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Abstract

Throughout this paper we present some stability criterions for special
non-linear discrete Volterra systems. Our method is based on a factor-
ization algorithm which decomposes the original system as a star-product
of a δ-operator and a linear series. Then the stability of the linear series
guarantees the stability of the original non-linear system too. An exten-
sion in the case of Volterra systems containing products among inputs and
outputs as well as some open-loop stability techniques are also provided.

Keywords: Algebraic approach, Computational approach, Factorization meth-
ods, Discrete Systems, Non-linear Systems, Volterra Systems.

1 Introduction

The Volterra/Wiener representation of non-linear systems, either continuous or dis-
crete, are standard in the literature and have been studied a lot in the past [6]. One
situation of interest was the stability behaviour of these systems. This notion has
been addressed from several different angles. Series convergence, selection of proper
coefficients bound [3], to mention but a few, are two classical methods used for the
stability analysis of Discrete Volterra Systems.

In the present paper we are working with two kinds of Discrete Volterra systems:

y(t) =

k∑
n=1

∞∑
i1=1

· · ·
∞∑

in=1

u(t− i1) · · ·u(t− in) (1)

y(t) =

∞∑
i1=1

· · ·
∞∑

in=1

∞∑
j1=1

· · ·
∞∑

jm=1

y(t− i1) · · · y(t− in)u(t− j1) · · ·u(t− jm) (2)
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The first are discrete Volterra systems where the size of products is up to a certain
number. It is nothing else than an autoregressive system. The second one contains
products among inputs and output sequences. Both of these arise during the procedure
of finding an Input/Output expression from a state-space representation, [6].

Our main objective is to establish some stability criterions , concerning systems
(1) and (2) and then to provide algorithms which face the open-loop stability problem
of the above systems. The open-loop stability for classical or Volterra systems has
been a long-standing topic of research [6]. The major drawback of this method is the
fact that it suffers from serious internal stability problems, specially when no Volterra
systems are studying. Nevertheless when we are dealing with Volterra systems with
zero initial conditions, the procedure is still ineresting and open. Certain approaches
of this kind can be found under the name of tandem or cascade connection in [6].

The whole methodology is along the path of δ-operators and star-products. These
are algebraic tools introduced for the description and study of the non-linear input-
output discrete systems [2]. Throughout this paper N, Z and R will denote the sets
of natural, integer and real numbers respectively.

2 The Algebraic Background

The algebraic notions that follow have been presented in details in [2], [3]. For the sake
of completeness we have to repeat the main topics here, briefly. Let k be a positive
integer. A subset of the set ∪k

n=1Z
n is called a set of indices and it is denoted by I.

We denote the elements of I by i = (i1, i2, . . . , in). Given two indices i = (i1, i2, . . . , ik)
and j = (j1, j2, . . . , jλ), the operation i⊕ j is defined just juxtaposing j after i. Let
y(t) be a real sequence defined over the set of integers Z and let F be the set of
causal sequences. Thus if y(t) ∈ F then y(t) = 0 for t < 0 . Let i be an integer.
We define the δi operator as the i-shift δi : F 7→ F, δi{y(t)} = {y(t − i)}. The
operator δi : F 7→ F , i = (i1, i2, . . . , im) is defined as δi{y(t)} = δi1δi2δi3 . . . δim{y(t)}
= y(t − i1)y(t − i2) · · · y(t − im). By convention we define δe{y(t)} = {1} for each
t ∈ Z. The set of δ-operators is denoted by ∆. Given δi, δj ∈ ∆ we define their sum as
{δi+δj}{y(t)} = δi{y(t)}+δj{y(t)} and their dot-product as the operator δi ·δj = δi⊕j.

In order to cope with systems including products among input and output sig-
nals we have to extend the δ-operators in a proper way. Let i = (i1, i2, . . . , im), j =
(j1, j2, . . . , jn) be indices, δi, δj ∈ ∆ and (y, u) ∈ F×F . The operator δi×δj : F×F 7→
F is defined as δi×δj[y(t), u(t)] = y(t−i1)y(t−i2) · · · y(t−im)u(t−j1)u(t−j2) · · ·u(t−
jn). We can immediately verify that δi × δj[y(t), u(t)] = [δiy(t)] · [δju(t)], where ” · ”
the usual product among sequences. This means that the operator δi acts exclusive
on ”outputs” and δj exclusive on ”inputs”. Sometimes it is more convenient to use the
notation δiεj instead of δi × δj. By means of the δe operator we can write and simple
δ-operators or ε-operators in a δε-form.

