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Abstract— This paper uses fast system identification algo-
rithms for a challenging steel subframe flexible structure ap-
plication. The input-output data are available in the DAISY
collection (http://www.esat.kuleuven.ac.be/sista/daisy), and
consist of 8523 samples, 2 inputs, and 28 outputs. Commer-
cial system identification codes cannot be conveniently used
on typical workstations to solve the associated problem, due
to its large size. The recently developed, multivariable sys-
tem identification toolbox—SLIDENT—incorporated in the
Fortran 77 Subroutine Library in Control Theory (SLICOT)
successfully handled this application, and enabled to per-
form various experiments in a timely manner. SLIDENT
provides drivers, computational routines, and MATLAB or
Scilab interfaces, which implement several algorithmic ap-
proaches, and use standard or fast techniques for data
processing. Both linear and Wiener-type multivariable
discrete-time systems are addressed. The results show that
SLIDENT is reliable and able to solve large identification
problems.

Keywords— Estimation, Identification for Control, Identi-
fication Methods, Signals and Systems, Subspace Methods.

I. INTRODUCTION

Discrete-time linear multivariable systems are often iden-
tified using subspace-based techniques. These techniques
are attractive mainly for the following reasons: state-space
models are directly estimated; no parameterizations are
needed; robust linear algebra tools like QR decomposition
and singular value decomposition (SVD) are used; only
one parameter has to be chosen. Two commonly used ap-
proaches are MOESP (Multivariable Output Error state
SPace) [22], [23], and N4SID (Numerical algorithm for Sub-
space State Space System IDentification) [20], [21].

A subspace-based identification procedure is often signif-
icantly faster than an optimization-based procedure, since
no iterative algorithms for parameter estimation are in-
volved. Subspace techniques have, however, some limita-
tions; for instance, they cannot guarantee the preservation
of stability or real positivity of a physical system. FEx-
tensions of these techniques have been recently proposed
(e.g., [19]) to remove such limitations.

This paper investigates a system identification procedure
using the steel subframe flexible structure [1] input-output
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data, stored as Example [96-013] of the DAISY collec-
tion [5], available from
http://www.esat.kuleuven.ac.be/sista/daisy.

This is a large data set, with ¢ = 8523 samples, m = 2 in-
puts, and ¢ = 28 outputs. The input signals correspond
to two shakers at two locations, and the 28 outputs are
accelerations provided by accelerometers around the struc-
ture, used for measurements. The sampling period is
1/1024 seconds. Both inputs are white noise forces. As-
suming that the outputs of the flexible structure are in-
dependent, it is expected that a dynamical system mod-
elling the given input-output data should have the order
at least 28. Since this identification problem is quite large,
it seems reasonable to start with a smaller order, and an-
alyze the modelling errors for increasing orders. Even if
a strict upper bound s on the system order n is set to
21, the MATLAB codes', which we could try, either needed
too much time (dozens of minutes, or even hours, on an
IBM-PC computer at 500 MHz and 128 Mb memory), or
ran into “Out of memory” errors. On the other hand, the
fast functions available in the recently developed, multi-
variable system identification toolbox SLIDENT,? incor-
porated in the Fortran 77 Subroutine Library in Control
Theory (SLICOT) [3], solved the problem with s = 21 in
about one minute. A much larger value for s, s = 61, was
used for getting the results of this paper using SLIDENT
tools.

SLIDENT toolbox provides drivers, computational rou-
tines, and MATLAB [7] or Scilab [4] interfaces, which im-
plement several algorithmic approaches, and use standard
or fast techniques for data processing. The implementa-
tions are based on the state-of-the-art linear algebra pack-
age LAPACK [2] and Basic Linear Algebra Subprograms
(BLAS) collections, which enable to take advantage of the
capabilities of modern high-performance computer archi-
tectures. LAPACK and BLAS have been already used in
the previously developed codes [11], [12]. Details about
abilities and performance of the SLICOT identification
toolbox are given in several reports and papers [14]-[18].

IMATLAB is a registered trademark of The MathWorks, Inc.

2 Available from ftp://ftp.esat.kuleuven.ac.be/pub/WGS/SLICOT,
directory MatlabTools/Windows/SLToolboxes, file ident_mex.zip, or
from http://www.win.tue.nl/niconet/NIC2/NICtask3A.html, for
PC-Windows platforms.



The toolbox has been recently extended [10] to cover iden-
tification of Wiener systems, consisting of a linear part and
a static nonlinearity.

