
Abstract--The paper compares two approaches to the control 
of the helicopter rack model. The 1st one, based on the 
feedback linearization, uses systems equations modified with 
the aim to obey the naturally unstable zero dynamics. The 
approach requires a rigorous identification, but, in comparing 
with traditional PID-control, or with the traditional linear 
pole-assignment control based on the linearization around a 
fixed operating point, it yields much higher control quality. 
The 2nd approach is based on the design of two independent 
saturating minimum time pole assignment P(I)D controllers 
for each channel. The controller tuning is based on simplified 
double-integrator + time delay approximations specified by 
step or relay experiments. 
 
Index Terms--Exact linearization, unstable zero-dynamics, 
pole assignment control, constrained control, minimum-time 
pole assignment control, relay and step-based identification. 
 

I. INTRODUCTION  

The helicopter rack model represents one of the physical 
systems frequently used in education for testing and 
demonstrating different control design approaches. One of 
the main streams in the development of the contemporary 
control theory is obviously represented by the nonlinear 
control. In order to be able to “touch” and evaluate the 
newest control techniques, students can experiment on 
several physical plant models with typically nonlinear 
behavior, whereby they can use a database of different 
already verified approaches.  

II. DESCRIPTION OF THE LABORATORY HELICOPTER MODEL 

The helicopter model consists of a body situated on a base 
support (Fig.1). The range of body rotation (measured by 
incremental sensors) is +-48 degree in elevation and +-
175degree in azimuth. The angular velocity of both 
propellers is measured by integrated tachometers. 
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Fig. 1 Helicopter rack model 
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The above given parameters correspond to the used model.  
 
Rotor R   Horizontal axe 

cuR=0.0374 NmA
-1  cµH=0.0333 Nms 

cµR=2.3956e-6 Nms  JH=0.0912  kgm
2 

dR =0.311 m   Vertical axe 

JR=3.1064e-5 kgm
2  cµV=0.0987 Nms 

kMR=6.9682e-8 kgm
2  JV=0.0747  kgm

2 
kFR=4.3056e-6 Ns

2 

Rotor S 
cuS=0.0267 NmA

-1  mG=0.96 kg 
cµS=3.6016e-6 Nms  dT=0.016 m 
dS =0.279 m   g=9.81 ms-1 
JS=9.5369e-6 kgm

2  iRmax=0.4 A
 

kMS=1.7523e-8 kgm
2  iRmin=0 A 

kFS=7.4472e-7 Ns
2  iSmax=0.4  A 

iSmin=-0.4 A 
 

The helicopter model is described by following differential 
equations: 
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In the following, the system will be represented by the 
vector-matrix description: 
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whereby  
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III. NONLINEAR REGULATION BASED ON THE 

BYRNES/ISIDORI NORMAL FORM. 

 
Using the standard approaches of the feedback linearization 
[1,2] it is possible to show that the system has two 
subsystems with the relative degrees [ ]2,2=r . The 
associated zero dynamics is unstable. So, it is not directly 
possible to apply the input-output linearization. 

A. Modification of systems equations 

 
The problem of the unstable zero dynamics can be obeyed 
by a simple modification of systems equations (see e.g. 
[1,2]). After neglecting the relatively small terms in the 
control matrix, system description becomes  
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B. Controller design for modified system 

The modified system has relative degree [ ]3,3=r . 

Therefore, there exist a local diffeomorphism, 6: RX →Φ , 
with 0)0( =Φ  
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such that the system can now be transformed to the 
Byrnes/Isidori normal form 

2

1
6

1

1
3

1
6

6

5

1
3

3

2

))((

0

0

0

0

0

0

0

0

))((

0

0

))((

))((

2

1 u

zfL

u
zfL

zfL

z

z

zfL

z

z

z

g

g

f

f



























+



























+



























=

−

−

−

−

ϕ

ϕ

ϕ

ϕ
&  

(6)  
For an appropriate choice of the controller parameters 
vectors k1 and k2, it will be transformed via nonlinear 
feedback 
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to a linear decoupled control subsystems. The controller 
parameters in vectors k1 and k2 have been designed by the 
pole assignment technique. The eigenvalues of the closed 
loop modified system have been set experimentally. By the 
simplification process, the real closed loop poles of the 
linearized system will be slightly different [2].  
 
