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Abstract. This paper deals with the application of in…nite-dimensional delay dynami-
cal systems in the study of multiple regenerative chatter machining. Bifurcation equations
describing the dynamics when linearized stability is lost have been derived. Two cases are
considered. First, when Hopf’s conditions hold, and second when one of them is violated.
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1. INTRODUCTION

The classical theorem of Hopf Bifurcation for the
study of periodic solutions of ordinary di¤erential
equations at an equilibrium point has become the
standard mathematical tool for reducing higher di-
mensional nonlinear dynamical systems to lower
dimensional systems, while at the same time pre-
serving the emanating dynamics. This is not sur-
prising, since the reduction and the emanating dy-
namics can be established according to prescribed
degenerate assumptions, known as the conditions
or the hypotheses of Hopf’s theorem. The condi-
tions state that among a known number of eigen-
values associated with the linearized stability of
a dynamical system at a particular equilibrium
point, there is a pair of complex-conjugate eigen-
values crossing the imaginary axis with nonzero
velocity, and while the remaining eigenvalues lie
in the left hand side of the complex plane. The
description of the dynamics are often achieved by
the determination of the zeros of a single scalar
bifurcation equation of the form g(a;¹) = 0: The
variables a and ¹ denote, respectively, the am-
plitude response and the varying bifurcation pa-
rameter of the dynamical system under investiga-
tion. Sketches of the solutions of g(a; ¹) = 0; pre-
sented in the form of bifurcation diagrams in the
a ¡ ¹ plane, qualitatively display the boundaries
of stable and unstable dynamics. When anyone of

Hopf’s conditions is violated, the system will expe-
rience degenerate Hopf bifurcation that typically
entails distinctive wealth of dynamics [2]. For in-
stance, the existence of additional eigenvalues on
the imaginary axis can give rise to degenerate dy-
namics of dimension > 2: This degeneracy is the
simplest form to violate Hopf’s conditions, and
there is substantial amount of literature dealing
with this degeneracy.

In this paper degenerate Hopf bifurcation as ap-
plied to orthogonal chip removal process subject to
multiple regenerative chatter is considered. Chat-
ter is an instability machining dynamics that vi-
olently occurs when the tool is cutting a surface
x(t) from a workpiece at time t that is already
modulated from the pre-machined surface pro…le
x(t ¡ h) at time t ¡ h, where h is the time delay
between successive tool cuts. Owing to this insta-
bility dynamics - which is the coupled dynamics
of the interactions between the cutting process,
tool, workpiece and machine-tool structure, irreg-
ularities or regenerative chatter marks on both the
surface …nish and on the tool are produced, and
transitively ‡uctuating cutting forces in a nonlin-
ear delay manner. Equations governing the chat-
ter machining models are typically delay di¤eren-
tial equations of the retarded type with a distinct
parameter ¹ representing some prescribed cutting
conditions. The analysis will begin by …rst con-
sidering the linearized stability of transcendental
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characteristic equations for steady state machin-
ing as pairs of complex conjugate eigenvalues cross
the imaginary axis. Su¢cient conditions ensuring
stable and unstable machining under Hopf and de-
generate bifurcations will be established. Second,
the corresponding dynamics when stable machin-
ing is lost will be examined by the construction
of a generalized center manifold in an in…nite-
dimensional space for a …xed and multiple time
delays. The integral averaging method will be
employed to obtain the required bifurcation equa-
tions of the form g(a; ¹) = 0:

2. HOPF BIFURCATION
They are called retarded delay di¤erential equa-
tions (RDDEs), if the delay term appears in the
restoring force of the described system. Using
the standard notation according to [5], the system
considered is described by RDDEs of the form

_x(t) = f(xt(µ); ¹; "); x(t) µ <n; (1)

