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Abstract: The article proposes a method to design a controller ensuring dynamic behavior
of a closed-loop control. Dynamic performance is, in the time domain, the first overshoot of
the step response, and the damping ratio and the natural frequency of its dominant
oscillatory mode. Dynamic performance is quantified, in the frequency domain, by two
contours called “performance contours” and the open-loop gain crossover frequency. The
first contour is the Nichols chart magnitude contour which can be considered as an iso-
overshoot contour. The second contour, whose construction and analytic expression are
given in this article, is a new contour defined in the Nichols plane and parameterized by the
damping ratio. The proposed method uses complex non-integer (or fractional)
differentiation to compute a transfer function whose open-loop Nichols locus tangents both
performance contours, thus ensuring stability margins (or stability degree).

Key words: Dynamic behavior, Stability margins, Overshoot, Damping ratio, Fractional
differo-integration

1. INTRODUCTION

Any control loop structure can be reduced to the series
connection of a controller and a plant with disturbed output
(Fig.1). This configuration permits the definition of two
transfer functions: one for the output disturbance, one for
the loop reference input. The transfer function relative to
the output disturbance and defining the regulation function,
is sensitivity function S(s) = (1+β(s))-1 where β(s) is the
open-loop transfer function. The transfer function relative
to the loop reference input and defining the tracking
function, is complementary sensitivity function T(s) = 1-
S(s) = (1+β(s))-1β(s). Step responses in regulation mode
and in tracking mode have thus the same dynamics: same
first overshoot, same natural frequency and same damping
ratio of the oscillatory mode.
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Fig.1. Elementary control loop structure

Although the stability of a closed-loop is easily found by
the sign of the real part of closed-loop poles, it is more
difficult to give a quantitative value to the concept of
stability degree. Its value in both time and frequency
domains, is given by dynamic performance which must be
selected.
In the time domain, the stability degree is quantified in the
tracking or in the regulation mode by either the first
overshoot O’1 of the step response, or by the damping ratio

ζ. This damping ratio characterizes the decrease rate of the
overshoots of the step response oscillatory mode, and is
defined as the damping coefficient of this mode.
In the frequency domain, the stability degree can be
characterized by the distance from the Nichols locus to
point (-1,0). This distance is commonly quantified by
stability margins (gain and phase), or by a Nichols
magnitude contour whose graduation Mt gives the
magnitude peak of the tracking transfer function, or by a
magnitude contour, defined notably by Oustaloup [3],
whose graduation Mr gives the magnitude peak of the
regulation transfer.
To design a control system in the frequency domain,
frequency dynamic performance indicating time dynamic



performance must be selected, as imposed specifications
are usually time-type. The magnitude peak, Mt, correlates
strongly with the first overshoot [6]. A Nichols chart
magnitude contour can thus be considered as an iso-
overshoot contour. On the contrary, the peak magnitude Mr
does not correlate with any time dynamic performance. For
example, although Mr parameterizes a circle centered on
the point (-1,0) of the Nyquist plane, measuring thus a true
distance from this point, Mr does not correlate with the
first overshoot or with the damping ratio.
For the quantification of the stability degree in the time
domain to have an equivalent in the frequency domain, a
new definition of the measurement of the distance from the
critical point needs to be given. A new contour whose
graduation is the damping ratio ζ has been determined in
the Nichols plane and is thus an isodamping contour [5].
Both contours, the magnitude contour and the isodamping
contour, define performance contours. To ensure dynamic
performance, this paper introduces a method to compute a
transfer function whose open-loop Nichols locus tangents
both performance contours. To simplify computation, we
use complex fractional (or non-integer) order transfer
function which can be defined with few parameters.
Section 2 introduces the transfer function of a complex
non-integer integrator defining a generalized template
which is considered as part of the open-loop Nichols locus
[4][1] and which is used in the geometrical construction
method for a network of isodamping contours [5].
Section 3 shows how to use the networks of performance
contours and defines the open-loop transfer.
Section 4 describes a two-step method to compute an open-
loop transfer whose Nichols locus tangents both
performance contours and an example is given to validate
the whole of the proposed approach.