II. LINEAR SYSTEM IDENTIFICATION OF THE FLEXIBLE
STRUCTURE APPLICATION
Consider a linear time-invariant discrete-time state space
model, described by
Az + Bup + wy, ,
Cxyp + Duy, + v, (1)

Tk4+1 =
Y =

where z(k) € R", u(k) € R™, and y(k) € IR’ are the
state, input, and output vectors at time k, respectively, for
k=1,...,t, A, B, C, and D are real matrices of appropri-
ate dimensions, {wy} and {v;} are zero-mean stationary
ergodic state and output disturbance or noise sequences,
uncorrelated with {uj} and the initial state of (1), with
covariances satisfying the relation

Al =[5 2

ST R,

where &£ denotes the expected value operator and d,, is the
Kronecker delta symbol. Both MOESP and N4SID asso-
ciated algorithms start by building a large block-Hankel-
block matrix H (which is a concatenation of two block-
Hankel matrices in terms of the input and output data
sequences, respectively), and perform a data compression
by finding an upper triangular factor R of a QR factor-
ization of H, H = @R, but the matrix @ is not needed
subsequently. Then, a SVD of a certain matrix, built from
R, reveals the order n of the system as the number of “non-
zero” singular values. System matrices are computed from
the right singular vectors, and other submatrices of R. The
Kalman gain is obtained by solving a discrete-time alge-
braic matrix Riccati equation using the covariance matrices
estimated based on the residuals of a least squares problem.
Besides the standard QR algorithm for data compression,
SLIDENT includes two fast algorithms, which exploit the
special structure of the matrix H: Cholesky factorization of
the efficiently built inter-correlation matrix [13], or fast QR
factorization [6], based on the generalized Schur algorithm.

The use of the SLIDENT toolbox is illustrated below for
the flexible structure data. The application data sequences
are loaded and preprocessed using the following MATLAB
commands, which include detrending of input and output
variables, for removing any linear trend

[wz0, @

load flexible_structure_dat;

u flexible_structure_dat(:,1:2);
y = flexible_structure_dat(:,3:30);
u detrend(u); y = detrend(y);

Figure 1 illustrates the trajectories of the inputs and the
first two outputs.

Finding a model based on all data can efficiently be
done using SLIDENT function slmoen4—a combination
of MOESP and N4SID—with a fast data compression al-
gorithm, either Cholesky [13], for alg = 1 (default), or
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Fig. 1. The input and the first two output trajectories for the steel

subframe flexible structure application (DAISY): w1, y1 (top half)
and ug2, y2 (bottom half).

fast QR factorization [6], for alg = 2. A value s = 61
was used for the “number of block rows” s, for getting the
results, as follows,

s=61; n=1[1];
[sys,K,rcnd,R] =

alg = 2;
slmoen4(s,y,u,n,alg);

The command above, calling slmoen4, computes and plots
the sl singular values, which in theory could give an indi-
cation of the system order.

The singular value plot, shown in Figure 2, reveals a
very fast decay of the singular values around the abscissa
value 30. (The figure also displays a similar plot for s = 41;
it appears that this value can be used equally well for
identification purposes, and it would allow faster computa-
tions.)

The system order defined by the default tolerance is
n = 28. Any other desired value of n, less than s, may be
specified after inspecting the singular values. The slmoen4
function then computes the system matrices (A, B,C, D)
and stores them as a MATLAB system object, sys, that is
sys.a gives the matrix A, etc. The Kalman gain matrix K,
and the upper triangular factor R of the QR factorization
of the huge matrix H, are also computed. Matrix H has
the size N x 2s(m+/{), where N = t—2s+1. With the given
and chosen values, H is 8462 x 3660, and R is 3660 x 3660.
Matrix R can then be used for finding any models of order
less than s. The output parameter rcnd contains the recip-
rocal condition numbers of linear algebraic systems solved
by the identification algorithm. Therefore, it is possible
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Fig. 2. Singular value plots for steel subframe flexible structure
application, for s = 61 (top) and s = 41 (bottom).

to check the quality of the intermediate and final results
by inspecting these numbers. The values delivered by the
above calculations were larger than 0.0004.

The quality of the model can be assessed using the func-
tion find_err, included in the demonstration suite for the
SLIDENT toolbox,?

