
SPECTRAL FACTORIZATION BY MEANS OF DISCRETE

FOURIER TRANSFORM �

JAN JE�ZEKy, MARTIN HROM�C�IKyz, MICHAEL �SEBEKyz

y Institute of Information Theory and Automation

182 08 Prague, Czech Republic

fhromcik,msebekg@utia.cas.cz
zTrnka Laboratory for Automatic Control

Czech Technical University, Prague, Czech Republic

Abstract. A new algorithm is presented for the spectral factorization of a two-
sided symmetric polynomial. This algorithm being combined with digonalization
techniques for polynomial matrices can also be utilized in the multivariable case to
calculate the spectral factor of a discrete-time para-Hermitian polynomial matrix.
The proposed method is based on the discrete Fourier transform theory (DFT) and
its relation to the Z-transform. Involving DFT into the computations brings high
eÆciency and reliability due to desirable numerical properties of the fast Fourier
transform algorithm standing behind. The paper also includes an illustrative
numerical example and discusses the numerical properties of the suggested routine
with respect to other existing techniques.

Key Words: Spectral factorization, FFT, Z-transform, numerical methods.

1 Introduction

This paper describes a new method for the spec-
tral factorization of a discrete-time symmetric
two-sided polynomial m(z). A two-sided polyno-
mial

m(z) =

dX

i=�d

miz
i;

where mi are real numbers, is said to be discrete-
time symmetric if it equals its adjoint m�(z)
where m�(z) is de�ned as m�(z) = m(z�1).
Clearly, m(z) is symmetric if mi = m

�i. It is
also evident that the symmetry makes m(z) real
for jzj = 1. In addition, we require m(z) being
positive here. The spectral factor of such m(z) is

�This work has been supported by the Grant Agency of

the Czech Republic under contract No. 102/99/1368 and

by the Ministry of Education of the Czech Republic under

contract No. VS97/034.

MatlabTM is a registered trademark of The Math-

Works Inc. Polynomial Toolbox for MatlabTM is a

trademark of the PolyX, Ltd. MathematicaTM is a reg-

istered trademark of The Wolfram Research, Inc.

then the (one-sided) real polynomial x(z) = x0 +
x1z

�1 + � � �+ xdz
�d such that m(z) = x(z)x�(z)

and x(z) is Schur, that is, has all its zeros zi inside
the unit circle in the complex plane. The problem
has unique solution, up to the sign.

A matrix equivalent to the scalar case is the
computation of the spectral factor X(z) = X0 +
X1z

�1 + � � � + Xdz
�d to a discrete-time para-

Hermitian two-sided polynomial matrix

M(z) =

dX

i=0

(Miz
i +MT

i z
�i);

nonsingular for jzj = 1. Here X(z) is required to
be Schur-stable again and to ful�ll the equation
M(z) = X(z)XT (z�1).

The spectral factorization is one of the basic op-
erations in the polynomial approach to the synthe-
sis of linear control systems [4, 5]. It is a part of
the procedure of quadratic functional minimiza-
tion under a condition of causality. Particular
forms of the functional to be minimized lead to
some well known control design problems, such as
Wiener �ltering, linear-quadratic controller (LQ),

quadratic optimal observer (Kalman �lter), linear-
quadratic controller with Gaussian noise (LQG)
and some others. All these tasks, being solved
via polynomial methods, involve spectral factor-
ization as the crucial computational step [4, 5].

In addition, a more general version of the stan-
dard spectral factorization, usually called the J-
spectral factorization, is often considered in the
H
1

control theory [9]. Some numerical proce-
dures for J-spectral factorization rely on succes-
sive scalar spectral factorizations [8] and hence the
suggested algorithm can be of use in this context
as well.

2 Existing methods

In any case, the spectral factor for d � 2 cannot
be achieved by a �nite number of algebraic op-
erations. Therefore all numerical algorithms for
its computation are iterative and give just an ap-
proximation to the genuine factor. Some existing
approaches to this problem are mentioned in this
section.

