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Abstract.

Recently the necessary conditions of optimality for distributed parameter systems described in discrete
domain have been developed, followed by the synthesis of the infinite time optimal neuro-controllers in the
framework of adaptive-critic design. In this paper, we validate this synthesis methodology by comparing it
with two other different approaches already established in the literature.
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1. INTRODUCTION

Distributed Parameter Systems (DPS) are the
processes, which are distributed in space and
evolving in time. Unlike the lumped parameter
systems, the DPS are described by a set of partial
differential equations (PDEs) in the state-space.
Examples of such systems include aeroelastic
systems, vibration of lightly-damped structures,
compliant mechanisms, heat transfer processes etc.

The dynamic programming methodology for the
solution of optimal control has many desirable
features. But the methodology is often overwhelmed
by its computational requirements. However in recent
times, an advanced neuro-control methodology called
the adaptive-critic design has given a new
perspective to the associated problems of dynamic
programming [1, 3, 4, 6]. The advantages of
adaptive-critic design include optimal control of the
plant maintaining a feedback structure of the
controller, control in real time, control from any
initial state in the domain of interest to the desired
final state etc. Besides, the methodology can handle
linear and nonlinear problems directly. As an added
advantage, this powerful neuro-control methodology
has mathematical and computational simplicity.

Adaptive-critic optimal control methodology has
sucessfully been developed for distributed parameter
systems in the framework of infinite time optimal
controllers [4]. However to gain confidence, it is
highly desirable to verify this methodology. This can
be done by comparing it with some of the other
methods available in the literature. If not in a
rigorous mathematical analysis sense, at least the
results for some bench mark problems can be
compared.

We have considered the linear heat conduction/
diffusion equation with the Neumann boundary
conditions. For this system, it is possible to
synthesize infinite time quadratic regulator
controllers as a formulation of standard linear
quadratic regulator (LQR) solution in ordinary
differential equation sense. This can be done after
only spatial discretization [5]. Closed form solution
for the optimal control of this particular problem is
also available in the literature [2]. Thus, it is possible
to compare the results from the adaptive-critic
methodology with these established techniques. This
is the main aim of this paper. We have validated the
adaptive-critic methodology by comparing the results
of this linear conduction/diffusion optimal control
problem.
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2. DYNAMIC PROGRAMMING OF DPS

2.1. System Dynamics (State Equation)

We consider a two-dimensional distributed parameter
system. Two dimension here means two independent
variables, one is time and the other is a spatial
variable. The necessary conditions of optimality that
have been derived and reported in an earlier paper [4]
will be recapitulated here in brief. It should be noted
that the formulas mentioned here are a bit more
general than those reported in [4], and will appear in
detail in the journal version of this paper. The system
dynamics we consider over here evolves in time and
is given by
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where, the subscripts k accounts for evolution with
time (time step) and j for the spatial distribution

(nodal number). M denotes the number of nodes in
the spatial distribution.

2.2.  Cost Function

We consider a general cost function of the following
form.
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where, N represents the number of discrete time
steps. In agreement with the above definition of the
cost function, we denote the cost function from time
step k  as
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We define the co-state  at time k  and node j  as

jkkjk xJ ,, ∂∂≡λ                                       (4)

2.3.  Optimal Control Equation

For optimal control, the necessary condition for

optimality is given by  0, =∂∂ jkk uJ . After some

algebra, the optimal control equation obtained is
given by
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2.4.  Co-state Dynamics

Substituting for kJ from Eq.(3), after some

manipulation, we get
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Thus, we have obtained the state equation, co-state
equation and optimal control equation. These
equations have to be solved simultaneously to obtain
the required optimal control. It may be noted that,
along the optimal trajectory, by using Eq.(5),  Eq.(6)
can be simplified to
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3.  THE EXAMPLE PROBLEM

This example is the standard linear
diffusion/conduction optimal control problem. We
reconsider the controller as an infinite time one. The
most important motivation for choosing this problem
is that it can be solved by using different approaches,
and hence we can compare the results of the
adaptive-critic methodology.

