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Abstract. Many vision-based robotic applications either require, or can be improved by,
accurate object depth measures. Several computer vision methods exist for extracting depth
of features, including stereo vision, structured-light systems, and active monocular depth
recovery. Previous efforts using these methods suffered from a variety of problems related to
calibration and computational complexity. This paper presents a novel method for active
monocular depth recovery that combines new, highly stable active deformable models
(snakes) with a structured camera motion along the optical axis to produce depth estimates
for all the snake control points.. In experiments with a variety of objects and depths, this
method produced control point correspondences and calculated the depth of a large number
of control points in the order of 1 ms. Accuracy is demonstrated by results that exhibit errors
near the predicted errors when assuming a single pixel mis-measurement in control point
location on the image plane.
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1. Introduction

Accurate depth measurements in several robotic applica-
tions are required to perform a variety of tasks and func-
tions. Such measures allow systems to estimate grasp
poses, identify objects, and plan manipulator motions. A
large body of research exists for the recovery of depth,
including stereo [13], structured light [3], and depth-from-
motion [1][2] [12][14][15][19].

These techniques have some drawbacks in common robotic
environments. Stereo techniques require precise camera
calibration that is sensitive to changes in the environment
and can be affected by vibrations and manipulator motions.
Active depth extraction is often too time consuming when
the depths of many object points are required for manipula-
tor motion planning and grasp planning. Structured light
methods often require precise calibration and typically use
laser light stripers that may be undesirable in certain envi-
ronments. A simple, fast method for the monocular depth

derivation that does not require extensive calibration is
needed.

In this paper, we present a method to recover accurate
object-contour depth from a single camera mounted on the
end-effector of a robotic manipulator. Our method requires
only a simple Z-axis motion and does not require the cali-
bration of many of the intrinsic and extrinsic camera
parameters. The method has a wide range of applications
including grasping tasks with unknown objects, inspection
tasks with constrained lateral motion and in confined envi-
ronments where stereo or structured light systems are too
large. Examples of application include pipe inspection, col-
lapsed building search and rescue, and endoscopic exami-
nation.

This method is based upon active deformable models
(snakes) that capture the object’s occluding contour. We
use our new statistical pressure snake formulation that
yields stable control points over time and object/camera
motion. These snakes give an accurate representation of
the object contour during the camera’s translation along the
optical axis (Z-axis of the manipulator) and allow us to use



control point correspondences between two images to cal-
culate the depth for each control point on the snake. We
then extend this method to produce more accurate results
(when possible) by interpolating control point correspon-
dences on the second object contour.

We demonstrate the effectiveness of this method by pre-
senting experimental results from a vision-guided robotic
workcell. These results show that our method is very accu-
rate for objects at a variety of depths from the end-effector
of the manipulator.

This method supplies depth data that can be used in many
robotic applications, including grasp planning and execu-
tion, object recognition, inspection, etc. Furthermore, the
method works with multiple snakes, potentially providing
richer data that includes object surface appoximations and
terrain mapping.

2. Previous Work

2.1. Stereo Vision
Stereo vision and the study of moving cameras in static and
non-static scenes is an extensive research area. There are
several books [6][9][11] which cover several of these
issues and techniques.

2.2. Active Deformable Models
The traditional deformable model was first proposed by
Kass et al. [10]. It is a parametric curve  of the form

(1)
where  and  are the coordinates of the curve. The curve
is placed onto a potential field derived from the following
energy equation:

(2)

where , , and  are weights. The first term corre-
sponds to the tension force, the second term corresponds to
the curvature force, and  is the potential
induced by the image values (edges, corners, or dark spots
on the image) along the curve. The energy along the length
of the curve is minimized by allowing the model to change
shape and position. 
A problem with these formulations is that in the absence of
image energy, these models collapse to a point. Pressure
snakes (balloons) [4] have been developed to alleviate this
problem by adding an internal pressure term to force the
model to expand. Unfortunately, the constant pressure term
solved few of the problems with the model. More success-
ful have been dynamic pressure models. 

Several forms of dynamic pressure models were proposed
by Ivins and Porrill [8] to address the issues of constant
pressure models. These pressure models are based upon
first order statistics and utilize a seed region of the image
to identify positive vs. negative pressure regions. Image
regions that are statistically similar to the seed region yield
positive pressure while image regions that are some num-
ber of standard deviations away from the seed mean will
yield negative pressure. When a portion of the contour is in

a positive region, it will expand away from the center of
the contour. When the contour portion is in a negative
region, it will contract toward the center. It follows that the
minimum energy of the contour lies on the pressure bound-
ary between positive and negative.

