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Via di Tor Vergata 110, 00133 Roma, Italy

email: [galeani,menini]@disp.uniroma2.it

Abstract. Vibration damping for a thin piezo-
actuated cantilever plate is pursued through either
purely passive or purely active control. The de-
sign is carried out by using suitable reduced order
models of the coupled electro-mechanical struc-
ture. Simulation results are presented in order to
evaluate the proposed control laws.
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1 INTRODUCTION

In this paper, a cantilever plate actuated by means
of a piezoelectric actuator is considered. An ac-
curate model is obtained by means of the finite-
element formulation (Mindlin-type, with special
care in order to avoid locking phenomena) pro-
posed in [3]: the underlying variational formula-
tion is briefly recalled in Section 2. Such a model,
after suitable order reduction, is used in Section 3
in order to optimize the parameters of a purely
passive control law, obtaining results fully equiv-
alent to the ones in [9], and in Section 4 in or-
der to design a simple LQG control law, by using
the technique proposed in [12] in order to choose
the performance index. Both the passive and the
active control laws are evaluated through simula-
tions performed on a higher order model.

2 MODEL OF THE SYSTEM

The goal of this section is to describe the system
under study (see Fig. 1) and the finite-element
model which has been preferred in order to design
and evaluate in simulation the passive and hybrid
control laws described in the rest of the paper.

Figure 1: Structure of the experimental system.

2.1 Physical properties

The physical system to be modelled is a steel
cantilever plate having sides 0.250m, 0.04m and
0.0015m, Young modulus E = 210GPa, Poisson
ratio ν = 0.3 and mass density ρ = 7850Kg/m3).
Let Ω be the middle cross-section of the plate. A
Cartesian frame is chosen as shown in Fig. 1. A
transversely-isotropic, linearly-piezoelectric, ho-
mogeneous actuator, having sides 0.046m, 0.033m
and 0.000127m, mass density ρp = 7700Kg/m3

and capacity Cp = 126nF, is bonded on the
upper surface of the plate, as shown in Fig. 1.
The relevant closed-circuit/clamped material con-
stants [11], denoted by cp

11, cp
33, cp

44, cp
12, cp

13, εp
11,

εp
33, ep

31, ep
33 and ep

15, according to the classical
Voigt notation, are given in Table 1. Here the
superscript p is used to distinguish any quantity
relevant to the piezo-actuator.

cp
11 [GPa] 133. εp

11 [nF/m] 9.97
cp
12 [GPa] 77.5 εp

33 [nF/m] 8.70
cp
13 [GPa] 87.0 ep

31 [C/m2] -7.22
cp
33 [GPa] 127. ep

33 [C/m2] 15.10
cp
44 [GPa] 26.7 ep

15 [C/m2] 13.37

Table 1: piezo-actuator (ACX). Elastic, dielectric
and piezoelectric properties



In addition, the following material constants,
relevant to the situation of negligible transversal
stress inside the piezo-actuator, are introduced [2]:

εp
33 = εp

33 + (ep
33)

2/cp
33, εp

11 = εp
11 + (ep

15)
2/cp

44

cp
11 = cp

11 − (cp
13)

2/cp
33, cp

12 = cp
12 − (cp

13)
2/cp

33

ep
31 = ep

31 − cp
13e

p
33/cp

33, νp = cp
12/cp

11.

A variational formulation for the coupled
electro-mechanical system is developed under the
following simplifying assumptions:

i) the thickness tp of the piezo-actuator is neg-
ligible with respect to the thickness t of the plate.
Thus, only the in-plane (membranal) behavior of
the piezo-actuator is considered;

ii) the in-plane displacement up = (up
1, u

p
2) of

the piezo-actuator is constant inside the thickness
of the actuator;

iii) the in-plane stiffness of the piezo-actuator
is negligible with respect to the one of the plate;

iv) the displacement field (s1, s2, s3) of the plate
is represented according to Mindlin’s hypotheses:

s1(x1, x2, x3) = ϕ1(x1, x2)x3

s2(x1, x2, x3) = ϕ2(x1, x2)x3

s3(x1, x2, x3) = w(x1, x2)

where w is the deflection of the middle plane of
the plate and ϕ = (ϕ1, ϕ2) is the rotation of the
fibers parallel to x3;

v) the electric potential vp is linear across the
thickness of the piezo-actuator and hence the elec-
tric field along the x3 axis can be expressed as
−vp/tp;

vi) the transversal stress σ33 in the plate and in
the piezo-actuator is negligible.

