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Controller Tuning for Integrating Processes with 
Time Delay 

Part I: IPDT Processes and the Pseudo-
Derivative Feedback Control Configuration 

Kostas G.Arvanitis, George Syrkos, Iakovos Z.Stellas, and Nick A.Sigrimis, Member, IEEE 

  
Abstract— In this paper, the use of the Pseudo-Derivative 

Feedback (PDF) structure in the control of integrating plus dead-
time (IPDT) processes is investigated. Simple methods for tuning 
the PDF feedback controller are presented. The PDF control 
structure and the proposed tuning methods ensure smooth 
closed-loop response to set-point changes, fast regulatory control 
and sufficient robustness against parametric uncertainty. The 
proposed methods require small computation effort and they are 
particularly useful for on-line applications, since they require 
prior information that can easily be obtained using the relay 
autotuning method. Simulation results show that our methods 
are favorably compared to the already known PI/PID controller 
tuning methods for IPDT processes. 
 

Index Terms— Controller tuning, dead-time processes, inte-
grating processes, process control, Pseudo-derivative feedback. 
 

I. INTRODUCTION 

I NTEGRATING plus dead time (IPDT) model was found to 
be suitable for a number of processes. In [1]-[4], it has been 

suggested that using the IPDT model for feedback controller 
tuning has several advantages. This model has the ability to 
adequately represent the dynamics of a wide variety of 
systems over the frequency range of interest for conventional 
three-term controllers (e.g. PID controllers), which still pre-
dominate in process control and are sufficient for most needs. 
Since the IPDT model contains only two parameters (i.e. 
process gain and time delay), it is very simple for identifica-
tion. For single-input, single-output (SISO) systems that con-
tain two parameters, only one, simple relay feedback experi-
ment [5] is needed for the estimation of these parameters. For 
multiple-input, multiple-output (MIMO) systems the parame-

ters of the off-diagonal elements of the transfer function 
matrix can also be estimated during the relay experiment. 
Moreover, systems with large time constants can effectively 
be approximated by the IPDT model, over the critical fre-
quency range, i.e., near the ultimate frequency. 

In spite of the appealing usefulness and simplicity of the 
IPDT model, a limited number of tuning methods is available 
for such processes, as compared to other process types (e.g. 
first order plus dead time (FOPDT) processes). The classical 
Ziegler-Nichols method results in a rather oscillatory response 
that may become unstable even for small perturbations in the 
model parameters. The method reported in [1], which is based 
on the Internal Model Control (IMC) [7] structure, can lead to 
poor control when the adjustable parameter is not chosen 
properly. The method reported in [2] is based on the classical 
frequency response method of the maximum closed loop log 
modulus [8] and provides quite acceptable results. In [9], 
tuning rules for PI controllers have been proposed based on 
the stability analysis. In [10], PI controller settings for IPDT 
processes have been obtained based on stability analysis and 
optimization methods. In [4], the method of [2] has been 
extended to the problem of tuning PID controllers. In [11], a 
method based on the maximum peak resonance specification 
is proposed for PI controller tuning of IPDT processes. In 
[12], [13], a method is proposed for designing PID controllers 
for IPDT models based on specification in terms of desired 
control on signal trajectory scaled with respect to the magni-
tude of the coefficient of Taylor’s series applied to stable 
portion of the transfer function. In [14], PID controller tuning 
methods have been proposed for IPDT processes based on 
minimizing integral criteria by the use of genetic algorithms. 
In [15], a PID controller tuning method for IPDT processes 
has been proposed, which relies on the approximation of an 
ideal controller by taking the first three terms of its McLaurin 
series expansion. Set-point pre-filters are used in [15] to 
obtain smooth closed-loop response to set-point step changes. 
A simple PI/PID tuning method for IPDT models based on 
matching coefficients of like powers of s in the numerator and 
the denominator of the closed-loop transfer function for a 
servo-problem has recently been presented in [16], wherein it 
is proposed to use set-point weighting parameters to avoid 
overshoot. Alternative tuning rules for IPDT models, based on 
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appropriate modifications of the classical PI/PID control 
structure (i.e. filtered derivative, two-degree-of-freedom con-
trollers, set-point weighting, etc.) have also been reported in 
the literature (see [6] and the references therein). 

The goal of this three-part paper is to investigate some 
design methods based on integral control and “pseudo-
derivative feedback” (PDF), and to explore some aspects of 
the control configuration developed by Phelan [17]. These are 
put forward here as an alternative means of tuning a two or 
three-term controller for integrating plus dead time processes. 
In particular, Part I of the paper is devoted to the tuning of 
PDF controllers for IPDT models. Part II of the paper is devo-
ted to the robust stability analysis of the proposed control 
scheme under structured perturbations in the model parame-
ters, and to a comparison of the proposed control and tuning 
methods with known conventional PI/PID controller tuning 
methods, in terms of robustness. Finally, in Part III of the 
paper, an extension of the proposed methods to the case of 
first order lag plus integral plus dead-time (FOLIPDT) pro-
cesses is presented. 

