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Abstract— Many practical control problems are so complex
that traditional analysis and design methods fail to solve. Con-
sequently, in recent years probabilistic methods that provide
approximate solutions to such ‘difficult’ problems have emerged.
Unfortunately, the uniform random sampling process usually
used in such techniques unavoidably leads to clustering of
the sampled points in higher dimensions. In this paper we
adopt the quasi-Monte Carlo methods of sampling to generate
deterministic samples adequately dispersed in the sample-space.
Such approaches have shown to provide faster solutions than
probabilistic methods in fields such as Financial Mathematics.

I. I NTRODUCTION

Many control problems are so complex in nature that
analytic techniques fail to solve them. Furthermore, even
if analytic solutions are available, they generally result in
very high order compensators. It is for these reasons that
we accept approximate answers to provide us with certain
guarantees in such control problems. This is when sampling
methods come into the picture to try and remedy the “cost of
solution” problem by drawing samples from a sample space,
and providing an approximate answer. For many years, random
sampling has dominated the afore mentioned arena. Recently
however, deterministic or quasi-Monte Carlo methods have
proven superior to random methods in several applications.

In this paper we are interested in exploiting the quasi-
Monte Carlo deterministic method of generating point samples
from a sampling space in robust control problems. Quasi-
Monte Carlo methods have been extensively used in financial
mathematics in recent years, especially in calculating certain
financial derivatives in very high dimensions. The controls
community has so far relied heavily on generating random
samples based on Monte Carlo theory for the evaluation
of performance objectives for various problems in robust
control. However, random sample generation, with a uniform
underlying distribution, tends to cluster the samples on the
boundary of the sample space in higher dimensions, unless
we try to learn the underlying distribution. It is for the latter
reason that we are interested in presenting a method that
distributes the pointsregularly in the sample space while
providing deterministic guarantees.
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The paper starts by formulating the robust stabilization
problem in Section II. The we provide a brief summary of
Monte Carlo methods and how they are used to solve the
problem at hand in Section III. In Section IV, we present a
fairly extensive exposure of quasi-Monte Carlo methods, with
different methods for generating point sets of low discrepancy,
hence low error bounds. Finally, in Section V, we simulate
both random and quasi-random methods and compare them
with respect to their ability to retain their level of accuracy as
the number of points increases.

II. PROBLEM FORMULATION

Consider the control problem shown in Fig 1:
Problem 1: Given a real rational plant modelG(s, p), with

uncertain parameter vectorp = [p1 p2 . . . pn] ∈ Inp ,
does there exist a controllerC(s, q) that can stabilize the
uncertain system, whereq = [q1 q2 . . . qm] ∈ Imq is the
admissible controller parameter vector.
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Fig. 1. Feedback Structure.

In Problem 1 above,Ii is the uniti-dimensional hypercube in
Ri. Without loss of generality the regions of plant uncertainty
and design parameters have been scaled to the unit hypercubes
Inp andImq , respectively. LetT (s, p, q) = C(s,q)G(s,p)

1+C(s,q)G(s,p) be the
closed-loop transfer function.

Problem 1 is the robust stabilization problem, and requires
that the controllerC(s, q) stabilizes every plant inside the
uncertainty interval (Inp ). This problem is inherently hard to
solve in general, since we essentially have to check if all the
plants inside the uncertainty setInp are stabilizable, which is
virtually impossible in a limited time span, due the continuity
of the uncertainty interval. That is why we relax the problem
into an approximate one through sampling. The method of
solution is fairly simple using sampling and casting Problem
1 into anempirical mean(or integration) setting.

While Problem 1 requires an exact solution for the robust
stabilization problem, the approximate solution requires the
use of anindicator function(Ψ), which provides answers for



discrete points of the plant parameter uncertainty spectrum and
admissible controller parameter space.

Definition 1: An indicator functionΨ is a decision type
function that attains crisp values that belong to the discrete set
A = [0, 1, 2, . . . , d] depending on the decision criteria used to
evaluate the problem, at specific points of the sample space.

Definition 1 is a general one for indicator functions, but for
our purposes we specialize it to fit our context as follows:

Ψ(Pi, Qj) =
{

1, T (s, p, q) is stable
0, otherwise

(1)

wherePi andQj are sampled vectors from the plant parameter
space and admissible controller parameter space, respectively,
andA = [0, 1].

