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Abstract. This paper presents a method analyzing stability of Takagi-Sugeno fuzzy
systems with linear input-output submodels in the consequents of rules. This method can be
used for stability analysis of a Takagi-Sugeno fuzzy model of a plant and for closed-loop
system, where both the plant and the controller are represented by Takagi-Sugeno fuzzy
systems. It will be shown that the problem of stability analysis of such a system can be
transformed to robust stability analysis of a polynomial with polynomic structure of its
coefficients. Stability of such polynomials is tested by the Modified Jury criterion, the
Modified Routh criterion or the Hurwitz criterion together with Sign-decomposition. A
necessary condition for stability of the Takagi-Sugeno closed loop systems is obtained.
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1. INTRODUCTION

Stability is one of the most important issues in
analysis and design of control systems. There is no
particular stability theory of fuzzy systems, where the
controller and the plant is considered to be a fuzzy
system. There exist several approaches for testing
stability of closed-loop systems, where the plant is
modeled by standard mathematical tools, e.g. by the
state space model (linear or nonlinear) or the matrix
of transfer functions, and the controller is described
by a fuzzy model. These methods are based on
principles known from the theory of nonlinear
systems, for example stability indices ([3],[4]), the
circle criterion ([4]), hyperstability theory ([1]) etc.
Chen, et. al. in [7] developed a method for stability
analysis of systems, where the plant and the
controller are described as linguistic fuzzy systems.
This method is based on fuzzy relations. The next
approaches ([2],[8],[9],[10]) are designed for Takagi-

Sugeno fuzzy systems, where the consequents of
rules of the plant and of the controller are considered
to be linear state space submodels and the state
feedback to each of them respectively. Stability
analysis of such systems uses usually the Lyapunov
theory and it is based on finding a common
Lyapunov function for all subsystems. This function
can be found for example by LMI.

In this paper a new method for stability analysis of
Takagi-Sugeno fuzzy systems based on robust
stability of polynomials will be presented. The
Takagi-Sugeno fuzzy systems will be introduced in
section 2. In the section 3 it will be shown, that the
characteristic polynomial of Takagi-Sugeno fuzzy
closed-loop system can be expressed as a polynomial
with polynomic structure of its coefficients. The
section 4 is devoted to stability analysis of such a
polynomial.

2. TAKAGI-SUGENO FUZZY SYSTEMS

In this work only Takagi-Sugeno fuzzy systems will
be analyzed, where the consequents of rules are
represented by local linear input-output relations of
nonlinear systems.
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program No. J04/98:212300013 ”Decision Making and Control for
Manufacturing” of the Czech Technical University in Prague
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Let suppose, without loss of generality, the following
closed-loop system:
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Fig. 1 Closed-loop scheme

where Gc is the controller, Gp is the plant.

The Takagi-Sugeno fuzzy model of the plant is
considered, where the rules are written in the
following form:
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i = 1,2,…,R, for continuous case and for discrete case
respectively.

z(t)=[ z1(t), …, zg(t)]
variables of the premise (some
measurable plant variables)

i
jM fuzzy sets

( ) ℜ∈ty the output of the plant

( ) ℜ∈tu the input to the plant

The following procedure will be derived for discrete
case, but it can be followed for continuous system
analogically.

The total output of the fuzzy system is:
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By applying Z-transform to (3) the following transfer
function is obtained:
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where ( )zGi
p  denotes the transfer function of the

consequent of the i-th rule.

The controller is described by the following rules:
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The total output of the controller is
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The corresponding transfer function is:
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Now it is possible to write the transfer function of the
closed-loop system:

( )
( )

( ) ( )

( ) ( ) ( ) ( )( )∑∑

∑∑

= =

= =

+
=

==
⋅+

⋅
=

R

i

jiji
j

R

j
i

j
R

i

i
j

R

i
i

pc

pc

ref

zqzazrzbhh

zrzbhh

GG

GG

zW

zY

1 1

1 1

1
�

(11)

( )
( )

( ) ( )

( ) ( ) ( ) ( )( )∑∑

∑∑

= =

= =

+
=

==
⋅+

⋅
=

R

i

jiji
j

R

j
i

j
R

i

i
j

R

i
i

pc

pc

ref

sqsasrsbhh

srsbhh

GG

GG

sW

sY

1 1

1 1

1
�

(12)

for discrete system and for continuous system
respectively.

3.  TAKAGI-SUGENO FUZZY SYSTEMS AS
UNCERTAIN POLYNOMIALS

In this section it will be shown, that the characteristic
polynomial of the closed-loop Takagi-Sugeno fuzzy
system introduced in last section can be expressed as
a polynomial with polynomic structure of its
coefficients with an uncertain interval parameter h.
The equation (13) will be used to decrease dimension
and computational complexity of the problem.
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Substituing (13) to (11) the characteristic polynomial
of the closed-loop system is obtained:
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where bi, ai, rj, qj denote bi(z), ai(z), rj(z), qj(z)
respectively.

