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Abstract—Necessity to study primarily discrete-time systems systemCsS is then defined as an ordered triplet
follows from new axioms of a recently submitted alternative
system theory which introduces newly reviewed causality law CS =(T,V,C), (1)
into basic system definitions. The system definitions are based
on quite new system paradigms stemming from attentive ob- where the set of all system causal relaticghsvas added to

servations and resulting in an axiomatic system theory with the general abstract systesh= (7', V') defined in [5].

correctly and uniquely defined notions. Continuous-time systems | \ve admit an axiom that each segment Dy, of the
are then regarded as limit cases of suitable sequences of discrete- tem traiector Q (i t of all tem tr7 iectori
time systems. This limit process is called the continualization Systé ajectory < 2 ({ is a set of all syste ajectories)

procedure. The new approach to system theory provides various ?5 generated by its comprehensive immediate catjs€ *) _
cybernetic problems with surprisingly clear and easy solutions. in a stochastic way, we can extend the causal system with

a setP of all probabilistic mappingsP*!) and define the
|. INTRODUCTION stochastic causal system as an ordered quadruplet

The continuous-time systems should be studied only as limit PCS = (T,V,C,P), )
cases of suitable sequences of previously defined discrete-time
systems as follows from the system paradigms of recenthhere the seP consists of parametric probabilities
submitted new approach to system theory [5]. This is due to ,
the fact that we are able to obtain only a finite number of PED(s | DED s | COD), ®)
independent observations while studying the system properties k=0,1,2, ---, e, =12 -, m.
in the real world. When a continuous-time system is given ip ., . o
the context of a cybernetic task, to exhaustively describe % f'(jr'fnz?:alegettgﬁscausal probability of the syst@PES, see
properties is necessary to find such a sequence of discrete-ttirie ’
systems together with all causal dependencies, that converges |||. C oNTINUALIZATION OF DISCRETE SYSTEMS
(in a particular sense) to the given continuous-time system. _ i L i _
This extension to infinite sets cannot be based on observationg—he extension (continualization) of discrete-time models of

but has to be postulated by appropriate limit process called fi§&! SyStems to uncountable infinite sets, mostly given in terms
continualization procedure. of continuous real-number intervals, is considerable only if the

The most general cybernetic system is believed to ggcessarily missing knowledge of the system properties can be

the stochastic causal system. However, since the termsagfended to these larger sets in a suitable fashion. The time

causality law, causal probability, causal function easily definé@ntinuity of either the real system quel or Its trajectory I
in the discrete-time domain are losing their meanings in tﬁlaus only a hypothesis but not an experimentally proved fact of

continuous-time domain, full attention has to be given to tdgebmztte.r. Lh(fa cyberzgtlc ctontt.muous-ttlme system is therefore
process of system continualization. 0 be derived from a discrete-ime system.

A. Extension of the time-points set
[l. STOCHASTIC CAUSAL SYSTEM

) ) . . Let us suppose that there is given a general causal system
The system trajectory is according to real observations geils yefined on a time-points s&b

erated in a sequence of certain segments, which are determined
by an ordered decompositidR? of the definition domainD To = {0, ho, 2ho,3ho, -+ ,noho}, 4)
of the system trajectory (see [5]). Each segment| D%\

is according to the principle of causality law generated (ndfere

necessarily in the deterministic way) by its comprehensive ho = t; — t;1, i=1.2
immediate cause | C*!), whereas for each of these relations '
the causality law is required to hold. Such an approach assuagsl
an unambiguous system trajectory description. The causal nohg = te. (6)

e (5)



The time-points set can be extended by inserting a nd&v Causal system continualization
time point between each two ones’G in the middle of their L .
distance - see figure 1. In this way the equidistance of tinz%squOS? that a causal systéifi, is given by the equation
points is protected also in a new time-points et ). Our aim is to propose such a sequence of causal systems

