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Abstract. We consider multimedia ATM networks with time-varying traffics and
topologies.  To deal effectively with the time-varying environment, the deployment of
traffic and network performance monitoring techniques is necessary for the
identification of traffic changes, network failures, and also for the facilitation of protocol
adaptations and topological modifications. The objective of the paper is the design,
analysis and evaluation of mobile intelligent agents that implement effective
performance monitoring techniques, while capturing the dynamics inherent in the
multimedia environments. Towards this objective, a core sequential algorithm which
depicts the functionality and operations of the network performance monitoring
techniques is adopted. Specific forms of the algorithm are used for the identification of
networks failures. For a given network topology, the location of the minimum necessary
set of agents for complete network and traffic “visibility” is be specified via
identifiability methods.
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1. INTRODUCTION

Multimedia ATM networks are of high interest in this
information technology era, where efficient bandwidth
utilization is a key issue due to its limited availability.
These networks aim at the satisfaction of the Quality of
Service (QOS) of multimedia heterogeneous traffics
(e.g., image, audio, data, graphics, text), with
simultaneous high utilization of network resources and
bandwidths.  The performance demands imposed on
networks carrying multimedia connections are
challenging and can be satisfied via the deployment of
highly dynamic statistical multiplexing protocols
which honor the traffic QOS, while utilizing the
network resources efficiently.  While the successful
design of high-performance traffic multiplexing
protocols requires accurate modeling of traffic
statistical characteristics and QOS, variations in the

latter characteristics, topological network changes
(some due to mobility), and /or failures in the response
of network components affect directly, and frequently
dramatically, their performance characteristics.  It is
thus crucial that traffic and network performance
monitoring techniques be deployed, first for the
identification of traffic changes and network failures,
and then for the subsequent adaptation of the protocol
operations, the pertinent recovery of failures, and the
appropriate reconfiguration of network topologies.The
main theme of this paper is the active  performance
monitoring of multimedia ATM, via the deployment of
intelligent agents.  These agents are active
computational threads which employ statistically sound
monitoring algorithms and are placed at key network
locations, to acurately and efficienlty track the
dynamics of the system. These  locations change as the



network topology does; thus, the agents are mobile,
where mobility is a function of time-varying network
topologies.

2. FUNDAMENTAL TRAFFIC AND
NETWORK PERFORMANCE
CHARACTERIZATIONS AND MODELINGS
— A CORE MONITORING ALGORITHM

In multimedia network environments, various
traffic classes are present (i.e., voice, image,
high-speed data, etc.) and the statistical
characteristics per class are time-varying. It is
desired that traffics and network performance
metrics be continuously monitored to identify,
timely and accurately, changes in their statistical
characteristics, for subsequent adaptation of
network operations and protocols, for
identification of network failures, and for possible
topological reconfigurations as well.  The
development of statistically sound monitoring
techniques requires that first the traffics and
network performance metrics be effectively
modeled, so that the models capture their
statistical variations.  We model them as sets of
distinct and well-known stochastic processes
(e.g., Poisson with known rates, geometric with
known parameters, etc.).  For example, for the k-
th traffic class we consider the general scenario
where the various possible arrival processes that
characterize the traffic may be represented by the

set { }µ i i
(k)

m1≤ ≤  where µ i
(k) depicts a well-known

process, such as a Poisson process with known
fixed rate, and where all processes in the set are
distinct (e.g., all Poisson with different and
distinct rates); it is assumed that the set

{ }µ i i
(k)

m1≤ ≤  has been obtained via thorough

traffic characterization/learning methods (see ref.
[5]).  The objective of monitoring the k-th traffic
class is then to identify, timely and accurately,

shifts from some process µ j
(k)  in the set to any

other process in the same set.  Below, we present
a core monitoring algorithm that operates on
models represented by sets of distinct stochastic
processes (see ref. [1, 3]).

2.1 Core Monitoring Algorithm
We first represent an initial restricted form of the
algorithm and then a reinitialization extension.
Both the initial restricted form and the
reinitialization extension operate on observed
data sequences x x xn1 2, ,... , ,...  that are generated

by the acting processes (e.g., in the case of
processes representing traffics, the xi’s may be
numbers of arrivals within consecutive fixed-
length time intervals).  Below, we use the
abbreviated form xn

1 , for the sequence x xn1,..., .

