
 
 
 
 
 
 

AN EFFICIENT SERIAL PIPELINED IMPLEMENTATION 
OF byax +  

 

KIAMAL. Z. PEKMESTZI†, PARASKEVAS KALIVAS†,  
NIKOS MOSHOPOULOS†, IOANNIS SIFNAIOS† 
 

†National Technical University of Athens, Department of Electrical and Computer Engineer-
ing, Heroon Polytehniou 9, Athens, Greece, pekmes@microlab.ntua.gr. 
 
Abstract. An efficient implementation of the operation byax + , on which the construction 
of second order digital filters and complex numbers multipliers is based, is presented. The 
quantitiesx  and y  are 2’s complement numbers in serial form. The numbers a  and b  are 
constant coefficients in Canonical Signed Digit form (CSD) while the result is obtained in se-
rial 2’s complement form. The proposed scheme operates in pipeline mode with 100% hard-
ware efficiency, namely, no sign extension words between successive data words are re-
quired. The implementation is based on merging of two serial multipliers, which yields sig-
nificant hardware reduction.  
 
Key Words . Serial multipliers, Systolic multipliers, Digital filters 
 

 
 
1. INTRODUCTION 
 
The computation of the expression byax + , where a  
and b  are constant numbers, is essential for many 
applications such as digital filters of constant coeffi-
cients and complex multipliers of constant coeffi-
cients. An obvious implementation of this expression 
contains two serial/parallel multipliers. The selection 
of the appropriate multiplier affects the efficiency of 
the resulting circuit. The serial/parallel multiplier [5], 
is the most prevalent architecture for implementing 
serial multiplications, but has the serious disadvan-
tage that additional idle cycles are needed for every 
multiplication to be completed. It requires the inter-
leaving of zero words between successive data words. 
Thus, the operational efficiency of the circuit drops to 
50%. The systolic serial multiplier presented by R. F. 
Lyon in [4] operates with 100% efficiency but trun-
cates the result and has increased latency and hard-
ware complexity. Another serial scheme presented in 
[1] eliminates this latency at the expense of signifi-
cantly increased circuit complexity producing the full 
result with 50% efficiency. An alternative architecture 
presented in [3], produces the full product with no 
latency, operates with 100% efficiency but requires 
extra hardware and is not systolic. According to this 

architecture, the least and most significant parts of the 
result are generated in two overlapped stages. 
 
In this paper, we merge two serial/parallel multipliers 
and present a new design for the implementation of 

byax + , where x , y  are two’s complement num-
bers, and a  , b  are constant numbers in CSD form. 
This design is based on the serial/parallel pipeline 
architecture but it operates with 100% efficiency. 
Finally, we exploit the special features of CSD repre-
sentation and convert the above scheme in systolic 
form.  

Specifically, in Section 2 we present an al-
gorithm for the multiplication of two’s complement 
with CSD numbers. A detailed design of the circuit is 
given in Section 3. Finally, a comparison is given 
between the proposed scheme and a circuit consisted 
of two separate serial multipliers for two’s comple-
ment numbers. 

 
 

2. DESCRIPTION OF THE ALGORITHM 
 
Let us consider the multiplication of a two’s com-
plement number X  
 

∑
−

=

−
− ⋅+⋅−=

2

0

1
1 22

n

j

j
j

n
n xxX   (1) 



 
with a constant coefficient a  in CSD form, which is 
 

1,0  ,2
1

0

±=⋅= ∑
−

=
i

m

i

i
i aaa .  (2) 

 
The multiplication can be expressed as 
 

∑
−

=

⋅=⋅=
1

0

2
m

i

i
iPaXP    (3) 

 
where  
 

∑
−

=

−
− ⋅⋅+⋅⋅−=⋅=

2

0

1
1 22

n

j

j
ij

n
inii axaxaXP   (4) 

 
The term iP  is the partial product corresponding to 

the ia  coefficient digit. At the bit level, the partial 
products can be replaced by the next relation 
 

ia⋅⊕+−= )( ijiij sxsax    (5) 

 
and ia⋅⊕+−=− −− )( 11 iniin sxsax   (6) 
 
where ia  and is  represent the absolute value and the 
sign of 

ia  digit respectively. Specifically, the value 

of is  is assumed to be 1 for 0<ia  and 0 otherwise. 
The symbol ⊕ represents the XOR operator. The 
results of the inversion and the XOR operator are 
used as arithmetic quantities in the arithmetic expres-
sions. In (5) and (6) the quantity 

ij sx ⊕  implies the 

inversion of 
jx , if 

ia  is negative and the factor ia  

expresses the partial product elimination, if 
ia  is 

zero. Using these equations the partial product can be 
rewritten as follows: 
 

