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Abstract

The classical result of Gilbert on the testing of con-
trollability based on the Jordan canonical description
is extended here by providing a new characteriza-
tion of input decoupling zeros based on the properties
of appropriate Piecewise Arithmetic Progression Se-
quences defined on spectral matrices determined from
the Jordan canonical description. For any eigenvalue
for which there is loss of modal controllability the de-
grees of the corresponding decoupling zeros are de-
fined. The results given here for input decoupling
zeros have their equivalent statement for the case of
output decoupling zeros.

1 INTRODUCTION

The classical results on the spectral characteriza-
tion of controllability and observability [1], [2] pro-
vide tests for controllability and observability of every
mode; however, in case where we have uncontrolla-
bility and/ or unobservability, the structure of the
emerging decoupling zeros [3] is not predicted by the
existing tests. The only available means for deter-
mining the structure of decoupling zeros is to resort
to the computation of the corresponding Smith forms,
or Kronecker forms [3], [5] of the appropriate matrix
pencils [4]. The characterization of elementary di-
visors of matrix pencils in terms of properties of se-
quences derived from the Kernel properties of Toeplitz
matrices has been introduced in [6]; these results pro-
vide a number theoretic characterization of divisors
and they are used here to extend the spectral theory
of controllability, observability to the characterization
of decoupling zeros.

In this paper, the classical spectral analysis for con-
trollability are extended to characterize the set of
decoupling zeros. This is achieved by introducing a
set of spectral matrices, the rank properties of which
define a special sequence, which is shown to be a
Piecewise Arithmetic Progression [6]; such sequences

have singular points and the structure of such singu-
lar points define the Segré characteristic of the corre-
sponding decoupling zeros. The results are presented
for the case of controllability, i.e. for the input decou-
pling zeros and may be easily translated by duality
to the case of output decoupling zeros. The current
results compliment those in [7] on the spectral analy-
sis of controllable, observable spaces and provide a
unifying treatment of the spectral analysis of the con-
trollability and observability properties.

2 PROBLEM STATEMENT AND
BACKGROUND RESULTS

We consider the linear system described by the state
space model S(A, B, C, D):

(t) = Az(t) + Bu(t) (1)
y(t) = Cz(t) + Du(t) (2)

Where A € R B € R™! (' € Rman_ D ¢ Rlem
and u(t) is the I x 1 input vector, y(t) is the m x
1 output vector and z(t) is the n x 1 state variable
vector. If the characteristic polynomial of a matrix

A e R is:

o(s) =det(A—sI) = (s—A1)" (s—=A2)™. . .(s=Af)"
(3)
Where i, A2,..., Ay € C are all the distinct eigen-
values of A and 7,7, ..., 7y are their corresponding
algebraic multiplicities, with m; + w2 + ... + 7y = n.

Definition 1 We define as the Segré Characteristic
of A at \;, the set of the degrees of the elementary
divisors of A at Ni: ox, (A) ={1, > .. 2T > ... >
Ti1 > 0} O

If U = V7! is the matrix defined by the chains of
eigenvectors of A, then the matrix A is similar to the
Jordan matrix J : A =UJU ' =UJV, where,

J = block diag{J(A1), J(A2), ., J(Ai), ...; J(AS)}
(4)



and J(}\;) is the block diagonal matrix of all Jordan
blocks associated with the distinct eigenvalue A; :

J()\z) = block diag{Jil, ceey Jilm ~~~Jiui} (5)

and where J;j, is the 7;5 X 73 Jordan diagonal block.
The Jordan canonical description of the system
S7(J,B,T,A) is given by the equations

£(t) = J2(t) + Bu(t) (6)
y(t) =Tz(t) + Au(t) (7)
where :2(t) = Uz(t), J = U AU = VAU, B =
U™'B, T =CU, A =D . From the block diagonal

structure of J it follows that the B, I', matrices have
the following form:

gl

B=|V(\)|B=|Bi|.Bi=|Vix | B= | B |
(8
whereas

I'=ClUN)..UN).U)] = fIL..Di D),

I, = C[Ui1~~~Uik~~~Uiui] = [Fil...l“ik...l““,i] (9)

and
i [ 87
i i
U, .
Bik — ~iko B = —iko I (10)
T T
[Qikfik J _Eikﬂ;k J
Lip =C {Miklvﬂikzwvﬂik%} = _lmlvlmnglmw}

(11)

