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Abstract— In this paper, the problem of achieving stability for 
large-scale systems composed of a number of subsystems by 
decentralized control output feedback structure is considered. 
For this problem, a new sufficient condition is obtained under 
which a collection of local controllers designed for individual 
subsystems achieves stability for the overall system. More 
specifically, our sufficient condition is in terms of the ∞∞∞∞H  
norm of a transfer function matrix of each closed-loop 
individual subsystems and the Hermitian part of the 
interaction matrix. In addition, this condition is expressed as 
linear matrix inequalities. Furthermore, by an example, our 
sufficient condition is compared with the ones proposed in the 
previous researches. 
 
Index Terms— Decentralized control, large-scale systems, 
linear matrix inequality. 
 

I. INTRODUCTION 

 
There has been continuing interest in the study of large-
scale systems consisting of a number of interconnected 
subsystems [5], [7]-[10]. The reason for this interest follows  
since many control problems of modern industrial society 
are associated with the control of complex interconnected 
systems, e.g., electric power systems, transportation 
systems, chemical process control systems, socioeconomic 
systems, network flow problems, etc. In the study of such 
large-scale systems, an important notion, that of 
decentralized control, plays an important role. In 
decentralized control, the large-scale system has several 
local controllers, of which, each local controller observes 
only local subsystem outputs and controls only local inputs; 
all of the local controllers, however, are involved in 
controlling the same large-scale system. A decentralized 
control system exhibits several advantages over a 
centralized control system, i.e., a single controller which 
observes all outputs of the system to control all inputs of 
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the system. In the ideal case these advantages include: 
flexibility in operation, failure tolerance, simplified design, 
and simplified tuning. The requirement that the control 
system be decentralized introduces the overall stability 
problem. A major handicap, however, is the fact that when 
the decentralized controller is applied to the overall system, 
the stability of the closed-loop system are not preserved. As 
a result, the stability achieved with the diagonal system is 
not guaranteed, and the overall stability is lost in most 
cases. This illustrates the need for a sufficient condition to 
examine the overall stability and alternative ways to design 
the decentralized controllers while they guarantee the 
overall stability. 
 
In [4], the structured singular value interaction measure as a 
tool for the design of decentralized control was proposed. 
This approach provides a sufficient condition for stability of 
decentralized control, in terms of the subsystem design 
constraints, under which an aggregation of stable subsystem 
designs yields an overall stable design. However in [4], it is 
assumed that the initial system is square and also it requires 
very complicated computations when the dimensionality of 
the initial system is high. In [1], the sufficient condition for 
stability is in terms of the ∞H  norm of the closed-loop 
diagonal transfer function matrix and the structured singular 
value of the interaction matrix. A different approach was 
also presented in [6], where the sufficient condition for 
stability is in terms of the maximum eigenvalue of the 
Hermitian part of the state matrices of each closed-loop 
individual subsystems and the interaction matrix. 
 
In this paper, the sufficient condition for stability is stated 
in terms of the ∞H norm of a transfer function matrix of 
each closed-loop individual subsystems and the Hermitian 
part of the interaction matrix. In addition, this condition is 
expressed as linear matrix inequalities (LMIs) which can be 
considered during the local controllers designing procedure 
to enforce the overall stability. Furthermore, by an example, 
our sufficient condition is compared with the ones proposed 
in [1], [4], [6]. 
 
This paper is organized as follows. Section II is devoted to 
the formulation of our control problem and statement of 
preliminary definitions used throughout the paper. Section 
III presents the main results of this paper. In Section IV, a 
comparison example is presented. Finally, Section V 
concludes the paper. 
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II. PROBLEM FORMULATION 
 
Consider an input-output decentralized large-scale system 

)s(G , with state-space equations 
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composed of N  subsystems )s(Gi , described by  
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where ni

i Rx ∈  is the state, mi
i Ru ∈  is the control input, 

pi
i Ry ∈  is the measured output of the  ith subsystem. The 

matrices iiA , iiB , iiC are constant and of appropriate 
dimensions, which represent the ith subsystem. The 
subsystems interact each other through the interconnections 

ijA ’s, where ijA ’s are constant matrices. In this note, we 
assume that the triple )C,B,A( iiiiii  is stabilizable and 
detectable. 
 
For each isolated subsystem of large-scale system (1), we 
consider a local output feedback controller )s(K ii , 
described by 
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where nki

ki Rx ∈  is the state of local controller and kiA , 
kiB , kiC , kiD  are constant matrices to be determined. The 

resulting decentralized diagonal controller for the overall 
system )s(G  is given by  
 

{ } N,...,2,1i,)s(Kdiag)s(K ii ==             (4) 
 
with state-space equations 
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The overall closed-loop system obtained by applying the 
decentralized controller (5) to the large-scale system (1), is 
described as 
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where 
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Now, define the matrix  
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which collects the representation for )s(K  into one matrix. 
It is simple to show that the closed-loop state-space 
equations can be represented in terms of the controller 
matrix K~  as 
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where H~C~K~B~A~A~ dc +−=  and 
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Then, the problem of achieving stability for the original 
system by a dynamic output feedback controller, can be 
reduced to the problem of achieving stability for the 
augmented system by a static output feedback controller. 
 

