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Abstract. The fundamental and the transition matrices of the continuous-time generalized state-space
system are defined. Then the solution of the generalized state-space model is given in terms of the
fundamental matrix directly for the given system, without applying any decomposition in fast and slow
subsystems. The proposed solution is actually a generalization of the solution of the regular state-space
equation and provides insight for the particular properties of the generalized systems. The set of
admissible initial conditions is directly determined from the solution and the decomposition of the
solution into two orthogonal subspaces easily results by applying orthogonal operators. The
fundamental and the transition matrices may be calculated in terms of the system's matrices via

algebraic recursive algorithms.
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1. INTRODUCTION

Consider the singular or generalized continuous time,

linear time-invariant (LTI) dynamical-algebraic
system [1],[2]

E x(t) = Ax(t) + Bu(t), t=t5, x(tg) =%, (1.1a)

y(t) = Cx(t) (1.1b)

where E,AD0O™",BOO™",cOO0™™ and rankE <

n. Moreover the term Dx(t) is absent in (1.1b),
without loss of generality, since (1.1) can incorporate
a direct-feed term, due to the singularity of E. The
given system is assumed regular, or equivalently the
pencil (sE—A)solvable, i.e. det(sE - A)#0. Note

also that in (1.1) x(t)is the distributional derivative,
since the initial condition is t, , in contrary to the

regular systems, where the ordinary derivative (right-
hand derivative at 1) is used. For any piece-wise

continuous distribution x(t), x(¢) is related to the
regular derivative x'(¢) by therelation [3]

X(t) =x'(t) +o(t —ty)x(ty), tO[ty, ) (1.29)
X(t) = 3(t - to)x(13) ~ 5t ~to)X(to) D[t £ ] (1.2b)

Singular systems find applications in engineering
systems (electrical circuits, interconnected systems,
robotics, systems with derivative feedback),
economic and biological systems, time series analysis
and singularly perturbed systems. Singular systems
(also caled generalized or semi-state or descriptor
variable systems) are governed by singular
differential equations that consist of algebraic, as well
as first order differential equations, which may result
to impulsive behavior of the system. The impulsive
behavior causes a number of special features that do
not appear in classica systems, such as impulsive
terms and input derivatives in the state response,
nonproperness of transfer matrix, nondifferentiable
functions, noncausality between input and state or
output and consistency of initial conditions. The
singular systems may be considered as a
generalization of the classical systems, since they are
reduced to them in the case where E is a nonsingular
square matrix. Although in the state space equations
X(t) = Ax(t) the analysis may be accomplished in
terms of A, it was not possible to carry out the
analysisin the singular case Ex(t) = Ax(t) in terms of
A and E using existing techniques (Drazin inverse
[2], Weierdstrass form [4], [5], deflating subspaces
[5],[6], shuffle agorithm [7]). However the
derivation of the analytic expressions of the


mailto:mertzios@demokritos.cc.duth.gr

fundamental and transitional matrix sequences of
singular systems [8],[9] permits the complete analysis
of solutions and properties of Ex(t) = Ax(t) and
finaly of (1.1), in terms of A and E. Thus the use of
the fundamental matrix (FM) leads to the
development of an algebraic methodology for the
analysis and design of generalized state-space
systems, which is caled the Fundamental Matrix
Approach (FMA). The FMA constitutes an efficient
methodology for the generalization of the whole
theory of linear systems, using computationally
attractive algebraic techniques.

The FM sequence of singular systems is calculated
using recursive agebraic relations in terms of the
coefficients of the adjoint and the characteristic
polynomial of the pencil (zE-A)and finaly in
terms of A and E [8]. Based on FMA, complete
solutions of forward, backward and symmetric cases
of discrete singular systems have been derived [9].
Moreover, various analysis problems (controllability
and observability criteria[10], stability [11], minimal
realization using generalized Hankel matrix [12]), as
well as synthesis problms (P-D feedback for
decoupling and pole assignment of singular systems
[13],[14]) have been studied, using the FMA. The
extension to the 2-D generalized state-space systems
is currently under consideration.

In this paper the genera expressions of the
fundamental and transition matrices of the continuous
time singular systems and the complete analytic zero
state and zero input solutions are derived.