A problem with dynamic pressure snakes (addressed in
[14]) is the coupling between energy terms. Curvature,
pressure, and tension can all apply forces in a direction per-
pendicular to the curve. The curvature in equation (2)
pushes the points toward a line. Tension applies a force
along the curve in the direction that reduces overall curve
length. Pressure by definition is expanding or contracting
the area of the snake and acts perpendicularly to the curve.
We have developed energy terms that uncouple these
forces. These snakes (Fig. 1) are extremely stable and
exhibit little motion of the control points due to conflicting
internal terms. This stability is very important to this work
because the snake control points are the features used to
extract the contour depth.

3. Depth from Z-Translation

3.1. Basic Method
Our formulation uses a method that calculates depth esti-
mates for points on the object contour by using corre-
sponding control points from two active deformable
models. The models are derived from two images that are
taken from camera locations that differ only in their respec-
tive distances from the object of interest. This depth differ-
ence is produced by a known translation  along the Z-
axis of the eye-in-hand system. The camera’s optical axis
has been aligned with the Z-axis of the end-effector of the

S

S u( ) x u( ) y u( ),( )’ u, 0 1,[ ]∈=

x y

E
α
2
--- ∂S u( )

∂u
--------------

2
du∫°

β
2
--- ∂2

S u( )
∂u

2
-----------------

2
du∫° ρ P I S u( )( )( )du( )∫°

+

+

=

α β ρ

P I S u( )( )( )

Fig. 1. Two different snakes after a Z translation of the 
eye-in-hand system. Snake point correspondences are 
also shown.
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robot, but calibration of other intrinsic and extrinsic cam-
era parameters is not required. In fact, our depth formula-
tion is independent of focal length, pixel size, and
orientation, assuming they are constant from image to
image. The geometry from the two images is shown in Fig.
2. The pinhole camera model produces the following equa-
tions:

(3)

(4)

A simple derivation and substitution (illustrated in (5)
through (8)) gives us the final formulation for depth in (9):

(5)

(6)

(7)

(8)

(9)

Depth is found using only the projections of  and the
change in depth . Several factors in equation (9) should
also be observed. First, this formulation is independent of
focal length. This occurs when equations (5) and (6) are
combined in equation (7). We have used two different cam-
eras with different focal lengths (3.5mm and 7mm) to
recover contour depths with no software or parameter
changes. Second, the formulation does not require the cam-
era scaling factors (pixel size in X and Y) to be known
since the ratio  is dimensionless (Note: using a larger
focal length lens effectively increases the accuracy of this
discrete ratio for a given Z-axis translation, resulting in a
more accurate depth measure). Third, this formulation is
numerically unstable for control points on the optical axis.
The ratio  will equal 1 for such points. For any possi-
ble object contour, at most only one control point can lie on
the optical axis. This situation is simple to identify and we
avoid attempting to solve for depth in these rare cases.

3.2. Calibration Constraints
In a typical vision-based robotic system several intrinsic
and extrinsic camera parameters must be calibrated. In this
research as in our prior work we have attempted to elimi-
nate as many of these calibration constraints as possible.
The basic method requires very few parameters to be cali-
brated in the eye-in-hand system. Table 1 shows the typical
calibration parameters and notes whether the parameter is
calibrated or uncalibrated in our method. The parameters
that are marked with an asterisk “Uncalibrated” are param-
eters that we did not calibrate for depth recovery, but are
potential parameters to calibrate for increased accuracy or
better task performance. 

3.3. Control Point Interpolation for De-Noising

Our first trials for recovering depth from the active
deformable models used the labeled control points as cor-
respondences for  and . This method yielded accept-
able results, since our new snakes have extremely stable
control points with respect to contour features over time
and object/camera motion. However, there were cases
where certain control points would “flip” around corners
on the object contour and give degraded depth estimates.
We addressed this problem by using a line from the Focus
Of Expansion (FOE) to a control point on the initial con-
tour and calculating this line’s intersection with the second
contour. This provided us with slightly more accurate
results and eliminated problems due to “flipping” control
points. Like the initial method, this method is numerically
unstable when the optical axis (FOE) intersects the con-
tour.

However, a problem arises when using these interpolated
control points. If a contour segment is collinear with a
radial line from the FOE, then the intersection of the FOE/
control-point line on the second snake is a line segment
rather than a point. Depth for contour segments that expand
radially from the FOE cannot be found due to this ambigu-
ity. Fortunately, this case is easy to test for and the control
point correspondences can be used to provide depth data
for these control points. 