The polynomial (14) can be transformed into the
following form:
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for continuous system and for discrete systems
respectively, where n is max (nb+nr,na+nq),
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and coefficients ck(h) k=0,...,n are polynomic
functions of h.

4. STABILITY ANALYSIS

A method for analysis of robust stability of
polynomic interval polynomials was described in [6]
for continuous case and in [5] for discrete case. The
methods use the Modified Routh criterion or the
Modified Jury criterion respectively. Positivity of
elements of both tables is tested by Sign-
decomposition.

Theorem 1 (Modified Jury criterion) : The

polynomial ( ) 01 czczczR n
n +++= �  (discrete-time

polynomial with constant coefficients) is stable if and
only if bk,0 > 0 (elements of Modified Jury table)
∀k = 1,…,n.

The corresponding Modified Jury table is defined as
follows:
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Theorem 1 can be enlarged to the polynomial (16).



Theorem 2: The Takagi-Sugeno closed-loop system
(11) with the characteristic polynomial (16) is stable
for an arbitrary choice of fuzzy sets in rules R i only if
the corresponding Modified Jury table is stable
∀h∈H.

For the polynomial (16) the elements of the Modified
Jury table are multivariate polynomic functions. The
positivity of elements bk,0 , k=1,…,n of Modified
Jury table can be tested by Sign-decomposition.

In the similar way it is possible to define the
Modified Routh table:

1,1

2,41,4

2,31,3

531

42

0

3

2

1

+

−−−

−−

−

−

−

n

nnn

nnn

n

n

n

n

b

bb

bb

ccc

ccc

s

s

s

s

s

�

�

�

�

�

�

(21)

where

3       1,11,21,21,1, ≥∀−= +−−+−− ibbbbb jiijiiji (22)

Theorem 3: The Takagi-Sugeno closed-loop system
(12) with the characteristic polynomial (15) is stable
for an arbitrary choice of fuzzy sets in rules R i only if
a) ci(h) > 0 for i=0,…,n and
b) bk,1(h) > 0 for k=3,…,n+1.
∀h∈H.

The positivity of elements ci , i = 0,…,n and bk,1,
k=1,…,n can be tested by Sign-decomposition.
Theorem 2 and Theorem 3 state only a necessary
condition for stability of Takagi-Sugeno fuzzy
systems.

4.1. Sign-decomposition

Sign-decomposition is a method derived by Elizondo
and described in detail in [6] which makes it possible
to check positivity or negativity of a class of
multivariate functions on a convex set. Polynomic
functions belong to this class.
Let Q⊂ℜl be a box of uncertainties. This box can be
always translated to some subset of positive orthant
P⊂ℜl by a linear transformation, so it is possible to
consider Q⊂P⊂ℜl.

Definition 1: Let f : ℜl→ℜ be a continuous function
and let Q be convex and Q⊂P⊂ℜl . We say that f(⋅) is
a non-decreasing function on Q if x ≥ y (xi ≥ yi ,
i=1,…,l) implies f(x)≥ f(y).

Definition 2: Let f : ℜl→ℜ be a continuous function
and let Q be convex and Q⊂P⊂ℜl . Then it is said
that f(⋅) has sign-decomposition in Q if f(⋅) = f p(⋅)

– f n(⋅) ∀ q∈Q, where f n(⋅)≥ 0 and⋅f p(⋅)≥ 0 are non-
decreasing function in Q.
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Denote by νmin,νmax∈Q⊂P the minimum and
maximum Euclidean norm vertices of Q. Then it is
easy to prove that for a continuous non-decreasing

function f ( ) ( )minmin �q
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Lemma 1: Let f(q) be a polynomic function with
q∈Q⊂ℜl. Then f(q) has Sign-decomposition in Q.

Proposition 1: Let f1(⋅) and f2(⋅) have a Sign-
decomposition then the sum f1(⋅)+f2(⋅) and the
pointwise product f1(⋅)⋅f2(⋅) has a Sign-
decomposition.

Rectangle Theorem: Let f be a continuous function
f : ℜl→ℜ with Sign-decomposition in a box
Q⊂P⊂ℜl with qmin,qmax∈Q, where qmin,qmax are the
minimum and maximum Euclidean norm vertices of
Q. Then:
a) f  p(qmin) – f  n(qmax) < f(q) < f  p(qmax) – f  n(qmin),

∀q∈Q
in the plane (f  n, f  p):
b) f(q)⊂ rectangle with vertices (f  n(qmin),f  p(qmin)),

(f  n(qmax),f  p(qmax)), (f  n(qmin),f  p(qmax)), (f  n(qmax),
f  p(qmin)), ∀ q∈Q

c) if vertex (f n(qmax),f p(qmin)) is above the 45° line
then f(q) > 0, ∀q∈Q

d) if vertex (f n(qmin),f p(qmax)) is below the 45° line
then f(q) < 0, ∀q∈Q

e) if vertex (f n(qmin),f p(qmin)) is below (above) the
45° line and vertex (f n(qmax),f p(qmax)) is below
(above) the 45° line then f(q) is neither positive
nor negative ∀q∈Q
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Fig. 2 Sign-decomposition

If none of conditions c), d) or e) is satisfied (vertices
(f n(qmin),f p(qmin)) and (f n(qmax),f p(qmax)) are both



above or both below the 45° line and the 45° line
crosses the corresponding rectangle), then it is not
possible to decide about positivity or negativity of
function f(q) and one can continue as follows:

Let Q⊂P⊂ℜl: [ ] [ ] [ ]+−+−+− ×××= ll qqqqqqQ ,,, 2211 � .

