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Abstract

This paper studies the performance limitation of an LTI mul-

tivariable discrete-time system in tracking a reference signal

which is a linear combination of a step signal and several sinu-

soids with different frequencies. It attempts to extend some

recent results for continuous-time systems on the same issue.

The tracking performance is measured by the energy of the

error between the output of the plant and the reference sig-

nal. Our purpose is to find the fundamental limitation for the

attainable tracking performance, under any control structure

and parameters, in terms of the characteristics and struc-

tural parameters of the given plant as well as the reference

signal under consideration. It is shown that this fundamental

limitation depends on the interaction between the reference

signal and the nonminimum phase zeros of the plant and their

frequency dependent directional information.

Keywords: Linear system structure, Performance limita-

tion, Optimal Control, Tracking, Nonminimum phase.

1 Introduction

Tracking a given signal is a common task in feedback control

systems. This paper will consider the best achievable per-

formance, often called performance limit in the literature, of

LTI discrete-time systems in tracking given reference signals.

The signals under consideration are a linear combination of a

step and several sinusoids in various frequencies. In general,

these signals can be modelled as outputs of a signal generator.

∗This work is supported by the Hong Kong Research Grants Council

and NSF/USA under the Grant ECS-9912533

The state of this generator contributes further information to

the feedback controller in addition to the reference signal it-

self. In light of this, we first consider the case where the full

state information of the reference signal is available for the

controller. Then the case where only the reference signal is

available will be considered.

The setup where full information is available is depicted in

Figure 1. Here λ is a unit delay operator; P (λ) is the given
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Figure 1: A general two-parameter control structure

plant transfer matrix; K(λ) is the controller transfer matrix

which is to be designed; S(λ) is the exosystem which is ex-

cited by a unit impulse δ(k) and generates the reference. The

controller is assumed to have full information of the reference

in the sense that it takes the state v(k) of the exosystem

S(λ), in addition to the measurement y(k) of the plant, as

its inputs. Whether or not the measurement y(k) contains

the full information of the plant, i.e., the state of the plant, is

not important. The tracking problem is to design a controller

K(λ) so that the closed loop system is internally stabilized

and the plant output z(k) asymptotically tracks a reference

signal r(k) of the form:

r(k) =
n∑

l=−n

vle
jωlk (1)

1



where ωl, l = 0,±1, . . . ,±n, are distinct real frequen-

cies satisfying ω−l = −ωl and vl, l = 0,±1, . . . ,±n, are

complex vectors satisfying v−l = v̄l. Implicitly, we have

ω0 = 0 and v0 is real. The reference defined in such

a way is always a real valued signal. We use the vector

v =
[
v∗−n · · · v∗−1 v∗0 v∗1 · · · v∗n

]∗
to capture the mag-

nitude and phase information of all frequency components of

the reference. The tracking performance is usually measured

by the energy of transient tracking error:

J(v) =
∞∑

k=0

‖r(k)− z(k)‖2 =
∞∑

k=0

‖e(k)‖2. (2)

The problem considered in this paper is to find an explicit

expression of the smallest tracking error, i.e., the performance

limit of the system,

Jopt(v) = inf
K

J(v) (3)

when the controller K is chosen among all possible stabiliz-

ing 2DOF controllers. In this paper, we achieve this under-

standing in the form of an explicit, simple, and informative

relationship between this performance limit and the plant

characteristics as well as the parameter vector v of the refer-

ence.

If we are interested in an overall performance measure of

the feedback system in tracking all references of the type (1),

then we normally turn our attention to an averaged version

of the tracking error and we normally take the average over

all possible v whose entries have zero mean, are mutually

uncorrelated, and have a unit variance. Such an averaged

performance measure is given by

J = E{J(v) : E(v) = 0, E(vv∗) = I}. (4)

In this case, the performance limitation becomes

Jopt = inf
K

J. (5)

It turns out that the solution to this problem is simple enough

to be stated as follows: Under some minor assumptions,

Jopt =
m∑

i=1

n∑

l=−n

1 + ejωlqi

1− ejωlqi
(6)

where qi, i = 1, 2, . . . , m, are the nonminimum phase zeros,

i.e., those zeros inside the unit circle, of the transfer function

from u(k) to z(k).

