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Abstract: An important application of gantry robots is circuit board assembly, a chal-
lenging task involving rapid point-to-point motions that tend to induce structural vi-
brations. Attempts to suppress such vibrations through model-based controller design
must take into account the variation of the flexible dynamics with respect to place-
ment head position. To circumvent the time-varying configuration-dependent mass
distribution property of the flexible dynamics, this paper explores the potential of a
controller design based instead on the rigid dynamics. This reduced-order approach to
controller design is recommended for gantry robots with relatively stiff beams, since
it offers an appropriate compromise between modeling/implementation requirements
and performance potential. The proposed reduced-order controller is designed using
a model-matching formulation to adjust the transient response, and an integral effect
is included to reject friction force disturbances for satisfactory steady-state response.
The reduced-order model matching controller has been implemented and tested on
a prototype gantry robot. The experimental results confirm the viability of the new
design and show its superiority over the more traditional PID controller.

Keywords: Gantry robots, flexible beams, structural vibration, point-to-point motion,
reduced-order control, model matching control.

1 Introduction

Gantry robots are used for a wide variety of man-
ufacturing tasks, including circuit board assembly
[5]. In such applications, gantry robots provide
primarily two motion axes, a beam sliding along
a frame and a head sliding along the beam. The
motion control sensors typically found on gantry
robots are joint-mounted linear encoders that mea-
sure the positions of the two axes. In such point-
to-point motion control applications, the goal is to
move the gantry head to the target position as fast
as possible yet also settle quickly with µm accuracy.
Unless the control system is carefully designed, at-
tempts for rapid positioning will excite structural
vibrations [3] in the gantry beam due to its finite
stiffness, thus leading to unacceptably large settling
times or even instability.

A question that arises in model-based control
design is what level of model complexity is really
required for control design purposes? Generally
speaking, it is wise to design the control system us-
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ing the simplest possible model that yields closed-
loop stability and acceptable performance. Con-
sidering specifically the gantry robot application,
the design model could range from a simple rigid
model to the more complex flexible models that in-
clude higher-order modes of vibration. Since the
gantry head moves along the gantry beam, the flex-
ible models possess a time-varying configuration-
dependent mass distribution and, consequently, the
design of high performance controllers for the rela-
tively flexible beam case remains a challenging and
unsolved problem. This paper focuses instead on
the relatively stiff beam case (see also [4]), which
is perhaps more relevant to present-day industrial
applications, and the primary objective is to deter-
mine how well one can do by using just the rigid
model for control design purposes.

The rigid model, or reduced-order, approach
to controller design is recommended for gantry
robots with relatively stiff beams because it of-
fers an appropriate compromise between model-
ing/implementation requirements and performance
potential. The proposed reduced-order controller
is designed using a model-matching formulation to
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Figure 1: Top view of gantry robot.

adjust the transient response, and an integral effect
is included to reject friction force disturbances for
satisfactory steady-state response [1]. The result-
ing second-order compensator includes feedforward
and feedback components, and is programmed us-
ing five coefficients: the damping ratio and natural
frequency of the reference model; two free parame-
ters that determine the location of stable pole-zero
cancellations; and moving mass.

The reduced-order model matching controller has
been implemented and tested on a prototype gantry
robot. The prototype uses rotary motors and belt-
pulley transmissions to provide the driving forces.
The actuator dynamics introduced by the transmis-
sion elasticity are compensated by a stiffening feed-
back loop [2]. The experimental results confirm the
viability of the new design and show its superiority
over the more traditional PID controller.

2 Gantry Robot Modeling

2.1 Basic Description

A simplified sketch of the gantry robot is provided
in Fig. 1. Two stationary rails guide the motion of
a moving beam, and this moving beam serves as the
guideway for the moving head. Motion of the beam
is actuated and constrained by the joint located at
the left end of the beam; this joint is also where the
position sensor is typically located.

