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Abstract: This paper formulates and solves the problem of stable inversion for a class
of discrete-time nonlinear systems possessing either completely stable or completely
unstable zero dynamics. Given a desired output trajectory, the new stable inversion
method determines bounded desired trajectories for the input and state variables that
satisfy the plant state and output equations. The desired input and state trajectories
may be used as feedforward signals for tracking control purposes, and/or they may be
used to study the influence of plant parameters on control requirements. The stable
inversion process involves numerical calculations with Newton iterations and is causal
for minimum-phase systems and noncausal for maximum-phase systems. An appli-
cation to an electronic power conversion circuit illustrates the significant benefits of
computing the feedforward input using stable inversion instead of the more traditional
dc-gain method, including large reductions in peak transient error, settling time and
overshoot.

Keywords: digital control, feedforward control, nonlinear systems, nonminimum-
phase systems, power converters.

1 Introduction

Asymptotic output tracking is a challenging prob-
lem when dealing with nonlinear nonminimum-
phase systems. Consider the continuous-time case.
Input-output linearization [3] provides the desired
asymptotic tracking property but fails to provide
bounded internal plant states and bounded plant in-
put. Nonlinear output regulation [4] provides both
internal stability and asymptotic tracking for tra-
jectories generated by an exosystem, but requires
solution of a set of nonlinear partial differential
equations for implementation. The stable inver-
sion method [1, 2] provides perfect tracking with-
out transient error through the combination of a
bounded (but non-causal) feedforward control and
a feedback control to stabilize the desired trajec-
tory.

In this paper, the stable inversion method is ex-
tended to discrete-time nonlinear maximum-phase
systems; the simpler minimum-phase case is in-
cluded as well. Such an extension is believed to be
useful for practical applications in which the non-

∗This work was supported in part by the National Science
Foundation under grant ECS-9158037 and by the Office of
Naval Research under grant N00014-96-1-0926.

linear control system is to be implemented digitally.
The concepts of relative degree, normal form and
inverse dynamics for nonlinear discrete-time sys-
tems are first established. Since the system ex-
hibits a nonlinear dependence on both the state
and the input, the inverse dynamics cannot gen-
erally be expressed in explicit form. A characteri-
zation of inverse dynamics stability is provided, and
a Newton iteration method is developed to obtain
a bounded solution to the implicit inverse dynam-
ics. Finally, the new discrete-time stable inversion
method is applied to the nonlinear maximum-phase
sampled-data model of a pulse-width modulated
power conversion circuit to illustrate the possibil-
ity of exact tracking with boundedness of all signals
through the use of non-causal stable inversion and
pre-actuation.

2 Problem Statement

Throughout this paper, the focus is on single-input
single-output nonlinear discrete-time systems of the
form

xk+1 = F (xk, uk) (1)

yk = h(xk) (2)

1



where x ∈ Rn, u ∈ R, y ∈ R, and F and
h are smooth, with equilibrium point (x̄, ū) de-
fined by x̄ = F (x̄, ū), and with equilibrium output
ȳ = h(x̄). The model (1)—(2) may represent an in-
herently discrete-time process or it may define the
discrete-time dynamics of a sampled-data system.
Due to the introduction of so-called sampling zeros
in sampled-data models, the possibility of system
(1)—(2) being nonminimum-phase is very high.
The primary objective of this paper is to extend

the concept of stable inversion to nonlinear discrete-
time systems of the form (1)—(2). More precisely,
given a bounded desired output trajectory ydk, the
goal is to determine corresponding bounded desired
trajectories for the input and state variables, i.e. to
determine bounded udk and x

d
k such that the con-

straints

xdk+1 = F (xdk, u
d
k) (3)

ydk = h(xdk) (4)

are satisfied for all k. If such bounded desired tra-
jectories for the input and state variables can be
found, then a reasonable tracking control method
would be to use a combination of feedforward (for
tracking performance) and feedback (for stabiliza-
tion), e.g.

uk = u
d
k +K

¡
xdk − xk

¢
where the row vector K is determined using any
suitable stabilization method.

