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Abstract. The problem of disturbance decoupling in multivariable control systems is 
considered. It has been shown that different two-degree-of-freedom control structures used 
for unmeasurable disturbance estimation and compensation may be treated as a particular 
case of a general Inverse Model Control approach. The decomposition of the problem into 
the separate disturbance state and model estimation is suggested. Moreover the connection 
between inverse model design problems and unknown input observer theory has been 
established in order to give a practical way to inverse model parameterization and design. 
The properties of closed-loop system with model-based controllers have been also 
investigated with the aim of attainable accuracy estimation. 
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1. INTRODUCTION 

Recently a number of innovative model-based 
control methods have been developed for 
multivariable systems taking into account the 
requirements of accuracy, dynamic performance, 
stability and robustness [8]. The role of model-based 
control methods is essentially increased when the 
control problem under uncertainty is considered. 
Because uncertainties of the plant may be treated as a 
parametric disturbance of nominal plant model, the 
disturbance decoupling has become on of the most 
important problem in advanced process control 
theory. 

There are two main approaches to such a problem. 
First, namely disturbance attenuation methods, use 
the available a priory information about disturbances 
in statistical or deterministic (set-membership) form. 
At that the design solution is obtained in a class of 
simple feedback control structures and is formalized 
as an optimization problem with the averaged or 
guaranteed cost function. The demands of controller 
internal stability are used as a supplementary 
restriction. In practice, the cost functions in the form 
of a norm of closed-loop transfer function are widely 
used and a corresponding solution may be obtained 
using 2H or ∞H optimal control methods [2]. 

It is necessary to underline that the systems, which 
are optimal with respect to a class of disturbances, 
usually doesn't ensure the high accuracy for all 
disturbances realizations. The most difficult case is 
the situation where the spectrums of reference signal 
and disturbances are essentially intersected. This 
situation is typical for many process control 
applications. 

Another approach is based on the utilization of 
current information about disturbances obtained by 
the direct or indirect measurements. Such an 
approach realized in non-traditional control structures 
known as "two-degree-of freedom controllers" [12] is 
the generalization of combined feedback and 
feedforward control method. The corresponding 
design methods using the different types of plant's 
and disturbances models in control loop (internal 
model-based control) are very popular in robust 
process control. At that, the dynamic models are used 
both for disturbance estimation (indirect 
measurement) and for prediction and compensation 
in order to ensure selective invariance properties of 
closed-loop system [11], i.e. decoupling for a certain 
class of disturbance. The idea of selective invariance 
was initially developed for SISO systems with scalar 
disturbance [9,11] and it generalization for 
multivariable systems are of the great interest. 
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In this paper, we analyze from the unified point of 
view the different model-based disturbance 
decoupling methods for multivariable systems via 
selective invariance approach and show that they 
may be treated as the modifications of the general 
inverse model control (IMC) method [5,7]. The IMC 
includes model-based input disturbance estimation, 
output plant's reaction prediction and disturbances 
influence compensation. The corresponding control 
structure consists of the disturbance observer and 
feedforward controller both based on the designed 
inverse models of the controlled plant's channels. 
Such an approach ensures not only the closed-loop 
system stabilization, but also high accuracy arbitrary 
reference signal tracking and unmeasurable arbitrary 
disturbance decoupling. 

The advantage of the proposed method became 
brightly apparent in the case when disturbance model 
is unknown and should be identified using only 
current measurements of output variables. In such a 
case for multivariable systems the problem of 
simultaneous disturbance state and model parameter 
estimation is appeared. This problem under the 
conventional approach is reduced for the complex 
nonlinear adaptive filtering problem. The IMC 
approach ensures the decomposition of the problem 
into the separate disturbance state and model linear 
estimation realized by the well-developed algorithms. 

2. PROBLEM STATEMENT 

Consider a linear discrete-time multivariable system 
described by the state-space model 
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where n
kx R∈ - state vector in time k , 1m

ku R∈  - 

control, 2m
kw R∈  - disturbance vector, 11 q

ky R∈ , 
22 q

ky R∈  - output controlled and measured variables 
respectively. It will be assumed that system (1) has 
relative order 1 and the simplest type of invertibility 
condition for (1) takes place, i.e. ii qC =rank , 

ii mB =rank  and ( ) iiii qmBC ≤=rank . Such an 
assumption is not very restrictive and used only for 
the simplicity of statement. The disturbance is 
described by the state-space model kk ww Φ=+1 , 
where matrix Φ  is unknown. 

