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Abstract. The study is based on the characterization of Output Stabilizable (C,A B)-

invariant subspaces through two coupled quadratic stabilization conditions.

The paper

shows the equivalence between the existence of a solution to this set of conditions and
the possibility to stabilize the system by output feedback. An algorithm and a numerical
example are provided to illustrate the approach.
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1 INTRODUCTION

The stabilization of linear systems by output feedback
is recognized as an important and still open problem
in control theory. A review of existing approaches and
techniques to treat different versions of this problem can
be found in [10]. Other recent results not covered by this
survey paper are found, for instance, in [1], [7], [4] and
[6].

A commom feature shared by different methods (Lya-
punov, Riccati, LMT or Eigenstructure Assignment) is
that the output feedback stabilization problem is equiv-
alent to obtaining the solution of a coupled set of ma-
trix equations. In particular, through the use of coupled
Sylvester equations [8] [9], the output feedback control
problem can be decomposed into two stages :

- determination of a (C,A)-outer detectable subspace

- inner stabilization of this subspace.

This paper shows that this geometric approach based
on the solution of coupled Sylvester equations has a
quadratic counterpart, so that coupled Lyapunov like
equations can also be used for construction of an out-
put stabilizable (C, A, B)-invariant subspace as an inter-
mediate mechanism in the process of designing a static
output feedback controller. In particular, we show that
solutions for the first stage can be obtained as solutions
of a reduced-order Lyapunov equation.

Furthermore, the quadratic characterization of both
stages by Lyapunov equations provides a convenient
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framework for the numerical resolution of the problem
(through LMTs for instance) and for the integration of
additional performance requirements, such as regional
pole placement, robustness to structured parametric un-
certainties and disturbance attenuation.

The second section of the paper introduces the key no-
tion of Output Stabilizable (C, A, B)-invariant subspace
and the basic equivalence between existence of such a
subspace and static output stabilizability of the system.
The third and fourth sections provide a generic formu-
lation of the output stabilization problem in the form of
coupled Lyapunov equations. An orthogonal decompo-
sition technique and an algorithm to solve the problem
are also proposed in section 4. This approach is illus-
trated in section 5 through a numerical example and
some concluding remarks are finally presented.

2 PRELIMINARIES

Linear time-invariant systems are considered :

z(t) = Azx(t)+ Bu(t) (1)
y(t) = Cx(t) (2)
where: e X CR* ,uceUU CR™ ,yec Y CRP. Bis
assumed full column-rank, C full row-rank and (C, A, B)

stabilizable and detectable. The studied problem is to
find a static output feedback control law

u(t) = Ky(t) (3)



such that o(A+BKC) € C™, or equivalently, the closed-
loop system is asymptotically stable.

As in [9], the mathematical analysis is based on some
known concepts and definitions from the geometric con-
trol theory [11]. Tt is first recalled that a subspace V C X
is (A, B)-invariant if there exists F' : X — Y such that
(A+ BF)Y C V, or equivalently , AV C V + ImB.
In a dual way, a subspace T C X is (C, A)-invariant if
there exists L : Y — X such that (A 4+ LC)T C T, or
equivalently, 7 D A(7 N Ker C).

Definition 2.1 [9] : A v-dimensional subspace V C X
is (C, A, B)-invariant if V is both (A, B)-invariant and
(C, A)-invariant.

Let V€ RY*Y be such that span(V) = V and
T € R(=v)X? he g left annihilator of V, i.e: KerT =
ImV. Thus, definition 2.1 is equivalent to the ex-
istence of matrices (Hy € RV*Y, W € R™*Y) and
(Hr € Pln—v)x(n=v) 1 ¢ %(”_“)XP) solutions to the
following coupled-Sylvester equations:

AV —VHy = —BW (4)
TA—HyT = -UC (5)
TV = 0 (6)

Definition 2.1 and equations (4),(5) and (6) play a
fundamental role in treating the problem of control by
static output feedback, mainly by eigenstructure assign-
ment [8] [9]. This study rather focuses on the properties
of stabilizability and detectability. It is recalled that :
(i) a (A, B)-invariant subspace V is (A, B)-inner stabi-
lizable if there exists F' such that (A+ BF)|V is (asymp-
totically) stable; and
(ii) a (C, A)-invariant subspace V is (C, A)-outer de-
tectable if there exists L such (A+ LC)|X/V is (asymp-
totically) stable.

Definition 2.2 [9] : A v-dimensional subspace V is an
Output Stabilizable (C', A, B)-invariant subspace if V is
(A, B)-inner stabilizable and (C, A)-outer detectable.