2. COMPLEX NON-INTEGER INTEGRATION AND
ISODAMPING CONTOURS

2.1. Generalized template and non-integer integration
A vertical template [3] is achieved in the Nichols plane
using a real non-integer integration order, n, which defines
its phase placement at crossover frequency ωcg, -n90°. The
vertical template (Fig.2) is described by the transfer
function of a real non-integer (or fractional) integrator :
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From the extension of the description of the vertical
template, the generalized template can then be
characterized by a complex non-integer integration order,
n. The real part defines its phase placement at ωcg,
 -��(n)90°, and the imaginary part defines its angle to the
vertical (Fig.2). The generalized template is thus described
by the transfer function [4][1]:
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The imaginary unit i of the integration order n (n = a + ib)
is independent of the imaginary unit j of the variable s
(s=σ+jω).
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Fig.2. Representation of the vertical template and of the
generalized template in the Nichols chart

2.2. Generalized template envelope as isodamping
contour [5][6]
The easiest geometrical way to construct an isodamping
contour is to use an envelope technique. The contour is
then defined as the envelope tangented by a set of
segments (Fig.3). In the Nichols plane, each segment of the
set can be considered as the rectilinear part of an open-loop
Nichols locus that ensures the closed-loop damping ratio
corresponding to the contour. This rectilinear part around
gain crossover frequency, ωcg, is the “generalized
template” defined above.
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Fig.3. Envelope defining an isodamping contour in the
Nichols plane

3. ANALYTIC STUDY OF PERFORMANCE
CONTOURS AND OF THE OPEN-LOOP
TRANSFER

3.1. Magnitude contours
The analytic expression of a magnitude contour ΓMt is
determined from a point M of the Nichols plane P, with X
and Y, expressed in degrees and in decibels, the cartesian
coordinates of M. ΓMt  is defined by :
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The equation of the tangent to ΓMt  at point (Xi, Yi) is
deduced from relation (3) and can be written:

11 βα += XY , (4)

with:
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3.2. Isodamping contours
Isodamping contours can be defined analytically using a
polynomial equation determined by interpolation of
graphical data of each contour[3]. To use the same syntax
as for a magnitude contour [3], a contour Γζ   is thus
defined by:
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X and Y being the coordinates, always expressed in degrees
and in decibels, and ajk the coefficients given in table 1.

The equation of the tangent to Γζ  at point (Xi, Yi) is
deduced from relation (7) and can be written:

22 βα += XY , (9),
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Table 1. Values of coefficients ajk

   j/ k 0 1 2 3
0 -180.36 117.7 -74.316 40.376
1 -1.1538 3.8888 -5.2999 2.5417
2 -0.0057101 0.0080962 -0.0060354 0.0016158

3.3. Open-loop transfer including generalized template
The aim of this section is to describe analytically, for the
nominal plant, the open-loop behavior which takes into
account:
- the accuracy specifications at low frequencies;
- the generalized template around frequency ωcg;
- the plant behavior at high frequencies in accordance
with input sensitivity specifications for these frequencies.

For stable minimum-phase plants, this behavior can be
described by the following transfer function (Fig.4):

)()()()( hml ssss ββββ = . (12)

•   βm(s), based on complex non-integer integration, is the
transfer function describing the band-limited generalized
template [6]:
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q’ being the smallest integer such that b’ verifies
( )21 ,min’ bbb <  with :
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and K being computed to get a gain of 0 dB at ωcg.

•   βl(s) is the transfer function of a order nl proportional-
integrator, whose corner frequency equals the low corner
frequency of βm(s), so that joining βl(s) and βm(s) does not
introduce extra parameters. βl(s) is defined by:
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If npl is the order of asymptotic behavior of the plant in low
frequency (ω <<ωl), order nl is given by   1l ≥n if

npl = 0, and   pll nn ≥ if 1 pl ≥n , with  nl=1 canceling the

position error and nl=2 canceling the velocity error.

