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Abstract. Matrix Pencil Models are natural descriptions of linear networks and systems. 
Changing the values of elements of networks, that is redesigning them implies changes 
in the zero structure of the associated pencil by structured additive transformations. The 
paper examines the problem of zero assignment of regular matrix pencils by a special 
type of structured additive transformations. For a certain family of network redesign 
problems the additive perturbations may be described as diagonal perturbations and such 
modifications are considered here. This problem has certain common features with the 
pole assignment of linear systems by structured static compensators and thus the new 
powerful methodology of global linearisation [1,2] can be used. For regular pencils with 
infinite zeros families of structured degenerate additive transformations are defined and 
parameterized and this lead to the derivation of conditions for zero structure assignment, 
as well as methodology for computing such solutions. Finally the case of regular pencils 
with no infinite zeros is considered and conditions of zero assignment are developed. 
The results here may provide the means for studying problems of linear network 
redesign by modification of the nondynamic elements. 
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1.INTRODUCTION 
 
The problem which we consider here is equivalent to 
a zero assignment of the regular matrix pencil 
sF+G+H, where sF+G may express the internal 
dynamics matrix of a system and H=UΛV may 
represent a static structural change where U, V are 
known graph incidence matrices (they may express a 
topology modification) and Λ is a diagonal matrix of 
continuous design parameters. In reality, the three 
matrices U, V, Λ are design parameters [15]. Here we 
shall assume that the incidence matrices U, V are 
fixed and thus only the diagonal matrix Λ is free for 
the assignment of zeros sF+G+UΛV. A large family 
of such problems can be reduced to the case of 
diagonal additive perturbations and this is the 
problem considered here in some detail. The paper 

deals with both the study of solvability conditions, as 
well as the derivation of solutions, whenever such 
solutions exist [15]. 
 
The general properties of the frequency assignment 
map are considered first and the notion of degenerate 
transformations, i.e. those making the pencil 
sF+G+H singular is defined. For the case of pencils 
with infinite zeros, a parameterization of the set of 
degenerate transformations H is given according to 
the nature of the resulting singularity of the pencil. 
The significance of degenerate solutions is 
emphasized by establishing the property that if the 
differential of the frequency assignment map at a 
degenerate point H0 is onto, then this implies 
assignability of zero structure of the pencil by some 
appropriate H. The explicit form of  the differential at 
a degenerate point is computed and it is shown that 



for a generic pencil there exist degenerate points H0 
such that the corresponding differential is onto. Using 
as the starting point such degenerate solutions, it is 
shown that transformations H, which are 
nondegenerate, may be constructed to assign the 
zeros of sF+G+H in the neighborhood of any 
arbitrary symmetric set of complex numbers. The 
proposed methodology is a Quasi-Newton type 
numerical approach and its convergence properties 
are examined. Finally, the case of pencils with no 
infinite zeros is considered and conditions for the 
complex zero assignment are derived in terms of 
invariants associated with the pencil. The results are 
stated without proof and their proof may be found in 
the full report [12]. 
 
 
2. ZERO ASSIGNMENT OF MATRIX PENCILS 
BY DIAGONAL ADDITIVE PERTURBATIONS: 
PROBLEM FORMULATIONS AND 
BACKGROUND RESULTS 
 
The mathematical formulation of the problem can be 
stated as follows: 
 
Problem formulation: Given a square pencil 

nnrankAnnRBABsA <=×∈+ 1  ,  ,such that   the 
problem to be examined here is to investigate the 
solvability of the equation: 
 

)()det( sBsA ϕ=Λ++                                       (2.1) 
 
with respect to }nλ,...,2λ,1diag{λΛ = when φ(s) is 
a given polynomial of n1 degree.  
 
Notation: nm,Q  is the set of lexicographically ordered 

sequences of m integers from n set of integers and 

nD is any sequence of n integers from (1,2,...,n) with 
possible repetition and any order. 
 
Definition (1): A sequence )ni,...,2i,1(iω =   

n,2nQ∈  characterises a minor ωα of ],[ ΛnInC . 

