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Abstract. This paper introduces a Reference System based Model Predictive Con-
troller to the nonlinear transition control problem. The proposed control strategy
is based on an online model reference evaluation, called reference system, using a
factorization of a locally linearized version of the nonlinear model. The output feed-
back problem is addressed using an lp norm as a performance control measurement.
The online implementation of the algorithm requires only the solution of an LP or
QP problem. By evaluating locally the achievable closed-loop performance, the RS-
MPC e�ects the transition between steady states with enhanced performance over a
wide operating region without the necessary retuning of standard MPC algorithms.
A chemical reactor example is presented to illustrate the control application.
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1. INTRODUCTION

It is undoubtedly known that nonlinearities play an
important role in chemical processes. The inherent
nonlinearity of processes, the operational require-
ments to satisfy constraints, and desire to cover
a broader range of operating conditions are essen-
tial requirements for most of the Model Predictive
Control (MPC) online applications. Therefore, an
important practical bene�t expected from MPC al-
gorithms is the ability to e�ectively control the pro-
cess over a wide range of operating conditions with
uniform performance and without retuning. This is
a very desired controller feature and probably more
signi�cant than the desire to provide a better closed-
loop performance at a single operating point.

With the above motivation in mind, the issue of
achieving uniform closed-loop performance at dif-
ferent operating points becomes one of critical im-
portance. Otherwise the controller will need to be
retuned on-line every time the process changes its
operating steady state. The need to intermittently
tune a large-scale MPC, is neither an easy task for
the expert nor is it a desirable chore from the plant
operator's point of view. Consequently, there is a
substantial desire for MPC formulations and algo-

rithms that inherently provide such uniform closed-
loop characteristics without controller retuning.

This problem has been addressed earlier in the
literature by incorporating the desired closed-loop
behavior and/or the controller performance require-
ments at the level of the controller design. This
controller class is known in the literature for a
long time and it is referred to as model matching
control [17], model-following control, model track-
ing control, and direct adaptive control [7]. The
same idea was also implemented by the reference
system approach, which with some small di�er-
ences, is called in the literature as Reference Syn-
thesis System (RSS) [1], Globally Linearized Control
(GLC) [9], or Generic Model Control (GMC) [10].
All these three approaches were conceptually de-
veloped to handle nonlinear systems outside of the
predictive framework. More recently, the GLC algo-
rithm was also extended to a MAC formulation [15].
This paper addresses the transition problem in a
predictive control framework.

The idea of a designed closed-loop behavior in MPC
has been implemented in a variety of ways through
the use of reference trajectory control strategies:
the Model Algorithm Control (MAC), which uses
an adjustable and �xed �rst order reference model
as a tracking trajectory, the Generalized Predictive
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Control (GPC) based on a performance model [2],
which implements a pole placement design objective
rather than a performance optimization objective,
the GMC-MPC [3], which introduced the GMC
speci�cation curves with a formulation of positive
and negative slack variables in the deviation of the
process model from a Proportional-Integral (PI) ref-
erence trajectory, and more recently, the RSS ex-
tension to the Reference System Model Predictive
Control (RS-MPC) [6], which also uses a PI refer-
ence trajectory formulation.

One of the main justi�cation in formulating the
MPC control problem as an RS-MPC problem is the
ability to control highly nonlinear systems in a wider
range of operating conditions without the retuning
for performance guarantee. The choice of formulat-
ing the control problem in the move suppression or
the reference model framework has practical impli-
cations. The move suppression formulation of MPC
is a natural extension of the LQR/LQG framework.
However, for nonlinear systems, the degree of neces-
sary move suppression changes from one operating
point to another. A simple example of the necessity
to vary the move suppression can be given in a tran-
sition control problem, when the process operating
condition goes from a minimum-phase (MP) local
dynamics, to a nonminimum-phase (NMP) local dy-
namics. The same is true in the reversed transition.
Such a problem is usually addressed by using a
conservative controller tuning. This implies that the
controller performance will be conservative in the
overall transition region.

