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Abstract—A feedback model for financial markets is proposed,
in which the control action is an agent’s decision based on his
beliefs of the price dynamics and his behavior reflecting his
attitude, such as risk aversion or risk preference. An adaptation
mechanism is described and the condition for equilibrium is
formulated as a, typically non-linear, fixed point problem for
operators. A data driven stochastic approximation procedure is
given for the on-line tuning of the market to achieve equilibrium.

I. INTRODUCTION

Financial markets are commonly modeled as open-loop
systems where a causal relationship between variables such
as the demand for a particular stock and its price is assumed.
However, the discrimination between input and output is often
arbitrary, as pointed out by Willems [19]. In the example above
it is equally true that the price of a stock influences the demand.
This mutual causal dependence gives rise to a feedback system.

The purpose of this paper is to study a particular example of
a feedback system modeling the behavior of agents of financial
markets. The word agent is used in a wide sense: it may refer
to a group of economic players, such as an industrial sector or
to dominant investors such as certain analysts and depositaries
of economic power. In any case, the effect of the agent on the
market is assumed to be macroeconomically significant. The
dynamic relationship between demand as input and price as
output will be fixed, this is the plant. The agent predicts the
observed price process, and using these predictions will buy
or sell shares according to his/her strategy or behavior which
reflects his/her risk aversion, conservatism, etc. A variety of
behaviors of economic players is described in Shefrin [17] and
Kostolany [11]. The agent’s action will then show up at the
input node of the plant together with noise and thus we get a
closed loop system.

A key factor in the above model is the agent’s belief of
the price dynamics, and his/her predictive capability. For any
fixed predictor of the price process, denoted by M , we get a
closed loop dynamics and a price dynamics depending on M ,
for which the optimal predictor will be typically different from
M . It is then reasonable to remodel the price process and use a
new, better predictor. This iterative procedure will be described

and analyzed for linear systems in term of transfer functions.
An on-line, data-driven procedure will also be presented.

The paper is believed to contribute to the fruitful interaction
of economics and control theory, as put forward in Hansen and
Sargent [8].

II. A BEHAVIORAL FEEDBACK MODEL

The price of a given stock at time t � Z� is denoted by pt.
If we consider a portfolio with n stocks then the above defined
terms are multi-dimensional vectors in Rn , their ith component
expressing the price of the i th stock. Naturally, all components
of the price process �pt� should be non-negative. However, if
we think of the price of a stock as a measure of the profitability
of the company that issues it, then a negative price could mean
that the company is unprofitable. Therefore, we assume that the
price process p of a stock can take any value in R.

The prices are given by the market. In general, the stock
market is modeled as a dynamical system that generates prices.
In this paper the market is viewed as a black box, denoted by
P , relating the input process u to the output process p:

Pu � p � (1)

It is assumed that stock prices depend on the past and present
values of the demand process and on the current stochastic
disturbances entering at the input node of the plant P .

The controller relates the price and the demand processes as

d � �Cp (2)

where C is a dynamical system such that the demand process
d depends only on the past values of the price process. The
components of the demand sequence �d t� can also take any
values in R: this time a negative value means that the agent
would like to sell the stock concerned. We assume that stocks
are infinitely divisible: any amount can be purchased or sold.

The interconnection of the two systems (see Figure �) is
given by the equation

dt � et � ut (3)
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Fig. 1. The closed-loop system.

where the stochastic disturbance �et� is a stationary process.
Now assume that a new agent enters the stock market.

He observes a stock price process p which he assumes to
be stationary. Then based on his beliefs and on other side
information, he constructs a price predictor M :

�p � Mp (4)

where M is assumed to be a strictly non-anticipating predictor,
meaning that �pt depends only on the values ps for s � t. The
letter M indicates that the agent’s prediction is based on some
model M of the price process.

The agent uses this predicted price to determine his own
demand. We allow the possibility that he/she behaves less than
fully rationally. Proponents of behavioral finance (as the set of
theories based on this assumption is usually referred to) argue
that psychological phenomena prevent decision makers from
acting in a rational manner (see for example Greenfinch [6] and
Shefrin [17]). Critics of this theory (see the works of Lucas [14]
and Simon [18]) claim that the behavior of the agents is always
rational from a particular perspective. In any case the strategy
of the agent can be formalized as

B

�
p

�p

�
� d (5)

where B is assumed to be a strictly non-anticipating operator.
The demand at a given time depends only on the past values of
the price process. In this paper we assume that the behavior of
the agent is fixed, i.e. the operator B is considered to be given.