The output control problem is to find the control 
sequence { }ku , depending from the measured 

variables, which ensure the reference signal ∗
ky  

tracking and disturbances kw  decoupling. The 
requirement of closed-loop system stabilization along 
with the disturbance decoupling leads to the 
disturbance decoupling problem with stability 

(DDPS). If, besides stability, arbitrary pole 
placement is demanded, the disturbance decoupling 
problem with pole placement (DDPPP) may be 
stated. Moreover, as long as the state vector of the 
system can’t be measured directly and the 
formulation of the disturbances decoupling problem 
by measurement feedback (DDPM) can be defined. 
The conditions for solvability of the problems 
mentioned above are well known [1]. Nevertheless in 
spite of the existence of general solution of the DDP 
in term of invariant subspaces, the determination of 
analytical expressions for the controllers that solve 
DDP is of the great interest. Besides of a complete 
characterization of the solution the most important 
step of the design procedure is the parameterization 
of corresponding state feedback or dynamic 
compensator matrices. From practical point of view it 
is desirable to decompose the DDPM into the 
structural synthesis of the designed controller renders 
the fixed and free parameters and parametric 
synthesis based on the appropriate parameters tuning 
methods in order to satisfy the design goals, such as 
pole placement, performance optimization and so on. 

3. MODEL-BASED FEEDFORWARD 
CONTROL 

Consider at first the output control problem when the 
disturbance can be measured directly. Such an 
approach is realized in feedforward control structures 
and closely connected with the problem of dynamic 
system inversion. 

3.1. Local optimal control 
 In accordance with the local optimal control (LOC) 
method [4] the control signal is found from the local 
criteria minimization problem 
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where α  is a weight coefficient, jiij BCS = . The 
corresponding control law is given by 

( )( )
( ) ( ) ,

,
T
11

1
11

T
111

12111

1
SSSID

wSAxCyDu

m

kkkk
−

∗
+

+=

−−=

αα

α
 (3) 

From (1), (3) the equation of closed-loop system 
follows 
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The equation (4) coincides with the regularized 
inverse model of the system (1) control channel [5]. 
Consider the stability condition of closed-loop 
system (4). Without the restriction of generality it 



may be assumed that the (1) is stable, in over case it 
may be guaranteed by using the stabilizing feedback. 
As it has been shown in [5], the non-zero part of the 
spectrum of A1Π , where projection matrix 

( ) 1
1

11111 0 CSBI n
−−=Π=Π , coincides with the 

transmission zeroes of system (1). Thus for 
minimum-phase plants the stability of closed-loop 
system (8) is guaranteed for any α , in over cases the 
stability margin value ∗α  exists. At that, the limited 
attainable accuracy of control is determined from the 
equation for control error 11

kkk yye −= ∗  

( )( )
( ) ( ) 1T

1111

1211
1

1 ,
−

∗
++

−=

−−=

SSIE

wSAxCyEe

m

kkkk

ααα

α
. (5) 

It is necessary to underline that the LOC approach 
leads to the changing the poles of closed-loop system 
and for nonminimum-phase case its dynamics my be 
unsatisfactory. 

3.2. Inverse model control 
The inverse model control (IMC) method is the 
generalization of combined control with inverse 
model [7]. The control law is accepted in the form 

∗+−= kkk ueKu 1 , (6) 

where the first component is realized the output 
feedback with ensures the desired dynamic properties 
of closed-loop system, and the second component is 
used for reference signal tracking and disturbance 
compensation. Such a control signal is formed by the 
feedforward controller, based on the inverse model of 
control channel of system (1): 
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From (1) and (7) follows the equation for closed-loop 
system 
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where kkk xx ~−=θ . 

Taking into account the evident balance property 
0111 =+ ++ kk eC θ , the equation  (8) may be 

represented in the equivalent form  

( ) ., 111111 kkkk CeCKBA θθθ −=−= ++  (9) 

Therefore, IMC method ensures the arbitrary 
reference signal tracking and disturbances decoupling 
if the invertibility conditions of system (1) take place. 
However, the control law (6) may be realized in the 
only case when the feedforward compensator (7) is 

stable. Thus the direct IMC can be used only for 
minimum-phase plants. In general case a regularized 
feedforward compensator may be designed using the 
similar technique as for LOC: 
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with parameters matrices 

( ) ( ) T
11

1
11

T
11 SSSID m

−
+= αα , 

( ) ( ) 111 BDCIn αα −=Π . 