Results of this sort first appeared for continuous time sys-

tems [1], [3]. The discrete time version only started to appear

in recent years [2], [5]. For the case when r(k) is a step signal

of the form r(k) = v, k ≥ 0, it is shown in [2]

Jopt(v) = ‖v‖22
m∑

i=1

1 + qi

1− qi
cos2 ∠(v, ηi), Jopt =

m∑

i=1

1 + qi

1− qi

where ηi is a vector associated with the zero qi. Further study

for other types of reference signals, including a sinusoid with

a single frequency, was carried out in [5]

In formula (6), the assumption that the state of the ex-

osystem is available to the controller is crucial. This simply

means that not only the reference but also the magnitude

and phase information of all of its frequency components is

known to the controller. This may look unrealistic in the

first glance, but this gives a limitation more fundamental to

any other one assuming a partial information structure. Note

that when the reference only contains a constant term, the

value of the reference already gives its full information.

This paper gives a rather complete picture for the track-

ing performance limitation problem for general reference con-

taining several frequency components. We first give some

new insight on linear system structure. We show that each

nonminimum phase zero has associated frequency dependent

directions. A key technical result in this paper is a rela-

tion among directions at different frequencies. By using this

technical result, we derive an expression for Jopt(v) which el-

egantly exhibits the effect of the plant nonminimum phase

zeros and the interaction between each frequency component

and the directions mentioned above.
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Figure 2: A two-parameter control structure with only refer-

ence information

Figure 2 shows the structure of an LTI discrete-time sys-

tem in which only the reference is available for the controller

K(λ). If the parameter vector v of the reference is available

for controller design, then we will obtain a v dependent con-

troller K(λ) and the same performance limit Jopt(v) as that of
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the systems shown in Figure 1. However, this is an idea case.

A more practical case is that the parameter vector v is not

available for the controller K. In this case, we turn our atten-

tion to an averaged version of the tracking error Jopt defined

in (4) and (5). It turns out that deriving a simple expres-

sion for Jopt is hard for the general reference of the form (1).

We will consider instead a special case when r(k) is a scalar

signal containing a single sinusoid v(k) = v−1e
−jωk + v1e

jωk.

Under some mild assumptions, we are able to find that

Jopt =
m∑

i=1

(
1 + e−jωqi

1− e−jωqi
+

1 + ejωqi

1− ejωqi

)

+
2

sin ω
sin2

[
2

m∑

i=1

∠(1− e−jωqi) +
ω

2

]

where ∠(1 − e−jωqi) stands for the phase or argument of

the complex number 1 − e−jωqi. Comparing this with the

performance limit in the full reference information case, which

is

Jopt =
m∑

i=1

(
1 + e−jωqi

1− e−jωqi
+

1 + ejωqi

1− ejωqi

)
,

we are able to pinpoint exactly the performance deterioration

due to the limited information.

The organization of this paper is as follows. In Section

2, preliminary materials on linear system factorizations are

presented. It is shown that a right-invertible system can be

factorized as a cascade connection of series of first order in-

ner factors and a minimum phase factor. The factorization is

frequency dependent. The inner factors then contain all the

information associated to the nonminimum phase zeros. In

Section 3, we formally formulate the problems studied and

then state and discuss the main result and some of its conse-

quences for the case where the full state information is avail-

able. Section 4 gives result for the case where only reference

signal is available. Section 5 is the conclusion. The proofs of

the main results in Section 4 are given in Appendix.

The notation used throughout this paper is fairly standard.

For any complex number, vector and matrix, denote their

conjugate, transpose, conjugate transpose, real and imagi-

nary part by (̄·), (·)T , (·)∗, Re (·) and Im (·), respectively.

