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Abstract. An augmented and minimal realization state space models are proposed for direct
implementation of the discrete-time linear-quadratic regulator (DLQR) with measured not

all the state variables but only the output of the plant. Both the models are related by

means of original transformation with a rectangular matrix. Using this transformation it is
shown that the resulting closet-loop (CL) system with dynamic output feedback regulator

(DOFR) has the same stable roots of its characteristic equation as the CL system with state

feedback and DLQR; the additional zero roots of the �rst CL system generated by DOFR

do not change its properties, essentially. It is also shown that the CL system with DOFR

realizes the optimal control with feedback from an augmented state, resulting from solving

an appropriate DLQR problem.
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1. INTRODUCTION

The linear quadratic regulator (LQR) both in

continuous- and discrete-time versions in now a clas-

sical problem being the subject of many papers and
books. Remind here only two early papers of Kalman

[7] and Letov [8] and several contemporary books [1],

[3], [4]. The latter book, though it has an introductory
character, but it contains a compact recapitulation of

the state of art concerning this problem.

The solution of discrete-time linear quadratic regula-
tor (DLQR) problem takes the form of state feedback

control law. To implement such a control all the state

variables must be measured, which usually is not pos-
sible. When only the output of the plant is measured,

the state control law may be utilized if an appropriate

state observer is included to the system [9].

The theory of observers is well elaborated. One pos-

sibility is a deterministic approach in which the ob-
server is based on the model of the plant and some

appropriate feedback from measurements. It is known

that such an observer has the property that it does
not change the roots of the characteristic equation of

the closed-loop (CL) system with state feedback. The

additional roots introduced by the observer may be

freely prescribed [9]. However, it may be shown that
such an observer is non optimal since its non zero ini-

tial conditions usually increase the optimal value of

the performance index used for derivation of the state
feedback law.

In the present paper the model of the regulator-
observer results directly from solving an appropri-

ate DLQR problem in which an essential role plays

the original state determination. The obtained so-
lution determines the dynamic output feedback reg-

ulator (DOFR) usable when only the plant output

is measured. It is shown that the dynamics of the
regulator-observer completes the roots of the charac-

teristic equation of the closed-loop (CL) system only

by additional zero roots. The remaining roots are the
same as those of the CL system with state feedback

control law resulting from DLQR problem. It is also

shown that the derived from the solution of DLQR
problem the dead-beat [2] observer is optimal, because

it does not increase the value of the performance index

of the CL system with state feedback. In the compari-
son of the properties of both the systems an important

role plays the original state transformation based on

the subspaces of the system modes, introduced in the

paper.

The contribution of the paper is partially in the state

proposals which together with DLQR technique makes



it possible to derive the DOFR containing the optimal

dead-beat observer and partially in showing, by means

of original state transormation, that the CL system
with DOFR has the same stable roots of its charac-

teristic equation as the CL system with state feedback

LQ regulateor.

2. ANAUGMENTED STATE SPACEMODEL

Consider the discrete-time plant described by the

transfer function (TF)

G(z)=
Y (z)

U(z)
=
bn�lz

l+ bn�l+1z
l�1 + :::+ bn

zn + a1zn�1 + :::+ an
(1)

where l < n; Y (z) = Z[y(t)], U(z) = Z[u(t)], Z is the

symbol of the Z-transform; y(t) and u(t) are the out-
put and input signals and t = 0; 1; 2::: is the discrete

time. Assume that the numerator and denominator of

(1) are relatively prime polynomials. Determine the
state variables in the form

x̂1(t) = y(t+ n�m� 1);
x̂2(t) = y(t+ n�m� 2); :::;
x̂n�m(t) = y(t);
x̂n�m+1(t) = y(t� 1);
x̂n�m+2(t) = y(t� 2); :::;
x̂n(t) = y(t�m);
x̂n+1(t) = u(t� 1);
x̂n+2(t) = u(t� 2); :::;
x̂n+m(t) = u(t�m)

(2)

wherem is appropriately chosen so that l �m � n�1.

