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Abstract— In this paper we present a deterministic worst- from applications were security to attacks by malicious

case framework for reconstruction of discrete (source) data agents (e.g., jammers [3]) is of paramount importance and
transmissions. This framework can be explored based on therefore “hard” guarantees are required

robust control ideas and formulations and can be viewed as The f K leads t t of d sufficient
a complement to the traditional probabilistic approaches in € framework leads 10 a set ol necessary and sutficien

the communications area. The particular problems touched conditions on the maximum noise level so that perfect
upon are: (i) necessary and sufficient conditions for causal reconstruction is possible by some receiver without specify-
and noncausal reconstruction under deterministic magnitude jng any structure to it. We then consider decision feedback
bounded noise for single-input single-output (SISO) and gqalizer (DFE) structures and prove that they form an

multi-input multi-output (MIMO) channels, (ii) reconstruction .
based on decision feedback equalizer (DFE) structures, and optimal structure for some (but not all) of the formulated

(iii) performance optimization under channel fading. The ¢*  problems. In doing so, we also furnish a procedure for
control theory and linear programming emerge as the natural designing a perfectly reconstructing DFE based on linear

key player in this framework. programming (LP) and’!-optimization methods [4]. Al-
Keywords: Equalization, ¢* optimality, worst case, discrete  q,gh DFE analysis and design has received considerable
data reconstruction. . .
attention over the last forty years, there are many issues
of current interest (e.g., [5] and references therein). A
common assumption in the DFE design literature is that of
correct past decisions, something that is arguably a strong
The topic of data transmission and reconstruction igssumption to coexist with the notion of optimality of a
based almost entirely on stochastic formulations of thgesign procedure [6]. In our approach, however, since we
various problems involved (e.g., [1], [2]). In these formuprovide the exact conditions for the existence of perfectly
lations, the main measure of performance of a commurteconstructing DFEs, as well as explicit constructions of
cation system is characterized primarily in terms of theuch DFEs (if at all possible), this assumption is unnec-
probability of error under various stochastic assumptionsssary. Of course, if the noise level is higher than the
on the noise and channel behavior. Designing a systefilaximum allowed for perfect reconstruction, errors will
that minimizes this probability is a rather hard problem angccur and one has to analyze how these errors propagate
proposed algorithms are characterized by high complexifly the system. This is not done in this paper, although
(e.g., Viterbi's algorithm [1]). we touch some relevant issues in the case of first-order
In this paper we present an alternative, deterministiglR channels. For a detailed discussion on these matters
worst-case framework for accurate reconstruction of disve refer to the works in [7], [8], [9]. The paper also
crete (source) data. This framework, which can be explore@nsiders linear equalizers as a special case of DFEs and
based on robust control ideas and formulations, mainbertain performance characterizations are given in terms of
addresses the question of when perfect reconstruction @foptimization formulations. Finally, closed-form perfor-
a discrete sequence of source symbols (e-g.or —1) is  mance results are obtained for the case of first-order FIR
possible if the magnitude of the additive noise is alloweghannels.
to be anything as long as it is bounded by arpriori The notation is as follows]|z|| := sup, |z(k)| is
known bound. In other words, this framework is a complethe ¢> norm of a sequence = {z(k)}0r T, ==
mentary worst-case, deterministic approach that providgs® '|¢(k)| is the¢* norm of the linear time-invariant (LTI)
necessary and sufficient conditions for an error to occlystem? having unit pulse responsg(k)} 5 ,; T'(\) :=
The main motivation for this worst-case approach comes' ™ +(k)A* is the A-transform of . For a vector valued

; _ ) T — N
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Il. PROBLEM DEFINITION AND SOLUTION Following the same line of argument as in [10], we obtain

