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A New Speech Enhancement Method based on
wavelet thresholding the multitaper spectrum

Yi Hu and Philipos C. Loizou

Abstract— It is known that the “musical noise” encoun-
tered in most frequency domain algorithms is partially due
to the large variance estimates of the spectra. To ad-
dress this issue, we propose in this paper the use of low-
variance spectral estimators based on wavelet thresholding
the multitaper spectra. We extend the signal subspace ap-
proach in the frequency domain and incorporate the wavelet
thresholded multitaper spectra into the proposed short-
time spectral amplitude estimator. Listening tests showed
that the use of multitaper spectrum estimation combined
with wavelet thresholding suppressed the musical noise and
yielded better quality than the recently proposed subspace
approach.

I. Introduction

Spectral subtraction is probably one of the most popu-
lar frequency domain speech enhancement methods used
today. Unfortunately it suffers from an annoying artifact
known as “musical noise”, which is caused by randomly
spaced spectral peaks that come and go in each frame.
The randomly spaced peaks are partially due to the large-
variance estimates of the spectra of the noise and noisy
signals, typically computed using the periodogram method.

Several methods have been proposed to reduce the mu-
sical noise. Among them, the minimum mean square er-
ror (MMSE) short time spectral amplitude (STSA) esti-
mator proposed by Eph-raim and Malah in [1]. Cappé [2]
provided an explanation of the mechanism by which the
MMSE method eliminates the musical noise. The MMSE
estimator applies a spectral gain which is a function of
two parameters: the a priori SNR, γprio(ωk) and the a
posteriori SNR. Cappé concluded that in the low SNR
areas where musical noise frequently dominates, the esti-
mate of the a priori SNR proposed in [1] corresponds to a
highly smoothed version of the a posteriori SNR over suc-
cessive short-time frames. As a consequence, the variance
of γprio(ωk) is much smaller. The fundamental mechanism
used in [1] for suppressing the musical noise was therefore
the smoothness of γprio(ωk). Similar conclusions were also
reached by Vary [3] who examined the theoretical limits of
spectral-magnitude estimation .

Clearly an accurate estimate of the a priori SNR is criti-
cal for eliminating the musical noise. Rather than smooth-
ing the a priori SNR estimate as done in [1], we took a
different approach. The variance of the a priori SNR esti-
mate is greatly influenced by the variance of the spectral
estimate of the noisy speech signal. Hence, we focused in
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this paper on finding spectrum estimators with low vari-
ance. In particular, we considered using the multitaper
method proposed by Thomson [4] for power spectrum es-
timation, which was shown to have good bias and vari-
ance properties. To further refine the spectrum estimate,
we wavelet thresholded the log multitaper spectra. Unlike
others who applied wavelet denoising to the time-domain
signal, we applied wavelet denoising to the speech spec-
trum. It should be pointed out that we do not use wavelet
denoising techniques to remove the noise, but rather to
get better (lower variance) spectral estimates. Section II
provides background information on low-variance spectrum
estimators, and section III presents the proposed approach
which utilizes these spectral estimators. The implementa-
tion details are presented in section IV, the experimental
results are given in section V, and the conclusions are given
in section VI.

II. Low-variance spectrum estimators:
Background

Direct spectrum estimation based on Hamming window-
ing is the most often used power spectrum estimation
method for speech enhancement. Although windowing re-
duces the bias, it does not reduce the variance of the spec-
tral estimate. The idea behind the multitaper spectrum
estimator [4] is to reduce this variance by computing a
small number L of direct spectrum estimators each with
a different taper (window), and then average the L spec-
tral estimates. The multitaper spectrum estimator is given
by

Ŝmt(ω) =
1
L

L−1∑

k=0

Ŝmt
k (ω) (1)

with Ŝmt
k (ω) =

∣∣∣∑N−1
m=0 hk(m)x(m)e−jωm

∣∣∣
2

, where N is the
taper length and hk(m) is the k-th data taper used for the
spectral estimate Ŝmt

k (·), also called the k-th eigenspec-
trum. The tapers hk(m) are chosen to be orthonormal. A
good set of L orthonormal data tapers with good leakage
properties are given by the Slepian sequences which are a
function of a prescribed mainlobe width [4]. Another or-
thogonal family of tapers are the sine tapers given by [5]:

hk(m) =
√

2
N+1 sin πkm

N+1 (m = 1, · · · , N). The sine tapers
were shown in [5] to produce smaller local bias than the
Slepian tapers, with roughly the same spectral concentra-
tion. For that reason, we adopted the sine tapers in this
paper.

