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Abstract: Gain and phase margins are two important frequency domain speci�cations
which are widely used for controller design. In this paper, a procedure is given for
computing the robust gain and phase margins of systems with an uncertain transfer
function by using the 2q-convex parpolygonal value set of polynomials with aÆne
linear uncertainty. An example is included to illustrate the bene�t of the method
presented.
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1. INTRODUCTION

The subject of robust stability of control systems
with parameter variations has been a focus of
attention of researchers [1-4] in recent years fol-
lowing the publication of Kharitonov's theorem [5]
on interval polynomials and the edge theorem [6]
for aÆne polynomials. However, beyond stability,
it is of interset to guarantee some measure of
robust performance for systems with parameter
uncertainties. In classical control theory, gain and
phase margins are two important frequency do-
main performance measures widely used for con-
troller designs. For systems with a nominal trans-
fer function these margins are computed from the
Nyquist or Bode plots of the open loop transfer
function. However, in the case of systems with
parametric uncertainties, the computation of the
gain and phase margins becomes much more com-
plicated. To overcome this diÆculty, one needs
to compute the frequency response of uncertain
systems, such as the Nyquist or Bode envelopes,
or to convert the problem to one of robust stability
of uncertain polynomials.

In this paper the computation of the robust gain

and phase margins of systems with uncertain
transfer functions whose numerator and denom-
inator polynomials are a polynomial family of the
form

P (s; q) = a0(q) + a1(q)s+ :::::::::+ an(q)s
n (1)

is considered. Here the coeÆcients ai(q) depend
linearly on q = [p1; p2; ::::; pq]

T and the uncer-
tainty box is Q = fq : pi2[pi; pi]; i = 1; 2; ::::; qg
where pi and pi are speci�ed lower and upper
bounds of the ith perturbation pi, respectively.
In other words, the system's transfer function is
assumed to be

G(s; q; r) =
N(s; r)

D(s; q)
=

b0(r) + b1(r)s + ::::::::+ bm(r)s
m

a0(q) + a1(q)s+ ::::::::+ an(q)sn
(2)

where q = [p1; p2; ::::; pq ]
T and r = [d1; d2; ::::; dr]

T

and Q = fq : pi2[pi; pi]; i = 1; 2; ::::; qg; R = fr :

di2[di; di]; i = 1; 2; ::::; rg. In the literature, moti-
vated by the Kharitonov and the edge theorems,
several papers [7-13] have studied the computa-
tion of the frequency response and the robust gain



and phase margins of control systems under para-
metric uncertainty. The majority of these papers
deals with interval transfer functions, where the
numerator and denominator polynomial coeÆ-
cients change independently. However, in practical
feedback system analysis and design problems the
coeÆcients of the plant transfer function do not
necessarily vary independently. For the dependent
case, the edge theorem has been used, however,
the main diÆculty associated with the edge the-
orem is computational complexity which is due
to the exponential growth of exposed edges with
respect to the number of uncertain parameters.
On the other hand, in [14-16], by using the 2q-
convex parpolygonal value set of a polynomial of
the form of Eq.(1) (for each s = j!, the 2q-convex
parpolygon is de�ned as the outer edges of the im-
age of exposed edges (q2q�1 edges)), the Nyquist,
Bode and Nichols envelopes, the controller synthe-
sis and the absolute stability problem for systems
with the transfer function of Eq.(2) were stud-
ied. The distinguishing features of the results of
[14-16] and of this paper is to make use of the
2q-convex parpolygonal value set which greatly
reduces the computational complexity. Here, in
particular, it is dealt with the computation of the
extremal gain and phase margins for the systems
with uncertain transfer function of Eq.(2). Under
the assumption of no transition frequency [14], it is
shown that these margins can be computed from
the extremal subset of the family of Eq.(2) which
is identi�ed by using a single value of frequency
within (0;1). And using this result, the Astrom-
Hagglund method is used for controller design.

