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Abstract— A new algorithm for the plus/minus factorization
of a scalar discrete-time polynomial is presented in this report.
The method is based on the relationship of polynomial algebra
to the algebra of band structured infinite dimensional matrices.
Employing standard numerical routines for factorizations of
constant matrices brings computational efficiency and reliability.
Performance of the proposed algorithm is demonstrated by a
practical application. Namely the problem of computing an l1-
optimal output feedback dynamic compensator to a discrete time
SISO plant is considered as it is studied by Hurak et al. in [6].
Involved plus-minus factorization is resolved by our new method.

I. I NTRODUCTION

This paper describes a new method for the plus-minus fac-
torization of a discrete-time polynomial. Given a polynomial
in the z variable,

p(z) = p0 + p1z + p2z
2 + · · ·+ pnzn,

without any roots on the unit circle, its plus/minus factorization
is defined as

p(z) = p+(z)p−(z) (1)

wherep+(z) has all roots inside andp−(z) outside the unit
disc. Clearly, the scalar plus/minus factorization is unique up
to a scaling factor.

Polynomial plus/minus factorization has many applications
in control and signal processing problems. For instance, ef-
ficient algebraic design methods for time-optimal controllers
[1], quadratically optimal filters for mobile phones [15], [16],
andl1 optimal regulators [6], to name just a few, all recall the
+/- factorization as a crucial computational step.

II. EXISTING METHODS

From the computational point of view, nevertheless, the task
is not well treated. There are two quite natural methods.

One of them is based on direct computation of roots. Using
standard methods for polynomial roots evaluation, see [8],
[17] for instance, one can separate the stable and unstable
roots ofp(s) directly and construct the plus and minus parts

from related first order factors or, alternatively, employ a more
efficient recursive procedure based on the matrix eigenvalue
theory [17].

Alternative algorithm relies on polynomial spectral factor-
ization and gratest polynomial divisor computation. Ifq(z) is
the spectral factor of the symmetric productp(z)p(z−1) then
the greatest common divisor ofp(z) and q(z) is obviously
the plus factor ofp(z). The minus factor can be derived
similarly from p(z−1) andq(z−1). As opposed to the previous
approach based on direct roots computation which typically
makes problems for higher degrees and/or roots multiplicities,
this procedure relies on numerically reliable algorithms for
polynomial spectral factorization [13], [5]. Unfortunately, the
polynomial greatest common divisor computation is much
more sensitive. As a result, both these techniques do not work
properly for high degrees (say over 50).

Quite recently, a new approach to the problem was sug-
gested by the authors of this report in [14]. The method
is inspired by an efficient algorithm for polynomial spectral
factorization, see [5]. It provides both a fruitful view on
the relation between DFT and theZ-transform theory, and
a powerful computational tool in the form of the fast Fourier
transform algorithm.

Success of adapting a powerful spectral factorization algo-
rithm for the plus-minus factorization was inspiring for us.
We decided to undertake a similar way with another spectral
factorization procedure, namely the Bauer’s method, which is
described in the following sections.

III. B AUER’ S METHOD FOR POLYNOMIAL SPECTRAL

FACTORIZATION

F. I. Bauer published his method for spectral factorization
of a discrete-time scalar polynomial in 1955, see [2], [3]. The
procedure is based on the relationship between polynomials
and related infinite Toeplitz-type Sylvester matrices.



A. Algebra of Sylvester matrices

Given a two-sided polynomialp(z) = p−mz−m+· · ·+p0+
· · ·+ pnzn, we define its Sylvester companion matrixTN

p of
orderN ,

N ≥ max(n, m)

as anN by N square matrix constructed according to the
following scheme:

TN
p =



p0 p1 . . . pn 0 . . . 0

p−1 p0 p1 . . . pn
...

...
... p−1

...
...

... 0

p−m

...
... pn

0 p−m
...

...
...

...
...