Definition 2 (a) The i-th spectrum controllability
matrix Bf is the | X v; matriz formed by the v;
rows of B; corresponding to the last rows of the
Jordan blocks associated with the eigenvalue \;:

5. |

BS:IT |

? =ik,

(12)

T

Wi, T,

(b) The i-th spectrum observability matriz T is the
v; x 1 matriz formed by the v; rows of I'] corre-
sponding to the first columns of the Jordan blocks
associaled with the eigenvalue \;:

I‘Fé'y

i Yiryr o Ligy o Lin

(13)

O

Some basic result needed for the subsequent devel-
opment are summarized below [2],[3],[8]:

Theorem 1 (a) The mode (N, U(\;),V(N\;)) is con-
trollable if and only if the rows of the t-th spectral
controllability matriz Bf are linearly independent
over the field of complex numbers.

(b) The mode (N\;,U(N;),V(\)) fori =1,2,....f is
controllable, if and only if the rows of the pencil
[sI — A, B] are linearly independent over the field

of complex numbers.

(¢) Furthermore if the mode (\;,U(N\;),V(\;)) is un-
controllable then it is, rank [\;] — A, B] <n and

A; is an input decoupling zero of S. |

The pencil [s] — A, B] is defined as the input state
pencil [4]. The roots of the e.d. of the pencil
[sI — A, B] are defined as the input decoupling ze-
ros (i.d.z.) of the system S. The dual results for the
case of observability follow by duality based on the
pencil [SI - AT,CT]T; this is known as the output
state pencil and the roots of the e.d. of the pencil are
defined as the output decoupling zeros (0.d.z.) of the
system S.

Under the transformation of the system S(A,B)
to the Jordan equivalent S;(.J, B) the controllability
matrix ) is also equivalent to the matrix Q; i.e.:
Q~Q;=& [B,JB,...,J”le] and )y is also parti-
tioned according to (4) : Q; = [QJI,...,QJi,...,QJf]T
then from (8) and using only column operations on
the above matrix we have,

Qu, ~ Qu, = B HiB; ... (H)" " B;] (14)
Remark 1 For the above matriz Qp, we have the
properties [7],[10],[11] that provide a spectral charac-
terization of the controllable and by duality observable
spaces of the system. O

Let 0,1, 6:2,...,8;,, be the numbers denoting the or-
ders of the above defined rows into each one block
of Qp, and let the blocks be rearranged from top to
bottom in a way such that : 0;; > 0,0 >...> 8, > 0.

Definition 3 The set of the above numbers is defined
as the set of the i-th spectrum row controllability in-
dices (r.c.i.) of A,B : O(A,B)\, = {01 > 02> ... >
01'1/7; Z 0} |

The spectral results in [7],[10] provide a charac-
terization of the modal controllability, observability
and indicate the existence of i.d.z., o.d.z.; however,
such results do not predict the degrees of the decou-
pling zeros which may exist at s = A;. The problem
we consider here is the use of the spectral matrices



defined for every mode (eigenvalue) to compute the
Segré characteristics of the decoupling zeros. This is
enabled by using results on the characterization of el-
ementary divisors of matrix pencils by the properties
of sequences defined by the Kernels of Toeplitz matri-
ces. The characterization of e.d. of the matrix pencils
based on the properties of Piecewise Arithmetic Pro-
gression Sequences (PAPS) [6] is summarised next.

3 SEQUENCE CHARACTERIZA-
TION OF ELEMENTARY DIVI-
SORS OF MATRIX PENCILS

We consider the set of ordered pairs of matrices (F, &)
and the associated pencils denoted as : £, , LW =
(F,G): F,G € RP*™] and L, (s, w) = [W(s,w) =
sF'—wG, W = (F,G) € Lp,] where (s,w) is an
ordered pair of indeterminate. The pair W = (F, () is
called right regular, if Nig(s )(sF — wG) = {0}. The
subset of £, ,,, which is made up from all right regular
pairs will be denoted by L£',, and the corresponding
set of pencils will be denoted by L;',,(s,w). The set
Lr.
manner. It is clear that a necessary and sufficient
condition for W € L, is that Wy (s, w) has full
rank over R(s,w) and p > m. We use the notation
for elementary divisors (e.d.) and associated Segré
characteristic for the pencil sF'— G at s = a in the
same way, as done for the structure of eigenvalues
(e.d. of sI — A pencil). The characterization of e.d.
of sF — G (right or left regular) is described by the

following results [6],[9]:

of all left regular pairs is defined in a similar

Theorem 2 Let W = (G, F) € L, (p > m). The
pencil Wy, (s) = sF —G has an e.d. (s—a)", a € C,
if and only if there exists a maximal chain of linearly
independent vectors {z,, s, ...,gri} € CP such thal