This paper o�ers an extension of the ideas presented
above for predictive controllers by introducing to
the control design a set o requirements, which will
set the desired closed-loop behavior to the achiev-
able performance. The main characteristic of this
approach is the fact that the controller design explic-
itly uses information about the structural dynamic
limitations of the process, consequently it does not
force the controller to requirements that are known
to be a limiting factor of its performance. Addition-
ally, during transitions the algorithm does not use
a �xed reference trajectory. The reference trajectory
is generated on-line based on the local limits of plant
invertibility. By taking into consideration the closed-
loop limitations, the RS-MPC algorithm directly
aims for an achievable behavior and does not need an
explicit move suppression in the performance index.

In this paper, the proposed RS-MPC is presented
addressing a nonlinear transition control problem
using a local model representation at every single
state space location. Output feedback is performed
using classical �ltering theory. The incorporation
of the stability constraint ensures that nominal
stability is always guaranteed. The analysis herein
uses local arguments, the extension to a complete
nonlinear description follows similar ideas and it will
be reported elsewhere.

2. PRELIMINARIES

Consider a discrete-time representation of a contin-
uous process given by the following model:

x̂p(k + 1) = f [x̂p(k); û(k)]

ŷp(k) = h[x̂p(k)]
(1)

where x̂p(k) 2 R
np is the state vector, û(k) 2 Rnu

is the input vector, and ŷ(k) 2 R
ny is the plant

output vector. In this paper we consider square
control systems, i. e., ny = nu. The origin is an
equilibrium point and the system is constraint by
x̂p(k) 2 X; û(k) 2 U, and ŷ(k) 2 Y for all instant k.
Where X;U and Y contain the origin as an interior
point and are also compact sets of Rnp ;Rnu , and
R
ny , respectively. Models of the form of equation (1)

can be obtained from discretization of state-space
continuous-time models.

Let the control law be û = g(x̂p), with g(0) = 0.
The closed-loop system that uses this control can be
represented by:

x̂p(k + 1) = f [x̂p(k);g(x̂p(k))] = T[x̂p(k)]

ŷp(k) = h[x̂p(k)]
(2)

The control û = g[x̂p(k)] is called stabilizing if the
origin of (2) is an asymptotically stable equilibrium
point. The most usual way to stabilize a system is
by using a control law based on a local linearization
of the system. In this paper, when not indicated
otherwise, a stable, minimal order, discrete-time,
linear local representation �p(xp;j ;uj) will be used
as follows:�
xp;j(k + 1)
yp;j(k)

�
=

�
Ap;j Bp;j

Cp;j 0

� �
xp;j(k)
uj(k)

�
(3)

Here the index j indicates the current conditions
of the local model, and xp;j(k) 2 R

np is the plant
model state vector at j, uj(k) 2 R

nu is the ma-
nipulated input at j, ypj (k) 2 R

ny is the plant
model output vector at j, which relates to the out-
put performance of the system to be controlled.
The local model will be referred as �p;j(xp;j ;uj) :
(Ap;j ;Bp;j ;Cp;j) or, more compactly, �p;j , with a
transfer function matrix representation given by
Gp;j(z). It is assumed to have a relative degree

(order) vector with elements given by r
j

i
, where i

refers to the ith output. The following de�nitions
are also necessary in the subsequent development.

De�nition 2.1. The transmission zeros of the system
(3), referred in this paper as zeros of the system,
arise when competing internal e�ects are such as to
make the output to be zero even when the inputs
to the system are not zero. The zeros are de�ned as
a set of complex numbers �, satisfying rank(Pj) <
np + ny, where:

Pj �

�
�I�Ap;j �Bp;j

�Cp;j 0

�
(4)

Let �j be a transmission zero of (3), and

�
�T !T

� � �jI�Ap;j �Bp;j

�Cp;j 0

�
= 0 (5)

where � is the left state zero direction and ! is the
output zero direction normalized so that !H! = 1.
The system (3) is said to be nonminimum phase
(NMP) if at least one of its transmission zeros is



outside the closed unit disk in the complex plane.
Note that in this paper we call a minimum phase
system (MP) if it has no �nite zeros outside of the
unit circle.