The basic problem we are concerned with is depic:tetgat the necessary and sufficient condition is

in Figure 1 wheres is a binary signal to be transmitted

with s(k) € {-1,1} for all ¥ = 0,1,...; n is the v(o);éo,vr(ril)lg{—Lo,umax{|a(0)|’|a(1)|""’|a(K)|} >b
noise with [n(k)| < b, whereb is a known constant; 1)
H = {hg,hy,...} is an LTI system that represents thevhere

channel dynamics which are assumed knawpriori for a(0) ho v(0)

now. We want to accurately and causally reconstsucia a(1) b ho v(1)

the receiver structurd, i.e., we would like to find what _ —

are the necessary and sufficient conditionssidr) = s(k) : . :

for all timesk = 0,1,..., and what should the receiver a(K) hx ... ... ho v(K)

structureR be. . )
The above test for perfect reconstructability requires

n solving a mixed integer linear program [11]. For certain
instances, such as one-step delay, analytical results can be
r R I obtained (see Section V). Also, one can prove the special
case below.
Proposition 2.1: Assume that/hg| > |h;| for all i =
Fig. 1. Basic set-up 1,2,..., K. Then,s is perfectly reconstructible with delay
K if and only if |hg| > b.
The essence of the above proposition is that the use
of non-causal reconstructior( # 0) in this case does
A. How to construct a perfectly reconstructing i not offer any improvement (increase) on the maximum

Our analysis in [10] showed that perfect reconstructiofllowable noise bound for perfect reconstruction.

requiresho| > b. In this case, the construction of a receiver

R (refer to Figure 1) can be obtained as the decision

feedback equalizer (DFE) shown in Figure 2, whéte= ©- MIMO channels

H — hy and A is the unit step delay operator. Generalizations are also possible in the case of MIMO
channels. In the case of. transmitters ang receivers

§ the (equivalent) channel dynamics can be represented by

a p x m transfer functionH with pulse responsédl =

{Ho,Hy,...}, where eachH; is a p x m matrix. The

motivation for problems of this sort comes from multiple

AF antenna systems designed to combat fading channels and

the detection of multiuser code division multiple access

(CDMA) signals. The set-up is as before, ie5= Hs+mn,

where s and n are vector valued sequences such that

si(k) € {1, 1} for all components; of s and|n;(k)| < b

The above setup and analysis can be generalized to CaRESIl componentss; of n.

wheres(k) belongs to a set of equally spaced numbers in Under this setup, one can prove the followingwif €

[~1,1]. For msta_nce,_ 'f‘?](k) € /N, j = BN’ —N +” {-1,0,1},7=1,...,m, then the necessary and sufficient
1,...,0,... ! N} ie., ift \ere arenN +1 numbers equally ¢ perfect reconstruction causally in time is
spaced by intervals of size/N, the condition for perfect

sgn

Fig. 2. DFE structure

reconstruption beconje}b0| > 2Nb; the depisiqn structure . max{|ao|, a1, ., |ap|} > b,
is an obvious extension of the structure in Figure 2. v;€{~1,0,1} , not all equal 0 @
where
B. Non-causal reconstruction ao Vo
The case of non-causal reconstruction (smoothing) can ar | I U1
also be considered in the same framework. In this case N :
we are allowed to estimate(k) by incorporating K a, O
future receptionsr(k + 1),...,r(k + K) as well as
r(0), r(1),...,r(k). In other words, we allow a delay of Checking the above condition is a mixed integer linear

K steps in reconstructing. The necessary and sufficientprogram (MILP) and a closed-form solution is, in general,
condition for perfect reconstruction is that there are nbard to obtain. Finally, we would like to note that, as in the
sequences; ands» such that, if they are indistinguishablethe SISO case, one can look at noncausal reconstruction for
at any timet, they remain so for the next’ time steps. MIMO channels; the problem to solve is again an MILP.



