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Abstract. An adaptation scheme is proposed for the online customization of mode transition
controllers designed off-line via the method of blending local mode controllers.  It consists of
the desired transition trajectory model, the active plant model and the active controller model,
which is the mode transition controller.  The latter two models are initially off-line trained and
online adapted via structure/parameter learning.  The control sensitivity matrix and the one-step-
ahead predictive output of the active plant model are used to adapt the parameters of the mode
transition controller such that the desired transition trajectory is tracked.  The proposed
adaptation scheme is illustrated for a hover to forward flight mode transition control of a
helicopter encountering parametric changes and wind disturbances.
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1.  INTRODUCTION

Complex large-scale systems such as unmanned aerial
vehicles and industrial processes are demanded to
possess the intelligence required to behave in an
autonomous manner under uncertain environmental
conditions.  Typically, these systems are required to
operate in a finite number of operational modes that
require robust, stable and smooth transitions between
them. A (local) operational mode (or mode of
operation) is considered to be a region in the system’s
state space in which the system exhibits quasi steady-
state behavior.  And a mode transition (or mode to
mode) controller refers to a controller that transitions a
system from a start mode of operation to the goal mode.
The problem of transitioning between two operational
modes can be solved by non-adaptive techniques such
as gain scheduling, sliding mode control and the
method of blending local mode controllers.  However,
when the system to be controlled differs significantly

from the nominal system used in the design methods
above, degraded tracking performance of the desired
transition trajectory is to be expected.

The basic objective of adaptive control is to maintain
consistent performance of a system in the presence of
uncertainty or unknown variation in plant parameters.
Typically, adaptive control is developed for MIMO
linear systems, SISO nonlinear systems and for certain
classes of MIMO nonlinear systems.  In [2,10],
adaptive controllers were developed for a class of
feedback linearizable nonlinear systems.  In [5], an
adaptive output feedback tracking control was proposed
for a class of single-input single-output nonlinear
systems with uncertain differentiable time-varying
parameters.  Recently, adaptive techniques based upon
the one-step-ahead control strategy have been
developed for more general nonlinear systems.  In [3,4],
neural network based one-step-ahead control strategies
were proposed for a class of nonlinear SISO systems.
In [8], a nonlinear one-step-ahead control scheme based
upon a recurrent neural network model was proposed
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for nonlinear SISO processes.  The neural network
model was trained via a recursive least squares (RLS)
algorithm and the gradient descent update rate for the
control law was determined by stability consideration.
Finally, for a general class of MISO nonlinear systems,
an adaptive quasi-one-step-ahead control law was
proposed in [6].  The control law was derived using the
sensitivity between the controlled system input and
output and the quasi-one-step-ahead predictive output.
The sensitivity of the plant was estimated using RLS
and the predictive output was obtained by a recurrent
neural network.

In this paper, an adaptation scheme is proposed for the
real-time adaptation of mode transition controllers
designed via the method of blending local mode
controllers (BLMC) [7].  The control objective is to
adapt the blending gains portion of the mode transition
controllers such that the nonlinear plant state vector
tracks the desired transition trajectory from a start mode
of operation to a goal mode.  The Adaptation scheme is
composed of a desired transition model, an active plant
model and an active controller model which is the mode
transition controller.  The desired transition model, the
active plant model and the blending gains portion of the
active controller model are represented via a fuzzy
neural network construct discussed in [9].  All three
fuzzy neural models are trained off-line while the latter
two models are adapted online.  The active plant model
which incorporates local model information is initially
trained off-line to capture the desired transition
trajectory and controls.  Afterwards, the active plant
model is online adapted via structure and parameter
learning to capture the input/output behavior of the
nonlinear system to be controlled.  Likewise, the
blending gains portion of the mode transition controller
is determined off-line and is adapted online via
structure and parameter learning to track the desired
transition trajectory.  The new blending gains to be
developed by the mode transition controller is
determined from the control sensitivity matrix and the
one-step-ahead predictive output of the active plant
model.  The parameter learning for the active plant and
active controller models is based upon Kaczmarz’s
algorithm [1].

