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Abstract— Novel computational methods for feedback control
in distributed parameter and matrix second-order systems, mod-
eling a wide range of vibrating structures, are described.

Unlike in standard engineering practice, the methods allow
the computations to be carried out in their own mathematical
formulations. Furthermore, the methods can be numerically im-
plemented using only finite-dimensional control and numerically
viable computational techniques. Thus these are practical meth-
ods for control, and stabilization of large vibrating structures.

I. INTRODUCTION

The general model for the vibration of distributed parameter
systems, arising in a wide range of applications, especially in
the design and analysis of vibrating structures, such as bridges,
highways, buildings, airplanes, etc., can be written in the form

M(x)
∂2ν(t, x)

∂t2
+ C(x)

∂ν(t, x)
∂t

+ K(x)ν(t, x) = 0, (1.1)

whereM,C = D + G and K are differential operators in
the x-domain (spatial domain) of the displacement function
ν(t, x), where for all thet the ν(t, x) belong to some Hilbert
spaceH, that accounts for the boundary conditions of (1.1).
The operatorsM,K,D andG are, respectively, calledmass,
stiffness, damping and gyroscopicoperators. In many practical
applications,M is self-adjoint and positive definite,D is self-
adjoint andG is skew-symmetric.

Though it is desirable to solve a vibration problem in its own
natural distributed parameter setting, very often in practice,
due to lack of effective numerical methods to handle the
system (1.1) directly, it is discretized to a finite-dimensional
matrix second-order system of the form:

Mẍ(t) + Cẋ(t) + Kx(t) = 0, (1.2)

where M, C = D + G, K ∈ R
n×n and ẋ(t), respectively,

denote the first and second derivatives of the time dependent
vectorx(t).

A vibration control problem is solved and a control law is
implemented on the discretized system (1.2) and then applied
to a real-life vibrating structure modeled by (1.1).
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A solution obtained this way naturally suffers from dis-
cretization error and after all, such a solution is just a finite-
dimensional approximation of an infinite dimensional problem.
Unfortunately, computational methods for solving vibration
control problems using even this second-best alternative are
not very well established. There are two standard approaches:
solutions via a first-order realization and Independent Modal
Space Control (IMSC) approach. Both of these approaches
have severe engineering and computational disadvantages (See
[9] and [10]).

If the standard first order transformation of (1.2)

ż(t) =
(

0
−M−1K

I
−M−1C

)
z(t) +

(
0

M−1B

)
u(t),

wherez(t) =
(

x(t)
ẋ(t)

)

is used, then the matrixM has to be inverted, and, if it is
ill-conditioned, then the state matrix will not be computed
accurately. Furthermore, all the exploitable properties, such
as the definiteness, sparsity, bandness, etc. of the coefficient
matricesM, D, andK, usually offered by a practical problem,
will be completely destroyed. The use of a nonstandard first-
order transformation, such as(

M 0
0 M

)
ż(t) =

(
0 M
−K −C

)
z(t) +

(
0
B

)
u(t)

will give rise to a descriptor systemof the form Eż(t) =
Az(t) + B̂u(t), and the eigenvalue and eigenstructure assign-
ment methods for the descriptor systems, especially, when the
matrix E is ill-conditioned, are not well developed.

Furthermore, with this formulation, though symmetry is
preserved, other exploitable properties, such as positive defi-
niteness, etc., are destroyed.

The independent modal space control(IMSC) approach
also suffers from some serious computational difficulties and
is almost impossible to implement in practice. The basic idea
here is to decouple the problem into a set ofn independent
problems, solve each of these independent problems sepa-
rately, and then piece the individual solutions together to
obtain a solution of the given problem. The implementation of
this idea requires knowledge of thecomplete spectrumand



the associated eigenvectors of the pencilP (λ) = λ2M+λ(D+
G) + K. Unfortunately, numerical methods for the quadratic
eigenvalue problem are not well developed, especially for
large and sparse problems. The state-of-the-art computational
techniques are capable of computing only a few selected
extremal eigenvalues and eigenvectors [12]). Furthermore, for
decoupling of the right-hand sides of the associated modal
equations, some stringent commutativity conditions need to
be imposed (see [9]), which are almost impossible to satisfy
in practice.

