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Abstract: Good control of processes with long dead time is often achieved using a
Smith predictor con�guration. However, not much work has been carried out on
obtaining simple tuning rules for a Smith predictor scheme. This paper develops
optimal analytical tuning formulae for PID controllers in a Smith predictor con�gu-
ration assuming perfect matching. These formulae have been obtained by carrying out
repeated optimizations on the error transfer function of a Smith predictor, assuming
perfect matching, to �nd optimal relations between the normalized gain and the
remaining parameters of the controller. Then the least square �tting method was
used to �nd the constants in the assumed formulae to �t the graphical data obtained.
Some examples are given to show the value of the approach presented.
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1. INTRODUCTION

Plants with long time-delays can sometimes not
be controlled e�ectively using a PID controller in
the conventional single feedback loop structure.
The main reason for this is that the additional
phase lag contributed by the time delay tends to
destabilize the closed loop system. The stability
problem can be solved by decreasing the controller
gain. However, in this case the response obtained
is very sluggish.

The Smith predictor, shown in Fig. 1, is well
known as an e�ective dead-time compensator for
a stable process with long time-delays (Smith,
1959).

Based on the assumption that the model used
matches perfectly the plant dynamics, the closed
loop transfer function of Fig. 1 is given by

To(s) =
Gc(s)Gm(s)e

��ms

1 +Gc(s)Gm(s)
: (1)

According to eqn. (1), the parameters of the
primary controller, Gc(s), which is typically taken
as PI or PID, may be determined using a model
of the delay free part of the plant.
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Fig. 1. The Smith predictor control scheme

Many possible approaches for determining or tun-
ing the parameters of an appropriate controller,
Gc(s), have been given in the literature and some
recent contributions include (Kaya and Atherton,
1999; Hang et al, 1995; Palmor and Blau, 1994;
H�agglund, 1992). The method proposed by Kaya
and Atherton (1999) replaces the conventional
controller, Gc(s), by a PI-PD or PI-P structure
where the PD or P part is implemented in an



inner feedback loop. The choice of selection of
the controller structure in the inner loop, that
is to choose a PD or only a P, depends on the
model order. The tuning parameters of the PI-
PD or PI-P controllers have been obtained using
standard forms (Graham and Lathrop, 1953) and
it was shown that the PI-PD or PI-P structure can
give superior performance. The diÆculty with the
design is to involve a trade o� between selected
values of Kp and Ti, respectively, the gain and
integral time constant of the PI controller in the
forward path. H�agglund's method is based on a
FOPDT model which is obtained from a step re-
sponse test. The step response test is an open loop
test, therefore, if there is any external disturbance
during the identi�cation procedure, it may lead to
large errors.

Many studies have been devoted to the devel-
opment of tuning rules based on optimization.
The main disadvantage of using optimization as
a design criterion is that the transfer function of
the plant must be known. To eliminate this dis-
advantage, a possible approach is to use the relay
autotuning method to estimate an FOPDT model
(Kaya and Atherton, 1998) and then optimize
the controller parameters based on this assumed
model transfer function, (Smith and Corripio,
1985; Zhuang and Atherton, 1993). In section 3,
this approach is carried out for the delay free part
of the FOPDT plant transfer function which can
be used to �nd tuning parameters of a PI or PID
controller in a Smith predictor con�guration if
perfect matching is assumed. In references (Smith
and Corripio, 1985; Zhuang and Atherton, 1993),
a FOPDT model was also used to approximate
higher order plant transfer functions. A better
approximation may be achieved with a SOPDT
plant transfer function, which is considered in this
paper and it is shown how simple tuning formulae
can be obtained.

2. SIMPLE TUNING FORMULAE

USING OPTIMIZATION

Optimization has always been a powerful design
method to determine controller parameters. The
integral of squared error, ISE, criterion is one
of the most well known criteria, but it generally
results in a signi�cant overshoot and a relatively
long settling time. The time weighted versions
of the ISE criterion give relatively smaller over-
shoots and comparable settling times. In the next
subsections, simple tuning formulae are obtained
using the ISTE and IST2E criteria for a PI or
PID controller in a Smith predictor con�guration
based on either FOPDT or SOPDT models.

