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Abstract. This paper describes a novel approach to map electric fields using artificial
neural networks. The networks acts as an identifier of structural features of the high voltage
substations design so that output parameters can be estimated and generalised from an input
parameter set. Simulation examples are presented to validate the proposed approach. More
specifically, the neural networks are used to compute electrical fields intensity and critical
voltage taking into account several atmospheric and structural factors, such as pressure,
temperature, humidity, distance between phases, height of the bus bars, and wave forms.  A
comparative analysis with the finite element method is also provided to ill ustrate this new
methodology.
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1. INTRODUCTION

Brazil i s the largest tropical country in the world and,
in consequence, one of the main countries in terms of
lightning activity. About 100 milli on lightning strikes
occur every year in almost all parts of the country. In
consequence there is the necessity of understanding
the lightning phenomenon intrinsically and evaluating
its incidence.

During the last years a great improvement on lightning
protection methodology has been made. In fact the
major step forward in this field is relevant to the
evaluation and identification of risk of damage due to
lightning related to the protection of high voltage
substations [1,5,6].

On the other hand, the abilit y of Artificial Neural
Network (ANN) on complex non-linear functions
realisation makes it identify and estimate electric fields
and its parameters in an attractive way.

An artificial neural network is a dynamic system that
consists in highly interconnected and parallel non-

linear processing elements that shows extreme
eff iciency in computation. The main benefits of using
ANNs on lightning studies are the following: i-) the
abilit y of learning and therefore generalisation; ii-) the
facilit y of implementation in hardware; iii -) the
capacity of mapping complex systems without
necessity of knowing the eventual mathematical
models associated with them; iv-) the possibilit y of
time reduction involved with tests in laboratory.

This paper has three principal aims. The first one is
the most important objective that suggests problems
about estimation of electric fields. It can be effectively
mapped by artificial neural networks. The second
objective is to offer an effective method for
identification of lightning models. The third objective
is to aid the tests to simulate that have been made in
laboratories once the network is capable of simulating
realistic test scenario.

The paper has the contents as following: In Section 2,
the experimental procedures and simulations are
showed. In Section 3, the finite element method is
used. In Section 4, the basic aspects relative to
artificial neural networks are presented. Simulation
results are given in Section 5 to validate the developed
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approach. In section 6, the key for this issue is
emphasised by drawing conclusions.

2. EXPERIMENTAL TECHNIQUES

The atmospheric impulses that represents the lightning
in high voltage laboratory has been produced by an
impulse generator that consists essentially of a number
of capacitors which are charged in parallel from a
direct voltage source and then discharged in series into
a circuit which includes the test object (bus bars).

The standard lightning impulse has been produced full
lightning impulse having a virtual front time of 1.2µs
and a virtual time to half value of 50µs.

At first, in the high voltage laboratory it was
experimentally determined the critical voltage (V50%)
for several electrical distances between bus bars. As
soon as this procedure finished, the supportable
voltage (V10%), was calculated by:

V10% = V50% (1 - 1.3σ) (1)

Where V10% means the voltage with 90% of non-
occurrence of a disruptive discharge and σ is the
standard deviation (3%).

The real atmospheric conditions (pressure,
temperature, humidity, etc.) were measured in the
laboratory. These figures were stored to be used in the
training process of the neural network.

Fig.1 shows the assembling of the parallel bus bars ( A
and B).

Fig.1. Parallel bus bars

Where D1 is the distance between phases, d1 is the
distance of the electric arc and H is the height of the
bus bar far from the ground.

On the parallel bus bars were applied atmospheric
impulses of positive polarity in one side, having the
other side grounded. The V50% potential for several

electric distances and bus bars heights were
determined.

Fig.2 outlines the several tests that took place in
laboratory.
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Fig.2. Profile of the critical voltage V50%,  H = 3m

It is essential to mention that this methodology is the
most used to determine the V50% even though it is a
expensive and slow procedure to achieve the V50%.

Besides that, it is also possible to estimate the V50% by
using statistics. However, in this case the rate of
failure is very high.

3. FINITE ELEMENT SIMULATIONS

In order to make use of the experimental results
presented in the last section, simulations were realised
by using the finite element considering the structure as
it was shown in Fig. 1.

It was used an electrostatic finite element program to
get an initial approach regarding numerical analysis
although this procedure represents a transient
behaviour. This approach was possible in sake of the
symmetrical structure.

Fig.3 shows the topology for the finite element model.
V0 represents the applied voltages, D is the distance
between the bus bars and H is the height far from the
ground (3 m). Zero potential (V = 0) was imposed on
the whole boundary of the high voltage laboratory,
which means to consider V = 0 on the ground and
walls. This is the most critical situation, because it
represents a more rapid variation in the gradient of the
potential, in comparison with non zero potential on the
walls.

As the distance between the bus bars are less than their
length, a 2D finite element mesh could be used.

The simulations were done with finite element meshes
of the 8561 nodes and 16400 triangular first order
elements.
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Fig.3. Topology for the finite element analysis

Fig.4 and Fig.5 show the intensity of electrical field in
the region between bus bars (A and B) for the
distances 1.30 and 1.75 meters and the voltages
450kV, 550kV and 650kV.
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Fig.4. Distance between the bus bar : 1.30 m
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Fig.5. Distance between the bus bar : 1.75 m.