T ={0, %, 2% 3% ... nfo}= @) CSi = (Ty, Vi,C),  k=0,1,2,---,  (18)
= {Oa h17 2h17 3h1a anlhl}a (8)
distance between elements of which is that will converge fork — oo to a continuous-time system
h
=3, ©) cS = (T,V,C). (19)
where obviously — 10 As for the set of time-pointsly, it is given by equation
Ml = Te- (10) (11). According to the causal system definition [5], for each
For an arbitraryk — th step of the extension of the originalk = 1,2,3,--- it is necessary to define the whole set of
time points setl, a sequence of time points sets is clearlgystem attributesd;, state variablesy(t), ¢ € T together
defined asry, with the definition domainV;,, as well as the sef);, of all
Ty = {0, hyo, 20, 3hyey - smphi}, k=1,2,--- (11) system trajectories 'apd the s8} of alllsystem events.
Naturally, the original system variables (e.g. system at-
where hioi ho tributes, state variables) corresponding to the syst$h
hy = 5 = ok (12) should be tried to be preserved including their definition
: domains and the decomposition of the &g{see [5] for more
and again . ) .
_ details) for each arbitrar¢S;, £ = 1,2,--- . However, in
nkhk = te. (13) . . . .
some special cases it is unavoidable to change the original
system variables as shown e.qg. in [3] and being discussed later
‘ % % ‘ % ‘ % ‘ % e in this paper.
o‘ hss ey ‘ ‘ ‘ The time-points seT, containsIj as a subset and therefore
0 Rpei 2hpyq 3y 4hpeg Shpeg - - - the definition domainD, of the system trajectory, must be
0 Ry, 2hy, ce redefined to the definition domaif;, of the system trajectory
Sk

Fig. 1. Extension of the time-points set Dy = Ty % I, (20)
Such a sequence of sets is increasing for evgry- 0. If o .
k — oo then the limit of an infinite ascending sequence dfcluding its decomposition fror®, to
sets is the unification, (id) (id) @ () i) )
oo Dk:{Dk’ |Dk’ =T, x 1,7, T,7 € Ty, I € Ir}, (21)
Jim T, = U . (14) i=0,1,2,...,e,
i k=0 j:132a37"'3ma
as shown in [1].
It is obvious from the construction of the séfs that for

- - where 7;, is a partition of the sefl;, and 7, is an ordered
limg_, o, Ty, from the equation (14) it holds

decomposition of the séf;, ([5] for more details). The system

UreoTe € (05 te), (15) €S can be now written as an ordered triplet from the equation
Uieo Tk is a dense set in (0 ; te). (16) (18). )
In this way we can proceed for aly= 1,2, - - - , whereupon

(Topological) closure of the setJ;, 7} is then to be a sequence of causal system is obtained. The limit case of such

oo a sequence is fok — oo the continuous-time system from
UTk’ = (0; t.), (17) the equation (19) defined on a dense subset of the interval
k=0 (0; t. ). However, there arise some problems with the

as the declaration (16) holds. The sequence ofBefsom the cause-effect relation of the dynamic state variables definition

equation (11) converges to a dense subset of the continuguthe continuous-time domain because there is no time instant
interval (0 , t.). A dense subset is "large” enough to ensur&, t' # t > 0 which is immediately preceding to a time
correctness of the following abstract thoughts. Lets an instantt, ¢ € (0 ; t.). Therefore, a higher attention should be
interval in R and H is a dense subset of. If f,g are two payed to stochastic properties of the stochastic causal system
continuous-time functions od then f(z) = g(z) for x € H during the process of continualization. On the other hand, there
implies f = g on J. If f is a uniformly continuous function is no difficulty with static state variables and, consequently,
on H then there exists the one and only extensiorf &b the there is no difficulty with the structural terms definition of
whole J. continuous-time systems either.




