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Abstract. Noncausal inversion of discrete-time linear multivariable systems is analyzed in
the geometric approach framework with the aim of computing convolution profiles that ensure
perfect tracking with infinite preaction and infinite postaction time. It is shown how this
computation is related to the concepts of multivariable output relative degree and invariant
zeros of the plant. Then, a computational setting for the convolution profiles is derived by
using the standard geometric approach tools.
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1. INTRODUCTION

The problem of deriving a right or left inverse for a
multivariable dynamical system has been widely stud-
ied in the past. Structural conditions for multivariable
system invertibility were almost contemporarily de-
rived by Dorato [5], Sain and Massey [12], and Silver-
man [13]. Equivalent structural conditions, expressed
in geometric terms, were stated by Basile and Marro
in [1], where the maximum subspace of perfect output
controllability with respect to the generici-th deriva-
tive in the output space was also derived as an ap-
plication of the conditioned invariant algorithm, thus
paving the way for a formal definition of the multi-
variable relative degree in geometric terms. It is well-
known that the right inversion is related to the per-
fect tracking problem. Davison and Scherzinger [3]
and Qiu and Davison [11] showed that perfect track-
ing is not possible when the system is non-minimum
phase, while Francis [6] dealt with perfect tracking as
an LQR cheap control problem. In the last few years
it has been shown by several authors that the perfect
tracking problem is solvable if the signal to be tracked
is previewed by a significant amount of time and, in
the continuous-time case, if the signal to be tracked is
smooth enough. See, for instance, Devasia, Chen and
Paden [4], Hunt, Meyer and Su [8], and for the SISO
discrete-time case, Gross and Tomizuka [7] and Marro

and Fantoni [9].

In the present paper the multivariable discrete-time
right inversion or perfect tracking problem is solved
by using a strictly geometric-type mathematical back-
ground, like that popularized by Wonham [14] and by
Basile and Marro [2]. The solution is completely con-
structive. It can be considered to be the extension to
the MIMO case of the results in [9]. It is shown that
the tracking problem can be perfectly solved by con-
volution of the signal to be tracked with a suitable pro-
file defined on the whole time axis, from minus infin-
ity to plus infinity. However, technical practice im-
poses that the time interval to be considered is finite.
This leads to the implementation of the compensator
as a finite-impulse-response (FIR) system which en-
ables almost perfect tracking with arbitrary accuracy
to be achieved.

2. SOME NOTATION AND RECALLS

Throughout this paper we shall refer to the standard
three-map discrete-time dynamical system

x(k + 1) = Ax(k) + B u(k) ,

y(k) = C x(k) ,
(1)

with statex∈R
n, control inputu∈R

p and controlled
outputy ∈R

q. MatricesB andC are assumed to be



full column rank and full row rank, respectively. We
shall denote the image of the input matrixB (imB)
with B and the null space of the output matrixC
(kerC) with C, the maximum(A,B)-controlled in-
variant contained inC by V∗ = maxV(A,B, C) and
the minimum(A, C)-conditioned invariant containing
B byS∗ = minS(A, C,B), and byRV∗ the reachable
set onV∗, computable asV∗ ∩S∗. The symbolA#

denotes the pseudoinverse ofA.

Let us provide extensions to the discrete-time systems
of some definitions and properties that are well known
and standard in the continuous-time case.

Definition 1 (Functional Controllability or Right-
Invertibility and Output Relative Degree)System (1)
is said to be functionally controllable (or right-
invertible) if, starting from the zero state and after
some delay, arbitrary functions can be reproduced at
the outputs, by means of suitable control inputs. The
minimum delay for any output to be reproduced will be
referred to as the output relative degree of the system.

The following properties are easily derived as exten-
sions of similar results for the continuous-time case.

Proposition 1 System (1) is functionally controllable
if and only if one of the following relations holds

C S∗ = R
q , (2)

S∗ + C = R
n , (3)

S∗ + V∗ = R
n . (4)

Proof: Condition (2) is simply the discrete-time coun-
terpart of Theorem 4 in [1]. SinceC is full row rank,
(2) and (3) are equivalent (recall thatCS∗ is equal to
CPS∗ whereP denotes the orthogonal projection on
imCT alongkerC). Equivalence of (3) and (4) fol-
lows as the dual of the well known property

V∗ ∩ B = {0} ⇔ RV∗ = V∗ ∩ S∗ = {0} , (5)

first proved by Morse (Lemma 1.1 in [10]).