Even the propellers are driven by one type of motors, 
significant differences appear between the two channels! 
They are caused by different working regimes: while the 
horizontal systems works just with one voltage polarity, the 
vertical system is working in a commutation regime. This 
requires use of different amplifiers, what significantly 
influences the resulting dynamics. 
 
It should also be stressed that the dynamical terms 
neglected in the design cause a steady state control error. 
Inverse nonlinear prefilters are used for its elimination. 

C. Realization of controllers 

Realization of regulators is connected with two problems. 
Firstly, we have not possibility to measure all state vector 
coordinates. So, the angular velocities of the vertical and 



horizontal axis are computed by differentiating the 
measured angle positions.  
 
Secondly, the relative degree is not globally defined in 
states, where the velocities of rotors ωR or ωS are changing 
the sign. Constraining the computed control signals can 
simply solve the 2nd problem. 

D. Plant identification 

The crucial point in designing the feedback linearization 
controller lies in the plant identification. The estimation of a 
relatively high number of the nonlinear plant parameters 
can be simplified by carrying out several particular 
experiments. There are, however, problems in matching 
values determined by such experiments – especially the 
steady state values with those identified during transient 
responses. 
 
Comparison of the simulation model) and real transients 
shows Fig.3. While the approximation of the horizontal axis 
seems to be quite precise, obvious differences can be 
observed in the movement around the vertical axis.  
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Fig.2 Simulation model and real plant behavior 

IV. THE NONLINEAR CONTROLLER 

 
The application of the feedback linearization approach 
requires rigorous plant identification. However, this is still 
not enough - the well-elaborated methodology of the 
feedback linearization represents just one half of the real 
problem: It is still necessary to find appropriate closed loop 
poles. For an unstable system of the 6th order with a highly 
nonlinear dependence on the initial conditions it is far from 
to be a simple problem (Fig.3)! Choosing relatively fast 

poles, the closed loop system goes into oscillations. On the 
other side, due to the unstable plant character, the closed 
loop poles cannot be too slow! 
 
The “optimal“ tuning depends on the measurement 
(quantization) noise, neglected time lags, but also on the 
control signal saturation (or the initial deviation). So, the 
design of a well behaving dynamics is a really challenging 
and time-demanding task. Only after an experiential tuning 
it is possible to say that the approach gives excellent results 
and guarantees stability over the entire working range. 
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Fig. 3 Feedback linearization: Choice of different poles 

 

V.  MTPA CONTROLLER 

It is well known that in systems with the control signal 
saturation, the linear (e.g. PD) controller cannot be 
sufficiently tuned both for the small and large disturbances. 
This motivated derivation of the Minimum Time Pole 
Assignment (MTPA), which involves both the minimum 
time control and the linear pole assignment control as limit 
cases of a more general approach. For a 2nd order system, 
its role is to decrease the representative point distance from 
a reference braking curve (Fig.4) by a quotient specified by 
one of the closed loop poles. The 2nd closed loop poles is 
used in specification of the reference braking curve (RBC). 
MTPA PD controller has been described e.g. in [3-6]. It 
enables to calculate optimal control sequences of the 
control signal u constrained to the interval  
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Fig. 4 Reference braking curve (RBC) 

In the control algorithm, the limit control signal value Uj for 
breaking is determined with respect to the sign of the 
relative position  

wxy −=      (9) 

with x being the real output and w the reference signal. For 

2,0 UUy j => , for 1,0 UUy j =≤ . 

For chosen real closed loop poles λ , the minimum time 
pole assignment controller takes form of a piecewise linear 
PD-controller 
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 with a variable (integer) parameter N computed according 
to 
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The output signal of the controller is finally constrained 
according to 
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VI. EQUIVALENT POLES FOR THE DOUBLE INTEGRATOR 

WITH TIME DELAYS  

In order to express the dependence of the closed loop poles 
on the system’s parasitic time delays, a notion of the 
equivalent poles can be introduced [4,7]. 
 
Equivalent closed loop pole can be defined as number, 
which after a substitution into the algorithm derived for the 
delay-free system, gives the same controller gains as can be 
derived for the system with a specified parasitic delay. 
Here, we will consider equivalent poles for the double 
integrator system with the two types of time delays. The 
particular model will be denoted as 

( ) sTs
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Both approximations gives relatively closed solutions given 
graphically in Fig.5. 
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Fig. 5. Equivalent poles λe versus normalized dead time 
Td/T, or the normalized time constant T1/T, T being the 

sampling period. 

