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Abstract. This paper describes an application of the block control and variable structure
control techniques to form a stabilizing controller for an synchronous generator. This combined
approach enables the inherent nonlinearities of the generator to be compensated and high level
external disturbances to be rejected. Also, the control system utilizes a nonlinear observer for

estimation of the mechanical torque and rotor fluxes.
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1. INTRODUCTION

A fundamental problem in the design of feedback
controllers is that of stabilizing and achieving a
specified transient performance in the presence of
disturbances. This paper deals with excitation control
of a single synchronous machine connected to an
infinite bus, Fig. 1.
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Figl. Single machine-infinite bus system

The control schemes of synchronous machines are
commonly based on reduced order linearized model
and classical control algorithms that ensure asymptotic
stability of the equilibrium point under small
perturbations. Recently, to overcome the limitation of
linear control, attention has been focused on
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implementation of the feedback linearization (FL)
technique to provide larger stability margins.

Originaly FL was applied to the reduced third order
plant model [1-4]. In [5], it has been shown however
that the effects of unmodeled stator and rotor electrical
dynamics cannot be neglected since they affect the
electromechanical dynamics. The detailed 7-th order
model of synchronous machine has been considered,
and a nonlinear controller using this model has been
designed in [6]. The proposed nonlinear control law is
a function of al plant parameters and disturbances. In
practice some of these parameters are subjected to
variations as a result of a change in the system loading
and/or in the system configuration. Since the detailed
model is so involved a direct use of the FL technique
results in a computationally expensive control
agorithm.

In this paper we shall resort to the block control [7] and
variable structure control techniques [8] which
overcome most of these problems. they are simple,
computationally low demanding, and take into account
structural constraints of the controller. The main
feature of the proposed control are robustness to
disturbances and plant parameter variations.



The paper is organized as follows. Section 2 reviews
the model of the synchronous machine. In Section 3 the
block control technique is applied to design a nonlinear
sliding surface, and a variable structure control strategy
ensuring stability of the sliding mode is proposed.
Section 4 presents a nonlinear observer design. Section
5 discusses simulation results.

2. GENERATOR MODEL

We are going to consider the single machine infinite-
bus system taking into account a three-phase
synchronous machine including both field and damper
windings effects introduced by three rotor circuits. The
complete mathematical description includes also the
swing equation given by [5],
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where o isthe power angle of the generator; wg isthe
rated synchronous speed, H is the inertia constant; T,
is the mechanical torque applied to the shaft; and T, is

the electrical torque. After Park’'s transformation, the
electrical dynamic using currents as the state variables,
can be expressed as follows:

LY = Gisv
dt
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ig and iy arethe direct-axis and quadrature-axis stator

currents; i¢ is the field current; iy, iyq and I, are
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the direct-axis and quadrature-axis damper windings
currents; w isthe angular velocity; Vy and Vq arethe

direct-axis and quadrature-axis terminal voltages, V;
Ry and R; are the
stator and field resistances; Ry, Ry and Ryq are the

is the excitation control input;

damper windings resistances; Ly and Ly are the
direct-axis and quadrature-axis self-inductances; L; is
the rotor self-inductance; Ly and Lyq are the direct-

axis and quadrature-axis damper windings self-
inductances; Ly and Lpg are the direct-axis and

quadrature-axis magnetizing inductances.

Thetorque T, can be expressed in terms of the currents

asfollows:

Te =(Lq —Lq)igiq + Lidiq(it +ikg) = Lmgid (g +ikg)
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The equilibrium eguation for the external network of

the synchronous machine connected to an infinite bus
can be written as
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where: Vg and V4 are d and g terminal voltages; Ve
is the value of the infinite-bus voltage; Lg, Re are the

transformer plus transmission line resistance and
inductance. It is more suitable the representation of the
electrical dynamics in terms of the stator currents ig4

and iy, the field flux @ and the rotor fluxes, Yq,
Yiq and Ygq. This can be obtained from (3) using the
following transformation between fluxes and currents:
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Here al the state variables as well as the parameters of
the model (1)-(6) are expressed in per unit.