The PDF controller is essentially a variation of both the 
integral control with derivative-feedback algorithm (IDF) [17] 
and of the conventional PID control algorithm. The three algo-
rithms are different from each other, mainly in the way that 
the feedback of the controlled variable is realized. This diffe-
rence reflects on some fundamental differences related to the 
performance of the closed-loop system in set-point changes 
that will be explained, in full detail, in the following section. 
In Part I of the paper, our attention is focused on the two 
simpler possible forms of the general PDF control structure. 
The first contains only proportional action in the feedback 
path, and it is designated here as the “PD-0F control stru-
cture”. The second contains both proportional and derivative 
action in the feedback path, and it is called the “PD-1F control 
structure”. The step-by-step development of the proposed con-
trollers is outlined and two methods for tuning their settings 
are presented. In particular, the proposed tuning rules rely on 
approximations of the delay term through first order Taylor 
and Padé expansions and of the crossover frequency of the 
Nyquist plot of the loop transfer function. They are expressed 
in terms of adjustable parameters, which can be appropriately 
selected, either to achieve a desired damping ratio for the 
closed-loop system or to ensure the minimization of classical 
integral criteria, such as the integral of squared error (ISE) 
criterion, the integral of squared error plus normalized square 
controller output deviation (ISENSCOD) criterion [18], and 
the integral of squared error plus the normalized squared 
derivative of the controller output (ISENDCO) criterion, for 
either set-point tracking or regulatory control. It is worth 
mentioning, that explicit and precise rules and formulas, for 
the selection of the adjustable parameters are proposed in the 
paper. The proposed tuning methods require small computa-
tional effort and they are particularly useful for on-line appli-
cations, since it requires prior information that can easily be 
obtained using the relay autotuning method. A variety of 
simulation studies have been performed in the paper and the 
performance of the proposed methods is compared to that of 

known PI/PID controller tuning methods for integrating pro-
cesses. The results obtained from the application of the pro-
posed controller tuning methods to the control of IPDT pro-
cesses are rather encouraging. In contrast to known conven-
tional PI/PID tuning rules that result on large overshoot in the 
closed-loop response, the proposed controller structures and 
tuning methods ensure smooth closed loop response to set-
point step changes. This enhanced performance is plausible 
without the need for setpoint weighting or the introduction of 
set point filters. The comparison also reveals that the proposed 
methods provide fast attenuation of step load disturbances, in 
addition to enhanced closed-loop response in set-point 
changes. Moreover, as it is analytically shown in Part II of the 
paper, the proposed methods are favorably compared with 
most of the known PI/PID tuning methods in terms of stability 
robustness. Finally, as it is shown in Part III of the paper, the 
proposed control and tuning methods can easily be extended to 
other classes of integrating processes, like the first order lag 
plus integral plus dead time (FOLIPDT) process model. 
Overall, the PDF algorithm can provide a better understanding 
of the role of the three controller terms than does the con-
ventional PID algorithm and permits the development of 
simple and effective design procedures for integrating pro-
cesses with time delay. 

 

II. IPDT PROCESSES AND THE PDF CONTROLLER STRUCTURE 
IPDT processes are described by the following transfer 

function model  
 

GP(s)=Kexp(-ds)/s (1) 
 
where K and d are the process gain and the time delay, 
respectively. The magnitude and the argument of the IPDT 
model are given by  

 
( ) ωπω d2/)j(Garg P −−=   ,  ωω /K)j(GP =  

 
Solving the equation arg(Gp(jωu)) = - π, we take ωu=π/(2d). 

Therefore, the critical gain and critical period are given by 
 

)Kd2/()j(GK 1
uPu πω == − , d4/2P uu == ωπ  (2) 

 
In this paper, our aim is to investigate the pseudo- 

derivative feedback configuration, which was first proposed 
by Phelan [17] and which is put forward here as a preferred 
starting point, compared to the “standard” model of a PI/PID 
controller, for understanding and implementing two or three-
term-controllers for IPDT processes. The general PDF control 
structure is shown in Fig. 1. The transfer function GCL(s) of 
the closed loop system is  
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Fig. 1. The general PDF control structure.  
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Fig. 2. PI/PID controller with set point filter control structure equivalent to 
PD-0F and PD-1F control, respectively. 
 

The PDF controller is essentially a variation of the conven-
tional PID controller that differs in the following main points: 
(a) In contrast to standard PID controllers, in the PDF con-
troller, only the integral term, which is dedicated to steady 
state error elimination, is located in the forward path, while 
the remaining terms, which are mainly dedicated in assigning 
the desired closed-loop performance (stability, responsiveness, 
disturbance attenuation, etc.), are located in the feedback path. 
(b) The conventional PID controller acts on the process error 
in such a way that its elements contribute to both closed-loop 
poles and zeros. In contrast, the PDF controller does not con-
tribute to closed-loop zeros, and hence it is expected that it 
will not worsen the overshoot of the closed-loop response. In 
other words, the two configurations differ in the way they 
react to set-point changes (as it can be easily checked, they are 
equivalent for load or disturbance changes). The PID control-
ler often has an abrupt response to a step change because the 
step is amplified and transmitted directly to the feedback con-
trol element and downstream blocks. This can induce a signi-
ficant overshoot in the response that is unrelated to the closed 
loop system damping. For this reason, it is a common practice 
to ramp or filter the set-point. The PDF structure avoids this 
because naturally ramps the controller effort, since it inter-
nalizes the pre-filter that one would apply to cancel any zeros 
introduced in the PI/PID control configuration. 