Having defined the indicator functionΨ, we can easily cast
Problem 1 into a sampling context as follows:

Problem 2: Consider Problem 1: Find vectorQ∗ =
[q∗1 q∗2 . . . q∗m] ∈ Imq which stabilizes the uncertain plant with
a high level of confidence, that is,Q∗ maximizes

fQ∗(Pi) = f(Pi, Q
∗) =

1
N

N∑

i=1

Ψ(Pi, Q
∗) (2)

where f is called the counting function, andN is a large
number.
Problem 2 gets rid of solving the problem over a continu-
ous plant parameter space through sampling that space, and
counting those samples that result inΨ = 1, i.e. a stable
combination ofPi andQj . The second step is to pickQ∗ = Qj

that produces the largest answer forfQ(P ), the counting
function. The functionfQ(P ) can be interpreted as the average
performance of the uncertain system with respect to a certain
controllerQi.

III. M ONTE CARLO METHOD

In this section we define briefly the Monte Carlo method in
general, and then specialize it to solve Problem 2.

The Monte Carlo method was first published in 1949 by
Metropolis and Ulam at Los Alamos National laboratory.
Since then it has been used extensively in various areas of
science such as statistical and stochastic physical systems [4],
derivative estimation [2], and integral evaluation [3].

Loosely defined,Monte Carlo is a numerical method based
upon random sampling of the parameters space. There are
many variations of sampling methods but the main idea is
invariant throughout all methods. Given a functiong(x), it is
required to find

∫
Id g(x)dx (the integration region has been

scaled to the unit hypercube for consistency). Usually the
dimension ‘d’ is high, and numerical solutions are computa-
tionally expensive. That is when Monte Carlo method comes
into the picture, because it overcomes the dimensionality
problem. The first step is to equip the integration region (Id)
with a d-dimensional probability densityΠ, usually uniform if
no prior knowledge of the distribution is available. The second
step is to integrate with respect to the probabilistic distribution
as follows:

φ =

Z

Id
g(x)dx =

Z

Id
g(x)dx = λd(Id)

Z

Id
g(η)dη = E{g(η)} (3)

whereλd is an d-dimensional Lebesgue measure andId is
transformed into a probability space equipped with a proba-
bility measuredη = dx

λd(Id)
[1], [3]. As a result, the problem

of evaluating the integral has been simply transformed into
evaluating the expected value on the probability space, which
provides an approximate answer. For an extensive overview
on Monte Carlo methods in robust control problems see [5],
[14], [17], [18].

The dimension ‘d’ could be extremely large in some appli-
cations, however the probabilistic results obtained using Monte
Carlo methods are dimension-independent. Finally, and con-
cerning the asymptotic behavior of Monte Carlo methods of
sampling, the convergence error in (3) between expected value
and the actual value of the integral is of orderO(N−1/2),
whereN is the number of samples. The constant by which
the order is multiplied is a function of the variance of the
samples. That is why, different Monte Carlo methods are
usually targeted at decreasing the variance of the samples (see
[3]). See Figure 2 for illustration of uniform random sampling
in the 2-dimensional unit plane1. It can be easily spotted that
there are several clusters in the sample set, and huge gaps as
a result.
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Fig. 2. Uniform random sampling in 2D for 1000 points
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Fig. 3. Sampling in higher dimensions

A. Sampling in Higher Dimensions

Assume that we are trying to minimize a function over the
unit cube ([0, 1]d), and that the minimum (or maximum2) point
is exactly at the center of the hypercube. Also consider a
smaller hypercube of sides equal to1− ε/2 inside the original
unit cube. Now, imposing a uniform probability distribution
on the unit hypercube, results in the probability of sampling
inside the smaller cube (see Figure 3):PIinner = (1 − ε)d,
whered is the dimension of the hypercube. Consequently, the
probability of sampling insideIinner tends to zero asd →∞,
hence the clustering effect on the surface is observed as we go

1All the simulations in this paper were done using MATLAB software
2Converting between max and min problems is trivial



into higher dimensions. This phenomenon is typical in Monte
Carlo simulations, if no prior knowledge of the distribution
is known. One way to remedy the problem may be to learn
the underlying distribution, which is usually computationally
much more demanding.

