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Abstract

We consider LTI SISO systems with nonrandom
disturbances. The problem is to synthesize low-
order controllers for optimal disturbance attenua-
tion in such systems. The main idea is to fix a de-
sired closed-loop characteristic polynomial, then a
performance index is a convex function of controller
coeflicients. The case of I; and [.-bounded dis-
turbances is under consideration. New algorithms
for solving the arising linear programming problems
are proposed. The example demonstrates the ad-
vantages of the new techniques.

Introduction

In the recent literature, a lot of attention is paid
for optimal feedback design of controllers in the
presence of bounded nonrandom perturbations (see
e.g. [1-6] and references therein). However, stan-
dard approaches such as lj-optimization [3,4] re-
sult in high-order optimal controllers, which are not
well suited for practical applications. Recently new
techniques for design of low-order controllers have
been proposed [7, 8]; they deal with the new per-
formance index which guarantees uniform bounded-
ness of the output in time domain. In the present
paper we provide the new approach to optimal de-
sign, which allows to synthesize fixed-order con-
trollers for standard performance indices such as
{1 and I, norms. The main idea is that we fix the
closed-loop characteristic polynomial, as it has been
proposed by Ya. Tsypkin [1,2] (see also [6]); then a
performance index is a convex function of controller
parameters.

1. Problem statement

We consider a LTI SISO discrete-time control sys-
tem described by a difference equation

Q(9)y(n) = ¢P(q)u(n) + S(g)w(n), (1)
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where n are time instances, y(n) is an input, u(n) is
a control, while w(n) is external (unmeasured) dis-
turbance. Variable g denotes the shift operator, i.e.
q"u(n) = u(n — m). The polynomials Q(q), P(q)
and S(g) are assumed to be known and coprime,

with Q(0) = 1.

The goal is to synthesize a feedback u(n) to mini-
mize a guaranteed norm of the output. The feed-
back is seeked in the form

R(g)u(n) = =T(q)y(n), (2)
where R(g) and T(q) are polynomials to be found.

From equations (1) and (2) we get

Flg) _ SRl )
G(q)  Q(a)R(q) +qP(a)T(q)’

If we fix the denominator of the transfer function

Wi(q) as G(q):
G(q) = Q(g)R(q) +¢P(¢)T(q), (4)

then we choose the desired dynamical properties
of the closed-loop system. For instance, dead-
beat control (finite impulse response) corresponds
to G(¢) = 1. In general, equation (4) provides the
constraints for the controller coefficients (2).

Wi(q) =

Now let us specify the class of external distur-
bances. We assume them to be nonrandom and
bounded in some norm. If we suppose it to be uni-
formly bounded for all time instances, it means that

[lw(n)|loe = max|w(n)| < 1. (5)

Then it is easy to show that (provided W(q) is sta-
ble) the guaranteed steady-state value of the output
is bounded by the quantity

max ||y(n)[le = [[W(g)ll1,

where the unit ball B is given by (5). We say that
a controller is {!-optimal, if it minimizes ||W(q)]|1.

Similarly, if the input is bounded in I;-norm

lw()lli =Y lw(n)| <1, (6)
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then the guaranteed steady-state output 1s boundea
by ||W(q)||co- Minimizing this performance index
we get {*°-optimal controller. The last model arises
when we deal with outliers as external disturbances.

2. Optimal design

While the polynomial G(q) is fixed, equation (4) is
a Diophantine equaton with respect to polynomials
R(g) and T(q). Denote R°(q) and T°(q) the mini-
mal order solution of (4), then a general solution is
given by the formula

R%(q) — qP(q)X(q), (7)
T°(q) + Q)X (q),

where X(q) is an arbitrary polynomial. The order
of the controller is defined by the order of X(q):

deg R(q) =
degT(q) =

deg P(q) + deg X (q) + 1, (8)
deg Q(q) + deg X (q).

In contrast with the standard /;-optimization [3-5],
we can choose the order of X(q), and, hence, the
order of the controller.

A polynomial X (q) provides the parametrization of
closed-loop transfer functions:

W) =V(a) — Ule)X(q), (9)
Vig) = %IZ))((I),U((J) = %

Thus the optimal controller can be found by solving
of one of the following optimization problems, see

(5-6):

Ju=1V(e) -U(@X(@)li — min 10
Joo =IV(g) = U(9) X ()]l — n}gn.

The norms ||...||1 a ||...||c are defined as
IW(@)|lr = lhol+ [ha]+..., .
IW(@)lle = max|hn|, n=0,1,.. (1)

where h, are found from the series W(q) = ho +
hig+ ...+ hng" +.... The transfer function W(q)
is stable, thus the series converge. Notice that
[IW(g)||leo is not H™ norm, but the ly-norm of
the sequence hy, (11).

In general, optimization of J; and J can be re-
duced to a linear programming problem, but for
deadbeat control (G(q) = 1), the special structure
of optimization problems can be exploited to con-
struct effective iterative methods, see Sections 4, 5.
If G(q) # 1, the series for h(n) can be truncated,
thus the same methods can be applied for approxi-
mate solution.