In the present paper, we focus our attention on the two 
simpler possible forms of the general PDF control structure. 
The first contains only proportional action in the feedback 
path (i.e. KD,i=0, for i=1,… ,n-1 and KD,0≡KP≠0). We call this 
feedback scheme, the PD-0F control structure. The second 
contains both proportional and derivative action in the 
feedback path (i.e. KD,0≡KP≠0, KD,1=Kd≠0 and KD,i=0, for 
i=2,…,n-1). We call this feedback scheme, the PD-1F control 
structure. We shall next analyze the behavior of both the PD-
0F and the PD-1F control structure, in the case where the 
system under control is an IPDT process with a transfer 
function model of the form (1). 

To this end, observe that, equation (3), in the case of a PD-
0F controller and for IPDT models of the form (1), takes the 

form 
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The proposed PD-0F controller is equivalent to a PI 

controller with a low-pass set-point filter, as shown in Fig. 2, 
where GC(s)=KP(1+1/θs), GSPF(s)=1/(θs+1) and  

 
θ=KP/KI (5) 
 

Taking into account this equivalence, the loop transfer 
function of an IPDT system controlled by a PD-0F controller 
is given by 
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The argument of the loop transfer function h is given by 
 

( ) ( )( )11
L tand)2/()(Garg −−−−−= θωωπω  (6) 

 
On the other hand, equation (3) in the case of a PD-1F 

controller and for IPDT models of the form (1), takes the form 
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It is easy to check that the proposed PD-1F controller is 

equivalent to a PID controller with a set-point filter, as shown 
in Fig. 2, where 

 
GC(s)=KP(1+ +)s/(1 θ δs)  ,  GSPF(s)=1/(δθs2+θs+1)  

pd K/K=δ  
 

This equivalence suggests that the loop transfer function of 
an IPDT system controlled by a PD-1F controller is given by 
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In the following sections, our aim is to propose simple 

methods for tuning the PD-0F and PD-1F controllers for IPDT 
processes. 
 

III. TUNING THE PD-0F CONTROLLER  
Using the first order approximation exp(-ds)≈1-ds, in the 

denominator of (4) and after some easy algebraic manipula-
tions we obtain 
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P

11
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where ωPC is given by (11) and α>0 is an adjustable tuning 
parameter. Substituting (11) in (14) and after some algebraic 
manipulations we obtain 
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provided that α<π2. Therefore, from (15), (13) and (5) we 
finally obtain  

The Routh stability conditions about equation (8) yield  
 

11
PI KdKdK −−<<  (9) P )4K +−= απαπ ( )[ ] 1222 dK8(

−
 (16a) 

( )( )[ ] 12222
I Kd)8(K −

+−−= απααπα  (16b)  
provided that  

 
KI<1/(d2K) (10) 

Note that, with this value of KI, inequality (10) is always 
satisfied. 

 In general, the value of the parameter α can be selected 
arbitrarily in the range 0<α<π2, thus permitting on-line tuning. 
However, it would be useful for the designer to follow certain 
rules, based on some criteria relative to the closed-loop system 
performance, in order to choose the adjustable parameter α. 

Clearly, inequality (9) provides the admissible range of the 
PD-0F controller parameter KP. 

We next apply the approximation tan-1(x)≈x (which is valid 
for x<<1) in (6). For frequencies close to the critical 
frequency, equation (6) can be approximated by (observe that 
in these frequencies the argument of the tan-1 function is 
always less than 0.2) 

 
( ) ( 1

L d)2/()(Garg −−−−≈ θωωπω )  
 

Solving the equation arg(GL(ωPC))= - π yields 
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
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A first criterion for the choice of the parameter α is related 
to the responsiveness of the closed-loop system. From the 
previous analysis, it becomes clear that the closed-loop system 
response may take on any desired form by choosing an appro-
priate value of the damping ratio ζ (which depends on KP and 
θ and hence on the adjustable parameter α) in the second order 
approximation (8). Let this particular value of ζ to be denoted 
as ζdes. In order to satisfy ζ=ζdes, the adjustable parameter α 
must be selected as 

 

( ) 










+
−−=

14
1611

2 2
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2

2

ζπ
πα  (17)  

We are now able to present a method for tuning the PD-0F 
controller parameters. The proposed method is as follows.  

provided that 0.39414/1)/(4 2
des ≈−> πζ . Relation (17) 

can be easily obtained by substituting (15) and (16a) in (8c) 
and then solving the resulting equation with respect to α. 