Thus, a necessary and sufficient condition for V =
Im(V) to be an OQutput Stabilizable (or simply,
0S)(C, A, B)-invariant subspace is that (4), (5), and (6)
hold true for some Hy, Hp, W and U, with the addi-
tional stability conditions:

o(Hy) € C™ (7)
o(Hr) € C™ (8)
The following theorem relates the concept of

0S(C, A, B)-invariant subspaces to the existence of a
stabilizing output feedback control law (3).

Theorem 2.1 : There exists a static output feeback ma-

trivr K : Y — U such that o(A+ BKC) € C~ if and

only if there exists a matriz V € RN"*Y spanning a v-
dimensional subspace ¥V = ImV that is OS(C, A, B)-

wmvartant and such that

KerCV C Ker W 9)
Ker B'T' C Ker U’ (10)

It is important to note that the above result has been
presented and exploited under different forms in the lit-
erature related to the eigenstructure assignment by out-
put feedback. The above statement is essentially equiv-
alent to the one of theorem 3.2 stated in [9]. In the
sequel, we shall assume that v, the dimension of V, is p.
This assumption has been also adopted in many works
that, explicitly or implicitly, use the coupled-Sylvester
equations for eigenstructure assignment by output feed-
back [1] [8] [5]. Furthermore, (9) and (10) can then be
equivalently replaced by

KCV =W
TBK =U

(11)
(12)

In particular, if CV € RP*P ig full rank, Ker CV =
{0} is always included in Ker W and K verifies:

K=w(CVv)™* (13)
Tt is also easy to verify that Ker CV = {0} if and
only if KerT N KerC = {0}, or, equivalently, that

rank(CV) = p if and only if rank Z; ) = n. For

algorithmic purposes, this condition on 7" may be consid-
ered, for instance, in the solution of the second Sylvester
equation and shall lead, subsequently, to the solutions of

(4) such that (13) holds true [8].

3 A QUADRATIC STABILIZABILITY CHAR-
ACTERIZATION

A quadratic characterization of OS(C, A, B)-invariant
subspaces can be obtained from definition 2.2 by replac-
ing the (A, B)-inner stabilizability condition (7) and the
(C, A)-outer detectability condition (8) by the two equiv-
alent quadratic Lyapunov stability conditions [3]:

o(Hy) € C™ <= 3N =1I' > 0 such that

MH,, + Hyll= —Qv,YQv = Q) >0 (14)
o(Hr) € ¢~ <= 3T =T' > 0 such that
HyT +THy = —Qr,¥ Qr = Qf > 0 (15)

Theorem 3.2 : Let V € R"*P be a basis of a p-
dimensional subspace V C X and T € R=P)*" be such
that TV = 0. Then, V is an OS(C, A, B)-invariant sub-
space if and only if :



) VQv =Qy >0, Qv € RP*P | there exist P = P' >
0, PeR™" ™ and Y € R™*™ such that

AP+ PA'+BY +Y'B = —VQyV' 16)
VIPV>0 ; TPT' =0 (17)
Y = WnV' for some Wp € R™*P (18)

() YQr =QF >0, Qpr € R P*"P there exist S =
S'>0, Se€R*™ and Z € R"*P such that

A'S+SA+C'Z'+2C = -T'QrT (19)
TST >0 ; V'S8V=0 (20)
7 =T'Ur for some Ur €RPP*P (21)

Proof (outline):
Necessity: Consider that V C X is an OS(C, A, B)-
invariant subspace and, hence, that the coupled
Sylvester equations (4), (5) and (6) are verified.

Let us first show the necessity of part (7). For any
Qv = Qi > 0, the quadratic stability condition given
by (14) holds true, and we obtain :

V(IIH, + HyIH V' = VIH,V' + VHyOV'

= —VQvV'<0 (22)

From (4) we also have AV + BW = V Hy, which can
be used in (22) to obtain

VIV A"+ VIIW' B’ + AVIIV' + BWTIV' =

VvV’

(23)
(24)

Thus, by setting P = P’ = VIIV' and Y = WIIV', and
by considering that rank(V) = p and that IT > 0 —=
V'vav'v > 0
TVvIv'T =0
(16), (17) and (18).

, (24) can be equivalently replaced by

Using similar arguments, we can show the necessity of
part (i7). Thus, from (5) and (15), for any Qr = Q% > 0
we obtain :

(25)
(26)

T'(H4T + THp)T = AT'TT 4+ C'U'TT
+T'TTA+T'TUC = =T'QrT

By setting S = T'T'T and Z = T'TU, (26) can replaced

by (19) and (21). Furthermore, since rank(T) = n —p
TT'TTT >0

and ' > 0, we also have { VITTTV = 0 -

Sufficiency: By using arguments from the geometric

theory, it can be shown that the verification of condition

(i) implies that YV = ImV is a (A, B)-inner stabilizable

invariant subspace. Similar arguments can be used to

show that V = Ker T, which is implied by the coupling

condition, is also a (C, A)-outer detectable subspace.

