
1

Doing Systems and Control with NCAlgebra, a
Symbolic Noncommutative Algebra Toolbox

M. C. de Oliveira and J. W. Helton

Abstract— This paper will show how a symbolic noncom-
mutative algebra package can be of help in the discipline of
systems and control. A major advance in linear systems the-
ory over the last decade has been a formalism for converting
systems problems to matrix inequalities. Here we describe a
notebook which allows users to convert many systems prob-
lems to LMI’s (Linear Matrix Inequalities).

I. Prologue

A major symbolic noncommutative algebra package,
NCAlgebra, runs under Mathematica. One can obtain the
software from:

www.math.ucsd/~ncalg

The material in this paper runs under NCAlgebra and
Mathematica, being platform independent. We assume
that the reader is familiar with Mathematica.

All text that discuss details of the implementation in
NCAlgebra and Mathematica will be displayed in a section
formated like this one. Output from Mathematica front end
will be displayed inside boxed figures.

II. NCAlgebra

If one reads a typical article on systems and control,
specially the ones based on state space A,B,C,D system
representation, one finds that most of the algebra involved
is noncommutative rather than commutative. Thus, for
symbolic computing to have full impact on linear systems
research, one needs a program which will do noncommut-
ing operations. Mathematica, Macsyma, and Maple (the 3
M’s) do not. For example, in standard Mathematica, the
most basic command

Expand[A*(B+C)]

gives ‘A*B+A*C’ if A, B, C commute but

Expand[A**(B+C)]

does not give ‘A**B+A**C’. Here, ‘**’ denotes noncommu-
tative multiply.

We developed a noncommutative algebra package,
NCAlgebra, which runs under Mathematica and does basic
operations, block matrix manipulations, and other things.
The package might be seen as a competitor to a yellow pad.
Like Mathematica, the emphasis is on interaction with the
program and flexibility.

School of Electrical and Computer Engineering, University of
Campinas, Av. Albert Einstein 400, Campinas, SP, Brazil, 13083-
970. mauricio@dt.fee.unicamp.br.

Department of Mathematics, University of California, San Diego,
9500 Gilman Drive, Mailcode 0112, La Jolla, CA 92093-0112, USA.
helton@ucsd.edu.

A major goal is to help a systems and controls engineer
discover key formulas underlying his problem.

An amusing note is that a favorite command in
NCAlgebra is

CommuteEverything[expr]

which does just what you think. It converts noncommuting
expressions to commuting. Then one manipulates the com-
muting expression with Mathematica’s full arsenal and, if
successful, one tries whatever ideas one gets back at the
fully noncommutative level.

III. Matrix Inequalities in Control

The main advance in linear systems theory over the last
decade has been a formalism for converting systems prob-
lems to matrix inequalities. Even a complicated systems
problem quickly converts to a list M of matrix inequalities
and the difficulty comes in writing down a list L of nice
(for example, convex or linear) matrix inequalities whose
solution set is the same as that of M. Fortunately it is
possible to reduce the classic control problems plus others
to Linear Matrix Inequalities. Thus a modern challenge
is to develop methods which say when this possible, do it
when possible, or at least help with doing it.

IV. Linear Matrix Inequalities

The main objective in this paper is to illustrate how
NCAlgebra can be of help with LMI production in a typical
control design problem: we show how to find formulas for
the design of an output feedback controller such that the
closed loop system satisfies an H∞ performance constraint.
It is based on our algorithms for implementing the unified
approach of [1].

Other control packages and notebooks of interest to sym-
bolic manipulation of matrix inequalities (noncommutative
inequalities) for NCAlgebra are listed below.

A. LMI’s via Change of Variables

A notebook (that also requires NCGB) which produces
LMI’s by symbolically implementing the method of [2].
NCGB is an implementation of a noncommutative

Gröebner basis algorithm which links Mathematica and
NCAlgebra to C++ and has some platform dependence:
we support Solaris, Windows and various versions of Linux.

B. Convexity Checker

One expects that convexity is a substantially more le-
nient condition than linearity and “convex matrix inequal-
ities” (CMI’s) should behave well numerically. Thus it
would be a big advance to replace LMI’s with CMI’s. As a

2

step in this direction we have an (algebraic) algorithm for
determining the region on which a formal matrix inequality
is convex.

