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Abstract— Ellipsoidal outer bounding is revisited from a
numerical point of view. Numerically stable algorithms are
discussed around square root factorization techniques.
Geometrical interpretation is given through standard
orthogonal projection arguments that shows directly some basic
properties attached to these methods. Efficient numerical
algorithm is given to test if two or more ellipsoids have non-
empty intersection. Lastly, specific formulations are given to
guarantee that the theoretical properties associated to trace or
determinant criterion computations are numerically satisfied.

Index Terms— Numerical stability, square root factorization,
ellipsoidal bounding, determinant / trace criterion.

1. INTRODUCTION

s in Kalman filtering, ellipsoidal state outer bounding is

based upon two basic steps: prediction and correction
[1]. Each of them involves two quite different kinds of
computations, namely summations of ellipsoids and
intersections of ellipsoids. Most of the published papers
present algorithms directly issued from theoretical
considerations. Unfortunately, these algorithms are basically
unstable from a numerical point of view, which explains why
they frequently fail when they are applied to real life
problems. Actually, the arguments are, here, very similar to
those invoked about standard Kalman filtering algorithms.
Therefore, the way to construct numerically stable
algorithms looks like the tricks used to stabilize Kalman’s
formulas via square root factorization updating. As it will be
shown later, the proposed approach offers other
mathematical and geometrical interpretations in a unified
framework of all the classical families of enclosing
ellipsoids. Specific algorithmic details are given to
efficiently implement the two standard optimization trace
and determinant criteria.

The paper is organized as follows. In section 2, classical
definitions are reminded. Section 3 is devoted to the
intersection problem while section 4 deals with the
summation one. Section 5 is concerned with the optimization
problem. Some numerical examples are given in section 6,
while the last section gives some conclusion and future
developments.

II. DEFINITIONS
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Any ellipsoid E(c, M) can be defined by:
[xeR":(x=c) M(x-c)<1,M=M">0}. (1)

When M has no zero eigenvalue, the ellipsoid is
bounded, otherwise it is unbounded. This is the case when
parallel strips S(y,d) are considered with:

S(y,d)z{xe R":

y—d'x<1}. )

Clearly, (2) is equivalent to (1) with M =dd” and
y=d"c. Note that S(y,d) is sometimes called the feasible

parameter set [2], the parameter uncertainty set [3] or the
likelihood set [4].

Another special feature appears when empty ellipsoid
must be taken into account. Using (1) is not numerically
attractive, because this situation means that A/ has at least
one infinite eigenvalue.

A Dbetter alternative is to characterize the ellipsoid by the
following equivalent formulation:

E(c,P)={xeR":(x—=c)' P'(x-c)<1,P=P" 20} (3)

When a non-empty bounded ellipsoid is considered, the
Moore-Penrose pseudo-inverse P* becomes P~' =M and
P has at least one zero eigenvalue for an empty ellipsoid.

This paper is now restricted to the intersection and
summation problems of non-empty ellipsoids but not
necessarily bounded. Two kinds of results will be presented,
namely, the classical ones based upon standard mathematical
computations and those dedicated to stable numerical
implementations.

III. THE INTERSECTION PROBLEM

A. Main results

Among many possibilities and technical presentations [5],
it has been only kept here the solution families as developed
by C. Durieu et al., see for example [6]. Using and adapting

their notations, let & be the set of a >0 such that
Zi:a'i =1. If the matrix Zi:a'l.M,. is positive definite,
then the ellipsoid:

E(c,.(1-8,)"'M,) )



will contain the intersection of the K ellipsoids E(c;,M,)
with:

M, =X oM, c,=MY" aMc, (5)

Oy = Zil ac/ Mc,—c,M,c, (6)

where e R” is the vector whose components are the &, .

Equations (5)-(6) are reinterpreted from a new point of view.
First, a quite different approach is used in order to show this
result. Let us define:

f(0)=X af(x)s1

where f;(x)=(x—¢) M,(x—c)<1.

By direct expansion, it follows that:

F(x)=x"Mx=23" ac’Mx+Y " M, <1. 7)

Afterward, a second order Taylor series expansion of f(x)

near its unique minimum X leads to:

T A

f(x)=f(%)+(x-%) M, (x-%)<I. (8)
The comparison between equations (7) to (8) shows that:

(€)]

K T T _
_oc Mie,—c,M,c,=6,20.

Furthermore, (8) gives a necessary and sufficient condition
for a non-empty' intersection of the K ellipsoids £ (¢,,M,):
K

E(c.M,)#D & maxd(a)=f(3)<1

i=l1

(10)

The following theorem presents an alternative to this
preliminary result.

