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Abstract. The problem of disturbance decoupling in multivariable control systems is
considered. It has been shown that different two-degree-of-freedom control structures used
for unmeasurable disturbance estimation and compensation may be treated as a particular
case of a general Inverse Model Control approach. The decomposition of the problem into
the separate disturbance state and model estimation is suggested. Moreover the connection
between inverse model design problems and unknown input observer theory has been
established in order to give a practical way to inverse model parameterization and design.
The properties of closed-loop system with model-based controllers have been also
investigated with the aim of attainable accuracy estimation.
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1. INTRODUCTION

Recently a number of innovative model-based
control methods have been developed for
multivariable systems taking into account the
requirements of accuracy, dynamic performance,
stability and robustness [8]. The role of model-based
control methods is essentially increased when the
control problem under uncertainty is considered.
Because uncertainties of the plant may be treated as a
parametric disturbance of nominal plant model, the
disturbance decoupling has become on of the most
important problem in advanced process control
theory.

There are two main approaches to such a problem.
First, namely disturbance attenuation methods, use
the available a priory information about disturbances
in statistical or deterministic (set-membership) form.
At that the design solution is obtained in a class of
simple feedback control structures and is formalized
as an optimization problem with the averaged or
guaranteed cost function. The demands of controller
internal stability are used as a supplementary
restriction. In practice, the cost functions in the form
of a norm of closed-loop transfer function are widely
used and a corresponding solution may be obtained

using H, or H* optimal control methods [2].

It is necessary to underline that the systems, which
are optimal with respect to a class of disturbances,
usually doesn't ensure the high accuracy for all
disturbances realizations. The most difficult case is
the situation where the spectrums of reference signal
and disturbances are essentially intersected. This
situation is typical for many process control
applications.

Another approach is based on the utilization of
current information about disturbances obtained by
the direct or indirect measurements. Such an
approach realized in non-traditional control structures
known as "two-degree-of freedom controllers” [12] is
the generalization of combined feedback and
feedforward control method. The corresponding
design methods using the different types of plant's
and disturbances models in control loop (internal
model-based control) are very popular in robust
process control. At that, the dynamic models are used
both  for  disturbance  estimation  (indirect
measurement) and for prediction and compensation
in order to ensure selective invariance properties of
closed-loop system [11], i.e. decoupling for a certain
class of disturbance. The idea of selective invariance
was initially developed for SISO systems with scalar
disturbance [9,11] and it generalization for
multivariable systems are of the great interest.
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In this paper, we analyze from the unified point of
view the different model-based disturbance
decoupling methods for multivariable systems via
selective invariance approach and show that they
may be treated as the modifications of the general
inverse model control (IMC) method [5,7]. The IMC
includes model-based input disturbance estimation,
output plant's reaction prediction and disturbances
influence compensation. The corresponding control
structure consists of the disturbance observer and
feedforward controller both based on the designed
inverse models of the controlled plant's channels.
Such an approach ensures not only the closed-loop
system stabilization, but also high accuracy arbitrary
reference signal tracking and unmeasurable arbitrary
disturbance decoupling.

The advantage of the proposed method became
brightly apparent in the case when disturbance model
is unknown and should be identified using only
current measurements of output variables. In such a
case for multivariable systems the problem of
simultaneous disturbance state and model parameter
estimation is appeared. This problem under the
conventional approach is reduced for the complex
nonlinear adaptive filtering problem. The IMC
approach ensures the decomposition of the problem
into the separate disturbance state and model linear
estimation realized by the well-developed algorithms.

2. PROBLEM STATEMENT

Consider a linear discrete-time multivariable system
described by the state-space model

X1 = AX +Buy +Bow, )

yi =Cy X, yf =Cy X,

where x, OR" - state vector in time k, u, OR™ -
control, w, OR™ - disturbance vector, yi OR%®,

yf OR% - output controlled and measured variables
respectively. It will be assumed that system (1) has
relative order 1 and the simplest type of invertibility
condition for (1) takes place, i.e. rankC; =q;,
rankB; =m; and rank(CiBi)= m; <g;. Such an
assumption is not very restrictive and used only for
the simplicity of statement. The disturbance is
described by the state-space model wy,; = ®w,,

where matrix @ is unknown.

