

An IEC-compliant Engineering Tool for
Distributed Control Applications

Christos Tranoris, Member, IEEE, and Kleanthis Thramboulidis, Member, IEEE?

Electrical & Computer Engineering, University of Patras,
265 00 Patras, Greece, thrambo@ee.upatras.gr

Abstract— To address the requirement of modern
manufacturing plants to quickly respond to market demands by
designing competitive products and modifying existing ones,
evolving IEC standards like 61499 and 61804 define a
methodology to be used by system designers to construct
distributed industrial control applications. New generation,
IEC-compliant Engineering Support Systems (ESSs) are highly
required to support the whole development process. In this
paper, we present an IEC-compliant ESS that we have under
development. This ESS, which is based on our enhanced 4-layer
architecture, automates the development process of distributed
control applications. To be close with the latest trends in the
development of CASE tools, we integrated a well-known
general-purpose CASE tool with a custom Function Block
development tool. The resulting ESS is described, the issue of
portability is addressed and implementation details are
considered.

Index terms-- ESS, IEC-61499, IPMCS, Function Block, CASE
tool, Engineering tool.

I. INTRODUCTION

Competition in the area of Industrial Process Measurement
and Control Systems (IPMCSs) as well as today’s rapidly
changing market requirements impose the need of improving
the agility of manufacturing systems. Concepts like agile
manufacturing and interoperability between products,
devices, utilities and vendors, are partially addressed by
proprietary solutions. Even more, the most of the traditional
products and tools are far away from the new challenging
technologies of Software Engineering.

To address these problems the evolving standards, IEC-
61499 and the IEC-61804 [1][2] define the basic concepts
for the design of modular, re-usable, distributed IPMCSs.
The Function Block (FB) construct is defined as the main
building block of IPMCS applications, in a format that is
independent of implementation. The above standards define
also a methodology to be used by system designers to
construct distributed control systems. It allows systems to be
defined in terms of logically connected FBs that run on
different processing resources. Complete applications, can
be built from networks of FBs, formed by interconnecting
their inputs and outputs. New generation, FB-oriented,
Engineering Support Systems (ESSs), are highly required to
support the whole life cycle of IPMCS applications. These
ESSs should support the design, implementation,
commissioning and operation of IPMCSs that are
constructed according to the architecture defined in Annex
C1 of the IEC61499-Part 1. Using such a tool, the engineer
must be able to start with the analysis of the plant diagram so
as to capture the control requirements. Then, he should be
able to define the major areas of functionality and their
interaction with the plant. During this task, he can exploit
FBs provided by intelligent field devices, such as smart

valves, but also to assign functionality into physical
resources such as PLCs, instruments and controllers.

In our attempt to implement the IEC model, we have defined
and have under development the CORFU framework, that is
a Common Object-oriented Real-time Framework for the
Unified (CORFU) development of distributed IPMCS
applications [13]. We have also defined in [5] a process for
the development of distributed IPMCSs. Since the analysis
phase is slightly addresses by the IEC standards we have
adopted the widely accepted use case driven approach of
Ivar Jacobson [7] and the UML [6] notation to capture the
requirements of the IPMCS system. The proposed process
also defines the evolution of these requirements through a set
of well-defined transformation rules to Function Block
design diagrams.

In this paper we present the CORFU ESS, i.e. a prototype
ESS that intends to automate the development process of
IEC-compliant distributed IPMCSs. This ESS is based on
the enhanced 4-layer architecture that is defined in [11] and
also implements the extensions and modifications to the
IEC-model that are proposed in [10]. To exploit the latest
trends in the development of CASE tools, we decided to
utilize a commercially available general-purpose CASE tool
and integrate it with the CORFU Function Block
Development Kit (CORFU-FBDK). The general-purpose
CASE tool is used to support the early phases of the
development process while the CORFU FBDK supports the
remaining phases by automatically importing the diagrams
produced by the general-purpose CASE tool applying a set
of well defined transformation rules.