This is implemented in our command

NCConvexityRegion[fun, list-of-variables]

where fun is a rational function in the noncommutative
variables given in list-of-variables. The output is a list
of formal inequalities with the property that if a set R of
matrices satisfy them, then the function fun is “matrix con-
vex” with respect to the variables in list-of-variables
on R.

C. Mathematica’s Control Toolbox

Mathematica has a control toolbox which operates at
the commuting level. Thus it will not deal with block
systems. We have a small package under NCAlgebra
which gives Mathematica’s package a reasonable amount
of noncommuting capability. This requires no change to
Mathematica’s Control Toolbox; just load our package in.
Then one can manipulate the A,B,C,D of systems theory
much as a human would do.

D. Singular Perturbations

NCAlgebra and NCGB seem very effective at facilitating
some of the grubby and very tedious calculations commonly
found in control of singularly perturbed linear systems. A
notebook which does such calculations done with Del Kro-
newitter does this.

V. Automated LMI Production

We now show how NCAlgebra can be of help with LMI
production in a typical control design problem: we show
how to find formulas for the design of an output feedback
controller such that the closed loop system satisfies an H∞
performance constraint.

The first step required to work with NCAlgebra is to load
packages. We set some options that facilitate the manip-
ulation of systems and control problems. This is done in
Mathematica as in Figure 1.

In the first line we load NCAlgebra.
The second instruction sets a parameter that makes the

output look prettier in the Mathematica front end.
The third instruction alters the internal behavior of

NCAlgebra so as to make the noncommutative multiplication
operator thread over matrices, which is an essential feature in
systems and control applications.

The fourth line makes the operator inv not distributive.
This is important so as to prevent inv[a**b] from evaluating
into inv[b]**inv[a], which would be incorrect, for instance,
for a valid product of nonsquare a and b matrices.

In the fifth line we load MatFlatten.m, a package that
introduces the command MatFlatten. This commands con-
catenates matrices from lists of matrices, a feature that
Mathematica does not provide. For instance,

MatFlatten[{{a,b},{c,d}}]

� Load NCAlgebra

In[89]:= Get�"NCAlgebra.m"�;
SetOutput�all � True�;
NCGuts�NCSetNC � True, NCStrongProduct2 � True�;
ExpandQ�inv� :� False;
�� MatFlatten.m;

Fig. 1. Loading NCAlgebra

� Open loop (A,B,C,D) matrices

In[94]:= oLoopMats �
��A, Bw, Bu�, �Cz, Dzw, Dzu�, �Cy, Dyw, Dyu��;

MatrixForm�%�

Out[95]//MatrixForm=

�

�
������
A Bw Bu
Cz Dzw Dzu
Cy Dyw Dyu

�

�
������

� Closed loop (A,B,C,D) matrices

In[96]:= cA � ��A, Bw�, �Cz, Dzw��;
cB � ��Bu�, �Dzu��;
cC � ��Cy, Dyw��;
cLoopMats � cA � NCExpand�cB �� K �� cC�;
MatrixForm�%�

Out[100]//MatrixForm=

� A � Bu.K.Cy Bw � Bu.K.Dyw
Cz � Dzu.K.Cy Dzw � Dzu.K.Dyw

�

Fig. 2. Open and closed loop matrices

will produce a matrix if a, b, c and d are matrices of compat-
ible size.

A. Problem Statement

Given linear models for the system to be controlled and
the controller

ẋ
z
y


 =


 A Bw Bu

Cz Dzw Dzu

Cy Dyw 0





x

w
u


 ,

(
u
ẋc

)
= K

(
y
xc

)

the objective is to compute a matrix of controller parame-
ters K such that ‖Hwz(s)‖∞ < µ, where µ > 0 is a given
performance level.

Defining the matrices

[
A B

C 0

]
:=


 A Bw Bu

Cz Dzw Dzu

Cy Dyw 0


 :=




A 0 Bw Bu 0
0 0 0 0 I

Cz 0 Dzw Dzu 0
Cy 0 Dyw 0 0
0 I 0 0 0


,

which have been obtained from the system to be controlled
data, it is possible to describe the closed loop connection
of the plant and controller in the form

(˙̃x
z

)
= (A + BKC)

(
x̃
w

)
,

where x̃ :=
(
xT xT

c

)T .

In Figure 2 we define a matrix that represent the open loop
system and compute the closed loop matrices as a function of
a generic feedback matrix K.

