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Abstract. This paper deals with fault detection and identification (FDI) of sensor
failures in an aircraft flight control system. The proposed FDI algorithm only weakly
depends on a specific model of an aircraft. The advantage of such an FDI algorithm
is the possible reduction in the flight control system complexity and cost due to
the reduced number of redundant hardware components required to ensure safe flight
operation in cases of failures. The non-model based approach is in particular attractive
because it could provide an FDI algorithm suitable for implementation on a variety of
aircraft with only minimal adjustments required when using it on a specific aircraft,
thus reducing the development cost. The current paper focuses on non-distinctive
sensor failures that are identified using dissimilar sensor information. The proposed
FDI algorithm was favorably tested using a realistic simulation model of a small civil
aircraft.

Key Words. Fault detection and identification, fault tolerant flight control, Neural

Networks, Wavelet Transform.

1. INTRODUCTION

The progress in computer technology has lead in
recent years to its intensive utilization in primary
flight control functions of military and, more re-
cently, large civil transport and cargo aircraft.
The great flexibility of computer based control
systems has resulted in an overall increase in the
complexity of the “fly-by-wire” technology, includ-
ing the incorporation of new performance enhanc-
ing functions (envelope protection, maneuver lim-
iters, etc.) and the use of novel control design
techniques in the flight control systems synthesis.
The increased complexity of the computer based
control systems has lead also to the inevitable re-
quirement for reliability and flight safety, espe-
cially in open-loop unstable fighters and large civil
aircraft.
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To comply with the strict safety requirements im-
posed by the civil aircraft certification author-
ities, fault tolerant flight control system design
methodologies had to be derived. To conform
with these requirements, most of the computer
based flight control systems rely solely on hard-
ware redundancy, where a number of similar sen-
sors are installed on an aircraft to ensure correct
data flow into the flight controller. In these so-
lutions, faults are identified and accommodated
by relatively simple heuristic majority voting and
monitoring algorithms. To obtain high reliability,
often four and more similar sensors are used for
critical flight data channels. If such a redundancy
can be implemented (depends on cost, develop-
ment time, physical installation limitation, etc.),
the standard voting and monitoring techniques
provide a sufficient solution. The main drawback
of these solutions is the increased complexity and
cost of the system, making them suitable mainly
for large civil transport aircraft.



To make these digital flight control systems afford-
able for small commercial aircraft applications,
new design technologies are required to reduce the
complexity and cost of the control system. This is
the goal of an ongoing project entitled: “Afford-
able Digital Fly by Wire Flight Control System
for Small Commercial Aircraft (ADFCS)”, spon-
sored by the Science Commission of the European
Community. The project is carried out by a con-
sortium of seven European aerospace industry and
research organizations. Among other cost driv-
ing factors, the project aims at reducing the hard-
ware redundancy without compromises with flight
safety requirements. This is obtained by incorpo-
rating “analytical redundancy” techniques in the
flight control system design, where information
from dissimilar sensors is used to identify faults.
A reasonable cost reduction of the digital flight
control system will enable its installation on small
commercial aircraft.

Fault detection and identification (FDI) using an-
alytical redundancy techniques is thoroughly cov-
ered in a many research and survey papers, ac-
counting for over three decades of intensive re-
search effort [1, 2, 3]. Most of these techniques
rely strongly on an analytical model of the phys-
ical system, making them sensitive to modeling
errors. Full flight envelope operation of the air-
craft imposes a continuous change in the aircraft
model and thus requires continuous variation in
the FDI algorithm. To overcome these drawbacks
of analytical redundancy techniques and in order
to make the FDI algorithm applicable to many
different aircraft, with only minimal adjustments
required when adapting it to a specific aircraft,
a non-model based solution would be more desir-
able. This would greatly reduce the development
costs, and thus favorably affect the final cost of
the end product - the single flight control system.

In the ADFCS project, the Technion team is work-
ing on designing FDI algorithms that only weakly
depend on the aircraft model. For that purpose,
the possible sensor faults were categorized into two
classes: distinct and non-distinct faults. In effect,
the non-model based methods replace the need for
the system (aircraft) model by one that describes
the fault characteristics. The distinct faults in-
clude sensor disconnects, bias jumps, hard-overs
(output stuck at the sensor limits), and sometimes
signal freezes. In a previous paper [4] it was shown
that these faults can be reliably identified using
a simple wavelet transform, a dynamic threshold
logic and a simple neural-network based classifier.
The main advantage of that algorithm is that a
fault can be detected by processing the data com-
ing from each sensor independently.

