis whose transfer function is a gaussian while the second 
layer has a liner transfer function. The RBF networks are 
usually employed in classification problems where the number 
of possible outputs is not too large. 
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Fig. 5. Example of a Multi-Layer-Perceptron (MLP) network. 

 
Self Organizing networks are able to find the regularities 

and the correlations between inputs and, according to them, to 
adapt their future behavior; therefore their training is a non 
supervisioned one (it is in some way similar to the neuro-
biological system). Among the Self Organizing networks, 
Competitive Network (CN) and Self Organizing Map  (SOM) 
are really common. In the former the transfer function (the 
competitive function) produces a vector whose components 
are all null except  the j-th  where j is the index of the 
component  with the greater value of the vector processed by 
the transfer function; the vector of the weights winning the 
competition is associated to the neuron j who is the winner 
neuron; the vector of the weights associated to this neuron is 
approached to the input vector: in this way it is increased the 
probability that with similar input the same neuron will be the 
winner one. Bias Learning Rule allows, with the offset, to 
favour the neurons that are rarely winner.  SOM networks are 
similar to the CN ones, but they haven’t the offset and update 
not only the weights of the winning neuron but also the 
weights of all the neurons that are in a suitable neighbor of the 
winning one. SOM Network are usually employed for 
classification problems. 

For Learning Vector Quantization (LVQ) Networks the 
training technique is supervisioned (that is with a training set) 
but with a competitive structure; there is a competitive layer 
and a linear one. 

Recurrent Networks (RN) allow to connect the neurons in 
all the possible ways, also with lateral and feed-back 
connections; the most popular RN are the Elman and the 
Hopfield Networks.  In the former there are three layers , the 
input, the hidden and the output one who’s a feed-back with 
the input of the hidden layer; the transfer function of the 
recurrent layer is the sigmoid while the output layer transfer 
function is linear. The aim of the  Hopfield Networks is to 
simulate a system with some stable equilibrium points; it is 
difficult to project such a Network which has only the desired 
equilibrium points and not also spurious ones; the Hopfield 
Networks do not need the training phase. 

MLP Networks are the most popular ones, even  if they 
are not very simple to use because of the presence of various 
layers useful to the connections feed-forward. The adopted 

training algorithm for the MLP Networks is the Back 
Propagation; it is a generalization of the training law of 
Windrow-Hoff and it is based on the Gradient Discent 
Algorithm (GDA); let E be the mean quadratic error between 
the real output and the desired one and  the generic 

weight; the GDA can be expressed as follows: 
ijw

ij
ij w

E
w

∂
∂

−= η∆  

where η  is the learning rate; this means that  if 0>
∂
∂

ijw
E  then 

0<ijw∆ ;  on the contrary if  0<
∂
∂

ijw
E  then 0>ijw∆ .  The 

network training using  the Back Propagation algorithm 
involves the calculus of the error E and the weights updating; 
this algorithm has some limitations, as the possibility of 
finding local minimum or long convergence time.  

To overcome these problems  some variations of this 
algorithm, based on either euristics or some knowledge of the 
error surface, are possible.  The most common problems 
regard the weights updating according to this rule: 

)t(w)t(w)t(w)t(w ijijijij 11 −++=+ ∆β∆  

where β  is the momentum coefficient; the last term is a kind 
of memory of the past updating.  Another possible variation in 
the Back Propagation algorithm concerns the possibility of a 
varying learning rate η ; a possible rule can be the following: 

)t(u)t( ijij 1−= ηη  

where 70.u ≅  or 051.u ≅  according that the two 

derivatives 
)t(w

E

jk∂
∂  and  

)1−t(w
E

jk∂
∂  have the same sign or 

not.  Montecarlo variation gives a random value to the weights 
and consider the error E; then it gives a random variation to 
the weights and consider the new error E’; if 

0<−= E'EE∆  it accepts the new weights and it gives 
another random variation to the weights, otherwise it rejects 
them and consider again the old ones and another random 
variation. Newton algorithm allows a more rapid convergence 
than the back propagation one, but it has a greater 
computational cost because of the Hessian H; the updating of 
the weighting matrix W is: 

