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Abstract. We discuss a prototype problem involving terrain exploration and learning

by formations of autonomous vehicles. We investigate an algorithm for coordinating

multiple robots whose task is to �nd the shortest path between a �xed pair of start and

target locations, without access to a global map containing those locations. Odometry

information alone is not su�cient for minimizing path length if the terrain is uneven

or if it includes obstacles. We generalize existing results on a simple control law, also

known as \local pursuit", which is appropriate in the context of formations and which

requires limited interaction between vehicles. Our algorithm is iterative and converges

to a locally optimal path. We include simulations and experiments illustrating the

performance of the proposed strategy.
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1 INTRODUCTION

The e�ort to understand distributed and large-

scale systems has brought engineers before a spe-

cial set of challenges, having to do with the anal-

ysis, architecture and of course, control of such

enterprises. Recent advances in electronics, com-

puting and wireless communication have made it

possible { and indeed practical { to deploy a seem-

ingly endless variety of distributed systems which

take advantage of the latest connectivity technolo-

gies. Examples of such systems include arrays of

satellites, unmanned aerial vehicles (UAVs) and

groups of autonomous robots, to name a few.

The importance of these \systems of systems" for

a large range of applications (e.g. communica-

tions, defense, remote terrain and space explo-

ration), has sparked interest in the problem of ef-

fective control and coordination of formations of

intelligent machines [11, 10, 5, 3]. Using a group

(as opposed to a single individual) to accomplish a

task, has obvious robustness and redundancy ad-

vantages, provided that members of the group can
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take advantage of each others' presence. In addi-

tion, there are tasks (such as the one discussed in

this paper) which can be accomplished by a group

but not by a single individual. In the following, we

investigate one particular type of group behavior

sometimes referred to as \local pursuit".

Figure 1: A group of autonomous vehicles

1.1 Problem description

Consider a group of vehicles moving on terrain

which may include geographical formations such

as hills, valleys and possibly obstacles (Fig. 1).

The group will be required to travel repeatedly to



a distant location and back, as it might be the case

for successive reconnaissance or sample-collection

missions. At least one of the vehicles will have the

ability to reach the target (using a combination

of prior knowledge, sensor measurements and/or

random exploration), possibly taking a circuitous

route when doing so. Our goal is to �nd a strategy

by which the vehicles can improve upon that ini-

tial path and discover the shortest path from their

starting location to the target, without access to

a map of the area.

The vehicles may have short-range communica-

tions and sensors (e.g. odometry, sonar, cameras)

with which they can detect each other as well

as gather information on their nearby surround-

ings. However, the group has no \global" knowl-

edge of the terrain. In geometric language one

might think of the vehicles as moving on a two-

dimensional manifold, with each vehicle's sensors

covering a local coordinate patch. In that same

setting, \shortest" paths are naturally related to

the notion of geodesics.

It might be possible to use a \base station" which

has knowledge of the terrain, in order to guide

the group to the target and back. This approach

requires both a detailed map and a signi�cant

amount of communication between the centralized

controller and every member of the group. This

might not be feasible for a variety of reasons, in-

cluding lack of availability of terrain information,

power limitations and stealth constraints.

In Sec. 2.1 we describe an iterative, decentral-

ized approach, which requires interactions be-

tween neighboring vehicles only and which con-

verges to a locally optimal path. For the purposes

of this work, we model terrain as a smooth surface.

In Sec. 3 we present an experiment showing the

performance of our algorithm for vehicles whose

con�guration space is R
2
. Section 4 discusses a

simulation of the same algorithm on S2.

2 PURSUIT-BASED OPTIMIZATION

A vehicle designated as the \leader" must �rst

use it sensors, together with any prior informa-

tion on the target, in order to explore the terrain

and arrive at the desired location. The leader's

�rst path to the target will likely be longer than

necessary. One would now want to improve on

that initial path, minimizing the total length trav-

eled. On 
at (e.g. R
2
), obstacle-free terrain, the

leader could estimate its position and compute a

straight path back to the starting location. This

would be accomplished by integrating its odome-

try measurements while searching for the target.

(a)

(b)

Figure 2: (a) Centralized vs. (b) Decentralized com-
munication

However, if the terrain is uneven, determining the

shortest path between two points requires a topo-

graphic map, which we assume is not available.

We now proceed to discuss a strategy which can

be used to mitigate the lack of a global map. Our

method is based on the work in [2], which we will

generalize for terrain with curvature.

