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Abstract. This paper presents a kind of overview of the quadratic guaranteed cost
problem in face of positive real uncertainty. Continuous as well as discrete time
systems are discussed to point out the main discrepancies and difficulties arising
when considering the different stability conditions associated with the positive real
and strongly positive real conditions. The state feedback control problem is only

addressed.

1 Introduction

There 1s a fairly extensive literature dealing with
positive real systems [1], [2], [5] and, more re-
cently, their application in the area of robust con-
trol. Practical interest to deal with positive real
uncertainty stands on the fact that it enables to
directly take into account phase information [12],
[11], [8]. For practical and theoretical motivations
on this topic, see [9], [6] and the references therein.

In the robust control area, working with pos-
itive real uncertainty, most of the results are re-
lated to the so called extended (or strongly) posi-
tive real systems [12], [3], [13]. All the cases are re-
visited here restricting ourselves to the state feed-
back control problem which is achieved with the
following performances

e it robustly stabilizes the system with un-
bounded positive nonlinear uncertainty and
consequently gives to the linear part the
strict positive real property,

e It solves a guaranteed cost problem corre-
sponding to minimize an upper bound of the
worst case performance with respect to sys-
tem uncertainty.

The paper contains mainly two parts. Part one
is devoted to continuous time dynamical systems

and three different cases of positive realness are
discussed and solved. Part two corresponds to the
discrete time case which exhibits a high complex-
ity for its solution. A brief conclusion is given to
point out future directions.

2 Continuous time systems

Let the uncertain dynamical system (S) be de-

scribed by
r = Ax+ Biw+ Bou
1 = Ciz+ Diiw+ Digu (1)
yo = Coxr+ Dou

where ¢ € R”, u € R™, yg € RP are respectively
the state, control and controlled output vectors.
The uncertainty is modelled as a negative nonlin-
ear feedback of the y; € R™ output vector

w=—f(y) (2)

where f(.) satisfies the positivity condition

flyy e F={f() : f(0)=0,¥fly) >0} (3)

The general robust guaranteed cost problem is
stated as :

o0
i Cyo dt 4
min max /0 YoYo (4)

The restrictions adopted in this paper are



1- u = Kz, the state feedback control problem
is considered, the aim being that of pointing
out the main difficulties encountered in the
different cases : positive, strictly positive,
strongly positive cases

ii - Instead of (4), a kind of sufficient version of
the guaranteed cost control problem is ad-
dressed where an upper bound of the inte-
gral cost (4) is going to be minimized. This
is a classical procedure which has been set-
tled in the pioneering paper [10] and then
followed in other ones [4] and from which
comes the word ”guaranteed”

A necessary and sufficient condition of the un-
certain system (1) is given in the positive real
lemma (also termed as Kalman-Yakubovitch Bell-
man lemma). Furthermore these conditions are
the ones for the strict positive real property of the
square transfer matrix (in open loop; u = 0)

T(S) = 01(81 — A)_lBl + D11 (5)

Lemma 1 T'(s) 1is strictly positive real (and
asymptotically stable) if and only if there erist
P =P >0, L and W matrices such that

AP+ PA+L'L <O
BIP—Ci+W'L=0 (6)
Dy + Dy —WW =0

From these conditions, a guaranteed cost state
feedback control can readily be stated as

min ¢ 'z{Pxg
P, K e>0
subjected to

(A+ B3K)P+ P(A+ ByK)+ L'L +eQp <0

Bip - Cl - D12I{ + W’L = 0
Dy + D)y —WW=0
where QO = (CO =+ Dof()/(CQ + D()[\r)

(7)

Proof : The condition given in (7) is still a neces-
sary and sufficient condition for the existence of a
feedback matrix K which renders the closed-loop
matrix T'(s) strictly positive real. Indeed, when-
ever (6)) is fullfilled, it does exist a non empty
interval [0, € > 0] for € such that (7) holds. Using
the candidate Lyapunov function v(z) = 2'Pz,
one gets :

v(z)

22/[(A + B, K) Pla + 22/ PByu
< —ex'Qoxr — 'L Le—
22'(C1 + D1aK = W'LY f(y1)
= —cx'Qox — x'L'Lx — 2y f(y)
+22'L'W f(y1) = F(y))W'W f(y1)
= —ex'Qox
—(Le =W () (Le — W f(y1))
< —ed'Qox

so that

(o]
e/ ' Qox dt < zfyPxg
0

Assuming zg a random vector with zero mean and
covariance E(zoz(] = BoB{ (E expectation oper-
ator) and averaging the cost, one has

