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 I.   INTRODUCTION    
  
 The nature of control problems of great current interest is highly complex, 
nonlinear, stochastic, time-varying, and partially known at best. The difficulties of control 
design are compounded further because the control goals and control laws may not be 
completely defined either because they are not known at design time or because they 
change unexpectedly [1 - 11]. 
 As such, the modern control engineering design problems to be solved are highly 
complex, large-scale, and computationally intractable. Their practical solution requires 
system/algorithms that are: a) adaptive, in order to cope with significant unmodeled and 
unanticipated changes in the plant, in the environment and in the control objectives; b) 
learning, in order to increase its knowledge of the plant and its environment; and c) 
intelligent and autonomous. Moreover, the resulting intelligent controls must be realizable 
in decentralized/parallel/distributed processing implementations. Indeed, for the complex 
control problems of today, the modular, parallel/distributed processing architectures are 
absolutely necessary in order to meet, at reasonable cost, the time-processing constraints 
imposed by the complexity of the applications. 
 The design of optimal controls, especially for large-scale, complex applications, 
depends integrally on the model of the physical problem. Indeed, the model constitutes the 
vital link between the “physical” problem in which the optimal control will be used, and the 
mathematical realm in which it must be designed. The effectiveness, and applicability of 
the designed system depends strongly on the realism with which the associated 
mathematical model represents the underlying “physical problem. However, the more 
realistic the model, the greater its complexity, and consequently the greater the difficulty of 
the associated control design problem, and the greater is the difficulty in implementing the 
designed control. The difficulties are compounded further by the fact that as the model 
realism increases so does the ignorance of the model. In most applications, complete 
knowledge of complex models is neither available nor readily forthcoming and one is 
confronted with the design of an optimal control in the face of incomplete model 



 

 

knowledge. To fully account for this model uncertainty, necessitates increasing the model 
complexity even more, e.g. augmenting the state-vector with the unknown parameter vector 
(for parametric model uncertainty), thus substantially increasing the effective 
dimensionality and complexity, e.g. nonlinearity, of the problem. 
 The classical approaches to the control design problem have been to assume the 
model, whether complex or drastically reduced, to be known, and to proceed with the 
design, if it is computationally feasible, bearing the consequences of practically 
unrealizable  controls if the model is complex, or the consequences of ineffective controls if 
the model complexity is reduced unrealistically. Furthermore, the classical approaches do 
not confront the problem of unmodeled, and unanticipated changes in the plant, in the 
environment, and in the control objectives. They do not posses the “intelligence”, 
adaptivity, and learning capacities. As such they are not autonomous. For example, they are 
neither capable of failure detection and identification, nor of altering their control laws to 
conform to unanticipated changes in the control goals. 
 In the late sixties and early seventies, Lainiotis [2 - 8] introduced the multi-model 
partitioning (MMP) methodology for the design of adaptive/intelligent systems and with his 
collaborators [4 – 8] applied it to the design of adaptive controls. In contrast to previous 
approaches, the multi-model (MMP) methodology addresses all of the above mentioned 
requirements for effective intelligent/adaptive/learning controls with decision-making 
capacities, and with computationally attractive modular/parallel/distributed processing 
architectures. The MMP controls have been successfully applied to numerous important 
applications in the last 30 years. 
 
II.   MULTI MODEL PARTITIONING (MMP) METHODLOGY: STRUCTURE 
AND RATIONALE 
 
 In contrast to previous approaches, the MMP methodology, Lainiotis [2 - 11], and 
Lainiotis et al [4 - 8] does not confront the complex model nor does it approximate it by a 
single simpler model of reduced complexity and much reduces realism. Instead it 
decomposes (partitions) the control problem into a set of control subproblems, the optimal 
or suboptimal controls of which are far easier to derive, and most importantly, they are far 
easier to implement. Specifically the multi-model partitioning approach consists of the 
selection of a parameter vector θ of the model (plant, environment etc.) each value of which 
specifies a particular realization of the complex model. As such, the admissible values of θ 
constitute a set of possible sub-models of the original complex model. This gives rise to the 
multi-model name for this decomposition or partitioning. The submodels may be chosen 
around a possible/probable operating point (set-point), e.g. flight condition of an aircraft, 
physiological state of a patient, operating point of a chemical reactor, a failure condition, 
etc., etc. 
 Moreover, following the Bayesian viewpoint the choice of a particular value θi of θ 
is random with a-priori probability P(θi) consistent with the stochastic nature of the original 
complex model. The probabilities P(θi) incorporate/represent the “relative” likelihood or 
frequency of this set-point (probability of occurrence) or reflect the relative 
significance/importance of this set-point, e.g. stall condition for an aircraft, critical 
condition of a patient, etc. 
 Conditioning on this pivotal parameter vector θ, the original complex, large-scale 



 

 

control problem is decomposed/partitioned into a set of control design subproblems, each 
corresponding to an admissible parameter-conditional model. 
 Given the above rationale the MMP adaptive/intelligent control proposed by 
Lainiotis [2 - 11] is as follows: 
 MMP  Adaptive/Intelligent  Control: 
 Given the performance index J the measurements λk = {z1, z2, z3, … ,zk}where zi = 
z(ti), the set of N submodels Mi each corresponding to the value θi of θ, and the a-posteriori 
probability P(θi / k), i=1, 2, … , N, the MMP adaptive/intelligent control/ (MAIC) uk is 
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where 
 

)k(ûi  = is the optimal or approximately optimal control corresponding  (matched) to the 

ith submodel Mi           
 
P(θi / k) = the weight P(θi / k) is the a-posteriori probability of θi given the  measurements of 

λk. It is a measure of how likely it is that the particular value θi corresponds to the 
sub-model that generated the measurements λk. 

