
  
Abstract--The problem for optimal control design of a counter 
current ion exchange process subjected to the influence of 
slowly varying disturbances is considered. The approach of 
repetitive optimization in a two-layer control structure with 
layers of steady-state optimization and optimal stabilization is 
applied. The problem for optimal control is decomposed in the 
corresponding to the layers problems. The first one is solved 
by a decomposition method of prediction of the dual variables 
in the Lagrange’s function. The second one is solved in two 
phases - design of a nonlinear controller to linearize the closed 
loop system and design of an optimal controller for the 
linearized system. The common control is sum from the 
controls of the two layers. The developed algorithms and 
programmes are applied for the model of an ion exchange lab 
scale plant. 
 
Index Terms—ion exchange, optimal control, two-layer 
control, steady state, nonlinear controller design 
 

I. INTRODUCTION 
Counter current ion exchange processes used for removal of 
salts from water employs a method that involves passing 
the water through columns of cation exchange and anion-
exchange beads in the H+ and OH- forms respectively. The 
mechanism for desalination is to convert the salt into acid 
by strong cation exchange (in the cation load column with 
strong cation resin) and subsequently to remove the acid by 
absorption on a weak anion resin (in the anion load 
column). The functioning of the columns is counter current- 
the salt water is coming from the bottom and the resin is 
coming from the top of the column. 
 
Counter current ion exchange plant for desalination (NaCl) 
of water was built in Peninsula Technikon, Fig. 1. The basic 
ion exchange configuration consists of four columns, two 
columns for cation resin loading and regeneration and two 
columns for anion resin loading and regeneration. Every 
column is divided into eight stages by means of multi-
orifice stage separator plates. The functioning of the 
columns is a cyclic one as the control action is the time of 
the up-flow cycle of wastewater. Sensors, for pH and 
conductivity measurements in order to determine the water 
salinity in the input and output column flows are used. 
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The problem for design of an optimal control is to find 
optimal value of the up-flow period such that the 
concentration of salt in the output flow is less or equal to a 
previously specified concentration in spite of the influence 
of slowly varying salt concentration of the input flow of salt 
water. The slowly varying disturbance leads to indefinite 
optimal control execution � it causes a drift to set points for 
the process output.  Therefore it becomes necessary first to 
find a control that will determine the new, depending on the 
disturbances value of the set points and second to lead the 
control system to these new steady state values. The 
hierarchical approach of multi-layer control in the 
framework of optimization and direct control layers is most 
suitable for this purpose. 
 
The aim is to develop a method for design of optimal 
control of the ion exchange process subjected to the 
influence of slowly varying disturbances, which ensures 
action integrity of the separate layers for optimization and 
direct control in order to achieve the specifications of a 
global criterion function.  The method is based on the 
approach of the repetitive optimization [Celikovsky, 1993; 
Kozietulski, 1981], realized in the frameworks of a two-
layer control structure. The problem is decomposed into 
two sub problems for: steady state optimization and optimal 
stabilization. The steady state optimization deals with the 
determination of new optimal steady state values of process 
variables.  These values directly depend on the values of the 
disturbances, considered constant for some interval of time 
i.e. until the next disturbance occurs. The solution of this 
sub-problem is based on the function of Lagrange The 
solution of the second sub problem for optimal stabilization 
is a state feedback in order to reach and maintain the 
obtained optimal steady state of the process.  This sub 
problem is nonlinear one as the model equation is bilinear.  
The approach that is accepted is first to linearize the closed 
loop system by nonlinear control [Isidori, 1995], and then 
to design linear controller for the linearized closed loop 
system, which will make the whole system optimal 
[Tzoneva et al., 1996]. The system is linearized in an input-
output sense. In order to overcome the effect of the process 
parameter variation [Henson and Seborg, 1991, Frecman 
and Kokotovic, 1995] over the linearising effect of the 
nonlinear controller its qualities are improved by design of 
linear control of the linearized system based on quadratic 
criterion for optimality. Based on the solution of the two 
sub problems, the global aim is reached by layering of the 
controls from the two interconnected sub layers, Fig 3. 
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II. THE PROCESS MODEL 
 
 
 A model of the ion exchange column is developed using 
mass-balance equations written for every stage [Dodds et 
al, 1973, Xin and Guihua, 1991]. The equations connect all 
input and output flows of the stages and the column. They 
express the rates of changing of the concentration of salt in 
to the water. The following assumptions are made 
[Tzoneva, 2002]: 
1. Both the volumes of every stage and the amount (hold-

ups) of resin h and liquid H in each stage are equal just 
before the transfer. Equal volumes of resin are 
transferred between the stages. 

