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Abstract. This paper describes a novel approach to map eledric fields using artificial
neural networks. The networks ads as an identifier of structural feaures of the high wltage
substations design so that output parameters can be estimated and generali sed from an input
parameter set. Simulation examples are presented to validate the proposed approach. More
spedficdly, the neural networks are used to compute dedricd fields intensity and criticad
voltage taking into acount several atmospheric and structural fadors, such as presaire,
temperature, humidity, distance between phases, height of the bus bars, and wave forms. A
comparative analysis with the finite dement method is also provided to ill ustrate this new

methodd ogy.
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1. INTRODUCTION

Brazl isthe largest tropicd country in the world and,
in consequence, one of the main countries in terms of
lightning adivity. About 100 milli on lightning strikes
occur every yea in almost all parts of the wurtry. In
conseguence there is the necessty of understanding
the lightning phenomenon intrinsicdly and evaluating
itsincidence

During the last yeas a grea improvement on lightning
protedion methoddogy has been made. In fad the
major step forward in this field is relevant to the
evaluation and identification of risk of damage due to
lightning related to the protedion of high woltage
substations [1,5,6].

On the other hand, the &ility of Artificial Neural
Network (ANN) on complex non-linea functions
redi sation makes it identify and estimate dedric fields
and its parametersin an attradive way.

An artificial neural network is a dynamic system that
consists in highly interconneded and parallel non-
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linea processng elements that shows extreme
efficiency in computation. The main benefits of using
ANNSs on lightning studies are the following; i-) the
ability of leaning and therefore generalisation; ii-) the
fadlity of implementation in hardware; iii-) the
cgpadty of mapping complex systems without
necessty of knowing the eventua mathematicd
models associated with them; iv-) the posshility of
time reduction involved with testsin laboratory.

This paper has three principal aims. The first one is
the most important objedive that suggests problems
about estimation of eledric fields. It can be dfedively
mapped by artificial neural networks. The second
objedive is to dfer an effedive method for
identification of lightning models. The third ojedive
is to ad the tests to simulate that have been made in
laboratories once the network is cgpable of simulating
redistic test scenario.

The paper has the mntents as following: In Sedion 2,
the eperimental procedures and simulations are
showed. In Sedion 3, the finite dement method is
used. In Sedion 4, the basic aspeds relative to
artificial neural networks are presented. Simulation
results are given in Sedion 5 to validate the developed



approach. In sedion 6, the key for this isae is
emphasised by drawing conclusions.

2. EXPERIMENTAL TECHNIQUES

The amospheric impulses that represents the lightning
in high wltage laboratory has been produced by an
impulse generator that consists essentially of a number
of cgpadtors which are diarged in paralel from a
direa voltage source and then discharged in series into
a drcuit which includes the test objed (bus bars).

The standard lightning impul se has been produced full
lightning impulse having a virtual front time of 1.2us
and avirtual time to half value of 50us.

At first, in the high wltage laboratory it was
experimentally determined the aiticd voltage (Vsoe)
for several eledricd distances between bus bars. As
soon as this procedure finished, the suppartable
voltage (V1gy), Was cdculated by:

Vims = Vs (1 - 1.30) 1

Where Vo, means the voltage with 90% of non-
occurrence of a disruptive discharge and o is the
standard deviation (3%).

The red atmospheric  conditions (presairre,
temperature, humidity, etc.) were measured in the
laboratory. These figures were stored to be used in the
training processof the neural network.

Fig.1 shows the asembling of the parallel bus bars ( A
and B).

Fig.1. Parall el bus bars

Where D, is the distance between phases, d; is the
distance of the dedric ac and H is the height of the
bus bar far from the ground.

On the paralée bus bars were gplied atmospheric
impulses of pasitive polarity in one side, having the
other side grounded. The V5o, potential for several

eledric distances and hus bars heights were
determined.

Fig.2 autlines the severa tests that took place in
laboratory.
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Fig.2. Profile of the aiticd voltage Vg, H =3m

It is esential to mention that this methoddogy is the
most used to determine the Vsq, even thoughit is a
expensive and slow procedure to achieve the Vg,

Besides that, it is also passble to estimate the Vs, by
using statistics. However, in this case the rate of
failureisvery high.

3. FINITE ELEMENT SIMULATIONS

In order to make use of the experimental results
presented in the last sedion, simulations were redised
by using the finite dement considering the structure &
it was rownin Fig. 1.

It was used an eledrostatic finite dement program to
get an initial approach regarding numericd analysis
athough this procedure represents a transient
behaviour. This approach was possble in sake of the
symmetricd structure.

Fig.3 shows the topdogy for the finite dement model.
Vq represents the goplied voltages, D is the distance
between the bus bars and H is the height far from the
ground (3 m). Zero pdential (V = 0) was imposed on
the whole boundary of the high woltage laboratory,
which means to consider V = 0 on the ground and
walls. This is the most criticd situation, becaise it
represents a more rapid variation in the gradient of the
potential, in comparison with non zero paential on the
walls.

As the distance between the bus bars are lessthan their
length, a 2D finite dement mesh could be used.

The simulations were done with finite dement meshes
of the 8561 nodes and 16400trianguar first order
elements.
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Fig.3. Topdogy for the finite dement analysis

Fig.4 and Fig.5 show the intensity of eledricd field in
the region between bus bars (A and B) for the
distances 1.30 and 175 meters and the voltages
450V, 55V and 65KV .
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Fig.4. Distance between the busbar : 1.30m
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Fig.5. Distance between the bus bar : 1.75m.

