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Abstract. A nonlinear dynamic compensator framework for nonlinear passive systems with
arbitrary input nonlinearities is proposed. For this class of systems we prove global closed-loop
stability by modifying the dynamic compensator to include a suitable input nonlinearity. The
proof of this result is based on dissipativity theory and shows that the nonlinear controller
modification counteracts the effects of the input nonlinearity by recovering the passivity of the

plant and the compensator.
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1. Introduction

In [1], the authors present a novel nonlinear control
design framework for positive real linear systems with
arbitrary input nonlinearities. Specifically, for positive
real linear plants controlled by positive real controllers,
a nonlinear controller modification is proposed that ef-
fectively counteracts the effects of arbitrary input ac-
tuator nonlinearities. The main contribution of [1] is
that the feedback interconnection results are not based
on absolute stability criteria [2] and are valid for input
nonlinearities that are not necessarily either sector-
bounded or odd or monotonic.

In this paper we generalize the results of [1] to non-
linear passive continuous-time and discrete-time sys-
tems controlled by nonlinear passive compensators.
Our main result guarantees global asymptotic closed-
loop stability for nonlinear passive systems with ar-
bitrary input nonlinearities so long as the nonlinear
dynamic compensator is modified to include a suit-
able input nonlinearity. The only restriction on the
input nonlinearity is that it be memoryless and that
either its characteristics be known or its output be
measurable. The proof of this result is based on dis-
sipativity theory [3-7] and shows that the nonlinear
controller modification counteracts the effects of the
input nonlinearity by recovering the passivity of the
plant and compensator with respect to a modified set
of inputs and outputs. Finally, in the case where the
plant and compensator are linear, our continuous-time
results specialize to the results obtained in [1].

2. Mathematical Preliminaries

In this section we establish definitions, notation, and
a key result used in the paper. Let R denote the real
numbers, let R™ denote the set of n x 1 real column
vectors, let R™*™ denote the set of m x n real matri-
ces, and let A denote the set of nonnegative integers.
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Furthermore, we write || - || for the Euclidean vector

norm and V' (z) for the Fréchet derivative of V at .
Finally, let C° denote the set of continuous functions
and C” denote the set of functions with r continuous
derivatives.

In this paper we consider nonlinear dynamical sys-
tems G of the form

&(t) = f(x(t) + G(a(t))u(t), ©(0) =0, >0, (1)
y(t) = h(z(t)) + J(@(8))u(t), 2)

where z € R*, u,y e R, f: R* - R*, G : R*" —
R**™ h:R* - R™ and J : R* — R™*™. We as-
sume that f(-), G(-), h(-), and J(-) are smooth (at
least C' mappings) and f(-) has at least one equi-
librium so that, without loss of generality, f(0) = 0
and h(0) = 0. Furthermore, for the nonlinear dynam-
ical system G we assume that the required properties
for the existence and uniqueness of solutions are sat-
isfied, that is, u(-) satisfies sufficient regularity condi-
tions such that the system (1) has a unique solution
forward in time. For the dynamical system G given by
(1) and (2) we assume that for all input-output pairs

t
u,y € Rm) t12 |UT(S)y(5)|dS < o0, t1>t2 Z 0.

Definition 2.1 [7]. A nonlinear dynamical system
G of the form (1), (2) is exponentially passive (resp.,
passive) if there exists a C° nonnegative-definite func-
tion V5 : R® — R called a storage function and a scalar
€ > 0 (resp., ¢ = 0) such that the dissipation inequality

eV (x(1)) Se”‘J‘/'s(ﬂf(to))*/lt 2¢"u’ (s)y(s)ds, (3)

is satisfied for all ¢ > ¢9 > 0, where z(t), t > 0, is the
solution of (1) with u € R™.

Remark 2.1. If V;(-) is C' continuous then an
equivalent statement for exponential passivity of G is

Vi(z(1) +eVi(z(t)) < 2u" (D)y(t),  t>0, (4)

where V;(-) denotes the total derivative of V;(z) along
the state trajectories z(t), t > 0, of (1).
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state observable if for all x € R”,
implies z(t) = 0.
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u(t) =0, y(t) =0

Next, we consider feedback interconnections of pas-
sive and exponentially passive dynamical systems.
Specifically, we consider the nonlinear dynamical sys-
tem G given by (1), (2) with the nonlinear feedback
system G. given by

e(t) = fe(e(t)) + Ge(e(t))uc(?), 2c(0) = zco, (5)

Ye(t) = he(@e(t)) + Je(@e(t))uc(t), (6)
where t > 0, z. € R%, u. € R™, y. € R,
fe : R® — R" and satisfies f.(0) = 0, G. : R*™ —

R" x R™, he : R* — R™ and satisfies h.(0) = 0,
Je : R — R™™ m, = [, = m. Here, we assume
that the negative feedback interconnection of G and
Ge is well posed; that is, with v, = y and y. = —u,
det[l, + Je(zc)J (z)] # 0 for all zc and z. The follow-
ing result gives a sufficient condition for global asymp-

totic stability of the negative feedback interconnection
of G and G..

