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Abstract— This paper introduces SimModHeli, a helicopter
dynamic simulation model specially suited for the design,
test, and evaluation of flight control systems for model-scale
helicopters. SimModHeli is implemented in the MATLAB
Simulink environment, using C MEX-file S-functions for en-
hanced performance, and is freely available for download on
the Internet. SimModHeli is based on first-principles model-
ing of the dynamics and aerodynamics of rotary-wing air-
craft and is specially tailored for model-scale helicopters. In
the paper, the structure of the helicopter dynamic model is
described and the contributions of the different vehicle com-
ponents to the global model are discussed. Particular em-
phasis is placed on the mathematical modeling of the main
rotor and Bell-Hiller stabilizing bar. The fully parameter-
izable simulation model arising from the modeling effort is
presented and some SimModHeli control-oriented features are
described. An LQ state feedback controller is synthesized
to stabilize the vehicle in hover. Simulation results obtained
with SimModHeli and the hover control system are presented
and discussed.

Keywords— Dynamic Modeling and Simulation, Au-
tonomous Vehicles, Model-Scale Helicopters, Bell-Hiller
Stabilizing bar, Hover Stabilization.

I. Introduction

Among Unmanned Air Vehicles (UAVs), model-scale he-
licopters constitute one of most versatile and cost-effective
platforms for the development of autonomous flight sys-
tems. Unlike fixed-wing aircraft, helicopters can describe
vertical flight trajectories, including hovering and vertical
take-off and landing (VTOL). Moreover, they can perform
extremely agile maneuvers both at high and low speeds,
while providing good flying qualities in fast forward flight.
However, high maneuvering capabilities come at the cost
of having to cope with a highly nonlinear unstable sys-
tem. Simulation models that can reproduce the complex
behaviour of these vehicles are a fundamental tool for flight
control system design, test and evaluation. This clearly re-
duces the risk and the number of flight tests needed to
develop high performance controllers for UAVs.

This paper presents SimModHeli, a dynamic simula-
tion tool specially suited for designing, testing and eval-
uating flight control systems for model-scale helicopters.
SimModHeli implements, in the MATLAB Simulink en-
vironment, a dynamic model that is derived from first-
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principles, and valid over a wide flight envelope. To incor-
porate the main characteristics of model-scale helicopter
behaviour, the model includes not only the rigid body dy-
namics but also the main rotor and Bell-Hiller stabilizing
bar flapping dynamics. The latter is incorporated into the
system by taking into account the geometry of the Bell-
Hiller mixing device. Besides being fully parameterizable,
to accommodate the differences between specific platforms,
the simulation model can be easily configured to use dif-
ferent descriptions for the flapping motions and to enable
its adequate linearization to obtain full-order or reduced-
order lateral and longitudinal models. These features al-
low the comparison between models with different levels of
complexity, essential not only for gaining a deeper under-
standing of system but also for devising adequate control
strategies. SimModHeli also includes a MATLAB routine
that computes the trimming solutions for a given trimming
trajectory. SimModHeli was developed at the Institute for
Systems and Robotics of Lisbon and can be downloaded
and used freely for noncommercial purposes.

The paper is organized as follows. Section II introduces
the structure adopted for the helicopter dynamic model,
and then describes the modeling of the main rotor and sta-
bilizing bar dynamics. Section III presents the SimModHeli
MATLAB/Simulink model and gives a description of its
configuration parameters and specific features. Section III
focuses on the design and implementation of a hover con-
trol system that is evaluated in simulation along a typical
maneuver.

II. Helicopter dynamic model

This section presents the dynamic model of a single main
rotor and tail rotor helicopter equipped with a Bell-Hiller
or Hiller stabilizing bar, see Fig. 1.