Proposition 2 System (1) is left-invertible if and only
if one of conditions (5) holds. Hence it is both right
and left-invertible if and only if

V∗ ⊕ S∗ = R
n (6)

Theorem 1 Let us assume that system (1) is right-
invertible. Its output relative degree is the least integer
ρ such that one of the following relations holds

C Sρ−1 = R
q , (7)

Sρ−1 + C = R
n , (8)

Sρ−1 + V∗ = R
n , (9)

where Si is provided by the standard conditioned in-
variant algorithm

S0 := B ,

Si := A (Si−1 ∩ C) + B , i = 1, 2, . . . .
(10)

Proof: Eq. (7) is an obvious consequence of Defini-
tion 1 and Proposition 1, eq. (2). Equivalence of (7)
and (8) comes straightforwardly. Equivalence of (8)
and (9) can be shown by slightly extending the proof
of the Morse Theorem as described below. The core
of the proof consists of showing by induction that the
sum ofSρ−1 with V∗ is equal to the sum ofSρ−1 with
the last term of a sequenceV ′

i (i =1, 2, . . .) whose
terms are equal toC for any i. In more detail, it con-
sists in the following. LetV ′∗ =maxV(A,Sρ−1, C),
i.e. the last term of the sequence

V ′
0 := C ,

V ′
i := A−1

(V ′
i−1 + Sρ−1

) ∩ C , i = 1, 2, . . . ,

satisfying the conditionV ′
i ⊂V ′

i−1. By construction,
V ′

0 = C =V0, which implies

Sρ−1 + V ′
0 = Sρ−1 + C = Sρ−1 + V0 . (11)

Furthermore, ifSρ−1 +V ′
i−1 =Sρ−1 +Vi−1 holds for

an integeri, then it impliesSρ−1 +V ′
i =Sρ−1 +Vi for

the samei. In fact,

Sρ−1 + V ′
i

= Sρ−1 +
(
A−1

(V ′
i−1 + Sρ−1

) ∩ C)
= Sρ−1 +

(
A−1(Vi−1 + Sρ−1) ∩ C)

= Sρ−1 +
(
A−1(Vi−1 + (A (Sρ−2 ∩ C) + B)) ∩ C)

= Sρ−1 +
((

A−1(Vi−1 + B) + (Sρ−2 ∩ C)
) ∩ C)

= Sρ−1 +
((

A−1(Vi−1 + B) ∩ C)
+ (Sρ−2 ∩ C)

)
= Sρ−1 + Vi . (12)

Eqs. (11) and (12) imply that eq. (12) holds for all
i =0, 1, . . ., which implies also

Sρ−1 + V ′∗ = Sρ−1 + V∗ . (13)

By definition ofρ,

V ′∗ = V ′
0 = C . (14)

In fact,

V ′
1 := A−1 (V ′

0 + Sρ−1) ∩ C
= A−1 (C + Sρ−1) ∩ C = C .

Eq. (14) is equivalent to

Sρ−1 + V ′∗ = Sρ−1 + C = R
n , (15)

and, by virtue of eq. (13), is equivalent to eq. (9).

Corollary 1 If system (1) is both right and left-
invertible, then

Sρ−1 = S∗ , (16)

i.e., ρ is the number of steps for evaluating S∗.

Definition 2 (Invariant Zeros)The invariant zeros of
system (1) are the internal unassignable eigenvalues
of V∗, defined by

Z = σ(A + BF )V∗/RV∗ , (17)

where F denotes any matrix such that
(A+BF )V∗ ⊆V∗.



3. BASIC RESULTS

If a system is functionally controllable (or right-
invertible), it is possible to reproduce at the outputs ar-
bitrary reference trajectories, provided they are known
in advance byρ instants of time. Hence, perfect track-
ing per se should only require a preview equal toρ.
However, if the system is non-minimum phase, both
the statex and the control inputu, will exponentially
diverge. This is not acceptable in technical practice,
and is avoided by usingpreaction, i.e., action in ad-
vance on the control input, that is possible if a pre-
view of the reference input significantly greater than
the maximum time constant of the inverses of unstable
zeros is available. In this section the concept of pre-
action is introduced on the basis of some fundamental
results of the geometric approach.

