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Abstract. It has recently been shown that matrix Stability Preserving Maps (SPMs) play
an important role in robust stabilization. They can be used to provide a different characteri-
zation for the existence of a fixed order controller that robustly stabilizes a plant family. Not
only do these maps give a different perspective into the problem, but stability preserving
map tests have been developed that form the basis of robust controller design procedures.
Results have been reported for plant families that either consist of a finite number of systems
or can be expressed by transfer function models that involve real parameter uncertainty. In
this paper we develop additional stability preserving map tests. We also demonstrate how
these tests lead to robust stabilization techniques and apply the methodology to a number

of examples.
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1 Introduction

The ability to robustly stabilize a family of linear time
invariant plants is a topic of great importance in au-
tomatic control research and practice. Given a plant
family one would like to be able to answer the ques-
tion of whether a robustly stabilizing controller ex-
ists and have a method for constructing it. Classes
of plant families that have been studied include those
that consist of a finite number of systems and those
that can be expressed in terms of a transfer func-
tion model with real parameter uncertainty. We know
that the problem of simultaneous stabilization of a fi-
nite number of plants is a difficult one. In fact, in the
general case elegant and computationally attractive
solutions do not exist [2, 11]. For systems with real
parameters one may be able to express plant uncer-
tainty using a special structure (e.g., multiplicative
uncertainty) for which a solution can be given using
Hoo techniques [7]. However, such an approach can
lead to conservative designs. A complete solution ex-
ists for the case of a single (affine) uncertainty [7]
but the techniques cannot be generalized. Other ap-
proaches that have been suggested for systems with
real parameter uncertainty include Parameter Space
methods, [1], the QFT framework [9] and Finite Tn-
clusions Theorem (FIT) design [5].
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The notion of a matrix stability preserving map has
recently been introduced [3, 4] and used in the for-
mulation of robust stabilization problems. We have
demonstrated that the concept can be used for scalar
as well as multivariable systems. In the literature
one can find the notion of a stability preserving map-
ping defined in the context of Lyapunov based anal-
ysis of dynamical systems [10]. However, the ma-
trix stability preserving maps discussed here appear
to be different. Following the exposition in [10], sta-
bility preserving mappings map families of motions
of a dynamical system to families of motions of an-
other dynamical system (i.e., from one state space
to another in the time domain). They are used to
establish qualitative equivalences between dynamical
systems. In contrast, matrix SPMs map polynomial
coefficients to polynomial coefficients (i.e., frequency
domain) and can be defined without any reference
to dynamical systems as simply matrix properties.
Furthermore, we use SPMs to develop methods for
robust controller design/synthesis. Nevertheless, it
would be worthwhile to investigate possible connec-
tions that may exist between the two concepts.

In our earlier work we began the development of the
theory of stability preserving maps and presented a
number of SPM tests. One of these, is the fact that
an upper triangular matrix with “ones” on the main
diagonal does generate a SPM. Another, is that a ma-



trix with one stable row generates a SPM. In section
2 of this paper we review some of the pertinent defi-
nitions and in section 3 continue the development of
the theory by stating new SPM tests. We will confine
our discussion to scalar maps but in view of [4], ex-
tensions to the multivariable case are immediate. In
section 4 we apply these results to a number of ex-
amples and show how to design controllers for robust
stabilization.

2 Stability Preserving Maps

First, let us recall the definition of a scalar stability
preserving map [3]. With R denoting the reals and
R™ the space of real n-vectors, let A be an n x m
matrix with elements in R, ¢ € R™,¢yp € R™ and
fa: R™ — R™ the function defined by:

fald)=¢xA=1v

Here “x” indicates vector-matrix multiplication. For
notational simplicity the “x” will not be explicitly
shown. The n-vector X = [Xn—1, Xn—2,-- -, Xo0] repre-
sents the coefficients of the degree n — 1 polynomial
X(8) = Xn_15""1 4+ xn_28"2 + + xo. The
vector y is called stable if the corresponding polyno-
mial x(s) has all its n—1 roots in the left half complex

plane (LHCP).

