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Abstract. Notions of anticipatory systems for discrete-time and continuous-time 1D linear
systems and 2D discrete linear systems are introduced. A discrete-time system is called
anticipatory if its state vector and output vector depend on the future values of inputs. A
continuous-time system is called anticipatory if its state vector and output vector depend
on the derivatives of inputs. Necessary and sufficient conditions for the anticipation of
singular discrete-time and continuous-time 1-D linear systems are established. It is shown
that the discrete-time system obtained by discretisation from continuous-time one is
anticipatory for any value of the discretisation step if and only if the continuous-time
system is anticipatory. Necessary and sufficient conditions for the anticipation of the
singular 2D Roesser model are established.
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1. INTRODUCTION

The analysis of discrete-time and continuous-time
invariant singular systems has been considered in
many papers and books [1,2,7-13,17,18,24-
30,34,35]. Some applications of this analysis to
circuit and system design, including robotics can be
found in [30,29,35].

In recent years a dynamic development of the theory
of anticipatory systems specially the theory of
anticipatory discrete-time linear systems has been
observed [32,3,4]. The definitions of anticipatory
systems are different and usually not very precise
[32]. Dubois in [3,4] has introduced the concepts of
incursion and hyperincursion for dynamical systems.
In this paper precise definitions of anticipatory
continuous-time and discrete-time linear systems
will be proposed. A discrete-time system will be
called anticipatory if its state vector and output
vector depend on the future values of inputs. A
continuous-time system will be called anticipatory if
its state vector and output vector depend on the
derivatives of inputs. In [9-12] it has been shown
that the state vectors may depend on the future
values of inputs and in singular continuous-time

systems may depend on the derivatives of inputs. Let
a singular continuous-time linear system be an
anticipatory system. By discretisation of this singular
continuous-time system we obtain a suitable singular
discrete-time system. Will be the obtained discrete-
time system also anticipatory?  In this paper an
answer to the question will be given and necessary
and sufficients conditions for the anticipation of
singular discrete-time and continuous-time linear
systems will be established. It will be shown that the
discrete-time system obtained by discretisation from
continuous-time one is anticipatory for any value of
the discretisation step if and only if the continuous-
time system is also anticipatory.

Necessary and sufficient conditions for the
anticipation of the singular 2D Roesser model will
be established.

2. DISCRETE-TIME SYSTEMS

Let 5 S Q×  be the set of real S Q×  matrices and
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If GHW( ≠ �  then the system (1) is called standard
and if GHW ( = �  then the system is called singular.

It is assumed that the pencil  (E,F)  is regular, i.e.
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for some C∈z  (the field of complex numbers).
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 - is the  nn×   identity matrix.

The solution of  (1a) has the form [13,12,24-26,28]
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From (5) it follows that if  µ >�  then the solution

[
L
 depends on the future values of inputs  X

N
 for

k>i.

Definition 1. The system (1) is called anticipatory if
the state vector [

L
 and output vector \

L
 at the point

i  depends on the future values of  X
N

 for  k>i.
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From (5) it follows that in this case  [
L
 (and also \

L
)

does not depend on the future values of inputs.

Theorem 1. The singular system (1) is  anticipatory
if and only if

rankE>deg.det[Ez-F]     (6)

where deg.det[Ez-F] denotes the degree of the
polynomial det[Ez-F].

Proof.  If the condition (2) is satisfied then  there
exists nonsingular matrix  3 4 5 Q Q

� ∈ ×  such that
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� �  is the nilpotent matrix

with index µ, 1 µ− ≠�
� , 1 µ = � . The index µ is

equal to maximal dimension of the Jordan block
corresponding to the zero eigenvalue of the pair
(E,F) [13]. From (7) it follows that rank ( Q=

�
 if

and only if  N=0 and µ=1. The condition (7) is
satisfied if and only if  µ>1. From (5) it follows that
in this case [

L
 depends on  X

N
 for  k>i. �

3.  CONTINUOUS-TIME SYSTEMS

Consider the continuous-time linear system

([ $[ %X� = + , [ [� ��
�

=                    (8a)

\ &[ 'X= +           (8b)

where �[ G[

GW= , [ [ W 5Q= ∈� � , X X W 5P= ∈� � ,

\ \ W 5 S= ∈� �  are the state vector, input vector and

output vector, respectively and ( $ 5Q Q
� ∈ × ,

% 5
Q P∈ × , & 5

S Q∈ × , ' 5
S P∈ × .