The paper is organized as follows: In Section 2, the
construction procedures of the 2q-convex parpoly-
gon and Nyquist envelope are given. The compu-
tation of the robust gain and phase margins for a
control system with an uncertain transfer function
of Eq.(2) is discussed in Section 3. In Section 4,
an example is given to illustrate the bene�t of the
method presented. Section 5 includes concluding
remarks.

2. CONSTRUCTION OF CONVEX
PARPOLYGON AND NYQUIST ENVELOPE

For systems de�ned by a nominal transfer func-
tion, the gain and phase margins are computed
from the Nyquist plot or the Bode plot of the
open loop system. However, when the system pa-
rameters are subject to perturbations, one needs
to construct the Nyquist or Bode envelopes in
order to compute the worst case or the robust
gain and phase margins. Therefore, in this section,
we �rst investigate the construction of the 2q-
convex parpolygonal value set of the polynomial
family given by Eq.(1). Then, using the 2q-convex

parpolygonal value set, the Nyquist envelope of
a given transfer function of the form of Eq.(2) is
discussed.

2.1 Construction of 2q-convex parpolygon

The corresponding polytope of a family of poly-
nomials of Eq.(1) in the coeÆcient space has 2q

vertices and q2q�1 exposed edges and it can be
rewritten as

P (s; q) = f0(s) + f1(s)p1 + :::+ fq(s)pq ; q2Q (3)

The 2q vertex polynomials of the polytope of
P (s; q) can be written in the following pattern

c1(s; q)=f0(s)+f1(s)p1+f2(s)p2+ :::+fq(s)pq

c2(s; q) = f0(s)+f1(s)p1+f2(s)p2+ :::+fq(s)pq

� � �

c2q (s; q) = f0(s)+f1(s)p1+f2(s)p2+ :::+fq(s)pq

(4)

The value set of Eq.(1) can be obtained by map-
ping the q2q�1 exposed edges in the complex plane
or taking the convex hull of complex plane images
of the vertices of the parameter box for each
s = j! and the outer edges of the value set de�ne
a 2q-convex parpolygon. The q2q�1 edges in the
complex plane can be divided into q groups where
each group has the same number of edges, 2q�1

edges, [17]. All edges in group i(i = 1; 2; :::; q) are
parallel to each other with the same slope. Thus,
knowing one edge from each group is suÆcient to
construct the 2q-convex parpolygon. For example,
let e(ci; cj) denote the edge with end points ci

and cj and for clarity of presentation consider
Fig.1a which is the image of the exposed edges
of a polytope with q = 3 parameters. It can be
seen that the edges e(c1; c2), e(c3; c4), e(c5; c6) and
e(c7; c8) are parallel to each other as shown in
Fig.1a. Two of them which have the maximum
and minimum intersections with the imaginary
axis identify two edges of a 2q-convex parpolygon
as shown in Fig.1a and Fig.1b. Similarly, the other
edges needed for construction of the 2q-convex
parpolygon can be identi�ed. If there are vertical
edges which have no intersection with the imagi-
nary axis, in this case from the maximum and the
minimum intersections with the real axis, the two
required edges can be found. A general formula
[17] for the intersection point of the edge line with
the imaginary axis is

y
i =

!

Ei

qX

k=1

(OkEi �OiEk)(pk � pk); k 6=i(5)

and with the real axis is



x
i =

1

Oi

qX

k=1

(OiEk �OkEi)(pk � pk); k 6=i(6)

where i = 1; 2; ::::::; q, pk takes either pk or pk

depending on which edge it is associated with and
Ei and Oi are the even and odd parts of fi(s).
Further information about the value set of the
uncertain polynomials and the construction of the
2q-convex parpolygon can be found in [1] and in
[17].