Theorem 2.1 [7]. Consider the closed-loop system
consisting of the nonlinear dynamical systems G given
by (1), (2) and G. given by (5), (6) and assume
G and G. are zero-state observable. If G is passive
with a C! radially unbounded, positive-definite stor-
age function, G. is exponentially passive with a C!
radially unbounded, positive-definite storage function,
and rank[G.(0)] = m, then the negative feedback in-
terconnection of G and G is globally asymptotically
stable.

3. Nonlinear Controllers for Systems with Ar-
bitrary Input Nonlinearities

In this section we present a framework to con-
struct nonlinear controllers for nonlinear passive sys-
tems with arbitrary input nonlinearities. Specifically,
we suppose that the nonlinear plant (1), (2) is found
to possess an input nonlinearity so that (1), (2) is not
valid. Rather, in place of (1), (2), a more accurate
model is

8-
—~
~
~

|

= f(@(t)) +0G(z(1))o(u(t)), z(0) = @0, (7)
y() = h(z(t)) + 6J(x(t))o(u(t)), (8)

where ¢t > 0, 0 : R” — R™ denotes an input nonlin-
earity and § > 0 is an unknown scalar. We assume
that for all ¢ = 1,...,m, if u; = 0 then o;(u) = 0,
where u; and o;(u) denote the ith components of u
and o(u), respectively. Furthermore, we assume that
with input v = do(u) and output y, G is passive with a
C! radially unbounded, positive-definite storage func-
tion. Note that if o(u) = v and § = 1, that is, u = v,
it follows that G is passive with input u and output y.

To illustrate the allowable input nonlineari-
ties, consider first the special case o(u) =

[01(u1) -+ Om(tm)]" of decoupled nonlinearities. In
this case, the ith component o;(u;) of o(-) depends
only upon the ith component u; of u. Now o;(+) can
represent an arbitrary scalar nonlinearity that vanishes
at the origin. For example, the saturation nonlinear-
ity o1(u1) = sat(u;) is allowable as well as deadzone,
quantization, and relay nonlinearities. Note that in
the case where o;(-) represents a saturation nonlin-
earity, the unknown scalar § > 0 allows for the con-
sideration of saturation nonlinearities with unknown
amplitude and slope. Similar remarks hold for the

othel LOLIIealltlEs Clited abOvVEe.  AlsS0 HOLE Lildt Ull=
ferent types of nonlinearities are permissible. For ex-
ample, o(u) = [sat(u;) sgn(us)]! is allowed, where
sgn(0) = 0. More generally, o(u) may also denote a
nonlinearity whose coordinates are not necessarily de-
coupled. For example, the radial saturation nonlinear-

ity
u7
ot ={

where ||u||> denotes the Euclidean norm of u, can also
be considered.

Note that if o(u) = w and § = 1, that is, u = v,
it follows from Theorem 2.1 that the negative feed-
back interconnection of G and G. is globally asymp-
totically stable, where G, is given by (5), (6) and is
such that rank[ <(0)] = m, and G, is exponentially
passive with input ue, output y., and a C' radially un-
bounded, positive-definite storage function. However,
in the presence of the input nonlinearity o(-) Theorem
2.1 is no longer valid and hence closed-loop stability
and performance may be effected. Next, we modify
the controller (5), (6) to account for the input nonlin-
earity o () in order to guarantee closed-loop stability.

