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Abstract: In this paper, a smple method for the
computation d the parameters of a Pl controller
which stabilize control system with fixed parameters
is given. The proposed method is based on plotting
the stability boundary locusin the (ky, k; )-plane and

then computing stabilizing Pl controllers. The
method presented does not require sweeping over the
parameters and also does not neal a linear
programming to solve aset of inequalities. Thus, it
has severa important advantages over existing
results. The proposed methodis also used to compute
all the parameters of a Pl controll er which stabilize a
control system with and interval plant family.
Examples are given to show the benefit of the
method presented.
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1. Introduction

There has been a grea amourt of research work on
the tuning of PI, PID and lag/lead controllers snce
these types of controllers have been widely used in
indwstries for several decades (see [1-5] and
references therein). However, many important results
have been recently reported on computation o all
stabilizing P, PI and PID cortrollers after the
pubication of work by Ho et al. [6-9]. A new and
complete analytical solution which is based on the
generalized version d the Hermite-Biehler theorem
has been provided in [6] for computation of all
stabilizing constant gain controllersfor a given pant.
A linear programming characterization of all
stabilizing Pl and PID controllers for a given plant
has been dbtained in [7,9]. This characterization
besides being computationally efficient has revealed
important structural properties of Pl and PID
controllers. For example, it was shown that for a
fixed propartional gain, the set of stabilizing integral

and cerivative gains lie in a convex set. This method
is very important sinceit can cope with systems that
are open loop stable or unstable, minimum or
norminimum phase. However, the computation time
for this approach increases in an exponential manner
with the order of the system being considered. It also
neals sveeping over proportional gain to find al
stabilizing Pl and PID controllers which is a
disadvantage of the method An alternative fast
approach to this problem based on the use of the
Nyquist plot has been givenin [10-11]. An extension
of the method given in [7] to the lag/lead controller
structure has been given in [12]. A parameter space
approach using singular frequency concept has been
given in [13] for design of robust PID controllers.
More direct graphica approaches to this problem
based on frequency resporse plots have been gven
in [14-15]. However, the frequency gridding has
become the major problem for this approach. On the
other hand, compensator design in classicd control
engineaing is based on a plant with fixed
parameters. In the red world, however, most
practicd system models are not known exactly,
meaning that the system contains uncertainties. So,
in designing a cntrol system for both stability and
performance robustness it is always required to take
uncertainties into acount. This requirement has
attracted the dtention of many reseachers over the
yeas to find solutions for the problems of robust
stability analysis and controller synthesis for
uncertain systems especialy control systems with
parametric uncertainty. Much recent work on
systems with urcertain parameters has been based on
Kharitono/'s result [16] on the stability of interval
polynomials. Kharitonov showed that for the interval
polynomial

P(s) = ag +aS+a,s% +ags° + Ik a,s" (1)

set could be found by applying the Routh criterion to
the following four polynomials



py(S) = ay + a5+ a,s° +ays® + [IIIIT

P,(S) = ag + &S+ a,s? + ags° + [ o

P3(S) = @ + &S+ a,s? + ags® + (I

Pa(S) = 8g +&4S+a,s” +ays® + (I

In this paper, a new approach is given for
computation of stabilizing Pl controllers in the
parameter plane, (K, ki )-plane. The result of [11] is

used to avoid the problem of frequency gridding.
Thus, a very fast way of calculating the stabilizing
values of Pl controllers for a given SISO control
system is given. The proposed method is then used
for computation of Pl controllers for the stabilization
of interval systems.

The paper is organized as follows. The proposed
method is described in section 2. In section 3, the
computation of Pl controllers for interval plant
stabilization is given. Concluding remarks are given
in section 4.

2. Stabilization Using a PI Controller

Consider the single-input single-output (SISO)
control system of Figure 1 where
N(s
G(s) = ©
D(s)
is the plant to be controlled and C(s) is a Pl
controller of theform
ki _ Kpstk

C(S)zkp+—': 4
S S

The problem is to compute the parameters of the Pl
controller of Eqg. (4) which sabilize the system of
Figure 1.

