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Abstract -- The M-band filter banks applied to M-channel 
transmultiplexers are presented. The paper considers new 
type multichannel transmultiplexers. We propose to build 
transmultiplexers using the lifting scheme. Any filtering with 
finite filters can be decomposed into a finite sequence of 
triangular matrices: upper and lower.  Such solution provides 
less multiplying than the traditional structure. Perfect 
reconstruction can be achieved.  
 
Index terms-- transmultiplexer, filter bank, perfect 
reconstruction 

 

I. INTRODUCTION 

 
Filter banks have attracted much attention in the area of 
signal processing. They find applications mainly in subband 
coding [8], signal compression and transmutiplexing [8]. 
Filter banks were originally studied in the context of signal 
compression where the original signal was split into the 
subsignals. In this paper our goal is to present the 
application of lifting scheme to the M-channel 
transmulitiplexers. This paper is an attempt to increase the 
variety of filter banks which are used in transmultiplexing. 
 
Transmultiplexers occur in applications such as telephony 
and television. In television, luminance and chrominance 
signals are transmultiplexed to form a signal that can be 
transmitted in single channel. The separation of signals 
should be perfect and the recovery of each signal should be 
performed without distortion. The main problem in 
transmultiplexeres is the leakage of signal from one channel 
to another. The minimalization of crosstalk is one of the 
main task for transmultiplexer designs. This paper addresses 
the design of the new kind of filter bank that reduces the 
effects mentioned above. We discuss the time and frequency 
domain requirements for transmultiplexers in case the lifting 
scheme was applied. Novel spread spectrum 
transmultiplexers are introduced in this paper. The desired 
time and frequency properties of the filters are set as the 
design criteria within the context of subband filtering. The 
aim of this paper is to present new results on crosstalk-free 
transmultiplexers. Using this approach, the crosstalk can be 

reduced to low values and in some cases can be completely 
eliminated. 

II. MULTIRESOLUTION ANALYSIS 

 
The classical multiresolution system [8] is presented in 
Fig.1. The input signal is split into M subbands by 
analysis filters and then decimated by M to produce the 
subband signals. These subband signals are processed 
depending of applications (analyzed, compressed, coded,  
etc.). For the case presented in Fig.1, signals are 
transmited without any change.  At the synthesis end, 
these signals are processed by M-fold expanders, 
synthesis filters and then summed up to obtain the 
reconstructed signal. Usually only FIR filters 
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are used , where ℜ∈nh  are filter coefficients. 

  
To build the mathematical model for the system presented 
in Fig.1, let us introduce vector 
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which consists of z-spectrum of input signal and its scaled 
versions, where )/2exp( MjwM π−= . For the analysis 

filters let us define the matrix 
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The synthesis filters let us group in vector 
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Application of Lifting Scheme to Transmultiplexers 

M���������	
��1, Andrzej Dziech2, and Bernd Tibken3 



 
 

Fig.1. M-channel multirate filter bank 
 
Taking into account the above definitions, the system 
presented in Fig.1 can be described by equation 
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A common requirement in most applications is that outs  
should be as close to ins  as possible. However, some 
delays carried in by the electronic devices are 
unavoidable. A perfect reconstruction filter bank is one 
where 
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that is the output is simply a delayed version of the input. 
A filter bank has the perfect reconstruction property if 
and only if 
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These conditions can be presented as a set of equations 
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The requirement for perfect reconstruction imposes a set of 
bilinear constraints (7) since all operations are linear. The 
detail treatment of these filter banks can be found in [2]. 
 

III. LIFTING SCHEME 

 
A typical lifting stage consists of three steps [3,7]: 
splitting, predicting and updating. Signal ins  is split into 
its even in

es  and odd in
os  components, where 

)2()( nsns inin
e =  and )12()( += nsns inin

o
.  

Fig.2 shows the schematic representation of lifting. 
Lifting procedure predicts the odd signal values )(nsin

o
 

from the neighboring even components in
es . In the 

standard multirate filter bank this prediction procedure is 
equivalent to applying a high-pass filter to ins  to obtain 

decs1
. The third step transforms the even signal values in

es  

into a low-pass filtered and subsampled version of ins . In 
this way the coarse signal decs2

 is obtained. No 

information is lost because each lifting step is invertible. 
Both, the lifting and the inverse lifting schems are shown 
in Fig.2. It is possible to start from splitting the signal 
into the add and even components (it is called [3,7] the 
Lazy wavelet) and use lifting scheme to gradually build 
up filters with the particular properties. 
 