The most natural way is based on the computa-
tion of roots of a polynomial. Obviously, m(z) =Pd

i=�dmiz
i being a symmetric two-sided polyno-

mial yields m?(z) = z�dm(z) to be a one-sided
polynomial in z�1 with roots symmetric with re-
spect to the unit circle in the complex plane. The
roots of m?(z) (all are nonzero) are the zeros of
m(z).

This idea can be directly used to evaluate the
spectral factor. Having determined the roots
r1; r2; : : : ; rd of m?(z) via any standard proce-
dure for polynomial roots [3] and considering that
m(z) 6= 0 for all jzj = 1 by assumption, one
can divide the roots into two groups R� = fri :
m?(ri) = 0; jrij < 1g; R+ = fri : m?(ri) =
0; jrij > 1g. Clearly, R� is the set of zeros of the
spectral factor x(z) and having this set at hand
the factor itself can be easily constructed.

Employing also the symmetry of the roots, a
more sophisticated procedure can be suggested to
reduce the degree of the polynomial the roots of
which have to be computed.

At any rate, performance of this procedure de-
pends on the accuracy of the computed polyno-
mial roots. If these roots are single and not close
to each other, standard numerical routines [3] can
determine them with good precision and the re-
sulting factor can be given accurately as well.
However, it is well known that the relative ac-
curacy of a computed root decreases as its mul-
tiplicity grows [3], and so does the accuracy of the
spectral factor thus obtained.

Since this case is rather frequent in control de-
sign tasks and since the explicit knowledge of roots
is not necessary, attention has been paid to the

development of other routines that avoid the di-
rect roots evaluation. One such procedure, relying
on successive Newton-Raphson iterations and so-
lutions of symmetric polynomial equations, was
published in [11] and is implemented in the Poly-
nomial Toolbox 2.0 for Matlab [6]. Recently some
new approaches to spectral factorization have ap-
peared based on the analysis of quadratic forms
[10]. These techniques can also be extended to
the matrix case, unlike that based on simple roots
evaluation.

In the next sections we will introduce a com-
pletely new approach to the problem. It is based
on the DFT theory and provides both a fruitful
view on the relation between DFT and the Z-
transform theory, and a powerful computational
tool in the form of the fast Fourier transform al-
gorithm.

3 Discrete Fourier Transform

For a vector of complex numbers, DFT is de�ned
as follows:

De�nition 1 (see [2, 1]) - direct DFT:
If p = [p0; p1; : : : ; pN] is a vector of complex num-
bers, then its direct DFT is given by the vector
y = [y0; y1; : : : ; yN], where

yk =

NX

i=0

pie
�j 2�k

N+1
i (1)

The vector y is called the image of vector p. �

De�nition 3.2 (see [2, 1]) - inverse DFT:
If y = [y0; y1; : : : ; yN] is a vector of complex num-
bers, then its inverse DFT is given by a vector
p = [p0; p1; : : : ; pN], where

pi =
1

N + 1

NX

k=0

yke
j 2�i
N+1

k (2)

�

If y is an image of p, then the formula (2) returns
the original vector p [2, 1]. Hence the relation (2)
is inverse to relation (1).

DFT is of great interest in various engineering
�elds. For its relationship to Fourier series of sam-
pled signals, DFT is frequently used in signal pro-
cessing [2]. One of the experimental identi�cation
methods employs DFT as well [7]. The close rela-
tionship of DFT to interpolation is also well known
and was used recently to solve some tasks of the
polynomial control theory [12, 13] and to treat ro-
bustness analysis problems of certain kind [14].

For numerical computation of DFT, the eÆcient
recursive FFT algorithm was developed by Coo-
ley and Tukey in 1965 [2], [1]. If the length of
the input is a power of two, a faster version of

FFT (sometimes called radix-2 FFT) can be em-
ployed [2, 1]. In general, the FFT routine fea-
tures a highly bene�cial computational complex-
ity and involves O(N log(N)) multiplications and
additions for a vector of length N .
For the importance of DFT mentioned above,

the FFT algorithms are naturally available as
built-in functions of many computing packages
(Matlab

TM,Mathematica
TM etc.). This is an-

other good reason for employing the procedure
proposed in this paper.