C. Sequence of linear stochastic causal system or consequently

The task of linear stochastic causal system continualization i
has previously been solved as a part of the general system Jk(sk(t +nxhi)ls(t)) = fi(sk(t2)lsk(t1)) =
theory [5], [6], [7]. However, it faced some terminology = fo(so(t + noho)lso(t)) = fo(so(te)|so(t1)), (27)
problems With.random variables convergence [5], [8], [3]. This _ nehs = noho = nj, = 2"ny  (28)
paper deals with a new approach based on the convergence (in
distribution) of cumulative probability distribution functions,
which completely describe properties of stochastic causal
systems. Generally, there is also a possibility that the limit %
a given sequence of systems does not exist. On the one han
it means that there is no diffusion system corresponding to th

no,ng > 0; &, +noho € To,
ith equal initial conditions

k(5%(0)) =fo(50(0)), (29)

given sequence of discrete-time systems. On the other hand, A (s1(0)) = 1

least one sequence of discrete-time systems can be found for (2m) % - \/detQx(0 )

each diffusion system. Consequently, the set of discrete-time e~ 3 (51(0)=mi(0)T- Q" (0)- (51 (0) —my (0)) (30)
systems can be, in a certain way, regarded as "richer” than the

set of continuous-time systems. wherem;, is a vector of the mean an@;(0) is a covariance

At this point we can link the continualization procedure ofnatrix of generally stochastic initial condition of the system

stochastic systems to the continualization of causal systemses, . In consequence of (25), the equality of unconditioned
Suppose that there is a stochastic causal syg&hs, given probability density functions must also hold

according to its definition by an ordered quadruplet

PCSo = (To, Vo, Co, Po) (22) fe(sk(t)) = fo(so(t)), t € To. (31)
properties of which are described by causal probability densfeyom the above formulated demands expressed in equations
function (25), (27), (29) and (31) it is subsequently possible to find out

(by comparing right sides of probability density functions in
Jo(so(t +ho) = so(t)) = the referred equations) parametets and @, of the causal
_ 1 , probability density function
(2m)% - /detQ, )
—3(s0(t+ho)—Ao-s0(t)T-Qy - (so(t+ho)—Ao-s0(t)) 23 sp(t+h):su(t)) = - .
LT B N R er
ht+ho € 1o, o~ HErH ) A s ()@ sn(tHh) — A () (39)
with a probabilistic initial condition tt+ hy € Ty
- 1
fo(s0(0)) = @n) ¥ - At (0) which fully describes properties of the syst@€S, for each
e~ 3 (50(0) =m0 (0)T Qg (0)-(50(0) =m0 (0)) (24) k=12

1) Derived probability density functionsJsing the Marko-

wheres(t) € RV is a state vectot, € Ty , A is a real square Vian properties of the system state we can write
matrix of the corresponding dimensio), is a conditional
covariance matrix of the system statg(t + ho) conditioned ~ fr(sk(t + nrhe)[sk (1)) =

by the state vectos,(t), mo is a vector of the mean and . B .
Q0(0) is a covariance matrix of the generally stochastic initial sp(t4+(np—1)hy) Filow(t 4 michi) s s:(t + (g — 1)hi))

condition of the systemPCS,. Fu(se(t+ (i — Dhi)|sk(t)dsi(t + (i — Dhg), (33)

In any arbitrary k — th step of general causal system
continualization a s€f, was defined as well as the séfsand in order to find conditional probability density function
C, were. Now, the seP, is to be redefined t®;, in such a fi(sk(t+nghi)|sk(t)), t,t+2h; € Ty. After the generalized
way that any systerfPCS;, has equal stochastic properties tdorm of the integral from equation (33) has been found the

the original systemPCS, for eachk = 1,2, --- andt € T,. derived probability density functiorfy (sk (¢ + nihi)|sk(t))
. can be rewritten in the following form
From this reason we demand that

1

Fio (st + 28R [s5(2) =Fr (s (t + ho)|sk(t) = Su(si(t + nihi)|si(t))= S = T
h sk (t+nphi)— AT s ()2 1T ALQR(AT)T) " (sk (t4nghi AL i (1)
hk:QTS - Qkhk:ho (26) 6{’“ khk k T( kQk(Ag ) k khi)=Ay :34))7

t’t+h0€TO; k:1’2’ ’ t,t +nghk € Tk; nkhx = ho; ng > 0.