Initial Restricted Algorithm
The restricted algorithm addresses the following
problem. Let the process which initially generates
the data sequence be the process µ 0.  Let it be
possible that a shift to any one of m-1
independent processes µ i ; i=1, ..., m-1 may occur
at any point in time, where if a µ 0 → µ i shift
occurs, then the process µ i remains active
thereafter.  The objective is to detect the
occurrence of a µ 0 → µ i shift as accurately and as
timely as possible, including the detection of the
process µ i which µ 0 changed to.  Let us denote by
f i ; i=0, 1, ..., m-1 density or probability functions
induced by the processes µ i ; i=0, 1, ..., m-1.
Then, for the present problem, we propose the
following algorithm.

Algorithm
(a)  Select a threshold δ 0  > 0.
(b)  Have m-1 parallel algorithms operating.  The
ith algorithm;  i =1, ..., m-1  is monitoring a

µ 0 → µ i shift. T (x  )n
0i

1
n  denotes the operating

value of the ith algorithm at time n, given the
observation sequence.  The operating value

T (x  )n
0i

1
n  is updated as follows.
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TThe algorithmic system stops the first time n
when either one of the m-1 parallel algorithms
crosses the common threshold δ 0.  If the ith
algorithm is the one that first crosses the
threshold, then it is declared that a µ 0 → µ I shift
has occurred.  �
The algorithm described above is clearly
sequential and thus computationally simple and
efficient.  Its fundamental performance
characteristics can be found in reference [3].

Reinitialization Extension
Let us consider a generalization of the above
problem as follows.  At any point in time, let the
data be generated by one of m mutually
independent and parametrically defined stochastic
processes {µ i ; i = 0, 1, ..., m-1}.  At any point in
time, the acting process may shift to either one of



the remaining processes, in an equally probable
fashion.  The objective is to detect such shifts as
accurately and as timely as possible. The present
problem is a reoccurrence generalization of the
problem in the initial restricted algorithm.  For its
solution, we propose a reinitialization extension
of the latter algorithm, described below.

Reinitializing Algorithm
With each process µ i, we associate a positive
threshold value δ i. Let it be known that at time
zero the process µ 0 is acting.  Then, at time zero,
the core algorithm is deployed, with operating
common threshold δ 0.  Let T1 denote the time
instant when the above algorithm stops, and let a
µ µ0  → i 1

shift be decided at T1.  Then, at T1, the

µ µ0  → i 1
decision is accepted and the core

algorithm is deployed again, with a common
operating threshold δi 1

, to monitor a shiftfrom

the process µi 1
 to either one of the remaining

processes.  The common operating threshold δi 1

is associated with the starting process µi 1
. In

general, let {Tl}l ≥ 0 denote the sequence of
decision/reinitialization time instants induced by
the algorithm, with T0 0∆ .  Then, at Tl  it is

decided that the process µ i l
 starts acting, and the

extended algorithm with a common operating
threshold δ i l

 is immediately deployed, to

monitor a change from µ i l
 to either one of the

remaining processes.  Within the time interval
[ , )T Tl l+1 , it is decided that the process µ i l

 is

continuously acting.

3. MONITORED METRICS – SOME
GENERAL CONCEPTS

The metrics to be monitored in the ATM
environment are determined by the objectives.
The global objectives are traffic and network
management.

3.1. Traffic Management — Monitoring
Metrics
Traffic management refers to the development of
effective signaling and transmission algorithms
and protocols that, in conjunction with dynamic
capacity allocation techniques, satisfy the various
Quality of Service (QOS) characteristics of the
time-varying multimedia heterogeneous traffics.
The dynamic capacity allocation techniques are
assisted by Traffic Monitoring Algorithms

(TMA), such as those in Section II, which track
effectively changes in the statistical
characteristics of the traffics (such as rates).  The
various characteristics of both the external and
the intranetwork traffics are modeled as sets of
distinct stochastic processes and the monitored
metrics are the corresponding traffic arrivals (see
ref. [2, 4]).

3.2. Network Management — Functions and
Monitored Metrics
Network management is a crucial issue, which
has not been comprehensively addressed.  It
should be clear, however, that the key
components of effective network management are
performance monitoring, identification of
network failures, and topological network
reconfigurations assisted by traffic monitoring
techniques.  We proceed with the concretion of
these concepts.

