
   
Abstract-- Reaching Law Control (RLC) is an approach to 
Sliding Mode Control (SMC) design. In this paper, the RLC 
method is applied to the speed control of a DC motor drive 
system. Since the discrete time analysis and design is more 
appropriate for the real applications, the design equations are 
derived in the discrete time. The implementation problems 
and the robustness of the control approach are discussed in 
the paper. Simulation and experimental results supporting 
the arguments are presented.  
 
Index terms-- sliding mode control, electrical drives, control, 
DC motors. 
 

I. INTRODUCTION  

 
Sliding Mode Control (SMC) is a powerful technique to 
control the non-linear and uncertain (non-deterministic) 
systems [1,2]. It is a robust control method and can be 
applied in the presence of model uncertainties, parameter 
fluctuations and external disturbances provided that the 
bounds of these uncertainties and disturbances are known. 
The main disadvantage of the method is the assumption that 
the control signal can be switched from one value to another 
at infinite rate. In practical systems, however, it is impossible 
to manage this since the microprocessor implementation of 
the control strategy requires a finite sampling time. Direct 
microprocessor application of the SMC method results in a 
high frequency oscillation (chattering) about the desired 
equilibrium point [2]. Although there may exist some 
applications in which this chattering may be utilised [1], it is 
generally undesirable since chattering excites the 
unmodelled high frequency dynamics of the systems.  
 
A new SMC design technique, which is called Reaching Law 
Control (RLC), was introduced by Gao and Hung in [3]. This 
approach not only establishes a reaching condition to the 
sliding line (or surface) directly but also specifies the 
dynamic characteristics of the system during the reaching 
phase. Additional merits of the RLC approach include 
simplification of the solution for SMC and providing a 
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measure for the reduction of chattering. Since the RLC 
approach is quite new and the classical SMC is a well-
known technique, there are only a few practical applications 
of the RLC approach to motor drive control systems [4,5]. 
 
In this paper, the RLC approach is summarized and then the 
discrete time implementation of the RLC approach is 
described for the speed control of a DC motor drive system. 
Design equations are derived in discrete time and the 
simulations results validating the mathematical derivations 
are presented. It is shown that the sampling time of the 
speed loop is one of the main constraints for the robustness 
of the RLC approach. The experimental implementation of 
the RLC approach is realized in a vector controlled induction 
motor system that is equivalent to a DC motor system due to 
the vector control [6]. It is found that the noise of torque 
ripples due to the encoder resolution also restricts the 
robustness of the RLC approach. 
 

II. REACHING LAW CONTROL (RLC) 

 
Gao and Hung have introduced a new method called 
Reaching Law Control (RLC) for the design of SMC systems 
[3]. In their approach, a reaching law which is a differential 
equation specifying the dynamics of the switching function 
S is first chosen. The control input is then synthesized from 
the reaching law in conjunction with a known model of the 
plant and the known bounds of perturbations. It should be 
noted that the differential equation of an asymptotically 
stable S is actually a reaching condition. In addition, the 
dynamic quality of the SMC system in the reaching mode 
can be controlled by choosing the parameters in the 
differential equation. 
 
Let us consider a single input second order linear uncertain 
system: 
 

)()()()( tfdtubtxAtx ++=&  
 ( ) ( ) ( ) )()()( tfddtubbtxAA nnn ∆++∆++∆+=  (1) 

 
where x(t) is the state vector, u(t) is the control input, A n, bn 
and dn are composed of nominal system parameters, ∆A, ∆b 
and ∆d are the uncertainties introduced by unknown system 
parameters and f(t) is the external disturbance. ∆A, ∆b, ∆d 
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and f(t) are not known exactly but they are bounded. 
Equation (1) can also be written as 
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),( txL is called lumped uncertainty  given by 

( ))()()(),( tfdtubtxABtxL p +∆+∆=  and bounded as 

max),( LtxL ≤ . Note that Bp is the pseudo inverse of bn  
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The control problem is to find a control input u such that the 
state vector x tracks a desired trajectory xd in the presence of 
model uncertainties and external disturbance. The tracking 
error is defined as (the argument t is omitted in the following 
for simplicity of notation) 
 

Td eexxe ],[ &=−=   (3) 

 

which implies that the states are chosen as [ , &]x x T  (the 
control canonical form). All controllable systems can be 
converted to this form and there is no loss of generality in 
assuming the form (3). 
 
