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Abstract. A nonlinear dynamic compensator framework for nonlinear passive systems with
arbitrary input nonlinearities is proposed. For this class of systems we prove global closed-loop
stability by modifying the dynamic compensator to include a suitable input nonlinearity. The
proof of this result is based on dissipativity theory and shows that the nonlinear controller
modi�cation counteracts the e�ects of the input nonlinearity by recovering the passivity of the
plant and the compensator.
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1. Introduction

In [1], the authors present a novel nonlinear control
design framework for positive real linear systems with
arbitrary input nonlinearities. Speci�cally, for positive
real linear plants controlled by positive real controllers,
a nonlinear controller modi�cation is proposed that ef-
fectively counteracts the e�ects of arbitrary input ac-
tuator nonlinearities. The main contribution of [1] is
that the feedback interconnection results are not based
on absolute stability criteria [2] and are valid for input
nonlinearities that are not necessarily either sector-
bounded or odd or monotonic.
In this paper we generalize the results of [1] to non-

linear passive continuous-time and discrete-time sys-
tems controlled by nonlinear passive compensators.
Our main result guarantees global asymptotic closed-
loop stability for nonlinear passive systems with ar-
bitrary input nonlinearities so long as the nonlinear
dynamic compensator is modi�ed to include a suit-
able input nonlinearity. The only restriction on the
input nonlinearity is that it be memoryless and that
either its characteristics be known or its output be
measurable. The proof of this result is based on dis-
sipativity theory [3{7] and shows that the nonlinear
controller modi�cation counteracts the e�ects of the
input nonlinearity by recovering the passivity of the
plant and compensator with respect to a modi�ed set
of inputs and outputs. Finally, in the case where the
plant and compensator are linear, our continuous-time
results specialize to the results obtained in [1].

2. Mathematical Preliminaries

In this section we establish de�nitions, notation, and
a key result used in the paper. Let R denote the real
numbers, let Rn denote the set of n � 1 real column
vectors, let Rm�n denote the set of m� n real matri-
ces, and let N denote the set of nonnegative integers.

This research was supported in part by the National
Science Foundation under Grant ECS-9496249 and the Air
Force OÆce of Scienti�c Research under Grant F49620-96-
1-0125.

Furthermore, we write k � k for the Euclidean vector

norm and V
0

(x) for the Fr�echet derivative of V at x.
Finally, let C0 denote the set of continuous functions
and Cr denote the set of functions with r continuous
derivatives.
In this paper we consider nonlinear dynamical sys-

tems G of the form

_x(t) = f(x(t)) +G(x(t))u(t); x(0) = x0; t � 0; (1)

y(t) = h(x(t)) + J(x(t))u(t); (2)

where x 2 R
n , u; y 2 R

m , f : Rn ! R
n , G : Rn !

R
n�m , h : Rn ! R

m , and J : Rn ! R
m�m . We as-

sume that f(�), G(�), h(�), and J(�) are smooth (at
least C1 mappings) and f(�) has at least one equi-
librium so that, without loss of generality, f(0) = 0
and h(0) = 0. Furthermore, for the nonlinear dynam-
ical system G we assume that the required properties
for the existence and uniqueness of solutions are sat-
is�ed, that is, u(�) satis�es suÆcient regularity condi-
tions such that the system (1) has a unique solution
forward in time. For the dynamical system G given by
(1) and (2) we assume that for all input-output pairs

u; y 2 Rm ,
R
t2

t1

ju
T(s)y(s)jds <1, t1; t2 � 0.

De�nition 2.1 [7]. A nonlinear dynamical system
G of the form (1), (2) is exponentially passive (resp.,
passive) if there exists a C0 nonnegative-de�nite func-
tion Vs : R

n ! R called a storage function and a scalar
" > 0 (resp., " = 0) such that the dissipation inequality

e
"t

Vs(x(t)) � e
"t0Vs(x(t0))+

Z
t

t0

2e"suT(s)y(s)ds; (3)

is satis�ed for all t � t0 � 0, where x(t), t � 0, is the
solution of (1) with u 2 Rm .