Under the previous assumptions, the electro-
mechanical potential energy E of the piezoelectric
laminate [2] may be considerably simplified and
turns out to be:

E = Em + Ep
m + Ep

e + Ep
em + Um + Up

e (1)

where different terms may be recognized:
– Em is the elastic potential energy of the plate:

Em =
tkµ

2

∫
Ω

||ϕ + ∇w||2 da +

Et3

24(1 − ν2)

∫
Ω

[(1 − ν)||∇̂ϕ||2 + ν(div ϕ)2] da,

where the first integral is the shear energy and
the second integral is the bending energy, µ =
E/[2(1 + ν)] is the shear modulus, k = 5/6 is the
shear factor, || · || denotes the norm, ∇ and div
are, respectively, the gradient and the divergence
operators with respect to the x1, x2 variables and
a hat denotes the symmetric part of a tensor.

– Ep
m is the elastic potential energy in the piezo-

electric layer:

Ep
m =

tpcp
11

2

∫
Ω

[(1 − νp)||∇̂up||2 + νp(div up)2] da,

– Ep
e is the electrostatic potential energy in the

piezoelectric layer:

Ep
e = −εp

33

2tp

∫
Ω

(vp)2 da − εp
11t

p

24

∫
Ω

||∇vp||2 da,

where the first integral takes into account the en-
ergy associated with electric field along x3 and the
second integral is due to the in-plane electric field.

– Ep
em is the electro-mechanical coupling poten-

tial energy:

Ep
em = ep

31

∫
Ω

vpdiv up da,

– Um is the potential energy of the external load
q, normal to the plate:

Um = −
∫

Ω

qw da,

– Up
e is the potential energy of the free electric

charge ω on the piezoelectric surfaces:

Up
e =

∫
Ω

ωvp da,

The in-plane displacement up of the piezoelec-
tric layer is given by:

up =
t

2
ϕ,

due to the requirement of continuous displace-
ments through the thickness of the structure.

The kinetic energy of the coupled system is T =
Tm + T p

m, where:
– Tm is the kinetic energy of the plate:

Tm =
ρ

2

∫
Ω

[tẇ2 +
t3

12
||ϕ̇||2] da,

– T p
m is the kinetic energy of the piezo-actuator:

T p
m =

ρp

2

∫
Ω

[tpẇ2 +
t2tp

4
||ϕ̇||2] da,

where a dot denotes differentiation with respect to
the time.

2.2 Modal analysis

From the foregoing variational formulation a
finite-element formulation can be obtained. It is
based on a two-dimensional, quadrangular, four-
node, Mindlin-type finite-element, with four de-
grees of freedom per node. Locking phenomena



are avoided by adopting a linked interpolation
method and enriching the interpolation scheme of
the rotational field with some internal degrees of
freedom [3].

The middle cross-section Ω of the plate is dis-
cretized by using a regular mesh. The potential
energy E and the kinetic energy T are then eval-
uated as functions of the nodal values of the un-
known fields w, ϕ and vp. Finally, the discrete
differential equations of motion are obtained by
using the Hamilton principle:(

M 0
0 0

) (
ẍn

v̈n

)
+

(
D 0
0 0

) (
ẋn

v̇n

)
+

(
Kmm Kme

KT
me Kee

) (
xn

vn

)
=

(
fn

−qn

)
, (2)

where a superscript T denotes transposition, xn,
vn, fn and qn are respectively the nodal mechan-
ical degrees of freedom, the nodal electric poten-
tials of the actuator, the nodal external forces, and
the nodal electric charges, M is the mass matrix,
Kmm is the stiffness matrix, −Kee is the permit-
tivity matrix, Kme is the piezoelectric coupling
matrix and D takes into account the mechanical
damping (a proportional damping is assumed).

By constraining all the electroded nodes to have
the same electric potential (2) becomes

(
M 0
0 0

) (
ẍn

v̈

)
+

(
D 0
0 0

) (
ẋn

v̇

)
+

(
Kmm Kme

KT
me −Cp

)(
xn

v

)
=

(
fn

−q

)
(3)

where q denotes the electric charge on the actua-
tor, v is the difference of electric potential between
the electrodes, the matrix Kme is transformed into
the column vector Kme and the scalar Cp is the
electric capacity of the actuator at fixed structure.

