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Applying orthogonal rational signal representations
in system change detection
Alexandros Soumelidis, József Bokor, Ferenc Schipp

Abstract—The main topic of the paper is the application of

frequency domain signal representations in detection system

changes. The change detection is based upon the represen-

tation coefficients belonging to rational orthogonal bases se-

lected by using a priori knowledge belonging to the system

dynamics. An FFT-based effective algorithm is described

for estimating the coefficients on the basis of non-uniformly

spaced frequency domain measurements. This algorithm of-

fers a good basis for analyzing the random errors occurring

on the estimated coefficients, that is necessary to use them

in the decision making procedure upon changes.

Keywords— Change detection, signal representations, ra-

tional orthogonal bases.

I. Introduction

A frequency domain representation of bounded energy
stable causal discrete-time signals based upon the concept
of orthogonal rational bases, generated during the past
decade as a product of several research groups, see e.g. [1],
[2], [3], has been presented in [4]. The topic of the current
paper is an approach of detection changes on the system
structure by using these representations.

The starting point of the change detection scheme is a
spectral function belonging to the system under consider-
ation, i.e. a function of a single variable defined on the
frequency domain. Frequency responses, transfer functions
belonging to input-output pair of signals, as well as spectral
density functions can both be considered as spectral func-
tions; different system types (e.g. deterministic or stochas-
tic ones) and analysis tasks (observation of a single signal,
or input-output examination with or without excitation)
can result in different spectral function concepts. Since
uniformly sampled discrete time systems conform to the
Shannon rules are considered, the spectral functions in-
volved are periodic, as well as its energy bounded nature
and stability imply that they belong to the Hilbert space
H2.

It is assumed, that the spectral function can be measured
in some discrete frequency points, that means either direct
frequency domain measurement, or computation of func-
tion values on the basis of time-domain data. Nowadays the
latter alternative is more frequently used: discrete Fourier
transform algorithms can efficiently be realized by digital
computers (consider e.g. FFT — Fast Fourier Transform).

Orthogonal rational bases offer an excellent framework
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to produce function representations that utilize a priori
knowledge belonging to the system under consideration,
hence they can adequately be used in change detection
schemes. That is, any difference on the given system rela-
tive to the a priori assumed characteristics result in drastic
changes in the representation, hence high sensitivity and
selectivity can be obtained.
In the present paper detection methods based upon the

representation coefficients themselves are discussed. De-
tection methods that avoid the direct computation are also
available, one of these type of methods has been discussed
in [5]. However direct computation of representation coef-
ficients is also advantageous method due to an algorithm
using FFT on non-uniformly distributed frequency domain
data [6].
In the following sections after a brief introduction to ra-

tional orthogonal bases, the concept of change detection
through representation coefficients, the algorithm of esti-
mating the coefficients, as well as an error analysis will be
discussed.
The following notations will be used: D := {z ∈ C : |z| <

1} denotes the unit disc on the complex plane; if a ∈ C then
a denotes its complex conjugate; if A is a complex matrix
A∗ denotes its conjugated transpose; N and C denotes the
set of natural and complex numbers, respectively.

II. Rational orthogonal bases in H2

The general form of the orthogonal rational basis in H2

generated upon the set of poles a = {ak ∈ D | k =
0, 1, . . . , N − 1 ; N ∈ N} is given by the following con-
struction:

φ0(q)
.
=

√

1− |a0|2

z − a0
, φk(q)

.
=

√

1− |ak|2

z − ak

k−1
∏

j=1

baj
(z) (1)

for k = 1, 2, . . . , N − 1, where

bak
(z) = eiδk

1− akz

z − ak

is the Blaschke-function belonging to parameter ak (δk-s
are arbitrary constants), the elements orthogonal rational
basis of index n = N`+ k (` = 0, 1, 2, . . . ) are defined as

Φn(z)
.
= φk(z)B

`
a
(z) Ba(q)

.
=

N−1
∏

j=0

baj
(z). (2)