In such a case the equations for control error 
dynamics may be obtained as: 
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where ( )( )112111
~

−−
∗ −−= kkkk wSxACyEf α  is the 

equivalent disturbance. Using (1) it is easy to 
estimate the attainable accuracy of combined IMC in 
the dependence of the desired stability margin of 
feedforward compensator. 

4. DISTURBANCE IDENTIFICATION 

Consider the internal model-based control system 
design when the disturbances kw  can't be measured 
directly. The corresponding modifications of control 
law have to use the estimations of disturbances kŵ , 

obtained from the measured data { }2
ky  (the method of 

indirect disturbance measurement). In accordance 
with the concept of internal model the indirect 
disturbances measurement may be realized using 
either internal dynamic plant model [8], or static two-
input matching model [11]. 

4.1. Internal model method 
Taking the internal model in the following form 

kkkkk xCyuBxAx 211
~̂,~̂~̂ =+=+  (12) 

one can obtained the disturbances estimate as 

( )1
2

122 ˆˆ ++
+ −= kkk yySw . (13) 

At that, the estimation error kkk wwe ˆ2 −=  will 

include the bias proportional to kw . In order to avoid 
it the corrected internal model may be used 

kkkk wBuBxAx ˆˆˆ 21 ++= , (14) 

or taking (13) into account 
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122211221 ˆˆ +
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where 22222 CSBIn
+−=Π , "+" denotes the Moore-

Penrouze generalized inversion. 

Moreover the estimation error is given by 

2
2

2
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and will be invariant with respect to the unmeasured 
disturbance. 

The equations(15), (16) exactly coincides with the 
equation of inverse model of system’s (1) disturbance 
channel [5] so the internal model method 
generalization for multivariable system leads to the 
IMC. 

4.2. Two-input static model method 
In such a case the disturbance estimate is formed in 
accordance with the equation 

( )kkkk uSxCAySw 21
2

122 ˆˆ −−= +
+ , (17) 

where the state vector estimate kx̂  is obtained by the 
dynamic state observer with the additional internal 
feedback intended for bias elimination 

( ) kkkkkk wBxCyLuBAxx ˆˆˆ 211 +−++=+  (18) 

or in equivalent form 

kkkkk uBLyySBxFx 12
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where 22 LCAF −Π= , L  - is an arbitrary tuning 
matrix with appropriate dimension. 

The equation (19) coincides with the equation of 
unknown-input observer (UIO) [3,6], so the 
disturbance observer in the form of two input static 
model [11] for multivariable systems converts with 
the combination of (17) into the UIO based tuning 
inverse model [5] of system’s (1) disturbances 
channel. It is evident that if the observability 
conditions of matrix pair ( )22 ,CAΠ  take place, the 
inverse model may be designed in accordance with 
the pre-established dynamic properties. 

If the proper inverse model is used, the 
corresponding disturbance estimates are formed with 
one step delay with respect to the current 
measurement. Such a delay may be compensated in 
the control loop in accordance with the general 
selective invariance idea [11] using the disturbance 
model kk ww Φ=+1 . In such a way the equations of 
feedforward compensator with indirect disturbances 
measurement may be obtained in the form 
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the closed-loop system equations are 
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Moreover the generalized separation principle takes 
place, i.e. the dynamic properties of control loop and 
disturbances observer may be established 
independently. 

In the case when disturbance model matrix Φ is 
unknown the suitable identification algorithms may 
be applied using the disturbance estimates (13) or 
(17). For example, if the recurrent least square 
method is used [4] the disturbance model 
identification algorithms are in the form 

( ) kkkkkkk www ΓΦ−+Φ=Φ ++
T

11 ˆˆˆˆˆˆ , (22) 

where 
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The corresponding disturbance compensation 
algorithm includes the disturbance prediction based 
on the model estimates may be treated as the adaptive 
selective invariance approach. 

5. INVERSE MODEL DESIGN 

The basic of IMC approach is the state space 
representation of the inverse models. If the 
invertibility conditions take place [10], the structure 
inversion algorithm may be applied, in this case the 
structure and parameters of inverse models are 
strictly determined by the parameters of the 
corresponding channels. So for nonminimum-phase 
system the inverse models will be unstable. The 
inverse model design method must include the 
suitable parameterization of its equations and free 
parameters are selected from the simultaneous 
conditions of stability and desired dynamic 
properties. The most general way for such 
parameterization is the UIO theory [3,6], then the 
observer equation combined with the unknown input 
signal estimate may be treated as the designed 
inverse model. 