Definition 1 The function fa is called a Stability
Preserving Map (SPM) if there exists some stable n-
vector ¢ that is mapped to a stable m-vector 1 =

fa(¢) = 9A.

We say that A generates the SPM f4. It is apparent
that the notion of a SPM is simply a matrix prop-
erty that need not have any connection to dynamical
systems. However, we have shown in [3] that this con-
cept plays an important role in robust stabilization.
Consider the feedback system shown in Figure 1. The
transfer function P;(s),7 € {1,2,..., N} is one of a fi-
nite number of order 7, strictly proper, single-input,
single-output plants given by:

Rls) = dpi(s)

C(s) Pi(s) J

r—i—%e

Figure 1: Unity Feedback Configuration

where 1,;(8) = 15" +nin_2s" 2+ +n,0 and
dpi(s) = s" + din_15" "' + ... + djo are coprime for
n'c(s)

de(s)
is proper and degree 71 — 1, with n.(s) = ya_15" "1 +

all values of . The controller given by C(s) =

Ya 28" 2 4+ ...+ yo and d.(s) = s 4+ x5 08" 2
+...+xp. The closed loop characteristic polynomials
are of degree 2n — 1 and given by:

¢i(5) de(5)dpi(5) + ne(s)npi(s)

= " hion 05T i (2)

In the simultancous stabilization problem we want
to know if a single controller exists that makes the
polynomials ¢;(s) stable for all 4. Tt is well known
how this relationship can be expressed in coefficient
space in terms of the Sylvester resultant matrix. Let
us first collect the controller coefficients in a single
vector = [1 Yn—1 Ta—2 Yn—2 Ta—3 ... o Yo]. The
family of n'" order Sylvester resultants are 2n x 2n
matrices given by:

[ 1 din—1 din—2 dio 0 0
0 "1 Nga—2 N0 0 0
0 1 din—1 din dio 0
0 0 Nin—1 N1 N0 0
0 0 1 din—1 din—2 dio
| 0 0 0 Nia—1 Mia—2 N |

Sr(dpi(s)mpi(s))

With this notation we can rewrite (2) as:

Suppose for the moment that N = 2 and that a single
countroller C(s) (represented by z) exists that makes
¢1(s) and ¢o(s) stable. This implies:

ie{l, 2, ..., N}

xSz (dp1(s),nyp
2S5 (dp2(s), np

N =
—~ o~
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Since the two resultants are invertible this means that
we must have:

! Saldpa(s),npa(s)) = 62 (3)
A

¢1 5n(dp1(5), 1p1(5))

or that the function fa is a SPM! The converse is also
true, for if the matrix “A” defined in (3) generates a
stability preserving map then the corresponding two
plants are simultaneously stabilizable. Constructing
a simultaneously stabilizing controller is simply done
by computing x = ¢1.55(dp1(s),np1(s)) "' The con-
cept of stability preserving maps thus leads very natu-
rally to robust controller synthesis/design procedures.
In the case of more than two plants a set of “A” matri-
ces are generated along with the corresponding set of
fa maps. Specifically, for N plants the matrices A; =
Sn(dp1(8),np1(5)) ™" Saldpi(s),npi(s)),2 < @ < N.
For simultaneous stabilization one needs to find a sin-
gle stable polynomial that is mapped to stable poly-
nomials by the corresponding maps. We then say that



fa is a family of SPM maps. The situation is similar
if we have a plant transfer function which contains a
(vector) parameter a. We form the set of matrices:
Afa) = Sﬁ<dpo(s)a npO(S))_l SFL(dP(Sa a), np('sa a)),ac
Qq, and where “0” indicates a nominal plant. For ro-
bust stabilization one needs to find a single stable
polynomial that is mapped to stable polynomials by
the corresponding maps (i.e., fa is a family of SPM
maps). To make this theory useful in design, tests
are needed for checking whether appropriate matri-
ces generate stability preserving maps. Several such
tests have been reported in [3]. In the next section
we continue the development by reporting a number
of additional tests.