It can be proved, that the system (1)–(2) constitutes an
orthonormal basis in the space H2(D) [7].
The Blaschke-function and product are inner functions

in the space H2 (referred as stable all-pass functions in the
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technical literature), hence the Blaschke-product defined
upon a finite set of poles can be considered as a shift oper-
ator, which produces only rotation on the unit circle, sim-
ilarly to the standard shift operator z. Of course infinitely
many shift operators can be created depending on the se-
lection of poles, hence many different orthogonal rational
bases can be generated. It is obvious, that this construc-
tion is a generalization of the standard basis, because the
latter one is restricted to zero poles (as it is a polynomial
system of 1/z), on the other hand the rational bases gener-
ated upon the poles are specific constructions representing
the characteristics connected to the selected pole structure.
This feature of the rational orthogonal bases gives their
significance in the representation of systems: the a pri-

ori knowledge available of the system structure (embodied
partly in the pole structure) can be built in the represent-
ing set of functions, resulting in efficient representations
sensitive to changes.
Any function F (z) in H2(D) can be represented in the

orthonormal rational basis; the representation and the co-
efficients can be given as follows:

F (z) =

∞
∑

n=0

cnΦn(z), cn = 〈F,Φn〉z (3)

where 〈., .〉z denotes the inner product with respect to vari-
able z. The representation of rational functions containing
finite number of poles can be interpreted through their par-
tial fraction form

X(z) =
N−1
∑

k=0

mk
∑

m=1

Akm

(z − ak)m
(4)

where mk ≥ 1 is the multiplicity of pole ak.
The representation coefficients can be computed by eval-

uating the inner product in (II); for an estimate an effec-
tively realizable method has been proposed in [6]. The
method is based upon the FFT algorithm applied on a fi-
nite set of measurement points generated by nonuniform
sampling of the frequency function.
Now an algorithm realizing this method will be described

by using the ’z’-notation that rather conforms to the prac-
tically applicable forms. The basic idea of the realization
is the introduction of the argument-function belonging to
the Blaschke product. For a single pole a ∈ D — since the
Blaschke function is an inner function —

|ba(e
it)| = e−iβa(t)

the function of the real variable t βa(t) is called argument-
function. Extending the notion to multiple poles: for a =
{ak ∈ D | k = 0, 1, . . . , N − 1 ; N ∈ N}

βa(t)
.
=
βa0
(t) + βa1

(t) + · · ·+ βaN−1
(t)

N
,

that is
Ba(e

it) = e−iNβa(t).

A detailed characterization of the argument function can
be found in [7].

By using the notion of the argument-function the ele-
ments of the generalized orthogonal basis can be expressed
on the unit circle as

ΦN`+k(e
it) = φk(e

it) e−iN`βa(t).

Hence the coefficient of index n = N` + k of the repre-
sentation belonging to function F ∈ H2(D) will be given
as

cn
.
= 〈F,ΦN`+k〉 =

1

2π

∫ π

−π

F (eit)φk(eit) e
iN`βa(t) dt.

(5)
Let the substitution t = β−1

a
(s) be applied:

〈F,ΦN`+k〉 =
1

2π

∫ π

−π

F (eiβ
−1
a
(s))φk(eiβ

−1
a
(s)) eiN` s β′

a
(s) ds.

For the sake of simplification let the function

fk(s)
.
= F (eiβ

−1
a
(s))φk(eiβ

−1
a
(s)) β′

a
(s) (k = 0, 1, . . . , N−1),

(6)
be introduced; the above form can be expressed in the form
of a special — N -times ”dilated” — Fourier integral:

〈F,ΦN`+k〉 =
1

2π

∫ π

−π

fk(s) e
iN` s ds.

The Fourier-integral can approximately be computed by
using a discrete scale by dividing the interval [−π, π] into
M equal parts (let M be even), i.e.

∆s =
2π

M
sm = −π +m∆s (m = 0, 1, . . . ,M − 1).

The integral can be approximated by the sum (let be j =
N`)

ĉj+k =
∆s

2π

M−1
∑

m=0

fk(sm) e
ij(−π+m∆s) =

=
1

M

M−1
∑

m=0

fk(sm) e
i2π

j(m−M/2)
M = (7)

=

(

1

M

M−1
∑

m=0

fk(sm) e
i2π jm

M

)

e−i2π
j(M/2)

M .