Theorem 1
The computation of ¢, is equivalent to the determination

of the unique solution X of the convex quadratic problem:

Ja, X, Ja X ¢,

o, X, . Jo, X e,

ok, | oK,

¢, =X=argminy f(x)=

an

f(®)=4,,

with X, the full rank factorization of M,, ie. X/ X,=M,,
i=L..,K.

Proof'1

! non-empty means also “not reduced to a point”.

Let us rewrite the function in (11) as:

f@)=|[4]x=[o][. (12)
The minimum X is then given by the well-known normal

equations X = (ATA)il A"b . This immediately leads to:
A4=M,=Y"aM; Ab=>" aMc,.

Consequently, x=c, .

Lastly,

£ =|[4)i=[pf, =0 (1-a(a74)" 4" )1
=" b= A(AA) " (A A)(A74) " ATD
= I:aicirMici —cuM .,
= é‘[l

where [ is the identity matrix. This result generalizes a
previous one published in [8].

B. Numerical considerations

Afterwards, consider the computational aspects. The
convex quadratic problem is solved using equation (12) by
means of an orthogonal factorization [7] of the matrix

[4 b]:

o[40]=|

QE RKnXKn’ Xa e R"X", ve RnXI, Te R,

where X, is a regular upper triangular matrix. Therefore,
the function may be rewritten as:

1@ =|[4]x=[][; =[x, Jx =[] + 7.
Therefore, ¢, is the solution of the triangular system:

X, c,=v,

13)
and &, =7’ . Notice that X/ X =M.

It is quite evident that the computed J, is now always
numerically positive, and that the computed matrix M, is
symmetric positive definite, which is not guaranteed using
equation (5). Furthermore, X!X, =M, means that the
condition numbers satisfy:

E(M,)=[E(x,)T .

so that the number of exact digits in ¢, may be halved if (5)

is used instead of (13).
A numerical example showing a negative J, using the

standard computations (5) can be found in [8].



IV. THE SUMMATION PROBLEM

The summation of K ellipsoids E(c,,P) is investigated.

For this problem, the center computation is trivial:

I
Co _C_Zi:lci'

Consequently, this second problem only involves the
computation of the shape and the size of an ellipsoid. In this
context, the best representation is given by (3). According to

[6]:
P=Y Pl 20

must be computed. Note that ¢, =0 with Z:ilai =1.

Once again, the definiteness of the matrix P, will be

guaranteed using a square root factorization.

Theorem 2
The factorization Y, of P, =YY, can be computed using

an orthogonal factorization via Householder transformations
of the composite matrix Z:

Z=[Yf/ a, Y/,

. YKT/\/ZT

where Y; is the full rank factorization of P =Y'Y,
i=1.,K.

Proof 2
First, the orthogonal factorization of Z leads to:

Y
Q[Z] — |:_(;’_:|’ Qe RKnXKn’ )/a e Rnxn .

Then Y)Y, =2"(0"0)Z2=2"2=)" Blo,=P,.

Remark
Even if some of the matrices M, or P are singular,
usually M, and P, are positive definite. However

computing one from the other may induce catastrophic
numerical errors if their condition numbers & achieve very

large values. Using square root formulation offers a drastic
advantage due to the property:

() =¢(X,)=5(M,) =S, .

V. THE OPTIMIZATION PROBLEM

A. Problem statement
The computation of the vector & =|¢, a,] is the

solution of a constrained optimization problem. The
criterion is usually based upon the trace or determinant of

. -1 .
the matrix P, =Y, Y, =(X,X,) according to the context.

(14)

This kind of problem will be referred to as OP1 problem.
Note that other criterion may be used, as mentioned for
instance in [5], but they are not investigated for comparison
purpose in this paper.

Actually, a smaller ellipsoid is achieved if the matrix M,

or P, is respectively replaced with (1-8,)" M, or
(1-6,)P,, and this second problem is referred to as OP2.

In practice, this harder situation is solved only with
K =2. This will be called OP3 problem in the sequel, and a
particular case deals with one ellipsoid and one strip.

Generally, there is no explicit solution to those
optimization problems. However, the trace criterion for the
summation problem OP1 has a closed form solution [6]:

r(R)

2
4]
F

L XLrR) LI

where ||*|| - is the matrix Frobenius norm.

Although dealing sequentially with two ellipsoids leads to
a sub-optimal solution, only the case K =2 will be
considered in the following.

B. Intersection of a strip and an ellipsoid

First, consider the problem OP3 with one strip S(y,d)
(which can be interpreted as the degenerated ellipsoid E;)
and one ellipsoid E (c,P =M "). The trace criterion leads
to a particular root computation of a 3" order polynomial
equation [9] whose coefficients depend on terms like v/ Qv,
where Q stands for M,M?*,P,P*,P",... Note that a
particular case occurs when the ellipsoid £ (c,P =M ’1) is

entirely located in the strip. In that case, the measurement
does not introduce information. Therefore, it can be
discarded, leading to a “dead zone” for the algorithm [5]. As

a result, the ellipsoid E (c,P=M") is not updated.