If GHW( ≠ �  the system (8) is called standard and if
GHW ( = �  the system is called singular.

It is assumed that the pencil (E,A) is regular, i.e.
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where µ is the nilpotence index and Φ
L
 is the

fundamental matrix defined by [18,24-26,28]
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The solution x(t) of the equation (8a) has the form
[18]
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where  X
G X

GW

M

M

M

� � = , δ � �M  denotes the derivative of

the j-th order of the Dirac impulse δ� �W .

From (12) it follows that if µ>1 then the solution x(t)
depends on the derivatives of u(t).

Definition 2. The system (8) is called anticipatory if
the state vector x and the output vector y depends on
the derivatives of  u.

In a similar way as for (1) it can be shown that the
standard system (8) is not anticipatory.

Theorem 2.  The singular system (8) is anticipatory
if and only if

rankE>deg.det[Es-A]   (13)

Proof. In a similar way as for the system (1) it can
be shown that the condition (13) is satisfied if and
only if the nilpotence index  µ>1. From (11) it
follows that in this case x depends on the derivatives
of  u. �

4.  INFLUENCE OF THE VALUE OF THE
STEP DISCRETISATION ON THE
ANTICIPATION

Substituting the derivative �[  in (8a) by 
[ [

W

L L+ −
�

∆
 we

obtain the equation (1a) in which
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Let the continuous-time system (8) be anticipatory.
The following question arises. Does the discrete-time
system (1) obtained by the discretisation from the
continuous-time system (8) be anticipatory system
for any value of the discretisation step ∆W ?

Theorem 3. The discrete-time system (1) obtained
by discretisation from the continuous-time system
(8) is anticipatory for any value of discretisation step
∆W > �  if and only if the continuous-time system is
anticipatory.

Proof.  By theorems 1 and 2 it is enough to shown
that
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5.   SINGULAR ROESSER MODEL

Consider the 2D linear system described by the
equations [27,13]
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where 1nh
ij Rx ∈  is the horizontal state vector,

2nv
ij Rx ∈  is the vertical state vector, m
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input vector, p
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The model (16) is called the singular Roesser model
if 0det =E  and it is called the standard Roesser

model if 0det ≠E .

It is assumed that
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and 0
21
≠rrd  for some positive integers

),(, 221121 nrnrrr ≤≤ .

If the assumption is satisfied then [27]

∑ ∑
∞

−=

+−
∞

−=

+−

−

=

=







−−
−−

1 2

)1(
2

)1(
1

1

2222221121

1221211111

µ µi

j

j

i
ij zzT

AzEAzE

AzEAzE

        (18)

where the pair ),( 21 µµ   is the nilpotence index of

(16) and the transition matrices 
ijT  are defined by

[27,13]
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From (21) it follows that if 11 >µ  or/and 12 >µ
then the solution 

ijx  depends on the future values of

inputs 
klu  for jlik >> , .

Definition 3.  The model (16) is called anticipatory
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Theorem 4.  The singular system (16) is
anticipatory if and only if
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we obtain 1+−= iii rErankµ  for  2,1=i .

Therefore, if (22) holds then
1/1 2 >> µµ andori

 and from (21) it follows

that the solution ijx  depends on the future values of

inputs. 

Example. Consider the model (16a) with



















−
=



















−−

−−

=



















=

1

1

0

1

,

0010

1021

1010

1010

,

0000

0100

0010

0001

BA

E

  (24)

In this case 1,221 === mnn
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It is easy to show that the singular 2D Fornasini-
Marchesini type models can be recasted in singular
2D Roesser type model [21]. Therefore, the
considerations can be easily extended for the
singular 2D Fornasini-Marchesini type models and
the singular general 2D model [16,13].

6. CONCLUDING REMARKS

The standard linear continuous-time and discrete-
time systems are not anticipatory systems.  The
singular linear continuous-time systems are
anticipatory systems if and only if the condition (13)
is satisfied and the singular linear discrete-time
systems are anticipatory systems if and only if the
condition (6) is satisfied. It has been shown that the
discrete-time system obtained by discretisation from
continuous-time one is anticipatory for any value of
the discretisation step ∆W > �  if and only if the
continuous-time is also anticipatory. Necessary and
sufficient conditions for the anticipation of singular
2D Roesser model have been established.

An open problem is the extension of the
considerations for singular 2D continuous-discrete
linear systems [20].
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