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Abstract. The present work considers corridor–following maneuvers for nonholo-
nomic mobile robots, guided by sensory data acquired by panoramic cameras. The
panoramic vision system provides information from an environment with textured
walls to the motion control system, which drives the robot along a corridor. Panoramic
cameras have a 360� visual field, a capability that the proposed control methods ex-
ploit. In our sensor–based control scheme, optical flow information from several
distinct viewing directions in the entire field of view of the panoramic camera is used
directly in the control loop, without the need for state reconstruction. The interest of
this lies in the fact that the optical flow information is not sufficient to reconstruct the
state of the system, it is however sufficient for the proposed control law to accomplish
the desired task. Driving the robot along a corridor amounts to the asymptotic stabi-
lization of a subsystem of the robot’s kinematics and the proposed control schemes are
shown to achieve this goal.
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1. INTRODUCTION

Corridor–following maneuvers for mobile robots with
nonholonomic constraints are considered, which are
guided by sensory data acquired by panoramic cam-
eras. A vision system with a 360� visual field provides
information from an environment with textured walls to
the motion control system, which drives the robot along
a corridor.

The main advantage of panoramic cameras is that they
are not constrained by a limited field of view, like clas-
sical camera setups. Robotic tasks requiring movement
in one direction while observing environmental features
in a different one, can then be more easily implemented.

In navigation tasks of mobile robots, the main alterna-
tives to panoramic cameras are moving cameras (e.g.
mounted on pan–and–tilt platforms or hand–eye sys-
tems) and multiple–camera systems mounted on the
robot. In the case of moving cameras, their precise
positioning, especially when the mobile robot is also
moving, may be a challenging control problem. Look-
ing in a direction outside from the current field of view

of the camera, requires repositioning the sensor, which
involves a delay that may be unacceptable when the en-
vironment also changes. This problem becomes more
severe when the direction where the camera needs to
look next is not known a–priori; time-consuming ex-
ploratory actions are then necessary. In the case of
multiple–camera systems, the lack of a common nodal
point of the cameras and the elaborate calibration re-
quired, complicate their use. The duplication of opti-
cal and electronic components increases the cost of the
system. Moreover, the system lacks flexibility in ob-
serving an arbitrary direction of interest. In contrast
to the above, panoramic cameras offer the capability of
extracting information simultaneously from all desired
directions of their visual field. Neither moving parts,nor
elaborate control mechanisms or expensive hardware is
required to achieve this capability.

A panoramic image generated by a camera with a para-
voloid mirror (like the ones that we consider in this
work) can be thought of as a collection of images ac-
quired by ordinary perspective cameras that share a com-
mon nodal point. This property simplifies significantly



the derivation of the necessary information [8], [13].
The advantages of these sensors with respect to the so-
lution of the 3D motion estimation problem, are also
well known [3].

Biological systems are known to exploit wide field–of–
view images in controlling their motion. The velocity
of the perceived relative motion between the moving
biological observer and its environment (optical flow),
inferred from such image sequences, can be used to
control the motion of the observer. Bees, for example,
have laterally–pointing eyes, which amounts to a wide
f.o.v., and use optical flow from such images to infer
distance flown and control their flight [2], [12].

Sensor–based control strategies for robotic systems are
well developed for manipulator arms; visual servoing,
for instance, which consists in the direct use of visual
information in a system’s control loop [5], provides rela-
tively simple and robust solutions to various positioning
and tracking tasks. Their extension to the case of mo-
bile robots is of significant importance for practical ap-
plications (e.g. in automating car driving maneuvers).
However, it becomes complicated by the presence of
nonholonomic kinematic constraints in the motion of
the mobile base, necessitating the use of nonlinear con-
trol analysis and design tools [14].

Vision–based path–following tasks, similar to ours, are
considered in [9], [1] and [4]. In [9], a two–camera sys-
tem is considered, which is mounted on a mobile robot,
with the cameras facing opposite lateral directions. The
disparity between the average optical flow from the cam-
eras is used in a PID loop controlling the angular velocity
of the robot, while this moves at constant speed along
a wall. In [1], optical flow information from a partic-
ular arrangement of three perspective cameras guides a
path–following task. In [4], a landmark–based method
for the reconstruction of the pose of a mobile robot from
panoramic images is presented. The reconstructed pose
is, then, fed into the nonlinear state–feedback path–
following scheme developed in [10], [11]. From the
image understanding viewpoint, this reconstruction is a
difficult and error–prone procedure, which we attempt
to bypass in our scheme. These works do not attempt,
in general, a stability analysis of the resulting control
scheme.