Performance Monitoring
Performance monitoring is the indispensable
component in network management.  The term is
meaningful only if, at first, the important network
performance metrics are identified, and then,
statistically reliable algorithms are deployed for
the continuous monitoring of these metrics.  The
key network performance metrics are: delays,
traffic rejection rates, wasted network resource
rates, and satisfaction of the various other (e.g.,
jittering, bit error rates, etc.) traffic QOS.  Under
normal network operational conditions (low error
channels, fast ATM switches, etc.), the “other”
traffic QOS are observed if comprehensively
designed dynamic signaling and transmission
multiplexing protocols are deployed, assisted by a
TMA.  In the latter case, the remaining key
network performance metrics are delays (D),
rejection rates per traffic message (MRR), and
wasted capacity rates (WCR).  Given normal
network operational conditions, given
comprehensively designed protocols for signaling
and transmission, the D, MRR, and WCR metrics
take predictable (via analysis and numerical
evaluations) values for given statistical
descriptions of the various network traffics (see
[2, 8]).  Thus, the reasons for the monitoring of
the D, MRR, and WCR metrics are either to
identify changes in traffic characterizations for
normal operational network conditions, or, in
conjunction with traffic monitoring, to identify
failures in network components and functions.

Given the statistical descriptions of the various
network traffics, given comprehensively designed



and fully analyzed and evaluated protocols for
signaling and transmission, complete statistical
characterizations of the D, MRR, and WCR
network performance metrics are feasible (see [2,
8]).  Thus, the monitoring of these metrics can be
implemented by sequential algorithms as those in
Section II. Consider, for example, one of the three
metrics (D, MRR, or WCR) and complete
statistical descriptions of the network traffics
(provided by a priori traffic analyses in
conjunction with decisions induced by the traffic
monitoring protocol).  Given the statistical
descriptions of the network traffics, the
distribution of the metric under normal
operational conditions of the network is known
(obtained via a priori performance analysis of the
deployed signaling and transmission protocols).
In addition, a set of “abnormal” distributions of
the metric may be characterized then, each
representing a distinct “abnormal” network state.

A performance monitoring system for the metrics
may then include sequential algorithms as those
in Section 2 to detect shifts from the distribution
of the metric under normal operational conditions
of the network to any of the “abnormal”
distributions (each being associated with a
specific “abnormal” network state).

Identification of Failures
Consider the simultaneous deployment of specific
and comprehensively designed signaling and
transmission protocols; together with their full
evaluation and subsequent performance figures
and tables, of traffic monitoring protocols as those
in Section II, and of the-similar to the latter-
monitoring protocols of the D, MRR, and the
WCR network performance metrics.  The
decisions performed by the traffic monitoring
system dictate the distributions of the D, MRR,
and WCR metrics both under normal and
“abnormal” operational network conditions.
These distributions mat then be used by the — as
that in Section II — sequential algorithmic
system to detect shifts from normal to “abnormal”
or failing states of network components.  For
example, if the traffic monitoring and the
performance monitoring operations are performed
at the origin versus the destination ends of a
unidirectional network channel, failures at the
channel/fiber level may be so detected.

3.3. Distributed Intelligent Agents and
Algorithmic Performance Characteristics
The traffic and network performance monitoring
operations are performed by intelligent agents

that are generally located at key nodes of the
backbone network and execute distributed
functions.  Each agent monitors a subset of
network elements (nodes, channels, etc.).  The
performance monitoring characteristics of the
monitoring algorithms , as executed by the
distributed agents, affect the overall system
performance and the induced tradeoffs.

4.  ACTIVE MONITORING OF TRAFFIC
REJECTION RATES FOR FAILURE
RECOGNITION

The performance of the network, as perceived by
the users, is measured by the “success” of
message transmission attempts, where “success”
means satisfaction of all the imposed QOS as well
as good delay characteristics, and where “failure”
is synonymous to rejection.  Thus, from the point
of view of the network users, the identification of
a transmission attempt as successful or non-
successful is based on the overall origin-to-
destination performance, where origins and
destinations are local base stations or nodes.  We
note that local base stations are where traffics are
both generated and disseminated.

