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Abstract

The problem of minimum-time reachability for timed

automata is: given an automaton, and initial state q0
and a target state qf , �nd whether a run from q0 to

qf exists, and if yes, a minimum time run. We show

that this problem can be solved by examining acyclic

paths in a forward reachability graph generated on-the-


y from the timed automaton. Based on this result, we

then propose three algorithms with di�erent complex-

ities.

1 Introduction

Given a timed automaton A, an initial state q0, and a

target state qf , we are interested in the minimum-time

reachability problem:

Is there a run of A starting from some state in

q0 and ending to some state in qf ? If so, �nd

such a run which consumes minimum-time.

This problem is useful for a number of applications,

including the computation of optimal (minimum-time)

schedulers for batch-plants [NY00].

In [AM99], a solution to this problem (as well as the

more general minimum-time controller-synthesis prob-

lem) is presented. The solution uses a backward �x-

point computation, which might unnecessarily explore

unreachable states. Backward reachability is also un-

desirable in case the system is not a \pure" timed au-

tomaton (only control states and clocks) but also con-

tains discrete variables (e.g., booleans and bounded in-

tegers)1, which is the typical case. This motivates a

study for algorithms based on forward reachability. In

this paper, we present three such algorithms, which are

based on the so-called simulation graph.

The basic result of our paper is that cycles in the

simulation graph need not be examined when �nding

minimum-time runs. More precisely, Theorem 1 (see

section 3) states that if a run from q0 to qf exists,

then there exists a minimum-time run from q0 to qf ,

�Verimag.
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1For example, the successor of state s after setting discrete

variable i := 5 is a single state s
0. On the other hand, there are

as many predecessors of a state s with respect to i := 5 as the

domain of i.

that does not traverse the same node in the simulation

graph twice. We note that this property does not hold

at the timed-automata level. For example, in the au-

tomaton of �gure 1, there is a run along a1 a2 c b1 b2
which is shorter than any run along a1 a2 b1 b2.

Based on Theorem 1, we propose three algorithms to

solve the minimum-time reachability problem for timed

automata: (1) an algorithm using a backward Bellman-

Ford iteration on the simulation graph (the advantage

over the �xpoint computation is �rst, that the number

of iterations here is bounded by the maximal length of

a path reaching a target node in the simulation graph,

and second, that only reachable states are considered);

(2) an algorithmwhich uses an additional clock to keep

track of the minimum time to the target and updates

this time on-the-
y; (3) an algorithm using binary it-

eration on the upper bound to the target.

All three algorithms have worst-case complexity

which is worse than polynomial in the size of the sim-

ulation graph. It remains to be seen how well these

algorithms perform in practice. An open question also

remains: is this the best we can do ? We are mostly

interested in the complexity of the problem in the size

of the simulation graph, rather than in the size of

the automaton. For the latter, it is well-known that

reachability is PSPACE-complete [ACD93], therefore,

minimum-time reachability is PSPACE-hard. In prac-

tice, however, the simulation graph has been proven

a reasonable-size structure to work with. Reachabil-

ity is linear in the size of the simulation graph, but it

remains to be seen if minimum-time reachability can

also be solved in polynomial time in the size of the

simulation graph.

The output of the algorithms is a path in the sim-

ulation graph. From this path, a concrete run of the

automaton can be obtained using the techniques de-

scribed in [Tri99].

The paper is organized as follows. Section 2 gives

the background on timed automata (can be safely

skipped). In section 3 we present the simulation graph

and prove our main theorem. This section introduces

some important properties of the simulation graph in

terms of relation between sets of states (zones) and

timing constraints, which may be relevant for proving

statements in more general settings. In section 4 we

give the algorithms. Section 5 concludes.

1



b2a1

c

a2 b1

y := 0

x := 0 y := 0
z := 0

x � 2
y � 1

z � 3

Figure 1: Loops can help in gaining time.

2 Background

2.1 Clocks and Polyhedra

Clocks and valuations. Let R be the set of non-

negative reals and X = fx1; :::; xng be a set of variables

in R, called clocks. An X -valuation is a function v :

X 7! R. We write 0 for the valuation that assigns

zero to all clocks. For some X � X , v[X := 0] is

the valuation v0, such that 8x 2 X : v0(x) = 0 and

8x 62 X : v0(x) = v(x). For every � 2 R, v + � (resp.

v��) is a valuation such that for all x 2 X , (v+�)(x) =

v(x) + � (resp. (v � �)(x) = v(x) � �). Given c 2 N,

two valuations v and v0 are called c-equivalent if:

� for any clock x, either v(x) = v0(x), or v(x) > c

and v0(x) > c;

� for any pair of clocks x; y, either v(x) � v(y) =

v0(x) � v0(y), or jv(x) � v(y)j > c and jv0(x) �

v0(y)j > c.