Remark 2.1. If Vs(�) is C1 continuous then an
equivalent statement for exponential passivity of G is

_Vs(x(t)) + "Vs(x(t)) � 2uT(t)y(t); t � 0; (4)

where _Vs(�) denotes the total derivative of Vs(x) along
the state trajectories x(t), t � 0, of (1).



De�nition 2.2 [6]. A dynamical system G is zero-
state observable if for all x 2 R

n , u(t) � 0, y(t) � 0
implies x(t) � 0.

Next, we consider feedback interconnections of pas-
sive and exponentially passive dynamical systems.
Speci�cally, we consider the nonlinear dynamical sys-
tem G given by (1), (2) with the nonlinear feedback
system Gc given by

_xc(t) = fc(xc(t)) +Gc(xc(t))uc(t); xc(0) = xc0; (5)

yc(t) = hc(xc(t)) + Jc(xc(t))uc(t); (6)

where t � 0, xc 2 R
nc , uc 2 R

mc , yc 2 R
lc ,

fc : Rnc ! R
nc and satis�es fc(0) = 0, Gc : Rnc !

R
nc � R

m , hc : Rnc ! R
m and satis�es hc(0) = 0,

Jc : Rnc ! R
m�m , mc = lc = m. Here, we assume

that the negative feedback interconnection of G and
Gc is well posed; that is, with uc = y and yc = �u,
det[Im + Jc(xc)J(x)] 6= 0 for all xc and x. The follow-
ing result gives a suÆcient condition for global asymp-
totic stability of the negative feedback interconnection
of G and Gc.

Theorem 2.1 [7]. Consider the closed-loop system
consisting of the nonlinear dynamical systems G given
by (1), (2) and Gc given by (5), (6) and assume
G and Gc are zero-state observable. If G is passive
with a C1 radially unbounded, positive-de�nite stor-
age function, Gc is exponentially passive with a C1

radially unbounded, positive-de�nite storage function,
and rank[Gc(0)] = m, then the negative feedback in-
terconnection of G and Gc is globally asymptotically
stable.

3. Nonlinear Controllers for Systems with Ar-
bitrary Input Nonlinearities

In this section we present a framework to con-
struct nonlinear controllers for nonlinear passive sys-
tems with arbitrary input nonlinearities. Speci�cally,
we suppose that the nonlinear plant (1), (2) is found
to possess an input nonlinearity so that (1), (2) is not
valid. Rather, in place of (1), (2), a more accurate
model is

_x(t) = f(x(t)) + ÆG(x(t))�(u(t)); x(0) = x0; (7)

y(t) = h(x(t)) + ÆJ(x(t))�(u(t)); (8)

where t � 0, � : Rm ! R
m denotes an input nonlin-

earity and Æ > 0 is an unknown scalar. We assume
that for all i = 1; : : : ;m, if ui = 0 then �i(u) = 0,
where ui and �i(u) denote the ith components of u
and �(u), respectively. Furthermore, we assume that
with input v = Æ�(u) and output y, G is passive with a
C1 radially unbounded, positive-de�nite storage func-
tion. Note that if �(u) = u and Æ = 1, that is, u = v,
it follows that G is passive with input u and output y.
To illustrate the allowable input nonlineari-

ties, consider �rst the special case �(u) =

[�1(u1) � � � �m(um)]
T of decoupled nonlinearities. In

this case, the ith component �i(ui) of �(�) depends
only upon the ith component ui of u. Now �i(�) can
represent an arbitrary scalar nonlinearity that vanishes
at the origin. For example, the saturation nonlinear-
ity �1(u1) = sat(u1) is allowable as well as deadzone,
quantization, and relay nonlinearities. Note that in
the case where �i(�) represents a saturation nonlin-
earity, the unknown scalar Æ > 0 allows for the con-
sideration of saturation nonlinearities with unknown
amplitude and slope. Similar remarks hold for the

other nonlinearities cited above. Also note that dif-
ferent types of nonlinearities are permissible. For ex-
ample, �(u) = [sat(u1) sgn(u2)]

