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Abstract. Nonlinear state feedback controllers are exhibited for locally stabilizing
linear discrete-time systems with both saturating actuators and additive disturbances
when the output must track a certain reference level. The objective is then to bring
the steady-state error due to disturbances to zero by using a saturated controller and
a dead-zone function. Thus, we want to determine both a stabilizing controller and a
region of the state space over which the stability of the resulting closed-loop system
1s ensured, when the controls are allowed to saturate.

1 Introduction

For technological, economical or safety reasons,
the energy delivered by the actuators to the sys-
tem is bounded. This can be described by a
bound on the control input amplitude. If this
limitation is omitted in the control design, some
unexpected phenonena can affect the closed-loop
system: a degradation of performances, the oc-
curence of parasitic equilibrium points or limit cy-
cles, and in the worst cases the closed-loop system
can become unstable. One main improvement in
linear theory then consists in taking into account
actuators limitations. In the last years, there has
been a renewed interest in the problem of local
[8], global [14] or semi-global [11] stabilization of
systems subject to input saturations.

In addition to the problem of stability in-
duced by actuators saturations, the control must
meet some performance requirements, among of
them the reference tracking in presence of dis-
turbances. It is well-known that for linear sys-
tems the disturbances can be eliminated by us-
ing an integral-error feedback, but when the con-
trol saturates, a windup phenomenon can oc-
cur. Several approaches based on the addition of
a dead-zone nonlinearity have been proposed in
the continuous-time framework to overcome the
windup problem [6], [9], [10]. Unfortunately, they
do not provide any systematic and single step
methodology to compute both a stabilizing and
saturating controller and a related domain of sta-

bility for the closed-loop system. Either one need
extensive simulations [10], or a two-steps strategy
is developed, firstly by designing a linear controller
for the nonsaturating plant and then by modifying
the controller to take the saturation into account
(6], [9], [19].

The objective of this paper is to propose a
systematic method to compute a saturating con-
troller and a domain of local stability for discrete-
time systems, while addressing the problem of ref-
erence traking with additive disturbances on the
state. No assumption on the open-loop stability
is made. In this sense, the addressed problem is
a problem of local stabilization. Solutions, when
some assumptions on the open-loop stability are
considered, are proposed in a global and semi-
global context by [1] and [13]. Here, the objec-
tive is expressed in terms of output tracking of a
given reference level by bringing the steady-state
error to zero. The saturating controller contain-
ing nonlinear actions and the local ellipsoidal do-
main of stability are computed by using some re-
laxation schemes and a Linear Matrix Inequalities
(LMIs) formulation. Moreover, an ellipsoidal do-
main of admissible disturbances and reference is
computed, for which the stability is ensured. This
paper is the same vein as the ones developed in
[17], [18] for continuous-time systems.

Notation. The transpose of a vector y(t) is
denoted by y(¢)’. The index e indicates that the
variable is considered at the equilibrium. Matrix
I, denotes the identity matrix in R?>*”. For any



matrix M, M (resp. M(; ;)) denotes its ith row
vector (resp. its component of the ith row and
Jth column). Given any vector 8 € 9, the ma-
trix A(B) denotes the diagonal matrix with com-
ponents fB(;y, for i = 1,...,9. For any matrix
M e R"*" M > 0 (resp. M > 0) means that
M is positive definite (resp. semi-definite). For
two vectors z, y € R, the notation z > y is
component-wise, that is, means that z;) > y(),
i=1,...,n. co{ } denotes the convex hull. For any
matrix N € %" with m < n and rank(N) =
m, N# = NT(NNT)~! denotes the right pseudo-
inverse of N, that is, NN# = I,,. Finally, in the
sequel the saturation function saty, (w) is generi-
cally described by its components: saty, (wg;)) =
sign(wy) min(|we |, wog), i =1, ..., m.

