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Applications of Fuzzy Neural Networks with
Nonlinear Consequences to System Identification

Jamahl W. Overstreet and Anthony Tzes

Abstract— The objective of this article is to formulate a
generic Fuzzy Logic Identifier (FLI) with a neural network
structure for identification purposes of nonlinear systems.
This FLI extends the current limited representation of fuzzy
models by modifying its consequence part as a ratio of poly-
nomials of the input variable. The weights of the premise
and consequence parts are tuned in an adaptive manner
based on the backpropagation algorithm. The suggested
scheme is applied in identifying the nonlinear aspects of fric-
tion in a dc—motor micromaneuvering system.

I. INTRODUCTION

Fuzzy logic (FL) is a tractable scheme for identification
of nonlinear systems with unknown dynamics. Several vari-
ations of FLI exist in the literature [1-5], where the tuning
the fuzzy parameters is based on ad hoc procedure suitable
for certain class of nonlinear systems.On the other hand,
FLIs can be implemented based on neural networks (NNs)
[6-10]. These NN-based FLIs are quite generic and the
designer can address the FLI's robustness and convergence
rate [6,11].

In order to alleviate some of the intricacies in the de-
fuzzyfication segment, the use of constant terms in the
consequence is adopted. This dictates the use of a large
number of rules for proper modeling of nonlinear systems.
As a trade-off between increasing the number of rules ver-
sus the complexity of the defuzzyfication part, FLIs with
primitive nonlinear consequence terms have appeared in
the literature [6,12-14].

The presented work extends the existing work on NN-
based FLIs with nonlinear consequence terms by adopting
a quite generic representation using ratio of polynomials
with respect to the input variable.

For testing purposes, the suggested scheme is applied to
the identification problem of the friction inherent in a dc-
motor micromaneuvering system [15-17].

This article is organized in the following manner. The
next section is devoted to the description of the structure
of the NN-based FLI. Section III is concerned with the
learning aspects of the FLI, while the appropriate modi-
fications for the aforementioned identification problem of
the de¢ motor friction is presented in section IV. Conclud-
ing remarks are presented in the last section.
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II. NEURAL NETWORK-BASED Fuzzy LOGIC
IDENTIFICATION

A NN-FLI system uses NNs to emulate its fuzzy rea-
soning [18,19]. Adaptive NN-FLIs are autonomous units
capable of: a) providing the expert rules for decision mak-
ing and b) self-tuning the membership functions (MFs) of
the utilized fuzzy sets via the training data. In the lit-
crature, several approaches have appeared to address the
tuning process of the parameters used in these adaptive
NN-FLIs [20-23], where NNs construct the MFs used in
the premise and consequence parts.

In this study, the used NN-FLI has a structure with a
typical structure appearing in Figure 1 for a system with
two independent input variables and a generic ratio of poly-
nomials used in the consequence part.

The NN-FLI implements the following set of rules, for
a system with two (1) inputs (outputs) and an nth (mth)
order numerator (denominator) polynomial

IF 2y is Ay; and 29 is Ay; THEN

ag; + ayjxry + ag 2 + agle + agriT2 + a51:5% + -+ aplxg
bo[ + buzl + bg[CEQ + b31I% + b41I1I2 + 651563 + -+ bqlCCgL

Yy is

where p (¢) and q is the cardinality of the numerator (de-
nominator) polynomial.

A. NN-FLI Consequence Structure

The NN-FLI consequence portion is composed of eight
layers. The first layer, Layer N, is constructed so that all
inputs can be multiplied by the next layer to the number
of powers required; Layer E assembles all the terms for the
polynomial in the numerator; Layer F combines the differ-
ent terms from Layer E and assembles the actual numer-
ator polynomial; Layer I assembles all the terms for the
denominator polynomial; Layer J combines the different
terms from Layer I and assembles the actual denominator
polynomial; Layer G connects the fuzzy rules with numer-
ator and denominator polynomials; while Layer H acts as
a defuzzifier for the output values.