2. FUNDAMENTAL MATRIX

For the derivation of the fundamental matrix of the
generalized systems, we need to apply generalized or
distributional derivatives of functions with “jump”
discontinuity” at t, that contain Dirac operators.
Consider the generalized continuous time, linear
time-invariant (LTI) dynamical-algebraic system
(1.1). Suppose that  x(t), x(t), tO[ty,) are
continuous and of exponential growth and x(t) has a
discontinuity at t, [2, vol. 2]. Therefore,
X(t),0[ty,) is treated as the distributiona
derivative Dx(t) . Then the Laplace transform L. of
X(t), tO[tg,), using (1.2a8) and (1.2b) in the
corresponding areas, gives

L [x®] =X _(9 = LX®) +8(t-to)x(ta)] =

L.[x )] + L [5(t —to)x(tg)] = }°>‘<(t)e‘5<“‘5 t =
to

tg _ o _
= [x()e T dt+ [x'(t)e 0 dt =
t;

to

to i}
= [ 6t —to)x(t) - a(t —to)x(tg)]e‘S““o)dt +
to

Tx(t)e‘S(“tg dt = x(t3) - x(ty) + [sX(s) - x(tg)] =
g
=Apx+ L [XO] = X(9-x(5) (21

since L, [x'(1)] = [sX(s) = x(¢5 )], L_L[5(t)] = 1and

L [o(t)]=0. In the case where Xx(t;)=0,
then L_[x(t)] = sX(s) [2]. Equivaently, (2.1) may be
derived considering that the restriction of
X(t) to [tg, ) denoted by Xiis o) [3]. Applying

(2.1) on the homogeneous zero input equation
Ex, (t) = Ax, (t) , we obtain

(sE-A)X,(s) = Ex(ty) (2.2

The Laplace Transforms on EXx, (t) = Ax, (t) for
restrictions X[[g,oo)’ X[t5,t3] are

(SE-A)XE 4 () =Ex(tg) (23

(SE-A)X, , () =Ex(tg) ~EX(ts) = -Aox  (2.4)

respectively, using L, [x'(t)] =[sX(s) - x(tg)] and
(2.1). Moreover, the Laplace L- transform on the
nonhomogeneous equation (1.1) yields

(SE - A)X(s) = BU(s) + EX(t7) (2.5)

Definition 2.1

Any nonsingular matrix ®(t), with ®(t) existing
for all t, and satisfying the equations

Ed(t) = AD(t) - AD_5(t —t,), t O[ty,0)  (2.6a)
det®(t) 20, tO[ty,) (2.6b)
is said to be a fundamenta matrix ®(t) of the
generalized system (1.1). Note that (2.6a) is written
for  tO[tg,) in the known  form

Ed(t) = A®(t) that holdsin the regular systems.

|
The fundamental matrix ®(t) is not unique and

therefore does not depend on t,. Therefore, it results
from (2.6a8) that the Laplace Transform L. of the
®(t) is determined by(sE-A)®(s)=Z, where

ZOO0™ may be any constant square matrix.

Assuming that the given system is solvable and taking
Z equal to the unity matrix, then ®(s) is selected to

be the generalized resolvent matrix (sE—A)™*. The
(sE-A) about
infinity in the area of convergence r <|§ <R, where
R may be any arbitrary great finite positive number

Laurent series expansion of



with the exception of R=co and r is the radius of the
circle that includes all the finite eigenvalues (isolated
regularities) of the matrix pencil (sE—-A), is given
by

O(s) = L_[@(1)] =

(sE-A)" = Z(I)k(E A)s

-u

_ < IR k _

=YD+ YO st = Pp(s) +P(s) (2.8)
=0 20

where®; =®, (E,A)J0™ is the (forward)

fundamental matrix sequence [8],[9] and u is the
index of nilpotency of the pencil (sE — A) . Note that

1 isthe maximum order of infinite zerosof (sE —A).
In (2.8), @ (s) and®, (s) are the finite and impulse

fundamental matrices respectively, i.e. the parts of
®(s) corresponding to the finite and infinite

eigenspace of (sE — A) respectively. Moreover,
@ (s) and®, (s) correspond to the strictly proper

part and to the polynomia part of the associated
transfer function respectively. The fundamental
matrix @(t) may be computed by applying the
inverse Laplace transform L~*to (2.8), as follows:
®(t) = L@ = L(E-A) =@ (1) + @, (1)
(2.9
The finite fundamental matrix ® (t) is given by

