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Abstract. In this paper, a systematic connectionist controller design approach is

proposed to guarantee stability and desired performance of the robotic system for

compliant tasks by e�ectively combining genetic algorithms(GA) with neural classi-

�cation and neural learning control techniques. The e�ectiveness of the approach is

shown by using a simple and e�cient decimal and binary GA optimization procedures

to tune and optimize the performance of a neural classi�er and controller, together

with tuning of feedback controller.In order to demonstrate the e�ectiveness of the

proposed GA approach, some compliant motion simulation experiments with robotic

arm placed in contact with dynamic environment have been performed.

Keywords. Genetic algorithms, Neural networks, Learning Control, Robotics.

1. INTRODUCTION

The one of the most delicate problems in com-

pliant motion control of robots interacting with

the dynamic environment is the stability of both

desired motion and interaction forces. It is well

known, that beside uncertainties of robot dynamic

model, environment uncertainties also can have a

strong inuence on the quality of robot perfor-

mance.A multitude of various control approaches

, point to the stability of control task as a prob-

lem which is not yet satisfactorily solved, both

from the theoretical and the practical standpoint.

Without knowing a su�ciently accurate environ-

ment model it is not possible to determine, for

instance, nominal (desired) contact force. One ex-

cellent possible solution is to use enhanced learn-

ing concept for contact tasks. The second impor-

tant characteristic of contact tasks is their repeti-

tive nature which is very important for process of

learning by trial-and-error procedure. As solution

for the expressed problem, some researchers [5],

[2],[3] used the intelligent techniques for dynamic

environment identi�cation.

In this paper, a main idea is to enhance capabil-

ities of proposed connectionist control algorithm

for contact robot tasks [3], synthesizing the new

control algorithms based on genetic tuning of non-

learning control part (conventional force PI con-

troller) and learning control part (neural "o�-line"

classi�er and neural "on-line" controller). The are

few e�cient proposed GA methods with applica-

tion for di�erent special purposes in robotics [1],

[4]. We hereby proposed a systematic approach

to controller design approach for both closed-loop

stability and desired performance by using GA's

to tune the position and force feedback gains. The

GA utilized is selected to be of the decimal real

number type to achieve simple and e�cient com-

putational process. Two type of �tness functions

are considered for optimization of the controller

performance: integral of squared errors (ISE) and

integral time-multiplied absolute value of errors

(ITAE).

The main feature of proposed learning control part

is integration of two multilayer perceptrons with

previously mentioned control laws based on the

stabilization of the interaction force [3]). The �rst

proposed neural network plays the role of a robust

on-line learning controller needed to compensate

uncertainties of the dynamic model of manipula-

tion robots in contact with dynamic environment.

The second neural network performs the classi-

�cation of unknown parameters and structure of

environment. In order to improve convergence pro-

cess, e�cient GA is proposed in order to choose

the appropriate topology of the proposed multi

layer perceptron that performs neural classi�ca-

tion. Also, in order to improve the learning pro-

cess, GA optimization is used for determination of

weighting factors for the neural compensation of

robot dynamic model in on-line control algorithm.



2. BASIC NEURAL CONTROL LAW

2.1 Synthesis of Nonlearning Control Law

The dynamic model of the robot interacting with

the environment is described by a vector di�eren-

tial equation in the form:

H(q)�q + h(q; _q) + J
T (q)F = � (1)

where, q = q(t)�Rn are robot generalized coordi-

nates; H(q)�Rn�n is inertia matrix of the manipu-

lation mechanism; h(q; _q)�Rn is nonlinear function

of centrifugal, Coriolis and gravitational moments;

� = �(t)�Rn is input control vector; JT (q)�Rn�m

is Jacobian matrix; F = F (t)�Rm is vector of gen-

eralized forces and moments. In the frame of robot

joint coordinates, the model of environment dy-

namics can be presented in the form:

M(q)�q + L(q; _q) = S
T (q)F (2)

whereM(q)�Rn�n is a nonsingular matrix; L(q; _q)

�R
n is a nonlinear vector function; ST (q)�Rn�n is

the matrix with rank(S) = n.In practice it is more

appropriate to adopt the relationship de�ned by

speci�cation of the target impedance:

F =M
0��x+B

0� _x+K
0�x (3)

where

�x = x� x0 (4)

where x0�R
n denotes the coordinate vector in Carte-

sian coordinates of the point of contact between

the end-e�ector (tool) and a constraint surface.