Nowadays, the first ESSs that attempt to support the
engineering phase of industrial processes by following the
IEC61499 are under development. The Function Block
Development Kit (FBDK) [3] and the Verification
Environment for Distributed Applications (VEDA) [4] are
the most important tools today. The FBDK, which is an
effort of the Holonic Manufacturing Systems consortium,
allows the definition of Function Block types, and the design
of Function Block diagrams. Function Block types and
Function Block diagrams are described by means of XML as
is specified by the IEC61499. A Java interface lets the
engineer to visually test his diagrams. However, FBDK does
not address the capture of requirements and lacks the
capability of downloading the Function Block types and
distributing Function Blocks networks in filed devices and
field buses. VEDA on the other hand mainly focuses on the
modeling and verification of the Execution Control of
Function Blocks following the IEC61499 model.

The rest of this paper is organized as follows. In section 2
we briefly describe our CORFU development process. In

section 3 we present our prototype ESS. We describe the
CORFU FBDK and the way that this tool exploits a popular
general-purpose CASE tool to elaborate to an IEC-compliant
Engineering tool. In section 4 we discuss the compliance of
the CORFU ESS with the IEC model. Implementation issues
are discussed in section 5 and we finally conclude the paper
in the last section.

II. THE CORFU DEVELOPMENT PROCESS

The CORFU development process has been defined as a
series of workflows, and is described in detail in [5]. This
process is our attempt to ameliorate the development process
defined by IEC61499, adopting best practices from
component-based development, Object Technology and the
Unified Modeling Language (UML). We next briefly
describe this development process to make the paper self-
contained.

For the “capture requirements” that is the first workflow, we
have adopted the well-accepted use-case concept introduced
by Ivar Jacobson [7]. During this workflow, control and field
engineers properly define the use cases of the system, i.e.,
the responses of the system to external events that originate
either from devices or humans. During the next workflow,
namely the “Capture Behavior”, engineers cope with the
examination of the dynamic behavior of the system. Object
Interaction Diagrams are considered as the first realization
of system’s use cases and are used to show the system’s
internal objects and the way they collaborate to provide the
required behavior. During the subsequent “capture static
view” workflow, engineers deal with the design of the static
view of the system in terms of class diagrams. Since the
diagrams produced through the above process must be
consistent, the engineer has to go back and forth through the
workflows, in order to better specify the analysis and early
design models of the system. As soon as the above models
have been defined, the engineer is ready to move to FB
design diagrams. A set of transformation rules were defined
to automatically transform the UML-based system model to
a FB-based design model that is better understood by control
engineers. “Refinement and evaluation,” “model-
verification,” and “FB-distribution” are among the main
workflows that complement the development process.

III. A PROTOTYPE ENGINEERING SUPPORT
SYSTEM

To automate the above-described development process an
Engineering tool is highly required. In our attempt to design
and implement such a tool we considered the development
from scratch as a waste of time. Such an approach could
make the development of the ESS much more complicated
and there is a danger to lose our focus from the actual
problem. Since we have adopted the use case concept and
the UML notation, existing CASE tools that support the
UML notation may be used to elaborate to modern ESSs.
Most of the modern commercially available CASE tools
support the UML notation and a lot of this know how can be
successfully utilized for the development of our ESS.

However, to support a) the transformation of UML
requirements to Function Block design specifications and b)
the remaining workflows of our development process, we
defined the architecture of the CORFU FBDK and we have
already developed a first prototype. The CORFU FBDK is
able to interact with a general-purpose CASE tool in order to
ease and automate our development process. The general-
purpose CASE tool will be used to support the “capture
requirements”, “capture behavior” and “capture static view”
workflows. In a subsequent step, the CORFU FBDK imports
automatically the diagrams produced by the above
workflows, applies the transformation rules, and supports the
remaining workflows of our development process.

Figure 1. The Control Engineer interacting with the CORFU

ESS.