)t(g)t(H)t(W)t(W 11 −−=+  
where g is the gradient of the error. In order to reduce the 
computational cost, we consider a Newton algorithm 
modification (called Levenberg-Marquardt algorithm) where 
the Hessian H is approximated by the Jacobian J of the error 
in weights. Referencing this approximation, the weighting 
matrix W is: 

[ ] eJJJtWtW TT−=+ )()1(  
Finally, another variation of the Back Propagation 

algorithm is the Resilient Back-Propagation. It is based on the 
following two rules: the updated weights are increased when  
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)t(w
E

jkδ
δ  has the same sign in two consecutive steps and they 

are reduced when  
)t(w

E

jkδ
δ   changes its sign in two 

consecutive steps.  

III. MATERIAL AND EXPERIMENTAL PROCEDURE 
A.    Material 
Wrought austenitic stainless steel AISI 304L is used with 

the chemical composition given in table I. 
 

TABLE I 
AISI 304L STAINLESS STEEL CHEMICAL COMPOSITION 

C Cr Ni Mn Si S P 
0.03 18 10 2,0 1,0 0,03 0,04 

Weight percent (wt.%). Fe is balance. 
 
This steel has been investigated both after solubilization 

and after a tempering heat treatment at 600°C for the 
following duration: 

Tempering time: 10, 50, 100, 300, 600, 1000 hours 
These tempering conditions are chosen according to the 

incubation condition of fig. 2. The worst temperature 
conditions for AISI 304L correspond to 600°C, and the 
analysis of  the tempering duration influence up to 1000 hours 
allows us to completely investigate the sensitization 
phenomenon. 

 
B.   Experimental procedures 
After the tempering heat treatments, specimens are mounted 

in an epoxy  resin and polished up to 1 µm diamond paste. 
EPR-DL test are performed in aqueous solution 0.5 M H2SO4 
+ 0.01 M KSCN with the following test parameters: 

Temperature: 25°C 
Exposed area: 1 cm2 
Sweep rate: 50 mV/min 
Potential pause: -450mV/SCE for 2 min 
Investigated potential range: -500 - +200 mV/SCE. 
In order to control results repeability, DL-EPR test are 

repeated five times. 
As neural networks algorithm, Multi-Layer Perceptron is 

applied  and six different training algorithms performances are 
investigated: 
- Classic Back Propagation; 
- Back Propagation with Momentum; 
- Variable Learning Rate; 
- Resilient Back Propagation; 
- Newton algorithm; 
- Levenberg-Marquardt algorithm (quasi-Newton algorithm). 

The artificial neural network architecture adopted for all 
the investigated training algorithms is the following: 
- Input neurons: 2 (potential and tempering time);  
- Hidden neurons: 10 
- Output neurons : 1 (current density); 
- Training set : 4 x 120 experimental values (after 

solubilization and after 50, 600 and 1000 hours at 600°C);  
- Validation set : 2 x 120 experimental values (after 10 and 

300 hours at 600°C); 
- Minimum error: 10-5 
- Iteration number: 2000 
- Transfer function: sigmoid 

Simulation has been performed considering the steel after 
a tempering heat threatment for 100 hours at 600°C. 

IV. RESULTS AND DISCUSSION 
DL-EPR test are characterized by a very high repeability 

and in fig 6 and 7  voltamperometric curves and Qr/Qp values 
evolution are given.  

 
Fig. 6. DL-EPR  voltamperometric results for all the seven investigated heat 
treatment conditions: after solubilization and after 600°C tempering (10, 50, 
100, 300, 600, 1000 hours). 

 

 
Fig. 7. Qr/Qp ratio  (Area under reactivation peak/Area under activation peak) 
evolution with the 600°C tempering duration. 

