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Abstract. Cancer chemotherapy with application of one drug is studied. The

negative and inhibiting e�ect of the tumor on normal cells is taken into account.

Under certain hypotheses, we determine the optimal regimen that minimizes the

tumor burden at the end of a �xed period of therapy while maintaining certain normal

cell populations above prescribed levels. More precisely, it is demonstrated that the

optimal strategy corresponds to injection of the drug at the maximal rate.

Keywords. Optimal chemotherapy regimen, inuence of tumors on normal cells

1. INTRODUCTION

The last decade has witnessed valuable e�orts in

analysis of cancer chemotherapy via employing

deterministic mathematical models. One of the

main objectives was to verify the optimality of ex-

isting methods for chemotherapy administration

and, in the cases where the answer is in the nega-

tive, to propose alternative regimens. Those mod-

els usually include one or more di�erential equa-

tions describing tumor growth. Furthermore, they

often involve a model for toxic side-e�ects of the

anti-cancer drug, which in many cases can be se-

vere and so are required to be managed. Related

to it is the aim to compromise between the de-

struction of the cancer and the containment of

normal-cell toxicity. Within the above framework,

a large diversity of settings was explored. For

example, equations of various types (Gompertz,

logistic, exponential, etc.) were employed to de-

scribe tumor growth. Various terms were used to

express the inuence of the anti-cancer drug on

the tumor cells. In some cases, the tumor was as-

sumed to be homogeneous, whereas in other ones,

it was considered to consist of several fractions

(e.g., the drug-resistant and drug-sensitive ones

[6], or fractions, each encompassing all the tumor

cells in a de�nite phase of the cell cycle). Analyzed

were the e�ects on the optimal drug scheduling

that result from taking into account a number of

special phenomena. Among them, there are devel-

oping resistance of the malignant cells to the anti-

cancer drug [6], blocking e�ect [9] (which means

that the drug not only kills tumor cells but also

blocks their progression through the cell cycle),

etc. As a quanti�er of toxicity, the total amount

of the drug infused during the treatment can be

used. Another approach is to constrain the toxi-

city by maintaining a certain normal cell popula-

tion above a given level There is a similar diversity

of objectives. In some cases, the goal was to min-

imize the total amount of drug infused under the

constraint that the tumor size at the end of the

treatment must not exceed a prescribed level. In

other cases, the problem was to minimize the tu-

mor burden after a �xed period of therapy, while

constraining the drug toxicity. For further details

and an excellent survey of the area, we refer the

reader to [7, 11].

However it seems that up to now the inter-

inuence of malignant and normal cells was

not taken into account in analysis of optimal

chemotherapy regimens. In most of the models

employed, the tumor growth was represented as

a factor neutral to the health of the patient, and

the requirement to reduce the tumor burden was

adopted as purely exogenous. At the same time,

the malignant tumor is able to a�ect normal cells

in many ways. Moreover, the pathophysiology of

certain kinds of cancer, such as the human acute

leukemia, was understood and modelled directly

as an inter-play between the malignant clone of

cells and the normal neutrophil cell population in



a number of researches [1{4,10]. As was remarked

in [4], leukemic cells can impede the growth of

normal hemopoietic tissue via the competition for

essential nutrients, which might result in exclu-

sion and extinction of normal cells, as well as

contact inhibition and production of growth in-

hibitors. On the other hand, there is an a'priori

likelihood that taking into account the negative

e�ect of the tumor on the patient's body may al-

ter the solutions of some optimization problems

related to cancer chemotherapy. For instance, a

number of such solutions prescribe to delay the

treatment considerably and start it only near the

end of the therapy period by applying the anti-

cancer drug at the maximum rate in order to min-

imize the tumor size at the end of this period.

This solution holds for both short and long peri-

ods. But in fact, in the absence of treatment for a

considerable time, the cancer disorder may be fa-

tal. So taking into account negative e�ects of the

tumor on normal cells is, for example, likely to

result in correcting the above solution via short-

ening or even discarding the delay period.