PD-0F Controller Tuning Method for IPDT models 
As for KP, we choose the middle value of the allowed range 

given by inequality (9). That is 
 

( 2/KddKK 11
IP

−−+= )

]

 (12) 
 

The reason for this choice of KP is that we want to keep 
maximum robustness margins for the both sides of the process 
parameters, when the parameters get either larger or smaller 
than their estimated values. Using (5), relation (12) can be 
written as 

 
( )[ 1

P dKd2K −−= θθ  (13) 

An alternative tuning can be obtained from the minimiza-
tion of integral criteria. Such criteria include the integral of 
squared error due to unit step set-point changes (ISE-SP) or 
due to unit step load changes (ISE-L), the integral of squared 
error plus the normalized squared controller output deviation 
from its final value u∞ [18] for either set-point tracking or 
regulatory control (ISENSCOD_SP and ISENSCOD_L, 
respectively) and the integral of squared error plus the 
normalized squared derivative of the controller output for set-
point tracking or regulatory control (ISENSDCO_SP and 
ISENSDCO_L, respectively). These integrals have the forms 

  
Observe now that if θ is somehow specified, then, the PD-

0F controller settings can be obtained from (13) and (5). As 
for θ, it is proposed to choose 

 
)/(2 PCαωπθ =  (14) ∫
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TABLE I TABLE II 
OPTIMAL VALUES OF THE ADJUSTABLE PARAMETER α THAT MINIMIZE 

SEVERAL INTEGRAL CRITERIA 
OPTIMAL VALUES OF THE ADJUSTABLE PARAMETER β THAT MINIMIZE 

SEVERAL INTEGRAL CRITERIA 

Optimal value of α Minimum value of the integral 

2.0432 d×ISE_SP = 2.7658 
1.6952 d×ISENSCOD_SP = 3.1343 
1.8045 d×ISENSDCO_SP = 2.9053 
2.1483 d3×ISE_L = 7.3241 
1.7779 d3×ISENSCOD_L = 10.379 
1.8315 d3×ISENSDCO_L = 8.9623 

Optimal value of β Minimum value of the integral 

1.6202 d×ISE_SP = 2.7658 
1.4040 d ×ISENSCOD_SP = 3.1343 
1.4746 d ×ISENSDCO_SP = 2.9053 
1.6807 d 3×ISE_L = 7.3241 
1.4576 d 3×ISENSCOD_L = 10.379 
1.4916 d 3×ISENSDCO_L = 8.9623 

  
  

been obtained using optimization algorithms Note that in the case of IPDT processes u∞=0. Tuning 
methods based on the minimization of ISE guarantee small 
error and very fast response, particularly useful in the case of 
regulatory control. However, the closed-loop step response is 
very oscillatory, and the tuning can lead to excessive con-
troller output swings that cause process disturbances in other 
control loops. In contrast, minimization of criteria (18a) and 
(18b) leads to smoother closed-loop responses that are less 
demanding for the process actuators. 

The proposed method requires prior information that can 
easily be obtained using the relay autotuning method. Indeed, 
from (2) 

 
d=Pu/4  ,  K=2π/(ΚuPu) 
 

Therefore, one simple relay feedback experiment can pro-
vide us the information needed for tuning the PD-0F con-
troller. Since there is no close form solution for the minimization of 

the above integrals in the case of time-delay systems, simula-
tion must be used instead. Here, optimization algorithms are 
used to obtain the optimal values of α that minimize the afore-
mentioned integrals. Table I summarizes the optimal values of 
the tuning parameter α and the corresponding minimum values 
of the above integrals. 

 

IV. TUNING THE PD-1F CONTROLLER  
Using the first order Padé approximation exp(-ds)≈ (1-

0.5ds)/(1+0.5ds), in the denominator of (7) yields 
 

An alternative way to tune the PD-0F controller parameters 
that differs from the above method in the way the parameter θ 
is chosen is next described. The controller gain KP is once 
again chosen as suggested by (12) (or equivalently (13)). As 
for θ, it is now proposed to choose 
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where  

 where Pu is the critical period (Pu=2π/ωu) and β is an 
adjustable parameter. Note that, . With this 
choice, we obtain 

22 )( −−= παπαβ ( ) ( )ds5.01/KKd4KKd2KK)s(Q d
2

P
1

I ++−= −−  
 

 

( )[ ] 1
P dK84K −−= β  ,  (20) ( )[ 12

I Kd8K
−

−= ββ

Observe now that if Kd is selected as 

]

]

 
( ) ( )4/Kd2/dKK I

2
Pd −=  (22)  

 provided that β<8. The adjustable parameter β can be chosen 
to satisfy a desired damping ratio ζdes in the second order 
approximation (8). In order to satisfy ζ=ζdes, the adjustable 
parameter β must be selected as 

then Q(s)=0 and ( ) Id
1

P
1 KKKKd2KKd2 =− −− . Therefore,  

 

 

[ 12
des 144

−
+= ζβ  (21) 

( )( )ds5.01KKsKKd2s
)dsexp(KK)s(G

Id
12

I
CL −++

−
≈ −  

 
 or, after some easy manipulations, 
where, in producing (21), use was made of (19) and of the first 
of (20) in (8c), in order to obtain a quadratic equation with 
respect to β, whose admissible solution is given by (21). 
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)dsexp()s(G 22CL ++

−
≈

ξρρ
 (23a) 

Alternative controller settings can be obtained from the 
minimization of integral criteria. Table II summarizes the 
optimal values of the tuning parameter β and the correspon-
ding minimum values of several integral criteria, which has  

4
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TABLE III 
OPTIMAL VALUES OF THE ADJUSTABLE PARAMETER γ THAT MINIMIZE 