D. Some remarks
In the case of noncausal reconstruction and/or MIMO l §

channels the test for perfect reconstructability requires H N °

solving an MILP. In general, the construction of a per-

fectly reconstructing? can be quite complex. This is the AF

motivation for the specific (DFE and linear) structures of

reconstructors that we consider in the next section. Fig. 4. Equivalent DFE structure under perfect reconstruction

Finally, we mention that the case when the noise
enters through a “filterW (sometimes called a coloring
filter), i.e., whenr = Hs 4+ Wn, is analogous and hasfor all timesk and for all sequences with s(k) = 1 and
results similar in flavor. For example, in the case of caush|| < b (for s(k) = —1 same condition can be easily
reconstruction in a SISO channel,iWW = {wg,w;,...}, obtained). Equivalently, we have that
then the necessary and sufficient condition for perfect

k k
reconstruction is 0 > Z |2i| + bz lgi| +€ VE=1,2,... (4)
(o] =1 =0
lho| > b Jw;| = bW, . (3)  Note that the above is also equivalent to
=0
> |+ b il 5
I1l. RECONSTRUCTIONBASED ONDFES o ; sl ; gl ®)

In the previous section, causal perfect reconstruction Bince thez;’s are (linear) functions of the;'s and thef;’s,
SISO channels led naturally to a DFE structure. Herein wie problem of checking the above condition for a given
elaborate more on the optimality of such a structure fgy > 0 is a linear programming (LP) feasibility problem with
noncausal and MIMO problems. infinite variables{g;, f:}2,. We now reduce Condition (5)

to equivalent conditions.
v Proposition 3.1: The following are equivalent:
(a) Condition (4) is satisfied for somg and F'.
(b) ||(I = QH + AF Qb)||, <1 for someQ and F.
(c) There are and F' so that, for allk, |s(k) — §(k)| <
1 —¢€ for somee’ > 0 and alls andn with ||n|| < b.

Based on the above proposition we can define the rele-

vant ¢, -optimization

Fig. 3. General DFE structure for causal reconstruction
pw = inf Jp,

The general DFE structure is depicted in Figure 3 where Q.F
Q is a (stable) linear forward filtet) = {qo,q,...}; where
AF is a feedback filter withA being the one-step delay
operator (i.e, A(\) = \) and F = {fo, f1,...}; © is a Jo =1 0)—(QH —AF Q).
thresholding operator that produces or 1 depending on Then, the problem of perfect reconstruction has a DFE
which one has the closest distancestan this particular solution if and 0n|y |fu < 1. If we denoteG := QH —
case,(05s)(k) = sgn[5(k)]. It should be clear that for this 4, 4, ..}, it follows from the structure of thé' norm,
structure to perfectly reconstruetk) causally in time for that to minimize.J,, the optimal F for any @ should be
each timek it is necessary and sufficient thatk) > 0 iff  selected a#" = {g1,¢»,...} so thatAF cancels all terms
s(k':) > 0 for all possible signal sequenceand all possible in G except the feed-through tergy, = goho (any other
noise sequences. choice forF' will increase.J,). Given that, it also follows

Under the perfect reconstruction requirement, the situgnat the minimizingQ has to be a consta@ = q,, where
tion in Figure 3 can also be interpreted as in Figure 4: thegg minimizes

are (stable)) and F' and an (arbitrarily smally > 0 such

that for all time-steps: with s(k) = 1 p= H{}})H |1 = gohol + blgo| -
(k) = ((QH — AF)s +Qn)(k) > e >0 This gives usy = 1if |ho| < b andu = b/|ho| if |ho| > b.
. The minimizing@ is Q@ =0 andQ = hio respectively. As
for all sequences and [|n|| < b. Denoting by X := expected, the DFE structure leads to the same conclusion
QH—AF = {xo,z1,...}, we have that the above conditionfor perfect reconstructability as in the previous section.
equivalently means A point to be made here is that haviog > 1 does not

necessarily imply that the DFE structure with the particular

k k
3(k) = zis(i) + gr_in(i) > e>0 @ and F' does not perfect!y reconstrugt unlessd < gog =
() ; i8] ; inli) qgoho < 1. If go > 1, Condition (5) needs to be checked to
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determine whether perfect reconstruction is possible at thd of the i source datas; transmitted. In particular, the
given noise leveb. relevant problem to solve is

p = inf ||(I 0) - (QH — AF Q@QB)|,
A. Noncausal reconstruction Q.F 0y =L )

