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Abstract

Search and rescue robots have become a viable alternative
these days. Their mission success is highly correlated with
their effective deployment. This paper looks at “repellent
virtual pheromones” (inspired by insect colony coordina-
tion behaviors) to guide several miniature robots in order
to be quickly deployed and dispersed. Based on simple
vision-based control techniques, the objective is to cover
an area of interest as fast as possible. We employ an over-
head camera or a camera mounted on a command/control
robot to provide each miniature robot with estimations of
the positions of all of the other nearby robots in the robotic
team. Each robot can then move away from the other
nearby robots, resulting in the robot team swiftly dispers-
ing through the local area. The approach been validated
using the miniature Scout robots, developed by the Center
for Distributed Robotics at the University of Minnesota.
The Scout’s design is well-suited to surveillance and re-
connaissance missions.

Index Terms: Visual Tracking, Mobile Robots, Robotic
Teams, Robot Dispersion.

1 Introduction

With the capabilities of mobile robots improving dramat-
ically and their cost dwindling, robot teams hold increas-
ing promise for the successful execution of several chal-
lenging tasks associated with emergency response. For
example, teams of flexible, reconfigurable, and inexpen-
sive robots can be used to perform urban surveillance
after a hurricane, execute remote operations in case of
hazardous spills, participate in decontamination and de-
commissioning efforts immediately after a nuclear acci-
dent, accomplish search and rescue operations, and locate
survivors in collapsed structures.

At the University of Minnesota, we have developed a pro-
totype heterogeneous robotic team which can be used
for a variety of missions. Larger “Ranger” robots which
are capable of navigating long distances over rough ter-
rain without needing to recharge their batteries are used

to traverse the environment and to deploy the minia-
ture “Scout” robots (shown in Figure 1). Equipped
with a magazine and a spring-based delivery mechanism,
a Ranger can deploy up to ten Scouts into a target
area. The Ranger’s powerful onboard computer can then
be used to coordinate Scouts and relay status informa-
tion [1].

Figure 1: Two Rangers with seven Scouts.

The need for a fast dispersal technique exists regardless
of whether the coordinating agent is a human or a robot.
When the coordinating agent is a human equipped with
a wearable computer interface, commands can be sent to
the robots from a hand-held controller and sensor infor-
mation can be returned to the human through a head-
mounted display. However, a human operator cannot
be expected to simultaneously control many robots dur-
ing the deployment, since the operator’s attention must
be completely dedicated to the teleoperation of a single
robot. Thus, the work described in this paper is designed
to create a method for efficiently deploying and dispers-
ing a team of robots regardless of the type of coordinating
agent.

The paper first describes the repellent pheromones that
our scheme employs. We then present an analysis of the
results. Related work follows and the paper concludes
with directions for future work.



2 Repellent Pheromones for Dispersion

Pheromones are chemicals employed in nature to pro-
vide indirect communication for the support of orga-
nized group activities. One may look at nature where
ants leave a trail of pheromone to mark the path that
they traverse between their nest and a food source. As
more ants traverse this path, the pheromone trail is rein-
forced. The main objective this paper is to model “repel-
lent pheromones” in order to bring about the dispersion
of a robotic team. Many approaches to dispersion de-
mand prior knowledge of the deployment area, but this
approach has the advantage that it requires no map of
the area and the robots need no self-knowledge of their
location within the area. Other approaches to dispersion
use a global geometric model, but our approach is based
only upon decisions that are made locally. This has the
distinct advantage of flexibility; suppose one robot loses
its ability to travel, the robots in the local approach will
automatically and continuously adjust to the given sit-
uation, while the system in the global approach would
require a complete reworking.

