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Abstract.  It is shown that the reachability and controllability of positive 2D linear systems are not
invariant under the state-feedbacks. By suitable choice of the state-feedbacks the unreachable
positive 2D Roesser model can be made reachable and the controllable positive 2D Roesser model
can be made uncontrollable.
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1. INTRODUCTION

The reachability and controllability are the basic
concepts of modern control theory [15,5,6,14]. An
overview of recent developments in reachability and
controllability of 2D linear systems can be found in
[16,13,12,9]. The positive (non-negative) 2D Roesser
type model has been introduced in [7] and its
reachability and controllability has been considered in
[7-9]. The spectral and combinatorial structure and
asymptotic behaviour of 2D positive system has been
investigated in [3,19] and recent developments in 2D
positive system theory are given in [4].
It is well-known [6] that the reachability and
controllability of the standard linear systems are
invariant under the state-feedbacks. Similar results are
also valid for standard 2D linear systems [11]. It has
been shown [10] that the reachability and controllability
of positive linear 1D systems are not invariant under the
state-feedbacks. To the best author’s knowledge the
reachability and controllability of positive 2D linear
systems with state feedbacks have been not considered
yet. In this paper it will be shown that the reachability
and controllability of the positive 2D linear systems
described by the Roesser type model are not invariant
under the state-feedbacks.

2. NECESSARY AND SUFFICIENT
CONDITIONS FOR THE REACHABILITY
AND CONTROLLABILITY OF POSITIVE 2D
LINEAR SYSTEMS

Let { }=+ =� � � ����0 1 2  and mnR ×
+  be the set of real

matrices of the dimension  mn×  with  nonnegative

entries ( 1: ×
++ = nn RR ).

Consider the 2D Roesser model [18]

ijv
ij

h
ij

v
ji

h
ji

u
B

B

x

x

AA

AA

x

x








+




















=













+

+

2

1

2221

1211

1,

,1 (1a)

[ ] ijv
ij

h
ij

ij Du
x

x
CCy +












= 21

 ,   L M =� ∈ +      (1b)

where [ 5LM
K Q∈ 1  and [ 5LM

Y Q∈ 2  are the horizontal and

vertical state vectors at the point ),( ji , respectively,

X 5LM
P∈   is the input vector, \ 5LM

S∈  is the output

vector and kklk np
k

mn
k

nn
kl RCRBRA ××× ∈∈∈ ,, , 2,1, =lk

mpRD ×∈ .

The model (1) is called internally positive (shortly
positive) if for all boundary conditions
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It is easy to show [7] that the model (1) is positive if and
only if
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The transition matrix 7LM  for (1) is defined as follows

[18,5]
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From (4) it follows that the transition matrix 7LM  of the

positive model (1) is a positive matrix, nn
ij RT ×

+∈  for all

+∈ Zji, .

Definition 1.  The positive model (1) is called reachable
for zero boundary conditions (2) (ZBC) at the point

)0,,,(,),( >∈ + khZkhkh , if for every [ 5I
Q∈ +  there

exists a sequence of inputs X 5LM
P∈ +  for hkDji ∈),(

such that [ [KN I= , where

{ }khjikjhiZZjiDhk +≠+≤≤≤≤×∈= ++ ,0,0:),(:    (5)

Definition 2.  The positive model (1) is called
controllable to zero (shortly controllable) at the point

)0,,,(,),( >∈ + khZkhkh  if for any nonzero boundary
conditions

kjRx nh
j ≤≤∈ + 0,1

0
  and   hiRx nv

i ≤≤∈ + 0,2
0

(6)

there exists a sequence of inputs m
ij Ru +∈  for

� � �L M 'KN∈  such that 0=hkx .

A matrix nnRA ×∈  is called the generalised positive

permutation matrix (GPPM) or monomial matrix if and
only if it has only one positive entry in each row and
column and the remaining entries are equal zero.

In [7-9] the following necessary and sufficient
conditions for the reachability and controllability have
been proved.

Theorem 1. The positive model (1) is reachable for ZBC

at the point � � �K N if and only if there exists a GPPM 5
Q

consisting of n linearly independent columns of the
reachability matrix

[ ]10011,,1 ,,...,,,: MMMMMR khkhhkhk −−= (7)
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and 
ijT  is defined by (4).

Theorem 2. The positive model (1) is controllable if and
only if the matrix  A  is nilpotent matrix, i.e.
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3. REACHABILITY OF POSITIVE LINEAR
SYSTEMS WITH FEEDBACKS

To simplify the notation we assume that  1=m  (the
single-input systems) and the matrices A  and B  of the
positive model (1) have the canonical form [5,9]
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where 0,0,0 ≥≥≥ kkll baa  for 
2,...,1 nk = , 

1,...,1 nl = .

