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Abstract. The results of the present paper extend the nonlinear small-gain theorem to the
case of “local input-to-output practical stability”. The criterion which must be satisfied by
the gain functions can give results for a wide class of systems, since it can be applied to gain
functions that cannot be overbounded by any linear function in a neighborhood of zero.
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1. INTRODUCTION

Input-to-state stability (ISS), first introduced by
Sontag in [4], combines the idea of bounded input
bounded state stability (BIBS) together with decay of
states under zero input and provides a way of
expressing the dependence of the state of nonlinear
systems on the magnitude of the input.

The notion of nonlinear gains, introduced by ISS, was
the basis for the derivation in [2] and [6] of two
nonlinear small-gain theorems for feedback
interconnected systems. These small gain theorems
referred to ISS and some extensions of ISS, like
input-to-output practical stability (IOpS) ([2]), and
have been used for the derivation of stabilization and
robust control results ([1],[2],[6]). The sufficient
condition involved in these small gain theorems
requires that an appropriate composition of the gain
functions of the two subsystems must be smaller than
the identity function.

In [7], a small-gain theorem for locally ISS systems,
that involved a more relaxed condition, was
established. More specifically, the aforementioned
composition of the gain functions was now required
to be smaller than the identity function plus a
constant, thus resulting to the local input-to-state
practical stability for the interconnection. Hence, the
property of asymptotic stability under zero input is
lost. The results of [7] are extended in the present
paper for the case of local input-to-output practical

stability. Thus the small-gain theorem, introduced
here, can be applied to systems interconnected
through their output vectors. The advantage of the
proposed condition, like the corresponding of [7], is
that it can give results for a wider class of systems,
since it can be satisfied even by gain functions that
cannot be overbounded by any linear function in a
neighborhood of zero.

1.1 Notations and Facts
• x  denotes the usual Euclidean norm of the

vector x n∈ℜ .
• For any measurable function u n: ℜ → ℜ+ , u t0

denotes the ess-sup ( ){ }u t t t, ≥ 0  and u  denotes

the ess-sup ( ){ }u t t, ≥ 0 .

• For any measurable function u n: ℜ → ℜ+ , and
for any time 0 1≤ t , ut1  denotes the truncation
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• Let f g: , :ℜ → ℜ ℜ → ℜ+ + + + . Then,
( )( ):f g s! = f g s s( ( )), ∀ ≥ 0 .

• A function a: ℜ → ℜ+ +  is of class- K , if it is
continuous ( C0 ), vanishing at zero and strictly
increasing. By K∞  we denote the subclass of K



consisting of all functions a K∈  with ( )a s → +∞
as s → +∞ .

• A function β: ℜ × ℜ → ℜ+ + +  is of class- KL , if

for each fixed t ∈ℜ +  the function ( )β ⋅, t  is of

class- K  and for each fixed s ∈ℜ +  the function
( )β s,⋅  is decreasing and ( )lim ,

t
s t

→∞
=β 0 .

• Weak triangular inequality [2]: For any function
γ  of class- K , any ρ > 0 , a ≥ 0  and b ≥ 0  we
have:

 ( ) ( )γ γ ρ γ ρ( ) ( )( ) ( )a b a b+ ≤ + + + −1 1 1        (1)

2. STABILITY CONCEPTS

In the sequel, the concept of ( , )ε δ -input-to-output
practical stability ( ( , )ε δ -IOpS) is introduced. This
property constitutes a local version of the input-to-
output practical stability proposed in [2].

Definition 2.1. The system
( ) ( )" , , ,x f x u y h x u= =                     (2)

with x n∈ℜ , u m∈ℜ  and y k∈ℜ , is said to be
( , )ε δ -input-to-output practically stable, if there
exist a class- KL  function βy , a class- K  function

γ y , called the gain, a nonnegative constant d  and

strictly positive real numbers δ ε,  such that, for each
initial state x( )0 , with x( )0 ≤ δ , and for each

measurable input function u( )⋅ , with u ≤ ε , the
state x  and the output y  of the system exist for each
t ≥ 0  and the output satisfies the condition

( ) ( )y t x t u d ty y( ) ( ) , ,≤ + + ∀ ≥β γ0 0      (3)

When y x=  in (3), the system is called ( , )ε δ -input-
to-state practically stable ( ( , )ε δ -(ISpS)). Whenever
(3) holds with d = 0 , input-to-output practical
stability coincides with the concept of input-to-output
stability.

