Proceedings of the 8th IEEE Mediterranean Conference
on Control and Automation (MED 2000)
Rio, Patras, GREECE 17-19 July, 2

Demonstration of Self-learning Fuzzy Logic Controller Performance
in the Matlab+Simulink™' Environment

Z. Kovaci¢, Member, IEEE, S. Bogdan, Member, IEEE, T. Reichenbach

University of Zagreb, Faculty of Electrical Engineering and Computing
Unska 3, 10000 Zagreb, CROATIA
e-mail: zdenko.kovacic@fer.hr, url: http//www.rasip.fer.hr/flrcg

Abstract In this paper, we demonstrate a performance of a PD type self-learning fuzzy logic
controller (SLFLC), which has been implemented as a function block for the very popular
Matlab+Simulink environment. The SLFLC described in detail in [1] utilizes a reference model
and a sensitivity model for learning of SLFLC parameters. The effectiveness of the SLFLC
function block has been demonstrated on the model of a closed-loop engine speed control
system provided in Matlab for demo purposes. The results show very clearly how the SLFLC
brings improved performance into the selected control system example.

1. INTRODUCTION

The usage of powerful software packages for modeling,
simulation and optimization of control systems has
become a commonplace activity. Regardless whether it
is a word about standard control solutions or about
starting new research, new control jobs usually begin
with identification of the control problem and
derivation of acceptable mathematical model. Then
follows consideration of potentially efficacious
solutions, and providing that all previous steps have
been made successfully, follows final validation by
intensive simulations and experimental work.

One of advanced features of modern simulation tools is
that they allow users to generate a real-time executable
code directly from the simulation model. This code can
be further downloaded into dedicated hardware
systems. This enables fast validation and shortens
product development time. In addition, by introducing
new control solutions in the form of ready-to-use
function blocks prepared for popular software packages
such as the Matlab+Simulink, they can be brought to a
wide academic and industrial community in a very
convincing and representative way.

A Matlab+Simulink function block presented in this
paper is a PD type self-organizing fuzzy logic
controller (SLFLC) whose learning algorithm utilizes a
sensitivity model and a 2nd-order reference model. The

theoretical background of the SLFLC has been
described in detail in [1-5] where it has been effectively
used for control of different static and astatic nonlinear
systems.

The paper describes the SLFLC structure and basic
expressions necessary for understanding the learning
algorithm. The usage of the sensitivity model presumes
a differentiable character of the fuzzy controller input-
output mapping function, which becomes a feasible
goal within the classes of fuzzy controllers available in
the Matlab Fuzzy Logic Toolbox [6]. The emphasis in
the paper has been put on the description of function
block parameters and the way that it is used.

The SLFLC function block has been tested on the
model of a nonlinear engine speed control system that
is contained in the Matlab library of models for demo
purposes. The results obtained have demonstrated the
simplicity of using and high ability of the SLFLC
function block to raise the overall system performance.

2. DESCRIPTION OF THE CONTROL PROBLEM

The SLFLC function block is intended to control an
unknown time-varying nonlinear static high-order
SISO control process described as follows:

0= A0 €y (0.t)41 M)

where v(t) denotes a measurement noise.

The basic structure of the SLFLC described in [1]
contains a nonintegral (PD-type) fuzzy controller, a
feedforward control element and a P controller (Fig.1):

u(k)=Cle(k),dy(k), A1+ &k, -u, (k) + (1-E)k e(k) = 2)
—ZA ¢/lek),dy)]+ &k, -u, (k) + (1= &)k e(k)

where: e(k)=u,(k)-y(k) - system error, dy(k)=y(k)-y(k-
1) - change of system output, A; - centroid of the fuzzy
controller output subset activated by the i-th fuzzy rule,
ks - feedforward gain coefficient, k, - P controller gain,
> - type of system (1- static, 0 - astatic), 8 - fuzzy
controller parameter vector and N; - fuzzy basis
function describing the degree of contribution of the i-
th fuzzy rule [1]:

wle@ w2 lw) _ wl@aw) G
ZZ#"’ [e(k)]- 5, [y ()] Zu le(k). dv(k)]
where: p - number of fuzzy subsets of e(k), q - number

of fuzzy subsets of dy(k), r = pq - number of rules, y; -
membership function of a fuzzy implication.