A much more difficult problem relates to faults
and changes occurring on a slower time-scale, that
may be similar to a normal response of the air-
craft. Such changes do not possess distinctive
features of a fault and therefore the previous ap-
proach may fail. The purpose of the current study
is to propose weak model based FDI algorithms for
non distinctive faults such as a slow drift. In par-
ticular, these algorithms are aimed to tackle the
1-vs-1 case, where only two similar sensors of a
particular data channel are available. In case of
discrepancies between their readings, it is desired
to identify the faulty signal. In standard voter
monitor solutions, differences of readings in the 1-
vs-1 case result in a total loss of the data channel
and requires an immediate control system recon-
figuration into a degraded control mode. The pro-
posed approach to identify the fault in this case
will provide an additional level of redundancy, al-
lowing either a prolonged nominal operation or a
reduction in the hardware redundancy.

2. THE CONCEPT

Aircraft dynamics, and in particular that of a
closed loop controlled commercial airplane, can
be described quite accurately by a linear model,
in which well known modes of behavior appear
in some measured quantities more than in others.
Typically, longitudinal and lateral dynamics are
well separated. Within each of these controlled
dynamical modes, some measured variables are
more tightly related than others. For instance,
normal acceleration is strongly related to the angle
of attack, which in fact causes it through aerody-
namic phenomena. Pitch rate is obviously related
to pitch attitude through a simple kinematic re-
lation, roll attitude to yaw rate (assuming coordi-
nated turn), and so on. Therefore, we may expect
to find “signatures” of maneuvers or mode excita-
tions in the related variables.

A fault in one sensor will introduce a new signa-
ture in the measured signal that should not ap-
pear in any other measurement, unless the cor-
rupt signal is used to control the aircraft. In this
case a few sensors may show responses somewhat
reminiscent to the fault. Hence, if the measure-
ment is not fed back through the closed loop con-
trol system, the signature of the fault will not ap-
pear in the related measurements or in the output
of a different sensor measuring the same physical
quantity or other related variables. In equilibrium
conditions such as during straight and level flight,
a drift (or any other non-distinctive) fault will
clearly introduce a dynamic signature that can be
easily distinguished from the static behaviour of
the other uncorrupted signals. In the case where



the faulty signal is fed back into the system, the
fault becomes an external (undesired) input and
all related sensors will manifest its signature to
some extent. If no intentional maneuver is im-
posed, the faulty sensor can be identified based
on careful examination of the time evolution of the
sensors’ outputs. Therefore, in the FDI approach
suggested in this paper the fault identification pro-
cess is performed only during nearly steady state
operation, which covers most of the flight time of
a commercial aircraft.

Non linear filtering can be used in order to identify
the dynamic features of the faulty signal. Tn Ref. 4
distinctive fault identification used similar analy-
sis which was inspired by wavelet transform meth-
ods. The signal was processed by a convolution
operation with a typical base function. The Haar
wavelet, shown in Fig. 1, was used as the base
function. It contains a discontinuity that served
to emphasize a similar feature in the monitored
signal. The convolution result, known as the first
detail in the wavelet transform, contains a mag-
nified discontinuity at the time instance where an
abrupt change in the signal is present. The effect
of the Haar wavelet transformation is similar to
high pass filtering. It can be regarded as a dis-
crete differentiation operation which is averaged
by the convolution over a limited interval.

1.5

0.5

-15 1
-0.5 0

0.5
Time [sec]

Figure 1: The Haar wavelet function.

An approach similar to the one discussed above
is applied to the case of slow drift faults. The
Haar wavelet transformation serves to emphasize
the slope of signal. In the sequel, FDI of non-
distinctive faults for open and closed loop signals
are discussed separately.

2.1. Slow Drift in an Open Loop
Signal

In the open loop situation, where a signal (sensor)
of interest is not used in a feedback control sys-
tem, a 1-vs-1 case of a non-distinctive fault can

be isolated by comparing the two similar signals
to a related (reference) signal. In addition, in or-
der to identify a nearly steady state operation, a
relevant pilot command is also used for FDI. For
example, while considering aircraft sensors that
measure one of the longitudinal variables, the pi-
lot elevator commands would be used.