Consider the system (1) with the state-feedback












+=

v
ij

h
ij

ijij
x

x
Kvu ,  L M =� ∈ + . (11)

where [ ] 21 1
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1
121 ,,, nn RKRKKKK ×× ∈∈=  and m

ij Rv ∈
is a new input vector.

Substitution of (11) into (1a) yields
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The standard closed-loop system (12) is reachable
(controllable) if and only if the standard 2D Roesser
model (1) is reachable (controllable) [11].

It is easy to show that if at least one of

1,...,1,0 nlal =≠  or 
2,...,1,0 nkbk =≠  then the

condition of theorem 1 is not satisfied and the positive
model (1) is not reachable at the point ),( 21 nn .  To

simplify the calculations let us assume that 31 =n  and

22 =n . In this case using (10), (4) and (8) we obtain
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It is easy to see that the matrix (14) does not satisfy the
condition of theorem 1 if 3,2,1,0 =≠ lal

.

Let the positive system (1) with (10) be unreachable at
the point  ),( 21 nn .  It will be shown that there exists a
state-feedback gain matrix K such the closed-loop
system (12) is reachable at the point ),( 21 nn .

Let

[ ]0,...,0,1,,...,,
121 −−−−= naaaK (15)

For (10) and (15) the matrix (13) has the form
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where
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If the assumptions of the canonical form are satisfied
[5,9] then it can be shown that 0≥kla  for

12 ,...,1,,...,1 nlnk == .  Now we shall show that the
closed-loop system with (16b) and

0,0
22 121 ≠==== − nn bbbb �  is reachable at the point

),( 21 nn . Using (16), (4) and (8) we obtain
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Note that in this case the matrix
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is GPPM and by the theorem 1 the positive system (1)
with (17) and 0,0

22 121 ≠==== − nn bbbb �  is

reachable at the point ),( 21 nn . In the case when  0≠kb

for 
2,...,1 nk =  the calculations in the proof are more

complicated. Therefore, the following theorem has been
proved.

Theorem 3.  Let the positive system (1) with (10) is
unreachable at the point ),( 21 nn . Then the closed-loop

system (13) with (16) is reachable at the point ),( 21 nn  if
the state-feedback gain matrix  K  has the form (15).

From theorem 3 we have the following important
collorary.

Collorary 1. The reachability of positive system (1) with
(10) is not invariant under the state-feedback (11).

Example 1. Consider the positive 2D Roesser model (1)
with
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which is unreachable at the point (2,2).

In this case 1,221 === mnn  and using (15) and (13)
we obtain

]0,1,2,1[ −−−=K (19)

and
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Using (4), (8) and (20) we calculate
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Hence the matrix
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is GPPM and by the theorem 1 the closed-loop system
with (19) is reachable at the point )2,2(),( 21 =nn .

4. CONTROLLABILITY OF POSITIVE LINEAR
SYSTEMS WITH FEEDBACKS

Consider the positive single-input model (1) with (10)
and the state-feedback (11). According the theorem 2 the
positive system is controllable (to zero) if and only if the
matrix A is nilpotent. It is said that the state-feedback
(11) violetes the nilpotency of` A if and only if the
closed-loop matrix (13) is not nilpotent. From theorem 2
the following theorem follows.

Theorem 4. The closed-loop system (12) is

uncontrollable at the point ),( 21 nn  if the state-feedback
(11) violetes the nilpotency of A.

Collorary. The controllability of positive system (1) is
not invariant under the state-feedback (11).

Example 2. Consider the positive model (1) with
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Using (4) we obtain
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and the component of ijx  caused by nonzero boundary

conditions (2) is [18,5,15]
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Therefore, the system can be transfered to zero by zero
input sequence for any boundary conditions (2) and
arbitrary matrix B.

Note that if the matrix B has the form (21) then any
nonzero gain matrix ],,[ 321 kkkK =  violetes the

nilpotency of the matrix  A  given by (21) since
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and for 01 =k  the nilpotency of  A   is not violeted.

5. EXTENSIONS AND CONCLUDING REMARKS

It has been shown that the reachability and
controllability of positive 2D Roesser type model are not
invariant under the state-feedbacks. By suitable choice of
the state-feedbacks the unreachable positive 2D Roesser
type model can be made reachable and the controllable
positive 2D Roesser model can be made uncontrollable.

With slight modifications the presented above
considerations can be extended for multi-input positive
2D Roesser type model and positive nD (n>2) Roesser
type models. It is well known [5] that the first Fornasini-
Marchesini model [1] can be recasted in the 2D Roesser
model. Therefore, the considerations can be immediately
extended for the positive first Fornasini-Marchesini
model. Extensions of the considerations for the positive
second Fornasini-Marchesini model [2] and general 2D
model [17] are also possible. An open problem is an
extension of the considerations for singular 2D linear
systems [6].
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