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ABSTRACT 

The paper discusses the appropriateness of local 
sensor health monitoring/sensor fault diagnosis and 
suggests an Artificial Intelligence (AI) based solution to 
the diagnosis of sensor faults, in the context of sensor 
arrays. In contradistinction with the “centralized” 
methods currently used process/system fault detection, the 
work presented here aims to establish a process 
independent and sensor specific methodology for 
detecting and isolating sensor failures and fault recovery. 
The intelligent system proposed integrates the adaptability 
and learning ability of Artificial Neural Networks with 
effective inter-sensor communication protocols. 
Micromachined accelerometers are considered as a case 
study. 

 
Keywords: Sensors, fault diagnosis, artificial intelligence, 
neural networks. 

1 INTRODUCTION 

At present, the requirements for safe and reliable 
operation of processes and systems extend beyond the 
normally accepted safety-critical systems (e.g. nuclear 
reactors, chemical plants, and aircraft), to new systems 
such as autonomous vehicles and rapid transport systems. 
Early detection of faults and/or malfunctions in industrial 
processes and systems can help reduce downtimes and the 
incidence of catastrophic events. As sensors are essential 
components of any process or system which makes use of 
automatic control, it follows that an important aspect of 
any process/system fault diagnosis strategy is to be able to 
assess their state of functionality. Whilst the common 
approach to sensor health checks is currently through 
periodical calibration against a given “ideal” sensor, more 
and more applications are being developed where such 
checks are either impossible or insufficient. In many 
manufacturing industries, for example, most sensors are 
built into equipment and, once the specific line is 
installed, they are no more directly/easily accessible to 
operators; fault-finding in this case is difficult and 
dangerous, and troubleshooting is time-consuming .What 
is  needed therefore, is a system with smart devices that 
would "speak up" when fault occur. 

Considerations such as the above, together with the 
ever-increasing complexity of present days automated 
systems lead to new ways of fault detection and fault 
tolerant control strategies being devised. Most of these 
techniques, however, are designed to work in a 
‘centralized’ manner, by accounting simultaneously for 
sensors, actuators and process/system component faults. 
They are designed specifically for the systems in hand 
and are not transportable. 

Recently, the idea of ‘hierarchical’ system design with 
respect to sub-components fault diagnosis has however 
been claimed to be effective for large systems and, in this 
context, it could be assumed that there is scope for 
exploring ‘local’ diagnosis methods for sensors. 

It is intended here, to argue the feasibility of using 
Artificial Neural Network (ANN) techniques for 
implementing such localized diagnostic systems through 
enhancing the individual sensor processing and decision 
capabilities. 
ANNs have been successfully used in a variety of 
applications for complex data analysis and feature 
extraction [1]. In the context of the proposed discussion, 
the associative and predictive nature of an ANN is used 
for detecting and isolating failures. 
Once the ANN is trained for a particular task, operation 
consists of propagating the data through the mapping 
produced by the ANN, thereby making possible real-time 
self-diagnosis, self-validation and monitoring. 
Acceleration sensors provide a good example for the 
discussion, as their lack of accessible internal signals 
makes the tasks of diagnosis and validation particularly 
challenging. 

2 SENSOR SELF DIAGNOSIS 

In most applications, accurate and reliable sensor 
readings are vital for good overall system performance 
[2]. Despite advances in fabrication technologies, sensors 
generally exhibit imperfections (for acceleration sensors, 
for example, common imperfections are: offset, drift, non-
linearity and noise) and the magnitude of these 
imperfections is found to vary both from sensor to sensor 
and with time. Fundamental characteristics of the sensor, 
e.g. sensitivity, may be subject to manufacturing 
tolerances, varying material properties and ambient 



effects [1]. Moreover, during operation, as with any other 
system component, sensors may develop several types of 
faults and fail in a variety of ways. 

Over the last few years sensors have evolved into 
‘smart’ or ‘intelligent’ versions, where known, 
fabrication-process inherent sensor imperfections are 
corrected through post processing of the electrical sensor 
signals [2]. 

Equally, the in-work (unpredictable) sensor 
fault/failure problem are mostly overcome through the use 
of hardware redundancy or majority voting (this is a 
typical solution in safety-critical systems, for example, 
civilian aircraft) [3]. However, such a ‘collective’ 
measurement validation technique is often prohibitive. 
For example, one of the problems associated with systems 
comprising large number of accelerometers, is that of data 
analysis bottlenecks. The data analysis generally includes: 
(1) Fourier analysis; and (2) statistical methods for 

determining outliers and inconsistent measurements, both 
of which are computationally expensive processes. 