Polyhedra. An atomic constraint on X is an expres-

sion of the form x � c or x � y � c, where x; y 2 X ,

�2 f�;�g and c 2 N. An X -valuation v satis�es the

constraint x � c if v(x) � c; v satis�es x � y � c if

v(x)� v(y) � c.

An X -hyperplane is a set of valuations satisfying an

atomic clock constraint. The class HX of X -polyhedra

is de�ned as the smallest subset of 2R
X

which contains

all X -hyperplanes and is closed under set union, inter-

section and complementation.

We often use the following notation for polyhedra:

we write x � 5 for the hyperplane de�ned by the con-

straint x � 5, x � 5^y = 2 for the polyhedron de�ned

as the intersection of x � 5 and y = 2, and so on. We

also write true for RX , false for ; and zero for f0g.

A polyhedron Z is called convex if for all v1;v2 2 Z,

for any 0 < � < 1, �v1 + (1� �)v2 2 Z. A polyhedron

is convex i� it can be de�ned as the intersection of a

�nite number of hyperplanes.

A (convex) X -polyhedron is an X -box if it is de�ned

as the intersection of hyperplanes of the form x � c,

x 2 X , �2 f�;�g and c 2 N.

Operations on polyhedra. By de�nition, intersec-

tion, union and complementation are well-de�ned op-

erations on polyhedra. Polyhedra di�erence is de�ned

via complementation as: Z1 n Z2 = Z1 \ Z2. The test

for inclusion Z1 � Z2 is equivalent to Z1 nZ2 = ;. We

now de�ne some more operations which will be used

in the sequel. Examples of operations are shown in

�gure 2.

c-closure. This operation is necessary for guarantee-

ing termination of the reachability algorithms. Given a

convexX -polyhedron Z and a natural constant c, the c-

closure of Z, denoted close(Z; c), is the greatest convex

X -polyhedron Z
0 � Z, such that for all v0 2 Z

0 there

exists v 2 Z such that v and v0 are c-equivalent. In-

tuitively, Z0 is obtained by Z by \ignoring" all bounds

which involve constants greater than c. Z is said to be

c-closed if close(Z; c) = Z.

Lemma 1 1. If Z is c-closed then it is c
0
-closed, for

any c
0
> c.

2. If Z1 and Z2 are c-closed then Z1 \ Z2 is also c-

closed.

3. For any Z, there exists a constant c such that Z

is c-closed.

From now on, cmax (Z) will denote the smallest con-

stant c such that Z is c-closed.

Lemma 2 For any constant c, there is a �nite number

of c-closed X -polyhedra.

Clock resets. We de�ne the operations Z[Y := 0]

and [Y := 0]Z of forward and backward clock reset ,

respectively, as follows:

Z[Y := 0]
def
= fv[Y := 0] j v 2 Zg

[Y := 0]Z
def
= fv j v[Y := 0] 2 Zg

Intuitively, Z[Y := 0] contains all valuations which

can be obtained from some valuation in Z by reset-

ting clocks in Y . It contains all valuations which, after

resetting clocks in Y , yield a valuation in Z.

Time elapse. We de�ne the operations of backward

and forward time elapse of an X -polyhedron Z to be
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the X -polyhedra.Z and%Z, respectively, such that:

v0 2 .Z i� 9� 2 R : v0 + � 2 Z

v0 2 %Z i� 9� 2 R : v0 � � 2 Z

Projection. Given an X -polyhedron Z and Y � X ,

Z=Y is de�ned to be the Y-polyhedron Z0 = fv0 j 9v 2

Z : 8y 2 Y : v0(y) = v(y)g.

Preservation of convexity. The following result is

easy to derive from the de�nitions.

Lemma 3 If Z is convex and Y � X then Z[Y := 0],

[Y := 0]Z, .Z, %Z and Z=Y are also convex.

