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Abstract— A new subspace identification method is proposed
for systems that can be described by complex state space reali-
zation, namely the induction motor Park’s model. Besides all the
well known engineering features of the subspace identification,
this method allows to reduce the computational burden. The per-
formances of the proposed method are demonstrated throughout
an appropriate simulation study. The involved problem consists
in determining the electrical parameters of an induction motor
model.

Index Terms— Induction motor, subspace identification,
complex-formed system, space vector theory.

I. I NTRODUCTION

The most popular control for induction motor drive is the
field oriented control. This algorithm is well known to be
very sensitive with respect to electrical parameters accuracy. In
practice, the constructor specifications are used and completed
by no load and locked tests. This off-line method is very
simple but extremely approximative. Others off-line methods
can be cited, in particular estimation in frequency-domain
using standstill frequency response [1]. More recently, some
on-line identification schemes have been introduced. In [2],
the method is based on a reference adaptive model in a field
oriented control scheme. The rotor flux and parameters can be
estimated simultaneously using extended Luenberger observer
[3] or extended Kalman filter [4]. These algorithms have a very
high computational load. Moreover most of these methods are
sensitive to initial conditions.

In [5] and [6], the authors have developed identification
algorithm based on linear filtering associated to a non linear
physical parameters estimation. These two steps methods have
been shown efficient. In a first step continuous time transfer
functions are estimated using the so-called total least square
method. In a second step nonlinear optimization is used to
estimate parameters.

In this work, we propose to improve this identification
scheme. In system identification we often consider that a
model should have as few parameters as possible in order to
obtain low variance in the estimated parameters (parsimony
principle). Our plug-in consists in the specifying structure of
a state space realization of the model to be identify. In the
same time, we reduce the (first) identification calculation cost.
Indeed, some systems own a particular structure. They can be
transformed into an equivalent complex-values system with
half number of states, inputs and outputs. These systems called
complex-formed systems have been used successfully by [7]
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and [8]. The electrical behavior of an induction motor can be
described by this kind of structure.

To identify a complex state space realization of these sys-
tems, we propose a complex subspace identification algorithm.
Subspace methods for state space system identification are
recent identification techniques. These methods have been
mainly developed for linear systems and several algorithms
have been proposed such as N4SID, MOESP and CVA. Some
interesting overviews on subspace methods are presented in
[9], [10] and [11]. More recently some subspace algorithms
have been developed for linear time varying systems [12]. Our
purpose is to propose a subspace algorithm using complex
value signals.

a) Paper outline: The paper is organized as follows.
Preliminary definitions and properties concerning the complex-
formed systems are provided in section II. In section III, the
induction motor model is presented and its complex-formed
structure is underlined. The proposed identification method
is presented in section IV. An induction motor identification
problem is investigated in section V. Some concluding remarks
end the paper.

II. PRELIMINARY DEFINITION

The following definitions and notations will be used throu-
ghout the paper.

Definition 1: The setC2m×2n
M of complex-formed matrix of

size2m× 2n is given by

C2m×2n
M ,

{
M =

[
M1 −M2

M2 M1

]
/ M1, M2 ∈ Rm×n

}

Definition 2: The transformationTC in C2m×2n
M to Cm×n

is defined by

TC

([
M1 −M2

M2 M1

])
= M1 + jM2

Definition 3: The setC2m×2p
S of complex-formed system is

defined by

C2m×2p
S , {G(s) / A ∈ C2n×2n

M , B ∈ C2n×2m
M ,

C ∈ C2p×2n
M , D ∈ C2p×2m

M }
whereG(s) is the underlying transfer matrix of a state space
realization(A,B, C,D), i.e.

G(s) =
I2n

s
?

[
A B
C D

]

Notice that

Gc(s) = TC (G(s)) =
In

s
?