3 Stable Inversion

3.1 Relative Degree

Considering system (1)—(2), note that yk cannot be
directly influenced by uk since there is no direct
throughput term in the output equation. On the
other hand, since

yk+1 = h(F (xk, uk))

it is clear that yk+1 can possibly be influenced by
uk, depending on the nature of the nested function
h(F (x, u)). In the event that yk+1 is not influenced
by uk, it is possible to write

yk+2 = h(F (F (xk, uk), ?))

where ? represents the fact that the value of
h(F (x, u)) does not depend on the value of u, i.e.
? only serves as a place holder. The nature of the
nested function h(F (F (x, u), ?)) would then deter-
mine whether or not yk+2 is influenced by uk. Fol-
lowing this logic, one could in principle determine
how much delay is present between the input and
the output of system (1)—(2). Such information
is intuitively important when attempting to deter-
mine the input required to excite a given output.

The discussion above motivates the need for a
formal definition of relative degree. Associated with
the system (1)—(2) is the family of iterated functions

F̂ i(x, u) := F ? ◦ · · · ◦ F ?| {z }
i−1

◦Fu(x), i ≥ 1

where ◦ denotes the usual composition of functions,
Fu(·) := F (·, u) and ? is used as a place holder. The
system (1)—(2) is said to have relative degree r > 0
at (x∗, u∗) if for all (x, u) near (x∗, u∗)

∂

∂u

n
h ◦ F̂ i(x, u)

o
≡ 0, 0 < i < r

and
∂

∂u

n
h ◦ F̂ r(x, u)

o
6= 0

Some systems do not possess a well-defined relative
degree. For those that do, k = r is the first instant
of time at which the output is affected by the input
applied at k = 0.

3.2 Normal Form

If the system (1)—(2) does in fact have relative de-
gree r at (x̄, ū), then r ≤ n and it is possible to
define locally a change of state coordinates as fol-
lows. Set r functions of x by

φ1(x) := h(x)

φ2(x) := h ◦ F̂ 1(x, ?)
...

φr(x) := h ◦ F̂ r−1(x, ?)
noting that the relative degree assumption guaran-
tees that these functions depend only on x and not
on u. If r < n, choose n − r additional smooth
functions of x, say φr+1(x), . . . ,φn(x), such that the
mapping

ϕ(x) :=

∙
ϕ1(x)
ϕ2(x)

¸
where

ϕ1(x) :=
£
φ1(x) · · · φr(x)

¤0
ϕ2(x) :=

£
φr+1(x) · · · φn(x)

¤0
satisfies

det
∂ϕ

∂x

¯̄̄̄
x̄

6= 0

and where ϕ(x̄) = 0. The change of state coordi-
nates ∙

ζ
η

¸
:=

∙
ϕ1(x)
ϕ2(x)

¸
transforms (1)—(2) into

ζi,k+1 = ζi+1,k, i = 1, . . . , r − 1 (5)

ζr,k+1 = α(ζk, ηk, uk) (6)

ηk+1 = β(ζk, ηk, uk) (7)

yk = ζ1,k (8)
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where

α(ζ, η, u) := h ◦ F̂ r ¡ϕ−1 (ζ, η) , u¢
β(ζ, η, u) := ϕ2

¡
F
¡
ϕ−1 (ζ, η) , u

¢¢
Because of the special significance of the ζ coordi-
nates imposed through the selection of ϕ1(x), sys-
tem (5)—(8) is referred to as the normal form of sys-
tem (1)—(2). Although these two representations of
the system are mathematically equivalent, the nor-
mal form is more useful for certain analyses, since
the coordinates ζ and η can be associated with ex-
ternal and internal behaviors, respectively.