@, (1) = L]'[®p(s)] = L_IEZCD R ID

= ﬁioﬁ(l)ktk ﬁl(t) = Eioﬁ ((DOA)M" %0 1(t)

= M@ 1(1) = ®ye®M1(r) (2.10)
where 1(t) denotes the unit step function and use of
the property @, = (®,A) ®, = @y (P,A), 120,
was made [9]. Moreover, the impulse fundamental
matrix®, (t) results as the inverse generalized

Laplace transform L. of the polynomia part
D, (s) of d(s), which represents exactly the

restriction x[ty] of x[ty, ) tot,and isgiven by

_ _ ! [
@, (1) = LI[@,(s)] = L' %zm_k_ls‘ 0
=0 O

B
:kzoa( Nt =1)®_, (2.11)

where 3®(t) is the k" distributional derivative of
o(t) . Multiplying ®(s) from the left with
(sE - A), it results that

(SE=A)D(s) = (SE ~ A)[ @/ (s) + <I>;(s)] =

;0
=(sE- A)HLZ(DS + z(I)_, SO
O

= ([E@_, J* +k:%_[IE(I>_k —AD_ s =1 2.12)

(SE-A)® (s) =E®, (2.133)
(SE-A)D, (s)=-AD_, (2.13b)
E®, -AD,, =5(K)1, k=-u (2.13c)

Moreover, the multiplication of ®(s) from the right
with (sE - A) gives:

@, (S)(SE-A)=®E (2.14a)
@, (S)(SE-A) =@ _,A (2.14b)
OE-®,_A=5KI, k=-p (2140

It results from (2.13c), (2.14c) that for k=-4, it holds
E®_,=®_E=0.

Theorem 2.2

The fundamental matrix ®(t) of the generalized

system (1.1) isgiven by

D) =@p (1) + @, (1) =

u-1 .
= eq)OAtq)ol(l) + zq)—i—la(l)(t ~to), tUlty,2)(2.15)
=0

Proof: The fundamental matrix @(t) should satisfy

(2.6a). Applying the ordinary derivative on (2.10), we
obtain

E® (1) = E(@A)e™ "D, = (ED))AD (1)
=(1-A®_)AD (1) = AD (1) - AD_AD, (1)
=A@, (1), (O[], ) (2.16)

where use of (2.13a), (2.13c) was made.

Equivalently, the above mathematical manipulations
are derived using the fact that (-A®_,) is the

projection on the infinite eigenspace AH, along the
finite eigenspace EHE, hence

(-A®_,)Ae®™®, =0 (where H- and H, denote

the finite and the infinite eigenspaces of the
generalized pencil (sE - A) respectively, for which

He OH, =0") [9. Now, applying the
distributional derivative formula on (2.11), we obtain

. O~ 0
Ed, (1) = E%zé“”(t ~19)®_ =
=1 D
£ 50 O
= A 6 (t _to)Q_k_l D (Eq)kz Aq)k_l, for k * 0)
=1 O

- A%’zé% O] (@ =0
=1

=AD, () —AD_O(t—ty), tO[ty.t5] (2.17)
The addition of (2.16) and (2.17) gives (2.64).
For regular systemswhere E = 1, it is seen from (2.8)

that @, =1, and therefore the fundamental matrix is

reduced to®(t) =e™' . Note that in the regular state-

space case there are not eigenvalues at infinity. The
FM sequences ®, k=-u~u+1..-1land

®,,k=012,...may be calculated only in terms of
®,and @ _; respectively. Moreover, @ and®_; are
calculated using recursive algebraic relations in terms



of the coefficients of the adjoint and the characteristic
polynomia of the pencil (zE-A)and finaly in
terms of A and E [8],[16].

3. TRANSITION MATRIX
The forward transition matrix ¥(z,#,) of continuous
linear time-invariant generalized systems
satisfies the transition property

x(t) =W(1,19 )x(ty )= W (t — 1 )x(y) (3.1)
since then the transition matrix is aso time-
invariant, i.e.Y(t,4,) =Y —t) .