•   βh(s) is the transfer function of a order nh low-pass filter,
whose corner frequency equals the high corner frequency
of βm(s), so that joining βh(s) and βm(s) does not introduce
extra parameters. βh(s) is defined by:
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If nph is the order of asymptotic behavior of the plant in
high frequency (ω >>ωh), order nh is given by phh nn ≥ ,

with nh = nph ensuring invariability of the input sensitivity
function with the frequency, and nh > nph ensuring
decrease.
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Fig.4. Different parts of the open-loop Nichols locus



♦  The modulus and the argument of the open-loop
frequency response are expressed respectively by:
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♦  The expression of the slope of the tangent to the open-
loop Nichols locus is given by:
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♦  At frequency ωcg, relations (18) and (19) become:
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The equation of the tangent to the Nichols locus at this
frequency is then given by:
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4. TANGENCY OF THE OPEN-LOOP NICHOLS
LOCUS TO TWO PERFORMANCE CONTOURS

4.1. First step
The principle of the first step is conditioned by the
hypothesis that the corner frequencies, ωl and ωh, must be
far enough from each other so that the rectilinear part of
the open-loop Nichols locus (which defines the generalized
template) is long enough to tangent both a magnitude
contour and an isodamping contour (Fig.5). In this study
context, it is possible to interpret the generalized template
as a part of the common tangent to both contours.
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Fig.5. Illustration of the first step

The first step requires the determination of:
- the equation of the common tangent to performance
contours (Fig.6);
- the parameters of the open-loop transfer whose rectilinear
part of the Nichols locus belongs to this common tangent,
or, in other words, whose tangent to the Nichols locus at
frequency ωcg is the same as the common tangent (Fig.5).
As the common tangent equation is characterized by only
two parameters, only two parameters of the open-loop
transfer function can be determined using the equality of
this common tangent with the tangent to the open-loop
Nichols locus. The others parameters need to be fixed:
- the gain crossover frequency , ωcg

- the orders of the transfer functions βl(p) and βh(p), nl and
nh

- the corner frequencies,  ωl and ωh.
It is then possible to determine a and b’.
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Fig.6. Common tangent to performance contours

The determination of the common tangent which tangents
both a given magnitude contour and a given isodamping
contour, requires the analytic expressions of each contour
and of the equations of their tangent (relations 3, 7, 4, 9).
This common tangent can be defined by two points,
M1(X1,Y1) and M2(X2,Y2), and thus by four coordinates
which are the solutions of the set of equations :
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The first two equations express that the points M1 and M2

belong respectively to the contours ΓMt  and Γζ  (Figure 6),
while the last two equations express the equality of the
tangents to these contours (relations 4 and 9).

From the four solutions of (34), that is to say X1, Y1, X2 and
Y2, the equation of the common tangent can be written:

( )TT XXY −= , (35)

with:
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Once the equation of the common tangent to both
performance contours is obtained (relation 35), it is
rendered equal to the tangent to the open-loop Nichols
locus at frequency ωcg (relation 32). Gain crossover
frequency   ωcg, orders nl and nh of the transfer functions
βl(s) and βh(s), and corner frequencies  ωl and ωh, must all
be fixed previously. The others parameters of the transfer
function (a and b’ ) can then be computed.
a is then given by the relation:
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while b’ is the solution of equation:
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Finally, K, computed to guarantee a gain of 0 dB at
frequency ωcg, is defined by:
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4.2. Second step
Although the first step has the advantage of being
programmed easily while giving satisfactory results, it has
the disadvantage of requiring an arbitrary choice of the
corner frequencies  ωl and ωh which may be incompatible
with the performance specifications of the control (input
sensitivity, perturbation rejection,…).
Also, even if the open-loop Nichols locus tangency with
performance contours is well-ensured around ωcg, outside
this zone the Nichols locus may curve back across the
contours .
Therefore, the second step aims to compensate these
disadvantages. It uses results from the first step, notably
the coordinates of tangency points M1 and M2.
To avoid an arbitrary choice of  ωl and ωh, the problem is
set differently by considering other study frequencies:
tangency frequencies ω1 and ω2, and no longer gain
crossover frequency ωcg, are taken into account (Fig.6).
Instead of trying to render equal the tangent to open-loop
Nichols locus at ωcg and the common tangent to
performance contours (first step), we can try to render
equal tangents to open-loop Nichols locus at ω1 and ω2 and
tangents to performance contours at M1 and M2.



