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Abstract. In this paper, the stability of discrete-time piecewise linear hybrid systems is in-
vestigated using piecewise linear Lyapunov functions. In particular, we consider switched
discrete-time linear systems and we identify classes of switching sequences that result in
stable trajectories. Given a switched linear system, we present a systematic methodology for
computing switching laws that guarantee stability based on the matrices of the system. In the
proposed approach, we assume that each individual subsystem is stable and admits a piece-
wise linear Lyapunov function. Based on these Lyapunov functions, we compose “global”
Lyapunov functions that guarantee stability of the switched linear system. A large class of
stabilizing switching sequences for switched linear systems is characterized by computing
conic partitions of the state space.
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stable and admits a piecewise linear Lyapunov func-
tion. Based on these Lyapunov functions, we compose
1. INTRODUCTION “global” Lyapunov functions that guarantee stability of
the switched linear system. The main contribution of
In this paper, we study the stability of piecewise lineae paper is that using piecewise linear Lyapunov func-
hybrid systems using piecewise linear Lyapunov fungon we construct a conic partition of the state space that
tions. In particular, we consider discrete-time switchgé used to characterize a large class of switching laws
linear systems. The control problem considered is fi#at result in stable trajectories.
identify classes of switching sequences that result in sta-
ble trajectories The main motivation behind this prob-Stability of switched systems has been studied exten-
lem is that it is often easier to find switching controller§ively in the literature; see for example [7, 13, 15] and
than to find a simple continuous controller. For exanthe references therein. Analysis tools for switched and
ple, in the case when we have multiple control objebybrid systems based on multiple Lyapunov functions
tives, we may design a continuous controller for eaéie presented in [4]. The application of the theoretical
control objective, and control the behavior of the plafgsults to practical hybrid systems may be accomplished
by switching among different controllers. using a linear matrix inequality (LMI) problem formu-
lation for constructing a set of quadratic Lyapunov-like
In order to investigate the stability properties of practfunctions [9, 18].

cal hybrid systems, there is an important need to char-

acterize partitions of the state space that lead to stde stability analysis presented in this paper is based
ble trajectories based on the structural properties of @ piecewise linear Lyapunov functions. Piecewise lin-

switched system. In our approach, we characteriz&@’ Lyapunov functions have been used extensively for
large class of switching signals that result in stable tf#e analysis of dynamical systems. The problem of
jectories. Given a switched linear system, we preseng@nstructing piecewise linear Lyapunov functions and

systematic methodology for computing switching law§eir application to nonlinear and large scale systems
that guarantee stability based on the matrices of thas been considered in [5, 6, 16, 17]. More recently,

system. We assume that each individual subsystenp@sitively invariant polyhedral sets for discrete-time dy-
namical systems have been studied in [2]. Lyapunov
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The paper is organized as follows. In Section 2,32 PIECEWISE LINEAR LYAPUNOV FUNC-
mathematical model for discrete-time switched linedalONS

systems is introduced and the problem of identifying . .

stabilizing switching sequences is stated. Sectionlfthis section, we briefly present some background ma-
presents the necessary background for piecewise lin&4f2l necessary for the stability analysis of switched lin-
Lyapunov function. The emphasis is put on comput§&r Systems presented later in this chapter.

tional methods for constructing such Lyapunov fun%,-
tions. The technical results for the characterization o
stabilizing switching sequences are presented in Sgge consider the discrete-time linear systefh+ 1) =
tion 4, and the approach is illustrated with a numeric;allx(t) wherez(t) € R™ andA € R™*™,

example.

1{1. Set-induced Lyapunov functions

Definition 1 A nonempty sef? C R" is said to be§os-
itively) invariant for the systeme(t + 1) = Ax(t) if
z(0) € P implies thatz(t) € P for everyt € Z (Z™).