The motion control task involves reposition-
ing the head, which has coordinates (xh(t), yh(t)),
from some initial point (xi, yi) to some final point
(xf , yf ). Because the beam has finite stiffness, the
input force uy(t) will tend to excite bending vibra-
tions, and thus the x-coordinate of the head xh(t)
significantly affects the dynamic response of the y-
coordinate of the head yh(t). On the other hand,
the x-axis dynamics are essentially rigid and de-
coupled from the y-axis dynamics. Hence, for the
purposes of this paper, it suffices to focus on beam
motions (for various fixed head positions) and con-
sequently the input force uy(t) in Fig. 1 will be de-
noted simply by u(t) from this point forward.

2.2 Rigid Model

As pointed out earlier, this paper is concerned with
the design of model matching controllers using the
reduced-order rigid-body model of the gantry ro-
bot. From Fig. 1, it should be clear that beam
motions require acceleration of the total mass M =
MJ+MB+MH , whereMJ denotes joint mass,MB

denotes beam mass and MH denotes head mass.
Hence, the rigid-body dynamics may be easily writ-
ten as

Mÿ(t) = u(t)− f(t) (1)

where u(t) is the input force, f(t) is a friction dis-
turbance force, and y(t) denotes the position of the
rigid-body system. Note that, due to rigid-body
approximation, there is no distinction between the
coordinates of different points along the beam and,
therefore, in (1) the subscript h has been dropped
and y(t) represents simply the axis position. Fur-
thermore, this rigid model clearly exhibits no de-
pendence on the head position, implying that con-
trollers designed using this rigid model will require
neither measurement of, nor scheduling with re-
spect to, head position. Although the more accu-
rate flexible model of a gantry robot [5] is an LTV
system, the simpler rigid model is an LTI system.

3 Model Matching Control Design

3.1 Background

The approach to control design recommended in
this paper is based on model matching, whereby the
designer specifies directly an admissible closed-loop
transfer function and then synthesizes the compen-
sation scheme that provides the desired result. The
advantage of model matching design over the more
classical design methods is that trial-and-error de-
sign iterations are avoided, and both stability and
performance can be predicted in advance from the
reference model specification, provided of course
that the plant model used in the design process is
sufficiently accurate.
The theory of model matching design for single-

input, single-output, LTI systems is described in
[1]. Given an open-loop plant transfer function G(s)
with coprime numerator and denominator polyno-
mials, a desired closed-loop transfer function Gd(s)
is said to be implementable if a control system can
be designed that meets the following constraints:
all compensators used have proper rational transfer
functions; the resulting system is well-posed and
internally stable; and all forward paths from refer-
ence input to controlled output pass through the
plant. By enforcing these constraints, the design
will be realizable and will avoid amplification of
high-frequency noise and unstable pole-zero cancel-
lations. The necessary and sufficient conditions for
implementability are as follows: the relative degree
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Figure 2: Structure of control system.

of Gd(s) must be greater than or equal to the rela-
tive degree of G(s); all nonminimum-phase zeros of
G(s) must be retained in Gd(s); and Gd(s) must be
stable.
The rigid model transfer function from input

force to output position is given by

G(s) =
1

Ms2
(2)

and thus an implementable choice of reference
model Gd(s), in the sense defined above, would
be any stable transfer function having relative de-
gree no smaller than two. The lowest order choice
would therefore be the second-order relative-degree-
two transfer function

Gd(s) =
ω2d

s2 + 2ζdωds+ ω2d
(3)

which is parameterized by (ζd,ωd) for ease of set-
ting performance specifications. By fixing ζd on the
basis of overshoot, ωd may be adjusted to provide
any desired settling time for the reference model
response.

