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Abstract—Let X = (Xn) be a stationary process of k × k
real-valued matrices, depending on some vector-valued param-
eter θεD ⊂ IRp, satisfying

E log+ ‖X0(θ)‖ < ∞,

for all θεD. The top-Lyapunov exponent of X is defined as

λ(θ) = lim
n

1

n
E log ‖Xn ·Xn−1... ·X0‖.

We present an iterative scheme which converges to the pa-
rameter value optimizing λ(θ). Three potential applications
are given: optimizing the convergence rate of a randomized
optimization procedure, SPSA; the optimization of the growth
rate of a portfolio’s value; and the optimization of the growth
rate of a biomass.

I. Random matrix-products
Let X = (Xn), n = 0, 1, . . . be a stationary process of

k × k real-valued matrices over some probability space
(Ω,F ,P), satisfying

E log+ ‖X0‖ < ∞, (1)

where log+ x denotes the positive part of log x. It is well-
known (see [1]) that under the above condition

λ = lim
n

1
n

E log ‖Xn ·Xn−1 · · ·X0‖ (2)

exists. Here λ = −∞ is allowed. The following result is
fundamental in multiplicative ergodic theory, see [1]:

Theorem 1: Assume that the process X = (Xn) de-
scribed above satisfies (1) and it is ergodic. Then P -almost
surely

λ = lim
n

1
n

log ‖Xn ·Xn−1 · · ·X0‖. (3)

The number λ is the exponential rate of growth of the
norm of the product ‖Xn · Xn−1... · X0‖, and is called
the top Lyapunov-exponent of the process X = (Xn) for
reasons that will become clear later.

We also recall a part of Oseledec’s theorem (see [2] and
[3]) which describes what happens if we apply the above
random matrix products to a fixed vector.

Theorem 2: There exists a subset Ω′ ⊂ Ω of probability
1 such that for all ωεΩ′ there is a proper subspace H(ω) ⊂
IRk of fixed dimension such that for all vεIRk \H(ω)

lim
n

1
n

log ‖Xn(ω)Xn−1(ω) · · ·X0(ω)v‖ = λ.

Assume now that the matrices Xn, n = 0, 1, . . . depend
on a common parameter, say θ, where θεD ⊂ IRp, and D
is an open domain. θ is considered as a control-parameter

that we can set freely. Thus the top Lyapunov-exponent
λ = λ(θ) will be a function of θ, and will be called
a controlled Lyapunov-exponent. The problem that we
consider in this paper is:

min
θεD

λ(θ). (4)

The maximization of λ(θ) is a completely analogous
problem.

II. Minimization of the top-Lyapunov exponent
In developing an iterative procedure for solving the

above minimization problem an alternative expression for
λ = λ(θ) will play a key role. Let us define a k×k matrix-
valued process Z = (Zn), n = 0, 1, ... as follows:

Zn = Xn ·Xn−1 · · ·X0/‖Xn ·Xn−1 · · ·X0‖ (5)

assuming that the denominator is not zero. In the latter
case we write Zn = 0. Obviously, Z = (Zn) can be defined
recursively as follows:

Zn+1 = Xn+1Zn/‖Xn+1Zn‖ (6)

with initial condition Z0 = X0/‖X0‖, and the convention
that 0/0 = 0. It is easily seen that Theorem 1 implies

λ = lim
n

1
n

n−1∑

k=0

log ‖Xk+1Zk‖ (7)

P -almost surely.
To compute the gradient of λ with respect to θ con-

sider first the expression ‖XZ‖ with XεIRk×k fixed. Let
(Z(t)), t ≥ 0 be a smooth curve in IRk×k with Z(0) =
Z, Ż(0) = Ż such that XZ 6= 0. Then simple calculus
gives that at t = 0 we have

d

dt
‖XZ(t)‖ =

1
‖XZ‖ tr (ŻZT XT X). (8)

A similar result is obtained if the roles of X and Z
are interchanged. Thus we finally arrive at the following
result:

