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Abstract. This paper investigates local and global bifurcation phenomena in a power system with two cascaded
Load Tap Changer transformers. These devices regulate voltage at two different voltage levels. Conditions for
oscillatory behavior and the stability of the system are extracted.  The interaction between the two devices is also
considered. More specifically, it is shown how the cascaded time constants influence the monotonic or
oscillatory behavior of the system and the formation of a homoclinic loop bifurcation.
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1. INTRODUCTION

Power systems are highly nonlinear dynamical
systems. The nonlinear models describing power
systems can exhibit a wide variety of complex
behavior [1-3]. Moreover economic and
environmental restrictions, along with the current
trend to open the power market, force modern power
systems to operate ever closest to their stability limits.
Consequently, power systems behavior becomes even
more dependent on nonlinear characteristics and more
complex. A great effort has been spent recently in
analyzing these nonlinear phenomena [4-6].
Load restoration dynamics play a significant role in
voltage instability phenomena [3,5,7,13]. An
important mechanism of load restoration is that of
Load Tap Changers (LTCs). These devices regulate
load voltages and therefore they restore indirectly
load power, even when transmission system voltages
are reduced. Voltage instability problems initiated by
LTC dynamics are analyzed in [7,8,10], using both
discrete and/or continuous LTC models. Oscillatory
behavior produced by the interaction between
cascaded tap changing transformers has been noticed
in [1,9,13]. It has been mentioned that these
oscillations appear when the time constants of all
LTCs belong to the same time frame. In [12], the
appearance of a limit cycle has been observed as a
result of the interaction between load and LTC
dynamics.
In this paper we analyze extensively from a stability
point of view a system with two cascaded LTCs in

both parameter and state space. The analysis is
performed using bifurcation theory. More specifically,
we derive conditions for:
− Oscillatory behavior
− Hopf Bifurcation
− Saddle Node Bifurcation
Apart from these local bifurcations we investigate
also a global bifurcation, namely a Homoclinic Loop
Bifurcation (HLB).
Although LTC dynamics are discrete, we use
equivalent continuous models in order to perform
stability analysis. In [3,8] methods to provide straight
forward derivations of continuous tap dynamic
models from basic discrete ones are presented. These
methods consist of the identification of the
appropriate form and time constant data for
continuous - tap dynamic models.

2. BIFURCATIONS
The term bifurcation refers to the points in parameter
space, for which the qualitative structure of the
system changes for a small variation of a parameter
vector. More specifically:
- At Local Bifurcations the change of the

qualitative structure of the system refers to local
properties, such as stability of equilibria and
periodic orbits.

- At Global Bifurcations the qualitative structure
of the system changes globally in the state space,



i.e. it is not restricted in the neighborhood of an
equilibrium point.

A Saddle Node Bifurcation occurs when a stable -
unstable pair of equilibrium points disappears or
emerges simultaneously. In power systems, this
bifurcation usually coincides with a maximum power
transfer point of the system. At this bifurcation, the
state matrix of the system becomes singular.
A Hopf bifurcation causes the emergence or
disappearance of a periodic solution through its
interaction with an equilibrium point. At this
bifurcation, a pair of complex conjugate eigenvalues
of the state matrix crosses the imaginary axis. There
are two distinct types of Hopf bifurcation depending
on the stability of the limit cycle:
•  At a subcritical  Hopf bifurcation an unstable limit

cycle collides with a stable equilibrium. After the
bifurcation the equilibrium becomes unstable and
the limit cycle disappears.

•  At a supercritical  Hopf bifurcation a stable
equilibrium point becomes unstable and a stable
limit cycle is generated.

At a Homoclinic Loop Bifurcation one branch of the
stable manifold and one branch of the unstable
manifold of the same unstable equilibrium point
coincide. An isolated closed trajectory (loop), passing
through the unstable equilibrium point, is generated.
This trajectory is called a homoclinic loop. After this
bifurcation an unstable limit cycle is generated.