An expression of the form S =
∑

i∈I aiδi where I an infinite set of indices is
called a δ-series. If I coincides with the set of positive integers then the expression
S =

∑
i∈Z+ aiδi =

∑∞
i=0

aiδi is a linear series. A homogeneous δ-series of n-degree

is the series S =
∑

i∈In
aiδi, where In is an infinite set of indices of the form In =

{(i1, i2, . . . , in) ∈ Zn}.
We can extend the above definitions in the case of δε-operators too. An expression

of the form S =
∑

i∈I

∑
j∈J cijδiεj, I,J infinite sets of indices, is called a δε-series.
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A homogeneous δε-series of n + m-degree is the δε-series S =
∑

i∈In

∑
j∈Jm

cijδiεj
where In = {(i1, i2, . . . , in) ∈ Zn} and Jm = {(j1, j2, . . . , jm) ∈ Zm}. By d(S) or d(S)
we denote the minimum delay appeared in S or S. Using the above notation we can
rewrite non-linear discrete Volterra systems of the form (1) and (2) shortly as follows
y(t) = Su(t), S a δ-series and y(t) = S[y(t), u(t)], S a δε-series.

Let A and B be δ-series. Their star-product is the composition operator A ∗
B = A ◦ B, where ◦ is the usual composition map among operators. If G is a δ-
series and S a δε-series we define the star product of G and S as the composition
operator G ∗ S = G ◦ S . If A =

∑∞
i=0

aiδi and B =
∑∞

j=0
bjδj are linear series

then A∗B =
∑∞

i=0
(
∑i

k=0
ai−kbk)δi. More complicated formulas, covering the general

case can be found in [2], [3]. We can easily check that the distributive property
A∗ [B +C] = A∗B +A∗C is not valid, except in the case of A linear. This particular
feature endows the set of δ-operators with some special properties.

3 Factorizations

A δ-series S is called δL-Factorizable if there are a δ-operator δi = δi1δi2 · · · δin and
a linear δ-series L such that S = δi ∗ L. Certain theorems, characterized the class
of δL-Factorizable series, can be found in [5] We provide now an algorithm for the
δL-Factorization. We suppose that an algorithm, named ”prod” for the factorization
of a δ-series according to the dot-product, is available.

The δLF-Algorithm.

Input: A δ-series S.

Step 1: By means of the ”prod”-algorithm we factorize S as follows: S = S1 ·S2 · · ·Sn,
where Si, i = 1, . . . , n, linear series.

Step 2: For all Si we set Si = δai ∗ Li, ai = d(Li), i = 1, . . . , n.

Step 3: IF L1 = L2 = · · · = Ln = L THEN give as output the quantities δai , i =
1, . . . , n, L ELSE no solution.

Theorem 3.1 [5] If the above algorithm gives as outputs the quantities δai , L, i =
1, . . . , n, then S = δa1δa2 · · · δan ∗ L is a δL-Factorization of the δ-series S.

Let S be a δε-series, we say that S is δεL-Factorizable if we can write it in the form
S = δiεj ∗ [L, M ], where δiεj a δε-operator, L a linear δ-series, and M a linear ε-series.
One of the L and M series may be a linear δ-polynomial but not both of them. The
following algorithm provides us with a method of δεL-Factorization. It is an extension
of the δLF -algorithm.

The δεLF-Algorithm.

Input: A δε-series S.

Step 1: By means of the ”prod”-algorithm we factorize S as follows: S =
L1 ·M1, where L1, a δ-series, M1 an ε-series.

3



Step 2: By means of the δLF -Algorithm we factorize L1 as follows L1 =
δi ∗ L.

Step 3: By means of the δLF -Algorithm we factorize M1 as follows M1 =
εj ∗M .

Step 4: Give as output the quantities δi, εj, L, M ELSE no solution.