3 More SPM Tests

In [3] we proved that if A is an n x n which has some
row that is a stable (degree n — 1) polynomial, the f4
it generates is a SPM. In this section we will prove
several more results. Other results are also reported
in [6].

Lemma 1 Let A be n x n with two consecutive rows
whose sum is a degree n — 1 stable polynomial. The
corresponding fa is a SPM.

Proof: We consider two cases. In Case 1, the two rows
in question are the first two rows of the matrix and
in Case 2, any other two consecutive rows.

Case 1: Suppose that the sum of rows 1 and 2 of ma-
trix A forms a degree n — 1 stable polynomial . We
need to construct a stable degree n — 1 polynomial
that gets mapped by fa to some stable degree n — 1
polynomial. Consider the polynomial:

b(s) = (5 + 3)"*3@52 Lgs)

where q is positive, real and “large.” It is the prod-
uct of stable polynomials and thus is stable. After
expanding the product it can be seen that the coeffi-
cients of the terms s~ and s"~2 are ¢ and ¢+ n — 3
respectively. Lower powers of s have coeflicients that
include terms (1/q)7 where j > 0. When @A is formed
it generates a polynomial which can be expressed as:
qv) + x where y has entries that include terms (1/q)’
where j > 0. By making ¢ “large” the roots of ¢A
can be made to lie arbitrarily close to the roots of
which is stable.

Case 2: Suppose that the sum of rows ¢ — 1 and i
(3 < i < n) of matrix A forms a degree n — 1 stable
polynomial ¥. We need to construct a stable degree
n — 1 polynomial that gets mapped by f4 to some
stable degree n — 1 polynomial. Consider the polyno-
mial:

o(s) = (s + 0\ (s + 3)”—2-%82 s+

where ¢ is positive, real and “large,” and 1 < j <
n—2,1 =7+ 2. Itis a product of stable polyno-
mials and thus is stable. Consider first the product
g(s) = (s+q) s+ %)”_z_j and focus on the coef-
ficient of s"~277, For large enough ¢ it will be dom-
inated by the term ¢?~!. Furthermore, all other co-
efficients of g(s) in this product will contain terms
which are lower powers of ¢ (and can be negative).
When g(s) is multiplied by s? 4+ ¢s + ¢ to form ¢(s),
the coefficients of the terms s"~ =7 and s~ 277 will
include the same ¢’ term (call it a(q)), and all other
coefficients will have terms with lower powers of q.
When ¢A is formed it generates a polynomial which
can be expressed as: a(q)y + x where x has entries
that include terms with lower powers of ¢. By making
q “large” the roots of pA can be made to lie arbitrar-
ily close to the roots of 1 which is stable. O

It is clear that the idea behind the proof can be
extended to other “sums of rows.” In fact this is a
special case of a more general result:

Lemma 2 Let A be n X n with k consecutive rows
that form the k xn submatriz Ay which generates the
SPM fa,. Then fu is a SPM.

Proof: We consider two cases. In Case 1, the subma-
trix Ap is formed by the first & rows of the matrix
and in Case 2, any other k consecutive rows.