Using the equation (30) it is possible to find the unconditionalheren;h, = nghg = t. The equation (42) can be rewritten

probability density functionfx (s (t)) to the form of the equation (40) using the equation (36). As
Felsu () = fi (su(nuhy)) = the implication (28) holds we can imply
= / Fie(sr(nihy)|s1(0)) - fr(sk(0)dsk(0) = ARh = AF™0 = AT = Ap (44)
o 1 = Ak =A) = A = A%. (45)

T en¥ Vi wm

n L) 3k 44
o — L (s (nihi) = ATF mpg (0)T- (M)~ (s (mihy)— ALF k(0>>)’ (35) ConS|der|ng the pOWGI’S) 0 and( )2 In nnpllcatlons ( )

and (45), matricesly andAg, k = 1,2,--- must be positively

- = i semidefinite.If the matrixAy is not positively semidefinite,
M= (Aka’“( )(A%) k) Z AL Qx(Ar)' there is either no diffusion system corresponding to the origi-
nally given linear stochastic causal system or it is necessary to
change the state variables of the systB@iS; as shown e.g.
in [3]. If we redefine the original state variables then we must
2) Parameters of syste®CS,,: It follows from the equa- also redefine the set of their domdif, the set of all system

np—1

nk>0;t:nkhk€Tk,

tion (29) that trajectories(, the set of all eventsS;, domain D; of the
m(0) = mg(0) (36) system trajectorys; as well as the set of all causal relations
C; and the set of all probabilistic mappin@;. Further, we
and can either proceed in the continualization procedure as if there
Qr(0) = Qo(0) (37) was no change of the system variables or we can regard the

systemPCS; as an original syster’?CS;; (M of a new system
sequencePCS\V, k=12,

The equation (43) can be transformed to the same form as
the equation (41) because it holds

for every k = 1,2,--- . In ensuring the equality of equa-
tions (23) and (34) (as a special case of = 2F), as
demanded in the equation (25) foe Ty, it is possible to find
out parametersd;, and @, of the causal probability density
function_s fk.(_sk(t + hi) : sk(t)) of _the systemsPCS, by APEQu(0)(AF Y™ = Aik”OQk(O)(Af)Qk”O —
ggmg::rs]gnn\?vr;tosg?ae; of the mentioned equations. From the _ AgoQk(O)(AUT)”” _ A{}OQO(O)(Ag)”O. (46)
The matrix A, from the causal probability density function

2k
A = 4o (38) fe(sk(t + hi) : sk(t)) of the systemPCS, can be found
and directly from the implication (45)
2k 1 N
S 4Qu(AD) = Qu: (39) Ay = AF. (47)
=0

However, before finding)y, it is useful to introduce a vector
similarly, from the equation (27) it follows that fare 7o it v(), in order to evaluate the sumgno 1A(J)QO(AT)J and

holds Skt AL QL (AT for any arbitraryng, nj, = 25ng. vQ; is
Ak = Ag® (40)  an equivalent notation to a covariance matgxof the causal
and probability density functiory;(s;(t+h;) : s;(t)) of the system
np—1 no—1 PCS;,i=0,1,2,--- asitis given by the following scheme
Z ALQr(ATY Z A Qo (ALY (41)

Qi QY Y,

. Q(2,1) Q(z,z) o Q(z,N)
wherenghi, = nohg. Equations (38) and (39) are obviously ioowE v o
special cases of the equations (40) and (41)fpr=1and ... ,QZ(.N’N)}. (48)
ny = 2¥ng. Furthermore, from the equation (31) ahd Tj

it follows that Using the above constructed vectap, and the Kronecker’s

multiplication of matrices [2] it is possible to rewrite the

Army(0) = Ag°mo(0), (42) equation (41) into the form
and nE—1 nog—1
- Z Awr) vQr =Y Auxr)’ -vQo, (49)
AP QUOAD"™ + X ALQu(AD) =
where generally
no— 1 . . .
= AP Qo)A + 3 AQo(afy, (w3 Awm=Aed = A’ = A0 A