To extend the well known 2-channel lifting scheme 
(presented in Fig.2) into M-channel realization, let us 
consider the system presented in Fig.3. At the beginning 
the input signal ins  is delayed M-times to split into M 
signals which are next decimated by M to produce the 
subband signals 
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where { }Mk ,,2,1 �∈ . These signals can be presented in 

matrix notation 
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where 

[ ]TMM
M

inM
M

inMinin zwszwszszs .
/11/1/1 )()()()( −= �

(10) 



The output signal 
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depends on two filter banks: lifting )(zA  and inverse 

lifting )(zS . The perfect reconstruction condition can 

now be written as 
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Determinant of the right side of (12) has form 
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If all filters are FIR type, then the determinants of both 
matrices )(zA  and )(zS  must be monomials SzcS

τ−  and 
AzcA

τ− , respectively. Then and only then product of both 

determinants is equal to (13) and 
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The problem of finding an FIR filter bank thus amounts 
to finding nonsingular matrices )(zS  and )(zA  which 

determinants are monomials. The lifting matrix 
MMCzA ×∈)(  fulfils condition 
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and the inverse lifting matrix MMCzS ×∈)(  fulfils 

condition 
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After lifting the new modulation matrix can be taken 
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where )(zU  and )(zL  are upper and lower triangular 

matrices respectively, and their determinants are equal to 
1. This operation does not change the determinant of the 
lifting matrix. Any transformation )(zA  and )(zS  with 

finite filters can be obtained starting from Lazy wavelet 
transform followed by a finite number of alternating 

)(zU  and )(zL  steps. This does not change the 

determinant of the lifting )(zA  or inverse lifting )(zS  

matrix. 
 
Every finite filter transform newS  can be obtained by 
starting with the unitary matrix oldS  followed by 
triangular lower and triangular upper matrices with all 
diagonal entries equal to one, so that 

old

MM

M

M

new S

tt

ts

ss

S





































=

1

01

001

100

10

1

2,1,

1,2,2

,12,1

�

����

�

�

�

����

�

�

 (19) 

.100

10

1

1

01

001

,2

,12,1

2,1,

1,2 oldM

M

MM

new A
t

tt

ss

s
A


















−
−−



















−−

−
=

�

����

�

�

�

����

�

�

   (20) 

 
It follows from the well known matrix property that any 
matrix with polynomial entries and determinant one can 
be factored into such elementary matrices. 
 

IV. TRANSMULTIPLEXING 

 
A transmultiplexer [2] combines several signals into a single 
signal. Transmultiplexers were originally studied in the 
context of converting Time Division Multiplexing (TDM) 
into Frequency Division Multiplexing (FDM). Their main 
application is for simultaneous transmission of several data 
signals through a single channel. A key point is that the 
constituent signals should be recoverable from the combined 
signal. Fig.4 shows the classical structure of a 
transmultiplexer. The input signals were upsampled, filtered 
and summed to obtain a composite signal. This composite 
signal can be transmitted over a single transmission channel. 
At the receiver end, the signal must be filtered and 
downsampled to recover the signals. 
 
For well-designed transmultiplexers, out

is  approximates in
is , 

where { }Mi ,,2,1 �∈  is a signal number. Transmultiplexer 

achieves perfect reconstruction if out
is  is delayed and 

amplified version of in
is , namely if there exist nonnegative 

integers 
ic  and 

iτ  such that 
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In this case, there is no cross-talk, no magnitude and no 
phase distortions. The goal in transmultiplexer design is a 
choice of filters that ensure perfect reconstruction (21). 

 
 



 
 

 
 

Fig.2. Lifting and inverse lifting scheme 
 
 
 
 

 

 
 

Fig.3. M-channel lifting scheme 
 
 
 
 
 

 
Fig.4. An example of 4-channel transmultiplexer 

 
 



 
Fig.5. Lifting scheme applied to the transmultiplexer 

 

Transmitted signals are combined into a single channel. In 
the receiver end, the combined signal is analyzed through 
analysis subsystems consisting of filters and upsamplers 
generating the reconstructed signals. The output i 
dependence on inputs { }Mk ,,2,1 �∈  is described by 
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for { }Mi ,,2,1 �∈ . These conditions can be written in 

matrix notations 
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where both, input and output signals have vector 
representations 
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while the filter banks are described by 
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The mixture or crosstalk between signals must be zero. 
When transmultiplexers with overlaping frequency bands 
are used for the transmission of signals over non-ideal 
channels, the intersymbol interference and crosstalk 
between different data channels may arise. Perfect 
reconstruction of the input signals with a delay of 

iτ  

samples can be obtained when the following condition 
hold 
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A scheme of the lifting transmultiplexer system is 
presented schematically in Fig.5. It is to define the subset 
of filters that are the most suitable for the application 
under consideration. The perfect reconstruction property 

is given by (21) and that is why determinants of matrices 
)(zA  and )(zS  must be monomial. Both matrices, )(zA  

and )(zS , contain only FIR filters defined by (1). 

 

V. CONCLUSION 

 
Recent advances in the theory of transmultiplexing 
[1,5,6,9] provide very flexible and applications-oriented 
tools for the signal transmission. 
 
Lifting leads to speed-up computations when compared 
to the standard implementation. The cost of the algorithm 
can be measured in number of multiplications. Under 
assumption that the orders of all filters are N and the 
length of signals are L, we obtain for the M-fold 
upsampled signals ML(N+1) multiplications in each 
channel (see Fig.4). Totally, for the both sides of 
transmultiplexer system we obtain )1(2 2 +NLM  

multiplications. Under assumption that matrices A and S, 
for the system presented in Fig.5, have structures 
presented by (19) and (20), the lifting scheme needs 
2M(M-1)L(N+1) multiplications, only. It is possible (for 
example see [4]) to apply matrices A and S which have 
less number of elements not equal to 0. In such case the 
efficiency of lifting scheme presented in Fig.5 is much 
higher than the efficiency of standard algorithm presented 
in Fig.4. 
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