3.1. The Problem

The problem is described, in continuous time, by
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( ) ≡yx ,0  any initial profile within the interest

domain.
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The objective is to find the optimal control ( )ytu , ,

which minimizes the quadratic cost function
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where, ( )ytx , and ( )ytu ,  are state and control

variables at time t and spatial co-ordinate y , Q  is

the weighting factor on state, R  is the weighting

factor on control; 0t and ∞→ft  are initial and
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final times; 0y  and fy are initial and final points on

the spatial co-ordinate axis.

3.2.  Discrete Formulation

The associated cost-function, to be minimized, is
given by
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where, DQ and DR are the weighting factors on state

and control respectively, in the discrete domain. For
this particular problem,
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Then, by applying  Eq.(5) and (7), we arrive at the
following set of equations as the necessary conditions
for optimality, which are the state, co-state and
optimal control equations respective.
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where, t∆ and y∆ are the step sizes of discretization

in time and spatial variables respectively. Together
with the necessary conditions of optimality, we have
to satisfy the following initial, transversality and
boundary conditions.

=kx ,0  can be any point in the domain of interest

∞→= NasjN ,0,λ

1,0, kk xx = , MkMk xx ,1, =+                           (13)

1,0, kk λλ = , MkMk ,1, λλ =+

4. SOLUTION TECHNIQUES

4.1.  Adaptive-Critic Synthesis

The adaptive-critic synthesis procedure is discussed,
in fair detail, in Ref.[4]. However, the core of the
technique, which is the iterative training between
Critic and Action neural networks, is recapitulated

here in brief. The training processes are depicted in
Figure-1 and Figure-2.

We synthesize a set of M critic networks, for

1−= Nk , with input jNx ,1−  and output jN ,1−λ  as

per the following steps (Figure-1). Assume jkx , . Get

jku , from the trained action networks. Then get

jkx ,1+ from the state equation (12a). Input jkx ,1+  to

the trained set of critic networks at ( )1+k th time

step, to get jk ,1+λ . Now, with the availability of

jkx , and jk ,1+λ , calculate jk ,λ  from the co-state

equation (12b). Train the set of critic networks with

input 1,,1, ,, +− jkjkjk xxx and output jk ,λ  for all

the networks related to the internal node points. For
those intended for the boundary node points, we

consider either 2,1, , kk xx  or MkMk xx ,1, ,−  as the

input.

After that we focus on action network synthesis. The
training process is carried out in the following steps

(see Figure-2). Assume random jkx , , within the

relevant range, and input it to the action networks, to

get jku , . Use state equation (12a) and the boundary

condition [Eq.(13)] to get jkx ,1+ uniquely.  Input

jkx ,1+  to the trained set of critic networks to get

jk ,1+λ . Get the optimal control *
, jku from Eq.(12c).

Train the networks at k th time step with input

1,,1, ,, +− jkjkjk xxx and output *
, jku  for all the

networks related to the internal node points. For
those intended for the boundary node points, we

consider either 2,1, , kk xx  or MkMk xx ,1, ,−  as the

input.

Once this process of action synthesis is over, we
revert to critic synthesis again. The alternate critic
and action network training process is continued till
no noticeable change in the output is observed in the
outputs in the successive training. Then the networks
converge to give the true optimal relationships.

4.2. LQR Solution

The essential idea of this approach can be found in
Sage [5]. Essentially, only after spatial discretization
of this linear PDE system and using the boundary
conditions, we arrive at a system of linear ordinary
differential equations (ODEs), in the following form.
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The associated cost function takes the form
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Then using the standard infinite-time LQR theory,
solution for the controller can be found easily.
Towards this objective, one can simply use the
standard lqr or lqr2 functions already available in
MATLAB.

The controller u is given by:

XSBRXKU T1−−=−=        (18)

where, S matrix is obtained from the solution of the
following algebraic Ricatti equation.

01 =+−+ − QSBSBRSASA TT        (19)

4.3. Closed Form Solution

For the particular optimal control problem, closed
form solution also exists and have been derived in
detail in the literature (Curtain and Zwart [2]). The
final form of the control solution, for the infinite-time
controller is given by:
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As an observation, if the initial profile is symmetric
wrt. the centre point of the spatial domain, since the
boundary conditions are also symmetric, the integral
under the infinite sum in Eq.(19) simply becomes
zero for each term in the summation and hence the
entire sum becomes zero for all time t . Thus, we

should arrive at constant controllers for all the node
points at any particular time.