Lemma 1: Let X(t), Z(t), t ≥ 0 be smooth curves in
IRk×k, with X(0) = X, Z(0) = Z, Ẋ(0) = Ẋ, Ż(0) =
Ż, such that XZ 6= 0. Then at t = 0 we have that
(d/dt)‖X(t)Z(t)‖ is equal to

1
‖XZ‖ tr (ŻZT XT X + ẊZZT XT ). (9)

Let us now consider the case where Xn = Xn(θ) is a
smooth function of θ, as above, i.e. θεD ⊂ IRp, and D is



an open domain. Assume that Xn(θ) is non-singular for
all n and all θεD. Thus we get a well-defined sequence
(Zn) = (Zn(θ)), and for all n Zn(θ) is a smooth function
of θ. Let θi for some i = 1, ..., p be a fixed coordinate
direction and let us introduce the notations

Xθi,n =
∂

∂θi
Xn(θ) Zθi,n =

∂

∂θi
Zn(θ).

Formally differentiating (7) with respect to θi and using
Lemma 1 we get that λθi

= (∂/∂θi)λ(θ) equals

lim
n

1
n

n−1∑

k=0

1
‖Xk+1Zk‖2 tr(Uk + Vk), (10)

where

Uk = (Zθi,kZT
k XT

k+1Xk+1,

Vk = Xθi,k+1ZkZT
k XT

k+1).

Introduce the notation Ḣ(X, Ẋ, Z, Ż) for

1
‖XZ‖2 tr (ŻZT XT X + ẊZZT XT )

and set

Hi(X, Xθi , Z, Zθi) = Ḣ(X, Xθi , Z, Zθi).

Finally let H(X, Xθ, Z, Zθ) denote the vector

(H1(X,Xθ1 , Z, Zθ1), . . . , Hp(X,Xθp , Z, Zθp)).

It is assumed that the partial derivatives Xθi,k+1 are
computable explicitly. On the other hand the partial
derivatives Zθi,k will be computed recursively, taking into
account the recursive definition of Zn given in (6). For this
purpose define the mapping of IRk×k × IRk×k into IRk×k

by
f(X,Z) = XZ/‖XZ‖ (11)

assuming that XZ 6= 0. To obtain the derivative of f with
respect to Z let XεIRk×k be fixed and let (Z(t)), t ≥ 0 be
a smooth curve in IRk×k with Z(0) = Z, Ż(0) = Ż. Then
at t = 0 we have

d

dt
f(X, Z(t)) =

XŻ

‖XZ‖ −XZ
1

‖XZ‖2
d

dt
‖XZ(t)‖.

Taking into account (8) we get for the derivative
(d/dt)f(X,Z(t))

XŻ

‖XZ‖ −
XZ

‖XZ‖3 tr (ŻZT XT X). (12)

Now interchanging the role of X and Z we finally get:

Lemma 2: Let X(t), Z(t), t ≥ 0 be smooth curves in
IRk×k with X(0) = X, Z(0) = Z, Ẋ(0) = Ẋ, Ż(0) = Ż

such that XZ 6= 0. Then at t = 0 we have for (d/dt)
XZ

‖XZ‖
XŻ

‖XZ‖−
XZ

‖XZ‖3 tr (ŻZT XT X)+
ẊZ

‖XZ‖−
XZ

‖XZ‖3 tr (ẊZZT XT ).

Thus we can write in short
d

dt
f(X(t), Z(t)) = g(X, Z, Ẋ, Ż), (13)

with g(X,Z, Ẋ, Ż) given above.
Applying the above notations we can express the deriva-

tives Zθi,n(θ) in a recursive manner for any θ, and we have

Zθi,n+1 = g(Xn+1, Zn, Xθi,n+1, Zθi,n). (14)

The iterative scheme. The proposed iterative scheme
for minimizing λ(θ) is as follows: at time n we have at
our disposal the latest estimator θn and the matrices
Xn, Xθ,n, Zn, Zθ,n. Observe Xn+1 = Xn+1(θn) and com-
pute Xθ,n+1 = Xθ,n+1(θn). Then set