The objective of this paper is to contribute to

qualitative understanding of e�ects on the opti-

mal chemotherapy scheduling that are due to the

negative inuence of the malignant tumor on the

patient. The sizes of certain normal cell popu-

lations are taken as measures of toxicity. This

approach was adopted in numerous papers in the

area. However up to now only one population was

taken into account. At the same time, both cyto-

toxic drugs and tumors usually a�ect a series of

normal tissues, which cannot be often viewed as

a unique homogeneous cell population. In view of

this, we consider several normal cell populations

and impose size constraints on each of them.

In our analysis, we adopt the model from [1, 2].

Though this model was invented to describe the

human acute leukemia, the assumptions under-

lying it are so general that it can be employed

in analysis of a wider variety of cancers. The

model to be considered consists of several Gom-

pertz di�erential equations describing the dynam-

ics of both the tumor and certain normal cell pop-

ulations. Special terms account for the negative

and inhibiting e�ect of the tumor on normal cells.

Perturbation summands in the equations repre-

sent the e�ect of the anti-cancer drug on the tu-

mor and normal tissues. The amalgamated nega-

tive e�ect on the patient that is due to both the

tumor and the drug-originated toxicity is limited

by the requirement to maintain the normal cell

populations above given levels. The objective is

to minimize the tumor burden at the end of a �xed

period of therapy.

Following the lines of most of the preceding pa-

pers, we consider the case where only one drug

is applied. In fact, this is rare in clinical prac-

tice, where a combination of drugs is usually em-

ployed. Nevertheless, the e�ect of such a combi-

nation can be sometimes amalgamated to lead to

a model with only one idealized drug. Anyhow,

the assumption of one drug is widely adopted in

the literature since it simpli�es the matters and

is accompanied with a hope that the results ob-

tained can be useful to comprehend certain qual-

itative features of optimal regimens in the case

of several drugs. As in [5] etc., the control vari-

able is the concentration of the anti-cancer drug at

the tumor site. This means that the drug spreads

within the body instantaneously so that the drug

infusion rate is approximately proportional to the

drug concentration. A more realistic case where

a proper pharmacokinetic equation is used to ex-

press the relationship between the infusion rate

and the concentration is left as a topic of further

research.

By employing the optimal control theory, we show

that the optimal drug administration conforms

to the strategy of agressive chemotherapy. This

means that the drug must be constantly applied

at the maximum rate. During some periods of

therapy, this rate may be determined by the tox-

icity constraints. Namely, if some normal cell

population reaches its lowest admissible level, the

drug infusion rate may be limited by the require-

ment to maintain the population at or above this

level. Unlike the case where the inuence of tu-

mor on the patient is neglected, such periods may

be followed by ones where all the normal cell

populations are strictly above those levels and so

the drug is delivered at the "absolutely" maximal

rate. This takes place if, due to reducing the tu-

mor during the treatment, its negative inuence

on the normal tissues reduces so that the comple-

mentary drug toxicity does not violate the pre-

scribed toxicity constraint even if the drug is ap-

plied at the maximum rate. The periods of treat-

ment of the �rst and second types can alternate

several times. The number of the periods of the

�rst type (where the rate of the drug delivery is

determined by the toxicity constraints) does not

exceed the number of the normal cell populations

taken into account.

The proofs of the results presented below are avail-

able upon request and will be published in [8].

2. THE PROBLEM STATE-

MENT AND RESULTS

The model to be employed consists of several dif-

ferential equations. One of them describes the dy-

namics of the tumor, whereas the others charac-



terize the dynamics of certain normal cell popula-

tions. The inuence of the tumor on the normal

cells is taken into account. The normal cell popu-

lations are not permitted to fall below given levels.

The objective is to minimize the tumor at the end

of the treatment. More speci�cally, the following

assumptions are adopted.

1. Both tumor and any of the normal cell pop-

ulations are homogeneous, i.e., their growth

dynamics are the same for all parts of the

population.

2. Both tumor and normal cell populations obey

Gompertzian dynamics.

3. Tumor cells exhibit a negative and inhibiting

e�ect on the normal ones.