In this section, We.consider switched discrete-time lif5 the case when the system admits a positively in-
ear systems described by variant polyhedral seP containing the origin, a Lya-

_ _ punov function can be constructed by considering the
wt 1) =Agelt), g€ Q={L....N} D Minkowski functionagauge functiop of P; see for
wherez(t) € R™ andA4, € R"*". The mathematical example [17, 3]. Consider a polytoge ¢ R" and
model described by Equation (1) represents the cont@ssume that € int(P). The Minkowski functional of
uous portion of piecewise linear hybrid dynamical sy¢? is defined byV(z) = inf{p > 0|z € pP} where
tems. The particular modgat any given time instantpP = {pxz|x € P}.

may be selected by a decision-making process. We repé;[ F; be a face of a polytope and consider the corre-

2. PROBLEM STATEMENT

resent such a decision-making process by a switchiln , i
law of the form sponding hyperpland; as shown in Fig. 1. The hyper-

plane can be described (perhaps after normalization) by
q(t+1) = (q(t), z(t)). (2) Hi={zecR": (z,w;) =1}.

Given z(t), the next state is computed byt + 1) =
Aqyz(t). The functions : Q@ x R™ — R™ is discontin-
uous with respect t@. Such a switching law is usually
defined using a patrtition of the state space.

cone(F )

Our objective is to investigate the stability of the
switched linear system (1) under the switching law (2).
Note that the originc, = 0 is an equilibrium for the
system (1). Furthermore, for a fixed switching law, the
switched system (1) can be viewed as a special case of a
time-varying linear system, and therefore the usual defi-
nitions of stability can be used; see for example [1]. The
control problem considered in this chapter isiden-

tify classes of switching sequences that result in stable
trajectories It is assumed that all the individual sub-
systems are stable and therefore constant switching Siigure 1: A polytopeP, a faceF; and its corresponding
nals of the formg(t) = i € Q for everyt result in hyperplanef;.

stable 'Frajectorles. T_he Problem_cor_13|de_red h?.re Sfce the seP includes an open neighborhood of the
be partially solved using “slow switching signals”; se€

. origin, R™ can be partitioned into a finite number of
for example [13] and the references therein. Here we ,
. . cones defined as follows. Each faEeof the polytope

follow a different approach in order to develop a sys- . . :
\Izgn be described as the convex hull of its extreme points

tematic methodology to compute regions of the sta c R", j = 1,....r. A finitely generated cone can

space where syv.|tch|ngs are allowed t(.) OCCUI’..FII’St,. € defined for the facg' . Consider a particular facg
compute a partition of the state space into conic regions : . ;
. and the corresponding cone. Singec 0P there exist

based on the matrice$, of the system. Then, we char- . . A
X S I : uniquep > 0 andz € F; such thatr = pz and the
acterize a large class of stabilizing switching signals kl?f

. o ) : . ' inkowski functional can be computed by
requiring the switchings will occur in certain regions o

the state space. x R
Vie) = 12 )= o) = (o) ©)

since (#,w;) = 1. Therefore, forz € condF;), the
Lyapunov function induced by the sBtcan be written



asV(z) = (z,w;). Consequently, the Lyapunov funcRemark The conditiony;| + |o;| < 1 can be replaced

tion can be computed far € R™ by by |pi| + |oi| < 1 with the additional hypothesis that
to each eigenvalug; such that|u;| + |o;| = 1 with
V() = 123%’;1@ wi)- (4) multiplicity v; there correspond; linearly independent

eigenvectors.
3.2 Lyapunov Functions Defined by the Infinity
Norm The matrixi/V can be computed as the solution to the
matrix equation A — QW = 0 with the condition
A special case of piecewise linear Lyapunov function).|| ., < 1. Itis well known [8] that if the matrices
arise when the st is centrally symmetric. Inthis caseand @ do not have common eigenvalues then the only
the Lyapunov functioV/(z) can be represented usingolution is' = 0. The important assumption in the
the infinity norm. Furthermore, there exists a class @orollary 2 is thati € R™*" with rankW = n. In
linear systems for which such a Lyapunov function caRis case the matri}¥’ can be computed as the similar-
be computed very efficiently. Consider the followingy transformation matrix by whict is transformed to

