Proceedings of the 8th IEEE Mediterranean Conferenceg
on Control and Automation (MED 2000)
Rio Patras, GREECE 17-19 July, 2000

FAULT-TOLERANT SEQUENCE ENUMERATORS

CHRISTOFOROS N. HADJICOSTIS

University of Illinois at Urbana-Champaign, Room 148 Computer and Systems Research
Laboratory, 1308 West Main Street, Urbana, IL 61801, USA. Email: chadjic@uiuc.edu.

Abstract. Modular redundancy, the traditional approach to fault tolerance, is prohibitively
expensive because of the overhead in replicating the hardware. In this paper we discuss
alternative techniques for fault tolerance in sequence enumerators that are implemented as
linear finite-state machines (LFSM’s). Our approach replaces a given LFSM with a larger,
redundant LFSM that preserves the evolution and properties of the original one. The state
of the larger LFSM is a linearly encoded version of the state in the original machine and
allows an external mechanism to perform error detection and correction by identifying and
analyzing violations of the code restrictions. In this paper, we characterize the class of
appropriate redundant LFSM’'s and demonstrate a variety of possibilities for fault tolerance,
ranging from no redundancy to full replication.

Key Words: Fault tolerance, linear finite-state machines, concurrent error detection
and correction.

mapping the state of a given LFSM into the higher di-
mensional state space of a larger, redundant LFSM in a
1. INTRODUCTION way that preserves the evolution and properties of the
original one. By detecting and analyzing violations
on the enforced state code, an external mechanism can
The traditional, but rather inefficient, way of designing detect and correct failures that corrupt the state of the
fault-tolerant systems is to use modular redundancy: redundant machine. Depending on the machine im-
by replicating the original system we perform the de- plementation, these violations could be the result of
sired function multiple times in parallel; the outputs hardware, software or communication failures.
of all replicas can then be compared (via an external
voting mechanism) and the final result can be cho- Inthis paper we assume that the error detection/correction
sen based on what the majority of the replicas agreesprocedure is fault-fréeand focus on the structure of
upon. In an effort to utilize redundancy in more effi- the corresponding redundant LFSM’s. By formulat-
cient ways, a number of researchers have focused oning the problem of constructing redundant implemen-
using coding techniques to achieve fault tolerance. Ex- tations as an embedding problem, we solve it in a sys-
amples of such research work include arithmetic codestematic fashion and completely characterize the class
[1], and algorithm-based fault tolerance (ABFT) tech- of appropriate redundant LFSM’s. This characteriza-
niques, [2]. More broadly applicable and systematic tion exposes flexibilities that were not considered in
approaches for introducing redundancy in computa- previous work, the implications of which are demon-
tions that can be modeled as abelian groups, semi-strated in this paper for the case of fault-tolerant se-
groups or semirings have been studied in [3, 4]. guence enumerators that are built out of unreliasle
input XOR gates and single-bit memory elements. Fault-
In this paper we discuss fault-tolerance in linear finite- tolerant sequence enumerators can be useful in imple-
state machines (LFSM’s) with particular focus on se-
quence enumerators. Our approach, which was devel- 27his (common) assumption is reasonable if the complexity of

oped in [5] for general dynamic syste}nsonsists of error detection/correction is considerably less than the complexity
of the state evolution mechanism of the system, [6]. In [5] we ex-

1This technique has also been used to construct fault-tolerant lin- tended this approach to also handle failures in the error-correcting
ear time-invariant dynamic systems and Petri nets, [6, 7]. mechanism.

State Sequence (count) Output i qs[t+1] ﬁ qs[t] at qs[t] alt qs[t]
Logic Hp—t @ ! D—Z@—. 8 DJ. 5
=
Sequence Enumerator ‘ ‘
Load/ Load .
Increment Value Fig. 2: Example of a sequence enumerator.
Signa
Branching Lodic One can obtain an LFSM’ (with d-dimensional state
9-od vectorq’[t]) that issimilar to S in eq. (1) through a

similarity transformation, [10]:

qft + 1] (T~'AT) q.[t] & (T~'B) x[t] ,
Fig. 1: Digital controller implementation based on a B/

loadable sequence enumerator.