Consider Nz NMP zeros �1; : : : ; �Nz
(including

multiplicities) of �p;j . One can factorize the sys-
tem model at each condition j as Gp;j(z) =
Gc;j(z)GM;j(z), where Gc;j(z) is inner

1 , with the
same NMP zeros of Gp;j(z). The collection of all
NMP zeros of a system into a stable all-pass factor
using the Blaschke products can be performed as
follows: Factor out the NMP zeros of (3) at j, one
at a time [19]:

Gp;j(z) = G
(1)
c;j
(z)G

(1)

M;j
(z);

G
(1)

M;j
(z) = G

(2)
c;j
(z)G

(2)

M;j
(z);

� � � � � � � � �

G
(Nz�1)

M;j
(z) = G

(Nz)

c;j
(z)G

(Nz)

M;j
(z)

(6)

where G
(i)

M;j
(z) � C

(i)

M;j
(zI � Ap;j)

�1Bp;j ;C
(0)

M;j
�

Cp;j , i = 1; : : : ; Nz, and

G(i)
c

= I�

�
�i ��i � 1

�i + 1

��
z + 1

��iz � 1

�
��i�

T

i

C
(i)

M
= C

(i�1)

M
�

�
�i ��i � 1

��i + 1

�
��i�

T

i
(Ap + I)

(7)

where �i and �i are the left state zero direction and
the output zero direction of zero �i usingC

i�1
M

in the
output direction problem, equation (5). The index

j was omitted from G
(i)
c;j

and C
(i)

M;j
for brevity. By

using this all-pass factorization, one can express the
system �p;j : Gp;j(z) as Gp;j(z) = Gc;j(z)CM;j(zI�

Ap;j)
�1Bp;j , and Gc;j =

Q
Nz

i=1G
(i)

c;j
(z).

For a more general description, the local factoriza-
tion can be performed by a generic inner-outer fac-
torization algorithm. A recursive zeros dislocation
technique, applicable to both proper and strictly
proper systems [18] can be used. Another possibility
for the factorization problem is the use of the gen-
eralized interactor matrix factorization [16]. If the
given system �p;j has zeros on the unit circle, we
assume that these zeros are included in the outer
factor �M;j .

With each component yi one can associate a delay
order ri called relative order of the system with
respect to the control u. The relative order ri [11] is
the smallest number of sampling periods after which
a manipulated input move u(k) a�ects the output
yi. If ri =1, this implies that yi is not controllable.
Therefore, it is necessary that all outputs y possess
�nite relative order.

Remark 2.1. : The exact sampled-data representa-
tion of a dead-time-free, continuous-time system
with �nite relative orders always has relative order
equal to 1, ri = 1; i = 1; :::; ny [13]. In addition,

1 Gc;j(z) is inner if it is stable and Gs
c;j
Gc;j = I, where

Gs
c;j

(z) � GT

c;j
(1=z).

each �nite relative order ri; i = 1; :::; ny, satis�es the
inequality ri � np [8].

It is of interest to use such information locally,
during the design of an appropriate reference sys-
tem. Consider a square linear system represented by
�p;j , the relative degree of the system with respect
to each output is the smallest integer ri such as
ciA

ri�1
p;j

Bp;j 6= [0; � � � ;0], where ci is the ith row
of matrix Cp;j . This de�nition is in complete agree-
ment with the notion of relative order usually used,
i.e., for a given discrete SISO system, the relative

order of the linear system is the di�erence between
the order of the denominator and the order of the
numerator.

3. MAIN RESULTS

The RS-MPC is a control methodology in which a
control move is calculated such as the controlled
outputs coincide with the output of a system with
characteristics designed as to satisfy certain perfor-
mance speci�cations (the reference model). A refer-
ence model in simple terms is a model that speci�es
the desired performance of the control system.

Consider a continuous process represented by a dis-
crete model given by Equations 1. For simplicity of
notation, in the remaining of the paper the index j,
representing the local conditions, will be only used
when its absence would make the formulation dubi-
ous. Consider a local representation of the process
model given by �p = �c�M . The MPC problem
will be formulated using the minimum-phase stable
model given by �M (xM ;u) : (AM ;BM ;CM ), the
invertible part of the process. Because model-based
controllers may present robustness problems, the
selection of a reference model will indirectly address
that issue. A slower reference system will enhance
the robustness of the closed-loop.