To capturek -step noncausal reconstruction we allow thavhere all systems are MIMO an# is a scaling noise
forward filter to be of the form\ =% (i.e., noncausal). It matrix with B := diag(b;), whereb; is the noise bound

then follows that the problem of interest is to find on channet. The DFE perfectly reconstructscausally in
) time iff u < 1.
Bo= glg Jv Using the same arguments as in the previous two sub-

sections, a minimizingF' is F = {G1,G>,...} where

where now G = QH, and a minimizingQ is Q = Qo, a constant
Jy = sup ||[(I 0) — (A"XQH — AF matrix that solves the finite-dimensional LP
lIslI<1,lInfl<b .
5 po= mn (I —QoHo  —QoB)l|; . (7)
K 0
a(x)|
n In general, assuming (for simplicity) th& = diag(b),

Again, it is true that the bedt, for any choice of in the the maximum bound on the noige for perfect recon-
above optimization, is to cancel the coefficient&o&= QH  structability obtained by requiring thgt < 1 can be
of order K + 1 and above, i.e.F' = {gxi1,9x+2,...}. different (smaller) than the absolute bound of Condition (2)
With this done, it also follows that the minimizing choiceas the following example illustrates.

for Q is FIR of orderK, i.e.,Q = {qo0,q1,---,qx,0,...} Example 3.2: Consider a MIMO2 x 2 channelH with

with the parametergy, .. ., gx solving the linear program the feed-through ternil, = 182 43 . Condition (2)
) K-l leads tob < 4 for perfect reconstruction (the checking can
p= min |1—grc|+dlgx| + Z(|gi| +0lail)-  (6) pe done by hand by checking all possibilities in the the
=0 MILP of Condition (2)).
Hence the DFE structure will perfectly reconstrgcvith On the other hand, employing the DFE structure and
a delay of K’ steps if and only if the linear programmingchecking foru < 1 in (7) leads to the existence 6, =
problem in (6) leads to a cogt < 1. g g2 satisfyin
A natural question to answer is how closely the maxi\ ¢s ¢4 9

mum allowable noise bounigfor perfect reconstructability
with DFE structure relates to the absolute bound of Con- S0 T12¢2 > |40 =3a:| + bl | +e)) ,
dition (1). For the one-step delay casE & 1) it can be 4gs —3qs > [8q3 + 12q4| + b(|gs| + |aal) -

shown that the pounds are the same. It can be easily checked (again by hand) that, while the
Proposition 3.2: With one-step delay, perfect recon-fist inequality can be satisfied for amy< 4, the second
struction is possible with a DFE if and only if inequality requires that < 3.6. In other wordss; (the first

lho| if  |h1| < 2|hol, component ofs) is perfectly reconstructible causally with
b < |h1| = |ho| if  |hi| > 2|hol . a DFE for3.6 < b < 4, while s, (the second component
of s) is not.

Moreover, the DFE structure is an optimal one for the Note that noncausal reconstruction problems lead to

problem. analogous results as in the scalar case. The relevant problem

_For higher order channels h_owever, these bounds C&consider forK -step delayed reconstruction is the (finite-
differ as the following example illustrates. dimensional) LP

Example 3.1: Consider a (possibly IIR) channé&l with
the first three coefficients beingy = 1, hy = 1.5, hy = uoo= min |[(I -Gg —-Gr-1 ... (8)
—1.75. By solving for Condition (1) for a two-step delay 0, QK
(K = 2), we obtain thab < 1.5 for perfect reconstruction ~Go —QkB ... —QiB)l, <1.