2.1 Tuning for a PI Controller

First, a FOPDTmodel,Gm(s)e
��ms = Ke��ms=(Ts+

1), and a PI controller with the ideal transfer
function

Gc(s) = Kp(1 +
1

Tis
) (2)

are considered.

Assuming a perfect matching between the plant
and model dynamics, the error for the Smith
predictor structure from Fig. 1 is

E(s) =
R(s)

1 +Gc(s)Gm(s)
(3)

Repeated optimizations were carried out on this
error for R(s) a step input, using eqn. (2) forGc(s)
and K=(Ts + 1) for Gm(s), for di�erent values
of normalized gain, � = KKp. Fig. 2 shows the
relationship between the normalized gain � and
T=Ti for the ISTE and IST2E criteria for a set
point change over the range of 2:50�5:00 forKKp.
The following formula

1

Ti
=

a

T
(KKp)

b (4)

was obtained to �t the graphical results, using
a least square �t technique. In the graph the
continuous curve shows the �tting produced by
the formula and 0

�

0 shows T=Ti as a function of
KKp. To obtain a good �t to the data for �
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Fig. 2. PI controller parameters when a FOPDT
model is used over the range � = 2:50� 5:00

between 1:5 and 15, the formula was used over
three ranges and the coeÆcients are listed in
Table 1 for the ISTE and IST2E criteria. Once
the controller gain is speci�ed, which is chosen
so that the normalized gain � falls in one of the
ranges given in Table 1, the controller integral
time constant Ti can be calculated from eqn. (4).

When a SOPDT model, Gm(s)e
��ms = Ke��ms=

[(T1s + 1)(T2s + 1)], is used, calculations can be
carried out in a similar way to that used for the



FOPDT model. Using Kp(1 + 1=Tis + Tds) for
Gc(s) and K=[(T1s + 1)(T2s + 1)] for Gm(s), the
error given by eqn. (3) was minimized for the ISTE
and IST2E critea and some of the results for T1=Ti
versus � = KKp is given in Fig. 3. The following
equation

1

Ti
=

a

T1
(KKp)

b(
T2

T1
)c (5)

was used to �t the graphical data using least
square curve �tting method. The coeÆcients in
the equation are listed in Table 2 for various
ranges of normalized gain, �. A close investigation
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Fig. 3. PI controller parameters when a SOPDT
model is used

on the table reveals that the value of c is always
around �0:50 for both criteria, thus eqn. (5) can
be rearranged as

1

Ti
=

a

T1
(KKp)

b(
T1

T2
)1=2 (6)

The required a and b values are given in Table 2.

2.2 Tuning for a PID Controller

When the controller in a Smith predictor scheme
is chosen as a PID controller, then the process
must be modelled by a SOPDT transfer function.
The reason for this is that when the delay free
part of the FOPDT, K=(Ts + 1), and the ideal
PID form are used in optimization to minimize
the error given by eqn. (3), the optimization
procedure may not converge to a solution.

Some of the results for T1=Ti and L=T1 for set-
point change, again using the ISTE and IST2E
criteria, are given in Fig. 4. Curve �tting in a
least squares sense gives

1

Ti
=

a1

T1
(KKp)

b1(
T2

T1
)c1 (7)

Td = T1a2(KKp)
b2(

T2

T1
)c2 (8)

κ =KK  p

T
1
 / 

T
 i

T2 / T 1 =0.5

T2 / T 1 =2.0

ISTE 
IST2E

2.5 3 3.5 4 4.5 5
0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

κ =KK  p

L
 / 

T
 1

T2 / T 1 =2.0

T2 / T 1 =0.5

ISTE 
IST2E

2.5 3 3.5 4 4.5 5
0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Fig. 4. PID controller parameters

The (a, b, c) coeÆcients are given in Table 3 for
di�erent ranges of � = KKp.