Example II.1 Suppose an agent at time t is trying to figure out
how much of a given stock he is willing to buy. Taking into
consideration all the relevant information available, he makes
an estimate of the future price, denoted by �p t��. A reasonable
agent would buy more of the stock whenever his estimate �p t��
is greater than the current price pt, and would buy less if it is
the other way round. Thus a simple rational behavior could be
described for example by the equation

dt � �dt�� � B sgn��pt�� � pt � ��

where � � � is a threshold value, B is the number of stocks the
agent wants to purchase and � � � � �, � � � is a parameter
expressing the faith of the agent in his past decisions.

Example II.2 A cognitive bias that frequently occurs is the
phenomenon of anchoring, also known as conservatism: people
have in memory some reference points (anchors), for example
a previous stock price or price trend. They cling excessively
to prior beliefs when exposed to new evidence, they reject new
facts that are contrary to their preconcieved ideas. This may
be modeled as �pt�� being a function of pt�r� pt�r��� � � � only
(i.e. the agent does not take into consideration the last r stock
prices at all). For a more detailed exposition on the concept of
conservatism see Edwards [4].

Example II.3 Another psychological phenomenon extensively
studied by behaviorists is the so-called loss aversion.
Kahnemann and Tversky [9] find that even simple risk aversion
can be biased: empirical evidence shows that a loss has about
two and a half times the impact of a gain of the same magnitude.
This behavior can be formalized by the equation

dt � �dt�� � B��pt�� � pt�
� � ���B��pt�� � pt�

�

where the notations of the first example are used.

Combining equations ��� - ���, we get the following diagram.
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Fig. 2. A behavioral feedback model.

Fixing M and assuming that the closed loop system is well-
defined, a price process p � p�M� is generated and the
controller C can be calculated from equations (2) and (5):

Cp � �B

�
p

�p

�
�

Thus the controller depends on the predictor: C � C�M�.
On the other hand, p will be a stationary process with a

spectrum depending on C, and its least squares predictor M �

will also depend on C, say M � � M��C�. If the market is in
equilibrium then M ��C� will coincide with the initial predictor
of the agent:

M��C�M�� � M� (6)

Typically, this will not be the case. Instead, the agent notes that
the price dynamics does not agree with what he assumed to be.
He updates his predictor: he simply puts M� 	� M��C�M��
and uses this new predictor when determining his demand.

As long as M��C�Mi�� �� Mi, the agent repeatedly updates
his predictor. The following questions arise:

� Is there a predictor M� for which the market is in
equilibrium, i.e. M� solves (6)?

� Let f�M� � M��C�M��. Does the iterative procedure

Mi�� � f�Mi� (7)
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converge?
� Let M be estimated on-line from observed values of p.

Does the resulting stochastic approximation procedure
converge?

To deal with these questions, we leave our general setup and
turn to a mathematically more tractable class of models, namely
linear models.

III. LINEAR MODELS

To have an idea of the mechanism of prediction-based
behavioral models, from now on we assume that the dynamical
systems P� M� B defined above are all linear. In particular P
is non-anticipating with an invertible constant term P�, M is
strictly non-anticipating (having no direct term) and

B

�
p

�p

�
� B�p�B��p (8)

where B� is a strictly non-anticipating and B� is a non-
anticipating linear operator. Thus we get

C � C�M� � ��B� �B�M�� (9)

The resulting closed loop system is well defined if

jjPCjjH� � jjP �B� �B�M�jjH� � � �

Letting H be the transfer function from e to p we get

H � H�C� � �I � PC���P �

Write p � HP��

� �P�e�. The optimal one-step ahead predictor
of p is known to be given by

�p � �I � P�H
���p �

assuming thatH is inverse stable, i.e. P is minimum phase (see
Caines [2] and Hannan and Deistler [7]). Thus we arrive at

M� � I � P�H
�� �

Substituting C from (9) yields

M� � f�M� � I � P�P
�� � P�B� � P�B�M � (10)

Note that if M is non-anticipating then the resulting operator
f�M� is also non-anticipating. It is readily seen that equation
(10) has a unique solution if jjP�B�jjH� � � given by

M� � �I � P�B��
���I � P�P

�� � P�B�� � (11)

In the general case P may be non-minimum phase since there
is a delay in the market’s response to change in demands. Then
we first have to perform spectral factorization of H . Write

HP��

� � 
P��

� �T 
HT � L
LT �

where 
H is the conjugate of H and L is stable and minimum-
phase. Then the least squares predictor is obtained by

�p � �I � L���p �
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Fig. 3. A model with two agents.

and thus f�M� is defined by the following sequence of
equations:

C � ��B� �B�M�

H � �I � PC���P

L
LT � HP��

�
� 
P��

�
�T 
HT

f�M� � I � L�� �

Conditions under which the above mapping f is a contraction
are yet to be developed.

