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Abstract. The contribution deals with the robust control design for linear systems with time
delays. The proposed control synthesis is based on general solutions of Diophantine
equations in the ring of Hurwitz stable and proper rational functions Rps. The methodology
is suitable for stable and unstable transfer functions and covers both tracking and
disturbance rejection problems. Several approximations of the time delay term is
investigated and compared for stable and unstable processes. Perturbations and robustness
are studied through the infinity (H∞) norm and by open loop Nyquist plots. Resulting
control laws for first order systems are of a general PID type and a scalar tuning parameter
influencing robustness and properties of the closed loop system was introduced.
Simulations were performed in Matlab and Simulink environment.
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1.INTRODUCTION

Linear controllers of the PID type are still widely
used in many industrial applications. However, a
good part of technological plants is nonlinear and
exhibits a short or long time delay as an inherent
feature of the reality. The dynamics of such processes
can be adequately approximated by a linear transfer
function plus a time delay term. The dynamics of
many technological plants can be adequately
approximated by first order transfer functions plus
dead-time.

There are several available design and tuning
methods for stable systems without or with time
delay, see e.g. [1],[3]. The dead-time can be treated
in various ways. One of them is using the well-
known Smith predictor improved by Watanabe and
Ito [12] and Aström et al. [2]. However, Smith
predictor type controllers suffer from several
drawbacks, e.g. lack of robustness and difficulties in
applying for unstable systems. Another way tries to

approximate the time-delay term e -τs by Padé or
Taylor series and to design a linear but robust
controller. Unstable time delay systems are solved in
[10].

In this contribution, a robust technique is proposed
for stable first order time-delay systems. The control
design is performed in the ring of proper and Hurwitz
stable rational functions where the H∞ norm serves as
a tool for perturbation evaluation. Moreover, a scalar
parameter m > 0 is defined for control and robust
tuning. The theoretical background of algebraic
notions can be found in [4], [5], [6], [11]. Some
applications and utilization for PID settings are
introduced in [8], [9].

2.SYSTEM DESCRIPTION AND CONTROL
DESIGN

Let Rm(s) denote a ring of Hurwitz stable and proper
rational functions having no poles in the region     Re
s > − m; m ≥ 0. A transfer function of a linear



continuous time traditionally modeled by a ratio of
two polynomials system is then expressed a ratio of
two elements of Rm(s):
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where a, b  and m are polynomials in s with the
condition deg m = max {deg a; deg b}. As a simple
example, the second order system is expressed
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Suppose a two degree-of-freedom control system
(FBFW structure) depicted in Fig.1. Note that the
traditional one degree-of-freedom system (FB
structure) is obtained simply by R=Q.
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Fig.1. Feedback feedforward closed loop system.

The first step of the control design is to stabilize the
system by a proper feedback loop. It can be
formulated in an elegant way in Rps by the
Diophantine equations:

AP+BQ=1 (3)

Details and proofs can be found e.g. in [6], [9], [11].
Let w=Gw/Fw be a reference then a zero steady state
of (w-y) can be obtained only if Fw divides the
product AP. Moreover, for a two degree-of-freedom
controller the term R is given by any solutions of the
second Diophantine equations:

FwS+BR=1 (4)

All feedback controllers are expressed by
parameterization
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where Q0,P0  are particular solutions (6) and T is free.
Similarly, the disturbance rejection problem can be
formulated in algebraic parlance. Both structures can
be solved in a unified way. The problem then gives a
second condition of divisibility that the product AP
has to be divisible by Fv, where Fv is the denominator
of the disturbance signal in Fig.1. The simultaneous
tracking and disturbance rejection problem is solved
in two steps. The first one expresses all stabilizing
controllers (Youla-Kučera parameterization). The
second step selects the suitable controllers according
to conditions of divisibility in the given ring (see e.g
[5], [6]).

3.APPROXIMATION OF THE TIME DELAY

The simplest description for process with delay can
be expressed by a first order model:
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For the linear controller design and tuning it is
necessary to linearize transfer function (6). It can be
done by several methods. The first one and the
simplest is neglect the delay e-τs. Then the time delay
is considered as a perturbation of the nominal
transfer function. So the nominal approximation is :
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Next two approximations are based on the Taylor
series approximation of e-τs in numerator or in
denominator. Approximation e-τs  ≈ (1-τs) ≈ (1+τs)-1

then
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The last model is obtained by the familiar known
Padé approximation
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4.ROBUST ANALYSIS IN THE FREQUENCY
DOMAIN

The fractional approach developed by Vidyasagar in
[11] enables a deeper insight into control tuning and
robustness. Let Rps be a set of proper and Hurwitz
stable rational functions. This set is a ring and the



norm H∞ can be easily defined through the frequency
response.
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Almost all models differ from physical plants. Let
G(s) = B(s) / A(s) be a nominal plant and consider a
family of perturbed systems G’(s) = B’(s) / A’(s)
where

21 '' ε≤−ε≤− BBAA (13)

or  ε≤−− '' BBAA (14)

where ε1,ε2,ε are positive constants.

For robust control it is necessary to choose a part of
stabilizing controllers (6), (8) which stabilize
perturbed plants. For perturbed plants choose such
P, Q in (6) which fulfil the conditions

10201 <−++ ATQBTP εε (15)
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For a deeper insight into robustness the notion of the
sensitivity function:
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can be used in the sense as in [4]. For above
mentioned SISO systems sensitivity function ∈  is a
non-linear function of m>0 and it can be minimized
by a simple scalar optimization method. In this way
the “most robust“ controller of given structure can be
obtained.