Observing Fig. 4 and Fig. 5, it was redised some
oscill ations caused by the interpolation problems,
which isafedured asped of the finite dement.

4. IDENTIFICATION
NETWORKS

WITH NEURAL

The motivation for use ax ANN is to speal up the
analysis or design of process sibstantially. The main

advantage of an ANN is in its ability to approximate
functional  relationships, particularly  non-linea
relationships [4].

The ANN, when presented with appropriate input and
output data related to a spedfic functiona
relationship, can adjust itself such that it can gve a
goodrepresentation of that relationship. Thisfedureis
particularly useful when the relationship is non-linea
and/or not well defined, and thus difficult to model by
conventional means.

ANNs were dso developed to mimic some of the
leaning processes of the human brain. In this paper,
feedforward ANNSs are used to map the relationships
between the variables associated with the process of
spedficaion (identificaion) on lightning studies.

The system identificaion is the determination, on the
basis of input and output, of a system within a
spedfied class of systems. The identification process
usually consists of two stages - model seledion and
parameter estimation. In neural networks, the seledion
of the neural architedure rresponds to the model
seledion stage.

In this paper, the seleded architecure is defined by a
feedforward ANN. The leaning algorithm used to
compute the weights of the network corresponds to the
parameter estimation.

A typicd feedforward ANN is depicted in Fig.6, with
“m” inputs and “p” outputs, and ead circle
representing a singe neuron. The name feedforward
implies that the flow is one way and there ae not
feedbadk paths between reurons. The output of eah
neuron from one layer is an input to ead neuron of the
next layer. Theinitial layer where the inputs come into
the ANN is cdled the input layer, and the last layer,
i.e., where the outputs come out of the ANN, is
denoted as the output layer. All other layers between
them are cdled hidden layer.

Hidden
Layer 1

Hidden
Layer 2

Input
Layer
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Fig.6. Typicd feaiforward ANN

Eadch reuron can be modelled as ghown in Fig.6, with
“n” being the number of inputs to the neuron.
Asociated with ead of the n inputs x is me



adjustable scdar weight, w; (i=1,2,...n), which
multiplies that input. In addition, an adjustable bias
value, b, can be alded to the summed scaed inputs.
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Fig.7. Single atificial neuron

These wmbined inputs are then fed into an adivation
function, which produces the output y of the neuron,
that is:

y=9() wix; +b) @)
i=1

wheregisasigmoid function g(u):(1+e'“)'1.

For network training was used the Levenberg-
Marquardt Algorithm [2,3].

5. SIMULATION RESULT S

In this ®dion, some simulations for the arangement
shown in Fig.l have been done. The genera
architecure of the neural system is $own in Fig.8.
This architedure is composed by two feedforward
networks.
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Fig.8. General architedure of the ANN

The first network (ANN-1) is responsible by the
computation of the aiticd voltage (Vsg). The
training data for ANN-1 were diredly obtained from
experimental values aaquired in  high \oltage
laboratory. It were used nealy three hundred training

vedors of Vsg, It is important to notice that this
network has taken into acount several atmospheric
and structural fadors.

Fig.9 shows the variation of Vsq, computed by ANN-1

when the temperature has been modified (25.0 °C to
25.3°C).
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Fig.9. Variation of Vsu, when the temperature has been
modified

It isimportant to mention that this kind of verificaion
is impossble to be ohserved through experimental
procedures.

The second network (ANN-2) is responsible by the
computation of the dedric field intensity between the
bus bars. For this network, the training data were
obtained by an eledrostatic finite dement method. It
was used around two thousand and five hurdred
training vedors.

Fig.10 ill ustrates the variation of the dedricd field
intensity with three different values of Vsg, computed
by ANN-2 (650kV, 550kV and 450kV).
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Fig.10. Variation of the dedricd field intensity

Asobserved in Fig.8, the ANN-1 output is provided as
an input parameter to the ANN-2. Therefore, all



atmospheric and structural fadors are dso taken into
acount to compute the dedric field intensity. Thisis
one of the main advantages related to the finite
element method approach. This procedure was
adopted to verify the sensitivity of the network and
also to set the limits and extreme @nditi ons to future
reseaches.

Fig.11 and Fig.12 compare the dedric field intensity
considering finite dement method and artificial neural
network (all eviated curve).

Fig.11 shows the dedric field intensity between the
bus bars (1.5m), and applied voltage of 550kV.
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Fig.11. Eledric field intensity

Fig.12 shows the dedric field intensity between the
bus bars (1.5m), and applied voltage of 650kV.
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Fig.12 Eledricfield intensity

Observing Fig. 11 and Fig. 12, it can be verified that
the network might get a good estimation eledric field

intensity. Besides that, the network was capable of
deaeasing the interpdation problems (oscill ations)
when compared to results provided by the finite
element method.

6. CONCLUSIONS

This paper has presented a novel methoddogy to map
eledric fields of high wltage substations using
artificial neural networks. The simulation results can
be useful in the daboration of new criteria, more
consistent and adequate, for on substations design.

Artificial neural networks were @nsidered within its
context of identification of high-voltage process The
training of the neural networks has been made using
data (atmospheric and structural fadors) from
experimental  simulations. After the training, the
network was been able to generalise novel inputs that
were not simulated in laboratory. This property all ows
to reduce the time spend with simulations in the
laboratories.

All these results evidence that problems involving
identification on eledric fields intensity can be
effedively mapped by artificial neural networks.
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