Denote the expectation of a random variable by E {·}. Let

the open unit disk, the unit circle, and the part of the com-

plex plane outside of the unit disk together with the infinity

be denoted by D, T, and D̄c respectively. The usual Lebesgue

space of all possibly vector valued square integral functions

on T is denoted by L2. The set of those functions in L2 which

are analytic on D is denoted by H2 and the set of those func-

tions in L2 which are analytic on D̄c and vanish at the infinity

is denoted by H⊥2 . It is well-known that H2 and H⊥2 are in-

deed orthogonal complement to each other as subspaces of

L2. The Euclidean vector norm and the norm in the space

L2 are both denoted by ‖ · ‖2. RH∞ is the set of all stable,

rational transfer matrices. Finally, the inner product between

two complex vectors u, v is defined by 〈u, v〉 := u∗v.

2 Preliminaries

Let G(λ) be a real rational matrix representing the transfer

function of a discrete time finite-dimensional, linear time in-

variant (FDLTI) system. Let us assume that G(λ) is right

invertible. Its poles and zeros (including multiplicity) are

defined in the usual way according to its Smith-MacMillan

form. G(λ) is said to be minimum phase if it free of zeros in

D; otherwise it is said to be nonminimum phase.

It should be noted that any τ steps pure delay in an output

channel yield τ multiple nonminimum phase zeros at origin.

Let G(λ) = N(λ)M−1(λ), where M(λ), N(λ) ∈ RH∞, be

a right coprime factorization of G(λ). Let q ∈ C be a non-

minimum phase zero of G(λ). Then q is also a nonminimum

phase zero of N(λ) and there exists a unit vector η such that

η∗N(q) = 0. We call the vector η a (left or output) zero vector

of G(λ) corresponding to the nonminimum phase zero q.

Let us now order the nonminimum phase zeros of G(λ) (or

N(λ) equivalently) as q1, q2, . . . , qm. Assume that each pair

of complex conjugate zeros are ordered in adjacent order. Let

us also fix a frequency ωl ∈ R. We first find a unit vector ηωl1

of G(λ) corresponding to q1 and define

Gωl1(λ) = Uωl1




1−ejωl q∗1
ejωl−q1

λ−q1
1−λq∗1

0

0 I


U∗

ωl1
(7)

where Uωl1 is a unitary matrix with the first column equal to

ηωl1. Here Gωl1(λ) is so constructed that it is inner, has the

only zero at q1 with ηωl1 as a zero vector corresponding to q1,

and Gωl1(jωl) = I. Since it is a generalization of the standard

scalar Blaschke factor, we call it a matrix Blaschke factor

at the frequency wl and call ηωl1 a corresponding Blaschke

vector. Also notice that the choice of other columns in Uωl1 is
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immaterial. Now G−1
ωl1

(λ)G(λ) has zeros q2, q3, . . . , qm. Find

a zero vector ηωl2 of G−1
ωl1

(λ)G(λ) corresponding to q2 and

define Gωl2(λ) and Uωl2 by the same form as that in (7). Then

G−1
ωl2

(λ)G−1
ωl1

(λ)G(λ) has zeros q3, q4, . . . , qm. Continue this

process until Blaschke vectors ηωl1, . . . , ηωlm and Blaschke

factors Gωl1(λ), . . . , Gωlm(λ) are obtained. This procedure

shows that G(λ) can be factorized as

G(λ) = Gωl1(λ) · · ·Gωlm(λ)Gωl0(λ) (8)

where Gωli(λ) is in the same form as that in (7) and Gωl0(λ)

has no nonminimum phase zero. Let us call such a factoriza-

tion a cascade factorization at frequency ωl. In this factoriza-

tion, each Blaschke vector and Blaschke factor correspond to

one nonminimum phase zero. Keep in mind that these vectors

and factors depend on the order of the nonminimum zeros, as

well as on the frequency ωl. The product Gωl1(λ) · · ·Gωlm(λ)

is called a matrix Blaschke product. One should note that

even though the order of q1, q2, . . . , qm is fixed, the factoriza-

tion at the frequency ωl is not unique since ηωli is not uniquely

determined. Furthermore, if we have 2n+1 different frequen-

cies ωl, l = 0,±1, . . . ,±n, then the factorizations at different

frequencies are in general different. Nevertheless, they can be

intimately related if we make the choices properly. For exam-

ple, it is easy to see from the above construction that ηωl1,

the first Blaschke vector, can be chosen independent of ωl.

