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Abstract. The problem of input−output Decoupling with simultaneous Disturbance
Rejection (DRD) of a Distillation Column is studied. The results reported are first in the
field due to the fact that the combined DRD problem is resolved for the case where time
delays introduced in the column are taken into account. The controller derived is realistic to
implement, while it yields a significant improvement in the system’s performance over
other reported distillation column studies.
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1. INTRODUCTION

The problem of input−output Decoupling is a very
important control design problem, since it aims in
reducing a multi−input multi−output system to a set of
single−input single−output systems, thus facilitating
the control strategy. The problem of Disturbance
Rejection is another important and applicable control
design problem, since it aims in eliminating the
influence of the disturbances in the system’s output.
The combined problem of Disturbance Rejection and
Decoupling (DRD) is of obvious importance, since it
aims in simultaneously eliminating the influence of
the disturbances in the system’s output while reducing
a multi−input multi−output control problem to that of
controlling a set of scalar systems.

In [6] the solution of the DRD problem for time−delay
systems via realizable controllers has been derived for
the first time. In particular, the necessary and
sufficient conditions for the solvability of the problem
via realizable proportional state−feedback controllers
have been established. Also, the general analytical
expressions of the realizable state−feedback
controllers as well as of the respective input−output
decoupled with rejected disturbances closed−loop
system have been derived.

In Distillation Columns decoupling and disturbance
rejection design techniques have been applied to
improve the system’s performance. For input−output

decoupling several case studies have been reported
[1], [3]−[5]. For disturbance rejection fewer studies
have been reported [9], [10]. For the combined
problem (DRD) in the study of Distillation Columns
incorporating time delays it appears that no results
have as yet been reported.

In this paper the DRD problem of Distillation
Columns involving time delays is studied. The
particular Distillation Column model used is the
linearized model derived in [9] modified so as to take
into account the time delays that occur. The design
procedure applied in this paper is that reported in [6].
This procedure greatly facilitates the derivation of the
general form of the controller matrices, of the general
analytical expressions of the input−output decoupled
with partially rejected disturbances closed−loop
system as well as of the closed−loop system
properties. The resulting closed−loop system yields a
significant improvement in the following: It eliminates
the interaction between the control loops, it
completely eliminates the influence of one of the
disturbances in the system’s outputs while it confides
the influence of the second disturbance to only one of
the system’s outputs and thus reduces the operating
cost of the column as well as the production of
off−specification products.
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2. THE MATHEMATICAL MODEL OF THE
DISTILLATION COLUMN

The problem of modelling and control of distillation
columns has been extensively studied in the past. The
controller design techniques reported include optimal
control, adaptive control, robust control, I/O
decoupling, disturbance rejection, e.t.c. With regard to
the decoupling techniques, several case studies have
been reported. With regard to disturbance rejection
techniques, fewer studies have been reported. For the
combined problem (DRD) in the study of Distillation
Columns incorporating time delays it appears that no
case study has as yet been reported.

In this paper the DRD problem of an N−tray
Distillation Column will be studied using the
technique reported in [6]. The state−space
mathematical model used in this paper is a modified
version of the linearized model derived in [9] to
include time delays. The state−space mathematical
model in the frequency domain has the form

sX(s)=A(e-sT)X(s)+BU(s)+DU(s)                             (1)
Y(s)=CX(s)                                                               (2)

where

where n=N+2 and where xD is the liquid composition
in the condenser, xB is the is the liquid composition in
the reboiler, xi (i=1,...,N) is the liquid composition on
the i-th tray, R is the liquid flow rate in the enriching
section V is the vapour flow rate in the stripping
section (mol/min), xF  is the liquid composition of the
feed and F is the liquid flow rate of the feed. On the
above “Δ” suggests deviation from the steady state.