= i=0,1,2,-- . (50)



and A; ® A; means the Kronecker's multiplication of theD. Linear stochastic causal system continualization

matricesA; and A;. From the equation (49) we obtain Suppose that a sequence of linear stochastic causal systems
e = is given. Furthermore, we derive an explicit solution to the
(Aexr)™ — D(Arxr) =) - vQr = causal probability density functiofy.(si(t + hi) : sx(t)) of
= (A mo _ (A —nt. , 51) the systenPCSy, k=0,1,2,--- parameters of which have
(Aoiwer) JAoccn) ) vQo 1) just been determined. Hence, the function from the equation
because it is generally known that (34) is to be written as follows
el , ) Ji(sk(t + nihi)|sk(t)) = fr(sk(t2) | sk(t1)) =
Z Apr)' = (Arkr)™ — 1) (Axkr — 1), (52) 1
=0

. . . . (271’)% . \/detZZL:k(;l Ak(KR)i 'VQk
provided (A x ) — I) is a regular matrix. Properties of the R L . B
matrix Ay, k= 1,2,--- are discussed in detail e.g. in [3]. If%%(sk(tJrnkhk>*Ak7€sk(t))’r(zi:k'0 Ap(kR)" va) -(sk(tJrnk.hk)—AkkSk(t)))
(Apxry — I) is regular then(Agxr)"® — I) is also regular (56)

and it holds t1 =t; t2 = +nihe,

vQr = (Apxry — D(Aoxry — 1)~ -vQo,  (53) bt nkhy € Th; nhs = hoj nk >0,
where we suppose that the vecl@*?:’“o_1A,€(KR)Z vQy is
rewritten into the covariance matrix according to the scheme in
Aprr)™ = Aoxr)"- (54) equation (48) as discussed above. If we substitute the equation
(53) to the last equation the suE?ﬁglAk(KR)i v can
hbaet expressed as

I’

because

The vectorv@),, is obviously of theN? x 1 order. However,
according to the scheme (48) and thanks to the fact t
Qo is the covariance matrix, it can be easily rewritten as 'a&—! )

real, symmetrical, positively semidefinite square matix, O _ Arxr)’ Qi = (Apwr)™ — 1)-(Awxr — 1)
which can be the covariance matrix of the staigt + hy) =0

conditioned by given statey,(t) from the causal probability (Apgry — 1) (Aoxry — ) vQo =
density functionfy (si(t+hg) : sk(t)) of the systemPCSy, = (Apery™ — I)-(Aoxr) — N vQo =
k:0,1,2,~“. ta—ty _

The above derived parameters, and @, were not de- = (Aoxr)y ™ —I)-(Aoxr) — 1) Qo (57)

termined uniquely, which follows from the solution to the
equation (38) (or (47)). Nonetheless, they satisfy all condjshere we can write by analogy to the implication (54)
tions demanding equivalent stochastic properties of the system . ryt

PCS, and PCS;, for eachk = 0,1,2,--- on the time- Apxr)™ = Aok r) 2 = Aokr) " (58)
points setT, because their behavior is di, described by
equivalent probability density functions. A class of syste
PCS;, which is determined by a class of seB;, was nphy =ty — t1. (59)
derived for different solutionsd;,, and Q.. The class of sets
Py is according to the definition (see [5]) defined as sets
all probabilistic mappings determined by causal probabili

masnd where obviously

w, the causal probability density function
(sk(t2) : sk(t1)) can be rewritten

density functionsfy(sx(t + hx) : sk(t)) with corresponding Si(se(t + nihi)|sk(t)) = fr(sk(t2) | sk(t1)) =

solutions Ay, Q. of the systenTPCS;, in above stated equa- 1 )

tions. These classes of systems form foe 0,1,2,--- an (2m)% - Vdet M

infinite sequence and therefore there generally exist more than tg—ty T ta—t

one sequence of stochastic causal syst@dsS; converging i((swz)Ao "o 5k<t1)> '(M)‘l‘(%(tz)%o "o Sk<t1>))
e

to the same diffusion system.

