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Abstract. This paper de�nes a class of uid-ow models, called Continuous Flow Models
(CFMs), representable as DEDS (Discrete Event Dynamic System) models. The CFM class
is motivated by emerging high-speed packet-based telecommunications networks for which
traditional queueing simulations at the packet level are prohibitively costly in time and
space, or simply infeasible. In contrast, CFM-based uid-ow networks hold the promise
of fast simulation for applications ranging from network design to network control. The
paper studies the loss volume metric of a basic CFM in some detail. This metric is easily
converted to loss probabilities { an important ingredient in quality of service (QoS) metrics
for modern telecommunications networks. The paper further performs sensitivity analysis of
CFMs via IPA derivatives of the loss volume as function of bu�er size, as well as service rate
and arrival rate parameters. Simple formulas for these derivatives are derived and shown
to be amenable to real-time computation. The formulas have a broad applicability due to
their nonparametric (distribution-free) nature, a fact that makes them potentially suitable
for real-time control applications in telecommunications networks.
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1 Introduction

Loss probabilities are important performance mea-
sures in real-time applications of packet-switched
telecommunications networks. Quality of service

(QoS) requirements are often stated in terms of
maximal allowed loss probabilities, e.g., variable
bit-rate (VBR) service in ATM networks. Packet
loss can be ameliorated by allocating su�cient
network resources, either prior to operation as in
the case of design, or in real time, as in the case
of control. In either case, it may be necessary to
estimate the loss probability or loss volume, and
their derivatives with respect to various network
parameters.

Barring special situations or simplifying model-

ing assumptions, simulation tools may have to be
employed for estimating loss-related performance
measures. Unfortunately, discrete-event simula-
tors, based on traditional queueing network mod-
els, may require prohibitive amounts of comput-
ing time. The reason is that events are typi-
cally associated with arrivals, processing or de-
partures of packets at network nodes. But in
current and emerging packet networks (e.g., ATM
networks), operating at gigabit-per-second rates
to transport small packets, such network simu-
lations can easily call for millions of events per
second (per node), thus rendering large-network
simulation impractical. To get around this prob-
lem, an alternative modeling scheme has been
considered, based on uid-ow rather than on the
discrete character of individual packets. When
tra�c ow rates are piecewise-constant functions
of time, it is easy to represent a uid-ow model

as a DEDS (Discrete Event Dynamic System),
where events largely model rate changes. Since
these events typically occur far less frequently
than packet-related events in traditional queueing
models, uid-based simulation are far more prac-
tical. Additionally, the CFM class is amenable to
IPA-based sensitivity analysis, unlike traditional
queueing systems.

First employed in [1] and subsequently in [3] in
the analysis of multiplexed data streams, uid-
ow models were later used for simulation and
sensitivity analysis of loss-related measures [5,
4]. A general paradigm for fast simulation of
uid-ow systems, called Continuous Flow Mod-

els (CFM), was devised in [6], which further es-
tablished the unbiasedness of associated In�nites-
imal Perturbation Analysis (IPA) derivative esti-

mators [2] in a general network context.

This paper is concerned with the loss volume in a
single CFM node, and its sensitivity analysis with
respect to various CFM parameters. It shows
how to implement fast CFM simulations via a
Lindley-like equation, and it develops some IPA
estimators for sensitivity analysis of CFM sys-
tems. These estimators can be computed by fairly
simple recursive equations, which in some cases
are nonparametric (that is, they require no as-
sumptions on the distributions of the underly-
ing processes.) Consequently, such estimates can
be computed in real time from either simulation
runs or observations of a real-life system (net-
work, node), in which case they can be used in
control environments. The formulas can be used
in various telecommunications applications, such
as network design, admission and congestion con-
trol, service rate allocation, and bu�er size allo-
cation.

The rest of this paper is organized as follows.
Section 2 de�nes loss measures in a basic single-
server CFM, for which it derives a simple Lindley-
like equation for uid volume in the bu�er. Sec-
tion 3 addresses derivative estimation, and de-
rives fast formulas for its computation. Finally
Section 4 concludes the paper.