For the particular case G(g) = 1 and i3~
optimization the similar approach (with no spe-
cial methods for linear programming problems) has
been proposed in [6].

3. ['-optimization

For deadbeat control (G(g) = 1), the transfer func-
tions V(g) and U(g) in (10) degenerate to polyno-
mials:

Vig) = wotwvig+...+vs,
Ulg) = 0+ug+...+u, (12)
X(q) = motzig+...+2m.

The orders s,l, m are fixed; we suppose s <[+ m.
Rewrite the optimization problem in vector-matrix
form:

J1 = [vo| + [|v — Uz[[s — min, (13)

where v € RIT™, z € R™1, and U is (I + m) x
(m 4 1) matrix of the special form:

- wug 0 -+ 0

. wg - 0

v . .. .
v = $ ’U: uy . ‘ . 14
0 0 U1 (14)

0 0 0 - oy

The iterative method for solving (13) constructs the
sequences \F € Rl ¢F ¢ RIt™ (¢ = 0), oF €
R™*™ and zF € R™+1, (k= 0;1;---), as follows:

e = argmin, ZiiT ok (v — Uz’fB)2 )
k kN2
[ (1 - |¢z |) )
k-I—l k (7')?’ k (15)
i = i_\/;\_k(vi_Ui:B)’
A= Gk (y — Uiak)?

here U; is the ¢-th row of U.

4, [*-optimization

For G(¢q) = 1 we can rewrite the problem of Jo-
optimization (10) in similar form:

Joo = max{|vgl, || — Uz||eo} — min, (16)

where v, z, U are defined in (14). The iterative
method generates sequences \* € R!, 4*¥ € R!,
ok ¢ RAm ¢k ¢ RH™ and z¥ ¢ R™HL, (k =
0;1;---). The initial approximation is

= argming 1 (v - Uiz)?,

S S YN A

= Jar (= Uia), (17)
v = max |v — Uiz°|,

Moo= ST (o - U)?,
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Next iterations are defined by the formulae m | X=0 0 1 3 7 15
. Jf | 5.00 | 3.80 ] 3.42 | 3.15 | 3.03 | 3.01
xk:argminZ(Jf)_l (Ui—qsf_Ui:B)za (18)
i=1
of = (vF — |4F])2, Notice that for m = 15 (deg R = 16, deg T = 18)
Lm the controller is /-optimal [8]. The comparison of
B k=1 (, _ 1k _ 7. k)2 the results confirms that low-order controller m = 2
AY = ;(0} )7 (vi = ¢f = Uiz)", (19) (deg R = 3, deg T' = 5) provides less than 10% loss
- B of the cost function if compared with much more
if A¥ > 1 then complicated optimal controller of 18th order.
1
E+1 _ ik ) k ¥
¢ =¢i + N3 (v, —¢i —Uiz ) ’ (20) Fig.1 shows time response of the system with low-
a1 . ) . order controller m = 2 and lj-optimal high-order
and y**1 = 4%, while for A* <1 controller m = 15 under disturbance w(n) ~ (—1)"
AR+ and nonzero initial conditions y(n) = 0.1,n < 0.
prtt = —14517 yEH = max |v; — Ui$k|- (21) We conclude that time responses are very close,

5. Example

Counsider the example, borrowed from [7], [8]:
(1 —2.7q + 23.5¢> + 4.6¢%)y(n) =
u(n — 1)+ (1 — 2.5¢ + 1.501¢%)w(n).
We require the closed-loop system to be FIR, that is

G(q) = 1. Minimal order solution of (4) is obvious
and equal to

R%(q) =1, T° = ¢~ 1(1-Q(q)) = 2.7—23.5¢—4.6¢°.

The results of /1-optimization as functions of m —
the order of X (q) (7) are presented in the table.

while the effect of nonzero initial conditions is more
articulated for the high-order controller. The con-
trols u(n) are shown at Fig.2; we observe that high-
order control requires higher control efforts.

Next we compare impulse responses hq(n), hoo(n)
for control systems, optimizing cost functions .Jy
and Jo (10) respectively. For m = 2 and G(g) = 1
the number of impulse responses is 6; their values
are given in the table.

n 0 1 2 3 4 5
hy | 1.00 | -1.62 | 0.00 | 0.00 | 0.00 | 0.63
hoo | 1.00 | -0.91 | -0.91 | -0.91 | 0.83 | 0.91




In accordance with the theory,

{~~-optimization pro-

vides smaller values of maximal amplitudes of h(n),
while /;-optimal system guarantees less “weight” of
impulse response. Next table summarizes the opti-
mal values of Jy, J.

J1 Joo
hi | 3.247 | 1.622
hoo | 5.470 | 1.000

6. Conclusions

This method has been implemented for various
problem formulations, based on available a priori
information about disturbances and about desired
poles of the system. The software tools allow to
design low-order controllers under wide variety of
system specifications. Numerous examples demon-
strate the effectiveness of the approach.
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