Fig. 1. Vario X-Treme helicopter
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The dynamics of the helicopter are described using a con-
ventional six degree of freedom rigid body model driven by
forces and moments that explicitly include the effects of the
main rotor, stabilizing bar, tail rotor, fuselage, horizontal
tailplane, and vertical fin. The equations of motion were
derived, using the following notation:

p =
[
x y z

]T - position of the vehicle’s center of mass,
expressed in an inertial coordinate frame;

λ =
[
φ θ ψ

]T - Z-Y-X Euler angles that parameterize
the orientation of the vehicle relative to the inertial frame;

v =
[
u v w

]T - body-fixed linear velocity vector;
ω =

[
p q r

]T - body-fixed angular velocity vector.
Fig. 2 captures the general structure of the helicopter

model. In the figure, fg is the gravitational force, f and n
the remaining external force and moment vectors, respec-
tively, and u =

[
δ0 δ1c δ1s δ0t

]T the command vector that
consists of the main rotor collective input δ0, main rotor
and flybar cyclic inputs δ1c and δ1s, and tail rotor collective
input δ0t.

Fig. 2. Helicopter model - block diagram

The total force and moment vectors account for the con-
tributions of all helicopter components, and can be decom-
posed as

f = fmr + ftr + ffs + ftp + ffn

n=nmr +ntr +nfs +ntp +nfn
, (1)

where subscript mr stands for main rotor, tr for tail ro-
tor, fs for fuselage, tp for horizontal taiplane, and fn for
vertical fin. As the primary source of lift, propulsion and
control, the main rotor dominates helicopter dynamic be-
haviour. The Bell-Hiller stabilizing bar improves the stabil-
ity characteristics of the helicopter. The tail rotor, located
at the tail boom, provides the moment needed to counter-
act the torque generated by the aerodynamic drag forces
at the rotor hub. The remaining components have less sig-
nificant contributions and simpler models as well. In short,
the fuselage produces drag forces and moments and the em-
pennage components, horizontal tailplane and vertical fin,
act as wings in forward flight, increasing flight efficiency.

A comprehensive study of helicopter dynamic model-
ing, including the remaining helicopters components can be
found in [4]. For in-depth coverage of helicopter flight dy-
namics, the reader is referred to [2], [6], [10], [11]. The fol-
lowing sections present mathematical models for the main
rotor and Bell-Hiller stabilizing bar.

A. Main rotor

In rotary-wing aircraft, the main rotor is not only the
dominant system, but also the most complex mechanism.

It is the primary source of lift, which counteracts the body
weight and sustains the helicopter on air. Additionally,
the main rotor generates other forces and moments that
enable the control of the aircraft position, orientation and
velocity. This section presents a simplified rotor dynamic
model, whose main building blocks are depicted in Fig. 3.

Control of the blade aerodynamic loads, which ulti-
mately determines the main rotor force and moment contri-
butions (fmr and nmr), is obtained by changing the blade
pitch angle θ as function of the rotor command inputs (col-
lective δ0, longitudinal cyclic δ1c, and lateral cyclic δ1s).
Without the Bell-Hiller system and neglecting the servo
actuators dynamics, the blade pitch angle is given by

θ(ψ) = δ0 + δ1c cos(ψ) + δ1s sin(ψ). (2)

where ψ = Ωt is the blade azimuth angle and Ω is the rotor
speed. In systems equipped with the Bell-Hiller stabilizing
bar, only the collective input is directly applied to the main
rotor. The cyclic inputs are mixed with the motion of the
bar to determine the actual cyclic components (θ1c and
θ1s) applied to blade pitch links. The equations governing
the motion of these cyclic components are presented in the
next section.

Fig. 3. Main rotor block diagram

Rotor blade loads are not uniquely determined by the
applied inputs. They also depend on helicopter velocities,
induced downwash velocity, and on the motion of the blades
themselves. The model adopted to describe rotor blades is
standard and assumes that these are rigid and linked to the
hub through flap hinge springs, with stiffness kβ [10]. The
dynamic behaviour is thus confined to the flapping motion
that can be described by vector β =