Lyapunov function candidate’(z) = [[Wz|l where theReal Jordan Canonical Forfi2].
W € R™ ™ and||-|| « denotes the infinity norm defined
by || 2]|cc = maxi<i<n |@i- 3.3 Computer Generated Lyapunov Functions

Theorem 1 ([2]) V(z) = ||Wz||~ is a Lyapunov func- It should be noted that in our stability analysis for
tion for the system (¢ + 1) = Ax(t) if and only if there switched linear systems, it is not necessary for the in-
exist a matrixQ € R™*™ such thati A — QW = 0 dividual invariant polyhedral sets to be centrally sym-
and||Q||« < 1. metric. Positively invariant polyhedral sets for stable
discrete-time systems can be determined usiom-
It should be noted a generalization of the above theorgjter generated Lyapunov functiof. The class of
for every normed space that satisfies siedf-extension computer generated Lyapunov functions has been used
propertyhas been presented in [14]. for stability analysis of nonlinear systems in [5, 6, 16,
17]. The main idea is to construct a Lyapunov function
that guarantees the stability of a set of matrices that is
determined by applying Euler’s discretization method
to a nonlinear differential equation.

Corollary 1 ([2]) If V(z) = |[Wz|« is a Lyapunov
function for the system(t + 1) = Az(t) then the poly-
hedral setP = {z € R" : ||Wz||- < 1} is positively
invariant. In addition, the sepP for every realp > 0

is also positively invariant. Our approach here is to use a computer generated Lya-

. . nov function for h individual m. n-
The setP is a centrally symmetric polyhedron. In thé).u ov function for each individual subsyste Co

. sider the matrixd € R™*" and letP, ¢ R" be a
case whemankW = n (m > n) thenP is bounded. . o
The number of vertices of the polyhedr#trises with bounded polyhedral region of the origin. We denote the

the number of rowsn. If 17" € R™" then we obtain a convex hull of P by cony P). Following [5] we define

centrally symmetric polyhedron with* vertices. Note S 00
that in the case wherunkW < n, thenV (z) is posi- P = conv U AP, |, P*= U P,. (5)
tive semidefinite and cannot be a Lyapunov function for i=0 i=0

the system. HoweveLEDV = Viz(t+ 1)_] _V[x(_t)_] < The following results can be derived from [5]: First, the
0the set? = {z € R" : [[Wz|o < p}isapositively mauix 4 s stable if and only iP* is bounded. Second,
mve_mant set_(_for any > 0), but is not always a do-_ if Ais stable then each sBf can be computed b,
main of stability since it can be unbounded (expandifing finitely many iterations. Furthermore, it is shown

infinitely into 7 — rankWW dimensions). in [6] that if there exists constadt € R such that the

In order to study the stability properties of the switcheggenvalues ofd satisfy the condition);| < K < 1,

linear system (1) we assume that each individual sU€" the seP” is finitely computable. In this case the

system admits a piecewise linear Lyapunov functiofett IS Polyhedral as the convex hull of finitely many
ints. Furthermorel* is a positively invariant poly-

Therefore, the efficient computation of each Lyapun&?
function is very important for the application of thd'edral setof the system.
methodology to practical hybrid systems. A class of
linear systems for which such a Lyapunov function cafl STABILIZING SWITCHING SEQUENCES
be computed very efficiently is presented in [2].
In this section, we present an approach based on multi-
Corollary 2 ([2]) If all the eigenvalues,; = 1i; + jo; ple Lyapunov functions for the stability analysis of the
of then'" order linear systemx(t + 1) = Az(t) are switched system (1). The main contribution is an effi-
in the open squargu;| + |o;| < 1, then there exists cient characterization of a class of switching laws of the
a matrix W € R™*" with rankWW = n such that the form (2) which guarantee the stability of the system.
polyhedral setP = {z € R" : |[Wz|x < 1l}isa
positively invariant set for the system. We assume that each individual subsystem admits a
positively invariant polyhedral set that contains the ori-



gin which is described by and the set

P,={zeR": Wiz <1} Q=CnHE. (12)
whereW? € R™*™ and1 = [1,...,1]T € R™. We It is shown in the following lemma that the multiple
denote the rows of the matri¥’? by w! € R™, ¢ = Lyapunov function defined in Proposition 1 is decreas-
1,...,mq. The Lyapunov function induced by the seihg if the system switches from to ¢g» while z € Q.