Remark III.1 In the case of conservatism (see example II.2),
we need the optimal r-step ahead price predictor. Assuming
again that P is minimum phase and using the notation
�f�z��_ 	�

P�

i��� fiz
i where f�z� �

P
�

i��� fiz
i, it is

easily seen that the fixpoint equation takes the form

M� � f�M� � q�r�qrH�q��_H
��

where q denotes the shift operator.

Now consider a model with two agents who are assumed
to be parallelly connected (see Figure 3). For simplicity, we
assume that P is minimum phase. The aggregate demand is
taken to be

d � d
�

� d
��

�

where d
�

and d
��

denote the demands of the first and second
participants, respectively.

Using linearity and proceeding the same way as above, we
get

f�M� � I � P�P
�� � P��B

�

� �B
��

� � � P��B
�

� �B
��

� �M

for the optimal predictor. The condition for stability is now that
jjP��B

�

� � B
��

� �jjH� � �. Thus the stability does not depend
directly on the contribution of the individual players, but rather
on their cumulative contribution. It is important to notice that
the optimal predictor contains factors of both behaviors B � and
B��. As a consequence, the individual agents cannot directly
use the iterative procedure mentioned above (since they have
knowledge only of their own behavior).
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IV. DATA-DRIVEN PROCEDURES

The updating of M is easy if P is minimum phase: all we
need is to identify P and use (10). The situation is completely
different in real life financial markets where P is generally non-
minimum phase: spectral factorization is not trivial. It is then
more reasonable to identify L directly from data. Write

p � L�

where � is the innovation process of p for a given fixed M .
Assume that L belongs to some parametric family L��� with
� � D � R

p . Let the predictor M be fixed and assume that it
is constructed on our a priori belief that the price dynamics is
L���, i.e. M � I �L�����. Under appropriate conditions, the
resulting price process p � p��� will again belong to the same
parametric family, and thus will have a representation

p��� � L������� ����

with some ����� � D. The mapping M �� f�M� now
becomes � �� �����. The prediction error estimator of �����
would be, in its simplest form,

�n����� � �n����
c

n
��n����n��� (12)

where �n� ��n are on-line estimates of

���� �� 	� L�����p���

for some tentative value of � and ����� �� is the gradient of the
latter and c � � is some step size. The above recursion (12)
is a stochastic approximation procedure parametrized by �. Its
associated ODE (see Benveniste et al. [1], Gerencsér [5], Ljung
and Söderström [13]) is


�t��� � �
c

t
W���t���� ��

where

W ��� �� �
�

�
Ej���� ��j� �

Using a simple change of time-scale t � es, the above equation
is equivalent to


�s��� � �c W���s���� �� � (13)

It is well known that W���
����� �� � � and W����

����� ��
is positive semidefinite. Assuming that in fact it is positive
definite, the associated ODE (13) is asymptotically stable at
� � �����.
In the data-driven procedure we let � to be replaced by �n, i.e.
the prediction of p is performed using the latest model for its
dynamics. Thus we finally get

�n�� � �n �
c

n
��n�n (14)

where �n�, ��n are on-line estimates of ���n� �n� and
����n� �n�, respectively.

Assume that there exists ��� � D such that ������� � ���,
i.e. ��� is a fixed point of the mapping � �� �����. Then the
associated ODE for (14) is given by


�s � �c W���s� �s� �

Note that stability of ��� does not follow from the assumed
asymptotic stability of the frozen-parameter system (13). Good
conditions for the asymptotic stability of ��� are still to be
found.

V. CONCLUSION

A feedback model for financial markets has been proposed
in which the market dynamics is determined by the agent’s
anticipations and behaviors. Iterative procedures for finding
market equilibrium have been proposed.
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