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Abstract. This paper deals with robust stability analysis of polynomials where uncertain
coefficients are polynomic functions of the second order of interval parameters. The
method consists in determination of a convex hull overbounding the value set of such a
family and using Zero Exclusion Theorem. An arbitrary stability region can be chosen.
Presented method states only sufficient condition of robust stability due to nonconvexity of
the value set. Both computational and graphical way of using this method are possible. The
computational efficiency of presented method and more general method based on Sign-
decomposition is compared.

Keywords. robust stability, polynomials, polynomic uncertainty, value set

An interesting method for the analysis of robust
1. INTRODUCTION stability of polynomic interval polynomials was
introduced in [3] for continuous case and in [2] for
Robust stability of linear systems with parametric discrete case. Both methods state a necessary and
uncertainty has been strongly developing in past two sufficient condition on the coefficient space using the
decades since the well-known Kharitonov theorem Modified Routh and the Modified Jury table
[5] have been published. This theorem solves therespectively. Positivity of elements of both tables is
robust stability for interval polynomials. The next tested by Sign-decomposition.
significant step has been achieved by solving of
robust stability for polynomials with parametric The traditional tool for robust stability analysis
uncertainty of affine structure by Edge Theorem [1]. consists in using Zero Exclusion Principle. This
In the last few years polynomials with multilinear principle makes it possible to replace
and polynomic structure of coefficients are of great multidimensional problem in the coefficient space by
interest. The robust stability analysis of those two-dimensional analysis of the value set in the
polynomials appears to be too complicated for complex plane. Surprisingly simple result on robust
statement of a simple solution. stability of multilinear interval polynomials based on
this principle is given by the Mapping Theorem [7].
Nowadays there are only few approaches which treatThis theorem states that the value set of such a family
this problem generally. One of those is the techniqueof polynomials evaluated in an arbitrary point in the
using Bernstein Expansion [4]. This method states acomplex plane is contained in the convex hull of the
necessary and sufficient condition for Hurwitz value set of vertices polynomials. This theorem gives
stability of polynomial with polynomic parameter only sufficient condition for robust stability but an
dependency by checking the Hurwitz determinant for arbitrary stability region can be chosen. However the
positivity using the Bernstein iterative algorithm. Mapping Theorem cannot be used for polynomic
parameter dependency.

fthe A method using Zero Exclusion Principle is
‘)T?gfhdescribed in [8]. This method combines Bernstein
gue algorithm and the analysis of the value set to state a

). necessary and sufficient condition for Hurwitz robust



stability of a polynomial with polynomic structure of ¢ (@)=8. +a,q +a,q, +-+a,q +
its coefficients. 1 )q
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polynomic functions of the second order of interval | |

parameters is presented in this paper. A sufficient (Vklmql+"'+Vk|mq| )q|m

condition is derived by overbounding the k=0,...,n

(nonconvex) value set by a convex hull for an
arbitrary point in the complex plane lying on the Then the polynomialP(sq) is referred to as a

boundary of chosen stability region and by polynomic interval polynomial. Fom=1 for all
determination whether zero is excluded or included. k=g . n (c(g) are polynomic functions of the second

This test can be done either in computational or in order) the polynomialP(sg) is said to be a

graphical way. Profitting from appropriate properties olynomic interval polynomial of the second order
of presented procedure the former is recommendecfof degreen). If c(q) for all k=0,...n are multilinear

especially for high number of parameters. This fynctions (ie. if for alli=1,..] c(q) are linear

method can be used in principle for polynomials g, tions ofg; when theg, r#i are held constant), the
where the coefficients are polynomic functions of 5ynomialP(sq) is said to be a multilinear interval
higher order than two but in such cases numerical polynomial.

algorithms for determining the zero points of
multivariate polynomic functions have to be used and

. In the rest of this paper KOO" is a (xI) matrix
whole procedure becomes very complicated. pap (1)

then A; denotes the element & lying on the
osition (,j), if bOO' is a vector thet denotes the

The main advantage of presented method consists irglement ob lying on thei-th position

its high computational efficiency which is shown by
comparison with the method derived in [2].

