
11TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, 2003 100

P e r f o r m a n c e I m p r o v e m e n t T h r o u g h A c t i v e I d l e n e s s

Jos�e A.A. Moreira, Carlos F.G. Bispo

Keywords| Queuing Networks, Distributed Scheduling,
Stability.

Abstract|We illustrate by an example the potential of dis-
tributed scheduling with Active Idleness to improve the per-
formance of multi-class queuing networks, which are origi-
nally controlled by non-idling, or work-conserving, policies.
The queuing network we use in our simulation experiments
is due to Dai, [1]. This particular network was shown to be
unstable if FIFO is the scheduling policy. However, for the
Last Bu�er First Serve policy, [2], it is stable. Under this set-
ting we show that forcing inactivity during some periods of
time in the presence of customers may result in signi�cant
performance gains.

I. Introduction

In an earlier work, [3], we proposed to resort to idling
policies to show that the traÆc intensity condition is a suf-
�cient stability condition. Starting with a given network
and a non-idling scheduling policy which induced instabil-
ity, we constructed a controller that was able to stabilize
the network by introducing a slight change in the way the
servers execute the original policy.
In [4] we established the conditions that have to be ob-

served for our method to work and demonstrated how to
construct a provably stabilizing controller for a signi�cantly
large set of multi-class queuing networks.
However, given that the constructed controller is some-

what conservative, one could argue that, although the pro-
posed method may be useful to stabilize a network, the
principle of imposing idleness on the servers in the presence
of customers does no make much sense when the purpose
is to optimize performance.
In the present paper we intend to show that our con-

troller o�ers more than just a stabilizing mechanism. It
does possess the potential to be used in order to optimize
performance.
There are many ways in which to de�ne stability for net-

works. For our purposes, suÆces to say that as long as the
expected queue lengths remain bounded at each server, or
as long as the expected time to 
ow through the system
remains bounded for all customers, the network is stable.
In the past it was thought that the order by which cus-

tomers are served would only a�ect the performance of the
system, as long as the service capacity was above the load
imposed by the arrival processes. However, as shown in [2],
[5], [6] the order by which customers are served does a�ect
the ability of the networks to remain stable, under non-
idling policies. Confronted with these puzzling examples
the community undertook the task of determining stronger
conditions, besides the traÆc intensity, that would suÆce

J. Moreira is with Agilent Technologies, Detschland GmbH, Boe-
blingen, Germany. E-mail: jose moreira@agilent.com. C. Bispo is
with the Istituto de Sistemas e Rob�otica - Instituto Superior T�ecnico,
Lisbon, Portugal. E-mail: cfb@isr.ist.utl.pt.

to ensure stability and kept focused on non-idling policies,
[7], [8], [9].
One exception to this was [10], with the Clear-a-Fraction

Policies with Backo�. There, in the context of multi-class
networks with non-zero set-up times, the authors resorted
to a supervisory mechanism that would essentially add a
little more idling time, by increasing set-up frequency. This
way, it was possible to establish a class of provably stable
policies.
Curiously, such idea did not have much impact on the

work developed afterwards, as the grand majority of the
authors kept concentrated on non-idling policies. It is
our opinion that [10] holds the key to solve the stability
problem. The strong limitation of the method is the fact
that the theoretical result is only established for situations
where the processing times and the arrival processes are
deterministic.
Our contribution in the above mentioned papers has

been to explicitly address stochastic networks. There, we
proposed to substitute the determination of whether a net-
work is stable by the determination of whether it is stabi-
lizable.
To achieve this we introduced the concept of Active Idle-

ness. This concept consists on allowing a server to stay
idle in the presence of waiting customers. To implement
this concept in a real setting, a supervisory mechanism,
denominated Time Window (TW) Controller, was devel-
oped. This mechanism consists on assigning to each class
in the network a fraction of the available capacity. If a given
class uses more than its share of capacity, it is blocked from
being processed by a certain amount of time, which only
depends on the system's evolution, that is, it is not calcu-
lated a priori. With the TW Controller it is possible to
stabilize a signi�cant amount of non-acyclic, multi-class,
queuing networks, which are unstable under their original
scheduling policy, provided that the original policy is non-
idling.
In the next section we brie
y introduce the models ad-

dressed. In Section III we present the basics of the TW
Controller. Then, in Section IV, we present a summary of
results for Dai's example, and we conclude in Section V.