xt(µ) µ C := C([¡h; 0];<n);
with an initial continuous function Á(µ) de…ned on
the interval [¡h; 0]: By the fundamental de…nition
xt(µ) = x(t + µ); ¡h · µ · 0; it is required that
Á(µ) = xt(µ), or equivalently, Á(µ) = x(t + µ);
¡h · µ · 0; t ¸ 0: The element xt(µ) is the
past history of the future variable x(t + µ); and
a solution trajectory of xt(µ) will always coin-
cide with that of x(t + µ) at time t = 0: f =
f(xt(µ); ¹) : <xC ! <n is a nonlinear functional
mapping, and it is continuously di¤erentiable with
respect to the arguments xt(µ); ¹: " is a scaling
parameter that takes values between 0 and 1: For
equation (1), there is an equilibrium point which
is assumed without loss of generality to be the
trivial solution xt(µ) = 0: Furthermore, at this
equilibrium, the function f satis…es f(0; ¹; 0) ´
@f(0; ¹; 0)=@xt(µ) ´ 0; and as the bifurcation pa-
rameter ¹ varies near ¹c; the trivial solution loses
stability and undergoes a degenerate bifurcation.
In this way, the Fréchet derivative _f(0; ¹; 0) of f
evaluated at the equilibrium point is assumed to
have …nite pairs of eigenvalues that cross the imag-
inary axis in the complex plane. Thus, the varia-
tional delay di¤erential equation is obtained,

_x(t) = L(Á(µ); ¹)Á(µ) + "¢f(Á(µ); ¹; "); (2)

where the linear functional mapping L =
L(xt(µ); ¹) : Cx< ! <n is given by L(Á(µ); ¹) ´
_fÁ(0; ¹; 0) =

0R
¡h
[d´(µ; ¹)]Á(µ) and ¢f =

¢f(xt(µ); ¹; ") is strictly nonlinear. The element

´(µ; ¹) : [¡h; 0] ! <n is a function of bounded
variation in [¡h; 0] which is described by ´(µ; ¹) =
f¡L((¡h); ¹); when µ = ¡h; 0; when ¡h < µ < 0
and L((0); ¹) when µ = 0: The linearized part of
equation (2) has the transcendental characteristic

equation¢(¸; ¹) := detf¸I¡
0R

¡h
[d´(µ; ¹)]e¸µg = 0,

where I is the identity matrix. The eigenvalues
of ¢(¸; ¹) = 0; which may be real, or occur in
complex conjugate pairs, are in…nite in number,
and vary continuously and uniquely with the bi-
furcation parameter ¹: To this regard, we claim
that ¢(¸; ¹) = 0 has the two pair of roots §i!1;
§i!2 and all other eigenvalues of ¢(¸; ¹) = 0 with
¹ = ¹c have a negative real parts. Then, it has
been shown that there exits the direct sum de-
composition of C = P © Q by all the eigenval-
ues of ¢(¸; ¹) = 0, where the subspace P (¸; ¹)
µ C is the generalized eigenspace corresponding
to the roots; and Q = Q(¸; ¹) µ C is the in…nite-
dimensional, complementary subspace associated
with the remaining eigenvalues of ¢(¸; ¹) = 0.
Tangent to the space P , is a parabolic smooth
curve that represents a local generalized centre
manifoldM¹ =M¹(¸;A(µ; ¹)) inC; whereA(µ; ¹)
is the in…nitesimal generator of the semigroup
J(t; ¹); t; ¹ ¸ 0 of bounded linear operator, and it
is de…ned by D(A(µ; ¹)) = fÁ(µ) µ C; dÁ(µ)dµ µ C;
dÁ
dµ (0) = L(Á(µ); ¹)Á(µ)g; A(µ; ¹)Á(µ) = dÁ(µ)

dµ :
The semigroup J(t; ¹) maps the space C into it-
self, namely J(t; ¹) : Cx< ¡! C; or equiva-
lently, the it maps the past history xt(µ) onto the
future by the relation xt(Á(µ); ¹) = J(t; ¹)Á(µ)
with J(0; ¹) = I: On the centre manifold, it is
known that long term behaviour of the varia-
tion of constants-integral equation xt(Á(µ); ¹) =

J(t; ¹)Á(µ)+"
tR
0

J((t¡³); ¹)X0(µ)¢f(Á(µ); ¹; ")d³
associated with P µ C; and which is a solu-
tion to the nonlinear delay equation (2), can well
be approximated by n-dimensional ordinary dif-
ferential equations (ODEs). The dimension of
n corresponds to the number of eigenvalues of
¢(¸; ¹) = 0 associated to P: In this case, they
are four, and thus n = 4 in C: The function X0(µ)
is a matrix de…ned as X0(µ) = [0; 0]T ;¡h · µ < 0;
X0(0) = [0; I]

T ; µ = 0: Since the integral solution
xt(Á(µ); ¹) is in C; then there is the unique repre-
sentation xt(Á(µ); ¹) = xPt (Á(µ); ¹) + x