3

� Augmented open loop matrices

In[101]:= bA � ��A, 0�, �0, 0��;
bBw � ��Bw�, �0��;
bBu � ��Bu, 0�, �0, 1��;
bCz � ��Cz, 0��;
bDzw � ��Dzw��;
bDzu � ��Dzu, 0��;
bCy � ��Cy, 0�, �0, 1��;
bDyw � ��Dyw�, �0��;
bDyu � ��0, 0�, �0, 0��;

In[110]:= rulesAugmentedSystem �
� A � bA, Bw � bBw, Bu � bBu,
Cz � bCz, Dzw � bDzw, Dzu � bDzu,
Cy � bCy, Dyw � bDyw, Dyu � bDyu �;

In[111]:= MatFlatten�oLoopMats �. rulesAugmentedSystem�;
MatrixForm�%�

Out[112]//MatrixForm=

�

�

����������������

A 0 Bw Bu 0
0 0 0 0 1
Cz 0 Dzw Dzu 0
Cy 0 Dyw 0 0
0 1 0 0 0

�

�

����������������

In[113]:= rulesController � �K � ��Dc, Cc�, �Bc, Ac���;
MatrixForm�K �. rulesController�

Out[114]//MatrixForm=

� Dc Cc
Bc Ac

�

Fig. 3. Open and closed loop augmented matrices

The data corresponding to the augmented plant represen-
tation and the controller matrices is entered in NCAlgebra as
in Figure 3.

B. Open Loop Analysis

Given a linear system in the form(
ẋ
z

)
=

[
A Bw

Cz Dzw

] (
x
w

)
,

the H∞ norm of the transfer function from w to z is less
than µ if, and only if, the following LMI, known as BRL
(Bounded Real Lemma),

Ψ + ∆T ΣΛ + ΛT ΣT ∆ < 0, (1)

where

Ψ :=


0 0 0

0 −µ 0
0 0 −µ


 , Σ =

[
A Bw

Cz Dzw

]
,

Λ :=
[
I 0 0
0 I 0

]
, ∆ :=

[
X 0 0
0 0 I

]
,

is feasible for some symmetric and positive definite Lya-
punov matrix X.

The matrices appearing in the BRL are defined in Figure 4.
In the same figure, the left hand side of this inequality is
evaluated for the open loop matrices.

C. Closed Loop Analysis

In order to analyze the closed loop H∞ performance we
redefine the factors appearing in the BRL to be compat-
ible with the augmented system matrices and substitute

� Open loop analysis

In[117]:= SetCommutative�mu�;

In[118]:= oLoopPsi � ��0, 0, 0�, �0, �mu, 0�, �0, 0, �mu��;
MatrixForm�%�

Out[119]//MatrixForm=

�

�
������
0 0 0
0 �mu 0
0 0 �mu

�

�
������

In[120]:= oLoopDelta � ��X, 0, 0�, �0, 0, 1��;
MatrixForm�%�

Out[121]//MatrixForm=

� X 0 0
0 0 1

�

In[122]:= oLoopLambda � ��1, 0, 0�, �0, 1, 0��;
MatrixForm�%�

Out[123]//MatrixForm=

� 1 0 0
0 1 0

�

In[124]:= oLoopSigma � ��A, Bw�, �Cz, Dzw��;
MatrixForm�%�

Out[125]//MatrixForm=

� A Bw
Cz Dzw

�

In[126]:= oLoopSymmetryRules � �tp�X� � X�;

oLoopBRL � oLoopPsi � NCExpand�
tp�oLoopDelta� �� oLoopSigma �� oLoopLambda �
tp�oLoopLambda� �� tp�oLoopSigma� ��
oLoopDelta� �. oLoopSymmetryRules;

MatrixForm�%�

Out[128]//MatrixForm=

�

�

��������
X.A � AT.X X.Bw CzT

BwT.X �mu DzwT

Cz Dzw �mu

�

�

��������

Fig. 4. Open loop analysis

the value of Σ by the closed loop matrices obtained in the
previous section

Σ = (A + BKC).

If one performs such operations, the BRL can be rewritten,
as a function of the controller parameters K in the form

F + HT KG + GT KT H < 0, (2)

where

F := Ψ + ∆T
AΛ + ΛT

A
T ∆, G := CΛ, H := B

T ∆.