Augmenting the plant model for the achievable be-
havior with the reference system model �r(xr;ur) :
(Ar;Br;Cr), such as x = [xT

M
xT
r
]T , gives the

following system �a:�
x(k + 1) = Ax(k) +Bu(k) +Gur(k)

e(k) = Fx(k)
(8)

where xr(k) 2 R
nr is the state vector of the reference

model, ur(k) 2 R
mr is the input of the reference

model, yr(k) 2 R
q is the reference model output,

x(k) 2 R
n ;u(k) 2 R

m ; e(k) 2 R
q ; n = nM + nr,

F = [CM �Cr ], and

A =

�
AM 0
0 Ar

�
; B =

�
BM

0

�
; G =

�
0
Br

�
(9)

If ur(k) is equaled to the desired setpoint trajectory
of the closed-loop system, then yr(k) describes the
desired performance of the system output in the
closed-loop. The goal in the RS-MPC design is to

calculate the set of control movesUHc

k
over a control

horizon Hc, such that one minimizes a norm of
the output deviation e(i); i = fk; k + 1; : : : k +Hpg,
over a prediction horizon Hp. Here e(i) is the di�er-
ence between yM (i), the estimated output of process
�M , and the desired one, yr(i).



Consider an objective function that minimizes the
sum of distances between the predicted output er-
ror and the desired behavior given by the ref-
erence system. This distance can be represented
by d(�r;�r; H). A generic objective function de-
�ned for a prediction horizon Hp � maxi(rMi

)
and control horizon Hc (Hp � Hc) would be
given by min�p

fd(�M ;�r; Hp; Hc)g, subject to nec-
essary models description and appropriate input-
output constraints. Consider that the set of in-

puts de�ning the controller �p is given by UHc

k
,�

ukjk;uk+1jk; : : : ;uk+Hc�1jk

	
. The RS-MPC can

then be de�ned as follows:

De�nition 3.1. The Reference System Model Pre-
dictive Controller is de�ned to be the one in
which the control move u(k), at sample time k, is
given by the �rst element u(kjk) of fu(kjk);u(k +
1jk); : : : ;u(k +Hc � 1jk)g, which is the solution of
min� d(�a; Hp; Hc), subject to y(ijk) 2 Y, and the
input constraints u(ijk) 2 U; i = k; k + 1; : : : ; k +
Hc�1, where U de�nes a compact polyhedral region
given by:

U = u(k) 2 Rnu :

8<
:
umin � u(k) � umax

j�ui(k)j � �ui;max

i = 1; : : : ; nu

(10)

and satisfying the following assumptions for all local
models �p and �p:
� �p and �r are asymptotically stable and given by
minimal state space realizations. Additionally, �M

and �r have �nite and equal relative orders, with
local characteristic matrices CM and Cr nonsingular
and 1 > Hp � maxi(rMi

) > 0. The matrices C are
de�ned using (AM ;BM ;CM ) and (Ar ;Br;Cr) as

C =
�
(c1A

r1�1B)T � � � (cnyA
rny�1B)T

�T
.

� Assume that there exists a triplet (xs;us;urs) 2
R
nm+nr+m+mr such that the set:
4f �

�
Fxs = 0;xs = (I�A)�1 [Bus +Gurs]

	
has

a nonempty interior.

� Assume that there exists UHc

k
2 RHcnm such that:

Fxk+Hpjk
= 0, and limk!1 (ŷp � yp) < Æ <1.

Here the subscript s refers to the locally predicted
steady-state value. The assumptions above guaran-
tee that at the length of the prediction horizon Hp,
the �M outputs match the reference model ones.

For controller enhancement, instead of the last as-
sumption above, several other types of stability con-
straint can be used, refer to [4,5,14], and references
therein for alternative stability constraint formula-
tion and stability proofs.

A p-norm, indicated by k�kp, is a convenient measure
for RS-MPC cost formulation. In this paper, the
l1 and l2 norms (p=1 and p=2) will be used to
formulate the correspondent RS-MPC, called as
RS1-MPC and RS2-MPC, respectively.