Another approach to validate measurements obtained 
from sensors and to diagnose sensor faults is to use 
mathematical/knowledge-based modelling of the system 
under measurement [3], to identify inconsistencies in 
measurement data. Such a system/process specific 
approach has two major drawbacks [4]: 
• detailed mathematical models of the system/process 

are required; these are generally extraordinarily 
complicated to construct and may have significant 
errors (although some success has been recently 
reported on using ANN techniques for the modeling 
and fault detection of such systems, [3]); 

• the validation algorithms are ‘tuned’ for each 
system/process. Retuning, due to a slight 
modification of the system or the introduction of the 

same techniques to a new application, is extremely 
expensive and demands a high degree of expertise. 

It follows that, expending research effort on sensor 
self-validation techniques could be justified. 

For acceleration sensors, no definitive results have 
been found in the literature referring to possible 
methodologies/implementations of self-validation and 
diagnosis capabilities within the sensor structure, 
although some interest in the field was shown by several 
research centers [2]. 

In this research, the authors took a systemic approach 
to the sensor design in order to expand its capabilities. 
The embedded microprocessor market is growing very 
fast, and embedded modules reported in the literature are 
capable of not only computation but also communication; 
take for example wireless integrated network systems, 
where it is proposed that systems consist of self contained 
nodes composed of sensor, actuator, interfaces, data 

fusion circuitry, general purpose signal processing and 
microcontrollers. 
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Equivalent circuit 

Figure 1: Beam model of structure under test, equivalent circuit and resonance 

With modern integrated fabrication technologies it is 
possible to design and fabricate complete systems in a 
low cost module, including sensing and powerful signal 
processing. As well as the analog and digital signal 
processing required for the function of the sensor itself 
there can be sufficient capacity to allow the sensor to take 
on more advanced computational functions, so that 
system level functionality can be deployed in the sensors 
themselves. 

Such sensors could provide the opportunity to build 
sophisticated systems consisting of many collaborating 
sensors, of increased reliability, once the self-validating 
functions are built-in. This facility could also provide 
advantages at the level of the overall operation of the 
industrial systems and processes that the sensor network 
is part of. Localized, real-time sensor self-validation, self-



• assessment of the feasibility and applicability of 
using ANN techniques for qualitatively and 
quantitatively representing the information gathered 
above. 

diagnosis technology will enable improved automatic 
process/system monitoring and control, removing this 
overhead from a central process controller. Early 
detection of small, incipient (rather difficult to detect) 
sensor faults can be achieved and therefore downtime can 
be reduced and catastrophes can be avoided. More robust, 
fault-tolerant control can be designed on the above basis, 
to accommodate/compensate for soft sensor failures (i.e., 
recoverable sensor failures that leave no permanent 
damage). Finally, easy identification of sensors which 
have suffered hard failures (irrecoverable sensor failures) 
can be achieved. 

The remainder of this paper presents an initial analysis 
of some of these prerequisites, using acceleration sensors 
as a working example. 

3 ACCELERATION SENSORS – 
EXAMPLE 

In the development of a reliable signal-based 
diagnosis and validation strategy, there is a need to 
consider not only sensor failures (soft and hard) but also 
situations which can give rise to faulty (false) 
measurement data, in the specific application where the 
sensor is used. For the chosen case study, a set of fault 
signatures for acceleration sensors could be obtained 
under laboratory conditions for several different 

scenarios.  

The design requirements of such enhanced sensors are 
to enable unique sensor failure diagnosis and 
measurement validation with minimal sensor 
requirements (no hardware redundancy is necessary), by 
exploiting the information content of readily available 
signals: the sensor output signal and contextual 

information gathered from the sensor’s working 
environment. The above capabilities could be 
incorporated into a validation and diagnosis module 
(VDM), which, associated with the sensor, should be able 
to detect, in real-time, several common sensor faults and 
failures and issue specific warnings and provide 
confidence indices for each validated measurement value.  

 

Equivalent circuit 

Figure 3: Beam fractured near accelerometer, model and resonance 

To gain an initial idea of the nature of these signatures 
different types of sensor fault conditions were modeled, 
using electrical equivalent circuits. 