The matricesM 0

; B
0

;K
0 de�ne the target impedance

which can be selected to correspond to various ob-

jectives of the given manipulation task.

In the case of contact with the environment, the

robot control task can be described as robot mo-

tion along a programmed trajectory qp(t), when a

desired force of interaction Fp(t) acts between the

robot and the environment. These two functions

must satisfy the following relation:

Fp(t) � f(qp(t); _qp(t); �qp(t)) (5)

The control algorithm based on stabilization of the

interaction force with a preset quality of transient

responses is considered, which has the following

form [6]:

�=H(q)M�1(q)[�L(q; _q) + S
T (q)F ] + h(q; _q)+

J
T (q)fFp �

tZ

t0

[KFP�(!)+KFI

tZ

t0

�(!)dt]d!g

(6)

where �(t)=F (t)�Fp(t);KFP�R
n�n - is the diag-

onal matrix of proportional force feedback gains;

KFI�R
n�n - is the diagonal matrix of integral

force feedback gains. Here , it has been assumed

that the interaction force in transient process sho-

uld behave according to the following di�erential

equation:

_�(t) = Q(�) (7)

Q(�) = �KFP��KFI

tZ

t0

�dt (8)

In this case, environment dynamics model has ex-

plicit inuence on the performance of contact con-

trol algorithm, also having inuence on PI force

local gains. It is clear that without knowing a suf-

�ciently accurate environment model it is not pos-

sible to determine the nominal contact force Fp(t).

Beside that, inexact model of environment dynam-

ics can signi�cantly inuence the contact task per-

formances. Hence, in our analysis, if the aim is to

obtain the same quality of force steady-state pro-

cesses for di�erent environments , the same force

performances can be achieved only by parameter

identi�cation of robot environment models, and

with equal �xed PI force local gains.

2.2 The Comprehensive Neural Control Law

The control algorithm presented in the previous

subsection does not work in a satisfactory way if

there is no su�ciently accurate information about

the type of robot environment and the parameters

of their models. Hence, in order to enhance con-

nectionist learning of general robot-environment

model, new method is proposed which main idea

is using comprehensive neural network approach

through o�-line learning process and on-line su�-

ciently exact classi�cation of robot dynamic envi-

ronment together with learning of dynamic robot

uncertainties. The �rst objective in application of

the learning compliance control algorithm is the

learning of robot dynamic model and compensa-

tion of robot model uncertainties. For this pur-

pose, the multilayer perceptron is used as a part

of non-learning control strategies mentioned be-

fore. In this case, "hybrid" approach based on the

multilayer perceptron and a priori known model

with imprecise values of matrix Ĥ(q) and vector

ĥ(q; _q) is used in the synthesis of learning control

law. In order to achieve good tracking performance

with the presence of model uncertainties, multi-

layer perceptron is integrated into non-learning

control law with desired quality of transient pro-

cess for interaction force:

P
NN = F1(w

NNab
jk ; qp; _qp; �qp; q; _q) (9)



� = Ĥ(q)M̂�1(q)[�L̂(q; _q)+ŜT (q)F ]+h(q; _q)+

J
T (q)fFp�

tZ

t0

[KFP�(!)+KFI

tZ

t0

�(!)dt]d!g

+PNN (10)

where F1 is a nonlinear mapping for the percep-

tron NN ; PNN is a compensation part of the

learning control law; wjk are weighting factors for

perceptron NN.

The neural network classi�er based on four-layer

perceptron is chosen for the purpose of classi�-

cation due to good generalization properties. Its

objective is to classify parameters of environment

in an on-line manner. Hence, application of con-

nectionist approach to this type of problems is di-

vided into two phases: �rst, related to the acquisi-

tion process and o�-line training of proposed neu-

ral network and, second, association phase, where

on-line learning control algorithms based on excel-

lent generalization properties of neural networks

must assure the necessary quality of the system

performances.