[
TC(A) TC(B)
TC(C) TC(D)

]



III. I NDUCTION MOTOR

As stated in the introduction, the proposed identification
method will be used to the determination of the induction
motor electrical parameters. This identification is carried out
from the classical Park’s model that will be presented in
subsection III-A. In subsection III-B, it is shown that ac
machines can be described by complex state space realization
thanks to the space vector theory [8]. The representation by
complex space vectors has been proposed by [13] and is
meanwhile widely used [8], [14], [7]. The rational behind
this description is the fact that sinusoidal distribution can
be mathematically described by space vectors. This is the
case of induction motors as the internal voltages, currents,
and flux linkages of a polyphase winding exhibit sinusoidal
distributions since the windings themselves are distributed
in space. Of particular interest, the proposed identification
algorithm uses only stator currents and voltages. This makes
it possible to consider the squirrel cage induction motor where
the rotor electric measurements are not available.

A. State space Model in stationary frame

Rs Ll = Ls − Lr

Lm = Lr

Rr

sl

6
- ¾

Us

Is Ir

Fig. 1. Equivalent circuit of induction motor in steady-state with leakage
inductance on stator side (the slip is defined bysl = ωs − ωr

ωs
).

The electrical behavior of an induction motor can be des-
cribed in the(α, β) coordinate system in stationary reference
frame fixed with the stator, with the leakage inductance on
stator side as shown on Fig. 1. In this context, the well-known
induction motor Park’s model [15] is given by the following
set of state variables equations





İsα = −Rs+Rr

Ll
Isα + Rr

LlLr
Φrα + ωr

Ll
Φrβ + 1

Ll
usα

Φ̇rα = −RrIsα + Rr

Lr
Φrα − ωrΦrβ

İsβ = −ωr

Ll
Φrα − Rs+Rr

Ll
Isβ + Rr

LlLr
Φrβ + 1

Ll
usβ

Φ̇rβ = RrIsβ + ωrΦrα − Rr

Lr
Φrβ

(1)

where Isα, Isβ are stator currents ;usα, usβ are stator
voltages ;Φrα, Φrβ are rotor flux ; ωr = pΩ with Ω the
angular speed andp the number of pairs of poles.

As the identification will be performed using only the
measurement of stator voltages and currents, only four
parameters can be determined [16]. We consider the electrical
parameters(Rs, Rr, Ll, Lr). Rs and Rr denote the stator
and rotor per-phase resistances.Ll = Ls − Lr is the leakage
inductance whereLs and Lr denote the stator and rotor
per-phase inductance, respectively. The mutual inductance is
assumed to be equal to the rotor inductance, i.e.Lm = Lr.

B. Complex-formed Model

Let first define the space vectors for the stator current, i.e.
Is = Isα + jIsβ , the stator voltage, i.e.Us = Usα + jUsβ ,
and the rotor flux, i.e.Φr = Φrα + jΦrβ . Combining
these definitions with the electrical model (1), we obtain the
following equivalent complex model (This class of systems is
described in Section II).

{
Ẋ = (A1 + jA2)X + (B1 + jB2)U
Y = (C1 + jC2)X + (D1 + jD2)U

(2)

with

X =
[

Is

Φr

]
, U =

[
Us

0

]
, Y = Is

A1 + jA2 =



−Rs + Rr

Ll

Rr
LlLr

− jωr
1
Ll

Rr −Rr
Lr

+ jωr




B1 + jB2 =




1
Ll

0


 , C1 + jC2 =

[
1 0

]

D1 + jD2 = 0

There are two remarks that are worth to be made. Firstly,
the complex-formed model is linear and all its parameters are
time invariant except the rotor speed. If the latter is assumed
to be constant, we get a linear time invariant model that can
be described by the transfer matrixGc(s) which particularly
satisfiesGc(s) = TC(G(s)). G(s) being the transfer matrix
of the Park’s model when the rotor speed is assumed to be
constant. Of fundamental importance, the transformationTC
has the following properties (see [7] for more details).

Property 1:

1) TC is bijective.
2) G(s) is stable if and only ifGc(s) is stable.
3) G(s) is observable if and only ifGc(s) is observable.
4) G(s) is controllable if and only ifGc(s) is controllable.
5) The discretization of a continuous time complex-formed

system by the bilinear transformation ([17]) gives a
discrete time complex-formed system.

