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Abstract

Basic dynamical features of hybrid systems are re-
viewed in this paper. Some results on existence and
uniqueness of executions for hybrid automata are ob-
tained. Continuous dependence on initial states are
shown for a class of hybrid automata. Zeno hybrid au-
tomata, i.e., hybrid automata that exhibit in�nitely
many discrete transitions in �nite time, are also dis-
cussed.

1 Introduction

The importance of systems with interacting digital and
analog computations is increasing dramatically. Areas
such as aeronautics, automotive vehicles, bioengineer-
ing, embedded software, process control, and trans-
portation are growing tremendously [14, 2, 3, 7, 8, 16].
There is a large number of new applications, where
computers are coupled to physical environment. This
has led to a need for better understanding of the be-
havior of these hybrid systems with linked continuous-
time and discrete-time dynamics, in order to guarantee
design performance.

Hybrid automata have proved to be an e�cient way to
model systems with both continuous and discrete dy-
namics. Their rich structure allow them to accurately
predict the behavior of quite complex systems. Based
on computer science and control theory, tools are now
evolving for analyzing and designing hybrid systems
within the hybrid automata framework. The work pre-
sented in the paper is part of this activity.

The main contribution of the paper is to present some
results on the fundamental properties of hybrid au-
tomata. We investigate the existence and uniqueness
of executions of hybrid automata. Although such re-
sults form the foundation for analysis and design meth-
ods, these problems have only recently been addressed
[15, 9]. Continuous dependence on initial conditions is
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another important issue in the analysis of hybrid au-
tomata [4, 13]. It is for instance often a desirable prop-
erty in computer simulations. In the paper, we show a
new result in this area. Zeno hybrid systems are sys-
tems that exhibit in�nitely many discrete transitions
in a �nite time interval. This type of behavior does
only occur in systems with interacting continuous and
discrete dynamics. Physical systems are of course not
Zeno, but a model of a physical system may however
be Zeno due to a too high level of abstraction. It is
therefore important to characterize Zeno hybrid au-
tomata and in applicable cases modify the model to
avoid Zenoness [5]. In the paper, we are able to com-
pletely characterize the set of Zeno states for a couple
of quite broad classes of Zeno hybrid automata.

The outline of the paper is as follows. Section 2 intro-
duces notation and the de�nitions of hybrid automata
and executions. Some recent results on existence and
uniqueness of executions for classes of hybrid automata
are given in Section 3. A result on continuous depen-
dence on initial conditions is presented in Section 4. Fi-
nally, Zeno hybrid automata are discussed in Section 5
and some conclusions are given in Section 6.

2 Hybrid Automata and Executions

The following de�nitions are based on [10, 5, 18]. For a
�nite collection V of variables, let V denote the set of
valuations of these variables. We use lower case letter
to denote both a variable and its valuation. We refer to
variables whose set of valuations is �nite or countable
as discrete and to variables whose set of valuations is
a subset of a Euclidean space as continuous. For a set
of continuous variables X with X = Rn for n � 0, we
assume that X is given the Euclidean metric topology,
and use k � k to denote the Euclidean norm. For a set of
discrete variables Q, we assume that Q is given the dis-
crete topology (every subset is an open set), generated
by the metric dD(q; q

0) = 0 if q = q0 and dD(q; q
0) = 1 if

q 6= q0. We denote the valuations of the union Q[X by
Q�X, which is given the product topology generated
by the metric d((q; x); (q0; x0)) = dD(q; q0) + kx � x0k.
We assume that a subset U of a topological space is
given the induced topology, and we use U to denote its
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closure, U o its interior, @U = U n U o its boundary, U c

its complement, jU j its cardinality, and P (U ) the set of
all subsets of U .

De�nition 1 (Hybrid Automaton)
A hybrid automatonH is a collection H = (Q, X, Init,
f , Dom, Reset), where

� Q is the �nite collection of discrete variables with
values in Q;

� X is the �nite collection of continuous variables
with values in X = Rn;

� Init � Q�X is the set of initial states;

� f : Q�X! TX is the vector �eld;

� Dom � Q�X is the domain of H;

� Reset : Q�X! P (Q�X) is the reset relation.