The elements of the matrices A(e-sT), B and D are

a11=−V/HD, a12=(VM1/HD)exp(−sτ1), an-1,n=VMB/HN,

ann=−(VMB+B)/HB, αι,ι+1=VMi/Hi-1 ; (i=2,...,n-2),

aii=−(VMi-1+Li-1)/Hi-1 ; (i=2,...,n−1), an,n-1=LN/HB,

a21=(R/H1)exp(−sτ2), αι,ι-1=Li-2/Hi-1 ; (i=3,...,n-1),

b21=(xD−x1)/H1, bn1=(xN−xB)/HB, bn-1,2=(ψΒ−ψΝ)/HΝ,

bi2=(ψi−ψi-1)/Hi-1 ; (i=2,...,n-2), bn2=(xB−ψB)/HB,

bi1=(xi-2−xi-1)/Hi-1 (i=3,...,n-1), df+1,1=F/Hf,

dn2=(xN−xB)/HB, df+1,2=(xF−xf)/Hf, di2=(xi-2−xi-1)/ Hi-1 ;
i=f+2,...,n-1.

where Hi is the liquid holdup at the i-th plate, HD is the
liquid holdup at the condenser (mol) and HB is the
liquid holdup at the reboiler, a is the relative volatility
and where τ1, τ2 are the delays of the transportation
line from the first tray to the condenser and from the
condenser to the first tray, respectively. The
undersigned quantities denote standardized steady
state values. From the study of the steady state of the
system the following relations are derived

ψ1=xD

Li-1bi-1+Vbi2=0   ;   i=2,...,n-1

LNbn1+Vbn2=0   ;   i=n

From the above relations and due to the fact that
compositions xι and ψi increase from the bottom to the
top of the column we conclude the following relations

bi1>0  ;  i=2,...,n                                                       (3)
bi2<0  ;  i=2,...,n                                                       (4)

It is remarked that the above model has been obtained
by taking a mass balance for a low−boiling component
over each of the trays, by linearizing around the
steady−state value and under several assumptions,
which are:
1. The gas−liquid equilibrium relationship is given by
ψ=ax/{1+(a-1) x} where a is constant.
2. Each of the trays is an ideal tray.
3. The vapor−phase holdup on each of the trays can be
ignored, while the liquid holdup is constant and
independent of the time and of the tray.
4. Both the vapor and the liquid molar flow rates
within the Column are constant in the enriching as
well as in the stripping section.
5. The condenser is a total condenser.
6. The feed liquid is at its boiling point.
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7. The number of states n include the condenser and
the reboiler.

3. DECOUPLING WITH SIMULTANEOUS
DISTURBANCE REJECTION OF THE
DISTILLATION COLUMN

Application of the theoretical results presented in [6]
to the state−space mathematical model of the
distillation column presented in Section 2 yields the
following:

3.1 Necessary and sufficient conditions

It holds that d1=1 and  d2=0 and hence that

Checking for the decoupling conditions [6] we have
that detC*(z)B(z)=a12z1(b21bn2−bn1b22). The factor
d=(b21bn2−bn1b22) is always different than zero since

d=b21bn2−bn1b22=(−F/V) b21bn1<0                              (5)

where use was made of relation (3,4). Therefore,
system (1,2) can be decoupled. Furthermore, and since
relation (5) is always and unconditionally true, the
system is structurally decouplable. Checking the
disturbance rejection condition we observe that since
the matrix C*(z)D(z) is not identically zero, we
conclude that complete disturbance rejection can not
be achieved. However, we can reject one of the
disturbances, namely ΔxF.
The mathematical solution to the problem at hand is
given by the following relations

where γ= dα12exp (-sτ1).

The elements of the matrix F(e-sT) are given by the
following relations:

Where λ11, λ12, λ21 are arbitrary parameters.