3. THE TWO CASCADED LTCs SYSTEM

3.1. System description

The system studied in this paper consists of a constant
voltage source (infinite bus) feeding an isolated load
(purely resistive), through a lossless transmission line
and two transformers equipped with LTCs. The
reactances of the two transformers are X1 and X2

respectively. The system is shown in the one line
diagram of Fig. 1. The transmission line connects the
infinite bus to the transformer through a total
reactance Xo. The reactive losses of the two
transformers (i.e. on reactances X1  and X2) are
compensated by a capacitor (of admittance B). Table
1 shows the network and system parameters (pu on
100MVA base).
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Figure 1: The two cascaded LTCs power system

Table 1: Network, Load and LTCs parameters

oX 1X 2X B GV o
hV o

mV

0.1 0.2 0.15 3.33 1.036 1.0 1.0

The load is represented as a constant admittance G.
The LTC dynamics are described by the following
two differential equations (continuous model):
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where:

1r , 2r  are the tap positions (state variables)
0

hV , 0
mV  are the secondary voltage set points

1T , 2T  are the corresponding time constants

As seen in (1), (2) the LTC controllers are integral
regulators.
The secondary voltages hV  and mV  of the

transformers are given by the following expressions:
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where ET, XT are the Thevenin equivalent voltage and
reactance at A, B (see Fig. 1). Note, that the time
constants 1T , 2T  and the load admittance G are

considered as the variable parameters of our system.

3.2. Equilibrium Conditions

The equilibrium points of the system are defined by
the following nonlinear algebraic equations:
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Figure 2: PV curve of the system

where  hV , mV  are given by (3), (4). From the

solution of the above system we can find two pairs of
equilibria, one corresponding to normal transmission
system voltage and one corresponding to low voltage.
In Fig. 2, we can see the equilibrium points of the
system for various loading levels, in terms of a PV

curve. In the same figure, P ( 2
mGV= ) is the power



consumed by the load and V is the transmission
voltage close to the infinite bus (see Fig. 1).
The following remarks can be made on Fig. 2:

•  For )98.2(* puPP =< the system has two

equilibrium points, one corresponding to high
voltage V and one corresponding to a low value
of voltage V.

•  For *PP =  the two equilibrium points coalesce
and disappear. This point is a Saddle Node
Bifurcation of the system.

•  For *PP >  the system has no equilibrium
points.

3.3. Linearization
Linearizing around an equilibrium point, the system
(1) – (2) becomes:
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Note that, 11A , 12A , 21A , 22A  are functions of load

admittance G. At this point we remark that 011 <A

for all values of G, whereas 22A  changes sign

depending on G.
The matrix:

ATA 1−=′     (8)
is the state matrix of the system.
The characteristic polynomial of the system is given
by [9]:
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 is the determinant of A.

4. LOCAL CONDITIONS FOR
OSCILLATORY BEHAVIOR AND
STABILITY

4.1. Oscillation Condition

We want here to derive the region in parameter space,
where the system exhibits oscillatory behavior.

According to the characteristic polynomial (9), the
damping factor ζ  of the system is given by:
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where: 21 TT=γ
For a given load admittance G and provided that

02211 >AA , it is easily shown that the damping factor

•  has a local minimum with respect to γ , given by:

AD
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Considering that 11A  is always negative (for all values

of G), (12) holds as long as 022 <A .
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Figure 3: Variation of damping factor

In Fig. 3 we can see the variation of damping factor •
as a function of the ratio 1T / 2T , for different values of

the load admittance G. In the same figure, the dotted
line shows the minimum value minζ  for a given G.

Note that, for 54.2≥G , 22A  becomes positive

( 022 ≥A ), so minζ  can not be defined.

We consider that, near the equilibrium the system
exhibits monotonic behavior regardless of time
constants 1T , 2T  as long as the following conditions

hold:
− The damping factor •  has a local minimum minζ

with respect to γ .

− The local minimum value minζ  is greater than

0.707.
The threshold value of 707.0min =ζ  is chosen

because it corresponds to a second-order linear system
that does not exhibit overshoot. These conditions refer
to local oscillations (close to the stable equilibrium
point).
As shown in Fig. 3, for loading level bellow

puG 66.1=  there are no local oscillations. For higher

values of the load, local oscillatory behavior depends
on the relative speed of the two regulating
mechanisms, i.e. on the ratio of time constants 1T / 2T .