The output control problem is to find the control
sequence {uk}, depending from the measured
variables, which ensure the reference signal ykD
tracking and disturbances w, decoupling. The

requirement of closed-loop system stabilization along
with the disturbance decoupling leads to the
disturbance decoupling problem with stability

(DDPS). If, besides stability, arbitrary pole
placement is demanded, the disturbance decoupling
problem with pole placement (DDPPP) may be
stated. Moreover, as long as the state vector of the
system can’t be measured directly and the
formulation of the disturbances decoupling problem
by measurement feedback (DDPM) can be defined.
The conditions for solvability of the problems
mentioned above are well known [1]. Nevertheless in
spite of the existence of general solution of the DDP
in term of invariant subspaces, the determination of
analytical expressions for the controllers that solve
DDP is of the great interest. Besides of a complete
characterization of the solution the most important
step of the design procedure is the parameterization
of corresponding state feedback or dynamic
compensator matrices. From practical point of view it
is desirable to decompose the DDPM into the
structural synthesis of the designed controller renders
the fixed and free parameters and parametric
synthesis based on the appropriate parameters tuning
methods in order to satisfy the design goals, such as
pole placement, performance optimization and so on.

3. MODEL-BASED FEEDFORWARD
CONTROL

Consider at first the output control problem when the
disturbance can be measured directly. Such an
approach is realized in feedforward control structures
and closely connected with the problem of dynamic
system inversion.

3.1. Local optimal control

In accordance with the local optimal control (LOC)
method [4] the control signal is found from the local
criteria minimization problem

Iy = ||ykD+1 = C1AX = Sy ‘512""k||2 ¥ )

+ a||uk||2 ~ min

where a is a weight coefficient, S; = C;B;. The
corresponding control law is given by

U = Dl(a)(ykuﬂ -G AX - SlZWk)

1 ®)
D1(a) = (C“m1 + S1T151J S,

From (1), (3) the equation of closed-loop system
follows

Xk = nl(a)AXk + BlDl(a)ykDﬂ + @)
+1, (@)B,w,
The equation (4) coincides with the regularized
inverse model of the system (1) control channel [5].
Consider the stability condition of closed-loop
system (4). Without the restriction of generality it



may be assumed that the (1) is stable, in over case it
may be guaranteed by using the stabilizing feedback.
As it has been shown in [5], the non-zero part of the
spectrum of T[1;A, where projection matrix

N, =n,(0)=1,-B,S;C;, coincides with the
transmission zeroes of system (1). Thus for

minimum-phase plants the stability of closed-loop
system (8) is guaranteed for any O, in over cases the

stability margin value a” exists. At that, the limited
attainable accuracy of control is determined from the

equation for control error e, = yi' — Vi

ei+1 = E(U’)(YEH -CAX — SlZWk)

g ()
1

E(a)= a(al o 51151T1)

It is necessary to underline that the LOC approach
leads to the changing the poles of closed-loop system
and for nonminimum-phase case its dynamics my be
unsatisfactory.

3.2. Inverse model control

The inverse model control (IMC) method is the
generalization of combined control with inverse
model [7]. The control law is accepted in the form

uy = -Kpe, +uy, (6)

where the first component is realized the output
feedback with ensures the desired dynamic properties
of closed-loop system, and the second component is
used for reference signal tracking and disturbance
compensation. Such a control signal is formed by the
feedforward controller, based on the inverse model of
control channel of system (1):

X = M ARy +BySiTyick +1M,Bow,
UkD = 51_11(YkD+1 -C Axy - SlZWk)

()

From (1) and (7) follows the equation for closed-loop
system

041 = AB, +BKyeg,

. ®)
e = ~C1AB, —S11Kqe,

Where Gk = Xk - ik .

Taking into account the evident balance property

Ci6y 41 teq =0, the equation (8) may be
represented in the equivalent form
O = (A - Blchlbk! €1 = —Ci6,. ©)

Therefore, IMC method ensures the arbitrary
reference signal tracking and disturbances decoupling
if the invertibility conditions of system (1) take place.
However, the control law (6) may be realized in the
only case when the feedforward compensator (7) is

stable. Thus the direct IMC can be used only for
minimum-phase plants. In general case a regularized
feedforward compensator may be designed using the
similar technique as for LOC:

Xia1 = |_|1(0')A§k + BlD(a)ykDﬂ +
+ nl(a)Bzww (10)

UkEI = D(“)(Ykmﬂ = C1 A ‘312Wk)

with parameters matrices

D(a)= (alm +51Tlsll)'lslT1,
nl(a): Iy _ClD(U’)Bl-

In such a case the equations for control error
dynamics may be obtained as:

O = (A‘ BlK1C1)9k +B Ky fy, (11)
e =Ci6, + fy,

where f, = El(or)(ykt'—ClAXk_1 ‘312Wk—1) is the
equivalent disturbance. Using (1) it is easy to
estimate the attainable accuracy of combined IMC in

the dependence of the desired stability margin of
feedforward compensator.

4. DISTURBANCE IDENTIFICATION

Consider the internal model-based control system
design when the disturbances W, can't be measured

directly. The corresponding modifications of control
law have to use the estimations of disturbances W, ,

obtained from the measured data {yf} (the method of

indirect disturbance measurement). In accordance
with the concept of internal model the indirect
disturbances measurement may be realized using
either internal dynamic plant model [8], or static two-
input matching model [11].