Observing Fig. 4 and Fig. 5, it was realised some
oscill ations caused by the interpolation problems,
which is a featured aspect of the finite element.

4. IDENTIFICATION WITH NEURAL
NETWORKS

The motivation for use an ANN is to speed up the
analysis or design of process substantially. The main

advantage of an ANN is in its abilit y to approximate
functional relationships, particularly non-linear
relationships [4].

The ANN, when presented with appropriate input and
output data related to a specific functional
relationship, can adjust itself such that it can give a
good representation of that relationship. This feature is
particularly useful when the relationship is non-linear
and/or not well defined, and thus diff icult to model by
conventional means.

ANNs were also developed to mimic some of the
learning processes of the human brain. In this paper,
feedforward ANNs are used to map the relationships
between the variables associated with the process of
specification (identification) on lightning studies.

The system identification is the determination, on the
basis of input and output, of a system within a
specified class of systems. The identification process
usually consists of two stages - model selection and
parameter estimation. In neural networks, the selection
of the neural architecture corresponds to the model
selection stage.

In this paper, the selected architecture is defined by a
feedforward ANN. The learning algorithm used to
compute the weights of the network corresponds to the
parameter estimation.

A typical feedforward ANN is depicted in Fig.6, with
“m” inputs and “p” outputs, and each circle
representing a single neuron. The name feedforward
implies that the flow is one way and there are not
feedback paths between neurons. The output of each
neuron from one layer is an input to each neuron of the
next layer. The initial layer where the inputs come into
the ANN is called the input layer, and the last layer,
i.e., where the outputs come out of the ANN, is
denoted as the output layer. All other layers between
them are called hidden layer.
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Fig.6. Typical feedforward ANN

Each neuron can be modelled as shown in Fig.6, with
“n” being the number of inputs to the neuron.
Associated with each of the n inputs xi is some
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adjustable scalar weight, wi (i=1,2,...,n), which
multiplies that input. In addition, an adjustable bias
value, b, can be added to the summed scaled inputs.
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Fig.7. Single artificial neuron

These combined inputs are then fed into an activation
function, which produces the output y of the neuron,
that is:

y g w x bi
i

n

i= +
=
∑( )

1

(2)

where g is a sigmoid function g(u)=(1+e-u)-1.

For network training was used the Levenberg-
Marquardt Algorithm [2,3].

5. SIMULATION RESULT S

In this section, some simulations for the arrangement
shown in Fig.1 have been done. The general
architecture of the neural system is shown in Fig.8.
This architecture is composed by two feedforward
networks.

ANN-1

ANN-2

Temperature

Pressure

Humidity

Height (H)

Distance

V
50%

E(V/m)(D  )
1

(d  )
1 (d  )

1

(H)

Fig.8. General architecture of the ANN

The first network (ANN-1) is responsible by the
computation of  the critical voltage (V50%). The
training data for ANN-1 were directly obtained from
experimental values acquired in high voltage
laboratory. It were used nearly three hundred training

vectors of V50%. It is important to notice that this
network has taken into account several atmospheric
and structural factors.

Fig.9 shows the variation of V50% computed by ANN-1
when the temperature has been modified (25.0 0C to
25.3 0C).
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Fig.9. Variation  of V50% when the temperature has been
modified

It is important to mention that this kind of verification
is impossible to be observed through experimental
procedures.

The second network (ANN-2) is responsible by the
computation of the electric field intensity between the
bus bars. For this network, the training data were
obtained by an electrostatic finite element method. It
was used around two thousand and five hundred
training vectors.

Fig.10 ill ustrates the variation of the electrical field
intensity with three different values of V50% computed
by ANN-2 (650 kV, 550 kV and 450 kV).
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Fig.10. Variation of the electrical field intensity

As observed in Fig.8, the ANN-1 output is provided as
an input parameter to the ANN-2. Therefore, all
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atmospheric and structural factors are also taken into
account to compute the electric field intensity. This is
one of the main advantages related to the finite
element method approach. This procedure was
adopted to verify the sensitivity of the network and
also to set the limits and extreme conditions to future
researches .

Fig.11 and Fig.12 compare the electric field intensity
considering finite element method and artificial neural
network (alleviated curve).

Fig.11 shows the electric field intensity between the
bus bars (1.5m), and applied voltage of 550 kV.
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Fig.11. Electric field intensity

Fig.12 shows the electric field intensity between the
bus bars (1.5m), and applied voltage of 650 kV.
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Fig.12. Electric field intensity

Observing Fig. 11 and Fig. 12, it can be verified that
the network might get a good estimation electric field

intensity. Besides that, the network was capable of
decreasing the interpolation problems (oscill ations)
when compared to results provided by the finite
element method.

6. CONCLUSIONS

This paper has presented a novel methodology to map
electric fields of high voltage substations using
artificial neural networks. The simulation results can
be useful in the elaboration of new criteria, more
consistent and adequate, for on substations design.

Artificial neural networks were considered within its
context of identification of high-voltage process. The
training of the neural networks has been made using
data (atmospheric and structural factors) from
experimental simulations. After the training, the
network was been able to generalise novel inputs that
were not simulated in laboratory. This property allows
to reduce the time spend with simulations in the
laboratories.

All these results evidence that problems involving
identification on electric fields intensity can be
effectively mapped by artificial neural networks.
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