
  
Abstract—The software Petri Net Toolbox, dealing with Petri 
nets under MATLAB, is presented. It can handle five types of 
Petri nets (untimed, transition-timed, place-timed, stochastic 
and generalized stochastic) with finite or infinite capacity. The 
toolbox is equipped with a user-friendly graphical interface 
and allows three simulation modes accompanied or not by 
animation. Its functions cover the key topics of analysis such as 
coverability tree, structural properties (including invariants), 
time-dependent performance indices, max-plus state-space 
representations. A design procedure is also available, based on 
parameterized models. The integration with the MATLAB 
philosophy enlarges the utilization of this popular software 
towards the area of discrete-event systems. The applicability of 
this toolbox in several domains of engineering, illustrated by 
three examples, demonstrates its value as an educational aid. 
 
Index Terms—Education and training, modeling and simulation, 
Petri nets, discrete event systems, manufacturing. 
 

I. INTRODUCTION 
The Petri Net Toolbox (PN Toolbox) version 2.0 is a 
software tool for simulation, analysis and design of discrete 
event systems, based on Petri net (PN) models. This 
software is embedded in the MATLAB environment and its 
usage requires version 6.0 or higher. The orientation of the 
PN Toolbox was meant to permit further development in 
the sense of hybrid systems, because MATLAB 
incorporates comprehensive libraries for studying 
continuous and discontinuous dynamics. Such a 
development, of extreme importance for control 
engineering, would be hardly approachable relying on the 
already existing PNs packages [1] as requiring sophisticated 
interfaces for the cooperation with instruments devoted to 
the exploration of continuous dynamics. Moreover, the 
integration of the PN Toolbox with the MATLAB 
philosophy has the incontestable merit of broadening the 
MATLAB's utilization domain towards the area of discrete-
event systems, which is now covered only by the State-
Flow package. However, it is worth mentioning the 
existence of two products [2] and [3] using the algebraic 
resources of MATLAB for PN investigation, without 
incorporating graphical editors, which, at this time, are not 
included in the MATLAB Connections Program [4]. 
The PN Toolbox was designed, implemented and tested at 
the Department of Automatic Control and Industrial 
Informatics of the Technical University „Gh. Asachi” of Iasi. 
It was  intensively exploited during  the last two academic  
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years for laboratory works accompanying a course on 
discrete event systems. Although initially intended just for 
internal usage, the current version of the PN Toolbox can 
serve various instructional tasks, due to the wide range of 
topics covered by its facilities. It is suitable for applications 
illustrating the theoretical concepts provided by courses on 
PNs with different levels of difficulty. Furthermore, the PN 
Toolbox allows relevant experiments for studying the 
event-driven dynamics of physical systems encountered in 
many technical fields such as flexible manufacturing 
systems (FMSs), computer systems, communication 
protocols, power plants, power electronics. 
This paper is organized as follows. Section II displays the 
main features of the PN Toolbox and comments on its role 
as an educational aid. The Graphical User Interface is 
briefly described in Section III. Section IV presents the 
main algorithms and their implementation. The examples in 
Section V illustrate the exploitation of the PN Toolbox. 
Some conclusions are finally delivered in Section VI. 