Q
t (Á(µ); ¹);

where xPt (Á(µ); ¹); x
Q
t (Á(µ); ¹) are the projections

of this equation onto P; Q; respectively. Simi-
lar representations for Á(µ); X0(µ) µ C are given
as follows: Á(µ) = ÁP (µ) + ÁQ(µ) and X0(µ) =
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XP
0 (µ) + X

Q
0 (µ): E¤orts to construct the centre

manifold proceed by considering further the linear
delay equation _u(t̂) = L̂(ut̂(s); ¹)ut̂(s); u(t̂)²<n;
ut̂(s); Ã(s)²Ĉ; ut̂(s) = Ã(s); 0 · s · h in the
Banach space Ĉ := Ĉ([0; h];<n): This linear de-
lay equation in Ĉ is formally adjoint to _x(t) =
L(Á(µ); ¹)Á(µ) with respect to the bilinear relation
(Ãj(s); Ák(µ)) = (Ãj(0); Ák(0)) ¡

R 0
¡h
R µ
0
Ãj(³ ¡

s)[d´(µ; ¹)]Ák(³)d³; j; k = 1; 2; 3; 4; ::n; where
Ák(µ) µ C are the values of the initial func-
tion Á(µ) µ C; while Ãj(s) µ Ĉ are the val-
ues of the prescribed initial continuous function
Ã(s) in Ĉ: L̂ = L̂(Ã(s); ¹)Ã(s) : Ĉx<n !
<n is the transpose of L; and for the bounded
variational function ^́(s; ¹) : [0; h] ! <n, L̂
is described as L̂(Ã(s); ¹) = ¡

0R
¡h
[d^́(s; ¹)]Ã(s):

The the in…nitesimal generator Â(s; ¹) in C is
given by D(Â(s; ¹)) = fÃ(s) µ Ĉ; dÃ(s)

ds µ
Ĉ; dÃ

ds (0) = L̂(Ã(s); ¹)Ã(s)g; Â(s; ¹)Ã(s) =
dÃ(s)
ds : It is known that the corresponding in-
…nite eigenvalues of _u(t̂) = L̂(Ã(s); ¹)Ã(s) are
exactly the same as those of ¢(¸; ¹) = 0 as-
sociated with _x(t) = L(Á(µ); ¹)Á(µ): Incidently,
there is the four-dimensional local center mani-
fold M̂¹ = M̂¹(¸; Â(s; ¹)) in Ĉ of the general-
ized eigenspace P̂ = P̂ (¸; ¹) µ Ĉ spanned by
the solutions of _u(t̂) = L̂(Ã(s); ¹)Ã(s) correspond-
ing to §i!1; §i!2. Indeed, solutions of _x(t) =
L(Á(µ); ¹)Á(µ) µ C and _u(t̂) = L̂(Ã(s); ¹)Ã(s) µ
Ĉ corresponding to the eigenvalues §i!1; §i!2
constitute the required initial functions Á(µ) =
©(µ)b µ C; Ã(s) = ª(s)b̂ µ Ĉ; where the val-
ues ©(µ) = [Á1(µ); Á2(µ); :.. Ák(µ)]; Ák(µ) =
Âk(µ; ¹)e

¸µ and ª(s) = [Ã1(s); Ã2(s); . . Ãj(s)];
Ãj(s) = Â̂j(s; ¹)e

¡¸s are the bases for P µ C; P̂ µ
Ĉ; respectively, and b; b̂ are some constant vectors.
The adjoint nature of _x(t) = L(Á(µ); ¹)Á(µ) µ
C and _u(t̂) = L̂(Ã(s); ¹)Ã(s) µ Ĉ yields the
identity (ª(s);©(µ))B ´ B̂(ª(s);©(µ)), where
(ª(s);©(µ)) is an inner product matrix and its
elements are the bilinear relation (Ãj(s); Ák(µ)):
The matrices B µ C and B̂ µ Ĉ are the real
values of ¢(¸; ¹) = 0 at criticality. By the iden-
tity A©(µ) = ©(µ)B which comes from the de…-
nition of the in…nitesimal generator A(µ; ¹) µ C,
the matrix B can be obtained. A simple computa-
tion will shown that ©(µ) = ©(0)eBµ;¡h · µ · 0,
and thus J(t; ¹)©(µ) = ©(0)eB(µ+t); t ¸ 0 is a
solution operator of the linear part of equation
(2). The matrix B is equivalent to B̂ µ Ĉ; if and
only if the resulting inner product matrix after

integration (ª;©)nsg = I is the identity matrix.
Typically, (ª(s);©(µ)) 6= I; and for such a situa-
tion, the basis ª(s) for P̂ µ Ĉ can be normalized
to a new set of functions ¹ª(s) µ Ĉ: This set is
obtained by evaluating ¹ª(s) = (ª;©)¡1nsgª(s) =
[¹Ã1(s);