*
2

0

1 22 i
j

n

j
i

n
ii PssP +⋅−⋅−= ∑

−

=

−   (7) 

 
where  
 

j
i

n

j
ij

n
iini sxsxP 2)(2)(

2

0

1
1

* ⋅⋅⊕+⋅⋅⊕= ∑
−

=

−
− aa .  (8) 

 
It holds that  
 

i
n

i
j

n

j
j

n
n sss +⋅−=⋅−⋅− −

−

=

−
− ∑ 1

2

0

1
1 222 a , since  

iii ss a=+  and thus 
iP  can be written as  

 
*12 ii

n
ii PsP ++⋅−= −a .  (9) 

 
This relation implies that the partial products can be 
manipulated as positive quantities by inverting the 

bits of X, when ia  is negative, except for the MSB 
that is inverted when ia  is positive, and by adding the 
quantity i

n
i s+⋅− −12a . By applying (9) in (3) we ob-

tain  
 

∑∑
−

=

−

=

−+ ⋅++⋅−=
1

0

*
1

0

1 22
m

i

i
i

m

i

in
i PSP a  (10) 

 

where ∑
−

=

⋅=
1

0

2
m

i

i
isS  

By replacing the first term of  (10) with its equivalent 
in two’s complement form, we obtain 
 

∑∑
−

=

−
−

=

−+−+ ⋅+++⋅+−=
1

0

*1
1

0

11 2222
m

i

i
i

n
m

i

in
i

mn PSP a   (11) 

 
which is the product in two’s complement form. This 
equation implies that for the implementation of the 
above two’s complement multiplication, the number 

0121 xxxx nn L−−
 properly weighted, must be added in-

verted or not whether ia  is positive or negative re-
spectively. Additionally, the correction term  

SC
m

i

nin
i

mn ++⋅+−= ∑
−

=

−+−−+
1

0

111 222 a   (12) 

 that depends only on a must be included. 
We apply (11) for the computation of byax +  and we 
obtain the following result 
 

∑
−

=

⋅++=+
1

0

** 2)],(),([
m

i

i
iiab bxPaxPCbyax   (13) 

 
where ),(* axPi , ),(* bxPi  represent *

iP  for ax , bx  
respectively, and 
 

ab

m

i

nin
ii

mn
ab SbC ++⋅++−= ∑

−

=

+−+
1

0

1 22)2 a(  (14) 

 

where  ∑
−

=

⋅+=
1

0

2)(
m

i

i
baab ii

ssS  and 
ias ,

ibs correspond to 

ia  and ib  coefficient bits respectively.  

By applying the relation ∑
−

=

+−−+− −+=
1

0

111 222
m

i

inmnn  in 

(14) we obtain 
 

ab

m

i

nin
ii

mn
ab SbC ++⋅−++−= ∑

−

=

−+−−+
1

0

111 22)12 a(   (15) 

 
According to this equation, this correction term is 
almost the same as previously. In the empty posi-
tions, where both coefficient bits are zero, the corre-
sponding digit of the correction term is 1. In the posi-
tions, where only one of the coefficient bits is zero, 
the correction term digit is 0. In the positions, where 
both coefficient bits are non-zero, the correction term 
digit is 1. In the latter case, the next position to the 



left is always empty and consequently, the corre-
sponding correction term digit is 1. These consecu-
tive digits 11 can be replaced by 01.  
 
3. CIRCUIT IMPLEMENTATION  
First, a single serial-parallel multiplier, which oper-
ates with 100% efficiency, is presented. Next, two 
such multipliers are merged in order the expression 

byax +  to be implemented. A multiplier for the coef-

ficient 101010  is shown in Fig. 1. The multiplier co-
efficient enters the circuit serially through the X in-
put while the multiplicand enters in parallel form 
through the lines 

ia . The least significant part of the 

result is obtained from the upper output line LP . The 

most significant part of the result is obtained from the 
lower output line 

UP . Empty multiplier cells, namely 
cells without Full-Adder, correspond to zero coeffi-
cient bits. For the 100% operational efficiency of the 
circuit, a double shift register is used. When the com-
putation of the least significant part of the result is 
completed, the sum and carry outputs of each mul-
tiplier cell are loaded into a double shift register. 
Thus, the double register contains the most signifi-
cant part of the product in carry-save form, and feeds 
a serial adder, which produce the final result in 2’s 
complement form. A control signal R activates the 
switches for loading when the LSB of a new X enters 
the circuit. 