Let us refer to system (1) and assume it to be square,
right and left-invertible, asymptotically stable1, with
no invariant zeros on the unit circle and with(A, B)
controllable. The symbolρ denotes, as in the previous
section, the output relative degree of the system.

Lemma 1 Let us assume that A is nonsingular and
denote with (Ar, Br) the pair characterizing the re-
verse dynamics of system (1) , i.e. Ar :=A−1, Br := −
A−1B. The subspaceS∗ ∩C is an (Ar,Br)-controlled
invariant and all its internal unassignable eigenvalues
are equal to zero.

Proof: The(Ar,Br)-controlled invariance ofS∗ ∩ C
is proved by

Ar (S∗ ∩ C) ⊆ ArS∗ ∩ ArC
= Ar (A (S∗ ∩ C) + B) ∩ ArC
=

(S∗ ∩ C + A−1B) ∩ A−1C
⊆ S∗ ∩ C + Br .

(18)

For any given statexf ∈ (S∗ ∩ C), one and only one
trajectory belonging toS∗ ∩ C exists along which the
state is driven from the origin toxf . In fact, if there
were two, their difference, still belonging toS∗ ∩C,
would lead the state back to the origin and this is
against the hypothesis of left-invertibility of the sys-
tem. The same trajectory, followed backward accord-
ing to the reverse system dynamics, leads the state
from xf to the origin. This implies that all the in-
ternal eigenvalues ofS∗ ∩C as an(Ar ,Br)-controlled
invariant are equal to zero. By the left-invertibility as-
sumption, these eigenvalues are all unassignable.

Algorithm 1 Computation of the control sequence
u(0), u(1), . . . , u(ρ − 2), which drives the state from
x(0)= 0 to x(ρ − 1)= x̄∈S∗ ∩C, along a trajectory
belonging to S∗ ∩C. Let x̄ be any state belonging to
S∗ ∩C. Eqs. (2) and (10) imply that̄x can be reached
from the origin inρ− 1 steps. By virtue of Lemma
1, the trajectory along which the state is driven from

1Stability is often ensured by feedback — see the next section.

x(ρ − 1)= x̄ to the origin according to the dynamics
of the closed-loop reverse system is given by

x(k−1) = (Ar + BrFr) x(k) , k = ρ−1, . . . , 1 , (19)

where Fr is such thatS∗ ∩C is an invariant in
Ar + BrFr. The relation

u(k) = Fr x(k + 1) , k = 0, 1, . . . , ρ − 2 , (20)

gives the corresponding control input sequence.

Remark 1 By means of a simple contrivance, Algo-
rithm 1 can also be used if A is singular. In this
case, a suitable pole placement can be performed,
since (A, B) is controllable. Let H be such that
Ā :=A+ BH is nonsingular and denote by ū(k) the
control sequence obtained for the triple (Ā, B, C).
Since the algorithm also provides the state x(k), the
control for (A, B, C) is given by

u(k) = ū(k) − H x(k) , k = 0, 1, . . . , ρ − 2 . (21)

Theorem 2 For any given output yf ∈R
q , a control

input sequence u(0), u(1), . . . , u(ρ − 1) exists, which
drives the state from x(0)= 0 to x(ρ)= xf , where xf

is such that C xf = yf , along a trajectory belonging to
S∗ ∩C (therefore invisible at the output) until the last
step but one.

Proof: The right invertibility of the system im-
plies eq. (2). Therefore, for any givenyf ∈R

q,
xf ∈S∗ exists such that C xf = yf . Since
S∗ =A (S∗ ∩C)+B, x̄∈ (S∗ ∩C) and µ∈R

p

exist such thatxf =A x̄ +B µ . Algorithm 1 provides
the control input sequence that drives the state from
the origin tox̄ along a trajectory belonging toS∗ ∩C,
while the control input that drives the state from̄x
to xf is u(ρ − 1)=µ . Let Vr be a basis matrix of
S∗ ∩C, so that̄x= Vr β. Relation
[

β
µ

]
= (C [AVr B])# yf (22)

providesβ andµ.