IV. QUASI-MONTE CARLO METHODS

In this section we expose the reader to quasi-Monte Carlo
methods. The main idea is to replace the random samples
required for Monte Carlo simulation with deterministic sam-
ples that possess certain regularity conditions, i.e. they are
regularly spread within the sampling space. This method is
also independent of the dimension of the sampling space.
It has shown its superiority over Monte Carlo methods in
the calculation of certain integrals [11], financial derivatives
[12] and motion planning in robotics [16]. Recently, quasi-
Monte Carlo methods have been used for stability analysis
of high speed networks [15]. Certain variations involving
randomization of quasi-Monte Carlo methods were presented
in [13]. However, in what follows we are going to present basic
ideas in quasi-Monte Carlo methods due to the substantial
diversity of the subject.

A. Preliminaries

We start off by introducing certain mathematical facts that
will aid us in the evaluation of the error bounds for each of the
different methods of generation of quasi-Monte Carlo points
sets.

1) Discrepancy:The discrepancyis a measure of the ‘reg-
ularity in distribution’ of a set of points in the sample space.
In order to define it mathematically, we need to define the
following counting function:A(B; P ) =

∑N
i=1 IB(Xi), where

B ⊂ Id is an arbitrary set,P = (X1, . . . , XN ) is a point set,
N is the number of points, andIB is an indicator function.

Definition 2: The general formula for the evaluation of the
discrepancy is given by

DN (B, P ) = sup
B⊂B

∣∣∣∣
A(B,P )

N
− λd(B)

∣∣∣∣ (4)

where λd(B) is the d-dimensional Lebegue measure of the
arbitrary setB andB is the family of all lebesgue measurable
subsetsB of Id.
Definition 2 can be specialized into the following two cases:

• The star discrepancyD?
N (X1, . . . , XN ) is obtained by

letting B in (4) be defined as followsB? = {∀B : B =∏d
i=1[0, ui)} i.e. the set of alld-dimensional subsets of

Id that have a vertex at the origin, andui’s being arbitrary
points in the corresponding 1-dimensional space.

• The extreme discrepancyDN (X1, . . . , XN ) is obtained
by letting B in (4) be defined as followsB = {∀B :
B =

∏d
i=1[vi, ui)} wherevi’s andui’s are both arbitrary

points in the corresponding 1-dimensional space.

The star discrepancy and extreme discrepancy are related
through the following inequalityD?

N (P ) ≤ DN (P ) ≤
2dD?

N (P ).

2) Error in Quasi-Monte Carlo:[1]
The error in quasi-Monte Carlo methods integration over

the unit hypercube forN samples is defined as follows,

e =
1
N

N∑
n=1

f(Xn)−
∫

Id
f(η)dη (5)

Define the total variation of the functionf on Id in the sense
of Vitali asV (d)(f) = supP

∑
J∈P |∆(f ; J)|, whereP is the

set of all partitions ofId, J is a subinterval ofId, and∆(f, J)
is an alternating sum of values off at the vertices ofJ . The
variation could also be equivalently defined as

V (d)(f) =
∫ 1

0

. . .

∫ 1

0

∣∣∣∣
∂df

∂η1 . . . ∂ηd

∣∣∣∣ dη1 . . . dηd (6)

whenever the indicated partial derivative is continuous onId.
This variation is redefined onId in the sense ofHardy and
Krauseas

V (f) =
d∑

k=1

∑

1≤i1<i2<···<ik≤d

V (k)(f ; i1, i2, . . . , ik) (7)

whereV (k)(f ; i1, i2, . . . , ik) is the variation off in the sense
of Vitali rerstricted to ak-dimensional surface.f has bounded
variation if V (f) in (7) is finite. Now we are ready to state
the error formula for quasi-Monte Carlo methods.

Theorem 1:[1] If f has bounded variations in the sense of
Hardy and Krause onId, then for any point set{Xi}N

i=1 we
have

|e| ≤ V (f)D?
n(X1, . . . , XN ) (8)

Basically, the magnitude of the error depends on the variation
of the function and the star discrepancy of the point set chosen.
That is why we are always after low star discrepancy point sets
in quasi-Monte Carlo methods. It is also worth mentioning that
the error bound in (8) is conservative, i.e. if the variation of the
function is large, we get a large bound on the error, although
the actual error might be small. This error bound is obtained
for multi-dimensional integrals of functions, however another
error bound could be obtained for a 1-dimensional integral in
terms of the modulus3 of continuity.

