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Abstract. In this paper, the stability of discrete-time piecewise linear hybrid systems is in-
vestigated using piecewise linear Lyapunov functions. In particular, we consider switched
discrete-time linear systems and we identify classes of switching sequences that result in
stable trajectories. Given a switched linear system, we present a systematic methodology for
computing switching laws that guarantee stability based on the matrices of the system. In the
proposed approach, we assume that each individual subsystem is stable and admits a piece-
wise linear Lyapunov function. Based on these Lyapunov functions, we compose “global”
Lyapunov functions that guarantee stability of the switched linear system. A large class of
stabilizing switching sequences for switched linear systems is characterized by computing
conic partitions of the state space.
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1. INTRODUCTION

In this paper, we study the stability of piecewise linear
hybrid systems using piecewise linear Lyapunov func-
tions. In particular, we consider discrete-time switched
linear systems. The control problem considered is to
identify classes of switching sequences that result in sta-
ble trajectories. The main motivation behind this prob-
lem is that it is often easier to find switching controllers
than to find a simple continuous controller. For exam-
ple, in the case when we have multiple control objec-
tives, we may design a continuous controller for each
control objective, and control the behavior of the plant
by switching among different controllers.

In order to investigate the stability properties of practi-
cal hybrid systems, there is an important need to char-
acterize partitions of the state space that lead to sta-
ble trajectories based on the structural properties of the
switched system. In our approach, we characterize a
large class of switching signals that result in stable tra-
jectories. Given a switched linear system, we present a
systematic methodology for computing switching laws
that guarantee stability based on the matrices of the
system. We assume that each individual subsystem is
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stable and admits a piecewise linear Lyapunov func-
tion. Based on these Lyapunov functions, we compose
“global” Lyapunov functions that guarantee stability of
the switched linear system. The main contribution of
the paper is that using piecewise linear Lyapunov func-
tion we construct a conic partition of the state space that
is used to characterize a large class of switching laws
that result in stable trajectories.

Stability of switched systems has been studied exten-
sively in the literature; see for example [7, 13, 15] and
the references therein. Analysis tools for switched and
hybrid systems based on multiple Lyapunov functions
are presented in [4]. The application of the theoretical
results to practical hybrid systems may be accomplished
using a linear matrix inequality (LMI) problem formu-
lation for constructing a set of quadratic Lyapunov-like
functions [9, 18].

The stability analysis presented in this paper is based
on piecewise linear Lyapunov functions. Piecewise lin-
ear Lyapunov functions have been used extensively for
the analysis of dynamical systems. The problem of
constructing piecewise linear Lyapunov functions and
their application to nonlinear and large scale systems
has been considered in [5, 6, 16, 17]. More recently,
positively invariant polyhedral sets for discrete-time dy-
namical systems have been studied in [2]. Lyapunov
functions described by the infinity norm have been also
investigated in [10, 19, 20].



The paper is organized as follows. In Section 2, a
mathematical model for discrete-time switched linear
systems is introduced and the problem of identifying
stabilizing switching sequences is stated. Section 3
presents the necessary background for piecewise linear
Lyapunov function. The emphasis is put on computa-
tional methods for constructing such Lyapunov func-
tions. The technical results for the characterization of
stabilizing switching sequences are presented in Sec-
tion 4, and the approach is illustrated with a numerical
example.

2. PROBLEM STATEMENT

In this section, we consider switched discrete-time lin-
ear systems described by

x(t+ 1) = Aqx(t), q ∈ Q = {1, . . . , N} (1)

wherex(t) ∈ Rn andAq ∈ Rn×n. The mathematical
model described by Equation (1) represents the contin-
uous portion of piecewise linear hybrid dynamical sys-
tems. The particular modeq at any given time instant
may be selected by a decision-making process. We rep-
resent such a decision-making process by a switching
law of the form

q(t+ 1) = δ(q(t), x(t)). (2)

Givenx(t), the next state is computed byx(t + 1) =
Aq(t)x(t). The functionδ : Q×Rn → Rn is discontin-
uous with respect tox. Such a switching law is usually
defined using a partition of the state space.

