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Abstract. In this paper, a new fuzzy controller for inferring multiplayer feedforward neural networks 
learning rate is presented. The key issue is using relative values of a performance attribute as fuzzy 
controller inputs, resulting in an increased generality of fuzzy learning rate adaptation and a faster 
training algorithm. Experimental results demonstrate improvements in terms of generalization 
capability and of learning speed in both large pattern recognition and data processing tasks. 
 
Key Words. Neural nets, fuzzy control, training, algorithm. 

 
 

1. INTRODUCTION 
 

In conventional gradient descend algorithms [5] it is 
assumed that the learning rate η is fixed and uniform for 
all weights in a layer. Usually η must be kept very small 
to prevent parasitic oscillations and ensure convergence. 
However, a very small fixed value of η slows the learning 
process considerably. In fact a very large value for the 
learning rate can result in an unstable learning 
(optimization) process, whilst a small value η can result in 
an appreciable and impractically long training periods. 
 
The training time can be considerably reduced by 
employing an adaptive (variable) learning rate. The 
adaptation methods attempt to keep the learning rate at 
each iterative step as large as possible while keeping the 
process stable. 
 
In this paper we show how a fuzzy controller, using the 
relative values of performance attribute (e.g. Mean 
Squared Error (MSE), Sum Squared Error (SSE), etc.) 
and change of performance attribute, can be used to 
dynamically alter the learning rate. The final result is a 
faster and more robust training algorithm, which 
outperforms classical adaptive learning rate gradient 
descend training algorithms. 

 
 
2. SYSTEM DETAILS 
 
The fuzzy controller developed for this 
architecture is based on two observations: 
- quasi-totality of classical [3] or fuzzy [2], [6] 
learning adaptation methods are based on 
absolute value of change error, as fuzzy 
controller input. The major drawback of these 
methods is their dependence on the type of 
neuron’s activation function and error signal 
value. If we consider a particular neural network 
architecture and, in the first case, a linear 
activation function, the range of output error 
could be 102 times bigger than the case of 
sigmoid activation function, for the same neural 
network structure. It is now clear that the design 
of a universal fuzzy controller relay on the 
absolute value of error is impossible and a 
relative value of error is most appropriate; 
 
- for increasing the generality of fuzzy learning 
rate adaptation we deal with the relative value of 
neural network’s performance attribute instead 
of a particular form of this (e.g. MSE, SSE). 



  

In conclusion, we propose as fuzzy Mamdami type 
controller inputs, where  the relative performance 
attribute value is given as: 
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and the relative change of the relative performance 
attribute value is given by: 
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and where “n” denotes the current training epoch. 

 
Instead of an incremental value as proposed in ([2], [6]), 
we propose as output of the fuzzy controller a coefficient 
“c” which multiplies the learning rate. The result is a 
faster variation of  the learning rate: 

 
)1()( −⋅= ncn ηη                                                 … (3) 

 
The training algorithm is inspired from classical method 
of varying learning rate presented in [9]: 
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where typical values of parameters are  
 c1 = 1,05, c2 = 0.7, c3 = 1,04. 
 
 
In the last case the new weights and the error are 
discarded. The disadvantage of this method is that 
parameters c1 and c2 are constant during the training 
phase making impossible a rapid change in learning rate.  
 
Our algorithm offers different fuzzy degrees for these 
coefficients resulting in an increase in convergence speed. 
 
The Membership functions for input and output variables 
are shown in fig. 1, 2, and 3. The fuzzy-rule set for 
controlling the learning rate parameter is presented in 
Table 1 and the output variable versus two input variables 
(control surface) is depicted in fig. 4. 
 

 
Fig. 1. The membership functions for the relative 

performance attribute 
 

 

 
Fig. 2. The membership functions for the change 

of relative performance attribute 
 
 

 
Fig. 3. Membership function for output variable 

“c”. 
 
 
Table 1. The fuzzy-rule set for controlling the 
learning rate parameter. 
 

dp \ p p1 p2 p3 p4 p5 

dp1 c5 c5 c4 c3 c2 

dp2 c5 c4 c4 c2 c2 

dp3 c4 c4 c4 c2 c1 

dp4 c3 c2 c2 c3 c1 

dp5 c2 c2 c1 c1 c1 

 
 



  

 
 

Fig. 4. Fuzzy control surface 
 
3. EXPERIMENTAL RESULTS 
 
The proposed method has been tested on several problems 
such as the parity problem, exclusive NOR problem, 
function approximation problem and real problems arising 
in pattern recognition. 
 