5. NUMERICAL RESULTS

For our numerical experients, we set the values as

00 =t , 00 =y , 4=fy . For discretization, we

have considered 02.0=∆t , 1=∆y (same as

Ref.[5]). We have assumed that the initial profiles lie
within 25.0± , and hence, have attempted to solve
the problem for all possible initial profiles lying
inside this boundaries. Here all values are assumed to
be in compatible units.

First of all, it can be noted that the states are driven
towards zero as N increases, at all the node points.
Same trend can be noticed in the evolution of control
with time as well. As a comment, we also observe

from Eq.(12c), that 0→Nλ as ∞→N , since

0→Nu  as ∞→N . This way the synthesis

process is also seen to satisfy the necessary
transversality condition for optimality given in
Eq.(13).

Figure-3 and Figure-4 gives the comparison of state
history and control history solution of the adaptive-
critic methodology with the LQR solution, from a

sinusoidal initial profile 
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where 4=L  is the length of the finite spatial domain
considered. Similarly, Figure-5 and Figure-6 give the
comparisons with the closed form solution. It can be
observed that the states at all the node points develop
quite closely, in both the comparisons. However, the
controllers are a bit far off. This is mainly because of
the fact that both the LQR as well as the closed form
solutions demand the state information in the entire
spatial domain for the controller at any node.
However, we have purposefully did not synthesize
our networks with all the states as the input. This is
because in that case, as the node numbers increase,
the network size becomes very high. It leads to
considerably slower training and possibly inferior
optimization.

However, the sub-optimality of the adaptive-critic
controllers need not entirely be from not feeding all
the states as input to the neural networks. It can also
arise because of insufficient training of the networks.
In fact, as the solution process of adaptive-critic
methodology is essentially backward in time, it is
highly necessary to cover all the function space in
training, to cover all possible profiles as the time
evolves. This in fact is a hard task and we are still in
a process of searching for a good answer to this
question. However, since the synthesis process of the
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networks were carried out with random profiles, it
makes sense to compare the solution trend for some
arbitrary random profiles. Such a comparison of the
adaptive-critic solution with the LQR results is
shown in Figures-7 and 8. From these figures, it is
quite clear that the sub-optimal solution of the
adaptive-critic methodology is in fact very close to
the optimal solution from the LQR approach.

As a side observation, since the initial profile is
symmetric, as pointed out earlier, the controller in
closed form solution is expected to be constant at all
the node points at all the time. This infact is clear
from Figure-6. As another side note, one can notice
that the there is some minor discrepency between the
LQR and closed form solutions themselves. It mainly
arises due to the process of discritization. This error
is also present in the adaptive-critic methodology.
However, it can arbitrarily be reduced by choosing
proper t∆ and y∆ , so that the ratio

( )2y

t

∆
∆

becomes very small.

6. CONCLUSION

After comparing the results from adaptive-critic
approach with LQR and closed form solution, it can
confidently be claimed that the formulation and
approach of the adaptive-critic methodology
described in [4] and also outlined briefly in this paper
was fine. The minor discrepancies of the results are
mainly due to the insufficient training of the
networks. Sub-optimality of the adaptive critic
solution also arises due to the choice of the network
structures, where we have intentionally taken only
the states at current and neighbouring nodes as input
to the networks. This is mainly to avoid large size of
the networks and the associated difficulties. On the
other hand both LQR and closed form solution
demand full state feedback.
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Figure-1: Schematic of Critic Synthesis Pocedure

Figure-2: Schematic of Action Synthesis Procedure



	

Figure-3: Comparison of state trajectories with LQR
solution from a sinusoidal initial profile

Figure-4: Comparison of  control histories with LQR
solution from the sinusoidal initial profile

Figure-5: Comparison of state trajectories with
closed-form solution from a sinusoidal initial profile

Figure-6: Comparison of control histories with
closed-form solution from a sinusoidal initial profile

Figure-7: Comparison of state trajectories with LQR
solution from a random initial profile

Figure-8: Comparison of control histories with LQR
solution from a random initial profile
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