9,lelk).dy(k)]=

Due to its PD character, such a controller will not
compensate a steady-state error in the presence of
external disturbance, which has not been present during
learning. In order to handle this problem, an integral
term u;(k) may be added, as elaborated in [7].

Regarding a determination of desired closed-loop
dynamic behavior, a second-order reference model is
used:

YarO=ay v a = ray sy =2)+by g ttp(k=1)+by o 1p(k=2)

(4)

The synthesis of the SLFLC described by (2) has a goal
to find a set of control rules which would keep a
reference model tracking error as small as possible:

ey (k) =y, (k) = y(k))

LEARNING
ALGORITHM

SLFLC

TYPE OF
SYSTEM
I SELECTORI >
’

PROCESS —

Fig. 1. The structure of the SLFLC.

3. SYNTHESIS OF A SENSITIVITY MODEL

A sensitivity model of a fuzzy controlled system can be
built only if fuzzification and defuzzification
operations lead to the differentiable form of a fuzzy
input-output mapping function. In this sense, the
inference engine of the SLFLC will utilize a product
operator and input membership functions of the
differentiable gaussian form:

C(x-¢f)? _(x=e)

u = e 2(»1-;’)2 dy 20w ¥

(6)

where ¢/ is a centroid of a membership function pij,
and w; is a width of a membership function p;.

A total differential of the system output y(k) w.r.t.
small variations of controller parameters can be
determined as:

- $28 0520 @)

= zrl/u A%, +577/\y Ak,
in1

where > is a boolean type parameter (>=1 denotes a
static type of system). Sensitivity functions related to
the parameters of the fuzzy controller and feedforward
term, respectively, have a form

_oy(k) _ oy(k) dulk) ®)
M (k)_évT‘._afl(0 oL
©)
2825)

It may be seen that transient behavior of all sensitivity
functions depends on the dynamic characteristics of the
control process, G,=My(k)/Mu(k). Since the exact model
of the control process (1) is unknown, among many
possible process approximations, a transfer function
proportional to the reference model (4), Gyn(z) =
KGn(z), could be assumed for a reasonable process
approximation.

It must be noted that parameters of the fuzzy controller
and the feedforward term do not depend on each other.
Therefore, a sensitivity of the controller output to the
all SLFLC parameter variations has the following form

Ju(k) _ 0 = 1o
ok, _W{kf u, ())=, (k)

(11)
a;’f,‘) :a%{r[e(k),dy(k),l]}

Insertion of (8)-(11) into (7) yields
Avlk)= ZG{%{ Tle(k). dy(k), z]}} AL +EG,u, (A, (12)

4. SYNTHESIS OF THE LEARNING ALGORITHM

Equation (12) can be used for assessment of controller
parameter variations that would provide a given change
of the system output)y(k). In the model reference
control) y(k) coincides with a tracking error ep(k).

In the SLFLC function block, system parameter
variations will be compensated by adaptation of the
centroids of the fuzzy output sets A; and the
feedforward gain coefficient k; by using the learning
mechanism. Referring from (2) and (3), it follows:

2]))) A0) 0] (13)

By choosing the reference model (4) for the process
approximation Gy, and referring from (13), the
sensitivity functions (9) have a form (for a simplicity,
N;[e(k), dy(k)] is replaced by N;(k)):

un (k):aMl'rlA, (k_l)"'aMz'nA, (k_2)+ (14)
+bM1 '¢A,. (k_1)+le '¢A, (k—Z)
nlgf(k):aMl'nlgf(k_l)"'aMz'rlk/(k_z)"’ (15)

+by '“r(k_1)+bM1 u,(k-2)

Let us make the following assumptions: the control
process is inherently stable, the boundary wvalues
(limits) of the system output y(k) and the tracking error
em(k) are known, the reference input u,(k) is imposed
as a sequence of alternating step changes, that must be
persistent during the learning process. In this case, the
learning algorithm has a form

(16)

ey (k)- Y.ny A" —ny (k)- Ak}
AA* (k) = i=Liz)
) 0

where 6 denotes a current learning iteration (i.e. a
current run of the system). The meaning of this is that
centroid A; are changed only once during each run of
the system. A new run of the system starts with a new
change of u (k).