T is allowed, where
sgn(0) = 0. More generally, �(u) may also denote a
nonlinearity whose coordinates are not necessarily de-
coupled. For example, the radial saturation nonlinear-
ity

�(u) =

�
u; kuk2 � 1;
1; kuk2 > 1;

where kuk2 denotes the Euclidean norm of u, can also
be considered.
Note that if �(u) = u and Æ = 1, that is, u = v,

it follows from Theorem 2.1 that the negative feed-
back interconnection of G and Gc is globally asymp-
totically stable, where Gc is given by (5), (6) and is
such that rank[Gc(0)] = m, and Gc is exponentially
passive with input uc, output yc, and a C1 radially un-
bounded, positive-de�nite storage function. However,
in the presence of the input nonlinearity �(�) Theorem
2.1 is no longer valid and hence closed-loop stability
and performance may be e�ected. Next, we modify
the controller (5), (6) to account for the input nonlin-
earity �(�) in order to guarantee closed-loop stability.
To counteract the e�ect of the input nonlinearity

�(u) in (7), (8) we modify the controller (5), (6) by
replacing the compensator dynamics (5) and control
inputs (6) by

_xc(t) = fc(xc(t)) +Gc(xc(t))�(u(t))y(t); (9)

u(t) = �[hc(xc(t)) + Jc(xc(t))�(u(t))y(t)]; (10)

where xc(0) = xc0, t � 0, � : Rm ! R
m�m is given

by �(u) = diag(�1(u); �2(u); : : : ; �m(u)), where for i =
1; : : : ;m,

�i(u) =

�
�i(u)=ui; ui 6= 0;
arbitrary, ui = 0:

(11)

Since �i(u) = 0 if ui = 0 it follows that �i(u)ui =
�i(u), for all i = 1; : : : ;m, and u 2 Rm . Consequently,
it follows that

�(u)u = �(u); u 2 R
m

: (12)

Finally, we assume that Gc, with input vc = �(u)y and
output yc = �u, is exponentially passive with a C1

radially unbounded, positive-de�nite storage function.
Note that if �(u) = Im, that is, vc = y, it follows
that Gc is exponentially passive with input uc = y and
output yc = �u.
The form of the controller input nonlinearity �(u) in

(9) and (10) is quite simple, requiring only knowledge
of �(u) and division by ui. For the case m = 1 and
several common nonlinearities, the required controller
nonlinearity �(u) is illustrated in Table 1. Note that in
the case of nonlinearities such as the relay nonlinear-
ity �(u) = sgn(u) leads to unbounded �(u) for u near
zero. Hence in this case it may be desirable to arti�-
cially implement a deadzone so that �(u) is bounded.
Finally, although all of the input nonlinearities shown
in Table 1 are sector-bounded and odd monotonic, our
results are valid for nonlinearities that are not neces-
sarily either sector-bounded or odd or monotonic.
The nonlinear dynamic compensator (9), (10) can be

implemented in two ways. If �(u) is known, then �(u)
can be constructed from (11) by evaluating �(u) in real
time for each value of u. If, however, the model �(u) is
not available but �(u(t)) can be measured during the
closed-loop operation, then �(u(t)) can be formed from
u(t) and �(u(t)) by implementing (11) with u = u(t).



This scheme is illustrated in Fig. 1. If, however, nei-
ther a model of �(u) nor a measurement of �(u(t))
is available, then �(u(t)) cannot be formed and our
approach does not apply. Hence, in the sequel, we
assume that either an accurate model of �(u) is avail-
able or that the signal �(u(t)) is available for feedback.
Finally, note that in the case where Jc(xc) 6� 0 the
controller output equation contains an algebraic con-
straint on u. For each choice of Jc(xc) and �(u) this
equation must be examined for solvability in terms of
u.
Next, we present the main result of this paper which

shows that in spite of the input nonlinearity �(u) in
(7), (8), closed-loop stability is guaranteed if the mod-
i�ed nonlinear controller (9), (10) is implemented in
place of (5), (6).