We design the virtual pheromones to degrade as the
distance from the virtual pheromone emitter increases.
Since robots may be subjected to multiple virtual
pheromone emitters from different directions, we model
the cumulative repellent force of the virtual pheromones
as a vector sum with the vector length given by a de-
creasing function. How quickly the virtual pheromones
degrade as distance increases determines which decreas-
ing function is employed. For our vector length, we choose
the reciprocal of the distance the virtual pheromone trav-
els. This choice mimics natural phenomena such as elec-
tric field strength, which is inversely proportional to the
distance from a charged object. Simulations have been
run by varying persistence of the pheromone over distance
by varying the power on the reciprocal of the distance and
runs have been carried out with unit power.

In particular, if x is the position of robot R, then
pi = 1

‖x−xi‖l
will model the level of virtual pheromone

emitted by robot Ri that is detected by robot R. Here
the positive number l is called the localization factor
and is used to vary the persistence level of the vir-
tual pheromone. Clearly, increasing l will cause the
pheromone to have a more localized effect on nearby
robots because the strength of the pheromone will fall
off more rapidly over distance. The direction of this vir-
tual pheromone is di = x−xi

‖x−xi‖ . Thus, the total repel-
lent direction of all of the detected virtual pheromones is∑
i pidi =

∑
i

x−xi
‖x−xi‖(l+1) .

With n robots in randomly distributed starting positions,
iterating this algorithm infinitely many times on an in-
finite plane, will, in nearly all cases, direct the robots
to positions that approximate the vertices of a regular

n-gon, thus asymptotically approaching the perfect cir-
cular sweep coverage of the area. In situations with more
pathological starting positions, such as with three or more
robots whose centroids are exactly in a line, the noise in-
herent in the physical system should cause one or more
of the robots to move off of the line and then asymptoti-
cally approach perfect circular sweep coverage. In simu-
lations as the localization parameter l is increased, robots
achieve a given approximation to perfect circular sweep
coverage more quickly. This can be seen by considering
the standard deviations of the robots’ nearest neighbor
distances.

In our simulation work, we employ velocity vectors for the
trajectories of our simulated robots. Since velocity is the
change in position over the change in time, we consider
velocity as a derivative and approximate the derivative
via Euler’s method. In particular, the velocity equations
yield a set of differential equations that is solved to obtain
the new position vector for each robot.

As expected, increasing the localization parameter l that
represents the the virtual pheromone’s persistence over
distance causes the dispersion of the robots to be de-
creasingly effected by robots that are farther away than
one those nearer.

3 Results and Discussion

3.1 Color Tracking of Scout Robots
A robot, such as a Scout, which is small enough to avoid
detection and still able to access hard-to-reach areas, is
extremely useful for surveillance and reconnaissance ap-
plications, but the small size brings certain challenges
to the task of using color markers for tracking. The
Scout robot is cylindrical, measuring only 11 cm long and
4 cm in diameter. The electronics of Scouts include mi-
crocontrollers, transmitters, magnetometers, tiltometers,
and shaft encoders. The Scout has differentially-driven
wheels and a leaf-spring tail jumping mechanism. Scouts
also carry a sensor payload, usually a miniature video
camera, used to gather information that is broadcast over
an analog RF transmitter. For color tracking, two color
bands of approximately 1 cm in length encircle the two
opposite ends of the deployed Scouts.

To track the relative locations and orientations of each
Scout robot at the point of deployment, an overhead cam-
era and standard vision techniques are used to assist in
the dispersion of the robots. Thus, each of the Scout’s
color markers is tracked as a color “blob.”

In order to achieve accurate tracking, we adopt the Activ-
Media Color Tracking System (ACTS) [2], a commercial
color segmentation software package from ActivMedia
Robotics, for performing color thresholding and comput-
ing blob statistics (interface shown in Figure 2). ACTS



Figure 2: ACTS Interface.

allows users to select regions of color in an image not
simply as ranges, but almost as finely as selected sets of
points in RGB space. In fact, ACTS stores the projec-
tions of the RGB voxels onto the Red-Green, Blue-Green,
and Red-Blue planes, giving far more flexibility than a
simple sub-cube in RGB space. These color regions are
then tracked as blobs, and statistics are computed for
each blob. ACTS users can train color channels by se-
lecting individual pixels of color from the image by click-
ing on a window to select the color markers directly. The
ACTS-trained color channel files are stored as look-up ta-
bles. Using 160 × 120 pixel images, ACTS is optimized
to track 32 individual color channels simultaneously at
greater than 30 fps on a 160Mhz Pentium. Thus, its
speed and number of channels are more than sufficient
for our application since the limiting factor in our disper-
sion speed proved to be the RF command speed.