(this can be done by hand in this simple case by checking
all the possibilities —essentially nine choices fdi) and C. Reconstruction Based on Linear Equalizers
v(2)— in the underlying MILP). In this case we restrict the structure Bfto be R = Q

On the other hand, if we restrict ourselves to the DFyhere() = {q0,q1, ...} is a linear time-invariant filter. This
structure and check fqu < 1 in Condition (6) we obtain s a special case of the DFE structure wiiéis set to zero,
the conditionb < 1.2 (this can also be done by hand).  thus all of the previous discussion carries over.

B. MIMO channels IV. ROBUSTNESS TO CHANNEL UNCERTAINTY

In the case of MIMO channels with a DFE receiver In the previous section we investigated DFE structures
structure one needs to check whethigr — §;|| < 1 for under the assumption that the chaniglis known. We



n y 0 (W 0)[]x >
M =
< =@l [I(21 @)l
s ' 0 W]k )
= .
! oo < Q7
By redrawing the set up as in Figure 6, it can be shown
Fig. 5. A fading channel model [4] that RP is obtained if and only if
_ J J? + 4w
i) <1 o JEVPFAWICRL
now consider the case of uncertain channel dynamics which 2

we model as in Figure 5. The uncertainty here is giverwhere p(M) is the spectral radius of/ (largest eigen-
in terms of an additive weighted block1¥, where A is

assumed to be an unknown perturbation, possibly time- A
varying and even nonlinear, that has a boundéd to

£ norm ||Alleo—ce < 1. The weightW is a known
stable LTI dynamical system that may reflect magnitude

normalizations and partial information on the magnitude of w P

the uncertainty over different frequencies (i.e., it “shapes” s 0 (Wo)

the uncertainty block). n—>< —Q (D, D) >—S_>§
As an example, consider the actual chanfiglas H, = —

H + E where H = {hg,h1,...} is the nominal LTI
channel andt represents time-varying perturbations on th%g, 6.

) Robustness analysis loop
parameters off leading to a response

. value.) Equivalently)|W|1||Q|l + J < 1. Note that the

(Hos) (k) = Z(hk—i + er)s (i) left side is equal to
=0 J = [[I00)—(QH-AF Qb [[W[hQ)[h
with the perturbatior; bounded age;| < ¢; for all k = = [[(I 0)=(QH-AF (b+|W|[1)Q)I:-
0,1,2,..., but otherwise arbitrary. I3, e; = €, then pence RP optimization is equivalent to minimizing

this amounts to modeling as E = AW with W = ¢ and | (;) s 5”1 , wherefi is bounded agfi|| < b+||W|]:.

IA[Joo—o0o < 1. Similarly, if the first V channel coefficients That js, one has to consider the nominal channel with the
are not changingef = ... = ey-1 = 0) but there is «gqyivalent” noise bound given ds+ ||17]|,. Based on the

- - . = _ N . ) .
uncertainty in the higher order terms, thei(\) = eA™.  reqits of the previous section, perfect causal reconstruction
We note that this uncertainty formulation is differentg possible with a DFE iflho| > b+ ||W];.

in nature than what is typically assumed in the stochastic

framework (e.g., Chapter 14 in [1]). However, we believe

that it captures a number of relevant fading phenomena A

due to time variations and can be used to design reliable

reconstruction algorithms. n

Let J, represent thé> induced norm of the map? ) —

s—3ie,J,=|() —»s—3|___. Thisis a function

of the uncertaintyd. We assume that when no uncertainty s

is present, i.e., whel\ = 0, J, < 1 and hence perfect (

reconstruction is achieved for the specific DFE parameters

@ andF'. Note that in this casd, = J whereJ represents

the ¢! norm of the (nominal) map(;j) — s — §, i.e., Fig. 7. A more general fading model