4.1. Internal model method
Taking the internal model in the following form

Xga1 = AXy +Biuy, Yy = Coxy (12)
one can obtained the disturbances estimate as
Wy =S (YE+1 - 9k+1)- (13)

At that, the estimation error e =w, —W, will

include the bias proportional to W, . In order to avoid
it the corrected internal model may be used

X, = AX, +Bu, +B,W,, (14)

or taking (13) into account



R =M ARy + M5By +B,S5,yE, (15)

where M, =1, -B,S,,C,, "+" denotes the Moore-
Penrouze generalized inversion.

Moreover the estimation error is given by
2 _ 2
s = Mo Ae, (16)

and will be invariant with respect to the unmeasured
disturbance.

The equations(15), (16) exactly coincides with the
equation of inverse model of system’s (1) disturbance
channel [5] so the internal model method
generalization for multivariable system leads to the
IMC.

4.2. Two-input static model method
In such a case the disturbance estimate is formed in
accordance with the equation

Wy, =S5, (y|f+1 —CAR _321Uk): a7)

where the state vector estimate &, is obtained by the

dynamic state observer with the additional internal
feedback intended for bias elimination

)2k+1 = AXk + Bluk + L(yk _Cz)zk)"' BWk (18)
or in equivalent form
s = FRy +B,S5, Y|f+1 + Lyf +1,Byuy (19)

where F =MN,A-LC,, L - is an arbitrary tuning
matrix with appropriate dimension.

The equation (19) coincides with the equation of
unknown-input  observer (UIO) [3,6], so the
disturbance observer in the form of two input static
model [11] for multivariable systems converts with
the combination of (17) into the UIO based tuning
inverse model [5] of system’s (1) disturbances
channel. It is evident that if the observability
conditions of matrix pair (I‘IZA,CZ) take place, the

inverse model may be designed in accordance with
the pre-established dynamic properties.

If the proper inverse model is wused, the
corresponding disturbance estimates are formed with
one step delay with respect to the current
measurement. Such a delay may be compensated in
the control loop in accordance with the general
selective invariance idea [11] using the disturbance
model w,,; = ®Pw, . In such a way the equations of

feedforward compensator with indirect disturbances
measurement may be obtained in the form

Xia1 = nl(a)Aik + B1D(U)Y|<D+1 +
+11, ()8, iy, (20)
UkD = D(a)(ykDﬂ - CAX, - S12‘DVAV|<—1)

the closed-loop system equations are

O = (A_ BlK1C1)9k +BK fy + qu)ef—l:

1 2 2 2 (21)
ek = —Cify + fy =S Peyy, e = Fey.
Moreover the generalized separation principle takes
place, i.e. the dynamic properties of control loop and
disturbances  observer may be established
independently.

In the case when disturbance model matrix @ is
unknown the suitable identification algorithms may
be applied using the disturbance estimates (13) or
(17). For example, if the recurrent least square

method is wused [4] the disturbance model
identification algorithms are in the form
By =Py +(Wk+l_¢kwk};\\ll-<rrk1 (22)
where

AT o~ W P
My =T - (1"‘ errka) AT (23)

The corresponding  disturbance  compensation
algorithm includes the disturbance prediction based
on the model estimates may be treated as the adaptive
selective invariance approach.

5. INVERSE MODEL DESIGN

The basic of IMC approach is the state space
representation of the inverse models. If the
invertibility conditions take place [10], the structure
inversion algorithm may be applied, in this case the
structure and parameters of inverse models are
strictly determined by the parameters of the
corresponding channels. So for nonminimum-phase
system the inverse models will be unstable. The
inverse model design method must include the
suitable parameterization of its equations and free
parameters are selected from the simultaneous
conditions of stability and desired dynamic
properties. The most general way for such
parameterization is the UIO theory [3,6], then the
observer equation combined with the unknown input
signal estimate may be treated as the designed
inverse model.

5.1. Full-order inverse model
Consider the problem of dynamic system inversion,

for this purpose supposes that w, =0, U, and yﬁ

will be treated as the unknown input and measured
output respectively. In the case under consideration
using the UIO observer



X = FiX + GV, Xy = X +Hyyyy, (24)

one can obtained the inverse models equation in the
form

| | | |
Xk = Fxy (t)+(Gy, - I:1|'|11)U|<1 )+ HyjUla, (25)
ylil =B/ X111+1 —Axli1 :
where x; =% OR", u?0OR%, y20OR™
inverse model state vector, input and output signals
respectively, u* = yi .

