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Abstract. In this short note we announce an existence and uniqueness result for

solutions to a class of second order distributed parameter systems with sudden changes

in the input term. Such systems are often encountered in 
exible structures and

structure-
uid interaction systems that utilize smart actuators.

1. INTRODUCTION

We study the nonlinear, nonlocal partial di�erential equa-

tion

wtt + �1wxxxx + �2wxxxxt = [�(x; t)g(y)]xx

+f(x; t);
(1)

with boundary and initial conditions given by

wx(0; t) = w(0; t) = 0; wx(1; t) = w(1; t) = 0;

w(�; 0) = w0 2 H
2
0 (0; 1); wt(�; 0) = w1 2 L

2(0; 1):
(2)

In equation (1) the function y satis�es

y(t) =

1Z
0

ks�[x1;x2](x)wxxt(x; t)dx (3)

where �[x1;x2] denotes the characteristic function of the

interval [x1; x2], with 0 � x1 < x2 � 1. The constants

�1; �2 and ks are positive and g is a Lipschitz continuous

function.

Equation (1) is a general form of the model developed

in (Demetriou and Polycarpou, 1997a; Demetriou and

Polycarpou, 1997b). Indeed, in the context of the 
ex-

ible structure encountered in (Demetriou and Polycar-

pou, 1997a), �1 denotes the sti�ness parameter, �2 the

damping parameter and ks the sensor piezoceramic con-

stant; see (Banks et al., 1996) and (Dosch et al., 1992).

When the actuator (input) failure term �(x; t)g(y) is

written as

�(x; t)g(y) = �1(t)
�
ka�[x1;x2](x)�(t)

�
g(y) (4)

with the time pro�le (Polycarpou and Helmicki, 1995)

of the failure given by

�1(t) =

(
0 if t < Tf

1� e
��(t�Tf ) if t � Tf

; � > 0; (5)

and the nominal forcing (actuator) term given by

f(x; t) = [ka�[x1;x2](x)�(t)]xx; ka > 0; (6)

then equation (1) has exactly the same form as the

beam equation considered in (Demetriou and Polycar-

pou, 1997a). The time Tf denotes the unknown instance

of the failure occurrence and the signal � denotes the

input voltage to the patch. Similarly, ka denotes the

actuator piezoceramic constant; see above describe the

dynamics of a 
exible cantilevered beam before (t < Tf )

and after (t � Tf ) the occurrence of an anticipated ac-

tuator failure commencing at an unknown time Tf . In

view of the above, the plant equation (1) can now be

written as follows:

wtt + �1wxxxx + �2wxxxxt =
�
ka�[x1;x2](x)�(t)

�
xx

+�1(t)
�
ka�[x1;x2](x)�(t)g(y(t))

�
xx

:

(7)

Our goal here is to announce a recent existence and

uniqueness result for the solution of (1)-(2).
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2. EXISTENCE AND UNIQUENESS

We begin this section by letting H = L
2(0; 1), V =

H
2
0 (0; 1) and V

� = H
�2(0; 1), so we have the Gelfand

triple

V ,! H ,! V
�

:

We denote by h�; �i the inner product inH , while h�; �iV �;V
stands for the usual duality product. Let jj � jj; jj � jjV ; and

jj � jjV � denote the norms of the spaces H; V; and V
�, re-

spectively. We impose the following assumptions on the

parameters in (1)-(2):

(A�) The function � satis�es

� 2 L
1 (0; T;H) ; k�kL1(0;T ;H) � L: (8)

(Ag) The nonlinear function g satis�es the following Lip-

schitz condition:

jg (�)� g(�)j �
eC1

ks
j� � �j ; for all �; � 2 R;(9)

where eC1 < �2=L:

(Af ) The forcing term f satis�es

f 2 L
2 (0; T ;V �) : (10)

To establish the existence-uniqueness of solutions we use

a Galerkin approach which is comparable to the one em-

ployed in the study of well-posedness for other second

order (in time) evolution equations (see, e.g., (Banks et

al., 1995a; Banks et al., 1997; Banks et al., 1995b; Dau-

tray and Lions, 1993; Lions, 1971; Lions and Magenes,

1972)). To this end, we de�ne the space of solutions to

be

U(0; T ) =

(
u

����� u 2 L
2(0; T ;V ); ut 2 L

2(0; T ;V );

utt 2 L
2(0; T ;V �)

)

with norm

jjujj
U(0;T ) = (jjujj2L2(0;T ;V ) + jjutjj

2
L2(0;T ;V )

+jjuttjj
2
L2(0;T ;V �))

1=2
:

(11)

We now de�ne the concept of a weak solution to the

problem (1)-(2).

De�nition 1. We say that a function w 2 U(0; T ) is a

weak solution of (1)-(2) if it satis�es

hwtt(t); �iV �;V + �1hwxx(t); �xxi

+�2hwxxt(t); �xxi = h�(t)g(y(t)); �xxi

+hf(t); �iV �;V ; 8� 2 V

(12)

and

w(0) = w0 2 V; wt(0) = w1 2 H: (13)

Next we state the existence and uniqueness theorem, the

proof of which can be found in (Ackleh et al., 2000).

Theorem 2. The problem (1)-(2) has a unique weak so-

lution.

Remark 3. The strong convergence of the Galerkin ap-

proximations to the unique weak solution of (1)-(2) is

established in (Ackleh et al., 2000). Furthermore, nu-

merical results supporting the theory are also presented

in that paper.
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