3.2 Feedforward/Feedback Configuration

With both G(s) and an implementable Gd(s) avail-
able, attention now turns to the issue of select-
ing an appropriate configuration for the control
system. The unity-feedback configuration, though
commonly employed, is only sufficient for modifying
pole locations. To place both poles and zeros, as re-
quired for general model matching, a configuration
that includes a feedforward path is needed. This
fact is easily established by considering the config-
uration shown in Fig. 2. The relationship between
the reference input and the plant output is found
to be

Y (s) =
(C1(s) + C2(s))G(s)

1+ C2(s)G(s)
R(s) (4)

The denominator shows that the feedback compen-
sator C2(s) may be used to place the poles of the
closed-loop system. The numerator shows that the
feedforward compensator C1(s) is needed to place
the closed-loop zeros once the feedback compen-
sator has been designed.
To examine the constraints imposed by model

matching, it is useful to express all transfer func-
tions in terms of their numerator and denominator

polynomials. To this end, the plant and reference
model may be generally denoted by

G(s) =
N(s)

D(s)
Gd(s) =

Nd(s)

Dd(s)
(5)

and the two compensators may be generally de-
noted by

C1(s) =
B1(s)

A(s)
C2(s) =

B2(s)

A(s)
(6)

where, without loss of generality, both compen-
sators have been assumed to share the same denom-
inator polynomial. Using these notations and the
closed-loop transfer function from (4), the model
matching constraint may be generally written as

N(s) (B1(s) +B2(s))

D(s)A(s) +N(s)B2(s)
=
Nd(s)

Dd(s)
(7)

For the specific choices of G(s) and Gd(s) in (2) and
(3), this model matching constraint reduces to

B1(s) +B2(s)

Ms2A(s) +B2(s)
=

ω2d
s2 + 2ζdωds+ ω2d

(8)

The remainder of this section provides a possible
design for polynomials A(s), B1(s) and B2(s) based
on model matching constraint (8).

3.3 Second-Order Matching Design

A second-order compensator is the lowest order
proper compensator that is capable of providing
zero steady-state error in the presence of friction
force disturbances. The compensator polynomials
will have the form

A(s) = a0 + a1s+ a2s
2 (9)

B1(s) = b10 + b11s+ b12s
2 (10)

B2(s) = b20 + b21s+ b22s
2 (11)

where the coefficients are to be determined. Con-
sidering (8), it is clear that both polynomial de-
grees on the left-hand side exceed those on the right-
hand side by two. Hence, model matching will re-
quire two stable pole-zero cancellations on the right-
hand side of (8). Multiplying both the numerator
and denominator of the right-hand side of (8) by
the common factor s2 + αs + β, where α > 0 and
β > 0 are design parameters, the process of match-
ing polynomial coefficients yields 8 equations for 9
variables. An additional constraint is obtained by
insisting that the compensator have a pole at the
origin, resulting in

a0 = 0 (12)

a1 = M−1 (2ζdωd + α) (13)

a2 = M−1 (14)

b10 = 0 (15)
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b11 = −2ζdωdβ (16)

b12 = − (2ζdωdα+ β) (17)

b20 = ω2dβ (18)

b21 = ω2dα+ 2ζdωdβ (19)

b22 = ω2d + 2ζdωdα+ β (20)

This compensator may be implemented in the time-
domain using the realization

ẋC(t) = ACxC(t) +BC1r(t) +BC2e(t) (21)

u(t) = CCxC(t) +DC1r(t) +DC2e(t) (22)

where

AC =

∙
0 1
0 λ

¸
(23)

BC1 =

∙
b11 + b12λ

b10 + b11λ+ b12λ
2

¸
(24)

BC2 =

∙
b21 + b22λ

b20 + b21λ+ b22λ
2

¸
(25)

CC = M
£
1 0

¤
(26)

DC1 = Mb12 (27)

DC2 = Mb22 (28)

and λ = −a1/a2. This design requires implementa-
tion of a single second-order filter, even though both
feedforward and feedback compensation are used.

