
PREDICTIVE TRANSIENT CONTROL OF EGR/VTG FOR
INTERNAL COMBUSTION ENGINES

1. INTRODUCTION

Modern engine control systems are controlled mainly
based on stationary curves and 3D maps. These maps
are usually optimized for a good stationary performance
of the engine concerning emissions, consumption,
drivability, noise etc., where the optimum would be a
minimum consumption with fulfilling the constraints of
emissions, drivability, noise etc. In recent years, new
technologies have been introduced in order to enlarge
the engine power (turbochargers with variable turbine
geometry: VTG) and to lower critical emissions (Ex-
haust gas recirculation: EGR). Both methods dynami-
cally influence the free oxygen mass which is available
for the combustion and interact one with another.

So far, the EGR was mainly controlled stationarily in an
open loop and the charge pressure in a closed-loop by
means of the turbocharger. Both control strategies
normally based on stationary 3D maps. The amount of
recirculated exhaust depends on the pressure difference
between intake air and exhaust gas, which in turn
depends on the VTG-settings of the turbocharger. Vice
versa, the performance of the turbocharger is influenced
by the recirculated gas which lowers the exhaust pres-
sure responsible for powering the turbocharger’s turbine.

Due to this mutual interdependence, sub-optimal dy-
namic settings for EGR and VTG could worsen the

emission behavior of transients dramatically. Future
legislative emission restrictions, however, will require
an additional optimization of the transients between
different static operating points of the engine.

This paper proposes special transient strategies for EGR-
and VTG-settings in order to improve the dynamic
emission behavior of IC engines. The parameters of the
transient functions are automatically determined by a
model based predictive optimization routine which
minimizes a cost function considering the emissions, the
specific fuel consumption  and the offset of the desired
engine torque. The optimization bases on dynamic
engine/exhaust models which were realized by dynamic
neural networks. The proposed optimization environ-
ment was implemented in MATLAB/Simulink and can
be evaluated online at an dynamic engine test stand on a
special DSP-based computer system.

2. TURBOCHARGED ENGINE WITH EXHAUST
GAS RECIRCULATION

The schematic diagram of a turbocharger combustion
engine with EGR is shown in Fig 1. The actuators are
powered pneumatically by a vacuum line and the EGR
flow &mEGR is open loop controlled by the EDC via the

EGR valve.
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The turbocharger controls the desired boost pressure p2

by varied guide blade positions. The charge-air inter-
cooler lowers the intake air temperature thus further
increasing the maximum possible air-mass in the cylin-
der.

Turbochargers enlarge the power of an engine with a
given cylinder volume by using the exhaust’s energy to
compress the intake air and thereby enlarge the air mass
in the cylinder. The additional air allows a higher
amount of fuel to be burnt and increases the engine’s
power.

Exhaust gas recirculation (EGR) diverts exhaust gas
back to the intake manifold in order to lower the flame
temperature and to reduce the emissions of harmful
nitrogen oxides, [1]. EGR and VTG interact one with
another: On the one hand, recirculating exhaust gas
means taking away a fraction of exhaust that is no
longer available for driving the turbine of the turbo-
charger, on the other hand, the blade position of the
turbocharger influences the pressure difference between
intake air and exhaust gas and consequently the EGR
rate. Due to this mutual interdependence, sub-optimal
settings for EGR and VTG could worsen the emission
behavior of dynamic transients dramatically. Uncon-
trolled air flow dynamics could lead to low air-to-fuel
ratios and unacceptable smoke formation.