A’

whereT is aninvertibled x d binary matrix such that

as[t] = Tdq.[t]. The initial conditions for the trans-

menting reliable digital controllers as shown in Fig. 1 formed LFSM can be obtained g5[0] = T~ 'q,[0].

for a loadable sequence enumerator. The techniques

that we discuss here are appropriate for handling er- The linear feedback shift register (LFSR) in Fig. 2 is

rors in the “counting” or in the “sequence enumera- an example of a sequence enumerator. It is imple-

tion”. Fault tolerance in digital controllers is a rich mented using single-bit memory elements (flip-flops)

topic by itself (see, for example, [8, 9] and references and2-input XOR gates (2-input XOR gate performs

therein) and we will address it explicitly in future re- modulo2 addition on its binary inputs and is denoted

search work. by @ in the figure). The state (“current count”) of the
enumerator is given by the values stored in the single-

This paper is organized as follows. In Section 2 we bit memory elements; the corresponding state evolu-

provide an introduction to LFSM’s and characterize tion equation can be written as the state evolution of

the class of appropriate redundant embeddings for aan LFSM

given machine. In Section 3 we discuss the conse-

quences of our approach for the case of sequence enuds|t + 1] = Aq,[t] © bx[t]

merators that are implemented using XOR gates and 00001 1

single-bit memory elements. We conclude in Section 4 10000 0

with a discussion of future research directions. =[101001 |[qstj® | O | z[t]. (2
00100 0
00010 0

2. INTRODUCTION TO LFSM’S AND

SEQUENCE ENUMERATORS Note that whenz[] = 0 andq,[0] # 0, the LFSR

acts as an autonomosequence enumeratand goes

Linear finite-state machines (LFSM's) form a very gen- through all non-zero states (essentially counting fiom
eral class of finite-state machines with a variety of ap- t0 31). For example, if initialized at

plications, including sequence enumerators, random
number generators, encoders and decoders for linear
error-correcting codes, and cellular automata. The state
evolution of an LFSMS is given by the LFSR goes through staigs/1] = [0 1 0 0 0]
a2 =[00100]", . .,qB0oj=[01001]",

q:(31] =[10000]T. The reason for this be-

a0j=[10000]",

T
’

q.[t + 1] = Aqst] @ Bx[t], Q)

wheret is the discrete-time indexy;|t] is the state
vectorand x[t] is theinput vector We assume that
qs[-] isd-dimensionalx|[-] isu-dimensional, and\, B

are constant matrices of appropriate dimensions. All
vectors and matrices have entriesGi#'(2), the Ga-
lois field of order2, i.e., they are either(” or “1".
Matrix-vector multiplication and vector-vector addi-

havior is that théeedback polynomidor the shift reg-
ister has been chosen to be primitive, [11].

Given the state evolution description of an LFSM (as
in eq. (1) or eq. (2)), there are a number of possible
implementations (using-input XOR gates and flip-

flops). The situation is similar to the case of linear

tion are performed as usual except that element-wisetime-invariant dynamic systems [5, 6], and the case of

addition and multiplication are taken modwoOper-
ations in (1) denotes vector addition modulo-

state variable descriptions, [12]. Here, we assume an
implementation where each bit in the next-state vector

qs[t + 1] is calculated using aeparateset of2-input check thaiq,[t] is in the null space of an appropriate
XOR gates (i.e., no hardware is shared, as is the casegarity check matrixP, so thatPq[t] = 0. The par-

in Fig. 2). This implies that a failure in a single XOR ity check matrix has row rank — d = s and satisfies
gate can corrupt at most one bit in the next-state vector PG = 0. Error-correction associates with each valid
qs[t + 1]. We also assume that the calculation of each state inH (of the formGq,[-]), a unique subset of in-
bitin q,[t + 1] is based on the bits @f;[¢] that are ex- valid states that get corrected to that particular valid
plicitly specified by the 1's” in matrix A of the state staté. Since a single failure in an XOR gate results in
evolution equation (e.g., the third bit qf [t + 1] in the the corruption of a single bit, error-correction can be
LFSR of Fig. 2 is calculated based on the second andperformed using any of the methods used in the com-
fifth bits of q;[t]). Under these assumptions, a single munications setting, [13, 11].

failure in an XOR gate corrupts at most one bit in the
state vector of our redundant implementation; there-
fore, we can focus on detecting/correcting single-bit
errors.

