
NOMENCLATURE 

: x, z-axis velocities, elevation rate, elevationu, w, q,!
angle

: submarine mass, y-axis moment of inertia,m, Iyy, g, B
gravitational acceleration, buoyancy

: x- and  z-axis external hydrodynamic andX, Z, M
propulsion forces, y-axis hydrodynamic and propulsion
moment

 : bow and stern hydroplane angle"b, "s

 : stability derivativesZi, Xi, Mi(i = u, w, w. , q, "b, "s)

1. INTRODUCTION

Position/speed Successful manoeuvring of a submarine
depends upon the precise control of its course variables,
Fig. 1. The problem of controlling the submarine
variables has attracted considerable attention during the
last decade (see f.e. [1-7]). In the present paper, the
problem is studied for the case of straight horizontal
course. The precision of the submarine’s manoeuvres
can be obstructed by the inherent coupling between the
course variables, particularly between elevation angle
and heave velocity. 
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Fig. 1.  Submarine Variables Configuration

In Fig. 1, CM denotes the centre of mass of the
submarine while CB denotes its centre of buoyancy. The
parameter  denotes the angle between the CM-CB axis#
and the horizontal axis of the submarine. The parameter
 denotes the distance between CM and CB.l

The present design goal is to control independently
elevation angle and heave velocity by appropriate
external commands. To accomplish this, a static state
feedback law is applied using the I/O decoupling
technique. The necessary and sufficient condition for the
problem to be solvable is established in the form of an
inequality of the stability derivatives of the submarine.
The general forms of all static feedback controllers,
yielding decoupling, are analytically determined in a
simple rational form involving the submarine’s stability
derivatives and arbitrary parameters. The conditions for
decoupling with simultaneous stability are also
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established. The results are illustrated, by simulation of
the elevation pointing manoeuvre and the heave
translation manoeuvre. 

2. MODEL DESCRIPTION

Using the Euler equations for a submerged solid body,
the non-linear equations (body axis system) describing
the longitudinal motion of a submarine are :

               (1a)X + (B − mg) sin(!) = m( du
dt + qw)

                (1b)Z + (mg − B) cos(!) = m( dw
dt − qu)

                      (1c)M + B cos(! + #)l = Iyy
dq
dt

                                  (1d)d!
dt = q

To linearize the above equations, small disturbance
theory is used where the submarine variables are  
expressed in terms of nominal values plus small
perturbations :

  X = X0 +$X, Z = Z0 +$Z, M = M0 +$M, ! = !0 +$!,
  (2)q = q0 +$q, u = u0 +$u, w = w0 +$w

where  are the nominalX0, Z0, M0,!0, q0, u0, w0

values and  are the respective$X, $Z,$M,$!,$q,$w
perturbations. For straight horizontal course, the
nominal values of ,  are considered to be zero! q and w

. Since the perturbations are(!0 = 0, q0 = 0, w0 = 0)
small, the products of perturbations can be neglected
while the trigonometric approximations

 are used. Thus, thesin($!) = $!, cos($!) = 1
kinematic equations become:

   ,     ,  $X + (B − mg)$! = m$u. $Z = m$w.

,    (3)$M − B sin(#)$!l = Iyy$q. $!
.

= $q

Normalizing the forces and moment by mass and
moment of inertia, respectively, the equations (3) can be
rewritten as follows:

  ,    , $X̃ + ( B
m − g)$! = $u. $Z̃ = $w. − u0$q

 ,   (4)$M̃ −−−−
Bl sin(#)$!

Iyy
= $q. $!

.
= $q

The contribution of small accelerations to the submarine
dynamics can be neglected. Furthermore, assume that
the angular velocity of the propeller is constant. Hence,
the increments   of the hydrodynamic$X̃, $Z̃ and $M̃
forces and moment are functions of the bow and stern
angles ,  and the velocities  and the elevation"b "s u, w
rate  Expand the force increments and momentq.
increment into multivariant Laurent series, with respect
to , to yield:$u,$w,$q,$"s and $"b

  (5a)$X̃ = !X!u $u + !X!w$w + !X!q $q + !X!"s
$"s + !X!"b

$"b

 (5b)$Z̃ = !Z!u $u + !Z!w$w + !Z!q $q + !Z!"s
$"s + !Z!"b

$"b

  $M̃ = !M!u $u + !M!w $w + !M!q $q + !M!"s
$"s + !M!"b

$"

(5c)

Substituting (5a-c) into (4), the linearized equations of
the submarine motion take on the form:

!$u
!t = Xu$u + Xw$w + Xq$q + ( B

m − g)$! +

+X"b$"b + X"s$"s

!$w
!t = Zu$u + Zw$w + (Zq + u0)$q + Z"b$"b + Z"s$"s

!$q
!t = Mu$u + Mw$w + Mq$q −

B sin(#)$!l
Iyy

+

M"b$"b + M"s$"s

$!
.