For di�erent values of frequency, the edges of a 2q-
convex parpolygon may be di�erent. The following
theorem is given in order to divide the frequency
axis, !2[0;1), into a �nite number of intervals
where in each interval the edges of the 2q-convex
parpolygon are the same. The proof of the follow-
ing theorem can be found in [14, 17].
Theorem 1: For i; j = 1; 2; :::; q and i6=j, the
positive real roots of

Re[fi]Im[fj ]�Re[fj ]Im[fi] = 0 (7)

divide the frequency axis into �nite intervals
where in each interval the 2q edges of the q2q�1

exposed edges which constitute the boundary of
the convex parpolygon remain unchanged. The
frequencies where the edges which constitute the
boundary of the convex parpolygon may change
will be referred to as transition frequencies.
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Fig. 1. a) Image of exposed edges b) 2q-convex
parpolygon

2.2 Nyquist envelope

Consider the transfer function given in Eq.(2)
and let vn1, vn2, vn3,..., vn2r and vd1, vd2, vd3,...,
vd2q be the vertices of the 2r and 2q-convex
parpolygons of N(s; r) and D(s; q) at s = j!

�

(see Fig.1.b), respectively. Then de�ne the sets
SNV

and SNE
which contain the vertices and the

edges of the 2r-convex parpolygon of N(s; r) at
s = j!

� as

SNV
= fvn1; :::; vn2rg; SNE

= fen1; :::; en2rg (8)

similarly de�ne SDV
and SDE

for the denominator
as

SDV
= fvd1; :::; vd2qg; SDE

= fed1; :::; ed2qg (9)

where en1; :::; en2r and ed1; :::; ed2q are the edges of
2r and 2q-convex parpolygons, respectively. Then,
it is shown in [15] that
Theorem 2: At s = j!

�,

@G(j!�; q; r)�(
SNV

SDE

[
SNE

SDV

) (10)

where @ denotes the boundary and SNV
, SNE

,
SDV

and SDE
are de�ned in Eqs.(8-9). This means

that the number of vertices of the corresponding
polytopes of the numerator(denominator) poly-
nomials, which need to be considered is reduced
from 2r(2q) to 2r(2q) and the number of edges
which need to be considered is reduced from
r2r�1(q2q�1) to 2r(2q).

The results of Section 2.1 enable one to identify
the edges which constitute a 2q-convex parpoly-
gon of a polytopic polynomial family of Eq.(1).
Therefore, the advantage of theorem 2 is that we
do not need to consider all the exposed edges
and vertices of the corresponding polytopes of
the numerator and denominator polynomials. For
example, in order to �nd a Nyquist template of a
transfer function of Eq.(2) with r = 3 and q = 4
uncertain parameters then using known results
one needs to �nd the image of 7(26) = 448 edges,
however, from theorem 2, one needs to �nd the
image of only 96 edges.

Now, assume that neither N(s; r) nor D(s; q) has
any transition frequency. This assumption guar-
antees that the edges for a single frequency which
constitute the 2r and 2q-convex parpolygons re-
main unchanged for all !2(0;1). Under the as-
sumption of no transition frequency, the following
theorem is given in [16] for characterizing the
boundary of the Nyquist envelope.
Theorem 3: Assume that neither N(s; r) nor
D(s; q) has any transition frequency. Then,

@G(j!; q; r)�GE(j!) = (
SNV

SDE

[
SNE

SDV

) (11)

where @ denotes the boundary, GE means ex-
tremal system and SNV

, SNE
, SDV

and SDE
are

de�ned in Eqs.(8-9).

3. ROBUST GAIN AND PHASE MARGINS

As stated before, the gain and phase margins
are two important frequency domain speci�ca-
tions. This section deals with the calculation of
the robust gain and phase margins for systems
with an uncertain transfer function of the form of
Eq.(2) using the theory presented in the previous
sections.