SEVERAL INTEGRAL CRITERIA 

Optimal value of γ Minimum value of the integral 

1.8972 d ×ISE_SP = 2.7658 
1.5393 d ×ISENSCOD_SP = 3.1343 
1.3329 d ×ISENSDCO_SP = 2.9053 
1.6281 d 3×ISE_L = 7.3241 
1.2264 d 3×ISENSCOD_L = 10.379 
0.5962 d 3×ISENSDCO_L = 8.9623 
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The Routh stability conditions about equation (23) yield 
 

)dK/(2)2/dK(KdK IPI +<<  (24) 

Fig. 3a. Servo response for different methods for PI and PD-0F controller tu-
ning, without the use of setpoint filters. Solid: proposed method (α=0.8781 or 
β=0.8, and α=1.8045 or β=1.4746); dash: C-PS method (α1=1.225); dot: C-PS 
method (α1=1.1); dash-dot: T-L method. 
 

 to γ, we obtain 
provided that KI<4/(d2K).   

( ) 12
des 124 −

+= ξγ  We are now able to present a simple method for tuning the 
PD-1F controller parameters. The proposed method is as 
follows.  

Αlternative controller settings can be obtained from the 
minimization of integral criteria. Table III summarizes the 
optimal values of the tuning parameter γ and the correspon- 
ding minimum values of several integral criteria, which has 
been obtained using optimization algorithms. 

PD-1F Controller Tuning Method for IPDT models 
As for KP, we choose the middle value of the allowed range 

given by the inequality (24). That is 
 

( )( ) ( ) 11
I

11
IP Kd4/dK32/Kd22/dK3K −−−− +=+=   

 V. SIMULATION STUDIES  Using (5), the above relation can equivalently be written as 
 

1
11

P 4
d31KdK

−
−− 






 −=

θ
 (25) 

In order to demonstrate the effectiveness of the proposed 
control structure and tuning methods for IPDT processes and 
to provide a comparison with existing tuning formulas for 
conventional PI/PID controller tuning, two examples are 
elaborated in this section  

It is now clear that if θ is somehow specified, then, the PD-
1F controller settings can be obtained from (25), (5) and (22). 
Here, as for θ, it is proposed to choose 

A. SISO Example 

 
γγθ /d4/Pu ==  (26) 

 
where γ is an adjustable parameter. Then, we obtain 

 
[ 1

P dK)316(16K −−= γ ]
]

]

 (27a) 

[ 12
I Kd)316(4K

−
−= γγ  (27b) 

( )[ 1
d K)316(8K −−−= γγ  (27c) 

We first proceed with a comparison of the proposed method 
for PD-0F controller tuning with the methods for PI controller 
tuning reported in [2], [9], [10], [11] and [16]. To this end, the 
IPDT model with parameter values K=1%/sec and d=1 sec is 
considered. The PI controller settings given by the T-L me-
thod are KP=0.4863, θ=8.7527. C-method provides the settings 
KP=0.6710, θ=3.6547. The settings obtained from the appli-
cation of the K-L-A method are KP=0.6042, θ=5, while the P-
P method yields KP=0.5325, θ=4.1600. For α1=1.225, the C-
PS method provides the PI controller settings KP= 1.1011, 
θ=4.9444, while for α1=1.1, we obtain KP=1.0476, θ=10.5. 
The servo responses obtained by applying the T-L method and 
the C-PS method for the above values of the adjustable para-
meter α1 are shown in Fig. 3a. The performance of the propo-
sed controller, whose settings are given by relation (20) for 
ζdes=1 (α=0.8781 or β=0.8), and for α=1.8045 or β=1.4746  

 
provided that γ<16/3. 
As in the case of the PD-0F controller, the adjustable para-
meter γ can be specified to obtain a desired damping ratio ξdes 
for the second order approximation (23). Substituting (26) and 
(27a) in (23c) and solving the resulting equation with respect  



> T7-040 < 
 

7

 

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time (second) 

R
es

po
ns

e 

α=0.8781 or β=0.8 

α=1.8045 or β=1.4746 

 

 

0 10 20 30 40
0 

0.2 
0.4 
0.6 
0.8 

1 
1.2 
1.4 
1.6 
1.8 

Time (second) 

R
es

po
ns

e 

α=0.8781 or β=0.8 

α=1.8045 or β=1.4746 

 
Fig. 3b. Servo response for different methods for PI and PD-0F controller tu-
ning, without the use of setpoint filters. Solid: proposed method (α=0.8781 or 
β=0.8, and α=1.8045 or β=1.4746); dash: C-method; dot: K-L-A method; 
dash-dot: P-P method. 

Fig. 3d. Legend as in Fig. 3b, but with a setpoint filter of the form 1/(θs+1) 
added in the PI controller configuration. 
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Fig. 3e. Regulatory response for different methods for PI and PD-0F control-
ler tuning and a for a unit step load change. Other legend as in Fig. 3a.  

