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Abstract— The problem of model matching by state feedback is n,, < n (from now on all the symbols related to the model
is reconsidered and new necessary and sufficient conditions of its will have the indexn), and gives rise to the transfer function
solvability are established. Tpn(s) € Rg;l(s), .. pim =p and_lm. — 1. The problem of
Index Terms—Linear systems; model matching; state feedback. model matching then consists of finding a (regular) static state

feedback
u = Fz+ Gu, (4)

I. INTRODUCTION whereF ¢ R andG € R with rank G = [, such that
The problem of model matching represents a succinct dpe transfer function of the closed-loop system exactly matches

stract formulation of many control problems in which the cerfhat of the model, i.e.
tral role plays the transmission properties of the system, that is T e 5
to say, the modification of the transfer function is the core prob- m(s) =Tral(s) (5)
lem. Since theegular static state feedback, which is define . 1

below, forms the basic type of feedback, the discussion cc?’r\{hereTF’G(s) = (sl — A= BF)" BG.

centrates on model matching with this kind of feedback. SameMore generally, the equation (5) can also be written in the
remarks are also devoted to model matching by dynamic coform

pensation. T (s) =T(s)C(s) (6)
Consider a linear time—invariant system described by tb\mereC(s) c IR;XZ(S) is the transfer function of a compen-
equations sator. If a certain type of feedback is used for model matching,
‘ the compensato€'(s) has to be realizable by that feedback.
z = Az+Bu (1) In the case of state feedback (4), for instance, it follows that

Cz (@) C(s) = (I, - F(I, — A)~'B)~'G, which implies that’(s) is

a biproper matrix (a unit of the ring*!(s)).
whered € R™™, B ¢ ™!, C' ¢ RP" with rank B =1 = 0 0P ( g, (s))

and rank C = p. The system (1) and (2), called also the plant, The literature concerning the model matching problem by
is supposed to be controllable and observable, and its trangfiierent types of feedback is fairly rich. Most of the contribu-

function is given by tions however deals with dynamic compensation; see [17], [10],
[12], [15], [7], [5] and the references therein. The problem of

T(s) = O(sI — A)"'B € RP*, rankT(s)=p. (3) model matching by state feedback has been defined in [16] for

P the first time, where also necessary and sufficient conditions of

Whenever convenient, the system (1) and (2) is also referredtgsolvability can be found. In the same year, a solution, based
. on Silvermann’s inversion algorithm, was established in [11].

as the triple(C, A, B), orT'(s).

Other necessary and sufficient conditions for there to exist a so-

As far as notation is cgncerned, SOme stand-ard sym.bols l“ﬁ‘ﬁon to the problem can be found in [5]. These conditions are
=, R[s], andR(s) denoting the defining equality, the ring ofgia1e4 in terms of finite and infinite zeros of the system; how-

polynomials over the field of real numbeRs and its quotient oy er they are valid just in the case where the system transfer
field, respectively, andk, (s) (Rsp(s)) standing for the ring ntions are nonsingular. In this paper we build upon the re-
of proper (strictly proper) rational functions ove, will fre- g given in [13], [19], where just necessary conditions have

quently be used; some other symbols are defined throughgub, ‘established, to derive new necessary and sufficient condi-

the text. : e .
tions of solvability for the problem of model matching by (reg-
Let (Cy,, A, By,) be another system, called the model, th lar) state feedbgck P g by (reg

has the same properties @s, A, B), the dimension of which

P. Zagalak is with the Institute of Information Theory and Automation, 1. BACKGROUND
Academy of Sc_iences of the C_:zech Republic, P.O. Box 18, 182 08 Praha, Czech )
Republic, email: zagalak@utia.cas.cz Recall first some facts concerning the Morse invariants of

J. Torres is with CINVESTAV del IPN, Dept.Auto.Control, P.O. Box 14-740 : ;
7000 Mexico D.F., Mexico, email: jtorres@ctrl.cinvestav.mx (C’ A’ B)' The relatlonshlp

M. Duarte is with Dept. of Electrical Engineering, University of Chile Av. P
Tupper 2007, Casilla 412-3, Santiago, Chile, email: mduartem@cec.uchile.cl (C,A,B)o Q= (C",A",B),



whereC’ := HCT-', A’ := T(A - BF — LC)T~!, and The supremal output—nulling controllability subspaRe
B’ := TBG, describes the action of the Morse group othat is contained irfKer C' plays an important role in the prob-
(C, A, B) where the quintuplé) := (H,T, F,L,G) is an el- lems like this one. This subspace is characterized by the col-
ement of the Morse group. The matricEs, andH are non- umn minimal (orR*—controllability) indices ofP(s). To reveal
singular and stand for similarity, input space, and output spattem, we addn — p new rows to the matrixC in such a way
transformations, while®" and L represent state feedback andhat the new matrix, sag., will be of ranki and the supremal
output injection, respectively. controllability subspace of the systgi@., A, B) contained in
Using the Morse transformations the systéf A, B) can Ker C. will be zero. The systeniC., A, B) is calledthe ex-
be brought into the Morse canonical form [8] that is charactelended systeif8] and has the transfer function
ized by certain invariants. These invariants are known as the
Morse invariants and correspond to the Kronecker invariants of T.(s) := Ce(sl, — A)"'B.