Secondly, the complex-formed model is more suitable from
complexity reduction point of view.
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Fig. 2. Identification method description

IV. SUBSPACEIDENTIFICATION OF LINEAR

COMPLEX-FORMED SYSTEM

A. Method

Recall that the objective consists in determining the elec-
trical parameters(Rs, Rr, Ll, Lr). We propose the following
two steps method.

Step 1 Identification of the complex state space reali-
zation

Step 2 Determination of the electrical parametersRs,
Rr, Ll andLr

In the first step the complex systemGc(s) = TC(G(s)) is
identified. The complex-formed structure of the motor model
is hence fully exploited to reduce its underlying identification
complexity. The second step of the proposed method allows
to determine the electrical parameters(Rs, Rr, Ll, Lr) from
the identified state space realization. This determination is
algebraic thought it can be performed using an appropriate
output error identification method. The latter shares all the
actual nonlinear optimization problems, namely the wise pa-
rameter initialization. Figure 2 shows the main components of
the proposed identification method.

B. Complex subspace identification

Let us consider the following class of sampled data time
complex system

Σ :
{

X(k + 1) = AX(k) + BU(k)
Y (k) = CX(k) + DU(k) + V (k) (3)

where {U(k)} ∈ Cm, {Y (k)} ∈ Cp and {X(k)} ∈ Cn

respectively denote the input, output and state sequences of
the complex system,{V (k)} is the noise sequence which is

assumed to be uncorrelated with the input sequence. The state
space realization(A,B, C,D) can be identified using subspace
methods. These methods have shown to be relevant alternative
to other identification methods. Indeed, they are more suitable
for identification of Multi Input Multi Output systems and re-
quire no a priori parameterization nor non linear optimization.
Furthermore, they borrow the numerical robustness of QR-
factorization and Singular Value Decomposition.

The subspace identification is based on the following set of
matrices that fully characterize the complex model. The first
set concerns the Hankel matrices

Up =




U(1) U(2) · · · U(j)
U(2) U(3) · · · U(j + 1)
· · · · · · · · · · · ·
U(i) U(i + 1) · · · U(i + j − 1)




Uf =




U(i + 1) U(i + 2) · · · U(i + j)
U(i + 2) U(i + 3) · · · U(i + j + 1)
· · · · · · · · · · · ·

U(2i) U(2i + 1) · · · U(2i + j − 1)




with i > n and j >> 1. Notice that the Hankel matrices
Vf and Yf are constructed conformably toUf . The second
set concerns the extended observability matrix, the reversed
extended controllability matrix and the Markov parameters
matrix defined as follows

Γi =




C
CA
· · ·

CAi−1


 (4)

∆i =
(

Ai−1B · · · AB B
)

Hi =




D 0 · · · 0
CB D · · · 0
· · · · · · · · · · · ·

CAi−2B CAi−3B · · · D




It can be easily shown that the complex system (3) can be
rewritten as follows :{

Xi+1 = AiX1 + ∆iUp

Yf = ΓiXi+1 + HiUf + Vf

with

Xi+1 =
(

X(i + 1) X(i + 2) · · · X(i + j)
)

The key step in subspace identification methods is to
directly estimate the extended observability matrixΓi from the

Hankel matrices. An instrumental variable matrixZp =
(

Up

Yp

)

is used together with the orthogonal projection operatorΠu of
a matrix into the orthogonal complement of the row space of
the matrixUf , i.e.

Πu = Ij − U∗
f (UfU∗

f )−1Uf

Γi is computed from the following result.



Theorem 1:. Assume that
– Σ is stable, observable and controllable ;
– j →∞ and i > n ;
– the input sequence is persistently exciting of order2i ;
– the input sequence{U(k)} is uncorrelated with the noise

sequence{V (k)}.
Let Oi ∈ Cpi×j defined by

Oi = YfΠuZ∗p (ZpΠuZ∗p )−1ZpΠu

and consider its singular value decomposition

Oi =
(

U1 U2

) (
S1 0
0 0

)(
V ∗

1

V ∗
2

)
(5)

Then
– Oi as rankn which is equal to the number of singular

values in equation (5) different from zero ;
– the extended observability matrix can be estimated by

Γi = U1S
1/2
1 L (6)

whereL is a non singularn× n matrix for a change of
basis.