In the last few years, the author and his collaborators
have developed“Direct and Partial Modal” algorithms for
solving important feedback control problems in matrix second-
order and distributed parameter systems [see ([3, 4, 6])]. The
algorithms are direct, because they solve the problem directly
in its given mathematical formulation; that is, in case the
model is a discretized second-order model, no transformation
to a first-order realization is invoked, and if the model is
a DPS, then no discretization to a second-order system is
necessary. They are partial-modal, because only a part of the
spectrum and the corresponding eigenvectors (eigenfunctions)
of the associated quadratic eigenvalue problem are necessary
in implementing them.

The direct and partial-modal nature of these feedback al-
gorithms make them suitable for practical use in stabilization
and control of large vibrating structures, such as Large Space
Structures (LSS), power systems, computer networks, aircrafts
and others.

In this paper, we briefly review some of these algorithms.
Specifically, we present, without proof, our new algorithms
for partial eigenvalue assignment in DPS and partial eigen-
value and eigenstructure assignments in matrix section-order
systems. The results on numerical experiment with real-life
examples are given.

II. PARTIAL EIGENVALUE ASSIGNMENT IN DPS

The Partial Eigenvalue Assignment (PEVA) problem in the
DPS (1.1) is the problem of re-assigning a small part of the
spectrum, responsible for undesirable dangerous responses,
such as resonance or instability, of the associated open-loop
operator pencil

P (λ) = λ2M + λC + K, (2.1)

by a suitable feedback, in such a way that the remaining large
part is not affected.

The problem is certainly practical in the sense that in
most practical situations dealing with large problems, only a
small part of the spectrum is troublesome, and thus, it makes
sense to change that part only by feedback without solving a
large full-order eigenvalue assignment problem. Furthermore,
solving a large eigenvalue assignment is unpractical and the
existing numerical methods are not suitable for large and
sparse problems.

Mathematically, the PEVA in DPS is defined as follows:

Consider the controlling forces of the form
m∑

k=1

f1k(x),
∂ν(t, x)

∂t
+ (f2k(x), ν(t, x))bk(x),

where the functionsb1(x), . . . , bm(x) are thecontrol func-
tions, and f1k, f2k ∈ H, k = 1, . . . , m are thevelocity and
position feedback functions, respectively. Like in the finite-
dimensional case, the spectrum and invariant subspace of the
infinite-dimensional operator pencilP(λ) = λ2M + λC + K
govern the dynamics of (1.1) with these applied control forces.
In infinite-dimensional setup, eigenvalue-eigenfunction pairs
(λ, v) satisfyP(λ)v = 0.

Assume that: (i)M is nonsingular, (ii) the open-loop
operator pencilP(λ) has discrete spectrum without finite
accumulation points and every eigenvalue ofP(λ) is semi-
simple, and (iii) the system of eigenfunctions ofP(λ) is two-
fold complete (see [7, 8]).

Let {λ1, . . . , λm} be a finite small set of unwanted (bad)
eigenvalues (assumed to be available from measurements)
of P(λ) that are to be replaced by a user-chosen set
{µ1, µ2, . . . , µm}.

The partial eigenvalue assignment problem in Distributed
Parameter Systems is defined as follows:

Find real feedback functionsf11, . . . , f1m and f21, . . . , f2m

such that the spectrum of the closed-loop pencil

Pc(λ)φ = λ2Mφ + λ (Cφ−∑m
k=1(f1k, φ)bk)+

(Kφ−∑m
k=1(f2k, φ)bk) (2.2)

is the setS = {µ1, . . . , µp; λp+1, . . .}.
We now present our solution of the above problem in

algorithmic form. The proof is based on an orthogonality
relation between the eigenfunctions of the pencil (2.1), proved
in [5, 11].

