3D projective reconstruction with decomposed
projective depths
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Abstract-This paper describes a bundle-adjustment based
method that can be used to recover of 3D projective structure
and camera matrices from multiple images taken about the
scene. The difference from the previous methods are twofold.
First, the minimization is based on the reprojection error
using Euclidean distance on the image planes, unlike
factorization based methods, that use algebraic (SVD)
reprojection error. Iterative method is used to minimize the
reprojection errors. Second, it directly addresses the
computation of the m+n independent parameters of the
projective depths instead of using mn dependent parameters.
This reduces the number of parameters that should be
calculated and automatically involves the computation only of
therequired parameters.

Index Terms-3D pr oj ective reconstruction, bundle adj ustment,
reprojection error

. INTRODUCTION

More and more applications such as intelligent robot
control algorithms (e.g. path planning, collision avoidance),
object reconstruction methods, augmented virtua redlity,
etc. require the 3D description of the surround world. This
paper describes the projective reconstruction method that
was developed as the part of the intelligent stereo vision
system for PUMA robot and dexterous hand a BUTE.
Older stereo methods use calibrated cameras to recover the
Euclidean structure. But it turned out, that the calibration
based methods have severd drawbacks. The calibration
process usually cannot be made on-line and it supposes, that
the camera parameters will not be changed later, therefore
some types of cameras (e.g. auto zoom) cannot be applied.
Many applications (e.g. invariant based object recognition)
do not require the detailed Euclidean reconstruction at al.
Therefore the reconstruction process can be divided into
two independent phases. First recover the projective
structure of the scene and motion of the cameras and apply
Euclidean (or affine) constraints later, only if it is required.

Projective reconstruction a gorithms use perspective images
of uncalibrated cameras to extract information about the 3D
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scene structure. It have been proven that in the uncalibrated
case the scene can only be reconstructed up to an unknown
projective transformation (collineation), if no other
constrains are invol ved.

Several methods have been developed in the last years to
recover the 3D projective structure of the scene and the
respective camera motion.

Most mature methods [1,2] use stereo image pairs to
determine the epipolar geometry that describes the
relationship between images. The epipolar relations are
usually characterized by a 3x3, rank 2 homogeneous matrix,
caled fundamentad matrix. Different methods exist to
caculate the fundamental matrix. Linear agorithm [3]
usualy minimizes agebraic distances and do not include
the rank 2 constraint of the fundamental matrix. Nonlinear
methods minimize real Euclidean distances on the images
and use specia parameterizations [4] or iterative methods
[5] to enforce the rank 2 condition. Nonlinear methods need
an initial estimation which can be found by using linear
methods.

It turned out that there are a so strong rel ationships between
more than two views. Shashua [6] describes a trilinear
tensor involving three images into reconstruction process.
Hartley [7] showed that this tensor can aso be used to
recover lines.

Faugeras et a. [8] and Triggs [9] proposed similar methods
to recover the structure from any number of views. This
factorization based method uses the fact, that the rank of the
scaled measurement matrix must be 4. But this method
requires the estimation of the projective depths to obtain a
possible reconstruction. Han et. a. [10] propose an iterative
method to calculate projective depths. Triggs [9] uses the
set of fundamental matrices to achieve this task without
iterations, but it requires the calculation of the epipolar
rel ations between image pairs.

One of the drawback of the factorization based methods is
the handling of the missing data. It is possible that some of
the features cannot be seen on all of the views, mainly for
longer image sequences, therefore the measurement matrix
congtrains “holes’. Jacobs [11] proposed a method to
determine the missing elements. This method have been
further improved by Martinec et €. [12].

Another drawback of the factorization agorithms that they
minimize an algebraic entity, called SVD reprojection error.
Unfortunately this lacks any physical meaning, therefore it
gives only a sub optimal solution.