Now M and Kmm are simultaneously diagonal-
ized:

V T MV = I, V T KmmV = Λ (4)

where V is a square matrix whose columns are the
eigenmodes of the actuated cantilever plate when
the electrodes on the actuator are shorted, Λ is
a diagonal matrix containing the squared natural
frequencies and I is the identity matrix. By in-
troducing the modal coordinates y = V −1xn, and
adding to (3) the relevant Kirchhoff equation, we
have
 I 0 0

0 0 0
0 0 L





 ÿ

v̈
q̈


 +


∆ 0 0

0 0 0
0 0 R





 ẏ

v̇
q̇


 +


 Λ K 0

KT −Cp 1
0 1 0





 y

v
q


 =


 0

0
va


 (5)

where the column vector K contains the modal
coupling stiffnesses relevant to all the eigenmodes
of the structure and ∆ is a diagonal matrix whose
elements are the modal mechanical damping co-
efficients. As in Fig. 1, R and L are the values
of the passive components of the circuit, and va

is the applied control voltage. Reduced discrete
models are obtained from (5) by considering only
some components of the vector y. In particular,
taking into account only the first eigenmode of the
structure, the reduced model reads explicitly as:

mÿ1 + cẏ1 + λy1 + kv = 0 (6)
ky1 − Cpv = −q (7)
Lq̈ + Rq̇ + v = va (8)

where m = 1, c, λ, k and y1 are, respectively,
the mass, the mechanical damping coefficient, the
stiffness, the coupling stiffness and the modal co-
ordinate relevant to the first eigenmode of the
structure. Solving (7) with respect to v and sub-
stituting into (6) and (8), the following two equa-
tions are obtained:

mÿ1 + cẏ1 + λy1 +
k

Cp
q = 0 (9)

Lq̈ + Rq̇ +
1

Cp
q +

k

Cp
y1 = va (10)

where λ = λ + k2/Cp.

3 PASSIVE CONTROL

The vibration passive damping of a structure can
be achieved by using an external shunt circuit,
whose passive electric components are a resistor
R and an inductor L and the active control volt-
age va is set to zero. In practical applications,
the problem arises to choose the values of R and
L in such a way as to obtain the most effective
vibration damping. In order to perform such an
optimization, the following dimensionless version
of equations (9)-(10) is adopted [4]:

Ÿ + 2νẎ + Y + κωQ = 0 (11)
Q̈ + 2ζωQ̇ + ω2Q + κωY = 0 (12)

where ω = ωe/ωm, ωe =
√

1/(LCp), ωm =√
λ/m, ν = c/(2

√
mλ), ζ = R/(2ωeL) and κ =

k/
√

Cpλ. The modal coupling coefficient κ de-
pends only on the material and geometrical char-
acteristics of the coupled vibrating structure. On
the other hand, ω and ζ depend on the parameters
R and L of the external electric circuit.

By adopting a pole-placement technique, the
optimal values ωopt and ζopt are implicitly defined



by the following equations [4]:

ω2
opt κ2 = (1 − ν2)(−1 + ω2

opt + 2ν2 −

2ν
√

ν2 − 1 + ω2
opt) (13)

ζopt =
√

ν2 − 1 + ω2
opt/ωopt (14)

It is easy to verify that in the special case ν = 0,
relevant to the situation of vanishing mechanical
damping, the above equations reduce to

ωopt =
√

1/(1 − κ2) (15)
ζopt = κ (16)

which exactly coincide with Hagood and von Flo-
tow’s formulas [9], up to a transformation between
the present dimensionless parameters κ, ω and ζ,
and Hagood’s Kij , δ and r, given by:

κ2 =
K2

ij

1 + K2
ij

, ω =
δ√

1 + K2
ij

, ζ =
rδ

2

(17)

4 ACTIVE CONTROL

Here, vibration damping for the cantilever plate
described in Section 2 is achieved by means of a
linear dynamic feedback compensator which gen-
erates the control input va based on the measured
output z = ẅP , being wP the vertical displace-
ment of the accelerometer.

For the sake of simplicity, the design is based on
a reduced-order model of the system, which takes
into account only the first eigenmode and neglects
the mechanical damping. The design is carried
out by means of standard LQG techniques (see,
e.g., the books [7, 13]), considering, therefore, a
suitable stochastic model of the system. Letting
η(t) = [ y1(t) ẏ1(t) ]T , be the state of the system
at time t, the state space equations of our design
model are as follows:

η̇(t) = Aη(t) + b va(t) + ξ(t), (18)
z(t) = C η(t) + d va(t) + θ(t), (19)

where ξ(t), θ(t) are stationary Gaussian random
processes described by E {ξ(t)} = 0, E {θ(t)} = 0,
E

{
ξ(t)ξT (τ)

}
= Ξ δ(t − τ) and E

{
θ(t)θT (τ)

}
=

Θ δ(t − τ), being Ξ ∈ R2×2, Ξ = ΞT , Ξ ≥ 0, Θ ∈
R, Θ > 0, and with E{·} denoting the expected
value of the argument. From equations (9) and
(10), setting R = 0, L = 0, and c = 0, we have A =[

0 1
−λ 0

]
, b =

[
0
−k

]
, whereas C = [−λṼ 0],

d = −kṼ , being Ṽ the vertical displacement of
the first eigenmode of the plate in correspondence
to the position of the accelerometer. The LQG

controller proposed here is designed in order to
minimize the following performance index:

J = E
{

1
2

∫ +∞

0

(
ηT (τ)Q η(τ) + r v2

a(τ)
)
dτ

}
,

where r ∈ R, r > 0 and Q ∈ R2×2, Q = QT ,
Q ≥ 0, are to be seen, together with Θ and Ξ, as
the design parameters, to be chosen in order to
obtain a satisfactory behaviour for the closed loop
system.