II. PETRI NET TOOLBOX AT A FIRST GLANCE 
In the current version of the PN Toolbox, five types of 
classic PN models are accepted, namely: untimed, 
transition-timed, place-timed, stochastic and generalized 
stochastic. The timed nets can be deterministic or 
stochastic, and the stochastic case allows using appropriate 
functions to generate random sequences corresponding to 
probability distributions with positive support. The default 
type of an arc is regular, but the user is allowed to change it 
into double or inhibitor, if necessary. 
The PN Toolbox has an easy to exploit Graphical User 
Interface (GUI) [5] whose purpose is twofold. First, it gives 
the user the possibility to draw PNs in a natural fashion, to 
store, retrieve and resize (by Zoom-In and Zoom-Out 
features) such drawings. Second, it permits the simulation, 
analysis and design of the PNs, by exploiting all the 
computational resources of the environment. All the net 
nodes (places, transitions) and arcs are handled as 
MATLAB objects whose properties depend on the model 
type. Unlike other PN software, where places are meant as 
having finite capacity, our toolbox is able to operate with 
infinite-capacity places. In addition, the PN Toolbox allows 
the assignment of priorities and/or probabilities to 
conflicting transitions. 
After drawing a PN model, the user can:  visualize the 
Incidence Matrix, which is automatically built from the net 
topology;  explore the Behavioral Properties (such as 
liveness, boundedness, reversibility etc.) by consulting the 
Coverability Tree, which is automatically built from the net 
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topology and initial marking;  explore the Structural 
Properties (such as structural boundedness, repetitiveness, 
conservativeness and consistency);  calculate P-Invariants 
and T-Invariants;  run a Simulation experiment;  display 
current results of the simulation using the Scope and Diary 
facilities;  evaluate the global Performance Indices (such 
as average marking of places, average firing delay of 
transitions, etc.);  perform a Max-Plus Analysis (restricted 
to event-graphs);  Design a configuration with suitable 
dynamics (via automated iterative simulations). 
The overall programming philosophy relies on the effective 
exploitation of data structures, functions, flow-control 
statements, input/output and object-oriented capabilities 
offered by MATLAB as a high-level language. To ensure 
the flexibility, the set of all default values manipulated by 
the PN Toolbox are accessible to the user by means of a 
configuration file. 
The main goal envisaged by the designers of the PN 
Toolbox was to provide a collection of instruments for 
education and training at a graduate level, exploitable under 
MATLAB. Therefore, the focus was placed on developing 
fundamental skills in mastering PN models as a generous 
framework for dealing with discrete-event systems. 
Although a large number of tools are advertised for various 
types of PN problems [1], the unified treatment permitted 
by the PN Toolbox for untimed, deterministic/stochastic P- 
and T-timed PNs, stochastic and generalized stochastic 
PNs, ensures the premises for an efficient instruction. Thus, 
the user needs a short time to learn how to handle the PN 
Toolbox and his major intellectual effort is invested in the 
construction and careful analysis of the PN models. The 
interest shown for the convenient usage of the PN Toolbox 
is reflected by the numerous improvements brought to its 
previous versions [6], [7]. For attaining the proposed teaching 
goal, we preferred to orient our work towards enhancing the 
quality and reliability of the procedures devoted to standard 
topics rather than developing new algorithms. 

III. THE GRAPHICAL USER INTERFACE (GUI) 
There are two modes in which the PN Toolbox may be 
exploited, namely the Draw Mode, that allows the user to 
build a new PN model or modify the properties of an 
existing one, and the Explore Mode that enables the user’s 
access to simulation, analysis and design tools. The GUI 
exhibits eight control panels (see fig. 2): Menu Bar (1), 
Quick Access Toolbar (2), Drawing Area (3), Drawing 
Panel (4), Draw/Explore Switch (5), Simulation Panel (6), 
Status Panel (7) and a Message Box (8). Further on, all 
these panels are briefly described. 
The Menu Bar (1) displays a set of nine drop-down menus, 
from which the user can access all the facilities available in 
the PN Toolbox. These menus are enabled in accordance 
with the exploitation mode of the PN Toolbox. 
The File menu offers facilities for file-handling operations. 
This is the only menu available when the PN Toolbox GUI 
is started. The Modeling menu provides tools for graphical 
editing (graph nodes, arcs, tokens, labels) a model in the 
Drawing Area. The View menu allows choosing specific 
conditions for visualization of the current model. The 