On such sequences we define the following: 
(a) The operation π on n,2nQ∈ω as: 
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equal elements (ie kjlj = ) and it is nondegenerate, 
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• aω=0 , if ω is degenerate 
• aω≠0 , if ω is nondegenerate 
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The set of Qn,2n  sequences may thus be divided into 
two disjoint sets, the set Qd

n,2n of degenerate 
sequences and the set QnD

n,2n of nondegenerate 
sequences. Both subsets of sequences are assumed to 
be lexicographically ordered. Consider now the 
characteristic redesigned polynomial:  

),,()det()( ΛΦ
∆
=Λ++=Φ BABsAs  

By the Binet-Cauchy theorem we have that: 
 
det[sA+B+Λ] = det([In,Λ]·[sAt +Bt,In]t) =  

 

= Cn([In,Λ])·Cn([sAt +Bt,In]t) = φ(s).                   (2.2) 
 
Definition (2): Let QD

n,2n   QnD
n,2n  be the ordered 

subjects  of  degenerate  and  nondegenerate  of Qn,2n 
associated with the [In,In] structure. We shall denote 
by 

~Cn ([ In,Λ]) the subvector of Cn ([In,Λ]) obtained 
by omitting all zero coordinates corresponding to 
Qd

n,2n sequences (indices) and similarly by 
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subvector of ]),([ nItBtsAnC + derived by deleting 
the QD
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and given that: 
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The vectors 
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will be referred to as normalised [In,In]-structured 

projections of   [ ]( )Λ,nInC  , 
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� + , will be called the 

[In,In]-Grassmann representative of the system. 
Proposition (2) The normalised [In,In]-structured 
projection of [ ]( )Λ,ˆ

nn IC  may be expressed as: 
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where ⊗ denotes the standard tensor product. 
 
The above result follows by inspection of the 
expression of [ ]( )Λ,ˆ

nn IC . The characteristic 
polynomial is expressed as in (2.5) and it is generated 
by the [In,In]-Grassmann representative of the system 
ie 
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a polynomial vector; however, )(ˆ sP  is not 
necessarily coprime. 
 
Definition (3): The greatest common divisor of the 
entries of )(ˆ sP will be denoted by )(,φ sBA and this 

will be referred to as the [In,In]-fixed polynomial of 
the system. A system for which (s)BA,φ =1 will be 

called [In,In]-irreducible ; otherwise, it will be called 
In,In]-reducible . 
 
The following result can be readily established 
 
Theorem (1): The fixed zeros of the redesigned 
polynomial ( )ΛΦ ,, BA  for all possible Λ are only the 
roots of )(, sBAΦ polynomial. 

 
We can now easily establish [1] that:  
det[sA+B+Λ]=(1,λ1) ⊗ (1,λ2) ⊗……..⊗ (1,λn) )(ˆ sP               
 
By equating the coefficients of the powers of s we get 

φ).Pnλ(1,)...2λ(1,)1λ(1, =⊗⊗ , where φ  is the 
coefficient vector of φ (s) and P is called the Plucker 
matrix for the problem. 
 
Example (1): Let a system matrix of a circuit be: 
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In this case the C3([I3,Λ3]) matrix is: 
 
 
 
 
 
 
And can be calculated to be: 
 
(1,0,0,λ3,0,-λ2,0,0,0,λ2λ3,λ1,0,0,0, 
-λ1λ3,0,λ1λ2,0,0,λ1λ2λ3) 
 
The [sA+B,In] t  matrix is expressed as: 
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The nonzero elements of C3([I3,Λ3]) are (1,λ3,-λ2, 
λ2λ3,λ1,-λ1λ3,λ1λ2,λ1λ2λ3) and the corresponding 
elements of C3([sA+B,I3]t) are ( 3s2-21s-33, -s2+7s, 
2s+5, s+5, -3s-6, -s, -1, 1). Therefore: 
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The problem described involves the solution of a set 
of nonlinear algebraic equations. When the number of 
solutions is finite, this number is combinatorially 
large (one can prove that the degree is n!) and this 
makes the problem difficult to be investigated via the 
standard Groebner basis tools especially when n is 
large. To construct a solution of the problem we will 
follow the methodology in [10] by studying the local 
properties of degenerate solutions. 
 
The Frequency Assignment Map associated with the 
problem is the map assigning Λ to the coefficient 

vector φ ie. ( ) φΛF :  nRnR:F =→  
A diagonal matrix Λ0 is degenerate iff: F(Λ0)=0, or 
equivalently 0)0ΛBdet(sA =++ . 
In other words, Λ0 is degenerate if the pencil 
sA+B+Λ0 becomes singular. The following theorem 
shows the great importance of degenerate matrices 
 
Theorem (2): If there exists a degenerate matrix Λ0 
such that the differential 

0Λ
DF  is onto then any set of 

n sequences can be assigned via some diagonal 
perturbation. 
 
For a generic nxn pencil when n is small the set of all 
degenerate matrices may be constructed via Groebner 
Basis. 
 