3.3 Inverse Dynamics

The inverse dynamics of system (1)—(2) is a related
dynamic system, having desired output trajectory
signals ydk, . . . , y

d
k+r as inputs and a corresponding

input trajectory uk as output. The stable inversion
problem naturally requires the formulation of the
inverse dynamics, and the normal form (5)—(8) is
useful for this purpose. The constraint that the
output exactly track the desired output

yk ≡ ydk
implies from (8) and (5) the constraint

ζk = ζdk :=
£
ydk · · · ydk+r−1

¤0
and from (6) and (7) the constraints

ydk+r = α(ζdk , ηk, uk) (9)

ηk+1 = β(ζdk , ηk, uk) (10)

The dynamic system (9)—(10) is referred to as the
inverse dynamics of the original system (1)—(2).
Note that (9) represents an implicit output equation
whereas (10) represents an implicit state equation.
The output equation (9) is implicit since the func-
tion α depends on uk in a nonlinear way; hence, it is
not generally possible to solve explicitly for the out-
put uk of the inverse dynamics. Similarly, the state
equation (10) is implicit in the sense that the func-
tion β depends on uk, and this dependence cannot
be explicitly replaced by an equivalent dependence
on the signals of interest (ydk+r, ζ

d
k , ηk) because of

the nonlinearity of α with respect to uk.
The state coordinate change ϕ(x) reveals a con-

straint on the initial state x0 of the original system
(1)—(2) required to meet the previously discussed
output tracking property. Specifically, since the
value of ζk is constrained by the desired output tra-
jectory for all time including k = 0, it follows that
x0 must satisfy

x0 = ϕ−1(ζd0 , η0), η0 free

Since the choice of η0 is completely free, the inverse
dynamics analysis indicates that there are an infi-
nite number of ways to satisfy the output tracking

constraint yk ≡ ydk, corresponding to the infinite
number of possible choices for η0. Each possible
choice for η0 generates a distinct output-state tra-
jectory {uk, ηk} for the inverse dynamics (9)—(10),
and a corresponding distinct input-state trajectory
{uk, xk} = {uk,ϕ−1(ζdk , ηk)} for the original system
(1)—(2).

3.4 Stability Characterization

The computational procedure for stable inversion
recommended in this paper will be based on numer-
ical solution of coupled nonlinear algebraic equa-
tions, and the determination of an appropriate ini-
tial condition η0 will be handled automatically. To
prepare for a discussion of this computational pro-
cedure, it is first necessary to assess the stabil-
ity properties of the inverse dynamics, since these
stability properties will influence the logic of the
computational procedure. Assume that the desired
output trajectory ydk belongs to a neighborhood of
the equilibrium output ȳ and, for the sake of sim-
plicity, assume further that ȳ = 0. In this case,
the qualitative behavior of the inverse dynamics
can be predicted most easily by analyzing the sta-
bility of a simpler autonomous dynamic system,
namely the unforced inverse dynamics correspond-
ing to ydk = ȳ = 0. Under this scenario, the inverse
dynamics reduces to the autonomous form

0 = α(0, ηk, uk) (11)

ηk+1 = β(0, ηk, uk) (12)

The dynamic system (11)—(12) is referred to as the
zero dynamics of the original system (1)—(2), since
it represents (in the k-domain) the nonlinear ana-
log of the notion of zeros for linear systems (in the
z-domain). Note that, as before, the nonlinearity
of α with respect to uk prohibits any explicit rep-
resentation for the zero dynamics.
Since ϕ(x̄) = 0 by construction, the implicit

zero dynamics (11)—(12) possesses an equilibrium at
η̄ = 0. According to Lyapunov’s indirect method, if
η̄ = 0 is a hyperbolic equilibrium of (11)—(12), then
the stability of this equilibrium may be determined
through an investigation of the linear approxima-
tion of (11)—(12) at η̄ = 0. At first glance, applica-
tion of Lyapunov’s indirect method would appear
to be quite difficult due to the complexity involved
in differentiating the nonlinear functions α and β.
However, the processes of “deriving the zero dy-
namics” and “performing linear approximation” are
commutative [3], and hence a much simpler method
to evaluate the stability of the equilibrium η̄ = 0 is
to compute the zero locations of the transfer func-
tion

H(z) = C (zI − Φ)−1 Γ (13)

where

Φ :=
∂F

∂x

¯̄̄̄
(x̄,ū)

Γ :=
∂F

∂u

¯̄̄̄
(x̄,ū)