3. NONLINEAR SMALL-GAIN THEOREM

Consider, now, the interconnected systems
" ( , , ), ( , , )x f x y u y h x y u1 1 1 2 1 1 1 1 2 1= =       (4a)

" ( , , ), ( , , )x f x y u y h x y u2 2 2 1 2 2 2 2 1 2= =      (4b)

where x u yi
n

i
m

i
ki i i∈ℜ ∈ℜ ∈ℜ, ,  and f hi i, ,

i = 1 2,  are locally Lipschitz in their arguments, with
f i ( , , )0 0 0 0=  and hi ( , , )0 0 0 0= . In addition, there

exists a unique locally Lipschitz function h , such
that the output y y y= ( , )1 2  of the interconnection

(4) can be expressed in the form
y h x x u u= ( , , , )1 2 1 2 . The following small-gain

theorem is introduced:

Theorem 3.1  Suppose that the systems (4a) and (4b),
with inputs ( , )u y1 2  and ( , )u y2 1 , respectively, are
( , )ε δi i -ISS and ( , )ε δi i -IOS, i = 1 2,  in the
following sense: there exist strictly positive constants
ε ε δx x xi i i, # , , ε εy yi i, # ,δyi , i = 1 2,  such that for all

t ≥ 0
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Then, if there exist strictly positive constants λ τ,
and ω  and nonnegative constants d1  and d2 , such
that the conditions
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are satisfied, then there can be found δ ε,  such that
the system (4) with state ( )x x x= 1 2, , output
y y y= ( , )1 2  and input u u u= ( , )1 2  is ( , )ε δ -ISpS

and ( , )ε δ -IOpS. More specifically, let
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Then, for any pair of strictly positive constants ( , )ε δ
satisfying

{ }ε ε ε ε ε≤ min , , ,x x y y1 2 1 2               (14a)

φ δ ε δy yr l( ) ( )+ + < 1                     (14b)

φ δ ε δx xr n( ) ( )+ + < 2                    (14c)
and for each function a  of class- K∞ , there exist
functions β βy x,  of class- KL , a function γ x  of

class- K  and a positive constant #n , such that for each
initial state x( )0 , with x( )0 ≤ δ , and each

measurable input u , with u ≤ ε , the state x  and
the output y  of the system (4) exist for each t ≥ 0
and satisfy the conditions

( ) ( )x t x t u n tx x( ) ( ) , #,≤ + + ∀ ≥β γ0 0     (15a)

( ) ( )y t x t u l ty y( ) ( ) , ,≤ + + ∀ ≥β γ0 0      (15b)

with γ y ys r s a s( ) : ( ) ( )= + .

Proof: The proof follows with a few modifications of
some basic steps that have appeared in [2], [3], [5],
[6] and [7].

Setting y u y u2 1 1 2 0= = = =  in (5), it follows,
with the use of (9) and (10), that for all δ  for which
(14b,c) are satisfied, the condition

δ δ< 2                                 (16)
as well as the implication

x y( ) ( )0 0 1≤ ⇒ <δ δ                  (17)
are also satisfied. Since the functions f h ii i, , ,= 1 2  in
(4) are supposed to be locally Lipschitz, (16) and
(17) imply that for each initial condition ( )x 0 , with

( )x 0 ≤ δ , and any measurable function u , with

u ≤ ε , with ( , )ε δ  satisfying (14), there exists a
strictly positive number T , such that the interval

[ )0,T  is the maximum interval inside which the state
and the output of the system (4) are uniquely defined
and satisfy the conditions (see also [2], [6])