II. Queuing Networks, Scheduling, and Stability

Our setting is that of open and non-acyclic networks,
processing multiple classes of customers. First we consider
there are di�erent types of customers, where each type is
characterized by its external arrival process, by its routing
through the network, and by the service distributions at
each server and visit number, if more than one visit is paid
to a server. We assume the routing for each type to be
deterministic. Furthermore, we consider a given type to
be constituted of di�erent classes, in the following sense:



11TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, 2003 101

a customer is processed by a server and upon being sent
to the next server it will change class. This allows the
distinction of the same type of customers on di�erent visits
to the same server, if ever they occur.
Given that the same server may have di�erent process-

ing distributions for di�erent classes, these are not Jackson
networks. Otherwise, a simple product form distribution
could be computed for the number of customers in the sys-
tem, if each server would process customers according the
the FIFO scheduling policy. For those, the traÆc condition
is suÆcient for the existence of such invariant distribution
and, consequently, for stability to be ensured.
Given that the networks may have a signi�cant dimen-

sion in terms of servers and classes, the state space is
too large to allow a centralized scheduling policy to be
computed. Therefore, usually these are controlled by dis-
tributed scheduling policies, which are solely based on the
contents of each server's waiting queue. See [11], [12] for
surveys on distributed scheduling policies. For a very good
example of non-local scheduling policies see [13] with their
Fluctuation Smoothing policies, which su�er from the fact
that they require complex implementation, as discussed in
[14].
Under our setting the traÆc intensity condition can be

stated as

�i =

NiX
k=1

�
c(i;k)
i :�

c(i;k)
i < 1; (1)

for i = 1; 2; : : : ; I , where I is number of servers, Ni is the

total number of di�erent classes visiting server i, �
c(i;k)
i

is the �rst moment of the processing time distribution of

class c(i; k) on server i, and �
c(i;k
i ) is the �rst moment of

the arrival rate of customers of class c(i; k) to server i.
Furthermore, given that each class belongs to some type of
customer it has to hold that

�
c(i;ki)
i = �

c(j;kj )
j ; (2)

for all classes and servers such that, if class c(i; ki) upon
being served on server i visits next server j termed as class
c(j; kj). That is, class c(i; ki) and class c(j; kj) belong to
the same customer type.
The pair constituted by Equations 1 and 2 establishes

that the load imposed by the external arrival processes on
each server is below its capacity. Any scheduling policy
that ensures the internal arrival processes to verify Equa-
tion 2, when Equation 1 holds, ensures stability of the over-
all network.

III. The Time Window Controller

To simplify the notation we assume that there is a global
numbering of classes ranging from k = 1; 2; : : : ;K. We
de�ne f�k(n)g as the time between the external arrival of
the nth and the (n � 1)th customer of class k. These are
assumed to be independent and identically distributed and,
for some k, �k(n) =1 for all n, in which case the external
arrival process to class k is null. This means that class k is

generated from another class in the system when moving
from a server to the next.

A customer of class k, after being served at a unique
server j, written j = s(k), or conversely k 2 c(j), becomes
a customer of class R(k), where R is a bijective function
representing the routing map for the queuing network.

Therefore, we can uniquely assign a service distribution
to each class and denote by �k its �rst moment. Customers
of di�erent classes do not merge into a single class, nor does
a single class split in more than one class. For each class
k, de�ne F (k) as

F (k) =

8>>>>>>>><
>>>>>>>>:

k if class k has a non null
exogenous arrival rate:

F (j) if k has a null exogenous
arrival rate; where j is the
class that directly feeds to
class k for which F (j) has
been de�ned:

(3)

Note that, since there is no class split nor merge, F (k)
is an injective function. For each class k let

�k =
1

E[�F (k)(1)]
: (4)

One interprets �k as the e�ective mean arrival rate of
class k.

The TW Controller is introduced with a series of de�ni-
tions, the �rst of which is the Time Window associated to
a class.

De�nition III.1 (Time Window) Consider a class k of
a multi-class, non-acyclic, queuing network. The Time
Window associated to that class is de�ned as the �nite
time interval that starts at the current system time tc
and extends Tk time units into the past.

The Time Window of a class represents the amount of
past time needed by the TW Controller for class k. Next,
the de�nition of the Processing History associated to a class
is introduced.

De�nition III.2 (Processing History) For each custo-
mer i of class k, de�ne tstartk;i and tendk;i as the start and
�nish time instant for the processing of that customer,
respectively. The Processing History of class k is de�ned
as a function Hk(t) given by:

Hk(t)
0�t�tc

=

�
1 if tstart(k;i) � t � tend(k;i) 9i

0 otherwise:
(5)

The Processing History associated to a class represents
a function that describes the amount of time used by the
server to process customers of that class. The next de�ni-
tion presents the concept of the Time Fraction of a class k
at a given time t.



11TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, 2003 102

De�nition III.3 (Time Fraction) The Time Fraction of
class k with a Time Window of size Tk at time t is
de�ned as fk(t) and is computed by the following ex-
pression:

fk(t) = �k

Z t

t�Tk

e�k:(��t)Hk(�)d� (6)

where �k 2 [0;1[, is a Smoothing Parameter and �k is
a normalization parameter, given by:

�k =
�k

1� e��k:Tk
(7)

The Time Fraction of a class is an estimate of the frac-
tion of the total time contained in its Time Window during
which the server was processing customers of that class. It
clearly represents a measure of the amount of server capac-
ity assigned to that class. If �k = 0, it measures the exact
time fraction allocated to class k over the Time Window
span, given that �k becomes 1=Tk. Since the Time Win-
dow size is �nite, it is necessary to include the normaliza-
tion factor �k. This guarantees that, if during the entire
Time Window the server is always processing customers of
a given class, the computed value for the Time Fraction of
that class will be 1. The last concept necessary is that of
a Blocked class, which has the following de�nition.

De�nition III.4 (Blocked class) A class k is said to be
Blocked at time t with parameter fmax

k , if fk(t) > fmax
k ,

where fmax
k is the Maximum Time Fraction allowed for

class k.

A Blocked class is simply a class that has exceeded the
fmax
k awarded to it. Since the fk(t), is a measure of the
server capacity used by class k in its Tk, f

max
k represents

the maximum level of capacity that class k can use during
Tk without becoming Blocked. Finally, using the previous
de�nitions the de�nition of the Time Window Controller
is presented.

De�nition III.5 (TW Controller) Let ! be a multi-
class, non-acyclic, queuing network, where each service
station is controlled by the non-idling scheduling pol-
icy �. The Time Window Controller for this queuing
network consists on assigning to each class k an fmax

k

and a Tk, for which it is possible to compute Hk(t),
with a Smoothing Parameter, �k. Each service station
performs its scheduling decisions using policy �, with
the exception that all classes that are Blocked should be
considered empty of customers.

The TW Controller is described by a set of parameters
(�k; Tk; f

max
k ) with k = 1; : : : ;K. The functioning of the

TW Controller is very simple. Each time a server has to
make a scheduling decision, the TW Controller calculates
the fk of all classes in that server. If any class has an
fk above fmax

k , then the TW Controller blocks that class
from the set of classes from which the server can remove
customers to process. Note that there is no interruption
nor preempting of ongoing services. The decision points
coincide with the conclusion of a service, the arrival of a
new customer, or the time at which a class stops being

blocked. The two later decision points are solely valid when
the server is idle.
At certain times the scheduling policy may not be able

to choose a customer to be processed because all customers
are in classes that are Blocked. In this case the server be-
comes idle, not because the queues are empty of customers,
but because the TW Controller forbids the scheduling pol-
icy from using the available customers.
For this reason this type of idleness is termed as Ac-

tive Idleness. In the present context, idleness incurred for
actual lack of customers, would be considered as Passive
Idleness.
After being blocked, a class will see its corresponding

fk decrease with time, guaranteeing that at some point in
the future it will cease to be Blocked. Note that adding
the TW Controller keeps the overall scheduling policy dis-
tributed. Each server, in essence, has a TW Controller with
the (�k ; Tk; f

max
k ) parameters corresponding to the classes

it processes.

A. Qualitative discussion on properties

As it has been de�ned, the TW Controller can be ad-
justed in order not to in
uence the original policy. If all
smoothing parameters are set to zero and if all maximum
time fractions are set to one, no matter the window size
for each class, no class will ever be blocked. This way, the
system will be ran with the original policy. As some max-
imum time fractions are decreased to a number less than
one, the TW Controller will progressively increase its in-

uence over the original policy, as those classes will start
getting blocked with increased frequency.
Naturally, if a given class receives a maximum time frac-

tion below its long term needs in terms of arrival rate and
processing time, instability will occur.
Therefore, each class should be awarded a maximum

time fraction slightly above its individual needs. Note that
these fractions are short term fractions. They need to be
above the long term needs to allow each class to have access
to its necessary long term share of capacity.
One possible and simple way to de�ne these fractions is

to split each server's capacity in such a way that all of them
are above the long term needs of their classes, but their sum
does not exceed one. This is ensured to be feasible when
the traÆc intensity holds, because each server will have
some surplus capacity.
When the choice of fractions is such that their sum is

equal to one, we are in some sense decoupling the net-
work, given that it behaves as if each server is split into
smaller servers dedicated to each class. This particular
choice makes the TW Controller similar to the General-
ized Processor Sharing { GPS. See [4] for details on how to
construct the stabilizing version of the controller.
However, we may allow the fractions on a given server

to add up to more than one, meaning in this case that
some degree of coupling and interference is allowed between
di�erent classes visiting the same server. This particular
feature makes our controller drastically di�erent from those
based on the GPS concept.



11TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, 2003 103

The higher the degree of interference, the higher is the
potential to better use a given server, but also the higher
is the potential for instability. The example of [1], which
is unstable under FIFO, is a case where, under our setting,
each maximum time fraction is set to one for all classes. We
argue that this maximum interference causes short term
losses of capacity that will not be recovered in the long
run, causing the observed instability.

IV. Simulation Results

Dai, in [1], presented a queuing network topology that in
connection with the First In First Out (FIFO) scheduling
policy resulted in an unstable network. Figure 1 presents
a diagram of the queuing network layout, which is consti-
tuted by two servers with six classes, corresponding to a
single type of customer.

Fig. 1. Dai's queueing network topology.

Table I presents a set of parameters for this queuing net-
work that in conjunction with the FIFO scheduling policy
results in an unstable network. Note that the parameters
respect the TraÆc Intensity Condition. Note also, accord-
ing to the discussion on Section II, that there is only one
type of customer. Therefore, there is only one external
arrival process.

TABLE I

Queuing network parameters.

Parameter Value
� 1.000
�1 0.001
�2 0.897
�3 0.001
�4 0.001
�5 0.001
�6 0.899

The simulation results obtained by Dai demonstrated
that this network topology under the FIFO policy presents
an unstable behaviour. This implies that, for this network,
the TraÆc Intensity Condition is not a suÆcient stability
condition, understanding here that the queuing network
is composed by the topology and the scheduling policy.
To replicate those results for this paper, the network was
simulated in a stochastic setting, where the arrival of cus-
tomers to the system is modeled by Poisson processes and
the processing times at the service stations are modeled
by exponential distributions. Their respective mean values

are those displayed in Table I. Figure 2 presents our simu-
lation results in the form of the server's inventory, or queue
length, evolution as a function of time.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 Server 1 inventory evolution

In
ve

nt
or

y

Time

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4 Server 2 inventory evolution

In
ve

nt
or

y

Time

Fig. 2. Server inventory evolution for the FIFO scheduling policy.

The �gures show the sum of customers on each server as
a function of time. Basically one can observe that there
are periods during which the servers are available to work
but their queues are empty { starvation. These starvation
periods are intertwined with busy periods which grow in
size and length almost linearly as time progresses. The
same happens with the idle periods. For instance, server 2
reaches a total of customers a little over to 16,000 close to
the end of simulation.

The results demonstrate that the unstable behavior ob-
served for the FIFO scheduling policy is due to the inability
of the servers to use the available resources to process the
customers, since the scheduling policy creates a starvation
phenomena between the servers. In [4] we provide an in-
stance of our controller which stabilizes this network, while
using FIFO at all servers.

The question that this paper addresses is if the
TW Controller presents any advantages for pairs topol-
ogy/scheduling policy which are stable. Dai's network is
stable under the Last Bu�er First Serve (LBFS) policy, [2].
It is also shown in [2] that the LBFS policy is able to achieve
good performances in comparison with other distributed
scheduling policies. Taking into account these facts, a pos-



11TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, 2003 104

sible demonstration of the performance enhancement prop-
erties of the TW Controller would be to use Dai's network
with the LBFS policy.

The TW Controller was set with the parameters pre-
sented in Table II, where the value of fmax

6 will be changed
from unity, corresponding to the original LBFS scheduling
policy, to smaller values.

TABLE II

TW Controller parameters.

Parameter Value
Tk 100
�k 0.01

fmax
1 1.0
fmax
2 1.0
fmax
3 1.0
fmax
4 1.0
fmax
5 1.0
fmax
2 |

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
200

250

300

350

400

450

500

550

600
Queuing network cost evolution

Maximum allowed Time Fraction of class 6

A
ve

ra
ge

 in
ve

nt
or

y 
co

st

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
0

0.02

0.04

0.06

0.08

0.1

0.12
Server 1 average Active Idle time evolution

Maximum allowed Time Fraction of class 6

S
er

ve
r 

id
le

 ti
m

e

Fig. 3. Evolution of the queuing network cost (left) and average
Active Idle time of server 1 (right) for the LBFS + TW Controller

scheduling policy with the fmax
6

parameter.

