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Abstract. This paper describes an application of the block control and variable structure
control techniques to form a stabilizing controller for an synchronous generator. This combined
approach enables the inherent nonlinearities of the generator to be compensated and high level
external disturbances to be rejected. Also, the control system utilizes a nonlinear observer for
estimation of the mechanical torque and rotor fluxes.
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1. INTRODUCTION

A fundamental problem in the design of feedback
controllers is that of stabilizing and achieving a
specified transient performance in the presence of
disturbances. This paper deals with excitation control
of a single synchronous machine connected to an
infinite bus, Fig. 1.
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Fig1. Single machine-infinite bus system

The control schemes of synchronous machines are
commonly based on reduced order linearized model
and classical control algorithms that ensure asymptotic
stability of the equilibrium point under small
perturbations. Recently, to overcome the limitation of
linear control, attention has been focused on

implementation of the feedback linearization (FL)
technique to provide larger stability margins.

Originally FL was applied to the reduced third order
plant model [1-4]. In [5], it has been shown however
that the effects of unmodeled stator and rotor electrical
dynamics cannot be neglected since they affect the
electromechanical dynamics. The detailed 7-th order
model of synchronous machine has been considered,
and a nonlinear controller using this model has been
designed in [6]. The proposed nonlinear control law is
a function of all plant parameters and disturbances. In
practice some of these parameters are subjected to
variations as a result of a change in the system loading
and/or in the system configuration. Since the detailed
model is so involved a direct use of the FL technique
results in a computationally expensive control
algorithm.

In this paper we shall resort to the block control [7] and
variable structure control techniques [8] which
overcome most of these problems: they are simple,
computationally low demanding, and take into account
structural constraints of the controller. The main
feature of the proposed control are robustness to
disturbances and plant parameter variations.



The paper is organized as follows. Section 2 reviews
the model of the synchronous machine. In Section 3 the
block control technique is applied to design a nonlinear
sliding surface, and a variable structure control strategy
ensuring stability of the sliding mode is proposed.
Section 4 presents a nonlinear observer design. Section
5 discusses simulation results.

2. GENERATOR MODEL

We are going to consider the single machine infinite-
bus system taking into account a three-phase
synchronous machine including both field and damper
windings effects introduced by three rotor circuits. The
complete mathematical description includes also the
swing equation given by [5],
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where δ  is the power angle of the generator; sω  is the

rated synchronous speed, H is the inertia constant; mT

is the mechanical torque applied to the shaft; and eT  is

the electrical torque. After Park’s transformation, the
electrical dynamic using currents as the state variables,
can be expressed as follows:
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di  and qi  are the direct-axis and quadrature-axis stator

currents; fi  is the field current; kdi , kqi  and gi  are

the direct-axis and quadrature-axis damper windings
currents; ω  is the angular velocity; dV  and qV  are the

direct-axis and quadrature-axis terminal voltages; fV

is the excitation control input; sR  and fR  are the

stator and field resistances; gR , kdR  and kqR  are the

damper windings resistances; dL  and qL  are the

direct-axis and quadrature-axis self-inductances; fL  is

the rotor self-inductance; kdL  and kqL  are the direct-

axis and quadrature-axis damper windings self-
inductances; mdL  and mqL  are the direct-axis and

quadrature-axis magnetizing inductances.

The torque eT  can be expressed in terms of the currents

as follows:
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The equilibrium equation for the external network of
the synchronous machine connected to an infinite bus
can be written as
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where: dV  and qV  are d and q terminal voltages; ∞V

is the value of the infinite-bus voltage; eL , eR  are the

transformer plus transmission line resistance and
inductance. It is more suitable the representation of the
electrical dynamics in terms of the stator currents di

and qi , the field flux fψ  and the rotor fluxes, kdψ ,

kqψ  and gψ . This can be obtained from (3) using the

following transformation between fluxes and currents:

iL% 0=                                                                       (6)
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Here all the state variables as well as the parameters of
the model (1)-(6) are expressed in per unit.
Combining equations (1) to (5) and using relationship
(6), the complete model of the generator is presented in
the nonlinear state-space form:
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3b  and 7b  are positive constants depending on the

generator parameters sR , fR , gR , kdR , kqR , eR ,

dL , qL , kdL , kqL , mdL , mqL , eL  and ∞V . The

mechanical torque mT  it is assumed to be a slowly

varying function of time. Thus:

0=mT�                                                                         (8)

It is assumed that the terminal voltage gV , the speed

2x  and the stator currents 7x  and 8x  are available for

measurement, and that the control input )(tu  should be

bounded by

fmVtu ≤)(                                                                  (9)

where fmV  is the maximum value of the excitation

voltage.

3. CONTROL LAW DESIGN

The sliding mode controller design will be divided into
two steps. First, exploring the block control technique a
sliding surface will be formed. Then, a discontinuous
control law will be designed to make attractive this
surface.

The control goal is to make the angle 1x  be equal to a

reference signal refδ , and the speed 2x  be equal to the

rated synchronous speed sω . In accordance with the

block control technique [9], 1z  is set to

refxz δ−= 11                                                           (10)

and 2x  can be rewritten as a function of 1z  and a new

variable 2z :
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where 01 >k . Using (10) and (11), the first two

equations of (7) in terms of new variables become
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Now, we propose the control switching function s
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Therefore, a sliding mode motion on the surface 0=s
is described by the following second order linear
system
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with desired eigenvalues 1k−  and 2k− .

Note that from 01 =z  and 02 =z  it follows refx δ=1

and refsx δω �+=2 . Therefore, the control goal

requires refδ  be a constant. Thus, refδ�  and refδ��  will

be taken as zero in (12).