Case 1. The sensor being not rigidly attached to the 
structure under test. We can imagine a simplified version 
of this case as illustrated in Figure 1. The test structure is 
represented by a beam, which will have some 
characteristic vibration frequency. The improperly 
mounted sensor is mounted on this beam by a compliance 
or spring. This is in itself a resonant system, with some 
characteristic resonance given proportional to the mass of 
the sensor and the stiffness of the spring. We can produce 
an electrical analogue of this system, as shown in Figure 
2.  

Prerequisites for this design activity are: 
• identification (based on experimentally obtained 

sensor signatures) of features which characterise 
several common sensor faults. 

• determination of the nature of additional, application 
related information, which can be used in conjunction 
with the sensor output for fault diagnosis and 
measurement validation purposes. 

 

Equivalent circuit 

Figure 2: Detached accelerometer model and resonance



 
 
So long as the resonant frequency of the poorly 

mounted sensor is widely separated from that of the beam, 
then the symptoms of the mounting fault can be clearly 
differentiated. Since a micromachined sensor is likely to 
be very light, and even a poor mounting quite stiff, it can 
be expected that the symptomatic resonance of the sensor 
mounting will be very high. Thus, at first sight it appears 
that a properly designed sensor should be capable of self-
diagnosis of such a fault by itself. 

However, we should also consider the way in which 
faults in the structure are likely to manifest themselves. 
Imagine that the beam shown above suffers an incomplete 
fracture. This results in two beams, connected by a 
compliance, giving an electrical analogue shown in Figure 
3. This is similar to that for the loosely mounted sensor, 
with the exception of the coupling compliance. Now there 
are two beam resonances of concern, but in most cases it 
is likely that they will be at a much lower frequency than 
the symptomatic resonance of the sensor. The only case in 
which there might be some scope for misidentification is 
if the sensor is located close to the end of the beam and 
the fracture is located close to the sensor, resulting in a 
very high resonant frequency for the piece of the beam 
close to the sensor. If this frequency is in the range of that 
expected from a loose sensor, then the difference between 
the two signatures is the compliance linking the two 
resonant systems which occurs if the fault is in the beam, 
rather than the sensor mounting. The effect of this 
compliance is shown in the frequency plot in Figure 3. It 
is possible that a suitably designed diagnostic could detect 
such a characteristic, but the presence of information from 
adjacent sensors as to the magnitude of such a resonance 
would certainly make diagnosis easier. 

Case 2. An extreme case of the above is if the sensor 
detaches completely from the structure under test, in 
which case no resonances will be detected. Such a 
condition may occur simply because there is no stimulus 
to cause resonance. Information from other sensors in the 
locality can be used to identify whether this is the case, a 
detached sensor being indicated by a single sensor 
detecting no resonances surrounded by ones which do. 
Complete loss of function of a sensor, for instance due to 
loss of power supply, would cause similar symptoms, 
except that there would not even be residual noise 
detected. 

Case 3. Another related case is if the sensor housing 
suffers some structural damage. Such a problem may 
include a number of cases, the simplest of which is a 
small part of the housing becoming partially detached. 
Once again this takes the form of a small mass attached to 
the sensor by a compliance. The difference from the case 
discussed earlier is that the mass is still smaller and so the 
resonance will be higher, thus the discussion above 

applies, although the two symptoms should be more 
easily separated. 

Case 4. Changes in ambient conditions can be 
detected at the sensor, if properly equipped and 
compensated for appropriately. 

Case 5. Detection of parameter drift of an individual 
sensor, or of internal damage to its structure would cause 
would depend on detection of variation of the output of 
that sensor from its neighbors, once again in a way which 
could not be confused with symptoms of the structure 
under test. The nature of these variations would need to 
be characterized to be detected. 

The faulty and healthy sensor signatures can be 
analyzed with a view to extracting their characteristic 
features. An example of such analysis is proposed below. 

4 NEURAL NETWORK BASED SENSOR 
HEALTH DIAGNOSIS 

Following on from the discussion in section 3, it 
becomes clear that, the sensor self-validation on the basis 
of its output only is an impossible task. A set of rules 
based on physical principles can be deduced for the data 
expected from neighboring sensors. (For example, 
acceleration measurements from sensors situated at 
adjacent locations along a cantilever will only be 
permitted to be different within certain limits imposed by 
the expected accelerations to which the object is 
subjected.) The application-related reasoning should be 
kept to a minimum, in order to maintain the overall 
generality of the method. 