Fig. 3c. Legend as in Fig. 3a, but with a setpoint filter of the form 1/(θs+1) 
added in the PI controller configuration.  

  
controller tuning methods, in the case where a set point filter 
of the form 1/(θs+1), although not suggested, is added, in or-
der to implement the control. Figures 3c and 3d, illustrate the 
servo responses obtained by the application of controller and 
tuning method with the above mentioned PI the methods under 
comparison. Our method gives a faster response than the T-L 
method and the C-PS method. The C-PS method for α1=1.225 
gives an oscillatory response. Our method for α=0.8781 (or 
β=0.8) is comparable to the K-L-A method and the C-method 
in terms of settling time, while it gives almost identical res-
ponse to set-point changes with the P-P method. Finally, our 
method for α=1.8045 (or β=1.4746) provides a faster response, 
but the settling time is worst than that provided by the C-
method, the K-L-A method or the P-P method. 

(which corresponds to the minimum of the ISENDCO_SP 
criterion) is also given in Fig. 3a. Fig. 3b illustrates the servo 
responses obtained by the application of the C-method, the K-
L-A method and the P-P method together with those obtained 
by the proposed controller structure and tuning method. From 
the above figures, it becomes clear that both the C-PS and the 
C-method give excessive overshoots. Moreover, the C-PS 
method yields an oscillatory response. The overshoot is 
smaller, when the P-P or the K-L-A method is applied, but still 
remains near to 50%. The T-L method yields the smallest 
overshoot among the conventional PI controller tuning 
methods, but the settling time obtained is quite large. Our 
method is the best in terms of both overshoot and settling 
time. 

We next perform a comparison of the proposed control and 
tuning method with the conventional PI controller tuning me-
thods mentioned above, in the case of regulatory control. The 
regulatory responses obtained by applying the T-L method and  

As it has been mentioned above, the proposed PD-0F con-
troller is equivalent to a PI controller with a set-point filter. 
Therefore, it is fair to perform a comparison of the proposed  
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Fig. 3g. Servo response under simultaneous parametric uncertainty. K=1, d=1 
for controller design and K=1.5, d=1.5 in the process. Solid: proposed method; 
dash: T-L method; dot: P-P method.  

Fig. 3f. Regulatory response for different methods for PI and PD-0F controller 
tuning and for a unit step load change. Other legend as in Fig. 3b.  
 

 the C-PS method, for α1=1.225 and α1=1.1, are shown in Fig. 
3e. Figure 3f illustrates the regulatory responses obtained by 
applying the C-method, the K-L-A method and the P-P me-
thod. A unit step load change is assumed. The performance of 
the proposed controller for ζdes=1 (α=0.8781 or β=0.8), and for 
α=2.1483 or β=1.6807 (which corresponds to the minimum of 
the ISE_L criterion) is also given in Figures 3e and 3f. From 
these figures, it becomes clear that the smallest error is provi-
ded by the CP-S method. However, this method provides a 
very oscillatory response, and for α1=1.1 the settling time is 
large. The T-L method provides poor regulatory control, since 
its response presents large error and settling time. For regula-
tory control, our method is comparable to the C-method, K-L-
A method and P-P method in terms of maximum error and 
settling time. In particular, the proposed control and tuning 
method gives results almost identical to those obtained from 
the application of the P-P method for PI controller tuning. 
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The robustness of the proposed control and tuning method 

is studied by using 50% simultaneous perturbation in K and d 
from their nominal values in the simulation (K=1.5, d=1.5), 
whereas the controller settings are those calculated for the 
process with nominal parameters (K=1, d=1). Fig. 3g shows 
the servo response. A set-point filter of the form 1/(θs+1) is 
used in the PI controller configuration. The responses are 
obtained for the regulatory problem as shown in Fig. 3h. Note 
that, with this simultaneous uncertainty, the C-PS method, the 
C-method and the K-L-A method give unstable responses both 
for servo and regulatory control. For the servo problem, the 
proposed control and tuning method gives also an unstable 
response, in the case where α=1.8045 or β=1.4746, while for 
the regulator problem, the proposed method gives an unstable 
response when α=2.1483 or β=1.6807. Obviously, the con-
troller settings provided by the T-L method give the best 
robust performance. The proposed control and tuning method 
is worst than the T-L method and slightly better than the P-P 
method in terms of robustness. Of course, this is expected ba- 

Fig. 3h. Regulatory response under simultaneous parametric uncertainty. 
Other legend as in Fig. 3g.  
 
sed on the analysis presented in Part II of the paper. 

We next perform a comparison of the proposed method for 
PD-1F controller tuning with the methods for PID controller 
tuning reported in [4], [12] and [13], [14]-[16]. For the IPDT 
model with parameter values K=1%/sec and d=1 sec, the PID 
settings given by the method in [4] (L-method) are KP=0.7726, 
θ=8.8, δ=0.64, while N=10 (see [4], [6] for details). The W-C 
method provides the settings KP=1.1431, θ= 2.2178, δ=0.4307 
for ζ1=1 and β1 =0.5, and KP= 1.3382, θ= 1.9086, δ=0.4152 for 
ζ1= 2/2  and β1= 0.5. The settings obtained from the applica-
tion of the V-method are KP=1.37, θ=1.49, δ=0.59. The me-
thod in [15] (L-L-P method) provides the PID controller set-
tings KP=1.2879, θ=2.6533, δ=0.4255, with the parameter λ= 
0.6. The C-PS method, for α1=1.25, provides the PID con-
troller settings KP=1.2346, θ=4.5, δ=0.45. The servo responses  
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Fig. 4a. Servo response for different methods for PID and PD-1F controller 
tuning, without the use of setpoint filters. Solid: proposed method (γ=0.8781 

and γ=1.3329); dash: W-C method (ζ1=1); dot: W-C method (ζ1= 2/2 ); 
dash-dot: L-method. 