Example (2): Consider the Pencil: 
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then the set of equations defining  all the degenerate 
matrices diag{x,y,z} is given by: 
 
x -  4 y -  x y +  6 z +  5 x z +  x y z = 0
-5 +  x -  3 x y -  11 z +  x z -  3 y z = 0
-2 +  7 x +  10 y -  19 z = 0 

 

 
A Groebner Basis for the above set of equations is: 
 
480 + 5312x + 16433x2 + 21474x3 + 15452x4 + 
5726x5 + 147x6 = 0 

1579680 - 10392988x - 18923271x2 - 12885549x3 - 
3302425x4 - 81879x5 + 2714400y = 0 
2122560 - 12293068x - 18923271x2 - 12885549x3 -
3302425x4 - 81879x5 + 5157360z = 0 
 
which gives 3! solutions: 4 real and 2 complex. 
 
One can calculate the number of degenerate matrices 
for a generic pencil as follows: 
 
Theorem (3): For a generic nxn Pencil sA+B such 
that rank (A)=n-1 the number of degenerate diagonal 
matrices is finite and equal to n!. 
 
 
3. CLASSIFICATION OF DEGENERATE 
COMPENSATORS. 
 
We may classify the degenerate matrices Λ of a 
Pencil sA+B according to the sizes of row or column 
minimal indices of sA+B-Λ. 
 
Definition: A degenerate matrix Λ of a Pencil sA+B 
is of degree k if the polynomial module that spans the 
right Kernel of sA+B-Λ has Forney dynamical order 
k. 
 
Theorem (4): For a generic nxn Pencil sA+B such 
that rank(A)=n-1 the number of degenerate diagonal 
matrices of degree d, Bd, (0≤d≤n-1) is finite and 
equal to: 
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where Ad+1 is the number of permutations of d+1 
objects with no fixed points. 
   
Although the construction of degenerate matrices 
looks as though it has the same complexity of the 
problem we have started, there is certain degenerate 
matrix that can be easily constructed via linear 
equations. These are the degenerate diagonal matrices 
of degree 0 and n-1. 
 
Proposition (3): Let vt ,w vectors such that: 

0Aw0,=Atv = , then the diagonal matrices 

 

}
nw
wntb,...,

1w
w1tbdiag{1nΛ

 },
nv

nbtv
,...,

1v
1btv

diag{0Λ

−=−

−=
 

where bi , (bt
i ) are the columns (rows) of B and vi 

(wi) are the coordinates of v (w), of the degenerate 
solution. 
 
Another classification of the degenerate matrices are 
into infinite and finite. Infinite are those solutions that 
are taken as limits of sequences Λn whose one or 
more elements tend to infinity. The degenerate 



matrices constructed in Proposition 4 are finite iff vi 
≠0. If V is the basis matrix of the left kernel of A, the 
next theorem characterizes V so that there exists at 
least one finite degenerate matrix. 
 

Theorem (5): If ��

�
��

�= nvvV ...1 is a basis matrix 

of the left kernel of A then there exists a v∈V such 
that the corresponding degenerate matrix produced by 
v is finite iff vi ≠0. 
 
Note that if the above defined V has not the desired 
properties, there exists a kxn submatrix of A, say A’, 
such that rank(A)=rank(A’). 
 
 
4. GENERICITY RESULTS AND 
CONSTRUCTION OF SOLUTIONS. 
 
The differential of the frequency assignment map F 
related to our problem, plays a very important role in 
the determination of the onto properties of the map 
and therefore in the solvability of the problem. This 
can be calculated in many ways and for a general 
square rank deficient polynomial matrix A(s) it can 
be proved that: 
 

Lemma (1): 
)2O(x))j(A(s))B(sx.trace(Ad

xB(s))det(A(s)

+

=+
 

this shows that if adj(sA+B-Λ0)=g(s).vt(s) then DFΛo  
can be represented by the coefficient matrix of the 
polynomial vector (g1(s)v1(s),..., gn(s)vn(s)) . Next we 
will prove that  
 
Proposition (4): For a generic Pencil the degenerate 
diagonal matrix Λ0 of the zero assignment map of the 
problem, satisfies nrankDF =Λ0

.   

 
Next we will show that a Quasi-Newton type of 
numerical method starting from a regular degenerate 
matrix can produce diagonal matrices which assign 
the desired frequencies and it is within a r distance 
from the degenerate matrix. 
 

Theorem(6):Let φ1
0ΛDFa , T1
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and ε,r are such that: 
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then sequence kΛ  produced by the iteration: 

))((1
01 φε−Λ−

Λ−Λ=+Λ kFDFkk  

converges to a Λ that satisfies: 
( ) r0ΛΛ       , φεΛF ≤−=  

The above suggest the following methodology for the 
solution of the problem: 
Computational Procedure: 
1. Construct the degenerate matrix Λ0  as above 
2. Use the iteration: 

))((1
01 φε−Λ−

Λ−Λ=+Λ kFDFkk  

with ε as in the Theorem 6 and starting from Λ0, until 
convergence is achieved.  
 