We redefine, in Figure 5, the factors of the BRL so they
can have dimensions compatible with the augmented system
matrices. We also define the expression for the closed loop Σ
matrix.

D. LMI Synthesis

The matrix inequality (2) is not jointly convex on X, the
Lyapunov matrix, and K, the controller parameters, which
represents the main obstacle for its solution. Two tech-
niques can be used to overcome this difficulty: the ‘elimi-
nation of variables’ of [1] and the ‘change of variables’ of [2].
These techniques produce sets of convex inequalities that
are affine on all variables, that is, LMI’s.

4

� Closed loop analysis

In[129]:= cLoopPsi � ��0, 0, 0, 0�,
�0, 0, 0, 0�,
�0, 0, �mu, 0�,
�0, 0, 0, �mu��;

MatrixForm�%�

Out[130]//MatrixForm=

�

�

�����������

0 0 0 0
0 0 0 0
0 0 �mu 0
0 0 0 �mu

�

�

�����������

In[131]:= cLoopDelta � ��X1, X2, 0, 0�,
�tp�X2�, X3, 0, 0�,
�0, 0, 0, 1��;

MatrixForm�%�

Out[132]//MatrixForm=

�

�
�������
X1 X2 0 0

X2T X3 0 0
0 0 0 1

�

�
�������

In[133]:= cLoopLambda � ��1, 0, 0, 0�,
�0, 1, 0, 0�,
�0, 0, 1, 0��;

MatrixForm�%�

Out[134]//MatrixForm=

�

�
������
1 0 0 0
0 1 0 0
0 0 1 0

�

�
������

In[135]:= cLoopA � MatFlatten�cA �. rulesAugmentedSystem�;
cLoopB � MatFlatten�cB �. rulesAugmentedSystem�;
cLoopC � MatFlatten�cC �. rulesAugmentedSystem�;
cLoopSigma � cLoopA � NCExpand�

cLoopB �� K �� cLoopC �. rulesController�;
MatrixForm�%�

Out[139]//MatrixForm=

�

�
������

A � Bu.Dc.Cy Bu.Cc Bw � Bu.Dc.Dyw
Bc.Cy Ac Bc.Dyw

Cz � Dzu.Dc.Cy Dzu.Cc Dzw � Dzu.Dc.Dyw

�

�
������

cLoopSymmetryRules �
�tp�X1� � X1, tp�X3� � X3, tp�Y1� � Y1, tp�Y3� � Y3�;

cLoopBRL � cLoopPsi � NCExpand�
tp�cLoopDelta� �� cLoopSigma �� cLoopLambda �
tp�cLoopLambda� �� tp�cLoopSigma� ��
cLoopDelta� �. cLoopSymmetryRules;

Fig. 5. Closed loop analysis

In this paper we focus on the procedure of [1], which
is based on the following result, known as Elimination
Lemma.

Lemma 1: Let F ∈ S
n, G ∈ R

m×n, and H ∈ R
p×n with

rank(G) < n and rank(H) < n. The following statements
are equivalent:
i) G⊥T

FG⊥ < 0, H⊥T
FH⊥ < 0,

ii) ∃K ∈ R
p×m : F + HT KG + GT KT H < 0.

In the above lemma, the symbol X⊥ represents any basis
for the null space of matrix X.

The closed loop BRL, inequality (2), is clearly in the
form ii) of the above lemma. The strategy to obtain an
LMI synthesis problem consists on moving from form ii)
to i), hence eliminating the controller parameters from the
problem. The main computation involved is the calculation
of the null space basis of the matrices G and H.

In order to make the synthesis formulas look simpler and
more familiar we adopt the following set of standard sim-
plifying assumptions.

CT
z Dzu = 0, DT

zuDzu = I, (3)

BwDT
yw = 0, DywDT

yw = I. (4)

� Null space of G

In[138]:= G � cLoopC �� cLoopLambda;
MatrixForm�%�

Out[139]//MatrixForm=

� Cy 0 Dyw 0
0 1 0 0

�

In[140]:= NG � �
�NG11, NG12, NG13�,
�NG21, NG22, NG23�,
�NG31, NG32, NG33�,
�NG41, NG42, NG43��;

MatrixForm�%�

Out[141]//MatrixForm=

�

�

�����������

NG11 NG12 NG13
NG21 NG22 NG23
NG31 NG32 NG33
NG41 NG42 NG43

�

�

�����������

In[142]:= ruleNullG � Flatten�
Solve�NCExpand�G �� NG� �� ZeroMatrix�2, 3���;