 
The increasing of tempering duration implies an increasing 

of chromium carbides precipitation. As a consequence of that, 
voltamperometric curves are characterized by an increasing 
importance of reactivation peak with the increasing of the 
tempering duration. It is confirmed up to a tempering duration 
of 600 hours. Longer tempering heat treatments at 600°C 
show an asymptotic Qr/Qp ratio, with the chromium carbides 
precipitation that does not evolve.  
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Fig. 11. Experimental (dashed line) and simulated (continuous line) 
voltamperometric curves for AISI 304L tempered at 600°C for 100 hours. 
Resilient Back propagation training algorithm. 

Fig. 8. Experimental (dashed line) and simulated (continuous line) 
voltamperometric curves for AISI 304L tempered at 600°C for 100 hours. 
Back Propagation training algorithm. 

  

  
Fig. 12. Experimental (dashed line) and simulated (continuous line) 
voltamperometric curves for AISI 304L tempered at 600°C for 100 hours. 
Newton training algorithm. 

Fig. 9. Experimental (dashed line) and simulated (continuous line) 
voltamperometric curves for AISI 304L tempered at 600°C for 100 hours. 
Back Propagation with Momentum training algorithm. 

  

  
Fig. 13. Experimental (dashed line) and simulated (continuous line) 
voltamperometric curves for AISI 304L tempered at 600°C for 100 hours. 
Levenberg-Marquardt algorithm (quasi-Newton) training algorithm. 

Fig. 10. Experimental (dashed line) and simulated (continuous line) 
voltamperometric curves for AISI 304L tempered at 600°C for 100 hours. 
Variable Learning Rate training algorithm. 
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The six investigated training algorithms are characterized 
by different generalization capability (figures 8-13).  It is 
possible to observe that both Classic Back Propagation (8) and 
Back Propagation with Momentum (9)  algorithms have a low 
generalization capability, considering activation curves and 
reactivation curves. Variable Learning Rate (10), Resilient 
Back Propagation (11) and Newton (12) algorithms are 
characterized by a generalization capability that can be 
considered acceptable for the activation curve, but absolutely 
not for the reactivation curves. Among them, the Newton 
training algorithm shows the best activation curve, but the 
reactivation one is not acceptable.  

The Levenberg-Marquardt training algorithm (quasi-
Newton algorithm) is characterized by a very good 
generalization capability (13), considering both the activation 
and the reactivation curves. The good generalization 
capability of the Levenberg-Marquardt training algorithm is 
confirmed when we consider the evolution of Qr/Qp ratio as a 
function of 600°C tempering duration (14). Qr/Qp 
experimental values well correspond with Qr/Qp simulated 
values both for the considered sets (training, validation and 
simulation set). Differences between experimental and 
simulated values are lower than the experimental dispersion 
range (7) and, considering that the training set is quite poor 
(only 4 elements) and the number of iteration is not high 
(2000), probably it is possible to improve the generalization 
capability and obtain simulated activation and reactivation 
curves that could approximate better experimental curves.  

 
Fig. 14. Qr/Qp ratio  (Area under reactivation peak/Area under activation peak) 
evolution with the 600°C tempering duration. Medium experimental values 
and simulated values obtained using Levenberg-Marquardt (quasi-Newton) 
training algorithm. 

V. CONCLUSION 
DL-EPR is confirmed as a useful method to characterize the 

intergranular corrosion process in austenitic stainless steels. 
Austenitic stainless steel AISI 304L is susceptible of 
intergranular corrosion at 600°C, with the chromium carbides 
precipitation that develops with a slow kinetics. At the 
investigated temperature (600°C), tempering duration of 600 
hours corresponds  to an asymptotic Qr/Qp value, with the 
chromium carbides precipitation that does not evolve more. 

In this work the artificial neural network applicability to 

stainless steel intergranular corrosion analysis performed by 
means of Double Loop Electrochemical Potentiokinetic 
Reactivation is investigated. Six different training algorithms 
are considered, and the Levenberg-Marquardt training 
algorithm shows the best generalization capability, allowing to 
obtain simulated activation and reactivation curves that well 
approximate experimental ones. 

Artificial Neural Networks are still not widely used in 
metals and alloys corrosion analysis. Results obtained in this 
work confirm that Artificial Neural Networks performances in 
this field are really interesting and that the increasing 
possibilities of the generalization capabilities are high. 
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