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Fuzzy Neural Network-based Internal Model
Control for DC— Motor Micromaneuvering

Jamahl W. Overstreet and Anthony Tzes

Abstract— The development of a Fuzzy Neural Network
(FNN)-based Internal Model Control (IMC)—scheme and
its application to a dc—motor micromaneuvering system is
addressed in this article. The FNN is tuned in an off-line
manner in order to cancel the motor’s inherent nonlinear
friction term. The resulting FNN is used in the feedback
path, augmented by a primitive linear time—invariant con-
troller in the forward path. The adjustment of the linear
controller’s parameters relies on the IMC—framework based
on the premise that the system’s nonlinearities have benn
canceled by the FNN. The suggested controller—structure
is tested in experimental studies at a dc—motor testbed to
investigate its efficiency.

Keywords— Fuzzy neural network, Friction compensation,
DC—motor control.

I. INTRODUCTION

In this article, the development and testing of a nonlin-
ear internal model controller for micro-maneuvering pur-
poses of a dc— motor is investigated. The reason behind
the selection of an IMC- structure is due to its robustness
against plant uncertainty and disturbance rejection. The
classical IMC—theory [1-7] was primarily developed for lin-
ear plants and generates linear controllers. However, the
dc—motor system has certain nonlinearities stemming from
the Coulomb and static friction properties. Inhere, the
proposed hybrid nonlinear IMC is optimized to account for
compensation against additive nonlinearities in the under-
lying linear model of the d¢- motor system.

The suggested IMC-structure, shown in Figure 1, con-
sists of the following components: 1) a module for modeling
the nonlinear dec—motor system; this module is also used to
cancel the nonlinear components of the system, and 2) a
feedback controller module to enhance the system’s closed
loop performance.

Towards the identification problem for the nonlinear dc—
motor system, a FNN-identifier was developed. The gen-
erated FNN-model is subsequently used to cancel the ef-
fects of the nonlinear friction dynamics. A rather primitive
IMC based proportional controller is utilized in the feed-
back module, primarily because of its simplicity towards
its implementation. A FNN [8,9] is a combination of us-
ing a fuzzy logic expert system [10-15] with an auto—tuned
artificial neural network [5,8,16-18].

The suggested nonlinear IMC—framework is applied to a
dc—motor setup in order to investigate its efficiency. The
FNN-based identifier identifies and compensates the non-
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linear friction dynamics while the feedback controller is
used to improve the system’s performance.

This article is organized in the following manner. The
material in the next section is related to the detailed mod-
eling of the dc—motor. The following section presents the
appropriate modifications of classical FNN identifiers to
capture the nonlinear friction dynamics. The results from
the identification of the dc—motor dynamics, and the per-
formance of the nonlinear IMC are presented in Section I'V.
Conclusive remarks and the overall contributions of this
work are highlighted at the last section.

II. DC-MOTOR SYSTEM MODELING

The development of a mathematical framework for the
micro- maneuvering problem of a de-motor is addressed in
this section. The commanded input to the motor results
in infinitesimal low velocities. The nonlinear effects due
to the imposing static friction (sticktion) need to be con-
sidered in the control compensation algorithm. The motor
shaft velocity, w(t), is detected through a tachometer sen-
sor, and the control system is equipped with a voltage to
voltage amplifier. To emphasize furthermore the sticktion
effects, the reference angular velocity is selected to cover
the four friction regimes associated with the corresponding
lubrication models (static friction, boundary, partial and
full lubrication regimes). However, in most typical appli-
cations, the last three terms are lumped into one, namely
the full fluid lubrication regime (fflr).

The motor torque T'(t) is related to the applied command



MED 2000 CONFERENCE

voltage V,, at its terminals as shown in Figure 1

K, K AK,V,, (t
%m+———Q

T(t) = Jme(t) + Tpo(l) = ——p- Rq

(1)
where .J,, is the effective motor inertia, K,, R, K are the
torque, armature, and the back-EMF constants respec-
tively, A the amplifier gain, and T, corresponds to the
friction torque (viscous terms are included within TY,.). For
typical micro-maneuvering purposes the attained accelera-
tion is close to zero (w ~ 0) and (1) can be modified to

K. Ky
—_— W
Rq

K,
-

(t) Vau(t) = Ty (t) - (2)
In this case, the dc-motor system is of zero-th order and
its input-to output relationship is sought.