4. Experimental Design

4.1. Hardware
Our current experimental setup consists of two mini-cam-
eras mounted on the gripper of a Puma 560 manipulator.
The camera outputs are sent to a Matrox Genesis vision
board that occupies a PCI slot in a dual processor Pentium
Pro PC. The Matrox board and the system processors of the
PC are used to implement the vision and control algo-

Table 1. Calibration constraints for depth recovery.
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rithms, producing cartesian coordinate changes for the
manipulator. These changes are transmitted to the manipu-
lator control subsystem via a serial connection. The serial
interface connects to a VME-based Sun Sparc Station that
serves as the host for Chimera, a real-time operating sys-
tem [16]. Data is read from the serial interface into a Iron-
ics 68030 VME Single-Board Computer (SBC) via a Bit-3
VME-to-VME bus adapter. The SBC calculates the inverse
kinematics for the Puma every three milliseconds and,
through a Trident Robotics VME-to-Puma interface, sends
signals to the joint amplifiers.

4.2. Experimental Results
The depth and intersection calculations both require a com-
putational time in the order of 1 ms. For each pair of con-
trol points, the total computational time is constant.

Fig. 4 shows a flat paper target 33 cm away from the cam-

era and the resulting depths for the snake control points.
Fig. 5 shows the same plot as Fig. 4 from two different

views.What is apparent from these views is the noise in the
depth measured. The minimum distance is 29 cm while the
maximum is 36 cm. The mean is excellent at 32.9 cm with
a standard deviation of 2. Computing a theoretical, pre-
dicted pixel error term is somewhat complicated since the
pixel error will vary with the control point distance from
the optical axis. We computed the predicted error in depth
estimate for a shift of one pixel for each control points This
gave errors between 1 and 3.5 cm, depending upon how far
the control point was from the optical axis. The pixel error
for a given point can be found using the known depth, the
distance to the optical axis, and a known move along the Z-
axis. First, a predicted  is found for the given  accord-
ing to equation (10). The erroneous depth is then computed
using equation (11) and the pixel error is given by equation
(12). This analysis demonstrates that our method produces
depth estimates that are accurate to within a one pixel error
in location measure for virtually all the control points.

(10)

(11)

(12)

The pixel error for the paper target in Fig. 4 is shown in
Fig. 6. The errors increase as the control point distance to

the optical axis increases (the FOE is near the concavity of
the object).

Fig. 7 shows a box on a rectangle of paper and the resulting

plot of the depth from the camera. The plot clearly shows
the two different depths of the contour, the high center and
the lower lobes on the sides of the object. 

Fig. 8 shows a box with a ramp attached to one side. The

depth plot in Fig. 9 shows the smooth change in the depth
of the ramp. The ramp is rather flexible and is steeper
closer to the top and flattens out toward the bottom. This
curvature can be seen clearly in the plots in Fig. 9.

Fig. 4. Cut-out paper target and plot of the distance to 
the camera.
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Fig. 5. Plot of the distance to the camera for the target 
in Fig. 4 viewed from the X and Y axis.
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Fig. 6. Computed pixel errors for the paper target.
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Fig. 7. A black box on black paper and a plot of the 
distance to the camera.
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Fig. 11 shows two boxes stacked one on top of the other.
Two snakes were used simultaneously to find the depths of
the boxes. One snake was used to capture the white box’s
contour and the other was used to capture the black box’s
contour. The depth plot and the height plot (with respect to
the support base) are shown in Fig. 11. The mean depth for

the white box is 58 cm with a standard deviation of 1.7.
The mean depth of the black box is 41 cm with a standard
deviation of 1.9.

5. Conclusion

We have presented a way to extract depth of contours from
a monocular eye-in-hand system. Preliminary results are
very encouraging. Our approach is based on a modified
version of pressure snakes. The method finds depths within
one pixel error. This accuracy is satisfactory considering
that the image is coming from a camera mounted on the
end-effector of a manipulator. 

6. Future Work

While our results are encouraging, an error of 3 cm when
the griper fingers is only 6 cm deep is still too large for
consistent grasping tasks. We intend to improve accuracy
by using integration over time and multiple depths. 

With only a slight improvement of our accuracy, we will be
ready to use depths to do grasp planning and execution on
various targets with complex contour depths. We can use
these methods to extend existing work of Sullivan [17],
Couvignou [5], and Taylor [18] in snake grasping and
tracking.

This work could be also be combined with structured
motion to extract shape and scale.
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