2 Problem formulation

Consider the discrete-time system subject to ac-
tuator saturation described by

2(k+1) = Az (k) + Bsaty, (u(k)) +d
y(k) = Cx(k) +w (1)
c(k) =y(k) —r

where z € R" is the state vector, u € ™ 1is the
control input, y € R is the output vector, d € R”
and @ € RN are vectors of disturbances, r € R
is the desired reference to follow and ¢ € R is
the tracking error. The matrices A, B and C' are
constant real matrices of appropriate dimensions.
Furthermore we assume the following.

Al. rank(B) = m and rank(é’) =1.

A2. m>11[20]. o
A3. Pairs (A,B) and (C,A) are con-
trollable and  observable. Furthermore,

rank([ln_éA OB ]):n—}-l.

The control objective is to achieve asymptotic
output-reference tracking in spite of both actua-
tor saturation and external disturbances. In other
words, our aim consists in computing suitable non-
linear state feedback controllers in order to bring
the output y(k) at the reference r: that is, in order
to obtain e(k) = 0 as k — +oo.

Thus introduce an additional state variable
q(k) € ®' with an anti-windup term [2]:

q(k +1) = q(k) + (k) + A(h)(saty, (v(k)) — v(k))

with v € R an additionnal control input and
A(h) € ®*! a diagonal positive matrix. A(h)
is the anti-windup gain matrix. As in [10] for the
continuous-time case, we introduce the error coor-
dinates representation using the new state vector

c=[¢ @y ¢ ] ent (2)

where 25 € "~} is defined by 2y = Mz, M; €
Pn=Oxn  pr being chosen such that M, =

[ ]\3 ] € N™*™ is nonsingular. Then the initial
1

system (1) can be written as

z(k+1) = Az(k) + Bysaty,(u(k))

+Ba(saty, (v(k)) — v(k)) + Bsd 3)

. _ MQAMgl 0f_ A 0 (n+l)x (n+1)

with A= I Il]—[ Co eRN ;
_ Il n Xl — M2B Bl

FE = |:0:| e N, By = [ 0 ] [0] S

0

(n+l)xm _ (n+l)x1 _

éR 3 B2 — I:A(h) S éR 3 BS —
My (In—AE —(I, - A)E] _ [Bs

0 0 0 = lo]| €

Rr+)X(n+20) and d = [ j/ @ ]/ € Rt
Our control objective can be formulated into the
following problem.

Problem 1 Compute two matrices Fy €
Rrx(+) and Fy € RIX0H) g set of initial condi-
tions Xy and a set Do of admissible disturbances d
such that u(k) = Fyz(k) and v(k) = Faz(k) locally
asymptotically stabilize system (3) for any initial
condition in Xy and any disturbance in Dq, that
18, asymptotically stabilize the closed-loop system:

z(k+ 1) = Az(k) + Bisaty,(F1z(k)) 4
+Bo(saty, (Faz(k)) — Foz(k)) + Bsd D

In the disturbance free case (i.e. d = 0, that is,
d=w=r= 0) stabilizing feedback gains F; and
F5 being given, the resulting nonlinear closed-loop
system (4) possesses a basin of attraction of the
equilibrium point z, = 0 [12], [15]. When d # 0
one can define equilibrium points for the closed-
loop system : z(k+ 1) = z(k) = z. # 0. Thus,
the closed-loop system (4) exhibits local behav-
iors around these equilibrium points whose study
may be very hard (if not impossible). An inter-
esting way to overcome this difficulty is therefore
to determine a set of admissible initial conditions
Xy from which the stability of system (4) with re-
spect to the wished equilibrium points is guaran-
teed. Since our control objective consists in par-
ticular in satisfying the tracking condition €, = 0,
or equivalently y(k) — r as k — oo, the interest-
ing equilibrium points can be defined as follows:

dk+)=z(k)=2=[0 25, ¢ ] (5

The resolution of Problem 1 consists in being

able to characterize the sets Xy and Dy such that
the following properties hold with respect to sys-
tem (4):
P1. When d = 0 (disturbance free case), z(k)
asymptotically converges to the origin for any
P2. When d # 0, z(k) converges to z., as defined
in (5), for any z(0) € Xy and d € Dy.

