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Abstract. A multi-objective control synthesis algorithm is first presented: it allows to avoid
conservatism using different Lyapunov functions by combining the Youla parameterization,
an observer-based structure and congruence transformations to obtain an LMI formulation.
The efficiency of this approach is then tested by considering the problem of robustly
stabilizing an aerospace launcher during the atmospheric flight.
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1. INTRODUCTION

Control design often involves tradeoffs among
conflicting objectives. Most of the time the controller
is required to satisfy simultaneously different
performance and robustness objectives which are
imposed on different channels of the closed loop plant.
Some discussion about multi-objective control first
appeared in [1, 6, 10]. There is at yet no exact solution
and existing methods use various approximations to
find upper and lower bounds. In particular, the mixed
H2/H∞ problem has received many attentions.
Tractable convex optimization formulations have been
derived in the literature but such methods are generally
conservative: they use a single common Lyapunov
function for each synthesis objective and a change of
variable which simultaneously affects this Lyapunov
function and the controller [9, 15], or they use infinite
dimensional optimization [13, 14].

More recently, Youla parameterization has been
proved to be useful to reduce this conservatism [8, 4,
14]; so this paper presents an algorithm based on this
parameterization [5] and an application to an
aerospace problem. The method uses an independent
Lyapunov function for each objective, a change of
variables on these functions but not on the controller,
and an observer-based structure which allows to
reduce the degree of the controller. The solution is
obtained using LMI optimization that is now a
computationally tractable framework [2].

The efficiency of this approach is then evaluated by
designing a robust autopilot for the atmospheric flight
of an European space launcher type. The application
and specifications are first presented and then the
control synthesis is explained. This study is the result
of a collaboration with the CNES (French Space
Agency) and Aerospatiale Matra Lanceurs.

2. NOTATIONS AND DEFINITIONS

All plants considered in the paper are LTI finite
dimensional, and described by a discrete-time state-
space representation (with sample frequency

ss Tf /1= ). Closed-loop plants will be represented by
the standard diagram of figure 1, where vector u
denotes the control input, vector y the measured
output, and transfers Ti from vector wi (external input)
to vector zi (controlled output) are used to specify two
different robustness or performance objectives.
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Fig. 1. Closed loop representation
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State-space representations of the open-loop plant P
and the controller K will be noted as:
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Without loss of generality, it is assumed in the paper
that 0=yuD .

Interconnection of two plants will be noted by the
Redheffer star product. As a particular case, the closed
loop plant of Fig. 1 is noted KP ∗ . The objectives
under consideration in this paper are H∞ norm
constraints, which are useful to enforce robustness and
to express frequency domain specifications. They are
considered below with a LMI formulation. Other
objectives like H2 norm or time-domain constraints
can be also translated into LMI formulations and can
be used in the proposed multiobjective control
approach [4].

3. MULTI-OBJECTIVE CONTROL

The goal of the multiobjective synthesis is the Pareto
optimal controller which is well representative of the
tradeoff among both objectives. It consists in
minimizing a linear combination of different
objectives.

It is also well known that this problem is hard and non
convex [1]. In order to perform a synthesis via convex
optimization, it is necessary to transform the initial
multiobjective problem. A combination of the
following tools presented in this section leads the
synthesis algorithm given in section 3.3:

- the Youla parameterization gives specific
properties to the system

- the observer based structure allows to reduce the
degree of the controller

- the optimization of the Youla parameter is
expressed as a LMI problem

Contrary to the usual approaches, the proposed
method allows to choose different Lyapunov functions
for each objective without loosing convexity; this is a
crucial point to reduce the conservatism. Indeed each
objective can be considered independently.

3.1. Youla parameterization

The set of all stabilizing controllers for P can be
parameterized [11] as QJK ∗=  (see figure 2) where
the Youla parameter Q is any stable system, and the
non-observable and non-controllable subspaces of

JPG ∗=  are supplementary.
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Fig. 2 - Closed-loop structure including Youla
parameterization

As shown in [3], any stabilizing controller can be
expressed as the interconnection of an observer based
structure and a Youla parameter Q. Suppose an initial
controller has been designed using any classical mono-
objective method. Such a controller can then be
expressed as QJK ∗=  with J of minimum degree
(i.e. the degree of P).