In subsequent sections we are going to present the error
bounds for each of the methods used in generating the low
discrepancy point sets. The values given are for the star
discrepancy of the sequence, which is then reflected in the
error bound given in (8).

B. Point Sets Generation

In this section we briefly describe how to generate quasi-
Monte Carlo low discrepancy points in ans-dimensional
sample space. Since the points result from a deterministic
method of generation, they possess a certain regularity
property of distribution in the sample space described by
their discrepancy. This gives the method leverage over Monte
Carlo methods in the sense that the guarantees over the error

3|e| ≤ ω(f ; D?
N (X1, . . . , XN ) =

supu,v∈[0,1]&|u−v|≤D?
N

(X1,...,XN ) |f(u)− f(v)|



magnitude are deterministic and are given by (8).

1) Van Der Corput: [1]
The van der Corput sequence in baseb, whereb ≥ 2 ∈ N,

is a one dimensional sequence of points that possesses the
property of having a low discrepancy in the unit intervalI =
[0, 1] ⊂ R. The main idea is to express every integern ∈ N
in baseb and then reflect the expansion into the unit interval
I. This is done as follows:

1) Let Rb = {0, 1, . . . , b− 1} be the residue set modulob
2) Any integern ≥ 0 can be expanded in baseb as: n =∑∞

k=0 ak(n)bk, whereak(n) ∈ Rb, ∀k.
3) Finally, we get the sequence{Xn} as Xn = φb(n) =∑∞

k=0 ak(n)b−j−1.

As will be seen, the van der Corput sequence will be used to
generate higher dimensional vector samples, with the variation
of the expansion baseb. Finally, the star discrepancy of the
van der Corput sequence is given by:D?

N (X1, . . . , XN ) =
O(N−1 log(N)), with a constant depending on the base of
expansion.
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Fig. 4. Halton sequence in 2D for 1000 points

2) Halton Sequence:[1]
The Halton sequence is a generalization of the van der

Corput sequence in Section IV-B.1 to span and-dimensional
sample space. The main idea is to generated 1-dimensional
sequences and form the correspondingd-dimensional vec-
tor sample points. Letb1, b2, . . . , bd be the corresponding
expansion bases for each dimension, preferably relatively
prime4. Let φb1 , φb2 , . . . , φbd

be the corresponding reflected
expansions according to the corresponding bases. Then thed-
dimensional sequences{Xd

n} are formed as follows:Xn =
(φb1 , φb2 , . . . , φbd

) ∈ Id A figure of a 2-dimensional Halton
sequence is shown in Figure 4. Assume that the bases for the
expansion are relatively prime, then the star discrepancy is
given by (see [1])

D?
N (X1, . . . , XN ) <

d

N
+

1

N

dY

i=1

�
bi − 1

2 log bi
log N +

bi + 1

2

�
. (9)

3) Hammersley Sequence:[1]
The Hammersley sequence is generated as Halton sequences

in Section IV-B.2. However, there is slight difference is that
we formd−1, φ-sequences and then thed-dimensional vector
samples are generated as follows:Xn = ( n

N , φb1 , . . . , φbd−1).
One extra difference between the Halton and Hammersley

4Choosing the expansion bases relatively prime reduces the discrepancy,
hence the error bound
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Fig. 5. Hammersley sequence in 2D for 1000 points

sequences is that, the first can virtually be expanded for
infinite N while the second requires an upper bound on
the number of samples. See Figure 5 for a 2-dimensional
Hammersley sequence. The bound on the star discrepancy
of the Hammersley sequence is given by (9) except that the
product is terminated at(d−1), because we only have(d−1)
van der Corput sequences in the construction.

4) (t, s)-Sequences:[1], [6], [7]
One of the most successful low discrepancy sequences are

(t,s)-sequences5 which depend on the theory of (t,m,s)-nets.
The construction of such sequences is much more involved
than those introduced earlier. Consequently, our discussion
will be concise and the interested reader is referred to [1],
[6], [7]. First, we will start with some preliminary definitions.

Definition 3: Let E ⊂ Is be an s-dimensional subinterval
defined as follows:E =

∏s
i=1[aib

−di , (ai + 1)b−di), where
ai, di ∈ Z such thatb ≥ 2, di ≥ 0 and0 ≤ ai ≤ bdi .