The expression in the parenthesis is a standard discrete
inverse Fourier-transform, which can effectively be evalu-
ated by the Fast Fourier Transform (FFT) algorithm. The
multiplicative term

e−i2π
j(M/2)

M

applied on the Fourier-transform corresponds to a trans-
lation of M/2 points on the discrete form of the function
to be transformed, and π translation on the continuous
scale. Hence the algorithm to obtain approximately the
coefficients is given by

ĉj+k =
1

M

M−1
∑

m=0

fk(sm+M/2) e
i2π jm

M (8)
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that can simply be proved by applying the translation in-
variance of the discrete Fourier transform by M indices
(corresponding the 2π).
Since fk functions are periodic by 2π, the translation of

π is equivalent to swapping the positive and negative halves
of the function. Swapping is a frequently used action in the
FFT analysis, usually is used a posteriori to shape the spec-
trum in the customary layout with zero frequency on the
centrum; here swapping can be used before the transform
is performed.
The algorithm represented by (8) needs the values of the

function fk by using a displacement of π on the variable
s (M/2 on the indices), that, because of its periodicity
— is equivalent with swapping the left and right half of
the function in the interval [−π, π] before executing the
transform (swapping is a frequently used action in the FFT
techniques).
The transform (8) results in N number of redundant se-

quences ĉ
(k)
j (k = 0, 1, . . . , N − 1) — each belonging to a

particular φk function —N -times denser than the sequence
of the coefficients. Hence the coefficients can be obtained
by decimating the sequences by N :

ĉ0 = ĉ
(0)
0 ĉ1 = ĉ

(1)
0 . . . ĉN−1 = ĉ

(N−1)
0

ĉN = ĉ
(0)
N ĉN+1 = ĉ

(1)
N . . . ĉ2N−1 = ĉ

(N−1)
N

ĉ2N = ĉ
(0)
2N ĉ2N+1 = ĉ

(1)
2N . . . ĉ3N−1 = ĉ

(N−1)
2N

...
...

...

ĉ`N = ĉ
(0)
`N ĉ`N+1 = ĉ

(1)
`N . . . ĉ(`+1)N−1 = ĉ

(N−1)
`N

...
...

...

The values of the functions fk (k = 0, 1, . . . , N − 1) ap-
plied in the transform (8) can be computed on the basis of
measurement values belonging to the function F to be rep-
resented, as well as sample values of the elements of the ra-
tional orthogonal basis. The sample points are determined
by the inverse of the argument function βa belonging to
the basis: for k = 0, 1, . . . , N − 1,

fk(sj) = F (eiβ
−1
a
(sj))φk(eiβ

−1
a
(sj)) β′

a
(sj)

i.e. the sample points can be determined by the transform

tj = β−1
a
(sj) (j = 0, 1, . . . ,M − 1), (9)

where {sj} is a uniformly spaced division of the interval
[−π, π]. Since The inverse argument function is nonlinear,
the resulting {tj} scale is non-uniformly spaced division of
the same interval. The transform (9) is referred as inverse

argument-transform belonging to the generalized orthogo-
nal basis generated upon the poles a.
The sample values of the basis elements φk(e

itj ) can be
obtained by computations, hence they can be evaluated in
any point within the interval [−π, π]. However, the sample
points of the function F can be obtained by observations
— physically realizable measurements or computations —
performed on the system to be analyzed. Only the interval
[0, π] has physical meaning: the parameter t can be consid-
ered as normalized circular frequency, and the interval [0, π]

is related to the frequency interval [0, fN ], where fN is the
Nyquist-frequency connected to the applied time-domain
sampling rule. The mapping between the sample points tj
and fj is given by

tj =
fj
fN

π i.e. fj =
fN
π
tj .

The points of F corresponding to the negative half of the
interval can be generated by the rule

F (e−it) = F (eit) (10)

that is valid for all the existing or physically realizable real
systems, that possess only real poles or conjugated complex
pole-pairs.
Hence the sample points of function F that are suitable

to use in the rational orthogonal representation can be ob-
tained by applying the following procedure:
1. Determining a non-uniformly spaced {tj}

M−1
j=0 scale in

the interval [−π, π] by using the inverse argument trans-
form belonging to the GOB starting from a uniformly
spaced scale {sj}

M−1
j=0 in the same interval.

2. Measuring or computing the values of the frequency
function in frequencies corresponding to the parameter val-
ues tj ≥ 0 (j = 0, 1, . . . ,M/2− 1).
3. Completing the function by adding its negative half by
applying

F (e−it−j ) = F (eiitj ) (j = 1, 2, . . . ,M/2− 1)

according to the rule (10).
The values of the frequency function can be generated di-
rectly as transfer functions measurements, or by using spec-
tral estimation methods on the basis of time-domain mea-
surements.