Even if the presented method can be used in practice?"ALGORWHNI
for stability analysis of polynomials with coefficients

being polynomic functions of the second order only, Let
it has great importance for example for stability |
analysis of Takagi-Sugeno fuzzy systems. P(s.q)=c,(a)s” +-++c,(a)s +c,(a)
a0Qo0 g=[g, @, - qf @)
2. PRELIMINARIES Q=[cy,ay]x---x[a, ]

. o , qiD[q{,qi*], g <q’ i=L..l
First of all it is necessary to introduce the concept of

order. To avoid dropping in degreg(aq)#0 for all

Let us consider a family of polynomials whose q0Q is assumed. Then each coefficierticcan be
coefficients are polynomic functions @f1Q 0 O' expressed as

in the form:
.
6. (@)=q"C¥gq+({d®) g+
Pa)=c, @ ++alsro@ @ Copon gwop wog ko
wheres is not necessarily the Laplace operator and Presented method deals with the value sd?(sf)
evaluated at some complex poist=s, =|s,e’*°.

.
a=1% 9 - 9
[ 3 '] (2) The imageP(s0,q) can be expressed as

0; D[qi‘,qi*] i=1...1
is an interval (vector) parameter. Plsy.a)=c,(a)s + +a(a)s + o (a)

Let us suppose that each coefficianfg) can be :C§°e(q +].ch (Q)
written as

(6)

where c2(q).c2 (q) are polynomic functions of the
second order and are given by



Let us consider the problem of minimization of a
c() Z q]50| cogkiy,) function fy(x), where the constraints are given in the
(7 form of inequalities

e (@)= c (@) sinlkes)
kZOk minff, (<[ f, 0 <b;, j =1...,m} 9

Our task is to determine the minimum and maximum
distancesh® (¢), h®, (#) of the point [GO] from the
setP(,q) in the complex plane in some directign
@00, 7] respectively (see Fig.1). Definition 1: Let a point’ satisfy all constraints of

(9). Let J(°x) be the set of indices, for which the
Remark 1. It has to be noted that the distance is corresponding constraints are active (e.g. inequality

Necessary conditions of extreme values can be
determined by the following theorem.

measured from the point [0] in the directiong, changes to equality):

#0[0,7. It means that the distance can be negative

(in such a case the distance is measured from the J(Ox):{j|f.(°x):b.} (10)
J J

point [0j0] in the directiornve¢).

The point’ is said to be a regular point of the Xet
given by constraints in (10), if the gradients

cm(a) he. ) ped uf, (°x) are linearly independetj 1J(°x).

of Theorem 1[6] Let "x be a regular point of a st
A/ Pin and a functiorfy(x) has in some neighbourhood &f
continuous first partial derivatives. If the function

f5(x) has in the pointx the local minimum orX, then
o [h. @) P(s”.a) o j

Py there exists a (Lagrange) vectdfld™ that
ot e 32,0, (x)=o0
: i 11
- i Ai(xn)0 @
[0,j0] Cre() X 20

Fig. 1 Minimum and maximum distance Bf,q) in hold j=1,...m
a directiong e
Remark 2: For maximization of a functiofy(x) the

It can be easily shown that finding the minimum and . ) . R
last inequality of (11) is replaced by, < .0

maximum distances is equivalent to finding the

minimum and maximum value of the function

o (q) q0Q To apply Theorem 1 for solving our problem it is
necessary to check whether the preconditions of this

o) o5 o ()i theorem are satisfied. As?(q) is a polynomic
K (q) cRe(q)cos(¢)+clm(q)sm(¢) function of the second order, its first partial

= [c,f?e(q), Cm (q)]-[cos(¢),sin(¢)]T (8) derivatives are continuouslqlJQ and the second
= [C;oe q)c® (q)].g(d)) assumption is satisfied. In our case

fola)=cy ()

f(@)=(-2"q, i=1..1 j=1,..2
j=2i-12i (12)

b, =-q for jeven

From (9) follows thatc*(q) is a polynomic function
of the second order df. It means thatc?(q) is
bounded anch®, (¢),h®, (¢) are finite.

min 77 'max

The problem of finding extreme values g (q) on b, =g for j odd

a box Q is a task of mathematical programming.
General formulation of a task of mathematical Then
programming is as follows.



of (q)=(-1)"e” 0qOQ, j=1...,2
(@)=(1"e" DgoQ, j =1, 13

for j odd, i =4 for j even

where e=[0,...,0,1,0,....0] with 1 on the i-th
position. Because for songglQ only even or only

odd constraints (or none of them) can be active

(@ <q)Oi=1..l, Of() are linearly

independentlqOqQ, jOJ(q). It means that all points
gdQ are regular ones.