The task that we attempt to accomplish amounts to the
asymptotic stabilization of a subsystem of the robot’s
kinematics. Optical flow information from several dis-
tinct viewing directions is used. After being derotated,
it provides an estimate of the scaled difference of in-
verse depths in these directions. Our sensor–based
control scheme employs this estimate directly in the
control loop, without reconstructing the state of the
system. This is very much in the spirit of visual ser-
voing schemes. The resulting control law is shown,
using Lyapunov’s indirect method, to possess the nec-
essary asymptotic stability properties, in the cases that
the heading speed of the mobile robot remains strictly

positive or negative over the entire duration of the task
and in the case that it varies periodically.

2. MODELING

2.1. Mobile Robot Modeling

We consider a mobile robot of the unicycle type moving
on a planar surface inside a corridor with straight parallel
textured walls. We suppose that a panoramic camera is
mounted on the robot (fig. 1).
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Fig. 1. Mobile Robot with Panoramic Camera

Consider an inertial coordinate systemfFOg centered
at a pointO of the plane and aligned with one of the
walls, a moving coordinate systemfFMg attached to
the middleM of the robot’s wheel axis and another
moving onefFCg attached to the nodal pointC of the
camera. Let(x; y) be the position of the point M and�
be the orientation of the mobile robot with respect to the
coordinate systemfFOg: Let � � 0 be the distance of
the point C from M and� > 0 the width of the corridor.

We suppose that the wheels of the mobile platform roll
without slipping on the plane supporting the system.
This induces a nonholonomic constraint on the motion
of the mobile robot, due to the fact that the instantaneous
velocity lateral to the heading direction of the mobile
platform has to be zero. From this, we get the usual
unicycle kinematic model for the mobile platform

ẋ = v cos� ; ẏ = v sin� ; �̇ = ! ; (1)

wherev
def
= ẋ cos� + ẏ sin� is the heading speed and!

is the angular velocity of the unicycle.

2.2. Panoramic Camera Modeling

Consider a pinhole camera and a camera-centered co-
ordinate systemCXY Z positioned at its optical center
C; with theCZ axis coinciding with the optical axis.
Assume that the camera is moving rigidly with respect
to its 3D static environment, with translational veloc-
ity (U; V;W ) and rotational velocity(�; �; 
); both ex-
pressed with respect to its coordinate system. Under per-
spective projection, the relation between the 2D velocity
(ux; uy) of an image pointp with image coordinates
(x; y) and the 3D velocity of the corresponding3D point



(a) Original Panoramic Image

(b) Corresponding Unfolded Cylindrical Image

Fig. 2. Panoramic Image

P with coordinates(X;Y; Z) is given by the optical flow
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sider a mobile robot of the type described above, with
a panoramic camera mounted on it, so that the sym-
metry axis of the paravoloid mirror coincides with the
robot’s axis of rotation (in the notation of fig. 1, this
corresponds to� = 0:)

The panoramic image can be “unfolded” giving rise
to a cylindrical image (fig. 2). Different columns of
the resulting cylindrical image correspond to different
viewing directions in the range[0; 2�]:We suppose that
the heading direction of the robot is the one recorded
on the cylindrical image column that corresponds to
� = �=2 (fig. 2.b).
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Fig. 3. Panoramic Camera Geometry

The resulting cylindrical images can be approximated
by a number of perspective images that have no overlap-
ping visual fields and which are tangent to the cylindrical

surface. For these “virtual” perspective images, we may
employ the optical flow equations to analyze the flow
generated due to the robot’s motion. More specifically,
consider the column of the cylindrical image which cor-
responds to the viewing direction�: Suppose that the
part of the 3D scene projected on this column lies in
depthd: The heading speedv of the robot results in two
components of translational velocity in the image coor-
dinate system:W = v sin� andU = v cos� (see fig.
3). Since we consider a robot that moves on a planar
surface, the vertical componentV of the camera’s trans-
lational velocity becomes zero. Regarding the rotational
velocity, only� is non–zero. By taking into account the
above considerations, as well as the fact thatx � 0 in
the local coordinate systems of all “virtual” perspective
cameras, the optical flow equations become:

ux = �
v cos�f

d
� �f ; uy =

y v sin�
d

: (2)

In the heading direction of the robot(� = �=2); the
horizontal component of the optical flowuxh is equal to
��f; i.e. it depends only on the rotational component
of the robot’s motion.

