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Abstract:  To improve robustness to parameter uncertainties and external load torque of 
shaft sensorless electrical drives employing permanent magnet synchronous motors 
(PMSM) with forced dynamics a new more complex control system is presented.  The 
original control structure consists of the inner loop, which is stator current control loop and 
the middle loop, which is shaft sensorless speed control loop based on the forced dynamics.  
This control structure is completed with the outer loop, based on the sliding mode control 
(SMC) principles.  The forced dynamics control, as well as converting the non-linear 
PMSM into a linear element, offers higher robustness than conventional shaft sensorless 
speed control methods.  Based on feedback linearisation a first order linear closed-loop 
response to speed demands with a user specified time constant is obtained.  Simulation and 
experimental results presented show good correspondence with theoretical predictions. 
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1.  INTRODUCTION 
 
In recent years „sensorless“ or „self-sensing“ control 
of AC machines has been extensively researched.  
The driving force behind this activity is to decrease 
total drive cost and to improve its reliability, when 
mechanical sensor and its connection cables are 
eliminated for the measurement of velocity feed-back 
loop. 

Presented new control method of electric drives 
employing PMSM with forced closed-loop first order 
dynamics is based on feedback linearisation [9], 
vector control [1], [2] and sliding mode control [11].  
The original forced dynamics control method of 
PMSM drive was introduced in [4].  The system 
operates without shaft sensors, only the stator 
currents being measured, the applied stator voltages 

being determined by the computed inverter switching 
algorithm and with a knowledge of the DC link 
voltage.  The prescribed response to the reference 
speed demand was chosen as linear first order 
dynamics, together with the condition of vector 
control.  Fig. 1. shows the original PMSM drive 
control system with forced dynamics control which 
contains, a set of two observers for estimation of the 
rotor speed and the load torque using the 
corresponding magnetic flux components from a flux 
computation algorithm. 

Forced dynamics control is applicable in many non-
linear multivariable automatic control applications 
and originally was developed for electrical drives 
employing induction motors [3] and later applied also 
for electric drives with PMSM [5] where also special 
arrangements of the block producing unit vectors for 
transformation into synchronous speed reference 
frame was described.  First preliminary experimental 



results were reported in [6] and the basic concept of 
outer loop improvement of the PMSM with forced 
dynamics was presented in [9].  The drive presented 
here would be very convenient also as an inner speed 
control loop for a position servo-system [8]. 

Since the control law itself, the magnetic flux 
calculator, the rotor angular speed observer and load 
torque observer are all model-based, i.e., dependent 
on estimates of the motor parameters, then some 
sensitivity to the errors in these estimates would be 
expected.  It means that the closed-loop performance 
of the whole control system is affected by the errors 
in the aforementioned estimates.  To reduce this 
sensitivity the intention here is to close a simple 
sliding mode control based loop around the original 
close-loop system and to improve the robustness of 
the complete control system.  The block scheme of 
overall control system completed with this outer loop 
is shown in Fig. 2. 
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Fig. 1.  Original control system of shaft sensorless 
speed controlled electric drive with PMSM and 
forced dynamics. 
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Fig. 2.  Modified block scheme of the overall control 
system of shaft sensorless speed controlled PMSM 
drive with SMC based outer lop. 

 
 
 
 
 
 

2.  CONTROL SYSTEM 
 
2.1.  The middle loop controller 

Essential for the forced dynamics control law 
realisation is middle loop controller.  This controller 
forces the PMSM angular speed estimate, rω̂ , to 

follow the speed demand, ω'd, from the outer loop 
controller with a linear, first order dynamics lag, 
value of which can be chosen as time constant, T1.  
The middle loop controller also contains rotor speed 
and load torque estimation algorithms, which are 
obtained using the measured stator currents, ia, ib, 
and ic, together with the measured voltage of the DC 
supply and the computed stator voltages, ua, ub, and 
uc, from inverter switching algorithm. 