C :=
∂h

∂x

¯̄̄̄
x̄
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denote the linear approximation of the original sys-
tem (1)—(2) at the equilibrium point corresponding
to ȳ = 0, i.e. to η̄ = 0. Presumably, the triple
(Φ,Γ, C) is easily obtained and readily available.
Assuming that the equilibrium of interest is hy-

perbolic, and that there are no pole-zero cancella-
tions in the transfer function, the stability assess-
ment suggested above leads to three possible out-
comes. If all the zeros of H(z) are inside the unit
circle, then η̄ = 0 is an exponentially stable equilib-
rium of the zero dynamics and the original system
(1)—(2) is said to beminimum-phase. If all the zeros
of H(z) are outside the unit circle, then η̄ = 0 is an
exponentially unstable equilibrium of the zero dy-
namics and the original system (1)—(2) is said to be
maximum-phase . If H(z) has zeros both inside and
outside the unit circle, then the original system (1)—
(2) is said to be (generally) nonminimum-phase.

3.5 Numerical Algorithms

Based on the preceding discussion, it is now possible
to develop numerical algorithms for solving the sta-
ble inversion problem. Throughout this section, as-
sume that the desired output trajectory ydk is spec-
ified on the interval k ∈ [ki, kf ] and, for simplicity,
that it begins (at ki) and ends (at kf ) on a single
equilibrium value. This restriction simplifies analy-
sis by confining system trajectories to a neighbor-
hood of a single equilibrium point; however, the fol-
lowing section will demonstrate by simulation that
this restriction is not actually necessary.
The main ideas behind the numerical algorithms

may be summarized as follows. If the system (1)—
(2) is minimum-phase, then its inverse dynamics
(9)—(10) will yield a bounded solution {uk, ηk} when
solved forward in time, for any sufficiently small
initial condition ηki and any sufficiently small de-
sired output trajectory ydk. If the system (1)—(2)
is maximum-phase, then its inverse dynamics (9)—
(10) will yield a bounded solution {uk, ηk} when
solved backward in time, for any sufficiently small
final condition ηkf and any sufficiently small desired

output trajectory ydk. More generally, if the system
(1)—(2) is hyperbolic but nonminimum-phase (i.e.
its linear approximation has zeros both inside and
outside the unit circle), then its inverse dynamics
(9)—(10) will yield a bounded solution {uk, ηk} only
when solved as a two-point boundary value prob-
lem; this general case is not addressed in this paper.
Consider first the minimum-phase case. View-

ing the inverse dynamics as a perturbation of the
zero dynamics, exponential stability of the zero
dynamics equilibrium η̄ = 0 implies that the in-
verse dynamics is locally input-to-state stable [6].
Consequently, inverse dynamics solutions computed
forward in time will be bounded for sufficiently
small initial condition and desired output trajec-
tory. Newton iteration may be used to handle the
nonlinearity of α with respect to uk as follows.

Given desired output trajectory ydk and initial con-
dition ηki = 0, the following steps are performed
for each incrementing value of k ∈ [ki,Kf ] where
Kf > kf is selected large enough to ensure that the
bounded solution reaches equilibrium: (i) beginning
with an initial estimate of uk, the iteration

u
(j+1)
k = u

(j)
k −

α
³
ζdk , ηk, u

(j)
k

´
− ydk+r

∂α
∂u

³
ζdk , ηk, u

(j)
k

´
is used until convergence occurs, limiting the step
size if necessary; and (ii) the value of ηk is updated
according to

ηk+1 = β
¡
ζdk , ηk, uk

¢
This computational procedure will be referred to
as the minimum-phase stable inversion algorithm.
It provides bounded desired input-state trajectory
{uk, xk} = {uk,ϕ−1(ζdk , ηk)} over the interval k ∈
[ki,Kf ]. Note that division by zero in the Newton
iteration should not occur by virtue of the relative
degree assumption.
Since the inverse dynamics is solved as an initial-

value problem, it is possible to impose equilibrium
on the interval k ≤ ki. On the other hand, the
output of the minimum-phase stable inversion al-
gorithm will not typically be at equilibrium over
the entire interval k ≥ kf . Instead, inside the inter-
val k ∈ [kf ,Kf ] some decaying transient response
(satisfying the zero dynamics) will be present. This
effect may be referred to as post-actuation, imply-
ing that some transient feedforward excitation will
generally be required to achieve exact tracking even
after the output motion has stopped.
Now consider the maximum-phase case, the main