(G —aFlz; =Fz; |, 1o=0, j=1,2,..,7;

O

The above motivates the definition of the following
sequence of Toeplitz matrices, defined for Va € C :

T; £G —aF
(15)

)
|
RIS
S
)

I o
S
S
oo
oo

’L‘A . . . ip><im
T, 2 e cwmm,

PG —aF
foralli=1,2,...

The matrices 1!, are referred to as i-th order a-
Toeplitz matrices of (G, F,) and we denote by :

NEANATEY, NFAM{TF}, VaeC, k=1,2,...

(16)
For all the pairs W = (G, F) and b € CU {oo} we
define the sequences,

TG, F) 2 {n}
(G, F) & {9}

t1g = 0,17 = dim Ny'; & > 1} (17)
95 = 0,98 = dim NJ; k > 1}(18)

JH(G, F), JYG, F) will be referred to as the right b-
(G, F), left b-(G, F)-sequence of the pair (G, F). A
sequence Ji (G, F), J{(G, F) will be called neutral, if
its elements are zero for all k : k = 1,2,.... We shall
denote by ®(F, () the set of distinct zeros of the pen-
cil.

Theorem 3 [6/Let (G, F) € L, a € ®G,F),
Segré characteristic p, (G, F) = {(d;,0,),1 € p, 0 <
dy < ... <dpand p, (G,F)=1{d; :0< dy < ... <
dp}. The sequence JL(G, F) is nondecreasing and sat-
isfies the following condition nk > (np—1 + ngy1)/2

k=1,2,.... In particular, we have that:

(a) Strict inequality holds, if and only if k = d;
9o (G, F); in this case 8 = 2n —Np—1 —Npaq =
ag;.

m

(b) Fquality holds, if and only if k ¢ p, (G, F). O

The sequence J:(G,F) is known as a Piecewise
Arithmetic Progression (PAP) sequence and its prop-
erties define p, (G, F') by deploying Ferrer’s type di-
agrams [6]. Given that g, (G, F) is bounded we may
define for every a € ®(G, F'), the smallest integer 7,
for which n., = n,,_ ,m € g, (G, F); this is called
the index of annihilation of (G, F) at s = a.

Remark 2 For every a € ®(G,F), 7, = dp, where
dp = max{d;,d; € p, (G, F), where g, (G, F) denotes
all distinct degrees of e.d. at s = a. O

Definition 4 The set of the first non-zero successive
differences in J (G, F) is defined as the Weyr charac-
teristic of (G, F) at a and it is denoted by W,. Clearly
is given by :

Wo2{yi=m—"0, 12="72—Myeees V6= — M1}

O
4 SPECTRAL CHARACTERIZA-

TION OF INPUT DECOUPLING
ZEROS

The result of the previous section, together with the
Jordan description of the state equations are used



next for the derivation of a new characterization of
i.d.z. Let the input state pencil of the equivalent sys-
tem in Jordan form S(.J,B) be, [s] — J,B] = s[I,0] —
[J,—B] e ﬁg,m-l' Consequently the structure of i.d.z.
of the system S(A, B) is determined equivalently by
the root range of the input state pencil. For S(.J, B)

and a 1.d.z. we define :

T} =[J—al B] € C™*(+D),
.................... (19)
[J—aIB I 00.. 0 O

Ti = | 0 0J—alBI.. 0|€Cjnxj(n+l)

[ 0 0 O 00...J—CLIBJ
The properties of the above sequence will be consid-
ered next and the proof of the results is given in [11].