Our objective is to investigate the stability of the
switched linear system (1) under the switching law (2).
Note that the originxe = 0 is an equilibrium for the
system (1). Furthermore, for a fixed switching law, the
switched system (1) can be viewed as a special case of a
time-varying linear system, and therefore the usual defi-
nitions of stability can be used; see for example [1]. The
control problem considered in this chapter is toiden-
tify classes of switching sequences that result in stable
trajectories. It is assumed that all the individual sub-
systems are stable and therefore constant switching sig-
nals of the formq(t) = i ∈ Q for every t result in
stable trajectories. The problem considered here can
be partially solved using “slow switching signals”; see
for example [13] and the references therein. Here we
follow a different approach in order to develop a sys-
tematic methodology to compute regions of the state
space where switchings are allowed to occur. First, we
compute a partition of the state space into conic regions
based on the matricesAq of the system. Then, we char-
acterize a large class of stabilizing switching signals by
requiring the switchings will occur in certain regions of
the state space.

3. PIECEWISE LINEAR LYAPUNOV FUNC-
TIONS

In this section, we briefly present some background ma-
terial necessary for the stability analysis of switched lin-
ear systems presented later in this chapter.

3.1. Set-induced Lyapunov functions

We consider the discrete-time linear systemx(t+ 1) =
Ax(t) wherex(t) ∈ Rn andA ∈ Rn×n.

Definition 1 A nonempty setP ⊂ Rn is said to be (pos-
itively) invariant for the systemx(t + 1) = Ax(t) if
x(0) ∈ P implies thatx(t) ∈ P for everyt ∈ Z (Z+).
In the case when the system admits a positively in-
variant polyhedral setP containing the origin, a Lya-
punov function can be constructed by considering the
Minkowski functional(gauge function) of P ; see for
example [17, 3]. Consider a polytopeP ⊂ Rn and
assume that0 ∈ int(P ). The Minkowski functional of
P is defined byV (x) = inf{ρ > 0|x ∈ ρP} where
ρP = {ρx|x ∈ P}.
Let Fi be a face of a polytope and consider the corre-
sponding hyperplaneHi as shown in Fig. 1. The hyper-
plane can be described (perhaps after normalization) by
Hi = {x ∈ Rn : 〈x,wi〉 = 1}.
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Figure 1: A polytopeP , a faceFi and its corresponding
hyperplaneHi.

Since the setP includes an open neighborhood of the
origin, Rn can be partitioned into a finite number of
cones defined as follows. Each faceF of the polytope
can be described as the convex hull of its extreme points
fj ∈ Rn, j = 1, . . . , r. A finitely generated cone can
be defined for the faceF . Consider a particular faceFi
and the corresponding cone. SinceFi ∈ ∂P there exist
uniqueρ > 0 and x̂ ∈ Fi such thatx = ρx̂ and the
Minkowski functional can be computed by

V (x) =
‖x‖2
‖x̂‖2 = ρ = ρ〈x̂, wi〉 = 〈x,wi〉 (3)

since〈x̂, wi〉 = 1. Therefore, forx ∈ cone(Fi), the
Lyapunov function induced by the setP can be written



asV (x) = 〈x,wi〉. Consequently, the Lyapunov func-
tion can be computed forx ∈ Rn by

V (x) = max
1≤i≤m

〈x,wi〉. (4)

3.2 Lyapunov Functions Defined by the Infinity
Norm

A special case of piecewise linear Lyapunov function
arise when the setP is centrally symmetric. In this case,
the Lyapunov functionV (x) can be represented using
the infinity norm. Furthermore, there exists a class of
linear systems for which such a Lyapunov function can
be computed very efficiently. Consider the following
Lyapunov function candidateV (x) = ‖Wx‖∞ where
W ∈ Rm×n and‖·‖∞ denotes the infinity norm defined
by ‖x‖∞ = max1≤i≤n |xi|.
Theorem 1 ([2]) V (x) = ‖Wx‖∞ is a Lyapunov func-
tion for the systemx(t+1) = Ax(t) if and only if there
exist a matrixQ ∈ Rm×m such thatWA − QW = 0
and‖Q‖∞ < 1.
It should be noted a generalization of the above theorem
for every normed space that satisfies theself-extension
propertyhas been presented in [14].

Corollary 1 ([2]) If V (x) = ‖Wx‖∞ is a Lyapunov
function for the systemx(t+1) = Ax(t) then the poly-
hedral setP = {x ∈ Rn : ‖Wx‖∞ ≤ 1} is positively
invariant. In addition, the setρP for every realρ > 0
is also positively invariant.