the system matrix . . .
4 The interacto®, (s) of T.(s) is called theextended interactor

P(s) = sl,—A —-B and is of the form
o ¢ 0 Dy(s) 0
B, (s) = [ ! }

. o Do(s) Ps(s)
Generally, there are four kinds of the Kronecker invariants

(invariant polynomials, row and column minimal indices, anghere®, (s) stands for the interactor @f(s), ®,(s) is a poly-

infinite zero orders) that are, in the case(6t A, B), reduced nomial matrix whose entries;; (s) have the properties stated
to the infinite zero orders and column minimal indice$4%).  in Lemma 1, and

As the matrice€”, A, and B represent a minimal realization
of T'(s), there clearly exists a one—to—one correspondence be- Ps(s) = diag {s”}2 "
tween the aforementioned Morse invariants and some quanti- _ o o _
ties characterizing(s). For example, the infinite zero ordersWith o; being the column minimal indices @(s). The in-
of IP(s) andT'(s) are the same and can be obtained from t|§gc§50i are supposed to be non—decreasingly ordered (and the
Smith—McMillan form ofT'(s) at infinity. The column minimal indicesa; ,,, of the model as well).

indices ofP(s) will appear in the so—callegiktendednteractor, . )
the concept that is defined below. In the sequel the following lemma will be useful.

Lemma 2:[4] Let P(s) € R™™[s], m < n, and leta(s)

. pxl . : .
Lemma 1:[17] Let H(s) € RE)"(s) be a right invertible andb(s) be polynomial vectors such that

matrix. Then there exists a unique matixs) € RP*?[s],

called the interactor off (s), such that b(s) = P(s)a(s)
D(s)H(s) = [I, 0] B(s) (7) ThenP(s) is column reduced if and only if
whereB(s) is a biproper matrix. The interactdr(s) is of the deg b(s) = max{deg,, P(s) + dega;i(s), 1 <i < m}
o P(s) = Ua(s)As(s) Let now N (s) andD(s) be polynomial matrices that form a

normalized matrix fraction description (n.m.f.d.) Bfs), i.e.
whereA;(s) = diag {s/'}}_, with f; being positive integers

and T(s) = N(s)D7*(s) (8)
1
ar(s) 1 where N(s), D(s) are coprime and)(s) is column reduced
Us(s) = . with column degrees; < ¢y < ... < ¢,,. Let furtherN,,(s)

. ' ' andD,,(s) form a n.m.f.d. off,,(s) and letC(s) be a state—
epi(s) - pppoa(s) 1 feedback realizable compensator such that (6) holds. Then us-
ing a n.m.f.d. ofl'(s) and a n.m.f.d. of,,(s), the relationship

The polynomialsp; ; (s) are divisible bys, or are equal to zero. X )
POl i (%) Y a (6) can be rewritten in the form

The equation (7) shows tha®~!(s),0] the Hermite form N(s) Npn(s)
of H(s) whenIR,(s) is considered as a special case of gen- { C~1(s)D(s) } = { Dipn(s) ] X(s) ©)
eralized polynomials [12]. As the bibroper matrices play, in
the case of the rin@®,, (s), the role of unimodular matrices, itwhere X (s) is nonsingular and represents a greatest com-
easily follows that the interactor is unchanged whe(S) is  mon right divisor of N(s) and C~!(s)D(s). Notice that
postmultiplied by a biproper matrix. If the interactdrs) is C~1(s)D(s) € R™*™[s] by assumption. Recall that this re-
row reduced, then an interesting fact is that the integeese lationship describes a necessary and sufficient condition for the
the infinite zero orders off (s), and that the row reducednescompensato€’(s) to be realizable with a (regular) static state
of ®(s) can be achieved just by permuting the rowsFbfs); feedback [2]. In fact the relationship (9) describes the result
see [6]. stated in [16], which is a starting point of our development.