Figure 3 presents the results of several simulations per-
formed with di�erent values of fmax

6 , displaying the aver-
age cost and Active Idle time at server 1, as functions of
fmax
6 . The cost function used is a linear combination of

each bu�er's contents, with di�erent weights given to each
bu�er.
The results show that the TW Controller is able to im-

prove performance over the LBFS policy. The improvement
displayed is close to 50% for fmax

6 close to 0.94. Connected
with this improvement is the inclusion of Active Idleness
only on server 1, since all classes in server 2 have their
Maximum Time Fraction set to unity. Note that as fmax

6

decreases, there is a point after which the performance de-
grades signi�cantly. By inspecting Table I it clear that such
degradation is due to the fact that the fraction assigned to
class 6 approaches its stability bound. Thus, the exces-
sive reduction of fraction for class 6 will, naturally, induce
instability.
Figure 4 presents the evolution of the average inventory

in the system. Average inventory is another instance of the
type of cost function used on Figure 3. It is also possible
to observe a signi�cant improvement for some instances,
which implies a reduction in the customers' lead time due to
Little's Law. Note that, for this alternative cost function,
the optimal value of fmax

6 is between 0.95 and 0.97, and
the cost reduction relatively to fmax

6 = 1 is a little over
25%. The average inventory for fmax

6 = 1 is 80 and the
average inventory for fmax

6 = 0:955 is 57.

0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1
50

100

150

200

250

300

350

400

450

500
Average system inventory evolution

Maximum allowed fraction of class 6

A
ve

ra
ge

 s
ys

te
m

 in
ve

nt
or

y

Fig. 4. Evolution of the average system inventory with the fmax
6

parameter.

The TW Controller allows the short term fractions to
add up to more than one. This particular feature corre-
sponds to a generalization of the GPS-based policies, for
which the instantaneous control fractions are constrained
to sum up to one.
The TW Controller is able to stabilize the system, adding

in the process some Active Idleness, as presented in [4].
Naturally, the total idle time is higher on the original sys-
tem. But the original system only has Passive Idle Time.
It should be emphasized that the reduction in cost dis-

played was accomplished just by changing one of the pa-
rameters. One can expect even more dramatic performance
improvements by determining the six optimal fractions.
Also, the time window and the smoothing parameter in-



11TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, 2003 105


uence the achievable performance. These are also suscep-
tible of being set to their optimal values.

A. Discussion

The question to be addressed here is to provide some
intuition on as to why do we get such tremendous perfor-
mance change at the expense of forcing some customers to
wait when the server is available. When we only have a
single server it does not make any sense to keep customers
waiting while the server is available, because there is no
gain for anyone. However, in a network what seems to be
good for each individual server may { and in fact does {
hurt the network as whole.

Given there is no control over the input of customers
into the system, all burstiness the arrival processes contain
will be transferred to the network and allowed to prop-
agate freely. Burstiness in the arrival process is directly
connected to variance. It is well known the impact that
variance has on queuing networks.

The TW Controller, with its short/medium term bounds
on capacity utilization by each class of customers, acts as a
burstiness �lter, that is, contributes to reduce the variance
on all the internal arrival processes.

Another way of looking at this controller is the following.
Most local scheduling policies implement local feedback but
the overall network is operated in open loop. The proposed
controller adds some measure of global feedback to the local
decisions. Moreover, that global feedback only relies on
knowing the external arrival rates of customer types, but
its implementation preserves the locality of the decision
making process.

V. Conclusion

We showed that our supervisory controller, originally de-
signed to stabilize networks, is also a tool to optimize the
performance of queuing networks. By adjusting the frac-
tions of each class one can reach the optimal balance for
sharing capacity among classes. While non-idling policies
make sense in the context of single server, they may in-
duce signi�cant amounts of idle time for multiple servers.
Therefore, they may hurt stability of the networks and ul-
timately may hurt performance. By forcing some idleness
at points well de�ned in time, one can reduce the amount
of total idle time and, not only stabilize otherwise unsta-
ble networks, but also improve performance over non-idling
policies for networks which are already stable.