[
β0 β1c β1s

]T , where
β0 denotes the collective mode (also called coning), and
β1c and β1s the longitudinal and lateral cyclic modes, re-
spectively. This vector, which corresponds to the constant
and first-order harmonics of the Fourier Series expansion of
β(ψ), comprises the fundamental components of the flap-
ping motion. The equations of motion for a flapping rotor,
expressed in the main rotor wind-aligned frame, can be
approximated by the following second-order system

β̈ + ΩAβ̇(µ)β̇ + Ω2Aβ(µ)β = Ω2Bθ(µ)




θ0

θ1c

θ1s


 +

Ω2Bω(µ)
[

p̄
q̄

]
+ Ω2Bλ(µ)




µz − λ0

λ1c

λ1s


 ,

(3)
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where, according to standard notation in helicopter theory
[10], the helicopter velocities are normalized, with µ and µz

denoting the forward and vertical velocities, respectively,
and p̄ and q̄ the roll and pitch rates, respectively. The
induced downwash is also normalized and decomposed into
constant λ0 and sinusoidal components λ1c and λ1s. It
should be noted that, for control system design purposes,
the flapping motion as described by (3) preserves a high
degree of accuracy, while rendering a much more tractable
system. For instance, the coefficient matrices in (3) depend
solely on the helicopter forward velocity.

The physical characteristics of the rotor that determine
these coefficients can be condensed into two constants: the
Lock number γ (ratio of aerodynamic to inertial forces) and
the Stiffness number Sβ (ratio of stiffness to aerodynamic
moments). For details on the derivation of the flapping
equations of motion, the reader is referred to [3], [4]. The
major effects in flapping motion become more percepti-
ble by introducing a number of constraints on the system.
Considering the case of an articulated rotor (kβ = 0), with
no forward velocity at the hub (µ = 0), the steady-state
solution of (3) is simply given by





β0 = γ
8

(
θ0 + 4

3µz − 4
3λ0

)

β1c = −θ1s − p̄ + 16
γ q̄ + λ1s

β1s = θ1c + 16
γ q̄ + q̄ − λ1c

, (4)

showing that θ0 commands the coning mode β0 and that
the cyclic commands θ1c and θ1s are exciting the second
order system at the resonant frequency (maximum magni-
tude amplification, 90o input-output phase shift).

Using either the dynamic or the steady-state solution for
the flapping, the main rotor forces and moments at the hub
can be written as

fmr =
n
2



−Y1s

−Y1c

2Z0


 +

n
2



−Z1c −Z0 0
Z1s 0 Z0

0 0 0






β0

β1c

β1s


, (5)

and

nmr = n




0
0

N0


 +

n
2



−N1c −N0 −kβ

N1s −kβ N0

0 0 0






β0

β1c

β1s


. (6)

The Y(.), Z(.), and N(.) terms, in (5) and (6), repre-
sent the force and moment components generated by the
blades. These quantities are functions of the helicopter ve-
locities and main rotor inputs (see [3], for further details).
The main rotor thrust and torque, Z0 and N0 respectively,
have dominant out-of-plane components (along the hub z
axis), and smaller in-plane components, which are due to
the main rotor tilt. Terms −Z1cβ0 and Z1sβ0 represent
the in-plane contributions of the blade lift forces due to
the rotor coning, while Y1c and Y1s account for the in-
plane contributions of the drag forces acting on the blades.
In (6), the spring moments, due to the cyclic flap angles,
are explicitly given by −kββ1s for the roll moment and by
−kββ1c for the pitch moment.

B. Bell-Hiller stabilizing bar

Currently, almost all model-scale helicopters are
equipped with a Bell-Hiller stabilizing bar, a mechanical
blade pitch control system that improves helicopter stabil-
ity. From a control point of view, the stabilizing bar can
be interpreted as a dynamic feedback system for the roll
and pitch rates. The system consists of a so-called flybar
(a teetering rotor placed at a 90o rotation interval from
the main rotor blades and tipped on both ends by aero-
dynamic paddles) and a mixing device that combines the
flybar flapping motion with the cyclic inputs to determine
the cyclic pitch angle applied to the main rotor blades.