MatrixForm�%�

Out[143]//MatrixForm=

�

�

��������������������

NG21 � 0
NG22 � 0
NG23 � 0

Cy.NG11 � �Dyw.NG31
Cy.NG12 � �Dyw.NG32
Cy.NG13 � �Dyw.NG33

�

�

��������������������

� Particular choice of basis

NG � NG ��. Flatten��
ruleNullG,
NG11 � 1, NG12 � 0, NG13 � 0,
NG31 � �tp�Dyw� �� inv�Dyw �� tp�Dyw�� ��

Cy �� NG11, NG32 � 0, NG33 � p�Dyw�,
NG41 � 0, NG42 � 1, NG43 � 0��;

MatrixForm�%�

Out[145]//MatrixForm=

�

�

�������������

1 0 0
0 0 0

�DywT.	Dyw.DywT
�1.Cy 0 p�Dyw�
0 1 0

�

�

�������������

Fig. 6. Computing the null space of G

These assumptions can be imposed with no loss of gener-
ality (see, for instance, [3]).

Computing a null space basis for G involves only con-
stant matrices, hence it can sometimes be done by using the
Mathematica linear equation solver combined with some level
of user intervention. The user helps the program to pick up
a particularly convenient choice of basis, based on the extra
assumptions (3). This is done in Figure 6.

The functional notation p[X] has been used to denote X⊥.

Matrix H, on the contrary of matrix G, is also a function
of the Lyapunov matrix X. However, noticing that

∆ = ∆̃T,

where

∆̃ :=
[
I 0 0
0 0 I

]
, T :=


X 0 0

0 I 0
0 0 I


 ,

and that X, and consequently T are nonsingular matrices,
a null space basis for H can be trivially computed from any
null space basis of

H̃ := B
T ∆̃,

5

� Null space of HTilde

In[146]:= cLoopDeltaTilde � ��1, 0, 0, 0�,
�0, 1, 0, 0�,
�0, 0, 0, 1��;

MatrixForm�%�

Out[147]//MatrixForm=

�

�
������
1 0 0 0
0 1 0 0
0 0 0 1

�

�
������

In[148]:= HTilde � tp�cLoopB� �� cLoopDeltaTilde;
MatrixForm�%�

Out[149]//MatrixForm=

� Bu
T 0 0 DzuT

0 1 0 0
�

In[150]:= NHTilde � �
�NH11, NH12, NH13�,
�NH21, NH22, NH23�,
�NH31, NH32, NH33�,
�NH41, NH42, NH43��;

MatrixForm�%�

Out[151]//MatrixForm=

�

�

�����������

NH11 NH12 NH13
NH21 NH22 NH23
NH31 NH32 NH33
NH41 NH42 NH43

�

�

�����������

In[152]:= ruleNullHTilde � Flatten�
Solve�NCExpand�HTilde �� NHTilde�
�� ZeroMatrix�2, 3���;

MatrixForm�%�

Out[153]//MatrixForm=

�

�

�����������������������

NH21 � 0
NH22 � 0
NH23 � 0

BuT.NH11 � �DzuT.NH41

BuT.NH12 � �DzuT.NH42

BuT.NH13 � �DzuT.NH43

�

�

�����������������������

� Particular choice of basis

NHTilde � NHTilde ��. Flatten��
ruleNullHTilde,
NH11 � 1, NH12 � 0, NH13 � 0,
NH31 � 0, NH32 � 1, NH33 � 0,
NH41 � �Dzu �� inv�tp�Dzu� �� Dzu� ��

tp�Bu� �� NH11, NH42 � 0,
NH43 � p�tp�Dzu����;

MatrixForm�%�

Out[155]//MatrixForm=

�

�

�������������

1 0 0
0 0 0
0 1 0

�Dzu.	DzuT.Dzu
�1.BuT 0 p�DzuT�

�

�

�������������

Fig. 7. Computing the null space of H̃

as
H⊥ = T−1H̃⊥.

As for matrix G, we compute a null space basis for matrix
H̃ using the assumptions (4). This is done in Figure 7.

In Figure 8, a null space basis of the matrix H is computed
from H̃⊥ as explained above.