...
... p1

0 · · · 0 p−m . . . p−1 p0


To show the relation between the polynomial algebra and

the algebra of Sylvester matrices, let us consider two simple
polynomialsp1(z) = 3z−1 +2+z andp2(z) = z−1 +3. Their
companion matrices of order four read respectively

T 4
p1 =


2 1 0 0
3 2 1 0
0 3 2 1
0 0 3 2



T 4
p2 =


3 0 0 0
1 3 0 0
0 1 3 0
0 0 1 3


Their sump3(z) = p1(z) + p2(z) equals

p3(z) = 4z−1 + 5 + z

and its companion matrix can be computed as direct sum of
related companion matricesT 4

p1, T
4
p2:

T 4
p3 =


5 1 0 0
4 5 1 0
0 4 5 1
0 0 4 5


Similarly, their productp4 = p1p2 = 3z−2+11z−1+7+3z

has a companion matrix

T 4
p4 = T 4

p1T
4
p2 =


7 3 0 0
11 7 3 0
3 11 7 3
0 3 11 6



B. Bauer’s method for spectral factorization

As we have illustrated above, finite dimensional matrices
are sufficient to accommodate ”finite” algebraic problems. On
the other hand, if we do not restrict to finite dimensionality
of related matrices, transcendent problems, including spectral
factorization, involving polynomials can be resolved by this
approach as well.

We will illustrate the Bauer’s spectral factorization method
by means of a simple example. An interested reader can find
detailed description in the original work [2] or, alternatively,
in the survey paper [4].

Given p(z) = 2z−1 +5+2z its companion matrix of order
five reads

Tp =


5 2 0 0 0
2 5 2 0 0
0 2 5 2 0
0 0 2 5 2
0 0 0 2 5


As p is symmetric and positive definite on the unit circle

its spectral factorx exists such that

x?x = p

holds andx is stable. The star stands for polynomial discrete-
time conjugation,z → z−1. The spectral factor coefficients
can be approximated using the Cholesky factorization ofTp:

Tx =


2.236 0.8944 0 0 0
0 2.049 0.9759 0 0
0 0 2.012 0.9941 0
0 0 0 2.003 0.9985
0 0 0 0 2.001


The diagonals ofTx obviously converge to the genuine spectral
factor coefficients:x(z) = 1 + 2z.

An interesting feature of this routine is that particular
columns ofTx can be computed iteratively, using only latest
preceding column and the coefficients ofp(z), see [4] for
details. As a result, the final algorithm is favorably memory
efficient. Mainly for this reason the method is still quite
popular in spite of the fact that some later approaches, see
eg. [13], [5], provide a faster rate of convergence.

IV. PLUS-MINUS FACTORIZATION AND BAUER’ S METHOD

A modification of the Bauer’s method for the non-symmetric
polynomial plus-minus factorization is worked out in this
section.

A. LU factorization

As we have shown in section II., algebra of companion
matrices is not limited to the symmetric case. Also the
matrix theory provides useful factorization techniques for non-
symmetric matrices along with stable and efficient procedures
for their computation.

Bauer’s method calls for the Cholesky factorization to get
the desired spectral factor. This routine assumes the input
matrix to be symmetric and positive definite which is the case



in the spectral factorization problem. However, if we aim at
modifying the method in order to capture the non-symmetric
plus/minus factorization case, we need to leave this concept
and employ another technique since the companion matrix is
no longer symmetric.

The Cholesky factorization decomposes the input matrix
into a product of two matrices basically that are upper and
lower triangular respectively. Considering this observation, the
most natural alternative for the non-symmetric plus/minus case
seems to be the LU-factorization concept.

Definition (general LU-factorization): LU factorization ex-
presses any square matrixA as the product of a permutation
of a lower triangular matrix and an upper triangular matrix,

A = LU

where L is a permutation of a lower triangular matrix with
ones on its diagonal and U is an upper triangular matrix.