The proposed FDI procedure is activated if the dif-
ference between the two monitored signals exceeds
a certain threshold. The threshold level depends
on the particular application. Transformed sig-
nals, obtained by convolution with the Haar base
wavelet described above, reveal the existence of
a slope. In a steady state situation the reference
signal should contain no dynamics, and therefore
its first detail should remain small. In the pres-
ence of a slow drift, the first detail of the faulty
signal would stand out. This information can now
be processed with adequate logics to identify the
fault and to examine the persistence of the slope to
minimize false fault alarms. This processing can
be efficiently accomplished by a perceptron neu-
ral network, which is widely used for classification
applications [5].

A perceptron is a simple non linear neuron that is
built around a hard limiter and is fed by a linear
combination of the inputs and a bias. A further
modification of the neuron is to feed also a few
delayed inputs through the so called “tapped de-
lay line”. The result is in fact a combination of
the perceptron and an adaptive feedforward neu-
ral network. One possible implementation of such
a network consists of the following three layers:

e A first hidden layer consists of 4 perceptrons
with tapped delay lines on the input. Each
perceptron is fed by a separate signal (the
wavelet transform of the two monitored sig-
nals, the reference signal and the related pi-
lot command). The delayed data is used to
average the information over a finite inter-
val and “filter out” the high frequency com-
ponents of the signals, that may result from
measurement noise. The bias signals are ex-
ternal inputs that define a threshold for the
test. The selection of these thresholds can be
done either manually by the designer who is
intimately acquainted with the expected be-
haviour of the aircraft, or by network training
procedures which use representative data.

e A second hidden layer composed of two per-
ceptrons, each fed by the four outputs of the
first layer and combining the inputs in order
to identify a fault in one of the observed sig-
nals. The input weights and bias are prede-
termined such that a flag will be raised (i.e.,



the output of the neuron will switch to 1)
when the expected combination of inputs or
events occurs.

e An output layer of one modified perceptron
with a delayed input. The purpose of this
layer is to check the persistent presence of a
faulty feature. Increasing the number of de-
lays in the tapped delay line of this percep-
tron will reduce the false alarm rate at the
cost of increased time required to identify a
fault.

2.2. Slow Drift in a Closed Loop
Signal

The FDI task is more complex when the drift fault
appears in one of the sensors used in a closed loop
control system. The fault affects the control sys-
tem similarly to an external input or a pilot com-
mand. As a consequence, the control system will
command an aircraft motion to comply with this
input. The response of the aircraft will be sensed
by all the faulty and non-faulty sensors that mea-
sure quantities related to the same physical phe-
nomenon. In addition, the closed loop character-
istics of the controlled aircraft tend to reduce the
overall effect of the sensor fault on the dynamic
response of the system. This excludes a direct
adoption of the previous procedure to identify this

drift.

However, a close examination of a typical feedback
architecture reveals that there is a significant dif-
ference between the direct effect of the fault on
the faulty sensor and the readings of other sen-
sors that measure the fault through the system
dynamics. Figure 2 shows a simple feedback con-
trol system with two identical sensors s; and s
that measure the same output y, one of them con-
taminated by an additive fault d. The average of
the two readings is fed back into the controller.
It is clear that the response of an appropriately
designed feedback system is to reduce the track-
ing error, thus the response would tend to balance
the undesired input. If the fault appeared during
steady flight conditions with no pilot maneuver-
ing commands, the slope of the output will be in
the opposite sense to the input drift (the fault).
If, in addition, a measurement of a related signal
is available, provided that the quantitative rela-
tionship between the various signals is known, it
is possible to use this additional signal as a refer-
ence and develop a fault detection algorithm sim-
ilar to the one proposed for the open loop case.
The success of this approach strongly depends on
the dynamic characteristics of the monitored and
reference signal chosen.
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Figure 2: A simple feedback control system with
two identical sensors (1-vs-1 case).

Again, the algorithm is initiated when the two
monitored sensors are in disagreement, as indi-
cated by a difference in their readings that exceeds
a prescribed threshold. Also, the test will not be
enabled as long as there is an external command
input by the pilot. The same wavelet analysis can
be implemented to determine the slope of the sig-
nals, which are then fed to a similar classifier neu-
ral network whose role is to identify the signal that
disagrees with the reference.