4 Spectral Factorization and

DFT

4.1 Theory

The spectral factorization problem consists in the
following. Given a symmetric polynomial

m(z) = mdz
d+� � �+m1z+m0+m1z

�1+� � �+mdz
�d ;

positive for jzj = 1, we are looking for a Schur
stable polynomial

x(z) = x0 + x1z
�1 + � � �+ xdz

�d

satisfying
x(z)x(z�1) = m(z) :

In order to solve the equation, we logarithmize
it. As m(z) is holomorphic and nonzero in 1�" <

jzj < 1+" and x(z) in 1�" < jzj including z =1,
the logarithms exist:

lnx(z) = y(z); lnm(z) = n(z) :

Here n(z), obtained from the givenm(z), is a sym-
metric (in�nite) power series

n(z) = � � �+ n1z + n0 + n1z
�1 + � � � :

It can be easily decomposed,

n(z) = y(z) + y(z�1)

with power series

y(z�1) = y0 + y1z
�1 + � � � =

n0

2
+ n1z

�1 + � � � ;

holomorphic and nonzero for 1� " < jzj. Finally,
the spectral factor x(z) is recovered as

x(z) = ey(z
�1

) = x0 + x1z
�1 + � � � : (3)

Since y(z) is holomorphic in 1� " < jzj, so is x(z)
and hence it can be expanded according to (3).
Moreover, as a result of exponential function, x(z)
is nonzero in 1� " < jzj. In other words, it has all
its zeros inside the unit disk and is therefore Schur
stable. Note also that x(z) has to be a (�nite)
polynomial of degree d (due to the uniqueness of
the solution to the problem which is known to be
a polynomial) though y(z) is an in�nite power se-
ries.

4.2 Numerical Algorithm

Numerical implementation of this procedure fol-
lows the ideas considered above. Polynomials x(z)
is represented by its coeÆcients xi; i = 0 : : : r
or by function values Xk in the Fourier inter-
polating points gk; k = �R : : : 0 : : : R, where

R � d; g = ej
2�

2R+1 . Power series are accordingly
approximated by a �nite set of their coeÆcients
or by their values in a �nite number of points on
the complex unit circle. Some operations, namely
the decomposition of n(z) into y(z) and y(z�1),
are performed in the time domain xi, other (eval-
uation of logarithmic and exponential functions)
in the frequency domain Xk. For mutual conver-
sion between domains, we use the shifted discrete
Fourier transform de�ned as

Xk =

RX

i=�R

xig
�ki; xi =

1

2R+ 1

RX

k=�R

Xkg
ki ;

approximating the Z-transform (dealing with
�R � i � +R instead of in�nite �1 < i < +1,
and with z = gk; � R � k � +R instead of
continuum z = ej�; � � � � � +�).
The accuracy of results depends on the number

of interpolation points taken into account during
the computation. This value can be considered as
a simple tuning knob of the computational pro-
cess.
Resulting numerical routine looks then as fol-

lows:

Algorithm 1: Scalar discrete-time spectral

factorization.

Input: Scalar symmetric polynomial
m(z) = mdz

d + � � � + m1z + m0 + m1z
�1 +

� � �+mdz
�d

Output: Polynomial x(z) = x0 + x1z
�1 + � � � +

xdz
�d, the spectral

factor of m(z).

Step 1 - Choice of the number of interpolation

points.

Decide about the number R. R approxi-
mately 50 times larger than d is recommended
up to our practical experience.

Step 2 - Direct FFT (I):

Using the FFT algorithm, perform direct
DFT, de�ned by (1), on the vector

m = [m0;m1; : : : ;mn; 0; 0; : : : ; 0;mn; : : : ;m1| {z }
2R+1

]

In this way, the set M = [M0;M1; : : : ;M2R]
of the values of m(z) at the Fourier points
is obtained. Owing to the symmetry of m(z)
and assumingm(z) with real coeÆcients only,
M is symmetric and real as well.

Step 3 - Logarithmization:
Compute the logarithms Ni = ln(Mi) of all
particular Mi's and form the vector N =
[N0; N1; : : : ; N2R] of them. Ni's thus ob-
tained are the values of the function n(z) =
ln(m(z)) at related Fourier points on the unit
complex circle.