Theorem 3.2 [5] If the above algorithm gives as outputs the quantities δi, εj, L, M ,
then S = δiεj ∗ [L, M ] is a δεL-Factorization of the δε-series S.

4 The BIBO Stability Criterions.

We shall present now some BIBO conditions appropriate for the Volterra series we
study here. Let us suppose that we have the system y(t) = Lu(t), L a linear series of
the form L =

∑∞
i=0

aiδi. It is well known in the literature that this system is BIBO
stable if and only if the series

∑∞
i=0

|ai| converges. In this case we say that the series
L is BIBO stable or just stable.

Theorem 4.1 [5] We have the non-linear system y(t) = Su(t). Let S be a homoge-
neous δ-series which is δL-Factorizable as follows: S = δi ∗ L, δi = δi1δi2 · · · δin ∈ ∆,
L a linear series. The non-linear system is BIBO stable if and only if L is stable.

Theorem 4.2 [5] Let y(t) = S[y(t), u(t)] be a non-linear system containing products
among input and output signals. The system is BIBO stable provided that:
1) S = δiεj ∗ [L, U ], δi = δi1δi2 · · · δin , εj = εj1εj2 · · · εjm , L =

∑σ

i=1
liδi a linear

δ-polynomial, U =
∑∞

i=0
miεi a linear ε-series.

2)The series
∑∞

i=0
|mi| converges to the number φ.

3) The following inequality holds

LnKnφmMm < K

L =
∑σ

i=1
|li|, K is the bound of the initial values of the output and M is the bound

of the input.

5 The Open-Loop Stability.

We say that a discrete Volterra system y(t) = Su(t) is BIBO open-loop stabilized via
a precompensator u(t) = Fv(t), F a δ-series, if the cascade system y(t) = S(Fv(t))
is BIBO stable. We say that a precompensator u(t) = Fv(t) open-loop stabilizes the
discrete Volterra system y(t) = Su(t) to the number φ, if the δ-series which corresponds
to the system y(t) = S(Fv(t)) converges to the number φ. Obviously the second case
contains the first.

Theorem 5.1 [5] Any unstable linear system y(t) = Lu(t) is always open-loop stabi-
lized to a given number φ via a precompensator of the form u(t) = Fv(t), F a linear
δ-series.
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Theorem 5.2 [5] Let y(t) = Su(t) be a non-linear Volterra discrete system, where S
is an n-degree homogeneous δ-series. If S is δL-Factorizable as follows S = δi ∗ L,
then any input of the form u(t) = Fv(t), which open-loop stabilizes the linear series
L, open-loop stabilizes the original non-linear system too.

Theorem 5.3 [5] Let y(t) = S[y(t), u(t)] be a non-linear system containing products
among input and output sequences. If S is δεL-Factorizable, S = δiεj ∗ [L, U ], L
a linear δ-polynomial, then the following procedure provides us with an input, which
stabilizes the original non-linear discrete system.

Procedure.
Step 1: We decompose S as follows S = δiεj ∗ [L, U ], δi = δi1δi2 · · · δin , εj =

εj1εj2 · · · εjm , L =
∑σ

i=1
liδi a linear δ-polynomial, U =

∑∞
i=0

µiεi a linear ε-series.
Step 2: We choose a number φ such that

LnKnφmMm < K

L =
∑σ

i=1
|li|, K is the bound of the initial values of the output and M is the bound of

the input,
Step 3: We choose a series

∑∞
i=0

ai converging to the number φ.

Step 4: We construct the series
∑∞

i=0
fiδi with fi =

ai−
∑i−1

k=0
µi−kfk

µ0
Step 5: The precompensator upon request has the form u(t) = Fv(t) where F =∑∞

i=0
fiδi.

