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Abstract
This article addresses the need for optimal actuation in distributed-parameter systems dominated by
conductive heat transfer, such as in thermal processing of materials. An LQR-based approach is
developed, which determines the optimal location and the power of the actuator at successive time
periods, by piece-wise minimization of the quadratic performance indices corresponding to theses
subintervals. This algorithm is applied to a finite dimensional representation of the temperature state
and heat input distributions, yielding a suboptimal but computationally efficient heat source guidance
strategy. This is shown to warrant superior temperature tracking performance over fixed —location
actuation, by FEA simulations.

 Thermal Control

Distributed parameter control systems have been
developed in the past for thermal processing.
Ummethela [1] used a linear Gaussian controller in
order to develop a technique that optimally distributes
heat inputs across a controlled object. The controller
rejects successfully the heat loss disturbances. This
technique in essence separates the spatial and
temporal part of the governing partial differential
equation, which results in the steady state equation for
heat conduction within the controlled object. The
steady state Green s function that corresponds to that
equation determines the state-space model, which is
used to minimize the quadratic performance index.

 An LQR-based optimal actuator guidance strategy
was developed in [3] and tested numerically and
analytically in thermal processing of a one-
dimensional material strip, dominated by conductive
heat transfer. The controller provides the optimal
location and power of the actuator at successive time

periods for 10 1-D conductive elements corresponding
to each part subregion.

In this manuscript we extend the previous result to the
2-D case. An analytical model of thermal processing
has been developed, which for this case is a finite two-
dimensional approximation of the associated infinite
dimensional system. This model is used for the
computer simulation and the off-line testing of the
LQR controller. This study provides information
about the design of the LQR controller and the
behavior of a real-time closed loop control system.

Abstract mathematical model

The process dynamics are described by the two
dimensional partial differential equation given by:
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with Neumann boundary condition( zero flux)
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where δ(ξ) is the two dimensional delta function that
denotes the location of the heat source . Q(t) is the
thermal input and it is given by the difference
between the actual heat input Qa(t) that corresponds
to the actual temperature field in each location Ta(ξ)
and the  desired power Qd(t), that must be generated
according to
the desired temperature field Td(ξ).

The system (2), (3) can be described by an abstract
evolution equation in an appropriate Hilbert [4] space
H:
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where T(t) is the state of the infinite dimensional
system, A is the spatial operator given by the
formula:
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and B(ξ0) is the location-parameterized input operator
given by
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for all test functions )(2 Ω∈ Lϕ .

The A and B(ξ0) operators can be approximately
controllable, exponentially stabilizable and
optimizable for certain locations  ξ0 in the domain Ω,
[4]. Using an approximation scheme the preserves
exponential stabilizability we arrive at the finite
dimensional approximation of (4) which is given by
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where now A is the matrix representation of the
operator A and B(ξ0) is the vector representation of
the operator B(ξ0), [3].

We are using an LQR performance index for control
policy. This quadratic performance index  is given by

[ ]

HftMTftT

ft

t
dRQHSTTJ

)(),(

0
)(2)(),(

2

1
∫ ++= ττττ

The optimal feedback law for the interval (t0,tf) is
given by
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where P(t) is the solution to the operator differential
Riccati equation (DRE)
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The minimum of the location-parametrized cost
function for the interval (t0,tf) is
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To find the optimal actuator location for the time
interval, the above optimal cost is minimized with
respect to the possible actuator locations.

Now, to find what the guidance policy should be, the
above minimization procedure is performed in a
smaller time subinterval  of  fixed length.
Therefore the optimal location is found by
minimizing the above J* with respect to all possible
actuator locations. This requires the solution of many
differential Riccati equations in each time subinterval
[ts, ts+∆t].

This optimal location control signal is extremely
computationally intensive. In order to reduce the
computational load one can follow the procedure
proposed in [5] by solving instead the algebraic
Riccati equation
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for all the possible locations. The optimal actuator
location in each time subinterval is then found as the
one that minimizes T’(t)P(ξ)T(t).



Simulation of the real-time closed loop system

A plain square steel plate (1040) measuring 0.1 x 0.1
x 0.003 m has been used as the example specimen for
simulation of the closed loop control system. The
metallic plate has uniform geometry and conductive
thermal properties. The   material properties include
the density ρ=8000 kg/m3, specific heat c=500 J/kgK,
thermal conductivity k=70 W/mK and heat transfer
coefficient h=-10W/m2K.

 The purpose of the controller is to eliminate the
difference between the desired temperature Td and
the actual temperature Ta ( ξi,t) uniformly over the
space  for each subinterval ts. Thus the actuator is
driven to the respective optimal location ξi(ts) while
the actual heat input is provided according to the
expression Qa(ts)=Qd — Q(ts, ξi). Qd is the input,
which corresponds to the desired temperature Td at
the steady state of the thermal system. For a desired
temperature Td=800 K the Qd is estimated taken into
account the heat transfer coefficient h=-10W/ m2K ,
Qd=-h[Td-T(0)](0.1x 0.1)=-200 W.

The thermal control scheme is applied on a numerical
model of the thermal processed specimen. The
numerical model employs a 2-D finite element
analysis of nx x ny = 4 x 4 =16 conductive elements.
The ambient temperature T(0)=300 K for all
elements.

Figures 1 illustrates the resulting trajectory of the
heat source according to the optimal location ξ*(ts) at
times t=0,4,8,12,16,20 sec.
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Figure 1: Simulated heat trajectory.

Figure 2 to 6 illustrate the change of the temperature
profile of the specimen s area at the respective time t
subintervals. The initial temperature is effectively
brought to the desired one Td within the process time
interval of 20 sec as it is also  shown in figure 7. In
order to compare the efficiency of the actuator
guidance technique the LQR controller was applied
to a fixed actuator positioned in the middle of the
specimen. The simulations results from this
application are shown in figure 8. The resulting
temperature distribution profile exceeds the desired
temperature level within the process time.

Figure 1: Temperature profile at t=0sec

Figure 2: Temperature profile at t=4sec

Figure 3: Temperature profile at t=8sec



Figure 4: Temperature profile at t=12sec

Figure 5: Temperature profile at t=16sec

Figure 6: Temperature profile at t=20sec

Figure 7: Simulated temperature profiles
 T(ξ) of a moving actuator at time ts=20 sec.

Figure 8: :Simulated temperature profiles
T(ξ)of a fixed actuator at time ts=20 sec.

Conclusion

An LQR —optimal based actuator guidance strategy
was developed in distributed parameter systems, such
as in thermal processing of materials, dominated by
conductive heat transfer. The optimal location and
power of the actuator at successive time periods was
determined by minimization of the quadratic
performance indices at these subintervals. A finite —
dimensional representation of the heat input
distribution and the temperature state provided a
computationally efficient heat source guidance
strategy. This was verified by FEA simulations
results that also indicate the superior temperature
tracking performance when fixed location actuator is
applied.
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