Theorem 3.1. Consider the closed-loop system
consisting of the nonlinear plant G given by (7), (8)
and the nonlinear dynamic compensator Gc given by
(9), (10), where the input nonlinearity �(�) is such
that �i(u) = 0 if ui = 0 and �i(u) 6= 0, u 2 R

m ,
i = 1; : : : ;m. Assume that G is zero-state observ-
able, rank[Gc(0)] = m, and G is passive with in-
put v = Æ�(u), output y, and a C1 radially un-
bounded, positive-de�nite storage function Vs(�). Fur-
thermore, assume that Gc is exponentially passive with
input vc = �(u)y, output yc = �u, and a C1 ra-
dially unbounded, positive-de�nite storage function
Vsc(�). Then the closed-loop system (7){(10) is globally
asymptotically stable.

Proof. Consider the Lyapunov function candidate
V (x; xc) = (1=Æ)Vs(x)+Vsc(xc). Now, the correspond-
ing Lyapunov derivative is given by

_V (x; xc) = (1=Æ) _Vs(x) + _Vsc(xc)

= (1=Æ)V
0

s
(x)[f(x) + ÆG(x)�(u)]

+V
0

sc
(xc)[fc(xc) +Gc(xc)�(u)y]

= (1=Æ)V
0

s
(x)[f(x) +G(x)v]

+V
0

sc
(xc)[fc(xc) +Gc(xc)vc]:

Since G is passive with input v and output y and Gc
is exponentially passive with input vc and output yc it
follows that there exists " > 0 such that

_V (x; xc) = (1=Æ)V
0

s
(x)[f(x) +G(x)v]

+V
0

sc
(xc)[fc(xc) +Gc(xc)vc]

� (2=Æ)yTv + 2vT
c
yc � "Vsc(xc)

= 2yT�(u)� 2yT�(u)u� "Vsc(xc)

= �"Vsc(xc)

� 0;

which implies that the negative feedback intercon-
nection of G and Gc is Lyapunov stable. To show

asymptotic stability let R
4

= (x; xc) 2 R
n � R

nc :
_V (x; xc) = 0g and, since Vsc(xc) is positive de�nite,

note that _V (x; xc) = 0 only if xc = 0. Now, since
rank[Gc(0)] = m and �i(u) 6= 0, u 2 Rm , i = 1; : : : ;m,
it follows that on every invariant set M contained
in R, vc(t) = y(t) � 0 and hence u(t) � 0 so that
_x(t) = f(x(t)). Now, since G is zero-state observable
it follows thatM = f(0; 0)g is the largest invariant set
contained inR. Hence, it follows from LaSalle's invari-
ance principle [8] that (x(t); xc(t))!M = f(0; 0)g as
t!1. Now, global asymptotic stability of the closed-
loop system follows from the fact that Vs(�) and Vsc(�)
are, by assumption, radially unbounded.

Remark 3.1. It is important to note that if in The-
orem 3.1 the nonlinear plant G is exponentially passive,
then global asymptotic stability of the negative feed-
back interconnection of G and Gc is guaranteed with-
out the assumptions of zero-state observability of G,
�i(u) 6= 0, u 2 Rm (or, equivalently, �i(u) 6= 0, u 6= 0),
and rank[Gc(0)] = m. Alternatively, global asymptotic
stability of the negative feedback interconnection of G
and Gc is also guaranteed if the nonlinear plant G is
input strict passive [6] (resp., output strict passive [6])
and the nonlinear compensator Gc is input strict pas-
sive (resp., output strict passive). A similar remark
holds for Theorem 4.1 below.

4. Extensions to Discrete-Time Nonlinear
Systems

In this section we extend the results of Section 3
to discrete-time systems. Speci�cally, we consider
discrete-time nonlinear dynamical systems G of the
form

x(k + 1) = f(x(k)) +G(x(k))u(k); x(0) = x0;(13)

y(k) = h(x(k)) + J(x(k))u(k); (14)

where k 2 N , x 2 R
n , u; y 2 R

m , f : Rn ! R
n ,

G : Rn ! R
n�m , h : Rn ! R

m , and J : Rn ! R
m�m .