Definition 3.1
The forward transition matrix Y(t-¢,) of

continuous linear time-invariant generalized
systems is unique since it does depend on the initial

timeinstant t, and is defined by the equations:
EY(1—1)) = A¥(1—15) - AY_,0(t — 1,),

1 Uty ,00), (3.2a)

(3.2b)

|
The Laplace L. transform of the

distribution ¥ (s, ty), tO[t,,o) , in correspondence
to (2.1), isgiven by
LY@ =1)] = LI¥'( - 1)) - ¥t ~15)
=s¥(s) -1 (3.3)
taking into account the initial condition (3.2b). Now,
applying (3.3) on (3.2a) we obtain:
L_[E¥(1,1,)] = E[s¥(s) 1]

= AY(s) - AY_1(t—1) (3.4)
Solving (3.4) for ¥(s) and assuming that the given
system is solvable, we obtain
W(s)=E-A) " [E-AY_ (- 1)]=
=@, ()+®,()|E-GE-A)TAY_1(1-1;)
=[¥, )+, () -E-A) " AY 1~ 17)
=[¥,(5)+¥, ()] -GE-A)"A®_EI(t-15)

=¥, () +¥, (9)]-®, ()A®_EI(¢~17)

=¥ () +Y, () + ¥, ()1 —1) 3.5)

P(0)=1

It is known already from discrete-time generalized
systems that ¥, (s)=®.(s)E, ¥,(s)=D,(s)E
and in general
¥, =E®,, i=—-p-u+1,,.,-1,012,..[8,[9. In
(3.5) therelation ¥ _, =E® _; , aswell as(2.11) and
the property ®A®, =-®,, ,,, if i<0,;<0 [9]
were used. The pats Yg(s)and W, (s)of
W(s) corresponding to the finite and infinite
eigenspaces of (sE — A), are given by

¥, (5) =@, (s)E= T BEs (3.6)
i=0

¥,(s) =®,(s)E = Elq>_i_,Esi (3.7)
i=0

respectively. The transition matrix W(t—¢,) may be

computed by applying the inverse Laplace transform
L. to ¥(s), using the expression (3.16), as follows:

W(r-15) = L'[¥(s)] = L[(SE - A)'E]
L)+ ) + -5 | 69)
where W . (t—t,) is the finite transition matrix,
given by

W (t—17) = L [®p(s)E] = 52)%%0 -4 )kﬁl(t)

. @zﬂ% @,AY -1y EDOEIO )

= PATDQ EI(1 - 17)= MDD E, 1 O[1F,)
(3.9)
and ¥, (t—t,), tO[ty,ty] istheimpulsetransition
matrix, given by
pol
¥, (1) =L [®,;()E] = ¥ 6 (t —1,)®_,_E (3.10)
i=0
According to the initial condition (3.2b), at t =t , it
should hold
W(ty —19) =@ (19 —1)E =@, (0)E
.S a
- (i) -
= o7 (0)®_Eg=1
2 :

0
Using (3.1) and (3.9),(3.10), the zero-input state
vector x; (¢) iscalculated, given x(z, ) , asfollows:
x(6) =¥ p(t —10)X(tg) + ¥, (1 = 16)x(1)
= LA Ex(1)I(t - 1) +

G.11)

p-l1
kzoa“)(t —1)®_,_Ex(z7) (3.12)

Theimpulsesin (3.12) are eliminated if
P I o, _
()X =0y 6t ~1,)®_,E Ex(t;) =0
=0

(3.13)
or eguivalently if x_(¢#) is in the null space of
(®_E), i=12,.,u,ie
x(tg ) ON(®_E) n N(®@_E)n...n N(®_,E) (3.14)
which isthe zero input admissible initial condition.

Considering the derivative of ¥ . (¢,¢,) we obtain:
E¥, (t—17) = (E®)Ae® ) = AW (¢ - 1)
(3.15)

since E®,, isthe projection on the finite eigenspace
EH:r adong the infinite eigenspace AH, [9].



Considering now the distributional derivatives of
¥, (t,t,) weobtain:

. _ Ho 0
E¥,(t-1) = E§5(Z)(1 —1)®_ ;K =
=0 D

i 0w, 0
Aéanwt )0k = A5 3@
=0 O =0 O

=AD, (1 —1t))E-(AD_)ES(t — ¢y)

=AY, (t—1t;)—AY_O0(t—-t,) tO0[ty,tg] (3.16)

The summation of (3.15) and (3.16) gives
E¥ (1 —15) +E¥, (1~ 1))
=AY (t—1y)+AY,(t—1t;) —ADP_ES(t - t,)
= AW (1~ 1))+ A (1~ 15) — A¥_8(t ~ 1),

t Oty ,0) (3.17)
which is the desired equation (3.2a). Note that for
tO[ty ,), 8(t —t,)=0 and therefore (3.17) is
reduced to (3.15).