Without any loss of generality we can confine ourselves (60)
to finding only one sequence of systems. Consequently, it'f8€"® L
possible to find only one solution of;, and Q. for eachk. M = (AO(KR>2T)1 — 1) (Aoxry — D)7 - vQo,
It is also sometimes useful if it holds that t=t; ts =t + nihe,
Jr(sk(t2)|sk(t1)) = filsi(t2)]si(t1)), (55) bt + nihy € Tiis nichi = hos ny > 0.
to = t1 + nphy = t1 + by If t2 > ¢, then the limit case of the probability distribution
k>0, k=1,2,--- ,1=0,1,2,---, function corresponding to the equation (56) is (according to
oty €T the convergence in distribution [2]) trivial ad, and hence

also Ayxry are constant matrices. The case when— t;
for systems from the sequen®@®CS;, converging to a partic- for ¥ — oo (h, — 07%) is more interesting. From the
ular diffusion system. probability density function in equation (56) follows that the



random variables(-), or in fact their probability distribution The properties of the derived diffusion system are then de-
functions, do converge in distribution to a "constant valueScribed by the equation (63) and by coefficients(t2), t2)
s(ta) = s(ty) if ta — t1, k — oo, i.e. to a degenerate randomandS(s(t2), t2) from the equations (64) and (68), respectively.
variable cumulative probability distribution function of which

is IV. CONCLUSIONS

A new approach to the process of continualization was pre-
(61)  sented in this paper in terms of new approach to system theory.
(62) All the system variables were, from principal reasons, defined

It is desired to describe the probabilistic properties an finite sets only. Finally, under carefully chosen continuity

continuous-time stochastic systems by conditioned probabilftypothesis the extension to infinite sets based on convergence
density functionsf (s(¢ + dt)|s(¢)) using a differential of the in distribution is straightforward and brings important results

F(s(t2)) =0 if  s(t2) < s(t1),
F(s(te)) =1 if  s(t2) > s(t1).

stateds(t). Such systems are then called diffusion systems adequate description of continuous-time systems.

if they satisfy some additional conditions [4]. Parameters
of f(s(t + dt)|s(t)) can be derived from the sequence of
stochastic causal systenBCSy, k — oo using the vector

forward Kolmogorov's partial differential equation (Fokker-
Planck’s equation) [4], [9]

Of(s(t2), tals(ta), t1) _ *ZN: Olai(s(t2), t2) - f(s(t2),t2]s(t1), 1))

Ota ~ 0s;(t2) [1]
Y1 [Big(s(ta),to) - f(s(t2), ta]s(tr), t1)] [2]
+ ;1 3 T Os(12)0s; (1) 3

(63)

where f(s(t2), t2|s(t1),t1) is the limit case of the equation 4
(60) for to = t1 + At, At > 0, infinitesimal parameter
a(s(ty),t2) is called the drift coefficient and infinitesimal(®l
parameter((s(t2),t2) is called the diffusion coefficient if
At — 0. Botha(s(tz2),t2) and5(s(t2), t2) can be determined [6]
by comparing left and right sides of the equation (63) after

the partial derivatives were found. Hence we obtain 7]
to—tq
a(s(te), ta) = Alirllo e A" -InAg-s(t) = -
= ZTLAO . S(t1) (64)
0 [9]
because
AO(KR) t2h70t1 —1 as At—0 (65)
and
1 _ ta—tq
B(s(ta),t2) o M~ Agkr)y ™ - Indokr):
'(Ao(KR)—I)_l'VQO'M, (66)
where
to—t
M = (Aoxr) ™ —1)- (Aowr — ) -vQo  (67)

and the vectoM is supposed to be in the form of corre-
sponding symmetric square matrix according to the scheme
(48). The equation (66) can be simplified using the relation

Blslta)otz) = o (0 M) M) (68)
into form
B(s(t),t) = lim B(s(t+ Ab),t + At) =
= hio'1nAO(KR)'(AO(KR)_I)_l'VQO' (69)
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