We refer to (q; x) 2 Q � X as the state of H. We
make the standing assumption that jQj <1 and that
f is Lipschitz continuous in its second argument. A
hybrid automaton can be represented by a directed
graph (Q; E), with vertices Q and edges E = f(q; q0) 2
Q �Q : 9x; x0 2 X; (q0; x0) 2 Reset(q; x)g: With each
vertex q 2 Q, we associate a set of continuous initial
states Init(q) = fx 2 X : (q; x) 2 Initg; a vector �eld
f(q; �), and a set D(q) = fx 2 X : (q; x) 2 Domg:
With each edge e = (q; q0) 2 E, we associate a guard
G(e) = fx 2 X : 9x0 2 X; (q0; x0) 2 Reset(q; x)g; and
a reset map R(e; x) = fx0 2 X : (q0; x0) 2 Reset(q; x)g:

De�nition 2 (Hybrid Time Trajectory)
A hybrid time trajectory � is a �nite or in�nite se-

quence of intervals fIigNi=0, such that

� Ii = [�i; � 0i ] for i < N , and, if N < 1, IN =
[�N ; � 0N ] or IN = [�N ; � 0N ),

� �i � � 0i = �i+1 for i � 0.

Hybrid time trajectories can extend to in�nity if � is
an in�nite sequence or if it is a �nite sequence ending
with an interval of the form [�N ;1). Since the hybrid
automaton is time invariant, we assume that �0 = 0.

For a hybrid time trajectory � = fIigNi=0, let h� i denote
the set f0; 1; : : :; Ng if N is �nite and f0; 1; : : :g if N
is in�nite. We use q and x to denote the time evolution
of the discrete and continuous state, respectively (with
a slight abuse of notation). Here q is a map from h� i to
Q and x = fxi : i 2 h� ig is a collection of C1 maps.
An execution is now de�ned as a triple � = (�; q; x) in
the following way.

De�nition 3 (Execution)
An execution of a hybrid automaton H is a collection
� = (�; q; x) with � being a hybrid time trajectory,
q : h� i ! Q a map, and x = fxi : i 2 h� ig a collection
of C1 maps xi : Ii ! D(q(i)), such that

� (q(0); x0(0)) 2 Init,

� for all t 2 Ii, _xi(t) = f
�
q(i); xi(t)

�
,

� for all i 2 h� i, e = (q(i); q(i + 1)) 2 E, xi(� 0i) 2
G(e), and xi+1(�i+1) 2 R(e; xi(� 0i)).

We say a hybrid automaton accepts an execution � or
not. The execution time T (�) is de�ned as T (�) =PN

i=0(�
0
i � �i) = � 0N , where N + 1 is the number

of intervals in the hybrid time trajectory. The argu-
ment � will sometimes be left out. An execution is
�nite if � is a �nite sequence ending with a com-
pact interval, it is called in�nite if � is either an in-
�nite sequence or if T (�) = 1, and it is called Zeno

if it is in�nite but T (�) < 1. The execution time
of a Zeno execution is called the Zeno time. We use
EH(q0; x0) to denote the set of all executions of H
with initial state (q0; x0) 2 Init, EMH (q0; x0) to de-
note the set of all maximal executions (i.e., executions
that are not strict pre�x of any other executions [9]),
and E1H (q0; x0) to denote the set of all in�nite exe-
cutions. We de�ne EH =

S
(q0;x0)2Init

EH (q0; x0) and

E1H =
S

(q0;x0)2Init
E1H (q0; x0). To simplify the nota-

tion, we will drop the subscript H whenever the au-
tomaton is clear from the context.

3 Existence and Uniqueness

The notation previously introduced gives a convenient
way to express existence and uniqueness of executions.

De�nition 4 (Non-Blocking)
A hybrid automatonH is non-blocking if E1H (q0; x0) is
non-empty for all (q0; x0) 2 Init.

De�nition 5 (Deterministic)
A hybrid automaton H is deterministic if EMH (q0; x0)
contains at most one element for all (q0; x0) 2 Init.

Note that if a hybrid automaton is both non-blocking
and deterministic, then it accepts a unique in�nite ex-
ecution for each initial state. In [9] conditions were es-
tablished that determine whether an automaton is non-
blocking and deterministic. These are reviewed next,
but �rst we need to introduce some more notation.

