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Abstract—A new algorithm for the plus/minus factorization from related first order factors or, alternatively, employ a more

of a scalar discrete-time polynomial is presented in this report. efficient recursive procedure based on the matrix eigenvalue
The method is based on the relationship of polynomial algebra theory [17]

to the algebra of band structured infinite dimensional matrices. : . ) )

Employing standard numerical routines for factorizations of Alternative algorithm relies on polynomial spectral factor-
constant matrices brings computational efficiency and reliability. ization and gratest polynomial divisor computationg(t) is
Perfo'rmance .of t.he proposed algorithm is demonstrated by a the spectral factor of the symmetric prodlgutb)p(zfl) then
practical application. Namely the problem of computing ani;- the greatest common divisor ofz) and g(z) is obviously

optimal output feedback dynamic compensator to a discrete time . .
SISO plant is considered as it is studied by Hurak et al. in [6]. the plus factor ofp(z). The minus factor can be derived

Involved plus-minus factorization is resolved by our new method. Similarly from p(z~') andg(z~"). As opposed to the previous
approach based on direct roots computation which typically

makes problems for higher degrees and/or roots multiplicities,
this procedure relies on numerically reliable algorithms for

This paper describes a new method for the plus-minus fgmlynomial spectral factorization [13], [5]. Unfortunately, the
torization of a discrete-time polynomial. Given a polynomigbolynomial greatest common divisor computation is much
in the z variable, more sensitive. As a result, both these techniques do not work
properly for high degrees (say over 50).

Quite recently, a new approach to the problem was sug-
without any roots on the unit circle, its plus/minus factorizatiogested by the authors of this report in [14]. The method
is defined as is inspired by an efficient algorithm for polynomial spectral
p(z) =pT(2)p~ () (1) factorization, see [5]. It provides both a fruitful view on
the relation between DFT and thg-transform theory, and

+ ingi - i i ) : :
Wherep (2) has all roots |nS|d§ and™(z) ,OUt_S'de, the.unlt a powerful computational tool in the form of the fast Fourier
disc. Clearly, the scalar plus/minus factorization is unique Yp,\cform algorithm.

to a scaling factor. . o
) . o — Success of adapting a powerful spectral factorization algo-

Polynomial plus/minus factorization has many application . . o
. . . . rithm for the plus-minus factorization was inspiring for us.
in control and signal processing problems. For instance, ef- . o :
- . . : . e decided to undertake a similar way with another spectral
ficient algebraic design methods for time-optimal controllecr%lctorization rocedure. namelv the Bauer's method. which is
[1], quadratically optimal filters for mobile phones [15], [16], . np N y '

. . described in the following sections.

and!; optimal regulators [6], to name just a few, all recall the
+/- factorization as a crucial computational step.

I. INTRODUCTION

p(2) = po + p12 + paz® + -+ ppz”,

II. EXISTING METHODS Ill. BAUER'S METHOD FOR POLYNOMIAL SPECTRAL

From the computational point of view, nevertheless, the task FACTORIZATION

is not well treated. There are two quite natural methods.

One of them is based on direct computation of roots. UsingF. |I. Bauer published his method for spectral factorization
standard methods for polynomial roots evaluation, see [&)f a discrete-time scalar polynomial in 1955, see [2], [3]. The
[17] for instance, one can separate the stable and unstgiecedure is based on the relationship between polynomials
roots of p(s) directly and construct the plus and minus partand related infinite Toeplitz-type Sylvester matrices.



A. Algebra of Sylvester matrices B. Bauer’'s method for spectral factorization

Given a two-sided polynomial(z) = p_,z ™+ -+po+ As wg_have illustrated abov:e_, finilte dimen_sional matrices
.+ pa2", we define its Sylvester companion matify’ of are sufficient to a_lccommodate f|n|Fe alg(_epralc .proble_ms. On
order N, the other hand, if we do not restrict to finite dimensionality

of related matrices, transcendent problems, including spectral
N > max(n, m) factorization, involving polynomials can be resolved by this
approach as well.
as anN by N square matrix constructed according to the we will illustrate the Bauer's spectral factorization method

following scheme: by means of a simple example. An interested reader can find
detailed description in the original work [2] or, alternatively,
po P ... pn 0O ... 0 in the survey paper [4].
P11 P L e pm : ~ Givenp(z) = 227" 45+ 2z its companion matrix of order
_ _ _ _ five reads
N por T -0 5 2 0 0 0
=1, Pn 2 5 2 0 0
T, = 0 2 5 2 0
0 pm 0o 0 2 5 2
n 0 0 0 2 5
0 0 pem o P PO As p is symmetric and positive definite on the unit circle

] . its spectral factorr exists such that
To show the relation between the polynomial algebra and

the algebra of Sylvester matrices, let us consider two simple T =p
polynomialsp; (z) = 3271 +2+2z andps(z) = 2~ +3. Their

. . . holds andz is stable. The star stands for polynomial discrete-
companion matrices of order four read respectively

time conjugation,z — z~!. The spectral factor coefficients
can be approximated using the Cholesky factorizatioff,of