In Fig. 4, the boundary of local oscillations is shown
as curve 1 in the parameter space of G and 1T / 2T .



4.2. Stability Conditions

The stability conditions of system (7) are:
I. 0<′Atr
II. 0det >′A
According to (8) the trace of the state matrix A′  is
given by:
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Note that:
•  As long as 022 <A  (given that 011 <A ) stability

condition (I) holds regardless of the values of
time constants 1T  and 2T .

•  If 022 ≥A  (this holds for load admittance

54.2≥G ), there are time constants values 21  ,TT

for which condition (I) is violated.
According to (13) and condition (I), the stability in
terms of T1/T2  (for 54.2≥G ) is defined by:
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Relation (15) is the condition for Hopf bifurcation
(where a pair of conjugate eigenvalues of A′  crosses
the imaginary axis). After the Hopf bifurcation the
system becomes oscillatory unstable.
When stability condition (II) is violated, the system
encounters a Saddle Node Bifurcation, and the state
matrix A′  becomes singular.
Note that, matrices A′  and A′  become singular
simultaneously ( AA detdet =′ ), therefore the
condition for Saddle Node Bifurcation is:

0det =A (16)

5. ANALYSIS IN THE PARAMETER SPACE

From the preceding analysis we can plot the stability
and oscillatory regions in the parameter space of load
admittance G and time constant ratio 1T / 2T  (as in

Fig. 4). From Fig. 4 we conclude the following:
•  For light loading conditions ( )66.1<G :

− The system does not exhibit oscillatory
behavior near the equilibrium point (for any
combination of time constants 1T , 2T ).

− The equilibrium point is stable.
•  For medium loading conditions

( )54.266.1 ≤< G :

− There is a local oscillatory region in the
parameter space (to the right and above curve
1 in Fig. 4).

− The equilibrium is stable  (for any
combination of time constants 1T , 2T ).

•  High loading conditions ( )54.2>G

− The stable monotonic region in the parameter
space shrinks.

− There is a region in the parameter space
where the equilibrium is unstable. This
happens after a Hopf bifurcation (curve 2 in
Fig. 4) is encountered.
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Figure 4: Oscillatory and stability region in parameter
space

•  For loading above the Saddle Node Bifurcation
value puG 98.2=  there is no longer an

equilibrium.
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Figure 5: Eigenvalues of the system (T1=40s, T2=20s)

The eigenvalues of the linearized system (7), for
specific values of time constants ( 1T =40sec,

2T =20sec) and increasing load admittance G, are

plotted in Fig. 5, in the form of a root locus. For this
plot the parameters move along line •  in parameter
space (see Fig. 4).
From Fig. 5 we notice the following:
− At point A (G=0.96pu) the two real eigenvalues of

the system become complex.
− At point HB (G=2.81pu) the imaginary axis is

crossed. This is a Hopf bifurcation of the system.
− At point B (G=2.97pu) the complex eigenvalues

become real again.
− After point B one real eigenvalue becomes zero at

point C (G=2.98pu). This is the Saddle Node
Bifurcation of the system. There are no
equilibrium points after this value of G.

6. ANALYSIS IN THE STATE SPACE

In previous sections the local behavior of the system
near its stable equilibrium point was investigated. In
this section, we perform simulations to investigate



global dynamics of the system, e.g. the region of
attraction of the stable equilibrium point, limit cycles,
global bifurcations etc.
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Figure 6: Monotonic behavior ( 1T / 2T =0.1)

The simulations are performed for a load admittance
G=2.8pu. For this loading the system has two
equilibrium points. One corresponding to high
network voltages ( 8036.01 =r , 9220.02 =r ) and one

corresponding to low network voltages ( 4180.01 =r ,

9220.02 =r ). Note that, equilibrium points are

independent on the time constants 1T , 2T .