E[/ ¢'Qoxdt] < ¢! Trace[B)PBy]
0

and finally the guaranteed cost control problem to
be solved

min ¢ 'Trace[B}P By

)

subjected to
(A+ BsK)P+ P(A4+ BsK)+ L'L+€Qu <0
BiP - Cl - D12I( + WIL = 0
D+ Dy —WW=0

where QO = (CO + D()I{)I(CO + DQI{)

(8)

2.1 Case Di; =0

Let us first consider the case when T'(s) is strictly
proper. Obviously W = 0 and although non abso-
lutely necessary, the choice L = 0 is made since it
corresponds to the less stringent inequality con-
dition in (8). TLet the matrix U be such that
Although non absolutely necessary, the obvious
choice W = 0 i1s made and subsequently L = 0
which then correspond to the less stringent in-
equality condition in (8).

U > ¢ 'ByPBg

and

Y =eP !

The use of Shur complement formula enables to
write the guaranteed cost control problem (8) in a
LMI-LME (linear matrix inequality- linear matrix
equality) formulation

min Trace[U]
(Y.R)

subjected to

Y Byg
(Ba U)ZO

AY + YA '+ BaR+ R'B, (CoY + DgR) <0
(CoY + Do R) -1
eB) = C1Y + Do R

)

The state feedback is given by K = RY~!. Prob-
lem (9) can be solved using almost standard LMI
and LME software.



2.2 Case Dy + Dj; >0

We now move to_the other extreme case termed
strongly or extended positive real in the literature
[13]. By elimination of the W and L unknown
matrices in (8) an equivalent formulation of these
constraints can easily be given in terms of a Ric-
cati matrix inequality :

(A+ ByK) P+ P(A+ ByK)+
(B{P —Cq1 - D13K)/ (D11 + Dy1)"1(B{P — C1 — D13K)+ (10)
€Qp < 0

or similarly (Schur Cohn complement)

( (4 +BoK)'P+ P(A+ B2K) +¢Qp

1 -\
(BYP —C1 — D13K)
(B1P — C; — D1gK)

—(D11 + D)
(11)

Finally, with Y = P~! and A = ¢7!, the guaran-
teed cost control problem is written

min _ Trace[AU]
(Y,R,X)
subjected to

(Y Bpg >0

Bj U
AY + YA;’ , (CoY + DgR)’ (B} - clly
+B3R + R'B) —Dj3R)
<0
(CoY + DgR) -1 0
1 1
(B] —C1Y — Dy3R) 0 —(D11 + Dyq)

(12)

the constraints are linear with respect to the un-
knowns, but due to the cost (bilinear) the ”LMI
machinery” cannot be directly applied to (12).
There are however several possible ways to over-
come this difficulty. The first one, which would
always provide a solution (if any), is to perform
a one line search along the scalar A, performing
iteratively LMI optimizations with respect to Y
and R. Another way i1s by an iterative lineariza-
tion procedure leading to solve, at iteration n the
following optimization problem

min trace [Ap—1U + AU, _1]
Y,RA

where A,_1, U,_1 are the solutions of the (n — 1)
previous iterations. This kind of algorithm has
proven to be efficient to solve some hard problems
such as the static output control one and the de-
centralized control one [7].

2.3 Case CaseDyy # 0 and Dy +
=0

Trying to proceed as far as possible towards an
LMI-LME formulation, with ¥ = ¢P~!, S =

LY, A = ¢!, the guaranteed cost control prob-
lem can be written as

min Trace[U]
(Y,R,S,W,X)
subjected to
Y  Bg
(s % )2o
AY +vA'+ BoR+R'BY  (CqY + DgR) s!
(CoY + DgR) -1 0 <0
s 0 -1
AB{ —C1Y - D1gR+W/'s =0
D11+ D}, —w'w=o0

(13)

In this formulation, the difficulty for solution
comes from the two last equations with the

quadratic and bilinear terms W'W and W'S.
With the choice S = 0,the problem (13) reduces
to the one presented in section 2.1 (Di; = 0)
and in fact, the strictly positive real condition
with D17 = 0 is a sufficient condition for the case
Dy + Djy > 0.