 

Model of Motor and Load.  The PMSM is 
described in the d-q rotating co-ordinate system fixed 
to the rotor of PMSM:- 
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where id, iq and ud, uq are, respectively, the stator 
current and voltage components, p is number of 
polpairs,  ωr is the rotor angular velocity,  ΦPM is 
magnetic flux of permanent magnets,  ΓL is the 
external load torque and c5=1.5*p.   

 

Master control law is based on linearising function 
[9], which forces a non-linear system to obey 
specified linear closed-loop differential equations:- 
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Equation (2.3) for the rotor velocity is made to follow 
equation (2.4) by equating their right hand sides:- 
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The rotor magnetic flux calculator estimates the 
individual rotor flux components, Ψd and Ψq :- 
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The second part of the control law is formulated as 
vector control on the basis of PMSM construction 
which has the magnets mounted on the rotor surface.  
Maximum torque sensitivity [1] is achieved with:- 

id = 0                                                        (2.7) 

Taking into account equations (2.6), (2.7) and (2.5) 
corresponding iq can be found.  Computed two 
current components are then used to generate the 
demanded values of  id  and iq  which are denoted as 
id_dem  and iq_dem   In real control law the state 
variables and motor parameters are replaced by their 
estimates as will be the case in practise:- 
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State Estimation and Filtering 

The pseudo sliding mode observer and angular 
velocity extractor  Pseudo sliding-mode observer 
used here is based on stator current equations (2.1) 
and (2.2).  The real time model of this system fed by 
actual stator voltages and real stator currents is 
developed but purposely using only the terms without 
rotor speed, ωr.  Thus:- 

d

dt

i

i

L

L

u

u

v

v
d

q

d

q

d

q

eq d

eq q

*

*

~

~













=



















⋅








 +











1
0

0
1

    (2.9) 

where veq d and veq q  are the model corrections and 
i*

d  and i*
q  are estimates of id and iq as in a 

conventional observer.  The useful observer outputs 
here are the continuous equivalent values of the 
rapidly switching variables:- 
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Equation (2.10) cannot directly generate veq d and veq 

q.  Instead, a pseudo-sliding-mode observer [11] may 
be formed by replacing equation (2.10) with (2.11):- 
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where the gain, Ksm, is made as high as possible 
within the stability limit.  For large Ksm, the errors 
between real motor currents and fictitious observer 
currents are driven almost to zero with the result 
yielding (2.12):- 
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Based on equation (2.12) an unfiltered angular rotor 
velocity estimate, ω

r
∗ , can be extracted.  The 

component which has minimal noise distortion (2.13), 
including special numerical algorithm described in 
[10] is used for additional filtering. 
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Observer for Load Torque Estimation and Rotor 
Speed Estimate Filtering:  The load torque estimate 
required by the master control law is provided here by 
a standard observer having a similar structure to a 
Kalman filter, a direct measurement of this variable 
being assumed to be unavailable.  The real time model 
of this observer is based on torque equations (2.3).  
The observer correction loop is actuated by the error 
between the rotor speed estimate, ω*

r, from the 
angular velocity extractor of previous section and the 
estimate, 

rω̂ , from the real time model.  
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Since 
rω̂  is a filtered version of ω*

r  it is used directly in 

the master control law.  This is a conventional second 
order linear observer with a correction loop 
characteristic polynomial, which may be chosen via 
the gains,  kω and  kΓ, to yield the desired balance of 
filtering between the noise from the measurements of 
currents id and iq and the noise from the velocity 
measurement, ω*

r. 
 
 

2.2.  The inner control loop 

Bang-bang control based inner control loop forces the 
real stator currents, ia, ib and ic, to follow 
corresponding master control law current demands, 
ia_dem, ib_dem,and ic_dem, as closely as possible.  This is 
done by switching the power electronic switching 
state to an appropriate value upon every iteration 



interval of the digital processor.  The bang-bang type 
slave control law is then:- 

( )u U i i jj s j dem j= − =sgn , , ,1 2 3        (2.15) 

The effect of this is similar to the standard hysteresis 
controller, but the hysteresis element is unnecessary 
because the maximum power electronic switching 
frequency is automatically limited to 1/h, where h is 
the iteration interval of the control algorithm.  Thus, 
the motor is current fed.  This is important as it 
eliminates the stator time constant from the problem 
of designing the outer loop controllers. 
 