2 Basic CFMs and Fluid Loss

A single-node CFM consists of a bu�er that holds
uid, and a server that discharges uid from the
bu�er. At time t, uid ows in at rate �(t), and is
discharged by the server at rate �(t). The bu�er
workload (contents) is denoted by x(t), and the
bu�er capacity by c(t). The uid outow rate
from the server, and the loss (spillover) rate due
to �nite bu�er space are denoted by �(t) and (t),
respectively. Note that the bu�er capacity, c(t),
can be time dependent; this modeling wrinkle is
inspired by ATM networks, where the bu�er allo-
cated to a service class may depend on demands
from service classes of higher priority.

Let the time variable, t, be con�ned to a pre-
scribed interval [0; T ], and suppose that f�(t)g,
f�(t)g, etc. are random processes, over some
probability space (
;F ; P ). In the sequel, we
will be concerned with sample-path properties
of the above processes, so all statements will be
meant to hold "with probability one". It is fur-
ther assumed that initially the bu�er is empty,



i.e., x(0) = 0, and that the sample paths �(�),
�(�) and _c(�) are piecewise continuously di�eren-
tiable, each having a �nite number of disconti-
nuity points in [0; T ]. Note that a dot above a
function symbol signi�es a derivative with respect
to time t, while a dot replacing a time argument
signi�es a sample path.

Following [6], the processes f�(t)g, f�(t)g and
f _c(t)g are referred to as the de�ning processes,
while the processes fx(t)g, f�(t)g and f(t)g are
referred to as the derived processes. The reason is
that the latter three processes can be computed
from the former three processes. To see this ob-
serve [6] that

dx(t)

dt+
=

8>>>><
>>>>:

0; if x(t) = 0 and
�(t) � �(t)

_c(t); if x(t) = c(t) and
�(t) � �(t) � _c(t)

�(t)� �(t); otherwise;
(1)

�(t) =

�
�(t); if x(t) > 0
�(t); if x(t) = 0;

(2)

(t) =

8<
:

�(t)��(t)� _c(t); if x(t) = c(t) and
�(t)��(t) � _c(t)

0; otherwise:
(3)

Observe that Eq. (1) constitutes a dynamical sys-
tem, whose state is the workload x(t). Further-
more, (1) has a unique solution in view of the
assumption x(0) = 0.

The performance measure of interest in this paper
is the loss volume in the interval [0; T ], de�ned by

L(T ) =

Z T

0

(�) d�: (4)

This time-average measure can be normalized to
yield the loss probability

PL(T ) =
L(T )R T

0
�(�) d�

(5)

in the interval [0; T ], but to simplify the develop-
ment we will treat the loss volume instead.

The CFM of Eqs. (1) { (3) can serve as a building
block for constructing general CFM networks and
their associated simulation programs. A CFM
network is constructed as an interconnected sys-
tem of such CFMs, with speci�c rules for routing
the ow processes among them. For this reason,
the single-server CFM model is called the basic

CFM. For examples and further discussion, in-
cluding the modeling of multi-class ow systems
using basic CFMs, see [6].

The important case of piecewise-constant ow rates
facilitates the application of the discrete-event
simulation paradigm to model CFM-based sys-
tems. To see that, consider the basic CFM, and
suppose that realizations of the de�ning processes,
f�(t)g, f�(t)g and f _c(t)g, are piecewise constant,
with �nite numbers of jump points in the inter-
val [0; T ]. For simplicity, assume that the bu�er
capacity is always positive. From Eqs. (1) { (3)
it follows that the process fc(t)g and the derived
process fx(t)g are piecewise linear and continu-
ous, while the derived processes f�(t)g and f(t)g
are piecewise constant. We de�ne an event to be
any jump in either one of the de�ning processes
f�(t)g, f�(t)g, or f _c(t)g.