Algorithm 2.1 (Parametric Solution to the Partial Eigen-
value Assignment Problem in Distributed Parameter Sys-
tem)

Inputs:
a) The differential operatorsM, C, and K of the

open-loop pencil (2.1).
b) Them control functionsb1, . . . ,bm.
c) The set of scalars{µ1, . . . , µp}, closed under com-

plex conjugation.
d) The self-conjugate subset{λ1, . . . , λp} of the

open-loop spectrum{λ1, λ2, . . .} and the associ-
ated eigenfunction set{v1, . . . ,vp}.

Outputs:
The feedback functionsf1, . . . , fm andf1, . . . , f2m such
that the spectrum of the closed-loop operator pencil (2.2)
is the set{µ1, . . ., µp; λp+1, λp+2, . . .}.
Assumptions:

a) The control functionsb1, . . . ,bm are linearly in-
dependent.

b) The open-loop quadratic operator pencilP(λ) =
λ2M+λC+K with control functionsb1, . . . ,bm



is partially controllable with respect to the eigen-
valuesλ1, . . ., λp.

c) The sets {λ1, . . . , λp}, {λp+1, λp+1, . . .}, and
{µ1, . . . , µp} are disjoint.

Step 1. Form Λ1 = diag(λ1, . . . , λp), V1 =
(v1, . . . ,vp), andΛc1 = diag(µ1, . . . , µp).
Step 2. Choose arbitrarym × 1 vectorsγ1, . . . , γp in
such a way thatµj = µk implies γj = γk and form
Γ = (γ1, . . . , γp).
Step 3.Solve the following Sylvester equation forZ1:

Λ1Z1 − Z1Λc1 =


(v1,b1) · · · (v1,bm)
...

. ..
...

(vp,b1) · · · (vp,bm)


 Γ .

If Z1 is ill-conditioned, then return to Step 2 and select
different γ1, . . . , γp .
Step 4.SolveΦZ1 = Γ for Φ = (Φij).
Step 5. If none of theλ1, . . . , λp is zero, form for all
k = 1, . . . , m

f1k =
p∑

j=1

φkjM
∗vj , and

f2k = −
p∑

j=1

(φkj/λj)K∗vj ,

otherwise form for allk = 1, . . . , m,

f1k =
p∑

j=1

φkjM
∗vj , and

f2k =
p∑

j=1

φkj(λjM∗vj + C∗vj) .

III. PARTIAL EIGENVALUE AND EIGENSTRUCTURE

ASSIGNMENT IN MATRIX SECOND-ORDERSYSTEMS

If the mathematical model is the finite-element generated
discretized second-order system (1.2), then the PEVA problem
is defined as follows:
Given the matricesM, C, and K of the model (1.2), the
control matrixB of order n × m and the self-conjugate set
{µ1, · · · , µp}, find real feedback matricesF1 andF2 such that
the closed-loop pencilPc(λ) = λ2M + λ(C −BF1) + (K −
BF2) has the spectrumµ1, · · · , µp, λp+1, · · · , λ2n}.

In this case, Algorithm 2.1 reduces to the following:

Algorithm 3.1 (Parametric Solution to the Partial
Eigenvalue Assignment Problem in Matrix Second-order
Systems).

Inputs:
a) Then× n matricesM , C, andK.
b) Then×m control matrixB.
c) The set{µ1, . . . , µp}, closed under complex con-

jugation.

d) The self-conjugate subset{λ1, . . . , λp} of the
open-loop spectrum{λ1, . . . , λ2n} and the asso-
ciated right eigenvector set{y1, . . . , yp}.

Outputs:
The feedback matricesF1 andF2 such that the spectrum
of the closed-loop pencilPc(λ) = λ2M+λ(C−BF1)+
(K −BF2) is {µ1, . . ., µp; λp+1, . . ., λ2n}.
Assumptions:

a) M is nonsingular andB has full rank.
b) The quadratic open-loop pencilP (λ) = λ2M +

λC + K with control matrix B is partially con-
trollable with respect to the eigenvaluesλ1, . . .,
λp.

c) The sets {λ1, . . . , λp}, {λp+1, . . . , λ2n}, and
{µ1, . . . , µp} are disjoint.