4. The cytotoxic drug kills both tumor and nor-

mal cells.

Along the lines of [1,2], this leads to the following

mathematical problem:

minimize L(T ) subject to the constraints

_L = �L ln �L
L
� L 0(c)L;

_Ni = �iNi ln
�i
Ni
� L i(c)Ni � �i(L)Ni;

c = c(t) 2 [0; cmax]; Ni = Ni(t) � N�

i ;

���������
t 2 [0; T ]

L(0) = L0; Ni(0) = N0
i ; i = 1; : : : ; r:

Here L = L(t) is the total number of tumor cells

at time t; the symbol Ni = Ni(t) denotes the size

of the ith normal cell population; the control vari-

able c = c(t) stands for the concentration of the

cytotoxic drug at the tumor site. The constant

�L > 0 represents the greatest size of the tumor;

�i > 0 is the normal size of the ith normal cell

population. We assume that

0 < L0 < �L; 0 < N�

i < N0
i � �i; i = 1; : : : ; r:

The constants � > 0; �i > 0; cmax > 0 are given,

so is the duration of treatment T > 0. The sum-

mand ��i(L)Ni accounts for the negative e�ect

of the tumor on the ith normal cell population.

(I) For any i = 1; : : : ; r, the function �i(�)

is de�ned and continuously di�erentiable on

[0;+1); it strictly increases �0i(L) > 0

8L � 0 and �i(0) = 0.

(The function �i(�) was taken to be linear in [1,2].)

We consider general loss functions L i(�) (i =

0; : : : ; r). In particular, our assumptions take into

account saturation phenomena, as well as that

small drug concentrations may cause a void e�ect.

More precisely, we suppose that

(II) For i = 0; : : : ; r, the function L i(�) is de�ned

and continuous on [0; cmax]. Furthermore,

there exists a threshold cthi 2 [0; cmax) such

that L i(c) = 0 for c 2 [0; cthi ] and the func-

tion L i(�) strictly increases on [cthi ; cmax].

To simplify the formulations, we also assume

that L i(�) = li L 0(�) for i = 1; : : : ; r, where

l1; : : : ; lr > 0 are given constants.

In many cases, the normal cells have a higher rate

of growth than the tumor ones (see e.g. the data

in [1, 3, 4]). In view of this, we assume that

(III) The growth rate of any of the normal cell pop-

ulations under consideration exceeds that of

the tumor, i.e., �i > � 8i = 1; : : : ; r.

It is natural to demand that the constraint

Ni(t) � N�

i must hold at least for a certain time

after the treatment is completed, i.e., Ni(t) �

N�

i 8t > T; t � T , provided c := 0 for t > T . How-

ever, the process is considered only till the time

instant T . In view of this, we relax the above con-

straint via employing the �rst approximation of

Ni(t) in a vicinity of T and express this constraint

in the form Ni(t) � Ni(T ) + (t � T )N 0

i(T + 0) �

N�

i 8t � T; t > T or, in brief,

N 0

i(T + 0) � 0 whenever Ni(T ) = N�

i : (1)

Here N 0

i(T + 0) = �iN
�

i ln �i
N
�

i

� �i[L(T )]N
�

i . So

the above inequality shapes into

Nst
i [L(T )] := �ie

�

�i[L(T )]

�i � N�

i : (2)

Here Nst
i [L] is obviously the steady size of the ith

normal cell population, provided the tumor keeps

the size L (and c := 0 for t > T ). So the condition

(2) means that the size of that population will not

fall below the admitted level N�

i after the treat-

ment, provided the tumor does not grow. In the

case where the normal cell populations grow faster

than the tumor, this condition can be viewed as

a rough criterion for acceptability of the treat-

ment result, irrespective of whether the relation

Ni(T ) = N�

i holds or not. In view of this, we add

(2) to the problem constraints.

In some cases, no treatment of a �xed duration T

can reduce the tumor to the "undangerous" size

in the sense that (2) holds for i = 1; : : : ; r. A

criterion for the goal (2) to be attainable will be

o�ered by Lemma 4.