2. The resin particles are uniform both in size and density 
at all conversion levels, so that segregation does not 
occur The transfer of resin between two stages is 
instantaneous and neither ion exchange reactions, nor 
adsorption action take place during this period. 
Hydrodynamic delays in liquid and resin streams are 
neglected. 

3. The fluidized phase is perfectly mixed on each stage 
and the expanded fluidized bed fills the entire stage 
volume, this means that the concentration is the same 
everywhere. There is not back mixing. 

4. The operation of the column is at a steady state. The 
electrical neutrality is maintained. There is a linear 
equilibrium relationship between the liquid and resin. 

The model is obtained on the basis of Na component mass 
balance on the stage n, where the number of stages is N. 
The component mass balance equation for the n-th stage is 

+−=+ −− nnLnnLnnnn yFyFdtyhddtyHd ,11,/)(/)(  

NnxFxF nnRnnR ,1,,11, =−+ ++ ,   (1) 
where  ][,],/[,],[, molxyhmolFFlhH nnRLnn  are the liquid 
hold up, the resin hold up, the liquid flow rate, the resin 
flow rate, the fraction of Na in the liquid phase and the 
fraction of Na in the resin phase for the n-th stage. After 
fulfillment of the assumptions (1-4) 

,.,, LnLnn FconstFhconsthHconstH ====== where 

nn ba ,  are the slope and intercept of the pseudo equilibrium 
curve, the model of the n-th stage can be written in the form 

/])([/ 111 nRnnRnnnLn yFayFayyFdtdy −+−= ++−

NnbbFhaH nnRn ,1),()/( 1 =−++ + ,  (2) 
where 0, 1 == +Nfo xyy , are the initial concentrations of 
Na in the liquid and resin respectively. After selecting as a 
vector of state space ,],...,...,,[ 21

T
Nn yyyyy = the state 

space model of the ion exchange process can be written in 
the following form: 

)()(1)()()()( tWytFBtFtBytAyty fRR +++=& , 0)0( yy = , 

)()( tCytz =      (3) 
The coefficients of the models are calculated on the basis of 
theoretical considerations and of the experiments with the 
plant. The method of the least squares is used. For the 
purposes of the control calculation and implementation the 

model is discretized using representation of the first 
derivative as first difference. The model matrices are 
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 z(t) is the process output. Control action for the process is 
the up-flow time. It is in connection with the value of the 
resin flow rate on the basis of mass balance of resin in 
every stage s

R
sss

R FhdThdTF /, == ,  (4) 
where the upper index s is for the steady state balance d is 
the part of the resin hold-up which is transferred from one 
stage to the next during the pull down period.   
 

III. THE PROBLEM FOR OPTIMAL CONTROL IN 
THE PRESENCE OF SLOWLY VARYING 

DISTURBANCES 

A. Formulation of the Problem for Optimal Control in 
the Presence of Slowly Varying Disturbances 

 
Find the control, ),(kFR NiKqqk ,1   ,1 , =−+= , which 
minimizes the functional 
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and satisfies the constraints 
[ ] +∆+∆+=+ )( )( )(1)1( kFkytBkytAky R  

)( )( 1 kWytkFtB fR ∆+∆+ , qyqy =)( ,  (6) 

)( )()( kyCkykz N == ,    (7) 

where 1, −+= Kqqk , and is determined at the current 

moment ,...3,2,1=q ., 11,, xNxNNxN RRRQRS ∈∈∈  are 
the symmetrical, positively definite weighing matrices, q is 
the moments at which the slowly varying disturbance 
changes its value, K � is the number of steps in the 
optimization problem, yq � is the initial condition of the 
state vector at the moments ...3,2,1=q , yf(k) = yf = const, 



1, −+= Kqqk  is the slowly varying disturbance, sp
R

sp Fy ,  
are the state and control set points, determined as nominal 
values for the ion exchange process. In the formulation of 
the problem it is assumed that: 1) the control plant (6), (7) 
is controllable and observable and works in real time, 2) the 
disturbance is determined - yf(k) = yf = constant, can be 
measured and remains  constant during the whole period 
[ 1, −+ Kqq ], 3)the initial condition yq is determined by the 
actual measured state at the moment ...2,1,0   ,0 =≥ qq , 4) 
in each sequential moment 0≥q , the optimal control can 
be determined for the period [ ]1, −+ Kqq . The above 
assumptions allow the multiplayer strategy of control to be 
applied to the problem (5)-(7).  