3. EXAMPLES

The generic Small Commercial Airplane model
used in the ADFCS project was utilized in nu-
merical simulation evaluations. This relatively re-
alistic aircraft model, implemented in the Mat-
lab/Simulink environment, includes six degrees of
freedom dynamics model of the aircraft, a com-
plete digital flight control system capable of op-
erating in the entire flight envelope, redundant
sensors and actuators models, as well as classical
voter-monitor FDI algorithms. The atmospheric
model includes slow winds and turbulence, while
the sensor modules contain measurement noise
and various fault types models.

An on-line FDI algorithm is implemented in order
to monitor slow drift faults in the angle of attack
and in the pitch attitude sensors. It is assumed
that there are 2 angle of attack sensors and 2 atti-
tude sensors. Angle of attack measurement is used
for gain scheduling and pitch command limiters
and therefore, under normal conditions, can be
considered as an open loop measurement. The at-
titude sensor is used in the pitch control channel to
control the pitch position. Thus, these measure-
ments represent the two types of measurements
described above. Since there is a direct relation
between the angle of attack and the normal accel-
eration, the measured normal acceleration can be
used as a reference signal for angle of attack mon-



itoring. Similarly, the pitch rate is related to the
pitch attitude and thus the pitch rate measure-
ment is used as a reference signal for the pitch
angle. In addition, the pilot’s pitch command is
assumed to be available through a measurement
of the column motion.

For the open loop case, the algorithm is monitor-
ing each of the angle of attack sensors. The voted
(averaged) normal acceleration measurement is
used as a reference. The first detail of each of
these quantities is generated and supplied to the
neural network classifier. In the closed loop case,
the algorithm is monitoring each one of the pitch
attitude sensors. The voted (averaged) pitch rate
measurement is used as a reference signal.

Figure 3 shows the two measurements of the an-
gle of attack. The faulty signal is drifting away
at a rate of 0.5 deg/sec, starting from time ¢ = 1
seconds. The reference signal, the averaged nor-
mal acceleration, is shown in Fig. 4. The fault
identification is delayed due to the pitch maneu-
ver. The pitch command returns to zero at ¢t = 11
seconds, however the transient response lasts few
more seconds and further delays the identification.
The first details of the measured angles of attack
are depicted in Fig. 5. The drift signature in the
faulty measurement appears as a bias. The tran-
sient response of the “healthy” signal converges
and stays below the selected threshold at ¢ = 13
seconds. The detail of the acceleration, given in
Fig. 6, is similarly converging to small amplitudes
with zero average. A further delay of 5 seconds
is imposed by the persistency test which is con-
ducted by the classifying network. The fault flag
is raised by the network at ¢ = 18 seconds.
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Figure 3: Angle of attack measurements. A drift
of 0.5 deg/sec is introduced in measurement #1
at t = 1 seconds.

The closed loop example is shown in Figs. 7 and 8.
One of the pitch attitude sensors develops a drift
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Figure 4: The voted normal acceleration.
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Figure 5: The first detail of the angle of attack
measurements.
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Figure 6: The first detail of the normal accelera-
tion.



fault starting at ¢ = 2 seconds. As a result, the
voted attitude, which is the average of the read-
ings of the two available sensors, is drifting away
at a rate that is in between the faulty and cor-
rect signals rates. The feedback control system is
responding to the drift introduced by the voted
signal, and the aircraft is developing an undesired
pitch manuever in the opposite direction to the
drift. This can be seen in the output of the cor-
rect attitude sensor and in the pitch rate measure-
ment. The fault is identified at ¢ = 6.5 seconds,
and as a result, the voted signal switches to the
correct signal, ignoring the faulty measurement.
The identification time delay includes 5 seconds al-
located to the persistency test. The abrupt switch
of the attitude signal is inducing a large transient
response, as can be seen in the pitch rate sensor
readings. In real aircraft design, this transient can
be reduced by introducing proper filtering in the
switching process. After the transient, the aircraft
returns to a steady state flight, using one attitude
Sensor.

4. CONCLUSIONS

The use of analytical methods to solve the FDI
problem can reduce hardware redundancy and
lower the cost of flight control systems. Weak
dependence on the aircraft model is desirable.
This paper addresses the problem of FDI for non-
distinctive faults, i.e., faults whose features are
similar to those of the correct signals. Tdentifica-
tion of such faults requires comparison to other
signals and some knowledge of the system model
and dynamic characteristics. The methods dis-
cussed in this paper exploit the functional depen-
dence between various measured signals in order
to identify the fault using the wavelet transform
and neural network techniques. The favorable
performance of the proposed approach is demon-
strated numerically for a model of a small com-
mercial aircraft.
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