The following lemma provides such relations and is the key

technical result that leads to the main result of this paper.

Lemma 2.1 Suppose that the order of q1, q2, . . . , qm is fixed.

Also suppose that we are given 2n + 1 different frequencies

ωl, l = 0,±1, . . . ,±n. Then the 2n + 1 cascade factorizations

(8) can be chosen so that for all l, l′ = 0,±1, · · · ,±n and

i = 1, 2, . . . ,m,

ηωli = Gωl′1(e
jωl)Gωl′2(e

jωl) · · ·Gωl′ i−1(ejωl)ηωl′ i. (9)

3 The Main Result
Let us go back to the setup shown in Figure 1. The mea-

surement output y(k) of the plant is assumed to be different

from the tracking output z(t). We denote the transfer func-

tion from u(k) to z(k) by G(λ) and that from u(k) to y(k)

by H(λ), i.e.,

P (λ) =


 G(λ)

H(λ)


. (10)

In order for the tracking problem to be meaningful and solv-

able, we make the following assumptions in the paper.

Assumption 3.1

1. P (λ), G(λ) and H(λ) have the same unstable poles.

2. G(λ) has no zero at ejωl , l = 0,±1, · · · ,±n.

The first item in the assumption means that the mea-

surement can be used to stabilize the system and at the

same time does not introduce any additional unstable modes.

A more precise way of stating this is that if P (λ) =
 N(λ)

L(λ)


M−1(λ) is a coprime factorization, then we as-

sume that N(λ)M−1(λ) and L(λ)M−1(λ) are also coprime

factorizations. The second item is of course necessary for the

solvability of the tracking problem.

Now it is ready to state our main result.

Theorem 3.1 Let G(λ) have nonminimum phase zeros

q1, q2, . . . , qm with associated Blaschke vectors ηωl1, . . . , ηωlm,

l = 0, . . . , n, satisfying Lemma 2.1. Then

Jopt(v) =
m∑

i=1

(1− qiq
∗
i )

∣∣∣∣∣
n∑

l=−n

〈η−ωli, vl〉
1− ejωlqi

∣∣∣∣∣

2

=
m∑

i=1

n∑

l=−n

n∑

l′=−n

(1− qiq
∗
i )

〈vl, η−ωli〉〈η−ωl′ i, vl′〉
(1− e−jωlq∗i )(1− ejωl′ qi)

. (11)

This formula for the performance limit clearly shows that it

depends on the nonminimum phase zeros in an additive way

and the contribution of each nonminimum phase zero to the

performance limitation depends in a quadratic way on the fre-

quency components of the reference. It also clearly shows how

various frequency components enter the performance limita-

tion through the inner products with the Blaschke vectors at

the corresponding frequencies.

In the case when n = 0, i.e., the reference only has a step

component, we get

Jopt(v) =
m∑

i=1

(1− qiq
∗
i )

|1− qi|2 |〈η0i, v〉|2 =
m∑

i=1

1 + qi

1− qi
|〈η0i, v〉|2.

This is exactly the formula given in [2], [5].

The proof of Theorem 3.1 also shows that a controller, or

a sequence of controllers, independent of v can be found to
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attain the performance limitation. Therefore

Jopt = inf
K

E{J(v) : E(v) = 0, E(vv∗) = I} (12)

= E{inf
K

J(v) : E(v) = 0, E(vv∗) = I} (13)

=
m∑

i=1

n∑

l=−n

(1− qiq
∗
i )

η∗−ωli
η−ωli

(1− e−jωlq∗i )(1− ejωlqi)

=
m∑

i=1

n∑

l=−n

1− qiq
∗
i

|1− ejωlqi|2 =
m∑

i=1

n∑

l=−n

1 + ejωlqi

1− ejωlqi
.

This immediately leads to the following theorem.