The set of states reachable by H is de�ned as

ReachH =f(q̂; x̂) 2 Q�X : 9� = (�; q; x) 2 EH ;�
q(N ); xN (� 0N )

�
= (q̂; x̂); N <1g:
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Note that ReachH � Init, since we may choose � 0N = �N
and N = 0. Let �(t; a) denote the conventional solution
to the di�erential equation _x = f(q; x) with x(0) =
a. The set of continuous states from which continuous
evolution is impossible when in discrete state q is then
given by

OutH =f(�q; �x) 2 Q�X : 8 � > 0; 9 t 2 [0; �);

(�q; �(t; �x)) =2 Domg;

Note that if Dom is an open set, then Out is simply
Domc. If Dom is closed, then Out may also contain
parts of the boundary of Dom. In [9] methods for com-
puting Out were proposed, under appropriate smooth-
ness assumptions on f and the boundary of Dom. As
before, we will use OutH(q) to denote the projection of
Out to discrete state q, and drop the subscript H when-
ever the automaton is clear from the context. With
these two pieces of notation one can show the following
two results [9]. The �rst gives a condition that guaran-
tees that there always exist in�nite executions.

Proposition 1 (Non-Blocking)
A (deterministic) hybrid automaton is non-blocking
if (and only if) for all (q; x) 2 Out \ Reach,
Reset(q; x) 6= ;.

Note that the condition is necessary and su�cient if
the hybrid automaton is deterministic. A condition for
determinism is given next.

Proposition 2 (Deterministic)
A hybrid automaton is deterministic if and only if
for all (q; x) 2 Reach, jReset(q; x)j � 1 and, if
Reset(q; x) 6= ;, then (q; x) 2 Out.

4 Continuous Dependence on Initial States

Continuity of solutions with respect to initial states
is a desirable property of many dynamical systems.
For a conventional continuous-time dynamical system,
a Lipschitz condition on the vector �eld guarantees this
property. For hybrid systems, however, it is not su�-
cient to require that the vector �eld in each discrete
state is Lipschitz continuous. In this section, we show
what extra assumptions that may be needed to guar-
antee continuous dependence on initial states. Conti-
nuity is interpreted in the metric d

�
(q; x); (q0; x0)

�
=

dD(q; q
0) + kx� x0k.

We study a particular class of hybrid automata, which
we refer to as having transverse domain. A hybrid au-
tomaton H is said to have transverse domain if there
exists a function � : Q�X! R continuously di�eren-
tiable in its second argument, such that

Dom= f(q; x) 2 Q�X : �(q; x) � 0g

and for all (q; x) with �(q; x) = 0, Lf�(q; x) 6= 0. Here
Lf� : Q�X! Rdenotes the Lie derivative of � along
f de�ned as Lf�(q; x) = @�=@x(q; x) � f(q; x). In other
words, an automaton has transverse domain if the set
Dom is closed, its boundary is di�erentiable, and the
vector �eld f is pointing either inside or outside of Dom
along the boundary. A hybrid automaton is called do-

main preserving if Reach � Dom, i.e., if the states re-
main in the closure of the domains along all executions.
The following example show a hybrid automaton that
has transverse domain and is domain preserving.

Example 1
Consider the hybrid automaton

� Q = fq1; q2g and X = R2;

� Init = fq1g �R
2;

� f(�; �) � (1; 0)T ;

� Dom= f(q1; x) : x1 � 0g [ f(q2; x) : x1 � 0g;

�

Reset(q; x1; x2)

=

8><
>:

(q2; x1; 1); if q = q1; x1 � 0; x2 > 0

(q2; x1; 0); if q = q1; x1 � 0; x2 � 0

;; otherwise:

It is easy to check (for example, by using Propositions 1
and 2) that the hybrid automaton is deterministic and
non-blocking, and has thus a unique in�nite execution
for every initial state. It shows, however, in general not
continuous dependence on the initial state as illustrated
next. Consider two executions � = (�; q; x) and �̂ =
(�̂ ; q̂; x̂) with initial states

�
q1; (0; 0)

�
and

�
q1; (0; �)

�
,

respectively. For every � > 0, it holds that for h� i =
h� 0i = f0; 1g, kx12(t) � x̂12(t̂)k = 1 for all t 2 I1 and
t̂ 2 Î1.