Recent work has shown that wavelet thresholding tech-
niques can be used to further refine the spectral estimate
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and produce a smooth estimate of the logarithm of the
spectrum. Improved periodogram estimates were proposed
in [6] and improved multitaper spectrum estimates were
proposed in [7]. The underlying idea behind these tech-
niques is to represent the estimated log spectra as a signal
plus noise, where the signal is the true log spectrum and
noise is the estimation error. If the noise is Gaussian, then
standard wavelet denoising techniques can be used to elim-
inate the noise and obtain better spectral estimates.

It was shown in [7] that if the eigenspectra Ŝmt
k (ω) are

uncorrelated, the ratio of the estimated multitaper spec-
trum Ŝmt(ω) and the true power spectrum S(ω) conforms
to a chi-square distribution with 2L degrees of freedom,
i.e.,

v(ω) = Ŝmt(ω)
S(ω) ∼ χ2

2L

2L , 0 < ω < π (2)

If L is at least 5, it can be shown that [7] for all ω (except
near ω = 0 and π) the random variable η(ω)

η(ω) = log v(ω)− φ(L) + log L (3)

is approximately Gaussian with zero mean and known
variance σ2

η = φ′(L), where φ(L) and φ′(L) denote the
digamma and trigamma functions [8] respectively. If Z(ω)
is defined as Z(ω) = log Ŝmt(ω)− φ(L) + log L, then

Z(ω) = log S(ω) + η(ω) (4)

So, the log multitaper power spectrum plus a constant
(log L − φ(L)) can be written as the true log power spec-
trum plus a nearly Gaussian noise η(ω) with zero mean
and known variance σ2

η [7]. The model in (4) is well suited
for wavelet denoising techniques [9] to eliminate the noise
η(ω) and obtain a better estimate of the log spectrum.

Figure 1 shows example plots of power spectra es-
timated using the conventional direct spectrum estima-
tor with Hamming window, the multitaper method (with
sine tapers) and the SURE wave-let thresholding method.
Clearly, the wavelet thresholding method produced an esti-
mate of the spectrum that was closer to the true spectrum.
Also, the resulting spectrum had less variance than the
multitaper spectrum.

III. Speech enhancement by wavelet
thresholding the multitaper spectrum

In this section we derive the proposed STSA estimator
which uses the above mentioned low-variance spectral es-
timator. The STSA estimator is based on extending the
subspace approach proposed in [10] in the frequency do-
main.

A. Proposed STSA estimator

We assume that the noise signal is additive and uncor-
related with the speech signal, i.e., y = x + n, where
y, x and n are the N -dimensional noisy speech, clean
speech and noise vectors respectively. By denoting the N -
point discrete Fourier Transform matrix by F , the Fourier
transform of the noisy speech vector y can be written as
Y(ω) = FH · y = FH · x + FH · n = X(ω) + N(ω), where
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Fig. 1. Comparison of the power spectrum of an AR(24) process [7]
estimated by the direct spectrum method using a Hamming window
(top panel), the multitaper method using sine tapers (middle panel,
with N=2048, L=5) and the SURE wavelet thresholding method
(bottom panel, with q0=5 and 16-tap symlets wavelets).

X(ω) and N(ω) are the N × 1 vectors containing the spec-
tral components of the clean speech vector x and the noise
vector n, respectively.

