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Abstract. An early result on the Smith-MacMillan form of a rational matrix is used for evalu-

ating the degree of the determinant of a polynomial matrix using numerically reliable techniques.

This allows for accurate determinant zeroing and determinant interpolation, thus improving ex-

isting numerical methods for polynomial matrix determinant computation.
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1 Motivation

As pointed out in [5], one of the main stumbling block
when designing algorithms for numerical computation
of the determinant

d(s) = d0 + d1s+ � � �+ d�s
�

of a given non-singular n� n polynomial matrix

A(s) = A0 + A1s+ � � �+A�s
�

is the correct evaluation of the degree �.

Due to unavoidable numerical roundo� errors, it is
sometimes di�cult to decide which leading coe�cients
are relevant in the computed determinant

d̂(s) = d̂0 + d̂1s+ � � �+ d̂
�̂
s�̂

where �̂ � �. Typically, some threshold � is selected as
a function of n, � and the machine precision. Then, the
smallest index i such that jd̂ij < � is determined and

coe�cients d̂i; d̂i+1; : : : ; d̂�̂ are arti�cially set to zero.
Such an operation, referred to as zeroing, is a popular
technique that proves necessary for preventing unduly
degree swelling when performing successive operations
on polynomial matrices.

The same kind of problem arises when deriving d̂(s) via
interpolation [5] or fast Fourier transform [2], the later
being the most powerful and reliable numerical method
to date for performing polynomial matrix determinant

computation, as illustrated by intensive computational
experiments [2]. An estimate is always required on the
number of sample points needed for performing inter-
polation or fast Fourier transform. The sum of column
or row degrees of A(s) is usually chosen as a rough
upper bound on � + 1, the correct number of points.

In this note, we solve the determinant degree evaluation
problem while keeping with our main impetus, which
is the development of reliable numerical algorithms for
dealing with polynomial matrices [1] and their imple-
mentation in a user-friendly Matlab package called
the Polynomial Toolbox [4].

In this regard, the aim of this note is to point out
that the value of d can be evaluated in a numerically
stable way, thus allowing for proper determinant ze-
roing and determinant interpolation. The result that

proves instrumental to this computation is not new. It
was published some twenty years ago by Van Dooren
and co-workers [6]. It was derived when studying the
Smith-MacMillan of a rational matrix from its Laurent
expansion at its poles and zeros. Our main contribu-
tion is in showing that this result can actually be used
for improving polynomial matrix determinant compu-
tation.



2 Main Result

Theorem 1 Let

Ti =

2
6664

A� � � � A
�i+1 A

�i

. . .
...

A� A��1

0 A�

3
7775

denote a Toeplitz matrix built from matrix coe�cients

of a non-singular n� n polynomial matrix A(s), where
it is assumed that Ti�� = 0 and Ai = 0 when i < 0.
Let

ri = rank Ti � rank Ti�1 (1)

and

k = minfi : ri = n; i � 0g:

Then the degree � of the determinant of A(s) is given
by

� = rank Tk � n(k + 1) (2)

Proof: It is well-known that any non-singular rational
matrix features the same number of poles and zeros,
�nite or in�nite, counting multiplicities [7]. Moreover,
degree � is equal to the number of �nite zeros of A(s).
Since a polynomial matrix has no �nite poles [7], it
follows that

� = p
1
� z

1
(3)

where p
1

and z
1

denote algebraic multiplicities of the
pole and zero of A(s) at in�nity, respectively. Using the
Smith-MacMillan form of A(s) at in�nity { see Corol-
lary 3.7 and Remark 4 in Section IV in [6] { one can
show that

p
1

=

�1X
i=��

ri (4)

and

z
1

=

kX
i=0

(n� ri): (5)

Equation (2) readily follows from relations (1), (3), (4)
and (5).

It must be underlined that a fast recursive algorithm
is described in [6] for performing the successive rank
computations and determining index k. The algorithm
takes advantage of the special Toeplitz structure of ma-

trices Ti and hinges upon the singular value decompo-
sition, a numerically stable operation. Therefore The-
orem 1 provides a numerically reliable method for eval-
uating the degree of the determinant of a polynomial
matrix using coe�cients of the matrix only.

3 Illustration

Let

A(s) =

2
4

1 + 2s2 2s2 + s3 s2

�3 + s � 2s2 �1 + s � s2 � s3 �1 + s� s2

2 2 + s 1

3
5 :

Build Toeplitz matrices

T
�3 =

2
4

0 1 0
0 �1 0
0 0 0

3
5

T
�2 =

2
6666664

0 1 0 2 2 1
0 �1 0 �2 �1 �1
0 0 0 0 0 0

0 0 0 0 1 0
0 0 0 0 �1 0
0 0 0 0 0 0

3
7777775

: : :

Rank o�sets (1) are collected in Table 1. Note that

rk = n = 3 for k = 4.

i -3 -2 -1 0 1 2 3 4 5 6

ri 1 1 2 2 2 2 2 3 3 3

Table 1: Rank o�sets ri.

Recalling equation (2), the degree of the determinant
of A(s) is given by

� = rank T4 � 15 = 0:

Matrix A(s) is therefore unimodular and its determi-
nant d(s) can readily be computed by interpolation at
only one point, i.e.

d(s) = detA(0) = det

2
4

1 0 0
�3 �1 �1
2 2 1

3
5 = 1:

4 Conclusion

As pointed out by a reviewer, there is a number of
important issues concerning the design of e�cient al-
gorithms dealing with Toeplitz matrices, see e.g. the
recent textbook [3] and references therein. A detailed
study of these algorithms and their application to the
problem at hand remain however out of the scope of
the present note, but could be an interesting topic for
future research.
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