According to Theorem 1 it is necessary to determine W, =

the gradientc? (q). From (8)

mep (@)= [ez@) ook @ o) @9
The components dflc, (q)
Loc, (q) ac, (Q)ﬂ
Oc, 15
. (q) [I aQ:L aQ| E ( )
follows from (5)
at(:;(Q) 2cg +z( (k)+C(k))
4 (16)
k=0,...,n i=1...,1
From (7)
eia)=3 e (a)s codhass)
“ (17)

e ()= 3 Do) sinss)

After substituting (12), (13), (14), (15), (16) and (17)
to (11) the following system of equations and
inequalities is obtained:

g, O ®
_ 0. 0
W, - W, |1 -1 0 Oqi g OvO
ai o 0 0 1 -1 -0 gip
.o . 1. O~ =.
0 Do .. .Oghg 0: O
O=. 5 0 0
%Vll W, |0 0 1 _1|:|D:B RN
B b
/\1(q1 ql): (18)
/\2(_ql ql_)zo
Ao, -a3)=0 (i
A4(—q2 q£)=0

/\2|—1(Q| - Q|+): 0
Ay (_ a - Q|_): 0

ALs--oy Ay 20 for minimizaton
1:+-1 Ay < 0 for maximizatdn

where

S (cto +c)jsy|f cos(kwo)gcos(w

+ i(cw +CO)s ¢ sir(kwo)gsm@p)
w, = ids”Jsorcos(kwo)ﬁcos@%
+ ﬁdﬁ“ .|so|ksin(kwo)§sir(¢)

uv=1...,l

The important fact is that the equation (18-i) is linear.
The computational procedure of solving (18) runs as
follows. At first all solutions of (18-ii) (nonlinear) are
determined. This corresponds to determining of all
the parts of the boQ — the interior and all the parts
of the boundary ofQ (all manifolds with the
dimensioni, i=0,...]-1 containing only points on the
boundary 0fQ). Each solution of (18-ii) corresponds
to 2 linear equations (from (18-ii) it follows that at
least one ofA;3, Ay, 0i=1,...) has to equal zero; if
Asi.1=0 then eitheR,=0 org=-q, if A;=0 then either
Ai2=0 or g=qg* 0i=1,...]). These 2 equations
together withl equations of (18-i) form I3linearly
independent linear equations forl unknown
variables. It means that there exists a unique solution
(A, q) (for each solution of (18-ii)) of (18). As the
number of manifolds with the dimensioni=0,...)-1
containing only points on the boundary & is

2' E E the total numbeng of all solutions of (18) is

In the next step it is checked whethety’ > 0
(*/\(j‘)so) 0j=1....2l and 'q®0Q for each

t=1...,n,. Denote byTun (Tmay the set oft for
which these conditions are satisfied.

given by

(19)

T =10 0QAY 200 =1,...21}

. 20
Toe =170 0Q A0 <00 =1,...21} (20)



Then CI?] (@)
hi5,(6)= minlcp (') - P <.
()= madey () , Comvvo(s)
max Proae Ve v
The minimum and maximum distances indicate that Y A
the setP(s,q) lies in the complex plane in the space V3
S
between the linep2? and p2?: pod P(s°, Vio
A v
1 hie. (#)
S0 . % =— cd + _min VR VS phds o
Prin Im(q) tar(d)) Re(q) Sln(¢) 29 pSD_v¢4 8 Prin p?iff’ prsr?at
( ) min ob pSo_,¢2
S99 . ~S — 1 S hrsr?ax((p) Prain ' min
pmax - Cim (q)__ CRe(q)+ .
tar($) sinig) [0,0] c.(a)
To determine a convex hull overbounding the set .
P(s,9) q0Q, the procedure described above is Fig.2 Convex hulVe(s) for R=5

performed for a set af, 0P,

Using Theorem 2 the Zero Exclusion Principle gives

¢:%¢r 0S¢ <o <op S”’E (23) a necessary condition for stability of a family of
Oor=1...,R O polynomials (1).