Suppose that a closed loop system with an un-
certain plant of the form of Eq.(2) is stable then
the robust gain margin is the largest value of
the gain K greater than 1 for which the stability
of KG(s; q; r) is preserved and the robust phase
margin is the largest value of phase � for which the
uncertain system with e

�j�
G(s; q; r) is robustly

stable. Thus, the worst case gain margin K
� and

phase margin �
� can be stated as

K
� = infG(s)2G(s;q;r)KG

�
� = infG(s)2G(s;q;r)�G (12)

where KG stands for gain margin of G(s) and �G

stands for phase margin of G(s).

Using the following theorem, the values of K� and
�
� can be computed from the extremal system,
GE(s) of Eq.(11).
Theorem 4: Suppose a unity feedback system
with G(s; q; r) is stable and assume that neither
N(s; r) nor D(s; q) has any transition frequency

(if there is transition frequency, see Remark 1).
Then, the robust gain and phase margins are

K
� = infG(s)2GE(s)KG

�
� = infG(s)2GE(s)�G (13)

where GE(s) = (SNV
=SDE

)[(SNE
=SDV

) and
SNV

, SNE
, SDV

and SDE
are de�ned in Eqs.(8-

9).
Proof: Let A and B be the two complex plane
polygons with vertex sets SAV and SBV , and edge
sets SAE and SBE , respectively. Then, from the
complex plane geometry, the following is known

@(A+B)�(SAE + SBV )[(SAV + SBE ) (14)

Now, for the calculation of the gain margin, one
needs to �nd the maximum value of K greater
than 1 for which

�(s) = KN(s; r) +D(s; q) (15)

is Hurwitz stable. From theorem 1, it is clear
that if there is no transition frequency then the
identi�ed edges which constitute the 2r and 2q-
convex parpolygons for a single frequency remain
unchanged for all !2(0;1). The multiplication of
a 2r-convex parpolygon with a �xed K is still a
2r-convex parpolygon. Thus, for a �xed value of
K, one can write

SAV = KSNV
; SBV = SDV

and

SAE = KSNE
; SBE = SDE

and from Eq.(14), the following equation can be
written

�(j!)��E(j!) =

(KSNE
+ SDV

)[(KSNV
+ SDE

) (16)

Therefore, the stability of �E(s) implies the sta-
bility of �(s). For the phase margin calculation,
the gain K of Eq.(15) will be a complex gain such
as K = e

�j� = cos(�) � jsin(�) and the same
proof will be valid. 2

The following procedure is given for computing
the robust gain and phase margins:

1) Rewrite N(s; r) and D(s; q) in the form of
Eq.(3).

2) From Eq.(7), �nd that there is no any transition
frequency for both N(s; r) and D(s; q) (if there is
any see Remark 1).

3) Choose an arbitrary value of frequency within
(0;1) and by using Eqs.(5) and (6), identify the
2r and 2q-convex parpolygons edges.

4) From Eqs.(8-9), �nd vertex and edge sets
(SNV

; SNE
; SDV

and SDE
) and thus obtain the

extremal system GE(s) of Eq.(11).

5) Use theorem 4 compute the robust gain and
phase margins.

Remark 1:

a) For clarity of presentation, theorem 4 is given
for the no transition frequency case. If there is
a transition frequency then the Nyquist envelope
can be obtained by using theorem 2. Thus, the
result of theorem 4 can be reformulated for this
case. However, the GE(s) of Eq.(11) may be
di�erent for di�erent frequency intervals.

b) The result of theorem 4 can be extended to
the feedback system with a �xed controller, C(s),
and an uncertain plant G(s; q; r). In this case, the
extremal system will be C(s)GE(s) [15-16].