Definition 4: Let E be as in Definition 3, then a (t,m,s)-net
in baseb is a point setP ; such that,card(P ) = bm and each
E interval containsNλs(E) points, whereλs(E) = bt−m is
the s-dimensional Lebegue measure ofE.
Basically, Definition 4 guarantees that the samples are dis-
tributed evenly inside smaller hypercubesE ⊂ Is. This
property decreases the discrepancy value of the point sequence
P , hence the error bound.

Next we define(t, s)-sequences starting with one dimen-
sional sequence and generalizing to s-dimensional. Letx ∈
[0, 1] ⊂ R then the reflected expansion in baseb is defined as
follows:

x =
∞∑

j=1

ajb
−j , ai ∈ Rb = {0, 1, . . . , b− 1} (10)

Given an integerm ≥ 0 define the truncated sequence of (10)
as, [x]b,m =

∑m
j=1 ajb

−j , ai ∈ Rb = {0, 1, . . . , b − 1},
which is a one-dimensional truncated sequence. Then, we
expand the one-dimensional truncated sequence into an s-
dimensional one;[X]b,m =

(
[x(1)]b,m, . . . , [x(s)]b,m

)
, and

now we are ready to state the main definition of (t,s)-
sequences.

Definition 5: For b ≥ 2 and t ≥ 0 being integers; a
sequenceX0, X1, . . . in Is is a (t,s)-sequence in baseb, if

5In this section we let ‘s’ be the dimension of the space instead of ‘d’,
in order to preserve the nomenclature of the sequence ‘(t,s)’, as given in the
cited references.



[Xn]b,m andkbm ≤ n ≤ (k +1)bm form a (t,m,s)-net in base
b, for k ≥ 0 andm > t.

Note 1: The van der Corput introduced in Section IV-B.1
is an example of a (0,1)-sequence in baseb.

Note 2: As might have been suspected, a smaller value of
t in Definition 5 would result in stronger regularity in the
sample space.
The discussion on (t,s)-sequences presented sofar is descriptive
and the actual construction of such sequences is relatively
complicated with several available methods and variations
thereof, see [9] for an abridged presentation of available
methods of construction. Finally, there are several available
bounds on the star discrepancy of this method which we will
not list here, however the interested reader may consult [1].

5) Lattice Points: The construction of lattice structured
points is fairly simple. In [1] the general method is stated
as follows:
• Let 1, α1, α2, . . . , αd be linearly independent rational

numbers.
• N is the number of sampled points.
• Then the lattice point set is constructed as followsXn ={

n
N (α1, α2, . . . , αd)

} ∈ Id, ∀n = 0, 1, . . . , N − 1, and
{.} denotes the fractional part of the real number.
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Fig. 6. Lattice point set in 2D for 1000 points,a =
√

5+1
2

It was reported in [10] that a good choice for lattice point
sets would be those of theKorobov type, which are a special
case of the choice above whereαi = αi−1, i.e. Xn ={

n
N (1, α, α2, . . . , αd−1)

} ∈ Id, ∀n = 0, 1, . . . , N−1, where
1 < α < N, α ∈ N. See Figure 6 for illustration in 2-
dimensional space. As observed in Figure 6, the lattice point
set has the best regularity of distribution of the points in the
2-dimensional unit plane. The derivation of the bound on the
error in the case of lattice construction is fairly more involved,
and depends on periodic functions and Fourier coefficients,
and consequently will be omitted here.

V. ROBUST CONTROL PROBLEM SIMULATION

In this section we consider an old problem first in-
troduced by Truxal in [8]. The main idea is having a
hypercube-like parameter space (In) with a hypersphere-
like region (Bn(0, ρ)) of instability. The problem be-
comes challenging when the instability radius becomes
close to the boundary of the sampling space. Refer to
Figure 1 with the plant transfer functionG(s, p, r) =

s2+s+(3+2p1+2p2)
s3+(1+p1+p2)s2+(1+p1+p2)s+(0.25+ρ2+3p1+3p2+2p1p2)

and the
simple gain controllerC(s, q) = q, with q ∈ [0, 1], p1 ∈
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Fig. 7. Percentage stabilization with random uniform sampling

[0, 1] andp2 ∈ [0, 1]. The resulting closed-loop characteristic
polynomial is

p(s) = s3 + (1 + p1 + p2 + q)s2 (11)

+ (1 + p1 + p2 + q)s

+ (0.25 + ρ2 + 3p1 + 3p2 + 3q + 2p1p2 + 2p1q + 2p2q).

