
   
Abstract-This paper describes a bundle-adjustment based 
method that can be used to recover of 3D projective structure 
and camera matrices from multiple images taken about the 
scene. The difference from the previous methods are twofold. 
First, the minimization is based on the reprojection error 
using Euclidean distance on the image planes, unlike 
factorization based methods, that use algebraic (SVD) 
reprojection error. Iterative method is used to minimize the 
reprojection errors. Second, it directly addresses the 
computation of the m+n independent parameters of the 
projective depths instead of using mn dependent parameters. 
This reduces the number of parameters that should be 
calculated and automatically involves the computation only of 
the required parameters. 
 
Index Terms-3D projective reconstruction, bundle adjustment, 
reprojection error 

I. INTRODUCTION 

More and more applications such as intelligent robot 
control algorithms (e.g. path planning, collision avoidance), 
object reconstruction methods, augmented virtual reality, 
etc. require the 3D description of the surround world. This 
paper describes the projective reconstruction method that 
was developed as the part of the intelligent stereo vision 
system for PUMA robot and dexterous hand at BUTE. 
Older stereo methods use calibrated cameras to recover the 
Euclidean structure. But it turned out, that the calibration 
based methods have several drawbacks. The calibration 
process usually cannot be made on-line and it supposes, that 
the camera parameters will not be changed later, therefore 
some types of cameras (e.g. auto zoom) cannot be applied. 
Many applications (e.g. invariant based object recognition) 
do not require the detailed Euclidean reconstruction at all. 
Therefore the reconstruction process can be divided into 
two independent phases. First recover the projective 
structure of the scene and motion of the cameras and apply 
Euclidean (or affine) constraints later, only if it is required. 
Projective reconstruction algorithms use perspective images 
of uncalibrated cameras to extract information about the 3D 
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scene structure. It have been proven that in the uncalibrated 
case the scene can only be reconstructed up to an unknown 
projective transformation (collineation), if no other 
constrains are involved. 
Several methods have been developed in the last years to 
recover the 3D projective structure of the scene and the 
respective camera motion.  
Most mature methods [1,2] use stereo image pairs to 
determine the epipolar geometry that describes the 
relationship between images. The epipolar relations are 
usually characterized by a 3x3, rank 2 homogeneous matrix, 
called fundamental matrix. Different methods exist to 
calculate the fundamental matrix. Linear algorithm [3] 
usually minimizes algebraic distances and do not include 
the rank 2 constraint of the fundamental matrix. Nonlinear 
methods minimize real Euclidean distances on the images 
and use special parameterizations [4] or iterative methods 
[5] to enforce the rank 2 condition. Nonlinear methods need 
an initial estimation which can be found by using linear 
methods. 
It turned out that there are also strong relationships between 
more than two views. Shashua [6] describes a trilinear 
tensor involving three images into reconstruction process. 
Hartley [7] showed that this tensor can also be used to 
recover lines. 
Faugeras et al. [8] and Triggs [9] proposed similar methods 
to recover the structure from any number of views. This 
factorization based method uses the fact, that the rank of the 
scaled measurement matrix must be 4. But this method 
requires the estimation of the projective depths to obtain a 
possible reconstruction. Han et. al. [10] propose an iterative 
method to calculate projective depths. Triggs [9] uses the 
set of fundamental matrices to achieve this task without 
iterations, but it requires the calculation of the epipolar 
relations between image pairs. 
One of the drawback of the factorization based methods is 
the handling of  the missing data. It is possible that some of 
the features cannot be seen on all of the views, mainly for 
longer image sequences, therefore the measurement matrix 
constrains “holes”. Jacobs [11] proposed a method to 
determine the missing elements. This method have been 
further improved by Martinec et el. [12].  
Another drawback of the factorization algorithms that they 
minimize an algebraic entity, called SVD reprojection error. 
Unfortunately this lacks any physical meaning, therefore it 
gives only a sub optimal solution. 
Another way to estimate the scene structure is to use bundle 
adjustment methods. One version of these type of methods 
was developed by Quan et al. [13] which directly minimizes 
the reprojection error. This method requires nonlinear least 
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squares optimizers. Application of these types of 
estimators, such as Levenberg-Marquardt method, can be 
slow in case of large number of views and/or features. 
Nonlinear methods require also an initial estimation, that 
can be calculated with a linear method, mentioned above. 
The advantage of the bundle adjustment based methods is 
that they can easily manage the handling of the missing data 
by simply ignoring the missing terms during the 
minimization. These algorithms can handle a common 
framework for different types of features (points, lines). 
In this paper a bundle adjustment based algorithm is 
proposed, that decouples the calculation to the calculation 
of the structure (intersection), projection matrices 
(resection) and projective depths to eliminate the nonlinear 
optimization steps. Unlike previous similar methods [14], 
the proposed method estimate only the required (and 
independent) m+n coefficients instead of calculating mn 
quatity separately. From these m+n coefficient the 
projective depths can be calculated. 