 
2.3. Sliding Mode Outer Loop Controller 

Sliding mode control is a type of bang-bang control 
in which the plant state is forced towards and 
maintained within a close vicinity of a boundary 
determined by the control system designer.  If for a 
single input, single output plant the state variables are 
chosen as the controlled output and its derivative up 
to n-1 (n is rank of plant), then if the state is 
maintained precisely on the boundary, the closed loop 
dynamics is determined by the boundary and is 
independent of the plant parameters and external 
disturbances [11]. 

Since the proposed middle loop controller is model 
based (it contains algorithms depending on estimates 
of the rotor angular speed and load parameters) the 
closed-loop performance will be affected by errors in 
these estimates.  The purpose of the outer loop 
controller is to improve robustness of the overall 
control system against uncertain parameters and 
external load torque, ΓL.  The closed-loop system 
created by the inner and middle control loops has the 
ideal nominal transfer function (2.16):- 
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Let the errors introduced by the motor parameter 
uncertainties, external load torque and imperfect 
operation of the middle control loop due to the non-
zero iteration interval are approximately represented 
by a change of DC gain, Kd and time constant,  T‘

ω .  
Then the combined inner and middle loop dynamics 
may be again represented by the new transfer 
function (2.17), where 1&0K d ≠>  and 

ωω ≠>′ T&0T :- 
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Consider now the introduction of a pure integrator 
and a high gain element with saturation at the speed 
reference input of the middle loop as it is shown in 
Fig.3.  New control variable of the real system now is 

ω‘
d as the outer loop output.  The input of inserted 

integrator is also treated as a new control variable, 
u ′ . 
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Fig. 3:  Sliding mode based outer control loop. 

If the gain, K, is infinite, then the transfer 
characteristic between S and u ′  yields the bang-bang 
control:- 

( )u u sign Sm
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where 

S Td r r= − −ω ω ωω! !"                                 (2.19) 

The output derivative, rω̂" , may be obtained without 

differentiation by using the second of equations of 
filtering observer (2.14).  If conditions for sliding 
mode are fulfilled and ones the switching boundary is 
reached, the state trajectory is maintained close to it, 
while the control variable u ′ , rapidly switches 
between values of +u‘

m and -u‘
m for S=0.  Setting 

this condition in equation (2.19) then yields the 
switching boundary.  Under these circumstances, the 
closed-loop system obeys the switching boundary 
equation done by (2.20) and this corresponds to transfer 
function (2.17) with  Kd=1 and  T‘

ω=Tω . 
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This means that without parameter uncertainties or 
external load torque, the outer loop controller makes no 
difference to the closed-loop dynamics.  It merely 
compensates for the effects of the parameter mismatches 
and load torque, thereby  yielding the required 
robustness. 

The control chatter of the design system would interact 
in an undesirable way with the switching of the power 
electronics elements.  This can be eliminated by the 
reducing slope of the high gain element, K, to a finite but 
still relatively large value and removing saturation limits.  
Then it may be shown that for K → ∞  also S → 0  
and therefore the resulting performance is similar to the 
described classical sliding mode controller and this also 
yields similar robustness. 
 
 
 
 



 
3.  SIMULATIONS AND EXPERIMENTAL 

RESULTS 
 
The theory presented was verified by simulation with 
intention to investigate robustness of the design 
control system with respect to the load torque.  For 
comparison the simulations were carried out without 
and then with outer control loop for prescribed time 
constant Tω=0.1 s.  All simulations started with zero 
initial states and a step rotor speed demand  ωd=70 
rad/s.  A step disturbance nominal torque of  ΓL=3 
Nm was applied for t=0.4 s, when steady state of idle 
running motor was already achieved.   