III. Principles of change detection

The representations in rational orthogonal bases can ef-
ficiently be used to solve system change detection tasks.
Observable changes of the system structure and/or the be-
havior can be detected by analyzing the changing char-
acteristics of adequate output signals: by comparing the
momentary ones to an priori assumed reference; the sig-
nal representations in specific rational orthogonal bases of-
fer efficient means to do this. The basic idea is building
a rational orthogonal basis upon a fixed set of the poles
assumed to be valid for the nominal system; than repre-
senting the signals belonging to the momentary state in
this basis. The coefficients of the representation can be
used in the detection of changes based upon the following
considerations:
• The representation of signals containing exactly the poles
assumed in building the rational basis is finite, i.e. finite
number of coefficients differ from zero, namely the first
n ones if the number of the poles is n. The poles with
multiplicity greater than one are repeated by the number
of multiplicity.
• Any displacement of the poles or occurrence of new poles
results in infinite representation: infinite number of coeffi-
cients differ from zero.
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• Disappearance or change on the multiplicity of any ex-
isting results in the change of the finite representation: the
corresponding coefficients change value.
The finite representation of the exact case follows directly
from the orthogonality of the rational basis (2). The de-
tection problem can be considered as a decision whether
selected coefficients differ from zero or not. This of course
can be done on statistical basis because of measurement
and estimation errors of statistical nature.
It can be noticed that decision upon zero value of the co-

efficients is not the only alternative of the change detection.
An approach not directly using the representation coeffi-
cients has been described in [5]; a discrete scalar product
has been used to discriminate the changes, which is based
upon the reproducing kernel belonging to the subspace gen-
erated by a finite orthogonal rational representation. Fur-
thermore more delicate decision tasks can be solved on the
basis of the behavior of the coefficients in the case of pole
changes. A detailed analysis on the nature of this behav-
ior can be found in [8]: changes result in infinite sequence
with exponential decay of speed linearly dependent on the
magnitude of change. However, the elaboration of exact
detection methods on this basis requires further research.
The latter feature of these representations will be utilized

in change detection of systems based upon representations
in rational orthogonal bases. The model used is as fol-
lows: a nominal system is defined with a priori fixed set of
poles; a rational orthogonal basis is constructed upon these
poles; the representation of the real system in this basis is
generated (more exactly estimated) based upon measure-
ments; and finally the changes are detected by analyzing
the representation coefficients computed. According to the
orthogonality of the rational basis generated upon the fi-
nite set of poles {ak}

N−1
k=0 it can simply be proved, that

the representation of the rational functions possessing no
other poles than these ones (with any finite multiplicity)
contain a finite number of nonzero coefficients. Namely,
the number of nonzero coefficients with index n = N`+ k
for specific k = 0, 1, . . . , N − 1 is exactly mk, and – due to
the orthogonality – the coefficients n = N`+ j (j 6= k) will
be zero.
The current paper focuses on the zero-detection prob-

lem of the representation coefficients. Figures 1, 2, and 3
present an example generated by assuming a nominal sys-
tem with poles

[0.9, 0.99e0.5i, 0.99e−0.5i, 0.98e0.8i, 0.98e−0.8i]

Figure 1 presents the real and imaginary parts of the coef-
ficients for the nominal case. Figure 2 shows the cause of a
displacement on a pole, namely on the real pole (a0 = 0.98
instead of 0.9); an exponential decay has been indicated
on the coefficients belonging to it. Figure 2 presents the
case when a random noise is added to the original function
values. The result is the appearance of a random noise
on all the coefficients both on zero and nonzero ones. A
relatively small scale noise on the coefficients can also be
seen on Figures 1 and 3 as the cause of errors resulted from
the estimation algorithm and the computations. It is clear
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Fig. 1. Representation coefficients: nominal
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Fig. 2. Representation coefficients: displacement
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Fig. 3. Representation coefficients: noise

that reliable decision upon the coefficient values cannot be
performed without some knowledge on the errors, and re-
quire statistical considerations in connection with random
error components; the error analysis will be discussed in
the next section.

The advantages of using orthogonal rational representa-
tions to detect changes arise from the fact that valuable a
priori knowledge is built into the representation that is not
done in classical spectral detection methods that are based
upon the standard trigonometric basis. The linear model-
based methods (AR, ARMA methods, detection filters) use
also a priori knowledge, however they are restricted to one
specific model, in contrast with the orthogonal rational rep-
resentations, where a class of models is assumed, and a
series expansion represents the valid model.