Replacing t in (2) by t+ 1, using notation (2) as well
as resulting from (1) equation

y(t+n�m)+:::+an�my(t)+anm+1y(t� 1)+
:::+any(t�m)=

=bn�lu(t+l �m)+bn�l+1u(t+l�m�1)+
:::+blu(t�m)

(3)

we obtain the state space model, n-dimensional, in the

form

x̂(t+ 1) = Âx̂(t) + B̂u(t); y(t) = Ĉx̂(t) (4)

where x̂(t) = [x̂1(t); x̂2(t); :::; x̂n+m(t)]T is (n +
m){dimensional augmented state. State equations (4)

for particular components x̂i take the form

x̂1(t+ 1)=�a1x̂1(t)�a2x̂2(t)�:::�anx̂n(t)+
+bn�m+1x̂n+1(t)+:::+bnx̂n+m(t)+bn�mu(t)

x̂i(t+1)= x̂i�1(t); for 2 � i � n; i 6= n+1
x̂i(t+1)=u(t); for i=n+1

(5)

The �rst equation of (5) results from accounting (2) in

(3); the remaining equations of (5) result directly from

determination (2). The matrices Â; B̂ result from (5);
the elements of the row vector Ĉ are determined by

Ĉn�m = 1 and Ĉi = 0 for i 6= n �m (6)

Note that appearing in (5) bn�j = 0 for l < j � m

Taking into account the form of the matrix Â resulting
from (5) one can show that

det[zÎ � Â] = z
m det[z �I � �A] (7)

where �A is the n� n matrix resulting from Â by can-

celling the last m rows and last m columns, while Î

and �I are unit matrices (n+m)� (n +m) and n� n

dimensional, respectively; �A is the companion matrix

related to the denominator polynomial of (1).

Corollary 1. The matrix Â has n eigenvalues cover-

ing with the poles of the TF (1) and additionally one

m-multiple zero eigenvalue.

Thus, the TF describing the model (4) has the same

factor zm in numerator and denominator. Therefore

the state space model (4) is neither controllable nor

observable, but for m = n � 1 it is reconstuctable.

The reconstructability results directly from determi-

nation (2) of the state variables.

3. THE SUBSPACE OF m-MULTIPLE ZERO-

MODE

In literature the notion of the mode has some dif-

ferent interpretations. Here by the notion of �i-mode

for the discrete-time system we understand the func-
tion related with eigenvalue �i and appearing in the

fundamental (or transition) matrix Ât. For example

the mode related with a single real eigenvalue �i is

determined by �ti. By the subspace of �i-mode we

understand the appropriate subspace of initial states

x̂0 which excites the �i-mode only. For example for

the single real �i the subspace of �i-mode is the one

dimensional subspace spanned on the eigenvector re-

lated with �i. The latter statement may be justi�ed
transforming the model (4) to the canonical form by

means of linear transformation de�ned by the matrix

T composed of eigenvectors of Â [10].

Our model (4) has m-multiple zero-mode; further on,

the subspace for this mode will be determined. It is

known that in this case the matrix � of the canonical

form has in the last m rows and columns the following

m�m dimensional Jordan block

J =

2
66664

0; 1 0; :::; 0

0; 0 1; :::; 0

::: ::: ::: ::: :::

0; 0; 0; :::; 1

0; 0; 0; :::; 0

3
77775 (8)

Let Sm denote a m-dimensional subspace of
m-multiple zero mode J t. The vectors v1; v2; :::; vm,

creating the basis for this subspace may be obtained

from the following equations [10]

Âv1 = 0; Âv2 = v1; :::; Âvm = vm�1 (9)

which implies

Âv1 = 0; Â
2
v2 = 0; :::; Â

m
vm = 0 (10)

The equations (9) may be derived using the depen-

dence ÂT = T� resulting from determination of the



eigenvectors, invariant subspaces and matrices T and

�. Note, that the zero-mode appears only in the sub-

space Sm. This means that the zero-mode disappears
in the n-dimensional subspace S?n orthogonal to Sm.

4. TRANSFORMATION OF THE STATE

Introduce the state transformation in the form

�x = Hx̂ (11)

where H is a rectangular n � (n + m) dimensional

matrix with full rank equal to n, while �x is the new
n-dimensional state.