Based on the definition of the static friction the dc
motor’s shaft does not rotate for |w(t)] < wq. Therefore
there is a minimum voltage that needs to be provided to the
motor to overcome the static friction term S, and subse-
quently initiate the micro-maneuvering process. This volt-
age can be found from equation (2) as

R
+ a
‘/u - SGAKa N (3)

For the fflr ( |w(t)| > w1), Tyr(t) = bw + Cesign(w) and the
motor dynamics equation is

B K A R,
bR+ K Ky Y bR+ KoKy,

w(t) Cesign (w(t)) . (4)
For most practical considerations C, = S., and the graph
representing the de—motor’s simplified input/output rela-
tionship is shown in the bottom part of Figure 2. In this
drawing, different values are used for: (a) the amplifier’s
gain AT (A7) for positive (negative) applied commands,
(b) the boundary values w; (w7) for the friction lubrica-
tion regime, and (¢) the static friction terms S (S;7) for
clockwise (counterclockwise) movements).

ITII. FNN MODIFICATION FOR DC-MOTOR SYSTEM
IDENTIFICATION

The objective of the generated FNN is to capture the
nonlinear characteristic of the voltage-to-angular velocity
(Vi - to - w) relationship depicted in Figure 2. The se-
lected structure of the implemented FNN relies on the fol-
lowing reasoning. Assume that the following three rules are
used in a very primitive FNN-approximation, as shown in
the top portion of Figure 2

RY . IfV,is A; thenw = 3~
R?> : IfV,is Ay then w = 3°
R® : IfV,is As then w = g+

where: a) the fuzzy sets A;, i = 1,2,3 in the premise part
are shown in the top part of Figure 2, and b) the con-
sequence terms correspond to the slopes of the piecewise
linear approximation (bottom part of Figure 2) (87 =~

K A~ 0 + o~ K AT 7
PR, KRy p7 = 0, and g7 >~ pes—=). The fuzzy

sets A;, 2 = 1,2,3 that appear in the premise of the FNN
have membership functions (MFs) with a typical shape ap-
pearing in the top portion of Figure 2. The first (third)
set attempts to capture the lubrication voltage regime
[Vain Vol ([V,F, Vmex]), while the second set captures
V7]

mostly the effects of the static friction regime [V,
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Fig. 2. Simplified Motor I/O Characteristic and MFs of the FNN—
approximation

The aforementioned structure should be capable of cap-
turing the piecewise linear approximation of the simplified
motor dynamics from equation (4). However, since the fric-
tion terms are more complicated for their proper modeling
division of polynomials rather than constant terms can be
used in the consequence part of the FNN. Subsequently,
the fuzzy rules can be modified to

Z?:O Qd i (‘/;1)1 i (5)

RY:1fV, is Ay then w = poe >
lezo Adn+1+j (Va)

where an nth (mth) order numerator (denominator) poly-
nomial is used in the consequence part. Similarly, the
number of rules can either change from d = 3 to a larger
number to enhance the identification’s accuracy, or, to a
smaller number to decrease the FNN identifier’'s computa-
tional complexity.

The shapes of the fuzzy sets Ay in the premise are
tuned in an adaptive manner, in conjuction with the terms
g4, © = 0,...,n 4+ m + 1 characterizing the polynomials
in the consequence part [19].

IV. FNN-IMC or DC-MOTOR EXPERIMENTAL SETUP

The suggested IMC-structure was tested in experimen-
tal studies in the setup depicted in Figure 3. The used
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de—motor in this study was the E350-MGH 350-003 man-
ufactured by ElectroCraft Corp. with parameters defined
in [20,21]. A Pentium II computer (rated at 266 MHz) was
used for data acquisition and control.
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Fig. 3. DC—Motor Experimental Setup

The FNN-identifier was tuned off-line by exciting the
system with a chirp sinusoidal signal. The typical learn-
ing CPU time for the FNN-identifier (with 4 member-
ship functions and 10° training cycles with 2,400 pat-
terns/cycle) was 11 hours. The FNN-code was imple-
mented in C+4 and interfaced to a Labview—based front
end GUI, as shown in Figure 4. Through this virtual in-
strument, the user can change in real time the structure of
the FNN-identifier and the feedback controller. The typi-
cal execution time for the computation of the control signal
was 25 msec and the control scheme was evaluated in low
sampling rates(3 to 10 Hz).