O

The coupling condition between parts () and (¢%) of the-

orem 3.2 can be restated as follows:

Corollary 3.1 If V C X is an OS(C, A, B)-invariant
subspace, then any pair of matrices (P,S) solutions
to parts (i) and (ii) of theorem 3.2 verifies Ker S =
Im Y =1Im P, or, equivalently:

SP=0 (27)

4 OUTPUT FEEDBACK STABILIZATION

The quadratic conditions of theorem 3.2, which could be
applied to verify whether an arbitrary subspace V C X
is an OS(C, A, B)-invariant subspace or not, will now be
used to reformulate the necessary and sufficient condi-
tion, given in theorem 2.1, for the existence of a stabi-
lizing static output feedback.

Theorem 4.3 : There exists an output feedback K :
Y — U such that (A + BKC) € C™ if and only if
there exist positive semi-definite matrices P = P’ >
0,Y,S=25>0and Z such that the coupled quadratic
stabilization conditions of theorem 3.2 hold true for some
matrices V and T verifying TV = 0, and such that:

KerCP C KerY
KerB'S C KerZ'

Proof: Tt remains to show that (28) and (29) are, re-
spectively, equivalent to conditions (9) and (10) of the-
orem 2.1. Thus, from theorem 3.2, (28) can be equiva-
lently replaced by

3 K such that KCVIIV' = WIIV' (30)

where II = II’ > 0 and V' has full row rank. Hence,
relation (30) (or, equivalently, (28)), is verified if and
only (9) holds. Similar arguments show the equivalence

between (29) and (10) . O

The previous theoretical results allow to readily asso-
ciate a quadratic Lyapunov function to the closed-loop
system.

Corollary 4.2 Consider that P, S, V and T have been
found such that theorem 4.3 holds true and let K be the
corresponding stabilizing output feedback matriz. Define
matrices T € NP> and V € R*("=p) gg:

vt Tt
_ —N— _ —_—N—
T=WV'V)y"'W+DT ; V=T(TT)"'+VD; (31)

where D; € RP*("=P) s such that:

DyHr — Hy D, = =V1(A+ BKC)T? (32)
Then, v(z) = 'Sz, where (33)
— n1!' o T
_ ' ’
s =t ][
- Pt 0 V!
=V VI sfw

s strictly decreasing along the trajectories of the closed-
loop system &(t) = (A+ BKC)z(t) .



Proof: From the definition of matrices T and V, it can
be verified that

T L o
R IR k|
Furthermore, by considering the equivalence between
theorems 4.3 and 2.1, we also get

T [ Hy
T
where, from (32), Hiys = DyHy — HyD; + VT(A +
BKC)TtT = 0. Thus, relation (35) can be rewritten:

I[+]

(34)

(35)

](A+BKC)[ 1% H”]

Hry

[T
| T

Hy 0

0 Hy (36)

] (A+ BKC) = [

From (14) and (15), we also have:
Hy 0 o' o o' o Hy 0 | _
0 H, o |t o T 0 Hr |~
[ —@v 0 where: Qy = Q% =TT 'QyIT™! > 0.(37)
0 —QT . vV — vV — Vv .

Thus, by taking into account (36), left and right multi-

plications of (37) by respectively [ T T ] and g ,
. - n! o T
glve.(A—|—B[sC’)[T T][ 0 F][T]+
—1 2
[T T ] HO [ ; ] A + BKC) < 0. Hence,
v(z) = ((A+BAC’) S+S(A+BRC)e <0V a#0.
Furthermore, § can also be written as:
P10 I
j— !
s= vl el ]
- P~ 0 V!
= = O
vl sl ]

4.1 Algorithm

Theorem 4.3 gives a necessary and sufficient condition
for the existence of a stabilizing output feedback. Un-
fortunately, this result involves equations that are non-
linear in the considered unknows. However the quadratic
characterization of theorem 3.2 may be used to ade-
quately construct OS(C, A, B)-invariant subspaces that
lead to stabilizing output feedback matrices K. This
can be done, for instance, by taking into account the
coupling requirement and solving subsequently part (i:)
and part (¢) of theorem 3.2.