Case 1: Since A; is a SPM there exists some degree
k —1 stable polynomial a(s) that is mapped to a sta-
ble degree n.— 1 polynomial 1. We need to construct
a stable degree n— 1 polynomial that gets mapped by
fa to some stable degree n — 1 polynomial. Consider
the polynomial:

b(s) = (5 + §>”—’€—1<qsa<s> 1)

where q is positive, real and “large.” It is the prod-
uct of stable polynomials and thus is stable. The
fact that polynomial gsa(s)+ 1 is stable follows from
root locus arguments. After expanding the prod-
uct it can be seen that the coefficients of the terms
n=l gn=2 " s""F are dominated by the term q.
Lower powers of s have coeflicients that include terms
(1/q)7 where j > 0. When ¢A is formed it generates
a polynomial which can be expressed as: gy +x where
x has entries that include terms (1/q)? where j > 0.
By making ¢ “large” the roots of ¢ A can be made to
lie arbitrarily close to the roots of ¥ which is stable.
Case 2: Suppose that A; is the submatrix formed by
rowsi—k+1,i—k+2,...,1 (k+1 <14 <n) of matrix
A and suppose that a(s) is a degree k — 1 polynomial
that is mapped by A; to the degree n — 1 stable poly-
nomial ¢/. We need to construct a stable degree n —1
polynomial that gets mapped by f4 to some stable
degree n — 1 polynomial. Consider the polynomial:

S

o(s) = (s + 0 (s + 3)”—’“%5’“ + ga(s))



where ¢ is positive, real and “large,” and 1 < j <
n—k,i=j+k Itisa product of stable polyno-
mials and thus is stable. Consider first the product
g(s) = (s+q) s+ %)”_k_j and focus on the coef-
ficient of s"*=7, For large enough ¢ it will be domi-
nated by the term ¢?~1. Furthermore, all other cocffi-
cients of g(s) in this product will contain terms which
are lower powers of ¢ (and can be negative). When
g(s) is multiplied by s* + qa(s) to form ¢(s), the co-
efficients of the terms s"=1=7 gn—k+l=7 gn=k=j
will include a ¢/ term, and all other coefficients will
have terms with lower powers of ¢q. In fact, we can
write ¢(s) — ¢/s"~*~Ia(s) + f(s,q) where [(s,q)
has coefficients with lower powers of ¢. When ¢A
is formed it generates a polynomial which can be ex-
pressed as: ¢71 + y where y has entries that include
terms with lower powers of q. By making q “large”
the roots of ¢A can be made to lie arbitrarily close
to the roots of 1 which is stable. O

Other results along the same theme can also be
stated. One possibility is expressed in the next lemma.

Lemma 3 Let A be n X n matriz where the sum of
rowsit—2 and i, 3 <1t<nisadegree n — 1 stable
polynomial. The corresponding fa is a SPM.

Proof: The method of proof is similar to that of Lemma
1. Suppose that the sum of rows i—2 and i (3 < i < n)
of matrix A forms a degree n—1 stable polynomial 1.
We need to construct a stable degree n—1 polynomial
that gets mapped by fa to some stable degree n — 1
polynomial. Consider the polynomial:

B(5) = (5 + 9y~ (s + é)"*-nqﬁ L)

where ¢ is positive, real and “large,” and 1 < j <
n— 2,0 =7+ 2. Itis a product of stable polyno-
mials and thus is stable. Consider first the product
g(s) = (s +q) (s + %)"’%j and focus on the coef-
ficient of s"~277. For large enough ¢ it will be dom-
inated by the term ¢/~!. Furthermore, all other co-
efficients of g(s) in this product will contain terms
which are lower powers of ¢ (and can be negative).
When g(s) is multiplied by gs? + s + ¢ to form ¢(s),
the coefficients of the terms s"~7 and 5”277 will in-
clude the same ¢’ term (call it a(q)), and all other
coefficients will have terms with lower powers of q.
When ¢A is formed it generates a polynomial which
can be expressed as: a(q)y + x where x has entries
that include terms with lower powers of ¢. By making
q “large” the roots of pA can be made to lie arbitrar-
ily close to the roots of ¢/ which is stable. O

One can also state the following result which is an
immediate consequence of the Hermite-Biehler theo-
rem.