Theorem 2.1 In the setting described above, LF3¥1
(of dimensiom = d + s, s > 0 and state evolution as
in eq. (3)) is aredundant version &fif and only if it is

In order to protect a given LFSM (with d state vari- similarto astandardedundant LFSMH, whose state

ables and state evolution as in eq. (1)) against corrup-evOIUtlon equation is given by
tions of bits in its state vector, we embed it into a re- A A B
dundant LFSMH with 5 state variablesi(= d + s, Wit+ll=1"4g A, |@l&] o |x[t. @)

s > 0) and state evolution .))
Here, A and B are the matrices in eq. (1A is an

anlt + 1] = Aqu[t] @ Bx[t] . ©) s x s binary matrix that describes the dynamics of the
redundant modes that have been added, And is a
The initial stateyy, [0] and matrices4, B are chosenso d x s binary matrix that describes the coupling from
that the statey,[t] of H at time stept provides com- the redundant to the non-redundant modes. Associ-
plete information abouty,[t], the state of the origi- ated with this standard redundant LFSM is the stan-
nal LFSM S, through a decoding mapping, and vice- dard decoding matrid,, = [I, O } the standard

versa. More specifically, we will restrict ourselves to Iy

encoding matrixG, = [} and the standard par-

decoding and encoding techniques that are linear in 0
GF(2);i.e., we assume that there exist ity check matrixP, = [0 I, |.
e adxnbinarydecodingmatrixL suchthaty;[t{| = Proof: The proof of the theorem is discussed in [5]
Lqy[t] for all ¢, and (it follows similar steps as the proof of the theorem in
[60). O

e ann x d binary encodingmatrix G such that

an[t] = Ggslt] for all ¢. .))))
Given a pair of encoding and decoding matri€esnd

_ ~ G (they need to satisf.G = 1), and an LFSMS,
Under the above assumptions, the redundant machineTheorem 2.1 completely characterizes all possible re-

H concurrently simulates the original machifiéq, [t] = dundant LFSM'sH. Since the choice of the binary
Lay[t]). Furthermore, there is a one-to-one correspon- matricesA;, and A, is completely free, there are
dence between the statesSrand the states it (i.e., multiple redundant implementations of LFS#! for
an[t] = Gas[t] andq,[t] = Lan[t]). the givenL andG.

Clearly, the redundant machiri¢ enforces ar(n, d)

linear _codeon the state pf the original mgchme_. AN 2 EAULT-TOLERANT SEQUENCE ENUMERA-

(n,d) linear code uses bits to represend bits of in- TORS

formation and is defined i’ F'(2) by ann x d gen-

erator matrixG with full-column rank, [13, 11]. The

d dimensional vectoy|[-] is uniquelyrepresented by In this section we discuss fault tolerance in sequence

ther dimensional vectordodeword) g [] = Ga.l[-]. enumerators that are implemented as LFSM’s. As we

E_rror—detectlon is straightforward: underfault.—free CON- " 3715 subset usually containg-bit vectors with smallHam-

ditions, the redundant state vector must be in the col- ming distance from the associated valid codeword. The Hamming

umn space o6 therefore, all we need to check is that distance between two binary vectars = (1, 22, ..., z,) and

at each time stepthe redundant staig, [t] liesinthe ¥ = (¥1,42, -, yn) iS the number of positions at whichandy
lumn space o (in coding theory terminology we differ, [13, 11]. The minimum Hamming distands,;,, of a code

co p A 9 Yy g_y (collection of binary vectors of length) determines its error detect-

need to check tha;[t] is a codeword of the linear ingand correcting capabilities: a code can detiegt,, —1 single-bit

code generated b, [13, 11]). Equivalently, we can errors; it can correct miz =1 | single-bit errors.