—> c

—» G(9) >

Figure 1: A SISO control system

Decomposing the numerator and the denominator
polynomials of Eqg. (3) into their even and odd parts,
and substituting s = jw, gives
Ne(-w?) + jaN, (-0?)
De(-w?) + jaDy (-%)
The closed loop characteristic polynomial of the
system can be written as

A(S) = [ki Ne(-w?) =k pw® Ny (~w%) = w? Dy (~w?)]
+ j[KpNg (=07) + KN, (~w?) + WD (-w?)] = 0
(6)

G(jw) =

(%)

Then, equating the rea and imaginary parts of A(S)
to zero, one obtains
Kp (0N (-0%)) + ki (Ne(-w?)) = 02D, (-w?)
(7
and
Kp(Ne(-w%)) +k; (No (%)) = -De(-?)  (8)
Let
Q(w) = ~w*N, (-w?)
R(@) = No(-%)
S(@) = Ne(-w?)
U(@) = No(-w?)
X (w) = w?D, (-w?)
Y(@) = -De(-w?)
Then, Eqg. (7) and Eq. (8) can be written as
kpQ(w) + ki R(w) = X(w)
KpS(w) + kU (w) =Y(w)
From this equation
_ X(w)U (w) - Y (w)R(w)
" QU (@) - Rw)S(w)

(9)

(10)

(11)

and
_ Y(w)Q(w) — X (w)S(w)
' QU (@) - Rw)S(w)
Solving these two equations simultaneoudly, the
stability boundary locus, 1(ky,ki, @), in (ky,ki)-
plane can be obtained. The stability boundary locus
divides the parameter plane ((k,,k;)-plane) into

stable and unstable regions. Choosing a test point
within each region, the stable region which contains
the values of stabilizing k, and k; parameters can

be determined.

(12)

Example 1. Consider the control system of Figure

1 with transfer function

N(s) _ s2+4s —-s+1

D(s) s°+2s*+32s% +14s? - 4s+50
(13)

which has 2 right-half plane poles and 2 right half-

plane zeros. From Eq. (11) and Eq. (12)

G(s) =

- ® +23w% +940w* - 21002 +50

K
-w® -18w* +7w? -1

) (14)

and

_ 20° —117w® - 20w* - 4602
- w® -18w* + 7w? -1

The aim is to compute all the stabilizing values of

k, and k; which make the characteristic polynomial

of Eq. (6) Hurwitz stable. For a range of frequency,
the stability boundary locus can be easily computed.

ki (15)




For example, for «w[[0.45,7.9], I(kp,ki,w) is

shown in Figure 2. From this figure it can be seen
that there are a few regions namely R1, R2, R3, R4
and R5 in which one needs to choose a test point in
order to find the sability region. For example,
choosing a test point within region R5 such as
k, =13 and k; =25, it can be caculated that the
characteristic polynomia has two right half plane
complex roots, therefore, the system is unstable for
these values of parameters. Thus, the region R5 is
not a stability region. It has been computed that the
only stabilizing region is the region denoted by R1.
For example, for k, =5 and k; = 20 within region
R1, the characteristic polynomid is
A(s) = s° +2s° +37s* +545° + 71s? + 355 + 20

which is a stable polynomial. The al stabilizing
valuesof k, and k; areshownin Figure 3.

ki

Figure 2: Stability boundary locus
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Figure 3: All stabilizing PI controllers

This example show that the method is very fast and
effective, however, frequency gridding becomes
important. An efficient approach to avoid frequency
gridding can be obtained by using the Nyquist plot
based approach of [11]. In this case, it is only
necessary to find real valuesof w that satisfy
IM[G(s)] =0 (16)
where s= jw. Thus, the frequency axis can be

divided into finite number of intervals and then by
testing each interval the stability region can be
computed. For example, consider a second order
system

s-1
G(s)=—5— (17)
s°+0.8s-0.2
Form Eq. (11) and Eq. (12)
2
Ky = 1.8w 2+ 0.2 (18)
-—w° -1
and
_ 4 2
k = w +20.6w (19)
-—w° -1

The stability boundary locus for 100 frequency
points within « [[0,10] is shown in Figure 4. From

this figure it is not possible to determine the region
of stability. However, for G(s) of Eq. (17), the real
frequency values which satisfy Eqg. (14) is 0.77
rad/sec. Thus the frequency axis can be divided into
two intervals such a w0(0,0.77) and

w(0.77,). For 100 points within «[[0,0.9],
I(kp,Ki,w) is shown in Figure 5 where it can be
seen that there are stabilizing values of k, and k;
when w1(0,0.77) as shown in Figure 5. For G(s)
of Eq. (13), Im[G(jw)] =0 for w =7.65. Thus, one

needs to plot stability boundary locus for w
changing between 0 and 7.65. Then, stahilizing
region can be computed as shown in example 1.