Finally the Youla parameterization gives a specific
form to each channel state pace representation of G
(from wi to zi) as follows:
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3.2. LMI formulation of the objective

This section focuses on the LMI formulation of a H∞
objective. The following theorem is applied for each
objective (i.e. each channel). Subscript i will be now
omitted for simplicity.

Theorem
Let G the ith channel of the system in Youla form (see
eq 3) and Q a static output feedback, then

γ≤∗ ∞QG (4)

if and only if there exist TRR = , TTT =  and S (with
adequate dimensions) such that
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Sketch of proof
The entire proof can be found in [5]. Let consider an
H∞ objective, from w  to z  and the Lyapunov
function X  partitioned into
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The bounded real lemma [2] applied to the
interconnection between G and Q gives a non linear
matrix inequality; using the following bijective change
of variable:
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and defining: 
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and ( )IIMMdiag ,,,=Π (9)

then pre-multiplying and post-multiplying the non
linear matrix inequality by TΠ  and Π  yields to the
LMI (5). �

Considering now both channels of G, one obtains two
LMIs of the form (5) with the same Youla parameter
Q, two H∞ levels γ1, γ2 and different matrices R1, S1,
T1, R2, S2, T2. So we have shown that the
multiobjective problem depends affinely on these
variables and Q.

Remark: the fundamental property on the state space
structure of G allows to extend this approach to a
Youla parameter Q including dynamics (see [14] and
[5]).

3.3. Algorithm

The previous results lead to a multiobjective control
design algorithm:

(i) Initial synthesis: design an initial controller using
conventional techniques such as LQG methods,
H2 or H∞ optimization, or multiobjective control
with a common Lyapunov function.

(ii) Observer structure parameterization: obtain the
Youla parameterization (figure 2)

(iii) Convex optimization: obtain the Youla parameter
Q  by solving the multiobjective control problem
using the LMIs of section 3.2.

(iv) Controller reconstruction: the final controller is
obtained by QJK ∗= .

4. APPLICATION TO AN AEROSPACE
LAUNCHER

4.1. Presentation

The application is developed for the yaw axis of an
European space launcher (figure 3) whose dynamics
include a rigid mode and two bending modes (sloshing
modes are not considered). It concerns automatic
control of the launcher, which has the function of
keeping the process around its center of gravity,
following the guidance reference trajectory.
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Fig. 3 – Simplified launcher representation

G is the center of gravity, V and Vr are respectively the
absolute and the relative velocity, W represents the
wind velocity; i represents the angle of attack of the
launcher and Ψ  the deviation of its yaw axis with
respect to the guidance attitude reference. The control
variable is the thruster angle of deflection β. This
launcher is aerodynamically unstable.

As described in [12], during the atmospheric flight
phase, launcher control objectives are to insure:

- closed loop stability with sufficient stability
margins,



- performance with respect to disturbance due to
wind and gusts,

- good tracking of guidance reference,
- robustness with respect to uncertainties on the rigid

and bending modes coefficients.

The control structure is given in figure 4:

Actuators
(thrusters)

LAUNCHER
Sensors

Attitude Ψ and
angular velocity dΨ/dt
measurements

Controller
commanded angle
of deflexion βc

Wind velocity W
Angle of attack i

Noise

Fig. 4 – Launcher control closed loop

4.2. Multi-objective synthesis

To perform our synthesis algorithm, a representative
model of the yaw axis of the launcher is chosen and
the specifications are translated into automatic control
objectives as follows:

1. closed-loop stability with sufficient margins:
decreasing and increasing gain margins have to
stay higher than given specifications.

2. control the destabilizing bending modes: the aim
is to attenuate these modes under 6−  dB except
for the first one which can be controlled in phase
with a sufficient delay margin (one sample
period).

3. limit the angle of attack in case of wind (with a
typical wind profile – see figure 9).