B. Decomposition of the Optimal Control Problem into 
Two Layer Structure 

 
When the determined disturbance, yf (k) is slowly varying: 

1,   ,)( −+== Kqqkconstky f , the optimal solution of the 
problem can be represented as a sum of steady state and 
dynamical components: 

)()( keyky y
s += ,     (8) 

)()( keFkF
RF

s
RR += ,     (9) 

)()( kezkz z
s += ,    (10) 

where, ys,FR
s, zs - are the components of the optimal 

solution of the initial problem (6) � (7) which depend on the 
slowly varying disturbance, )(  ),(  ),( kekeke zFy R

 � are the 
components expressing the transitional behavior of the 
process moving from the steady state values of the variables 
at the moment (q-1) to the values of the steady state 
variable at the moment q.  The components ey(k), )(ke

RF , 

ez(k) do not depend on the action of the slowly varying 
disturbances. 
The model can now be decomposed into steady state and 
dynamic sub-models that can be used in solving the optimal 
control problem in the two-layer structure [Popchev. & 
Tsoneva, 1992]. After substitution of the state, control and 
output (8) into the dynamical equations, the model (6) � (7) 
can be represented as a sum of two models:  

• steady state model 
[ ] ,   1 f

s
R

s
R

sss WytFtBFtByytAI y ∆+∆+∆+∆+=

, ss yCz =       (11) 
• and dynamic model 
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 As the disturbance yf can be considered piecewise 
constant, the steady state optimization problem can be 
solved where the solution will depend on the value of the 

disturbance, as ys, and FR
s in equation (11) directly depend 

on the value of yf. The criterion is also decomposed into 
two parts - for steady state optimization and for the 
dynamic stabilization. ds JJJ += ,  (14) 
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Then using both models and criteria, separate problems for 
a steady state optimization and dynamic stabilization can be 
solved.  The errors sp

R
s

R
sps FFyy −− ,  in (14b) are 

considered very small because their minimization through 
the solution of the steady state optimization problem. Their 
values are accepted to be approximately zero in the solution 
of the dynamic sub problem. 

C. The Problem for Steady State Optimization 
 
The steady state optimization problem is formulated as 
follows: Find the control FR 

s in such a way that, (14a) is 
minimized under the model constraints (11). The solution is 
based on the function of Lagrange [Tzoneva, 2002] 
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where, λs ∈ RN - is the vector of the Lagrange multipliers. 
The solution of the problem can be found from the 
necessary conditions for optimality of the Lagrange 
function.  The necessary conditions for optimality are: 
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The second derivatives according to the state and control  
0/ 22 >+=∂∂ KQSyL s

s ,    0/ 22 >=∂∂ KRFL s
Rs ,  (19) 

are positive. In the considered case the necessary conditions 
for optimality are also sufficient and the obtained solution 
is unique.  This problem is a convex one. The solution of 
the obtained nonlinear system of equations will determine 
the optimal solution of the steady state problem.  The 
system  (17),(18) has three equations with three unknown 
variables, ys, FR

s and λs.  ys and FR
s
 are the solutions of the 

primal (initial) problem and λs is the solution of the dual 
problem.  Because the solution of the primal problem ys and 
FR

s depends on the values of the Lagrange multipliers the 
calculation procedure could be built using the hierarchical 
principle of coordination of the aims of the subsystems, 
where λs has some previously given value.  This means that 
if the optimal solution for λs is obtained, the optimal 
solutions for ys and FR

s can be obtained.  For this purpose it 
becomes necessary to introduce some hierarchical 
computing structure, which will realize this strategy of the 



solution of the system of equations.  This structure is shown 
in the Fig.2. The calculation is decomposed into two levels: 
Second level  �  coordinating sub-problem and First level � 
calculating for every value of the coordinating variable λs 
the values of the state and the control. The solution of the 
coordinating sub-problem is based on the necessary 
condition for optimality (18). As analytical solution for the 
dual variable is not possible to be obtained, the gradient 
method is used in the form: 

)()()()1(  jjj
s

j
s s

eλαλλ +=+ ,   (20) 

The process of calculation of λs is gradient one where α (j) is 
the step of calculation procedure, eλs

(j) is the value of the 
gradient function of Lagrange at the jth iteration and j is the 
index of iterations. The value of the gradient ℯλs

(j)  (18) 
gives the direction of the search of maximum of Lagrange 
function towards λs.  Its jth value is obtained using the 
values of the calculated state ys and control s