In Section 2, a brief description of the fuzzy neural
network construct used in the paper is given.  The
online adaptation of mode transition controllers is
described in Section 3.  Finally, in Section 4, the
adaptation scheme proposed in this paper is illustrated
for the hover to forward flight transition of a helicopter
encountering parametric changes and wind
disturbances.

2.  FUZZY NEURAL NETWORKS

The fuzzy neural structure proposed in [9] will be
considered in this section.  This FNN structure consists
of a fuzzy rule base of Takagi-Sugeno fuzzy rules with
the rule consequents being linear polynomials of the
input premise variables.  Both structure learning and
parameter learning is used to adaptively develop the
FNN construct in [9].  The structure learning inserts
new membership functions, create new fuzzy rules and
select initial parameters of the new rules on the basis of
the desired output data.  The parameter learning
updates the consequent weights via Kaczmarz’s
algorithm.

2.1.  Structure
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Fig. 1.  General configuration of the FNN architecture

The fuzzy neural architecture proposed in [9] is divided
into the premise part, the consequent part and the
defuzzification part as shown in Fig. 1.  The premise
module partitions the premise space, assigns
membership functions to each premise cell and
develops the rule base of fuzzy rules.  The consequent
module consists of the rule consequents being linear
polynomials of the input premise variables.  Finally, the
defuzzification module combines the firing strengths of
the rules and the rule output functions to provide the
final system output.  Therefore, this FNN construct
realizes the fuzzification, fuzzy reasoning, and
defuzzification functionalities of a connectional fuzzy
inference mechanism.

Let [ ]Tmxx ,,1 K=x  and [ ]Tpyy ,,1 K=y  denote the
input and output vectors of the FNN, respectively.  The
fuzzy rule base of the FNN consists of a collection of N
fuzzy rules of the form:
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where l
jf  denotes the jth rule output associated with the

lth output component ly .  lll KK mjijj wwW ,,,,0  are the
polynomial coefficients connecting linearly the input
variables to the l

jf  consequent function.  Finally,

mjijj AAA ,,,,1 KK  are labels of the fuzzy sets in the

premise space associated with the jth rule )( jR .  Each
linguistic label ijA  is associated with a gaussian

membership function, ( )iA x
ij

µ  which specifies the

degree to which a given ix  satisfies the quantifier ijA :
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where ijm  and ijσ  denote the mean and standard
deviation of the gaussian membership function.  The
degree of fulfillment (or the firing strength) of each rule
R j( )  is taken as:
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Given an input vector x , the  lth output component ly ,
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The inferred outputs of Equation (4) result from the
application of the weighted-average defuzzification
method.

2.2.  Structure Learning with Local Model
Information
Structure learning using local model information is
exactly same as the structure learning scheme described
in [9] except that the new rules’ consequent weights are
initialized in the following way:
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where x  is the model input, y  is the desired output
corresponding to x  and xy ∂∂  is the jacobian matrix
defined at x .

2.3.  Parameter Learning via Kaczmarz’s Algorithm
Consider the current input/output pair of the form:
{ }dd yx , , where dx  and dy  denote the desired input
and output vectors of the FNN model, respectively.  Let
y  denote the current output of the FNN model given

the input dx .  The consequent parameters for the jth

rule are updated using the following equation:
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2.4.  FNN Linear Incremental Model
Let [ ]Tmxxx ,,, 21 K=x  and [ ]Tpyyy ,,, 21 K=y  denote
the input and output vectors of the FNN model depicted
in Figure 1, respectively.  Suppose that the FNN model
has N fuzzy rules.  Then, the rsth element of the FNN
linear incremental model is:
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3.  ONLINE ADAPTATION OF MODE
TRANSITION CONTROLLERS