Theorem 1. Assume that the rows of the matrix H

create a basis of the subspace S?n . Then

1. There exist the solutions �A and �C of the equations

�AH = HÂ; �CH = Ĉ (12)

2. The equations (4) may be transformed, using (11),

(12), to the new minimum realization n-dimensional
state space model in the form

�x(t+ 1) = �A�x(t) + �Bu(t); y(t) = �C�x(t) (13)

where
�B = HB̂ (14)

3. Both the models (4) and (13) are described by the
same TF (1).

2

Proof. 1. It may be noted that the solution �A of the

�rst equation (12) exists i� all the row-vectors of the

matrix �H = HÂ are orthogonal to Sm (or { which is
equivalent { belong to S?n ). To show the latter state-

ment consider any (n+m) dimensional column vector
v 2 Sm. Since v = c1v1+c2v2+ :::+cmvm; ci 2 R; i =
1; 2; :::;m, then accounting (9) we obtain Âv 2 Sm.

Therefore HÂv = �Hv = 0, which means that all the
rows of �H are orthogonal to Sm. The solution �C of

the second equation (9) exist i� Ĉ 2 S?n . To show

this, note that the (n � m + i) - row of the matrix

Âi; i = 1; 2; :::;m covers with Ĉ, which results from

the form of Â. Accounting (10) we see that Ĉ is or-

thogonal to vi; i = 1; 2; :::;m and to Sm, therefore
Ĉ 2 S?n .

2. Multiplying both sides of the state equation (4) by

H from left hand side we have

Hx̂(t+1)=HÂx̂(t)+HB̂u(t); y(t)=Ĉx̂(t) (15)

Accounting (11), (12) and (14) in (15) we obtain (13).
Since dim �x = n is equal to the order of denomina-

tor of (1) the equations (13) describe the minimum

realization state space model.

3. Applying the Z-transform to both sides of the equa-

tions (4) (under the assumption of zero initial condi-

tion) we obtain

(zÎ � Â)X̂(z) = B̂U(z); Y (z) = ĈX̂(z) (16)

where X̂(z) = Z[x̂(t)], U(z) = Z[u(t)], Y (z) =
Z[y(t)], Z-denotes the Z-transform. Thus, the TF of

the model (4) is

G(z) =
Y (z)

U(z)
= Ĉ(zÎ � Â)�1B̂ (17)

Multiplying both sides of the �rst equation of (16) by
H from the left hand side we obtain

H(zÎ � Â)X̂(z) = HB̂U(z) (18)

Accounting that HzÎ = z �IH as well as (12), (14) and
the dependence �X(z) = HX̂(z) we have

(z �I � �A) �X(z) = �BU(z); Y (z) = �C �X(z) (19)

and

G(z) =
Y (z)

U(z)
= �C(z �I � �A)�1 �B (20)

2

Corollary 2. Both the models (4) and (15) are equiv-

alent from the point o view of input-output (TF) de-
scription. Both have the same nonzero modes. The

m-multiple zero-mode plying no role in TF descrip-

tion disappears in model (15).

Note that the di�erent but equivalent minimum state

space realizations may be obtained by using any trans-
formation �x = P �x with non-singular n � n matrix

P . Note also that the realization with the new state

�x may be directly obtained using the transformation

(11) with H replaced by �H = PH.

5. LINEAR-QUADRATIC REGULATOR

Consider the quadratic performance index for the sys-

tem (4) in the form

Ĵ=

NX
t=0

[x̂T (t+1)Q̂x̂(t+1)+ru2(t)]; N!1 (21)

where Q̂ is a (n+m)�(n+m), symmetric, semipositive

weighting matrix of the state and r is a small positive

number. The steady-state solution of discrete-time
linear-quadratic regulator DLQR problem (4), (21) in

the form of the state feedback law takes the form

u = �k̂x̂ = �k̂1x̂1 � k̂2x̂2 � :::� k̂n+mx̂n+m (22)

Here k̂ is (n+m)-dimensional row-vector with constant

components k̂i; i = 1; 2; :::;n+m [3].

Substituting to (22) the state components (2) and
bringing the terms containing input u to the left hand

side we obtain the di�erence equation relating u to y

or, after applying the Z-transform, the TF R(z) de-
scribing the regulator-observer in the form

R̂(z)=�
U(z)

Y (z)
=�

k̂1z
n�1+k̂2z

n�2+:::+k̂n

zm+k̂n+1zm�1+:::+k̂n+m
(23)



Note that for m = n� 1 the TF R̂(z) is proper with
(n�1)-th order polynomials in numerator and denomi-

nator. The regulator-observer (23) has some dynamics
but it may be implemented when only the output y is

available.