Properties menu provides computational tools for the 
analysis of the behavioral and structural properties of the 
current PN model. Through the Simulation menu the user 
may control the simulation progress and record the results. 
At the end of a simulation experiment, the Performance 
menu allows the visualization of the global performance 
indices that are stored in an HTML format. These indices 
are separately recorded for transitions and for places. The 
Max-Plus menu allows performing the simulation and 
analysis of an event graph (marked graph) based on its 
max-plus state-space model. A new MATLAB figure is 
opened and all the facilities available for max-plus analysis 
and simulation are accessible. The Design menu is used for 
the synthesis of timed PN models; this allows simulations 
for several types of parameterizations considered in the PN 
architecture. The Help menu provides information for the 
exploitations of the PN Toolbox and allows visualization of 
four Flash demo-movies initiating the user in the 
exploitation of the PN Toolbox. 
The Drawing Area (3) is provided with a grid, where the 
nodes of the PN graph are to be placed, and with two 
scrollbars (on the right and bottom sides) for moving the 
desired parts of the graph into view. The Drawing Area is 
an axes MATLAB object and it is organized as a matrix of 
cells with 50 rows and 50 columns. In one cell the user can 
draw a single node (place or transition). 
The Drawing Panel (4) presents five image buttons that 
facilitate user access to Edit Objects, Add Place, Add 
Transition, Add Arc and Add Token commands.  
Similarly, the Simulation Panel (6) presents buttons for 
Reset, Step, Run Slow and Run Fast commands. It also 
provides two instruments for visualizing the progress of the 
simulation: Diary and Scope (see fig. 2). 

IV. ALGORITHMS AND IMPLEMENTATION 
The simulation is driven by an asynchronous clock 
corresponding to the occurrence of events (e.g. [8]). In the 
untimed case, the sequencing of the events is reduced to 
simply ordering their occurrence, without any temporal 
significance, unlike the timed case when simulation 
requires a continuous correlation with physical time. 
Three modes of simulation are implemented in the PN 
Toolbox, namely: Step, Run Slow and Run Fast. The Step 
and Run Slow simulation modes are accompanied by 
animation; the user can record the progress of the 
simulation in a log file with HTML format. After ending a 
simulation (run in any of the three modes) a number of 
Performance Indices are available to globally characterize 
the simulated dynamics (see fig. 6). They refer to: 
- transitions: Service Sum (the total number of firings 

during the simulation), Service Rate (the mean 
frequency of firings), Service Distance (the mean time 
between two successive firings), Utilization (the 
fraction of time when server is busy); 

- places: Arrival Sum, Throughput Sum (the total number 
of arrived/departed tokens), Arrival Distance, 
Throughput Distance (the mean time between two 
successive instants when tokens arrive in/depart from 
the place), Waiting Time (the mean time a token spends 



in a place), Queue Length (the average number of 
tokens weighted by time). 

For timed or (generalized) stochastic PNs, while in the Step 
and Run Slow simulation modes, the Scope facility opens a 
new MATLAB window that displays (dynamically) the 
evolution of a selected performance index versus time. 
For untimed PN models, the behavioral properties (e.g. 
boundedness, liveness, reversibility, etc.) may be studied 
based on the coverability tree of the net (fig. 7). The 
coverability tree is built with or without the ω-convention. 
The ω-convention means the usage of a generic symbol 
(herein denoted by “ω”) for referring to unbounded 
markings [9]. 
The structural properties are approached as integer 
programming problems [7]; the minimal-support P- and T-
invariants [10] are displayed, on request, in separate 
windows (see fig. 6). 
A facility for the synthesis of timed or (generalized) 
stochastic PN models is Design, which allows exploring the 
dependence of a Design Index on one or two Design 
Parameters that vary within intervals defined by the user. 
For each test-point belonging to this (these) interval(s) a 
simulation-experiment is performed in the Run Fast mode. 
The results of all these simulation-experiments yield a 
graphical plot (2-D or 3-D, respectively) defining the 
dependence of the selected Design Index on the Design 
Parameter(s); the extreme values of the Design Index are 
numerically displayed (see fig. 3). 
The PN Toolbox is able to derive, directly from the 
topology and initial marking of a place-timed event graph, 
the max-plus state-space representation [11]: 
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The following facilities are available for the max-plus 
analysis:  displaying the matrix-form of the equations;  
max-plus simulation;  graphical plots of the simulation 
results (see fig. 5). 