The switching function is 
 

eCeeS =+= &λ   (4) 
 
If an asymptotically stable reaching law [3] is chosen as 
 

SSqS α−−= )sgn(&  (5) 

 
where q and α are positive constants, the control input u is 
derived by using (2)-(4) and (5) as 
 

( ) ( )SSqLbCxCxCAbCu n
d
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All the quantities above the right hand side of (6) are known 
except the lumped uncertainty L. If L in (6) is replaced by a 
conservative known quantity Lc, then u becomes 
 

( ) ( )SSqLbCxCxCAbCu cn
d
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 (7) 
The dynamics of S is obtained by using (2)-(4) and (7) as 
 

( )cn LLbCSSqS −+−−= α)sgn(&  (8) 

 
By comparing (8) with (5), it can be easily seen that an 
additional term ( )cn LLbC −  appears in the reaching 

dynamics of the perturbed system. Lc will be so chosen that 
it dominates the unknown lumped uncertainty L and thus 
ensures the reaching law (5). Since L is bounded as 

max),( LtxL ≤  and assuming Cbn is a positive constant, a 

practical choice of Lc is 
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If Cbn is negative then the sign of Lmax will be opposite in (9) 
which implies that 

)sgn(max SLLc =  (10) 
 
and the dynamics of S becomes 
 

LbCSSQS n+−−= α)sgn(&  (11) 

 
where maxLbCqQ n+= . It should be remembered that the 

term αS is added in the reaching law (5) to increase the 
reaching rate [3]. 
 
As seen in (7), the control input u contains a sgn(.) function 
(the ideal relay characteristic) to deal with the uncertainties 
and disturbances. In continuous time RLC systems, it is 
assumed that this function switches between +1 and -1 at 
infinite rate about the S = 0 line. Because of this infinitely 
fast switching of the control input, an ideal sliding mode 
exists on the line S = 0, meaning there is no chattering [2]. 
However, in practical systems, it is impossible to achieve the 
ideal infinite switching of the control input due to the 
microprocessor implementation of the control law which 
requires a finite computation time. Since it is impossible to 
switch the control input at infinite rate, chattering always 
occurs in the sliding and steady state modes of a practical 
RLC system.  
 
Chattering appears as a high frequency oscillation about the 
desired equilibrium point in the steady state and can excite 
the unmodelled high frequency dynamics of the system. 
Since chattering is almost always undesirable for most 
practical applications, many researchers have directed their 
work to this problem as reported in [2]. 
 
There are several common methods which are used to 
eliminate or reduce the chattering : The most popular is to 
replace the discontinuous term sgn(S) by  
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where φ is an positive constant and usually called Boundary 
Layer thickness since using  (12) means that a Boundary 
Layer (BL) around the switching line (or surface) is 
introduced to eliminate the chattering.  
 
In the following sections, a speed control structure with an 
anti-windup integrator [7] will be described. Due to the 



limited integrator, there is no point in employing another 
limit in the control law of RLC with BL. Thus, the gain 
multiplied by S, becomes the quantity of interest. The RLC 
method implies that a control law without the sat(.) function 
can be directly obtained by simply setting the parameter q 
equal to zero (see (7)). 
 

III. DISCRETE TIME SPEED CONTROL USING THE RLC 
APPROACH 

 
In this section, the discrete time speed control system is 
considered since it is more convenient for experimental 
implementation. As seen in the previous section, direct 
implementation of sgn(.) function results in a chattering 
problem in the discrete time systems. In a speed control 
system, chattering of the torque demand is usually 
unacceptable since it may excite the unmodelled mechanical 
dynamics [1,2]. 
 
Let us consider a discrete time reaching law without the 
sgn(.) function : 
 

)()1( kSkS α−=+∆   (13) 
 
where k is the sampling instant (i.e. k = 0,1,2,…), α is a 
positive constant and ∆ operator is defined as 
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(Ts is the sampling time) which is supplemented with the 
condition {∆g(0) = 0} and the switching function is given by 
 

)()()( kekekS ∆+= λ  (15) 

 
where 
 

)()()( kkke ref ωω −=  (16) 

 
ωref and ω are the reference and actual speeds respectively. 
Note that if the states are defined as the speed error and its 

derivative, i.e., Teex ],[ &=  and Tdx ]0,0[=  then the error 
given by (3) becomes equivalent to the speed error defined 
by (16). The reaching law (13) basically implies that the 
switching function S exponentially reduces to zero with a 
desired dynamics defined by α. 
 
Now let us consider the closed loop speed control system 
shown in Fig.1, where 
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and KT is the torque constant, Te is the electrical torque 
demand (current control loop delay is ignored) and Gh(s) 
represents the zero order hold (zoh).  The pulse transfer 
function of the plant is  
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where 
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From Fig.1 and using (14)-(16), we obtain 
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Setting (20) equal to -αS(k) from (13), and solving for u(k) 
gives the control law 
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An advance term ∆ωref(k+1) is seen on the right hand side of 
(21), but this is not a problem since ωref(k) is a known 
reference input. For simplicity, let us assume that ωref is a 
step demand (i.e. ∆ωref(k+1) = ∆ωref(k) = 0). The control law 
then becomes 
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where 
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The second term of (22), Keq∆e(k), actually corresponds to 
ueq , equivalent control, which can be interpreted as the 
control law that would maintain ∆S(k) = 0 if the dynamics 
were exactly known [1,2].  
By using (13) and (14), an expression for S can be obtained 
as  
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Fig.  1.The closed loop speed control system 

 
In order to have a stable system, α should satisfy 
 

sT
2

0 << α  (26) 

 
since a sufficient condition for the stability [8] is  
 

)()1( kSkS <+  (27) 

 
which requires  
 

11 <− sTα  (28) 

 
It should be noted that if 
 

ss TT
21

<< α  (29) 

 
then 1-αTs becomes a negative number and S will have 
damped chattering. 
 