IV. Error analysis

The errors of estimating the coefficients of orthogonal
rational representations are are originated from several
sources and can be classified as deterministic and stochas-
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tic ones, i.e. bias and variance type ones. Typical error
sources are enumerated as follow:

• Error in selecting the basis of the nominal system.
• Error in approximate evaluation of the Fourier integral.
• Error in numeric inversion of the argument function.
• Rounding errors in computations.
• Measurement and computation errors in obtaining the
original spectral function data.

The first three error components can be considered as bias
errors on the coefficients. Rounding errors, nevertheless
they are deterministic in nature, can successfully be mod-
elled as random noise. Errors on the input data can have
both bias and can contain random error components.
The basis selection error means that a difference can ex-

ist between the assumed nominal system and the real on
in nominal state. This difference can be characterized as
modelling error, i.e. it can be originated from unmodelled
dynamics, e.g. omitted poles, or nonlinear behavior of the
real system, furthermore from errors in estimation of the
selected poles. The difference results in bias on the repre-
sentation coefficients even in the nominal case. Since the
real difference is not exactly known, and this type of error
is mixed with the other error components, there is no way
for deterministic correction, the best way is to minimize its
influence by careful model selection.
The major part of the estimation error of coefficients is

resulted from the approximate evaluation of the Fourier
integrals. The discretized form of the Fourier integral can
be considered as an approximation sum that converges to
the integral with a successively refined division of the inter-
val. Hence the approximation error can be minimized over
any limit by with using denser sample scale in the input
spectral data.
The algorithm of computing the representation coeffi-

cients contains the inversion of the argument function as-
sociated with the reference poles selected. This step can
be performed numerically, since the argument function is
a strictly increasing differentiable function, a simple suc-
cessive approximation is sufficient to realize. Selecting a
sufficiently small error bound to terminate the iteration
is a significant constituent of the accuracy of the estima-
tion. Extremely small error bound significantly increases
the computing time, bigger one result in bias error on the
coefficients.
The numeric inversion can be realized with sufficient ac-

curacy during reasonable time by the digital computers
commonly used today. More serious problem is whether the
inverse function values that form a non-uniformly spaced
scale on the frequency domain can be accurately applied in
the spectral measurements or computation of the spectral
functions. In the case of direct transfer function measure-
ments the frequency resolution of the equipment used is
usually finite, hence the desired frequency values can be
adjusted with some error. In the case of using time do-
main measurement data, the frequency functions can be
computed by some type of Fourier-transform method, e.g.
direct Fourier transform or indirect methods by using the
correlation functions. The FFT algorithms used commonly

today assume uniform scale both on time and frequency do-
main, e.g. they cannot directly be used in our algorithm.
Reasonable approach seems to be an FFT algorithm ap-
plied on uniform samples of number far greater than it is
required for the non-uniform scale, and than selecting the
function points nearest to the desired frequencies. However
it has been verified in several cases, that this method can-
not be produce the desired accuracy, especially when poles
near to unit circle are present in the system. In most cases
the nonuniform discrete Fourier transform proved to be
adequate method, unfortunately these type of algorithms
take considerably more computing time. Finding ”fast”
methods is subject of the further research.

The exact evaluation of rounding errors is an extremely
difficult problem, and fall beyond to the scope of the cur-
rent research. Rounding errors can cause serious problems
in the cases when the system poles are placed extremely
near to the unit circle. An error causing a pole to dis-
placed virtually beyond to the unit circle can result in un-
predictable errors in the estimation. In less drastic cases
the rounding errors can successfully be modelled as a small
size random uniform white noise on the coefficients com-
puted.

The input data errors can contain both bias and variance
type component depending on the measurement or comput-
ing algorithms applied. Direct transfer function measure-
ments that can be performed in the frequency domain can
usually be performed unbiased; the random errors can usu-
ally be modelled as normally distributed noise. The vari-
ance of the noise is usually unknown, however in practical
cases it can be estimated on the basis of the specification of
the measurement device, as well as the noise characteristics
of the system tested.