¹Ã2(s); ::
¹Ãj(s)]; and the substitution of the

new elements (¹Ãj(s); Ák(µ)); j; k = 1; 2; 3; 4; ::n

into the bilinear equation will yield ( ¹ª;©) = I:
With the decomposition of C = P © Q and
the characterization of ©(µ) µ C; ª(s) µ Ĉ
such that (ª(s);©(µ)) = I; then the elements
on the generalized centre manifold M¹; tangent
to P µ C; are described by M¹ ´ P ´ fÁ(µ)
² C; Á(µ) = ÁP (µ) + ÁQ(µ) j ÁP (µ) = ©(µ)b;
b := (ª(s); ÁP (µ))g; while the corresponding el-
ements on the complementary space are given
by Q = f(Á(µ) ² C; ÁQ(µ) = Á(µ) ¡ ÁP (µ) j
(ª(s); ÁQ(µ)) = 0g. Similarly the projection of
X0(µ) µ C onto P and Q are given by XP

0 (µ) =

©(µ)ª(s) and XQ
0 (µ) = X0(µ) ¡ ©(µ)ª(s): In-

deed, the solution to equation (2) on the cen-
tre manifold is given by M¹ = fxt(µ) ² C j
xPt (µ) = ©(µ)z(t) + xQt (µ); where z(t) ² <4 and
z(t) = (ª(s); Á(µ))): xQt (µ) is the variation of con-
stant integral solution on a local centre manifold
tangent to Q: By the exponential estimates of the
integral solutions xPt (µ) on P µ C and xQt (µ)
on Q µ C, it is known that the integral solu-
tion xQt (µ) on the centre manifold tangent to Q
is bounded for all values of t ¸ 0; while xPt (µ) is
locally equivalent to the ODEs corresponding to
the integral solution xPt (µ) on M¹ µ C tangent
to P: Thus, on this centre manifold, the equiva-
lent ODEs _z(t) = Bz(t)+"ª(0)¢f(©(µ)z(t); ¹; ");
¡h · t < 1 can be obtained by di¤erentiat-
ing xPt (µ) = ©(µ)z(t); and using the characteriza-
tions on P and the solution operator J(t; ¹)©(µ) =
©(0)eB(µ+t): Illustrations of these ideas in the con-
text of single and multiple regenerative chatter in
orthogonal machining are presented in the next
two sections.

3. APPLICATION
A machine-tool and workpiece in a chatter situa-
tion is often modeled as relative vibratory motion
between the tool and workpiece. In this way, sin-
gle regenerative chatter can be examined. They
were the authors [5, 6], who suggested that the
feed modulations by the tool and workpiece dis-
placements may vary due to the ‡uctuating chat-
ter marks on the tool and the workpiece. They
showed that there are two or more traces of the
cutting tool left on the earlier surface pro…le be-
ing machined, and as a result of this, multiple re-
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generative chatter can be transparent as the cut-
ting condition continued to vary. To quantify their
experimental observations, single delay terms in-
stead of multiple ones were adopted. Conditions
for stable and unstable machining were derived for
small time delay. In this section, it is assumed that
Hopf’s condition are not violated. That is, the
bifurcation parameter ¹ varies in such way that
the characteristic equation ¢(¸; ¹) = 0 of the lin-
earized stability has the two roots À(¹) § i!(¹)
satisfying at criticality the conditions À(¹c) = 0;
!(¹c) 6= 0; <efd¢(¸;¹)=d¹g 6= 0; and all the re-
maining in…nite number are negative real parts.
The multiple regenerative chatter based on a sin-
gle degree of freedom turning model is described
by the nonlinear multiple delay di¤erential equa-
tions

_x1(t) = x2 (3)