Using ACTS with a window size of only 320 × 240 pixels
and the above-described technique for color-tracking gave
us average standard deviations of Scout positions of less
than 2 pixels and of orientations of less than 3 degrees
for a set of up to eight selected colors. We elected to
track only blobs larger than 4 pixels wide, since smaller
blobs are likely to be simply noise due to such issues as
the combined effects of fluorescent and natural lighting
condition changes.

3.2 Issues in Radio-Controlling the Scout Robots
After implementing color-tracking and employing the vir-
tual pheromone model to determine a Scout’s trajectory,
the next step is to direct the Scout’s movement in the
appropriate direction. Due to the small size and power
constraints of the current version of the Scout robots, very
limited on-board computational power is available, since
they require their two CPUs for network communications

and actuator control. Thus, intelligence for control deci-
sions must be provided externally. This implementation
of dispersion of the Scout robots involves external visual
servoing [3] and requires the auxiliary hardware of a com-
puter equipped with a framegrabber to run the image-
processing algorithms. In the field, this computer will be
either a Ranger or another machine within the reception
range of the Scout’s analog video transmission.

To overcome the Scouts’ size-imposed limitations and
to connect multiple computers for complex missions,
a distributed software architecture has been developed
that supports the transparent integration of remote re-
sources [4]. A functional view of missions is taken, so
all hardware resources, including the robots, are parti-
tioned into finely grained resources that can be requested
by functional components.

This distributed software control architecture dynami-
cally coordinates hardware resources and shares them be-
tween the various clients, allowing for simultaneous con-
trol of multiple robots. Each Scout has a unique network
ID which allows commands to be routed to specific robots
while being ignored by others, allowing multiple robots
to be controlled from a single RF modem. Motion com-
mands are then transmitted from a remote source and are
received and executed by the Scout robot.

However, due to noise in the system such as radio inter-
ference, Scouts do not always receive the commands that
are sent to them. Even when they do receive the intended
commands, they may not receive the commands for the
duration that the command was intended. These issues
cause control difficulty, particularly in finely adjusting the
pose of the Scout, since turning by varying degrees is ac-
complished by directing the Scout to rotate one or both
wheels for a certain duration of time.

Orienting the body of a Scout so that it faces a target
head on is an important task apart from the dispersion
problem. In a variety of situations, control is needed
over Scout alignment. Such scenarios include docking
with a larger robot such as the Ranger for pickup, and
using landmarks for tasks such as localization. Previ-
ous experiments in tracking Scouts have utilized pattern
matching [5] and active contour models [6], but neither
approach proved completely adequate.

Scouts are able to receive radio signals on two differ-
ent radio frequencies. However, in this work, all of the
Scout commands are sent on a single one of these two fre-
quencies, because the single serial port of the processing
computer is used to direct the commands to the radio.
The speed of the radio commands proved to be the limit-
ing factor in the speed of dispersion, because commands
sent too quickly in succession interfered with each other,
causing the Scout to fail to recognize the command sent.
Thus, a pause of between 150 and 300 ms was added to



slow the command transmission rate. In addition, be-
cause commands to different Scouts are sent on the same
frequency, only a single Scout is actually able to receive
a command at a given time instant.