III. STABILITY CONDITION 
 

A. Mathematical Background 
 
Lemma 1: For a square matrix nnRM ×∈ , we have 
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where )M(iλ  is the ith eigenvalue of M. 
 
Proof: Assuming that iv  is the ith eigenvector of M then we 
have  
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Since for a symmetric matrix for example 2/)MM( T+  
and every vector x we have 
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B. LMI Statement of the Stability Condition 
 
Linear matrix inequalities have emerged as a powerful 
formulation and design technique for a variety of linear 
control problems [2]. Since solving LMIs is a convex 
optimization problem, such formulations offer a 
numerically tractable means of attacking problems that lack 
an analytical solution. In addition, a variety of efficient 
algorithms are now available to solve the generic LMI 
problems. Consequently, reducing an overall stability 
problem to an LMI can be considered as a practical solution 
to this problem. 
 
Theorem 1: The decentralized controller )s(K  stabilizes 
the overall system )s(G , if )s(K  stabilizes the diagonal 
system )s(G~  and there exists a positive definite matrix 

nnT RPP ×∈=  such that 
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where C~K~B~A~A~ dcd −= . 
 
Proof: It is well known from system theory [2] that all the 
eigenvalues of matrix 2/)A~A~( T

cc +  are negative if and 
only if there exists a positive definite matrix nnT RPP ×∈=  
such that 
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For H~A~A~ cdc += , we have 
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Using the inequality 
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or equivalently, 
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one can see that a solution of the following LMI is also a 
solution of the LMI in (17 ) 
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The Schur complement formula [2] implies the above LMI 
is equivalent to 
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Now, by invoking Lemma 1, if the LMI in (21) be feasible, 
then all the eigenvalues of cA~  will have negative real part, 
or equivalently, the overall stability will be guaranteed. 
Since the overall stability condition can be expressed as an 
LMI, one can include this condition as a design objective in 
a decentralized controller design problem via LMI 
optimization to enforce the overall stability. 
 

C. ∞H   Statement of the Stability Condition 

 
The following theorem presents the stability condition via 
the ∞H  norm. 
 
Theorem 2: The decentralized controller )s(K  stabilizes 
the overall system )s(G , if )s(K  stabilizes the diagonal 
system )s(G~  and 
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where 
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Proof: By invoking Bounded Real Lemma [2], the LMI in 
(21) can be expressed as 
 

.  1)
2

A~A~sI)(
2
H~H~( 1

T
cdcd

T
�

∞

−+
−+  

 
(24) 

 
The ∞H  norm submultiplicative inequality implies the 
following inequality is a sufficient condition for satisfying 
the above inequality 
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Remark 1: It can easily be shown that 
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Therefore, the condition in (22) is straightforward to 
examine; H~  is a constant matrix and ∞+ ||2/)H~H~( T||  is 
easily computable and iα  is the maximum value of iα ’s, 
where iα  is the ∞H  norm of a transfer function matrix of 
each closed-loop individual subsystems with its local 
controller. 
 

IV. COMPARISON EXAMPLE 
 
In this section, the stability condition proposed in the 
previous section is compared with the conditions of [1], [4], 
[6]. 
 
In [4], the stability of the overall system )s(G , by a 
decentralized controller is guaranteed if 
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)j(T~ ω  represents the complementary sensitivity function 

of the diagonal system )j(G~ ω  and )]j(T~[ ωσ  denotes 
the maximum singular value of )j(T~ ω . 
 
In [1], it is proposed that the decentralized controller )s(K  
stabilizes the overall system )s(G , if )s(K  stabilizes the 
diagonal system )s(G~  and 
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Note that 0)H( =µ , if no structured ∆  exists such that 

0)HIdet( =+ ∆ . 
 
In [6], it is proposed that the decentralized controller )s(K  
stabilizes the overall system )s(G , if )s(K  stabilizes the 
diagonal system )s(G~  and 
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The following example illustrates that our stability 
condition is less conservative than the stability conditions 
of [4], [1] and is equivalent to the stability condition of [6]. 
Consider the system )C,B,A(  and the decentralized 
controller )s(K  where 
 

.       







=








==







 −
=

30
03

)s(K,
10
01

CB,
13
31

A  
 

(36) 

 
It is simple to show that 
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Since )]0j(E[)]0j(T~[ 1−µσ }  and )H(1
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−µρ } , the 

conditions in (30) and (32), respectively, fail to be satisfied 
for this example. Also, it is straightforward to obtain that 
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It is clear that the stability conditions in (35) and (22) are 
satisfied for this case. Therefore, it is concluded that the 
decentralized controller stabilizes the overall system. 
 

V. CONCLUSION 
 
In this paper, a new sufficient condition for the overall 
stability of decentralized control systems has been obtained.  
This condition is straightforward to examine and is also 
useful to enforce the overall stability. Furthermore, by an 
example, it has been illustrated that our sufficient condition 
is less conservative than the other conditions available for 
examining the overall stability.  
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