J =|[(2) = s—35|,- What we would like to ensure is

robust performance (RP) in the presence of all possible A more general situation is depicted in Figure 7 where

IAlloo— oo <1, i.e., we want to find conditions such that H,, = H and H;; can be general (stable) dynamical
LTI systems that connect the nominal channel with the

Jo <1 forall ||Aljoo—co < 1. sources of dynamical uncertainty lumped & For ex-
ample, consider a channél = NHD;{l, where Ny =
If we denote®; := I —QH+AF and®, := —Qb,then N+WxyAy andDy = D+WpAp with D, N being the

from the definition of the 1-norm we have nominal “numerator” and “denominator” respectively (i.e.,

H = ND~'). Assume thatD and N are coprime [4], and
J = ||P11 + |2l = (@1 P2)]|1- that Ay andA p are normalized perturbations with known

=

Hyy Hyp
Hy Hy
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shaping weightdV, Wp. Then, putting it in the mold of 1) Causal reconstruction: For the case of causal recon-

Figure 6 the following identification is obtained struction (K = 0) we have the following result.
Hiy=0 —D'Wp) , Ha=D"! Proposition 5.1: Le_t llairht‘)e a first-order channdl/ (\) =

. b g
) ho + hi X and letw := ] @ = T Then, the optimal

Ay

Ap
o _ -1 — _a_
To analyze robustness, we can redraw the system and ue = 2 - H =15 <1, wheneverw +a <1,

Hyy =(Wnx —HWp) , Hey=H, A= ( estimator@Q° and its associated optimal cqstis

the same spectral radius condition as before [4]. By lettind?_ = 0> p=1  wheneverw+a>1.
om the above proposition, we see that the noise level
7 - ( 1Hull,  I(Hi2 O)]]x > b should beb < |ho| — |hu| for perfect reconstruction
QHa (|1 [[(21 @2)ll4 as opposed td < |ho| obtained from the unrestricted
_ [Hidll,  [[Hiz2llh nonlinear R or the optimal DFE. The conservatism is
- [|QHo21 |1 J ’ expected due to the restricted structure considered.

we conclude that for perfect reconstruction for all possible When s (k) l?elongs t0_ a set of gqually spaced numbers
perturbations||A||oo,oo <1 (i.e., ||AN||oofoo <1, In [—1,1] (for Instance, IfS(k) € {]/N, j=—-N,—N+

1AD]|so—so < 1), it is necessary and sufficient that theré>-- - 0>---» N _U}7|]—\1I}L)|, the same approach leads to the
exist() , F such thatp(17) < 1 , which equivalently leads condition b < =5g== (the thresholding device now
to ||Hy|y < 1 and changes to produce the closggtV to $(k)). Again, this
_ is more conservative than the conditibn< % in the
J = [[(100)- unrestricted case.
(QH—AF Qb | Hollx o) <1 2) Noncausal reconstruction: Results for one-step de-
1 —|[Hullx 1 layed reconstructionf{ = 1) can also be obtained.

For the case of noncausal reconstruction withstep ~ Proposition 5.2: Let H be a first-order channdfi/ (\) =
delay, the same arguments hold and lead to the followid@ + ~1A with w := % a := pr. Then, the optimal)°©
necessary and sufficient condition for RFH 11 ||; < 1. and its associated optimal cgstis

To check whether th(_are exigp, F so that the DFE Q°=AH', p=-2 <1, wheneverw+a < 1,
perfect]y reconstructs in 'the presence of unmo.deled Q° =L p=152 <1 wheneverw+a > 1
dynamics, the above conditions lead to the following

h17 w
T andw —a > 1,
optimization problem: °— =1 otherwise
=1, .

p=inf J<1, Recall that in th/é case of one-step delayed reconstruction
F using a DFE structure, perfect reconstruction is achieved if
assuming|H:1||x < 1 holds (which can be easily checkedand only ifb < v where
since Hy; does not depend on the DFE). {
B