Let us note that Theorem 2 solves the problem of
“structural” perfect tracking (or right-inversion), i.e.
the problem (considered in the earliest investigations
on system invertibility) that aims at reproducing a
given output trajectory with no care for possible di-
vergence of the state. In fact, any output can be im-
posed with an invisible preaction consisting ofρ− 1
samples. Then, by taking into account at every instant
of time the output produced by the previous actions,
it is possible to impose any output trajectory. How-
ever, in order to guarantee internal stability, it is nec-
essary not only to impose the generic outputyf at the
time instantρ, but also to impose zero output at subse-
quent times, while maintaining the state bounded. The
following theorem and corollaries provide the insight
which is necessary to take into account also the inter-
nal stability constraint.



Theorem 3 Let us assume that the state of system
(1) is forced to a given xf ∈R

n at the time instant
ρ by an external event. A control input sequence
u(−∞), . . . , u(0), . . . , u(∞) exists which both nulls
the effect of the state xf on the output and avoids state
divergence.

Proof: By the assumption of right and left-
invertibility of the system,xf can be decomposed as
xf = x̄V∗ + x̄S∗ , wherex̄V∗ ∈V∗ and x̄S∗ ∈S∗ . In
the proof of Theorem 2 it has been shown that a con-
trol input sequence,u1(0), u1(1), . . . , u1(ρ − 1), ex-
ists which drives the state fromx(0)=0 to x(ρ)= −
x̄S∗ , thus nulling the effect of̄xS∗ on the output
from the time instantρ on. The component̄xV∗ is
forced to remain onV∗, decomposed into two tra-
jectories converging asymptotically to the origin, one
for k approaching infinity, by virtue of the postac-
tion control sequence, the other fork coming from
minus infinity, by virtue of the preaction control se-
quence. LetVS and VU be (A, B)-controlled in-
variants, strictly stable and strictly antistable respec-
tively, such thatV∗ =VS ⊕ VU (this decomposition is
possible by left invertibility). Then̄xV∗ can be de-
composed as̄xV∗ = x̄VS + x̄VU , wherex̄VS ∈VS and
x̄VU ∈VU . Let F be such thatV∗, VS andVU are
A+ BF invariants. Since all the internal eigenval-
ues ofVS in A+BF are stable, a control input se-
quence,u2(ρ), u2(ρ + 1), . . . , u2(∞) , exists which
drivesx̄VS asymptotically to the origin, along a trajec-
tory belonging toVS . Since all the internal eigenval-
ues ofVU in A+ BF are antistable, let us first com-
pute the trajectory that, followed backwards, would
lead−x̄VU asymptotically to the origin and the corre-
sponding control input sequence. By applying it back-
wards in time,u3(−∞), . . . , u3(ρ−2), u3(ρ−1), it is
possible to null̄xVU at the time instantρ, thus avoid-
ing exponential divergence of the state. In the most
general case, by applying the sum of the previously
defined control sequences (each assumed equal to zero
wherever not explicitly defined), the target specified in
the statement is achieved.

Remark 2 The above proof of Theorem 3 points out
that, if the system has no invariant zeros, only the
relative-degree preaction, u1(k) (k = 0, . . . , ρ −
1) has to be computed, if the invariant zeros are
all stable, also the infinite-horizon postaction, u2(k)
(k = ρ, . . . ,∞) has to be applied, while the infinite-
horizon preaction, u3(k) (k =−∞, . . . , ρ− 1) has to
be added only in the nonminimum-phase case.