Combining equations (1) to (5) and using relationship
(6), the complete model of the generator is presented in
the nonlinear state-space form:
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is the control input; f° =(f1.f2), b" =(by,b3),
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b, =[000,b,.0", &, (i=2..8 j=1..8), an,
b; and b; are positive constants depending on the
generator parameters Rs, R¢, Ry, Reg, Rig: Re,
Ld! Lq'Lkd' qu, Lmd' Lmq, Le and V*. The

mechanical torque T,, it is assumed to be a slowly
varying function of time. Thus:

Tym =0 €)

It is assumed that the terminal voltage Vy, the speed

X, and the stator currents x; and xg are available for
measurement, and that the control input u(t) should be
bounded by

u®)|<Vim (9)

where Vi, is the maximum value of the excitation
voltage.

3. CONTROL LAW DESIGN

The dliding mode controller design will be divided into
two steps. First, exploring the block control technique a
diding surface will be formed. Then, a discontinuous
control law will be designed to make attractive this
surface.

The control god is to make the angle x; be equal to a
referencesignal J,¢ , and the speed x, be equal to the

rated synchronous speed ws. In accordance with the
block control technique [9], z; issetto

Z1 = X1 —6ref (10)
and X, can be rewritten as a function of Z; and a new
variable Z,:

Xz = k23 +Ws +Oret +25 (11)

where k; >0. Using (10) and (11), the first two
equations of (7) in terms of new variables become

1=Kz + 2
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Now, we propose the control switching function s
S=X3 = Xaq (X, Oref »Oref + Oref » Tm) (12)

where X3y isthe desired value of x5 and is defined by
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Therefore, a sliding mode motion on the surface s=0
is described by the following second order linear
system

z, = —k]_Zl +275
! (13)
22 = —k222

with desired eigenvalues —k; and -k, .

Note that from z; =0 and z, =0 it follows X; = Oy¢f
and X, =ws+d,¢ . Therefore, the control goal

requires O, beaconstant. Thus, 3¢ and 8,4 Wil
be taken as zero in (12).
The switching function design has been outlined. Now

a control will be investigated. Projection of the system
motion on subspace s=0 can be written as

$= f5(X1,X2,0ef s Tm)+bs(X2)u (14)

where
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and bg(t) is a postive function for t=0. Now,

considering the bound (9), a control strategy can be
proposed by

u=-Vepsign(s) (15)

The diding mode condition existence for discontinuous
control (15) gives[8]

s5={fs (X0, X2, Ores , Trm)~bs (x2)V imsign(s)} s<0
Therefore, assuming

Vim > |ueq(x1.X2, 8¢t T (16)

where Uegq is the equivalent control calculated from
$=0, resulting

Ueq = (bs(x2)) ™ (X1, X2, 5ref + Trm) (17)

so that the values of s and $ have opposite signs and
the state reaches the dliding surface s=0 after afinite
time interval. Once thisis achieved, the sliding motion
is governed by the linear system (13) corresponding to
the linearized mechanical dynamics of the closed-loop
system.

A crucia property of the diding mode control (15)
when applied to (7) is that, it yields the invariant
{€= (4,007, X2 OR®}
E=(z, 22,5)T . The dynamic of X, on this invariant
subspace is referred to as the zero dynamics. To derive
this dynamics, the equivalent control Ugy (17) must be

substituted in the second subsystem of (7):

subspace where

X2 =f 2(X1,X2) +boUeq (X1, X2, Oref . )
The vector x4 ischanged by &:
X2 =f 2(&:X2,Tm) ,

f, =f 2(X1,X2) x,=4(8)

+(bs (x1,x2)) b2 Fs (X1, X2, Sret » Tm) xy=4(€)

where mapping ¢ isdefined by (11) and (12). Finaly,
the vector § iszeroed, thus:

%5 =f 2(0,X2, 81t . Trm)

An equilibrium point for this system is defined by ¢

and the value of the mechanical torque T,,. Simulation

results show that this equilibrium point is
asymptotically stable (see Section 5).