 The method (trainfuzzy) has been implemented in Matlab 
v.5.2 using Neural Network Toolbox v.3.0 and Fuzzy 
Logic Toolbox v.2.0, and  
 

 
 
 
compared with gradient descend with momentum 
(traingdm) and gradient descend with momentum and 
variable learning rate (traingdx) predefined methods. The 
training times given below are CPU times required for 
training on a PC INTEL PII, 333MHz. In our 
experiments, iteration is said to be completed when all 
training patterns are presented and weights of the MLP 
are modified. 
  
 
Experiment 1- Approximation of a Function: The task of 
training a function is a stringent one. In this experiment 
an application of the proposed approach to build a 
network, which approximates the following function, is 
presented: 

]2sin7.0[8.02.0)( x)( x   xf π++=            ...(5) 

 
We assume 0 ≤ x ≤ 1. The training data are taken at 
intervals of 0.1; thus we have 11 data points. We used 101 
evaluation points taken at intervals of 0.01. The 
evaluation data is used to verify the interpolative power of 
the network.  
 
The results for the best numbers of hidden units are 
presented in Table 2. The training process was stopped 
when MSE reached the value of 0.003.  
 
Fig. 5 depicts learning profiles produced for this problem 
and indicates that the proposed learning method yields 
much faster learning. 
 

 
Table 2. Comparative results on the 
approximation of a function problem. 
 
Train. 
Meth. 

hidden
units 

Itera-
tions 

Train. 
time 
[s] 

Init. 
Lear. 
 rate 

Train. 
set 
[%] 

Test 
set 
[%] 

traing 
dm 

9 15
0 

18.89 0.65   
cons. 

3.560 2.360 

traing 
dx 

9 59 5.50 0.65 2.785 0.936 

  train.
fuzzy 

9 34 3.91 0.65 2.482 0.009 

 
 
 

 
 

Fig. 5.  MSE versus number of iterations for 
approximation of a function problem. 

 
 

Experiment 2 – Pattern Recognition Problem: 
The problem consists of the recognition of 100 
facial images (10 subjects x 10 images/person) 
from AT&T Database of Faces (formerly The 
ORL Database of Faces) [4]. The images are 
divided into 50 training images and 50 test 
images. The images format is 56x46 pixels. We 
carry two types of experiments: 
 
a) The images are applied without any pre-
processing to one hidden layer MLP. 

 
The size of the neural network will be:  
56 x 46 = 2576 input neurons, with 50 hidden 
neurons and 10 output neurons. The problem is 
quite difficult because of the large number of 
input neurons and it cannot always be easily 
tackled by other fast training algorithms 
(Fletcher-Powell conjugate gradient, Polak-
Ribiere, Levenberg-Marquardt). The results for 
the best numbers of hidden units are presented in 
Table 3. The training process was stopped after 



  

80 epochs or a MSE of 0.03. Figure 6 illustrates the 
training process. 
 
 
Table 3. Comparative results on the pattern recognition 
problem. 
 

Train. 
Method 

hidden 
units 

Itera-
tions 

Train 
time 
[s] 

Init. 
Learn. 
 rate 

Train. 
set 
[%] 

Test 
set 
[%] 

traing 
dm 

50 80 105.73 0.01 
cons. 

90 90 

traing 
dx 

50 80 90.63 0.01 4 10 

  train 
fuzzy 

50 76 84.53 0.01  2 4 

 
 
 
 

 
 

Fig.6. MSE versus number of iterations for pattern 
recognition problem. 

 
 

b) Feature vectors are extracted from three image regions 
(see details in [1]) through interest operator method [7]. 
Then feature vectors are classified with the same type of 
neural network. In this case only 3 pattern/class are 
required for a 100% recognition rate (Table 4). 
 

 
Table 4. Recognition rate using feature extraction 

technique. 
 

Number of 

pattern/class 

Correct test set recognition rate 

[%] 

1 84,4 

2 98,7 

3 100 

 
 

4. CONCLUDING REMARKS 
  
In this paper, we propose a method for fast 
training of multilayer perceptrons (MPL). A 
number of experiments for classification as well 
as for approximation have been conducted and 
some of them are presented.  The experiments 
show that the proposed method is able to train 
MPL’s much faster than traditional gradient 
descend algorithms. We conclude therefore that 
owing to this fast learning training rate and the 
simplicity of the approach, this method would be 
useful in several practical implementations of 
real-world problems.  
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