3. DYNAMIC ENGINE MODELS

The proposed optimization environment bases on
dynamic emission- and engine models. An experimental
model deduction by means of neural networks is sug-
gested, as a theoretical modeling of combustion engine
exhaust is very complex and far from real-time applica-

bility. The special fast neural network (FNN) LOLI-
MOT was used in this contribution. In addition to
approximating static relations of nonlinear processes,
special neural networks like the FNN LOLIMOT are
capable of simulating the dynamic behavior of proc-
esses. The LOLIMOT algorithm is based on the idea of
dividing the input space of a nonlinear process into M
regions, where local linear models (LLM) are estimated
and the model output is

with woi ... wni: parameters of the local models, x1 ... xn:
process inputs, Φi: normalized Gaussian validity func-
tions, σi: standard deviations and ci: center coordinates
of the local submodels. The Gaussian validity functions
determine the regions of the input space where the
specific local linear models are active. The structure of
the net is automatically adapted to the nonlinearity of the
process by a binary tree construction algorithm.

In order to model dynamic processes, a time-delay
approach can be taken [2]. The current process output is
represented by a function of the current process inputs
and, additionally, by time-delayed process in/outputs:

y(k) = f (x(k),...,x(k-m),y(k-1),...,y(k-m))
           (2)

The representation of LOLIMOT with different local
linear models (LLM), their respective validity functions
and its external extension towards a dynamic neural
network is illustrated in Fig 2. The time-delays are
realized by time-shift operators q-1. For further details
concerning the LOLIMOT algorithm refer to [3,4].

The described FNN LOLIMOT is now being used for a
dynamic modeling of emissions, specific fuel consump-
tion (sfc) and engine torque. The prediction of the
impacts of EGR/VTG on the engine behavior is used for
the model based optimization which is described later in
this paper.
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Fig 2: Structure of the dynamic neural network
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Fig 1: Turbocharged Diesel engine with VTG and
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Fig 3 shows the generalization behavior of two dynamic
neural models for the NOX emissions and the exhaust
temperature after the turbocharger T4.  The model
outputs are compared to measured data, that was not
used for the training of the net. The simulated curves
follow the measured data very accurately with mean
errors of less than 5%. The models, which use the five
most relevant influences on the output as inputs, respec-
tively, consist of 15 neurons and 1st order dynamics,
leading to a differential equation e.g. for NOX of the
following type:

NOX(k ) = f ( NOx(k-1),EGR(k-1),Torque(k-1),
                      neng(k-1),θinj(k-1),VTG(k-1))

                                                                          (3)

The NOX model will be directly integrated into the
optimization environment which will be described in the
next sections. The T4 model can be used in order to
estimate oxidation processes in the exhaust gas which
depend on the temperature.

The training data which is required to build the pre-
sented models has to be thoroughly chosen. For accurate
dynamic models it is significant to excite the process in

all important amplitudes and frequencies of interest. In
order to create dynamic models which are valid in all
considered engine operating regimes, the process was
excited at different amplitudes and frequencies at the
operating points shown in Fig 4.

The next step in building the optimization environment
is to find adequate dynamic transient functions for the
inputs in equation 3, especially for EGR/VTG.

4. TRANSIENT SETTING FUNCTIONS FOR
EGR/VTG

In state-of-the-art open loop controls, changing engine
operating points triggered by changed acceleration pedal
positions lead to an immediate output of the new actua-
tor settings of the new operating point. Dynamic influ-
ences due to the interactions of EGR/VTG are not being
considered. Therefore, the following adjusted transient
functions are suggested for dynamic control of the
engine settings, see Fig 5.

The initial and final values s1 and s2 of the transients are
the stationary settings taken from the production car
ECU. Two different strategies are supposed for the
transients:
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a) an overshot to a variable value a3 between 0 and
100% followed by a variable delay time a1 and fi-
nally a ramp with the gradient a2 to the final value

b) a ramp with the gradient b2 after a variable delay
time b1

Strategy a) gives more flexibility to influence the ex-
haust formation and was therefore used as the transient
control function for EGR and VTG. In order not to have
too many parameters to be estimated, the delay time a1
was set to constant values between 0 and 1 seconds and
the gradient a2 was chosen proportional to the difference
between step-height a3 and s2. By varying a3 it was then
possible to vary the recirculated exhaust gas and the
intake air compression from zero to maximum before
reaching its final values s2, respectively. Suspending
e.g. the next stationary EGR setting value for a while
could help avoiding high soot emissions due to a de-
layed air supply caused by time delays from the turbo-
charger. Strategy b) was used to allow an adjusted fuel
injection in order to avoid too low air-to-fuel ratios.