Another way to estimate the scene structure is to use bundle
adjustment methods. One version of these type of methods
was developed by Quan et a. [13] which directly minimizes
the reprojection error. This method requires nonlinear least



squares optimizers. Application of these types of
estimators, such as Levenberg-Marquardt method, can be
slow in case of large number of views and/or features.
Nonlinear methods require also an initia estimation, that
can be calculated with a linear method, mentioned above.
The advantage of the bundle adjustment based methods is
that they can easily manage the handling of the missing data
by simply ignoring the missing terms during the
minimization. These agorithms can handle a common
framework for different types of features (points, lines).

In this paper a bundle adjustment based algorithm is
proposed, that decouples the calculation to the calculation
of the structure (intersection), projection matrices
(resection) and projective depths to eliminate the nonlinear
optimization steps. Unlike previous similar methods [14],
the proposed method estimate only the required (and
independent) m+n coefficients instead of calculating mn
quatity separately. From these m+n coefficient the
projective depths can be cal culated.

Il. PROJECTIVE RECONSTRUCTION FROM VIEWS
This section describes the reconstruction of 3D features
(currently points) from multiple image projections. Let M |
represent the homogeneous coordinate vector of jth 3D
point, P be the 3x4 projection matrix for the ith camera
and @;the homogeneous coordinate vector of the

projection of the jth spatial feature on the ith image. Each
entity is defined up to a nonzero scale factor. The number
of views (image projections) are m, the number of 3D
features are n.

The projection equation can be written into the following
form:

Aidj =BM;
Using this equation it can be seen that in case of

uncalibrated cameras the scene can be reconstructed up to a
nonsingular projective transformation, T:

/]ij Qi = (PiT_l)(TM j)
These Aij scale factors are caled projective depths. There

exist mn scale factors (one for each projection) but only
m+n are are independent among them.

Il1l. DECOMPOSITION OF THE PROJECTIVE DEPTH
Each A; depends on two quantities, the 77, factors are

related to cameras and the y;factors are related to 3D

features. Therefore each projective depth can be written asa
product of these quantities:

Ay =1y,
Applying these facts, the joined projection equations can be
written into the following matrix equation:
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Here <.> denotes diagonal matrices. These equations are
valid only for point projections. Initially only the elements
of Q are known from image measurements (e.g. as output of
feature detector). It can be seen that in an idea (noise free,
non degenerate) case, the rank of the R=/7IQ

measurement matrix must be 4 (as a product of two rank 4

matrices, P and M). If the A; projection depths were

known, the joint projection matrix P and the projective

shape M could be determined by using a decomposition

method (e.g. SVD). This is the base of the mentioned
factorization method. But there are some drawbacks of the
factorization method:

e It minimizes an agrebraic distance, cdled SVD
reprojection error [15], that does not represent any
physically meaningful quantity.

e The handling of the missing data requires specia
attention. The missing elements of Q should be
estimated before factorisation.

* In this form, the projection equations represent the
projections of points only. Higher level features (e.g.
lines) could only be used as point sets.

IV. THENEW RECONSTRUCTION ALGORITHM

In this paper we propose a method, that aims to solve the
first two problems (but the extension to the line features
will be mentioned, too), and estimates only the minimal
required number of parameters. Therefore using the original
projection equation a cost function can be defined as the
differencein the position between the estimated and the rea
feature (point) projections:

m n R
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where the elements denoted by ‘' are the estimated values.

The WiJ2 values are weights, that can be used to make the

algorithm more robust, e.g. features with large error can be
classified as outliers and can be eliminated from the
estimation process.

It can be seen, that function E(.) is nonlinear in the
unknowns. Some algorithms [e.g. 13] use the Levenberg-
Marquardt method and general initial values to directly
minimize the cost function E(.). But fortunately the
parameters to be estimated can be separated into different
groups, because they are “independent” from each other.
This is the well-known resection-intersection method, that
holds every group of parameters fixed, except those, that
are currently minimized. Therefore the minimization of E(.)



can be achieved by minimizing the values P, M 75,V
Separately.
A. Estimation of the parameter groups
1) Minimizationin I\7I]-

During the minimization of projective shapel\7l i » the values

of the other parameters P,, 77,y are treated as constants.