Step 1. Form Λ1 = diag(λ1, . . . , λp), Y1 =
(y1, . . . , yp), andΛc1 = diag(µ1, . . . , µp).
Step 2. Choose arbitrarym × 1 vectorsγ1, . . . , γp in
such a way thatµj = µk implies γj = γk and form
Γ = (γ1, . . . , γp).
Step 3. Find the unique solutionZ1 of the Sylvester
equation

Λ1Z1 − Z1Λc1 = Y H
1 BΓ .

If Z1 is ill-conditioned, then return to Step 2 and select
different γ1, . . . , γp.
Step 4.SolveΦZ1 = Γ for Φ.
Step 5.If none of theλ1, . . . , λp is zero, form

F1 = ΦY H
1 M andF2 = −ΦΛ−1

1 Y H
1 K ,

otherwise form

F1 = ΦY H
1 M andF2 = Φ(Λ1Y

H
1 M + Y H

1 C) .

Partial Eigenstructure Assignment Problem for Matrix
Second-order Systems

Given

1) Realn× n matricesM = MT > 0, C, K.
2) The self-conjugate subset{λ1, ..., λp}, p < 2n of the

set of the open-loop eigenvalues{λ1, ..., λ2n} of the
pencil P (λ) and the corresponding left eigenvector set
{y1, ..., yp}.

3) The self-conjugate sets of scalars{µ1, ..., µp} and the
set of vectors{xc1, ..., xcp}, such thatµj = µk implies
xcj = xck.

Find

Real control matrixB of order n×m(m < n) and
real feedback matricesF1 and F2 of order m × n
such that the spectrum of the closed-loop pencil
(3) is the setS = {µ1, ..., µp; λp+1, ..., λ2n} with
{xc1, ..., xcp; xp+1, ...x2n} as the associated eigen-
vector set, wherexp+1, ..., x2n are the eigenvectors
of P (λ) corresponding toλp+1, ..., λ2n.

Algorithm 3.2 (An Algorithm for Partial Eigenstructure
Assignment in Matrix Second-order Systems).

Inputs:



(a) Then× n matricesM, C, andK.
(b) The set of scalars{µ1, ..., µp} and the set of vectors

{xc1, ..., xcp}, both closed under complex conjugation.
(c) The self-conjugate subset{λ1, ..., λp} of the open-loop

spectrum{λ1, ..., λ2n} and the associated right eigen-
vector set{y1, ..., yp}.

Outputs: The n × m control matrixB and the feedback
matricesF1 and F2 such that the spectrum of the closed-
loop pencil Pc(λ) = λ2M + λ(C − BF1) + (K − BF2)
is {µ1, ..., µp; λp+1, ..., λ2n} with the eigenvector matrix
Xc = (xc1, ..., xcp; xp+1, ..., x2n).

Assumptions:
(a) M is nonsingular.
(b) The sets{λ1, ..., λp}, {λp+1, ..., λ2n}, and{µ1, ..., µp}

are disjoint.
Step 1. Form Λ1 = diag(λ1, ..., λp), Y1 =

(y1, ..., yp), Λc1 = diag(µ1, ..., µp), andXc1 = (xc1, ..., xcp).
Step 2.Form the matrix

Z1 = Λ1Y
H
1 MXc1 + Y H

1 MXc1Λc1 + Y H
1 CXc1.

Stop if Z1 is singular and conclude that the eigenstructure
assignment with the given sets of eigenvalues and eigenvectors
is not possible.

Step 3. Form the matrixTc such thatTcΛc1T
H
c is a real

matrix.
Step 4.Form

B = (MXc1Λ2
c1 + CXc1Λc1 + KXc1)T H

c ,

F1 = TcZ
−1
1 Y H

1 M, and

F2 = TcZ
−1
1 (Λ1Y

H
1 M + Y H

1 C)

by solving the appropriate linear systems.
Computational and Engineering Features of the Algo-

rithms:
As seen from Algorithms 2.1, 3.1 and 3.2, our new feedback

scheme enjoys the following distinguished computational and
engineering features:

(i) The computational requirements are minimal and the
required tasks, namely, solutions of small Sylvester equa-
tions and linear algebraic systems, can be carried out in
a numerically effective manner using the excellent state-
of-the-art algorithms for small and dense problems [2].