5. TRANSIENT OPTIMIZATION ENVIRONMENT

Fig 6 gives an overview on the transient optimization
environment which can be divided into three main
sections. The optimization is triggered by a new accel-
eration pedal position signaling the driver’s demand for
a different engine operating point. The control settings
for the desired operating point (s2) are extracted from a
static engine map and mark the final values of the
transient functions which start at the current settings

(s1). Now, with a first guess for the optimization pa-
rameters a3 for the EGR and VTG transients (compare
to Fig 5), the loss function J is evaluated as a weighted
sum of the emissions, the consumption and the torque
deviation over the transient.

J w NO w Opacity w sfc w Torque
X

transient transient transient transient

= + + +∑ ∑ ∑ ∑1 2 3 4
∆

                           (4)

The weighting factors wi allow a flexible trade-off
between different terms within the loss function, [5].
The core of the loss function is represented by the
dynamic neural models for the respective emissions,
specific fuel consumption (sfc) and the engine torque,
which were partly presented above and can slightly be
seen in Fig 6.

The loss function J evaluates the impacts of specific
EGR-/VTG settings on exhaust formation, consumption
and torque derivation. J is then minimized by iterative
nonlinear optimization routines, [6], leading to optimal
parameters a3-EGR and a3-VTG for the respective
transients which cause minimum emis-
sions/consumption, dynamically.

Fig 7 and 8 illustrate the results of optimized transient
control settings for EGR and VTG for a load-increase
triggered by a changing acceleration pedal position from
40% to 90% at an engine speed of 2500 rpm. The
driver’s demand for an increase in engine torque from
50 Nm to 205 Nm was extracted with help of the above
pedal input from a static engine map. The weights in
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equation 4 were all set to 1, so all components of the
loss function were treated equally.

The loss function in Fig 7, where the EGR/VTG a3-
parameter were varied from 0 to 100%, respectively,
clearly demonstrates, that high EGR-overshots com-
bined with high VTG steps would lead to a worse
performance than low dynamic EGR settings with high
dynamic VTG. It is now the task of a  nonlinear optimi-
zation algorithm to minimize the loss function in Fig 7.

The optimized transients are plotted in Fig 8. These
settings – in comparison to an immediate step to the
final values of the new operating point – minimizes the
soot peak due to the lack of oxygen at the cost of
slightly higher NOX emissions. The overall performance,
however, could be improved by 12%, compared to
standard-steps which are plotted as dotted lines in Fig 8.

6. RAPID CONTROL PROTOTYPING SYSTEM

A DSP-based Rapid Control Prototyping system (RPC)
has been used for an implementation of the presented
application at a real engine.
The goal of RPC systems is to enable a very fast and
easy implementation and testing of new control concepts
on real-time hardware coupled to the real process. The
user is enabled to code newly developed algorithms
from block diagrams (e.g. MATLAB/Simulink) on a
host PC and download the code by means of an auto-
matic code generation software to the real-time hard-
ware with a mouse click.

Fig 9 illustrates this process and gives a hardware
example of a RPC-system, which is combined with an
indication system. The control- and optimization algo-
rithms are being evaluated on a 300 MHz  alpha-
processor.

CONCLUSIONS

An optimization of the transient control of EGR and
VTG has been presented motivated from the fact, that
stationary open loop control of EGR and VTG usually is
not optimal because dynamic interactions are not being
considered. The optimization itself is based on dynamic
neural network models for emissions, fuel consumption
and engine torque. It adjusts specific parameters of
special piecewise linear transient function which allow
flexible strategies for an improved transient control of
EGR and VTG. The proposed optimization environment
was implemented in MATLAB/Simulink and can be
evaluated online at an dynamic engine test stand on a
special DSP-based computer system.
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