Suppose now that we measure ([6]) the horizontal com-
ponent of the optical flowux�1

and ux�2
in two dif-

ferent directions�1 and �2, respectively, with cor-
responding depthsd1 and d2: Define the quantities

L1
def
= ux�1

+ ux�2
� 2 uxh and L2

def
= ux�1

� ux�2
: It

can be easily verified thatL1 = �vf( cos�1
d1

+ cos�2
d2

)

andL2 = �vf( cos�1
d1

� cos�2
d2

): The depthsd1 andd2

can, then, be specified fromL1 andL2; which are mea-
sured directly from visual data, provided that the head-
ing speedv of the robot is known or can be estimated.

Notice that in the case that the directions�1 and�2

are arranged symmetrically about the heading direction
of the robot (when�1 = �

2 + �; �2 = �
2 � �; thus

cos�1 = � cos�2 = � sin�), the quantityL1 permits
the estimation of the scaled difference of inverse depths,
sinceL1 = v f sin� ( 1

d1
� 1

d2
):

Consider the raysd1 andd2 in the forward directions
� and�� and the raysd3 and d4 in the backwards
directions�(� � �) and � � �; with respect to the
heading direction of the robot (fig. 1). We suppose
that d1 andd4 intersect the left wall, whiled2 andd3

intersect the right wall of the corridor. The magnitudes
of the rays (depths) are related to the parameters of the
system and to the state of the robot as follows:

d1 =
�� y � � sin�

sin(� + �)
; d2 = �

y + � sin�
sin(� � �)

;

d3 =
y + � sin�
sin(� + �)

; d4 = �
�� y � � sin�

sin(� � �)
:

(3)

We suppose thaty 2 (0; �) and� 2 (��; �); with
0< � < �

2 : Thus, sin(� + �) 6= 0 and sin(� � �) 6= 0:



We saw that the scaled differences of inverse depths

L1;2
1 = ux1 + ux2 � 2uxh = vf sin�

�
1
d1
�

1
d2

�
;

L3;4
1 = ux3 + ux4 � 2uxh = vf sin�

�
1
d4
�

1
d3

�

(4)

can be directly extracted from the panoramic camera
data by calculating the optical flow at a total of five
distinct directions. It is of interest to consider whether
they suffice for the corridor following task, even though
they are not sufficient for a full reconstruction of the
state(y; �):

3. MOTION CONTROL

3.1. The Task: Corridor Following

The task of following a straight–line corridor consists
in using the angular velocity of the system to drive the
lateral distance of the robot from the walls, as well as its
orientation, to desired values. This amounts to asymp-
totically stabilizing the state(y; �) of the subsystem

ẏ = v sin� ; �̇ = ! (5)

of the unicycle kinematics 1 to(y?; �?) = ( �2; 0); using
only the angular velocity! as the control of the system.
The heading speedv(t) cannot be controlled, but we
suppose that it is known at all times. (For details on
stability concepts and methods, see [7], [16].)

3.2. Motion Control under Incomplete State Infor-
mation

When reconstruction of the state(y; �) from the
panoramic camera data is possible, a path-following
control scheme, similar to the one developed in [10],
[11], can be applied to the system ([4]).

In the case that reconstruction of the state(y; �) from the
panoramiccamera data is not desirable, a motion control
scheme based on the scaled difference of inverse depths,
extracted directly from the optical flow corresponding
to the panoramic image sequence, is possible. Two
cases, however, need to be distinguished and treated
differently, namely the case where the heading speedv

is strictly positive or negative at all times, and the case
where it is allowed to become zero.