Lemma 4 Let A be nxn matriz where the submatriz
Ay consisting of all the even (or all the odd) rows is

a SPM which in addition maps a stable polynomial
with distinct real roots to a stable polynomial. The
corresponding fa is a SPM.

Proof: We know that the polynomial ¢(s) = h(s?) +
sg(s?) is stable if and only if h(u) and g(u) form a
positive pair [8]. Clearly, if some polynomial ¢(s)
is stable and ¢ > 0, then polynomials and ¢,y =
h(s?) + sqg(s?) are also stable. Let n be even (n — 1
is then odd) and A; be the matrix consisting of all
the even rows. By assumption it is a SPM which
in addition maps some stable polynomial h with dis-
tinct real roots to the stable degree n — 1 polynomial
. It is always possible to construct a polynomial
g(u) such that h(u) and g(u) form a positive pair and
h(s?)+ sg(s?) is stable degree n — 1. The polynomial
#(s) = qh(s®) + sg(s?) will be stable for all ¢ > 0.
The polynomial ¢ will be mapped by A to the poly-
nomial gy + y, where y does not involve ¢ and for
large q its roots lie arbitrarily close to those of v. If
Ay is the submatrix of all odd rows for which a sta-
ble polynomial g exists with distinct real roots that
is mapped to a stable polynomial, h(u) can be con-
structed that makes h(u) and g(u) a positive pair and
h(s?) +sg(s?) a stable degree n — 1 polynomial. The
required ¢(s) = h(s?) + sqg(s?). A similar argument
can be made for the case when n is odd. O

An immediate consequence of this result is that
any order Sylvester resultant of a proper (not strictly
proper) degree 7i plant which is minimum phase is a
SPM.

It should be clear that many more results can be
formulated that make use of the ideas expressed in
the above proofs. It would be great if one could pro-
vide a complete characterization of when a given ma-
trix generates a SPM. This would immediately lead
to robust synthesis procedures. No such characteri-
zation exists at the present time. However, we are
able to make definitive statements for specific sys-
tem classes. In particular, we can identify system
classes for which the corresponding A matrix has spe-
cial structure (e.g., the sum of two consecutive rows
is a stable polynomial). For these system classes are
then able to carry out robust controller synthesis. For
other system classes we gain insight for robust design.

4 Robust Controller Design

In the previous section we developed a number of
tests for stability preserving maps. In this section
we show how these results can form the basis for
robust controller design procedures. Here we will
confine our discussion to plant families with param-
eter uncertainty where a € {,. In the SPM ap-
proach the first step is to use Sylvester Resultants to
construct the matrix maps. Specifically, for a plant
family P(s,a) consisting of order 7 plants a con-
troller of order n — 1 is used and the matrix A(a) =
Si(dpo(s),npo(s))~1Sr(dy(s,a),np(s,a)) is formed.



One then proceeds to check whether the map f4(a)
generated is a SPM family for all a € Q,. To accom-
plish this one uses available SPM tests. In particular,
one can check: i) if one row is a stable polynomial, ii)
if the sum of two consecutive rows is a stable polyno-
mial, or iii) if the sum of rows i —2 and ¢ form a stable
polynomial for some i € 3 < i < n. The procedure
then continues by identifying a polynomial ¢, with
the right structure, which is mapped by the matrix
family to stable polynomials. Finally, the stabilizing
controller is computed as @ = ¢Sz (dpo(s), npo(s)) "

Tt is important to point out a salient feature of this
robust stabilization procedure. In view of the struc-
ture of the generated family of A(a) matrices, the
identity matrix will also be included for some value
of the uncertain parameter, typically when a = 0.
Clearly, for this value no row (or sum of rows) of
the corresponding A matrix forms a stable polyno-
mial. This would imply that the required “stability
properties” are not present for the entire parameter
range. However, the identity matrix is a SSPM which
means that it maps any stable polynomial to a sta-
ble polynomial. Therefore, one can argue that the
stability properties of the A matrix would point to
¢-polynomials that possess a promising “structure.”
One then checks polynomials of this structure to iden-
tify (if possible) an appropriate one. The approach
will be demonstrated through a number of examples
and can be summarized as follows:

