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Abstract: New methods for tuning PI controllers for unstable first order plus dead-time
(UFOPDT) processes are reported. In contrast to known methods that result on overshoot in
the closed-loop response or require the modification of the feedback structure, the pro-
posed methods ensure smooth closed-loop response to set-point changes, fast attenuation of
step load disturbances and robustness against parametric uncertainty while retaining the
classical PI controller structure. This enhanced performance is plausible by the use of a first
order set-point filter and by the application of some new accurate approximations of the
crossover frequencies of the Nyquist plot for UFOPDT models. The proposed methods
require small computation effort and they are particularly useful for on-line applications.
Finally, they are favorably compared to the already known PI controller tuning methods.
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1. INTRODUCTION

Many chemical and agricultural processes, such as
exothermic chemical processes and biological reac-
tors, often operate around unstable steady states. To
approximate their dynamics for the purpose of con-
troller design, unstable first order dead-time (UFOP-
DT) transfer function models are used [5], [7], [8].
Control of such models, is a very active research area
[2], [3], [6], [9], due to the fact that, classical PID
tuning methods, like the Ziegler-Nichols or the
Cohen-Coon methods, are not applicable to these
models, due to its peculiarity. The common feature of
the existing tuning methods for UFOPDT systems is
that they give excessive overshoot. Jacob and Chi-
dambaram were the first to point out this drawback
and proposed a new tuning rule, which incorporates
both a two-stage P-PI control structure and the inter-

nal model controller (IMC) tuning rule [4].

The purpose of this study is to propose several new
methods for tuning PI controllers for UFOPDT pro-
cesses. In contrast to known PI tuning rules that result
on overshoot in the closed-loop response or require
the modification of the feedback control stru-cture,
the proposed methods ensure smooth response and
robustness against parametric uncertainty while
retaining the classical PI controller structure. This
improved performance is plausible by the use of a
first order set-point filter and by the application of
some new accurate approximations of the crossover
frequencies of the Nyquist plot for UFOPDT models.
The proposed tuning rules either are expressed in
terms of an adjustable parameter that can be selected
to ensure a desired damping ratio of the closed-loop
response or minimization of the integral of squared
error plus normalized square controller output devia-
tion criterion, or they are based on the simultaneous
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satisfaction of gain and phase margin specifications.
Note that explicit formulas for the selection of the
adjustable parameters are also proposed. The propo-
sed methods require small computational effort and
they are particularly useful for on-line applications. A
variety of simulation studies have been performed
and the performance of the proposed methods is
compared to that of both the conventional PI control-
ler and the two-stage IMC method. This comparison
reveals that the proposed methods provide fast
attenuation of step load disturbances, in addition to
enhanced closed-loop response in set-point changes.
As it is shown in the paper, the proposed methods are
favorably compared to the already known tuning
methods in terms of stability robustness. Finally, an
application of the proposed methods on an open loop
unstable biological reactor with hard input constraint
and significant measurement delay is also presented.

2. PI CONTROL WITH SET-POINT FILTER

The transfer function of an unstable, first order plus
dead-time (UFOPDT) system, is given by
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Ke)s(G
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where K, d and T are the process gain, time delay and
time constant, respectively. In order to control an
UFOPDT system, we next propose the PI control-ler
with set-point filter based feedback scheme, depi-cted
in Fig. 1, wherein, )s(G C  is the transfer func-tion of
the PI controller having the form
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where KC is the controller gain and Iτ  is the con-
troller reset time, while GSPF(s) is the transfer func-
tion of the so-called set-point filter, having the form

)1s/(1)s(G ISPF +τ=

In what follows, our aim is the tuning of the PI
controller parameters. To this end, we next analyze
the feedback control structure of Fig. 1. The closed
loop system response upon a set point change is
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With a first-order set point filter, relation (1) takes
the form
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Using the first order approximation of the form
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Fig. 1. Proposed feedback control structure.
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in the denominator of (2), after some easy algebraic
manipulations we obtain
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Moreover, the loop transfer function )s(G L  has the
form
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3. PROPOSED TUNING RULES