In this section, an adaptation scheme is proposed for the
online customization of mode transition controllers
designed off-line via the method of blending local mode
controllers.  The control objective is to adapt the
blending matrices such that plant output vector tracks
the output vector of a desired transition model.  In order
to apply the discrete-time adaptation scheme to the
continuous-time system, it is assumed that the sample
rate has been appropriately selected.  Fig. 2 shows the
configuration for indirect adaptive mode transition
control.  The adaptation scheme is composed of five
components: the desired transition model, the active
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plant model, the plant adaptation mechanism, the
active controller model and the controller adaptation
mechanism.
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Fig. 2.     Configuration for indirect adaptive mode
transition control

3.1.  Desired transition model
A fuzzy neural model representation of the desired
transition trajectory is determined off-line.

3.2.  Active plant model
A fuzzy neural model of the input/output relationship of
the nonlinear plant along the desired transition is
determined by off-line training.  Also, the linear model
information along the desired trajectory is incorporated
into the consequent part of the fuzzy neural model.
Afterwards, the active plant model is adapted online via
the plant adaptation mechanism to account for plant
variations on a real-time basis.

3.3.  Plant adaptation mechanism
The active plant is adapted online to account for plant
variations on a real-time basis.  At time instant kt , the
adaptation of the active plant model is accomplished by
performing structure/parameter learning on the basis of
the current input/output data of the system to be
controlled.

3.4.  Active controller model
The active controller model is the mode controller,
which is determined off-line via the BLMC approach
[7].  The blending gains of the active controller model
are adapted online using the controller adaptation
mechanism.

3.5.  Controller adaptation mechanism
Let ACM and APM denote the active controller model
and the active plant model, respectively.  Let ( )kpq tu  be
the currently developed control input by the ACM
which corresponds to ( )kpq tx .  Suppose that ( )1+k

d
pq tx

represents the desired trajectory at 1+kt  provided by the

desired transition model.  The steps of the controller
adaptation mechanism algorithm are:

1. Apply ACM to ( )kpq tx  and produce the current

initial estimate of the control input ( )kpq tu .

2. Input ( )kpq tu  and ( )kpq tx  to APM and produce

( )1ˆ +kpq tx .  Calculate ( ) ( ) ( )111
~

+++ −= kpqk
d
pqk

d
pq txtxtx  using

the predictive one-step-ahead output ( )1ˆ +kpq tx  in place

of the unavailable output ( )1+kpq tx .
3. The true control sensitivity matrix

( ) ( )( )kpqkpq tutxD ,  is approximated via the APM’s

incremental control matrix D̂ , which can be calculated
from Equation (7).  When the APM is not sufficiently
activated by the input ( ) ( )( )kpqkpq tutx , , the control
sensitivity information contained in the strongest fired
rule’s consequent parameters is used to determine D̂ .
4. Compute the weighted least squares optimal
control law,

( ) ( ) [ ] ( )1

1 ~ˆˆˆ
+

−
⋅⋅⋅⋅+=′ k

d
pq

TT
kpqkpq txQDDQDtutu .   (8)

Afterwards, calculate the desired blending weights
( )kpq tk′ .

5. Train ACM to capture desired blending weights
( )kpq tk′  given current input ( )kpq tx .  Note that

parameter learning with local model information is used
to train the ACM.
6. Put 1+← kk tt  and perform the same procedure at
the next time 1+kt .