 

FA

D

0
FAD

D

D

0

D

D

D

0

D

D

D

0

FA

D

1

FA

D

R R

R

R2

R

D

D

D

0

FA

D

1

0

R

R

PL

X

1

D
0

a0=-1a1=0

Delay
Element

D
2-input

Multiplexer
PL : PU: Most significant

part of the result
Least significant
part of the result

PUD

D

R

D

R

RR

R

R

R

a2=1a3=0a4=0

R R

RRRR

R

a5=-1

R R
0

C

S S

C C

S

C

S

 
 

Fig.1. A serial/parallel multiplier for the coefficient 100101  operating with 100% efficiency 
 
In the above scheme, the correction term given by 
(12) is incorporated. The part S is added by inverting 
the X  input and initializing the carry input of each 
Full-Adder that corresponds to a negative coefficient 
bit with ‘1’. The terms that remain are added when 
the most significant part of the product is loaded in 
carry-save form into the shift registers. This is 
achieved, by exploiting the delay elements of the 
carry shift register that are not used for carry loading. 
Specifically, for every sequence of k empty cells, the 
corresponding delay elements of the carry shift regis-
ter are not used for loading except the right most, 
where the carry of the next right non-empty cell is 
loaded. For the addition of the corresponding se-
quence of k bits of the correction term, which are all 
‘1’, the following expression is applied 
 

i
k

i

k
k

i

i ccc 222
1

0

1

0

⋅+⋅=+ ∑∑
−

=

−

=

  (16) 

 
where c is the carry loaded at the rightmost position. 
According to the above equation, the carry c must be 

extended leftwards and inverted. The term kc 2⋅  is 
added at the next left position of the sequence, which 
is unused. The term 12 −n  is added by inverting the last 
bit of LP  and using its non-inverted value as the ini-
tial value for the carry of the serial adder that pro-
duces the 

UP . The term 12 −+− mn  is added by entering 
serially a ‘1’ into the left end of the carry shift regis-
ter.  

Two multipliers like the one described 
above are merged for the implementation of byax + . 

This is shown in Fig.2 for the coefficients 101010=a  
and 011001=b . As shown in the figure, the result of 
the merging is a single multiplier as the one de-
scribed above with different cells that correspond to 
two non-zero coefficient digits of the same order. 
These cells include two Full-Adders and conse-
quently the combinational delay of the circuit is dou-
bled. These cells are referred as “double cells” for the 
rest of the explanation.  

 



FA

D

D

0
FAD

D

D

0

HA

D

D

D

0

FA

D

0
D

D

D

0

FA

D

1

FA

D

R

R

R

R

R

RR

R R

R

R

R

D

D

D

0

FA

D

1

0

R

R

PL

X

Y

1

R

R

1

D0

R2R2

R

a0=-1

b0=0

a1=0

b1=0

a2=1

b2=-1

a3=0

b3=0

a4=1

b4=0

a5=0

b5=-1

Delay
ElementD

2-input
Multiplexer

PL : PU: Most significant
part of the result

Least significant
part of the result

PU

R

D

0
R

D

R

D

R

R

R

S

S

C

S

C

S

C

S

C

C

S

C

S

 
 

Fig. 2. The implementation of byax +  for 101010=a  and 011001=b . 
 

A delay rearrangement [2,3,6] based on a simple 
graph property is applied for the internal pipelining 
of the double cells. According to this property, if we 
consider all lines that are intersected by a cut across a 
graph, we can remove one delay element from all 
lines that have the same direction and insert a delay 
element into the remaining lines with the opposite 
direction. The resulting circuit is shown in Fig. 3. 
The cut for the double cell is also shown in this fig-
ure. The result of the rearrangement is a delay ele-
ment to be removed from the sum line and the shift 
registers, and a new one to be inserted into lines X, Y, 

the control signal R and between the sum line that 
connects the two Full Adders. The loading of the sum 
and carry lasts two consecutive cycles, in order the 
timing gap caused by the removed delay elements to 
be covered. Additionally, the insertion of a delay 
element into the sum line that connects the two Full-
Adders in the double cells has as consequence the 
need for an extra clock cycle in order the carry of the 
upper Full-Adder to be loaded into the shift register. 
Thus, a zero bit must be inserted between the data 
words that enter through X and Y lines. 

 

FA

D

FA

D

0

FA

D

D

D

D

D

D

D

D

0

HA

D

D

D

0

FA

D

0
D

D

D

0

FA

D

1

FA

DR1

R2,1

R1

R1

R1

R1

R2R2

R2
R2

R2

R2

R2

D

D

D

0

FA

D

1

0

R2

R2

R

PL

X

Y

R2

1

R2,1

R2,1

1

D0

R2R2

R2

a0=-1

b0=0

a1=0

b1=0

a2=1

b2=-1

a3=0

b3=0

a4=1

b4=0

a5=0

b5=-1

Delay
Element

D
2-input

Multiplexer
PL : PU: Most significant

part of the result
Least significant
part of the result

PU

Pi,j : Pi P j

R1

C

S

C

S

C

S
S

C

S

C

R2

S

 
Fig. 3. The circuit of Fig.2 with the delay rearrangement. 



