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Abstract. This paper addresses the stochastic modeling and impact as-
sessment of scheduled maintenance actions on the reliability of electric rail
vehicles, the latter expressed in terms of recorded Times Between Failures
(TBFs). The study is based upon historical time series data from the Athens
Electric Railways and intervention analysis within a novel non-stationary
Functional Series modeling framework, which allows for the modeling, scheduled
maintenance impact assessment, analysis, as well as failure time prediction. The
results of the study indicate that intervention models incorporating scheduled
maintenance effects are significantly better than their unaccounting counterparts.
Furthermore, the statistical significance of the maintenance effects is demon-

strated, and reliability prediction is shown to be feasible.
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1 INTRODUCTION

In repairable systems the failure process, which
may be expressed in terms of the series of
Times Between Failures (TBFs), is expected to
be affected by major repairs and maintenance
actions and policies. The stochastic modeling
and assessment of these relationships may be
an important tool for evaluating maintenance
policies and designing future actions.

In the context of stochastic point processes [12],
a unit is mainly supposed to be in either a GAN
(Good As New) or BAO (Bad As Old) post-
maintenance state, while maintenance policies
depend heavily on the underlying assumptions

of the stochastic process modeling the pattern of
system failures [1, 9, 5].

Time series modeling has been shown to provide
a proper framework for eflectively describing
the stochastic dependencies present in reliability
(such as TBF) series [13, 11], and may be thus
used for reliability modeling, maintenance impact
assessment through the introduction of proper
explanatory variables, underlying data structure
analysis, as well as prediction.

Within such a time series context, explanatory
variables have been considered in studies such
as Singpurwalla [10], which investigates the
interrelationships between a series of operating



times and a series of maintenance (down) times
for a complex system using transfer function
and cross spectral analysis, Khoshgoftaar et
al.  [6], which investigates the incorporation
of explanatory variables (program complexity
measures) within a software quality model using
ARIMAX (Integrated AutoRegressive Moving
Average with eXogenous inputs) models [3],
and Okogbaa and Peng [8], which uses a time
series intervention analysis methodology for
preventive/predictive maintenance management
of multiunit systems.

The aim of the present study is the stochastic
modeling and impact assessment of the scheduled
maintenance actions on system reliability. The
study is based upon the paradigm of electric rail
vehicle reliability using retrospective series of
times (km traveled) between failures (TBFs) for
vehicles of the Athens Electric Railways, along
with the corresponding scheduled maintenance
records. 'The approach used is based upon a
novel non-stationary Functional Series (FS) time
series framework [11] within which the scheduled
maintenance actions are treated as deterministic
interventions [4].

The study constitutes an extension of the work
reported in Stavropoulos and Fassois [11] on
non-stationary Functional Series type reliability
modeling, focusing on the following specific
objectives: (a) Stochastic modeling and impact
assessment of the scheduled maintenance actions
on system reliability; (b) critical comparison with
stochastic reliability modeling via representations
that do not account for maintenance actions;
and, (¢) model-based TBF series analysis and
prediction.

2 THE FUNCTIONAL SERIES
MODELING FRAMEWORK

The Functional Series framework postulates mod-
eling via non-stationary Functional Series (FS)
Time-dependent AutoRegressive Moving Aver-
age (TARMA) models, which are presently aug-
mented with an exogenous excitation part (the
corresponding models are refereed to as TAR-
MAX) in order to account for the presence of
the deterministic intervention representing main-
tenance actions. TARMAX models are of the
conventional ARMAX form, but with parameters

being explicit functions of time, that is,
A(B,t)- Y, = B(B,t) - X;_n, + C(B,1)-W; (1)

with ¢ > ¢, indicating discrete time (presently
failure number), £, the starting time, Y¥; the non-
stationary reliability (TBF) series modeled, X;
the exogenous excitation (intervention variable),
and W, an innovations (uncorrelated) sequence
with zero mean and possibly varying variance.
ng represents the time delay between the in-
tervention variable and Y, and A(B,t), B(B,t)
and C(B,t) the time-dependent AutoRegressive
(AR), eXogenous (X), and Moving Average (MA)
polynomials of orders n,, ny, and n., respectively,

ABH) 21+ ar(t) - B+ oo+ an, (t) - B™  (2)

B(B,t) 2 bo(t) + b1(t) - B+ ... + by, (t) - B™ (3)
CBA) 21+ c1(t)-B+....+ e (t)- B (4)

with B indicating the backshift operator (B -Y;
= )/15*1)7 and Qn, (t) 7é 07 b’ﬂb(t) 7é 07 C’ﬂc(t) 7é 07

for some t > t,.

Series TARMAX  mod-
parameters belong to a
subspace spanned by the

{G1(1), G2(t), ... Gp(D)},
joai - Gi(t) (1

bi(t) Sh1bij - Gy(t) (0

ci(t) Shoicij - Gy(t) (1 <i<mng)

with the corresponding model being referred to
as TARMAX(nq, 1y, Ne)p.