To counteract the effect of the input nonlinearity
o(u) in (7), (8) we modify the controller (5), (6) by
replacing the compensator dynamics (5) and control
inputs (6) by

llull> <1,
llull2 > 1,

e(t) = fe(ze(t)) + Ge(ze(®)Bu(®))y(t), — (9)

u(t) = —lhe(ze(t)) + Je(xc(1))B(u(t))y(®)], (10)
where z.(0) = %o, t > 0, §: R™ — R™*™ ig given
li)y Blu) = dlag(ﬁl( ), B2(u), ..., Bm(u)), where for i =
e ={ oy, wZo, b

Since o;(u) = 0 if u; = 0 it follows that B;(u)u; =
oi(u), foralli =1,...,m, and u € R™. Consequently,
it follows that

fuwu = o(u),

Finally, we assume that G., with input v. = 8(u)y and
output y. = —u, is exponentially passive with a C!
radially unbounded, positive-definite storage function.
Note that if B(u) = I, that is, v. = y, it follows
that G, is exponentially passive with input u, = y and
output y. = —u.

The form of the controller input nonlinearity 8(u) in
(9) and (10) is quite simple, requiring only knowledge
of o(u) and division by wu;. For the case m = 1 and
several common nonlinearities, the required controller
nonlinearity 8(u) is illustrated in Table 1. Note that in
the case of nonlinearities such as the relay nonlinear-
ity o(u) = sgn(u) leads to unbounded S(u) for u near
zero. Hence in this case it may be desirable to artifi-
cially implement a deadzone so that 8(u) is bounded.
Finally, although all of the input nonlinearities shown
in Table 1 are sector-bounded and odd monotonic, our
results are valid for nonlinearities that are not neces-
sarily either sector-bounded or odd or monotonic.

The nonlinear dynamic compensator (9), (10) can be
implemented in two ways. If o(u) is known, then 3(u)
can be constructed from (11) by evaluating o (u) in real
time for each value of u. If, however, the model o (u) is
not available but o(u(t)) can be measured during the
closed-loop operation, then 3(u(t)) can be formed from
u(t) and o(u(t)) by implementing (11) with u = u(t).

ueR™. (12)
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ther a model of o(u) nor a measurement of o(u(t))
is available, then B(u(t)) cannot be formed and our
approach does not apply. Hence, in the sequel, we
assume that either an accurate model of o(u) is avail-
able or that the signal o(u(t)) is available for feedback.
Finally, note that in the case where Jo(z.) Z 0 the
controller output equation contains an algebraic con-
straint on u. For each choice of J.(z.) and f(u) this
equation must be examined for solvability in terms of
u.

Next, we present the main result of this paper which
shows that in spite of the input nonlinearity o(u) in
(7), (8), closed-loop stability is guaranteed if the mod-
ified nonlinear controller (9), (10) is implemented in
place of (5), (6).

Theorem 3.1. Consider the closed-loop system
consisting of the nonlinear plant G given by (7), (8)
and the nonlinear dynamic compensator G, given by
(9), (10), where the input nonlinearity o(-) is such
that oi(u ) =0if u; = 0 and Bi(u) # 0, u € R™,
i = 1,...,m. Assume that G is zero-state observ-
able rank[GC(O)] = m, and G is passive with in-
put v = do(u), output y, and a C! radially un-
bounded, positive-definite storage function Vi(-). Fur-
thermore, assume that G. is exponentially passive with
input v. = B(u)y, output y. = —u, and a C! ra-
dially unbounded, positive-definite storage function
Vse(+). Then the closed-loop system (7)—(10) is globally
asymptotically stable.

Proof. Consider the Lyapunov function candidate
V(z,z.) = (1/6)Vs(x) 4+ Vic (x). Now, the correspond-
ing Lyapunov derivative is given by

V(e,ze) = (1/6)Vs ( ) + Vic(c)
(1/8)V; (2)[f (x) + 0G ()0 (u)]
+Vie(@) [ fe(we) + Gele) B(u)y]
= (1/0)V; (@)[f(2) + G(x)v]
+Vsc(%)[f0(xt:) + Ge(e)ve)-

Since G is passive with input v and output y and G,
is exponentially passive with input v. and output y. it
follows that there exists € > 0 such that

Viz,z:) = (1/0)V, (2)[f(x) + G()v]

+Vslc(x0)[fc (zc) + Ge(ze)vc]

< (2/8)y" v + 20 ye — eVie ()

= 2y o (u) — 2y B(u)u — eVie(ze)
= _5‘/5(:(37(:)