Sensitivity functions (15) are calculated in each control
interval, while centroid modifications are executed only
once during a learning iteration. This is done in the
moment when influence of a particular controller
parameter is the highest, and that is in the maximum of
the corresponding sensitivity function.

A modification of the feedforward gain coefficient k¢ is
always performed after modification of all centroid
values in the current (6-th) learning interval is
completed:

o5 (k)= Sn% (k) AdF
M= "

During a learning interval, it may happen that some
sensitivity function reaches a maximum value lower
than a predetermined threshold value. This means that
the corresponding centroid has a negligible influence
on the process behavior, and so remains unchanged.

5. THE SLFLC FUNCTION BLOCK

The SLFLC function block is written in C++ language
as a CMEX S-function that is stored in final form as the
slflc.dll file. The block has a mask in the form of
standard dialog box (Fig. 2) which enables user to set
several parameters that influence block operation.

These parameters are:

FISMATRIX (type: <name>)

User defines a name of the fismatrix. The fismatrix has
a form of a standard Fuzzy Logic Toolbox v.2.0
fismatrix.

Number of Iterations (type: <real>)
User defines a maximum number of learning iterations.
Value = 0 means that learning is disabled.

Block Parameters: SLFLC

Fig. 2. Mask of the SLFLC function block for Matlab.

K gain value (type: <real>)

User defines a gain determining the relation between
the reference model and the process approximation.
Larger K, will make learning slower, but smoother and
more stable.

Allowed change of centroid (type: <real>=lim)
By defining the value of lim according to the following
law:

o = e(limA‘eM‘) (18)

user defines constraints on the centroid changes in one
learning iteration where " denotes the value which
divides calculated changes of the centroid. Larger "

makes learning slower. This parameter is partly
supplementary to the parameter K.

User defines the threshold value of the TAE criterion
i+

E=Yld (19)

where 1 denotes start of learning instant, while i+1
denotes the end of learning instant. This criterion is
recalculated in each learning iteration.

Controlled system type (Type: <options dialog>)

User may choose between two options: (i) static or (ii)
astatic. This reflects the interpretation of the preceding
parameter (Kyor K).

Save on disk (Type: <check-box>)

By checking out this option, user enables creation of
files on disk which store particularly interesting results
of simulation for subsequent analysis.

4 ,
@ »t reference ol
set point - model output
200*pi/3

»
»

o[>,

scalinge
signal e

H
200%pi/3 +

Mux
. »— IHEJ-’
system

scaling dy

E

output y

|

(>
SLFLC

model

iy

D
SLFLC
output

5

Fig. 3. Structure of the super-block SLFLC.

et

Speed Set

Desired rpm
Throttle Ang.

\4

A\4

Throttle Ang.

\ 4

point

Engine Speed, N -
Controller

s
Throttle & Manifold

Ive timi crank speed
valve timing (rad/sec)
——@ ;CD
v
Ea] Engine
mass(k) P Air Charge rad/s Speed
Torque —P»| Teng to rpm (rpm)

A 4

1 ,—} mass (k+1) N N %
Speed set >N Mass Airflow Rate trigger Tload

Combustion

Vehicle
Dynamics

Compression

drag torque

\4

il

throttle deg (purple)
load torque Nm
(yellow)

Fig. 4. The Matlab simulation scheme of the closed-loop engine speed control
(directory: \matlab\toolbox\simulink\simdemos\engine.mdl).

Feedforward gain/P controller gain (type: <real>)
Depending on the type of controlled system (static or
astatic) user defines feedforward gain Ky or
proportional gain K, respectively. If K=0, then K will
change according to the learning law (17) and
contribute to the total output of the SLFLC. If K,=0,
then only fuzzy logic control is active.