The system derives from a combination of the Bell sta-
bilizing bar, fitted with a mechanical damper and weights
at each tip, and the Hiller stabilizing bar, which instead
of weights uses small airfoils with incidence commanded
by the cyclic inputs. In the Hiller system, the blade pitch
angle is determined by the flybar flapping only. The Bell-
Hiller system introduces the mixing device that allows some
of the swashplate input to be directly applied to the blades.

The flybar and main rotor flapping motions are governed
by the same effects, namely the gyroscopic moments due
the helicopter roll and pitch rates. However, unlike the
main rotor, the flybar is not responsible for providing lift
or maneuvering ability. Thus, it can be designed to have a
slower response and provide the desired stabilization effect.

The notation used to describe the Bell-Hiller system is
presented in Fig. 4, where the mechanical arrangement for
the X-Treme helicopter is reproduced.

Fig. 4. Bell-Hiller system with angular displacements

The flybar flapping and blade pitching angles are physi-
cally constrained to satisfy

θ1 (ψ) = c1δ1 (ψ) + c2βf

(
ψ + π

2

)
, (7)

where c1 and c2 are the swashplate and flybar linkage ratios



4

respectively, θ1 is differential blade pitch angle, βf the fly-
bar flapping angle and δ1 the differential pitch input, given
by

δ1(ψ) = δ1c cos(ψ) + δ1s sin(ψ). (8)

As a teetering rotor, the flybar can only describe see-saw
flapping motions, and thus βf has no coning mode. In the
case of the configuration represented in Fig. 4, the linkage
ratios are given by

c1 =
lδ
lθ

l1
l1 + l2

and c2 =
lβf

lθ
l2

l1 + l2
, (9)

whereas in Hiller systems, there is no direct link to the
swashplate, i.e., c1 = 0.

Using (7) and the moment equilibrium between flybar
flapping and blade pitching to combine the respective equa-
tions of motion yields the following result

[
θ̈1c

θ̈1s

]
+ ΩAθ̇

[
θ̇1c

θ̇1s

]
+ Ω2Aθ

[
θ1c

θ1s

]
=

Ω2Bδ

[
δ1c

δ1s

]
+ Ω2Bω

[
p̄
q̄

]
+ Ω2Bλ




µz − λ0

λ1c

λ1s


 ,

(10)

where

Aθ̇ =
[

γf/8 2
−2 γf/8

]
, (11)

Aθ = γf/8
[

0 1− 1
2η2µ

2

−1− 1
2η2µ

2 0

]
, (12)

Bδ = 1
c2

γf

8[
0 (1+c1)+

1
2 (3+c1)η2µ2

−(1+c1)− 1
2 (1−c1)η2µ2 0

]
,

(13)

Bω =
1
c2

[
γf/8 −2
−2 −γf/8

]
, (14)

and

Bλ =
1
c2

γf

8

[
2η2µ 0 −1

0 1 0

]
. (15)

According to expression (10), the blade pitching response
to helicopter shaft rotations is determined by the linkage
ratios c1 and c2, defined in (7), the forward velocity scaling
factor η2 given by

η2 = R2 R2
2 −R2

1

R4
2 −R4

1

, (16)

and the flybar Lock number defined as

γf = ρcfa0f

(
R4

2 −R4
1

)
/ Iβf

, (17)

where ρ is the air density, cf the paddle chord, a0f
the pad-

dle lift curve slope, and Iβf
the flybar moment of inertia.

Therefore, there are several different means of adjusting
the blade pitching response to helicopter shaft rotations.
Changing the shape, weight or distance between the pad-
dles or the ratio between the mixing lever arms l1 and l2
are all straightforward ways of achieving this variation.

III. Simulation model

SimModHeli is implemented in the MATLAB Simulink
environment, using C MEX-file S-functions for enhanced
performance. The helicopter dynamic model is defined as
a masked subsystem with a unified dialog box for intro-
duction of all the necessary parameters, including the heli-
copter parameter structure, the initial values for the state
variables and some extra configuration parameters.