Step 4 - Inverse FFT (I):

To get the vector n =
[n0; n1; : : : ; nR; nR; : : : ; n1], containing
the coeÆcients of the two-sided symmetric
polynomial n(z) = nRz

�R + � � � + n1z
�1 +

n0 + n1z + � � � + nRz
R approximating the

power series ln(m(z)) for the given R,
perform inverse DFT, de�ned by (2), on the
vector N using the FFT algorithm.

Step 5 - Decomposition:
Take the "causal part" y of n: y =
[n0=2; n1; : : : ; nR].

Step 6 - Direct FFT (II):

Evaluate y(z) = n0=2+n1z
�1+ : : :+nRz

�R

at the Fourier points by applying direct FFT
on the set

[
n0

2
; n1; : : : ; nR; 0; 0; : : : ; 0

| {z }
2R+1

]

and get Y = [Y0; : : : ; Y2R+1].

Step 7 - Exponential function:
To get the spectral factor, the exponential
function x(z) = ey(z) remains to be evalu-
ated. First we compute the values of x(z) at
the Fourier points: X = [eY1 ; : : : ; eY2R+1].

Step 8 - Inverse FFT (II):

Finally, the coeÆcients x = [x0; : : : ; x2R]
of x(z) are recovered by inverse FFT per-
formed on the vector X . The resulting
approximation to the spectral factor x(z)
then equals x(z) = x0+x1z

�1+� � �+xdz
�d: �

Note that one obtains 2R+1 coeÆcients of x(z) =
x0 + x1z

�1 + � � �xRz
�2R in the Step 8. However,

x(z) being the spectral factor of m(z) is known
to be of degree d only and only the �rst d + 1
coeÆcients of x(z) should be signi�cant as a result
while the remaining ones should be negligible. As
the number R increases, these values theoretically
converge to zero indeed since the formulas of DFT
become better approximations to the Z-transform
de�nitions.

4.3 Example

Consider the two-sided polynomial m(z) =
0:5z�1 + 1:25 + 0:5z: Following the Algorithm

1 and employingMatlab, we receive the spectral
factor in the next steps:

Step 1: Let us choose a small R �rst, say R = 3.

Step 2: Direct FFT of the vector
m = [1:25; 0:5; 0; 0; 0:5] yields M =
[2:2500; 1:5590; 0:4410; 0:4410; 1:5590]. Note
that M is real and symmetric.

Step 3: Natural logarithms of particu-
lar Mi's give rise to the vector N =
[0:8109; 0:4441;�0:8187;�0:8187; 0:4441],
which is real and symmetric as well.

Step 4: Inverse FFT of N results in the vector
n = [0:0123; 0:4820;�0:0827;�0:0827; 0:4820]
related to the symmetric two-sided poly-
nomial n(z) = �0:0827z�2 + 0:4820z�1 +
0:0123+ 0:4820z1� 0:0827z2.

Step 5: The causal part of n(z) is the polynomial
y(z) = 0:0123=2+ 0:4820z�1� 0:0827z�2

Step 6: Values of y(z) at the Fourier
points are obtained by direct FFT:
Y = [0:4055; 0:2220 � 0:4098i;�0:4094 �
0:3620i;�0:4094+ 0:3620i; 0:2220+ 0:4098i].

Step 7: X = [eYi] = [1:5000; 1:1452 �

0:4975i; 0:6210 � 0:2352i; 0:6210 +
0:2352i; 1:1452+ 0:4975i].

Step 8: Finally, inverse FFT of X returns the
result:
x = [1:0065; 0:4851; 0:0337;�0:0213;�0:0040]
and x(z) = 1:0065+0:4851z�1+0:0337z�2�
0:0213z�3 � 0:0040z�4. We know that the
degree of the genuine spectral factor is 1 and
therefore we take x(z) = 1:0065 + 0:4851z�1

as the result. Indeed, the remaining coef-
�cients are considerably smaller than the
considered ones. �

As R increases, the terms that should be zero ac-
cording to the theory really become smaller while
the valuable ones converge to the genuine spectral
factor coeÆcients. For instance, taking R = 50
and repeating the whole procedure gives rise to a
polynomial of degree 100 with the signi�cant part
x(z) = (1+�)+(0:5+�)z�1 where j�j < 10�15 and
with all remaining coeÆcients in absolute value
smaller than 10�14. This output can be considered
as a good result with respect to the exact spectral
factor being 1 + 1=2z�1. Of course, the positive
dependence of accuracy on R holds only up to a
certain limit in practice - for R being extremely
large, numerical problems usually arise that spoil
the results, and therefore taking R many times
greater than the suggested value cannot be rec-
ommended as a rule.