E�ective representation. Convex X -polyhedra

can be e�ectively represented as a di�erence bound

matrix (DBM) [Dil89]. Semantic operations on poly-

hedra can be implemented as syntactic DBM trans-

formations. The cost of these operations is at most

O(k3), where k is the number of clocks. A non-

convex polyhedron Z is the union of k convex polyhe-

dra Z = Z1[� � �[Zk. Therefore, Z can be represented

(in a non-canonical way) as a list of k DBMs, one for

each polyhedron Z1; :::; Zk.

2.2 Timed Automata

A timed automaton (TA) [ACD93, HNSY94] is a tuple

A = (X ; Q;E), where:

� X is a �nite set of clocks.

� Q is a �nite set of discrete states.

� E is a �nite set of jumps of the form a =

(q; Z;X; q0). q; q
0 2 Q are the source and target

discrete states. Z is a conjunction of atomic con-

straints on X de�ning an X -box, called the guard

of e. X � X is a set of clocks to be reset on the

jump.

Given a discrete state q, we write in(q) (resp. out(q))

for the set of jumps of the form ( ; ; ; q) (resp.

(q; ; ; )).

cmax (A) is de�ned as the maximum of cmax (Z),

where Z is a guard of A.

A state ofA is a pair (q;v), where q 2 Q is a location,

and v is a valuation. Two states (q;v1) and (q;v2) are

c-equivalent if v1 and v2 are c-equivalent.

Consider a state s = (q;v). We write s + � instead

of (q;v + �). A timed transition from s has the form

s
�
! s + �, where � 2 R. s + � is called the �-successor

of s. Given a jump a = (q; Z;X; q0) such that v 2 Z,

a discrete transition with respect to a has the form

s
a
! s

0, where s
0 = (q0;v[X := 0]). s

0 is called the

a-successor of s.

We write s
a
!

�
! s

0 if, either � = 0 and s
a
! s

0 is a

discrete transition, or � > 0, and s
a
! s

00 is a discrete

transition and s
00 �
! s

0 is a timed transition.

Runs. A run of A starting from a discrete state q0

and reaching a discrete state qf is a �nite sequence

� = s1
�1
! s1 + �1

a1
! s2

�2
! s2 + �2

a2
! � � �

ak
! sk+1,

such that s1 = (q0; ), sk+1 = (qf ; ), and for all i =

1; 2; :::; k, si + �i is the �-successor of si and si+1 is the

ai-successor of si + �i. The time spent in �, denoted

time(�), is de�ned to be the sum �1 + � � �+ �k.

Minimum-time reachability. We say that qf is

reachable from q0 in time T if there is a run � starting

from q0 and reaching qf , such that time(�) � T . We

de�ne MinTime(q0; qf ) to be the minimum such time

T , or 1 if qf is not reachable from q0.

3 Simulation Graph and Main

Theorem

The simulation graph. Consider a TA A with dis-

crete states Q and clocks X . A symbolic state of A is

a set of states S = f(q;v) j v 2 Zg, where q 2 Q and

Z is an X -polyhedron. For simplicity, we denote S as

(q; Z). If S is convex, it is called a zone.

Given a zone S = (q; Z), two edges e1 =

(q; Z1; X1; q1) and e2 = (q2; Z2; X2; q) of A, and a nat-

ural constant c � cmax (A), we de�ne the following suc-

cessor and predecessor operations:

post(S; e1)
def
=

�
q1; close(%

�
(Z \ Z1)[X1 := 0]

�
; c)

�

pre(S; e2)
def
=

�
q2;

�
[X2 := 0](.Z)

�
\ Z2

�

Intuitively, post() contains all states (and their c-

equivalents) that can be reached from some state in

(q; Z), by taking an e-transition, then letting some time

pass; pre() contains all states that can reach some state

in (q; Z) by taking an e-transition, then letting some

time pass. Since all operations preserve convexity of

polyhedra, the result of post() and pre() is a zone.

Given an initial discrete state q0, we generate the

simulation graph using an on-the-
y depth-�rst search

starting from S0 = (q0; zero) and generating, for each

node S in the stack, the successors Si = post(S; ei) of

S, for each each ei 2 out(S). We stop exploring the

branch leading to Si if: either Si = ;; or there is a

previously generated node S0 � Si. Otherwise, we add

Si to the set of nodes and S
ei
! Si to the set of edges

of the simulation graph. By lemma 2, the simulation

graph is �nite.