4. FLUXES OBSERVER DESIGN

As stated previoudly, we consider the speed X, (t) and
stator currents x;(t) and xg(t) as measured signals,
and the remaining state variables x;, i =3,....6 and
mechanical torque T,, can be estimated by means of
the nonlinear observer proposed as

X, = —apgXg(t)X3 +aX7 (t)X4 ~axxg(t)Xs
+apeX7 (1) Xe —aegX7 (D)Xg (1) + amTm +11(X2 —X2)

Tm =l2(X2 = X3)
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Xg =ag4X4 ~apeXs ~ ApgXg(t)

where: X, i=2..6, and T, ae the estimated

variables; 1; and |, are observer gains. The stability of

observer (22) may now be analyzed by examining the
following error dynamics equation:

e=A(t)e (19

where
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ap3(t) = axXg(t) , ax(t) =axyxz(t),
ays(t) = axsXg(t) ags(t) =azexz(t).
The nonlinear observer (18) can be seen as a linear

system with time varying parameters when the
variables x7(t) and xg(t) are assumed known

functions. It is easy to see that the spectrum of the
block matrix A(t) (19) consists of the eigenvalues of

diagonal blocks A;; and A,. The eigenvalues of
A1 can be assigned by appropriate choice of observer

gains |, and |,. The matrix A, isHurwitz since its
eigenvalues:
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arereal and negative. The parameters of A, (t) and its

derivatives are bounded, therefore, the linear system
with time varying parameters (19) is asymptotically
stable. The resulting estimates X;, i=2,...6and X,
are employed in the control law (15) and (17).

5. SSIMULATION RESULTS

This section presents some simulation results,
emphasizing the effectiveness of the previously
designed dliding mode controller. The performance of

the proposed controller was tested on the complete gth
order model of the generator connected to an infinite
bus through atransmission line, Fig.1.

The parameters of the synchronous machine and
transmission system, all in p.u., except where indicated,
are:

Rs =0.003, R =0.021, Ry =0.725,
R =10.714, R =8929, R, =005, Ly =181,
Lq =176, Lyg =1.831, Lygq=1.735, Lpg =1.66,
Lmg =161,  Le=01, H=3525sc. and
wg =377rad st

Setting T,, =0.9463 and V* =1, the steady state is
computed and presented in Table 1.

Table 1. Steady State

X1 () X (00) X3() X, (00)
1.3314 376.99 0.82038 -0.79228
X5 () Xg (00) X7 (o) Xg ()
0.62594 -0.79247 0.80354 0.49319

The controller gains were adjusted to k;=7 and
k, =15, and the observer gains were chosen as |, =200
and 1,=187, resulting in the eigenvalues
A1 =A, =100. The remaining observer eigenvalues
were calculated using (24) and (25) as A3 =-0.123,
Agq =-33.922, A5 = -0.883 and Ag = -16.179.

Figures 2 and 3 depict results under three different
events: a) simulation begins not from the equilibrium
point; b) int =2 s, T,, experienced a pulse for 0.5 s; and
¢) int = 4 s, athree-phase short circuit for a period of
150 msis simulated at the transformer terminals.

Fig. 2 reveals some important aspects. 1) State
variables hastily reach a steady state condition (see
Table 1) after small and large disturbances, exhibiting
the stability of the closed-loop system. 2) The
estimated signals are closely related to the actual ones,
exhibiting a robust performance of the observer. 3) The
terminal voltage recovers their steady state value after
the short circuit.

Fig.3 depicts the same simulation as before but
considering that the value of parameter L4 experiences
an increment of 20%, so introducing parameter
uncertainties. We can observe that the estimated
variables converge to an steady state defined by the
new value of L., but the steady state of the outputs,
namely & and Ve, isinvariant to observer one.

6. CONCLUSIONS

A sliding mode controller is proposed exhibiting robust
stability and performance when the plant experiences
small and large disturbances. The inclusion of an
external load torque and the simulation of a short
circuit demonstrate the capability of the controller in
rejecting bounded disturbances.

The design process, including analysis of stability, is
discussed. The formulation employed makes easy to
design a nonlinear observer that exhibits a good
performance.
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