Minimal sensitivity value (Type: <real>)
User defines a threshold value of sensitivity functions
that will still contribute to changes of centroids.

The internal structure of the SLFLC super-block is
shown in Fig 3. It may be seen that the super-block
contains besides the SLFLC function block also blocks

+
Desired _
pm pm

rad/s

Integral Gain

| integrator input
enable integration

controller output
prevent windup

| Kp

= Throttle Ang.

output3

F
¥

Discrete-Time
Integrator

Fig. 5. The block of a hybrid controller (PI+SLFLC).

for scaling of FLC inputs and a reference model block.

The reference model is a second-order system that has
been implemented according to the reference model
equation (4) with the unity gain. The mask of the
reference model block is made in a way that user can
define the time of first maximum t, the overshoot in
response F, and the value of control interval. After
ZOH discretization, resulting coefficients of the
reference model equation (4) are available for user’s
convenience at the reference model block output.

6. SIMULATION RESULTS

The SLFLC function block has been tested in the
closed-loop engine speed control system available as a
demo example in the Simulink 2 (directory denoted in
Fig. 4). Control of an engine speed is based on the
control of a throttle-valve opening. The simulation
scheme of the engine speed control system is shown in
Fig. 4. It is not intention of this paper to discuss the
properties of the model, but only to mention that the
model is nonlinear and originally controlled only by a
linear PI controller. A block of a hybrid engine speed
controller is shown in Fig. 5. It may be seen that the
SLFLC has been added in parallel to the existing PI
controller. This means that the SLFLC acts as an
adaptation mechanism, which should improve the
overall system performance.

Five linearly distributed gaussian membership
functions have been determined for both SLFLC inputs
e(k) and dy(k) (LNE, SNE, ZE, SPE, LPE and LNDY,
SNDY, ZDY, SPDY, LPDY, respectively).
Simulations has been performed with the simulated
change of the reference input)u=+1000 rpm. Fuzzy
input scaling coefficients have been estimated at
k~1/100, k4,=1/300. Minimal value of the sensitivity
function has been set to 0.05, a limit for an allowed
change of centroid has been set to the unity value,
while the gain coefficient k; has been set to 3.0. The
proportional gain k,, has been set to zero, because the PI

controller is already in the loop. Desired performance
indices of the reference model have been as follows:
F.=0.5% , t,=0.5s, (sampling interval T; is 0.01 s).

Figs. 6 and 7 show the reference input, system output,
and reference model responses obtained after three and
after thirteen iterations of learning, respectively. It may
be seen that after completion of learning the system
follows the reference model much better than with the
PI controller itself. The original system with a PI
controller reaches the steady state after four seconds,
while the hybrid fuzzy controller enforces system to
reach the steady state in less than a second. This proves
that addition of the SLFLC in parallel to the PI
controller has contributed to better quality of the
system response. Figs. 8 and 9 show the hybrid
controller outputs in the beginning (only PI is active)
and the end of learning (both controllers are active),
respectively. The hybrid fuzzy controller output has a
very acceptable form, which clearly indicates that the
target system is very nonlinear.

3000
2800
2600

g 2400 F

2200

2000

re;erence del
— reference model
1800 —— system output

0 5 10 15 20 25 30
time [s]

Fig. 6. Start of learning: the reference input, system
output and reference model output responses of the
engine speed control system.

degrees [0]

o

0 5 10 15 20 25 30
time [s]

Fig.7. End of learning: the reference input, system
output and reference model output responses of the
engine speed control system.

3000 |
2800
2600
£

& 2400

2200

2000 (-

reference
— reference model
1800 —— system output

130 135 140 145 150 155 160
time [s]

Fig.8. Start of learning: the hybrid controller output
responses.

degrees [0]

Q
130 135 140 145 150 155 160
time [s]

Fig.9. End of learning: the hybrid controller output
responses.