2.3 Acquisition Process of Neural Classi�er

- the First Phase

In the acquisition process of the �rst phase, based

on the real-time realization of proposed contact

control algorithm and using a previously chosen

set of di�erent working environments, force data

from force sensors are collected. In the case of the

compliance control algorithm with stabilizing in-

teraction force, for each chosen robot environment

and for the chosen contact control algorithm, val-

ues of normal force Fn(t) and error of normal force

(�Fn = Fn � Fnp, where Fnp is desired normal

force) in time instants (t); (t�1); (t�2) and (t�3)

are measured, calculated, and stored as special in-

put patterns for training of neural network. On the

other side, the acquisition process must be accom-

plished using various robot environments, start-

ing with the environment with a low level of sys-

tem characteristic (for example, with a low level of

environment sti�ness) and ending with the envi-

ronment with a high level of system characteristic

(with high level of environment sti�ness).

After that, during the extensive o�-line training

process, neural network receives a set of input-

output patterns, where input variables form a pre-

viously collected set of force data. As desired out-

put, neural network has a value between zero and

unity which exactly de�nes the type of training

robot environment. In our example, training of

neural network is accomplished with 5 di�erent

working environment. The input variables and tar-

get outputs for neural classi�er are shown in Table

1.

Table 1. Inputs and target outputs of

neural classi�er

Input data for classi�er Classi�er outputs

Fn(t) Styrofoam 0.00

�Fn(t) Silicon 0.25

�Fn(t � 1) Rubber 0.50

�Fn(t � 2) Plastic 0.75

�Fn(t � 3) Steel 1.00

2.4 On-Line Compliance Control Algorithm

- The Second Phase

For the control algorithm based on stabilization

of the interaction force with a preset quality of

transient process, the general impedance model of

robot environment (3) is chosen. Hence , after the

o�-line training process , on-line version of compli-

ance control algorithm with neural classi�er with

�xed weighting factors based on on-line force and

force errors inputs is given by the following rela-

tions for speci�ed environment model (3):

� =�H(q)M̂ 0

�1

(q)[B̂0 _q + K̂ 0q] + h(q; _q) +

(JT (q)�H(q)M̂ 0

�1

)fFp �

tZ

t0

[KFP�(!) +

KFI

tZ

t0

�(!)dt]d!g (11)

M̂ 0 = fM 0(y); B̂0 = fB0(y); K̂ 0 = fK0(y) (12)

where fM 0 ; fB0 ; fK0 are linear interpolation func-

tions for parameters of matrices M 0

; B
0

;K
0;

According to the similar principle, the same con-

dition for control law and all di�erent robot envi-

ronments is using the same local PI force gains. In

our case, parameters of dynamic models of di�er-

ent chosen environments M 0

; B
0

;K
0 are stored as

an information necessary for calculating the basic

control algorithm. In the case of the unknown en-

vironment, information from neural classi�er out-

put can be e�ciently utilized for calculation of

necessary environment parameters M 0

; B
0

;K
0 by

linear interpolation procedures.

3. GA OPTIMIZATION

3.1 GA Tuning of PI Force Feedback Gains

In order to further simpli�cation of genetic pro-

cess, the set of tuning force gains KFP and KFI

is reduce to single parameter !n, where !n is the

natural frequency of the second order linear sys-

tem de�ned by characteristic equations:



�i(!)+

!Z

!0

[KFPii�i(!)+KFIii

tZ

t0

�i(!)dt]d! =0

(13)

Previous forms of characteristic equations are equiv-

alent to the following equation:

��i + 2�!n _�i + !
2

n = 0 (14)

If we assume for second-order system that critical

damping (� = 1), feedback gains are given by

KFPii = 2!n; KFIii = !
2

n (15)

On this way, only natural frequency is chosen for

genetic tuning. The initial population of size N is

generated randomly to start the optimization pro-

cess. The total population of each generation is

evaluated using suitable chosen performance cri-

terion (ISE or ITAE). Reproduction as primary

genetic operator is based on using the best N=2

individuals of the current generation to be par-

ents for generating the next generation. Weighted-

average cross-over genetic operator based on deci-

mal numbers is applied [4]. From parents !n1 and

!n2, two new o�springs are reproduced by the fol-

lowing terms:

!
1

n = r � !n1 + (1� r) � !n2 (16)