Notice that the null space of H requires evaluating the
inverse of matrix X. In order to accomplish that we define a
matrix Y of compatible block structure and compute the rules
derived from the fact that XY = Y X = I. These identities
will be used in the next step.

After computing G⊥ and H⊥ we are ready to generate
the matrix inequalities in item i) of Lemma 1. These in-
equalities, where the controller parameters have been elim-

� Null space of H

In[156]:= ruleXY � �X �� ��X1, X2�,
�tp�X2�, X3��, Y �� ��Y1, Y2�,
�tp�Y2�, Y3���;

MatrixForm�%�

Out[157]//MatrixForm=

�
�
��� X �

X1, X2�,
X2T, X3��
Y �

Y1, Y2�,
Y2T, Y3��

�
�
���

In[158]:= inverseRules � Flatten��
Thread�Flatten�NCExpand�X �� Y �. ruleXY�� �
Flatten�IdentityMatrix�2���,

Thread�Flatten�NCExpand�Y �� X �. ruleXY�� �
Flatten�IdentityMatrix�2�����;

MatrixForm�%�

Out[159]//MatrixForm=

�

�

�����������������������������������

X1.Y1 � X2.Y2T � 1
X1.Y2 � X2.Y3 � 0

X3.Y2T � X2T.Y1 � 0

X3.Y3 � X2T.Y2 � 1

Y1.X1 � Y2.X2T � 1
Y1.X2 � Y2.X3 � 0

Y3.X2T � Y2T.X1 � 0

Y3.X3 � Y2T.X2 � 1

�

�

�����������������������������������

In[160]:= Tinv � ��Y1, Y2, 0, 0�,
�tp�Y2�, Y3, 0, 0�,
�0, 0, 1, 0�,
�0, 0, 0, 1��;

MatrixForm�%�

Out[161]//MatrixForm=

�

�

������������

Y1 Y2 0 0

Y2T Y3 0 0
0 0 1 0
0 0 0 1

�

�

������������

In[162]:= NH � NCExpand�Tinv �� NHTilde�;
MatrixForm�%�

Out[163]//MatrixForm=

�

�

�������������

Y1 0 0

Y2T 0 0
0 1 0

�Dzu.	DzuT.Dzu
�1.BuT 0 p�DzuT�

�

�

�������������

Fig. 8. Computing the null space of H

inated, will be LMI’s.

In the final step, described in Figure 9, we evaluate the
matrix F by setting the controller parameters to zero in the
closed loop BRL. The two LMI are then obtained by post and
pre multiplying F by G⊥ and H⊥ and their transposes.

Notice that the final expression has been automatically sim-
plified using the rules derived from assumptions (3) and (4),
the rules of inverse derived in Figure 8, and the rules derived
from null space definition.

It is worth remarking on the amazing amount of simplifica-
tion performed automatically by NCAlgebra at this last step.
An impressive demonstration of the power of this tools is ob-
tained after comparing the final form of the first LMI with the

expression obtained right after multiplying G⊥T
FG⊥ without

applying any rules, which is shown, unformatted, in Figure 10.

E. Solving the Problem and Constructing the Controller

Before solving the problem we recall that X > 0. Since
the two LMI’s obtained in Figure 9 involve only X1 and
Y1, the first blocks of, respectively, X and its inverse Y ,
positivity of X can be enforced whenever X1 > Y −1

1 (see [1]

6

� Computing the LMI

In[168]:= F � cLoopBRL �. �Ac � 0, Bc � 0, Cc � 0, Dc �� 0�;
MatrixForm�%�

Out[169]//MatrixForm=

�

�

�������������

X1.A � AT.X1 AT.X2 X1.Bw CzT

X2T.A 0 X2T.Bw 0

BwT.X1 BwT.X2 �mu DzwT

Cz 0 Dzw �mu

�

�

�������������

In[170]:= simplifyingAssumptions � �
l___ �� tp�Dzu� �� Dzu �� r___ � l �� r,
l___ �� tp�Cz� �� Dzu �� r___ � 0,
l___ �� tp�Dzu� �� Cz �� r___ � 0,
l___ �� Dyw �� tp�Dyw� �� r___ � l �� r,
l___ �� Dyw �� tp�Bw� �� r___ � 0,
l___ �� Bw �� tp�Dyw� �� r___ � 0

�;