Thus, the CORFU ESS consists of two subsystems as is
shown in Figure 1: A general-purpose CASE tool, which in
our case is Rational's Rose and the CORFU FBDK. The
control engineer interacts both with the general-purpose
CASE tool and the CORFU FBDK during the process of
engineering his IPMCS application.

A. Using a general purpose CASE tool
We examined several CASE tools and finally we selected
Rational's Rose, because a) it comes with a suite of specific
tools for software engineering, to cover the needs from
requirements capture through the final implementation of
software systems, b) it has several extension mechanisms
and c) it is widely used. Rose supports two extension
mechanisms and can be extended either with its custom
scripting language, or can be used as a COM automation
server [9] through a type library that is provided by Rational.
We have exploited and made use of these extension
mechanisms to properly support the development process.

1) Extending Rose through its scripting language
While the engineer designs the diagrams in Rose, it is
assumed that he is familiar, uses and declares properly,
provided stereotypes when designing class and interaction
diagrams. Such stereotypes are for example the Function
Block stereotype and the Industrial Process Terminator
(IPT) stereotype. In order to simplify the design of object
interaction and class diagrams, we have extended Rose’s

Control Engineer

CORFU FBDK OO general purpose
CASE tool

CORFU ESS

toolbars using scripting language. , The engineer can use the
application specific stereotypes with just a few clicks.

The IPT construct is used to represent in the design space
the industrial process entities that are monitored or
controlled by the application. IPTs are inserted into the
design space of the system layer, to properly define the
interaction of the control system with the plant. IPT
instances must directly be mapped to the actual devices that
interface the IPMCS with the controlled processes of the
industrial environment. Each IPT has a number of Industrial
Process Parameters (IPPs), which are the inputs and the
outputs of control application.

2) Using Rose’s automation interface
In order to enhance the communication with Rose, we used
the automation interface to read the internal Rose object
model i.e. its classes, properties and diagrams. Additionally,
the automation interface allows the programmer to manage
(create, edit, delete) externally, classes and diagrams, thus
giving the possibility to enable in our extension tool round-
trip engineering capabilities. The automation interface is
mainly used from the Transformation Facility Manager
presented below, during the phase of applying the
Transformation Rules of the CORFU development process.

B. Main components of the CORFU FBDK
The CORFU FBDK consists of the following components:

1. a FB type library
2. a FB type editor
3. a FB network editor
4. a System Layer (SL) editor
5. a Transformation Facility Manager (TFM)

We next describe these components as well as the way they
are used in the development process.

1) FB type library
The FB type library is the repository of FB types of the
CORFU FBDK. A number of predefined FB is already
contained in this library. A utility to import FB types defined
by other vendors using the IEC61499 XML specification has
been developed. This utility has already been used to import
in our ESS all the FB types defined in FBDK. FB types
already contained in the CORFU FBDK are: E_RESTART,
E_DELAY, FB_ADD_INT, PID_PRE, DERIVATIVE,
TANK_MDL, etc. Moreover new FB types may be
constructed and existing ones modified using the FB type
editor.

2) The FB type editor
The FB type editor allows the control engineer to modify
existing FB types of the FB type library as well as to create
new types to satisfy the specific requirements of the control
application. For the construction of a new FB type the
engineer has to select between using the default primitive FB
template (New basic)1, the default composite FB template
(New composite), or select any other FB from the FB type
library to be used as template (New, based on...).

1 refers to the corresponding main menu entry.

The graphical representation of the selected template
appears in the FB editor as is shown in figure 2. The
engineer extends the functionality of the template using the
form shown in figure 2. To obtain more flexibility in the FB
type editor we selected to support both the IEC
specifications i.e. the textual and the graphical one. In Fig. 3
two screens of the FB type editor are given to show the tree-
structure and the XML specification of a FB type. An ECC
graphical editor allows the definition of the Execution
Control Chart of the FB type and an Algorithm editor allows
the definition of the FB’s algorithms. Options such as
“Import”, “Export”, “Test”, “Compile” and “Composition”
complement the functionality of the FB type editor.