Observe that the argument and the magnitude of the
loop transfer function )s(G L  are
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Let now minω  and maxω  be the smallest and the lar-
gest frequency, respectively, for which the Nyquist
plot of the loop transfer function GL(s) crosses the
negative real axis. Obviously, ( ) π−=ωφ minL  and

( ) π−=ωφ maxL . However, the values of minω  and

maxω  cannot be obtained from (4a), since the later is
obviously nonlinear and has no analytic solution. To
avoid numerical solution of (4a) at minω=ω  and

maxω=ω  we propose the following approximation of
the tan-1 function
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At frequency minω , equation (4a) yields
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Approximation of the 1tan −  function at minω  yields
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provided that T>d. Using a similar analysis, at fre-
quency maxω , we obtain
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In Figs. 2 and 3, the exact solution of (4a) is compa-
red with the approximations obtained by (6) and (8)
(in the case where T15I =τ ). The accuracy of the
approximation is remarkable in both cases.

Having obtained accurate analytic expression for
minω  and maxω , we are able to calculate the PI

controller parameters. More precisely, when, at fre-
quencies minω  and maxω , the magnitude of the loop
transfer function, equals unity, then the Nyquist plot
of )s(G L  crosses –1+j0 and the closed-loop system
becomes unstable. In this case, from (4b), we obtain
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Fig. 2. Estimation of the frequency ωmin using (6) and
exact solution.
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Fig. 3. Estimation of the frequency ωmax using (8) and
exact solution.

which define the range of CK , in which the closed-
loop system remains stable. Therefore, the PI con-
troller gain KC can be calculated as follows

max,Cmin,CC KKK = (10)

From relations (9a) and (9b), it becomes clear that the
controller gain depends of the specific value of the
reset time Iτ , which can be computed by using one
of the following four methods.

Method 1.

We first assume a large value for Iτ , say T100I =τ .
Then, minω , maxω , min,CK , max,CK  can be calculated
using relations (7)-(9), and KC can be obtained using
(10). Observe now that, KC can further be written as
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We next check for which value of the reset time, say
max,Iτ , equality maxF ω=ω  is satisfied, or
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Solving (12) with respect to max,Iτ , we obtain
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Set 1max,II / βτ=τ , where 1β  is an adjustable para-
meter and repeat this procedure until a convergence.

Method 2.

We repeat all the steps of Method 1, up to the
calculation of Fω  on the basis of (11). Next, we
check for which value of the reset time, say min,Iτ ,
equality minF ω=ω , is satisfied, or, by using (6)

( ) min,I
F dT3 τ−

π=ω (13)

Solving (13) with respect to min,Iτ , we obtain
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F

min,I dT3 ω−
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Set 2min,II / βτ=τ , where 2β  is an adjustable para-
meter and repeat this procedure until a convergence.

Method 3.

We repeat all the steps of Method 1, up to the
calculation of KC on the basis of (10). We next
propose that the reset time Iτ  can be calculated
through a Ziegler-Nichols type relation of the form
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where β3 is an adjustable parameter and Pu,min =
2π/ωmin. On the basis of (6), equation (14) yields
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We repeat the above procedure until a convergence.

Method 4.

We repeat all the steps of Method 1, up to the
calculation of KC on the basis of (10). We next
propose that the reset time Iτ  can be calculated
through a Ziegler-Nichols type relation of the form
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where β4 is an adjustable parameter and Pu,max =
2π/ωmax. On the basis of (8), equation (15) yields
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Then, Iτ  can be obtained as the minimum real root of
(16), which has an admissible solution if
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We repeat the above procedure until a convergence.

In the above tuning methods, it is clear that, in each
iteration, the value of the reset time Iτ  depends on
the adjustable parameter iβ , i=1,2,3,4. In general,
the value of iβ ’s can be selected arbitrarily, thus
permitting on-line tuning. However, it would be
useful for the designer to have some precise rules for
the choice of iβ ’s. Such rules must rely of some cri-
teria relative to the closed-loop system performance.