3.3 Dispersing the Scout Robots
Dispersion runs were completed using the virtual
pheromone model described above with two, three, and
four Scouts. Given the unreliability of the radio signal
being correctly received, the dispersion results were sat-
isfactory. In Table 1, results are shown as deviations from
optimal beginning with the three Scout poses shown in
Figure 3 ((0◦, 0◦), (0◦, 90◦), and (0◦, 180◦)). Error runs
with more Scouts show similar errors.

Starting Average Communication
Poses Turn Error Failures

(0◦, 0◦) 4.7◦ 1
(0◦, 90◦) 5.7◦ 0
(0◦, 180◦) 6.7◦ 0

Table 1: Dispersion errors with two Scouts from a given pose.
Five runs were done for each starting pose. Com-
munication failures indicate the number of times a
Scout failed to receive commands and move during
an experiment.

Figures 4(a), 4(b), and 4(c) show initial positions and
dispersion paths taken by the Scouts during various runs.
Once started, the Scouts followed the indicated paths un-
til they left the field of view of the camera. One notes that
while some of the Scouts choose their direction quickly
and drive away, it is possible to see the adjustments of
other Scouts as they correct their turns. In the run with
four Scouts, it also is possible to note an error in the
color tracking. The Scout in the upper right-hand corner
of Figure 4(c) did not actually head the wrong direction
and then retrace its path exactly. An error in the blob
detection, occurring for a single frame, caused the Scout
only to appear to traverse an incorrect dispersion path.
Though such errors are infrequent, they are obvious when
viewing the data visually. Even given these challenges,
the trajectories of the Scouts create a reasonable disper-
sion pattern in each case.

4 Related Work

Team behaviors have been studied in a variety of disci-
plines from biological studies of herds and swarms to so-
ciological studies of societies of humans. Physicists and
chemists have studied the behaviors of a variety of inter-
acting bodies: from gravitational planetary forces to the
movements of various particles. Many of these studies
of interactions in the natural world have become mod-
els for the behaviors of teams of robots, particularly as
the robotic teams engage in tasks such as dispersing and
attaining area coverage.

In 1992 Gage categorized the concept of “area cover-
age” by a robotic team into three basic types of cov-
erage: “blanket coverage,” in which the main objective
is to maximize the total detection area; “barrier cover-
age,” where the objective is to minimize the possibility of
undetected penetration of a defined barrier; and “sweep
coverage,” where the objective is to cover an area with
a sweeping or moving barrier [7]. Using this taxonomy,
the objective of the work described in this paper is to
quickly deploy robots and achieve either a blanket or cir-
cular sweep coverage of an area.

In 1992 Gage also designed some robot coordination sim-
ulations, such as “condensation,” based loosely upon
biosystem analogies such as pheromones [7]. In the early
work by Arkin and Ali, the dispersion of a robotic team
was carried out by a random-wandering behavior coupled
with moderate robot repulsion as well as more significant
obstacle repulsion [8]. In 1995, directly inspired by animal
navigation routines, M. Matarić and her research group
designed a dispersion algorithm that moves an agent away
from the centroid of the local density distribution of the
other agents that are visible to that agent’s sensors [9].

In 1999, Spears and Gordon provided distributed control
of large collections of agents by having agents react to
artificial forces motivated by natural laws of physics, ob-
serving that in the real physical world surprisingly com-
plex behaviors arise from simple interactions between
entities. However, their applications were self-assembly
and self-repair rather than dispersion for the purpose of
surveillance [10]. In another virtual physics approach,
Howard et al. used a “potential-field-based approach”
to the deployment of a mobile sensor network by treat-
ing their robots as virtual particles subjected to virtual
forces [11]. These forces cause each given robot to be
repelled from the other robots as well as from other ob-
stacles in the environment with a potential that is pro-
portional to the sum of the reciprocals of the distances
from the first given robot. Though this portion of the al-
gorithm is somewhat similar to the work presented in this
paper, Howard et al. continued to run their algorithm un-
til the whole network reached a static equilibrium, while
in this paper after the initial dispersion, other robot be-
haviors such as locating a specific goal are allowed to
operate.