In[171]:= perpRules � �
l___ �� Dyw �� p�Dyw� �� r___ � 0,
l___ �� tp�Dzu� �� p�tp�Dzu�� �� r___ � 0
�;

perpRules � Flatten��perpRules, Flatten�Map�tp, perpRules, �2�����;

In[173]:= NCExpand�tp�NG� �� F �� NG� ��.
Flatten��simplifyingAssumptions, cLoopSymmetryRules, perpRules��;

NCCollect�%, �p�Dyw�, tp�p�Dyw����;
MatrixForm�%�

Out[175]//MatrixForm=

�

�

���������

X1.A � AT.X1 � mu CyT.Cy �CyT.Dyw.DzwT � CzT X1.Bw.p�Dyw�
Cz � Dzw.DywT.Cy �mu Dzw.p�Dyw�

p�Dyw�T.	BwT.X1 � mu DywT.Cy
 p�Dyw�T.DzwT �mu p�Dyw�T.p�Dyw�

�

�

���������

In[176]:= NCExpand�tp�NH� �� F �� NH� ��.
Flatten��simplifyingAssumptions, cLoopSymmetryRules, perpRules��;

NCCollect�%, �p�tp�Dzu��, tp�p�tp�Dzu���, A �� Y1, Y1 �� tp�A�, Bw, tp�Bw���;
% ��. inverseRules;
MatrixForm�%�

Out[179]//MatrixForm=

�

�

���������

A.Y1 � mu Bu.BuT � Y1.AT Bw � Bu.DzuT.Dzw Y1.CzT.p�DzuT�
�DzwT.Dzu.BuT � BwT �mu DzwT.p�DzuT�

p�DzuT�T.	Cz.Y1 � mu Dzu.BuT
 p�DzuT�T.Dzw �mu p�DzuT�T.p�DzuT�

�

�

���������

Fig. 9. Computing the LMI

In[185]:= NCExpand�tp�NH� �� F �� NH�

Out[185]= ��Y2.X2T.A.Y1 � Y1T.AT.X1.Y1 � Y1T.AT.X2.Y2T � Y1T.X1T.A.Y1 � Bu.	DzuT.Dzu
�1.DzuT.Cz.Y1 �
Y1T.CzT.Dzu.	DzuT.Dzu
�1.BuT � mu Bu.	DzuT.Dzu
�1.DzuT.Dzu.	DzuT.Dzu
�1.BuT,
Y2.X2T.Bw � Y1T.X1T.Bw � Bu.	DzuT.Dzu
�1.DzuT.Dzw,
Y1T.CzT.p�DzuT� � mu Bu.	DzuT.Dzu
�1.DzuT.p�DzuT��,
�BwT.X1.Y1 � BwT.X2.Y2T � DzwT.Dzu.	DzuT.Dzu
�1.BuT, �mu, DzwT.p�DzuT��,
�p�DzuT�T.Cz.Y1 � mu p�DzuT�T.Dzu.	DzuT.Dzu
�1.BuT,
p�DzuT�T.Dzw, �mu p�DzuT�T.p�DzuT���

Fig. 10. LMI before simplification

for details). This inequality can be written as the LMI
[
X1 I
I Y1

]
> 0

by applying Schur complement. This LMI and the two
LMI’s obtained in Figure 9 constitute the convex problem
to be solved that guarantee the closed loop H∞ perfor-
mance level µ.

Once this LMI problem has been solved, the set con-
troller parameters can be computed, for instance, using
the formula

K = −ρHJGT (GJGT)−1,

where ρ is an arbitrary scalar that makes

J := (ρHT H − F)−1 > 0.

Such a ρ is guaranteed to exist (see [1] for details).

VI. Conclusions

One can considerably facilitate the production of LMI’s
using the notebook described in this article. Underneath it
are symbolic algorithms which do not impinge on the users
experience.

References

[1] R. E. Skelton, T. Iwasaki, and K. Grigoriadis, A Unified Algebraic
Approach to Control Design, Taylor & Francis, London, UK,
1997.

[2] C. W. Scherer, P. Gahinet, and M. Chilali, “Multiobjective
output-feedback control via LMI optimization,” IEEE Trans-
actions on Automatic Control, vol. 42, no. 7, pp. 896–911, 1997.

[3] K. Zhou, J. C. Doyle, and K. Glover, Robust and Optimal Control,
Prentice Hall, Inc, Englewood Cliffs, NJ, 1996.

	Conference Program
	Author Index
	Main Menu