/



Remark 1 When saturations do not occur, that

is, when z(k) € S(F1,ug) N S(Fa,vo) defined by

S(Fl,UQ) =
S(FQ,’U()) =

{z € R —ug < Frz < ug} (6)
{z € W™ —vg < Foz <o} (7)

the closed-loop system ({) admits the linear model
z(k+1) = (A+ B1F1)z(k) + Bsd (8)

Note that we cannot conclude, without addi-
tional conditions, that any trajectory initiated in
S(F1,u0) N S(Fa2,vg) is a trajectory of system (8),
that is, remains confined in S(Fy, ug) N S(F2,vg).

Remark 2 When the open-loop system is stable,
the global stabilization of system ({) can be stud-
ted. In this case, the set Xy in Problem 1 1s
equal to R+ [5], [7]. Throughout the paper, no
assumption on the open-loop stability is done (it
can be unstable). In this sense, the problem to be
solved 1s a problem of local stabilization.

Remark 3 In the current literature on anti-
windup, it 1s often assumed that the dead-zone
nonlinearity directly acts on u [2]. Here we have
relaxzed this constraint by introducing an addition-
nal control input v. This brings an additionnal de-
gree of freedom to the control that may be used to
improve the performance of the closed-loop system
(in terms of convergence rate for example). How-
ever, this cannot be directly specified in the syn-
thesis problem, but can be a posteriori analyzed.

3 Preliminaries

of the

3.1 Existence conditions
equilibrium set

We set different conditions to obtain for system
(4) an equilibrium point z. in the form (5).

Lemma 1 Suppose that there exists an equilib-
rium point z. for system (4). Then it is defined
as in (5) provided that sat,,(Faz.) = Faz., that
is, provided that z, € S(Fa, vg).

Proof. Consider system (4) at the equilibrium
ze. Then one gets: z. = Az. + Bysaty,(Fize) +
Bsy(saty, (Faze) — Faze) + Bade. From (3), this
equality can be decomposed as:

0= _(In — A) [ ;e :| + Blsatuo (Flze) + Bgde
L2e
0=FE [ ;e ] + A(h)(saty,(Faze) — Faze)
L2e

Hence, one obtains ¢, = 0 provided that
saty, (Faze) — Faze = 0 (since by definition, A(h)

is a positive definite diagonal matrix), which is
equivalent to z. € S(Fa,v). O

The saturation term sat,,(Fiz.) € R™ allows
to describe 3™ regions of saturation in R+ [8].
Hence, according to this description for one value
de, one can consider 3™ points [ 0 b, ¢’ ]/.
Each of these points could be locally studied in
terms of both existence and stability. However, in
order to simplify our study, we restrict our atten-
tion to the case where saty,(Fize) = Fize.

The two following lemmas, for which the proofs
mimic the ones described [17], present the condi-
tions on disturbance d to verify that the desired
equilibrium point is in the region of linearity.

Lemma 2 If A + By F, is asymptotically stable
and d satisfies

—Ug SFl(In+l —(A+B1F1))_1B3d§110 (9)
—vg < Fy(Inyi — (A+ B1F1)) "' Bad < vy (10)

then the following properties hold:
1. the equilibrium point z, s given by :

Ze = (Ing1 — (A4 B1F1)) "' Bad.  (11)

V d. satisfying (9) and (10).
2. z. € S(F1,ug) N S(Fa,v0), and is the unique
equilibrium point for system (4).