Theorem 3.2 Let G(s) have nonminimum phase zeros

q1, q2, . . . , qm. Then

Jopt =
m∑

i=1

n∑

l=−n

1− qiq
∗
i

|1− ejωlqi|2 =
m∑

i=1

n∑

l=−n

1 + ejωlqi

1− ejωlqi
. (14)

4 Design Limitation from Partial In-

formation of the Reference
In this section, the performance limit of optimal tracking

problem is discussed for the system shown in Fig. 2. De-

note P (λ) =


G(λ)

H(λ)


 and assume that Assumption 3.1 holds.

Moreover, it is assumed that only reference signal of the sys-

tem is available for a controller. To solve this tracking prob-

lem, we will start at the same setup as that in the Section

3. If the magnitude and phase information v of all frequency

components of the reference is still available for controller de-

sign, a v-dependent controller and performance limit Jopt(v)

as that in last section can be obtained. It must be noted that

this is only an idea case. Here we will consider a more prac-

tical case where the parameter vector v is unknown for con-

troller designing. To find meaningful solution for the tracking

problem, we will consider the average tracking performance J

under the assumptions that E(v) = 0 and E(vv∗) = I.But, in

this case, the exchange of the infimum and expectation in the

the step from (12) to (13) is no longer valid. Furthermore, the

result in Theorem 3.2 is no longer true. Essentially, this con-

straint is caused by the partial information of the reference

signal. It will be shown that more performance limitation is

imposed on the optimal tracking problem by this constraint.

In general, without full information of a reference signal, it

is very complicated to find the performance limit for a track-

ing problem. In this paper, we only discuss the performance

limit of a SISO linear system in tracking a single frequency

sinusoidal signal as follows:

r(k) = v−1e
−jωk + v1e

jωk. (15)

The magnitude and phase information of the reference is de-

noted by v′ = [v−1 v1].

Theorem 4.1 Let G(λ) have nonminimum phase zeros

q1, · · · , qm. Then,

Jopt =
m∑

i=1

(
1 + e−jωqi

1− e−jωqi
+

1 + ejωqi

1− ejωqi

)

+
2

sin ω
sin2 2

m∑

i=1

[
∠(1− e−jωqi) +

ω

2

]
. (16)

Proof: See Appendix A.

In Theorem 3.2, it is shown that, if the full information of

the reference (15) is available, the tracking performance limit

of the linear system P (λ) is given by

Jopt =
m∑

i=1

(
1 + e−jωqi

1− e−jωqi
+

1 + ejωqi

1− ejωqi

)
.

Theorem 4.1 gives explicit expression of the tracking perfor-

mance limit for the case where the full state information of

the reference is unavailable. This expression reveals that an

extra limitation caused by this partial information is imposed

on the tracking performance. Indeed, in this case, the con-

troller has to estimate the state of reference first and then

track the reference based on the estimated information. The

extra limitation on the tracking performance is from the cost

of estimation.

5 Conclusions

In this paper, a formula is obtained for the best tracking per-

formance for discrete-time LTI multivariable systems when

the reference is a given linear combination of step and sinu-

soidal signals. This formula clearly reveals the role that each

nonminimum phase zero, as well as its associated frequency

dependent directions, plays towards the performance limita-

tion. A formula is also obtained for the average tracking

performance for all references with given frequencies.

APPENDIX A

Proof of the Theorem 4.1

Denote the λ-transform of the signal r(k) by R(λ) given

by R(λ) = v−1
1−λe−jω + v1

1−λe−jω . Let G(λ) = N(λ)M−1(λ)
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be a coprime factorization. By using the parameterization of

all stabilizing two degree of freedom controllers, we can see

that, under Assumption 3.1, all possible transfer functions

from v(k) to z(k) are given by N(λ)Q(λ) where Q(λ) is an

arbitrary H∞ transfer matrix which can be designed. We

have the tracking error J(v) = ‖[1 − N(λ)Q(λ)]R(λ)‖22. Its

average tracking error is given by

J = E {J(v) : E(v) = 0 and E(vv∗) = I}

=
∥∥∥∥[1−N(λ)Q(λ)]

[
1

1− λe−jω

1
1− λejω

]∥∥∥∥
2

2

.

