
 
 

Nonlinear resonance jump in turbine governor 
positioning system 
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Abstract—The paper deals with analysis of turbine governor 
positioning system of hydropower plant regarding nonlinear 
resonance jump. The meaning of the term "resonance jump" is 
explained in the introduction. Then the description of the plant 
is given. Two methods of analyzing system with the respect to 
resonance jumps are described: the simulation method and the 
analytical method. When using the simulation method, the 
analysis of the variations of important parameters is 
performed. At the end, the confirmation of the results of 
simulation is given by the analytical method. 
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Fig. 1. Block diagram of the plant 

   
Index Terms—Electro-hydraulic system, hydropower plant, 

nonlinear resonance jump, nonlinear system III. SIMULATION 

A. Simulation scheme I. INTRODUCTION 
The scheme used for the simulation analysis is given in 

Fig. 2. 
The term "resonance jump" is used in the case of a 

sudden jump of amplitude and/or frequency and/or phase of 
a periodic output signal of a nonlinear system. Resonance 
jump can occur in nonlinear systems and is often not 
desirable state in the system. Resonance jump cannot occur 
if excitation is such that the response of the system is 
transient and cannot be defined by solving nonlinear 
differential equations. It is also not recommended to use the 
experimental tests on the plant during operation in order to 
resolve if the system can have tendency to the occurrence of 
this phenomenon. For that purpose the best way is to use 
analytical and simulation methods. 
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Fig. 2. Simulation scheme of the system 

 
where: 
 

II. DESCRIPTION OF THE PLANT ( ) vvvvv FFFtFtf =+= 00 ;sin)( ω  (1) 
The main parts of the analyzed plant (water turbine 

governor positioning system) are electro-hydraulic 
proportional valve and hydraulic servomotor. A position 
sensor is built in within the hydraulic servomotor. In the real 
system analyzed here the position controller was 
implemented using PLC (Programmable Logical 
Controller). Apart from the saturation inherent in hydraulic 
servomotor, the controller is also designed with the output 
saturatation in order to insure that the maximal permitted 
velocity of the piston of the hydraulic servomotor will not 
be reached. 

( )xvm tXtx ϕω += sin)(  (2) 
 
Simulation analysis is preformed using Matlab with 

Simulink. The input excitation signal f(t) is generated using 
the Matlab script file that calls the Simulink model shown in 
Fig. 2.. It is actually a modified chirp signal, the frequency 
of which is changed every 100 seconds with step of 0.01 
Hz. Signal x(t) is input of the nonlinear part of the system. 
Integrator that represents hydraulic servomotor has upper 
windup limit at 0.245 m and lower windup limit at  
0 m.  
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B. Resonance jump for real parameters of system 
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Fig. 3. Resonance jump generated with the real parameters of the system 

Fig. 3

 
The simulation with the real parameters of the system is 

shown in Fig. 3.  is the referent figure for all the other 
simulation figures. There are two curves in each simulation 
figure. The curve with the solid line represents the response 
on rising frequency, while the curve with the dashed line 
represent the response on falling frequency. 

The real values of the parameters were: 
 

TABLE I 
REAL VALUES OF PARAMETERS 

parameter value 
upper and lower saturation limit ±0.3 [p.u.] 
start and end of dead zone ±0.06 [p.u.] 
upper windup of hydraulic servomotor 0.245 [m] 
lower windup of hydraulic servomotor 0 [m] 
K – gain of the electro-hydraulic valve 200 
Kp – gain of proportional controller 100 
Txa -Time constant of the electro-
hydraulic valve  

0.8 [s] 

Fv – magnitude of excitation 0.1225 
offset of excitation 0.1225 

C. Influence of saturation on resonance jump 
In order to analyze the system on variation of saturation, 

the upper and lower saturation limits have changed into 
±0.25 p.u. The results are shown in . The case, where 
the saturation limits were changed into ±0.35 p.u., is shown 
in . 

Fig. 4

Fig. 4. Resonance jump with smaller saturation value than with the real 
parameters of the system 
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Fig. 5

Fig. 5. Resonance jump with greater saturation value than with the real 
parameters of the system 
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D. Influence of dead zone on resonance jump 
The system was also analyzed on change of the dead zone 

with the respect to nonlinear resonance jump. The 
simulation results for the system without dead zone (all the 
other parameters were left as in Table 1.) are shown in 

 and the results for the case with augmented dead zone are 
shown in . The start and the end of dead zone have 
been from ±0.06 p.u. changed to ±0.12 p.u. The variations 
are 100% at every side of dead zone. 

Fig. 
6

Fig. 6. Resonance jump without dead zone  

Fig. 7
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From Figs 3 – 5, one can see, by comparison, that the 
resonance jumps exist in each case. The system exhibits the 
similar behavior in all three cases. However, the change of 
the saturation limits changes the frequencies at which the 
resonance jumps occur. For the smaller saturation limits the 
frequencies at which the resonance jump occurs are lower 
(compare Fig. 3 and Fig. 4). For the bigger saturation limits 
that frequencies are higher. The differences between the 
case are up to 2 Hz. 
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Fig. 7. Resonance jump with the greater value for dead zone than with the 
real parameters of the system 
 

Comparison of the simulation results from Fig. 3, Fig. 6 
and Fig. 7 shows that change in the dead zone limits does 
not affects the occurrence of the nonlinear jump in 
significant way. All the frequencies where the resonance 
jump occurred are almost the same (Figs 3, 6 and 7). 
 

E. Influence of gain K of the electro-hydraulic valve on 
resonance jump 
In order to analyze the influence of variation of the gain 

K of the electro-hydraulic valve, the value of the gain K was 
changed into 170. The results are shown in . Another 
case, with the value of the gain K equal to 230, is shown in 

. 