In order to investigate the validity of the assumption
related to the simplified motor dynamics, the system was
excited with proper signals in an open loop configuration.
The de-motor system was excited with a sinusoidal-sweep
signal to determine the input/output relationship. The
utilized excitation signal V,,(t) was

Vu(t) = i ks { <t — ?) sin (w;t)
=0
- (1 22 Y sn i o - ).

where kg is the sinusoidal amplitude, w;, ¢ = 0,..., L are
the sweeping frequencies of the sinusoidal signals, k is re-
lated to the growth rate, and wu(t) corresponds to the step
function. Figure 5 shows the motor’s open-loop response
for sinusoidal waves with amplitude of k, = 0.26, growth

rate expansion factor k = 5

5, and sweeping frequencies set
at w; = 1.257, 0.628, 0.471 and 0.314 rad/sec. The se-
lected frequencies, amplitudes, and growth rates generate
a voltage signal that forces the motor to micro-maneuver
while operating within the static and lubrication friction
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Fig. 4. IMC Virtual Instrument

regimes. The effects of the static friction in the system re-
sponse are evident from Figure 5, where the motor does not
move for —0.28 < V,, < 0.255 Voltb. Under the assump-
tions stated earlier, the static input/output relationship
appears in Figure 6; this waveform appears to have a sim-
ilar shape to the anticipated one shown in Figure 2, and
thus it is inferred that the validity of the simplified motor
dynamics is credible.

A. FNN based DC-Motor System Identification

The input/output (V;, and w) data, shown in Figure 5,
are used to train several FNNs. The sampling period used
to record these data was Ty = 0.1 sec and a data stream
comprised of 2,500 data points V,(kT), w(kTs), k =
0,...,2499 was used in each training cycle. The FNNs were
trained in an off line manner over a set of 100,000 repeated
training cycles. Each case is defined according to the num-
ber of MFs (4;, i = 1,...,d)used in the premise part; every
case is similarly separated into four sub-cases according to
the order of denominator polynomial (n = 0,...,3 in equa-

tion (5)) used in the FNN’s consequence part.

For every case, the parameters defining the MF's and the
consequence terms were randomly initialized. A typical
time plot (¢ € [35,80] sec) of the estimated &(t) from the
FNN model (solid line) along with the actual w(t) (dashed—
line) appears in Figure 7 for the cases where three MFs
(d = 3) are used in the training process, the denomina-
tor polynomial corresponds to a constant (m = 0 in equa-
tion (5)), and the order of the numerator polynomial varies

(n=0,1,2,3).
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B. Internal Model Control Design

The tuning of the IMC relies on the premise that the
application of the FNN compensates the friction term T,.
This can be achieved, under the assumption that the FNN
identifier estimates the friction characteristics and coun-
teracts for it, as shown in Figure 1. In this case, let the
nominal transfer function of the dc-motor system be

AK,

w(s) = G(s)Vu = Rq (s + 452 )

Vu (6)

Accounting for the nature of the noise v(t) corrupting the
measurements and the uncertainty in the system parame-
ters, the overall description of the friction—free linear dc—
motor system is

wt) =GV, +v(t) =G+ 1, A)V, +v(t), (7)
where the [,,,~term characterizes the uncertainty about the
nominal plant. The internal model controller, g(e?), is
generated by the cascade composition of: 1) an Hs optimal
controller ¢(e’) for the nominal plant, and 2) a lowpass
filter F'(e?*) which detunes the controller characteristics at
high frequencies in order to extend the system’s robustness.