As is well known, if P and Σ denote the unique
positive definite solutions of the algebraic Riccati
equations:

Q + AT P + P A − 1
r

P b bT P = 0,

Ξ + AΣ + Σ AT − 1
Θ

Σ CT C Σ = 0,

respectively, the LQG compensator is described,
in state-space form, by the equations:

ẋK(t) = AK xK(t) + bK z(t), (20)
ua(t) = CK xK(t), (21)

where xK ∈ R2, AK = A+b Kc−Ko C−Ko dKc,

bK = Ko, CK = Kc, Kc = −1
r

bT P , Ko =
1
Θ

Σ CT and ua would coincide with va if it was

possible to directly connect (i.e. with no satu-
ration) the proposed compensator with the given
system. The choice of r, Q, Θ and Ξ has to be
made by considering the well known trade-off be-
tween the objective of increasing the convergence
speed, which requires that the elements of Q and
Ξ are taken “large”, compared to r and Θ, re-
spectively, and the objectives of keeping the ab-
solute value of v suitable small (i.e., admissible
for the piezoelectric actuator) and of reducing the
“spillover” effects due to the unmodelled dynamics
(which will arise when the compensator designed
on the basis of the reduced order model (18)-(19)
will be applied to the actual infinite dimensional
system). This two last objectives, in turn, require
that the elements of Q and Ξ are “small”, com-
pared to r and Θ, respectively. Without loss of
generality, we have set r = Θ = 1, whereas, in
order to select matrices Q and Ξ, we have found
very convenient to use the technique reported in
[12], which allows to select such matrices in or-
der to obtain desired closed-loop eigenvalues for
the ideal overall system. Satisfactory results have
been obtained by choosing as closed-loop eigenval-
ues λ1,2 = −10± 122 j and λ3,4 = −15± 122 j. In
order to evaluate the performance of the proposed
LQG compensator when applied to the real sys-
tem, simulations have been performed by using
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Figure 2: Simulation results for the active control law: (a) input voltage va, (b) vertical displacement of
the accelerometer wP .

a reduced order model which takes into account
the first five bending vibration modes of the plate,
and includes some mechanical damping (properly
identified on the available experimental system).

In order to be implemented through a digi-
tal computer, the proposed continuous-time LQG
compensator needs to be discretized. This has
been done by means of standard routines, choos-
ing the sampling time as δT = 1/1024s, which is
an admissible value for the experimental equip-
ment. Notice that the discrete-time input zD(k)
of the discretized LQG compensator is the ideal
sampling of the continuous-time output of the
plant z(t), i.e., zD(k) = z(k δT ), whereas a zero
order holding mechanism converts the discrete-
time output ua,D(k) of the discretized compen-
sator into the continuous-time control input, i.e.,
ua(t) = ua,D(k), for all t ∈ (k δT , (k+1) δT ]. Fur-
thermore, to be more realistic, it has been taken
into account that, in order to preserve the piezo-
actuator, it must be ensured that |v| ≤ 100 V . In
an experimental setup such a saturation is guar-
anteed by the power amplifier which generates the
input voltage, but in the simulations an ideal sat-
uration has been considered. The results of the
first two seconds of simulation, starting from null
initial conditions for the compensator, and initial
deformations of the plate corresponding to a suit-
able impulsive force applied at time t = 0 to the
free end of the plate in central position, are re-
ported in Fig. 2.

In order to compare such simulation results with
the ones obtained by means of passive control, we
have simulated, on the same five-degrees of free-
dom reduced order model, the behaviour of the
passive control law proposed in Section 3, from
the same initial conditions at time 0+. The com-

parison between the behaviour of the discretized
LQG compensator and the passive control law dis-
cussed in Section 3 is reported in Fig. 3.

5 CONCLUSIONS

Accurate models of a steel cantilever plate, ac-
tuated by means of a piezoelectric element, have
been obtained, by taking explicitly into account
in the finite-element modelling phase the electro-
mechanical coupling of the structure.

Based on such models, purely passive and
purely active control laws have been designed, and
their performances have been evaluated in simu-
lation.

Ongoing research focuses both on the experi-
mental validation of such results, and on the de-
velopment of hybrid control laws, combining the
advantages of the passive and the active control.
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