6 Examples

(1) We have the system

y(t) =

∞∑
i=1

∞∑
j=1

aiaju(t− i)u(t− j − 1)+

+

∞∑
i=1

∞∑
j=1

∞∑
l=1

aiajalu(t− i)u(t− j − 1)u(t− l − 3) (3)

with ai = i. This is an unstable system. Indeed, using as input the random sequence
u(t) = rand(1) and zero initial conditions we take a constantly increasing output. We
can see this behaviour in the first diagram of the figure 1. Using δ-operators we rewrite
(3) in the form:

y(t) =

∞∑
i=1

∞∑
j=1

aiajδiδj+1 +

∞∑
i=1

∞∑
j=1

∞∑
l=1

aiajalδiδj+1δl+3u(t) = Su(t)

Applying the algorithm δLF we get for the first tem of S:

∞∑
i=1

∞∑
j=1

aiajδiδj+1 = a1(

∞∑
j=1

ajδj+1)δ1 + a2(

∞∑
j=1

ajδj+1)δ2 + · · · =
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= (

∞∑
i=1

aiδi) · (
∞∑

j=1

ajδj+1) = [δ0 ∗ (

∞∑
i=1

aiδi)] · [δ1 ∗ (

∞∑
j=1

ajδj)] = δ0δ1 ∗ (

∞∑
i=1

aiδi)

Working simultaneously with the second term too, we finally factorize S as fol-
lows: S = (δ0δ1 + δ0δ1δ3) ∗ (a1δ1 + a2δ2 + a3δ3 + · · ·) = P ∗ L. We seek now for
a precompensator u(t) = Fv(t) which stabilizes the linear series L. In other words
we want the coefficients of the series (

∑∞
i=1

aiδi) ∗ (
∑∞

i=1
fiδi) to be identical equal

with the coefficients of a stable linear series, let us say (
∑∞

i=1
riδi), with r = 0.9.

The equations presented in the proof of theorem 5.1 leads to the calculation of the
coefficients fi and thus to the relation u(t) = Fv(t). As we stated before this input
stabilizes the non-linear Volterra system too.
(2) We have the system

y(t) =

2∑
l=1

∞∑
i=1

∞∑
j=1

glaiajy(t− l)u(t− i)u(t− j − 1) (4)

where g1 = 2, g2 = 3 and ai = i. This is an unstable system. Following the steps
of the procedure appeared in theorem 5.3 we shall find a precompensator, which sta-
bilizes this system. By means of the δε-operators we rewrite (4) in the form y(t) =∑2

l=1

∑∞
i=1

∑∞
j=1

glaiajδlεiεj [y(t), u(t)] = S[y(t), u(t)]. Using the δεLF -algorithm we

decompose it as follows: S = δ1ε1ε2 ∗ [L, U ], where L = 2δ0 + 3δ1 a δ-polynomial and
U = ε0 + 2ε1 + 3ε2 + · · · an ε-series. Let us take as outputs bound the number K = 1.
Then, since L = 2 + 3 = 5, K = 1, M = 1,n = 1,m = 2 we seek for a number φ such
that LKφ2M2 < K. The last inequality implies that φ < 1√

5
= 0.4472. We choose as

φ = 0.3. Let T = r2δ2 + r3δ3 + · · · be a series converging to the number φ = 0.3. This
means that r = 0.417891. Finally, the system is stabilized via the law u = Fv where
F =

∑∞
i=0

fiδi, f0 = r2/1, fi = ri+2 −
∑i−1

k=0
(i− k)fk and v(t) = rnd(1). If we repeat

the same procedure with, let us say, r = 0.7 we take instability.

References

[1] N.Kalouptsidis and S.Theodoridhs. (1993). Adaptive System Identification and
Signal Processing Algorithms. Prentice Hall.

[2] St.Kotsios and N.Kalouptsidis (1993). The model matching problem for a certain
class of non-linear systems. Int.J.Control, Vol.57, NO. 4,881-919.

[3] S.Kotsios - N.Kalouptsidis (1993). BIBO Stability Criteria for a Certain Class of
Non-linear Systems. Int.J.Control, Vol,58, No.3, 707-730.

[4] St.Kotsios (1999). Transformation of Special Discrete Volterra Systems with
Cross-products to Finite Input/Output Forms. IEEE Transactions of Automatic
Control, Vol. 44, N7, 1460-1464.

[5] St.Kotsios (2003). The Open - Loop Stability of Nonlinear Autoregressive Models
Under preparation.

[6] Rugh J. W. (1981). Non-linear System Theory. The Johns Hopkins University
Press, Baltimore.

6


	Conference Program
	Author Index
	Main Menu