4. EXAMPLE

Consider

G(s; q; r) =
N(s; r)

D(s; q)
=

d1

p5s
4+p4s

3+(p2+p3)s2+(p1+0:5p2+p3)s+p1

where d12[0:9; 1:1], p12[0:965; 1:035], p22[0:59;
0:73], p32[0:5; 0:65], p42[0:33; 0:41] and p52[0:02;
0:072]. The aim is to �nd the parameters of the
PID controller of the form

C(s) = Kp(1 + sTd +
1

sTi
) (17)

for which the phase margin of the system is
about 'm = 45Æ using the Astrom-Hagglund



method [18]. The Astrom-Hagglund controller
tuning method is based on the idea that a point
on the Nyquist plot of a given transfer function
can be moved to a selected point in the complex
plane by choosing suitable controller parameters.
Such an appropriate point for tuning is the inter-
section of the Nyquist curve with the negative real
axis which is traditionally described as the critical
point. However, for an uncertain plant, there are
many Nyquist curves which cross the negative real
axis or for a �xed frequency there are many points
in the complex plane. Therefore, it is necessary to
move the worst case point of the Nyquist envelope
to a selected position in the complex plane. In
order to do this, one needs to use the worst case
speci�cations.

Now, since N(s; r) = d1, for all !2(0;1) the sets
SNV

and SNE
are

SNV
= f0:9; 1:1g and SNE

= f0:9 + 0:2�g(18)

where �2[0; 1]. Using theorem 1 it was com-
puted that there is no any transition frequency

for D(s; q). Thus, one single value of frequency
within !2(0;1) is suÆcient to identify the edges
of the 2q-convex parpolygons of D(s; q). We found
that the edges, e(c7; c8), e(c25; c26), e(c22; c24),
e(c9; c11), e(c18; c22), e(c11; c15), e(c18; c26), e(c7;
c15), e(c8; c24) and e(c9; c25) (here, c7, c8, c9; ::: are
the vertex polynomials of the polytope of D(s; q)
which constitute the edges of a 2q-convex parpoly-
gon and they can be obtained by using Eqs.(5-6)),
constitute the boundary of the 2q-convex parpoly-
gons of D(s; q). Thus for all !2(0;1), the sets
SDV

and SDE
can be obtained from Eq.(9).

The 30 2q-convex parpolygons of D(s; q) for
!2[0; 3] are shown in Fig. 2 and Fig. 3 shows the
Nyquist template of extremal system, GE(s), at
! = 1:5rad=sec. It is clear that the extremal sys-
tem has 30 systems with one unknown parameter
�2[0; 1]. On the other hand, using edge theorem,
it can be seen that the extremal system has 192
system each of which has one unknown parameters
namely �2[0; 1]. So, the computational gain for
this example is about 85%.

The worst case gain margin of G(s; q; r) is
2:17(6:73db) and achieved at

G(s) =

1:1

0:072s4 + 0:41s3 + 1:09s2 + 1:76s+ 0:965

and the pahse margin is 124:5Æ and achieved at

G(s) =

1:1

0:02s4 + 0:41s3 + 1:23s2 + 1:83s+ 0:965

Using the Astrom-Hagglund method, we found
the values of the parameters of a PID controller
to be

Kp = 1:53; Td = 0:58 and Ti = 2:33

Thus , the designed PID controller is

C(s) =
2:07s2 + 3:56s+ 1:53

2:33s
(19)

The Nyquist envelopes ofG(s; q; r) and C(s)G(s; q
; r) are shown in Fig.4. From C(s)GE(s), it was
found that the robust gain margin of C(s)G(s; q; r)
is 1:6(4:1db) and the phase margin is 45Æ.
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Fig. 2. 2q-convex parpolygons of D(s; q)
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Fig. 3. The Nyquist template of G(s; q; r) at ! =
1:5rad=sec

5. CONCLUSION

In this paper, the problem of robust gain and
phase margins for systems with parametric un-
certainties de�ned by Eq.(2) has been studied.
A novel feature of the present approach is the
use of the 2q-convex parpolygonal value set and
theorem 1, to obtain an extremal subset of the
uncertain family which characterize the boundary
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Fig. 4. Nyquist envelopes of G(s; q; r) and
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of the Nyquist envelope. Thus, the result given
in the paper reduces the computational burden
which occurs using the edge theorem greatly. The
example given clearly shows the bene�t of the
method presented from a computational point of
view.