= $q

where , Xj = !X!j , Zj = !Z!j Mj = !M!j (j = u, w, q, "s, "b)

.

Hence, the linear kinematic equations (short period
approximations) describing the motion of the submarine
in straight horizontal course may be written in state
space form as follows:

     (6)x.(t) = Ax(t) + Bu(t), y(t) = Cx(t), x(0 −) = x0

where

x(t) =  $u $w $q $! 
T
, y(t) =  $w $! 

T
,

u(t) =  $"b $"s 
T

 A =















Xu Xw 0 ( B
m − g)

Zu Zw Zq + u0 0

Mu Mw Mq −
B sin(#)$!l

Iyy

0 0 1 0














,

B =










X"b X"s

Z"b Z"s

M"b M"s

0 0









,C =






0 1 0 0
0 0 0 1






3. SOLVABILITY CONDITIONS

Consider the static state feedback law 

            (7)u(t) = Fx(t) + G%(t), %(t) =





wc(t)
!c(t)








where  and  are the external inputs consideredwc(t) !c(t)
as the elevation angle and heave velocity commands,
respectively. Apply the controller (7) to the system (6)
to achieve independent elevation and heave control. In
this section, it will be investigated under which
conditions the controller (7) results into a diagonally
decoupled closed loop system. The important benefit of
the diagonal form is that the increment of the heave
velocity is controlled only by  while elevationwc(t)
angle is controlled only by . The necessary and!c(t)
sufficient conditions for independent control for the
heave velocity and elevation angle are established in the
theorem stated below.

Theorem 1: Elevation angle and heave velocity can be
controlled independently if and only if the following
condition is satisfied:

                         (8)M"sZ"b − M"bZ"s " 0

Proof : As proven in [8] input-output decoupling is
solvable if and only if  , where det[C!B] " 0

,  C! =





c1Ad1

c2Ad2




 , ci : the i-th row of C

  (9)di =





min{ j : ciAjB " 0, j = 0, 1, ...., n − 1}
n − 1 if ciAjB = 0 #j






To satisfy the condition , start by observingdet[C!B] " 0
that ,  andc1B =  Z"b Z"s  c2B =  0 0 

. Hence it holds that , c2AB =  M"b M"s  d1 = 0

 and  and consequently thatd2 = 1 C!B =





Z"b Z"s

M"b M"s






. Thus, the necessary anddet[C!B] = M"sZ"b − M"bZ"s

sufficient condition for decoupling is condition (8).     !

4.  EXPLICIT CHARACTERIZATION OF THE
CONTROLLER MATRICES

Assuming that the solvability condition is satisfied, i.e.
, and using the design procedure inM"sZ"b − M"bZ"s " 0

[9], the general solution of the feedback matrices of the
form (7) yielding decoupling, is derived to be:

 F =






M"sZu−MuZ"s
M"bZ"s −M"s Z"b

M"s(&1,2−Zw)+Z"s Mw

M"sZ"b−M"bZ"s
MuZ"b−M"bZu

M"bZ"s −M"s Z"b

M"b(&1,2−Zw)+Z"b Mw

M"bZ"s −M"sZ"b

 (10)
M"s(u0+Zq)+Z"s(&2,3−Mq)

M"bZ"s−M"s Z"b

Z"s(Bl sin(#)+Iyy&2,4)
Iyy(M"bZ"s −M"sZ"b )

M"b(u0+Zq)+Z"b(&2,3−Mq)
M"s Z"b−M"b Z"s

Z"b(−Bl sin(#)+Iyy&2,4)
Iyy(M"sZ"b−M"bZ"s )








               (11)G =







M"s(p1,0)−1

M"sZ"b−M"bZ"s
Z"s (p2,0)−1

M"bZ"s −M"s Z"b
M"b(p1,0)−1

M"bZ"s −M"sZ"b

Z"b (p2,0)−1

M"sZ"b−M"bZ"s








where   are arbitrary parameters. pi,0 and & i,j

Relations (10) and (11) are explicit formulae that can be
easily implemented via elementary operations upon the
stability derivatives, the nominal value of the forward
velocity , and the free parameters.  u0