RF  at each jth 
iteration. The optimal solution will be obtained when 

)( j
s

eλ  is very close to zero, or ελ ≤)( j
s

e ,  (21) 

where, ε > 0 - is a small (positive) value of the error. When 
the error is smaller than ε, then  the necessary condition for 
optimality of λs is fulfilled. The obtained values of λs

(j) are 
substituted in the equations of the necessary conditions for 
ys and FR

s in order to solve the sub-problems for the state 
and the control calculation (First Level).  Then ys and FR

s 
are obtained analytically from equations (17) � (18) after 
some mathematical transformations, as 
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The equations (22),(23) use only the values of the 
weighting matrices R and Q, the matrices of the model and 
the value of the dual variable, λs.  The obtained values are 
used for calculation of the gradient of eλs and so on. The 
optimal solution is obtained when the condition (21) is 
fulfilled. 

D. Problem for Design of the Closed Loop Control 
 
The problem for design of the closed loop control is 
formulated for the dynamic part of the model, the part 
describing the deviation of states from the steady states.  
The criterion is the dynamic part of the common criterion.  
The problem is: Find the control 1,0   ),( −= Kkke

RF such 
that the criterion (14b) is minimized under the model 
equations (12). The problem (14b), (12) is a nonlinear one.  
It is not possible to design a linear state space controller.  

The approach that can be accepted is first to linearize the 
closed loop system by nonlinear control, and then to design 
linear controller for the linear closed loop system, which 
will make the whole system optimal.  

 
1) Nonlinear Control Design 

 
The input/output linearizing control design consists of 
calculating a state feedback that transforms the nonlinear 
initial system into a closed loop linear system. The problem 
is to find a static state feedback law of the form: 

),(][][)( kke
RF νβϕ ⋅+⋅=     (24) 

].,,,,,,),([][ 1
s

R
s FytWBBAky ∆=⋅   (25) 

such that:1)the system (12), (24) is locally stable around the 
steady state point ys, s

RF ; 2) the tracking error ys � y(k) is 
governed by a pre-specified stable linear model, called 
reference model; 3) the closed loop system (12), (24) is 
robust in some limits towards, parameter variation, where 
ν(k) � is an external reference signal for the nonlinear 
controller, ϕ and β � are smooth vector functions in a 
neighborhood of the set-point and, β[·] ≠ 0. 
The applicability conditions for the linearization of multi-
variable systems by nonlinear control [Isidori, 1995]: the 
system must have a well defined vector relative degree and 
the system must be minimum phase, are fulfilled.  It is 
assumed that the process is completely controllable and all 
states are accessible to feedback control. 
The aim is the map between the input ν(k) and the state 
error vector )(ke y  to be linear, equal to the reference 
model. The problem is to synthesize the control in such a 
way that the process dynamics exactly tracks desired ones, 
given by the reference model. 

)()()1( kkLeke yy ν+=+ ,     (26) 

)()( keke yz = ,     (27) 

where L � is the diag{li}, li = const, Ni ,1= , L∈ R NxN � is 
the constant matrix, given by the desired dynamics. 
 

2) Nonlinear Control Problem Solution 
 
The right part of the equations (12) and (26) are equalized 

+∆+∆+∆+ )()()( ][ kektBeketBFtAI
RFyy

s
R  

=∆+∆+ )( ][ 1 ketBtBy
RF

s ).()( kkLey ν+   (28) 
The nonlinear control can be expressed as a function of the 
state space error after some algebraic transformations of 
equation (28). Then the control can be obtained as, 

[ ] )()( )( kMketBFtAILMke y
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The matrix  

[ ] [ ]11 )()( tBtByktBetBtByktBe s
y

Ts
y ∆+∆+∆∆+∆+∆  is a 

square matrix and it is supposed that its inverse exists.  



Equations (29), (30) represent the nonlinear control.  It 
depends on the values of desired linear dynamics L, the 
reference input ν and the current error ey(k).  This control 
can be realized in real time after measurement of y(k). It 
can be seen that the control 

RFe  is very sensitive to 
variations in the model parameters, and also to the values of 
previously calculated ys and FR

s. The closed loop system 
(12), (29), (30) is linearized.  It has linear dynamics and it is 
possible to use optimal control theory to find the external 
reference ν such that the error ey(k) is minimized and the 
control reference signal is also minimized. 
 