The inputs and outputs of each layer appear in the se-
quel, where the following notation is used: IX and OX rep-
resents the xth input and output of a perceptron in Layer
X, respectively, W;;X symbolizes the weight that connects
the perceptron = in Layer X to the perceptron y in Layer
Y
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Fig. 1. Generic NN-FLI Structure in consequence, and h the number of outputs.
N Z WA ON — [N B. NN-FLI Premise Structure
— n n
E IeE =1, W£LNON oF —F The premise structure uses NNs with sigmoid activation
Foouf=5" W[EOE of =17 functions for approximating the applied MFs. A typical
Lof=T1, WINON ol =1f premise segment Wlt.h two inputs (a = 2), six (¢ = 6)
JoIl= ZI_ JI o! 07 = (17)71 distinct MFs, and nine combinations of fuzzy sets/rules
G IG WGDO WngFOfWg%JOf OG = Ié (d =9) is shown in Figure 2.
H Z WHGOG OH _IH Each MF is constructed by the addition/subtraction
g=1 " hg g h h

Where n is the highest degree amongst the numerator
and denominator polynomials (Layer E and Layer 1); a is
the number of independent inputs; e (¢) is the number of
terms in the numerator (denominator) polynomial; f the
number of rules in consequence; j = g the number of rules

and appropriate transition of sigmoid functions fs(x)
(I +exp(—x))” . In Figure 2, eight (b = 8) sigmoids are
used to construct the MFs. According to the notation
adopted in this figure, the function of each layer is the
following: Layer A is the “input” layer, layer B (C) is used
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to construct the sigmoid functions (MFs), and the right-
most layer D: a) defines the fuzzy rules through all possible
combinations of the MF's defined in layer C, and b) defuzzi-
fies the output of each premise through the application of
the “center of gravity” defuzzification algorithm. The in-
put/output relationships for each layer are:

A A=z, od =12

B _\4 BANHA B _ BB
B IP= Z%zl wgaod  Of = f.(WPIP)
c 1g =5, wgPop of=1f .

D _T17¢ DC HC D _ I
D Id - Hc:l Wdc OC Od - 4

Y 1F

where the weights W24 shift the MFs in the universe
of discourse, the W& weights adjust the MFs’ steepness,
and the outputs of layer C are the overall defined MFs
A, j=1,...,J, ¢ =1,...,1, where [ is the number
of independent variables, and J the number of fuzzy sets
applied to each particular input variable.

III. NN-FLI LEARNING

The parameters of the NN-based FLI that are adjusted
are: a) the W2, WB4 weights which affect the characteris-
tics of the MFs used in the premise part, and b) the Wf;E
and W;;I terms which correspond to the coefficients of the
polynomials used in the consequence part.

Throughout the learning process, attention must be paid
to the satisfaction of several constraints that affect the be-
havior of the FLI [24]. As an example, consideration must
be given to the output of layer J being the inverse of its
input (O;’ = (If)_l); precaution should be given to avoid
any division by zero. Other “constraints” related to the use
of sigmoids to approximate the MFs can be found in [24].

The classical error backpropagation learning scheme was
selected for tuning the aforementioned parameters. In this
supervised training mode, the weights are updated in the
form W' = W+ AW, where W’ (W) is the updated (cur-
rent) weight, and AW its incremental change. The weights’
change is aligned with the minimization of an error norm

function defined as F = %Zthl (th — O,J;I)Q7 where dff

is hth training signal corresponding to the output, Of.
The backpropagation algorithm (with the momentum-
term enhancement [25]) adjusts the incremental change at
time k as AW (k) = —n qu\,]:o a"VE(k—n)=-nVE(k)+
« Zﬁ;l AW (k—n), n,a > 0. The update laws for individ-
ual weights appear in the sequel, where for brevity, super-

scripts representing layer possessions have been removed,
(i.e, I « IX)

H G
Wi, = er—nf{ZZ(dh—Oh)Odoj}Oe (1)
h=1 g=1
T EL (dy — 0,)040
h — Yh d
wl, = Wﬂ+n,-{ZZ—I ’;}Oi (2)
h=1 g=1 (Zl:l Wjioi)
2 &L (dy — 01)0;0,T W W,
Wie = Wia—mpy » ——— et o ()
h=1 d=1 (:dc Zb:l WepOp + ‘I’d)
><Ob(1 — Ob)WbOa
T 2 N (dy = 01)0;0,T 4 W,
W= Wb—”bzzz h n)OsOlacVaWer

= B 2
h=1 d=1 a=1 (:dc > pey WebOp + ‘I’d)
XOp(1 — Op)WpaOa ,

where 'ye, Z4. and ¥, are multipliers that are func-
tions of O, and O4 [24] Tge = Tg(O.,O4), Zae =
Edc(Oc, Oq), ¥q = Wq(Oc,Oq).