4.1. A Single Channel Approach
Consider a single network channel and a single
traffic class. Let all multiplexing hybrid protocols
be designed and well studied (as for example in
[2, 4]), and let all their dynamics and
performance metrics be well known. Let then p
denote the message rejection rate attained by the
system for the traffic class at hand, under
“normal” channel conditions . We note that the
multiplexing protocols deployed by the system are
designed to satisfy the QOS of the traffic ( see ref.
[2, 4]); thus, the rejection rate p lies within the
tolerance region, as dictated by the traffic class.
Let q (where q > p) be the value of the traffic
rejection rate designated as “alarming” regarding
a shift of the channel conditions from “normal”
to “abnormal”. Then, it is desirable that a possible
p → q shift in the traffic rejection rate be
continuously monitored.

To deploy a high performance p → q shift
detection algorithm, models of the stochastic
processes that generate message  rejections are
needed. A worst case model which also reflects
reality under some network conditions is the
Bernoulli model. The Bernoulli model is a worst
case model because it leads to worst performance
for a whole class of algorithms, including the core
algorithm in Section II.



Drawing from the above discussion, let the
messages generated by the traffic class be indexed
by the natural numbers {i; 1 ≤ i }. Let then x i be
equal to 1 ; if the ith message is rejected in its
transmission (failing some of its QOS) through
the channel, and let x i be equal to 0; otherwise.
Let the sequence{x i} be a Bernoulli process with
Pr (x i  = 1 ) = p; under “normal” channel
conditions, and with Pr (x i  = 1 ) = q; under
“abnormal” channel conditions. We deploy the
core algorithm in Section II, to monitor a possible
shift from the Bernoulli parameter p to the
Bernoulli parameter q. Some straight forward
algebraic manipulations lead to the following
simplified form of the algorithm, where V ( n )
denotes the operational value of the algorithm at
time n.

Algorithm
The algorithm deploys a threshold δ > 0. It
decides p → q shift has occurred the first time n
such that V(n) ≥ δ .The operational values of the
algorithm are updated as follows:

V(0) ≡ 0

V(n+1) = max  ( 0 , V(n) +  [  x n + 1 - ζ  ( p , q ) ]
) 
where,

p < ζ  ( p , q ) ≡  
p

q

pq

qp
log

)1(

)1(
log
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The threshold δ is selected as a tradeoff between
the probability of  correct decision and the
probability of false alarm. As the Kullback
information number,  I (p,q) ≡ p log (p/q) + (1-p)
log ( (1-p) / (1-q)), increases, high probability of
correct decisions and low probability of false
alarms can be simultaneously attained.

4.2. Minimal Set of Monitoring Agents for
Given Network Topology
Data measurements taken solely at the local base
stations suffice to identify and monitor overall
network traffic rates and network performance
metrics. The questions to be addressed at this
point are: Can end-to-end (local base station-to-
local base station) data alone be used to
effectively locate faulty network lines anywhere in
the network?  If yes, how; and if not, what kind of
additional information is necessary and from
where in the network should it be collected?   The

answers to these questions will provide the
cardinality of the minimal set of intelligent agents
and their localities. To explore the above
questions, a mathematical maximum likelihood
statistical approach may be applied to a fixed
network topology model: a network with fixed
nodes and connectivity, with point-to-point loads,
and with fixed routing probabilistic structure.
This approach allows sufficient conditions for the
identifiability (estimation) of a fixed set of per
link failure probabilities to be developed.  These
conditions depend only on the routing
probabilities for the point-to-point traffic, and
indicate that, while link failure probabilities for
wireless networks cannot in general be completely
determined from end-to-end observations,
ambiguities can be resolved by the addition of
observations on a minimal number of selected
links from tandems (central processing nodes).
The maximum likelihood approach also indicates
the appropriate extension of the core algorithm in
Section 2, when applied to detect shifts in per link
call (communication attempt) failure probabilities
for a large-scale wireless network.  The extension
uses the basic simplified assumption that the
network routing structure is known and remains
unchanged. This assumption may reflect average
load network conditions (no large load
fluctuations present), and may be closer to
realistic when limited network portions are
considered.