Here, we assume that f(�), G(�), h(�), and J(�) are C0

mappings and f(�) has at least one equilibrium so that,
without loss of generality, f(0) = 0 and h(0) = 0. The
following de�nition gives the discrete-time counterpart
of exponential passivity.

De�nition 4.1. A discrete-time nonlinear dynam-
ical system G of the form (13), (14) is geometrically
passive (resp., passive) if there exists a C0 nonnegative-
de�nite function Vs : R

n
! R called a storage function

and a scalar � 2 (0; 1) (resp., � = 1) such that the
dissipation inequality

�
�k1Vs(x(k1))��

�k0Vs(x(k0))+

k1�1X
k=k0

2��k�1
u
T(k)y(k);

(15)
is satis�ed for all k1 > k0 � 0, where x(k), k 2 N , is
the solution of (13) with u 2 Rm .

As in the continuous-time case we assume that the
nonlinear plant (13), (14) possesses an input nonlin-
earity so that (13), (14) is more accurately given by

x(k + 1) = f(x(k)) + ÆG(x(k))�(u(k)); (16)

y(k) = h(x(k)) + ÆJ(x(k))�(u(k)); (17)

where x(0) = x0, k 2 N and � : Rm ! R
m denotes

an input nonlinearity satisfying the assumptions given
in Section 3 and Æ > 0 is an unknown scalar. Fur-
thermore, we assume that with input v = Æ�(u) and
output y, G is passive with a C0 radially unbounded,
positive-de�nite storage function.
To counteract the e�ect of the input nonlinearity

�(u) in (16), (17) we propose a discrete-time nonlinear
compensator given by

xc(k + 1)= fc(xc(k)) +Gc(xc(k))�(u(k))y(k); (18)

u(k)=�[hc(xc(k)) + Jc(xc(k))�(u(k))y(k)]; (19)

where k 2 N , xc(0) = xc0, and � : Rm ! R
m�m is

given by �(u) = diag(�1(u); �2(u); : : : ; �m(u)), and for
i = 1; : : : ;m, �i(�) is given by (11). Finally, we assume
that Gc, with input vc = �(u)y and output yc = �u,
is geometrically passive with a C0 radially unbounded,
positive-de�nite storage function.



Theorem 4.1. Consider the closed-loop system
consisting of the nonlinear plant G given by (16), (17)
and the nonlinear dynamic compensator Gc given by
(18), (19), where the input nonlinearity �(�) is such
that �i(u) = 0 if ui = 0 and �i(u) 6= 0, u 2 R

m ,
i = 1; : : : ;m. Assume that G is zero-state observ-
able, rank[Gc(0)] = m, and G is passive with in-
put v = Æ�(u), output y, and a C0 radially un-
bounded, positive-de�nite storage function Vs(�). Fur-
thermore, assume that Gc is geometrically passive with
input vc = �(u)y, output yc = �u, and a C0 ra-
dially unbounded, positive-de�nite storage function
Vsc(�). Then the closed-loop system (16){(19) is glob-
ally asymptotically stable.

Proof. Consider the Lyapunov function candidate
V (x; xc) = (1=Æ)Vs(x)+Vsc(xc). Now, the correspond-
ing Lyapunov di�erence is given by

�V (x; xc) = (1=Æ)�Vs(x) + �Vsc(xc)

= (1=Æ) [Vs(f(x) + ÆG(x)�(u)) � Vs(x)]

+Vsc(fc(xc) +Gc(xc)�(u)y)� Vsc(xc)

= (1=Æ) [Vs(f(x) +G(x)v) � Vs(x)]

+Vsc(fc(xc) +Gc(xc)vc)� Vsc(xc):

Since G is passive with input v and output y and Gc
is geometrically passive with input vc and output yc it
follows that there exists � 2 (0; 1) such that

�V (x; xc) = (1=Æ) [Vs(f(x) +G(x)v) � Vs(x)]

+Vsc(fc(xc) +Gc(xc)vc)� Vsc(xc)

� (2=Æ)yTv + 2vT
c
yc � (1� �)Vsc(xc)

= 2yT�(u)� 2yT�(u)u� (1� �)Vsc(xc)

= �(1� �)Vsc(xc)

� 0;

which implies that the negative feedback interconnec-
tion of G and Gc is Lyapunov stable. Now, the proof of
global asymptotic stability of the closed-loop system
is identical to that of the continuous-time and hence is
omitted.