Before presenting a procedure based on this last com-
ment, a result will be formulated allowing the use of
a reduced-order generalized Lyapunov equation both to
solve part (i7) and to consider the inclusion (9). The
proof given for the next lemma sets into evidence some
connections between the adopted quadratic approach
and the Sylvester equations approach. The choice of
using orthogonal transformations is due both to their

known numerical interests and simplicity for deriving the
theoretical results.

Lemma 4.1 Under the assumption that (C,A) is de-
tectable, there always exist S = S’ > 0 and Z verifying
(19), (20) and (21) for some T € R""P*"  with rank
(T) = n—p, such that KerT =V is (C, A)-outer de-
tectable and

KerT N KerC = {0}

Proof: Consider the following change of basis :

z
=[ M Mz][x;] (38)
where [M; Ms5] is an orthogonal matrix such that :
C[Ml MQ]:[Cl O] (39)

with Cy € ®*P and rank(Ci) = p.

In this basis, the open-loop system takes the form

HE B RO
y = [ G 0][2] )

where the involved matrices have appropriate dimen-
sions.

As shown in [3], the detectability of the pair (C, A) im-
plies the detectability of the pair (A2, As2). Thus, for
any given matrix Qr = Qf > 0, let Syy € R 7P*7—P,
with So9 = Sh, > 0 and S3; € R"~P*P be solutions to
the following generalized reduced-order Lyapunov equa-
tion :

A4y Sas + SanAss + A15S5, + S21412 = —Qr (42)
Let Ly = 3" P*P be such that

Saala = Su (43)

and consider also a Choleski decomposition of

Sag = She > 0 given by:

Syy = TUT, (44)

Thus, from (42), (43) and (44), we get

T5Ts (Azz + LaArs) + (Agy + Al L) T To = —Qr

where, by construction, ¢ (Asz + LaA12) € C

Since T3 is, by definition, non-singular, we can define
the asymptotically stable matrix Hy € R"~P*"~P from
the similarity relation

To (Aga + LaA12) = HrTs (45)
Furthermore, since C is invertible, a matrix

U € R*~PXP can always be computed from:

UCy =— (T2L2A11 + Ty Aq — HTTl) (46)



Thus, by defining 71 = T3 L3, (45) and (46) can be re-

placedby[Tl Tg][ﬁ; ﬁ;z]—HT[Tl Tg]:

~U[coo].
Hence, T' = [ T Ty ] [ %i
2

- KerT is (C, A)-outer dedtectable, since Hy = (A +
LC)|X /Vissuch that o(Hr) € C~ for L=T'(TT')"'U ;
- KerT N KerC = {0}, since the invertibility of T4

. . T Ty Ty M
implies rank ol = c, 0 M =n.

Furthermore, let ' = TY > 0 be the unique solution
of HiT' + THy = —Qr . Thus, the following matrices
S =5">0and 7 verify (19), (20) and (21) for T defined

above:

] is such that;

_ S Sy My
S=[ M1 M, ] [ Sy Son M| (47)
. SnoSy ] [T
with [ Sy S | | T F[ T Ty ]
Tl
and Z = M Mg][Tl,]UF (48)
2

O
From the proof given above, it can also be verified that

V= [ M, M, ] “;1 such that ImV = Ker T can
b
be obtained as a basis of the null-space of

M/
T=1[ Sn 522][ 2]

TV =0 (49)

Based on these results, and in the light of the algorithm
proposed in [9], the following basic procedure is pro-
posed to compute a stabilizing output feedback when
m+p>n L.

Step 1: Find the orthogonal decomposition C' =

7 7
[01 O]I:%z]andset[i;z]: %E]AMZQ

Step 2: Solve the reduced-order generalized Lyapunov
equation (42) to find Sa; and Saa;

Step 3: Compute V from (49) as an orthogonal ba-
sis of Ker T, t.e: V'V = I,;

Step 4: Solve equations (16), (17) and (18) to find
P,Y and Wrr;

Step 5: Compute the stabilizing output feedback ma-
trix as the unique solution of

KCP=Y <= KCVP=Wy, since V'V =1,.

f m 4+ p = ¥ < n, a dynamic compensator of order v > n — ¥
can be considered to recover this condition.

The steps of this procedure have a correspondence
with those of the algorithm proposed in [8] to compute
an output feedback matrix K that assigns stable closed-
loop eigenvalues. An example in the next section shows
that even in the case m+p > n the basic procedure may
fail and some iterations can be necessary to adequately
define V.

Although in this study, stability is the only closed-
loop requirement, the degrees-of-freedom existing in the
quadratic approach given here could be exploited to con-
sider other numerical and closed-loop performance re-
quirements. In particular, additional requirements may
be associated to the Lyapunov function defined in corol-
lary 4.2. Also, Qv and @7 may be let as free variables
in steps 2 and 4, respectively, and convex optimization
techniques may be used to solve the corresponding equa-
tions [2].