Lemma 3 The equilibrium point z. as defined in
(5) and (11) belongs to S(Fi,uo) if d € S(F,ug)
which is the polyhedral set defined by:

S(F,uo) = {d € R, —ug < Fd < uo}
I,—A —B ]#B (12)
3

with F =10 Im][ ' 0

Remark 4 When m = [, it suffices to replace
_ _ # _ _ -1
I,—A -B I,—A —-B 4
[ " 01] by[ L 01] in (12).

Remark 5 Lemmas 1, 2 and 3 point out that the
output-tracking objective cannot be carried out for
any disturbances d, that is, for any disturbance d
and w and any reference input r. The only possi-
bility to solve our output-tracking objective for any
reference v is to verify (I, —A)E = 0. Such a con-
dition requires some structural properties between
matrices A and C.

3.2 Polytopic model

Define the scalars ay(;)(2(k)), ¢ = 1,...,m and
as(gy(z(k)), g =1,....1, as [16]:

satug (Fyiyz(k
0 < @y (z(k) = %@)M <1

satyg (Fa(g)2(k
0 < asg)(2(k)) = ﬁm)& <1

Thus the following lemma can be stated.



Lemma 4 Consider any compact set Qg C R*+,
then for z(k) € Qq the following properties hold:
1. wvectors ay(z(k)) and as(z(k)) admit lower
bounds:

Qlmin(i) = mi.n{al(i)(z); z€Qot,i=1,...m
Qamin(g) = Min{ayy(2);2 € Qo},g=1,...,1

2. we can define vertex matrices A;, j=1,...,2™
and Bg, ¢ =1, ..., 2

A =
B, =

A+ BiA(v) P (13)
Ba(A(q) = 1) o (14)

where A(v;) (resp. A(%q)) is a diagonal matriz
for which A(v;) i) = Vi) (resp. A('yq)(g g) =

(g)) take the values 1 or almm(l), i=1,.

resp 1 or aamin(g), 9 S1).
3. z(k+ 1) can be determz'ned by the following

polytopic system:

z(k +1) ZAAZ

2m 2!
with Y A =1, >0, Y A\, =
ji=1 g=1

By definition, the set S(Fy,ug) N S(Fa, v9*?)

S(F1,up?) = {z € R+ —ui* < Fiz < ug'}
S(F27v0042) = {Z € %H-H; —vg*2? < Fyz < anz}

with ug‘(li) = a::l;(l), i=1,..,m (resp. vo(y)** =
aﬂi(%, g =1,...,1), contains Qg and corresponds
2min(g

to the maximal set in which model (15) represents
system (4).

Remark 6 In order to solve Problem 1, we need
to determine matrices Fy, Fy, set Qq and vectors

A1imin; X2min-

4 Main results

We choose ellipsoidal sets Xy and Dg derived from
symmetric positive definite matrices P and S and
from positive scalars ¢ and o, as follows:

Xo=E(P &) ={zeRT /P2 <¢™}  (16)
=&(S,0)={de R d'Sd< o7t} (17)

Let us define H(j,q) = P(A + BiA(y;) Py +
By(A(Yq) — 1) Z(In41 — A— B1Fy)) and state the

following proposition.

Proposition 1 If there exist matrices Fi, Z,
P=P >0, 8 =25 >0, vectors aimin and

Tn (18), %

Qomin, positive scalars & > 0, 0 > 0, p > 0 and
w > 0 satisfying '

—uP * * *
0 —wS  * * <0
H(j,q) PBs -—P * = (18)
0 0 0 pot+wéE—co
Vi=1,..,2m ¢=1,...,2

P *
9 >0, Vi=1,...,m (21
[ Q1min(i) F1(i) EUS(Z) = (21)
[ r Y >0
a2min(g)Z( )( n+l — A - BlFl) 5“3(9) -
Vg=1,..,1
(22)

S *
>0, Vi=1,..m 23
[fm UUS@)] (23)

S *
>0, Vg=1,..,1 24
[ Z(g)33 O'Ug(g) ] = 9 (24)
with F defined in (12), then the gains Fy and
Fy = Z(Inqy1 — (A+ B1F1)), the set of admissible
initial conditions £(P, &) and the set of admissible
disturbances £(S, o) solve Problem 1.