[err(1),ye]l = find_err(y,u,sys);
[err(2),yeK] = find_err(y,u,sys,K);

The commands above compute the estimated output tra-
jectories, ye and yeK, without and with a Kalman pre-
dictor, respectively, and their relative errors err(1:2),
in comparison with the given, original output trajectory,
{y(k)}t_,. The relative error 1-norms, without and with
predictor,

norm(y - ye, 1)/norm(y,1)
norm(y - yeK,1)/norm(y,1)

have the values 0.0628 and is 0.0548, respectively. The es-
timated output, without and with predictor, together with
the original output, can be plotted using the SLIDENT
calling statements

plot_ye(y,ye); plot_ye(y,yeK);

which give the plots in Figure 3 (for the first two outputs).
A detailed plot of the beginning 200 samples appears in

3 Available from ftp://ftp.esat.kuleuven.ac.be/pub/WGS/SLICOT,
directory MatlabTools/Windows/SLdemos, file slident_demo.zip, or
from http://www.win.tue.nl/niconet/NIC2/NICtask3A.html, for
PC-Windows platforms.
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Fig. 3. The first two original and estimated output trajectories for
the steel subframe flexible structure application (n = 28) without
predictor (top half) and with predictor (bottom half).

Figure 4. The estimated outputs cannot practically be dis-
tinguished from the original outputs.

The means and minimum values of the engineering mea-
sure of fit, called Variance-Accounted-For (VAF), in per-
centages,* for all outputs of the system of order 28 are:

Without predictor
99.7218
99.0379

With predictor
99.8622
99.3213

mean(VAF)
min(VAF)

Comparatively, these values for order n = 20 (but com-
puted with a too small value for s, chosen as 21) were:

Without predictor
17.0962
-74.6196

With predictor
94.0542
80.5374

mean(VAF)
min(VAF)

which show that the 20-order model without predictor (de-
termined for s = 21) is not good enough.

Using the SLIDENT commands below, one can check
models of various orders, from 4 to min{40,s — 1}, with
step 2, without and with Kalman predictor. The system is
stable for all these orders. The trajectories are optionally
plotted.

n_max = min( 40, s - 1 );

list_.n = [4 : 2 : n_max]; withK = 1;
[errs,VAFs] = find_models(y,u,R,list_n);
[errsk,VAFsk] find_models(y,u,R,list_n,withK);

4A perfect fit has VAF = 100 %.
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Fig. 4. The beginning 200 samples of the first two original and

estimated output trajectories for the steel subframe flexible structure
application without (top half) and with predictor (bottom half).

These commands use the already computed matrix R, so
that models of various orders are obtained quickly. Plot-
ting the relative error 1-norms and the VAF values for all
orders in 1ist_n shows that the goodness of fit increases for
increasing n, but no significant benefit could be obtained
for n larger than 28 (but n < 40). The following MATLAB
commands can be used

plot(list_n,errsk);
plot(list_n,VAFsk)

plot(list_n,errs);
plot(list_n,VAFs);

The relative output errors without and with a Kalman pre-
dictor are displayed in Figure 5, as bar graphs, and the VAF
values are plotted similarly in Figure 6. Note that for each
value in 1ist_n of the system order, there are 28 vertical
bars, differing in a gray scale. The mean and minimum
VAF values, for all outputs and orders, were larger than
74.89 and 9.5, respectively, without predictor, and than
77.83 and 8.83, respectively, with predictor. Small VAF
values arise, of course, for very small system orders. The
models with order larger than 20 give good relative output
errors and VAF values. Finally, Figure 7 represents the
VAF values as trajectories depending on the system order.
There are 28 trajectories, corresponding to each output of
the system. This figure clearly indicates that some outputs
are not so well identified if n is small, but for n approaching
28 all outputs are perfectly fitted.
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Fig. 5. Relative output errors for steel subframe flexible structure
application for various orders (s = 61), without predictor (top) and
with predictor (bottom).

III. ESTIMATION OF A WIENER SYSTEM FOR THE
FLEXIBLE STRUCTURE APPLICATION

A discrete-time Wiener system, consisting in a linear
part and a static nonlinearity, can be represented by

zk+1) =

Az(k) + Bu(k),
z(k ()

Cz(k) + Du(k),
y(k) = [f(z(k) +v(k), (3)

where z(k), u(k), and y(k) are as for (1), z(k) is the output
of the linear part, and f(-) is a nonlinear vector function
from IR’ to IR’. For identification, the linear part, found
by subspace techniques, is parameterized using the output
normal form [9]; the nonlinearity is modelled by a set of ¢
single layer neural networks,

fr(2(k)) = fr (2(k)) + e (k).

~—

r=1,...