A more intuitively appealing way consists in
fixing first a W matrix satisfying the last equality
constraint in (13) and then solving a true LMI op-
timization problem in the unknowns Y, R, S, A
where the S matrix is a degree of freedom to be
used to fulfill the strictly positive real condition.
It is conjectured that this is a reasonable and effi-
cient way to solve this general problem which has
not yet received a complete solution as stated in

[5]-
3 Discrete time systems

Let us now consider the discrete time uncertain
dynamical system described by :

Tpy1 = Axg + Biwg + Bauyg
yik = Chieg + Diywg + Disuy (14)
yor = Coxr + Douy

where z € R", ur € R™, yox € RP are respec-
tively the state, control and controlled output vec-
tors at time k. The uncertainty 1s modelled as a
negative nonlinear feedback of the y15 € R™ out-
put vector

wy = —f(yx), with, feF (15)

As in continuous time case, the discrete positive
real lemma provides a necessary and sufficient con-
dition for (14,15) to be asymptotically stable (in
open loop, u; = 0), namely there exist P = P/ > 0
and L, W matrices such that

A'PA-P4+L'L<O0
B{PA—Cl—I-W"L:O (16)
Dy + D}y — B{PB; —W'W =0

This condition i1s also a necessary and sufficient
condition for the square transfer matrix

T(z) = Cy(2I — A)"'By + Dyy (17)
to be strictly positive real | i.e.
Real[T(z] >0, Yz : ||z]| =1

From the last equality constraint (16), it is clear
that

Dy #0 (18)

As previously, considering the cost

o
J = Z Yor Yok
k=0



a general guaranteed cost control problem with
state feedback can be stated as
min ¢ 'Trace[B} P By)
PK
subjected to
(A4 ByK)'P(A+ BsK)— P+ L'L+eQo <0
BIIP(A + BQI{) — Cl - Dlgf( + W/L = 0
Dyy+ D}y — B{PB —W'W =0
where QO = (CO + D()I\r)/(CO + DO[{)
(19)

Proof : The proof is done using the candidate
Lyapunov function v(zx) = z}, Pxx. We have

Ao =z Papy —x Pry

= ) (A4 ByK)' P(A+ ByK)xy, — z} P+

2w, B{P(A+ ByK)zp + w;, B PBiwy,
< —expQoxy — ) L' Loy —
2f(y1r) (216 — D11w, — W' L)+
Fyir)' BiPByf(y1k)
= —ex,Qoxy — x), L' Lay—
2f(yir) yixe + 2f (y1)' W' Ly —
Flyie) WW f(y1x)
= —ex,Qoxr — 2f (1) vik—
(Leg — W f(yir)) (Lex — W f(yix))
—cx, Qo

IA

Then

Z Ak’U(I‘k) =
k=0

Assuming zy a random vector with zero mean and
covariance E[zgz,] = BoBj and averaging the
cost, one has

o
—xhPrg < —¢ E T Qory
k=0

E[Z x, Qoxy] < ¢ Trace[ By P By)
k=0

3.1 Case Dy + D}y — B{PB; >0

In this case (strongly or extended positive real)
proceeding as in the continuous time case, one
can write, condition (19) in a discrete Riccati
inequality form with A, = A 4+ ByK, Ci. =
C1+ D12K, Coc = Co + Do K

AlLPA. - P+

1 1 1 1 -1 1
(Bl}lec_clc) (D11 + Dy — ByPB;)” " (B{PAc — Cy¢)
+eCp.Coc < 0

(20)

or similarly

(B{PAc — C1c)

ALPAc — P+ ¢C{ Coe e c
—(D11 + D}, — B{PByj)

(B{PAc — Ci1c)

)<0 (21)

After some tedious but straightforward develop-
ments using Schur Cohn complement formula, it
is possible to get the guaranteed cost control prob-
lem as

Trace[AU]

)20

(AY + ByR)!

min
(Y,R,X)
subjected to
Y  Bp
Bj U
-Y —(C1Y 4 D12 R)’ (CoY,
+Dg R)
(AY + ByR) -y 0
1
—(C1Y + D13R) B3
o

B,
—(Dy1 + DY) 0
(CoY + Do R) 0

—AI

(22)

where Y = P! and A = ¢~'. The problem
presents the same degree of difficulty as its coun-
terpart in the continuous time case. The inequali-
ties are linear in the unknowns, the cost is bilinear
but with a scalar factor which enables to under-
take efficient numerical algorithms for solution.

3.2 Case Dy, + D}, — BiPB, >0

In the discrete time case, the solution in this case
is much more involved than the one correspond-
ing to the continuous time one where a practical
procedure had been exhibited. Here there are two
major difficulties. The first one comes from the
P(A+ B2 K) term which cannot be brought into a
linear form. The second one is put by the depen-
dence between the P and W matrices due to the
last equality.

4 Conclusion

In this paper, the quadratic guaranteed cost con-
trol problem has been quite fully investigated for
the various cases of positive real conditions in the
continuous as well as the discrete time problems.
The state feedback control has been given either
exact or workable efficient solutions in almost all
the situations except in the non strongly positive
real discrete case which deserves more investiga-
tions.

The dynamic ouput control which has been al-
ready addressed in some papers needs to be more
fully developed and it is another prospective for
such a work.
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