Proof. Relations (21)-(22) mean that £(P,€) C
S(F1,ug?) N S(Fa,vg?). If there exist matrices
Fy, 7 and P, vectors aimin and asgmi, satisfy-
ing relations (19) and (20), and inclusion relations
(21)-(22) then the polytopic model (15) can rep-
resent the saturated system (4). Moreover, by
considering the quadratic function V(z) = 2'Pz
and by computing V(z(k + 1)) along the trajec-
tories of system (15) it follows V(z(k + 1)) =
(Y MU 0) + ¢ BIPLMU 0)2(8) + o) with

ZAA +ZAB

First, we have to prove that V( (k+ 1)) § &
Vz(k) and Vd satisfying z(k)'Pz(k) < ¢71 and
d'Sd < o7, respectively. By using the S-
procedure [3] it is possible to show that it is equiv-
alent to seek g > 0 and w > 0 such that

from (13)-(14) M(j,q)

V(z(k+ 1))~ L —u (z(k)’Pz(k) - %)

—w (d'Sd— L) <0 ()

is the substitute for blocks ensuring matrix symmetry.



Thanks to convexity properties, if relation (18) is
verified then inequality (25) holds. Furthermore,
the satisfaction of relation (18) implies the asymp-
totic stability of matrix A + B1F,. Moreover, if
relations (23)-(24) are verified then the inclusion
relation £(S,0) C (S(F,ue) N S(ZBs,w)), or,
equivalently, £(S,0) C (S(F,ug) N S(Fa(Inyi —
(A + B1F1))~1'Bs,vg)) is satisfied and therefore
ze is defined as in (11) and belongs to the set
S(F1,uq) N S(F2,vg). Hence, provided that there
exist matrices Fy, Z, P and S, vectors aim,i, and
Qamin, positive scalars &, o, p and w satisfying re-
lations (18), (19), (20), (21), (22), (23) and (24),
Problem 1 is solved. O

Remark 7 A special case of the anti-windup
term is given by A(h) = 0. Then the control
reduces to a simple integrating action and reads
q(k + 1) = q(k) + (k). Therefore the closed-loop

system (4) becomes:
z(k+ 1) = Az(k) + Bysaty, (F1z(k)) + Bad (26)

This case 1s also equivalent to set Fy = 0. Thus,
Proposition 1 applies by considering relation (18)
in which we set 7 = 0 and relations (19), (21)
and (23).

Remark 8 The direct application of Proposition
1 for solving Problem 1 1is difficult due to some
nonlinearities in the variables in relations (18),
(21) and (22). The problem formulation and the
use of Semi-Definite Programming do not allow
to solve the complete synthesis problem (as de-
fined by Problem 1)} in one single step (it is not
possible to compute Fy and Fy (or 7)) together).
This s however possible for continuous-time sys-
tems [17]. At this time, we can emphasize that
our problem formulation entails different sources
of conservatism such that the representation of the
saturated system by a polytopic model, the search
of a unique Lyapunov matriz P shared by each
vertex of the matrix polytope or still the use of the
S-procedure. Moreover, some global optimization
methods for solving the nonlinear problem intro-
duced in Proposition 1 could be used [{], but their
worst-case complexities and the required computa-
tional effort may make the solution untractable.
FEven if we do not attain the global optimum, we
will be satisfied with an (approzimative) feasible
solution, that is a suboptimal solution.