4.4 Modi�cations of the Algorithm

The basic version of the routine proposed above
is based on the shifted dicrete Fourier transform.
This modi�cation of DFT appears bene�cial dur-
ing the derivation of the Algorithm 1 due to its
more transparent relationship to the spectral the-
ory. It can be easily transformed to the standard
DFT as it is de�ned in the section 3, simply by
reordering related vector entries (see the steps 2
and 4). However, 2R + 1 interpolation points are
used for the FFT algorithm and unfortunately this
number is always odd and cannot equal any power
of two. Therefore the radix-2 fast version of the
FFT routine cannot be addressed. Nevertheless,
this slight drawback can be easily avoided if the
periodicity of direct and inverse DFT formulas is
taken into account. Basically, one can construct
the initial set as

[m0;m1; : : : ;mn; 0; 0; : : : ; 0;mn; : : : ;m1| {z }
2R

]

which has a power-of-two entries in total. The
Algorithm 1 remains valid also in this case with
2R + 1 replaced by 2R and R + 1 by 2R�1 re-
spectively, up to one point: in the Step 5, the
decomposition reads y = [n0=2; n1; : : : ; nR=2] in-
stead of y = [n0=2; n1; : : : ; nR]. This minor modi-
�cation of the proposed method further increases
its eÆciency since the powerful radix-2 FFT can
be called.
The algorithm can also be extended to the sit-

uations when m(z) has some coupled roots on
the complex unit circle. In this case jn(z)j =
j ln(m(z))j becomes in�nite for some z on the unit
circle and Ni = n(qi) = ln(m(qi)) may appear
very large for some Fourier interpolation points
qi. However, as the spectral factor is known to
exist in this case [4, 5], the inverse Z-transform
of n(z) is guaranteed to exist as well. Hence we
can ignore the contributions of such large Ni's to
the approximating DFT sum in the Step 3, tak-
ing the singularity of related Fourier points into
account and considering a large amount of inter-
polation points in total. Of course, this replace-
ment by zeros further decreases the accuracy of
the Z-transform approximation in this case. The
bound above which the Ni's are supposed in�nite
is another \tuning parameter" of this embedded
procedure.
Throughout the paper only mi's real have been

implicitly expected. Nevertheless, the algorithm
can be directly applied to symmetric polynomi-
als with complex coeÆcients as well. In this case,
the de�nition of the adjoint slightly di�ers - hav-
ing m(z) =

Pd

i=0 x
�

i z
i, its adjoint is given by

m�(z) =
Pd

i=0 x
�

i z
�i where the star stands for

complex conjugate. Taking this de�nition, all the
ideas standing behind the algorithm remain valu-

able.

4.5 Implementation and Practical

Experience

The algorithm has been implemented in MAT-
LAB, using the standard routines for the fast
Fourier transform (fft command). The practical
experience is good. Though the complete routine
seemingly issues a high number of manipulations,
it is pretty fast thanks to the O(R logR) compu-
tational complexity of the FFT algorithm. It runs
faster than the Newton-Raphson iterations rou-
tine as it is programmed in the Polynomial Tool-
box 2.0 for Matlab [6], returning results of com-
parable accuracy. The execution times are simi-
lar with the method based on direct evaluation of
roots, nevertheless, in the case of multiple roots
the accuracy of the newly proposed method ap-
pears better provided the number of interpolation
points is adequately chosen.