Let X̂(ω) = G · Y(ω) be the linear estimator of X(ω),
where G is a N × N matrix. The error signal obtained
in this estimation is given by ε(ω) = X̂(ω) − X(ω) =
εx(ω) + εn(ω), where εx(ω) = (G − I) · X(ω) repre-
sents the speech distortion in the frequency domain and
εn(ω) = G ·N(ω) represents the residual noise in the fre-
quency domain. After defining the energy of the frequency
domain speech distortion as ε2

x(ω) = E
(
εH
x (ω) · εx(ω)

)
and the energy of the frequency domain residual noise as
ε2
n(ω) = E

(
εH
n (ω) · εn(ω)

)
, we can obtain the optimal

linear estimator by solving the following constrained op-
timization problem:

min
G

ε2
x(ω)

subject to :
1
N

ε2
n(ω) ≤ c (5)

where c is a positive number. It can be shown, using the
method of Lagrangian multiplier, that the solution to the
above constrained minimization problem is given by:

G(FH ·Rx · F + µ · FH ·Rn · F ) = FH ·Rx · F (6)

where µ is the Lagrangian multiplier. The above equa-
tion can be simplified if we assume that each frequency
component is modified individually by a gain, that is, if
we assume that G is a diagonal matrix. The matrices
FH · Rx · F and FH · Rn · F are asymptotically diago-
nal (assuming that Rx and Rn are Toeplitz) and the di-
agonal elements of FH · Rx · F and FH · Rn · F are the
power spectrum components Sx(ω) and Sn(ω) of the clean
speech vector x and noise vector n, respectively. Denoting
the kth diagonal element of G by g(k), (6) can be rewritten
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as: g (k) · (Sx(k) + µ · Sn(k)) = Sx(k). The gain function
g(k) for the kth frequency component is therefore given by:

g (k) =
Sx(k)

Sx(k) + µ · Sn(k)
=

γprio(k)
γprio(k) + µ

(7)

where γprio(k) = Sx(k)
Sn(k) is the a priori SNR at frequency

ωk. Note that the above equation is the generalized Wiener
filter equation.

The power spectrum Sx(ω) in (7) of the clean speech
signal is not available, but in practice can be estimated
as: Ŝx(ω) = Sy(ω)− Ŝn(ω), where Ŝn(ω) denotes the esti-
mate of the noise spectrum obtained during speech-absent
frames. As discussed in the Introduction, the estimate of
the γprio(k) is crucial for eliminating musical noise. In this
paper, we considered two different methods for obtaining a
good estimate of γprio(k).

In the first method, we form the ratio of the multitaper
spectra Ŝmt

x (ω)/Ŝmt
n (ω), and wavelet threshold the log of

the ratio of the two spectra to get an estimate of γprio(k).
It can be proven (see Appendix) that the log a priori SNR
estimate, based on multitaper spectra [denoted as γmt

prio(k)],
can be modeled as the true log a priori SNR plus a Gaus-
sian distributed noise ξ(k), i.e.,

log γmt
prio(k) = log γprio(k) + ξ(k) (8)

where ξ(k) is approximately Gaussian distributed with zero
mean and known variance 2σ2

η. Because of the nature of
ξ(k), wavelet denoising techniques can be used to eliminate
ξ(k).

The second method is based on the assumption that a
good estimate of the a priori SNR, can be obtained using
a good low-variance spectral estimate of Ŝx(ω) and Ŝn(ω).
We considered first obtaining the multitaper spectral esti-
mates of Sy(ω) and Ŝn(ω) and then wavelet thresholding
the log of those estimates individually to obtain Ŝx(ω).
The refined spectrum of Ŝx(ω), along with the wavelet
thresholded estimate of Ŝn(ω) are used to obtain a bet-
ter estimate of the a priori SNR.

B. Wavelet thresholding techniques

Critical to the performance of wavelet denoising tech-
niques is the choice of threshold levels. Several methods
have been proposed in the literature for thresholding the
wavelet coefficients. In this paper we focus on evaluating
two popular thresholding schemes, namely the universal
thresholding method and the SURE method [9]. One of the
main differences between the two thresholding schemes is
that the universal thresholding technique is not dependent
on the data, while the SURE technique is. In this paper,
the SURE method was implemented as per [9]. Next, we
give a brief description of the universal wavelet threshold-
ing method used in this paper.