_x2(t) = ¡2±0!0­¡1x2 ¡ !20­¡2x1 +
!20­

¡2¹1fx1 ¡ x1(t¡ h1)g ¡
!20­

¡2¹2fx1 ¡ x1(t¡ h2)g ¡

"!20­
¡2f

qX
j=2

¾jfx1 ¡ x1(t¡ h2)gj ;

where ¹1; ¹2 the cutting force coe¢cients due to
the feed modulations caused by the di¤erence be-
tween current regenerative workpiece and tool dis-
placements at times t; t¡ h1; t¡ h2; respectively,
and h1 · h · h2; h1 < h2. The physical quanti-
ties ±0 = c=2

p
mk; !0 =

p
k=m; m is the mass of

the tool, c is the damping coe¢cient, k; the linear
spring constant, and ¾j ; j = 2; 3; ::::q are the coef-
…cients of the cutting force nonlinearity. Putting
¹1 = 0 and q = 3, equations (3) become the vari-
ant form of the delay equations according to the
authors [4,7,8]. The linear delay equations

_x1(t) = x2 (4)

_x2(t) = ¡2±0!0­¡1x2 ¡ !20­¡2x1 +
!20­

¡2¹1fx1 ¡ x1(t¡ h1)g ¡
!20­

¡2¹2fx1 ¡ x1(t¡ h2)g;

in C([¡h; 0];<2) and their adjoint form

_u1(t̂) = !20­
¡2(1¡ ¹1 + ¹2)u2 + (5)

!20­
¡2(¹1 ¡ ¹2)u2(t̂+ h)

_u2(t̂) = ¡u1 + 2±0!0­¡1u2; h1 · h · h2:

in Ĉ([0; h];<2) with respect to the bilinear pairing

(Ãj(s); Ák(µ)) = (Ãj(0); Ák(0))¡ (6)

¹1!
2
0­

¡2
Z 0

¡h1
Ãj(³ + h1)£

Ák(³)d³ + ¹2!
2
0­

¡2 £Z 0

¡h2
Ãj(³ + h2)Ák(³)d³;

j; k = 1; 2; Ák(µ) µ C; Ãj(s) µ Ĉ;

in C([¡h; 0];<2) £ Ĉ([0; h];<2) have eigenvalues
that satisfy the characteristic equation

¢(¸; ¹) : = ¸2 + 2±0!0­
¡1¸+ (7)

!20­
¡2 ¡ !20­¡2¹1 £

(1¡ e¡¸h1) + !20­¡2¹2 £
(1¡ e¡¸h2) = 0:

At Hopf bifurcation ¸1;2 = §i! are solutions to
the characteristic equation ¢(¸; ¹2) = 0. Thus,
the substitution of ¸1 = i! into ¢(¸;¹2) = 0, set-
ting the real and imaginary parts to zero, and solv-
ing for ­; ¹2; will lead to the following expressions
¹2 = ¡(!0 sin!h2)¡1(2±0!­¡¹1!0 sin!h1); ­ =
¯11!

¡1+
©
¯211 + !

2
0(1¡ ¹1¯22)

ª1=2
; in which the

notations ¯11 =(sin!h2)
¡1±0!0(1¡ cos!h2) and

¯22 = (sin!h2)¡1(1 ¡ cos!h2) sin!h1 + (1 ¡
cos!h1): For some typical values of the model pa-
rameters appearing in these equations; the char-
acterization of stable and unstable machining can
be displayed in the parameter plane (­; ¹2):When
¹1 = 0; these equations become the well known
expressions (see [8]) for the boundaries of stable
and unstable machining with single regenerative
chatter. The impact of the multiple regenerative
e¤ect (i:e:; ¹1 6= 0) on these boundaries can be
positive (increased stable machining region), or
negative (increased unstable machining region),
depending upon in particular, the magnitude of
the numerical values of the cutting force coe¢-
cient ¹1 and the time delay h1: Corresponding to
the simple roots §i! of equation (7) are the bases
©(µ) µ C([¡h; 0];<2); ª(s) µ Ĉ([0; h];<2) for the
generalized eigenspaces P µ C and P̂ µ Ĉ, where
©(µ) = [Á1(µ); Á2(µ)]; Á1(µ) = [cos!µ; sin!µ]T ;
Á2(µ) = [¡ sin!µ; cos!µ]T and ª(s) = [Ã1(s);
Ã2(s)]; Ã1(s) = [cos!s; ¡ sin!s]T ; Ã2(s) =
[sin!s; cos!s]T . The substitution of the ele-
ments (Ãj(s); Ák(µ)); j; k = 1; 2 of (ª(s);©(µ)),
into equation (6) yields the nonsingular, scalar
matrix (ª;©)nsg = [[Ã11; Ã21]