P, can be described b
! Y Lemma 1 For everyx € Q we have that/,, (z) <

1<i<my

roof For everyxz € C the Lyapunov functions for

Note that if P, is centrally symmetric then there exist bsvst . = P q
W2 ¢ R™*™ and the corresponding Lyapunov functio € Subsys emiare given 8%, (z) = {z,wi) an
(x) = (z,w?) respectively. Ifz € Q we have

can be written a¥ = [|[Wiz||oo. .
a(2) = [Wie] that (z, wi; —w{') < 0sincex € H, and therefore
We consider a clas§ of switching sequences of theVy, (z) < Vg, (2). a

form . .
Since0 € H{, the setQ2 is a clearly a polyhedral

5= (qo,t0), (q1,t1)s -+, (g, t5), -+, x(to) = zo.(7) CONEas the intersection of cones with a common apex
(z = 0) as shown in Fig. 2. The sétZ> can be com-
Itis assumed that if is finite thent; ,; = oo and that puted as the union of polyhedral cones by repeating the
g; # ¢;+1- Such a sequence can be generated by #isove procedure for all the pait&;", F*) of (n—1)—
switching law dimensional faces of the polytopeas shown in the fol-

, lowing algorithm.
gi(t; +1) =0(gj-1(t;),2(t)), j=1,2,....  (8)
Proposition 1 Consider a switching sequengec S.

If Vg, [z(t; +1)] < Vi, [2(t)], 7 = 1,2,..., then |INPUT: W, W,
the switched system(t + 1) = A,z(t) is stable inthe fori; =1, .. Mg,

Algorithm for the computation of

sense of Lyapunov. foris =1,...,my,

. . . = F F®2),
Proof Consider the multiple Lyapunov function de- C CondF;,") N condFy,’);
i if C # 0 then
fined byV[:Z?(t)] = ‘/qj [I(t)], t]‘ <t < thrl then Ha — {.’E cER": <.’E,U}q2 _ wq1> < 0}
we have that for every > t¢o,t € Zt, DV(z) = o C N H: 2 n
V{z(t+1)] — V]z(t)] < 0. Note that the switched sys- qui O qulg,z
tem for a fixed switching sequengecan be viewed as a - TTa ’

. . . . ” - end

a time-varying system. Sindé(z) is positive definite nd
and radially unbounded, addV’ negative semidefinite,

. . ) nd
the system is stable in the sense of Lyapunov; see for

. |
example [1] X, |
If the conditionV, [z(t; + 1)] < Vg,_, [=(t;)] is used
in the previous proposition, then the origin is asymptot- o)
ically stable for the switched system.

. : . . P
A multiple Lyapunov function composed by piecewise %
linear Lyapunov functions of the individual subsystems q
offers a significant advantage. It allows the characteri- F j .
zation of the switching sequences that satisfy the con- Fql X1
dition of Proposition 1 by computing a conic partition P iy
of the state space. Consider a pair of subsystems with %
matrices4,, andA4,,. We want to compute the region RN
q

Q= {z € R": Vyu(w) < Vi (@)} 9) H;
Consider the faces}' and F{* of the polytopesP,;, _ . N
andP,, respectively and assume that Figure 2: The conic partition of the state space.
C = condF™) N cond F%) # . (10) The above procedure can be repeated for every pair of

" 2 subsystems to identify a class of stabilizing switching
Next, we define the halfspace signals for the switched linear system. The class of

. 0 “ switching sequences is characterized by the following
HE ={reR": (z,w] —wj) <0} (11) result.