Table I presents the helicopter parameters required by
the simulation model to describe a particular platform.

TABLE I

Helicopter Parameters

Rigid Body and Fuselage
m mass (m)
Ixx, Iyy , Izz moments of inertia (kg m2)
Ixy , Ixz , Iyz products of inertia (kg m2)
Sx, Sy, Sz aerodynamic reference areas (m2)
Vm, Vn aerodynamic reference volumes (m3)

Generic Rotor
nb number of blades
Ω rotor speed (rad/s)
R rotor disk radius (m)
c blade chord (m)
a0, cl0 lift curve slope (1/rad) and offset
cd0, cd1, cd2 lift dependent profile drag coefficients
Iβ flap moment of inertia (kg m2)
kβ flap spring stiffness (Nm/rad)
ρ air density (Kg/m3)

γ =
ρca0R4

Iβ
Lock number

Sβ = 8
γ

kβ

IβΩ2 Sitffness number

Main Rotor Specific
γs fixed shaft pitch angle (rad)
lmr, hmr distances of main rotor hub aft and above

center of mass (m)
θtw blade linear twist (rad)

Tail Rotor Specific
ltr, htr distances of tail rotor hub aft and above cen-

ter of mass (m)
gt rotor speed gearing constant
k3 pitch/flap coupling factor

Bell-Hiller/Hiller Stabilizing Bar
R1, R2 paddle starting and ending radii (m)

γf =
ρcf a0f

(R4
1−R4

2)

Iβf

Lock number

c1, c2 swashplate and flybar linkage ratios

Empennage
ltp, htp distances of horizontal tailplane aft and

above center of mass (m)
lfn, hfn distances of vertical fin aft and above center

of mass (m)
a0tp , a0fn

lift curve slopes (1/rad)

Stp, Sfn areas (m2)
α0tp tailplane zero-lift incidence angle (rad)
β0fn

fin zero-lift sideslip angle (rad)

To avoid duplication of information, the parameters that
are common to the main rotor, tail rotor and flybar are pre-
sented under the subtitle of generic rotor, while those spe-
cific to each rotor are presented under the respective sub-
title. This rather extensive set of parameters is organized
into a structure where each helicopter component consti-
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tutes a substructure that, in some cases, can be set to the
empty value. For example, the helicopter configuration at
hand may not be equipped with the Bell-Hiller stabilizing
bar or may lack one or both empennage components. By
simply leaving the respective structure empty, the system
is configured not to consider such components.

The simulator has two additional features, which were
introduced due to their relevancy for flight control system
design. Firstly, the system can be configured to enable an
adequate numerical linearization of the helicopter model
using the linmod MATLAB algorithm. In the mask dialog
box, the user can specify whether the desired linearization
is for the full-order system or restricted to the longitudinal
or lateral modes of motion. The second feature concerns
the description of the main rotor and flybar flapping mo-
tions. Once again, the system can be configured to use the
steady-state solution or the first or second-order dynamic
models for either one of the flapping motions. SimModHeli
also includes a MATLAB routine that computes the trim-
ming solutions for the state and input vectors, given a
desired trimming trajectory, parameterized by the linear
body speed, flight-path angle, and yaw rate (for further
details, see [4]).

Figs. 5 and 6 exemplify the kind of results that can be
readily obtained using SimModHeli. The trimming prob-
lem was solved for a set of straight line trajectories at differ-
ent speeds, using the simulation model parameterized for
the Vario X-treme helicopter configuration. Fig. 5 shows
the trimming values obtained for the inputs.
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Fig. 5. Trimming values for the collective inputs

The simulation model, parameterized once again for the
Vario X-Treme helicopter but with no flybar, was lin-
earized about the hover condition to obtain the 6DoF
model and the reduced-order longitudinal and lateral mod-
els, see Fig. 6. The comparison between the eigenvalues
of these systems shows that the decoupling approximation
mainly affects the stability of the phugoid-type oscillation

modes.
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Fig. 6. 6DoF, longitudinal and lateral modes at hover