4.  HOVER TO FORWARD FLIGHT EXAMPLE

4.1.  Model of Helicopter’s Forward Dynamics
The proposed adaptation scheme will be illustrated on
the following model representing the longitudinal
channel dynamics of an Apache helicopter constrained
to have no vertical motion; only longitudinal and pitch
rotation motions are allowed [7]:
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where x&& , θ&&  and eδ  represent the forward acceleration
(ft/s2), pitch angle acceleration (rad/s2) and longitudinal
cyclic input (deg), respectively.  X represent the
aerodynamic force along the “X axis” and M represent
the pitching moment about the “Y axis”.  The
parameters trimX , xX & , θ&X , 

e
Xδ , trimM , xM & , θ&M ,

e
M δ , trimx& , trimθ& , trime,δ  are functions of x&.  trimX  and

trimM  are the trim values of the aerodynamic force X
and the pitching moment M , respectively.  The
variables xX & , θ&X ,

e
Xδ , trimM , xM &  and θ&M  are the

partial derivatives of X  and M  with respect to x&, θ&
and eδ , respectively.  The physical constants m  and

YI  are the mass of the helicopter and the moment of
inertia along the Y axis.  The state vector of the
helicopter model is

[ ] [ ]TT xxxxxx θθ &&&&=4321 .  It is assumed that
the output vector of the model is the same as the state
vector.

4.2. Hover to Forward Flight Mode Controller
In [7], a hover to forward flight mode controller was
designed via the BLMC approach.  The controller was
designed such that the closed-loop system transitions
from [ ]T0000.01008.00000.00000.0  to

[ ]T0000.00402.00000.08278.92  in minimum
time with the following constraints:

0000.940000.1 ≤≤− x& , 0000.205000.2 ≤≤− x&&

7000.07000.0 ≤≤− θ , 6000.06000.0 ≤≤− θ&
5000.45000.6 ≤≤− eδ .

The adaptation scheme proposed in Section 3 will be
applied to the mode transition controller mentioned
above. A sample time of sTS 05.0=  is chosen for the
adaptation scheme. The desired minimum time
trajectory and control are used to train the desired
transition model and the active plant model.  Also, the
local model information along the desired trajectory is
incorporated into the consequent part of active plant
model.  The structure learning parameters used by the
controller adaptation mechanism and the plant
adaptation mechanism was 2.0=δ  and 5.0=β  where
δ is the lower threshold for membership value and β
is the desired overlap degree. The upper limit of the
width of each membership function was

[ ]20.005.005.020.020.0=Uσ  for the active

plant model and [ ]05.005.020.020.0=Uσ  for
the active controller model.

4.2.  Simulation Results
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Fig. 3.     Plots of desired x& and x&&  nominal trajectories
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Fig. 4.     Plots of ?& and ?&&  nominal trajectories

Fig. 3 and 4 show the desired x&, x&& , θ  and θ&
trajectories.  For the nominal mode transition
controller, Fig. 6 show the mean squared error from the
desired transition trajectory for wind disturbances and
parametric changes of 

e
Xδ .  For small parametric

changes and wind disturbances, the controller exhibits
good tracking performance of the desired transition
trajectory.  However, as the magnitude of the
parametric changes and wind disturbances increase the
tracking performance of the controller degrades.  Fig. 7
show mean squared error from the desired transition
trajectory for wind disturbances and parametric changes
of 

e
Xδ , for the least squares adaptation of the nominal

mode transition controller.  As expected, if the
approximate plant accurately captures the local model
information and the input/output behavior of the system
to be controlled, the adapted controller exhibits
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excellent tracking performance when encountering
parametric changes and wind disturbances.
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Fig. 5.     Plots of mean squared errors for controller
designed via BLMC approach
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5.  CONCLUSIONS

An adaptation scheme is proposed for the online
adaptation of mode transition controllers designed via
the blending local mode controllers approach.  When
the active plant model of the adaptation scheme is a
good approximation of the system to be controlled, then
it is expected that adapted controller will track the
desired trajectory very well in the presence of
parametric changes and disturbances.  However, if the
active plant model does not capture the local model and

the input/output behavior of the systems to be
controlled, poor tracking performance to unstable
tracking can result.  Further investigation is needed to
add robustness capability to the adaptation scheme so
that it can avoid controller faults due to poor
approximation of the nonlinear plant.  One way of
preventing controller faults will be to decrease the
aggressiveness of the scheme when approximation
errors are significant and increase the aggressiveness
when the errors are small.
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