5.1. Full-order inverse model 
Consider the problem of dynamic system inversion, 
for this purpose supposes that 0≡kw , ku  and 1

ky  
will be treated as the unknown input and measured 
output respectively. In the case under consideration 
using the UIO observer 
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one can obtained the inverse models equation in the 
form 
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where n
k

I
k xx R∈= ˆ1 , 11 qI

ku R∈ , 11 mI
ky R∈  - 

inverse model state vector, input and output signals 
respectively, 11

k
I
k yu = . 

If the parameters of the observer (24) satisfy the so-
called “invariance conditions” [5,7] 
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the unknown input ku  will be eliminate from the 

deviation vectors 1I
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which will be given by following equations: 
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As it has been shown in [5] in general case 11 qm ≤  
the system of linear algebraic equation (26) has a 
solution 
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where 11111 CSBI n
+−=Π , +−=Ω 11111 SSIn , 

( ) TT SSSS 11
1

111111
−+ = , and 1L  is the arbitrary ( )1qn ×  

matrix of free tuning parameters. Therefore if the pair 
( )11 , CAΠ  is observable (input observability 
conditions), the eigenvalues of ( )11 LF  may be 
assigned by means of tuning matrix 1L  selection via 
pole placement method. 

Finally the parameterized state-space representation 
of the inverse model are obtained in the form 
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where ( ) 11111111 CLBACSLC ++ += . 

For example, using the special form of system (1), 
which may be obtained by nonsingular state-space 
transformation 
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the inverse models matrices may be represented as  
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where +−=Ω 1111111
BBI qB , iii ABBAA 1111221
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( )TTT LLL 12111 = , 11
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Thus the suitable modal control method may be used 
for inverse model design. 

5.2. Reduced-order inverse model 
The minimal state-space realization of the inverse 
model may be obtained by means of reduced order 
UIO. Let 1

1
qn

kk xRz −∈= R  be an aggregated 

auxiliary variables, where 1R  is the appropriate 

aggregate matrix such as ( ) nRC TT =11rank . Then 
the state vector estimate may be obtained as follows 
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where kẑ  is given by minimal-order UIO 
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The “invariance conditions” in such a case take on 
the form 
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and a corresponding solution of (35) may be obtained 
as 
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where matrices 11, QP  are uniquely determined by 

1R  selection. 

Therefore the minimal-order inverse model is given 
by equations: 
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where 11 qn
k

I
k zx −∈= R  - state vector of the inverse 

model, ( ) 1111111 Ω+= ++ PBSPC . 

The deviation vectors ,1
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and its dynamic properties is determined by tuning 
matrix 1R  selection. 

Concretely define the matrices 1P , 1Q  choice, one 
can admit 
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in such a case ( )qnIPQR −
− −= 12

1
121  and 12P , 12Q  

are arbitrary matrices with 0det 12 ≠Q . For system 
representation (15) from (16), (21) follows that 
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Thus the matrix 12Q  defines the similarity 
transformation and doesn’t change the spectrum of 

( )11 RF  which completely determined by arbitrary 

matrix 11
2

qqnP ×−∈ R . The last may be chooses by 

pole placement method if pair ( )1222 , AA  is 
observable. The aggregate matrix 1R  is determined 
up to an arbitrary nonsingular matrix 12Q . 

6. CONCLUSION 

The proposed UIO-based approach to selective 
invariance properties ensuring in multivariable 
systems leads to the decomposition of the problem on 
the disturbance state estimation and model 
identification. As it has been shown the inverse 
models may be used for both disturbance estimation 
and compensation. Therefore the inverse model-
based control method is seemed to be the most 

general approach to the disturbance decoupling 
problem in multivariable systems and may be 
consider as a basis for high accuracy control system 
design. The UIO theory may be used as a basis for 
inverse systems design, moreover the nonminimum-
phase case may be treated in the same way. The 
reduced-order and regularized inverse models and 
multivariable model-based disturbance compensator 
has been developed and design method proposed 
using pole-placement method.  It is essentially that 
such an approach gives a simple criterion of inverse 
model design problem solvability. 
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