In the case thatv is time–varying, but strictly positive
(v(t) > 0;8t � 0); the angular velocity control!1 =

�k1 L
1;2
1 ; with positive gaink1 and withL1;2

1 given by
4, can be shown to locally asymptotically stabilize the
system 5 to(y?; �?): An input scaling procedure [11]
can be used to reduce the linearization of the closed–
loop system around the desired equilibrium to a linear
time–invariant system.

Proposition 1 (v(t) > 0)

Let the heading speedv of the unicycle 1 be time–
varying and assume that it is strictly positive at all
times, piecewise continuous and bounded. Letd1 and
d2 be the distances specified in the previous section. The
angular velocity

!1 = �k1 L
1;2
1 = �k1 v f sin�

�
1
d1
�

1
d2

�
; (6)

with gaink1 > 0; stabilizes locally asymptotically the
subsystem 5 of the unicycle kinematics to the equilibrium
(y?; �?) = ( �2; 0):

Proof

The linearization of the closed–loop system around
(y?; �?) is

ż = A1(v) z
def
=

�
0 v

�k1v�1 �k1v�2

�
z ; (7)

where z
def
= (z2; z3)

def
= (y � y?; � � �?); �1

def
=

8f sin2 �
�2 > 0 and�2

def
= 4f sin�

�2 (� cos�+ 2� sin�) > 0:

In 7, we can replace differentiation with respect to time
t by differentiation with respect to the variables defined

by ṡ
def
= ds

dt
= jv(t)j: Sincev is piecewise continuous,

bounded and positive at all times,s is strictly monotonic.
Differentiatingz with respect tos; we get from 7:

dz

ds
= A2 z

def
=

�
0 1

�k1�1 �k1�2

�
z ; (8)

The time–varying linear system 7 is now transformed
into a time–invariant one, whose stability can be estab-
lished by e.g. the Routh–Hurwitz test.

Therefore, from Lyapunov’s indirect method, the non-
linear closed–loop system is asymptotically stable
around(y?; �?):

Analysis of the second–order time–invariant linear sys-
tem 8 shows that critical damping is achieved for
k1 = 4�1

�2
2
: This can be used as a guideline in select-

ing the gain of the control!1:

In the case thatv is strictly negative, and even if it is
constant, controlling the system 5 by!1 above, will lead
to instability. The linearization of the closed–loop sys-
tem can be shown to possess eigenvalues with positive
real part. Therefore, a different control law is required.

Indeed, in the case thatv is time–varying, but strictly
negative(v(t) < 0;8t � 0); the angular velocity con-
trol

!2 = �k2 L
3;4
1 = k2 v f sin�

�
1
d3
�

1
d4

�
; (9)



with positive gaink2; can be shown to locally asymp-
totically stabilize the system 5 to(y?; �?); provided
that� cos� � 2� sin� > 0: The proof is similar to that
of Proposition 1 and is not repeated here. If!2 above
is applied to the system whenv is strictly positive, the
system, again, becomes unstable.

Up to this point, we considered that the heading speed
v is either strictly positive or strictly negative. It is of
interest to extend these results to the case whenv is al-
lowed to cross zero. However, the previous input scaling
procedure cannot be used, in this case, to demonstrate
asymptotic stability of the subsystem 5 of the unicycle
kinematics.

The control law! that we consider whenv(t) is allowed
to cross zero, consists in applying the angular velocity
!1 of 6 whenv(t) � 0 and switching to!2 of 9 when
v(t) < 0: Choosingk1 = k2 = k; the control law! is

! =

�
�k L1;2

1 ; if v(t) � 0;
�k L3;4

1 ; otherwise.
(10)

We first derive the linearization of the non–autonomous
closed–loop system corresponding to the control 10.

Proposition 2 (Linearization under switching!)