The reason for the absence of continuous dependence
in the example is of course due to the discontinuous
reset relation. The following theorem gives su�cient
conditions for continuous dependence on initial states
for a class of hybrid automata. The result is proved in
[17]. Some other work on continuity in hybrid systems
can be found in [4, 13].

Theorem 1
Consider a deterministic hybrid automaton H and as-
sume

� H has transverse domain and is domain preserv-
ing;

� for all q 2 Q, f(q; �) is C1;
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� for all e 2 E, R(e; �) is a continuous function;

� for all e = (q; q0) 2 E, G(e) \ D(q) is an open
subset of @D(q).

Consider a �nite execution � = (�; q; x) 2 EH(q0; x0)
with � = fIigNi=0. For every � > 0 there ex-
ists � > 0 such that for all (~q0; ~x0) 2 Init with
d((~q0; ~x0); (q0; x0)) < �, there exists T (~x0) > 0 such
that the execution ~� = (~� ; ~q; ~x) 2 EH(~q0; ~x0) with
~� = f~IigNi=0 and ~� 0N = T (~x0) satis�es

� jT (~�)� T (�)j < �;

� d((~q(N ); ~xN (~� 0N )); (q(N ); xN(� 0N ))) < �.

Remark 1
The result says that for a given execution �, any execu-
tion ~� starting close enough to � will stay close at the
end point with some appropriate execution time. Note
that for a given initial state and execution time, the ex-
ecution ~� is unique by assumption. Also note that it is
in general not possible to guarantee the same execution
time for ~� and �.

Remark 2
If there is only one discrete state and no reset relations,
the hybrid automaton, of course, de�nes a continuous
dynamical system. It is easy to see that all assumptions
are satis�ed for this case. By setting N = 0 and T (~�) =
T (�), we obtain the traditional result of continuous
dependence on initial states.

Note that Example 1 satis�es all conditions in Theo-
rem 1 except for the requirement on continuous reset
map. An example that violates the last assumption of
the theorem is the following.

Example 2
Consider the hybrid automaton

� Q = fq1; q2; q3g and X = R2;

� Init = fq1g �R2;

�

f(q; x) =

8><
>:

(1; 0)T ; if q = q1

(1; 1)T ; if q = q2

(1;�1)T ; if q = q3;

�

Dom = f(q1; x) : x1 � 0g

[ f(q2; x) : x2 � 0g [ f(q3; x) : x2 � 0g;

�

Reset(q; x)

=

8><
>:

(q2; x); if q = q1; x1 � 0; x2 � 0

(q3; x); if q = q1; x1 � 0; x2 < 0

;; otherwise:

Here G(q1; q2) \D(q1) = fx 2 R2 : x1 = 0; x2 � 0g,
which is hence not an open subset of @D(q1) = fx 2
R

2 : x1 = 0g, so Theorem 1 is not applicable. To see
that the hybrid automaton in general does not show
continuous dependence on the initial state, consider ini-
tial states in a neighborhood of

�
q1; (0; 0)

�
.

5 Zeno Hybrid Automata

Zeno hybrid automata accept executions with in�nitely
many discrete transitions within a �nite time interval.
Such systems are hard to analyze and simulate in a
way that gives constructive information about the be-
havior of the real system. It is therefore important to
be able to determine if a model is Zeno and in applica-
ble cases remove Zenoness. However, for models com-
posed of several hybrid subsystems, this is in general a
non-trivial task. These problems have been discussed
in [5, 6]. In this section, some further characteriza-
tion of Zeno executions is presented. First, we illustrate
Zenoness by an example of Alur and Henzinger [1].

Example 3
Consider the water tank system in Figure 1. Here xi
denotes the volume of water in Tank i, and vi > 0
denote the constant 
ow of water out of Tank i. Let
w denote the constant 
ow of water into the system,
directed exclusively to either Tank 1 or Tank 2 at
each point in time. The objective is to keep the wa-
ter volumes above r1 and r2, respectively (assuming
that x1(0) > r1 and x2(0) > r2). This is to be achieved
by a switched control strategy that switches the in
ow
to Tank 1 whenever x1 � r1 and to Tank 2 when-
ever x2 � r2. A hybrid automaton modeling the de-
scribed system is shown in Figure 1. It is straightfor-
ward to show that the unique in�nite execution the hy-
brid automaton accepts for each initial state is Zeno,
if maxfv1; v2g < w < v1 + v2. The Zeno time is�
x1(0) + x2(0) � r1 � r2

��
(v1 + v2 � w). Of course, a

real implementation of the water tank system cannot
be Zeno, but instead one or both of the tanks will drain.
The Zeno model does not capture this. The actual sce-
nario depends on the dynamics of the switch, which in
the model was assumed to be instantaneous.