The computation of the state x(t) at event times
is aided by the fact that the state equation (1)
has a structure similar to a Lindley equation for
a queue. The derivation will follow [6]. Suppose
there are N events in the interval [0; T ], whose
occurrence times are ftig

N
i=1 in increasing order,

and de�ne t0 = 0 and tN+1 = T . Let �i, �i,
and _ci denote the respective values of �(t), �(t),
and _c(t) in the interval [ti; ti+1) (recall that these
processes have constant values there, by assump-
tion). Similarly, denote xi = x(ti) and ci = c(ti).
Finally, let

Li =

Z ti+1

ti

(�) d� (6)

be the partial loss volume in the interval [ti; ti+1).
Clearly, by Eq. (4), one has

L(T ) =

NX
i=0

Li: (7)

As to the computation of the state, it was shown
in [6] that,

xi+1 = minfmaxfxi+[�i��i][ti+1�ti]; 0g; ci+1g:
(8)

The computation of Li assumes a simple form,
shown below, which together with the recursive
equation (8) provides an especially e�cient way
for computing the loss volume L(T ). The propo-
sition below makes use of the di�erence operator
�ti = ti+1 � ti.

Proposition 2.1 The partial loss volume, Li,



has the representation

Li =

�
[�i � �i]�ti + xi � ci+1; if xi+1 = ci+1
0; otherwise:

(9)

Proof. Since the processes fx(t)g and fc(t)g are
linear in the interval [ti; ti+1], the bu�er can be-
come full in part of such an interval if and only
if xi+1 = ci+1. On the other hand, from Eq. (3),
Li = 0 if xi+1 < ci+1.

Next, suppose hat xi+1 = ci+1, and let time t� =
minf� � ti : x(�) = c(�)g be the �rst time
point in the interval [ti; ti+1] at which the bu�er
becomes full. By Eq. (3),

Li = [�i � �i � _ci][ti+1 � t�]: (10)

Now, since the bu�er is neither full nor empty in
the interval (ti; t

�), Eq. (1) implies that

x(t�) = xi + [�i � �i][t
� � ti]: (11)

Adding Eqs. (10) and (11), we obtain

Li+x(t�) = [�i��i]�ti+xi� _ci[ti+1�t
�]: (12)

But x(t�) = c(t�), because the bu�er becomes

full at time t�, while _ci[ti+1 � t�] = ci+1 � c(t�),
whence (12) becomes

Li = [�i � �i]�ti + xi � ci+1;

from which Eq. (9) follows. 2

3 Sensitivity Analysis

Let � 2 � � IR be a parameter of the de�ning
processes f�(�; t)g, f�(�; t)g and f _c(�; t)g, whose
dependence on the parameter � is indicated by
the notation. Consequently, the derived processes,
fx(�; t)g, f�(�; t)g and f(�; t)g, also depend on
�. The loss volume is viewed as a function of �,
and has the form

L(�;T ) =

Z T

0

(�; �) d�: (13)

This section will be mainly concerned with the
derivative L

0

(�;T ), henceforth assumed to exist
with probability 1. Throughout the paper, the
prime operator will denote a derivative with re-
spect to �; in contrast, recall that the dot oper-
ator over a function symbol denotes a derivative
with respect to time t.

Suppose that for every � 2 � the processes f�(�; t)g,
f�(�; t)g and f _c(�; t)g are piecewise constant, and
have each a �nite number of jump points in [0; T ];
these jumps correspond to system events. Sup-
pose further that the dependence of these pro-
cesses on � is via their jump times or their con-
stant values between consecutive jump times. Ac-
cordingly, for i = 1; : : : ; N(�), let ti(�) be the
event times in increasing order, with t0(�) = 0
and tN(�)+1(�) = T , and let �i(�), �i(�) and _ci(�)
denote the constant values of f�(�; t)g, f�(�; t)g
and f _c(�; t)g, respectively, in the interval (ti(�); ti+1(�)).
We shall also use the shorthand notation �ti(�) =
ti+1(�) � ti(�), xi(�) = x(�; ti(�)), and ci(�) =
c(�; ti(�)) as an extension of the notation in Sec-
tion 2 to quantities that depend on �.