Figure 2. Editing a FB type in CORFU FBDK

Figure 3. XML and structured specification in the FB type
editor

3) The FB network editor
The FB network editor enables the engineer to graphically
construct and refine the FB network diagrams of the control
application. In figure 4 an example of a FB network diagram
created with the FB network editor is given. For the
construction of the FB network the engineer has the
following options:

Figure 4. A sample FB network diagram.

a) Use the UML diagrams of the analysis model of the
control application (New from UML). The analysis should
have been already completed using the general-purpose
CASE tool. The Transformation Facility Manager (TFM) is
used by the CORFU FBDK to transform the UML design
diagrams to corresponding FB networks. These diagrams are
then refined to move into the specific implementation.

b) Import FB network diagrams (Import) from other tools,
such as the FBDK. These diagrams should of course be
compliant with the XML specification defined in IEC 61499.

c) Design the FB network from scratch (New). The engineer
can i) insert in the diagram FB instances using the FB types
of the library ii) insert IPPs from the SL diagram and iii)
draw the connections between FB instances or between FB
instances and IPPs.

The Event FBs of the IEC61499 model (i.e. “event splitter”,
“event merger”, “event rendezvous”, etc.) are supported in a
special manner and depicted with our chosen format as is
described in [10]. We have defined a set of icons to
represent the event FBs in a toolbar to simplify the FB
network construction process. The event-API that should be
provided by an IEC-compliant device has been defined. The
CORFU FBDK utilizes this API to automatically configure
the device, during the downloading process so as the device
provide the required behavior during the operational phase.
This approach improves the performance of the
corresponding control application [10].

For the verification of the FB network we examine the
possibility to export the FB network diagram in IEC61499
compliant XML specification. This specification can be used
for testing or validation using other tools. VEDA is one of
these tools.

4) The System Layer editor
The graphical System Layer editor is provided to automate
the process of distribution of the control application as well
as its configuration and re-configuration. This editor fully
supports the design space of the system layer of our
extended 4-layer architecture. The engineer selects and
configures the constructs of the system layer i.e. the IEC-

compliant devices and fieldbuses, the InterworkingUnits,
and the IPPs, and draws connections between them. Figure 5
shows the form that is used by the engineer to edit the
properties of an IEC-compliant device.

Figure 5. Editing the properties of an IEC-compliant device

Figure 6, displays the properties of an Industrial Process
Terminator. The user can add to the IPT, the Industrial
Process Parameters, i.e. sensors or actuators that are relevant
to the specific industrial application.

Figure 6. Editing the properties of an Industrial Process

Terminator

Figure 7. Assigning the FB instances to system layer
devices.

Figure 7 shows that for the distribution of the control
application to the filed devices of the system, the user has to
drag FB instances from the FB network editor and drop them
to System layer devices either IEC-compliant or non IEC-
compliant. The CORFU FBDK automatically examines if
the device supports the FB type of the downloaded instance.
If the FB type is not supported the FB type is downloaded to
the device. A “new instance” command is next issued to the
device. The tool recognizes that the dragged FBs will be
loaded in a device and makes available in the FB diagram
editor all the IPPs that are connected to this device. This
greatly facilitates the process of connecting IPP sensors to
FB data input and IPP actuators to FB data outputs.

5) The Transformation Facility Manager
To automate the transformation process of UML diagrams to
FB network diagrams, we have designed and implemented in
the CORFU FBDK the Transformation Facility Manager
(TFM). TFM is a core utility of our tool since it incorporates
and applies the transformation rules, informs and guides the
engineer during the transformation process. TFM
implements all the interface of the CORFU FBDK with
Rose. It is responsible for the creation of the proper new
types, events, etc from the analysis model in Rose. The most
important task of the TFM is the creation of new FB types in
the CORFU FBDK, by properly parsing and transforming
the class and interaction diagrams from Rose. Figure 8
shows a sample interaction diagram that we have used with
TFM. This diagram is extracted from an Object Oriented
solution we gave for the steam boiler case study [12]. We
have used extensively this case study in conjunction with our
tool, in order to examine how the tool can be applied in the
development process of a control application.