T ; [¡Ã12; Ã22]T ];
where Ã11 ´ Ã22 ´ 1 ¡ !20­¡2(¹1h1 cos!h1 ¡
¹2h2 cos!h2); Ã12 = ¡!20­¡2(¹1h1 sin!h1 ¡
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¹2h2 sin!h2); and Ã21 = ¡Ã12: Thus ª(s) µ
Ĉ is normalized to the new basis ¹ª(s) =
[ [¹Ã11(s);

¹Ã21(s)]
T ; [¹Ã12(s);

¹Ã22(s)]
T ]; where

¹Ã11(s) = (Ã211 + Ã
2
12)

¡1(Ã22 cos!s + Ã12 sin!s),
¹Ã12(s) = (Ã211 + Ã

2
12)

¡1(Ã22 sin!s ¡ Ã12 cos!s);
¹Ã21 = ¡(Ã211 + Ã212)

¡1(Ã21 cos!s + Ã11 sin!s)
and ¹Ã22(s) = ¡(Ã211 + Ã212)

¡1(Ã21 sin!s ¡
Ã11 cos!s) are obtained by evaluating the rela-
tion ¹ª(s) = (ª;©)¡1nsgª(s): Again the substitu-
tion of (¹Ãj(s); Ák(µ)); j; k = 1; 2 of ( ¹ª(s);©(µ))
into equation (6) will lead to the 2x2 identity
matrix ( ¹ª;©)id = (Ã

2
11+Ã

2
12)

¡1f[[(Ã211+Ã212); 0]T ;
[0; (Ã211 + Ã212)]

T ]g = I: Therefore, the trans-
formation xPt (µ) = ©(µ)z(t); z(t)²<2, z(t) =
(¹ª(s); ÁP (µ)) will give rise to x1 = z1; x2 =
z2; when µ = 0; and x1(t ¡ h) = z1 cos!h +
z2 sin!h; x2(t¡h) = ¡z1 sin!h+z2 cos!h; when
µ = ¡h; where h1 · h · h2: Moreover B =
[[0; !]T ; [¡!; 0]T ]; and in the generalized centre
manifold M¹ µ C([¡h; 0],<2); z(t) satis…es the
ODEs

_z1(t) = ¡!z2 ¡ "¹Ã12(0)!20­¡2fz1 ¡ (8a)

(z1 cos!h2 + z2 sin!h2)g
8<:

3X
j=2

¾jfz1¡

(z1 cos!h2 + z2 sin!h2)gj¡1 + ~¹2;
ª

_z2(t) = !z1 ¡ "¹Ã22(0)!20­¡2fz1 ¡ (8b)

(z1 cos!h2 + z2 sin!h2)g
8<:

3X
j=2

¾jfz1¡

(z1 cos!h2 + z2 sin!h2)gj¡1 + ~¹2
ª
;

where ¹Ã12(0) = ¡(Ã211 + Ã212)¡1Ã12 and ¹Ã22(0) =
(Ã211 + Ã212)

¡1Ã11: To examine the bifurcations
and their stability property, equations (8) are
converted into amplitude a = a(a;'; ¹2) and
phase ' = '(a; ';¹2) relations by means of the
polar coordinate transformation z1 = a sin£;
z2 = ¡a cos£, £ = !t + '. This will
yield periodic equations satis…ed by a and '.
Then, applying the integral averaging method
according to [1] on these equations, and for
the sake of presentation simplicity, the re-
sulting averaged equations for the amplitude
are given by _a(t) = ¡"!20­¡2af¾3°113a2 +
~¹2°111g; where °113 = 3

4(cos!h2 ¡
1)f¹Ã22(0) sin!h2 + ¹Ã12(0)(cos!h2 ¡ 1)g and
°111 = ¡1

2

©
¹Ã22(0) sin!h2 +

¹Ã12(0)(cos!h2 ¡ 1)
ª
:

Putting _a = 0 the required bifurcation equations
can be derived. Then, the super- and subcritical

bifurcations when stable machining is lost can be
determined qualitatively by the signs of the coef-
…cients in these equations. Indeed, if ¾3°113 < 0
and ~¹2°111 > 0; then the behaviour of the chatter
response is subcritical bifurcation. For this situa-
tion, a branch of unstable periodic solutions will
bifurcate from the bifurcation point ¹2 = ¹2c for
values of ¹2 larger than ¹2c: On the other hand,
when ¾3°113 > 0 and ~¹2°111 > 0; the behaviour
is supercritical bifurcation, and thus a branch of
stable periodic solutions bifurcates from ¹2 = ¹2c
for values of ¹2 larger than ¹2c:

4. DEGENERATE APPLICATION
Next the degenerate bifurcation when two pairs of
simple roots cross the imaginary axis in the com-
plex plane as the bifurcation parameter ¹2 is var-
ied near its critical value ¹2c is considered. The
turning operation is modeled as two degrees of
freedom model, and the governing delay di¤eren-
tial equations in C := C([¡h; 0];<4); are of the
form

Äx1(t) + 2±0!0­
¡1 _x1 + !20­

¡2x1 ¡ (9a)

!20­
¡2¹1fx1 ¡ x1(t¡ h1)g+

!20­
¡2¹2fx1 ¡ x1(t¡ h2)g = "!20­¡2¢f1;

Äx2(t) + 2±0!0­
¡1 _x2 + !20­

¡2x2 ¡ (9b)

!20­
¡2¹1fx2 ¡ x2(t¡ h1)g+

!20­
¡2¹2fx2 ¡ x2(t¡ h2)g = "!20­¡2¢f2;

where x1; x2 represent both the tool and work-
piece displacements and¢f1;¢f2 denote the non-
linear perturbations. Putting " = 0 in these
equations, the linearized delay equations are ob-
tained. With proper characterization of the pa-
rameters in these equations, the corresponding
characteristic equation has two simple roots §i!1;
§i!2; and all others have negative real parts.
Thus, the elements of the basis ©(µ) = [Á1(µ);
Á2(µ); Á3(µ); Á4(µ)]; ¡h · µ · 0 for the gener-
alized eigenspace P µ C are Á1(µ) = [cos!1µ;
sin!1µ; 0; 0]

T ; Á2(µ) = [¡ sin!1µ; cos!1µ; 0;
0]T ; Á3(µ) = [0; 0; cos!2µ; sin!2µ]

T ; Á4(µ) =
[0; 0; ¡ sin!2µ; cos!2µ]T ; while those elements
of ª(s) = [Ã1(s); Ã2(s); Ã3(s); Ã4(s)]; 0 ·
s · h for the basis P̂ µ Ĉ := Ĉ([0; h];<4)
are Ã1(s) = [cos!1s; sin!1s; 0; 0]T ; Ã2(s) =
[¡ sin!1s; cos!1s; 0; 0]T ; Ã3(s) = [0; 0; cos!2s;
sin!2s]

T ; Ã4(s) = [0; 0; ¡ sin!2s; cos!2s]T : The
elements (Ãj(s); Ák(µ)); j; k = 1; 2; 3; 4 of the
4 £ 4 inner product matrix (ª(s);©(µ)) are com-
puted similarly as in Section 2. In particular,
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with ! = !1 and ! = !2; the following scalar
values for the nonsingular matrix (ª;©)nsg = [
[Ã11; Ã21; 0; 0]

T ; [¡Ã12; Ã22; 0; 0]T ; [0; 0; Ã33;
Ã43]

T ; [0; 0; ¡Ã34; Ã44]T ]; where Ã11 ´ Ã22 ´
1¡ !20­¡2(¹1h1 cos!1h1 ¡ ¹2h2 cos!1h2); Ã12 =
¡!20­¡2(¹1h1 sin!1h1 ¡ ¹2h2 sin!1h2); Ã21 =
¡Ã12; and Ã33 ´ Ã44 ´ 1¡!20­¡2(¹1h1 cos!2h1¡
¹2h2 cos!2h2); Ã34 = ¡!20­¡2(¹1h1 sin!2h1 ¡
¹2h2 sin!2h2); Ã43 = ¡Ã34: ª(s) µ Ĉ is normal-
ized to the new basis ¹ª(s) = [[¹Ã11(s);

¹Ã21(s); 0;
0]T ; [¹Ã12(s);

¹Ã22(s); 0; 0]
T ; [0; 0; ¹Ã33(s);

¹Ã43(s)]
T ;

[0; 0; ¹Ã34(s);
¹Ã44(s)]

T ]; where ¹Ã11(s) = (Ã211 +
Ã212)