=
∥∥∥∥[I −N(λ)Q(λ)]

(
ej( ω

2−π
4 )

1− λejω
+

e−j( ω
2−π

4 )

1− λe−jω

)∥∥∥∥
2

2

.(A-1)

Denote ṽ =
[
ej( ω

2−π
4 ) e−j( ω

2−π
4 )

]
. Then J = J(ṽ). Due to

the fact that for a fixed reference signal, the tracking perfor-

mance limit is the same for controllers with or without the

reference full information, it follows from Theorem 3.1 that

Jopt= Jopt(ṽ)

=
m∑

i=1

[
1− q∗i qi

(1− e−jωq∗i )(1− ejωqi)
+

1− q∗i qi

(1− ejωq∗i )(1− e−jωqi)

]

m∑

i=1

[
+

je−jω(1− q∗i qi)η−ωiη
∗
ωi

(1− e−jωq∗i )(1− e−jωqi)
− jejω(1− q∗i qi)ηωiη

∗
−ωi

(1− ejωq∗i )(1− ejωqi)

]

where η∗ωiη−ωi and η∗−ωiηωi, i = 1, · · · ,m by selecting

η∗ω1η−ω1 = η∗−ω1ηω1 = 1. Denote the first sum in Jopt by

Jopt,a and second sum in Jopt by Jopt,b. Simple algebra shows

that

Jopt,a =
m∑

i=1

(
1 + e−jωqi

1− e−jωqi
+

1 + ejωqi

1− ejωqi

)
.

In the remaining part of this proof, induction will used to

show

Jopt,b =
2

sin ω
sin2 2

m∑

i=1

[
∠(1− e−jωqi) +

ω

2

]
.

Denote the phase of (1 − e−jωq∗i )(1 − e−jωqi)ejω by φi =

∠(1−e−jωq∗i )(1−e−jωqi)ejω and notice the fact that Im[(1−
e−jωq∗i )(1 − e−jωqi)ejω] = 2(1 − q∗i qi) sin ω. Then, it follows

that

|(1− e−jωq∗i )(1− e−jωqi)ejω| sin φi = (1− q∗i qi) sin ω

and

(1−e−jωq∗i )(1−e−jωqi)ejω = |(1−e−jωq∗i )(1−e−jωqi)ejω|eφi .

Hence, the first term of Jopt,b is given by

(1− q∗i qi)je−jω

(1− e−jωq∗i )(1− e−jωqi)
− (1− q∗i qi)jejω

(1− ejωq∗i )(1− ejωqi)

=
j

sin ω
(e−jφ1 sin φ1 − ejφ1 sinφ1) =

2
sin ω

sin2 φ1. (A-2)

To carry out the induction we assume that the sum of first

k − 1 terms of Jopt,b satisfies

k−1∑

i=1

[
je−jω(1− q∗i qi)η−ωiη

∗
ωi

(1− e−jωq∗i )(1− e−jωqi)
− jejω(1− q∗i qi)ηωiη

∗
−ωi

(1− ejωq∗i )(1− ejωqi)

]

=
2

sin ω
sin2(φ1 + · · ·+ φk−1).

Notice that η∗ωkη−ωk = e−j2(φ1+···+φk−1). Then, we have

je−jω(1− q∗kqk)η−ωkη∗ωk

(1− e−jωq∗k)(1− e−jωqk)
− jejω(1− q∗kqk)ηωkη∗−ωk

(1− ejωq∗k)(1− ejωqk)

=
j(1− q∗kqk)e−j2(φ1+···+φk−1)

(1− e−jωq∗k)(1− e−jωqk)ejω
− j(1− q∗kqk)ej2(φ1+···+φk−1)

(1− ejωqk)(1− ejωq∗k)e−jω

=
2

sin ω
[sin2(φ1 + · · ·+ φk)− sin2(φ1 + · · ·+ φk−1)].

Hence the sum of first k terms of Jopt,b is given by
2

sin ω sin2(φ1 + · · ·+ φk). It follows the induction that

Jopt,b =
2

sin ω
sin2(φ1 + · · ·+ φm).

Finally, the fact that
m∑

i=1

φi = 2
m∑

i=1

[
∠(1− e−jωqi) +

ω

2

]

leads to the result in this theorem. 2
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