q [t+1] afl —altl qltl—altl —alt q[t+1] qltl — al a—all alt
W N v e My Dgﬂ hg X[‘l; 5o E " F@HDiﬂjﬂﬁ
M D A ‘

] o a[d v a0
v v v 1 - S S R -~
R D@ @»@»D?’» Chang 2 D ‘

Fig. 3: Redundant implementation based on a check-

- Fig. 4: Second redundant implementation based on a
sum condition.

checksum condition.

illustrate via an example, choosing;> and/or A,

appropriately can lead to designs that make better usetnere are exactlg” different LFSM's (we get a differ-
of redundancy. Additional examples can be found in ent system for each combination of choices for entries
[5]. in matricesA 5 andA,s). If we choose

Suppose that the sequence enumersthiat we would A1z =0, Az =1,
like to protect is the linear feedback shift register shown
in Fig. 2. In order to detect a single failure in an XOR
gate, we can use an extra “checksum” state variable (as
was suggested for linear time-invariant dynamic sys-
tems in [2] and for LFSM's in [14, 15]). The resulting

then the same transformatioq,(t] = 7qu[t], T =

[I% (1)])resultsinaredundantLFSM’ with state

evolution equation

redundant LFSMK has six state variables and state A 0
evolution awlt+1] = { cTA — Agyc” Aoy }qh' e
A O b
aittl] = |ty o |wlle| 2, |)
~ D <Ib l'[t]:
0000110 1
100000 0
0100110 0 00001 |0 1
= | oo100lo |@®| o | =, 10000 |0 0
0100110 0
000100 0 =l vo100lo [awll® | g | =l
1111010 1
- 000100 0
wherec” = [11111]. A hardware implemen- 000011 1

tation based or2-input XOR gates and flip-flops is _ _ .
shown in Fig. 3. Under fault-free conditions, the added A hardware implementation based »nput XOR gates
state variabley,, [t] is the modulo2 sum of all other ~ and flip-flops is shown in Fig. 4.

state variables (which are the same as the original state ,
variables in LFSMS). Both redundant sequence enumeratgrandH’ have

the same encoding, decoding and parity check matri-
The above approach is eas"y seen to be consistent with€€s, and allow concurrent detection of single-bit errors
our setup with encoding, decoding and parity check in the redundant state vector (and therefore, accord-

matrices given as ing to our assumptions about hardware implementa-
tion, allow concurrent detection of a failure in a single
G = { Ig } , L= [I; ‘ 0 } P = [T ‘ 1 }) XOR gate). Clearly, the complexity i’ is lower than
¢ in H. The gain is not only in terms of the hardware in-
Using the transformation, [t] = 7 qxt] whereT = volved, but also in terms of minimizing the probability
I, 0 o of failure (since XOR gates may fail).
oI |Wwesee that{ is similar to a standard re-
dundant LFSMH,, with state evolution Note that one of the problems in encoding the state of
dynamic systems (in order to provide fault tolerance)
qo[t+1] = [A0] a.lt] ® { b] z[t] . has been the cost associated with generating the redun-
0 0 0 dant bits, [16]. For example, in the original implemen-
Note that bothA ;, and A, are set to zero. tation H of the checksum scheme, generating one ad-

ditional bit costs more (in terms @finput XOR gates)
As stated earlier, there are multiple redundant imple- than the linear feedback shift register altogether. As
mentations with the same encoding, decoding and par-illustrated in this example for the case of a non-zero
ity check matrices. For the scenario described here, A,;, we can obtain more efficient redundant imple-

mentations by exploiting the dynamics of the redun-
dant modes (given by ,,) and/or their coupling with

the original system (given bgx5). In [5], we discuss
how to systematically choosk;, and A, so that we

minimize the complexity (number of XOR gates) of
the fault-tolerant implementation.