Let the heading speedv of the unicycle 1 be time–
varying and assume that it is continuous and bounded.
Let(y; �) 2 (0; �)� (��

2 ;
�
2 ): The linearization of the

closed–loop system under the switching control law 10
is

ẋ(t) = A(t) x(t) ; (11)

where A(t)
def
=

�
0 v

�k�1v �k(�2 v + �3 jvj)

�
;

with �1
def
= 8f sin2 �

�2 > 0; �2
def
= 8f sin2 �

�2 � � 0; �3
def
=

4f sin� cos�
�

> 0: This control law stabilizes uniformly
asymptotically over[0;1) the subsystem 5 of the uni-
cycle kinematics to(y?; �?); provided that the corre-
sponding linearized system 11 is also uniformly asymp-
totically stable over[0; 1):

Proof

The switching control law! of equation 10 can be ex-
pressed as

! = �k �1(y; �) v � k �2(y; �) jvj ; (12)

with k > 0; �1(y; �)
def
=

f sin2 � cos�
�

2(y+� sin�)��
�

(��y�� sin�)(y+� sin�) and

�2(y; �)
def
= f sin� cos� � sin�

(��y�� sin�)(y+� sin�) :

Applying the coordinate transformationx1
def
= y �

y?; x2
def
= � � �?; the system equilibrium is moved

to x = 0: The closed–loop system becomes

ẋ=f(t; x)
def
=

�
v(t) sinx2

�k �1(x) v(t)� k �2(x) jv(t)j

�
;

where �1(x)
def
= �1

(x1+� sinx2) cosx2

1� 4
�

2 (x1+� sinx2)2 and �2(x)
def
=

�3
sinx2

1� 4
�

2 (x1+� sinx2)2 : Notice thatf(t; x) is continuously

differentiable with respect to its second argument.

Define A(t)
def
=

�
@f
@x

(t; x)

�
x=0

; which has the form

shown earlier and where�1
def
= @�1

@x1
(0); �2

def
=

@�1
@x2

(0); �3
def
= @�2

@x2
(0):

The linearization of the closed–loop system is the time–
varying linear system 11 for the matrixA(t) defined
above. Sincev is bounded,A(t) is also bounded.

Definef1(t; x)
def
= f(t; x) � A(t) x: It is easy to see

by series expansion that limjjxjj!0 supt�0
jjf1(t; x)jj

jjxjj
=

0: Thus, from Lyapunov’s indirect method for non–
autonomous systems [16], the result follows.

Contrary to the case wherev is strictly positive or neg-
ative, the linearized system is now time–varying and
its asymptotic stability can be established only in spe-
cial cases. We consider, then, the case whenv(t) is
time–periodic. We establish that the linearization of
the closed–loop system corresponding to the control 10
is uniformly asymptotically stable, provided that the
periodic excitationv(t) varies faster than the system’s
solution. In this case, the subsystem 5 is also uniformly
asymptotically stable.

Proposition 3 (Periodicv)

Assume that the heading speedv is (i) time–periodic
with periodT > 0 (i:e: v(t + T ) = v(t)); (ii) continu-
ous, (iii) there exists aT1 2 [0; T ) such thatjv(T1)j > 0
and (iv)

R T
0 v(�)d� 6= 0: Assume further that�3 > �2:

Then, there exists an�0 > 0; such that the zero solution
of

ż(t) = A(� t) z(t) ; (13)

whereA(t) is the matrix defined in 11, is uniformly
asymptotically stable over[0;1); for all � > �0:

The exponential stability of 13 follows from a classical
averaging result [7], which considers the eigenvalues of

the matrixĀ
def
= 1

T

R T
0 A(�)d�: The Routh–Hurwitz test

can be used to establish that, under the above assump-
tions, all eigenvalues of̄A have strictly negative real
part. For linear systems, exponential stability is equiva-
lent to uniform asymptotic stability and uniform asymp-
totic stability of the nonlinear system follows from Lya-
punov’s indirect method.



4. SIMULATION RESULTS

Fig. 4 shows MATLAB simulations of the system,
where the heading speed of the mobile robot varies pe-
riodically with time (v(t) = 0:1 + sint + sin t

2). The
model parameters are� = 10; f = 1; � = 0; � = �

4 :

The switching control 10 with gaink = 4 is used
to achieve stabilization of(y; �) to the desired values
(5; 0) starting from the initial state(4; 0:4):
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5. CONCLUSIONS

A framework was presented for the utilization of data
from panoramic images to the task of corridor following
by a mobile robot. The visual servoing–type schemes
derived were shown to possess the required stability
properties. Further details on the stability analysis and
related simulation studies can be found in [15]. Future
work will focus on the experimental evaluation of these
techniques, which is currently in progress.
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