The correction term as given by (15) is basically the 
same as that for the single multiplier. Therefore, they 
are incorporated in the circuit in the same way. The 
only difference is in the double cells, where the cor-
responding correction term digit is 1, while the corre-
sponding digit of the next left empty cell is 0. Thus, 
the carry bit that comes from the adjacent right empty 
cell must be added with the carry of the double cell. 

Therefore a Half-Adder must be inserted as shown in 
Fig. 3.  
 
Another consequence of the previously described 
transformation is the decrease in the broadcasting of 
lines X, Y and R. Further reduction of this broadcast-
ing can be achieved by applying the previously men-
tioned graph property for the empty cells. Thus, the 
circuit is transformed into a systolic form.  

In Table 1, the proposed scheme is compared from 
the aspect of hardware complexity against other 
schemes where two separate multipliers for constant 
coefficients are used. For the computation of the 
hardware complexity, we have assumed the average 
case, where the number of the non-zero bits in a CSD 

number is m
3
1 , where m is the length of the number. 

Consequently, the empty cells in the merged scheme 
are m

9
4 . Half of them are adjacent to m

9
1  double 

cells.  
 

Table 1. Comparison of the proposed scheme with schemes where separate multipliers are used 

Multiplication scheme Hardware complexity per bit  
(in transistors)   Efficiency 

Two serial/parallel multipliers for constant coefficients in 2’s 
complement form SWDEFA 3 3 ++ =64 50% 

Two serial/parallel multipliers of Fig. 1 SWDEFA
3

20
 

3

20

3

2
++ =109 100% 

Proposed merged scheme NANDDESWHAFA ++++  
9

35

9

24

9

1

3

2 =68  100% 

FA: Full-Adder (24 transistors), HA: Half Adder (10 transistors), DE: Dynamic Delay Element (8 transistors), 
SW: Switch (6 transistors) [7] 

 
According to this table, the CSD representation sig-
nificantly reduces the hardware complexity. Thus, 
the second scheme of the table has almost the same 
hardware complexity in spite of the double shift reg-
ister overhead. Furthermore, the merging technique 
yields a significant hardware reduction, because only 
one double shift register and one sum line are in-
cluded in the circuit and therefore the number of de-
lay elements is significantly reduced. Another impor-
tant advantage of the proposed scheme is that every 
three cells, on average, a delay element is inserted in 
X, Y and R lines. Thus, the broadcasting of these lines 
is limited to three cells. 

 
 

4. CONCLUSION 
 
In this paper, two serial-parallel multipliers for con-
stant coefficients, which operate with 100% effi-
ciency, are merged for the implementation of 

byax + .  This technique combined with the represen-
tation of the coefficients in CSD form, reduces sig-
nificantly the hardware complexity. Moreover, the 
resulting circuit operates in pipeline mode with 100% 
efficiency. The above architectures have been devel-
oped in the context of a project that concerns the 
hardware implementation of digital filters. All cir-
cuits presented in this paper are extensively verified 
through simulation. 

5. REFERENCES 
 
[1] Ait-Boudoud D., Ibrahim M. K., Hayes-Gill B. R. 

Novel Pipelined Serial/Parallel Multiplier, IEE 
Electronics Letters, vol. 26, 1990, pp. 582-583.  

[2] Caraiscos C., Pekmestzi K. Z. A class of systolic 
bit-serial multipliers, Intern. Journal of 
Electronics, vol. 76, 1994, no 3, pp. 463-468. 

[3] Caraiscos C., Pekmestzi K. Z. Low-latency bit-
parallel systolic VLSI implementation of FIR 
digital filters, IEEE Trans. Circuits Syst.- II: 
Analog and Digital Signal Proc., vol. 43, 1996, 
no. 7, pp. 529-534. 

[4] Even G. Two’s complement pipeline multipliers, 
Integration, the VLSI journal, no 22, 1997, pp. 
23-38. 

[5] Ienne P., Viredaz M. A. Bit-Serial Multipliers 
and Squarers, IEEE Trans. On Comput., vol. 43, 
no 12, 1994, pp. 1445-1450.  

[6] Kung, S. Y.  On supercomputing with systolic/ 
wavefront arrays, Proc. IEEE, vol. 72, 1984, no. 
7, pp. 867-884. 

[7] Weste N.,  Eshraghian K. Principles of CMOS 
VLSI Design, Reading, MA: Addison-Wesley, 
1994.  

 


	cc: Proceedings of the 8th IEEE Mediterranean Conference
on Control and Automation (MED 2000)
Rio, Patras, GREECE                                          17-19 July, 2000