(ii) The knowledge of only partial spectrum and associated
eigenvectors (eigenfunctions) of the matrix (operator)
pencil is sufficient to implement the scheme. These small
number of eigenvalues and eigenvectors can be computed
using the state-of-the-art computational techniques or can
be measured in vibration laboratories.

(iii) Advantages can be taken of the exploitable structures,
such as the sparsity, symmetry, bandness, etc., in a
computational setting.

(iv) No spill-over phenomenon is guaranteed with mathe-
matical proofs.

(v) The eigenvalue assignment algorithms are parametric
in nature, which can be exploited to design numerically
robust feedback schemes.

(vi) The algorithms are suitable for high-performance
computing, since they are rich in BLAS-3 (Basic Linear
Algebra Subroutines Level 3) computations.

IV. RESULTS OF NUMERICAL EXPERIMENTS

Some results of our numerical experiments on Algorithms
2.1, 3.1, and 3.2 are stated in this Section. The data for
Algorithm 3.1 and 3.2 comes from a power plant obtained
from the Benchmark Collections [1], and that for Algorithm
2.1 corresponds to a traveling string.

A. Vibrations of a Rotating Turbine Axle

Here we consider a large and sparse symmetric definite
quadratic matrix pencilP (λ) = λ2M + λD + K of order
n = 211 modeling a rotating axle in a power plant, where
masses are assumed to be symmetric with respect to the axle.
This is a dampednon-gyroscopicmodel; that isC = D,
G = 0.

The matrix

M = diag(m1, m2, . . . , mn)

is positive definite and the damping and stiffness matrices
given by

D = (dij), wheredij =




−γi , i + 1 = j
γi−1 + δi + γi , i = j
−γj , i = j + 1
0 , otherwise

and

K = (kij), wherekij =




−κi , i + 1 = j
κi−1 + κi , i = j
−κj , i = j + 1
0 , otherwise

with γ0 = γn = κ0 = κn = 0 are both symmetric tridiagonal.
Using the data provided in the Benchmark Collection, the

eigenvalues of the uncontrolled system are plotted, and it
is seen that the decay rate of the vibrations of the axle is
governed by its most unstable eigenvalue:λ1 = −1.3734 ·
10−6, whereas the other eigenvalues have much better stability
properties, namely:Re λj ≤ −0.016267 , j = 2, 3, . . . , 422.

Since the largest contribution to shape of the transient re-
sponse of the vibrating system is generated by the eigenvector
that corresponds to the most unstable eigenvalue of the system,
we use Algorithm 3.1 to assignλ1 to µ1 = −0.016 and then
Algorithm 3.2 to assign the eigenvector corresponding toλ1

to the vector

xc1 =
1√
n

(1, 1, . . . , 1)T , n = 211 .

Eigenvalue assignment:
Algorithm 3.1 was applied with the control matrixB =(

1 0 . . . 0 0
0 0 . . . 0 1

)T

and choosing the matrixΓ =

(−0.51454,−0.85747)T) randomly.
The computed feedback matricesF1 and F2 are such that

µ1 was assigned accurately, and the two norm of the difference



between the other eigenvalues of the corresponding open-loop
and closed-loop pencils is about1.7 × 10−6. The 2 × 422
matricesF1 andF2 are such that‖F1‖2 ≈ 116 and‖F2‖ ≈ 22.
Furthermore,

‖F1‖2

‖C‖2
≈ 0.57 and

‖F2‖
‖K‖2| ≈ 1.5× 10−11.

Eigenstructure Assignment: Algorithm 3.2 produces the
211 × 1 control matrix B with ||B||2 ≈ 2 and the1 ×
211 feedback matricesF1 and F2 with ||F1||2 ≈ 7.2 and
||F2||2 ≈ 1.4, respectively, such that the prescribed eigenvalue
and eigenvector are assigned correctly. Moreover, the relative
changes in damping and stiffness matrices are given by:

||BF1||2
||C||2 ≈ 0.07 and

||BF2||2
||K||2 ≈ 1.8 · 10−12 .