Relation of runs to paths in the simulation

graph. It has been shown [Tri98] that a run from
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Figure 2: Polyhedra on fx; yg and some of their operations.
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q0 to qf exists i� in the simulation graph starting from

S0 = (q0; zero), there is a node S = (qf ; ). Moreover,

for each path S0
a1
! S1

a2
! � � �

an
! Sn in the simulation

graph, there is a run � = s0
�1
!

a1
! s1 � � �

dn
! ansn, such

that si 2 Si, for i = 1; :::; n, and vice versa. We say

that � traverses nodes Si of the simulation graph, and

passes through a1 � � �an for i = 1; :::; n. We also say

that � is inscribed in the path of the simulation graph.

Jump sequences and graphs of timing con-

straints. We �rst need some de�nitions and two lem-

mas which will be used below.

A jump sequence is a set of jumps a1 � � �an such that

the destination discrete state of ai is the source dis-

crete state of ai+1. For example, in the automaton of

�gure 1, a1a2b1b2 is a jump sequence, but a1b1 is not.

Given a jump sequence, we de�ne the graph of timing

constraints over a1 � � �an, to be the graph G such that:

� G has n nodes, named a1; :::; an.

� For all 1 � i < j � n, G has an edge ai
0
! aj.

� For all 1 � i < j � n, if there is a clock x such

that the guard of aj is included in x � �, and

either i = 1 or x is reset at ai, then G has an edge

aj
�
! ai.

� For all 1 � i < j � n, if there is a clock x such

that the guard of aj is included in x � �, and

either i = 1 or x is reset at ai, then G has an edge

ai
��
! aj.

Intuitively, G captures the set of all timing constraints

on the occurrence of events a1; :::; an, induced by the

order of the sequence (a1 must happen before a2, there-

fore a1
0
! a2) and by the clock resets and guards. For

example, in the automaton of �gure 1, since x is reset

at a1 and x � 2 is the guard of b1, b1 must happen at

least 2 time units after a1, which is represented by a

constraint a1
�2
! b1.

The following lemma relates the existence of runs

and time spent in them with the graphs of timing con-

straints over jump sequences.

Lemma 4 Consider a jump sequence a1 � � �an and let

G be the graph of timing constraints over a1 � � �an. Let

� be the cost of the shortest path from a1 to an and

� be the cost of the shortest path from an to a1 in G.

There exists a run � passing through a1 � � �an such that

time(�) = � i� �� � � � �.

We see, therefore, that there is a duality between runs

and paths in the graph of timing constraints. Such a

relation exists also between the constraints of polyhe-

dra in the simulation graph and timing constraints in

the above graphs.

Lemma 5 Consider a path in the simulation graph

S0
a1
! � � �

an
! Sn, where Si = (qi; Zi), for i = 0; :::; n.

Let G be the graph of timing constraints over a1 � � �an.

If there exist indices 0 � i; j; k � n, k � i; k � j, and

clocks x 6= y, x; y 2 X [ f0g, such that:

� x is reset in ai, y is reset in aj (that is, for the

last time before Sk); and

� Zk � x� y � �, for some integer constant �,

then there is a path in G from ai to aj with total cost

at most �.

In the above lemma, we assume that x or y can be ei-

ther real clocks of a \�ctitious clock" which always has

the value 0 and by convention is taken to be reset on ev-

ery discrete transition. For example, in the automaton

of �gure 1, S0
a1
! S1

a2
! S2

b1
! S3 is a path in the simu-

lation graph, the polyhedron of S3 is x � 2^y � 1^y �

x^y = z, and there are paths a1
�2
! a3 (of total cost �2,

corresponding to the constraint x � 2 � 0� x � �2),

a1
0
! a2

1
! a3 (of total cost 1, corresponding to the

constraint y � 1 � y � 0 � 1), and so on.

The proofs of the two lemmas are omitted.

The main result. We are now ready to state the

main theorem.

Theorem 1 If a run from q0 to qf exists, then there

exists a run � from q0 to qf , such that � does not tra-

verse the same node in the simulation graph twice, and

time(�) = MinTime(q0; qf), that is, � is a minimum-

time run.