4 Compensation for Belt Transmission

If the gantry robot is not equipped with direct-drive
linear motors, the assumption that u(t) is the force
input for the plant is no longer valid. Rotary-to-
linear transmissions introduce actuator dynamics
that must be considered if fast motion is desired.
This section provides a methodology for modifying
the previously designed force control u(t) to account
for the elasticity effects of belt-pulley transmissions
[2].
As shown in [5], if a belt-pulley transmission is

used to provide the driving force to the gantry robot
mass, then a more accurate model for control design
purposes is

Mÿ(t) = k (ρθ(t)− y(t)) (29)

J θ̈(t) = −ρk (ρθ(t)− y(t)) + T (t) (30)

where θ(t) is the motor angular position, ρ is the
pulley radius, J is the total inertia of the motor
and driving pulley and k is the stiffness of the belt.
In this model the control input is T (t), the mo-
tor torque, and the driving force is now provided
through an elastic coupling. The elastic displace-
ment is defined by

z(t) = ρθ(t)− y(t) (31)

and has open-loop dynamics

z̈(t) = azz(t) + bzT (t) (32)

where

az = −k
µ
ρ2

J
+
1

M

¶
bz =

ρ

J
(33)

If z(t) can be measured, i.e. if both y(t) and θ(t) can
be measured, then it is possible to use z(t) feedback
to improve the response of z(t) so that kz(t), the
elastic force, might be at all times approximately
equal to the control force u(t) already designed. To
this end, choose the motor torque T (t) according to

bzT (t) =
k0
k
u(t)− (az + k0) z(t)− k1ż(t) (34)

where k0 > 0 and k1 > 0 are design coefficients.
The result of this choice is the closed-loop elastic
system

z̈(t) + k1ż(t) + k0z(t) =
k0
k
u(t) (35)

Appropriate choice of k0 and k1 on the basis of rise-
time and overshoot will allow the quasi-steady-state
conclusion

kz(t) ≈ u(t) (36)

i.e. that the compensated flexible transmission re-
sponds almost like an ideal rigid transmission. Since
(34) represents a modification to the original mo-
tion control u(t) rather than a complete redesign,
this approach to transmission compensation has the
benefit of modularity.

5 Experimental Results

The reduced-order model matching (RMM) con-
troller with belt transmission compensation has
been tested experimentally on a prototype gantry
robot, similar to those used commercially for circuit
board assembly. The beam has length l = 0.8 m and
the range of head motion is xh ∈ [0.14 m, 0.7 m].
The masses are MJ = 7.41 kg, MB = 7.57 kg and
MH = 8.72 kg. The transmission is characterized
by stiffness k = 2.8 × 106 N/m, radius ρ = 0.0167
m and inertia J = 7.47 kg m2. The open-loop sys-
tem exhibits a beam resonance in the range 55—90
Hz (depending on head position), a transmission
resonance at 110 Hz, and the current-regulated mo-
tor drives have a bandwidth of 2 kHz. The nat-
ural frequencies specified for the reference model
are in the 300—400 rad/s range with damping ratio
0.9, whereas for the transmission compensation the
natural frequency is chosen to be 1000 rad/s with
damping ratio 0.8. The inputs to the prototype are
current commands for the three-phase permanent-
magnet synchronous motors. Rotary position sen-
sors are located on both motor shafts (2π/40 mrad
resolution), and linear position sensors are located
on both gantry joints and on the beam tip (1 µm
resolution). The joint position sensor is used for
load side feedback, whereas the tip position sensor
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Figure 3: Motion command trajectory.

is used only for monitoring purposes, resulting in
colocated control.

The first experiments are intended to reveal the
dependence of the RMM controller response on the
choice of free parameters α and β. Since these pa-
rameters set the location of stable pole-zero can-
cellations, they have no effect on the response of
the ideal rigid-body disturbance-free system. In re-
ality, however, these free parameters will influence
the closed-loop response due to both the unmodeled
flexible modes of the beam and the friction force
disturbance; hence, their proper selection requires
some tuning. For the motion reference trajectory
r(t) in Fig. 3 and with ωd = 400 rad/s, the result-
ing position error responses are displayed in Fig.
4, measured at both the joint and the tip, for sev-
eral different choices of α and β. In each plot, the
steady-state position error is reduced to approxi-
mately 1 µm at the joint. Static position errors at
the tip of up to 30 µm can be present at steady-
state, due to joint clearance. For small values of
α and β, the error response exhibits a slow tail
that leads to unacceptably large ±10 µm settling
times. For large values of α and β, the slow tail
is removed but the error response becomes more
oscillatory and structural vibration in the beam is
increased. Hence, the choice of free parameters in-
volves a trade-off. The plots show peak joint-tip
deflections of around 500 µm, far in excess of the
static deflections due to joint clearance. Hence,
these plots demonstrate significant structural flexi-
bility effects (either beam flexibility, joint flexibility
or some combination), when the placement head is
located at the midpoint of the beam.