5 EXAMPLES

Consider the following data [5] :

; B=

|

—
o o=+
[= el
[= el
o o~ Oo
==l

Two different output matrices C' are considered. In both
cases, the corresponding triples (C, A, B) are control-
lable and observable and m +p = 5 > n. Also, to
obtain closed-loop eigenvalues with real parts less than
—a = —2, computations are done using (A+aT) instead
of A. Standard convex programming techniques are ap-
plied to find feasible solutions for the coupled quadratic
equations, without additional requirements that could
improve the numerical solution or the closed-loop per-
formance.

1% Case: Consider first the following output matrix:
1 0 0 1

0O 0 1 o0 |.

0o 0 0 1

Using an orthogonal matrix M to perform step 1, a
/

C =

matrix 7 = [ So1 Soo ] [ M% ] 1s readily found in
2
step 2:
—0.5257 0 0 -0.8507
0 0 1 0
7 =[o00006 0 -41142 1 | 08507 0 0 —0.5957
0 1 0 0
=[ -35000 1 0 21625 .
0.5107 0 0.2362
. . . —0.0660 0O 0.9695
It implies, in step 3: V =
0 1 0
0.8572 0 —0.0660
A feasible solution for step 4 is then found:
19753.561 —41669.85 6418.2843 51240.969
P = —41669.85 237613.71 —6863.8855 —177323.06
- 6418.2843 —6863.8855 3104.1283 13562.213 ’
51240.969 —177323.06 13562.213 164934.04



vy = |: —51685.095 —747434.01 —14350.967 261981.08 }
T | —33408.348  639608.61 —4267.0209 —349845.47
Wy = [ 247529.57  —14350.967 —754116.8 }
—359186.68 —4267.0209 635288.97

The corresponding stabilizing output feedback
K= —67.1094 56.3478 84.9136 . .
Y= | 346173 —26.0568 —45.3505 | B1VES:

oc(A+ BKC) = { —2.5001; —2.1333; — 2.5499+
4.46223 ; } where the eigenvalue —2.5001 corresponds to
step 2, through (43).

2"? Case: Consider now the output matrix used in [5]:

1 0 0 0 ]
C=1]0 0 1 o].
0o 0 0 1

In this example, convex programming techniques do
not, produce a feasible solution in step 4, due to the
particular matrices 7T selected in step 2. However, a
stabilizing solution exists. Tt has been found in [5] by
eigenstructure assignment. Thus, the left eigenvector of
this solution is selected as a candidate T':
T=[3 -7 —-28 —10] so that A = —4 must be
assigned as a closed-loop eigenvalue, and:

0.2153 0.6027 0.1507
V= —0.0185 —0.0518 0.9871
- —0.0740  0.7928 —0.0518
0.9736 —0.0740 —0.0185
Hence, a feasible solution for step 4 can now be obtained :
40952.514 —88879.744 14627.136 164593.46
P —88879.744 601592.13 —19920.323 —676416.69
14627.136 —19920.323 6758.6188 46215.07
164593.64 —676416.69 46215.07 920167.23
Wy = [ 603289.9 —79801.264 —1989176.3 i| .
—1990617.4 —25183.375 2876237.8 ’
vy = |: —217972.83 —1970444.2 —4872.8597 630050.05 i|
—10282.026 2877121.4 —21648.917 —1989355.1

The corresponding stabilizing output feedback

K = —116.2499 158.3979 13.5233 ives: O'(A +
- 97.4749 —122.0786 —13.4663 & ’

BKC)={ —4.0; —22319; —3.1172 4 6.6548;}.

6 CONCLUDING REMARKS

The concept of (C, A, B)-invariance has been revisited
to obtain a quadratic characterization of the so-called
Output Stabilizable (C', A, B)-invariant subspaces, which
have a fundamental role for output feedback stabiliza-
tion in linear systems. The paper has focused on both
theoretical and algorithmic aspects, and some links with
the coupled Sylvester equations approach have been
stressed. In particular, a necessary and sufficient condi-
tion for the existence of a stabilizing output feedback has
been obtained in terms of two coupled-quadratic equa-
tions. An algorithm has also been proposed to compute
a stabilizing output feedback matrix when m+p > n.
Among the remaining open questions for future stud-
ies, one may consider the use of the existing degrees of
freedom to include additional control requirements, the
possible extension to the less restricitive case mp > n [1],

and numerical and theoretical comparisons with other
quadratic approaches.
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