i/ =



Theorem 2 Consider the class of switching sequencés(z) = (z,w?) with w! = [1,2] andw? = [1,—2]
S defined by, (¢t; + 1) = d(g;—1(t;), x(t;)), x(t;) € respectively. We consider the halfspace

Qg , #0forj=1,2,.... The switched linear system ) ) )

z(t + 1) = Agx(¢) is stable in the sense of Lyapunofi = {zeR™: (z,0” —w’) <0}

for every switching sequeneec S. = {zeR?: x>0}

Proof By induction, we have that it = (qo,to) Therefore, for every € Q = condF') ncondF?)N
then the system is stable sincel,, is sta- Hf we have that’z(z) < Vi(z).

ble. Assume that the switched system is sta-
ble for s = (qO7t0)7(QIat1)7'~'7(Qj*17tj*1) ‘
and consider the switching sequenc€ = o /

(q0,t0)s (q15t1)s -+, (gj-1,t5-1), (g5, t5)- Since
x(t;) € Qf_,, we have thatV,[z(t; + 1)] <
Vg1 [z(t;)]. Therefore, the multiple Lyapunov func-
tion defined byV [z (t)] = Vg, [z(t)], t; <t < tj1 osp = o
is decreasing for everyand the system is stable in the %
sense of Lyapunov. m|

We have presented a methodology for the partition of

the state space into conic regions that are used to char- ~
acterize a class of stabilizing switching sequences. The -.sp”-—-
following example illustrates the approach.

Example Consider the switched discrete-time linear X
systemz(t + 1) = Agz(t), ¢ € {1,2} where

[ 1.7 4 } 4 [0,95 ~15 ] Figure 3: The regiof.
) 2 = .

Ai=1 o8 _15 0.75 —0.55

By repeating the procedure for all the pairs of faces for
The system with matrixd; has two complex conjugatethe polytopes”; and P> we compute the region
eigenvalues\; » = 0.1+ ;0.8. The real Jordan canoni-

2 2,
cal form can be computed by the similarity transformgl-gl = {zeR”: Vg (z) < Vi (2)}

tion = {ze€R?: 25 >0}
Q1= WA (W = [ 0.1 08 ] Similarly we have that
—-0.8 0.1
here Qi = {zeR?: V,(2) <V (2)}
= {zeR?: z, <0}
wio |12
“1lo0o 1 |- Therefore, for any switching sequengeayiven by the
switching lawgs (t41) = 6(q1(¢), z(t)), onlyif z(t) €
We have that Q22 andqi(t + 1) = 6(qa(t), z(t)), onlyif z(t) €
n Qg the switched system is stable. A stable trajectory is
1Q1lloc = max > gl =09<1 shown in Fig. 4.
Stsn j:l

The characterization of the stabilizing switching se-
and thereforeV; (z) = ||W'z| ~ is a Lyapunov func- quences is based on sufficient conditions. Therefore, for
tion for the system. Furthermore, the set a switching sequencethat does not satisfy the formu-
lated conditions, the switched system is not necessarily
unstable. However, the switched system of the example
fgan generate unstable trajectories as shown in Fig. 5.

P={zcR?: |[Wl|w <1}

shown in Fig. 3 is a positively invariant polyhedral se
The matrix A2 has two complex conjugate eigenvaly -~oNCLUSIONS

uesi; o = 0.2 £140.75. A positively invariant poly-

hedral setP, is described by the Lyapunov functiorin this paper, the stability of piecewise linear hybrid

Va = [|[W2z||» where systems using piecewise linear Lyapunov functions is
investigated. In the proposed approach, we assume that
W2 = [ 1 -2 } . each individual subsystem is stable and admits a piece-
10 wise linear Lyapunov function. Based on these Lya-

punov functions, we compose “global” Lyapunov func-

tions that guarantee stability of the switched linear sys-
tem. These multiple Lyapunov functions correspond
to conic partitions of the state space which are effi-

Consider the faceB* andF? of the polyhedral set®;
and P, respectively as shown in Fig. 3. For everye
cond F1)Ncond F?) we have that; (z) = (z,w') and
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