For the study presented here, it is assumed that we 
have two neighboring sensors, S1 and S2, measuring, for 
simplicity, the same acceleration. Note that the fact that 
both sensors sense the same acceleration does not bring 
any limitations to the methodology under development; 
the important aspect is that the output of two sensors (at 
least, as it is going to be discussed later) are needed to 
accomplish the task. The diagnosis system under design is 
associated with sensor S1 (DIAGNOSTIC NETWORK 1) 
and the contextual information is provided by sensor S2 
(Figure 4). The input acceleration for the sensors 
(a1(k)=a2(k)) is a filtered white noise signal, with a 
frequency range of 0-100Hz, sampled with a sampling 
rate of 4kHz. One sensor fault only was considered at this 
stage, corresponding to Case1 in the previous section. The 
scaled input acceleration, healthy sensor output and faulty 
sensor output are shown in Figures 5a and 5b. The 
diagnosis module to be designed will consist of an ANN, 
whose task is to identify the healthy/faulty response of 
sensor S1 in the following situations: S1, S2 – healthy; S1 
healthy, S2 faulty; S1 faulty, S2 healthy. 

The ANN proposed is of a tap-delayed feed-forward 
type, with two hidden layers, trained by dynamic 
backpropagation (with a momentum term and a variable 



learning rate). Use is made of tap-delayed-lines (TD) in 
order to incorporate the dynamic behavior of the sensor 
into the model. Two delay units are necessary, to generate 
the one-step and two-steps back sensor output signals 
(S1(k-1), S1(k-2), S2(k-1), S2(k-2)), respectively. Hence, 
the present and the past values of the sensors S1 and S2 
outputs form the input vector to the neural network. The 
network output represents the Healthy/Faulty condition of 
S1 at any instant of time (k). Since no feedback loop 
exists in the model, static error backpropagation (BKP) 
can be used to adjust the network parameters. 

Based on these considerations, the electrical 
equivalent circuits in Figure 1 and 2 were simulated in 
SPICE in order to gather the input-output network 
training data. The ANN was trained and tested using 
Matlab. The best network performance (in terms of least 
false alarms and highest correct diagnosis rate) was 
obtained with a 6x31x17x1 network architecture. The 
network performance on a test set (produced under the 
same conditions as the training set) is shown in Figure 6. 
The continuous line represents the correct diagnosis 
expected from the sensor, with +0.99 identifying the 
Healthy condition and –0.99 identifying the Faulty 
condition; the dotted line represents the actual 
DIAGNOSTIC NETWORK 1 response. A “zero level” 
decision boundary would mean that the network correctly 
assesses the sensor’s health, with two exception, both 
corresponding to the case where the sensor S1 is Faulty 
and S2 is Healthy. 

It has therefore been possible to design a working self-
diagnosis module for the acceleration sensor considered, 
on the basis of its own output signal and a minimum of 
contextual information, non-application based, provided 
by one neighboring sensor. The results obtained 
encourage the continuation of this line of research 
towards multiple faults diagnosis. It should be noted here 
that a single neighbor as context might not be sufficient 
for such a task. 

5 CONCLUSIONS 

The paper discussed the suitability and feasibility of 
enhancing the reliability of microsensors by adding an on-
chip self-diagnosis capability. The approach taken is 
based on Artificial Intelligence techniques and sensors 
with no accessible internal signals are taken as an 
example. Some common acceleration sensor faults are 
considered and an indication is given of the manner in 
which these faults can be detected and isolated, either on 
an individual sensor basis or based on cooperative work 
within a sensor network. The design requirements for 
such self-diagnosable measurement systems are set and 
initial self-diagnosis implementation issues are tackled. A 
Self-diagnosis sensor module was designed which is able 
to successfully assess its state of health in respect to one 

fault condition. Work is in progress to enhance the 
module’s ability to detect several other fault conditions. 
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Figure 5b: Scaled Input Acceleration; Scaled Faulty 
Sensor Output
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Figure 5a: Scaled Input Acceleration; Scaled Healthy 
Sensor Output 

Figure 6: Diagnostic network performance 



 
 

Figure 4: Block diagrams of two neighboring self-diagnosis sensors (a1(k) = a2(k), in this study) 
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