Due to the existence of the factor exp(sτ1) in the
general form of the matrices F(e-sΤ) and G(e-sΤ) the
realizability of the matrices F(e-sΤ) and G(e-sΤ)
depends upon the choice of the arbitrary parameters.
To check the conditions presented in [6] regarding the
realizability of the matrices F(e-sΤ) and G(e-sΤ) we start
by considering only the nonzero columns of the matrix
F(e-sΤ), denoted by F*(e-sΤ) and perform the
calculations necessary to achieve the right
birealizable unitarizing transformation. We start by
rearranging the matrix F*(e-sΤ) as follows ([6])

f*(e-sT)=ψ(e-sT)N(e-sT)−ν(e-sT)

where f*(e-sT) is a 1×10 row vector, ψ(e-sT) is a 1×3
row vector with arbitrary elements, ν(e-sT) is a fixed
1×10 row vector and N(e-sT) is a fixed 3×10 matrix.
The form of the matrix N(e-sT) is as follows:

the nonzero elements of the matrix N(e-sT) are given in
the following relations:

Τhe vector ν(e-sT) has the following form
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The ten elements of the vector ν(e-sT) are given by the
following relations:

In order to apply the Right Birealizable Unitarizing
Transformation we compute the following matrices

Hence it holds that [6]

It also holds that [6]

where

According to [6] and since the vector ν*(e-sT) is
realizable the third necessary and sufficient condition
is satisfied and therefore a realizable solution to the
DDR problem exists.

3.2 Realizable Solution

The general form of the realizable matrices achieving
I/O Decoupling and partial Disturbance Rejection are
given by the following relations

where the nonzero elements of Fr are
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3.3 Closed−−−−loop system

The resulting closed−−−−loop system has the form

where

Remark 3.1 Observing the form of the closed−loop
system one may readily conclude the following: The
first output y1(t) namely the liquid composition of the
first tray (top product) can be controlled by
manipulating only ω1(t). In that case the disturbances
have no effect on the top product. The second output
y2(t) namely the liquid composition of the n−th  tray
(bottom product), is influenced by the second
disturbance (the liquid flow rate of the feed tray).
Since the system relating the bottom product with
external input and disturbance is a single−input
single−output (siso) system that can be made
delay−free any of the well−known techniques for siso
systems can be applied to suppress the influence of
this disturbance on the system output. Since in
practice, one usually must control the concentration
and the quality of the top product, the present
technique has successfully eliminated the influence of
the disturbances. At the same time, quality control of
the top product is easily achieved by manipulating
ω1(t).

Remark 3.2. The characteristic polynomial of the
closed−loop system is

The cancelled out polynomial is det(sI−AC2). The form
of AC2 is given in [6]. In general it is very tedious to
check the stability of tis polynomial. It is relatively
easy to study the case where the column has the
minimum number of trays i.e for N=3. For this case
we have:

Since this polynomial does not include delays its
stability can be determined with the well−known
criteria of regular systems. Hence the stability of the
closed−loop system may be determined. In order for
P3(s,e-sT) to be stable the following relations must hold

where

and where

Since the liquid composition χι increases from the
bottom to the top of the column it holds that  K1>0
and K2>0.On the basis of these inequalities we
conclude that

It also holds that
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From these last two relations we readily conclude that
the cancelled out polynomial is stable.

4. CONCLUSIONS

In this work the problem of controlling a distillation
column has been investigated. To control the
distillation column, I/O decoupling and disturbance
rejection techniques have been applied. The model
used for the study has been obtained by linearizing
around the steady state of a nonlinear model taking
into account the existence of delays in the
transportation lines. The results derived are the
following:
a) Decoupling techniques can be applied

independently of the number of the trays that the
column consists of.

b) Decoupling can be achieved by measuring and
feeding back only five concentrations, no matter
what the number of the trays is. This is
particularly important since the cost and the
implementation of the controller does not vary
with the number of trays.

c) The decoupled closed−loop system eliminates
the interaction between the control loops, thus
facilitating independent regulation of the system
outputs. Furthermore, it improves the
concentration of both the distillate and the
bottom product.

d) The influence of one of the disturbances is
completely eliminated while the other is
restricted to affect only the bottom product.
Furthermore, by using well−known siso
techniques disturbance attenuation can be
accomplished.

e) The aforementioned four contributions result in
the reduction of both the operating cost and the
production of off−specification products.
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