The key issue of output model matching is whether
a perfect match of two given systems is possible or
not. Therefore, it is of fundamental importance that
the formulation of the model predictive following
problem assures that the controller is feasible at
all times. Therefore, given the fact that it may not
be feasible to follow exactly the reference system

trajectory, one has to formulate the optimization
problem as to minimize the mismatch between the
desired behavior and the possible behavior, due to
disturbances or input and output constraints.

3.1 RS1-MPC Algorithm

The local RS1-MPC problem can be written as

J(Hp; Hc; k) = min
�1

HpX
i=0

�1(k; i) (11)

�1(k; i) = wT

+(i)�
+(k + ijk) +wT

�
(i)��(k + ijk)

�+(k) = [�+1 (k); : : : ; �
+
q
(k)]T ; �+

j
(k) � 0

��(k) = [��1 (k); : : : ; �
�

q
(k)]T ; ��

j
(k) � 0

subject to

yMi
(k + rMi

) = yri(k + rMi
) + �+

i
(k)� ��

i
(k);

i = 1; : : : ; ny; u(k) 2 U; y(k) 2 Y;
Fxk+Hpjk

= 0

The weighting vectors wT

+(k) and w
T

�
(k) consist of

nonnegative elements and y(k) refers to the non-
factorized local model output prediction used for
output constraint enforcement.

The transformation of the nonsmooth performance
index into a smooth control problem adds to the RS-
MPC slack variables which enhances the tracking
feasibility of the optimization problem.

3.2 RS2-MPC Algorithm

A quadratic cost function is the most popular cost
function used in MPC formulations. It ampli�es the
penalty for large deviations, with an opposite behav-
ior for small deviations. One could express the RS-
MPC controller, as it is usual in the literature [12].
Here, to keep a consistent notation within the RSS
literature, a representation similar to the one for
RS1-MPC will be maintained. The RS2-MPC algo-
rithm representation can be written as

J(Hp; Hc; k) = min
�2

HpX
i=0

�2(k; i) (12)

�2(k; i) =
n
��

T (k + ijk)W��(k + ijk)
o

��(k) = [��1 (k); : : : ; �
�

ny
(k)]T

subject to

yMi
(k + rMi

) = yri(k + rMi
) + ��

i
(k);

i = 1; : : : ; ny; u(k) 2 U; y(k) 2 Y;
Fxk+Hpjk

= 0

here W is a weighting matrix.

4. IMPLEMENTATION

In the Receding Horizon formulation, Hp is the pre-
diction horizon and Hc is the control horizon (Hp �

Hc). The problem formulation can be indicated as



follows. Let u�
(Hp;Hc)

(i), for i < Hc, be the control

sequence for the problem formulated above. In a
receding horizon framework only the �rst control
move (i = 0) will be implemented. In this case, the
updated local augmented system will be given by:

x(k + 1) = Ax(k) +Bu�(Hp;Hc)
(0) +Gur(k)

e(k) = Fx(k)
(13)

With this, the rest of the control moves, u�(i); i =
1; :::; Hc, are discarded and the optimization prob-
lem is solved using the new local model and initial
conditions.

The RS-MPC, can be de�ned in several ways. In
this implementation, it is designed such as the plant
model output matches the reference model output
in the beginning of the prediction horizon, for each
instant k. A new reference model is calculated at
each sampling time. Its speed is directly related to
the speed of �c;j and possibly the distance of the
operating point. Another important aspect in this
implementation is the fact that the states are not
measured, and an Extended Kalman Filter (EKF)
was used to estimate them.

Due to the formulation of the RS-MPC, in cases
of very slow �c;j , a too slow closed-loop behav-
ior may take place, in that case, certain speed
can be designed such as only an acceptable over-
shoot/undershoot behavior takes place. In general,
the reference system is selected at each sampling
time based on the information from �c;j and the
distance between the current and the desired oper-
ating condition.