0 (4)

) =3

i=1

+b(r,v+1), (5)

l
ZB(Talaj)Zj(k) + b(’f’,l)

where f.(-) and z.(k) denote the r-th entry of the vec-
tor function f(-) and the vector z(k) := z , respectively,
the vector e(k) is the approximation error, the integer
v represents the number of neurons, and the coefficients
a(r,i), B(r,i,7), b(r,i) and b(r,v + 1) are real numbers
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Fig. 6. Variance Accounted For (VAF) for steel subframe flexible
structure application, for various orders (s = 61), without predictor
(top) and with predictor (bottom).

to be estimated. The estimation problem is formulated
as a structured nonlinear least squares problem which is
solved in three steps (see [10] and the references therein).
The first step identifies the linear part, using a subspace-
based approach. The second step finds initial values of
the weighting coefficients parameterizing the functions f,
in (5). (The hyperbolic tangent is used in implementation
as a nonlinear function ¢.) Specifically, all constants «, 3,
and b in (5) are stacked in the parameter vector 6, where
6= (0716167 )T e RUH27+D "and are estimated
by solving the following nonlinear least squares problem

N y1 (k) — 1 (k)
mein Z : ) (6)
F=UIL we(R) = ge(k)

2

with §,(k) := f-(3), where 3, is the estimated output of
the linear part. Clearly, (6) is equivalent to ¢ independent
nonlinear least squares problems, which are solved sepa-
rately. Finally, the parameters of the linear and nonlin-
ear parts are refined by optimization calculations, starting
with values corresponding to the results of the first two
steps. Adding the parameters corresponding to the lin-
ear part at the end of the vector 8, the Jacobian matrix of
the overall optimization problem has a block diagonal form
with an additional right block column. Two specialized im-
plementations of the Levenberg-Marquardt algorithm are
provided: a standard implementation, which uses Cholesky

100

90 q
80 q
701 q
n 601 4
3
=
S sof R
L
<
> 4o 4
30 q
20 q
10 q
o . . . . . . .
o 5 10 15 20 25 30 35 40
System orders
Variance—Accounted—For (VAF) values with Kalman predictor
100 . . . —
p——— =
90 q
80 T
70 q
n 601 4
k<4
=
S sof B
=
> 40k 4
30 T
20 q
10 q

o 5 10 15 20 25 30 35 40
System orders

Fig. 7. Variance Accounted For (VAF) trajectories for steel subframe
flexible structure application, for various orders (s = 61), without
predictor (top) and with predictor (bottom).

factorization, or a conjugate gradients algorithm, for solv-
ing the symmetric positive-definite linear systems involved,
and a MINPACK-like [8], but LAPACK-based, structure-
exploiting implementation, which uses QR factorization.

Since the optimization problem for our application is too
large for standard workstations, a simplified problem has
been solved. Specifically, only the first half of the input
and output data samples have been used for estimation
(but all data samples were used for validation), the first
7 outputs only have been modelled, the system order was
taken as n = 20, and the number of neurons for each output
was chosen as 12. Even with this significant reduction in
complexity, the corresponding optimization problem has
977 variables, and 7 x |8523/2] = 29827 nonlinear error
functions.

The execution times needed for Wiener system identifi-
cation were 7956.51, 3481.84, and 98595.72 seconds, for the
QR-based, Cholesky-based, and conjugate gradients-based
implementations, respectively. The “sum of squares” val-
ues, which the optimization algorithms minimize, were 155,
179, and 155, respectively, hence, the faster Cholesky im-
plementation was somewhat less accurate. The error norms
for all data samples were 225, 249, and 226, respectively,
compared to 1000, for the linear model. Hence, again, the
Cholesky implementation was less accurate.

The mean values of errors for linear and Wiener iden-
tification are plotted in Figure 8. The means have been
computed on a moving window with a length of 40 samples.



The trajectories for Wiener system identification have been
obtained using the algorithm based on structured QR fac-
torization (with block-column pivoting). It is apparent that
the Wiener model significantly reduces the prediction error,
and has a smoothing effect. It is, however, expected that
such improvements would not be possible for the model of
order n = 28, estimated using s = 61, since the correspond-
ing linear model is in that case very accurate.
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Fig. 8. The mean values of errors for linear and Wiener identification
for steel subframe flexible structure application (the first 7 outputs
only); the first half of the data set is used for estimation.

IV. CONCLUSIONS

System identification algorithms implemented in the re-
cently developed toolbox SLIDENT, incorporated in the
Fortran 77 library SLICOT, have been used for modelling
a steel subframe flexible structure application. The toolbox
provides a convenient and easy-to-use MATLAB interface.
Using this interface and based on the incorporated fast,
structure-exploiting algorithms, complex identification ex-
periments can be quickly performed. The results show that
SLIDENT is reliable and able to solve large identification
problems.
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