Algorithm 2 Details on the computation of the con-
trol sequences u1(k), u2(k) and u3(k). Let V
and Vr be basis matrices ofV∗ and S∗ ∩C, re-
spectively. Thenxf ∈R

n can be decomposed
as xf = V α +AVrβ +B µ where α∈R

s with
s := dimV∗, β ∈R

t with t := dim (S∗ ∩ C) and
µ∈R

p are given by
 α

β
µ


 = [V AVr B]# xf . (23)

The component̄xS∗ =AVr β + B µ can be canceled
by reaching its opposite as specified in Theorem 2.
The relative-degree control sequenceu1(k) is so ob-
tained. The component̄xV∗ can be managed by ap-
plying the control input sequences resulting from the
procedure described below. Let us perform the state
space basis transformationT := [V S], whereS is a
basis matrix ofS∗. The matricesA′, B′, C′ in the new
basis have the following structures:

A′ := T−1AT =
[

A′
11 A′

12

A′
21 A′

22

]
,

B′ := T−1B =
[

0
B′

2

]
,

C′ := CT =
[

0 C′
2

]
,

(24)

whereA′
11 ∈R

s×s and each of the other submatrices
has accordingly defined dimensions. Let us consider
a state feedback matrixF ′ := [F ′

1 0] , whereF ′
1 := −

(B′
2)

#
A′

21 . Then the closed-loop system matrix is

A′
F := A′ + B′F ′ =

[
A′

11 A′
12

0 A′
22

]
, (25)

whereA′
11 ∈R

s×s is the restriction ofA′
F to V∗. By

performing a further basis transformationT ′ ∈R
s×s

separating the stable and unstable invariant subspaces
of A′

11 it follows

A′′
11 := (T ′)−1

A′
11T

′ =
[

AS 0
0 AU

]
. (26)

The correspondingF ′′
1 of the restrictionF ′

1 of F ′ to
V∗ can be accordingly partitioned asF ′′

1 = [FS FU ].
Let[

x̄S

x̄U

]
:= (T ′)−1 α , (27)

the postaction state trajectory in the new basis is com-
puted from the initial conditionx2(ρ) = x̄S by the
recursive formula

x2(k + 1) = AS x2(k) , k = ρ, ρ + 1, . . . , (28)

while the corresponding control input sequence is

u2(k) = FS x2(k) , k = ρ, ρ + 1, . . . . (29)

The preaction state trajectory is similarly computed
from the initial conditionx3(ρ) = −x̄U by the recur-
sive formula

x3(k − 1) = (AU )−1 x3(k) , k = ρ, ρ − 1, . . . , (30)

while

u3(k) = FU x3(k) , k = . . . ,−1, 0, . . . , ρ − 1 . (31)

gives the corresponding control input sequence.

Corollary 2 For any given yf ∈R
q , a control input

sequence reproducing yf at the output at the time in-
stant ρ exists, nulling the output elsewhere and main-
taining the state bounded.



Proof: This control input sequence can be obtained
by combining the control input sequence leading the
state fromx(0)= 0 tox(ρ)= xf , wherexf is such that
C xf = yf , along a trajectory belonging toS∗ ∩C until
the time instantρ− 1 (Theorem 2) and the sequence
nulling the effect on the output of the stateAxf that
is produced at the time instantρ + 1 by the previous
sequence (Theorem 3).

A generic input component computed as specified in
Corollary 2 can be represented, as a function of time,
by a profile like that shown in Figure 1. The multi-

0 ρak k b−

Fig. 1: A typical input component generating the impulse
yf at the time instant ρ.

variable convolution profile is obtained by consider-
ing, instead of a single output vector yf , the identity
matrix Iq . The corresponding state and input become
matrices as well. In this case (22) is replaced by[

β
µ

]
= (C [AVr B])# Iq (32)

and, having set Xf = AVr β + B µ, (23) by
 α

β
µ


 = [V AVr B]# Xf . (33)

The control input sequence results in a sequence of
matrices H(k) (k = −∞, . . . , 0, 1, . . . ,∞). The con-
volution

u(k) =
∞∑

�=−∞
H(�) r(k − �) , (34)

provides perfect tracking of an arbitrary signal r(k)
with a delay of ρ samples.