The previous theorem is an extension in the complex
framework of theorem 12 in [9] and theorem 2 in [18].

For deriving matricesA and C, a straightforward method
is to use the shift invariance structure ofΓi. (4) implies

C = Γi(1 : p, :)

and
A = (Γ∗i Γi)

−1Γ∗i Γi

with {
Γi = Γi(1 : p× (i− 1), :)
Γi = Γi(p + 1 : p× i, :)

The latest two matricesB and D are then computed by
minimizing the following linear problem

(B, D) = argmin
( j∑

k=1

E(k)∗E(k)
)

with

E(k) = Y (k)− (C(qI −A)−1B + D)U(k)

.

C. Parameters estimation

Let (Ac, Bc, Cc, Dc) be the continuous time complex state
space realization obtained from the identified discrete time
complex state space realization(A,B, C, D). This can be
obtained easily using zero-order hold on the inputs (ZOH)
or bilinear (Tustin) approximation [17].

From the state space matrices of the complex model descri-
bed by equations (2), we extract the three following relations8>><>>:

(C1 + jC2)(B1 + jB2) = 1
Ll

det(A1 + jA2) = Rs
Ll

(Rr
Lr

− jωr)

trace(A1 + jA2) = Rs + Rr
Ll

+ Rr
Lr

− jωr

(7)

These relations are satisfied for any state space basis, in
particular, for the continuous time state space realization
(Ac, Bc, Cc, Dc) obtained previously. In separating the real
part from the imaginary part, we obtain





<(CcBc) = 1
Ll

<(det(Ac)) = RsRr
LlLr

=(det(Ac)) = −ωr
Rs
Ll

<(trace(Ac)) = Rs + Rr
Ll

+ Rr
Lr=(trace(Ac)) = −ωr

(8)

We have restricted the number of equations in order to
avoid redundancy. This problem can be solved using standard
non linear optimization algorithm with Matlab Optimization
toolbox [19].

V. A PPLICATION TO AN INDUCTION MOTOR

The identification has been tested using simulation data
obtained with a 7.5kW controlled induction motor in constant
nominal speed1450 rpm. In [5], the authors note that for low
speed the model presents pole-zero cancellation.

The stator voltage space vector applied to the motor is
shown on Fig. 3. This signal is a constant frequency sinusoidal
signal, allowing to have a constant rotor speed (see Fig. 5),
added to a persistent excitation in regard to identify a complete
linear model at the specified speed.
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Fig. 3. Space vector of stator voltage in(α, β) reference frame

Extra noise has been added to the simulated (output) signals
with a 40dB signal-to-noise ratio. The stator current space
vector resulting is presented Fig. 4.
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Identification have been carried out using sequences of
length2000 obtained with a sample frequency of2 kHz. Esti-
mation results are presented on Fig. 6. It is worth noticing that
the estimated frequency response fits very well the nominal
frequency response. For simple curiosity considerations, we
have also given on Fig. 7 the frequency response of the error
between the nominal model and respectively the estimated
model and the rebuilt model. Notice that the rebuilt model is
the model (1) simulated with the estimated parameters. Again,
we remark the good agreement between the real transfer and
the rebuilt transfer provided by our algorithm.

As shown on Table I, the accuracy of parameters estimation
depends on estimation quality of the productCcBc, the trace
and the determinant of matrixAc. A comparison between exact
parameters and estimated parameters is presented on Table II.

VI. CONCLUSION

The induction motor parameters estimation problem has
been solved using a complex subspace identification method.
This method is illustrated through an appropriate simulation
study. The simulation results are enough promising to develop
an engineering methodology around the subspace identifica-
tion of complex system. Two features have to be taken into
account, namely the direct identification of the continuous state
space realization and the variations of the rotor speed. The
first feature can be handled using the available continuous time
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identification culture. The second feature could be investigated
using the recent results on identification of linear parameter
varying systems [12].
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