In  Functional
els the model
p-dimensional
basis  functions

a; (t)

e e e

The identification of the intervention (TAR-
MAX) model (1) is based upon the modeling
framework of Ben Mrad et al. [2], which accounts
for parameter estimation as well as functional
basis dimensionality, basis function, and model
order selection. During identification each
reliability and intervention series is divided into
two disjoint parts: The first is used for model
estimation (estimation set), whereas the latter is
reserved for model validation (validation set).

Parameter estimation is achieved via the
Polynomial-Algebraic (P-A) method, followed by
Prediction Error (PE) refinement [2]. Model se-
lection is based upon minimization of the Resid-
ual (prediction error) Sum of Squares (RSS)
and the Akaike Information Criterion (AIC) [7,
p. 419]. The final acceptance of the selected
model depends upon successful validation, which
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Figure 1: (a) TBF series A; (b) scheduled main-
tenance intervention series.

is based upon the a-posteriori examination of
the zero-mean, stationarity, and uncorrelatedness
hypotheses for the model residuals, as well as
upon examination of the model’s predictive per-
formance within the validation set.

3 RAIL VEHICLE RELIABILITY
MODELING

Two retrospective series (series A and B) of Times
(km traveled) Between Failures (TBFs) for vehi-
cles of the Athens Electric Railways, along with
their corresponding intervention series formed
from scheduled maintenance actions, are exam-
ined. Each intervention series (X;) is formed us-
ing an indicator variable which takes the value
of 0 or 1 depending upon whether a scheduled
maintenance action did not or did, respectively,
precede the t — th failure.

3.1 TBF Series A Modeling

The electrical failures of a rail vehicle, incurred
between January 1995 and December 1999,
are included in the 92-sample-long series A
(Figure 1a). The corresponding intervention

Table 1: AIC and RSS/SSS in the estimation and
validation sets for selected models (series A; min-
imal values in boldface).

RSS/SSS
Model AIC  Estim. Valid.
x1073 (%) (%)
TARX(1,0)3 cheb  1.365 48.79 64.63
TARX(0,1)3 cos 1.365 48.54 67.80
TARX(1,0)3 sin 1.367  49.93  75.66
TAR(2)3 cheb 1.410 84.40  91.75
TARMA(1,1)3 cos  1.411 85.29  90.76
TARMA(1,1)3 sin  1.407 81.29  85.10

(maintenance) series is shown in Figure 1b.
The first 80 samples constitute the estimation
set, while the latter 12 samples the validation set.

A preliminary analysis analogous to that in
Stavropoulos and Fassois [11] confirms the series
non-stationarity. Subsequently, TAR/TARMA
models of various orders, functional subspaces
consisting of Chebyshev II polynomials or
sine/cosine functions, and basis dimensionalities
of p = 2 or 3, are fitted to the constant-mean-
corrected TBF series A. The number of estimated
parameters is maintained less than 8, in order
to ensure a Samples Per Parameter (SPP) value
greater than 10.

Candidate models are examined in terms of their
achieved RSS/SSS (Residual Sum of Squares
normalized by the mean-corrected Series Sum of
Squares) and AIC values within the estimation
set. The best candidate TAR/TARMA models
are, for different fumctional bases, shown in
Table 1 (lower part).

In order to assess the effects of scheduled main-
tenance on the failure process, TARX(nq,7s)p
intervention models with various functional
subspaces are fitted to the TBF — sched-
The time delay ng is
set to zero to allow for possibly immediate effects.

uled maintenance data.

The functional subspaces of the AR part of the
examined intervention models are identical to
those used in their TARMA counterparts, while
different subspaces are used in the intervention
(exogenous) part.

Candidate intervention models are examined in
terms of their achieved RSS/SSS and AIC values
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Figure 2: TBF series A: Exogenous (intervention)
coefficients of projection for the TARX(1,0)3
model (95% confidence intervals).
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Figure 3: Actual TBF series A (—o—) and
the Chebyshev TARX(1,0)3 model-based 1-step-
ahead predictions (—x—).

within the estimation set. Certain candidate
TARX models are shown in Table 1 (upper part),
from which a TARX(1,0)3 model characterized
by Chebyshev II functional subspaces is selected
as best. The AR functional basis of this model
consists of the Oth, 17th, and 36th Chebyshev
II polynomials, whereas the X functional basis
consists of the Oth, 45th, and 69th polynomials.
The model is successfully validated by confirming
residual stationarity and uncorrelatedness.

From the results of Table 1 it is obvious that the
model prediction performance is substantially
improved when the scheduled maintenance is
taken into account. This is confirmed by all
criteria, since the Chebyshev TARX(1,0)3 model
attains minimum AIC and RSS/SSS values in
both the estimation and validation sets (it should
be noticed that the achieved RSS/SSS values
within the estimation set are almost half of those
attained by models not accounting for scheduled
maintenance).