4. THE RIGHT INVERSION WITH A FIR SYS-
TEM

We refer to the block diagram shown in Fig. 2, where
a suitable digital processor delivers to a standard
discrete-time control loop both the signal yd (the
output to be reproduced, equal to the reference in-
put r suitably delayed) and an input-correction signal
u2. We suppose that the closed-loop system is stable
and that the regulator possibly contains some internal
model to perform asymptotic perfect tracking of stan-
dard signals like steps, ramps and so on. The purpose
of the digital processor is to compute the correction
signal u2(k) that realizes almost perfect tracking up to
an arbitrary accuracy. As shown in the previous sec-
tion, in order to obtain perfect tracking, it is necessary
to perform the convolution (34) with profiles of the

+

++ _

r

u

y e u u y

Digital
Processor

Regulator Plant
d 1

2

Fig. 2: The control system considered.

type shown in Fig. 1. This would require infinite pre-
action time (if the plant is nonminimum-phase) and
infinite postaction time. However, in practice, due to
exponential convergence to zero it is possible to trun-
cate the signal at a finite time kb towards +∞ and at a
finite time −ka towards −∞ with negligible error (or,
in any case, when the value of the signal is close to
that of the computer relative accuracy). Such a behav-
ior can be derived from a FIR system of the type


u2(k) =
kb∑

�=−ka

H(�) r(k − � − ka)

yd(k) = r(k − ka − ρ) ,

(35)

where the matrices H(�) (� = − ka, . . . , kb) are p× q
in the MIMO case. Of course, when the plant is
minimum-phase, in (35) the preaction time ka should
be set equal to zero. In some cases (e.g., tracking a
profile with a machine-tool) the preaction time is ar-
bitrarily large, while in other cases preaction time is
related to a preview time, that may be variable during
operation (e.g., tracking a route with an aircraft), or
preaction time can be fixed (receding-horizon almost
perfect tracking).

Truncation produces a tracking error that is managed
by the regulator. As far as truncation at −ka is con-
cerned, the error for an impulse to be tracked can be
evaluated as due to an initial state of the overall sys-
tem, which is equal to the opposite of the state reached
at −ka by following backward the preaction state tra-
jectory. Truncation at kb has a similar effect.

5. AN ILLUSTRATIVE EXAMPLE

As an illustrative example, let us consider the com-
putation of the convolution profiles for the noncausal
inversion of the system (A, B, C) where

A =




0.5 1 −0.4 0
0.1 0.7 0 −0.5
0 0 0.4 0
0 0 0 0.6


 , B =




1 0
0 1
1 0
0 1


 ,

C =
[

1 0 0 0
0 1 0 0

]
.

The relative degree is equal to 1, the invariant zeros
are 0.8 and 1.1. Finite preaction and postaction are
assumed, consisting of 40 samples and 20 samples, re-
spectively. Fig. 3 shows the convolution profiles corre-
sponding to the first component of the output, i.e. the



control input sequences to be applied in order to ob-
tain an impulse at the time instant ρ on the first output,
while maintaining the second identically zero. Preac-
tion, postaction and dead-beat-like control can easily
be recognized.

Fig. 4 shows the corresponding outputs. Note that
the truncation error can be considered as negligible if
compared with the impulse amplitude.

6. CONCLUSION

A complete computational setting in the geometric
approach framework2 has been provided for evaluat-
ing convolution profiles that guarantee almost perfect
tracking, hence decoupling, in the multivariable case.
When the controlled system is both right and left in-
vertible, the same profiles can be used for left inver-
sion, where a possibly delayed knowledge replaces ac-
tion in advance. The optimization of the truncation er-
ror deriving from feasibility constraints is out of the
aim of this work and left for future investigation.

−40 −30 −20 −10 0 10 20 30 40
−0.5

0

0.5

1
FIR profile (input 1 for impulse on output 1)

−40 −30 −20 −10 0 10 20 30 40
−0.1

−0.05

0

0.05

0.1
FIR profile (input 2 for impulse on output 1)

Fig. 3: Convolution profiles corresponding to the first out-
put.

−40 −30 −20 −10 0 10 20 30 40
−0.5

0

0.5

1

1.5
output 1 (for impulse on output 1)

−40 −30 −20 −10 0 10 20 30 40
−5

0

5

10

15
x 10

−4 output 2 (for impulse on output 1)

Fig. 4: Impulse and negligible errors at the outputs.

2This software is available for free downloading on the web site
http://www.deis.unibo.it/Staff/FullProf/GiovanniMarro/geometric.htm
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