Again the value of c was found to be around �0:50
for T1=Ti and 0:50 for Td=T1 for both criteria
and ranges. Therefore eqns. (7) and (8) can be
rearranged as

1

Ti
=

a1

T1
(KKp)

b1(
T1

T2
)1=2 (9)

Td = T1a2(KKp)
b2(

T2

T1
)1=2 (10)

where the a1, a2, b1 and b2 values are again given
by the Table 3.

3. ILLUSTRATIVE EXAMPLES

In this section several examples are given to show
the use of the method. The �rst example considers
a FOPDT transfer function to illustrate the e�ect
of mismatching in the time-delay. In the second
example a third order system is considered to
show that second order modelling gives a better
approximation for processes with higher order
transfer functions. In the last example a process
with a second order transfer function is given to
compare the performance of the proposed design
method with some existing methods.



3.1 Example 1

This example is given to analyse the e�ect of
mismatching in the time-delay, since this is the
most detrimental to the system performance. Fig.
5 shows percentage error di�erence between the
plant and model time delays versus ISTE criterion
value. The �gure shows that the ISTE criterion
value increases when the mismatch between the
plant and model time delays is increased. Also,
it is seen from the �gure that the ISTE criterion
value gets larger for large time delay to time con-
stant ratios. This means that the performance of
a Smith predictor is more sensitive to a mismatch
when the time delay to time constant ratio is
large.
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Fig. 5. ISTE criterion for di�erent % error di�er-
ence

To illustrate this, consider the following transfer
function.

G(s) =
1

(10s+ 1)
e��s

First, assume that the time delay, �, is 10:0,
which gives the time delay to time constant ratio
of 1:0. Limiting the controller gain, Kp, to 2:5,
then integral time constant was calculated as
Ti = 7:8383, from eqn. (4). Fig. 6 shows the step
responses for the matching case, � = �m, and also
for�10% error between the plant and model time-
delays. Now assume that the plant time delay is
5:0 which gives the time delay to time constant
ratio of 0:5. Results for this case are given in
Fig. 7, when the controller parameters are kept
at the same values as before. The �gure con�rms
the results given by Fig. 5 that for the same
percentage error in the time delays, the Smith
predictor performance deteriorates more for large
time delay to time constant ratio.

3.2 Example 2

A high order transfer function is given in this
example.

G(s) =
2

(4s+ 1)(3s+ 1)(2s+ 1)
e�5s
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Fig. 6. Step responses when � = 10 for example 1
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Fig. 7. Step responses when � = 5 for example 1

To identify the plant parameters, the plant was
simulated in Simulink under relay feedback con-
trol. The relay had heights of h1 = 1 and h2 =
�0:5 and no hysteresis. The input to system was
zero. The measured limit cycle parameters were
0:249, 1:287, �0:680 and 10:583 for !, amax, amin

and �t1 respectively, see (Kaya and Atherton,
1998) for notations. These parameters were used
to �nd a FOPDT and SOPDTmodel for the plant.
The FOPDT model was obtained as K = 2:001,
T = 7:325 and � = 8:328 and the SOPDT model
as K = 2:001, T1 = 4:068, T2 = 4:068 and
� = 6:164. The control design methods given
in section 2 were implemented to compare the
performance in each case. The controller gain was
limited to 2:0 in each of the three cases. Then
using equations given in section 2.1, the integral
time constants for a PI controller with a FOPDT
and SOPDT model were calculated as Ti = 6:369
and Ti = 9:792, respectively. The parameters of
PID controller were obtained as Ti = 8:062 and
Td = 1:707, using the equations given in section
2.2. The response of the designed controllers in a
Smith predictor structure are given in Fig. 8 for a
set point change. The best result is achieved with
a PID controller in the Smith predictor structure,
as expected. A PI controller in the Smith predictor
con�guration, when the FOPDT model is used,
gives the poorest response. This makes sense, since
a Smith predictor is sensitive to modelling errors



and a FOPDT can not model a higher order plant
adequately. A PI controller in Smith predictor
structure with the SOPDT model results in a fast
response, but, the settling time is slightly longer
when compared to the response of a PID controller
in the Smith predictor structure. Fig. 9 shows
control signals for the example. It is seen that the
control signal for a PID control in Smith predictor
settles down in a short time while for others takes
longer.
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Fig. 8. Step responses for example 2
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Fig. 9. Control signals for example 2