Example (3): Consider a network whose system 
matrix T(s) is defined by: 
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when the values are: C=1, L=1, G1=4, G2=1, G3=0, 
G4=∞ the system matrix becomes: 
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assuming that we would like to change the natural 
frequencies of the above system by tuning the values  
of G2,G3,G4 , we get the following perturbation: 
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Which is equivalent to applying a diagonal 
perturbation Λ=diag(G2,G3,G4) to the system 
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The equations defining the degenerate perturbations 
are: 
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and the finite solutions of these equations are given 
by: 
a) G2=-2, G3=1, G4=-3 
b) G2=0, G3=-1, G4=-5 
both of them are full (or regular), so both can be used 
as staring points for a numerical Quasi-Newton 
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method to place the characteristic polynomial at any 
given second order  one, p(s) : 

ep)(f1
0x(Jf)nx1nx −−−=+  

where x=(G2,G3,G4)t ,p=[1,8,15]t , f=[f2,f1,f0]t and 
x0=(-2,1,-3)t. Starting with  e=0.5 the method 
converges after about 60 iterations to x60=(-2,5507, 
1,050697, -2,74137)t. Taking now this as a starting 
point we repeat the method for e=1.2 and so on. The 
following table displays the various solutions we 
obtain through this algorithm the last column being 
the Euclidean distance of the solution from the 
degenerate one: 
 
Itera
tions 

E G2 G3 G4 Dist. from 
degenerate 
perturbation

0 0 -2 1 -3 0 
60 0,5 -2,55 1,050 -2,741 0,610 
50 1,2 -3,325 1,125 -2,652 1,375 
85 2,5 -4,706 1,206 -2,611 2,741 
135 5 -7,278 1,278 -2,594 5,301 
250 10 -12,33 1,333 -2,588 10,34 
80 18 -20,36 1,365 -2,586 18,37 

 
 
5. NECESSARY AND SUFFICIENT 
CONDITION FOR ARBITRARY ASSIGNMENT 
n=ni 
 
The onto properties of a polynomial map such as F 
can be examined in terms of its differential.  The rank 
of the differential of a complex algebraic map 
although it is a local invariant may determine its 
global properties [6]. 
 
Proposition (5): If F is an algebraic map between 
two complex varieties X, Y such that dimX≤Y then: 
there exists x in X: rankDFX =dim Y iff F is (almost) 
onto. 
 
This shows that the invariant that characterizes the 
onto property of the map F is the n-th exterior 
product of its differential DFX and in the case we 
examine, this invariant is the determinant of the 
Jacobian of F , ie det(J(F)X). Due to the F(x)=f(x).P 
where (x)=[1,xl,x2,...,x1x2..xn] the Jacobian of the pole 
placement map can be calculated in terms of the 
Jacobian of f and the Plucker matrix P ie 
 
det(J(F)x)=Cn(J(f)).Cn(P) 
 
To calculate therefore det(J(F)x) comes down to 
calculating Cn(J(f)). The calculation of J(f) is easily 
implied by the following result: 
 
Proposition (6): The partial derivative of f with 
respect to xi , is given by: 
⊗(1, x1) ⊗…⊗(1, xi-1) ⊗ (0,1) ⊗(1, xi+1) ⊗…⊗(1, xn) 

 
Select n entries of the vector f(x) say a=[al,a2,...,an], 
and call the Jacobian of the function a, J(a); then this 
is a square nxn matrix whose determinant is one of 
the coordinates of the vector Cn(J(f)), conversely, all 
the coordinates Cn(J(f))are of the form det (J(a)) for 
some a. Next is a key theorem on the description of 
the compound Cn(J(f)). 
 
Proposition (7): The Jacobian J(a) is given by: 
J(a)=diag(xl

-1,x2
-1,....,xn

-1)I(a)diag(al, a2,..., an) 
where the ij entry of I(a) is 1 if aj contains xi and 0 
otherwise.  Therefore the determinant of J(a) is equal 
to: det(J(a))=I(a) a1,a2...an/x1x2...xn. 
 
Now every selection of p monomials a=[a1,a2...an] 
correspond to a minor Ma of P. For a given monomial 
m consider the sum Pm=Σdet(I(a))Ma where the sum 
is taken when a1,a2...an/x1x2...xn =m and det(I(a)≠0.  
Then the collection of all Pm constitutes a system 
invariant characterizing the onto properties of the 
pole placement map. In fact, this leads to: 
 
Theorem (7): The complex pole placement map is 
onto if there exists m such that Pm≠0. 
 
 
6. CONCLUSIONS 
 
The problem of zero assignment of matrix pencils by 
additive structured transformations has been 
considered and necessary and sufficient conditions 
were given, the problem is central in the study of 
redesign of composite systems having a certain 
topology by changing the values of individual 
elements. The case of structured models is a subject 
of further work. 
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