 

3) Synthesis of Linear Stabilizing Control 
 
In equation (29) the value of the reference signal is not 
known.  It can be obtained as linear optimal control 
according to the criterion (14b) and the reference model.  
The problem can be formulated in the following way: Find 
the control 1,0   ),( −= Kkkν , which minimizes the 
functional (14b), where only the optimizing part of the 
control is considered, under the constraints (26), (27). The 
solution of the optimal control problem is based on the 
functional of Hamilton:    (31) 
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kkeH ν [ ]})()()1( kkLekp y
T ν++ ,

where p(k) ∈ R n � is the conjugate variables� vector. The 
optimal control is found on the basis of the necessary 
condition for optimality of H . The control is obtained as  

[ ] ),()()()()( 11 kHekeQkGLRk yy
T =−−= −−ν  

[ ].)()( 11 QkGLRH T −−= −− ,   (32) 

[ ] LkGRIkGLQkG T 11 )1()1()(
−− ++++= , SKG =)( ,(33) 

where the obtained equation (33) is a Riccatti equation.  It 
is solved from the last moment k = q+K till the beginning k 
= q. Control depends on the real value of the error ey(k). 
 

4) Common Dynamic Control  
 
The dynamic nonlinear control according to (29) and (32) is 

−∆+∆+−= )(]1[)( ketBFtALMke y
s

RFR
  

)(])([)( 11 keQkGLMR y
T −− −− ).(][ keHVM y−=  (34) 

][ s
RtBFtAILV ∆+∆+−= . (35) 

When the optimization interval is sufficiently long K → ∞, 
K ≠ ∞ then the solution of the Ricatti equations tend to be 
constant G(k) → G(0) = G = const , and this constant value 
can be used in (34). The control consists of two parts: 
nonlinear one, which linearizes the nonlinear model, and 
linear one, which minimizes the error and control effort and 
reduces the influences of parameter variations. The 
common optimal control in the two layer structure is given 
by (29) and (34). This control can be realized in a real time, 
as it is a function only of the current value of the state error 
and a measured disturbance, Fig. 3.   

IV. OPTIMIZATION METHOD APPLICATION 
 
The calculations are carried out for the model of the ion 
exchange process plant for desalination of water built at the 
Department of Chemical Engineering, Peninsula 
Technikon. The process is for removing of NaCl from 
wastewater.  The values of the process parameters are 
a=[5.67 4.58 4.32 4.18 4.05 3.4 2.7 2.92], b=[0.0009 0.016 
0.016 0.016 0.016 0.01 0.014 0.005], h=28.96 ][ 3dm , 
H=37.62 ][ 3dm , ]/[2000 3 hdmFL = , Nilgiy f ,1],/[2.1)( == , 

Nilgiy ,1],/[2.2)(0 == ,

]/][4.12.18.06.05.04.01.005.0[ lgy sp = . The calculated 
matrices of the model are [ ]TC 10000000= , 
 TB 15.001.001.001.001.001.001.001.01 −=  

[ ]TW 0000000787.28=  
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0201.00000000
0209.00195.0000000
00196.00194.000000
000198.00191.00000
0000194.00188.0000
00000191.00185.000
000000207.00166.00
0000000173.00158.0
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The result from the program for simulation of the process 
with the proposed control is shown on Fig 4.  

V. CONCLUSION 
 
The aim is to develop a unified method for synthesis of 
optimal control of ion exchange process which ensures 
action integrity of the separate layers for optimization and 
direct control to achieve a global criterion function, in the 
presence of slowly varying disturbances.  This methodology 
is usually based on the approach of the repetitive 
optimization.  The problem is decomposed into two sub-
problems for steady state optimization and for steady state 
stabilization. The steady state and dynamic sub-problems 
are solved repetitively after long periods of time, at 
moments when the value of the main slowly varying 
disturbance is changed. The designed control structure has 
characteristics of an optimal feed-forward and feedback 
control.  The feed-forward control attempts to eliminate the 
effects of measurable disturbance � the input flow 
concentration.  The feedback control corrects for 
immeasurable disturbances and modeling errors.  It 



performs two actions : 1)linearizing the closed loop system 
according to desired dynamics of a linear stable system, and 
2)optimally stabilizing the state of the linearized system 
according to the optimal steady state value. In this way the 
total behavior of closed loop system is linearized and robust 
according to unmeasured disturbances and model parameter 
variations. 
The control structure requires measurement of the input 
flow concentration as main disturbance, which can be done 
easily with the existing pH and conductivity meters and 
measurements of the concentrations of salt in every stage, 
which at the moment cannot be realized because the stages 
are not accessible.  These measurements will be developed 
at later phases of the building of the ion exchange plant. 
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Fig. 1 Ion exchange pilot plant 
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Fig. 2. Two level calculating structure 
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 Fig. 3. Two layer control of the process               
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Fig.4. State trajectories under two-layer control 
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