Corollary 3. For m = n � 1 the two implementable

models describing the same closed-loop (CL) system of

(2n� 1)-th order have been obtained: the state space
model described by (4) and (22) and the TF model

described by (1) and (23).

Really, the augmented state space model (4) of the

plant has TF (1) and for the state determined by (2)

the TF (23) is equivalent to (22).

Let the quadratic performance index for the plant

model (15) be

�J=

NX
t=0

[�xT (t+1) �Q�x(t+1)+ru2(t)]; N!1 (24)

where �Q is a n� n symmetric, semipositive weighting
matrix of the state and r is a small positive number.

From solving the DLQR problem (13), (24) we obtain

the following state feedback law valid in steady state

u = ��k�x = ��k1�x1 � �k2�x2 � :::� �kn�xn (25)

where �x = [�x1; �x2; :::; �xn] and �k is n-dimensional vector

with constant components �ki; i = 1; 2; :::;n. The CL

system composed of the plant (13) and state feedback

(25) is optimal in steady state and has the character-

istic equation of n-th order. However state feedback

(25) may be implemented when all the state compo-

nents �xi; i = 1; 2; :::;n are available for measure, which

usually is not possible. Therefore, in the following the

case when only the output y is available will be con-

sidered.

To derive from (25) the TF of the regulator-observer

we substitute (11) and (2) to (25) and bring the terms

containing u to the left hand side of the equation. After
applying Z-transform and rearranging the TF of the

regulator-observer takes the form

�R(z) = �
�p1z

n�1 + �p2z
n + :::+ �pn

zm + �pn+1zm�1 + :::+ �pn+m
(26)

where �pi = �khi; hi - are the columns of the matrix H,
i = 1; 2; :::;n+m (i.e. H = [h1; h2; :::; hn+m]). The TF
�R(z) (26) has similar form as R̂(z) (23); it is proper
and implementable when m = n� 1.

Note that the CL system composed of plant (1) and

regulator (26) is of (n+m)-th order. Thus, in compar-

ison to the CL system (13), (25) with state feedback,
the output feedback causes the increase of the order

of the CL system by m.

Note also that it is possible to calculate the state �x ap-

pearing in (25), using (11) and (2), but then the static

state feedback law (25) after substituting (11), (2) be-

comes a dynamic one. Really the static state feedback

(25) takes then the form of a dynamic output feedback

described by the TF (26). The CL system composed

of plant (1) and regulator (26) has the characteristic

equation of (n+m)-th order. Therefore there arises the
question: which is the relation between the CL system
described by (13), (25) and (1), (26)? The �rst system

is optimal in steady state; whether and in which sense

the second system is optimal? The response to these
questions will be given further on.

6. DISCUSSION OF THE RESULTS

Let k̂ = [k̂1; k̂2; :::; k̂n+m] and �k = [�k1; �k2; :::; �kn] be
the gains appearing in (22) and (25), respectively. Let

Ŝ and �S be the solutions of the algebraic Riccati equa-

tions for DLQR problems (4), (21) and (13), (24), re-

spectively. The n � n matrix �S ful�ls the following

algebraic Riccati equation

�S= �Q+ �AT �S �A� �AT �S �B(r+ �BT �S �B)�1 �BT �S �A; (27)

while the gain �k is determined by

�k = �(r+ �BT �S �B)�1 �BT �S �A (28)

The (n+m)�(n+m)matrix Ŝ and gain k̂ ful�l similar
equations resulting appropriately from (27) and (28)

by replacing the sign "�" with "̂ ".

The characteristic equation of the CL system (4), (22)

takes the form

det
h
zÎ � Â+ B̂k̂

i
= 0 (29)

where on the left hand side of (29) appears the so

called characteristic polynomial. The characteristic

equation of the CL system (13), (25) results from (29)

by replacing "̂ " with "�"; Î and �I denote (n +m)�
(n+m) and n� n unit matrix, respectively.