Another important situation appears when one of the two
hyperplans defining S(y,d) does not

intersect £ (c,P=M"). In that case, the strip is first

reduced using a tangent hyperplan instead of the non-
intersected one before any computation.

It is impossible to achieve theoretical properties
associated with these expressions without working on their
factorized counterpart. The following parameters have to be
computed:

U= tr(M’l)= r(P),
g=d"M'd=d"Pd,
h=d"M7?d=d"Pd,

(15)

and the factorized forms yield:



w=lVl =l2f z:x7z=1,
g=lraf} =, v=2a,
=l =l w=2"v.

Note that for instance the computed value of d” Pd may
have a wrong sign, whereas ||v||z >0 is true whatever the

machine precision may be.

If the determinant criterion is involved, a particular root
of a 2™ order polynomial equation has to be found. The only
critical term to be evaluated is g (15) previously defined.

C. Intersection of 2 ellipsoids
The problem OP3 is now considered with two non-empty
and bounded ellipsoids E(c;,M,) and E(c,,M,) (i.e. the

matrices M, M, symmetric, definite positive).

Lemma
The intersection of two ellipsoids is equivalent to the

following problems:
E(c,,M\)NE(cy,M,) < E(0,1)NE(c,D) e
& E(c,1)NE(0,D) a6,

where D is a diagonal matrix, / is the identity matrix, 0 is the
Zero vector.

Remark
In other words, the intersection of two ellipsoids can always
be reduced to the intersection of a unit ball with an ellipsoid
whose axes are parallel to the coordinate system axes. In the
sequel, the first equivalence in (16) will be proved in details,
while some information will be given for the second one.

Proof 3

Using M, = X" X , the first ellipsoid can be expressed as:
E(cl,M]):{xe R":(x-¢) XTX(x—c])Sl}

) (17)

={y=X(x—cl):y ySl},

so that E(c,M,) < E(0,1). A change in the variables
leads to the second ellipsoid E(c,,M,) rewriting:

E(c,,M,)={xeR" ,x=X""y+¢:

r 18
(X"y+c,—c2) MZ(X"y+c|—cz)Sl}. ( )
Let us define v, such that:
X'yt+e,—c,=X"(y-v,) v, =X(c,-¢).
Hence (18) becomes:
E(c,,M,)={xeR",x=X"y+¢,:
2 2 1 (19)

(y_vz)TM(y_Vz)Sl}a

with M =M"=X"M, X" >0. The matrix M in (19) is

then replaced by its eigenvalue decomposition:

M=V'DV (20)

where D >0is a diagonal matrix, and V is orthogonal. It
follows that:

(r=v,) M (v=v,) = (=2, V" | D[V (3-1,)]
=[V(y-v,)]" D[V (y-v,)]

Define z=Vy. Because the matrix V is orthogonal,

y'y<le z'z<1, and the second ellipsoid may be rewritten:

E(c;.M,)={xe R":(x=¢,) M, (x-¢,) <1}

21
Z{Ze R":(z—c)TD(z—c)Sl}ZE(c,D), @l

with ¢ =WM,.
The second result in (16) follows in the same way with
z=V(y-v,) and (z—c')T (z—c") <1

D. Intersection Check for K=2
While the intersection of one ellipsoid E (c,P=M ")

and one strip S(y,d) can easily be checked, it is a more

difficult problem when two ellipsoids are considered. But
this preliminary test is an essential condition for computing
the including ellipsoid (4). Actually, this test can be done
using (6). Some simple but tedious calculations yield to the
following useful identity:

s, =a(l-a)(c,—¢) (aM;' +(1-a) M) (¢, —c,) (22)

Theorem 3
The function J, is concave and possesses a unique

maximum & such that 0<d& <1.

Proof 4
The ellipsoids E(c¢,M,) and E(c,,M,) are transformed in

their equivalent forms E(c,/) and E(0,D). Using (22),

0,, becomes:
S, =a(l-a)d (aD™ +(1-a)I) c.

Standard derivations lead to

6, 3 (a';l—l)0{2—20l+lc2 23
aa i1 [adi—l +(l_a)]2 i ( )
where D =diag(d,),d, >0, c=[¢, ¢, - ¢ ,and
9, . d’'c?

der = ad +(1-a) |

Note that [ad;'+(1-a)]>0 for all ae]o,I.

Furthermore, J,_, =9, =0. J, being a concave function
(24), and positive for ae ]0,1[, then there is a unique

maximum &€ ]0, 1[ .