Zn+1 = Xn+1Zn/‖Xn+1Zn‖,
Zθi,n+1 = g(Xn+1, Zn, Xθi,n+1, Zθi,n),

Hn = H(Xn+1, Xθ,n+1, Zn, Zθ,n),

θn+1 = θn − 1
n

Hn (15)

An important technical tool is enforced boundedness
which is achieved by resetting (cf. [4]): if θn+1 would
leave a compact domain then we reset to its initial value.
Modulo some technical conditions, it is possible to show
that the above iteration scheme converges to the optimal
θ almost surely.

The algorithm formally falls within the class of recursive
estimation methods described in [5] if X is a Markov-
process, but the application of the results of [5] is not
straightforward. In particular, [5] does not consider the
effect of resetting. The convergence analysis requires
completely different tools if X is non-Markovian. The first
step is relatively easy: the extension of the ODE-method
to recursive estimation processes with resetting, when the
correction term is strictly stationary (asymptotically) for
each fixed θ. The hard part is to establish uniform laws of
large numbers with respect to θ for sums defined in terms
of the process (Xn+1, Zn).

The above arguments are applicable with minor changes
to normalized processes of the form

zn = XnXn−1 · · ·X0v/‖XnXn−1 · · ·X0v‖,
where v is a non-zero vector in IRk.

We will also study simulation results so as to see the
rate of convergence of the estimators θn.

III. Noise-free SPSA

Consider the following problem:

min L(θ),

where L(θ) is defined for θεIRp. Assume that the com-
putation of L(.) is expensive and the gradient of L(.) is
not computable at all, and therefore, we need a numerical
procedure to estimate the gradient of L(.) denoted by

G(θ) = Lθ(θ). (16)



Following [6] we consider random perturbations of the
components of θ. For this we first consider a sequence
of independent, identically distributed (i.i.d.) random
variables ∆ki, k = 1, ..., i = 1, ..., p defined over a prob-
ability space (Ω,F ,P) satisfying certain weak technical
conditions given in [6]. E.g. they may be chosen Bernoulli
with

P (∆ki = +1) = 1/2 P (∆ki = −1) = 1/2.

Now let ck > 0 be a fixed sequence of numbers. For any
θεIRp we evaluate L(.) at two randomly and symmetrically
chosen points θ + ck∆k and θ− ck∆k, respectively. Define
the random vector

∆−1
k =

[
∆−1

k1 , . . . , ∆−1
kp

]T

.

Then the estimator of the gradient is defined as

H(k, θ) = ∆−1
k

1
2ck

(
L(θ + ck∆k)− L(θ − ck∆k)

)
.

The fixed gain SPSA (simultaneous perturbation stochas-
tic approximation) procedure is then defined by

θ̂k+1 = θ̂k − aH(k + 1, θ̂k) (17)

with a > 0 fixed.
The pecularity of the procedure is, that for θ = θ∗ and

ck → 0 the correction term H(k, θ∗) vanishes asymptoti-
cally. Fixed gain SPSA methods have been first considered
in [7] in connection with discrete optimization.

A main result is that fixed gain SPSA applied to noise-
free optimization yields geometric rate of convergence
almost surely, just like deterministic gradient methods
under appropriate conditions, see [8]. The convergence
properties of the proposed fixed gain SPSA method can
be easily established for quadratic functions.

First, it is easy to see that for quadratic functions

H(k, θ) = ∆−1
k ∆T

k G(θ).