The setP is a centrally symmetric polyhedron. In the
case whenrankW = n (m ≥ n) thenP is bounded.
The number of vertices of the polyhedronP rises with
the number of rowsm. If W ∈ Rn×n then we obtain a
centrally symmetric polyhedron with2n vertices. Note
that in the case whenrankW < n, thenV (x) is posi-
tive semidefinite and cannot be a Lyapunov function for
the system. However ifDV = V [x(t+1)]−V [x(t)] <
0 the setP = {x ∈ Rn : ‖Wx‖∞ < ρ} is a positively
invariant set (for anyρ > 0), but is not always a do-
main of stability since it can be unbounded (expanding
infinitely into n− rankW dimensions).

In order to study the stability properties of the switched
linear system (1) we assume that each individual sub-
system admits a piecewise linear Lyapunov function.
Therefore, the efficient computation of each Lyapunov
function is very important for the application of the
methodology to practical hybrid systems. A class of
linear systems for which such a Lyapunov function can
be computed very efficiently is presented in [2].

Corollary 2 ([2]) If all the eigenvaluesλi = µi ± jσi
of thenth order linear systemx(t + 1) = Ax(t) are
in the open square|µi| + |σi| < 1, then there exists
a matrixW ∈ Rn×n with rankW = n such that the
polyhedral setP = {x ∈ Rn : ‖Wx‖∞ < 1} is a
positively invariant set for the system.

Remark The condition|µi|+ |σi| < 1 can be replaced
by |µi| + |σi| ≤ 1 with the additional hypothesis that
to each eigenvalueλi such that|µi| + |σi| = 1 with
multiplicity νi there correspondνi linearly independent
eigenvectors.

The matrixW can be computed as the solution to the
matrix equationWA − QW = 0 with the condition
‖Qx‖∞ < 1. It is well known [8] that if the matricesA
andQ do not have common eigenvalues then the only
solution isW = 0. The important assumption in the
Corollary 2 is thatW ∈ Rn×n with rankW = n. In
this case the matrixW can be computed as the similar-
ity transformation matrix by whichA is transformed to
theReal Jordan Canonical Form[12].

3.3 Computer Generated Lyapunov Functions

It should be noted that in our stability analysis for
switched linear systems, it is not necessary for the in-
dividual invariant polyhedral sets to be centrally sym-
metric. Positively invariant polyhedral sets for stable
discrete-time systems can be determined usingcom-
puter generated Lyapunov functions[5]. The class of
computer generated Lyapunov functions has been used
for stability analysis of nonlinear systems in [5, 6, 16,
17]. The main idea is to construct a Lyapunov function
that guarantees the stability of a set of matrices that is
determined by applying Euler’s discretization method
to a nonlinear differential equation.

Our approach here is to use a computer generated Lya-
punov function for each individual subsystem. Con-
sider the matrixA ∈ Rn×n and letP0 ⊂ Rn be a
bounded polyhedral region of the origin. We denote the
convex hull ofP by conv(P ). Following [5] we define

Pk = conv

( ∞⋃
i=0

AiPk−1

)
, P ∗ =

∞⋃
i=0

Pi. (5)

The following results can be derived from [5]: First, the
matrixA is stable if and only ifP ∗ is bounded. Second,
if A is stable then each setPk can be computed byPk−1
using finitely many iterations. Furthermore, it is shown
in [6] that if there exists constantK ∈ R such that the
eigenvalues ofA satisfy the condition|λi| ≤ K < 1,
then the setP ∗ is finitely computable. In this case the
setP ∗ is polyhedral as the convex hull of finitely many
points. Furthermore,P ∗ is a positively invariant poly-
hedral set of the system.

4. STABILIZING SWITCHING SEQUENCES

In this section, we present an approach based on multi-
ple Lyapunov functions for the stability analysis of the
switched system (1). The main contribution is an effi-
cient characterization of a class of switching laws of the
form (2) which guarantee the stability of the system.

We assume that each individual subsystem admits a
positively invariant polyhedral set that contains the ori-



gin which is described by

Pq = {x ∈ Rn : W qx < 1̄}
whereW q ∈ Rmq×n and 1̄ = [1, . . . , 1]T ∈ Rn. We
denote the rows of the matrixW q by wqi ∈ Rn, i =
1, . . . ,mq. The Lyapunov function induced by the set
Pq can be described by

Vq(x) = max
1≤i≤mq

〈x,wqi 〉. (6)

Note that ifPq is centrally symmetric then there exists
W q ∈ Rn×n and the corresponding Lyapunov function
can be written asVq(x) = ‖W qx‖∞.