 
 It must be noted that the weights P(θi / k) have the following properties: 
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III.  MAIC STRUCTURE AND RELATED ADVANTAGES 
 
 Several remarks on the nature, structure, realization and related significant 
advantages of the multi-model, adaptive/intelligent control (MAIC) are given below: 

 i) Note that the MAIC is given as the weighted-sum of the model-conditional or 
elemental controls )k(ûi , each of which is matched to a particular submodel Mi specified 

by parameter value θi, and is weighed by the a-posteriori probability P(θi/k) of the “true” or 
most appropriate submodel being specified by θi. Thus, the MAIC is 
decomposed/partitioned into a set of elemental controls which are moreover decoupled 
from each other. In this sense the MAIC is an approximation of the desired but inaccessible 
optimal nonlinear adaptive control via a set of elemental controls. 

 ii) The MAIC, given as the weighted-sum of the decoupled elemental controls, has a 
natural modular structure capable of parallel/distributed processing. This architecture 
makes the MAIC exceptionally fast and thus able to meet the heavy real-time processing 
requirements of complex, large-scale control applications. 



 

 

 iii) The modular structure of the MAIC has significant computational advantages. 
Namely the large-scale, complex, nonlinear, stochastic control is represented approximately 
by a set of decoupled, much smaller-size, much less complex, e.g. linear instead o 
nonlinear, elemental controls. 

 For example, for the optimal adaptive control problem with linear model of state-
vector dimensionality n, and unknown parameter vector θ of dimensionality r, augmenting 
the state-vector with θ, we are confronted with a nonlinear model of dimensionality n+r, 
e.g. for n = 10, n+r could be as high as 310. So the control problem to be dealt with in the 
non-partitioning framework is: a) nonlinear: and b) of dimensionality 320. However, if we 
use the multi-model partitioning methodology we have to deal only with 310 elemental 
control problems which are: a) linear, and  b) of dimensionality 10!!! 

 iv) The modular structure of the MAIC gives it exceptional ease in design, since the 
elemental controls are decoupled, much simpler to design than the original large-scale 
complex nonlinear control, and in many application, they are of identical structure differing 
only parametrically. Moreover, because of these significant properties, the MAIC are also 
readily implementable, in many cases in terms of the similar building blocks, namely the 
elemental controls. 

IV. MAIC: EVOLUTIONARY NATURE AND RELATED ADVANTAGES 

 The second building block of the MAIC consists of the weights P(θi / k) namely the 
a-posteriori probabilities. These probabilities encompass several important properties and 
consequent advantages of the MAIC. Namely, these advantages are: 
i) Learning: extensive simulations by several researchers [2 – 8, 12 – 14, 17 - 19] has 
shown that for time-invariant unknown parameter vectors θ, the a-posteriori probability for 
the submodel equal to the correct submodel generating the data converges to one, while the 
remaining a-posteriori probabilities converge to zero. In other words, the MAIC learns the 
true model and 
 

)k(û)k(u i→ where model true*
i ==θθ  

 
 Moreover, if the “true” model is not included in the set of submodels, then the a-
posteriori probability, for the submodel Mi closest to the “true” model converges to one, 
while the remaining a-posteriori probabilities converge to zero. Namely, the MAIC 
converges to the elemental control corresponding to the submodel Mi with parameter value 
θi closest in the euclidean sense, to the “true” submodel parameter value θ* . 
 
 ii) Adaptivity; for time-varying parameter vector θ, extensive simulations by 
Lainiotis et al [2 -11], have shown that the MAIC adapts to the time-varying parameters, 
namely it tracks their time-evolution by using essentially evolutionary/genetic algorithms 
first proposed by Lainiotis [2 - 11], and utilized by Lainiotis et al [4 - 8] 
 
 iii) Failure Robustness: the MAIC is very robust to failures in the plant, 
measurement system, even to an elementar control. This can be seen readily if one models a 



 

 

failure as an abrupt change in the parameter vector θ, which as was indicated above can be 
tracked by the MAIC. 
 
 iv) Fault Detection and Correction: the MAIC has a built-in failure detection and 
correction capability, because of its weighted sum structure, and the “learning” property of 
the a-posteriori probabilities. For example, if a failure occurs in the elemental control  ui(k), 
the corresponding probability P(θi / k) approaches zero, which indicates a failure, and, 
moreover, the elemental control   )k(ûi  is removed from ui(k), which constitutes a 

correction 
 
 v) Intelligence:  in view of the above important properties of the MAIC, namely: 
adaptivity, learning, self-monitoring, fault-detection and correction (decision capability, 
and corrective action) and the consequent autonomy, the MAIC can be considered and 
intelligent system. 
 
V.   MAIC PERFORMANCE AND APPLICATIONS 
   
 The critical question concerning the usefulness and applicability of the MAIC is its 
performance: especially in comparison to competing controls. Extensive simulations [2 – 8, 
12 – 14, 17 - 19] and applications to various engineering, biomedical, economic, etc. 
problems have shown that the MAIC performs very well, and certainly better than 
competing controls, Lainiotis et al [2 –8, 12], Saridis [19], Watanbe [18],etc. 
 The MAIC has been extensively utilized in practical engineering, biomedical, 
economic applications such as chemical process control, autopilots, ship control, economic 
stabilization, blood pressure control, etc, etc [12 - 14]. 
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