Figure 8. Sample interaction diagram produced with Rose

Rose is used as a COM server, through its type library. Type
libraries provide a way to get more type information about
an object than can be determined from an object’s interface.
The type information contained in type libraries provides the
required information for the objects and their interfaces,
such as what interfaces exist on what objects, what member
functions exist on each interface, and what arguments those
functions require.

Figure 9 shows on the left-hand side the class ValveControl
with some methods like OpenValve(), CloseValve() and
Start() as it appears in the CASE tool. The right–hand side,
shows the equivalent Function Block that is created from the
TFM when it applies our proposed transformation rules. The
event inputs and outputs of the Function Block have been

designed automatically. For example the input events Start()
and OpenValve() on the Function Block, were extracted
from the message exchange between the objects of the
corresponding interaction diagram that realizes the use case.

Figure 9. Class to Function Block type mapping

IV. IEC61499 COMPLIANCE

The prototype CORFU FBDK complies with the portability
agreement proposed in IEC 61499 Industry Technical
Agreement. The tool is capable of:
? producing library elements like data types, function

block types, resource types, device types, function block
diagrams, system configurations, etc using the syntax
and the semantics defined in Annex A of IEC 61499-2,

? correctly parsing and interpreting elements in the XML
DTDs, which are defined in Annex A of IEC 61499-2,

? utilizing files for the exchange of library elements. The
tool for example supports certain file types for element
exchange like .fbt for Function Block types, etc.

In order to check the portability of our tool, we have
managed to exchange library elements such as Function
Block types and diagrams, with the FBDK. We are also
using FBDK to test via the Java library that it provides, our
Function Block design diagrams.

V. IMPLEMENTATION DETAILS

The CORFU FBDK was developed entirely from scratch
with the Borland’s Delphi IDE. For the XML processing we
used Microsoft's XML 4.0 parser SDK, in conjunction with
Delphi’s XML components. Additionally, Delphi’s XML
binding tools helped us to create the necessary interfaces for
correctly parsing XML files according to the IEC 61499
standard. As we have already noticed we use the type library
of Rose in order to access its object model. So, the first step
was to import the type library in Delphi and have access to
the interface of Rose automation. Delphi provides a type
library editor and a tool that translates the type library file to
Delphi constructs and creates the equivalent dispatch
interfaces. Dispatch interface declarations are used to
describe the methods and properties a COM Automation
object implements through its IDispatch interface. After
importing the type library, we have full access through our
programming language to all the interfaces and Rose 's

object model. Rose is active and hidden in the background,
with our project opened.

The first step is actually to create the application, so we
invoke a certain call to class factory's CreateInstance
method, which (through windows API) creates the instance
of the CoClass and thus the application. An example is the
following extract from the code (in Delphi):
fRoseApp:= CoRoseApplication.Create;
where
fRoseApp variable is an instance of the IRoseApplication
interface and is used as the interface to Rose.
Then we can load our model with
theModel:=
fRoseApp.OpenModel('C:\test\class_diagram_01.mdl');
and get for example from the diagram categories, the
Scenario Diagrams with
theRC := theModel.RootCategory ;
theSD := theRC.ScenarioDiagrams;
where theRC is type of IRoseCategory
and theSD is type of IroseScenarioDiagram Collection
Then, we access the scenario diagrams from Rose, as the
following code fragment shows:
for i:=0 to theSD.Count-1 do
 begin
 vCurrentSD := theSD.GetAt(i+1);
 vCurrentSDName := theSD.GetAt(i+1).Name;
 vInstanceCollection := theSD.GetObjects;
 vSDMessagesCollection:= theSD.GetMessages;
 vInstancesCnt := vInstanceCollection.Count;
 vFirstInstance:= vInstanceCollection.GetAt(i+1);
…..
Other useful interfaces are IRoseObjectInstance which
provides access to all object instances on a diagram,
IRoseMessageCollection which provides access to the
collection of messages in a scenario diagram and the
IRoseMessage which provides access to individual
messages. Rose normally is active and hidden in the
background. Another implementation issue was the
description of the distribution of Function Blocks in devices
of the System Layer. Since IEC 61499 does not standardize
any syntax on system distribution we defined our own syntax
for describing system distribution and FB assignment. We
prepared for this an XML schema definition which fully
describes the syntax concerning the distribution on the
System Layer. Actually this XML syntax with the IEC FB
diagrams XML specification is embedded into a file
describing the CORFU project.