Fig. 4c. Servo response with a setpoint filter of the form 1/(δθs2+θs+1) added 
in the PID controller configuration when the W-C method is applied. Other 
legend as in Fig. 4a. 
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 Fig. 4d. Servo response with setpoint filters added in the PID controller 
configuration. A set point filter of the form 1/(δθs2+θs+1) is used with the V-
method and the C-PS method. A first order set point filter [15] is used with the 
L-L-P method. Other legend as in Fig. 4b. 

Fig. 4b. Servo response for different methods for PID and PD-1F controller 
tuning, without the use of setpoint filters. Solid: proposed method (γ=0.8781 
and γ=1.3329); dash: L-L-P method; dot: C-PS method; dash-dot: V-method. 
  
obtained by applying the L-method and the W-C method, are 
shown in Fig. 4a. The performance of the proposed controller, 
whose settings are given by relations (27a)-(27c) for γ=0.8781 
(ξdes=1.3333), and for γ=1.3329 (which corresponds to the 
minimum of the ISENDCO_SP criterion) is also given in Fig. 
4a. Fig. 4b illustrates the servo responses obtained by the 
application of the V-method, the C-PS method and the L-L-P 
method together with those obtained by the proposed control 
and tuning method. It is noted that no set-point filter is used in 
order to implement the PID controller. Clearly, all known PID 
tuning methods except the L-method give excessive over-
shoot. Moreover, the V-method gives an oscillatory response 
with large settling time. The L-method provides less overshoot 
(only 20%), but it is the worst in terms of settling time. The 
proposed control and tuning method provides smooth response  

and acceptable settling time.  
Figures 4c and 4d illustrate the servo responses obtained by 

the applying the above PID tuning methods and the proposed 
controller and tuning method, in the case where a set-point 
filter is used in the PID control configuration, to reduce the 
overshoot. The W-C, the C-PS and the V-method is associated 
with a second order filter of the form 1/(δθs2+θs+1), while the 
L-L-P method is associated with an appropriate first order 
filter (see [15] for details). No set-point filter is used in case of 
the L-method, because the derivative term is already filtered. 
Even in this case the proposed method gives a smoother 
response with satisfactory settling time. In particular, the pro-
posed control and tuning method gives a servo response al-
most identical to that obtained from the application of the C-
PS method for PID controller tuning. 
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 Fig. 4g. Servo response under simultaneous parametric uncertainty. K=1, d=1 
for controller design and K=1.2, d=1.2 in the process. Solid: Proposed method 
(γ=0.8781); dash: W-C method (ζ1=1); dot: L-method.  

Fig. 4e. Regulatory response for different methods for PID and PD-1F con-
troller tuning and for a unit step load change. Solid: proposed method (γ= 
0.8781 and γ=1.2264). Other legend as in Fig. 4a.   
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Fig. 4h. Regulatory response under simultaneous parametric uncertainty. K=1, 
d=1 for controller design and K=1.2, d=1.2 in the process. Other legend as in 
Fig. 4g.  Fig. 4f. Regulatory response for different methods for PID and PD-1F con-

troller tuning and for a unit step load change. Solid: proposed method (γ= 
0.8781 and γ=1.2264). Other legend as in Fig. 4b.  

 
identical to that obtained from the application of the C-PS 
method for PID controller tuning.  

The performance of the proposed PD-1F controller tuning 
method and of the conventional PID controller tuning methods 
mentioned above, in the case of regulatory control, is illustra-
ted in Figures 4e and 4f. In the comparison, a unit step load 
change is assumed. The performance of the proposed control-
ler for γ=0.8781 and for γ=1.2264 (which corresponds to the 
minimum of the ISEΝSCOD_L criterion) is also given in Figs. 
4e and 4f. From these figures, it becomes clear that the L-
method provides poor regulatory control, since its response 
presents large error and settling time. The smallest error is 
provided by the V- method. However, this method provides a 
very oscillatory response, and the settling time is large. For 
regulatory control, our method is comparable to the C-PS 
method, the L-L-P method and the W-C method in terms of 
maximum error and settling time. In particular, the proposed 
control and tuning method gives a regulatory response almost  

The robustness of the proposed control and tuning method is 
studied by using 20% simultaneous perturbation in K and d 
from their nominal values in the simulation (K=1.2, d=1.2), 
whereas the controller settings are those calculated for the pro-
cess with nominal parameters (K=1, d=1). Fig. 4g shows the 
servo response. A set-point filter of the form 1/(δθs2+ θs+1) is 
used in the PID controller configuration associated with the 
W-C method for ζ1=1. The responses are obtained for the 
regulatory problem as shown in Fig. 4h. Note that, with this 
simultaneous uncertainty, the C-PS method, the V-method, the 
L-L-P method and the W-C method for ζ1= 2/2  give unsta-
ble responses both for servo and regulatory control, since they 
cannot tolerate 20% simultaneous parametric uncertainty. For 
the servo problem, the proposed control and tuning method 
gives also an unstable response, in the case where γ=1.3329, 
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while for the regulator problem, the proposed method gives an 
unstable response when γ=1.2264. Obviously, the controller 
settings provided by the L-method give the best robust perfor-
mance. The proposed control and tuning method is worst than 
both the L-method and the W-C method in terms of robust-
ness, a fact that is expected based on the analysis reported in 
Part II. 