Hence, relations of Proposition 1 become lin-
ear as soon as some variables are fixed. In this
sense some relaxation schemes can be considered
as described below:

e Relar 1. Fix Fy, Z (or equivalently F3), P, S,
¢, o and search aymin, @2min, w, i which solve
relations (18)-(22).

e Relaxr 2. Fix Fy, 7 (or equivalently F3), a1min,

Q9min, W, ¢ and search P, S, & o which solve
relations (18), (21)-(24).

o Relaxr 3. Fix P, Z, aimin, Q2min, w, {4 and
search F1, S, €, o which solve relations (18), (21)-
(24).

e Relax 4. Fix P, F1, Q1min, Qomin, w, p and
search 7, S, &, o which solve relations (18), (21)-
(24).

Furthermore, Proposition 1 provides a suffi-
cient condition in order to derive the gains F and
F5 and the sets £(P,&) and £(S, ). Tt is then in-
teresting to orient the solutions in order to obtain
ellipsoids £(P,¢) and £(S, o) as large as possible.
First recall that the size of £(P, &) (resp. £(S, o))
is related both to P (resp. S) and & (resp. o). In
that sense, we can consider optimization problems
described as follon\;vs:

e Optim 1. minz(almm(i) + Qamin(i))-
i=1
e Optim 2. minlog(det(¢ P))+ log(det(o S)) cor-

responds to the maximization of the two volumes
of ellipsoids £(P,€) and £(S, o).

e Optim 3. miné + o + trace(P) + trace(S) may
be considered as an approximation of Optim 2
which allows to use LMI toolbox of Matlab.

e Optim 4. min¢ + 0.

We can therefore combine these optimization
problems with the previous relaxations schemes.

Remark 9 The optimization criterion Optim 1,
associated with Relax 1, allows to decrease aimin
and agmin, which corresponds, according to the
definition of aymin and asmin, to increase the tol-
erance to the saturation of the closed-loop system.

Remark 10 Note that the optimization of both
E(P,€) and £(S, o) leads to some trade-off between
these two sets, since one increases while the other
one decreases. Depending on the control objective,
the optimization criterion may be weighted to em-
phasize the initial admissible states set E(P,&) or
the set £(S, o) involving both output tracking ref-
erences and admussible disturbances.

Remark 11 Two mazimal admissible tracking
references may be derived for £(P,&) and £(S, 7).
The first one corresponds to the mazimal initial
value [ =74 0 0 ]/ belonging to £(P,¢), i.e.,
the mazimal distance between the initial output
y at the origin and the reference signal r. The
second one corresponds to the mazximal reference,
when no disturbance occurs, [0 0 7 ]l be-
longing to £(S,0). Finally, Tmaez = min(ry, rse).
Note however that these mazimal values ri and rs
do not correspond to the maximal value r which
may be attained by exploring the whole surface of

E(P, &) and £(S, o), respectively.



Remark 12 Note that the initialisation step
(choice of admissible solutions P, Fy, Fa, choice
of p, criterion) and the optimization criteria of
Relaz 1, 2, 3 and 4 have a strong influence on
the solution, both in terms of size of sets E(P, &)
and £(S,0) and in terms of closed-loop spectrum.
They have to be chosen according to the control
objective.

5 Conclusion

The problem of local stabilization and reference
tracking of linear discrete-time systems subject to
input saturation and disturbances has been ad-
dressed. By using some relaxation schemes and
an LMI formulation we have proposed an solu-
tion allowing the simultaneous computation of a
saturating controller, a local domain of stability
and a domain of admissible reference and distur-
bances. By using iterative procedures induced by
relaxation schemes and different optimization cri-
teria, we can emphasize either the stability or the
performance, in terms of sizes of either the sta-
bility domain or the reference and disturbances
domains.

We have only considered constant disturbances
and references. Thus, in the future an interest-
ing way could be to consider time-varying distur-
bances and references, with a knowledge or an es-
timation of their dynamics, and eventually with
a tolerance concerning the tracking performance
(admissible delay or tracking error). Another way
could be the synthesis of output feedback type
controller instead of state feedback one. In this
case, the first question is: Does one has to com-
pute a dynamic output controller for the initial
system (1) or for the augmented one (3) ?
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