VI. CONCLUSIONS

In order to enhance the requirements capturing, the system
analysis and the transition to the design phase of IPMCSs,
we have defined a new development process towards a
unified design methodology. Our development process
adopts use cases and the UML notation to capture
requirements of the IPMCS applications. It uses, the
interaction diagrams for the first realization of use cases and
a set of well-defined transformation rules for the subsequent
evolution of requirements to Function Block Diagrams.

In this paper we have presented our prototype ESS tool that
consists of two subsystems: Rose, a popular general-purpose
CASE tool and the CORFU FBDK. The CORFU FBDK is
capable of communicating with the CASE tool and it can
follow specific proposed transformation rules, for
transforming interaction and class diagrams to equivalent
function block diagrams. By means of these subsystems, the
engineer designs his diagrams on the CASE tool and our
prototype FB design tool imports them automatically. Then
he proceeds with the design of his application with Function
Blocks, which are closer to the final implementation. We
have presented also implementation details of our tool and
how it complies with the IEC 61499 Industry Technical
Agreement.

In our prototype tool still some missing functionality exist
and further improvement is needed such as:
? ECC and test editor
? feasibility demonstration with FBRT
? the ability to download the Function Block types and

Function Blocks networks to the interworking units and
create all the Function Block data and event connections

? examining the possible integration with the VEDA tool

VII. REFERENCES
[1] IEC Technical Committee TC65/WG6, “IEC61499 Industrial Process

Measurement and Control – Specification”, IEC Draft 2000
[2] IEC sub committee no. 65c: digital communications, working group

7: function blocks for process control, “IEC1804 General
Requirements”, IEC Draft 1999

[3] FBDK - The Function Block Development Kit,
http://www.holobloc.com/fbdk/README.htm

[4] Modeling and Verification of Execution Control of Function Blocks
(VEDA) http://at.iw.uni-halle.de/~valeriy/project/proj_descr.htm

[5] C. Tranoris, K. Thramboulidis, "From Requirements to Function
Block Diagrams: A new Approach for the Design of Industrial
Applications", 10th Mediterranean Conference on Control and
Automation, 9-12 July, 2002

[6] OMG UML specification version 1.3, March 2000
[7] I. Jacobson, Object-Oriented Software Engineering: A use-case driven

approach, Addison Wesley 1992.
[8] Ivar Jacobson et.al. “The Unified Software Development Process”,

Addison, Wesley 2000 Ch.2 p.26
[9] Distributed Component Object Model (DCOM) - Downloads,

Specifications, Samples, Papers, and Resources for Microsoft
DCOM, http://www.microsoft.com/com/tech/dcom.asp

[10] K. Thramboulidis, “An Architecture to extend the IEC model for
Distributed Control Applications” submitted.

[11] K. Thramboulidis, C. Tranoris, “Developing a CASE tool for
Distributed Control Applications", The International Journal of
Advanced Manufacturing Technology, Springer-Verlag
(forthcoming).

[12] J.- R. Abrial, “Steam-boiler control specification problem”, August
10, 1994., http://www.Informatik .unikiel.de /~procos /dag9523

[13] K. Thramboulidis, “Development of Distributed Industrial Control
Applications: The CORFU Framework”, 4th IEEE International
Workshop on Factory Communication Systems, Sweden, August
2002.

	Conference Program
	Author Index
	Main Menu