Using Maxwell’s criterion for3rd-order polynomials, we ob-
tain the following multivariate-polynomial inequalities (MPIs)
that guarantee the stability of (11),

v1(p1, p2, q) = 1 + p1 + p2 + q > 0 (12)

v2(p1, p2, q) = 0.25 + ρ2

+ 3p1 + 3p2 + 3q + 2p1p2 + 2p1q + 2p2q > 0

v3(p1, p2, q) = p2
1 + p2

2 + q2 − p1 − p2 − q + 0.75− ρ2 > 0

It is easily seen that the first and second inequalities in
(13) are always positive for the ranges of uncertainties and
design regions given. However, the3rd inequality requires a
closer look to establish the stability regions for the closed-loop
system. Through completing the squares, the3rd inequality
could be written as

v3(p1, p2, q) = (p1−0.5)2+(p2−0.5)2+(q−0.5)2−ρ2 > 0 (13)

It is easily seen that (13) equated to zero results in the
equation of a sphere centered at(0.5, 0.5, 0.5) and radiusρ.
Therefore, our instability region is defined by the intersection
of the unit 3-dimensional hypercube and the spherical region
given in (13). Consequently, the problem is restated as follows

Qsol = {q ∈ [0, 1] : ∀ p ∈ [0, 1], r ∈ [0, 1], p1(p, q, r) > 0

∧ p2(p, q, r) > 0 ∧ p3(p, q, r) > 0} (14)

Usually solution regions for problems such as the one pre-
sented in (14) are hard to obtain analytically. However, in our
case the solution is fairly simple;Qsol = {[0, 0.5−ρ)∪(0.5+
ρ, 1]}. Forρ = 0.499 we haveQsol = {[0, 0.001)∪(0.999, 1]}.

In what follows, we address the same the problem using
sampling methods, random and quasi-random. The indicator
function is the one mentioned in (1), where
• Pi = [pi, ri] is the sample vector from the plant parameter

space
• Qi = [qi] is the scalar sample from the controller

parameter space.
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Fig. 8. Percentage stabilization with deterministic Halton sequence

A. Using Random Samples

Let NP = 1000 be the number of samples taken from the
parameter spaceI2p and NQ = {50, 75, . . . , 625, 650} be the
number of samples taken from the controller admissible space
I1q. In Figure 7, we present the number of samples vs. the
best percentage stabilization achieved. Since the sampling is
random, there are no deterministic guarantees that the plant
can be stabilized even with a high number of controller
samples. That is the reason why we can achieve100% stability
with 100 samples, on the other hand we may not reach100%
stability at 625 samples.

Note 3: When takingNQ controller parameter samples for
the simulation, we disregard previous samples for smallerNQ.

B. Using Quasi-Random Samples

In this section we are going to explore the performance
of deterministic quasi-Monte Carlo sampling. We follow the
same presentation as in Section V-A, using the Halton se-
quence presented in Section IV-B.2. The result is seen in
Figure 4. The only100% stabilizing controller parameter for
NQ = {625, 650} is Q? = 0.00032 ∈ Qsol. As suspected
the deterministic sequence retains its ability to stabilize the
uncertain plant once it reaches the100% stabilization mark.
That is due to the fact that the points are not selected randomly,
but are instead chosen to fill the sampling space in a regular
fashion.

Note 4: In the simulations of Sections V-A and V-B,
achieving100% stability is only with respect to the samples
(Pi) taken over the plant parameter space(I2p), and therefore
our answer is approximate. There may be intervals between
samples for which the closed-loop system is unstable.

VI. CONCLUSION

In this paper we have presented the robust stabilization
problem and tackled it from a sampling point of view. A
fairly self-contained presentation of Quasi-Monte Carlo point
generation was presented. Then random and deterministic
point generation were used in order to solve the robust
stabilization problem. Both methods of sample generation

were compared through simulation according to their ability
to solve the problem at hand. Although random methods
might converge to the solution at a lower number of samples,
they might lose convergence at higher number of samples.
However, deterministic quasi-Monte Carlo point generation
retains its ability to find the solution once it converges. Future
work aims at investigating the performance of quasi-Monte
Carlo methods in high dimensional robust control problems
and deriving analytic bounds for the error when dealing with
MPI problems.
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