An obvious criterion is related to the responsiveness
of the closed-loop system. From the previous analy-
sis, it becomes clear that the closed-loop response of
(3) (and therefore of the closed loop system) can be
made the way we want by choosing the value of the
damping ratio ξ (which depends on KC, τI and hence
on the adjustable parameters iβ ’s), to be the desired
one, say desξ . For example, we can choose ξ=1 in
order to insure overdamped nature of the closed loop
response while maintaining the maximum responsi-
veness of the controller at the same time. When ξ<1
there are oscillations in the response, and the criti-
cally damped response of ξ=1, represents the margi-
nal case between overdamped and underdamped res-
ponses. Larger values than unity for ξ produce more
sluggish responses than necessary.

To satisfy desξ=ξ , the adjustable parameter 1β , in
each iteration of Method 1, must be selected as the
minimum real root (whenever it exists) of
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Similarly, the adjustable parameter 2β , in each ite-
ration of Method 2, must be selected as the mini-mum
real root (whenever it exists) of

0
KK

11

d
KK

T4
KK

11d2d

2
min,I

2

C

2min,I
C

2
des

C

2
2

2

=τ





−+

βτ

















−ξ+





−−β

(18)



Moreover, to satisfy the same criterion, one must
select the adjustable parameter 3β , in each iteration
of Method 3, as the minimum real root (whenever it
exists) of the biquadratic equation
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and the adjustable parameter 4β , in each iteration of
Method 3.4, as the minimum real root (whenever it
exists) of the fourth order equation
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Another criterion, for the selection of the controller
parameters, is based on the minimization of the inte-
gral of the squared error plus the normalized squared
controller output deviation (ISENSCOD) from its
final value ∞u  [10]. This integral is defined by

[ ] [ ]{ }∫
∞
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222
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and we use it next in order to tune the PI controller
parameters. Since CK  depends on Iτ , which, using
Methods 1-4, can be obtained as a function of iβ ’s,
minimization of ISENSCODJ  can be performed with
respect to iβ ’s. Unfortunately, there is no close form
of integral (19) and simulation must be used instead.
Extensive simulation shows that the values of iβ ’s,
minimizing T/J ISENSCOD , do not depend on K or KC.
It depends only on the dimensionless parameter

T/d . Based on these simulations, we can propose
explicit rules for evaluating iβ ’s that minimize

ISENSCODJ . For example, the optimal values of β1 as a
function of the parameter T/d , can be obtained by
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Remark 3.1. Simulation results show that, for a given
UFOPDT process and for any given prespe-cified
value of the desired damping ratio desξ  of the closed
loop system, all tuning methods proposed above give
the same settings for the controller parameters KC and
τI, although they are obviously based on different
algorithmic procedures. For this reason, in Sections 4
and 5 that follows, simulations in these cases will be
performed on the basis of only one of the
aforementioned equivalent methods.

The methods presented thus far, for tuning PI con-
trollers for UFOPDT models rely on the satisfaction
of some very important characteristics of the closed-
loop system response. We next present a method for
PI controller tuning based on the simultaneous
satisfaction of phase and gain margin (PGM) specifi-
cations.

To present the method, let, in the sequel, MG  and

MP  be the gain and phase margin, respectively, of the
closed-loop system. From the basic definitions of the
gain and phase margin, the following equations are
obtained
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In the case of UFOPDT models, it is obvious that
maxC ω=ω . So, the proposed PGM tuning method is

as follows.

Method 5.

First assume a large value for Iτ , say T100I =τ . On
the basis of this value, maxω  and max,CK  can be
calculated using relations (8) and (9b), respectively.
Then, set initially KC=KC,max/2. Moreover, with these
initial values of Iτ  and KC, Gω  is obtained from
(23), or equivalently as the square root of the maxi-
mum real root of the biquadratic equation
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where in producing (25) use was made of (4b). Then,
in view of relations (4a), (4b), (21) and (22), re-
evaluate Iτ  and CK , from relations
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and repeat the above procedure until a convergence.
This completes the method.

In the case of P-only controllers, it has been shown
[3], that the maximum of ( ) ( )ω+ω−π−=ωφ − Ttand 1

P ,

is achieved at frequency 1dTT 11
P −=ω −− .