II. PROJECTIVE RECONSTRUCTION FROM VIEWS 

This section describes the reconstruction of 3D features 
(currently points) from multiple image projections. Let jM  

represent the homogeneous coordinate vector of jth 3D 
point, iP  be the 3x4 projection matrix for the ith camera 

and ijq the homogeneous coordinate vector of the 

projection of the jth spatial feature on the ith image. Each 
entity is defined up to a nonzero scale factor. The number 
of views (image projections) are m, the number of 3D 
features are n. 
The projection equation can be written into the following 
form: 

jiijij MPq =λ  

Using this equation it can be seen that in case of 
uncalibrated cameras the scene can be reconstructed up to a 
nonsingular projective transformation, T: 

( )( )jiijij TMTPq 1−=λ  

These ijλ scale factors are called projective depths. There 

exist mn scale factors (one for each projection) but only 
m+n are are independent among them.  

III. DECOMPOSITION OF THE PROJECTIVE DEPTH 

Each ijλ depends on two quantities, the iπ factors are 

related to cameras and the jγ factors are related to 3D 

features. Therefore each projective depth can be written as a 
product of these quantities: 

jiij γπλ =  

Applying these facts, the joined projection equations can be 
written into the following matrix equation: 
 

PMQ =ΓΠ  

where  
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Here <.> denotes diagonal matrices. These equations are 
valid only for point projections. Initially only the elements 
of Q are known from image measurements (e.g. as output of 
feature detector). It can be seen that in an ideal (noise free, 
non degenerate) case, the rank of the ΓΠQR =  

measurement matrix must be 4 (as a product of two rank 4 
matrices, P and M). If the ijλ  projection depths were 

known, the joint projection matrix P and the projective 
shape M could be determined by using a decomposition 
method (e.g. SVD). This is the base of the mentioned 
factorization method. But there are some drawbacks of the 
factorization method: 
• It minimizes an algrebraic distance, called SVD 

reprojection error [15], that does not represent any 
physically meaningful quantity. 

• The handling of the missing data requires special 
attention. The missing elements of Q should be 
estimated before factorisation. 

• In this form, the projection equations represent the 
projections of points only. Higher level features (e.g. 
lines) could only be used as point sets. 

IV. THE NEW RECONSTRUCTION ALGORITHM 

In this paper we propose a method, that aims to solve the 
first two problems (but the extension to the line features 
will be mentioned, too), and estimates only the minimal 
required number of parameters. Therefore using the original 
projection equation a cost function can be defined as the 
difference in the position between the estimated and the real 
feature (point) projections: 
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where the elements denoted by ‘^’ are the estimated values. 