¡1(Ã22 cos!1s+Ã12 sin!1s), ¹Ã12(s) = (Ã
2
11+

Ã212)
¡1(Ã22 sin!1s¡ Ã12 cos!1s); ¹Ã21 = ¡(Ã211 +

Ã212)
¡1(Ã21 cos!1s + Ã11 sin!1s) and ¹Ã22(s) =

¡(Ã211 + Ã212)¡1(Ã21 sin!1s¡ Ã11 cos!1s): By re-
placing !1 with !2 in these same relations, the
remaining elements ¹Ã33(s); ¹Ã34(s); ¹Ã43(s) and
¹Ã44(s) can be obtained. Thus, it can be shown
that (¹ª(s);©(µ)) = I is the 4 £ 4 identity ma-
trix. Similarly as before, xPt (µ) = ©(µ)z(t);
z(t)²<4, z(t) = (¹ª(s); ÁP (µ)) will yield the ODEs
on the centre manifold M¹ µ C([¡h; 0],<4);
namely

_z1(t) = ¡!1z2 ¡ "¹Ã12(0)!20­¡2f~¹2f (10a)

z1 ¡ (z1 cos!1h2 + z2 sin!1h2)g+
¢f(©(µ)z(t))g;

_z2(t) = !1z1 ¡ "¹Ã22(0)!20­¡2f~¹2f (10b)

z1 ¡ (z1 cos!1h2 + z2 sin!1h2)g+
¢f(©(µ)z(t))g;

_z3(t) = ¡!2z4 ¡ "¹Ã34(0)!20­¡2f~¹2f (10c)

z3 ¡ (z3 cos!2h2 + z4 sin!2h2)g+
¢f(©(µ)z(t))g;

_z4(t) = !2z3 ¡ "¹Ã44(0)!20­¡2f~¹2f (10d)

z3 ¡ (z3 cos!2h2 + z4 sin!2h2)g+
¢f(©(µ)z(t))g:

Again, transforming these equations to amplitude
and phase relations using the polar coordinates
zj = aj sin£j ; zj = ¡aj cos£j , £j = !jt + 'j ,
j = 1; 2; 3; 4; and then applying the integral av-
eraging method to the resulting equations lead

to the averaged equations. Also from the aver-
aged equations, the bifurcation equations describ-
ing the dynamics of multiple regenerative chat-
ter on the centre manifold can be derived. De-
pending upon the nature of the nonlinearity in
equations (10), machining can experience qualita-
tive changes ranging from super- and/or subcriti-
cal stability to complex dynamics.

In this paper, bifurcation to multiple regenerative
chatter has been investigated. Using the in…nite-
dimensional delay dynamical systems, the equa-
tions governing multiple regenerative chatter ma-
chining are reduced to …nite dimensional ODEs on
generalized centre manifolds. Both Hopf and de-
generate bifurcations are considered for …xed time
delays.

5. REFERENCES
[1] Bogoliubov, N. N. and Mitropolsky, Y. A.
Asymptotic Methods in the Theory of Nonlinear
Oscillations. Gordon and Breach, New York,
1960.

[2] Guckenheimer, J. and Holmes, P. Nonlin-
ear Oscillations, Dynamical Systems, and Bifurca-
tions of Vector Fields, Springer-Verlag, New York,
Berlin Heidelberg, London, Paris, Tokyo, Hong
Kong, Barcelona, Budapest 1985.

[3] Hale, J. K. and Lunel, S. M. V. Introduction
to Functional Di¤erential Equations, Springer-
Verlag, New York, Berlin, Heidelberg, London,
Hong Kong, Budapest, 1993.

[4] Hanna, N. H. and Tobias, S. A. A theory
of nonlinear regenerative chatter. ASME Journal
of Engineering for Industry, Vol. 96, 1974, pp.
247-255

[5] Kaneko, T., Sato, H., Tani, Y and O-hori,
M. Self-excited chatter and its mark in turning.
ASME Journal of Engineering for Industry, Vol.
106, 1984, pp. 222-228.

[6] Kondo, Y., Kawano, O. and Sato, H. Be-
haviour of self-excited chatter due to multiple re-
generative e¤ect. ASME Journal of Engineering
for Industry, Vol. 103, 1981, pp. 325-329.

[7] Shi, H. M. and Tobias, S. A. Theory of …-
nite amplitude machine instability. International
Journal of Machine Tool Design and Research
Conference, Vol. 24, No. 1, 1984, pp. 45-69.

[8] Tobias, S. A.Machine-Tool Vibration. Blackie
and Sons Ltd, London, Glasgow, 1965.

6