<0,

which implies that the negative feedback intercon-
nection of G and G, is Lyapunov stable. To show
asymptotic stability let R = (z,2z.) € R x R :
V(x,z.) = 0} and, since Vic(x.) is positive definite,
note that V(z,z.) = 0 only if z. = 0. Now, since
rank[G.(0)] = m and B;(u) Z0,u e R™,i=1,...,m,
it follows that on every invariant set M contained
in R, ve(t) = y(t) = 0 and hence u(t) = 0 so that
z(t) = f(x(t)). Now, since G is zero-state observable
it follows that M = {(0,0)} is the largest invariant set
contained in R. Hence, it follows from LaSalle’s invari-
ance principle [8] that (z(t),z.(t)) - M = {(0,0)} as
t — o0o. Now, global asymptotic stability of the closed-
loop system follows from the fact that Vs(-) and Vi(+)
are, by assumption, radially unbounded. O
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orem 3.1 the nonlinear plant G is exponentially passive,
then global asymptotic stability of the negative feed-
back interconnection of G and G, is guaranteed with-
out the assumptions of zero-state observability of G,
Bi(u) # 0, u € R™ (or, equivalently, o;(u) # 0, u # 0),
and rank[G.(0)] = m. Alternatively, global asymptotic
stability of the negative feedback interconnection of G
and G, is also guaranteed if the nonlinear plant G is
input strict passive [6] (resp., output strict passive [6])
and the nonlinear compensator G, is input strict pas-
sive (resp., output strict passive). A similar remark
holds for Theorem 4.1 below.

4. Extensions to Discrete-Time Nonlinear
Systems

In this section we extend the results of Section 3
to discrete-time systems. Specifically, we consider
discrete-time nonlinear dynamical systems G of the
form

z(k+1) = f(z(k)) + G(z(k))u(k), 2(0) = zo,(13)
y(k) = h(z(k)) + J(z(k))u(k), (14)

where k € N, z € R*, u,y € R™, f : R* — R",
G:R* > R h:R* - R™, and J : R* — R™*™,
Here, we assume that f(-), G(-), h(-), and J(-) are C°
mappings and f(-) has at least one equilibrium so that,
without loss of generality, f(0) = 0 and h(0) = 0. The
following definition gives the discrete-time counterpart
of exponential passivity.

Definition 4.1. A discrete-time nonlinear dynam-
ical system G of the form (13), (14) is geometrically
passive (resp., passive) if there exists a C® nonnegative-
definite function V5 : R* — R called a storage function
and a scalar p € (0,1) (resp., p = 1) such that the
dissipation inequality

k1—1

(ko)) + Y 207 T (k)y(k),

k=kgo

pF Ve (@ (ky)) <pHe

15)
is satisfied for all k1 > ko > 0, where 2(k), k € i
the solution of (13) with u € R™.

As in the continuous-time case we assume that the
nonlinear plant (13), (14) possesses an input nonlin-
earity so that (13), (14) is more accurately given by

z(k+1) = f(z(k)) +0G(z(k))o(u(k)), (16)

y(k) = h(z(k)) +6J(x(k))o(u(k)), (17)

where £(0) = xg, k € N and o : R™ — R™ denotes
an input nonlinearity satisfying the assumptions given

in Section 3 and § > 0 is an unknown scalar. Fur-
thermore, we assume that with input v = do(u) and
output y, G is passive with a C° radially unbounded,
positive-definite storage function.

To counteract the effect of the input nonlinearity
o(u) in (16), (17) we propose a discrete-time nonlinear
compensator given by

ze(k +1) = fe(wc (k) + Ge(c(k))B(u(k))y(k), — (18)
u(k) = =[he(zc(k)) + Je(zc (F) B(ulk))y ()], (19)

where k € N, 2.(0) = zcp, and § : R™ — R™*™ jg
given by B(u) = diag(B1 (), Ba(u), . - B (), and for
i=1,...,m, B;(+) is given by (11). Finally, we assume
that gc, with input v. = B(u)y and output y. = —u,
is geometrically passive with a C° radially unbounded,
positive-definite storage function.
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consisting of the nonlinear plant G given by (16), (17)
and the nonlinear dynamic compensator G, given by
(18), (19), where the input nonlinearity o(-) is such
that oi(u ) = 0if u; = 0 and B;(u) # 0, u € R™,
i = 1,...,m. Assume that G is zero-state observ-
able, rank[Gc(O)] = m, and G is passive with in-
put v = do(u), output y, and a C° radially un-
bounded, positive-definite storage function V4(-). Fur-
thermore, assume that G, is geometrically passive with
input v. = B(u)y, output y. = —u, and a C° ra-
dially unbounded, positive-definite storage function
Vic(+). Then the closed-loop system (16)—(19) is glob-
ally asymptotically stable.