We next derive an expression for the derivative
L

0

(�;T ) under a general setting, and then spe-
cialize it to a number of cases. To guarantee the
existence of the derivatives in the sequel, we make
the following assumption.

Assumption 3.1 (i) For every � 2 �, the sam-
ple paths �i(�; �), �i(�; �), _ci(�; �) and ti(�; �), i =
1; : : : ; N(�), are continuously di�erentiable in some
open interval containing �, with probability 1.
(ii) With probability 1, no event occurs at a time
the bu�er becomes full or empty. 2

Assumption 3.1 makes it straightforward to show
the existence of the loss-related derivatives in the
sequel, in light of Eq. (9) and the forthcoming
development. For further discussion, see [6].

To start with the general case, let � be a pa-
rameter of either �i(�), �i(�), _ci(�) or ti(�), for
i = 1; : : : ; N(�), and de�ne the index sets

E = f0 � i � N(�)+1 : xi(�) = 0g

F = f0 � i � N(�)+1 : xi(�) = ci(�)g:

The interpretation of these sets is straightforward:
i 2 E if and only if the bu�er becomes empty
during the interval (ti�1(�); ti(�)], while i 2 F if
and only if the bu�er becomes full during that
interval. Finally, for i = 1; : : : ; N , de�ne

k(i) = maxfk � i : k 2 E [ Fg; (14)

to be the last event index not exceeding the i-th
event, such that the bu�er becomes either full or
empty, and let

�
F
(k) =

�
1; if k 2 F;

0; otherwise:
(15)



be the characteristic (indicator) function of set
F .

Proposition 3.1 For every i = 1; 2; : : : ; N(�),

L
0

i(�) =

8>>><
>>>:

iX
j=k(i)

�
0

j(�) + �
F
(k(i)) c

0

k(i)(�)� c
0

i+1(�);

!if i+ 1 2 F

0; otherwise:

(16)
where �i(�) = [�i(�) � �i(�)]�ti(�).

Proof. Suppose �rst that i+1 =2 F . Then
the bu�er does not become full in the interval
(ti(�); ti+1(�)) for a small neighborhood of �. Thus,
Li(�) = 0 and L

0

i(�) = 0.

Suppose next that i+1 2 F . By Eq. (9),

Li(�) = �i(�) + xi(�) � ci+1(�);

which on di�erentiation yields

L
0

i(�) = �
0

i(�) + x
0

i(�) � c
0

i+1(�): (17)

Consider the term x
0

i(�) above. Now, if k(i) < i,
then for every j = k(i)+1; : : : ; i, the bu�er is nei-
ther empty nor full in the interval (tj�1(�); tj(�)).
Therefore, Eq. (1) implies

xj(�) = xj�1(�) + �j�1(�);

which on di�erentiation yields

x
0

j(�) = x
0

j�1(�) + �
0

j�1(�): (18)

Combining Eqs. (17) and (18) results in the rep-
resentation

L
0

i(�) =

iX
j=k(i)

�
0

j(�) + x
0

k(i)(�) � c
0

i+1(�): (19)

Finally, consider the term x
0

k(i)
(�) above. By

the de�nition of k(i) in (14), either k(i) 2 E

or k(i) 2 F . In the �rst case, xk(i)(�) = 0

and hence x
0

k(i)
(�) = 0, while in the second case,

xk(i)(�) = ck(i)(�) and hence x
0

k(i)
(�) = c

0

k(i)
(�).

In either case, Eq. (16) now follows from (19)
and the de�nition of the characteristic function
�
F
(k) in (15). 2

We next derive the derivative L
0

(�;T ) for several
special cases.