The work that perhaps shares the most motivational sim-
ilarities with the techniques described in this paper is the
research of Payton et al. which employs techniques for
coordinating the actions of large numbers of small-scale
robots used in surveillance, reconnaissance, hazard detec-
tion, and path finding [12]. As in our project, they exploit
the biologically inspired notion of a “virtual pheromone”,
but with an implementation using transceivers mounted
atop each robot rather than with global information from
an overhead camera.



(a) (b) (c)

Figure 3: Scout poses of (a) (0◦, 0◦), (b) (0◦, 90◦), and (c) (0◦, 180◦).

(a) Three robots (b) Three robots (c) Four robots

Figure 4: Example dispersion runs with Scout robots (axes in pixels). Initial starting positions of the robots are shown in the
picture. The lines extending from the robots show the path the robot took until it left the field of view of the camera.

Batalin and Sukhatme also address the problem of multi-
robot area coverage from the premise that local dispersion
of robots will ultimately achieve good global area cover-
age [13]. As in this paper, their algorithms result in their
robots being “mutually repelled” from one another, how-
ever like Payton et al., they depend upon their robots to
be able to sense or recognize one another rather than on
global information such as from an overhead camera.

Stoeter et al. effectively use an overhead camera to track
and direct a miniature Scout robot marked with color-
markers as it travels, orients on a target, and climbs
stairs. Though the extension to the problem of multiple
robots is discussed in the article, the experiments were
carried out with a single robot [14].

5 Conclusions and Future Work

This paper describes the use of repellent virtual
pheromones in the dispersion of a team of miniature
robots. It needs no prior map of the area and requires
no localization, yet it leads to a reasonable dispersion
for broadcast coverage, even when noise is present in the
system. Though improvements can certainly be made in

future implementations, this technique can be used as is
for the dispersion of a robot team.

In this paper, the Scout’s location and orientation are
calculated from vision-analysis of the position of the col-
ored markers, then the pheromones are modeled virtually.
While the color-tracking analysis has proved quite accu-
rate using the ACTS software, improved results might
be achieved by applying a Kalman filter. The Scout’s
color markers could be supplemented and/or replaced by
colored wheels, possibly yielding an increase in tracking
accuracy because the markers would be larger and far-
ther apart. It would also allow observers on the ground
to better track Scouts from the side. However, in place
of the color-tracking implementation, the implementation
of virtual pheromones by using a short-range transceiver
should be considered even though it would require addi-
tional on-board power since it would offer the following
additional benefits:

• Transceiver-implemented virtual pheromones would
operate anywhere the Scouts were operating, so no
overhead camera or Ranger-mounted camera would
need to be present.



• When a Scout power supply becomes exhausted, the
color-marked Scout still appears on camera, but a
transceiver would stop broadcasting. Thus, a Scout
that is “down” would disappear and other Scouts
would move in to cover the area.

• Obstacles that block a Scout’s view would likely also
block the transceiver signal, so coverage of areas with
short obstacles would likely be improved.

• In addition to dispersion (and grouping), virtual
pheromones implemented with a transceiver could be
employed in additional applications such as finding
a shortest path though a maze-like site.

• With more processing power available on-board
and transceiver-implemented virtual pheromones,
the decision-making of the next generation of Scout
robots can be much more distributed, including dis-
persal without use of the communications channel.

Future work will expand on the Scout’s autonomous ca-
pabilities, which will include more advanced sensor inter-
pretation and spatial reasoning techniques. The software
control architecture is also being expanded to allow more
types of hardware resources, such as larger robots, to be
controlled.
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[9] M. J. Matarić. Designing and understanding adap-
tive group behavior. Adaptive Behavior, 4(1):51–80, 1995.

[10] W. Spears and D. Gordon. Using artificial physics
to control agents. In IEEE International Conference on
Information, Intelligence, and Systems, 1999.

[11] A. Howard, M.J. Matarić, and G.S. Sukhatme. Net-
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