2.1 A local pursuit algorithm

The idea of \local pursuit" involves an ordered se-

quence of moving vehicles with each vehicle follow-

ing its predecessor, much like a line of marching

ants. From a control-systematic viewpoint, \fol-

lowing" is to be understood as a choice of control

inputs which depend on the locations of the pair

of vehicles under consideration (i.e. leader and

follower).

Initially, all vehicles are at (or near) the starting

location. After searching for and �nding the tar-

get (Sec. 2), a \leader" vehicle reverses course and

returns to the rest of the group. Stored odometry

information is su�cient for that purpose. Back at

the starting location, the leader \recruits" other

vehicles to follow it to the target. On level terrain,

a vehicle \follows" by pointing its velocity vector

in a straight line towards the preceding vehicle [2].

Each vehicle waits � units of time before starting

its pursuit. We assume that all vehicles move with



unit speed. If a vehicle catches up with the one

ahead it joins it in its path. For holonomic vehi-

cles which move on R
2
, it has been shown [2] that

the above strategy gradually \straightens" the it-

erated paths which connect the starting and tar-

get locations, so that the kth robot takes a path

which approaches a straight line, for k su�ciently

large. Here, we give an extension to more compli-

cated surfaces, replacing the notion of a straight

line with that of a geodesic.

2.2 Pursuit on uneven terrain

Ignoring obstacles for the moment, we will model

the terrain as a smooth two-dimensional Rieman-

nian manifold M , which we take to be a regu-

lar surface, embedded in R
3
. We cover M with

a set of coordinate neighborhoods parameterized

by ui = (u1i ; u
2
i ). In each neighborhood (cor-

responding to the coordinate patches surround-

ing each robot) we choose coordinates fi(ui) =

(f1i (ui); f
2
i (ui); f

3
i (ui)). For any two points x; y

in some coordinate neighborhood, �(x; y) will de-
note the distance between them. Here, distance is

de�ned as the length of the shortest geodesic con-

necting x and y, consistent with a choice of inner

product on TM . A familiar example is that of of

the sphere (M = S2) with the Euclidean metric,

in which case the geodesics are simply arcs of great

circles on S2. We will represent the path of the kth

robot by a smooth curve 
k(t) 2M . We will take

all such curves to be parameterized by arclength.

Similarly, when referring to time t, we always have
in mind that _t = 1. The following result gives suf-

�cient conditions for convergence of the iterated

paths generated by the pursuit algorithm:

Theorem 1 Let M be an m-dimensional Rie-

mannian manifold, parameterized by u =

(u1; u2; :::; um) and let f(u) = (f1(u); :::; fn(u)) 2
M � R

n
be a choice of coordinate functions,

R
n
being the \ambient" space (n > m). Let pi,

pf 2M and 
0(t), t 2 [0; L0] a (smooth) curve on

M , such that 
0(0) = pi; 
0(L0) = pf . Then, the

sequence of curves on M de�ned by


k+1(t) = pi if t < (k + 1)� (1)

_
k+1(t) =
vk+1(t)

jjvk+1(t)jj
if t � (k + 1)� (2)

converges to a geodesic if

vk(t) =
d

ds
�k(t; s)js=0 (3)

where �k(t; s) is a geodesic with �k(t; 0) = 
k(t),

�
�
t; �

�

k(t); 
k�1(t)

��
= 
k�1(t).

Proof:

Our proof follows that given for M = R2 [2]. No-

tice that �k(t; s) is the minimum-length geodesic

that \connects" the kth and (k + 1)th vehicles at

time t. In addition, �k(t; s) = exp(vk(t); s), where
vk(t) 2 T
k(t)M is a tangent vector corresponding

to the instantaneous velocity of a pursuing vehicle.

Denote by Lk the total length of the kth path


k. We will show that the sequence fLkg is non-
increasing. Let di = �

�

k((k + 1)�); 
k+1((k +

1)�)
�
be the initial distance between two consec-

utive vehicles at the time when the (k+1)th vehicle
is leaving the starting point pi. Departures occur
every � time units, therefore 0 � di � �.

Recall that each vehicle moves with unit speed and

consider the positions of a leader/follower pair at

times t and t+� (see Fig. 3). Assume for now that

Figure 3: Pursuit strategy on non-
at terrain

at time t, the follower knows where the leader will
be at the future time t + �. During the interval

[t; t + �), the follower chooses to move along the

minimum-length geodesic connecting 
k+1(t) to


k(t+�) (denoted in Fig. 3 by ~�(
k+1(t); 
k(t+�))),
in an attempt to intercept the leader.