Since G(θ) = A(θ−θ∗), say, we get the following recursion
for δθk = θ − θ∗:

δθk+1 = (I − a∆−1
k ∆T

k A)δθk. (18)

Now the sequence ∆k is i.i.d., hence the matrix-valued
process

Ak = (I − a∆−1
k ∆T

k A)

is stationary and ergodic. Applying Oseledec’s multiplica-
tive ergodic theorem (cf. [2], [3]) and a discrete time
version of the results in [9] we get the following result:

Theorem 3: Let L be a positive definite quadratic
function,

L(θ) =
1
2
(θ − θ∗)T A(θ − θ∗),

and let ck = c be fixed. Then, for sufficiently small a
there is a deterministic constant λ < 0, depending on a,

such that for any initial condition θ0 outside of a set of
Lebesgue-measure zero we have

lim
k→∞

1
k

log |θ̂k − θ∗| = λ

with probability 1.
Simple adaptive noise-free SPSA procedures have been

considered in earlier works. One procedure is to use two
gains and choose the one in each step that gives smaller
function value. To our knowledge the best switching
strategy, minimizing the top-Lyapunov exponent is not
known. The problem is hard even for two fixed matrices,
and has been solved only recently by V. Blondel (yet
unpublished ).

IV. Growth rate of wealth processes

Let us consider portfolios consisting of k financial assets
(investments) such that φi

n denotes the amount of money
we have in asset i = 1, . . . , k at time n. We refer to Chapter
1 of [10] for basic notions of discrete-time financial market
models.

For the sake of simplicity, we deal with the case where
k = 2. Thus let us consider two stocks whose price at time
n is given by

Si
n := exp



µin +

n∑

j=1

W i
j



 , i = 1, 2,

where the µi are real constants, (W 1
n , W 2

n) is a stationary
ergodic stochastic process, see p. 167 of [10]. Then the
process Sn+1/Sn is also a stationary ergodic stochastic
process.

Consider and investor pursuing the following strategy:
if the present growth rate S1

n/S1
n−1 of the first stock is

greater then that of the second stock, i.e. S2
n/S2

n−1, then he
sells a proportion βε(0, 1) of the second stock and invests
the money in the first. If the opposite situation occurs
then he transfers a proportion α of his wealth in the first
stock into the second. The parameters α, β are fixed by
the investor.

It is easy to see that the portfolio dynamics is described
by the following equations:

φ1
n+1 =

S1
n+1

S1
n

[
φ1

n + I{S1
n/S1

n−1>S2
n/S2

n−1}βφ2
n

− I{S1
n/S1

n−1<S2
n/S2

n−1}αφ1
n

]
,

φ2
n+1 =

S2
n+1

S2
n

[
φ2

n + I{S1
n/S1

n−1<S2
n/S2

n−1}αφ1
n

− I{S1
n/S1

n−1>S2
n/S2

n−1}βφ2
n

]
. (19)

It is obvious that the sequence φn is the image of φ0

under the linear mapping that is represented by an n-
fold random product of members of a stationary ergodic
matrix-valued sequence. This is true even in the case when
α and β depend on the price-process.



The total value of the portfolio is of the form

Vn = eT φn,

where all the components of the vector e are equal to 1.
Then the growth rate of the total value will be

λ = lim
n→∞

1
n

log Vn

which, under reasonable conditions, is equal to the top-
Lyapunov exponent of (Xn). Thus we can apply the
optimizing procedure proposed in section 2 and find the
value of α, β which maximize the growth rate of the total
value.

Another, even simpler example is where the investor
keeps a fixed proportion αε(0, 1) of his wealth in asset
1 and the rest in asset 2 and rebalances his portfolio at
each time step. Again, the scheme of section 2 provides
the optimal α.

V. Population growth

Let us consider a population with k types of individuals.
At each reproducing time n = 0, 1, . . . one individual of
type i breeds Xji

n individuals of type j, where 1 ≤ i, j ≤ k.
Let Xn = (Xji

n ). If the number of type i individuals at
time n is φi

n, then

φn+1 = Xnφn,

where φn = (φ1
n, ..., φk

n).
It is reasonable to suppose that the environment varies

in a random, but stationary way, and hence the rate of
reproduction expressed by X is a matrix-valued stationary
stochastic process. Consider now the example of a biomass
where e.g. temperature is in our control. Then maximizing
the population size can be performed by maximizing the
top-Lyapunov exponent of the process X(θ).
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