Remark
Any Newton-like optimization method will converge
towards & in a very few steps from any starting point

a,€]0,1].

E. Numerical implementation
The numerical computation of J, should not be done with

(9) nor (22). The must efficient way is once again using an
orthogonal factorization:

X, v

\/aIXI i \/aIchl —Zr=

0 | =07 (25)
Voo X, 1\, Xc,

2
0,=7

Clearly, the knowledge of the enclosing ellipsoid does not

appear in this computation, nor its center. Actually, c,

remains unknown until the best ¢ is obtained.

VI. NUMERICAL EXAMPLE

First, an academic example will exhibit the powerful of the
factorized form of the algorithm. It shows the computation
of 8,<0 in one iteration for the intersection of a strip
S(y,d) and an ellipsoid E(c,P =M ) Computations are

done in the Matlab environment with double precision. The
problem size is n = 8. M is the inverse Hilbert matrix (M =
invhilb(8)). Vector d is constructed using the first n
components of the last column of the inverse Hilbert matrix
of dimension 9:

Y =invhilb(9)

d=Y(1:8,9)

The ellipsoid center is given by:
c=[L1,..,1]" e R®
while y = 1 and e =0.001.

Standard computation leads to &, (classical) = -68.23 while
the factorized form gives:

0, (factorized) =1.699735841437460e - 002 (26)

The theoretical value obtained using Maple is:
0, (theoretic) =1.69973584146841¢-2 .
Bold face figures in (26) show the correct decimal places.

Now, consider an identification problem with unknown but
bounded output error:

) = u,_g—2u,_5+0.1u,_(+0.05u, —10u,_, +
g 0.01u, ,+u, ,-0.001u, , +e,

where e, is a zero mean uniformly distributed random noise
with a 10% relative level. The input is given by u, =1/k .

k=9

200 samples have been simulated and the data have been
reused five times. Data y; are shown in Figure 1.

Measure and Model output

15
.
&
3
S —
8
n
8
8

Data sample

Figure 1: Measure and model output

The ellipsoid centre and minimal / maximal values of each
parameter are given in Table 1 and Table 2. Only the
significant digits are shown. As expected, very poor results
are achieved using the standard formulation of the algorithm.
The factorized form exhibits the best possible precision that
can be achieved.

min centre max

-1.8032299e-002 | 9.81967701e-001 | 1.98196770e+000

-2.380407¢-001 7.6195932e-001 [1.7619593e+000

2.6856808e+001 | 2.7856808e+001 | 2.8856808e+001

-3.25567146e+002

-3.24567146e+002

-3.23567146e+002

1.52876100e+003

1.52976100e+003

1.53076100e+003

-3.37182701e+003

-3.37082701e+003

-3.36982701e+003

3.50771837¢+003

3.50871837¢+003

3.50971837¢+003

-1.38851126e+003

-1.38751126e+003

-1.38651126e+003

Table 1: factorized algorithm

min centre max
-2 #e-002 9.8e-001 1.98¢+000
##e+000 8.#e-001 2 ##e+000
3.#e+001 3.#e+001 3.##e+001
-3.#e+002 -3.#e+002 -3 ##e+002
1.5e+003 1.5e+003 1.5#e+003
-3.4¢+003 -3.4¢+003 -3.4#e+003
3.5e+003 3.5e+003 3.5#e+003
-1.4¢+003 -1.4¢+003 -1.4#e+003

Table 2: standard algorithm

Results displayed in Table 2 may seem strange. Actually, the
symbol “#” stands for “not exact digit can be computed”.
Therefore “#.#e+000” means that the numerical value cannot
be computed with at least one exact digit using the standard
algorithm and double precision computation

VII. CONCLUSION

This paper gives insight about the numerical difficulties
that may appear when ellipsoidal outer-bounded approaches
are used.

A unified technique based upon orthogonal factorization
and square root representation of semi-definite matrices has



been developed for the intersection and the summation
problems. Real life problems have clearly exhibited the
numerical superiority of such a methodology [8].

Another interesting property (even surprising at a first
lecture) is that the intersection condition, J, <1, can be

numerically checked without computing any enclosing
ellipsoid E(c,,M,) or E(c,,P,), because f(X)can be

obtained without the knowledge of x, see (11).
For the intersection of two ellipsoids, the function J, has

been shown to be concave, and there is a unique maximum
a over 10,1] .

Numerical examples show the expected superiority of the
factorized form compared with the standard formulation.

Those algorithms have been successfully applied to
industrial data (confidential). A model has been identified
using a bounded but unknown error approach [10][11]. This
model has been then used in a diagnosis context. The results
will also be discussed during the lecture.
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