IV. Hover control system design and simulation

This section focuses on the design, implementation and
simulation of a hover control system for the Vario X-Treme
helicopter, using SimModHeli. The linear state feedback
controller was required to meet the following design spec-
ifications: i) Zero Steady State Error, achieve zero steady
state error in response to constant input commands in the
vector e = [zc− z, ψc−ψ, uc−u, vc− v]′, four extra inte-
grators were added, one to each channel in e; ii) Actuator
Bandwidth Requirements, the control loop bandwidth for
all actuators should not exceed 30 rad/s to ensure that the
main and tail rotor command servos are not driven beyond
their normal actuation bandwidth.

The hover controller was obtained by resorting to the
solution of the standard continuous time Linear Quadratic
Regulator problem [1], where the state and control weight-
ing matrices Q and R, respectively, were selected as to
achieve a reasonable tracking performance for the chan-
nels in e without violating the actuator bandwidth require-
ments.

K
Tz
z−1z−1

Tz

¡¡
h-- -

h?
6
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¾

--
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+

+

−

−x

e
u

Fig. 7. Hover controller implementation with an anti-windup mech-
anism.

The controller was discretized using a sampling fre-
quency of 50 Hz and the actuators were saturated at
8 degrees to avoid blade stall. The implementation of the
resulting discrete time controller, was done by using the D-
methodology described in [7], which guarantees the follow-
ing fundamental linearization property: the linearization of
the nonlinear feedback control system about each equilib-
rium trajectory preserves the internal as well as the input-
output properties of the corresponding linear closed loop
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designs. This methodology moves all integrators to the
plant input, and adds derivators where they are needed to
preserve the transfer functions, making straightforward the
implementation of anti-windup schemes, see Fig. 7. Fur-
thermore, the input trimming values are naturally provided
by the integrator block, which is a major issue in this ap-
plication where the constant terms present in model have
to be compensated. In the figure, e represents the state
variables that are required to achieve good tracking perfor-
mance in steady state, vector x the helicopter state vari-
ables including the main rotor blade pitching cyclics, and
u = [δ0, δ1s, δ1c, δ0t]′ the helicopter actuation vector. The
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Fig. 8. Actuation commands

results of the simulation presented in Figs. 8-10 were ob-
tained with the full nonlinear closed loop system compris-
ing the dynamic model of the Vario X-treme helicopter and
D implementation of the controller.
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Fig. 9. Linear and angular velocity

The maneuver was performed about the hover condition
and consists of firstly keeping the helicopter in an fixed po-
sition during two seconds, followed by tracking a positive
ramp in altitude, and then keeping the helicopter in the
final position. Between the second and the fifth seconds of
the maneuver, the actuation variable δ0, that corresponds
to the main rotor collective, increases to impart the de-
sired ascending rate to the vehicle. The remaining actua-
tion variables, the longitudinal and lateral cyclics, δ1c, δ1s

respectively, and the collective tail rotor, δ0t, react as to
compensate for the model coupling. As the vehicle enters
on the third stage of the maneuver, the actuation acquires
the trimming values required to keep the vehicle in the
commanded altitude.
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Fig. 10. Angular position and altitude

V. Conclusions

The paper presented SimModHeli, a model-scale heli-
copter dynamic simulation tool that was implemented in
MATLAB/Simulink using C MEX-file S-functions for en-
hanced performance. The model structure was described
and the contribution of the different vehicle components to
the global nonlinear dynamic model was discussed. Partic-
ular focus was placed on the mathematical modeling of the
Bell-Hiller stabilizing bar. SimModHeli was parameterized
for the case of the Vario X-Treme model-scale helicopter,
a hover control system was developed, and its performance
evaluated in simulation along a typical maneuver. Future
work will focus on adjusting and validating SimModHeli
so that it can be used to exploit the particular dynamic
characteristics of model-scale helicopter in its whole flight
envelope. Extra effort will be placed on studying, devel-
oping, and testing advanced control strategies to achieve
good performance characteristics in highly demanding ma-
neuvers.
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