Proof Let � = s0
�1
!

a1
! � � �

�n
!

an
! sn

�1
!

c1
! � � �

�k
!

ck
!

s
0
k

�1
!

b1
! � � �

�m
!

bm
! sf be a minimum-time run from q0 to

qf . Let � be inscribed in the path S0
a1
! � � �

an
! Sn

c1
!

� � �
ck
! S

0
k

b1
! � � �

bm
! Sf of the simulation graph. We

will assume that Sn = (q; Z), S0k = (q; Z0) and Z0 � Z,

that is, � traverses this node twice. We will show that

there exists another run � which does not traverse a

node twice, such that time(�) � time(�), therefore, �

is also a minimum-time run.

Let G
0 be the graph of timing constraints over

a1 � � �anc1 � � �ckb1 � � �bm and �0 be the cost of the short-

est path from a1 to bm in G
0. Notice that �0 � 0, since

a1
0
! bm is an edge of G0. According to lemma 4,

��0 = time(�).

Now, let G be the graph of timing constraints over

a1 � � �anb1 � � � bm and let � be the cost of the shortest

path from a1 to bm in G. Again, � � 0. We will

prove that �0 � �. Therefore, according to lemma 4,

there exists a run � passing through a1 � � �anb1 � � �bm,

such that time(�) = �� � ��0 = time(�). Now, no-

tice that � passes through a1 � � �anb1 � � �bm, therefore,

we have eliminated the loop c1 � � �ck. If � traverses

5



the same node twice, it means that the jump sequence

a1 � � �anb1 � � �bm contains another loop as well. But we

can use the same technique as before to eliminate all

loops. At the end, we get a run which does not traverse

the same node twice.

It remains to show that �0 � �. Let � be the shortest

path from a1 to bm in G. � has the following general

form: a1

1
 a a

1 �1

! b
1 
2
 b b

2 �2
! a

2 � � �al
�l
! b

l 
p
 b bm,

where a0


 a a

00 denotes a sub-path that starts from a,

ends in a00, passes only from nodes ai and has total cost


 (if a0 = a
00 then 
 = 0). Similarly for the notation



 b.

Notice that we can safely assume that � is acyclic.

Indeed, there is no negative-cost cycle in G: otherwise

the set of constraints induced by G would be unsatis�-

able, which would imply (by lemma 4) that there is no

run passing through a1 � � �anb1 � � � bm. Since there is no

negative-cost cycle in G, there exists always an acyclic

shortest path from a1 to bm: take any shortest path

and remove any cycles that may exist (these cycles can

only have cost 0).

We will construct a path �
0 in G

0 such that the cost

of �0 is � �. Since the shortest path in G
0 has cost �0,

it must be that �0 � � (otherwise �0 would be shorter).

�
0 will start with the part a1


1
 a a

1 (since these

are also edges in G
0). We will continue extending �

0,

depending on the corresponding part of �.

If the edge a1
�1

! b
1 exists in G0, then we add it to �0

and continue extending it, otherwise, we have to �nd

a replacement. If a1
�1

! b
1 does not exist in G

0, the

following things hold: �rst, �1 < 0 (the edge a1
0
! b

1

certainly exists in G0, since a1 comes before b1); second,

there is a clock x reset in a
1 and tested as x � ��1 in

b
1 (this resulted in the edge a1

�1

! b
1 being added in G);

third, x is reset again in some ci (otherwise, a
1 �1

! b
1

would also be in G
0). Let c1 be the last ci where x is

reset before b
1. Clearly, there is an edge c

1 �1

! b
1 in

G
0. Moreover, since c1 comes after a1, there is an edge

a
1 0
! c

1 in G0. Combining the two edges, we extend �
0

into: a1

1
 a a

1 0
! c

1 �1

! b
1. Notice that the cost of �0

up to b1 is the same as the cost of � up to b1.

We can continue extending �
0 by adding the part

b
1 
2
 b b

2, since all edges in this part are also edges of

G
0.

If the edge b
2 �2
! a

2 exists in G
0, we add it to �

0

and continue extending it, otherwise, we have to �nd

a replacement. If b2
�2
! a

2 does not exist in G
0, the

following things hold: �rst, �2 � 0 (otherwise, from

the fact that a2 comes before b2, the set of constraints

would be inconsistent); second, there is a clock y reset

in a2 and tested as y � �2 in b
2 (this generated the edge

in G); third, y is reset again in some ci (otherwise,

b
2 �2
! a

2 would also be in G
0). Let c2 be the last ci

where y is reset before b
2. Clearly, there is an edge

b
2 �2
! c

2 in G
0. There is also an edge a2

0
! c

2, but this

does not help us in �lling the gap. We need something

more.