In the transition control implemented herein, despite
the fact the process is nonlinear, a time varying
linear model is used. This model that is given by
the linearization of the nonlinear process model at
every sampling time. In this case, the reference point
for linearization is the current state and input move,
i.e., an unsteady-state. Because of the inherent mis-
match between the plant and its representation by
local linear model used for prediction, a performance
degradation is expected. This means that the refer-
ence system will be only a local representation of the
process behavior and some performance degradation
is expected independently of the control structure
used. However, that degradation was acceptable in
all cases studied, given the bene�t of solving an
LP/QP problem instead of a nonconvex nonlinear
optimization problem, which does not have any
guarantee of global optimality.

The algorithm can be represented by the following
steps:
(1) Evaluation of the nonlinear feasibility of the
desired operating points. In this case a feasibility
analysis is performed to identify whether or not the
desired transition is feasible in the available input
space.
(2) Measurement of current output and estimation
of plant states via an EKF using the nonlinear plant
model.
(3) Prediction of future outputs via the nonlinear
model and control moves calculated in the prior
sample time. Comparison to the desired outputs of
the reference system.
(4) Linearization of the model at current conditions.
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Fig. 1. Operating conditions for van de Vusse CSTR

(5) Factorization of the model and design of the
reference system at current conditions.
(6) Calculation of the desired changes in the control
moves to minimize the performance index. Imple-
mentation of the �rst move.
(7) Change in sample index. Go to item 4 or end.

5. APPLICATION

Consider the benchmark for nonlinear control sys-
tems known as van de Vusse reactor problem. The
main interesting features of this reactor is the fact
that the zero dynamics change in the range of de-
sired operation. All details on modeling and system
parameters can be found in [5] and in references
therein. The reactor of interest is a CSTR with the

following reaction A
k1
! B

k2
! C; 2A

k3
! D. The

CSTR dynamics is given by the following model:

dCA

dt
= u(CAo � CA) +RA

dCB

dt
= u(CBo � CB) +RB

�Cp
dT

dt
= u�Cp(To � T ) +

Q

V
�

3X
i=1

�Hiri

y = CB

(14)

Where ki = kioexp(�Ei=RT ); i = 1; 2; 3, u =
F=V; r1 = k1CA; r2 = k2CB ; r3 = k3C

2
A
,

RA = �r1�r3; RB = r1�r2, and Q = kwAR(Tk�
T ).

The problem is to control the concentration of B in
several di�erent scenarios, manipulating the values
of u, which can assume any value in the interval
u = [5h�1; 40h�1]. In addition, the only measured
variable is the concentration of B. The diÆculty of
this problem is given not only by its strong non-
linearity, but also by the existing input multiplicity
in the operating region. Figure 1 shows the steady
state locus plot for the concentration of B, indicated
by [B], in the range of production rate of interest.
It also indicates several operating conditions of in-
terest. The dotted region indicates that the local
linear model has unstable inverse dynamics (NMP).
It is desired to make a few transitions as indicated
below. Figure 2 presents the closed-loop behavior
using the RS1-MPC with the following parameters
(Ts = 0:02h;Hp = Hc = 20;w+ = w� = 1; umin =
1; umax = 40;�umax = 6; ymin = 0:9; ymax = 1:09).
The solid curve indicates the system's transition
towards the goal represented by the dashed line. The
reference model used was a �xed system given by
Gr =

0:5
z�0:5

in the MP region. For the NMP region,
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the reference model used was a function of the NMP

zero of the local process model, �r;j =
1�(�j)

�1

z�(�j)�1
,

where �j represents the NMP dominant dynamics
of the process model �c;j .

The set of transitions are as follows: (i) transition
at time 0:1h from operating condition 1 to oper-
ating condition 3, indicated as transition 1!3, (ii)
transition 3!4, (iii) at 2h the operation performs
a system transition 4!5, and (iv) at 2:5h the tran-
sition 5 !6. Furthermore, during the operation at
condition 3, the feed concentration of A, CAo, su�ers
an unmeasured �5% disturbance at 1:0h (with 0:5h
duration).

As it can be seen in Figure 2, the RS-MPC is
able to make the desired transitions. If the input
multiplicity is of concern in certain transitions, that
issue has to be taken care directly in the perfor-
mance/reference system implementation. The small
oscillation shown in the response is mainly due to the
used local linear approximation for the plant model
(model/plant mismatch) and state estimation.