V. EXPLOITING THE TOOLBOX – ILLUSTRATIVE EXAMPLES 

A. PN with Stochastic Timing (FMS Design) 
Simulation experiments addressed in the PN Toolbox for 
MATLAB allow the user to choose the most efficient 
solution for managing a discrete event system based on the 
computation of the mean production cycle time, as shown 
below. The FMS presented in fig. 1 was selected as an 
illustrative example and consists of two different machines 
(a lathe (M1) and a drilling machine (M2)), a robot (R) and 
a buffer (D) with two slots between the two machines 
(adaptation from [12]). Every input part must be processed 
by M1 first and then by M2 in order to get the final product. 
Both machines are automatically loaded and are unloaded 
by the robot. A variable number of pallets can be used to fix 
on the processed parts. The processing times on M1 and M2 
are uniformly distributed in the intervals [35, 45] (time 
units) and, respectively [80, 90] (time units), while the 

unloading operations take 20 (time units). The design 
purpose is to find the optimal number of pallets and the 
optimal duration (considered constant but unknown) for 
releasing and recycling a pallet so as to ensure the best 
value for the mean production cycle time. 
 

 
Fig. 1. Structure of the FMS used in Example A 

 

Since the robot R constitutes a sequentially shared resource 
in the system, a Kanban controller [13] must be used so as 
to limit the number of parts in the critical subnet serviced 
by R and avoid the deadlock. The Petri net model is 
presented in fig. 2. The places are labeled according to the 
abbreviations used in fig. 1. 
The design experiment performed in the PN Toolbox 
considered two parameters: the number x of pallets in the 
system, varying from 2 to 5, and the time y for releasing a 
pallet, varying from 15 to 40 (time units). Fig. 3 presents 
the dependence of the two parameters for the mean 
production cycle time (given by the Throughput Distance 
index for the place denoted by P in the net). The conclusion 
of this set of simulation experiments is that it suffices to use 
3 pallets and increase the time for releasing a pallet up to 35 
(time units) in order to minimize the mean production cycle 
time. As expected from analytic reasoning, the mean 
production cycle time cannot be reduced below the value of 
85 (time units) which represents the mean processing time 
on the bottleneck machine. 

B. Max-Plus Formalism (Job-Shop Analysis) 
For the concrete analysis of event driven dynamics 
described by means of the max-plus formalism hand 
calculus is rather cumbersome even for problems of small 
complexity, fact that fully motivates our work in 
developing a max-plus simulator and integrating it into the 
PN Toolbox. The example presented below (adapted from 
[11]) consists of a manufacturing system comprising three 
machines, denoted by Mi, 1, 2,3i = . It is supposed to 
produce three kinds of parts, namely Pi, 1,2,3i = , 
according to a certain product mix. The routes to be 
followed by each part and each machine are depicted in fig. 
4 and the corresponding processing times are given in Table 
1. Parts are carried on a limited number of pallets; only one 
pallet is available for each part type. The sequencing of part 
types on the machines is known and it is (P2, P3) on M1, 
(P1, P2, P3) on M2 and (P1, P2) on M3. The final product 
mix can be obtained by means of a given input of parts. 
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Fig. 2. Screen-capture of the main window of the PN Toolbox (containing the model of the FMS used in Example A) 

 
Fig. 3. Screen capture of the window corresponding to the Design facility

 
Fig. 4. Routing of parts along the machines in Example B 

TABLE 1. Processing times of parts on machines in Example 2 

 P1 P2 P3 
M1 - 1 5 
M2 3 2 3 
M3 4 3 - 

The place-timed Petri net model is presented in the main 
window of the PN Toolbox captured in fig. 5. The implicit 
form of the max-plus state-space representation is given by 
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The numerical values of the matrices involved in the 
previous equations, automatically derived by the PN 
Toolbox, are presented by the upper left window in fig. 5. 
The max-plus simulator uses the explicit form: 

