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Adaptive Biomass Observer on the Basis of 
Measurements of Oxygen  

Maya Naydenova IGNATOVA 

The non-linear system control theory proposed аn option for 
indirect biomass measurements design. The biomass 
observation can be obtained by combining the information 
from existing sensors using parameter and state estimation [3-
7]. As the process behavior is non-linear and time varying, 
usually an adaptive algorithm for biomass observation is 
proposed.  

  
Abstract— A new adaptive asymptotic biomass observer for 

fed-batch E. coli growth on glucose is proposed. The observer 
uses on-line measurements of oxygen and stirrer speed only. The 
observation algorithm includes a procedure of on-line estimation 
of yield coefficients on the basis of off-line measurements of 
biomass concentration. Simulation investigations of the observer 
are carried out using experimental data as input information. 
The observation algorithm is verified through laboratory 
experiment of a recombinant E. coli strain. 

To address this matter, the paper presents a design of 
adaptive biomass observer during the fed-batch fermentation 
where the optimal profile of glucose feeding (1) is applied. 
That feeding strategy stabilizes the specific glucose rate at a 
critical value, q . Hence, the concentrations of glucose and 
those of acetate are considered to be zero in the reactor. At the 
same time, the concentration of the other main substrate, 
oxygen, is kept at a constant value. Hence, the biomass grows 
on substrate feedings only because both limiting substrates are 
kept at constant concentrations in the reactor.  
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Index Terms— Escherichia coli, fed-batch cultivation, 
biomass observer 
 

I. INTRODUCTION 
Escherichia coli is a frequently used host organism for 

production of recombinant proteins. It has many advantages, 
such as being well-characterized and supporting growth to 
high cell densities, but also has some drawbacks. One of the 
difficulties encountered in E. coli cultivation is the formation 
of the metabolic by-product, acetate, in case of excess glucose 
under aerobic conditions. Accumulation of oxidative acetate 
reduces both cell growth and recombinant protein production. 
The accumulation of acetate and its inhibiting effects is 
reduced by applying an optimal glucose feeding profile during 
the fed-batch part of cultivation [2]. The feeding rate, Fin, is 
calculated on-line for each time interval using the following 
expression: 

 

II. MODELS OF AEROBIC GROWTH OF E. COLI 

A. Models of aerobic growth of E. Coli 
For the considered process, M. Akensson proposed a 

biochemical model [1,2]. As the concentration of acetate is 
kept zero in the reactor, the model can be reduced and the 
dynamics of the main process variables during the fed-batch 
part of cultivation can be presented as follows: 

)..().().(
)(

);.(
).(

;).().(

;

*
OOLaO

O

finS

in

CCVNKVXq
dt

VCd

VX
dt

VXd

SFVXq
dt

VSd

F
dt
dV

−+−=

=

+−=

=

µ
 (2) 

[ ])(
0

0)()( tt

inxg

set
in

setetX
SY
V

tF −= µµ
  (1) 

where Yxg is biomass/glucose yield coefficient; t0 is the start of 
the interval; Sin is glucose concentration in feed; V is the 
volume and µset is a set value of specific growth rate. 

As obvious from above, the fed rate depends mostly on 
biomass concentration in the reactor. Unfortunately, the real 
growth information is not used due to the lack of cheap and 
reliable on-line biomass sensors. Instead, a predicted value of 
biomass concentration is applied that is calculated by the 
expression shown in the square brackets in (1).  

where 
Sk

Sqq
S

SS +
= max  is specific glucose uptake rate  

The feeding strategy keeps the value of qS above or equal to 
the critical one, . The values of specific growth 
rate therein, µ, and of specific oxygen uptake rate, q

crit
SS qq ≥

o, are 
calculated using the expressions: 
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In the model (2), the oxygen dynamics is presented by the 

dissolved oxygen concentration through Henry’s law 
 

OCHO .=  (4) The model (6) includes the dynamics of oxygen uptake rate, 
OUR.V, as a measured process variable. The measurements of 
oxygen uptake rate can be calculated by the expression  

and the volumetric oxygen transfer coefficient, KLa, is 
presented as a function of the stirred speed: 
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).( oLa NNK −= α  where   oNN > when the oxygen concentration is constant. 