B. MIMO Example 
It is interesting and challenging to investigate the usefulness 

of the proposed methods in the context of MIMO systems 
control. To this end, we consider here the well-known and 
studied Wood and Berry (W&B) column [19]. The W&B 
column has the following transfer function matrix 
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Fig. 5a. Closed-loop distillate composition (xd) response of the W&B column 
to load disturbance. Solid: Proposed method; dash: BLT method; dot: INA 
method with a multivariable controller of the form (28).  

  
Among the multivariable PI controllers that have been pro-

posed for the W&B column, we consider here the application 
of the BLT tuning method reported in [8], [20], [21] and the 
application of the Inverse Nyquist Array (INA) reported in 
[22]. 
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The critical gain and critical period of the diagonal ele-
ments of the transfer function matrix are the following 

 
Ku,1=2.1  ,  Pu,1=3.91  ,  Ku,2= - 0.42  ,  Pu,2=11.13 
 

Thus, application of the proposed method for PD-0F con-
troller tuning, for α=0.8781 or β=0.8, gives 

 
KP,1=0.7427  ,  KI,1=0.1520  ,  KP,2= - 0.1485  ,  KI,2= - 0.0107 
 

Application of the BLT method for tuning multivariable PI 
controllers of the form 

 
( ){ } 2,1i  ,)s/(11Kdiag)s(G ii,PC =+= θ  (28) 

Fig. 5b. Closed-loop bottoms composition (xb) response of the W&B column 
to load disturbance. Other legend as in Fig. 5a. 
  and the following precompensator gives    









−

=
144.0
9.01

KPC  KP,i=Ku,i/(2.2f)  ,  θi=fPu,i/1.2 
 
and the tuning factor f takes the value f=2.55 for the W&B 
column [8], [19]. Application of the INA method for the 
design of multivariable PI controllers has been reported in 
[22], where the following controller parameters are proposed 

 
In this case, the controller transfer function is 
 

( ){ } 2,1i  ,)s/(11KdiagK)s(G ii,PPCINA,C =+= θ  (29) 
 In Figures 5a and 5b the variation of the outputs of the 

system for a unit step change in the feed flow rate disturbance 
is given for the proposed PD-0F controller tuning method (for 
α=0.8781 or β=0.8), the BLT method and the INA method 
given by equation (28). In Figures 5c and 5d the same closed 
loop experiment is considered but the equation (29) is used for 
the INA method. 

2.7θ  ,2.0K 11,P ==   ,   1.8θ  ,047.0K 22,P =−=

 
Using considerably more analysis, in order to achieve 

increased diagonal dominance at intermediate frequencies, we 
can take the following set of controller parameters 

 
KP,1=0.61  ,  θ1=8.1  ,  KP,2= - 0.085  ,  θ2=7.6 It is interesting to note that the proposed PD-0F controller  



> T7-040 < 
 

12

 

0 20 40 60 80 100

0 
0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 

Time (min) 

xd 

 
Fig. 5c. Closed-loop distillate composition response of the W&B column to 
load disturbance. Solid: Proposed method; dash: BLT method; dot: INA me-
thod with a multivariable controller of the form (29).  
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Fig. 5d. Closed-loop bottoms composition response of the W&B column to 
load disturbance. Other legend as in Fig. 5c. 
 
tuning method gives better results than the BLT or the INA 
method. This is a rather surprising result, since in contrast to 
the proposed method both BLT and INA method require 
considerable off-line computation in order to design the 
diagonal multivariable PI controllers. When the INA method, 
with a controller of the form (29), is used, the response of xb is 
greatly improved. However, the response of xd is worse than 
the one obtained using the proposed method. In conclusion, 
the closed loop response obtained using the proposed PD-0F 
controller tuning method is at least comparable with the res-
ponse obtained with well known multivariable design methods 
for PI controller tuning that require considerable computatio-
nal effort. 
 

VI. CONCLUSIONS  
Simple methods for tuning PD-0F and PD-1F controllers for 

IPDT processes have been proposed, in this first part of the 
paper, and their performance has been compared with that of 

conventional PI/PID controller tuning methods. The compari-
son reveals that the proposed control and tuning methods are 
superior to most of the existing PI/PID tuning methods in both 
servo and regulatory control problems, while they provide a 
more robust performance, as it will analytically be shown in 
Part II of the paper. Taking into account the present analysis 
and the results reported in Part II, among existing tuning 
methods, only the method reported in [12], [13] really pro-
vides better results, in terms of closed-loop performance and 
stability robustness. 
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