VII. PLANT APPROXIMATION 

The methods most frequently used for the plant 
approximation in tuning the industrial controllers are 
usually based on different modifications of the method 
originally proposed by Ziegler and Nichols [8]. 
 

A. Step response method 

 
The step response based methods are usually interpreted as 
an approximation of the measured process reaction curve by 
the single integrator with dead time [9]. In this paper, this 
idea has been generalized for higher order approximations 
by the two-parameter models (15) and (16) [5,7].  
 
In applying this method for the helicopter rack model, the 
1st problem is caused by the unstable plant behavior in 
combination with the highly nonlinear plant dynamics. In 
order to be able to approximate the plant in the vicinity of 
the most frequently used operating point, it is necessary to 



use a stabilizing controller. To eliminate the influence of 
noise and oscillations caused by non-perfect stabilizing 
controller, it is recommended to work on averaged process 
reaction curves.  
 
Parameters of the approximative model (15) can be 
determined by appropriate software (based e.g. on the least-
square method), or manually by means of a simple scheme 
(Fig.6). It is required to approximate the initial phase of the 
step response as good as possible (Fig.7). 
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Fig.6. Simple Simulink scheme for “manual” determination 

of the model parameters 
 

The 2nd problem occurs in approximation of the movement 
above the horizontal axis, when the unsymmetrical shape of 
propeller results in unsymmetrical responses (Fig.7).  
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Fig.7. Approximation of the measured step responses – 

rotation around the horizontal axis 
 

B. Relay method 

Also in using the relay identification method proposed 
originally in [10] it is necessary to work with a stabilizing 
PD-controller expressed e.g. in the form 
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1 s Tα
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+
   (17) 

From the basic control scheme in Fig.8, using conditions of 
the harmonic balance, it is possible to derive formulas for 
determination of the model parameters.  
 
For the parameters of the I2Td model one derives 

 

 
Fig.8. Basic scheme for derivation of formulas for model 

parameters estimation 
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whereby: A – amplitude of sustained oscillations 
  ω – angular frequency  
  M – relay magnitude 
  KR, TD, α –PD controller parameters 
 
Similarly, for the KS I2T1 model one gets: 
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Combination of all basic approximation yields results 
shown in Tab.1. 
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Tab.1. Results of the plant approximation 

 

VIII. PLANT CONTROL 

In controlling unstable system it is necessary to work with 
as small sampling periods as possible. On the other hand, 
due to the quantization of the position signals and their 
differentiation, it is preferable to work with longer periods. 



As a result of these two contradictory requirements, the 
sampling period T=0.1s has been chosen. Then, by means 
of the normalized time delay values, the equivalent poles 
have been determined from Fig.5 (or by the corresponding 
analytical formulas). The 2nd tuning parameter of the 
controller described in chapter III was the gain Ks.  
 

Due to unstable plant behavior, both the step response and 
the relay controller tuning require use of stabilizing 
controller. So, the controller tuning can be done just in an 
iterative way.  
 

An example of the achieved closed loop responses is in 
Fig.9. The worst results correspond to the step based 
approximation using I2T1 model. In that case, usable results 
have been achieved just after a reasonable modification of 
the identified parameters. So, the next attention will be 
given to possible improvements of achieved results.  
 

Results of both verified ways of tuning could be further 
improved experimentally. This was expected and so further 
research will be oriented in two directions: 
- The results of the relay method can be improved by using 
the saturation with a finite slope [11]. 
- The results can also be improved by using identification 
formulas and control algorithms derived for more 
complicated approximations (e.g. some 3-parameter 
models). 

IX. CONCLUSIONS 
 

Two different approaches to the control of nonlinear 
unstable system have been verified. The 1st approach of 
feedback linearization is focused on identification and 
compensation of the plant nonlinearities. The always-
present saturation limits and parasitic time delays can be 
taken into account just experimentally, by a choice of the 
closed loop poles. 

The 2nd approach considers the saturation limits already in 
the controller design. The parasitic time delays are included 
in the process of the plant approximation by the double 
integrator + time delay model. This method neglects a detail 
description of the internal nonlinear couplings and so is 
much simpler to use. Despite of this, the results are 
comparable. Possibilities of further improvement of the 2nd 
approach will be investigated. 
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Fig.9. Controller based on I2Td-step approximation 
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