The next experiments provide a comparison be-
tween the RMM controller and the more traditional
PID controller. The PID controller is designed to
be compatible with the RMM controller, in the
sense that two of the three closed-loop poles of the
PID control system are selected to match the two
poles of the reference model used by the RMM con-
troller, with the remaining pole of the PID control
system located where stable pole-zero cancellation
occurs in the RMM controller. The result is the
gain selection kp = M

¡
ω2d + 2ζdωdγ

¢
, ki = Mω2dγ,

kd = M (2ζdωd + γ), where γ > 0 is a free parame-
ter. After some manual tuning, it was determined
that the most favorable PID controller response was
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Figure 4: Position errors for RMM controller with
xh at midpoint (– joint error, - - tip error).

obtained using ωd = 300 rad/s and γ = 100. The
RMM controller used parameters ωd = 300 rad/s,
α = 200 and β = 1002. Both controllers therefore
have adjustable poles placed at s = −100. The
belt transmission compensation strategy was iden-
tical for both motion controllers under comparison,
but the motion command trajectory was less ag-
gressive for the PID controller than for the RMM
controller due to controller saturation (20 m/s2 ver-
sus 25 m/s2 and 2.0 m/s versus 2.2 m/s). The re-
sults are displayed in Figs. 5 and 6, for head posi-
tions near the joint, at the midpoint, and far from
the joint. The position error plots in Fig. 5 show
that flexibility effects become more significant if the
head is located far from the joint. Furthermore, the
RMM controller is seen to outperform the PID con-
troller in terms of both joint position error (to some
extent) and tip position error (to a large extent).
The RMM controller generally appears to achieve
the positioning goal more smoothly than the PID
controller, which excites significant structural vi-
bration. The q-axis command current, which is pro-
portional to the motor command torque, is shown
in Fig. 6 where the smoother behavior of the RMM
controller is also apparent.

The comparative experiments just described are
summarized in Table 1. Of greatest interest is the
±10 µm settling time at the placement head and,
although this is unmeasured, it may be inferred
from the joint and tip settling times which are both
directly measured. The PID controller achieves a
good settling time if the head is near the joint. For
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Figure 5: Position error comparison for RMM con-
troller (left column) and PID controller (right col-
umn): – joint error, - - tip error.
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Figure 6: Command current comparison for RMM
controller (left column) and PID controller (right
column).

controller xh near xh mid xh far

PID design 0.388 s 0.471 s 0.541 s

RMM design 0.432 s 0.435 s 0.424 s

(a) Joint settling time.

controller xh near xh mid xh far

PID design 0.461 s 0.575 s 0.569 s

RMM design 0.412 s 0.440 s 0.472 s

(b) Tip settling time.

Table 1: ±10 µm settling times.

the more important situation in which the head is
located at the midpoint, the RMM controller out-
performs the PID controller by 36 ms at the joint
and 135 ms at the tip. When the head is far from
the joint, the comparison favors the RMM controller
even more.

6 Conclusions

This paper has presented a reduced-order model
matching controller design based on the LTI rigid-
body model of the gantry robot. By placing a
compensator pole at the origin, zero steady-state
position error is obtained in the presence of large
Coulomb friction levels. By adjusting the refer-
ence model parameters, the primary features of the
closed-loop transient response may be easily tuned.
Additional free parameters may be selected so as to
favorably influence the extent to which structural
vibrations are suppressed. By using feedback to en-
hance transmission stiffness, faster motion is made
possible.
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