The M ; 's as 3D projective features are independent from

each other, because they depend only on the objects in the
scene and they are not influenced by the projections.
Therefore the estimation for the jth feature can be

calculated by making the derivative of E(.) by M j tozero:
1

R m T T rm
Mj %W”PI PIE %W”Rﬂyjqijﬁ

2) Minimizationin FA’,
As for the shape values, the cameras are also independent
from each other (theoreticaly the cameras can be placed
anywhere around the scene). Therefore the projection
matrices could be estimated separately. In order to solve for

the values of ISI , the elements are stored into a vector
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generating amatrix A from the elements of M j
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The cost function becomes
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Making the derivative of E(.) by P, to zero yields the
solution in closed form:
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3) Minimization in y]-

The shape dependent factors of the projective depths can be
easily calculated from the derivative of E(.) by y; in closed

form

l 2. TD

Z\NijqU iMJ
f/jzl_r; 2 T

zwijﬂlqijqu

4) Minimizationin 77,
The camera dependent factors of the projective depths can
be easily determined from the derivative of E(.) by 77 in
closed form
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B. Handling of missing data

The handling of missing data during the minimization is
easy. Skip those i,j entries in the error function, that do not

have valid (; value (no projection of the given feature is
detected on the image).

C. Seps of the minimization of E(.)

The parameters of the cost function are estimated using an
iterative method, therefore an initia estimation for its
valuesis required. This can be achieved as follows.

Choosing the subset of points that can be seen on al of the
images, a rank 4 factorization method is achieved. This
gives initia estimation for al of the required projection
matrices and for those points, that are involved in the
factorization. The remaining features can be initialized
using backprojected points. This means the determination
of a point which has minimal distance from the rays
connecting the image points and the camera focal pointsin

least squares sense. All of the 7 and y;vaues are
initialized to 1.

The agorithm itself consists of the repeated steps of the
minimization from 1) to 4). After every iteration the

reevaluation of the w; weighting factors are achieved and

the actual value of the cost function is calculated. If the cost
is less than a desired threshold (or maximum allowed
number of iterationsis reached), the a gorithm terminates.

V. RESULTS

We tested our method using simulated data in order to
check the robustness and accuracy of the agorithm. The
scenes consist of random point sets generated within the
box having edges between [-1:1] unit along each axes. The
cameras are placed randomly around the scene, the
distances from the origin are approximately 5-8 units. The
viewing directions are perturbed, the interna parameters of
the cameras are aso varied dlightly but the overall
projections yield the projected image features fall into the
usual 512x512 image size.

In the first experiment Gaussian noise with different
standard deviations was added to the projected points,
where the standard deviations are varied between 0.0 and
2.5 pixels. The average reprojection errors for the trials
using 20 points are depicted on Figure 1. It can be seen, that
the relationship is almost linear between the pixel noise and
the reprojection error.



2D Reprojection error us. pixel noise
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Figure 1: 2D reprojectiongerrorgvs. piExSeI noisein case of 20
points

The second experiment examined the effect of the number
of used image features. The number of points varied
between 8 to 100. The results can be seen on Figure 2. We
found that the volume of the reprojection error is almost
constant with respect to the number of points above 40-60.
In this case the noise was fixed with standard deviation 1.0.

2D Reprojection error us. number of points
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Figure 2: 2D reprojection error vs. number of pointsin case
of pixel noise with standard deviation 1.0

Using the fact, that because of simulation the 3D Euclidean
position of the origina scene points are exactly known, we
also tested the accuracy of the Euclidean reconstruction. To
achieve this, we determined those transformation, that maps
from the projective to Euclidean representation, using al of
the projective-Euclidean point pairs. Applying this
transformation to the projectively reconstructed features,
the results for a sample scene can be seen on Figure 3. The
numerical results of thesetrias can be seenin Figure 4.