For robust performance [22], the control objective is
to minimize the infinity norm of the system’s weighted
sensitivity function € 1 — Gq, through the following
| wpe |loo= sup, |wpe(jw)| for all members of plants

G = {G: (G -GG < lm} . The |w,|~! represents an
upper bound on the sensitivity function, since |e(jw)| <
|w,(Jw)| ™! Vw if and only if 1 = supy, (|7l | + |wpel) <1,
where 7 (= 1 — € = Gq) is the complementary sensitivity
function for the nominal system G.
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The optimal controller design problem is formulated as

q =

arg {min sup(|wpé€| + |ﬁlm)}
q w
= arg {minsup(wp(l — G|+ |Galm|) } : ®)
q w

where ¢ is the IMC feedback controller as shown in Fig-
ure 1. The efficient solution of (8) is still an active area
of research. The philosophy behind the IMC-design con-
sists of two steps, and although the resulting controller has
no inherent optimality characteristics, it provides a good
engineering approximation to the optimal solution of (8).

The first step amounts to designing a controller § for
good nominal performance so that

q~=arg{m_in | wpé ||2} =arg{m_in Il wp(1 — Ga) z} 0!
q q

In this case, the optimal sensitivity becomes € = 1-Gq, and
the optimal complementary sensitivity function 7 = Gq.

The second step addresses the robust stability and per-
formance issue. At high frequencies, when the multiplica-
tive uncertainty [, exceeds unity, 77 has to be rolled off. To
achieve this action, ¢ is augmented (cascaded) by a low
pass filter I, as q 2 GF. The order of F' is such that ¢
is proper, and its roll-off frequency is selected so that the
robust stability constraint || 7l [leo=| Gqlm |leo< 1 is
satisfied. The purpose of the filter F' is to detune the con-
troller, since it sacrifices performance for robustness. This
is justified since the sensitivity ¢ = 1 — Gq = 1 — GGF (per-
formance measure) is increased, while 7j = GGF (robustness
measure) decreases.

Since the nominal de—motor system G is minimum phase,
the optimal solution to the minimization of the cost in (9)
is independent of the weight and equal to § = G~'. In this
study, rather than assuming a first order approximation
for the de¢-motor system (equation (6)), its zeroeth order
approximation is used. Hence, the dc-gain of the system
is considered as the nominal transfer function, or G = KA
and the nonunal COIltI oller is a proportional controller with
a gain of P =

A gain value of P = 1.8 was used to properly shape
the complimentary sensitivity function of the linearized
motor dynamics. The detuning filter was a third order
Butterworth lowpass filter with a cutoff frequency set at
20 Hz. In order to investigate the controlle’s robustness
against varying sampling periods, the FNN-Internal Model
Proportional Controller (FNN-IMPC) was tested using var-
ious sampling periods Ty = 100, 200, and 300 msec. The
utilized FNN-model is comprised of four MFs (d = 3) and
a third order numerator polynomial (n = 3, m = 0) in
its consequence portion. The experimental dc-motor re-
sponses using the FNN-IMPC are indicated in the bottom
portion of Figures 8 through 10. For comparison purposes,
the system’s responses using only the same feedback con-
troller (lacking the compensation FNN-term) are shown in
the top portion of the same figures.
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Fig. 8. DC Motor Response Using FNN-IMPC (75 = 10 msec)
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Fig. 9. DC Motor Response Using FNN-IMPC (75 = 20 msec)
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Fig. 10. DC Motor Response Using FNN-IMPC (75 = 30 msec)

From the presented experimental results in Figure 8
through 10, the responses obtained with the FNN- IMPC
track more accurately the sinusoidal sweeping signal than
the ones attained with the P-controller. The P-controlled
system’s response exhibits a significant limit cycle and con-
siderable oscillations caused by the continuous transition of
the system between the static and the lubrication friction
regimes. On the other hand, the FNN-IMP controlled sys-
tem had notable reference tracking capabilities at small
and large sampling Ts-periods.

V. CONCLUSION

An internal model controller was applied for microma-
neuvering purposes of a dc—motor system in this article.
The controller’s gain is tuned under the assumption of a
system that compensates the nonllinear friction character-
istics. This role is undertaken by a fuzzy neural network
which identifies and subsequently compensates the friction
terms. The suggsted scheme is applied in experimental
studies at a prototype dc motor system to investigate its
efficiency and performance enhancement.
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