!
2

n = (1� r) � !n1 + r � !n2 (17)

where r�(0; 1) is a random number. Mutation are

based on the following changes of natural frequency:

!
1

n = !n + (r � 0:5) � 2 ��!maxn (18)

where �!maxn is the maximum change of natural

frequency. The objective of the GA optimization

is to obtain better end-e�ector performance, i.e.

to �nd PI force feedback gains as fast as possible

with minimal oscillation and overshoot. The �t-

ness functions are de�ned according to following

equations:

ISE =

TZ

0

�
2(t)dt ITAE =

TZ

0

j t�2(t) j dt (19)

3.2 Improvement of Learning Process for

Neural Classi�er by GA Approach

One of the main design parameters related to net-

work topology is the number of neurons on each

hidden layer. In order to avoid heuristic selection

of number of neurons based on long-time simu-

lation experiments, a new approach to network

topology selection based on genetic algorithm. First

step in application of genetic algorithms is to set

a generation of initial population of possible net-

work topologies in a random way. In this case, it

is a previously determined number of pairs which

de�ne the number of neurons in the �rst and the

second hidden layer. For the second step, it is nec-

essary to convert the numeric values of number of

neurons in hidden layers to a binary representa-

tion (two 8-bit strings). The crucial point in GA

algorithm is the choice of �tness function. Our aim

is to choose a topology of neural network with the

minimum approximation error, i.e. we can use the

value of well-known mean square error criterion at

the end of previously de�ned learning epoch as a

quality information for search :

E
p(k) = 0:5

kX
i=1

j ŷp(k)� y
p(k) j2 (20)

where ŷ
p(k) is the target output of neural net-

work in learning epoch k; yp(k) is the real value

of network output in learning epoch k; Ep(k) is

the value of mean square criterion for one input-

output pattern p (p 2 P ) in learning epoch k; P

is the set of input-output pairs. Now, after neu-

ral network training, all strings in initial popu-

lation have their own �tness function. There are

many selection procedures, but in this case the

roulette wheel selection that chooses individuals

for reproduction according to their �tness func-

tion values is chosen . Due to the experience in

training of multilayer perceptrons, one limitation

in selection procedure is included, i.e. only pairs of

strings where number of neurons in the �rst hid-

den layer is greater than the number of neurons in

the second hidden layer are ready for reproduction

purposes. In order to improve the search process,

the following two genetic operators (crossover and

mutation) are applied with some limitations. Uni-

form crossover , which swaps each column in chro-

mosome representation having the same proba-

bility is chosen. In order to avoid great changes

in numerical representation of the proposed prob-

lem and the proper nature of the search problem,

the second operator mutation is limited only to

�ve lower bits of each string. Now the complete

new population is generated, which is converted

into numerical representation after decoding pro-

cess , and which is ready for evaluation of its �t-

ness function through neural network training pro-

cess with a new network topology. The process is

stopped when the desired value of �tness function

is achieved. In similar way, GA solution based on

binary representation is applied for determination

of weights of the second neural network for com-

pensation of robot uncertainties.



4. SIMULATION EXPERIMENTS

For demonstrating the performance of contact con-

trol schemes with GA tuning of general controller

and neural elements, compliance control imple-

mentations are simulated using robot MANUTEC

r3 in contact with various models of robot environ-

ment. Complete parameters of robotic system and

robotic task are given in [3].To investigate the ef-

fect of GA optimization procedure for tuning of

PI local force gains, simulation experiments were

conducted with initial appropriate set of PI local

force gains. It is necessary to specify range of con-

troller parameter( natural frequency). Including

the maximal torque value given by actuator lim-

its, we obtain the range of the natural frequency

(0 < !n � 32).
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Fig. 1. Best force feedback gains KFP and KFI
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Fig. 2. Best values of ISE and ITAE criterion dur-

ing evaluation process

In the simulation, the population size of each gen-

eration is set to be N=40. The maximummutation

values for �!maxn = 0:5 The evaluation process is

terminated when the change of �tness function is

small in a certain number of successive genera-

tions. The results of GA optimization procedure

are shown on the Fig. 1 and 2.It is obvious that

better performance (corresponding to smaller val-

ues of the �tness functions) will be obtained with

the progression of GA process. Based on previous

GA optimization, PI force gains are synthesized

using the same system frequencies for all di�er-

ent working environments (!n = 11:86Hz.). In

the phase of connectionist o�-line training, the ef-

�cient genetic algorithm is used in order to select

the optimal topology of neural network. The ini-

tial population of 8 pairs of possible topology so-

lutions is given and 3 successive generations are

simulated. The following genetic parameters are

chosen: crossover probability pcros = 0:3 and mu-

tation probability pmut = 0:03. As example, the

whole evaluation process is shown in the table 2.