Let

x̂(t+ 1) = Âx̂(t) (30)

be the system with (n+m)-dimensional vector x̂. Con-

sider the other system

�x(t+ 1) = �A�x(t) (31)

with n-dimensional vector �x which has the modes ap-

pearing also in the system (30). The modes of (30)
which appear also in (31) are called the preserved

modes, while the modes of (30) which do not appear

in (31) are called the neglected modes.

Lemma 1. The transformation (11) converts the sys-

tem (30) into the system (31) i� the n-dimensional
subspace S?n spanned on the row-vectors of the ma-

trix H is orthogonal tom-dimensional subspace Sm of

modes neglected in (31). The modes of (30) for which
the subspaces projections on S?n are nonzero are pre-

served in (31), while the modes, the subspaces of which

belong to Sm are neglected in (31).

2

Proof. If H is orthogonal to Sm then in accordance

with Theorem 1, there exists the matrix �A which ful-

�ls the �rst equation of (12). Multiplying both sides of

(30) by H from LHS we obtain Hx̂(t+ 1) = HÂx̂(t).
Accounting (12) and (11) gives (31). On the other

hand the n-dimensional system (31) can not have all



the modes of the (n + m)-dimensional system (30).

From (11) it results that all the row-vectors of H must

be orthogonal to Sm. The last statement of the Lemma
1 is the consequence of the transformation (11) with

the matrix H having row-vectors orthogonal to Sm.

2

Theorem 2. Assume that H is as in Theorem 1 and

the matrices Q̂ and �Q appearing in the indices (21)
and (24) ful�l the relation

Q̂ = H
T �QH (32)

Then:

1. The steady state solutions Ŝ and �S of the algebraic

Riccati equations for the DLQR problems (4), (21)

and (13), (24), respectively, ful�l the relation

Ŝ = H
T �SH (33)

2. The corresponding gains k̂ and �k are related with

k̂ = �kH (34)

3. The characteristic polynomials of the closed loop

systems (4), (22) and (13), (25) ful�l the dependence

det[zÎ � Â+ B̂k̂] = z
m det[z �I � �A+ �B�k] (35)

2

Proof. Multiplying both sides of equation (27) by HT

from LHS and by H from RHS and using (12) and (14)

we prove validity of (33). The proof of (34) results

from multiplying both sides of (28) by H from RHS

with accounting (12) and (14).

To prove (35) write the state equation of the CL sys-

tem (4), (22)

x̂(t+ 1) = (Â� B̂k̂)x̂(t) (36)

Multiplying (36) by H from LHS and accounting (12),

(14), (34) and (11) gives

Hx̂(t+ 1)=(HÂ�HB̂k̂)x̂(t)=( �AH� �B�kH)x̂(t) =

=( �A� �B�k)�x(t)

and �nally

�x(t+ 1) = ( �A� �B�k)�x(t) (37)

Then the transformation (11) has transferred (36)

to (37) therefore from Lemma 1 it results that the

row-vectors of H are orthogonal to the subspace of ne-

glected modes of (36). Since from (34) it results that

k̂ is orthogonal to Sm then the subspace ofm-multiple

zero mode is not changed by the CL control (22).

Therefore Sm creates also the subspace of m-multiple
zero mode for the CL system (36). Thus from Lemma

1 it results that the modes corresponding to nonzero

eigenvalues of (36) are preserved in (37), which proves
(35).

2

Corollary 4. Under assumption (32) the TF-s of

regulator-observers (23) and (26) are the same. The

CL system (1), (26) with dynamic output feedback

(26) realizes the static state feedback law (22) result-

ing from steady state solution of optimal DLQR prob-
lem (4), (21). Using other words, the modes of both

the CL system (4), (22) and (1), (26) are the same.

Note, that the assumption (32) means that the states

x̂ belonging to Sm do not cost, while the relation (33)

means that the optimal values of the performance in-
dices (21) and (24) are the same (for the initial states

ful�lling (11)). The latter property together with (35)

and Corollary 4 denotes that the regulator (26) con-
tains the optimal dead-beat observer [2].

Since the equations (13) determine a minimum real-

ization state space model then the system (13) is con-

trollable and observable. From this [3] and from (35)

it results an important property formulated in the fol-

lowing.