( ) ( ) [ )x t y t t T< < ∀ ∈δ δ2 1 0, , ,          (18)

Let γ γxi xi
y:= ,  γ γyi yi

y:= , ( )σ γxi xi
u

i
Tu:= ,

( )σ γyi yi
u

i
Tu:= , i = 1 2, . Then, from (5) and the

causality of the system (4), it is implied that
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From (19), it follows with the application of (1) and
(6) that
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Taking into account (9), (11), (13a) and the definition
of σ yi , it is directly implied by (20) that

( )( ) ( )y x r u lT
y y

T
1 1 1 10≤ + +φ           (21)

Working in a similar way, the following inequality is
deduced

( )( ) ( )y x r u lT
y y

T
2 2 2 20≤ + +φ          (22)

Combining (21) and (22) and taking into account (9),
(11), (13a) and (14b), it is concluded that, for all
( , )ε δ  satisfying (14), for all initial conditions
x( )0 ≤ δ  and input functions u ≤ ε , the following

holds:
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Using now (5a), (21) and (22), it is implied that
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Applying (1) it is proved that for all τ > 0
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Working similarly for x2 , choosing τ  in such a way
that (8) is satisfied and using the definitions of (10),
(12), (13b) and the condition (14c), it follows that
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x x r u n
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Conditions (23) and (26) imply that x T( ) < δ2  and

y T( ) < δ1 . Hence, there exists T1 0> , such that the
state and the output of the system (4) exist, are
uniquely defined and, in addition, x t( ) < δ2  and

y t( ) < δ1  for all t , such that  T t T T≤ < + 1 . Then,
it follows by contradiction that condition (18) is
satisfied with T  being infinite ([2], [6]).

The proof continues by showing first that the system
(4) has the following property ([6]):

Property I: For all δ ε,  that satisfy (14) and for all
strictly positive constants η  and m , if the
conditions

 x( )0 ≤ δ , u ≤ ε                      (27a)

and

{ }max ( ( ) ) ( ), ( ( ) ) ( )φ φy y x xx r u x r u m0 0+ + ≤

(27b)

are satisfied, then, there exists ~T > 0 , that depends
only on η  and m , such that

y t r u l t Ty( ) ( ) , ~≤ + + ∀ ≥η             (28)
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Combining (29) with (30), it is implied with the use
of (1), (6), (11) and (13a) that
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Choosing t1  in such a way that
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In a similar way, it can be inductively shown that for
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Choosing k1 ∈ ∗N  in such a way that
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condition (32) implies that, for ~T t k t1 1 1 02= + , the
following condition holds
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In a similar way, it can be shown that there exists
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From (33) and (34) it follows that (28) is satisfied for
~ max{~ , ~ }T T T= 1 2 . Hence, the proof of Property I has

been completed.

Using Property I and combining results of [3], [5]
and [6], condition (15b) can be proved. More
specifically, consider any function a  of class- K∞
and a function #a  of class- K∞ , such that
φy a s a s s( #( )) ( ),≤ ∀ ≥ 0 . Then (15b) is satisfied with
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Since (15b) is satisfied, condition  (15a) is proved
with the following steps ([4]). Using (5a), it follows
that for all initial conditions ( )x 0 ≤ δ , input

functions u ≤ ε  and for all t ≥ 0 , it holds that
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Using again (1), (5a) and (15b), it is shown that
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Substituting (37) in (38), it follows that for all
( )x 0 ≤ δ  and u ≤ ε , the following holds
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Following a similar procedure for the state variable
x2  it is proved that (15a) is satisfied for
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Remark 1: The sufficient condition involved in the
small-gain theorems established in [2] and [6], for the
case of local input-to-output stability, has the form
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,

Obviously, this condition coincides with (5), when
d d1 2 0= = . The form of the sufficient condition (5)
was first introduced in [7] for the case of local ISpS.
The presence of the constant d  at the right hand side
of (5) is responsible for loosing the asymptotic
stability property of the interconnection.
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