The permutations are necessary for theoretical reasons in the
general case. For instance, the matrix(

0 1
1 0

)
cannot be expressed as the product of triangular matrices
without interchanging its two rows. However, the special band
structure of the companion matrices can be exploited to show
that the permutations are not necessary and the factorization
can be expressed simply as a product of a lower and an upper
triangular matrix.

Lemma 1: Given a scalar discrete-time two-sided polynomial
p(z) with roots not lying on the unit circle, its companion
matrix can be factored in the formTp = LU whereL andU
are lower and upper triangular matrices respectively.

Proof: If a (possibly two-sided) polynomialp is nonzero at the
unit circle then the principal minors of its companion matrix
are known to be nonzero, see the reasoning in [2]. Further,
according to [7], Theorem 3.2.1, a matrixA has the desired
lower-upper triangular factorization if its all principal minors
are nonzero. Combining these two observations, we arrive at
the statement of the lemma.

Following Lemma 1, a new algorithm for polynomial plus-
minus factorization is suggested in the next subsection.

B. Plus/minus factorization algorithm

Given a (scalar, one-sided) polynomial

p(z) = p0 + p1z + · · ·+ pdz
d ,

nonzero for|z| = 1, we first apply a direct degree shift to
arrive at a two-sided polynomial

p̃(z) = p0z
−δ + · · ·+ pdz

d−δ,

where δ is the number of roots ofp(z) lying inside the
unit circle. Now, instead of solving equation (1), we look

for p̃+(z) = p̃+
0 + p̃+

1 z−1 + · · · + p̃+
δ z−δ and p̃−(z) =

p̃−0 + p̃−1 z + · · ·+ p̃−d−δz
d−δ such that

p̃(z) = p̃+(z)p̃−(z) (2)

Relation between the pairs̃p+, p̃− andp+, p− are obvious.
Having composed the companion matrixTN

p̃ of sufficiently
high orderN , its LU factorization is performed. An approxi-
mation to the plus and minus factors ofp̃ can then be read from
the last column of theL andU factors respectively, similarly
to the spectral factorization case.

The degree shift yielding the two-sided polynomialp̃ is
necessary to assure correct decomposition ofp̃ into stable
and antistable parts. If the shift were not performed or were
different fromδ, the decomposition would still work in princi-
ple , however, the strict stability and antistability of particular
factors would be lost.

Detailed description of the resulting algorithm follows.

Algorithm 1: Scalar discrete-time plus-minus
factorization.

Input: Scalar polynomial
p(z) = p0 + p1z + · · ·+ pdz

d, nonzero for|z| = 1.
Output:Polynomialsp+(z) and p−(z), the plus and minus

factors ofp(z).
Step 1 -Choice of the companion matrix size.

Decide about the numberN . N approximately10
to 50 times larger thand is recommended up to our
practical experience.

Step 2 -Degree shift.
Find out the numberδ of zeros ofp(z) inside the unit
disc. A modification of well known Schur stability
criterion can be employed, see [10] for instance.
Having δ at hand, construct a two-sided polynomial
p̃(z) as

p̃(z) = p(z)z−δ = p0z
−δ + · · ·+ pdz

d−δ =

= p̃−δz
−δ + · · ·+ p̃0 + · · ·+ p̃d−δz

d−δ

Step 3 -Construction ofTN
p̃ :

Following the section III.A, construct the Sylvester
companion matrix related tõp of orderN .

Step 4 -LU decomposition ofTN
p̃ :

Perform the LU decomposition ofTN
p̃ :

TN
p̃ = LU

L and U are lower and upper triangular matrices
respectively.

Step 5 -Construction of polynomial factors:
Columns of theL andU matrices contains a nonzero
vector l, u of lengthδ +1 andd− δ +1 lying under
and above the main diagonal respectively. Take the
last full columnl = [l0, l1, . . . , lδ] to create the plus
factor of p(z) as

p+(z) = l0 + l1z + · · ·+ lδz
δ



The minus factor is constructed in a similar way
using the last vectoru. �

V. EXAMPLE

To illutrate the usefulness of polynomial plus-minus fac-
torization and to demonstrate the power of the proposed
algorithm at the same time, we will discuss thel1 optimal
control problem.

l1 optimization is a modern design technique, see [11] for
a survey. The design goal lies in minimizing thel1 norm of
a closed loop transfer function. Such a way, the magnitude of
measured output signal is minimized with respect to bounded,
yet persistent input disturbances.l1 optimal controllers have
already found an application in some irrigation channel regu-
lation problem, see [12] for instance.