The 2
ijw  values are weights, that can be used to make the 

algorithm more robust, e.g. features with large error can be 
classified as outliers and can be eliminated from the 
estimation process. 
It can be seen, that function E(.) is nonlinear in the 
unknowns. Some algorithms [e.g. 13] use the Levenberg-
Marquardt method and general initial values to directly 
minimize the cost function E(.). But fortunately the 
parameters to be estimated can be separated into different 
groups, because they are “independent” from each other. 
This is the well-known resection-intersection method, that 
holds every group of parameters fixed, except those, that 
are currently minimized. Therefore the minimization of E(.) 



can be achieved by minimizing the values jiji MP γπ ˆ,ˆ,ˆ,ˆ  

separately. 

A. Estimation of the parameter groups 

1) Minimization in jM̂  

During the minimization of projective shape jM̂ , the values 

of the other parameters jiiP γπ ˆ,ˆ,ˆ  are treated as constants. 

The jM ’s as 3D projective features are independent from 

each other, because they depend only on the objects in the 
scene and they are not influenced by the projections. 
Therefore the estimation for the jth feature can be 

calculated by making the derivative of E(.) by jM̂  to zero: 
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2) Minimization in iP̂  

As for the shape values, the cameras are also independent 
from each other (theoretically the cameras can be placed 
anywhere around the scene). Therefore the projection 
matrices could be estimated separately. In order to solve for 

the values of iP̂ , the elements are stored into a vector 
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The cost function becomes 
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Making the derivative of E(.) by ip̂  to zero yields the 

solution in closed form: 
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3) Minimization  in jγ̂  

The shape dependent factors of the projective depths can be 
easily calculated from the derivative of E(.) by jγ̂  in closed 

form 
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4) Minimization in iπ̂  

The camera dependent factors of the projective depths can 
be easily determined from the derivative of E(.) by iπ̂  in 

closed form 
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B. Handling of missing data  

The handling of missing data during the minimization is 
easy. Skip those i,j entries in the error function, that do not 

have valid ijq  value (no projection of the given feature is 

detected on the image). 

C. Steps of the minimization of E(.) 

The parameters of the cost function are estimated using an 
iterative method, therefore an initial estimation for its 
values is required. This can be achieved as follows. 
Choosing the subset of points that can be seen on all of the 
images, a rank 4 factorization method is achieved. This 
gives initial estimation for all of the required projection 
matrices and for those points, that are involved in the 
factorization. The remaining features can be initialized 
using backprojected points. This means the determination 
of a point which has minimal distance from the rays 
connecting the image points and the camera focal points in 
least squares sense. All of the iπ and jγ values are 

initialized to 1. 
The algorithm itself consists of the repeated steps of the 
minimization from 1) to 4). After every iteration the 
reevaluation of the ijw  weighting factors are achieved and 

the actual value of the cost function is calculated. If the cost 
is less than a desired threshold (or maximum allowed 
number of iterations is reached), the algorithm terminates. 

V. RESULTS 

We tested our method using simulated data in order to 
check the robustness and accuracy of the algorithm. The 
scenes consist of random point sets generated within the 
box having edges between [-1:1] unit along each axes. The 
cameras are placed randomly around the scene, the 
distances from the origin are approximately 5-8 units. The 
viewing directions are perturbed, the internal parameters of 
the cameras are also varied slightly but the overall 
projections yield the projected image features fall into the 
usual 512x512 image size.  
In the first experiment Gaussian noise with different 
standard deviations was added to the projected points, 
where the standard deviations are varied between 0.0 and 
2.5 pixels. The average reprojection errors for the trials 
using 20 points are depicted on Figure 1. It can be seen, that 
the relationship is almost linear between the pixel noise and 
the reprojection error. 



 
Figure 1: 2D reprojection error vs. pixel noise in case of  20 

points 
 

The second experiment examined the effect of the number 
of used image features. The number of points varied 
between 8 to 100. The results can be seen on Figure 2. We 
found that the volume of the reprojection error is almost 
constant with respect to the number of points above 40-60. 
In this case the noise was fixed with standard deviation 1.0. 
 