6. CONCLUSIONS

This paper introduces a RS-MPC algorithm for
transition control. The proposed RS-MPC incorpo-
rates local closed-loop limits of performance to the
optimization problem. It has been shown that the
RSp-MPC deals satisfactorily with transitions and
NMP behavior can be dealt with using a simple local
factorization approach.

ACKNOWLEDGMENT

Financial support from CNPq (National Council for
Scienti�c and Technological Development, Brazil) is
gratefully acknowledged.

7. REFERENCES

[1] R. Bartusiak. On the Design of Model-based

Nonlinear Control Structures: Applications to

Chemical Reactors and General Dynamical Sys-

tems. PhD thesis, Lehigh University, Bethle-
hem, USA, 1987.

[2] R. R. Bitmead, M. Gevers, and V. Wertz.
Adaptive Optimal Control: The Thinking Man's

GPC. International Series in Systems and Con-
trol Engineering. Prentice Hall, 1990.

[3] M. W. Brown, P. L. Lee, G. R. Sullivan, and
W. Zhou. A constrained nonlinear multivariable
control algorithm. Trans IChemE, 68, pp. 464{
476, 1990. Part A.

[4] G. De Nicolao, L. Magni, and R. Scattolini.
Stability and robustness of nonlinear receding
horizon control. International Symposium on
Nonlinear Model Predictive Control and Future
Directions, Ascona, Switzerland, 1998.

[5] S. L. de Oliveira. Model Predictive Con-

trol (MPC) for Constrained Nonlinear Systems.
PhD thesis, Caltech, Pasadena, CA, USA, 1996.

[6] L. Kalra. Reference System Based Model Pre-

dictive Control of Nonlinear Processes. PhD
thesis, Lehigh University, Bethlehem, USA,
1996.

[7] H. Kaufman, I. Barkana, and K. Sobel. Direct

Adaptive Control Algorithms: Theory and Ap-

plications. Communications and Control Engi-
neering Series. Springer, 1998.

[8] �U. Kotta. Inversion Method in the Discrete-

time Nonlinear Control Systems Synthesis Prob-

lems. Springer-Verlag, 1995.
[9] C. Kravaris and C. B. Chung. Nonlinear state

feedback synthesis by global input-output lin-
earization. AIChE J., 33, pp. 592{603, 1987.

[10] P. L. Lee and G. R. Sullivan. Generic model
control (GMC). Computers chem. Engng., 12,
pp. 573{580, 1988.

[11] S. Monaco and D. Normand-Cyrot. Zero dy-
namics of sampled nonlinear systems. Systems

& Control Letters, pp. 229{234, 1988.
[12] K. R. Muske and J. B. Rawlings. Model predic-

tive control with linear models. AIChE Journal,
39(2), pp. 262{287, 1993.

[13] H. Nijmeijer and A. J. van der Schaft. Nonlinear
Dynamical Control Systems. Springer-Verlag,
1990.

[14] L. C. Oliveira-Lopes and C. Georgakis. On l1-
reference system linear model predictive control.
Adchem2000, Pisa, Italy, 2000.

[15] M. Soroush and C. Kravaris. MPC formulation
of GLC. AIChE Journal, 42(8), pp. 2377{2381,
1996.

[16] C. A. Tsiligiannis and S. A. Svoronos. Dynamic
interactors in multivariable process control- II.
Time delays and zeroes outside the unit circle.
Chemical Engineering Science, 44, pp. 2041{
2047, 1989.

[17] A. S. Tsirikos and P. N. Paraskevopoulos. Dis-
turbance rejection with simultaneous linear ex-
act model matching for a class of nonlinear sys-
tems. J. Franklin Inst., 335(B)(7), pp. 1299{
1325, 1998.

[18] A. Varga. Computation of inner-outer factor-
izations of rational matrices. IEEE Transac-

tions on Automatic Control, 43(5), pp. 684{688,
1998.

[19] Z. Zhang and J. S. Freudenberg. Discrete-time
loop transfer recovery for systems with nonmin-
imum phase zeros and time delays. Automatica,
29(2), pp. 351{363, 1993.