To begin with, a special case of model matching that arisead consider the relationship (9) wherés) represents a state—
whenT,, (s) represents the feedback irreducible system [1] wileedback realizable compensator. Substituting (14) and (15)
be considered first. To enlighten this concept, consider the neto (9) gives
lationship (9) again. Applying the state feedback (4) to the sys-

tem (1),(2) may result in a cancelation of zeros betwA&R) Non(s)

_ . ) . . N(s)
andC~!(s)D(s). But this not all; another kind of cancelation } = [ X(s) (16)
caL_lsed by the non—trividR* of (C, A, B) is possible. To ex- B(s)®e(s) K (5) e, (5) Ko (s)
plain that, let where B(s) := Br,(s)C~1(s)B;'(s) is a biproper matrix
Q(s) 0 that is state—feedback realizable. This can further be simplified
K(s):= { 0 In, } Uls), (10)  using (10), (11), and (12) such that
whereQ(s) € RP*?[s] is nonsingular and/ (s) is a unimodular [Q(s) 0] = [Qm 0]Z(s) 17)
matrix given by the equation and
N(s) =1[Q(s) 0] U(s). (11) B(s) [ ®1(s)Q(s) 0 ] _
ThenK (s) andD(s) form a n.m.f.d. ofl.(s)[18]. 22(5)Q(s)  Psls) (18)
Next, by Lemma 1, we have that — { C1m(5)Q(s) 0 ] Z(s)
P2 (5)Q(s) P m(s)
D.(s) Te(s) = Be(s) (12)
whereB(s) andZ(s) := U,,(s) X (s)U~1(s) are of the form
whereB,(s) is a biproper matrix. It follows then, from (9), that
B(S) _ |: Bll(S) O :|
[ o7 } {‘%)()8] r(s) (13) Pale) Bl
= 1S S
B.(s)D(s) Bo(s) Imop

with
T(s) = [ @) 0 ] U(s)
0 @3(s) Based on the relationships (17) and (18), necessary condi-
Thus, applying the state feedba@ks, G ) given by B, (s)  tions for the existence of a state feedback compengétey
to (C, A, B) results in the feedback irreducible system, denot&@tisfying (6) can now be established.
by (Cs, Ag, Bs), that is a minimal realization of its transfer
function Tp(s) = ®;'(s). Moreover, the relationship (13) Theorem 1:Let T(s) and T},,(s) be transfer functions of
reveals all the cancelation that take place in the closed—lod)§ systemsC, A, B) and(Cy,, A, Bi), respectively. Then
system(C, A + BFy, BGs). The matrixQ(s) represents the there exists a state—feedback realizable compensdtgrsuch
(finite) pole—zero cancelation whike;(s) corresponds to the thatTi,(s) = T'(s)C(s) if and only if
second kind of cancelation. All that is summarized in the fol- (&)  the interactors df'(s) andT;,(s) are the same;
lowing (b)  the matriced,,(s) and[T'(s) T.,(s)] have the same
finite zero structures;
Proposition 1: GivenT'(s) andTs(s) := ®;'(s), thenthere () oy >0 fori=1,2,...,m—p;
exists a state feedbadlt's, Go) (given by B.(s)) such that  (d)  There exist polynomial matrice8,; (s) and Zsz(s)

Ts(s) = T(s)B.(s) and the McMillan degree dfis(s) is the nonsingular such that
lowest achievable one; its value is given by the sum of the infi-
nite zero orders of’ (s). deg,; [(s)V(s) < deg,; ©1(s)Q(s)V(s)  (19)
fori = 1,2,...,p, whereTl'(s) := ®q,,,(8)Q(s) —
I1l. M ODEL MA-\TCHING BY STATE FEEDBA(?K By (5) Zoo (5)PL(5) Do (8)Q(S) + Py (5) Z21 (s) and
It has been shown in [1] that the transfer functi@nsc (s) V(s) is a unimodular matrix making the product
can be ordered with respect to their McMillan degrees, i.e. ®4(s)Q(s) column reduced.
ITa(s)) < 0(Tm = Trc(s)) < O(T(s)) Proof: (Necessity). The claim (a) follows from the prop-

erties of the interactor; see Lemma 1. To prove (b), write

;ﬁ:(s) T, (s)] in the form

The matter in question now is a characterization of all the tral
fer functionsTr (s). To that end, write the relationship (12

in the form 0

b ]

which is a n.m.f.d. fofT'(s) T;,,(s)]. The finite zero structure
Din(8) = Byl (8)®e,m (8) Ko (s) (15) of [T(s) T;n(s)] is given by the greatest common left divisor of

D(s) = Br' (s)2e(s)K (s) (4)  [T() T(s)] = [N(5) Non(s)] { )¢

and similarly, for the model,



N(s) and N,,,(s), which is the matrixQ,,,(s) in view of (17). (Sufficiency). To prove the sufficiency part, a biproper matrix

To show that (c) holds, consider the equality B(s) and polynomial matrix Z(s) will be constructed such that
the relationship (18) will hold. Notice first that the relationship
Bas(s)P3(s) = P3,m(s)Z22(s) (20)  (17) implies thatZ1(s) = Q1 (s)Q(s). Further, the equality

&4 (s) = P1,n(s) givesBy1 = I,,,. The rest of the proof follows
from the assumption that there exist matriZgs(s) andZss(s)
such that (20) and (refgn) hold. The®;(s) is given by (23)
and B (s) can be computed from (20). |

where Bas(s) is a biproper matrix andZs2(s) a nonsingular
polynomial matrix. The following lemma gives an answer.