 
Figure 2: 2D reprojection error vs. number of points in case 

of pixel noise with standard deviation 1.0 
 
Using the fact, that because of simulation the 3D Euclidean 
position of the original scene points are exactly known, we 
also tested the accuracy of the Euclidean reconstruction. To 
achieve this, we determined those transformation, that maps 
from the projective to Euclidean representation, using all of 
the projective-Euclidean point pairs. Applying this 
transformation to the projectively reconstructed features, 
the results for a sample scene can be seen on Figure 3. The 
numerical results of these trials can be seen in Figure 4. 
Last experiment was to determine the behavior of the 
reconstruction algorithm with different number of cameras. 
The result was, that the reprojection errors are slightly 
increased using more cameras, see Figure 5. Therefore at 
first sight it seems useless to involve more cameras into the 
reconstruction process. But considering the accuracy of the 

3D Euclidean reconstruction, it turned out that increasing 
the number of cameras the reconstruction errors become 
smaller.  
We found, that this error term is also influenced by the 
spatial configuration of the cameras. Cameras differed only 
in distance from the scene but almost common optical axes  
gave unacceptable results, because the backprojected rays 
from the matched image points were nearly identical (there 
were no acceptable baseline information). Slightly more 
distributed cameras yield better results (smaller 
reconstruction errors). 

 
Figure 3: 3D reconstruction for a sample scene for 20 points 
 

 
Figure 4: 3D reconstruction error vs. pixel noise. 

 
During the tests the number of iterations required by the 
algorithm were between 5-20 to assure convergence for 
non-degenerate configurations. 

VI. IMPLEMENTATION 

Typical stereo vision methods use resolution from 256 up to 
1024 pixels. Therefore for the average image features, the 
values contained in the homogeneous coordinate vector ijq  

could have very different magnitudes, e.g. ,50≈iju   

,500≈ijv  1=ijw . In the cost function these magnitudes 

are doubled (in logarithmic sense) because of squaring. The 



magnitude differences can cause numerical problems, ill-
conditioning during minimization. To avoid this problem, 
Hartley [16] proposed a normalization method to transform 
each image feature such that the center of the point set will 
be at the origin and the average length of homogeneous 
coordinate vectors will be approximately 1. Our method 
uses this standardization process, however this requires to 
transform back the resulted projection matrices after 
minimization process in order to get the real solution. 
 

 
Figure 5: 2D reprojection error vs. number of cameras in 

case of noise with standard deviation 1.0 

VII. CONCLUSION AND FUTURE WORK 

This paper proposes a projective reconstruction algorithm 
that is capable to recover 3D shape and motion from point 
correspondences. The developed method calculates only the 
required minimal (therefore consequent) set of parameters 
decomposing the projective depths. The algorithm is also 
able to handle those cases, where some features cannot be 
seen in all of the images. Simulated scenes were used to 
measure the robustness and accuracy of the reconstruction 
process. It turned out that the algorithm behaves well and 
gives acceptable results for those scenarios (noise levels, 
number of features and cameras) that are commonly used in 
stereo vision. 
A further possibility is to extend the algorithm to work with 
3D line features, too. This can be helpful for the cases 
where the application of segment endpoints causes errors  
because of different occlusion relationships. Such a 
situation is shown in Figure 6. Point features a and b can be 
matched by a feature tracker in the images of camera C1 
and C2, respectively. But in reality, these represent 
different points on the same line (in 3D). 
To manage lines as features a natural way is to add a 
separate term to the cost function: 
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where ijl  is the jth line feature detected on ith image. jL̂  is 

the Plücker representation of the line feature by a six 
dimensional vector, which is  the coordinate system 
independent representation of the line in 3D projective 

space. The matrix 
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using column pairs (1,2), (1,3), (1,4), (2,3), (2,4), (3,4). 
Unfortunately this type of line error formulation has some 
drawbacks:  
(i) the line related term does not represent Euclidean 
distance on image plane,  
(ii) the minimization in the parameters of the  projection 
matrix requires nonlinear optimization steps. 
Improvements of handling lines in the cost function are in 
progress. 
 

 
Figure 6: Line segment endpoint uncertainty 
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