100
w=10

80

60

ki 401
R1

201
w=0

R2

-20 I I I L I I I
-1.8 -1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2

kp

Figure 4: Stability boundary locus
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Figure 5: Stability boundary locus

3. Interval Plant Stabilization

There are some important results in the literature
about stabilization of interval systems. For example,
in [17], it was shown that a constant gain controller
stabilizes an interval plant family if and only if it
stabilizes a set of eight of the extreme plants. In [18],
it was shown that afirst order controller stabilizes an
interval plant if it stabilizes the set of extreme plants.
The best results regarding this subject were given in
[19-20] where it was proved that a first order
controller stabilizes an interval plant if and only if it
simultaneoudly stabilizes the sixteen Kharitonov
plants family. In [21], the generalized version of the
Hermite-Biehler theorem has been used for the
stabilization of interval systems. In this section,
instead of using Routh tables, which were used in
[19] in order to characterize al the parameters of a
first order controller which stabilize an interval plant,
the stability boundary locus is used to find al the
values of the parameters of a Pl controller for which
the given interval plant is Hurwitz stable.

Consider a unity feedback system with a Pl
controller of Eq. (4) and an interval plant
m m-1
G(S) — N(S) — aOmS -}-qm—lS — + DDHDHE}-qO (20)
D(s) p,s" + pyyS" + [T p,,
where ¢ O[g;,q], i=0,1,2,...mand p; O[p;, pi],

j=0,1,2,.....n. Let the Kharitonov polynomias
associated with N(s) and D(s) be respectively:

N1(S) = Qo + GhS + S” + s> + I

N3 (S) = do + 0hS+ 0pS” + s> + (I -
N3(S) = O + QS +,pS” + 0ps° + L
N,4(S) = Gg + S+ pS” +gs” + NI

and

Di(S) = o + PiS+ P,S” + Pas’ + [IIIIL
D,(S) = P + PiS+ PpS” + pgs’ + NI 2
D3(S) = Pg + PiS+ PyS° + pgs’ + IIIIT
Dy(8) = Po + Pus+ Pps? + Pos’ -+ [IIIII
By taking all combinatior; of the_Ni (s) and D (s)

for i, j=1,2,3,4, the following sixteen Kharitonov
plants family can be obtained
N; (s)
Gk (s) =G (s) = — 23
k () =G (s) D, (9 (23)

wherei, j=1,2,3,4.

Define the set S(C(s)G(s)) which contains al the
values of the parameters of the controller C(s)
which stabilize G(s), then the set of al the

stabilizing values of parameters of a Pl controller
which stabilize the interval plant of Eg. (20) can be
written as

S(C(s)G(s)) = S(C(s)Ck (9)) =

S(C()Gy1(8)) N S(C(8)Gyz (s) HMIIS(C(8)G s (S))
(24)

where Gy (s) represents the sixteen Kharitonov

plant family which isgivenin Eq. (23).

Example 2: Consider the control system of Figure
1 with aninterval transfer function

6=

S" +a,s” +as +as
where K [0[10,30], a, 0[85,95], & [1[1900,2000]
and ay [0[3450,3750] . The objective is to calculate

al the parameters of a Pl controller which stabilize
G(s). Consider the first Kharitonov plant (i=1 and

j=1) whichis
Gyi(s) =

(25

10
s* +95s% + 2000s? + 3450s

(26)

Since ImM[Gy1(jw)] =0 is only satisfied for
w =6.0263 rad/sec, it is necessary to obtain stability
boundary locus for w[1(0,6.0263) . Then, from Egs.
(12) and (12)

kp = -0.10* + 2000° (27)
and

ki = -9.5w"* + 34502 (28)
All stabilizing values of k, and k; are shown in
Figure 6. Figure 7 shows the stahility regions of the
eight Kharitonov plants (the interval plant of Eq. (25)
has eight Kharitonov plants since there are only two
Kharitonov polynomials for the numerator) where
the intersection of these regions, which can be
obtained from the stability region of G,;(s) and



Gy3(s) as dwown in Figure 7, is the stability region
whichis downin Figure 8.
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Figure 6: Stability regionfor G;4(s)
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Figure 7: Stability regionfor eight Kharitonov plants
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Figure 8: Stability regionfor theinterval plants of
Eq. (25)

4. Conclusions

In this paper, a new approach has been presented for
the computation of the boundaries of the limiting
values of Pl controllers parameters that guarantee
stability. The gproach is based on the stability
boundry locus which can be esily obtained by
equating the real and the imaginary parts of the
charaderistic eguation to zero. Computation o Pl
compensator  parameters  for interval  plant
stabilization hes adso been studied. The method
presented does not require sweeuing over the
parameters. Also, it does not neal linear
programming to solve a set of inequalities.
Therefore, the method has advantages over existing
results. Given examples clearly show the value of the
method presented.
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