=
QE

For this problem it is clear that, for any choice®f filter ] — IZOI :]]: Izli E gizoi’
F should cancel the coefficients 6f= QH of orderK +1 ! 0 ! ot
and above, i.e.F = {gxi1,9K42,...}. In general, the  Note that both linear and nonlinear reconstruction give
optimalQ may not be FIR as the LP is infinite-dimensionalthe same bound fa,| > 2|h|. In the regiond < |hy| <
Nonetheless, arbitrarily close to optimal solutions can b¥hol, the linear is clearly outperformed. In fact, fidr, | =

obtained using standa methods. |ho| the linear is very sensitive to any nonzero noise.
Finally, we would also like to mention that, in the case
V. FIRST-ORDER FIR CHANNELS of a first-order channel, any additional delay does not

In this section we consider the case of a first-ordémprove the bound.
FIR channel given byH = {ho,h:,0,0,...}. This Proposition 5.3: Let H be a first-order channdil () =
could represent simple channel dynamics in a wireles8e + h1A. Then,s is perfectly reconstructible witli -step
communications scenario. We provide some analytical rdelay if and only if it is perfectly reconstructible with one-
sults on perfect reconstructability as well as some analyticsiep delay. Moreover, ifh1| > 2|hg| reconstruction can be

and simulation results on the probability of error. performed using a linear structure.
We compare the performance of the above filters using
A. Linear equalization for first-order FIR channels simulations based on 30000 trials; the results are depicted

Herein we provide a closed-form result for perfect linealn Figure 8. We can see that the DFE structure reconstructs
reconstruction. Recall that the underlying problem to solvieerfectly in the given bounds and performs better than the
for K -step delayed reconstruction is other two structures.

= inf [[A®(I 0)-Q(H bl . 9 . o .
a lg ” (I 0) = Q( )”1 ©) B. Explicit probability of error calculations

As indicated earlier; this is a standafd-optimization As we see from Figure 2, in binary pulse amplitude mod-
problem. We will callQ° an optimal¢! linear reconstructor ulated (PAM) input signal, our decoder (which obtaiik)
if it solves the above optimization. from#(k)) is just a sign function. Without loss of generality



Experimental results for binary PAM, hy=1, h,=0.8

[4]
03 B [5]

— DFE
¢* Filter

0.251 —MMSE Filter

6]

Error probability
°

°
@

(7]

(8]

Noise bound

El
Fig. 8. Error Probability as a function of the uniform noise bownfdr
binary PAM.

[10]

we can assume thaty > 0 and §(k) = sgn[F(k)]. Note
that “probability of error” is meaningless unlekss larger [11]
than the bound required for perfect reconstruction (so that
errors occur).

Proposition 5.4: In the long run, the probability of get-
ting an error for binary PAM with uniform noise bound
b and first-order FIR channel dynamics using the DFE
structure of Figure 2 is given by

07 b S hO:
_ 2(b—ho)
Pe— m, h0+2h12b>h0, (10)
ko, b > ho + 2h,.
Our experimental results verify the validity of Proposition

5.4.

VI. CONCLUDING REMARKS

We have presented a deterministic formulation of various
communication problems. Our approach leads to exact
magnitude bounds on the noise level for which perfect
causal or delayed reconstruction of the transmitted symbols
is possible. It also allows for the synthesis of perfect recon-
structing structures, despite possibly time-varying uncer-
tainty that is present in the channel. The main structure that
was studied was a DFE structure; our framework provides
connections between the limiting performance of DFEs and
¢*-optimization, a subject that has been thoroughly studied
in the context of robust control. We parenthetically mention
here that the (optimal) linear equalizer given for first-order
FIR channels is, by itself, a contribution ' model-
matching theory as it is a closed-form solution to a so-called
two-block problem for which, to the best of our knowledge,
no closed-form solutions are available.
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