As M1 and M2 are both on performance contours and on the
open-loop Nichols locus, the coordinates in decibels and in
degrees of these points are equal to moduli and arguments
of the open-loop frequency response at ω1 and ω2. Thus:

).�M,X)�MX,)�MY,)�MY 2arg21arg12211 ==== (40)

Also, as the open-loop Nichols locus tangents the
performance contours at these points, the slopes α of the
tangents to the magnitude and isodamping contours are
equal to the slopes ∆(ω1) and ∆(ω2) of the tangents to the
open-loop Nichols locus at frequencies ω1 and ω2, thus: 

( ) ( )21 and ωαωα ∆=∆= . (41)

Relations (40) and (41) constitute a set of six non linear
equations. As gain crossover frequency ωcg and orders nl

and nh of transfer functions  βl(s) and βh(s) are fixed, the
four parameters a, b’, ωl and ωh must be determined to
characterize completely the open-loop transfer. As
frequencies ω1 and ω2 must also be computed, a set of six
non linear equations with six unknowns is to be solved.
The non linearity of the set of equations making it difficult
to solve, optimization must be used. We have chosen a
method which minimizes a cost function under equality
constraints. As the aim is to guarantee equality, or near
equality, of slopes to ensure open-loop Nichols locus
tangency to both contours, the chosen cost function is:

( ) ( )( )2
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2
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and equality constraints are defined by:

11)( Y=ωβ , 22 )( Y=ωβ , 11)(arg X=ωβ , 22 )(arg X=ωβ .(43)

Remark: To guarantee that the open-loop Nichols locus
does not curve back across the magnitude contour and the
isodamping contour (that it must only tangent), inequality
constraints are added to the algorithm which computes the
open-loop transfer function parameters.

4.3. Example
The experiment plant consists in a DC motor. The transfer
function of the plant whose output signal is the velocity
expresses:
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The control system must be computed so that the dynamic
specifications in the time domain are:
- a first overshoot O’1 around 20 to 25%.
- a damping factor ζ around 0.7, with a tolerance of ±5%.
The control law being designed in the frequency domain,
such specifications must be converted into two
performance contours.
For the first overshoot O’1, the value of the peak
magnitude Mt must be determined so that a Nichols
contour of parameter Mt may be an iso-overshoot contour
of parameter O’1. Thus, a result to parameter a Nichols
magnitude contour by the corresponding first overshoot is
used [6]. A 20 to 25% overshoot corresponds to a value of
Mt of 2dB (the exact value of O’1 for Mt equal to 2dB is
22.14%).

For the damping factor ζ, we only have to consider the
isodamping contour of parameter ζ.
Fig.7 shows the step-response to a reference input signal of
magnitude 20,000. Measured value of the first overshoot is
25%. The specification concerning a required first over-
shoot of 20 to 25% is thus respected.
The damping factor is evaluated from the highest half-
angle at the origin formed by the pair of dominant complex
poles. Computation of complex poles leads to
ζ = 0.72, thus a relative error of 2.85% compared to
designed damping factor, ζ = 0.7.
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Fig.7. Experimental results

5. CONCLUSION

The first part of this article (section 2) introduces the
generalized template based on complex non-integer
integration and recalls the method for construction of
isodamping contours by the envelope technique. This
technique uses segments obtained using complex non-
integer integration.
Section 3 gives the formalism used in the design of the
control loop, in particular the equations of the tangents to
the performance contours and to the open-loop Nichols
locus.
Section 4 defines the design method using tangency
relations between the performance contours and the open-
loop Nichols locus. The first step of this method is
conditioned by a constraint on the open-loop behavior at
low and high frequencies. The second step of the method
relaxes this constraint which can be prejudicial to
performance at low and high frequencies. The final
example shows the validity of the method.
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