IV. NN BASED FLI orF A DC -MOTOR EXPERIMENTAL
SETUP

The aforementioned NN-based FLI was applied for the
identification problem of the friction inherent in a dc-motor
experimental setup. The friction characteristic [26] relates
the applied voltage command V,, to the motor with the dc
motor’s angular velocity w. The system was excited with
a sinusoidal sweep signal

L
_ _ 2k
Va(t) = ?:0 ke { (t

w;
. 27k in 0 (t 1 )

— — sin (w; ult— ;

wi_1 i1 orkw; )’

the typical relationship given 2,500 observed data points
(Vu(0.1k),w(0.1k), k= 0,...,2499) from the experimental
setup [27] appears in Figure 3.

NN FLIs were trained with different MFs based on the
assumption of using the following fuzzy rules

) sin (wit)

Z?:o Qg (Vu)z , (5)

R :1f V, is Agep then w = po»
: ) j
im0 Qd i1 (Vi)

where an nth (mth) order numerator (denominator) poly-
nomial is used in the consequence part.

In this study, FLIs with different MFs (d = 2,3,4) and
polynomial configurations (n =0, ...,3, m = () were used
to identify the friction characteristics. The fuzzy neural
networks were trained in an off line manner over a set of
100,000 repeated training cycles.
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Fig. 3. DC-Motor Friction Characteristic

The graph of the error convergence vs. the training cy-
cle during the learning process of the FLI appears in Fig-
ure 4. In each case, the plotted error value corresponds
to S22 [w (KTs) — & (KT5)]?, where &; (kTs) is the kth
sample estimated system output during the jth—training
cycle. The results indicate that when the number of pa-
rameters that needs to be updated is increased (i.e., 3rd
order polynomial), the convergence rate is slower and the
converged value is smaller.
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Fig. 4. Error Convergence Curve for NN-FLI with 3 MFs
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The graph of the resulting MFs over their universe of
discourse after the 100,000th training cycle is shwon in Fig-
ure 5. The input’s universe of discourse for this experiment
was V,, € [—0.45,0.45]. In each sub-case the “converged”
graphs of all MFs are displayed, where it is shown that
while there is significant shift in the center of MF's its step-
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ness did not change considerably.
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For each sub-case, based on the resulting MFs and con-
sequence polynomials (after the 100,000th cycle), the plot
of the estimated friction relationship from the FNN-based
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model is provided in Figure 6.

Typical time-history plots (one for each sub-case) indi-
cating the resulting w(t),t € [35,80] sec (solid line) from
the NN-FLI model overlaid with the actual angular veloc-
ity w(t) (dashed line) from the de—motor are presented in
Figure 7.

08
06
04

0.2
V. CONCLUSION

08

0.6

0.4

0.2

A generic NN-based FLI was designed in this article.
This identifier extends the current results in the literature
by using an enhanced consequence part with ratio of poly-
nomials defined over the input variable. The identifier has a
NN-structure and the classical error backpropagation rou-
tine is used to adjust the parameters affecting the shape of
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Fig. 5. Aic1(Va), i =1,2,3 MF from NN-FLI Model



MED 2000 CONFERENCE

¢™=3n=1,m=0

¢,™=3n=0m=0 A

02 ~ 02 ~
! 7~
01 ‘ 01 {
{
3 0 3 0
-01 -01
-02 -02
-05 0 05 -05 0 05

0.2 : / 0.2 : 2
[}
0.1 / 0.1
3 0 )
-01 -01
!
-02 -02p ¢
-05 0 05 -05 0 05
vV Vv
a a

Fig. 6. @(V4) curve from NN-FLI model with 3 MFs

40 50 60 70 40 50 60 70
Patterns Patterns
n=2, m=0 n=3, m=0

40 50 60 70 40 50 60 70
Patterns Patterns

Fig. 7. Actual (w(t)) and 3MF-NNFLI output (&)

ot

the MFs and the coefficients of the polynomials. The sug-
gested scheme is applied in experimental studies for iden-
tifying the friction characteristics of a de-motor setup.
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