Using this procedure, the following optimal net-

work topology is selected: 6-50-20-1 (50 neurons

in �rst hidden layer, 20 neurons in second hidden

layer). The results in table show the betterment

process of �tness function, i.e. convergence to op-

timal solution for number of neurons in hidden

layers. Using GA adopted network topology and

the learning process, training process is achieved

with stored weighting factors. In the generaliza-

tion test, the "o�-line learned" and GA tuned neu-

ral classi�er is included in control algorithm for

the recognition of unknown robot environment.

The second neural network also tuned by GA for

uncertainty compensation use the same learning

rules and parameters as in the case of o�-line neu-

ral network. The pro�le model of environment us-

ing general impedance model with additional sti�-

ness members is adopted. In this case, the robot

environment with dominant sti�ness K 0

22
= 50000

N=m is selected. The neural classi�er based on in-

put force data generates output of network which

de�nes the other necessary parameters of the con-

trol law. For comparison, the example of applica-

tion of learning control laws with and without ex-

act information of environment sti�ness are given

in Fig. 3. It is clear that in the case when there are

no exact information about robot environment,

the quality of performance is poor.
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Fig. 3. Force error - comparison with and without

neural classi�er



Table 2. GA evaluation process for topology of neural classi�er

INIT.POPUL.

N0. PAIR HROM.-PAR. F.FUN.-PAR. DIST.

1 12-15 0000110000001111 0.412 0.112

2 18-17 0001001000010001 0.403 0.110

3 16-20 0001000000010100 0.484 0.132

4 26-28 0001101000011100 0.460 0.126

5 25-16 0001100100010000 0.480 0.131

6 13-11 0000110100001011 0.497 0.136

7 12-24 0000110000011000 0.439 0.120

8 28-28 0000111000011100 0.478 0.130

MinFF=0.403 MaxFF=0.497 AveFF=0.456 SumFF=3.655

GENER.N0.1

N0. PAIR HROM.-CHI. F.FUN.-CHI.

1 56-28 0011100000011100 0.489

2 16-20 0001000000010100 0.484

3 29-16 0001110100010000 0.384

4 25-16 0001100100010000 0.480

5 13-11 0000110100001011 0.497

6 13-11 0000110100001011 0.497

7 25-16 0001100100010000 0.480

8 28-28 0001110000011100 0.478

EXP.SELECT. 0.901 0.883 1.059 1.008 1.050 1.089 0.960 1.046

SELECTION 43856648

N0.OF CROSS. 15 NO.OF MUTAT. 2

MinFF=0.384 MaxFF=0.497 AveFF=0.473 SumFF=3.791

GENER.NO.2

N0. PAIR HROM.-CHI. F.FUN.-CHI.

1 50-20 0011001000010100 0.497

2 16-20 0001000000010100 0.484

3 25-8 0001100100001000 0.456

4 13-11 0000110100001011 0.497

5 13-11 0000110100001011 0.497

6 13-11 0000110100001011 0.497

7 16-20 0001000000010100 0.484

8 16-20 0001000000010100 0.484

EXP.SELECT. 1.032 1.021 0.810 1.012 1.050 1.050 1.012 1.008

SELECTION 21756627

N0.OF CROSS. 15 NO.OF MUTAT. 2

MinFF=0.456 MaxFF=0.497 AveFF=0.487 SumFF=3.900

5. CONCLUSIONS

This paper presents a new GA approach for robot

learning compliance control in order to guarantee

stability and desired performance of the robotic

system. Some e�cient genetic algorithms with bi-

nary and decimal representation are applied for

optimization of the performance of a neural clas-

si�er and controller, together with tuning of non-

learning feedback controller. The simulation re-

sults demonstrate the e�ectiveness of the proposed

new GA-neural control approach.
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