Robust Controller Design

e For the specific plant family generate the ap-
propriate matrix A(a) and check if this matrix
generates a stability preserving map family f4.
Specifically, check if the A matrix has the ap-
propriate stability properties. This will identify
a promising structure of stable ¢-polynomials
that are parameterized by q.

e Check polynomials with this structure and iden-
tify (if possible) one that is mapped by A to
stable polynomials.

e Construct the robustly stabilizing controller x =

¢S (dpo(s), mpo(s)) 7

Example 1
Consider the plant family below with a single pa-
rameter uncertainty.

s—1+a1(3s+2) (4)
s2—s—24a1(4s—1)
where a1 € Q, = [0,10]. With a proper order 1

controller C(s) = ";i% the closed loop characteris-
. . 0
tic polynomial becomes:

P('Sa al) =

¢(s,01) = (s +yo)(s — 1+ a1(3s+2)) +
(s +x0)(s> —5—24a1(s— 1))

Setting up the appropriate Sylvester Resultant we
have:

1 4a;—1 —a;—2 0
_ 0 3a1+1 2a1-—1 0
Sla)=14 "y day —1 —aj —2 (5)
0 0 3(11 + 1 2&1 —1

The nominal plant corresponds to a3 = 0 and the
plant family will be robustly stabilized [3] if and only
if the matrix A(a;) = S(0)71S(a;) generates a SPM
family for all a; € Qg:

1 23/2@1 7@1 15/2@1
A(G,l) _ 0 9/2a1+1 4aq 5/2@1

0 3/2&1 2&1 + 1 5/2&1

0 3/2&1 —a1 1/2&1 +1

It is easy to verify that the first row of this matrix
is a stable polynomial for all values of a; > .09317.
This would imply that the “promising polynomial”
structure has the form: (s + 1/¢)3. On the other
hand for small values of a; the A(a;) matrix tends
to the identity which maps any stable polynomial to
stable polynomials. Clearly, this indicates that it is
likely that a polynomial with this structure may be
found. Indeed, if ¢ = 3 we have that [1 1 1/3 1/27]
gets mapped to:

[1 149/9a; + 1 314/27ay + 1/3 293/27aq + 1/27]
One can easily verify that this polynomial is stable

for all nonnegative values of a;. The controller which
accomplishes this task is computed as:

11 1/3 1/2718(0)~!
[1 113/27 —59/27 13/3]

[1 Y1 To yo] =

Remark In essence, the SPM design methodology pro-
vides insight on how to answer the following ques-
tion: For the plant family under consideration where
should the nominal characteristic polynomial be placed
so that robust stability is guaranteed? From plant
family data we conclude that a particular polynomial
structure is very promising. In this example this in-
sight leads to a solution of the problem.

Example 2

For this example we modify the parameter uncer-
tainty structure and consider the following plant fam-
ily:

s—1+a(s+1)

P =
(s,a1) 52 —5—2+4a1(16/5s — 1)

(6)



where a1 € €, = [0,10]. With a proper order 1

controller C(s) = ﬁ# the closed loop characteris-
o

tic polynomial becomes:

¢(s,a1) = (s +yo)(s — 1+ ar(s + 1)) +
(s +20)(s% —5—2+ay(16/55 — 1))

Setting up the appropriate Sylvester Resultant we
have:

1 16/5@1 -1 —a] — 2 0

_ 0 a; +1 a; — 1 0
Sla) =1 1 16/5a, —1 —a; —2
0 0 ar+1 a1

The nominal plant corresponds to a; = 0 and the
plant family will be robustly stabilized [3] if and only
if the matrix A(a;) = S(0)'S(a1) generates a SPM

family for all a1 € Qg:

1 57/100,1 —3/100,1 9/2@1
A(al) _ 0 3/2@1 +1 9/1004 3/2@1

0  1/2a1  —1/10a +1  3/2a

0 1/2a —11/10a;  1/2a; + 1

Note that the first row of A(aq) is no longer a stable
polynomial for any positive value of a;. However, it is
easy to verify that the sum of the first rows of this ma-
trix is a stable polynomial for all values of a; > 1.25.
From Lemma 1 we know that a promising structure
for a ¢-polynomial is: (s+1/q)(qs?+qs+1). Further-
more, as aj approaches zero the A(a;) matrix tends
to the identity which maps any stable polynomial to
stable polynomials. This suggests that a polynomial
with this structure may be found. Indeed, if ¢ = 3 we
have that [3 4 2 1/3] gets mapped to:

[3 364/15a1 +4 32/15a1 +2 68/3a; + 1/3]

One can easily verify that this polynomial is stable
for all nonnegative values of a;. The controller which
accomplishes this task is computed as:

3 4 2 1/3]S(0)7"
[3 44/3 —23/3 15]

1y 2o ol

Remark Even though the plant families considered
in these two examples are nonminimum phase and
unstable, the examples are clearly “academic,” and
are only intended to demonstrate the SPM approach.
The methodology has also been applied to more real-
istic systems [6].

5 Conclusions

In this paper we have continued the development of
the theory of matrix stability preserving maps. We
first presented more tests for checking whether some
matrix A generates a stability preserving map. These

tests were then used to develop robust controller de-
sign procedures for plant families with parameter un-
certainty. The methodology was demonstrated on a
number of examples. In this work the order of the
controller is fixed in a manner that guarantees the in-
vertibility of the corresponding Sylvester Resultant.
In other work [6] we develop more SPM tests and ex-
tend the formulation to cover the case of controllers of
arbitrary order. We believe that these results provide
more insight for robust controller design and lead to
new robust design tools.

References

[1] J. Ackermann, “Parameter Space Design of Ro-
bust Control Systems,” IEEE Trans. an AC, Vol.
AC-25, No.6, December 1980.

[2] V. Blondel, Simultaneous Stabilization of Lin-
ear Systemns, Springer-Verlag, NO. 191, London,
1994.

[3] T. E. Djaferis, “Stability Preserving Maps and
Robust, Stabilization,” Proceedings 1998 TIEEE
Conference on Decision and Control, Tampa, FL,
pp. 2792-2797.

[4] T. E. Djaferis, “Stability Preserving Maps,” in
System Theory: Modeling, Analysis and Control,
T. E. Djaferis and 1. C. Schick eds., Kluwer Aca-
demic Publishers, pp. 475-486, 2000.

[5] T. E. Djaferis, Robust Control Design: A Poly-
nomial Approach, Kluwer Academic Publishers,
Boston, 1995.

[6] T. E. Djaferis, “Generalized Stability Preserving
Maps,” submitted, 2000 IEEE CDC.

[7] J. C. Doyle, B. A. Francis, A. R. Tannenbaum,
Feedback Control Theory, Macmillan, New York,
1992.

[8] F. R. Gantmacher, The Theory of Matrices, vols.
T and II, Chelsea, New York, 1959.

[9] 1. Horowitz, Synthesis of Feedback Systems, Aca-
demic Press, New York, 1963.

[10] A. Michel, K. Wang, Qualitative Theory of Dy-
namical Systems, Marcel Dekker, New York,
1995.

[11] M. Vidyasagar, N. Viswanadham, “Algebraic
Design Techniques for Reliable Stabilization,”
IEEE Trans. on AC, Vol. 27, No. 5, 1982, pp.
1085-1095.



	cc: Proceedings of the 8th IEEE Mediterranean Conference
on Control and Automation (MED 2000)
Rio, Patras, GREECE                                          17-19 July, 2000