topic of this paper. The previous section established
the fact that, for this case, the linear approximation
of the zero dynamics at the equilibrium η̄ = 0 has
all eigenvalues strictly outside the unit circle. It
follows that the linear approximation of the time-
reversed zero dynamics at the equilibrium η̄ = 0
has all eigenvalues strictly inside the unit circle.
Since the time-reversed zero dynamics possesses an
exponentially stable equilibrium, the time-reversed
inverse dynamics will be locally input-to-state sta-
ble. Thus, in order to obtain a bounded solution
{uk, ηk}, it is necessary to solve the inverse dynam-
ics backward in time for maximum-phase systems.
Because of time-reversal the nonlinearities of

both α and β, with respect to both ηk and uk,
add complexity to the numerical algorithm. The
inverse dynamics may be viewed as a set of coupled
nonlinear algebraic equations. The number of equa-
tions and the number of unknowns are both equal to
n − r + 1. Given desired output trajectory ydk and
final condition ηkf = 0, Newton iteration will be
applied for each decrementing value of k ∈ [Ki, kf ]
where Ki < ki is selected small enough to ensure
that the bounded solution reaches equilibrium. The
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Newton iteration, initialized with estimates of ηk
and uk, is given by"

η
(j+1)
k

u
(j+1)
k

#
=

"
η
(j)
k

u
(j)
k

#
−
³
J
(j)
k

´−1
·
µ
f
(j)
k −

∙
ydk+r
ηk+1

¸¶
where

f
(j)
k :=

 α
³
ζdk , η

(j)
k , u

(j)
k

´
β
³
ζdk , η

(j)
k , u

(j)
k

´ 
J
(j)
k :=

∂f
(j)
k

∂(η, u)

and is used until convergence occurs, limiting
the step size if necessary. This computational
procedure will be referred to as the maximum-
phase stable inversion algorithm. It provides
bounded desired input-state trajectory {uk, xk} =
{uk,ϕ−1(ζdk , ηk)} over the interval k ∈ [Ki, kf ]. The
nonsingularity of the Jacobian matrix follows from
the assumptions of relative degree and maximum-
phase.
Since the inverse dynamics is solved as a final-

value problem, it is possible to impose equilibrium
on the interval k ≥ kf . On the other hand, the
output of the maximum-phase stable inversion al-
gorithm will not typically be at equilibrium over
the entire interval k ≤ ki. Instead, inside the in-
terval k ∈ [Ki, ki] some decaying transient response
(satisfying the zero dynamics) will be present. This
effect may be referred to as pre-actuation, imply-
ing that some transient feedforward excitation will
generally be required to achieve exact tracking even
before the output motion has begun.

4 Simulation Examples

Switched-mode power converters operate on the ba-
sis of pulse-width modulation [5]. For example, a
single-switch power converter that operates exclu-
sively in continuous conduction mode will alternate
between two topologies (A1, B1) and (A2, B2) with
switching period T and hence may be modeled by

xk+1 = F (dk)xk +G(dk)uk (14)

yk = Cxk (15)

where xk := x(kT ) and yk := y(kT ) denote sample
values, and where the source input has been as-
sumed to be piecewise-constant, i.e. u(t) =: uk for
all t ∈ [kT, kT + T ). The control input dk is the
switch duty ratio and enters the open-loop dynam-
ics through the functions

F (d) := Φ2((1− d)T )Φ1(dT )
G(d) := Φ2((1− d)T )Γ1(dT ) + Γ2((1− d)T )

where

Φi(t) := eAit

Γi(t) :=

Z t

0

eAiτBi dτ

The discrete-time model (14)—(15) is clearly non-
linear, especially for the larger values of switching
period T that may be required when using higher-
power semiconductor switches.
To be more specific, consider the lossless buck-

boost converter. State variables x1(t) and x2(t) are
selected to be the inductor current and the capac-
itor voltage, respectively, and u(t) = Vg represents
the constant voltage applied by the dc source. The
output y(t) is the voltage delivered to the resistive
load, and hence y(t) = x2(t). For the numeri-
cal example, the parameter values are R = 10 Ω,
L = 2 mH, C = 200 µF, Vg = 100 V and
T = 200 µs. With these parameter values, the
nonlinear discrete-time model (14)—(15) has rela-
tive degree one and is maximum-phase; the zero
of the linear approximate model corresponding to
the equilibrium defined by d̄ = 0.5 is located at
z = 1.8562.
The stable inversion theory may be applied to the