More precisely, we have for all � > 0:

�
�

k(t+ �); 
k+1(t+ �)

�
�

� �
�

k(t); 
k+1(t)

�
+ �

�

k(t); 
k(t+ �)

�
� �

� �
�

k(t); 
k+1(t)

�
+ �� �

= �
�

k(t); 
k+1(t)

�
(4)

or

�
�

k(t+ �); 
k+1(t+ �)

�
� �

�

k(t); 
k+1(t)

�
�

� 0

(5)

Now, by letting �! 0, we have:

d

dt
�
�

k(t); 
k+1(t)

�
� 0 for t > tk+1 (6)

When the kth vehicle reaches the target pf (having
traveled Lk units of length), the distance between
the kth and (k + 1)th vehicles is

�f = �i +

Z Tk

tk+1

�
�

k(t); 
k+1(t)

�
dt � �i (7)

so that the total length traveled by the k+1 vehicle
is Lk+1 � Lk.



Because the departure times are separated by

� units of time, there will be a �nite number

of instances where a robot will \catch up" with

its leader. We conclude that the sequence Lk
must have a limit because it is non-increasing and

bounded below. That limit must be a local min-

imum for the length of the resulting path, other-

wise the length of the limiting curve joining pi, pf
could be further reduced.

In order for equality to hold in Eq. 4, we must

have

�
�

k+1(t); 
k+1(t+ �)

�
= � (8)

�
�

k(t+ �); 
k+1(t+ �)

�
= �

�

k(t); 
k+1(t)

�
(9)

for any � > 0. Equation 8 holds only if 
k+1 is a

geodesic. Equation 9 tells us that the leader 
k is

also moving along a geodesic. 2

2.3 Comments

The direction of pursuit vk(t) is (locally) optimal,
in the sense that if the leader 
k were to stop, the
follower 
k+1 would reach the leader by moving on
a geodesic.

The implication of taking the limit �! 0 in Eq. 5,

is that the instantaneous velocity of the follower


k+1 approaches the tangent vk to that geodesic.

Thus when applying Theorem 1, the follower need

only know the position of the leader at the current

time t and not in any future time, together with

the \best" direction of pursuit vk(t) (Fig. 4).

Figure 4: Limit as �! 0 in Eq. 5

The pursuit strategy outlined in Sec. 2.1, requires

making locally optimal decisions that depend on

the geometry of a limited region which contains


k(t) and 
k+1(t). Generically, this would be eas-

ier than the \global" version of the path opti-

mization problem, because neighboring robots can

use sensing (and robot-to-robot communication)

to follow one another. It is possible for the pur-

suit algorithm to converge to the global minimum

but this cannot be guaranteed in general. For ex-

ample, for small values of � (vehicle separation),

an initial path that winds several times around an

obstacle, cannot be expected to \unwind" using

local pursuit.

3 EXPERIMENTAL RESULTS

We performed an experiment designed to illustrate

the result of Sec. 2, using the robots shown in

Fig. 5. Each robot has three wheels, two of which

are independently actuated. The wheel con�gu-

ration makes the robot kinematically equivalent

to a unicycle. The robots are out�tted with 16

sonar sensors each as well as odometry sensors and

wireless access to the Internet. Their top speed is

2m=s and their sensors can be polled at a rate of

30Hz. In addition, each robot is out�tted with a

pair of microphones and speakers. This arrange-

ment allows robots to exchange sound data and

get bearing information on one another over short

distances.

Figure 5: Local pursuit with a trio of robots.

The robots are controlled by means of a Mo-

tion Description Language (MDL) [1], which sup-

ports interactions between continuous and dis-

crete aspects of a control system. MDL programs

are composed by concatenating interrupt-driven

\atoms" [6]. Transitions between atoms are trig-

gered by changes in the environment or in the

state of the robot. A library of atoms implements

simple position and velocity-controlled movements

as well as sensing operations involving the sonar,

microphones and vision systems.

Our robots were designed for indoor use, there-

fore the experiment described below was per-

formed on level terrain. We �xed a coordinate

frame in the room where the robots were located.