4. tracking of guidance reference

5. rejection of noise disturbances

6. all these objectives have to be robust against
uncertainties (rigid and bending modes)

The objectives are translated into H∞ criteria as
follows (see fig. 5):

(i) S and T modeling
- limiting the angle of attack and reference tracking

are done by penalizing the sensitivity S using a
low-pass filter W1.

- bending modes attenuation and noise rejection
are obtained by penalizing the complementary
sensitivity T with a roll-off filter W2.

The first criterion is then
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(ii) Positivity
A positivity criterion [7] allows to control the first
bending mode. Indeed, defining the transfert

TSH −= , the following property is hold:

R∈ω∀

1)( <ωTjeH  ⇒ ( )( )
2
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2

π
<<

π
− ωTjeL (10)

where L is the open loop transfer function. This
property allows to control in phase a bending mode by
forcing the positivity on some intervals of frequencies,
using a band-pass filter W3. The second H∞ criterion is
then:

( ) 23 γ<− ∞TSW (11)

The chosen structure is given in figure 5 and the
weightings are shown in figure 7. The first criterion
corresponds to the transfer between w1 and ( )Tzz 21 ,
while the second is between w3 and z3.
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Fig. 5 – Closed loop and synthesis structure

A first synthesis is based on classical H∞ synthesis;
then the second optimization is used to separate the
objectives and improve the controller with a static
Youla parameter. It has been noticed that the tuning of
the weightings is made easy due to the objectives
decoupling.

4.3. Results and comments

The obtained controller responses are given in figure 6
and the closed loop transfer responses in figure 7 (the
frequency scale has been normalized with respect to
the sample frequency fs). To test the robustness, the
later are made over different models where rigid and
bending modes uncertain parameters are perturbed. In
all cases, the H∞ objectives are satisfied.

The open loop frequency response is given in figure 8,
with margins and roll-off specifications given with



stars and a horizontal line respectively: the control law
respects the second bending modes attenuation and the
phase placement of the first one. Delay margin of this
mode vary from 0.8 to1.52 sample period.
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Then, temporal aspects are analyzed by simulations
including the complete launcher model with the typical

wind profile given in figure 9 (the temporal scale has
been normalized with respect to the sample period Ts):

- Angle of attack performance (fig. 10) is almost
satisfying for the whole family of models, since the
variation of the peak is from 0.9 to 1.10 (the
normalized specification is 1).

- Attitude tracking (fig. 11) is well verified and the
behavior of the control variables is very satisfying.
Indeed, the angle of deflection and its velocity are
rather far from the maximal allowables values (fig.
12 and 13).

W
in

d 
ve

lo
ci

ty
 W

0 t / Ts = 1950

Fig 9 – Wind profile
�����������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������

0

A
ng

le
 o

f a
tta

ck
 i

0 t / Ts = 1950

1

-1

Fig 10 – Angle of attack i

0

A
tti

tu
de

 Ψ

0 t / Ts = 1950

Fig 11 – Attitude Ψ



-1

0

1
 A

ng
le

 o
f d

ef
le

ct
io

n 
β

�����������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������

�����������������������������������������������������������������������������������������
�����������������������������������������������������������������������������������������

0 t / Ts = 1950

Fig 12 – Control: angle of deflection β
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5. CONCLUSION

A solution to a general multichannel H∞ control
problem has been presented. Previous results are used
to initialize the algorithm whereas the Youla
parameterization allows to improve the results. Each
step is based on matrix manipulations and convex
optimization. Besides matrix manipulations are
numerically well conditioned and convex optimization
can be solved in polynomial time. So it leads to
computationally tractable problems.

This approach offers advantages over existing
methods. It allows to reduce the conservatism by using
a particular Lyapunov function for each objective; it is
not necessary to inverse the changes of variables. Note
however that increasing the number of decision
variables can turn to numerical problems when the
plant order or the number of objectives is large.

The method gives efficient results when applied to an
industrial application such as a space launcher when
two H∞ constraints are considered independently. The
results are satisfying in view of the specifications.
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