5. DECOUPLED CLOSED LOOP SYSTEM

Assuming that the decoupling condition (8) is satisfied
and substituting the controller (7) with  given inF and G
(10) and (11), to the system (6), the decoupled closed
loop system transfer function takes on the form:

       H(s) = C(sI − A − BF)−1BG =





(p1,0)−1

s−&1,2
0

0 (p2,0)−1

s2−&2,3s−&2,4






                         (12)

where  are arbitrary parameters. pi,0 and & i,j

Clearly, these arbitrary parameters can be used to satisfy
stability and amplitude requirements. The general form
of   has three arbitrary poles. SinceC(sI − A − BF)−1BG
the system is of fourth order, there exists a pole that is
cancelled out in the general from of the closed loop
transfer function. The polynomial of the cancelled out
pole expressed in terms of stability derivatives of the
submarine is:

    p(s) = s(M"b Z"s − M"s Z"b) − M"sX"b Zu + M"bX"s Zu

 (13)+M"sXuZ"b − MuX"s Z"b − M"b XuZ"s + MuX"bZ"s

Hence, the cancelled out pole of the closed loop system
is:

   (14)s0 =
M"s (X"bZu−XuZ"b)+M"b(XuZ"s −X"sZu)+Mu(X"sZ"b−X"bZ"s )

M"b Z"s−M"s Z"b

Since the poles of the closed loop transfer function can
be arbitrarily assigned, in order to guarantee stability for
the transfer function of the closed loop system
(transmission poles), the arbitrary parameters

 must satisfy the conditions:  &1,2, &2,3 and &2,4

. In addition, to guarantee&1,2 < 0, &2,3 < 0 and &2,4 < 0
stability of the closed loop system, the cancelled out
pole must lie in the left complex half-plane. Combining
the above remark with the observation that the model (6)
is of fourth order, the following theorem may be stated:

Theorem 2: Independent control of the elevation angle
and heave velocity with simultaneous stabilization can
be achieved if and only if conditions of Theorem 1 are
satisfied and  . !s0 < 0

From equation (12), it is clear that by choosing
 while restricting the(p1,0)−1 = &1,2 and (p2,0)−1 = &2,4

poles of the polynomials (s − &1,2) and (s2 − &2,3s − &2,4)
to be sufficiently stable, the variables  follow! and w
accurately the desired trajectories !c and wc

respectively.



6. SIMULATION RESULTS

In the present simulation a submarine with model
description that follows equation (6) is considered and
the static state feedback law (7) with controller matrices
as in (10) and (11) with , &1,2 = −10, &2,3 = −30

,  and  is applied. The&2,4 = −20 p1,0 = 0.1 p2,0 = 0.05
responses of the performance variables for heave
velocity pointing and elevation pointing are presented in
Fig. 2 and 3, respectively. The commands are

 for heave velocity translationwc(t) = 1[m/s], !c = 0[rad]
and  for elevationwc(t) = 0[m/s], !c = 0.01[rad]
pointing. The response of the elevation angle increment
in the case of heave velocity pointing is identical to
zero. Also, the response of the heave velocity increment
in the case of elevation pointing is identical to zero.

It is noted that the performance of the closed loop
system, for the case where the angles  and  occur in! #
trigonometric (nonlinear) form, resulting after the
application of the controller (7) appears to be visually
identical to that presented in Fig. 2 and 3 (linear case). 

7. CONCLUSIONS

To perform accurate manoeuvring of a submarine in
straight horizontal course, independent control of
elevation angle and heave velocity has been proposed.
The desired goal has been accomplished using a static
state feedback law and applying the I/O decoupling
technique. The set of the stability derivatives of the
submarine for which I/O decoupling is satisfied, has
been explicitly determined. The general analytic
expression of the feedback controllers, satisfying the
decoupling requirement, has been analytically
determined. The necessary and sufficient conditions for
I/O decoupling and simultaneous stability have been
explicitly determined in terms of the stability derivatives
of the submarine. The results have been illustrated via
simulations for elevation pointing and heave velocity
translation.
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Fig. 2.  Heave velocity response for step input command
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Fig. 3.  Elevation response for step input command
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