The operational model (6) is used for biomass observer 
design. Given the existing sensors, the available process information 

consists of on-line measurements of oxygen, O2, and stirrer 
speed, N; glucose feed rate, Fin, and glucose concentration in 
feed, Sf; This available on-line information is used for biomass 
observer design. 

 

C. Biomass observer design 
The general model (6) consists of two main parts. The first 

term represents process the kinetics and the second one 
represents the transport dynamics. In the case under 
consideration, the process kinetics is unknown, and the 
transport dynamics is known and must be used. For this 
purpose a transformation of model (6) has to be made in such 
a way that the dynamics of the process to be presented with 
known information only, namely measured variables and 
transport dynamics. Hence, the available process information 
consists of: measurements of the oxygen concentration, COV , 
and oxygen uptake rate, OUR.V; and the known information 
of the transport dynamics (terms QinV  and FinSf )  

 

B. General dynamical model 
G. Bastin and D. Dochain proposed a method for deriving a 

General Dynamical Model for bioreactor [3]. The model is an 
operational one and translates the available process 
information into appropriate inputs for biomass observer 
design. The model is derived from the simplest description of 
a biotechnological process - process reaction scheme. Once 
the reaction scheme is available, the model derivation can be 
made fully systematic by applying the rules proposed in [3]. 

An appropriate reaction scheme is proposed following the 
process dynamics (2). For the case under consideration, the 
optimal profile (1) guarantees acetate production restriction as 
well as glucose uptake rate saturation. The glucose and acetate 
concentrations are close to zero in the reactor. The oxygen 
concentration is kept at a constant value (30%) and all 
transferred oxygen is used for degradation of fed glucose. 
Hence, the reaction scheme consists of two reactions The first 
one, ϕ1, is constant with specific uptake rate  and the 

second reaction, ϕ

crit
Sq
)crot

S2, represents the rate  in (3). In 

the case under consideration, q , both reactions are 
activated. The process scheme is as follows 

( S qq −
crit
ss q≥

The model transformation is made applying the basic 
property of General Dynamical Model [3]. According to that 
property, there exists a state transformation 

 

baAZ ξξ += 0  (8) 
 
where A0, is the unique solution to the matrix equation,  
 

00 =+ ba KKA  (9) 
 
such that the state-space model (6) is equivalent to 
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State variables of model (6) are divided into measured 

variables, ξa,, and unmeasured ones, ξb, as follows:  
The General Dynamical Model of the process is derived 

according to the scheme (5). 
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and the appropriated matrises are defined: 
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The observation algorithm consists of three main steps. In 
the first one, the values of auxiliary variables and liquid 
volume are calculated by differential equations (16a). A 
MATLAB S-Function is applied for this purpose. In the 
second step, a observation of biomass is obtained by the 
expression (16b). This expression is a function of the of yield 
coefficients, k1 ,k2, k3, that are unknown and time-varying. 
Therefore, a parameter estimation algorithm is proposed as a 
third step. In this step, estimates of the yield coefficients are 
made by comparison of the observed and off-line measured 
values of biomass. After an optimization procedure, the 
appropriate values of the coefficients are obtained. 

III. SIMULATION INVESTIGATIONS 

 
and the expressions for the auxiliary variables, Z, and its 
dynamics are calculated 
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The experimental data of four fermentations of E.coli are 
used for simulation investigations of the proposed observers. 
The results are shown on next figures where the observations 
of biomass are presented with lines, and the measured points 
with stars.  