The spectral methods that are based upon time-domain
measurements result in biased estimates because of the
window-effect occurring as a consequence of the finite
record used. The bias can be decreased by applying spe-
cial window functions, however it cannot be eliminate. The
random error components are also dependent on the spec-
tral estimation algorithms used. The time domain mea-
surements are usually considered in statistical sense as in-
dependent normally distributed random variables. The
simple discrete Fourier-transform, as being a linear opera-
tion, transforms them into random variables of joint normal
distribution; and the mean and variance can be computed
by linear and quadratic forms respectively. The correla-
tion based indirect spectral estimation as well as the direct
Fourier-transform based (Cooley-Tukey) method result in
χ2 distribution of degree of freedom equal to the number
of data points, however due to the large number of data
it can successfully be approximated with normal distribu-
tion. These results of the classical spectral estimation can
be found in signal processing textbooks, e.g. see e.g. [9].

Based upon the above discussion the error analysis of
the algorithm of computing the representation coefficients
means a deterministic analysis to take in account the bias
errors, as well as a statistical analysis to explore the random
error components.
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The deterministic analysis has been performed on the ba-
sis of displacement on the poles relatively to the reference
ones. The conclusion is that error terms decaying exponen-
tially with rate dependent on the difference occur on the
coefficients. The detailed analysis can be found in [8].
The statistical analysis is based upon the characteristics

of the estimation algorithm presented in Section II. A more
general analysis can be performed on the basis of the defi-
nition form (5), or can be derived from general estimation
theory results [10]; these approaches fall beyond the scope
of the current paper. It can be verified, that from the point
of view of the input data values Fm = F (eitm) the formula
(8) — since the function fk defined by formula (6) can be
considered as multiplication of the data values by constant
factors — is linear. That is the estimation formula (8) can
be expressed as

ĉj+k =
1

M

M−1
∑

m=0

α
(k)
j,mFm (11)

where

α
(k)
j,m

.
= φk(e

itm+M/2) β′
a
(sm+M/2) e

i2π jm
M ,

sm, tm (m = 0, 1, . . . ,M − 1) are the sample values of the
uniform and non-uniform scale respectively, by applying
the notations of Section II.
By assuming that the spectral sample points Fm (m =

0, 1, . . . ,M − 1) are random variables with joint normal
distribution, according to the well known argument of the
probability theory the coefficients computed by (11) are
also random variables of joint normal distribution. The sets
of the coefficients obtained for the several indices of k are
decimated by N that results in the final set of the represen-
tation coefficients containing M elements. The decimated
set, consisting of normally distributed random variables, is
also jointly normally distributed. The mean values and the
covariance matrix belonging to the coefficients are sufficient
parameters to describe their statistical characteristics.
The mean values of the coefficients can be obtained by

the same decimation procedure that performed on the sets
of the coefficients themselves, i.e.

µ
(c)
N`+k =

1

M

M−1
∑

m=0

α
(k)
N`,mµ

(F )
m ,

where where µ
(c)
i and µ

(F )
i denote the mean values of the

coefficients ci and the function values Fi respectively.
To derive the covariance matrix let the decimated coef-

ficients centered to the means be considered

c̃
(k)
`N =

1

M

M−1
∑

m=0

α
(k)
N`,mF̃m,

where F̃m = Fm − µ
(F )
m . The covariance matrix element of

indices (N` + p,Nκ + q) belonging to the coefficients can
be expressed as follows:

σcN`+p,Nκ+q = E[c̃
(p)
N`c̃

(q)
Nκ] =

1

M2

M−1
∑

m=0

M−1
∑

n=0

α
(p)
N`,mα

(q)
Nκ,nσ

F
m,n

where σFm,n = E[F̃mF̃n], i.e. the elements of the covariance
function of the measurement data.
By defining the matrix containing the parameters α that

have been remained after the decimation in the following
form:

[A]j,n = α
(k)
N`,m j = N`+ k

the covariance matrix of the coefficients can be expressed
by the transformation

Σ(c) =
1

M2
A Σ(F )A∗

where Σ(F ) denotes the covariance matrix of the measure-
ment data. According to the well-known argument of the
probability theory in association with the linear transform
of a normally distributed set of random variables, the ma-
trix A should be nonsingular.
The statistics of estimating the representation coeffi-

cients, that have been derived here, can be used in setting
up thresholds for detection to ensure a desired level of con-
fidence, or can be used in more elaborated statistical (e.g.
Bayes or likelihood type) decision schemes.

V. Conclusions

The algorithm described in Section II offers effective tool
to estimating representation coefficients in rational orthog-
onal bases as well as serves as the basis of the error analy-
sis including that of the random errors. The error analysis
given in Section IV completes the requisites indispensable
to apply the orthogonal rational representations in change
detection tasks.
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