Loss Volume as Function of Bu�er Size

Let c(�; t) = �. However, let f�(t)g and f�(t)g be
independent of �. Then, �

0

i(�) = 0, while c
0

i(�) =
1. An application of Eq. (16) reveals that for
i+ 1 2 F , one has

L
0

i(�) = �
F
(k(i)) � 1: (20)

Next, de�ne a busy period of the bu�er to be a
maximal interval (period) during which the bu�er
is nonempty. For i+1 2 F , Eq. (20) then implies
the following:

� If ti+1 is the time of the �rst event in its
busy period at which the bu�er is full, then
�F (k(i)) = 0, and hence L

0

i(�) = �1.
� If ti+1 is not the time of the �rst event in
its busy period at which the bu�er is full,
then �F (k(i)) = 1, and hence L

0

i(�) = 0.

It follows that L
0

i(�) = �1 exactly once per busy
period during which some loss was incurred. Let-
ting B(T ) denote the number of busy periods dur-
ing the interval [0; T ] during which some loss oc-
curs, we have the result

L
0

(�;T ) = �B(T ): (21)

Observe that the representation of L
0

(�;T ) in
(21) is distribution free. We mention that this
result has been derived in [6] in a di�erent way.

Loss Volume as Function of Service Rate

Let � be a parameter of the service rate, such
that �

0

i(�) = 1; in other words, the service rate
increases uniformly in �. However, let f�(t)g and
fc(t)g be independent of �. Then

c
0

i(�) = 0

�
0

i(�) =
d

d�
[�i � �i(�)]�ti = ��ti:

Eq. (16) then implies that

L
0

i(�) = �

iX
j=k(i)

�tj = ti+1�tk(i); i+1 2 F: (22)

Note that the right-hand side above is just the
elapsed time from the most recent time the bu�er
was either empty or full until the time ti+1.

Next, we make two observations:

� L
0

k(i)�1
(�) = 0; k(i) 2 E, by Eq. (16).



� L
0

k(i)
(�) = �

k(i)X
j=k(k(i))

�tj ; k(i) 2 F , by Eq.

(22).

The above observations and Eq. (22) allow us
to deduce that L

0

(�;T ) has the following struc-
ture. LetM be the number of busy periods in the
interval [0; T ], during each of which the bu�er be-
comes full at some point. Let �m be start time
of the m-th such busy period, and let �m be the
last event time in the m-th busy period at which
the bu�er is full. We then have the result

L
0

(�;T ) = �

MX
m=1

[�m � �m]: (23)

Observe that the representation of L
0

(�;T ) in
(23) is distribution free.

Loss Volume as Function of Arrival Rate

Let � be a parameter of the arrival rate, such that

�
0

i(�) =

�
1; if �i(�) > 0
0; if �i(�) = 0

In other words, the arrival rate increases uni-
formly in � as long as there is an input ow.
However, let f�(t)g and fc(t)g be independent
of �.

Next, we make the following observations:

� c
0

i(�) = 0, since ci does not depend on �.

� If �i(�) 6= 0, then �
0

i(�) = �ti.

� If �i(�) = 0, then �
0

i(�) = 0.

Again, we consider the m-th busy period during
which some loss occurs. Let �m and �m be as
before, and let `m be the length of the interval,
contained in the above m-th busy period, during
which the inow rate is 0, i.e., �(�; t) = 0. An
analysis along the lines of the previous case re-
veals that L

0

(�;T ) has a similar form except that
the no-input intervals are accounted for. The re-
sulting derivative is,

L
0

(�;T ) =

MX
m=1

[�m � �m � `m]: (24)

Again, the representation of L
0

(�;T ) in (24) is
distribution free.

4 Conclusion

Formulas for the derivative of the loss volume as
function of various parameters in a single-server
CFM have been derived. They are simple to

compute, distribution free, and provide unbiased
derivative estimators. Therefore, they can be
used in o�-line design as well as in real-time ow
control in high-speed packet networks. Future
research will address extensions to networks with
more general topology, as well as to various other
performance metrics.
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