The paper presents one example to illustrate the claim.
Although we do not provide any formal proofs here, the
approach provably stabilizes queuing networks, as long as
the processing times of each class possess an upper bound.
This constraint means, for instance, we cannot ensure to
stabilize Markovian networks. While this can be seen as a
theoretical limitation of our controller, it is not a serious
limitation from the practical point of view, given that any
real life network does have some sort of upper bound on
the processing times of customers. There is always such as
thing as the longest service ever.

The essence of the stability proof, which can be found
in [4], is as follows. The smoothing parameter is set to
zero. The fractions are set to add up to one in a way that
each class has a fraction slightly above its long range needs.
The window size is set equal to all classes and a function
of the upper bound on the processing times of all classes:
the longer the longest service the wider the window. This
choice of parameters is one possible instance of all values
they can take. With this particular choice of values it is
possible to show that each class will have an average avail-
ability of its server above its long range needs and that
the longest service will not take capacity away from other
classes. Given that we can, by construction, provide a prov-
ably stable instance, it follows that the optimal choice of
these parameters cannot lead to instability, provided all
queues are observable on the performance measure being
used.

The most relevant consequence of this result is that the
TraÆc Intensity Condition is suÆcient to ensure stabiliz-
ability on a very wide class of networks.

VI. Acknowledgements

The work described in this paper was partially funded
by Funda�c~ao para a Ciência e Tecnologia under references
SRI/34646/99-00 and Praxis XXI/BM/21090/99.

References

[1] Jim G. Dai, \On positive Harris recurrence of multiclass queue-
ing networks: A uni�ed approach via 
uid limit models," The
Annals of Applied Probability, vol. 5, no. 1, 1995.

[2] Steve H. Lu and P. R. Kumar, \Distributed scheduling policies
based on due dates and bu�er priorities," IEEE Transactions
on Automatic Control, vol. 36, no. 12, Dec. 1991.

[3] Jos�e A. A. Moreira and Carlos F. G. Bispo, \Stability or stabi-
lizability? Seidman's FCFS example revisited," in Proceedings
of 10th Mediterranean Conference on Control and Automation,
Lisbon, Portugal, 2002.

[4] Jos�e A. A. Moreira and Carlos F. G. Bispo, \Distributed schedul-
ing aith active idleness: a key to to the stabilization of multiclass
queuing networks," Submitted to the IEEE Trans. on Aut. Con-
trol, 2002.

[5] Thomas I. Seidman, \'�rst come, �rst served' can be unstable!,"
IEEE Transactions on Automatic Control, vol. 39, no. 10, Oct.
1994.

[6] Maury Bramson, \Instability of FIFO queueing networks," The
Annals of Applied Probability, vol. 4, no. 2, 1994.

[7] Sunil Kumar and P. R. Kumar, \Performance bounds for queu-
ing networks and scheduling policies," IEEE Transactions on
Automatic Control, vol. 39, no. 8, pp. 1600{1611, Aug. 1994.

[8] Dimitris Bertsimas, David Gamarnik, and John N. Tsitsiklis,
\Stability conditions for multiclass 
uid queueing networks,"
IEEE Transactions on Automatic Control, vol. 41, no. 11, pp.
1618{1631, Nov. 1996.

[9] Hong Chen and Hanqin Zhang, \Stability of multiclass queue-
ing networks under priority service disciplines," Operations Re-
search, vol. 48, no. 1, pp. 26{37, 2000.

[10] P. R. Kumar and Thomas I. Seidman, \Dynamic instabilities and
stabilization methods in distributed real-time scheduling of man-
ufacturing systems," IEEE Transactions on Automatic Control,
vol. 35, no. 3, Mar. 1990.

[11] Stephen C. Graves, \A review of production scheduling," Oper-
ations Research, vol. 29, 1981, July-August.

[12] S. S. Panwalkar and Wa�k Iskander, \A survey of scheduling
rules," Operations Research, vol. 25, no. 1, 1977.

[13] Steve C. H. Lu, Deepa Ramaswamy, and P. R. Kumar, \EÆcient
scheduling policies to reduce mean and variance of cycle-time in
semiconductor manufacturing plants," IEEE Transactions on
Semiconductor Manufacturing, vol. 7, no. 3, Aug. 1994.



11TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION, 2003 106

[14] Tomohito Nakata, Koichi Matsui, Yasuhisa Miyake, and
Kyusaku Nishioka, \Dynamic bottleneck control in wide vari-
ety production factory," IEEE Transactions on Semiconductor
Manufacturing, vol. 12, no. 3, Aug. 1999.


	Conference Program
	Author Index
	Main Menu