Therefore, by choosing the P controller gain as
11

C TdKK −−= , then, the phase margin PM is
maximized and is given by [3]

PP
1

M d)T(tanP ω−ω= − (28)

Since, for a given specification of the gain margin, a
PI controller has always smaller phase margin than
the P controller with the same gain margin, Method 5,
is applicable only if the phase margin specifica-tion is
smaller than the one calculated through (28).
Moreover, in order to obtain acceptable integral ac-
tion, the phase margin specification should be suffi-
ciently smaller than the maximum value (28).

4. NUMERICAL EXAMPLES

To demonstrate the effectiveness of the proposed
methods and to provide a comparison with the
existing tuning formulas, a numerical example is
elaborated. In particular, the unstable process model
studied in [5], [8], [9] is considered. Parameter va-
lues for this model are K=1, d=0.5 and T=1.

First, Method 1 is applied to this specific model, in
order to design a PI controller, with the adjustable
parameter 1β  having the optimal value minimizing

ISENSCODJ . From (20) we obtain 6462.1opt,1 =β .
Then, the PI controller parameters obtained are
KC=1.5091 and τI=6.5534.

Our method will next be compared with the methods
of Rotstein and Lewin (R&L) [8] and Venkatashan-
kar and Chidambaram (V&C) [9], in the case where it
is assumed that there is no parametric uncertainty in
the process model. Applying the R&L method (for

2.2=λ ), we obtain 9091.1K C = , 2400.9I =τ . The
V&C method gives 5066.1K C = , 5000.12I =τ . In
Fig. 4, the closed-loop response, to a unit step change
of the set point, is given, and it is compared to those
obtained by applying the methods proposed in [8],
[9], which, obviously, give unacceptable over-shoot,
while the method in [8] gives the most oscilla-tory
response. Our method offers the better response in
terms of overshoot, oscillation and settling time. In
Fig. 5, the proposed method is compared to that
proposed in [9], in the extreme case where 20% error
in the estimation of K and 10% error in the
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Fig. 4. Proposed Method 1 vs. the methods of Ven-
katashankar/Chidambaram and Roitstein/Lewin
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Fig. 5. Proposed Method 1 vs. the Venkatashankar/
Chidambaram method, in case of uncertainty

estimation of T are assumed. It is shown that, even in
this case, our method is considerably better than the
V&C method. For the assumed uncertainty, the R&L
method gives unstable closed-loop response. This
suggests that, although in [8] it is proposed using

2.2=λ , in order to tolerate 25% gain un-certainty,
the R&L method cannot tolerate simulta-neous
parameter variations.

We shall next perform a comparison of our methods
with the method of Jacob and Chidambaram [4],
which is based on a two stage P-PI control structure
and the IMC-PID tuning rule [6]. To this end, we
apply Method 2, in order to design PI controllers in
the case where the closed-loop system response is
desired to have the damping ratio ξ=1. The values of
the PI controller parameters, obtained by applying
Method 2, are 5284.1K C = , 7874.7I =τ . In Fig. 6
the closed-loop system response, to unit step changes
of the set point, is given in the case where no
parametric uncertainty is assumed. This response is
compared with those obtained by the application of
the best-tuned two–stage IMC method, i.e. the tuning
parameter λ taking on the values of 2.0 and 2.5. The
two stage IMC P-PI controller parameters
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Fig. 6. Proposed Method 2 vs. the two-stage IMC
method (λ=2 and λ=2.5)

are 1402.0K C = , 9571.0I =τ , 4142.1K i,C =  and
1121.0K C = , 9571.0I =τ , 4142.1K i,C = , respecti-

vely. It turns out that, in this case, the performance of
our method is as good as that of the best-tuned two-
stage IMC method. Note that, when no parame-tric
uncertainty is assumed, the case of 0.2=λ  for the
two-stage IMC method performs better than the case
λ =2.5. Fig. 7 shows the regulatory control results for
unit step load changes, by Method 2, along with those
obtained by the two-stage IMC method. It turns out
that Method 2 is comparable with the two-stage IMC
method. We finally perform a comparison of the
performance of the proposed method with the best-
tuned two-stage IMC method of [4], in the case where
the process parameters deviate from their estimated
nominal values. Simulation show that, in the
robustness tests the case of 5.2=λ  performs well
than λ  of 2.0. Fig. 8 shows the case of 20%
uncertainty increase of process gain. Fig. 9 shows a
comparison of Method 2 with the best-tuned two-
stage IMC method, in the case of 20% decrease of
time constant. Similar results can be obtained in the
case of 20% increase of time delay. It turns out that
the performance of our method is quite satisfactory in
all cases.
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Fig. 7. Proposed Method 2 vs. the two-stage IMC
method in the case of regulatory control.
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Fig. 8. Proposed Metrhod 2 vs. the two-stage IMC
method in case of gain uncertainty.
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Fig. 9. Proposed Method 2 vs. the two-stage IMC
method in case of time constant uncertainty.