This shows that control forces required to suppress vibrations
assigning the same eigenvalue are much less than those
required by eigenvalue assignment with a priori given control
matrix B. To achieve this, however, we need more sophisti-
cated actuators than those needed to implement the simple
control force used in eigenvalue assignment.

The 2-norms of the differences between the remaining
eigenvalues of the open-loop pencil and the corresponding
ones of the closed-loop pencil this time is about2.2 · 10−6

(MATLAB was used to compute the eigenvalues).

B. Small Oscillation of a Traveling String

Consider a gyroscopic distributed parameter system model-
ing the small oscillations of a uniform string traveling with
constant velocityγ < c over two fixed supports atx = 0 and
x = L.

x

u(x,t)

v

Figure 1. Small Oscillations of Traveling String

The motion of the moving string is governed by the partial
differential equation

νtt + 2γνxt + (γ2 − c2)νxx = 0,

where0 < x < L, t > 0, γ2 < c2, with boundary conditions
given by ν(o, t) = ν(L, t) = 0. With L = 1, γ = 1/2, and
c = 1, the operatorsM,G, andK, can be defined as

Mv = v, Gv =
∂v

∂x
, Kv =

3
4

∂2v

∂x2
,

wherev(0) = v(1) = 0. With respect to the scalar product
(v, w) =

∫ 1

0 v(x)w(x)dx, it can be easily shown that the
operatorsM,G, andK have the following properties:

M∗ = M,G∗ = −G andK∗ = K.

The eigenvalues ofP (λ) are:λk = 3
4πki, k = ±1, ±2, . . .

and their corresponding left eigenfunctions are:vck(x) =
e

3
2 πkix − e−

1
2πkix where0 ≤ x ≤ 1. Algorithm 2.1 is used

to assignλ1 to µ1 = −1 + i andλ1 to µ1, choosing the two
control functionsb1(x) = 1 and b2(x) = sin(πx), where
0 ≤ x ≤ 1. The step-wise results of our implementations are
given in the following:

Step 1. Λ1 = diag(3
4πi,− 3

4πi), V1 = (e
3
2 πix −

e−
1
2piix, e−

3
2πix − e

1
2 πix) and

Λc1 = diag(−1 + i, −1− i).

Step 2. Choose

Γ =
( −.20575 + .8342i −.20575− .8342i

.22626 + .45888i .22626 + .45888i

)
.

Step 3. Solving the Sylvester equation forZ1,

Λ1Z1 − Z1Λc1 =
(

(v1, b1) (v1, b2)
(v2, b1) (v2, b2)

)
Γ,

we obtain

Z1 =
(

.18844 + .36623i −.14535− .84357i
−.14535 + .84357i .188844− .36623i

)
.

Step 4. Solving ΦZ1 = Γ for Φ1, we obtain

Φ =
(

.82911− .50588i .82911 + .50588i

.25486 + .45099i .25486− .45099i

)
.

Step 5. The velocity feedback functionsf11 andf12 are plotted
in Fig. 2, and the position feedback functionsf21 and f22 are
plotted in Fig. 3.

0.2 0.4 0.6 0.8 1

-3

-2

-1

1

Figure 2. The Velocity Feedback Functionsf11 and f12.



0.2 0.4 0.6 0.8 1

-10

-5

5

10

Figure 3. The Position Feedback Functionsf21 and f22.
The closed-loop operator pencilPc(λ)(λ) has the eigenval-

uesµ1 andµ1, with eigenfunctions given by

wc1 = (0.4171 + 0.10287i)
−(0.23671 + 0.20962i)e−2(1+i)x

−(0.19416− 0.07776i)e
2
3 (1+i)x

−(0.0088786− 0.037267i)e−πix

+(0.022656− 0.0082765i)eπix

andwc1(x), respectively. Furthermore, the eigenvaluesλk, k =
±2,±3, . . . , of the open-loop pencilP (λ) = λ2M+λG+K
remain unchanged.
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