Corollary 5. The nonzero stable roots of the char-

acteristic equations both, of the CL system (13), (25)

of n-th order with static state feedback (25) and of
the CL system (1), (26) of (n+m)-th order with dy-

namic output feedback (26) are the same. The charac-

teristic equation of the latter system has additionally

m-multiple zero root caused by the optimal dead-beat

observer appearing in the regulator (26) and realizing

the dynamic output feedback.

It is known that the CL system with state feedback

law resulting from solving LQR problem is robust [4].
From Corollary 5 it results that the CL system with

LQ regulator and dynamic output feedback has sim-

ilar properties, since additional m-multiple zero root
does not change the properties of the CL system, es-

sentially.

7. EXAMPLE

Consider the discrete-time model G(z) composed of
sampler with sampling period h = 0:1, zero-order hold
and continuous-time plant K(s) with

K(s)=
1

s2 + 2s+ 3
; G(z)=

b1z + b2

z2 + a1z + a2
; (38)

where b1 = 0:0047; b2 = 0:0044; a1 = �1:7916; a2 =

0:8187. Determine the augmented state with m = 1 in

the form x1(t) = y(t); x2(t) = y(t� 1); x3 = u(t� 1).

Then the matrices Â and B̂ of the model (4) are

Â =

2
4 �a1; �a2 b2

1; 0 0

0; 0; 0

3
5 ; B̂ =

2
4 b1

0

1

3
5 (39)

The one dimensional subspace of zero mode of Â is

spanned on the vector v ful�lling Âv = 0, thus v =

[0; 1; a2=b2]
T and H takes the form

H =

�
1; 0; 0

0; �a2 b2

�
(40)



The matrices �A and �B calculated from (12) and (14)

are

�A =

�
�a

1
; 1

�a2; 0

�
; �B =

�
b
1

b2

�
(41)

Assuming f = [1; 0]; �Q = fT f and r = 0:001 we ob-
tain from dlqr MATLAB function

�k = [65:4283;�45:3770] (42)

�12 = 0:6219 � j 0:2694 (43)

Thus k̂ = �kH = [65:4283;�45:3770; 0:2422] and the

regulator-observer is described by

R̂(z) = �R(z) = �
65:4283z � 45:3770

z + 0:2422
(44)

It is easy to check that the characteristic equation of

the CL system 1 + �G(z) �R(z) = 0 has two roots de-

termined by (43) and one zero root generated by the

regulator- observer.

8. CONCLUSIONS

The proposed approach makes it possible to derive the
regulator-observer transfer function implementable in

feedback control when not all the state variables but

only the plant output is measured.

Usual solution of the DLQR problem with minimum

realization of the plant state space model determines

the static state feedback law; the corresponding CL
system is of n-th order equal to that of the plant.

When only the plant output is available the derived

regulator-observer realizes the dynamic output feed-
back and the corresponding CL system has the order

increased by m.

It is important that the CL system with the dynamic
output feedback, determined by the derived regula-

tor with the optimal dead-beat observer, remains the

same good properties as the CL system with static

state feedback. Really, from Theorem 2 it results that

the �rst system has the same nonzero, stable roots of

its characteristic equation as the second one. Though
the �rst system has the order higher by m, but related

with this the m-multiple zero root, generated by the

observer, does not change its good properties essen-
tially.

On the other hand the CL system with derived
regulator-observer realizes the static state feedback

law resulting from solving the DLQR problem with

augmented state x̂. It is known that the CL system
with the state feedback control resulting from solving

a DLQR problem is robust. Thus, the CL system with

the proposed regulator-observer has the same prop-

erty.

The results have been obtained owing to the intro-

duced transformation x̂ = H�x of the state x̂ of higher
dimension to the state �x of lower dimension. In these

considerations the important meaning plays the notion

of the mode subspace. The transformation �x = Hx̂

has been created in this manner that m-multiple zero

mode appearing in the augmented state model (4)

is preserved in the CL system. This transformation

makes it possible to �nd the minimal state space re-

alization of the plant. Using the transformation it is
proved that the obtained dead-beat observer is opti-

mal, since it does not increase the value of the perfor-

mance index evaluated in the system with state feed-
back. The transformation determines the equivalent

DLQR problems in the state spaces with di�erent di-

mensions.

Similar approach may be applied for continuous-time

system. The di�erence is in the state variables pro-

posal, in which in the place of output and control
variables evaluated at times back shifted, some appro-

priate integrals of output and control should appear.
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