Each uncertainty interval [ ]+−
ii qq ,  can be divided in

k parts, generating k uncertainty intervals: [ ],, 1
ii qq−

[ ] [ ] [ ]+−+
i

k
i

j
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j
iii qqqqqq ,,,,,,, 1121

�� . Let [ ]+− γγ ii ,  be one
of these uncertainty intervals, then one can get kl

boxes Γ: Let [ ] [ ] [ ]+−+−+− γγ××γγ×γγ=Γ ll
i ,,, 2211 �  be

one of the kl boxes: �
i

iQ Γ= and let µmin, µmax∈Γi

be the minimum and maximum Euclidean norm
vertices of Γi.

Theorem 4: A function is positive (negative) on an
uncertain box Q if and only if there exists a set of
boxes Γ as described above, such that the vertex

( ) ( )( )minmax , ��
pn ff  of each Γi is above the 45° line

(all the vertices ( ) ( )( )maxmin , ��
pn ff  of each Γi are

below the 45° line). A function is neither positive nor
negative on an uncertainty box Q if and only if there
exists at least one of boxes Γi, where the function is
positive and one of boxes Γi, where the function is
negative.

4.2. Computational procedure

The computational procedure for testing stability of
Takagi-Sugeno fuzzy systems runs as follows:
1) Compute the characteristic polynomial of the

Takagi-Sugeno fuzzy system
2) Generate the sets I1, I2,…, Iu of indices of all

combination of rules which can be active
simultaneously

3) Set j=1
4) For the set Ij do following steps

a) Set hz = 0, where z ∈ Z = {1,2,…,m-1} – Ij

b) Re-compute the characteristic polynomial of
the Takagi-Sugeno fuzzy system

c) Set k=1
d) Compute k-th row of the Modified Jury

table
e) Test positivity of element bk,0 by Sign-

decomposition. If bk,0 is negative for some
h∈H, the procedure is terminated – the
Takagi-Sugeno fuzzy system is unstable,
else continue on step f)

f) If k = n, then j = j+1 and continue on step 5),
else k = k+1 and continue on step d)

5) If j=u, then the procedure is terminated – it is not
possible to decide about stability of the closed-
loop; else continue on step 4).

Commentary: If the positivity of all elements bk,0 ,
∀k=1,…,n is proved, it means, that all “switched“
linear systems are stable. If some rectangle is
negative, the Takagi-Sugeno fuzzy system is

unstable. In this case the value of h can be obtained,
where the rectangle is negative. This value represents
the combination of rules for which the system is
unstable.

Presented procedure can be used analogically for
stability analysis of continuous systems. In this case
the Modified Jury table is replaced by the Modified
Routh table and it is necessary to check positivity of
ci(h) for i = 0,…,n and bk,1(h) for k = 3,…,n+1. In
order to decrease the computional complexity it is
convenient to use the Routh criterion for stability
analysis of discrete systems using a linear fractional
transformation z =(s+1)/(s-1).

5. EXAMPLE

To illustrate the presented method following example
is considered. Define the Takagi-Sugeno fuzzy
system described by two rules:
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The controller stabilizing both the consequents of the
system was chosen:
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The sets of indices of simultaneously active rules are
I1={1}, I2={2} and I3={1,2}.

Due to (14) the characteristic polynomial of the
closed-loop is
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The stability of the closed-loop Takagi-Sugeno fuzzy
system for sets I1 and I2 is obvious from design. To
decide about stability of the Takagi-Sugeno fuzzy
system for the set I3 the method described above is
applied. The method indicates that the polynomial
p(z,h) is not Schur stable for h1∈[0.3,0.7]. It means



that the fuzzy system is not stabilized by the
controller.

6. CONCLUSION

An algorithm for stability testing of the Takagi-
Sugeno fuzzy systems with linear input-output
submodels was presented. It was shown that the
problem of stability analysis of this system can be
transformed to robust stability analysis of a
polynomial with polynomic structure of its
coefficients. A necessary condition of stability was
derived. Presented method is based on well-known
criteria used for stability analysis of linear systems
with constant coefficients – the Jury and the Routh
criterion.

The method can be modified for stability analysis of
the Takagi-Sugeno fuzzy systems with the state space
submodels.
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