buck-boost converter by following the general ap-
proach outlined in the previous section. However,
since for this example the output is equal to one of
the state variables and the relative degree is unity,
no coordinate transformation is really necessary to
form the inverse dynamics. In fact, the inverse dy-
namics may be written in the implicit form∙

xd1,k+1
ydk+1

¸
= F

¡
ddk
¢ ∙ xd1,k

ydk

¸
+G

¡
ddk
¢
Vg (16)

thus providing two constraint equations for the two
unknowns xd1,k and d

d
k, where x

d
1,k+1 is known at

time k due to the time-reversed solution method.
Note that the first constraint in (16) is a dynamic
equation, corresponding to (10), whereas the second
constraint in (16) is a static equation, correspond-
ing to (9). The maximum-phase stable inversion
algorithm may be applied directly to (16) in order
to compute a bounded input-state trajectory con-
sistent with the given output trajectory ydk.
The first simulation considers dc-to-dc power con-

version. The desired trajectory is specified to be a
transition from the output corresponding to d̄ = 0.3
to the output corresponding to d̄ = 0.7, with tran-
sition time of 30T = 6 ms. Since the converter
is open-loop stable, the inversion scheme is easily
assessed by computing the inversion accuracy us-
ing only the feedforward input alone. The result
is shown in Fig. 1. Note that the desired input ddk
exhibits a distinct pre-actuation effect lasting 1.8
ms or 9 switching periods. Both the desired state
trajectory xdk and the actual state trajectory using
feedforward only are displayed on the same axes;
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Figure 1: DC-DC conversion with stable inversion.
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Figure 2: DC-AC conversion with stable inversion.

on the given scale, the plots are indistinguishable.
The inductor current trajectory exhibits both the
pre-actuation effect and some overshoot in the ap-
proach to its final value. Instantaneous output error
is on the order of 10−12 V, due only to small nu-
merical errors in the sampled-data model itself and
the Newton iteration method.

To further demonstrate the value of the
maximum-phase stable inversion algorithm, it has
also been used to achieve dc-to-ac power conver-
sion. The results are shown in Fig. 2. In this sim-
ulation, the peak values of the ac output voltage
correspond to the equilibria defined by d̄ = 0.35
and d̄ = 0.65, and the period of the oscillation is
equal to 50T = 10 ms. The instantaneous output
error achieved is on the order of 10−11 V. The re-
quired input trajectory is extremely non-sinusoidal
and would likely be difficult to predict without us-
ing the maximum-phase stable inversion algorithm.
This particular trajectory requires inductor cur-
rents that nearly approach zero and hence nearly

lead to the discontinuous conduction mode of oper-
ation.

5 Conclusions

This paper has presented numerical algorithms for
the stable inversion of either minimum-phase or
maximum-phase discrete-time nonlinear systems.
The discrete-time theory of this paper differs from
the continuous-time theory of [1, 2] in several signifi-
cant ways, including (i) the need to account for non-
linearity in the plant state equation with respect to
the control input due to the effects of sampling and
(ii) the need for iterative schemes such as Newton’s
method for solving nonlinear equations (1 equation
for the minimum-phase case and n− r+ 1 simulta-
neous equations for the maximum-phase case). Al-
though the general idea of solving the stable part
of the inverse dynamics in forward time and solving
the unstable part of the inverse dynamics in reverse
time is common between the continuous-time and
discrete-time stable inversion formulations, the ac-
tual mechanisms for time-reversal in the two cases
are quite different.
In addition to developing the new theory out-

lined above, this paper also includes a practical
application of stable inversion to switched-mode
power converters. Since such converters are oper-
ated by pulse-width modulation, it is natural to de-
sign their control systems using discrete-time meth-
ods. Several classical converter topologies give rise
to maximum-phase nonlinear discrete-time models,
including the buck-boost topology considered in the
simulation examples.
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