A Sample of the Maximum Likelihood Approach
Here, we give a sample of the maximum
likelihood approach.  Consider a given portion of
the whole network, involving a number of local
base stations that are connected with each other
through a number of links and tandems.  We use
the term call from now on for communication
request.
Denote:
(kl):  ordered end-to end communication, i.e., call

originating at end k and addressing end l.
i; l ≤ i ≤ M:  link index, where M is the overall

number of links in the network portion
considered.

rk l:  the relative load associated with pair (kl) over
the network portion considered.
Alternatively, probability that a random
communication attempt made somewhere in
the network portion is a (kl) attempt.  Then,
Σk lrk l=1, where the summation is over all
communicating network end pairs.

qi, (kl):  probability that a (kl) call uses the link
indexed by i.  This is a routing probability.



vi:  failure rate of the link indexed by i.  This is
the probability that a call going through the
link indexed by i fails.

pi:  the probability that a call attempt made
somewhere in the network portion
considered fails due to the link indexed by i.

po:  the probability that one random call generated
somewhere in the network does not fail.

f(kl)(x):  the probability that a random call attempt
is generated on the network, it is a (kl)
attempt, and an outcome x is observed.
When this outcome is a failure or success,
and these two concepts are disjointly
defined, then

x =




1,    if attempt fails

0,    if attempt succeeds.

We will assume that both the relative loads and
the routing probabilities remain unchanged and
they are well-known.

Under these assumptions, each end-to-end pair
(kl) in the network portion considered generates a
constraint fraction rk l representing the relative
call load generated from (kl) the way an outside
observer sees it.  The outside observer sees, in
addition, the outcome (communication success or
failure) of every communication attempt in the
network, while the individual users see only the
outcomes of their own attempts.

The outside observer evaluates the overall
performance of the network portion considered
through the appropriate processing of the
observed dispositions of end-to-end call attempts;
the observations may be made either by the
assumed outside observer, or they may be reported
by the individual users.

Let us now make the following important
assumption: A call failure is caused by just one
link and the call continues being routed (or
flowing) after a failure.  This assumption
excludes the possibility of a call being actually
stopped at the link where the failure occurs.

Under our assumption, the contribution of link i
to communication failures in the network is
represented by the number pi, i.e., pi represents
the probability that link i fails a random call on
the network.  Obviously, we have then:

pi
i

M
=

=
∑ 1

0

We will show now that the probabilities pi can
also represent the point-to-point performance of

the network, i.e., performance as seen by the
network users.

Using binary classification of the successful and
unsuccessful call attempts, we obviously have:
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where in Σm ρrm ρqi,(m ρ), the summation is overall
the communicating (mρ) pairs in the network
portion considered.
Generalizing we easily see that:
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From the above expression, one observes that the
influence of link i to the point-to-point
performance between nodes k and l is represented
by the expression:

v q p
q

r qi i kl i
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m i m
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=
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Summing over all the links gives the total point-
to-point failure rate for pair kl. Also, it is clear
that there is a direct relationship between the pi

and the corresponding link failure rate vi.
Let us now consider that the outside observer has
collected a fixed number of observations for the
network portion considered, and he is given the
pair index (kl) for each of them and the outcome
of each attempt (success or failure).  Then, an ML
estimation algorithm to estimate the pi’s
assuming the rk l’s, qi,(k l)’s known, requires the
maximum likelihood function:
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The ML optimal p  value is found when the

gradient of f p( )  is set equal to zero, where the

identifiability of p  is determined via the second

gradient matrix of f p( ) .  In particular, p  is ML

identifiable if and only if the latter matrix is
strictly negative definite.  Alternatively, the
maximum set of identifiable links is determined
by the maximum set of linearly independent

routing vectors [ ]q qi kl i kl m,(( ) ) ,(( ) ),..., ,...
1

.  The

latter set is generally not unique and determines
the links that are “visible” via the end-to-end
measurements, where the remaining links should
be monitored via direct (end-to-end per link)
observations.

5. CONCLUSIONS

We presented an approach towards the design of
mobile intelligent agents for network performance
monitoring of multimedia ATM networks. Our
approach is based on a core algorithm that
monitors key network performance metrics to
subsequently perform diagnoses on the network
service conditions and to dictate appropriate
actions. We also presented an mathematical
approach for the selection of an “optimal”
minimal set of agents and their localities.
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