S will exponentially reduce to zero if 
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which requires  
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The system shown in Fig.1 is simulated and Fig.2, 3 and 4 
show the phase planes (e(k) & ∆e(k)), variations of S, and 
the speed and torque responses to a step input demand (100 
rad/s) for K = Km, 0.25Km  and 1.75Km  respectively. The 
controller is designed for the nominal system parameters 
which are J = 0.0035kgm2, B = 0.0007Nms, KT = 4.1788Nm/A. 
λ is chosen as 25s -1 and the sampling time Ts is 2.5ms. 
In Fig.2, a perfect sliding occurs since K = Km  and α = 1/ Ts 
which means S becomes zero after one sampling period (i.e. 
S(k+1) = 0*S(k)). 
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Fig. 2. Simulation results for K = Km (a) Phase plane (∆e(k) versus 
e(k)) (b) Variation in S, (c) Speed and torque responses  
 
Fig.3 shows that S exponentially reduces to zero since K = 
0.25Km  and α = 0.25/Ts (S(k+1) = 0.75*S(k)). On the other 



hand, a damped chattering is seen in Fig.4 because S(k+1) = 
-0.75*S(k) due to K = 1.75Km  and α = 1.75/Ts. Note that for K 
> 2Km , the system becomes unstable. 
 

 

0 20 40 60 80 100 
-2500  

-2000  

-1500  

-1000  

-500 

0 

∆e (rad/s2) 

e (rad/s) 

Slope = -λ 

 
(a) 

 

0 0.02 0.04  0.06  0.08 0.1 
0 

500 

1000 

1500 

2000 

2500 
S (rad/s2) 

Time (s)   
(b) 

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

50

60

70

80

90

100
Speed (rad/s) Torque (Nm)

0

1

2

3

4

5

6

Time (s)

ω

Te

 
(c) 

Fig. 3.   Simulation results for K = 0.25Km (a) Phase plane (∆e(k) 
versus e(k)) (b) Variation in S, (c) Speed and torque responses 
 
Finally, Fig.5 shows the experimental and simulation results 
for K = 0.05 (≅ 0.16Km) where the other parameters (e.g. λ, Ts, 
J, etc.) are exactly same with the ones used in the 
simulations above. The value of K = 0.16Km  arises from 
noise considerations since the encoder resolution noise 
restricts the controller gain [9]. The details of the 
experimental system can be found in [9]. As seen in Fig.5c, 
the torque demand is limited (with an anti-windup 

mechanism) in order to protect the inverter and other 
practical circuits in the experimental implementation (the 
torque demand limitation is also implemented in the 
simulation). In the experimental results shown in Fig.5, 
because of the encoder resolution, the signals and the 
phase plane are not smooth as expected. 
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Fig. 4.   Simulation results for K = 1.75Km (a) Phase plane (∆e(k) 
versus e(k)) (b) Variation in S, (c) Speed and torque responses  
 
In this section, the RLC approach has been applied to the 
discrete time speed control system. The plant was in the 
nominal conditions (i.e. no parameter variations and no 
external load torque). It should be noted that the control law 
similar to (21) can be obtained for the SMC with BL design 
approach as  
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Fig. 5.   Experimental and simulation results for K = 0.05 (a) Phase 
planes (∆e(k) versus e(k)) (b) Variations of  S, (c) Speed responses 
and electrical torque demands 
 

In the BL, ( )
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corresponds to the gain  K of the RLC design approach if 
(21) and (33) are compared. The main difference between 
these two control law is the limitation due to the sat(.) 
function as seen in (33).  Because of the limited integrator, 
the Umax limit becomes redundant and thus the gain Umax/φ 
becomes the quantity of interest. Therefore, the RLC 
approach has been found more appropriate for the practical 
implementation of the control structure shown in Fig.1. 
 

IV. CONCLUSIONS 

 
In this paper, RLC method, which is an approach to SMC 
design, is applied to the speed control of a DC motor drive 
system. Since the discrete time analysis and design are more 
appropriate for the practical implementations and in order to 
see the effects of the sampling time on the robustness and 
implementation of the RLC approach, the design equations 
are derived in discrete time. Simulation and experimental 
results validating the derived equations are presented. It is 
shown that the robustness of the RLC approach is restricted 
by the sampling time. However, in practice, the noise 
emerges as another limiter on the robustness of the method. 
The studies on the improvement of the robustness of the 
discrete time RLC approach will be the subject of the further 
publications. 
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