The last assumption to follow is not of principle.

It excludes cases that are "almost never" encoun-

tered and is adopted to simplify the proofs.

(IV) For any i; j = 1; : : : ; r; i 6= j, no root L of the

equation

1

li

�
�i ln

�i

N�

i

� �i(L)

�
=

1

lj

"
�j ln

�j

N�

j

� �j(L)

#

satis�es some of the equations

�i(L)
def
==

1

li

�
�i ln

�i

N�

i

� �i(L)

�
= � ln

�L

L
;



�i(L) = umax; l�1i �0i(L) = l�1j �0j(L):

Whenever this property is violated, it can be evi-

dently ensured by a small perturbation of the pa-

rameters (including the functions �k(�)).

The change of the variables x := ln �L
L
; yi :=

ln �i
Ni
; u := L 0(c) shapes the problem into

maximize x(T ) (3)

subject to the constraints

_x = ��x+ u

_yi = ��iyi + liu+ �i(x)

���� 8t 2 [0; T ]; (4)

0 � u = u(t) � umax; yi = yi(t) � gi 8t; (5)

x(0) = x0; yi(0) = y0i ; �i [x(T )] � �igi: (6)

Here i = 1; : : : ; r and due to the above as-

sumptions, �i(x) := �i(�Le
�x) > 0; umax :=

L 0(cmax) > 0; gi := ln �i
N
�

i

> 0; x0 := ln �L
L0

>

0; 0 � y0i := ln �i
N0
i

< gi; �
0

i(x) < 0 8x; i = 1; : : : ; r.

To make the statement of the problem more pre-

cise, we de�ne a process to be a tuple

[x(�); y1(�); : : : ; yr(�); u(�)] (7)

of the functions x(�); y1(�); : : : ; yr(�); u(�) : [0; T ]!

R with x(�); y1(�); : : : ; yr(�) absolutely continuous

and u(�) 2 L
1
[0; T ] such that (4)|(6) hold. The

problem is to maximize x(T ) over all the pro-

cesses. For consistency, the variable u will be

called the drug concentration.

De�nition 1 A process (7) is said to conform to

the strategy of intensive chemotherapy if the cyto-

toxic drug is constantly delivered at the rate that

is maximal under the constraints (5), i.e., either

u(t) = umax or yi(t) = gi with some i = 1; : : : ; r

for almost all t.

Now we are in a position to present the main re-

sults of the paper.

Theorem 1 One and only one of the following two

statements holds:

(i) The optimal process exists, is unique,

and conforms to the strategy of intensive

chemotherapy.

(ii) Either the normal cell populations under con-

sideration cannot be kept above the pre-

scribed levels on the entire time interval

[0; T ], no matter what drug administration

be applied, or no chemotherapy regimen can

reduce the tumor to the "undangerous" size

in the sense that (2) holds for i = 1; : : : ; r.

By Theorem 1, the optimal chemotherapy regi-

men is to deliver the drug at the rate that is

maximal under the constraints (5). The follow-

ing Lemma 1 will show that this directive prede-

termines the drug administration and the process

uniquely. Note also that in the case (ii), there ev-

idently is no process. Thus the strategy of inten-

sive chemotherapy either gives rise to an optimal

process or fails to implement a process at all with

the second event occurring if and only if the goals

of the treatment are not attainable (in the sense

that (ii) holds).

Lemma 1 There exists no more than one pro-

cess that conforms to the strategy of intensive

chemotherapy.

Moreover, this process (which equals the optimal

one) can be implemented by a feedback

u(t) = U [x(t); y1(t); : : : ; yr(t)] : (8)

To specify U(�), we put for ! = (x; y1; : : : ; yr) 2

R r+1 and j = 1; : : : ; r,

bvj(!) := l�1j [�jyj � �j(x)] ;

vj(x) := l�1j [�jgj � �j(x)] ;
(9)

I+(!) := fi = 1; : : : ; r : yi > gig ;

I(!) := fi = 1; : : : ; r : yi = gig ;
(10)

I 0(!) :=
n
i 2 I(!) : vi(x) = v(!)