6. REFERENCES

[1] Barmish, B. R. New Tools for Robustness of

Linear Systems. MacMillan, NY, 1994.

[2] Bhattacharyya, S. P., Chapellat, H. and Keel,
L. H., Robust Control: The Parametric Approach.
Prentice Hall, 1995.

[3] Ackermann, J. Robust Control: Systems with

Uncertain Physical Parameters. Springer-Verlag,
1993.

[4] Djaferis, T. E., Robust Control Design: A Poly-

nomial Approach. Kluwer Academic Publishers,
Boston, 1995.

[5] Kharitonov, V. L., \Asymptotic stability of an
equilibrium position of a family of systems of lin-
ear di�erential equations," Di�erential Equations,
Vol. 14, pp. 1483-1485, 1979.

[6] Bartlett, A. C., Hollot, C. V. and Lin H., \Root
location of an entire polytope of polynomials:
it suÆces to check the edges," Mathematics of

controls, Signals and Systems, Vol. 1. pp. 61-71,
1988.

[7] Hollot, C. V. and Tempo, R., \On the Nyquist
envelope of an interval plant family," IEEE Trans.

Automat. Contr., Vol. 39, No. 2, pp. 391-396,
1994.

[8] Keel, L. H. and Bhattacharyya, S. P., \Control
system design for parametric uncertainty," Int. J.
Robust and Nonlinear Contr., Vol. 4, pp. 87-100,
1994.

[9] Argoun, M. B. and Bayoumi, M. M., \Robust
gain and phase margins for interval uncertain
systems," 1993 Canadian Conf. on Electrical and

Computers Engineering, Vol. 1, pp. 349-352, 1993.

[10] Tan, N. and Atherton, D. P., \AISTK-A soft-
ware package for the analysis of interval systems,"
IEE Colloquim: Robust Control-Theory, Software

and Application, London UK, Digest No:97/380,
pp.4/1-4/7, 1997.

[11] Fu, M., \Computing the frequency response
of linear systems with parametric perturbations,"
Syst. Contr. Lett., Vol. 15, pp. 45-52, 1990.

[12] Bartlett, A. C., \Nyquist, Bode and Nichols
plots of uncertain systems," Proc. Amer. Contr.

Conf., pp. 2033-2036, San Diego, CA, 1990.

[13] Bartlett, A. C., \Computation of frequency
response of systems with uncertain parameters: a
simpli�cation," Int. J. Contr., Vol. 57, No. 6, pp.
1293-1309, 1993.

[14] Tan, N. and Atherton, D. P., \Magnitude
and phase envelopes of systems with aÆne linear
uncertainty," International Conf. on Control'98,

UKACC, Swansea UK, pp.1039-1044, 1-4 Sept.
1998.

[15] Tan, N. and Atherton, D. P., \Controller
synthesis technique for systems with aÆne linear
uncertainty," 14th World Congress of IFAC, Vol.
G, pp. 133-138, July 5-9, 1999.

[16] Tan, N. and Atherton, D. P., \Absolute stabil-
ity problem of systems with parametric uncertain-
ties," European Control Conference, Karlsruhe,
Germany, 31. August-3.September, 1999.

[17] Shaw, J. and Jayasuriya, S., \A new algorithm
for testing the stability of a polytope: a geometric
approach for simpli�cation," Journal of Dynamic,

Sys., Meas., and Contr., Vol. 118, pp. 611-614,
1996.

[18] Astrom, K. J. and Hagglund, T., \Automatic
tuning of simple regulators with speci�cation on
phase and gain margins," Automatica, vol. 20, No.
5, pp. 645-651, 1984.


	cc: Proceedings of the 8th IEEE Mediterranean Conference
on Control and Automation (MED 2000)
Rio, Patras, GREECE                                          17-19 July, 2000