2 1 0 O
4 3 9 1 0 2.236 0.8944 0 0 0
Th=| o 3 92 1 0 2.049 09759 0 0
0 0 3 9 T, = 0 0 2.012 0.9941 0
0 0 0 2.003 0.9985
0 0 0 0 2.001
3 0 0 0 . . .
1 3 0 0 The diagonals of’}, obviously converge to the genuine spectral
Tﬁz = 0 1 3 0 factor coefficientsz(z) = 1 + 2z.
0 0 1 3 An interesting feature of this routine is that particular

columns ofT, can be computed iteratively, using only latest
preceding column and the coefficients ofz), see [4] for
details. As a result, the final algorithm is favorably memory
efficient. Mainly for this reason the method is still quite
popular in spite of the fact that some later approaches, see
eg. [13], [5], provide a faster rate of convergence.

Their sumps(z) = p1(z) + p2(2) equals
p3(z) =427 4 5+2

and its companion matrix can be computed as direct sum

related companion matricés),, T,,: IV. PLUS-MINUS FACTORIZATION AND BAUER’S METHOD
A modification of the Bauer's method for the non-symmetric
5 1 0 0 . . o - . .
4 . polynomial plus-minus factorization is worked out in this
T = o 0 section.
p3 0 4 b) 1
0 0 4 5 A. LU factorization

As we have shown in section Il., algebra of companion

Similarly, their product, = pip> = 3272+1127'+7+3z matrices is not limited to the symmetric case. Also the
has a companion matrix matrix theory provides useful factorization techniques for non-
symmetric matrices along with stable and efficient procedures

3 0 0 for their computation.
T4 — i i 11 7 3 0 Bauer's method calls for the Cholesky factorization to get
P4 pl=p2 3 11 7 3 . . . .
0 3 1 5 the desired spectral factor. This routine assumes the input

matrix to be symmetric and positive definite which is the case



in the spectral factorization problem. However, if we aim dbr pt(z) = 130+ + Pz 4+ ﬁ}z*‘s and p~(z) =
modifying the method in order to capture the non-symmetrgg, +p; z + - - - +13(;_5zd’5 such that

plus/minus factorization case, we need to leave this concept

and employ another technique since the companion matrix is p(z) =p" ()b (2) @)

no longer symmetric. _ Relation between the paifs™, 5~ andp™, p~ are obvious.
The Cholesky factorization decomposes the input matrix Having composed the companion matiiy’ of sufficiently

into a Pmd““ of two matrlces ba_13|c§1IIy that are upper a'?ﬁgh orderN, its LU factorization is performed. An approxi-
lower triangular respectively. Considering this observation, ﬂ?ﬁation to the plus and minus factorsjpéan then be read from

most natural alternative for the non-symmetric plus/minus cagg, |ast column of the, and U factors respectively, similarly
seems to be the LU-factorization concept. to the spectral factorization case

Definition (general LU-factorization): LU factorization ex-  The degree shift yielding the two-sided polynomjalis
presses any square mattkas the product of a permutationnecessary to assure correct decompositiorp ahto stable
of a lower triangular matrix and an upper triangular matrix,and antistable parts. If the shift were not performed or were
different from¢, the decomposition would still work in princi-
A=LU ple , however, the strict stability and antistability of particular
H‘actors would be lost.

where L is a permutation of a lower triangular matrix wit ) e ) )
Detailed description of the resulting algorithm follows.

ones on its diagonal and U is an upper triangular matrix.
The permutations are necessary for theoretical reasons in the Algorithm 1: Scalar discrete-time plus-minus

general case. For instance, the matrix factorization.
0 1 Input: Scalar polynomial
< 10 > p(2) = po + p1z + -+ + paz?, nonzero for|z| = 1.
OutputPolynomialp™(z) and p~(z), the plus and minus

cannot be expressed as the product of triangular matrices factors ofp(z).
without interchanging its two rows. However, the special band Step 1 -Choice of the companion matrix size.
structure of the companion matrices can be exploited to show Decide about the numbeN. N approximately10
that the permutations are not necessary and the factorization to 50 times larger thanl is recommended up to our
can be expressed simply as a product of a lower and an upper practical experience.
triangular matrix. Step 2 -Degree shift.
Lemma 1: Given a scalar discrete-time two-sided polynomial Find out the numbef of zeros ofp(z) inside the unit
p(z) with roots not lying on the unit circle, its companion disc. A modification of well known Schur stability
matrix can be factored in the forffi, = LU whereL andU criterion can be employed, see [10] for instance.
are lower and upper triangular matrices respectively. Having ¢ at hand, construct a two-sided polynomial
Proof: If a (possibly two-sided) polynomialis nonzero at the p(z) as
unit circle then the principal minors of its companion matrix P(z) = p(,z)z—5 — oz 0 b pg2?d =
are known to be nonzero, see the reasoning in [2]. Further,
according to [7], Theorem 3.2.1, a matrik has the desired =Pz 04 P4+ Pa_sz®?

lower-upper triangular factorization if its all principal minors

= . . i N.
are nonzero. Combining these two observations, we arrive abteP 3 -Construction of7;":
the statement of the lemma. Following the section Ill.A, construct the Sylvester

companion matrix related tp of order V.
Following Lemma 1, a new algorithm for polynomial plus- Step 4-LU decomposition oTif\’:

minus factorization is suggested in the next subsection. Perform the LU decomposition dFéV:
B. Plus/minus factorization algorithm Té\' =LU
Given a (scalar, one-sided) polynomial L and U are lower and upper triangular matrices

respectively.