Consider the part a2
�2

 a a
3 �3

! b
3 of � (this part

certainly exists, since we have to reach bm eventually;

a
3 might be the same as a2 of course, or b3 the same

as bm). Notice that �3 � 0, since a3
0
! b

3 is an edge

of G, and � is a shortest path. The sub-path a
2 �2

 a a
3

induces the constraint a2 � a
3 � �2. We distinguish

two cases:

{ �3 = 0 This implies that �2 � 0 (otherwise, a2
0
! b

3

would be shorter than a2
�2

 a a
3 0
! b

3). Moreover,

since y is not reset until after an, the zone Z (of

node Sn) is included in the hyperplane y � ��2.

Since Z0 � Z, we also have Z0 � y � ��2 (recall

that Z0 is the zone of node S0k).

Now, y is reset in c
2 for the last time in the loop

c1 � � � ck. This, together with the fact that Z 0 �

y � ��2, and lemma5, implies that there is a path

c
2 

 c ck with 
 � �2. Therefore, we can extend

�
0 by adding the sub-path b

2 �2
! c

2 

 c ck

0
! b

3,

which has total cost �2 + 
, that is, less than or

equal to the cost of the sub-path b
2 �2
! a

2 �2

 a

a
3 0
! b

2 of �. Then we can continue extending �0

as usual.

{ �3 < 0 In this case, let z be the clock reset in a
3 and

tested as z � ��3 in b
3 (which generated the edge

a
3 �3

! b
3). Since y is not reset between a

2 and b1

and z is not reset between a
3 and b1, this implies

that in all zones after the latest of a2 and a
3 until

b1, the clock di�erence y�z satis�es the constraint

y � z � �2. In particular, this is true for Z, that

is, Z � y � z � �2. Since Z
0 � Z, we have

Z
0 � y � z � �2.

Now, let d be the point where z is reset

for the last time before b
3, in the sequence

a1 � � �anc1 � � �ckb1 � � �bm (d can be a
3 itself, or

some point ci). Recall that y is reset in c
2. Since

Z
0 � y�z � �2, by lemma5, there must be a path

c
2 

 d in G0, such that 
 � �2. Moreover, since z

is reset in d for the last time before b3, there must

be an edge d
�3

! b
3 in G

0 as well. Therefore, we

can extend �
0 by adding b2

�2
! c

2 

 d

�3

! b
3. Then

we can continue extending �0 as usual.

The construction of �0 continues in a similar manner

(we have presented all possible cases already) until we

arrive at bm. The constructed path �
0 has a total cost

at most equal to the cost of � (by construction).
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4 Algorithms

In this section, we present the three algorithms for

minimum-time reachability. The input is a timed au-

tomaton, an initial discrete state q0 and a target state

qf . All three start by generating the simulation graph

on the 
y, say, using a depth-�rst search (DFS). This

DFS stops exploring a node S further if there exists

an already visited node S0 � S. If the target state is

not hit, then it is unreachable, otherwise, it is reach-

able and an upper bound T on the time to reach it is

obtained. The details of the algorithms follow.

4.1 A Bellman-Ford Algorithm

First, the entire simulation graph is generated. During

this process, the length L of the longest acyclic path

from the initial node to a target node is recorded.

Then, to each node S in the graph, we associate a

(generally non-convex) polyhedron Z
+(S), on an ex-

tended space of clocks X [ ftg. Initially, Z+(S) =

Z ^ t = 0 if S is a target node S = (qf ; Z), and

Z
+(S) = ; otherwise. Then the backward iteration

is performed as follows:

repeat at most L times

for each edge S1
a
! S2 do

Z
+(S1) := Z

+(S1) [ pre(Z+(S2); a)

until no polyhedron Z
+(S) is updated.

In the above pre() operation, the extra clock t counts

backwards. After at most L iterations the algorithm

stops: at that point, for each node S, Z+(S) contains

the set of points in X [ ftg from which the target can

be reached in at most L steps. In particular, if S0 is the

initial node, Z+(S0)=ftg is an interval [a; b] (a; b � 0)

such that the target can be reached within any t 2

[�b;�a]. Therefore, MinTime(q0; qf) = �b. The fact

that it su�ces to look at paths of at mostL steps comes

from Theorem 1.