Fig. 8

Fig. 8. Resonance jump with smaller value for gain K than with the real 
parameters of the system 

Fig. 9

Fig. 9. Resonance jump with greater value for gain K than with the real 
parameters of the system 
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F. Influence of time constant Txa of the electro-hydraulic 
valve on resonance jump 
To analyze the system on variation of the time constant 

Txa of the electro-hydraulic valve, the value of the time 
constant has been changed into 0.75. The results for that 
case are shown in Fig. 10. The results for the case with the 
value of time constant Txa equal to 0.9, are shown in 

. 
Fig. 

11

Fig. 11. Resonance jump with the greater value of Txa than with the real 
parameters of the system 
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Fig. 10. Resonance jump with smaller value of Txa than with the real 
parameters of the system 
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Again, comparing the results in Figs 3, 8 and 9 one can 

note the differences. For the smaller K resonance jump 
occurs at the lower frequencies, for the bigger K at the 
higher frequencies. The difference between the cases is 
almost up to 2 Hz. 

 

 
 



 
 

Again, comparison of the simulation results from Figs. 3, 
10 and 11 shows that the frequencies where resonance jump 
occurs are changed. The frequencies are lower for the 
greater value of. Txa 

 

G. Resonance jump for real parameters of system and 
with symmetric excitation 
For the purpose of comparison of the simulation approach 

and analytical approach the simulation with symmetric 
excitation has been performed. This case is shown in 

. 
Fig. 

12

Fig. 12. Resonance jump for the real parameters of system and with 
symmetric excitation 

Here, the excitation signal has the following form: 
( tFtf vv )ωsin)( =  (3) 
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One can note the sharp difference in the frequencies at 
which resonance jump occurs when this case is compared 
with the previous simulation results. Since we are dealing 
with the system that contains saturation, the big influence of 
the amplitude of the reference signal is expected. 
 

H. Conclusion on simulation method 
The simulation results given here lead to the following 

conclusion. The variations of saturation, gain K of the 
electro-hydraulic valve and the time constant Txa of the 
electro-hydraulic valve have big influence on resonance 
jump. Opposite to them, the variations of parameters of dead 
zone have very small influence on resonance jump and can 
be eliminated from further analysis. Of course, the 
elimination of dead zone is not always allowed. It is allowed 
only if the dead zone has very small influence on results of 
analysis. That can be always shown by the simulation. Thus, 
the simulation analysis is always a good starting point for 
the use of the analytical method. 

IV. ANALYTICAL METHOD 
The resonance jump can be observed through analysis of 

frequency characteristics of nonlinear system. 
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Fig. 13. Block diagram of a forced system 

. 13The quantities from Fig  are: 
)sin()( tFtf vv ω= - harmonic input to the system 

)sin()( xvm tXtx ϕω += - input to the nonlinear part of the 
system 

),( pxxF - nonlinear part of the system 

)(
)()(

pA
pBpGL = - linear part of the system 

The most suitable method to determine resonance jump of 
nonlinear system is the describing function method. The 
process of determining nonlinear resonance jump is based 
on equation (4)[1]: 
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which is for this purpose rewritten as: 
 

[ ] xj
vvmNvLm eFXGjGX ϕωω −=+ ),()(1  (5) 

 
where )(/)()( vvvL jAjBjG ωωω =  is the linear part of the 
system, ),( vmXP ω  is the real part of the describing 
function of nonlinear part of the system, ),( vmXQ ω is 
imaginary part of the describing function of the nonlinear 
part of the system,  is harmonic input to the system 
(excitation) and  represents the magnitude of the input 
of the nonlinear part of the system. 

ϕj
veF −

mX

 
The area in which resonance jumps of 

magnitude )( vmX ω  can occur is determined by the 
envelope of family of circles. 

To determine the frequency area where the occurrence of 
resonance jump is possible, the parametric equation (6) [1] 
of the envelope have to be determined by: 
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Consider our system: 
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Fig. 14. Block structure of plant for the analytical method 

 



 
 

Linear part of the system is: 
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The describing function of nonlinear part of the system is: 
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Fig. 15. Frequency characteristic of linear part of the system 

)( vL jG ω and envelope of nonlinear part of the system 
 

where b is upper and lover limit saturation. 
 
From (6) it follows: 
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From (8), (9) and (10), for b we obtain: 3.0=
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Fig. 16. Frequency characteristic of linear part of the system 

)( vL ω and envelope of nonlinear part of the system - Detail 

 

 

09.0

09.02.1
23

2

−

−
=

mm

m

m XX

X
dX
dP

π
 (13) 10

09.0

27.022.1
24

2

2

2

−

−
=

mm

m

m XX

X
dX

Pd
π

 (14) 

From (7) and (8) for andT we obtain: 200=K 8.0=xa
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(dashed line is linear system frequency response) 

V. CONCLUSION  
By substituting obtained relations into (6), the crossing 

points of the parametric equation of the envelope and the 
equation of the linear part are determined. The area of 
resonance jump is defined by frequency interval ( 21, vv ωω ). 

Since the nonlinear resonance jump phenomenon can 
degrade dynamics of the nonlinear system. Its analysis is 
recommended. In most cases the experimental analysis on 
the real system is not possible. For the complex systems 
analytical method is difficult or even impossible. So, the 
only way to perform the analysis of complex nonlinear 
systems is often simulation approach. The approaches 
presented in this paper can significantly improve design of 
nonlinear control systems. The results of the analysis can 
point out which operating regimes should be avoided so that 
the system does not operate in the area where the nonlinear 
resonance jump can occur. It is also possible to determine 
the elements to be added in control loop/circuit in order to 

 



 
 

modify the phase of the whole system in such way that the 
resonance jumps are avoided. 
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