4. SUMMARY

In this paper we studied a general approach for design-
ing fault-tolerant sequence enumerators by encoding
the states and dynamics of the corresponding LFSM's.

[6]

[7]

[8]

The added redundancy can be used to protect against
hardware, software or communication failures. We

presented a variety of possible redundant implemen-
tations and described ways to minimize the hardware

cost and/or overall complexity by exploiting non-zero

redundant dynamics and coupling. The discussion in

[9]

this paper assumed fault-free error-correcting mech- [10]
anisms; we relax this assumption in [5, 17], where

we use a related approach to construct fault-tolerant[11] s, B. Wicker,Error Control SystemsEnglewood
LFSM's largely out of unreliable components (unre-

liable XOR gates and voters).

Future work should

better characterize the tradeoffs involved among the [12]
different redundant implementations, particularly un-
der non-separate linear codes. We should also study

whether the two-stage approach to fault tolerance can

employ convolutional rather than block coding tech-
nigues.

5. REFERENCES

[1]

2]

3]

[4]

[5]

T. R. N. Rao,Error Coding for Arithmetic Pro-
cessors New York: Academic Press, 1974.

K.-H. Huang and J. A. Abraham, “Algorithm-
based fault tolerance for matrix operations,”
IEEE Transactions on Computersvol. 33,
pp. 518-528, June 1984.

P. E. Beckmann, Fault-Tolerant Computation Us-
ing Algebraic Homomorphisms. PhD thesis,
EECS Department, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 1992.

C. N. Hadjicostis, “Fault-Tolerant Computation
in Semigroups and Semirings,” M. Eng. thesis,
EECS Department, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 1995.

C. N. Hadjicostis, Coding Approaches to Fault
Tolerance in Dynamic Systems. PhD thesis,
EECS Department, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 1999.

[13]

[14]

[15]

[16]

[17]

C. N. Hadjicostis and G. C. Verghese, “Struc-
tured redundancy for fault tolerance in LTI
state-space models and Petri nekg/bernetika
vol. 35, pp. 39-55, January 1999.

C. N. Hadjicostis and G. C. Verghese, “Monitor-
ing discrete event systems using Petri net embed-
dings,” in Application and Theory of Petri Nets
1999 no. 1639 in Lecture Notes in Computer
Science, pp. 188-208, 1999.

R. Leveugle and G. Saucier, “Optimized synthe-
sis of concurrently checked controllerdFEE
Transactions on Computersol. 39, pp. 419—
425, April 1990.

V. S. lyengar and L. L. Kinney, “Concur-
rent fault detection in microprogrammed control
units,”IEEE Transactions on Computerl. 34,
pp. 810-821, September 1985.

T. L. Booth, Sequential Machines and Automata
Theory New York: Wiley, 1968.

Cliffs, New Jersey: Prentice Hall, 1995.

R. A. Roberts and C. T. MullisDigital Signal
Processing Reading, Massachusetts: Addison-
Wesley, 1987.

R. E. Blahut, Theory and Practice of Data
Transmission Codes Reading, Massachusetts:
Addison-Wesley, 1983.

R. W. Larsen and |. S. Reed, “Redundancy
by coding versus redundancy by replication for
failure-tolerant sequential circuitdEE Trans-
actions on Computersvol. 21, pp. 130-137,
February 1972.

A. Sengupta, D. K. Chattopadhyay, A. Palit,
A. K. Bandyopadhyay, and A. K. Choudhury,
“Realization of fault-tolerant machines — linear
code application,TEEE Transactions on Com-
puters vol. 30, pp. 237-240, March 1981.

S. Niranjan and J. F. Frenzel, “A comparison
of fault-tolerant state machine architectures for
space-born electronicsJEEE Transactions on
Reliability, vol. 45, pp. 109-113, March 1996.

C. N. Hadjicostis and G. C. Verghese, “Fault-
tolerant linear finite state machines,’roceed-
ings of the 6th IEEE Int. Conf. on Electronics,
Circuits and Systemsvol. 2, pp. 1085-1088,
September 1999.