5. APPLICATION TO A BIO-REACTOR

The open loop behavior of a variety of constant
volume continuous stirred tank fermenters (CSTF)
with sterile feed can be described by the following
unstructured model [1]

( )XD)S(
dt
dX −µ=   ,  ( )

S/X
f Y

X)S(SSD
dt
dS µ−−= (29)

where, ( ) 1
I

2
mm K/SSKS)S( −

++µ=µ  is the specific
growth rate, YX/S is the cell-mass yield coefficient, μm
is the maximum specific growth rate, Km is the
growth rate constant and KI is the substrate inhibition
constant. Typical values for the model parameters are
[1]

g/g%4.0Y S/X = , g/g%4Sf = , D=0.36h-1

1
m h53.0 −=µ , g/g%12.0K m = , g/g%4545.0K I =

The solution of (29) exhibits an unstable steady sta-te
at [X,S]2=[0.9951, 1.5122]. In the present simula-tion
study it is desired to operate the CSTF at this
unstable steady state. The cell mass concentration X
is the controlled variable. The upper and lower con-
straints to the manipulated variable D, are DL= 0.25



h-1 and DU=0.40 h-1. A measurement delay of one
hour is also considered in the measurement of X. The
system behavior at this unstable point is fitted by
local linearization to an UFOPDT model. To esti-
mate the parameters of the model, the method of [4]
is used. Then, we obtain the UFOPTD model

)sexp(
1s86.5

89.5)s(G P −
−

−=

To the above UFOPDT model of the CSTF we next
apply Method 5 in order to design a PI controller that
provides a gain margin of 6.0206 dB and a pha-se
margin of 20o in the closed-loop system. Appli-cation
of the proposed method yields the PI control-ler
settings 6558.0K C −= , 6766.6I =τ . The closed-
loop response of the CSTF obtained in this case, for a
step change in the set point from 0.9951 to 1.1941, is
given in Fig. 10. Next, we apply Method 3, in order
to design a PI controller in the case where the closed-
loop system is desired to have the damping ratio
ξ=0.9. The values of the PI controller parame-ters,
obtained by applying Method 3, are 5022.0K C −=
and =τ I  10.0470. The reader could easily check
that, for the same design criterion (i.e. for

9.0des =ξ ), Methods 1, 2 and 4 give the same
controller parameters. The closed-loop response of
the CSTF obtained in this case, for a step change in
the set point from 0.9951 to 1.1941, is given in Fig.
11. Finally, it can be easily checked that Method 5,
provides the above controller settings, when a gain
margin of 8.6733 dB and a phase margin of 31.2332o

are prespecified for the closed-loop system. Taking
into consideration the difficulty of the prob-lem, the
responses obtained are rather acceptable.

6. CONCLUSIONS

In this paper, the problem of tuning PI controllers for
UFOPDT processes has been investigated. For
addressing the problem, several new methods based
on a first-order set-point filter and on some new
accurate approximations of the crossover frequencies
have been presented. The proposed methods require
small computation rates and they are particularly
useful for on-line tuning. They also ensure smooth
response and fast regulatory control and they are
quite robust against parametric uncertainty. Simula-
tion results show that the proposed methods produce
as good performance as the best-tuned two-stage IMC
method, while retaining the classical PI con-troller
structure.
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Fig. 10. Closed-loop response of the bioreactor under
PI control based on stability margins specifications.
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Fig. 11. Closed-loop response of the bioreactor under
PI control based on Methods 1-4 with 9.0des =ξ .