The impact of maintenance actions on the failure
process is formally confirmed by examining the
statistical significance of the coeflicients of pro-
jection of the exogenous polynomial of the model,
which are all different from zero at the o = 0.05
level (Figure 2). Tt is also worth mentioning that
attempts to increase the exogenous order did not
improve the modeling effectiveness when judged
from the AIC point of view.

The Chebyshev TARX(1,0)3 model based 1-step-
ahead predictions are, along with the actual TBF
values, presented in Figure 3 for the latter half of
the data record (estimation and validation sets).
The predictions tend to follow the actual TBF se-
ries, although the larger deviations are generally
difficult to predict.

3.2 TBF Series B Modeling

The electrical failures of a different rail vehicle,
also incurred between January 1995 and Decem-
ber 1999, are included in the 97-sample-long
series B (Figure 4a). The corresponding interven-
tion (maintenance) series is shown in Figure 4b.
The first 80 samples constitute the estimation
set, while the latter 17 samples the validation set.

A preliminary analysis, analogous to that in
Stavropoulos and Fassois [11], confirms the
series non-stationarity, and the TAR/TARMA
modeling procedure leads to the best candidate
models indicated in Table 2.

In a manner analogous to that of case A, TARX
intervention models are also fitted to the TBF —
scheduled maintenance data. The AR functional
subspaces are identical to those used in their
TARMA counterparts, while different subspaces
are used in the intervention (exogenous) part.

Candidate TARX models are shown in Table
2, from which a sine TARX(2,1); model [ba-
sis functions of the AR part are G1(t) = 1,
Ga(t) = sin(282L) and G3(t) = sin(535L); basis
functions of the exogenous part are G1(t) = 1,

Go(t) = sin(3) and Gi(t) = sin(3F)] is
selected as best. The model is succesfully
validated by confirming residual stationarity and

uncorrelatedness.

As in case A, the inclusion of the scheduled main-
tenance leads to substantially better predictive
performance from both the AIC and RSS/SSS
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Table 2: AIC and RSS/SSS in the estimation and
25 validation sets for selected models (series B; min-
£l imal values in boldface).
F RSS/SSS
£ Model AIC  Estim. Valid.
g «103 (%) (%)
< s TARX(2,1)3 sin 1.344 37.55 64.71
, TARX(3,0)3 cheb  1.355  43.77  65.21
0 10 20 30 40 50 60 70 80 90 TAR(2)3 sin 1.390 7714 66.86
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Figure 4: (a) TBF series B; (b) scheduled main-
tenance intervention series.

viewpoints (again, the achieved RSS/SSS values
within the estimation set are almost half of those
attained by models not accounting for scheduled
maintenance).

The impact of maintenance actions on the failure
process is formally confirmed by examining
the statistical significance of the coeflicients of
projection of the exogenous polynomial of the
model, several of which are different from zero at
the oo = 0.05 level (Figure 5). In contrast to case
A, the first order exogenous polynomial indicates
a prolonged effect of scheduled maintenance on
the failure process.

The sine TARX(2,1)3 model based 1-step-ahead
predictions are, along with the actual TBF
values, presented in Figure 6 for the latter half of
the data record (estimation and validation sets).

4 CONCLUDING REMARKS

(a) The non-stationarity and serial correlation
structure present in the TBF series of two
Athens Electric Railways vehicles has been

bO01 b02 b03 b1l bl2 b3

Figure 5: TBF series B: Exogenous (intervention)
coefficients of projection for the TARX(2,1)3
model (95% confidence intervals).

effectively modeled via non-stationary Func-
tional Series TARMA modeling,

(b) The Functional Series intervention (TARX)
models proved to be effective in modeling the
TBF series and their corresponding sched-
uled maintenance. The intervention (exoge-
nous) polynomial was of order n, = 0 or 1,
and of a functional subspace different from
that of the AR part. The latter charac-
teristic may indicate the decomposition of
the failure process into two “parallel” sub-
processes, each one with each own “internal
structure”: a scheduled maintenance subpro-
cess and a degradation subprocess. In addi-
tion, the confirmation of a zero time delay
(ng = 0) between the intervention and the
TBF series indicates the “immediate” impact
of the former on the latter.

(c) The Functional Series intervention (TARX)
models accounting for scheduled mainte-
nance were shown to be superior to their
unaccounting (TAR/TARMA) counterparts
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Figure 6: Actual TBF series A (—o—) and the
sine TARX(2,1)s model-based 1-step-ahead pre-
dictions (—x—).

from both the RSS/SSS and AIC view-
points; an indirect, though clear, indication
of the scheduled maintenance significance.
Especially worthwhile is the fact that their
achieved RSS are (within the estimation set)
of values about half of those attained by the
latter models.

(d) The impact of the scheduled maintenance
was formally confirmed by assessing the sta-
tistical significance of the intervention (ex-
ogenous) coefficients of projection at the o =
0.05 level.
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