Complexity. The algorithm performs at most L it-

erations, where L is bounded by the number of nodes

in the simulation graph. At each iteration, there are at

mostm updates, where m is the number of edges of the

simulation graph. Each update involves the computa-

tion of pre() and a union operation. In the case of con-

vex polyhedra, pre() is computed in O(k3) time, where

k is the number of clocks. Inclusion can be checked

in O(k) time. In general, however, union will result

in non-convex polyhedra, for which these operations

become expensive. Compact methods for representing

unions of polyhedra can be used [BLP+99].

4.2 Depth-First Search with Extra

Clock

As previously, this algorithm starts by generating the

simulation graph. As soon as a path p reaching the

target is found, a DFS with an extra clock t (counting

forward) starts. This DFS starts from the initial node

(plus the constraint t = 0) along the path p (the parts

of the simulationgraph explored previously need not be

re-explored since they do not lead to the target state).

After recomputing p with the extra clock, a �rst upper

bound T on reaching the target can be obtained, by

projecting the last polyhedron of the path to ftg, which

gives an interval [T; T 0]. The search then goes on, with

some modi�cations described next.

First, since an extra clock t is added, the simulation

graph might now be much greater than the original

graph (computed on X ). Moreover, the search might

not terminate since the clock t is not upper bounded

(the close() operation does not apply to t) and is never

reset. To ensure termination and at the same time

reduce the size of the graph to be explored, two addi-

tional criteria to stop exploring a newly created node

S are added.

1. If there exists a node S
0 in the stack such that

S
0
=X � S=X , then a cycle in the original graph

has been found, and by Theorem 1, S needs not

be explored further.

2. Since an upper bound T on the time to reach the

target is already known, if S=ftg = [a; b] and a � T

then S needs not be explored further.

Second, each time a new path p
0 reaching the target

is found, p is updated to p
0 and T is updated to the

minimum time to reach the target along p0 (this value

is guaranteed to be less than the previous value of T ,

by the second stop criterion above). The value of T at

the end of the search is the minimum time to reach the

target, MinTime(q0; qf).

Complexity. Because of the extra clock, two nodes

S1 and S2 which are \fused" in the original simula-

tion graph (because S1 � S2) are distinguished in the

extended search. Therefore, in the worst case, the al-

gorithm will explore all paths of the original simulation

graph leading to a target node (this case occurs when

the times of these paths are t1 � t2 � t3 � � � �). The

number of such paths can be exponential in the number

of nodes in the simulation graph.

4.3 Binary Search on Time Horizon

This algorithm is essentially a modi�cation of the pre-

vious one. After having obtained the �rst path p and

the upper bound T as previously, this algorithm uses

a binary search on T . The algorithm is as follows:
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Set [a; b] = [0; T ].

repeat

Tmin = ba+b
2
c.

Start an extended DFS along p, with bound t � Tmin .

If a target node is hit along path p
0,

set p = p
0, and

set [a; b] = [a; Tmin ].

Otherwise (i.e., the extended DFS �nishes

and no target is hit),

set [a; b] = [Tmin ; b].

until a = b.

At the end, MinTime(q0; qf) = a.

Complexity. The algorithm will converge after ap-

proximately log(T ) iterations. At each iteration, an

extended DFS is performed. The advantage over the

previous algorithm might be that a path is quickly

found, therefore quickly decreasing T , in case the �rst

estimate is too large. On the other hand, the previous

algorithmwill explore each path at most once, whereas

this algorithm might explore a path multiple times be-

fore it converges.

5 Conclusion

We have proposed three algorithms for computing a

minimal-time path leading from an initial to a �nal

state in a timed automaton. Our basic result is that

this can be done by checking acyclic paths in the sim-

ulation graph. All three algorithms have worst-case

complexity which is worse than polynomial in the size

of the simulation graph. It remains to be seen how

well these algorithms perform in practice. An open

question is whether minimum-time reachability can be

solved in polynomial time in the size of the simulation

graph.

In this paper we have focused on obtaining optimal

solutions. In practice, a compromise might be made,

using heuristics which are not guaranteed to yield op-

timal solutions, but work well most of the time. A pro-

posal of a branch-and-bound algorithm for computing

job-shop schedules modeled as timed automata is made

in [Feh00].
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