Lemma 3:Let P(s),Q(s) € R"*"[s] be column reduced

with column degrees;; < az < ...ay, f1 < B2 < ... 0, In the following corollary a special case, in which both ex-

respectively. Then there exist a biproper mafrixs) and a tended interactors are diagonal, is considered.
polynomial matrixZ(s) such that
Corollary 1: [19] Given a plantT(s) and modelT,,(s)
V(s)P(s) = Q(s)Z(s) (21) with the interactorsb, (s) = diag {s™ }*_, and ®; ,(s) =
diag {s™}¥_, where both the integers; andn; ,,, are non-
decreasingly ordered, and with the extended interadg(s)
and ®.,,(s) in which ®5(s) = 0, Py ,(s) = 0, P3(s) =
diag {s°}.~%, and®3,,,(s) = diag {s”=}\_%. Then there
exists a state feedback (4) such that (6) holds if and only if

ifandonly ifa; > 3;, i =1,2,...,n.

Proof: As V(s) is biproper, the producV (s)P(s) is
clearly column reduced withleg ; V(s)P(s) = o, ¢ =
1,2,...,n. This means that the produ€t(s)Z(s) is column ,
reduced, too, and has the column degreesThen, by Lemma (@) 7 =nimfori=1,2,....p,

3 B) the matriced,,(s) and[T'(s) T, (s)] have the same
o = max{; + deg zi;(s),1 < i < n} finite zero structures,
_ S . ") o, >oimfori=12...,p,
for j = 1,2,...,n, which implies thato; > 55, j =  (5)  There exist a polynomial matri,; (s) and a proper
L2,...,n. rational matrixBy, (s) such that

To prove the sufficiency part, define
B1(s)®1(s)Q(s) = P3,m(5)Z21(s) (25)

Z(s) = diag{s™ " }iL, , N .
Another special case, in which necessary and sufficient con-

and ditions of solvability are known, arises when bdftfs) and
V(s) := L(s)P*(s) T, (s) are square and nonsingular.
where L(s) is a column reduced matrix witeg.; = ai,  Corollary 2: Given nonsingularl'(s), T,,(s) € R.S'(s),

i =1,2,...,n. The matrixV(s) is clearlybiproper while the there exists a state-feedback realizable compenéstorsuch
productQ(s)Z(s) is column reduced with column degrees  that (6) holds if and only if

It follows that (21) holds. u 1) B(s) = Bp(s),
L (2) N(s) = Npn(s)X(s) for some nonsingular

By definition, ®5(s) and®s ,,, (s) are clearly column reduced X(s) € R3],

with the column degrees, ando; ,,,, respectively, which means

that the inequalities (c) hold. It is readily seen that the condition (2) is just the condition
To prove (d), consider the equation (b) of Theorem 1. In other words, the conditions (a) and (b) of

Theorem 1 are necessary and sufficiedf' () andT,,(s) are
Bgl(s)@l(S)Q(S) + BQQ(S)q)Q(S)Q(S) = (22) nonsingular.
= Dy, (5)Q(S) + P31 (5) Z21(s), It should also be noted that the condition (1) and (2) of Corol-

) _ ) lary 2 are equivalent to the conditions established in [5] that are
where B, (s) is proper rational By (s) biproper, andZs:1(s)  stated as equality between finite and infinite zero structures of
polynomial. Substitutingps,, (s) Z22(s)®3(s) for Baa(s) and  the matrices(s) and[T'(s), Ty (s)]. It can be shown that this

F~1(s)G(s) for By (s), where the matriceB'(s), G(s) form a  regyt is an easy consequence of Corollary 2 and subsequent
n.m.f.d. of By (s), the relationship (22) can be written in the

form Lemma 4:Given nonsingulaf’(s), T,,(s) € IRlS;l(s), then
. 1 O(s) = P,,(s) if and only if the infinite zero orders of the
Bai(s) == F~'()G(s) =T(s)[21(s)Q(s)] ", (23) matricesT'(s) and[T(s), Ty (s)] are the same.

wherel'(s) is defined in (d). As the matriBs; (s) is proper, it
implies that

IV. CONCLUSIONS

The problem of exact model matching by (regular) state feed-
deg,; T(s) < deg,; ®1(s)Q(s), i=1,2,....p (24) back has been reconsidered and new necessary and sufficient
conditions of its solvability have been established. It is be-
T lieved that these conditions bring more insight into the problem
D1 (5)Q(s) of model matching and help in understanding the propeties of
matrix V' (s) then gives (19). basic control laws.

Postmultiplying the matri ] by the unimodular
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