The switching function design has been outlined. Now
a control will be investigated. Projection of the system
motion on subspace 0=s  can be written as
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and )(tbs  is a positive function for 0≥t . Now,

considering the bound (9), a control strategy can be
proposed by

)(sign sVu fm−=                                                       (15)

The sliding mode condition existence for discontinuous
control (15) gives [8]
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where equ  is the equivalent control calculated from

0=s� , resulting
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so that the values of s and s�  have opposite signs and
the state reaches the sliding surface 0=s  after a finite
time interval. Once this is achieved, the sliding motion
is governed by the linear system (13) corresponding to
the linearized mechanical dynamics of the closed-loop
system.

A crucial property of the sliding mode control (15)
when applied to (7) is that, it yields the invariant

subspace },)0,0,(�{ 5
21 Rx T

ss ∈= x  where
Tszz ),,(� 21= . The dynamic of 2x  on this invariant

subspace is referred to as the zero dynamics. To derive
this dynamics, the equivalent control equ  (17) must be

substituted in the second subsystem of (7):
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where mapping ϕ  is defined by (11) and (12). Finally,

the vector �  is zeroed, thus:
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An equilibrium point for this system is defined by refδ

and the value of the mechanical torque mT . Simulation

results show that this equilibrium point is
asymptotically stable (see Section 5).

4. FLUXES OBSERVER DESIGN

As stated previously, we consider the speed )(2 tx  and

stator currents )(7 tx  and )(8 tx  as measured signals,

and the remaining state variables ix , 6,...,3=i  and

mechanical torque mT  can be estimated by means of

the nonlinear observer proposed as

)(ˆˆˆ

)(ˆˆˆ

)(ˆˆˆ

)18()(ˆˆˆ

)ˆ(ˆ

)ˆ(ˆ)()(ˆ)(

ˆ)(ˆ)(ˆ)(ˆ

868666464

757555353

848646444

737535333

222

22187686726

582547243823

6

5

4

3

2

txaxaxax

txaxaxax

txaxaxax

utxaxaxax

xxlT

xxlTatxtxaxtxa

xtxaxtxaxtxax

m

mm

−−=

−−=

−+−=

+−+−=

−=

−++−+

−+−=

�

�

�

�

�

�

where: ix̂ , ,6,...,2=i  and mT̂  are the estimated

variables; 1l  and 2l  are observer gains. The stability of

observer (22) may now be analyzed by examining the
following error dynamics equation:
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The nonlinear observer (18) can be seen as a linear
system with time varying parameters when the
variables )(7 tx  and )(8 tx  are assumed known

functions. It is easy to see that the spectrum of the
block matrix )(tA  (19) consists of the eigenvalues of

diagonal blocks 11A  and 22A . The eigenvalues of

11A  can be assigned by appropriate choice of observer

gains 1l  and 2l .  The matrix 22A  is Hurwitz since its

eigenvalues:
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are real and negative. The parameters of )(12 tA  and its

derivatives are bounded, therefore, the linear system
with time varying parameters (19) is asymptotically
stable. The resulting estimates ix̂ , 6,...,2=i and mx̂

are employed in the control law (15) and (17).

5. SIMULATION RESULTS

This section presents some simulation results,
emphasizing the effectiveness of the previously
designed sliding mode controller. The performance of

the proposed controller was tested on the complete th8
order model of the generator connected to an infinite
bus through a transmission line, Fig.1.

The parameters of the synchronous machine and
transmission system, all in p.u., except where indicated,
are:

003.0=sR , 021.0=fR , 725.0=gR ,

714.10=kdR , 929.8=kqR , 05.0=eR , 81.1=dL ,

76.1=qL , 831.1=kdL , 735.1=kqL , 66.1=mdL ,

61.1=mqL , 1.0=eL , .sec525.3=H  and
1377 −= sradsω .

Setting 9463.0=mT  and 1=∞V , the steady state is

computed and presented in Table 1.

Table 1. Steady State

)(1 ∞x )(2 ∞x )(3 ∞x )(4 ∞x
1.3314 376.99 0.82038 -0.79228

)(5 ∞x )(6 ∞x )(7 ∞x )(8 ∞x
0.62594 -0.79247 0.80354 0.49319

The controller gains were adjusted to 1k =7 and

2k =15, and the observer gains were chosen as 1l =200

and 2l =187, resulting in the eigenvalues

10021 == λλ . The remaining observer eigenvalues

were calculated using (24) and (25) as 123.03 −=λ ,

922.334 −=λ , 883.05 −=λ  and 179.166 −=λ .

Figures 2 and 3 depict results under three different
events: a) simulation begins not from the equilibrium
point; b) in t = 2 s, Tm experienced a pulse for 0.5 s; and
c) in t = 4 s, a three-phase short circuit for a period of
150 ms is simulated at the transformer terminals.

Fig. 2 reveals some important aspects. 1) State
variables hastily reach a steady state condition (see
Table 1) after small and large disturbances, exhibiting
the stability of the closed-loop system. 2) The
estimated signals are closely related to the actual ones,
exhibiting a robust performance of the observer. 3) The
terminal voltage recovers their steady state value after
the short circuit.

Fig.3 depicts the same simulation as before but
considering that the value of parameter Lmd experiences
an increment of 20%, so introducing parameter
uncertainties. We can observe that the estimated
variables converge to an steady state defined by the
new value of Lmd, but the steady state of the outputs,
namely δ  and genV  is invariant to observer one.

6. CONCLUSIONS

A sliding mode controller is proposed exhibiting robust
stability and performance when the plant experiences
small and large disturbances. The inclusion of an
external load torque and the simulation of a short
circuit demonstrate the capability of the controller in
rejecting bounded disturbances.

The design process, including analysis of stability, is
discussed. The formulation employed makes easy to
design a nonlinear observer that exhibits a good
performance.
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