3.3 Example 3

A process with SOPDT transfer function given by

G =
e�5s

(10 + 1)(5s+ 1)

is considered. The model of the plant is obtained
accurately using asymmetric limit cycle data from
the relay feedback method (Kaya and Atherton,
1998). Constraining the controller gain Kp to 2:5
results in the remaining tuning parameters of
Ti = 13:273 and Td = 2:467, using the ISTE cri-
terion and eqns. (9)-(10). Response of the Smith
predictor with these controller parameters to a
unit step and a disturbance of d = �0:1 at t = 80
are shown in Fig. 10. Similar results for the de-
sign method of Palmor (1994), Hang et al (1995)
and H�agglund (1992) are also given in the same

�gure for comparison. The design methods pro-
posed by H�agglund and Hang give slow closed loop
responses. Palmor's method gives good responses
but results in a slightly longer settling time than
the proposed method. The control signals for the
design methods are shown in Fig. 11 which shows
that Palmor's method gives a larger initial control
signal.
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Fig. 10. Step responses for example 3
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Fig. 11. Control signals for example 3

4. CONCLUSION

The paper investigated obtaining simple tuning
formulae for PID controllers in a Smith predic-
tor con�guration. The ISTE and IST2E criteria,
which gives a small overshoot and short settling
time, has been used to obtain optimal relations
between the normalized dead time and the re-
maining controller parameters. The least square
curve �tting method was used �nd the constants
in the assumed formulae to �t the graphical data
obtained. The method requires the controller gain
to be speci�ed �rst and then the formulae given in
section 2 can be used to determine the remaining
controller parameters. It is shown by examples
that the method results in a fast response with a
small overshoot and a short settling time provided
that there is no mismatch between the plant and
model dynamics.
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Table 1. PI Tuning Formulae based on a FOPDT model

� = KKp range 1.50-2.50 2.60-5.00 5.10-15.00

Criterion ISTE IST
2
E ISTE IST

2
E ISTE IST

2
E

a 1.9443 1.3037 1.5556 1.1209 1.2149 1.0196

b -0.4722 -0.2426 -0.2173 -0.0666 -0.0679 -0.0075

Table 2. PI Tuning Formulae based on a SOPDT model

� = KKp range 1.50-2.50 2.60-5.00 5.10-15.00

Criterion ISTE IST
2
E ISTE IST

2
E ISTE IST

2
E

a 0.6873 0.6341 0.6345 0.6315 0.6647 0.6638

b -0.4022 -0.2112 -0.3051 -0.1965 -0.3295 -0.2274

c -0.5000 -0.4999 -0.5008 -0.5000 -0.4998 -0.4998

Table 3. PID Tuning Formulae based on a SOPDT model

� = KKp range 1.50-2.50 2.60-5.00 5.10-15.00

Criterion ISTE IST
2
E ISTE IST

2
E ISTE IST

2
E

a1 0.6781 0.6338 0.5916 0.5554 0.5169 0.4950

b1 -0.2709 -0.2410 -0.1144 -0.0888 -0.0323 -0.0184

c1 -0.5000 -0.5000 -0.5000 -0.5002 -0.5001 -0.5001

a2 0.1058 0.1057 0.2446 0.2453 0.4049 0.3978

b2 1.3371 1.3041 0.3877 0.3637 0.0767 0.0640

c2 0.5003 0.4998 0.5002 0.4999 0.5000 0.4999
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