7. CONCLUSIONS

The usage of simulation software packages for
modeling, simulation and optimization of control
systems has become a part of regular engineering
practice both in the academic and industrial
community. New features such as possibility to
generate a real-time executable code directly from the
simulation model and then download it into the target
control hardware enable shorter development times and
faster validation of new control solutions.

The paper describes a function block created for the
Matlab+Simulink environment, which contains a PD
type self-learning fuzzy logic controller (SLFLC)
whose learning law is based on the usage of a reference
model and a sensitivity model built with respect to the
fuzzy controller parameters. The concept of the SLFLC
allows control of unknown inherently stable static and
astatic nonlinear systems if the desired closed-loop
behavior may be represented with a linear second-order
reference model. The effectiveness of the SLFLC has
been demonstrated on the nonlinear simulation model
of the engine speed control system, which may be
found in the library of the Matlab+Simulink software
package models for demo purposes. In the selected
example of the control system the SLFLC has been
added in parallel to the existing PI engine speed
controller and the results obtained have confirmed a
stable convergence of learning and significant
improvement of the overall closed-loop system
performance.

The SLFLC function block has been also successfully
tested on other Matlab+Simulink models such as the
model of the PMSM angular speed control system.
More about the results obtained in these experiments
can be found at the web site
http://www.rasip.fer.hr/flrcg] The author’s have also
provided that the SLFLC function control block
described in this paper is downloadable from the same
web site for public testing in various control projects.

8. REFERENCES

[1] Z. Kovaci¢, M. Balenovi¢, S. Bogdan, “Sensitivity-Based
Self-Learning Fuzzy Logic Control for a Servo System”,
IEEE Control Systems Magazine, Vol 18, No. 3, pp. 41-51,
1998.

[2] Z. Kovaci¢, S. Bogdan, M. Balenovi¢, “A Model
Reference & Sensitivity Model-based Self-learning Fuzzy
Logic Controller as a Solution for Control of Nonlinear Servo
Systems”, The IEEE Transactions on Energy Conversion,
Vol. 13, No.4, pp. - , December 1999.

[3] Z. Kovaci¢, S. Bogdan, M. Balenovi¢, “A Sensitivity-
Based Self-Learning Fuzzy Logic Controller as a Solution for
a Backlash Problem in a Servo System”, Proceedings of The
1997 IEEE Conference IEMDC'97, pp. TC2-11.1 - TC2-11.3,
Milwaukee, 1997.

[4] Z. Kovaci¢, M. Balenovi¢, S. Bogdan, “An Experimental
Verification of a Model Reference and Sensitivity Model-
based Self-learning Fuzzy Logic Controller Applied to a
Nonlinear Servosystem”, Proc. of the 12th IEEE ISIC, pp.
263-268, Istanbul, 1997.

[5] S.Bogdan, Z. Kovaci¢, “On the Design of Self-Learning
Fuzzy Controllers for Nonlinear Control Systems by Using a
Reference Model and a Sensitivity Model”, Proceedings of
the 4th IEEE Mediterranean Symposium on Control &
Automation, pp. 799-804, Chania (Crete), 1996.

[6] N. Gulley, J.S.R. Jang, "Fuzzy Logic Toolbox User's
Guide", Math Works Inc., 1995.

[71 Z. Kovaci¢, S. Bogdan, M. Balenovi¢, “Robustness
Improvement of a Model Reference & Sensitivity
Model-based Self-learning Fuzzy Logic Controller”,
Proceedings of the 1998. IEEE Conference on Control
Applications, pp. 643-647, Trieste, 1998.

http://www.rasip.fer.hr/flrcg

	Demonstration of Self-learning Fuzzy Logic Controller Performance
	Abstract In this paper, we demonstrate a performance of a PD type self˚learning fuzzy logic controller (SLFLC), which has been implemented as a function block for the very popular Matlab+Simulink environment. The SLFLC described in detail in [1] utilizes

	cc: Proceedings of the 8th IEEE Mediterranean Conference
on Control and Automation (MED 2000)
Rio, Patras, GREECE 17-19 July, 2000