4. SOLUTION OF THE GENERALIZED
STATE-SPACE MODEL

In this Section we derive the general solution of (1.1),
using the algebraic fundamental matrix approach. The
zero input solution has been derived in Section 3 and
itisgiven by (3.12).

For the derivation of the zero state solution, we need
to apply generalized or distributional derivatives of

functions with “jump” discontinuity” at t, that contain
Dirac operators. If the ordinary derivative u'”(r)of

the function u(¢) exists for al t, with the exception of

the point t,, and represents a locally integrable

function, and if moreover, for both limiting processes
t -ty and t —t; u(r) converges, then the i"

distributional derivative D“u(r) of u(r)is given by
[17],[18]

DYu(t) =u® (1) +

[ PPN ) e ' B
z[u“ gy -u" (g )]6<“(t—ro>, t O[tg ,)
k=0

(4.1
Zero state solution
Theorem 4.1
The zero state solution of (1.1a) is given by

t i '
X5 (0) = IeouA(t_T)q)oB“(f)d’ +y q)—i—lBll(l)(t)

to i=0
S0 S8 -y (@2
PRUIEEDY (t—19)Bu’ (1)) 4.2)
=0 720

Proof: The zero state solution of (1.1a) may be
determined from the inverse Laplace transform L. of

(sE - A)™' BU(s) , asfollows:

X, (1) = LZ'[(sE = A)'BU(s)]

= L(sE-A)" * L (BU(s)]

= LZ'[(®,(s) + @ (5)BU(s)]

= LZ'[®(s) + @, (s)]* LZ'[BU(s)

= L'[® ()] * L, [BU(s)] + LI [®, ()] * L [BU(s)]

= }(I)F(t —-T)Bu(1)dt +

f

-1
+[LBU(s)] SZO [®_,_s* ]BU(S)E
t I u .
= (@, (t—T)Bu(T)dT + | z[(D_KéK (¢ —T)]Bu(T)dT
t tyk=1

t u-1 .
= [e* Do Bu(t)dr + Y ®__BD"u(r)
Z

ty i

t H-l .
= Ie“’O”’“‘T)moBu(r)dT +y @ Bu?()
Pt i=0
p-l T SR o
Y@, Y- B (5)  (43)
i=0 j=0
Note that the derivative of the first term of the right
hand side of (4.3) isthe ordinary derivative, sinceit

isthe right hand derivative at the origin.

Making use of (4.1) for the calculation of the
distributional derivative D”Vu(r) , we finally obtain

Xzs(t) = XF,zs (t) + Xl,zs(t) (44)
where
t
xp (1) = [P VOBu(r)dr =
1
t
A e AT Bu(r)dt (4.5)
ty

-1

H=So__B D)+
Xl,zs() z -i-1bu

i=0

f S0 S5 B () (4.6
PRUEEDY (1 —1))Bu’’(zy) (4.6)
fe= f=)

In the sequel we will verify that x, (r) satisfies

(1.18) for zero initia conditions x(¢,) =0 . Indeed,

applying the distributional derivative operator
onx_ (¢) in (4.3), we obtain



t .
Ex_ (1) = E®yA [e** V@ Bu(1)dT +

5

U .
+Ec™M "M@ Bu(r) + Y E@_Bu" (1)
i=1

t
= A [e** D@ Bu(T)dT + E®,Bu(t) +

o

+ “z A®__Bu? )
—i-1
i=1

t
= A [NV Bu(1)dT + (AD_ + DBu(0) +

5

p-1 )
+AY ®_,_Bu(1)
A

Ly ® A u-1 . O
= A%[e AT Bu(T)dT + zm_,._lBu<')(t)E+
* i=0

+Bu(f) = Ax_ (¢) + Bu(?) 4.7)
Q.E.D.
|
General state-apace solution
Theorem 4.2
The general state space solution of (1.1a) is given
by
X(l) = xzi(t) + Xzs(t) =

= PO Ex(1)1(t - 1) +

p-l
+3 3t~ 1) D_Ex(ty) +
i=0

t -1
+ [e* VD Bu(T)dT + ”z ®_,_Bu”(r)+
Pt i=0
p-l -l .
+y D 3"t ~1)Bu (1)
i=0 j=0
(4.8)
Proof: The general solution of the generalized system
(1.18) results from the summation of the zero input
and the zero state solution, which are given by (6.4)
and (6.11) respectively. The solution (4.8) may be
derived by following the Laplace transform approach.