:= mink2I(!) vk(x)
o

if I(!) 6= ;

and I 0(!) := ; otherwise:

(11)

Lemma 2 Suppose that I+(!) = ; and I(!) 6= ;.

Then I 0(!) 6= ; and

max
i2I0(!)

l�1i [��x+ v(!)] �0i(x) (12)

is attained at a single index i = i(!).

The function U(�) in (8) is given by

U(!) :=

8>>>>>>>>>>><>>>>>>>>>>>:

min
i2I+(!)

bvi(!) if I+(!) 6= ;;

umax if

8><>:
I+(!) = ; and either

I(!) = ; or I(!) 6= ;

and vi(!)(x) � umax;

vi(!)(x) if

(
I+(!) = ;; I(!) 6= ;;

and vi(!)(x) < umax:

De�nition 2 A tuple of functions (7) de�ned on an

interval [0; � ] is called an outcome of the feedback

(8) if it satis�es (4), (8) (for almost all t 2 [0; � ]),



and (6) except for the last relation.

Though the constraints from (5) are not required

to hold, some of them are necessarily satis�ed.

Lemma 3 For any outcome of the feedback (8),

u(t) � umax for almost all t and yi(t) � gi for all

t and i = 1; : : : ; r.

At the same time, the drug concentration u may

formally take meaningless negative values in gen-

eral. From a nonformal point of view, this means

that the feedback rule (8) fails to implement a

process (on the time interval [0; T ]). As the next

lemma will show, the event in question signals

that the statement (ii) from Theorem 1 holds.

Moreover, it suÆces to subject the outcome of

the feedback (8) to a simple analysis to recognize

which of the cases (i) and (ii) from Theorem 1

takes place.

Lemma 4 The initial data x(0) = x0; yi(0) = y0i
gives rise to only one outcome of the feedback (8).

If this feedback rule forces the drug concentra-

tion u to take negative values at a time � < T

for that outcome, the statement (ii) from Theo-

rem 1 is true. Otherwise, the outcome in question

can be de�ned on the entire time interval [0; T ].

Whenever it satis�es (6), the statement (i) from

Theorem 1 holds and the outcome of the feedback

(8) equals the optimal process. Otherwise, the

statement (ii) from Theorem 1 is true.

To complete the mathematical analysis, we con-

sider in more details the structure of an outcome

of the feedback (8).

Lemma 5 Consider an outcome of the feedback

(8). The time interval [0; � ] can be partitioned

into a �nite number of subintervals 0 = �0 <

�1 < � � � < �p = � such that for any of them

[�k; �k+1] (k = 0; : : : ; p � 1) one and only one of

the following two statements holds:

(i) The drug is delivered at the "absolutely"

maximal rate on this subinterval: u(t) =

umax for almost all t 2 [�k; �k+1];

(ii) Some and only one of the normal cell popula-

tions stays at its lowest admitted level on this

subinterval: yi(t) = gi for all t 2 [�k; �k+1]

and some i = ik. All the other such pop-

ulations are kept strictly above these levels

within this subinterval except for, maybe, its

endpoints yj(t) < gj for t 2 (�k; �k+1); j 6= ik.

The case (i) occurs for k = 0. In the case (ii),

u(t) = vik [x(t)] for t 2 [�k ; �k+1] ; (13)

where vi(x) is de�ned in (9).

Further, we consider a partition from Lemma 5

with p minimal. The possible ways of alternation

of the subintervals [�k; �k+1] are shown in Fig. 1.

(i) yj(t) = gj

u = umax (ii)�

(a)
ym(t) = gm yj(t) = gj

(ii) (ii)�

(b)

ym(t) = gm (i)

(ii) u = umax�

(c)

0

(i)

u = umax

(i)

u = umax T
ym(t) = gm

(ii) T

Fig. 1.