In all the simulations presented, the stator current  iα and iβ 
components during the starting interval t∈ (0-0.2) s as 
functions of time are shown in subplots (a).  The magnetic 
flux components Ψα and Ψβ as functions of time for the 
same interval, t∈ (0-0.2) s are shown as subplot (b).  
Subplot (c) shows the speed estimate, !ωr , and load 

torque estimate, LΓ̂ , from the filtering observer together 

with ideal speed response ωid (dashed line) computed from 
transfer function.  Finally, subplot (d) shows the angular 
rotor speed, ωr , together with ideal speed response ωid 
(dashed line).  These two angular speeds are also 
presented for experiments. 
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Fig.4. Simulated speed response and corresponding 
variables without SMC outer loop. 

The basic effect of the sliding mode based outer loop 
may be observed from simulation presented as Fig. 5.  
The improvement brought about when SMC outer 
loop is applied is clearly evident.  Previous 
approximately 7% error of angular speed in steady 
state visible from Fig. 4 was completely eliminated 
and speed reduction due to applied nominal load 
torque at t=0.4 s is also less significant. 
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Fig.5. Simulated speed response and corresponding 
variables together with SMC outer loop. 

For experiments the control algorithms were also 
implemented on a Pentium PC equipped with PC Lab 
card.  The stator currents are measured through LEM 
transformers and evaluated using a PC Lab Card 
PL818.  A six-transistor Semikron IGBT module was 
used as the three-phase inverter controlled via PC.  
All the experiments presented were carried out with a DC 
supply voltage of UDC=90 V and step rotor speed demands 
of ωdem=200 rad/s and a time constant of Tω=0.15 s.  Data 
logging of the experimental variables was carried out 
for a 1.8 s time interval.  The PMSM was idle 
running during all the experiments. 

The experimental results obtained with the middle 
and inner control loops, excluding the SMC loop, are 
shown in Fig. 6.  The errors between the ideal angular 
speed and the estimated and real angular speeds due 
to imperfections in estimations and non-zero iteration 
interval even in the steady-state are clearly visible.  It 
was also reason that the drive without outer control 
loop was originally design for  moderate accuracy. 
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Fig. 6.  Experimental results - ideal speed response 
compared with observed and real speed without SMC 
outer loop. 

Experimental results corresponding to those of Fig.6, 
but including the SMC based outer loop, are shown in 
Fig.7.  The significant reduction of the 
aforementioned errors brought about by the SMC 
based outer loop, both during the acceleration of the 
drive and in the steady state, is evident by 
comparison of these two figures.  Finally, the 



experimental results presented show good 
correspondence with theoretical predictions and here 
presented simulations. 
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Fig. 7.  Experimental results - ideal speed response 
compared with observed and real speed with SMC 
outer loop. 

 

 

4.  CONCLUSIONS AND 
 RECOMMENDATIONS 

 
The presented simulation and also 

experimental results (for an unloaded PMSM) confirm 
that the addition of a SMC based outer control loop to 
the forced dynamics shaft sensorless speed control 
system considerably improves its performance.  The 
SMC loop also rendered the starting position of 
PMSM less critical. 

Suggestions for future research work are: 

• an investigation of robustness and effectiveness of 
SMC outer control loop with respect to motor and 
load parameter uncertainties, 

• application of more sophisticated inverter control 
strategy such as ‘Space Vector Modulation’, 
which can improve shape of current components 
and secondary will affect also activity of 
observers too. 

• a further set of experimental trials, including 
application of step load torque, together with an 
extensive investigation of the variation of the 
filtering observer performance with the pole 
locations. 
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Appendix 

 

The PMSM parameters are as follows:- Pn=475 W; at 
ωn=157 rad/s, p=2; RS=1.26 Ω, Ld=9.34 mH; Lq=9.2 
mH; ΦPM =0.112 Vs and the lumped moment of 
inertia is J=0.0005 kgm2. 
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