5.ROBUST PID DESIGN AND TUNNING

All approximated transfer function (7)-(10) can be
considered as a special case of (2) – second order
system with relative degree one. Let the reference be
a stepwise signal with the denominator

Fw = s / (s+m)  (18)

Equation (3) takes the form:
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All stabilizing controllers could be written:
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where T is arbitrary element of Rps

The divisibility condition Fw \ P is achieved for :
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The final solution is then:
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and the transfer function for controller is given:
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This controller corresponds with the realistic PID
controller (see [1], [3])
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The disturbance rejection problem can be explained
by the following example. Consider an integrator
without dead-time expressed by the transfer function
(7) for α = 0, the reference (18) and a disturbance
expressed by
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It means the problem of simultaneous regulation and
disturbance rejection of a harmonic signal. All
stabilizing controllers are given by (3) in the form
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with the solution:
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The condition of divisibility of AP by Fw is fulfilled
generically for the integrator since functions Fw and
A are the same. For the disturbance rejection it is
necessary to ensure the divisibility of  P by Fv. It is
possible to achieve by a suitable choice of
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Equating of coefficients in (29), the following linear
equations for  t0, t1  are:
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resulting feedback controller Q /P is then obtained:
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The control law Pu=Qe then gives the control law:

ττ+ττ+

++ττω−=

deqdeq

teqdutu

)()(

)()()(

01

2
2

(32)

6.EXAMPLES AND COMPARISON

Example 1:  Consider a stable transfer function with
time delay
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Using the above described method for nominal plant
GN and Padé approximation, a robust controller is
obtained for m=0.32 with the transfer function:
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Control responses for transfer function (33)-(35) and
robust controller C3 for m=0.32 are shown in Fig. 2
while Fig. 3. shows open loop Nyquist plots. A unit
step setpoint is changed at time t=100 and a load
disturbance v= -1 is introduced at time t=200. The
distance of the open loop Nyquist plot Ga from the
critical point (-1, 0) was obtained for the value
m=0.32 which represents the "most robust"
controller.
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Fig. 2. Control response for the nominal plant,
perturbed plants and robust controller C3 ( m=0.32 ).

Fig. 3. Open loop Nyquist plots for Example 1.

Example 2: Let the integrating process have the
parameters in (7) K=1, α=0 and time delay τ = 5.
Approximation (7) gives controller (24) in a PI
structure. The disturbance rejection controller was
derived according to (27) - (31). In all cases, the
scalar parameter m > 0 was used for tuning and
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finding satisfactory control responses. Figs. 4,5
represent the responses for FB and FBFW structures
and m=0.1. The magnitude of the load disturbance
was assumed to be -0.1 in t=200. The improvement
of the response caused by the structure FBFW is
evident.
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Fig. 4. Control response of the time delay integrator
with the neglecting of the time delay term (FB
structure and m=0.1).
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Fig. 5. Control response of the time delay integrator
with neglecting of the time delay term (FBFW
structure and m=0.1).
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Fig. 6. Disturbance and regulation control of the
integrator with FB structure and neglecting of the
time delay term.

The simultaneous disturbance rejection and tracking
response for the FB structure and the integrator with
τ = 0.1 is shown in Fig. 6. Also the time delay term

was neglected according to (7). It is clear that a scalar
parameter m>0 incorporated in relations (31) is
indeed a tuning knob for influencing controller
parameters and control behavior.

Example 3:  Consider an unstable system with time
delay (6) with one unstable pole and K = 1, α = -1;
τ = 0.8. Nyquist plots of all approximated transfer
functions (7)-(10) are depicted in Fig. 7.The best
control response was reached for the FBFW structure
and m=0.3. Again, the step change of the setpoint
was performed in t=150 and the magnitude of the
load disturbance was assumed to be -0.1 in t=200.
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Fig. 7. Nyquist plots for transfer functions (7)-(10)
K=1,α = -1, τ =0.8.
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Fig. 8. Taylor denominator expansion for Example 3
with m=0.3 and FBFW structure.
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Fig. 9. Open loop Nyquist plot of Example 3.



Evidently, the resulting response is very satisfactory,
without overshooting and with a good reaction to the
load disturbance of the magnitude -0.1. The open
loop Nyquist plot of this controller nominal setting is
depicted in Fig.9. According to Nyquist criterion The
critical point (-1, 0) has to be encircled once time
since the controlled plant has one unstable pole. The
minimal distance of the plot to the critical point is
again a measure of the robustness of the proposed
controller.

7.CONCLUSION

In this contribution, a non-traditional method of
control design and tuning for SISO, continuous - time
transfer functions having time delay has been
introduced. The proposed control synthesis is based
on the fractional representation of system and
regulator transfer functions. Both, single feedback
(FB) controller and feedback-feedforward (FBFW)
controller structures were investigated. Controller
transfer functions are obtained as a special solution
of Diophantine equations in the ring of proper and
stable rational functions. The asymptotic tracking
and disturbance rejection problems are then
expressed through the conditions of divisibility laid
on controller denominators. For first order systems,
the resulting control laws are of general PI or PID
types. The time delay terms are approximated by
several ways. The fractional approach enables to
define a scalar positive parameter which can be seen
as a ”tuning knob” which generates all controller
parameters as well as control responses and
robustness of the overall system.
Simulation experiments confirmed a highly robust
performance of the proposed control systems in both,
setpoint tracking and disturbance rejection problems.
Robust analysis based on Nyquist open loop plots is
added. All simulations were performed in the Matlab
and Simulink environment. The designed strategy
can be preferably recommended for industrial
applications when parameter uncertain plants with
dead - time are to be controlled.
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