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Abstract-The main problem in the control of flexible 
manipulators is to provide precise tip tracking in the 
operational space. Even if joint angles are controlled 
sucessfully, the end effector of the manipulator deviates 
from the desired position because of link deflections and 
vibrations. In this study, a neural network based trajectory 
planning method is applied to calculate modifications in the 
command values of joint angles for tracking control 
problem, so that the position error of the tip of the 
manipulator in the operational space is minimized. A PD 
controller is applied for the joint angle control, where the 
reference inputs are the modified values calculated by the 
neural network. Simulations are performed to evaluate the 
performance of the trajectory planning method and the 
control procedure. 
 
 
Index terms-flexible manipulator, neural network, trajectory 
planning. 
 
 
 

I.  INTRODUCTION 
 

Research on flexible manipulators is being carried out for 
the last two decades, because of the application potential 
they offer due to the advantages they have over rigid 
robots. Flexible manipulators have a higher ratio of the 
load to arm weight. They require less power to produce 
the same acceleration as rigid link manipulators which 
have the same load carrying capacity, therefore smaller 
and cheaper actuators are sufficient. On the other hand, 
modelling and control of flexible link manipulators are 
more difficult than for rigid links. The resulting model is 
a distributed parameter system of infinite dimensions and 
it is non-minimum phase. The number of control inputs is 
less than the number of variables to be controlled since 
the actuators are colocated at the joints. This means that 
the link deflections can be suppressed only indirectly. The 
gross motion and the deformational behaviour of the link 
interact, causing the dynamical equations to be 
complicated and highly nonlinear. As the spatial 
boundary conditions of the links change, the 
characteristic frequencies and modes are modified. 
 

In the technical literature, most of the work on control of 
flexible manipulators aims at suppression of link 
deflections, while controlling joint angles simultaneously. 
Link deflections cannot be controlled directly because of 
the colocated nature of the actuators, leading to imperfect 
vibration suppression. Another possible approach is to 
calcuate new joint angles, to make the tip of the 
manipulator track the desired trajectory in the operational 
space, irrespective of link deflections. 
 
In this study, a neural network is used to calculate an 
incremental modification on the command values of joint 
angles, so that the error of the tip position in the 
operational space is minimized. A neural network is 
utilized is to make use of the learning properties of 
intelligent structures. With the modified trajectory as the 
new command trajectory in the joint space, a PD 
controller is applied for joint angle control. Simulations 
are performed to illustrate the performance of the method 
on the joint motion, deflections, tip motion and errors in 
operational space. 
 

II.  ROBOT DYNAMICS AND KINEMATICS 
 

The manipulator which is to be controlled in this study 
is a planar, two-link flexible manipulator. The model has 
been derived by De Luca and Siciliano [1] and a sketch of 
it is given in figure 1. Rotary joints are subject only to 
bending deformation in the plane of motion; torsional and 
gravitational effects are neglected. 

 
 

FIGURE 1. Two-link, planar flexible manipulator 
  



For the two-link flexible manipulator clamped at the 
origin, depicted in figure 1, the following coordinate 
frames are established: The inertial frame, X Y

∧ ∧

 


0 0, ; the 

rigid body moving frame associated to link i , ( )X Yi i,  
and the flexible body moving frame associated to link i , 

X Yi i

∧ ∧

 


, . The rigid motion is described by the joint angles 

θ i  and ( )y xi i  denotes the transversal deflection of link i  
at abscissa xi . (0 ≤ ≤x li i ; where li  is the length of link 
i ). 
 
The closed-form dynamic equations of the robot can be 
obtained by calculating the kinetic and potential energies 
and applying Lagrange equations: 
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where ( )B q  is the positive definite symmetric inertia 

matrix, h q,q
.


 


  is the vector of Coriolis and centrifugal 

forces, K  is the stiffness matrix, Q is the input weighting 
matrix, u is the n-vector of joint (actuator) torques. 
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describes the N-vector of generalized coordinates 
( )N n mii= +∑ . Input weighting matrix Q , is in the 

form ( )[ ]I  0n n n N n

T

× × −  due to the clamped link 
assumption. This form of the Q matrix implies that inputs 
can be applied through actuators and they affect only the 
joint angles directly but not the deformation of the links. 
 
To describe the tip position of the robot in operational 
space, the kinematic equations of the robot are utilized. 
There are two kinds of rotation matrices for the flexible 
robot manipulator: The joint (rigid) rotation matrix R i , 
and the rotation matrix of the flexible link at the end-
point Ei . 
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 and the linear 

approximation ( )arctan ′ ≅ ′y yie ie  is valid for small 
deflections. iT  denotes the global transformation matrix 

from X Y
∧ ∧


 


0 0,  to  ( )X Yi i, , where i represents the ith 

link, and obeys the following recursive equation: 
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By using (2)-(4), the kinematics of any point along the 
arm can be fully characterized with respect to the base 
frame. For the two-link, planar, flexible arm, the position 
of the tip of the robot in the operational space is given by: 
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where l1  and l2  are the lengths of shoulder and elbow 
links respectively. The p vector denotes the x and y 
coordinates of the tip of the manipulator: 
 

p =










x
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Using (5), the x and y coordinates of the tip of the 
manipulator are calculated as follows: 
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It is obvious from (7) and (8) that, the direct kinematic 
equations of the two-link flexible manipulator are highly 
nonlinear functions of several variables and it is not an 
easy task to obtain inverse kinematic equations out of 
them. Therefore, it is logical to utilize a computationally 
intelligent agent for control in the operational space. 
 