Proof. Consider the Lyapunov function candidate
V(z,z.) = (1/6)Vs(z) + Vic (x). Now, the correspond-
ing Lyapunov difference is given by

AV (x,zc) = (1/6)AVi(z) + AVic(c)

(1/6) [Vs(f (z) + 0G (2)o(u)) — V()]
+Vsc(fc(1'c)+Gc(mc)ﬂ( ) ) Vsc( c)
(1/6) [Vs(f (z) + G(z)v) — Vi(x)]
+‘/;c(fc(mc) + Gc(mc)vc) - ‘/;c(l'c)-
Since G is passive with input v and output y and G,

is geometrically passive with input v. and output y. it
follows that there exists p € (0,1) such that

AV (z,zc) = (1/0) [Vs(f(z) + G(z)v) — Vs(2)]
+‘/;c(fc(mc) + Gc(mc)vc) - ‘/;c(mc)
(2/8)y " v + 20 ye — (1= p)Vic(we)

= 2y o(u) — 2y B(wyu — (1 — p)Vie ()
—(1 = p)Vsc(c)
07
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which implies that the negative feedback interconnec-
tion of G and G, is Lyapunov stable. Now, the proof of
global asymptotic stability of the closed-loop system
is identical to that of the continuous-time and hence is
omitted. O

5. Illustrative Numerical Example

Consider the controlled nonlinear oscillator given by
the undamped Duffing’s equation

i(t) + (24 22(t)z(t) = 2u(t), z(0) =z, (20)

y(t) = @(b), (21)

where ¢ > 0, (), u(t),y(t) € R, and input nonlinear-
ity o(u) = sin(u). Defining z; = z and z, = &, (20),
(21) can be written in the state space form (1), (2) with
z = [z1 22]", £(2) = [22 —(2+2)]", G(z) = [0 2],
h(z) = z2, and J(z) = 0. Now, with input v = o(u) =
sin(u) and output y, the nonlinear dynamical system
given by (20), (21) can be shown to be passive [7] with

storage function V;(z) = 227 + 321 + 3. Furthermore,
note that (20), (21) is zero-state observable.

In order to stabilize the dynamical system (20),
(21) we consider a compensator emulating a nonlin-
ear damped oscillator given by

Ee(t) +n(we(t), 2e () (e () + zc(t) = y(t), (22)
u(t) = —we(t) — de(t), (23)

)

where t > 0, £.(0) = 2co, zc(t) € R, and n(zc, i) =

2 + (z¢ + @)%, Defining x¢; 2 2. and 2o = i, (22),

\42) Lall be WLILLELL 111 LIE Stale spact 10 {9/, (V)
with z. = [mcl mCQ]Ty fc(xc) = [mc2 —77(1’(;1,1‘02)(1‘(31 +
ch)]Ta ( ) [0 I]Ta hc(xc) = Tc1 + Te2, and
Je(z.) = 0. With input u. = y, output y. = —u, and
Vie(ze) = mgl + (21 + xe2)? the nonlinear compen-
sator (22), (23) can be shown to be exponentially pas-
sive [7]. With the sinusoidal nonlinearity o(u) = sin(u)
the compensator (22), (23) leads to a limit cycle in-
stability for the initial condition z;(0) = 2, z2(0) = 0.
Alternatively, the modified nonlinear compensator (9),
(10) guarantees global closed-loop asymptotic stability.
The comparison of the time responses for position and
velocity for both controlled systems is given in Figs. 2
and 3, respectively. Finally, Figs. 4 and 5 compare the
control efforts of the unmodified and modified compen-
sators, resepectively.

6. Conclusion

A novel nonlinear control approach based on dissipa-
tivity theory was developed for addressing the problem
of input nonlinearities in nonlinear passive plants. The
approach assumes that the nonlinear plant in the ab-
sence of input nonlinearities is passive and the nonlin-
ear controller is exponentially passive, while the class
of input nonlinearities that can be addressed is quite
general. Global closed-loop stability in the face of arbi-
trary input nonlinearities is guaranteed by modifying
the input to the nonlinear compensator to counteract
the effects of the input nonlinearity. This modification
results in recovering the passivity of the plant and the
compensator.
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Table 1: Representative input nonlinearities

Input Nonlinearity o(u)

Controller Nonlinearity S(u) = o(u)/

o ()

Saturation
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Deadzone

Relay

Relay with Deadzone

Quantization
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