( ) ( 1) ( 1)k k k= ⊗ − ⊕ ⊗ −x A x B u , 

where 0 1
∗= ⊗A A A  and 0 0

∗= ⊗B A B . Matrix 0
∗A  is 

associated to 0A  by means of the Kleene-star operator [11]. 
The lower window in fig. 5 presents the graphical plot of 
firing time vs. firing count for transitions u1, x1, x2 and y1, 
associated to the occurrences of events driving the progress 
in processing a part of type P1, obtained through simulation. 



 
Fig. 5. Screen capture of the windows opened by the PN Toolbox for the max-plus state-space representation in Example B 

 

 
Fig. 6. Screen capture of the windows opened by the PN Toolbox for the performance analysis of the net used in Example C 



C. Stochastic PN 
The third example, that illustrates the usage of the PN 
Toolbox for the analysis of stochastic PNs (SPNs), refers to 
the model in fig. 6 (studied in [9]). Transition t2 fires at a 
marking-dependent rate given by 2 2m λ , where 2m  is the 
number of tokens in p2. Transitions t1, t3, t4 and t5 have 
(marking-independent) firing rates 1 3 4, ,λ λ λ  and 5λ , 
respectively, with 1 5 0.5λ λ= =  [s-1] and 2 3 4 1λ λ λ= = =  
[s-1]. The coverability tree of this SPN, automatically 
computed by the PN Toolbox, is presented in fig. 7 and 
serves for deriving its associated Markov chain. The 
analytical study of this model is based on the transition rate 
matrix given by 

2 1 1 0 0 0
1 3 0 1 1 0
1 0 3 0 1 1
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Let [ ]0 1 2 3 4 5π π π π π πΠ =  stand for the steady-state 
probability distribution vector, whose element iπ  denotes 
the probability of being in state Mi, 0, ,5i = … . The 
following numerical values are obtained: 3 1/11π =  and 

0 1 2 4 5 2 /11π π π π π= = = = = .Various performance indices 
of the SPN model can be computed based on the steady 
state-distribution Π  [9], [14]. For example, the mean 
number of tokens (Queue Length) in p1 is given by 

1 0 1 2[ ] 2 8 /11 0.7273M m π π π= + + = = , 
whereas the mean firing rate (Service Rate) and utilization 
(Utilization) for t2 are 
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respectively, where 11 1 2 3 5( )q λ λ λ λ= − + + + , 33 22q λ= −  
and 44 2 4( )q λ λ= − +  are diagonal elements of matrix Q. 
 

 

Fig. 7. Screen capture of the coverability tree automatically constructed  
by the PN Toolbox for the SPN model used in Example C 

 
The analytical results may be compared to the 
corresponding ones obtained through the simulation of the 

SPN model in the PN Toolbox (fig. 6), validating the 
usability of our software for the analysis of (generalized) 
stochastic PNs. 

VI. CONCLUSIONS 
The development of the PN Toolbox has been motivated by 
the fact that MATLAB is a very popular software in various 
areas of engineering and especially in automatic control. 
Although the Petri net theory has been frequently used in 
technical scenarios during the last decade, the MathWorks 
has not released yet a product covering this topic. The PN 
Toolbox is able to fill this gap and offers instruments that 
are easy to exploit by people accustomed to the MATLAB 
philosophy. Compared to the two MATLAB-based 
products mentioned in the introductory section, our toolbox 
provides a user-friendly graphical interface that ensures its 
independence of other software resources and makes it 
more attractive by concealing the direct manipulation of the 
mathematical functions. By the facilities created for 
simulation, analysis and design, the PN Toolbox is 
utilizable in many types of applications encompassing a 
wide range of event-driven dynamics, as illustrated by the 
three examples briefly presented in the text. 
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