III.  NEURAL NETWORK BASED TRAJECTORY PLANNING 
 

The main difficulty in the control of flexible link 
manipulators is that because of the colocated nature of the 
actuators, the vibrations cannot be controlled directly. 
Even if the joint angles are controlled perfectly, the tip of 
the manipulator will not follow the desired trajectory in 
the operational space, because of the deflections and 
vibrations. A possible approach in the control of flexible 
manipulators is to leave the link deflections as they are 
and to calculate new joint angles for a precise command 
of manipulator tip in the operational space. Some iteration 
based techniques utilizing this method can be found in 
[2],[3], [4] and [5]. In [6], a gradient descent based 
trajectory planning method has been proposed for the 
regulation of two-link flexible robotic arm. In [7], a 
neural network based technique has been discussed for 
the regulation of flexible log cranes. The modification of 
the reference trajectory for flexible manipulators when 
the tip is required to track a trajectory in the operational 
space is therefore a challenging problem. In [8], neural 
network inverse control techniques are applied for 
trajectory tracking of a PD controlled rigid robot 
manipulator. 
 



In this study, a neural network based scheme is applied to 
modify the reference trajectories of the joint angles of the 
two-link flexible robot manipulator depicted in figure 1, 
for the tracking control problem. The control scheme is 
shown in figure 2. The neural network operates online to 
calculate the incremental change in the command values 
of joint angles, while in the control loop a PD controller 
is applied to the manipulator. 
 
The reference trajectory for the joint angles can be 
decomposed into two parts: 
 

θ θ θref ref ref= +1 2  (9) 
 

In figure 2, pdes  denotes the desired trajectory for the tip 
of the manipulator in the operational space, θ ref 1  is 
calculated from pdes  using inverse kinematic equations of 
a two-link, planar rigid robot. θref 2  is calculated by the 
neural network utilizing the information of error in the 
operational space. 
 

( )θref NN2 = W, ep   (10) 
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W is the vector of neural network weights and ep denotes 
the error of the tip in the Cartesian coordinates. Separate 
neural networks are designed for each joint angle and 
they are composed of three layers; the input, hidden and 
output layer. Hyperbolic tangent functions are used as 
activation functions in the hidden layer, and linear 
functions are utilized in the output layer. An auxiliary 
variable, exy is defined to measure the error between the 
actual and desired positions of the tip of the robot 
manipulator. 
 

( )e e exy x y= +
1
2
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 Error backpropagation method is used for training the 
neural networks and the weights are updated according to 
(13) in order to minimize the cost function given in (14). 
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FIGURE 2.  The control scheme 

 
 
 
 

IV.  PD CONTROLLER 
 

The incremental changes to be made in the reference 
values of the joint angles to minimize the tip error in 
Cartesian coordinates are calculated in the neural 
networks as described in section III, and added to the 
value obtained from inverse kinematic equations, hence 
the final value of the reference angles are obtained. In the 
control loop, a PD controller is utilized to obtain good 
tracking in the joint space. The actuator torques to be 
applied to each joint is given by: 
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In equation (15), ( )~θ i t  and ( )~θ i t
•

 represent the error in 
the joint angle and velocity for the ith link. k pi

 and kvi
 are 

the proportional and derivative gains, respectively. In the 
simulations, the controller gains are chosen as: k p1
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V.  SIMULATION RESULTS 
 

Simulations are performed on the two-link, planar, 
flexible manipulator depicted in figure 1, to test the 
performance of the trajectory planning method described 
in section III and the PD controller explained in section 
IV. It is required that the tip of the manipulator tracks a 
rectangular trajectory in the operational space. Figures 3-
8 illustrate the results of the simulations. In figure 3, the 
modification in reference joint angles obtained from 
neural networks are shown. In figure 4, the reference and  
 
 
 
 

 
 
 
 
actual values of joint angles are depicted, figure 5 shows 
the deflection of each link. Figure 6 illustrates the 
comparison of the error of the tip of the manipulator in 
the operational space, with and without the incremental 
change calculated by the neural network. Similarly, figure 
7 depicts the auxiliary variable  exy, given by (14), and 
figure 8 shows the tip of the manipulator in the 
operational space, with and without the incremental 
change calculated by the neural network. 
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FIGURE 3. The modification on reference values of joint angles calculated by neural networks 
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FIGURE 4.  Reference (dotted lines) and actual (solid lines) angles  
for the shoulder and elbow angles 
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FIGURE 5.  Deflection of the shoulder link and the elbow link 
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FIGURE 6.  The errors in x- and y-coordinates of the tip of the manipulator in the operational space 

with (solid line) and without (dotted line)modification of reference joint angles 
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FIGURE 7.  The auxiliary variable exy with (solid line) and without (dotted line) 

modification of reference joint angles 
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FIGURE 8.  Desired trajectory (dash-dotted line) and the position of the tip of the manipulator  

in the operational space with (solid line) and without (dotted line) 
modification of reference joint angles 

 
 

 
VI.  CONCLUSIONS 

 
 In this study, a neural network based trajectory 
planning method is applied to a planar, two-link flexible 
manipulator to provide a more precise tracking for the tip 
trajectory in the operational space. The reference values 
of joint angles are calculated by inverse kinematic 
equations of rigid manipulators. Then an incremental 
change for these joint angles is computed by a neural 
network which takes the errors in x- and y- coordinates of 
the tip in the operational space as inputs and updates its 
weights in order to minimize the error in the operational 
space. The incremental value is added to the reference 
value of the joint angle. In the control loop, the control of 
the joint angles is provided by a PD controller. As we can 
observe from the simulation results, in comparison to the 
case where there is no reference joint angle compensation 
for link flexibility, there is really a pronounced 
improvement in the operational space tracking 
performance of the tip of the manipulator. 
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