As pointed out in [9], if the noise term η(ω) is stationary
and colored (as it is in our case), the variance of the noise
wavelet coefficients, nj,k (j denotes the scale or level of
wavelet decomposition and k denotes the k-th coefficient),

will be different for each scale in the wavelet decomposition.
Consequently, scale-dependent thresholding can be used to
account for the different variances of the noise wavelet co-
efficients in each scale. Walden et al. [7] extended that
idea and derived the variances of nj,k of the nearly Gaus-
sian noise η(ω) in (4). The level-dependent variances of the
noise wavelet coefficients, nj,k, were estimated according to
[7]:

var(nj,k) = σ2
j ≡

1
N

N−1∑

k=0

S(k)|Hj(k)|2 (9)

where Hj(k) is the frequency response of the length N pe-
riodized wavelet filter of level j, and S(k) is the Fourier
transform of the autocorrelation function rηη of the noise
η(ω) in (4) which is given by rηη(i) = σ2

η(1 − |i|/(L + 1))
for |i| ≤ L + 1. The universal threshold Tj for scale j is
selected as Tj = σj

√
2 log N .

IV. Implementation details

The proposed method can be implemented in four steps.
For each speech frame:

Step 1 : Compute the multitaper power spectrum Smt
y

of the noisy speech y using (1), and estimate the multi-
taper power spectrum Smt

x of the clean speech signal by:
Smt

x (ω) = Smt
y (ω)− Smt

n (ω), where Smt
n (ω) is the multita-

per power spectrum of the noise. Smt
n (ω) can be obtained

using noise samples collected during speech-absent frames.
Here L is set to 5. Any negative elements of Smt

x (ω) are
floored to 0.002 · Smt

n (ω).
Step 2 : Estimate the a priori SNR using one of the two

methods described in section III-A. For the second method,
for instance, first compute Z(ω) = log Smt

y (ω)−φ(L)+log L
and then apply the Discrete Wavelet Transform (DWT) of
Z(ω) out to level q0 to obtain the empirical DWT coeffi-
cients zj,k for each level j, where q0 is set to 5. Sixteen-tap
Daubechie’s least asymmetry wavelets were used in this
paper. Threshold the wavelet coefficients zj,k using one of
the two thresholding techniques described in Section III-B,
and apply the inverse DWT to the thresholded wavelet co-
efficients to obtain the refined log spectrum, log Swmt

y (ω),
of the noisy signal. Repeat above procedure to obtain the
refined log spectrum, log Swmt

n (ω), of the noise signal. The
estimated power spectrum Swmt

x of the clean speech signal
can be estimated by: Swmt

x (ω) = Swmt
y (ω)−Swmt

n (ω). The
a priori SNR γprio(k) for frequency ωk can be estimated
as Swmt

x (ωk)/Swmt
n (ωk).

Step 3 : Compute the µ value in (7) according to the
segmental SNR:

µ =





µ0 − (SNRdB)/s −5 < SNRdB < 20
1 SNRdB ≥ 20

µmax SNRdB ≤ −5
(10)

where µmax is the maximum allowable value of µ, which
we set to 10, µ0 = (1 + 4µmax)/5, s = 25/(µmax −
1), SNRdB = 10 log10 SNR and SNR is computed as:

SNR =
PN−1

i=0 Swmt
x (i)PN−1

i=0 Swmt
n (i)

.
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Step 4 : Estimate the gain function g(k) for component
ωk using (7). Obtain the enhanced frequency spectrum
X̂(ωk) by X̂(ωk) = g(k) ·Y (ωk). Apply the inverse FFT of
X̂(ω) to obtain the enhanced speech signal.

The estimator was applied to 32-ms duration frames of
the noisy signal with 50% overlap between frames. The
enhanced speech signal was combined using the overlap and
add approach.