5. REFERENCES

[1] L. Dai, Singular Control Systems, Lecture Notes
in Control and Information Sciences (Eds. M.
Thoma and A. Wygner), vol. 118, Springer-
Verlag, Berlin, 1989.

[2] SL. Campbell, Sngular Systems of Differential
Equations |1, San Francisco: Pitman, 1980.

[3] K. Ozcaldiran and L. Haliloglou, “Structural
properties of singular systems’, Kybernetika, vol.
29, No. 6, pp. 518-546, 1993.

[4] EL. Yip and E.F. Sincovec, “Solvability,
controllability, and observability of continuous

descriptor systems,” |EEE Automat. Control, vol.
AC-26, pp.702-07, June 1981.

[5] F.L. Lewis, “A tutoria on the geometric analysis
of linear time-invariant implicit systems,”
Automatica, vol. 28, No. 1, pp. 119-137, 1992.

[6] F.L. Lewis, “Descriptor systems. Decomposition
into forward and backward subsystems,” IEEE
Automat. Control, vol. AC-29, pp.167-170, Feb.
1984.

[7] D.G. Luenberger, “Time-invariant descriptor
systems,” Automatica, vol. 14, pp. 473-480,
1978.

[8] B.G. Mertzios and F.L. Lewis, “Fundamental
matrix of discrete singular systems,” Circuits,
Systems and Signal Processing, vol. 8, No. 3, pp.
341-355, 1989.

[9] F.L. Lewis and B.G. Mertzios, “On the analysis
of discrete linear-time invariant singular
systems,” |IEEE Trans. on Automat. Control, vol.
AC- 35, No. 4, pp. 506-511, April 1990.

[10]F.N. Koumboulis and B.G. Mertzios, "On the
Kaman's controllability and observability
criteria for singular systems', Circuits, Systems
and Signal Processing, vol. 18, No. 3, pp. 269-
290, 1999.

[11] F.N. Koumboulis and B.G. Mertzios, “Stability
criteria for singular systems’, Proceedings of the
IFAC Symposium on Large Scale Systems, pp.
33-38, Patras, Greece, July 15-17, 1998.

[12]F.N. Koumboulis and B.G. Mertzios, “A
generalized Hankel matrix for the minimal
realization of singular systems’, Proceedings of
the UKACC Intern. Conf. on CONTROL 96, pp.
819 -824, Exeter, UK, September 2-5, 1996.

[13]F.N. Koumboulis and B.G. Mertzios,
“Decoupling of singular systems via PD
feedback”, Proceedings of the UKACC Intern.
Conf. on CONTROL 96, pp. 19-24, Exeter, UK,
September 2-5, 1996.

[14]F.N. Koumboulis, and B.G. Mertzios, “P-D
feedback for decoupling and pole assignment of
singular systems', J. of Dynamic Systems,
Measurement and Control, Transactions of
ASME, vol. 120, pp. 378-388, 1988.

[15] N.J. Rose, “The Laurent expansion of a
generalized resolvent with some applications,”
SAM J. Appl. Math. Anal., vol. 9, No. 4, pp.
751-758, Aug. 1978.

[16] B.G. Mertzios, “Leverrier's algorithm for
singular systems,” |EEE Trans. on Automat.
Control, vol. AC-29, No. 7, pp. 652-653, July
1984.

[17] P.B. Guest, Laplace Transforms and an
Introduction to Distributions, Ellis Horrwood
Ltd, N. York, 1991.

[18]G. Doetsch, Introduction to the Theory and
Application of the Laplace Transformation,
Springer Verlag, Berlin,1970.



	I
	INTRODUCTION
	FUNDAMENTAL MATRIX

	Definition 2.1
	Theorem 2.2
	
	3. TRANSITION MATRIX


	Definition 3.1
	
	
	4. SOLUTION OF THE GENERALIZED     STATE-SPACE MODEL

	5. REFERENCES



	cc: Proceedings of the 8th IEEE Mediterranean Conference
on Control and Automation (MED 2000)
Rio, Patras, GREECE                                          17-19 July, 2000