(it means that the system (18) is solved for a set of Theorem 3(Zero Exclusion Principle): The family

). The higher the numbeR is, the "more tight" of polynomials (1) of constant degree containing at
convex hull is obtained. least one stable polynomial is robustly stable with

respect t&if
In the next step the s¥t(sy) of intersections of the

following lines is determined: 00ConvV, (s,) for all s, 18S (27)
V,(s)=1{s® :m=1... 2R} wheredSdenotes the boundary &f
— '¢r v¢[+ . .
V® —|nse((p§$in + Prain 1) The zero exclusion test can be performed in both
AR insec(pr?;ifR, pml) graphical and computational way. The latter is
o —i obr by (24) recommended as described below because of saving
V +R T Inse((pm )<r 1 pm )<r 1) i
r 2 2 a lot of time.
Vi =insedpit, ps:)
r=1...,R-1 Theorem 4 (Zero inclusion test) 00Conv V() if
and only if
where inseqg.p,) denotes the intersection of the
linesp, andp,. (see Fig. 2) h® (#)<0, he, (¢)=0 forallg O® (28)
The coordinates of intersections are given by Theorem 4 makes it possible to decide about zero
exclusion or inclusion without computing the set of
insec(pfg,ﬂ;m, jg,ﬂ;m*l): intersectiond/o(so).-
So i —h% i
Ehtefm(d’Z)s"‘(.‘pl) hn 1)S|r‘(¢2)5 To demonstrate the efficiency the computational
=0 sin(, - ¢,) 0 (25)  times (on Pentium Il 400MHz/64MB) of presented
% co —h% co a method for testing Schur stability and the method
%‘erm(%) S(Tiz) _‘erm)((pl) S(¢2)D based on Sign-decomposition [2] are compared in
= sing, ~ ¢, = Table 1.
Now the key theorem of this paper can be stated.  The values in the upper and lower rows correspond to

the presented method and the method based on Sign-
Theorem 2 Denote by Con\A the convex hull of a  decomposition respectively. The values the for
setA. Then presented algorithm have been found ouRe6 and
a set of 30 points, regularly distributed around the
P(so,q)DCoanq,(so) (26) upper unit semicircle in the complex plane. It is
necessary to note that the computational times for on



Table 1 Comparison of computational times (in

seconds)
n |l 2 3 5 7 10
2 |2 3 22 130 500
0,1 10 600 18 10°
5 |25 7 35 180 800
0,2 55 1000 | 16 -
10 |6 15 80 350 1800
0,5 260 10 - -
20 |15 35 180 650 3500
2 1200 | - - -

Sign-decomposition based method vary in a big
interval (in contrast to the presented algorithm). In
Table 1 the highest values are shown.

4. EXAMPLE

Let a family of discrete polynomials be given by

P(z.a)=c, (@) +c.(a)z+c,(a)

where

q=[a, ], qO[0]]
and

c,(a)=1
c,(a)=0.208, +0.108, (4, - 0.5(?
¢, (a) =-0.308, +0.202 +q, (&), - 0.5062

The question is whether this family of polynomials is
Schur stable.

In this case the stability regidd is the unit circle,
therefore the bounda§S=¢*, «J[0,27§. The Zero
Exclusion Principle will be tested graphically. Due to
symmetricity it is sufficient to plot the value set only
for ss=€“, «J[0,7]. The corresponding plot of the
convex hulls of value sets is shown on FigZ3q).
As 00Vq(so) for all 00S, the polynomialP(zq) is
robustly Schur stable.

5. CONCLUSION

An algorithm for checking robust stability of a family
of polynomials with coefficient being polynomic

1.5
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Fig. 3 Plot of the convex hulls of the value sets

consists in the high efficiency which is demonstrated
by comparison with the method based on Sign-
decomposition. Moreover an arbitrary stability region
can be chosen. The presented method has been
illustrated on an easy example.
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