Last experiment was to determine the behavior of the
reconstruction algorithm with different number of cameras.
The result was, that the reprojection errors are dightly
increased using more cameras, see Figure 5. Therefore at
first sight it seems useless to involve more cameras into the
reconstruction process. But considering the accuracy of the

3D Euclidean reconstruction, it turned out that increasing
the number of cameras the reconstruction errors become
smaller.

We found, that this error term is aso influenced by the
spatial configuration of the cameras. Cameras differed only
in distance from the scene but almost common optical axes
gave unacceptable results, because the backprojected rays
from the matched image points were nearly identical (there
were no acceptable baseline information). Slightly more
distributed cameras vyield better results (smaller
reconstruction errors).
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Figure 3: 3D reconstruction for a sample scene for 20 points

Euclidean 3D reconstruction error vs. noise
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Figure 4: 3D reconstruction error vs. pixel noise.

During the tests the number of iterations required by the
algorithm were between 5-20 to assure convergence for
non-degenerate configurations.

VI. IMPLEMENTATION

Typical stereo vision methods use resolution from 256 up to
1024 pixels. Therefore for the average image features, the

values contained in the homogeneous coordinate vector g
could have very different magnitudes, eg. u; =50,

Vv;; =500, w; =1. Inthe cost function these magnitudes
are doubled (in logarithmic sense) because of squaring. The



magnitude differences can cause numerica problems, ill-
conditioning during minimization. To avoid this problem,
Hartley [16] proposed a normalization method to transform
each image feature such that the center of the point set will
be at the origin and the average length of homogeneous
coordinate vectors will be approximately 1. Our method
uses this standardization process, however this requires to
transform back the resulted projection matrices after
minimization process in order to get the real solution.

2D Reprojection error ws. number of cameras
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Figure 5: 2D reprojection error vs. number of camerasin
case of noise with standard deviation 1.0

VIl. CONCLUSION AND FUTURE WORK

This paper proposes a projective reconstruction agorithm
that is capable to recover 3D shape and motion from point
correspondences. The devel oped method cal culates only the
required minimal (therefore conseguent) set of parameters
decomposing the projective depths. The agorithm is also
able to handle those cases, where some features cannot be
seen in al of the images. Smulated scenes were used to
measure the robustness and accuracy of the reconstruction
process. It turned out that the algorithm behaves well and
gives acceptable results for those scenarios (noise levels,
number of features and cameras) that are commonly used in
stereo vision.

A further possibility is to extend the algorithm to work with
3D line features, too. This can be helpful for the cases
where the application of segment endpoints causes errors
because of different occlusion rdationships. Such a
situation is shown in Figure 6. Point features a and b can be
matched by a feature tracker in the images of camera C1
and C2, respectively. But in redlity, these represent
different points on the sameline (in 3D).

To manage lines as features a natural way is to add a
separate term to the cost function:
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where |;; isthejth line feature detected on ith image. I:J- is

the Plucker representation of the line festure by a six
dimensiona vector, which is the coordinate system
independent representation of the line in 3D projective
B opo
space. The marix R =rp; OPp/ g is the line
Bl oprH
projection matrix composed from the rows of the respective
point projection matrix. The “[]” denotes the meet
operation resulting in a six dimensiona row vector which

can be calculated as the six 2x2 sub determinants of the
matrix composed from the two vectors (a and b)

& a, a; a0
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b, by by

using column pairs (1,2), (1,3), (1,4), (2,3), (2,4), (3,4).
Unfortunately this type of line error formulation has some
drawbacks:

(i) the line related term does not represent Euclidean
distance on image plane,

(ii) the minimization in the parameters of the projection
matrix requires nonlinear optimization steps.

Improvements of handling lines in the cost function are in
progress.

1 o]
Figure 6: Line segment endpoint uncertainty
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