= ... d
p(z) =po+prz -+ +pazt Step 5 -Construction of polynomial factors:

nonzero for|z| = 1, we first apply a direct degree shift to Columns of thel, andU/ matrices contains a nonzero
arrive at a two-sided polynomial vector!/, v of lengthd +1 andd — 6 + 1 lying under
and above the main diagonal respectively. Take the
p(2) =poz 0 4 -+ pgz?°, last full columni = [lo, 14, ... ,1s] to create the plus

. o factor of p(z) as
where § is the number of roots op(z) lying inside the

unit circle. Now, instead of solving equation (1), we look pt)=lo+lhz+ - +152°



The minus factor is constructed in a similar way

using the last vector. o 1 0 0 0
T+ 0.4167 1 0 0
a 0 0.3993 1 0
V. EXAMPLE 0 0 0.4003 1
To illutrate the usefulness of polynomial plus-minus fac-
torization and to demonstrate the power of the proposed —48 5 0 0
algorithm at the same time, we will discuss theoptimal T — 0 —50.083 5 0
control problem. @ 0 0 —49.997 5
I, optimization is a modern design technique, see [11] for 0 0 0 =50
a survey. The design goal lies in minimizing thenorm of nd
a closed loop transfer function. Such a way, the magnitude ofa
measured output signal is minimized with respect to bounded,
yet persistent input disturbancds. optimal controllers have 1 0 0 0
already found an application in some irrigation channel regu- .+ _ | —0.06818 1 0 0
lation problem, see [12] for instance. b 0 —0.06663 1 0
Quite recently a new method has been suggested by Z. 0 0 —0.06667 1
Hurak et al. for the computation of ah optimal discrete-
time SISO compensator, see [6]. Unlike their predcessors, the —132 —45 0 0
authors rely on the transfer function description purely and T, = 0 —135.1 —45 0
carefully exploit the algebraic structure of the problem. The 0 0 —135 45
resulting algorithm is given in [6] along with the following 0 0 0 —135
example. These matrix factors give a fair approximation to

Let us compute a feedback controller the minimizesorm 4+ 4~ p+ b~ polynomials:
of the sensitivity function for a plant described by
b(z)  —45—132z71 + 9272 at =0.40003z"" + 1,a” = —49.99727" +5

1y
G = a(z)  —20—48z"1 4522

bt = —0.0672"1 + 1,07 = —1352"1 — 45
The solution consists of the following computational steps
1) plus-minus factorization of(z7!) = a*(z71)a=(z71)

andb(z71) = b (z7H)b (271

To get more accurate resulfs, is increased. Takingy = 20
yields perfectly accurate results,

2) find the minimum degree solution tqz=1)zo(z 1) + at=2/52"14+1,a" =502 +5
bz Vyo(z71) =1 ) X
3) find a solution toa™ (2~ 1)b~ (2~ (271 + y(z71) = bt =—1/152"" + 1,07 = —1352"' — 45

a(z71)xo(271) of given degree ofy(z~!) and with
minimum |.||; norm.

4) the optimal controller is given by At this stage the LU decomposition is performed via
_1 1 1 1 1 standard routines, see [7] for instance, implemented in stan-

Oz = a+(z_1)b+(z_l)y°(z_1) + a(’z_l)w(z_l) dard packages such as LAPACK or commercial MATLAB.
at(z7Hb* (27 Hzo(271) = b(27H)z(27)  Nevertheless, thanks to the strong structurallity of involved

The first step can be efficiently and reliably performed usingPeplitz matrices, dedicated efficient routines for their LU
the algorithm proposed in section IV.B of this report. We taki@ctorization are likely to exist. Now, the authors have been
small-size Sylvester matrices first for illustrative purposes, sageking such algorithms. Hopefully the results of this research

VI. FURTHER RESEARCH

N equal to4. T, and T, read respectively will be published in the final version of this report.
—48 5 0 0 VIl. CONCLUSION
—20 —48 5 0 . . . —
Ta = 0 —920 —48 5 A new 'method for the discrete-time plus-minus factorization
0 0 —90 —48 problem in the scalar case has been proposed. The new method
relies on numerically stable and efficient LU factorization
132 —45 0 0 of associated Toeplitz matrices. Besides its good numerical
9 132 —45 0 properties, the derivation of the routine also provides an
Th = 0 9 132 —45 interesting look into the related mathematics, combining the
0 0 9 139 results of the matrix theory and algebraic design approach.

The suggested method is employed in a practical application
and their LU factorization gives rise to of {; optimal control problem.
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