V. Experimental results

Subjective listening tests were conducted to evaluate the
quality of the proposed STSA estimator. Ten sentences
from the HINT database [11] produced by a male speaker
and ten sentences from the TIMIT database produced by
female speakers were used. Spee-ch shaped noise and Volvo
car interior noise was added to the clean speech files at 5 dB
and 0 dB SNR respectively. Each speech file was enhanced
by four methods: the proposed estimator in (7) using the
multitaper spectrum (MT), the proposed estimator in (7)
using wavelet-thresholded multitaper spectra with SURE
thresholding (MT SURE), the proposed estimator in (7)
using wavelet-thresholded multitaper spectra with univer-
sal level-dependent soft thresholding (MT UNIV), and an
improved version of the signal subspace approach (SigSub)
proposed in [12] which utilizes the multiwindow covariance
matrix estimator as in [13]. The second method, discussed
in Section 3.1, was used to obtain γprio(k) in the MT SURE
and MT UNIV methods. No significant differences in qual-
ity were noted between the two methods proposed for the
estimation of γprio(k).

Ten native speakers of English participated in the sub-
jective test and were asked to compare the speech quality of
pairs of sentences processed with the above methods. Ta-
ble I summarizes the subjective evaluation tests for the 20
sentences in terms of preference percentage. The numbers
in Table I indicate the percentage of time that the listeners
preferred the speech quality of the MT SURE method over
the other methods.

Noise Comparison Comparison Comparison

type with MT with MT UNIV with SigSub

Speech

shaped 75% 46% 91%
Car

noise 53% 56% 98%

TABLE I

Results of listening tests in terms of percentage of time

that listeners preferred the MT SURE method over the

other methods.

From Table I we can see that listeners preferred the qual-
ity of the MT SURE method to the quality of the MT
method when speech was corrupted with speech-shaped
noise. Speech enhanced with the MT method had some
musical noise. In contrast, speech enhanced with the
MT SURE or MT UNIV methods had no musical noise.

The wavelet thresholding techniques applied to the mul-
titaper spectra eliminated the musical noise. The quality
of the MT SURE method was found to be superior to the
quality of the signal subspace method for both noise types.
As indicated by the results in Table I, there was a small
but subtle difference in quality between the two wavelet
thresholding techniques. The SURE technique had a small
advantage in the car noise environment.

VI. Summary and conclusions

A new speech enhancement method was proposed in this
paper which, unlike most spectral domain methods, uses
low-variance spectrum estimators. The low-variance spec-
trum estimators were based on wavelet-thresholding the
multitaper spectrum. Listening tests revealed that the en-
hanced speech had no musical noise and we attribute that
to the use of low-variance spectrum estimators. Further-
more, listening tests showed that the proposed method had
a superior speech quality to signal subspace methods.

APPENDIX

In this appendix we show how the a priori SNR estimate
obtained using the log multitaper spectra can be modeled
as the true log a priori SNR plus a Gaussian distributed
noise. Denoting the a priori SNR estimated by the multi-
taper spectra as γmt

prio, it is clear that

γmt
prio(k)

γprio(k)
=

(
Smt

x (k)
Sx(k)

)
/

(
Smt

n (k)
Sn(k)

)
(11)

Using the relationship in (2) and taking the log of both
sides, we get:

log γmt
prio(k) = log γprio(k) + logχ2

x(k)− logχ2
n(k) (12)

where χ2
x(k) and χ2

n(k) denote the chi-square distribu-
tions (with 2L degrees of freedom) of Smt

x (k)/Sx(k) and
Smt

n (k)/Sn(k) respectively. If L ≥ 5, the log chi-square
distributions are nearly Gaussian with mean φ(L) − log L
and variance φ′(L) [8]. Hence, the above equation can be
simplified to:

log γmt
prio(k) = log γprio(k) + ξ(k) (13)

where ξ(k) is nearly Gaussian with zero mean and variance
2φ′(L).
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