For further discussions on this example, see [5].
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x1
x2r1 r2

v1 v2

w

q1 q2

x2 � r2

x1 � r1

x1 > r1 ^ x2 > r2 x1 > r1 ^ x2 > r2

_x1 = w � v1

_x2 = �v2
x2 � r2

_x1 = �v1
_x2 = w � v2

x1 � r1

Figure 1: Water tank system and corresponding hybrid

automaton.

De�nition 6 (Zeno Hybrid Automaton)
A hybrid automatonH is Zeno if there exists (q0; x0) 2
Init such that all executions in E1H (q0; x0) are Zeno.

We make a straightforward generalization from dynam-
ical systems and de�ne the ! limit point (q̂; x̂) 2 Q�X
of an execution � = (�; q; x) 2 E1H as a point for which
there exists a sequence f�ng1n=0, �n 2 Ini, ni 2 h� i
such that as n!1, �n ! T (�) and (q(ni); xni(�n))!
(q̂; x̂). The set of ! limit points is the ! limit set. When
the continuous part of the Zeno execution is bounded,
the Bolzano-Weierstrass Property implies that there
exists at least an ! limit point. We introduce the term
Zeno state for such a point.

De�nition 7 (Zeno State)
The ! limit point of a Zeno execution is called the Zeno
state.

We use Z1 � Q �X to denote the set of Zeno states,
so that Z1 is the ! limit set of the Zeno execution.
We write Q1 for the discrete part and X1 for the
continuous part of Z1.

For a Zeno execution, the Zeno set can be empty, �nite,
countable, or even uncountable, see [19] for examples.
Figure 2 shows a Zeno execution of the water tank hy-
brid automaton, for which Z1 = fq1; q2g � f0g. Note
that X1 is a point for this example. This holds in gen-
eral if the continuous part of the reset relation is the
identity map.

Proposition 3
Consider a hybrid automaton such that (q0; x0) 2
Reset(q; x) implies x0 = x. Then, for every Zeno ex-
ecution � = (�; q; x), it holds that jX1j = 1.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

Time

x1

x2

Figure 2: Continuous part of a Zeno execution for the

water tank hybrid automaton.

Note that Proposition 3 gives the structure of the
Zeno state for the large class of hybrid systems called
switched systems [11], since these systems can be mod-
eled as hybrid automata with identity reset relation.

A reset relation Reset is contracting, if there exists
� 2 [0; 1) such that (q0; x0) 2 Reset(q; x) and (q0; y0) 2
Reset(q; y) imply kx0 � y0k � �ky � xk. If the reset re-
lation is contracting and (q0; x0) 2 Reset(q; 0) implies
that x0 is the origin, then the continuous part of the
Zeno state is also the origin.

Proposition 4
Consider a Zeno hybrid automaton with contracting re-
set relation and such that (q0; x0) 2 Reset(q; 0) implies
x0 = 0. Then, for every Zeno execution � = (�; q; x), it
holds that X1 = f0g.

6 Conclusions

In this paper we have highlighted hybrid automata as
a tool for modeling heterogeneous systems. Important
properties of these systems, such as well-posedness, are
not immediate. In the paper, however, we reviewed
ongoing activities on establishing a formal framework
for analysis and design of hybrid systems modeled as
hybrid automata. Local conditions for existence and
uniqueness of executions were presented together with
a new result about continuous dependence on initial
states. We also illustrated some of the nature of Zeno
hybrid automata by characterizing Zeno executions for
a couple of quite broad classes of hybrid systems.

Ongoing work include the generalization of LaSalle's
principle to hybrid systems [18], geometric theory for
hybrid systems [12], and optimal control with applica-
tions to real-time scheduling.
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