We consider a classS of switching sequences of the
form

s = (q0, t0), (q1, t1), . . . , (qj , tj), . . . , x(t0) = x0. (7)

It is assumed that ifs is finite thentj+1 = ∞ and that
qj 6= qj+1. Such a sequence can be generated by the
switching law

qj(tj + 1) = δ(qj−1(tj), x(tj)), j = 1, 2, . . . . (8)

Proposition 1 Consider a switching sequences ∈ S.
If Vqj [x(tj + 1)] ≤ Vqj−1 [x(tj)], j = 1, 2, . . ., then
the switched systemx(t + 1) = Aqx(t) is stable in the
sense of Lyapunov.

Proof Consider the multiple Lyapunov function de-
fined byV [x(t)] = Vqj [x(t)], tj < t ≤ tj+1 then
we have that for everyt > t0, t ∈ Z+, DV (x) =
V [x(t+1)]− V [x(t)] ≤ 0. Note that the switched sys-
tem for a fixed switching sequences can be viewed as
a time-varying system. SinceV (x) is positive definite
and radially unbounded, andDV negative semidefinite,
the system is stable in the sense of Lyapunov; see for
example [1]. 2

If the conditionVqj [x(tj + 1)] < Vqj−1 [x(tj)] is used
in the previous proposition, then the origin is asymptot-
ically stable for the switched system.

A multiple Lyapunov function composed by piecewise
linear Lyapunov functions of the individual subsystems
offers a significant advantage. It allows the characteri-
zation of the switching sequences that satisfy the con-
dition of Proposition 1 by computing a conic partition
of the state space. Consider a pair of subsystems with
matricesAq1 andAq2 . We want to compute the region

Ωq2q1 = {x ∈ Rn : Vq2 (x) ≤ Vq1(x)}. (9)

Consider the facesF q1i1 andF q2i2 of the polytopesPq1
andPq2 respectively and assume that

C = cone(F q1i1 ) ∩ cone(F q2i2 ) 6= ∅. (10)

Next, we define the halfspace

Hq2q1 = {x ∈ Rn : 〈x,wq2i2 − wq1i1 〉 ≤ 0} (11)

and the set

Ω = C ∩Hq2q1 . (12)

It is shown in the following lemma that the multiple
Lyapunov function defined in Proposition 1 is decreas-
ing if the system switches fromq1 to q2 while x ∈ Ω.

Lemma 1 For everyx ∈ Ω we have thatVq2 (x) ≤
Vq1(x).

Proof For everyx ∈ C the Lyapunov functions for
the subsystems are given byVq1(x) = 〈x,wq1i1 〉 and
Vq2(x) = 〈x,wq2i2 〉 respectively. Ifx ∈ Ω we have
that〈x,wq2i2 − wq1i1 〉 ≤ 0 sincex ∈ Hq2q1 , and therefore
Vq2(x) ≤ Vq1(x). 2

Since0 ∈ Hq2q1 , the setΩ is a clearly a polyhedral
cone as the intersection of cones with a common apex
(x = 0) as shown in Fig. 2. The setΩq2q1 can be com-
puted as the union of polyhedral cones by repeating the
above procedure for all the pairs(F q1i1 , F

q2
i2
) of (n−1)−

dimensional faces of the polytopeP as shown in the fol-
lowing algorithm.

Algorithm for the computation of Ωq2q1

INPUT:W q1 ,W q2 ;
for i1 = 1, . . . ,mq1

for i2 = 1, . . . ,mq2
C = cone(F q1i1 ) ∩ cone(F q2i2 );
if C 6= ∅ then
Hq2q1 = {x ∈ Rn : 〈x,wq2i2 − wq1i1 〉 ≤ 0}
Ω = C ∩Hq2q1 ;
Ωq2q1 = Ω

q2
q1 ∪ Ω;

end
end

end
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Figure 2: The conic partition of the state space.

The above procedure can be repeated for every pair of
subsystems to identify a class of stabilizing switching
signals for the switched linear system. The class of
switching sequences is characterized by the following
result.



Theorem 2 Consider the class of switching sequences
S defined byqj(tj + 1) = δ(qj−1(tj), x(tj)), x(tj) ∈
Ω
qj
qj−1 6= ∅ for j = 1, 2, . . .. The switched linear system
x(t + 1) = Aqx(t) is stable in the sense of Lyapunov
for every switching sequences ∈ S.