Starting at the origin, one of the robots (desig-



nated as the leader) was sent out to explore the

terrain, recording its odometry data along the

way and using its sensors to avoid collisions with

obstacles. The leader reached the coordinates

(3:75m; 0:75m) which were designated as the tar-

get, and returned to the origin by following (back-

wards) the odometry information it collected on

its way to the target. Once back at the origin,

the leader turned around and re-traced its original

path to the target, this time followed by the two

other robots, each separated 0:5m from the next.

We chose to measure length on the plane using

the usual Euclidean metric. This means that the

shortest path connecting the origin to the target

position was simply a straight line. Each robot

followed its leader by moving forward with con-

stant speed, while adjusting its turn rate so as

to keep the leader directly ahead. As predicted,

each follower robot traveled less distance than its

leader, e�ectively shortening the path between the

origin and the target. Once at the target location,

the robots followed each other back to the origin,

further reducing the total length traveled. We ar-

ranged matters so that the robots followed one an-

other back and forth between the origin and the

target, in order to circumvent the need for a large

number of vehicles, Figure 6 shows the paths trav-

eled by the �rst (leader) and second robots during

seven successive trips between the origin and the

target. The curve highlighted with small circles

indicates the initial path. As expected, the iter-

ated paths approached a straight line.

It should be mentioned that by choosing R2 with

the Euclidean metric we have e�ectively ignored

the non-holonomic constraint which governs the

kinematics of our robots. We were able to do this

because following did not require the robots to

move sideways. Of course, a more natural choice

would have been to regard the robots' con�gu-

ration space as being SE(2) with an appropriate

choice of metric and to look for geodesics in that

space [9]. This would involve solving a rather cum-

bersome two-point boundary value problem on-

line, in order to compute the geodesics on SE(2).

4 SIMULATING PURSUIT ON

TERRAIN WITH CURVATURE

To illustrate the pursuit algorithm on a curved

surface, we simulated a sequence of (holonomic)

vehicles following each other on the unit sphere

(with the usual Euclidean metric from R
3
). Using

spherical coordinates, the start and target loca-

tions were given by (�; �
2
) and (0:55; 2:2) respec-

tively (numbers refer to radians). The total length

of the initial path was 3:8 units of length. Fig-

ure 7 shows the evolution of the local pursuit al-
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Figure 6: Iterated paths created by \following": (a)
�rst and (b) second robots.

gorithm. The initial path (indicated using small

circles) is clearly sub-optimal. Subsequent paths

improve the overall length traveled until the path

practically becomes a great circle after seven iter-

ations. The separation between vehicles was 0:57
units of length. Here, each vehicle's velocity vec-

tor was always tangent to the great circle that

connected the vehicle with the one preceding it.

5 CONCLUSIONS

We have explored a cooperative strategy by which

a formation of vehicles can progressively \learn"

the shortest path between two locations on uneven

terrain. Our algorithm is a generalization of \lo-

cal pursuit", where a sequence of vehicles follow

each other from a starting to a target location,

much like a group of ants. The paths traversed

by the vehicles become progressively shorter, con-

verging to a locally optimal solution without the

need for a global map of the terrain. Our algo-
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Figure 7: Pursuit on S2

rithm requires an initial (suboptimal) path to be

provided or discovered. Each vehicle must be able

to compute the length-minimizing geodesic pass-

ing through its current position and the current

position of the preceding vehicle. The notion of

geodesic curves and the exponential map allowed

us to obtain natural extensions of existing results

on planar pursuit problems.

Our result applies to a general class of surfaces,

however it requires the ability to consistently

choose a length-minimizing curve connecting two

nearby vehicles. This may be computationally ex-

pensive, depending on the terrain model.

Obstacles were not explicitly considered here but

could be included in the analysis as (smooth) de-

formations of the surface M . The pursuit algo-

rithm would essentially penalize curves that travel

over obstacles. Alternatively, one can regard the

robots as particles moving among potential �elds

that emanate from the obstacles [4, 7, 8]. In that

case, vehicles are \repelled" as they get close to

an obstacle.

Future work will address other interesting aspects

of pursuit problems. These include understand-

ing the rate of convergence to the optimal path,

the e�ect of vehicle separation on the convergence

rate and the ability of pursuit algorithms to es-

cape local minima. Finally, we intend to investi-

gate the case of non-holonomic vehicles and sub-

Riemannian metrics as well as e�cient ways to

compute geodesics in SE(2) and other spaces.
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