Lemma 6 The subintervals alternate in the ways

(a) or (b) from Fig. 1 when the size of one of

the normal cell populations yj attains its low-

est admissible level and applying the drug at

the maximal rate umax for t > �; t � � vio-

lates the toxicity constraints y�(t) � g� 8�. 1

Here the index j is given by j = i(!), where

! := [x(�); y1(�); : : : ; yr(�)] and i(!) is de�ned

in Lemma 2. The subintervals alternate in the

way (c) from Fig. 1 when the drug concentration

u reaches its upper bound umax and applying the

drug at the maximal rate umax for t > �; t � �

does not violate the constraints y� � g� 8�.

In connection with the last requirement, note

that the constraint ym(t) � gm is not violated.

The union of the maximal number of successively

gearing (with endpoints) subintervals [�k; �k+1] on

which (ii) of Lemma 5 holds is called a singular

zone. The optimal process may contain several

such zones separated by subintervals where (i) of

Lemma 5 is true. The number of such zones does

not exceed the number of the normal cell popu-

lations under consideration, as easily follows from

the concluding lemma.

Lemma 7 Along the optimal process, the tumor

either evolves monotonically or �rst (strictly) de-

creases and then (nonstrictly) increases. Revers-

ing the direction may take place only at a mo-

ment � when the events described in (a) or (b)

from Fig. 1 occur, with the entire interval [�; T ]

lying in a singular zone. If the tumor increases

1The last requirement is true whenever umax > v� [x(�)]

for an index � such that y�(�) = g� . (Note that for any

such index, 0 � _y�(� � 0) = ���g� + l�u(� � 0) + �� [x(�)]

and so v� [x(�)] � u(� � 0) � umax.)



during the therapy, there exists no more than one

singular zone. This zone spreads till the end of

the treatment T . If a switch of regimens depicted

in (c) from Fig. 1 takes place at a moment � , this

moment belongs to the time interval where the tu-

mor decreases and the mth normal cell population

will subsequently never reach its lowest admissible

level within this interval.

3. DISCUSSION

The most of our simplifying assumptions are or-

dinary and can be found in many papers. Among

these assumptions, there is that only one drug

is employed. We also supposed that the drug

spreads within the body instantaneously with no

decay and so its concentration at the tumor site is

proportional to the infusion rate. Furthermore, we

assumed that the growth rates of the normal cells

exceed that of the tumor. To our mind, more com-

plex models (which, for example, contain phar-

macokinetic equations giving a more precise rela-

tionship between the drug concentration and the

infusion rate, or does not stipulate any relation-

ship between the growth rates of the normal and

tumor cells, respectively) should be certainly in-

vestigated. We consider this as a topic of further

research. Another such a topic concerns appli-

cation of the general theory developed in [12] to

similar models with uncertainties.

Insertion of the constraint (2) into the problem

statement is in fact related to our analysis of al-

ternative settings. If this constraint is dropped, it

can be shown that the optimal process either co-

incides with that from Theorem 1 or ends in a po-

sition where the toxicity constraints are never sat-

is�ed after the treatment, i.e., for t > T (provided

c := 0 for t > T ). (In the second case, the drug is

not applied during a certain concluding phase of

the therapy, i.e., for T � �t � t � T .) The sec-

ond solution seems to be scarcely acceptable. The

matters do not change in the essence if the toxicity

that occurs just after the treatment is constrained

explicitly by imposing the requirement (1). The

point is that the above unacceptable solution can

(at least, in many cases) be approximated by pro-

cesses for which the constraint (1) is inactive since

Ni(T ) 6= N�

i 8i for them. As a result, this so-

lution remains optimal, maybe, not exactly but

at least asymptotically. This e�ect can be dis-

carded by replacing (1) with a more rough con-

straint, e.g., N 0

i(T + 0) + �i
�
Ni(T )�N�

i

�2
� 0,

where �i > 0 are penalty coeÆcients. Another

way is to require that the toxicity constraints be

satis�ed for a given time � after the treatment

is completed. All these issues await further re-

search. However, we conjecture that the corre-

sponding solutions may have the disadvantage of

depending (at least, in some cases) explicitly on

the parameters �i or � .
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