Proposition 1 ForVa € C:a ¢ ®(A) the matriz TJ
has full rank. |

Proposition 2 Let a = X\; € ®(A) and express,

TAIi = [Iél 79, gl, where Hy = J(\;)— X\ € R™*7 s
nilpotent, T' € C(v=m)X(v=71) 4s full rank, B; € C™*!
is (as defined in (8)) the matriz block of B correspond-
ing to J(X\;). Then the left nullity of the matriz T}

is defined by the left nullity of the matrix Tﬁ, where,

H;B; I 00..00
4 [0 0 HiBil..00
2| . . . .. | pi-blocks  (20)
00000.1710
000 00...HiBi|
O

Remark 3 From the above we conclude that only the
numbers N; € ®(A) are candidate for i.d.z. We can
study the sequence of left nullities and the correspond-
ing lests, for determining the degree of i.d.z. by con-
sidering the case of each eigenvalue \; for which Tﬁ
is rank deficient. |

From the above we conclude that any \; € ®(A) is
a candidate decoupling zero. If the A-Segré Charac-
teristic at \; is gy, (A), then the matrix B; can be par-
titioned according to gy, (4) as in (8) and the nilpo-
tent matrix H; can also be represented according to
the eigenstructure of A at \;.

Definition 5 The t-th reduced matriz of Bfll is de-
fined as the matrixz derived from B, as indicated be-

low:
o -
Bt) _ U CTile _
in= |8 € ,t=1,2,..., T (21)
__ikﬂ;k_
and where Bf])f L By forVt=0,—-1,-2, ... O

The same notation can be applied to any other ma-
trix. Thus if I;; is the 735 X 7;; identity matrix, then
If])c is also a 7;; X T; matrix,

0...000...0}
II

If])c: 88(1)88 «—— t-th row (22)
0..000...1

For any p > 1, p € Z we define the * operation on
B € Crirxl by :

prBip 2B AR po1 2 (23)

Let B; be partitioned into blocks as in (8), then we
define the % operation on B; by some p € Z as :

D * Bil -‘ B:Ip-‘ Bzi;l-Fl*p) -‘
.. |

pesu) LB

Using the above notation we may simplify the com-
putation of nullities of Tf\i using simpler matrices.

Proposition 3 The above defined j-th left Toeplitz
matriz Tii is equivalent over C by elementary column
operations to the following form :

HBYLY 0 00 0 07)
[0 0 H;B2I20... 0 O
jﬂ/{_é| C e e . | j—blocks
i 00 00 00..;9Y 0
[0 0 0 0 00... H BY
O

Remark 4 The form ff\ is column equivalent lo
Tﬁ and Tﬁ and the left null-space of Tﬁ may be
studied by using Tf\ since the two are column space
equivalent. O



Proposition 4 Let y € CI™ and be partitioned as,
Y=yl Yl Yl g;] then y7 € M{TY } where

Tﬁ € CIm It if and only if the following condi-
tions are satisfied,
I yT ;=0 UTB*I—O
y Hi = —y 1" TB*2—0
and
“(-1) i _
\ yJTHl_ Zj— 111J \ UTBJ
(25)

O

The first set of equations (25) are referred to as the

left recurrent equations and the second are called the
left Kernel equations.

Remark 5 Let QZT be partitioned according to

Segré  characteristic  (Definition 1) as, yI =
[y: el eyl l,t=1,2,..., f and from the block
=Ti1 =Tik =Tiv;

diagonal structure of H; and IZ-J we have that the set
of the recurrent equations is equivalent to,

yT Hy =07 (1)

éc 1 71
T“Hiy=—-yl I 2
Y, Hik Y, Lix (2) (26)

\ ¥l Hie=—yT 70 ()

where Ty, tlakes walues from the set of py, (A).
Equations (26) will be called the basic recurrent
equations. O

Lemma 1 For any 7, > 1 the solution of the basic
recurrent equation (26) is given by :

(a) forj < Tip :

; i—1 i—2
YT = (0,00, (=1 el (<1 22

—Tik

Tik— j
1.2 j ;
where ¢ ¢z ..., 0L arbitrary,
(b) forj>myg :
T1:T2: _TJTm_T
T~ Tik J Tzk
{ yr [0 0 ol ]
| P Tik—1 T +1 1 .5
Ly = 107 e et
(28)
j—Tik+1 j ;
where ¢l TETE L o) arbitrary. O

From the above it is clear that, we may define for
every s = A\; \; € ®(A) sets of matrices corresponding
to the partition of B to B; and then B;; blocks, as
shown before. In fact:

Definition 6 The j-th input spectral Toeplitz matriz
is defined in a row block partition form as shown be-

low, jS = ] - ,Qm,. ,QTW where:
(a) ForVj <, :
a.l ij S Tik,
T T T
’Véjr'ik“‘ljﬂ'ik éﬂk 1,75 éTﬂ.kﬂ'ﬂc-‘
i a | —Tik—dTik “—Tﬂ,kﬂ—ik |
= 0. e . |
Tik
g7 ...0 0
—Tik—1,Tik
T ...0 0
—Tik,Tik
(29)
a.2 if § > Tik,
g B8 0..0
—1,7ik —Tik,Tik
62 ...0 0..0
. | —= sTik |
QL =. | (30)
T ...0 0..0
—Tik—1,Tik
T .0 0.. OJ
—Tik,Tik
(b) ForVk > 7, : QL = Qry 0

Proposition 5 For any set of indices {1, > ... >

Tik 2 ... = Ti1 > 0} the solution of the set of equations
(25) is determmed by the vectors ¢}, where,

gl =0 (31)

O

Remark 6 The degrees of freedom of the set of equa-
tions (25) are determined by dimM, {Q{} Further-

more, for all j > Ty, erk = Q1Y there are no more
degrees of freedom to the solution of equations (25).0

Proposition 6 Consider the system S(A,B) with
p,\l(A) = {Tiui > 2 TiE 2 e 2T > 0} and
let S(J,B) be the corresponding Jordan normal de-
scription. ]fTﬁi is the j-th, A\;-characteristic Toeplilz
matriz of S(J,B) and QJA is the j-th input spectral

matriz of the system, then, N {Tﬁ} =M {Qf\ } O

Definition 7 Using the QJA, 7 =1,2,... inpul spec-
tral matrices we define the \;-input spectral sequence
as J\ £ {n}* :ng' =0, )’ = dimM(Q});4 > 1}.0

Theorem 4 The sequence J&i is piecewise arithmetic
progression satisfying, the condition

net,+n
; -1 +1
>4 L_JTl

> 5 L i=1,2, ..



In particular we have that strict inequality holds if
7 = p is the degree of an input decoupling zero of
the S(A, B) pair. In this case the multiplicity of the

A i
degree j = | is, 0—2n — NGl =N O

Some further results on the characterization of i.d.z.
are given below.

Remark 7 From the Definition 6 it is directly con-
cluded that:

(a) The matriz QY coincides with the i-th spectrum
controllability matriz BY defined in (12): Q\ =
By,

(b) The matriz Q;"
defined in (14): Q;

¢ coincides with the matriz Qm,
Tiv;
= Qn,. ]

Consider the set of r.ci. ©(A,B),, . Let the
set of ©(A, B),, be rearranged such that the in-
dex éik, k = 1,2,...,v; be the r.c.i. which corre-
sponds to the block B;;, of B. Then this is denoted

, ©(A,B)y, = {0i1,02,....041,....,00, %, B > 0,
k: =1,2,. I/i. Consider now the set of differences
Y(A,B),, {qgl,qu,...,q;k,...,qui}
corresponding elements of the two sets, ©'(A, B),,
and the set of the Segré characteristic of A at A,

PN (A)

between the

A !
(]11,7—12 0'2 = 2, ---

= qik? Tiv; — éil’i = qiui (32)

Ti1 — 011

Tik — oik

and let ¥(A, B),, be the set of the non zero values of
the above differences descrlbed by the ordered set of
integers, (A, B)), = {(ul7 > > 2>l >
0},i=1,2,...,f . Where 01 is the multiplicity of ug
(j =1,2...,8;). Then we have the following result :

Theorem 5 The degrees of the input decoupling ze-
ros of a system S(A,B) at s = \; are defined by the
set of indices (A, B)y, (or the X/(A, B)a,). O

Corollary 1 The sum of the degrees of i.d.z. at s =
A; 18 given as,

@, + g, + ot G+ q{yi =T —7;
where m; is the algebraic multiplicity of A\; and r; is
the dimension of the controllable subspace R;. O

5 CONCLUSIONS

The results of this section provide an extension of the
classical spectral analysis for the characterization of
controllability and observability results (Gilbert re-
sults [1]) to the characterization of degrees of divisors

associated with the input and output decoupling ze-
ros of a continuous system. The results presented here
provide a unifying framework for the study of effects
of sampling on the controllability and observability
properties of a discretized model [10]. In fact un-
der the special values where collapsing of eigenvalues
of discretized model occurs, (irregular sampling), the
current analysis provides means for studying effects
such as emergence of new decoupling zeros and trans-
formation of indices. The results presented here for
the case of input decoupling zeros have their equiv-
alent to the case of output decoupling zeros and the
analysis follows along similar lines.
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