Proof By induction, we have that ifs = (q0, t0)
then the system is stable sinceAq0 is sta-
ble. Assume that the switched system is sta-
ble for s = (q0, t0), (q1, t1), . . . , (qj−1, tj−1)
and consider the switching sequences′ =
(q0, t0), (q1, t1), . . . , (qj−1, tj−1), (qj , tj). Since
x(tj) ∈ Ω

qj
qj−1 , we have thatVqj [x(tj + 1)] ≤

Vqj−1 [x(tj)]. Therefore, the multiple Lyapunov func-
tion defined byV [x(t)] = Vqj [x(t)], tj < t ≤ tj+1
is decreasing for everyt and the system is stable in the
sense of Lyapunov. 2

We have presented a methodology for the partition of
the state space into conic regions that are used to char-
acterize a class of stabilizing switching sequences. The
following example illustrates the approach.

Example Consider the switched discrete-time linear
systemx(t + 1) = Aqx(t), q ∈ {1, 2} where

A1 =

[
1.7 4
−0.8 −1.5

]
, A2 =

[
0.95 −1.5
0.75 −0.55

]
.

The system with matrixA1 has two complex conjugate
eigenvaluesλ1,2 = 0.1± j0.8. The real Jordan canoni-
cal form can be computed by the similarity transforma-
tion

Q1 =W
1A1(W

1)−1 =
[
0.1 0.8
−0.8 0.1

]

where

W 1 =

[
1 2
0 1

]
.

We have that

‖Q1‖∞ = max
1≤i≤n

n∑
j=1

|qij | = 0.9 < 1

and therefore,V1(x) = ‖W 1x‖∞ is a Lyapunov func-
tion for the system. Furthermore, the set

P1 = {x ∈ R2 : ‖W 1x‖∞ ≤ 1}
shown in Fig. 3 is a positively invariant polyhedral set.
The matrixA2 has two complex conjugate eigenval-
uesλ1,2 = 0.2 ± i0.75. A positively invariant poly-
hedral setP2 is described by the Lyapunov function
V2 = ‖W 2x‖∞ where

W 2 =

[
1 −2
1 0

]
.

Consider the facesF 1 andF 2 of the polyhedral setsP1
andP2 respectively as shown in Fig. 3. For everyx ∈
cone(F 1)∩cone(F 2)we have thatV1(x) = 〈x,w1〉 and

V2(x) = 〈x,w2〉 with w1 = [1, 2] andw2 = [1,−2]
respectively. We consider the halfspace

H21 = {x ∈ R2 : 〈x,w2 − w1〉 ≤ 0}
= {x ∈ R2 : x2 ≥ 0}.

Therefore, for everyx ∈ Ω = cone(F 1) ∩ cone(F 2) ∩
H21 we have thatV2(x) ≤ V1(x).
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Figure 3: The regionΩ.

By repeating the procedure for all the pairs of faces for
the polytopesP1 andP2 we compute the region

Ωq2q1 = {x ∈ R2 : Vq2 (x) ≤ Vq1 (x)}
= {x ∈ R2 : x2 ≥ 0}.

Similarly we have that

Ωq1q2 = {x ∈ R2 : Vq1 (x) ≤ Vq2 (x)}
= {x ∈ R2 : x2 ≤ 0}.

Therefore, for any switching sequences given by the
switching lawq2(t+1) = δ(q1(t), x(t)), only if x(t) ∈
Ωq2q1 and q1(t + 1) = δ(q2(t), x(t)), only if x(t) ∈
Ωq1q2 the switched system is stable. A stable trajectory is
shown in Fig. 4.

The characterization of the stabilizing switching se-
quences is based on sufficient conditions. Therefore, for
a switching sequences that does not satisfy the formu-
lated conditions, the switched system is not necessarily
unstable. However, the switched system of the example
can generate unstable trajectories as shown in Fig. 5.2

5. CONCLUSIONS

In this paper, the stability of piecewise linear hybrid
systems using piecewise linear Lyapunov functions is
investigated. In the proposed approach, we assume that
each individual subsystem is stable and admits a piece-
wise linear Lyapunov function. Based on these Lya-
punov functions, we compose “global” Lyapunov func-
tions that guarantee stability of the switched linear sys-
tem. These multiple Lyapunov functions correspond
to conic partitions of the state space which are effi-
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Figure 4: A stabilizing switching sequence for the
discrete-time switched system.
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Figure 5: An unstable trajectory of the discrete-time
switched system.

ciently computed using the developed algorithms. The
main advantage of the approach is that the methodol-
ogy for computing switching laws that guarantee stabil-
ity is based on the matrices of the system. Therefore,
the proposed approach can be used very efficiently to
investigate the stability properties of practical hybrid
systems. The methodology has been applied also to
continuous-time switched linear systems; details can be
found in [11].
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