5 Further Research

This approach cannot be directly extended to
the matrix case - the product of two matri-
ces does not commute in general and since
X(z)X(z�1) 6= X(z�1)X(z), one cannot write
lnM(z) = ln(X(z))+ln(X(z�1)) and perform the
decomposition. Nevertheless, in combination with
techniques for diagonalization of polynomial ma-
trices and for factorization of a unimodular ma-
trix, described for instance in [8], the proposed
routine can be used to factor particular entries of
an equivalent diagonal matrix.

A modi�cation for continuous time polynomials
is under research. However, it does not seem to
be as bene�cial as it is in the discrete time case
since the relation between the Laplace transform,
replacing the role of Z-transform in the continuous
time domain, and the DFT is not so close.

6 Conclusion

A new method for the discrete-time spectral fac-
torization problem in the scalar case has been pro-
posed. The new method relies on numerically
stable and eÆcient FFT algorithm. Besides its
good numerical properties the derivation of the
routine also provides an interesting look into the
related mathematics, combining the results of the
theory of functions of complex variable, the the-
ory of sampled signals, and the discrete Fourier
transform techniques. The suggested method is
illustrated by a simple numerical example and its
numerical properties are discussed with respect to
other existing algorithms.

Possible extensions for polynomial matrices and
for the continuous time case have been discussed
as well. They are under research now. The diÆ-
culties were described that occur and that prevent
this approach from being adopted for these cases
directly.

References

[1] Bini D., Pan V., Polynomial and Matrix

Computations, Volume 1: Fundamental al-

gorithms, Birkh�auser, Boston (1994).

[2] �C���zek V., Discrete Fourier Transforms and

Their Applications, Adam Hilger Ltd, Bris-
tol and Boston (1986).

[3] Higham N. J., Accuracy and Stability of Nu-
merical Algorithms, S.I.A.M., Philadelphia
(1996).

[4] Kailath T., Linear Systems, Prentice Hall,
New Jersey (1980).

[5] Ku�cera V., Analysis and Design of Discrete

Linear Control Systems, Academia Prague
(1991).

[6] Kwakernaak H., �Sebek M., PolyX Home

Page,
http://www.polyx.cz/,

http://www.polyx.com/.

[7] Ljung L., System Identi�cation: Theory

for the User, Prentice-Hall Information and
Systems Sciences Series. Englewood Cli�s,
Prentice-Hall (1987).

[8] Kwakernaak H., �Sebek M, Polynomial J-

Spectral Factorization, IEEE Trans. Auto-
matic Control, Vol. 39, No.2, pp. 315-328
(1994).

[9] Green M., Glover K, Limebeer D. and Doyle
J., A J-spectral Factorization Approach to

H
1

control, SIAM J. on Contr. Opt., vol.
28, pp. 1350-1371 (1990).

[10] Kaneko O. and Fujii T., Discrete Time Be-

havioral Dissipativeness and Spectral Fac-

torization via Quadratic Di�erence Forms,
Proceedings of the 5th European Control
Conference ECC'99, Karlsruhe, Germany,
October 31 - September 3 (Session BA9),
1999.

[11] Je�zek J. and Ku�cera V., EÆcient Al-

gorithm for Matrix Spectral Factoriza-

tion,Automatica, vol. 29, pp. 663-669, 1985.

[12] Hrom�c��k M., �Sebek M., New Algorithm for

Polynomial Matrix Determinant Based on

FFT, Proceedings of the 5th European Con-
trol Conference ECC'99, Karlsruhe, Ger-
many, October 31 - September 3 (Session
DA1), 1999.

[13] Hrom�c��kM., �Sebek M., Numerical and Sym-
bolic Computation of Polynomial Matrix

Determinant, Proceedings of the 38th Con-
ference on Decision and Control CDC'99,
Phoenix AZ, USA, December 7-10, 1999.

[14] Hrom�c��k M., �Sebek M, Fast Fourier Trans-
form and Robustness Analysis with Respect

to Parametric Uncertainties, submitted for
the 3rd IFAC Symposium on Robust Con-
trol Design ROCOND 2000, Prague, CZ,
June 21-23, 2000.

	cc: Proceedings of the 8th IEEE Mediterranean Conference
on Control and Automation (MED 2000)
Rio, Patras, GREECE 17-19 July, 2000