In Figures 1 and 2, the simulations with the fermentation 
data No 43 and 48 are shown respectively.  
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Taking into account that S=0 and after some appropriate 

substitutions, the auxiliary variable Z2 is presented as a 
function of Z1 
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−−=  (15) Figure 1 – Fermentation No 43 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As can be seen in the figures, the observation curves are 
very close to the off-line measured points of biomass.   

Therefore, using the equations (6), (14) and (15) the biomass 
observer for the considered case is derived as follows: 
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Figure 2 – Fermentation No 48
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These results prove that the feeding profiles are the really 
optimal ones and they stabilize the process close to the critical 
value of the glucose uptake rate. Therefore, the acetate 
production as well as the glucose concentrations are close to 
zero in the reactor as is was assumed in the observation 
algorithm. 

Moreover, in Figure 2, a jump down of observation curve 
recognizes a change of the set value of the specific growth 
rate, µset, (from 0.125 to 0.1 h-1) at 15.46 h of fermentation No 
48. In this case again, the observation curve fits well with the 
measurements.  

In Figures 3 and 4, the simulations with fermentations No 46 
and 47 data are shown respectively.  

The observation curves are at a distance from the measured 
points. Perhaps, the off-line measurements are not made 
precisely, or the feeding profiles are not the optimal ones and 
some acetate is produced during the fermentations, however, 
the acetate and the glucose concentrations are not measured, 
therefore these are only hypothetical conclusions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In general, the simulation investigations proved the lack of 
experimental reproducibility of the culture. Therefore, the 
feeding strategy proposed in [2] could not be considered as 
the optimal one for all experiments.  

The results shown in all figures demonstrate the ability of 
the proposed adaptive algorithm to produce biomass 
observations on the basis of oxygen measurements. Better 

observations are obtained in the cases of optimal feeding 
strategies.  

 

IV. EXPERIMENTAL INVESTIGATION 
An experiment in continuous mode was carried out on the 

same strain in the laboratory. In this way, the experimental 
value of biomass/glucose yield coefficient, Y , was 
obtained. It was equal to 0.41 h

exper
xs

-1. The estimated values of the 
same coefficient are obtained during the simulation 
investigations applying the expression 

. It is observed that the 
coefficient keeps having a constant value, which, however, is 
different for each fermentation (see table).  
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A comparison between experimental, =0.4100, and 

estimated, , values shows that three out of the four 
estimated values are in proximity to the experimental one 

exper
xsY
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Figure 3 – Fermentation No 46 

Table 
Fermentation estim

xsY  [h-1] 

No 43 0.3994 
No 46 0.1575 
No 47 0.4001 
No 48 0.4130 

 
That result shows the ability of the proposed algorithm to 

estimate also the unknown yield coefficients. 
 

V. CONCLUSIONS 
The proposed biomass observer is an adaptive asymptotic 

one. As the E. coli fermentation is a non-linear process with 
time varying parameters, a parameter estimation procedure is 
included in the observation algorithm. The values of process 
parameters are estimated at the moment when the biomass 
measurements are received as additional off-line information. 
Better results could be obtained if those three points are being 
measured at the beginning of the fed-batch part of the 
cultivation. Such off-line information would be good enough 
for biomass observer tuning The values of biomass/glucose 
yield coefficients calculated during the investigations are 
verified by continuous fermentation of the same strain. The 
different values of coefficients are obtained for each 
experiment. This fact proves the lack of experimental 
reproducibility of the culture, the later being the reason for 
applying an adaptive algorithm for biomass observation.  

Figure 4 – Fermentation No 47 The observer of biomass could be considered as a key step 
to process control design. Thereupon, several interesting tacks 
can to be solved. Using the biomass observer, the next steps 
would be: 
- the observed value of biomass as well as the estimated value 
of the yield coefficient Y  could be used for calculation of 
the feeding profile of glucose (1) instead of the theoretical 
ones that are in the use in the laboratory; 

estim
xs
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- on the other hand, the observer of biomass could be 
considered as the first step of a closed loop adaptive 
linearizing control design of the glucose feeding and stirrer 
speed. 
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