In Fig. 6, the phase portrait of the system, for

1T =5sec, 2T =50sec ( 1T / 2T =0.1), is depicted. In this

case, where the first LTC is fast enough compared to
the second, the system exhibits monotonic response
near the stable equilibrium point S.
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Figure 7: Phase portrait before the Homoclinic Loop
Bifurcation ( 1T / 2T =1.0)

Point U is the unstable equilibrium point (saddle
point). The region of attraction of point S is bounded

by the two branches of the stable manifold ( S
UW ) of

the unstable equilibrium U (see Fig. 6).
By increasing time constant 1T  ( 1T =50sec) we have

the phase portrait of Fig. 7. In this case the dynamics
of both LTCs belong to the same time scale. The
system exhibits oscillatory behavior in the region of
attraction of the asymptotically stable equilibrium
point S. This region is bounded by the stable manifold

( S
UW ) of the unstable equilibrium U (see Fig. 7).

Outside this region, the response of the system is
unstable (see trajectories a and b in Fig. 7).
For further increase of time constant 1T  ( 1T =64.4sec)

we have the phase portrait of Fig. 8. From this phase
portrait we can see that one branch of the stable

manifold ( S
UW ) and one branch of the unstable

manifold ( U
UW ) of the unstable equilibrium point

coincide, i.e. an isolated closed trajectory, passing
through the unstable equilibrium point, is generated
(homoclinic loop). At this point the system is
structurally unstable (in the sense that any small
parameter variation will break the homoclinic loop)
and undergoes a Homoclinic Loop Bifurcation. After
this bifurcation an unstable limit cycle, surrounding
the stable equilibrium point is generated.
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Figure 8: Homoclinic Loop Bifurcation ( 1T / 2T =1.29)

The homoclinic loop bounds the region of attraction
of the stable equilibrium point, where the response of
the system is oscillatory (see trajectory a in Fig. 8).
Outside this region, the response of the system is
monotonically unstable.
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Figure 9: Emergence of unstable limit cycle after the
Homoclinic Loop Bifurcation ( 1T / 2T =1.42)

For further increase of time constant 1T  ( 1T =71sec)

we have the phase portrait of Fig. 9. In this phase
portrait we can see the emergence of the unstable
limit cycle (after the breaking of the homoclinic loop).
Now, this limit cycle bounds the region of attraction
of the stable equilibrium point. Outside this region
system trajectories are unstable.
In Fig. 10 we can see the phase portrait of the system
prior to the Hopf Bifurcation (note that at this
bifurcation the unstable limit cycle coalesces with the
stable equilibrium point). This phase portrait is
extracted for time constant 1T =90sec. Outside the

limit cycle the response of the system is initially
oscillatory and becomes monotonically after the

stable manifold S
UW   (of the unstable equilibrium

point U) is overtaken (see Fig. 10). The Hopf



Bifurcation is subcritical since the limit cycle prior to
the bifurcation is unstable and shrinks.
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Bifurcation ( 1T / 2T =1.8)

7. CONCLUSIONS

In this paper local and global bifurcations in a power
system with two cascaded Load Tap Changer
transformers were investigated. The analysis was
performed in both parameter and state space.
Conditions for oscillatory behavior and the stability of
the equilibrium point were extracted.
The system encounters three types of  bifurcations for
changing loading and time constants:
•  Two local bifurcations (Hopf Bifurcation and

Saddle Node Bifurcation).
•  One global bifurcation (Homoclinic Loop

Bifurcation).
Before the Saddle Node Bifurcation, the system has
two equilibrium points, one corresponding to high
network voltage and one corresponding to low
network voltage (which is always unstable). The
former equilibrium point is stable until a Hopf
Bifurcation is met. More specifically, for loading
above 54.2=G , the system will exhibit oscillations
near the stable equilibrium point if the time constants
of the two LTCs are close enough. Also for a certain
value of the ratio 1T / 2T  the system will undergo a

Hopf Bifurcation becoming unstable. Note that, this
bifurcation is the actual stability limit of the system
since the Saddle Node Bifurcation occurs always after
the Hopf Bifurcation.
Regarding the global dynamics of the system we note
the following:
•  Prior to the Homoclinic Loop Bifurcation, the

region of attraction of the stable equilibrium point
is bounded by the stable manifold of the unstable
equilibrium point.

•  After the Homoclinic Loop Bifurcation and prior
to Hopf Bifurcation the region of attraction of the
stable equilibrium point is bounded by the
unstable limit cycle, which surrounds it.

•  After the Hopf Bifurcation there is no stable
equilibrium point any longer.
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