Quite recently a new method has been suggested by Z.
Hurak et al. for the computation of anl1 optimal discrete-
time SISO compensator, see [6]. Unlike their predcessors, the
authors rely on the transfer function description purely and
carefully exploit the algebraic structure of the problem. The
resulting algorithm is given in [6] along with the following
example.

Let us compute a feedback controller the minimizes`1 norm
of the sensitivity function for a plant described by

G(z−1) =
b(z)
a(z)

=
−45− 132z−1 + 9z−2

−20− 48z−1 + 5z−2

The solution consists of the following computational steps

1) plus-minus factorization ofa(z−1) = a+(z−1)a−(z−1)
andb(z−1) = b+(z−1)b−(z−1)

2) find the minimum degree solution toa(z−1)x0(z−1) +
b(z−1)y0(z−1) = 1

3) find a solution toa−(z−1)b−(z−1)x(z−1) + y(z−1) =
a(z−1)x0(z−1) of given degree ofy(z−1) and with
minimum ‖.‖1 norm.

4) the optimal controller is given by

C(z−1) =
a+(z−1)b+(z−1)y0(z−1) + a(z−1)x(z−1)
a+(z−1)b+(z−1)x0(z−1)− b(z−1)x(z−1)

The first step can be efficiently and reliably performed using
the algorithm proposed in section IV.B of this report. We take
small-size Sylvester matrices first for illustrative purposes, say
N equal to4. Ta andTb read respectively

Ta =


−48 5 0 0
−20 −48 5 0

0 −20 −48 5
0 0 −20 −48



Tb =


−132 −45 0 0

9 −132 −45 0
0 9 −132 −45
0 0 9 −132


and their LU factorization gives rise to

T+
a =


1 0 0 0
0.4167 1 0 0
0 0.3993 1 0
0 0 0.4003 1



T−a =


−48 5 0 0

0 −50.083 5 0
0 0 −49.997 5
0 0 0 −50


and

T+
b =


1 0 0 0

−0.06818 1 0 0
0 −0.06663 1 0
0 0 −0.06667 1



T−b =


−132 −45 0 0

0 −135.1 −45 0
0 0 −135 −45
0 0 0 −135


These matrix factors give a fair approximation to

a+, a−, b+, b− polynomials:

a+ = 0.40003z−1 + 1, a− = −49.997z−1 + 5

b+ = −0.067z−1 + 1, b− = −135z−1 − 45

To get more accurate results,N is increased. TakingN = 20
yields perfectly accurate results,

a+ = 2/5z−1 + 1, a− = −50z−1 + 5

b+ = −1/15z−1 + 1, b− = −135z−1 − 45

VI. FURTHER RESEARCH

At this stage the LU decomposition is performed via
standard routines, see [7] for instance, implemented in stan-
dard packages such as LAPACK or commercial MATLAB.
Nevertheless, thanks to the strong structurallity of involved
Toeplitz matrices, dedicated efficient routines for their LU
factorization are likely to exist. Now, the authors have been
seeking such algorithms. Hopefully the results of this research
will be published in the final version of this report.

VII. C ONCLUSION

A new method for the discrete-time plus-minus factorization
problem in the scalar case has been proposed. The new method
relies on numerically stable and efficient LU factorization
of associated Toeplitz matrices. Besides its good numerical
properties, the derivation of the routine also provides an
interesting look into the related mathematics, combining the
results of the matrix theory and algebraic design approach.
The suggested method is employed in a practical application
of l1 optimal control problem.
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