5. Illustrative Numerical Example

Consider the controlled nonlinear oscillator given by
the undamped DuÆng's equation

�x(t) + (2 + x
2(t))x(t) = 2u(t); x(0) = x0; (20)

y(t) = _x(t); (21)

where t � 0, x(t); u(t); y(t) 2 R, and input nonlinear-

ity �(u) = sin(u). De�ning x1
4

= x and x2
4

= _x, (20),
(21) can be written in the state space form (1), (2) with

x = [x1 x2]
T, f(x) = [x2 �(2+x

2

1
)x1]

T, G(x) = [0 2]T,
h(x) = x2, and J(x) = 0. Now, with input v = �(u) =
sin(u) and output y, the nonlinear dynamical system
given by (20), (21) can be shown to be passive [7] with
storage function Vs(x) = 2x2

1
+ 1

2
x
4

1
+x

2

2
. Furthermore,

note that (20), (21) is zero-state observable.
In order to stabilize the dynamical system (20),

(21) we consider a compensator emulating a nonlin-
ear damped oscillator given by

�xc(t) + �(xc(t); _xc(t))( _xc(t) + xc(t)) = y(t); (22)

u(t) = �xc(t)� _xc(t); (23)

where t � 0, xc(0) = xc0, xc(t) 2 R, and �(xc; _xc)
4

=

2 + (xc + _xc)
2. De�ning xc1

4

= xc and xc2
4

= _xc, (22),

(23) can be written in the state space form (5), (6)

with xc = [xc1 xc2]
T, fc(xc) = [xc2 ��(xc1; xc2)(xc1+

xc2)]
T, Gc(xc) = [0 1]T, hc(xc) = xc1 + xc2, and

Jc(xc) = 0. With input uc = y, output yc = �u, and
Vsc(xc) = x

2

c1
+ (xc1 + xc2)

2 the nonlinear compen-
sator (22), (23) can be shown to be exponentially pas-
sive [7]. With the sinusoidal nonlinearity �(u) = sin(u)
the compensator (22), (23) leads to a limit cycle in-
stability for the initial condition x1(0) = 2, x2(0) = 0.
Alternatively, the modi�ed nonlinear compensator (9),
(10) guarantees global closed-loop asymptotic stability.
The comparison of the time responses for position and
velocity for both controlled systems is given in Figs. 2
and 3, respectively. Finally, Figs. 4 and 5 compare the
control e�orts of the unmodi�ed and modi�ed compen-
sators, resepectively.

6. Conclusion

A novel nonlinear control approach based on dissipa-
tivity theory was developed for addressing the problem
of input nonlinearities in nonlinear passive plants. The
approach assumes that the nonlinear plant in the ab-
sence of input nonlinearities is passive and the nonlin-
ear controller is exponentially passive, while the class
of input nonlinearities that can be addressed is quite
general. Global closed-loop stability in the face of arbi-
trary input nonlinearities is guaranteed by modifying
the input to the nonlinear compensator to counteract
the e�ects of the input nonlinearity. This modi�cation
results in recovering the passivity of the plant and the
compensator.
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Fig. 1: Feedback scheme for constructing �(u)

0 5 10 15 20 25
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Time

P
os

iti
on

Modified Compensator 
Unmodified Comensator

Fig. 2: Position versus time
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Fig. 3: Velocity versus time
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Fig. 4: Control e�ort versus time
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Fig. 5: Control e�ort versus time



Table 1: Representative input nonlinearities

Input Nonlinearity �(u) Controller Nonlinearity �(u) = �(u)=u

Saturation

 u

σ (u)

 u

β (u)

Deadzone

 u

σ (u)

 u

β (u)

Relay

 u

σ (u)

 u

β (u)

Relay with Deadzone

 u

σ (u)

 u

β (u)

Quantization

 u

σ (u)

 u

β (u)
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