If the parameters of the observer (24) satisfy the so-
called “invariance conditions” [5,7]

(In - Hllcl)Fl - Fl(ln - H11C1): GGy,

B, —Hy;,CB;, =0, &

the unknown input U, will be eliminate from the

deviation vectors ey =X, — xlil, e = Uy - y;il

which will be given by following equations:
ey = Fel, el =-B (F - AkX. 27)

As it has been shown in [5] in general case m; <q

the system of linear algebraic equation (26) has a
solution

Fl(Ll): MmA-L,C, H;= Blsl+l’ (28)
Gll(Ll): MiAH, +1,Qq,

Where |_|1 = In - Blsﬂ_cl, Ql = In _Sllsﬂ,

S = (Sflsll)_lsfl, and L, is the arbitrary (nxgq,)
matrix of free tuning parameters. Therefore if the pair
(I'IlA, Cl) is observable (input observability

conditions), the eigenvalues of Fl(Ll) may be
assigned by means of tuning matrix L, selection via
pole placement method.

Finally the parameterized state-space representation
of the inverse model are obtained in the form

| _ | | |
X = Fl('—l)xk1 (t)+ Lyu + Hiuly,

Iy Iy + Iy + .1y (29)
Yk =_C1(L1)Xk +By LUyt +Spuly,

where C;(Ly)=S;iC;A+B; LLC, .

For example, using the special form of system (1),
which may be obtained by nonsingular state-space
transformation

(31)

Qg =1y -BuBi, A=Ay —BLBIA;,
I

=0 1 0,), Ly OR®S | 1, OR™%,

Thus the suitable modal control method may be used
for inverse model design.

5.2. Reduced-order inverse model
The minimal state-space realization of the inverse
model may be obtained by means of reduced order

UIO. Let z, =R;x, OR™™ be an aggregated
auxiliary variables, where R; is the appropriate

aggregate matrix such as rank(ClT 'R} )= n. Then
the state vector estimate may be obtained as follows

R = Pyi + Qi (32)
where 2k is given by minimal-order UIO

X = Fi% +Grayi, 4 =%, +Hyyi (33)
and matrices P, OR™%, Q, OR™"™% are defined as

-1

() :Ql)zglg v CiP =1,
1

RiQu =1, PCL+QR =1, (34)

ClQl = Oql,n—ql’ R1Pl = on—%%

The “invariance conditions” in such a case take on
the form

(Rl - q101 )A - El(Rl - q101): 611(:1’ (35)
R.B; — ﬁ110181 =0,

and a corresponding solution of (35) may be obtained
as

IEl(Rl) =RyM;AQy,

ﬁ11 = RyB;S;; = RyHy, (36)
G11(R1) =Ryl 1A(H11 + PlQl)v



where matrices P, Q; are uniquely determined by
R, selection.

Therefore the minimal-order inverse model is given
by equations:

Xl = R (R )X +RMARUY + RyHyqup

X = PR Xy 1l 11 ARUy 1M 12U,

g 37)
Vi = _Cl(Pl)[ClAlelil +CARU’ ~ ulil’fl]’

where x,* =z, OR"™® - state vector of the inverse

model, C,(P,) =S, +B; PQ;.

The deviation vectors & = Ryx, —x*, ey also are

invariant with respect to U, :

& = R(RE e =—Cy(R)C,AQE,, (38)

and its dynamic properties is determined by tuning
matrix R; selection.

Concretely define the matrices P,,Q; choice, one
can admit

P 1o )=Ht Q11E
Y %z Qe (39)

Pi=1lg Qu=0gn

in such a case R, =Q1‘21(— P | In_q) and P,, Qp
are arbitrary matrices with detQ,, #0. For system
representation (15) from (16), (21) follows that

|E1(R1) = Q1_2l (Kzz -P2 'Kiz b12,

o - . (40)
A = Qg Ao Ay = Ay —BpBriA.

Thus the matrix @, defines the similarity
transformation and doesn’t change the spectrum of
Ifl(Rl) which completely determined by arbitrary

matrix P, OR"™™%  The last may be chooses by
pole placement method if pair (KZZ,KQ) is
observable. The aggregate matrix R; is determined
up to an arbitrary nonsingular matrix Q;, .

6. CONCLUSION

The proposed UlO-based approach to selective
invariance properties ensuring in multivariable
systems leads to the decomposition of the problem on
the disturbance state estimation and model
identification. As it has been shown the inverse
models may be used for both disturbance estimation
and compensation. Therefore the inverse model-
based control method is seemed to be the most

general approach to the disturbance decoupling
problem in multivariable systems and may be
consider as a basis for high accuracy control system
design. The UIO theory may be used as a basis for
inverse systems design, moreover the nonminimum-
phase case may be treated in the same way. The
reduced-order and regularized inverse models and
multivariable model-based disturbance compensator
has been developed and design method proposed
using pole-placement method. It is essentially that
such an approach gives a simple criterion of inverse
model design problem solvability.
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