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Abstract: In this paper a new approach is presented based on relay autotuning of a
plant to �nd parameters for its control using a Smith predictor. A Smith predictor
con�guration is represented as its equivalent internal model controller, IMC, which
provides the parameters of the PI or PID controller to be de�ned in terms of the
desired closed-loop time constant, which can be adjusted by the operator, and the
parameters of the process model. This means that only one parameter, namely the
desired closed-loop time constant, is left for tuning. The ISE criterion was used to
�nd the �lter parameter, and simple equations were obtained to tune the Smith
predictor. The method is very simple and has given improved results compared with
some previous approaches.
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1. INTRODUCTION

Plants with long time-delays can often not be
controlled e�ectively using a PID controller. The
main reason for this is that the additional phase
lag contributed by the time delay tends to destabi-
lize the closed loop system. The stability problem
can be solved by decreasing the controller gain but
this results in a very sluggish response.

The Smith predictor, shown in Fig. 1, is well
known as an e�ective dead-time compensator for
a stable process with long time-delays [1]. The
performance of the Smith predictor control strat-
egy is a�ected by the accuracy with which the
model represents the plant. Based on the assump-
tion that the model used matches perfectly the
plant dynamics, the closed loop transfer function
is given by

T (s) =
Gc(s)Gm(s)e

��ms

1 +Gc(s)Gm(s)
: (1)

According to eqn. (1), the parameters of the
primary controller, Gc(s), which is typically taken

as PI or PID, may be determined using a model
of the delay free part of the plant.
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Fig. 1. The Smith predictor control scheme

Many possible approaches for determining or tun-
ing the parameters of an appropriate controller,
Gc(s), have been given in the literature and some
recent contributions include references [2, 3, 4,
5]. However, only a few investigations have been
carried out on autotuning of the Smith predictor,
which recently include [6, 7, 8, 9]. In reference
[6] the relay autotuning of �Astr�om and H�agglund
[10] for simple single input single output systems
was extended to Smith predictors. In references
[7, 8, 9] �rst a FOPDT or SOPDT transfer func-
tion model is found from relay autotuning based
on approximate describing function analysis, then



the controller parameters, which include a user-
speci�ed constant for design methods of [8, 9],
are calculated using parameters of the obtained
model.

In this paper a new approach is presented based
on autotuning to �nd the controllers parameters
for a Smith predictor. A relay feedback test is
performed on the plant and the frequency and am-
plitude of the resulting limit cycle are measured.
Then the A-Locus method, an exact method for
giving the parameters of a limit cycle, is used
to estimate the parameters of the process model,
assumed to be either a FOPDT or SOPDT trans-
fer function [11]. However, the details of the pa-
rameter estimation is not given here and inter-
ested readers may refer to reference [11]. Once
the model of the process is found, the parameters
of the controller, usually a PI or PID, are found
to complete the design. Tuning parameters, are
found by representing the Smith predictor as its
equivalent internal model controller, IMC, [12,
13], which provides the parameters of the PI or
PID controller to be de�ned in terms of the desired
closed-loop time constant, which can be adjusted
by the operator, and the parameters of the process
model.

The method has the advantage when compared
with the methods of Hang et al [8], and Lee et

al [9], of not requiring any user speci�ed value.
Secondly, the estimation method used requires less
time for model parameter estimation, since only
one relay feedback test is performed. Also more
accurate parameter estimations can be achieved
since an exact limit cycle investigation method is
used. Finally, in the case of a change in the actual
process parameters, the model parameters can be
recalculated using a relay feedback test and thus
performing the retuning to obtain a better closed
loop performance.

2. INTERNAL MODEL CONTROL AND
DETERMINING CONTROLLER

PARAMETERS

The basics of the IMC controller design are pre-
sented in Rivera et al [12], and Morari and Za�riou
[13]. The block diagram of IMC control strategy
is given in Fig. 2.
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Fig. 2. IMC control strategy

Here, G and ~G are the actual process and process
model transfer functions respectively. When G =
~G, that is perfect modelling, and d = 0, the
system is open loop. This provides the open loop
advantages, such as a fast and accurate set point
tracking. When G 6= ~G, the system is a closed
loop system. Thus, the IMC control strategy has
the advantages of both the open loop and closed
loop structures. Another advantage of the IMC
control design, and possibly the most important
one, is to have only one parameter to be tuned.
The �rst step in the IMC controller design is to
factor the process model

~G = ~G+
~G
�

(2)

where ~G+ contains all the time delays and right-
half plane zeros. The second step is to de�ne the
IMC controller as

Gimc = ~G�1
�
f (3)

where f is a low pass �lter with a steady state
gain of one. The simplest �lter has the following
form [12, 13]

f =
1

(�s+ 1)n
(4)

It is straightforward to illustrate that the IMC
controller, Gimc, is related to the classic con-
troller, Gc, through the transformation

Gc =
Gimc

1�GimcGm

(5)

Fig. 3 shows the block diagram of the IMC repre-
sentation of a Smith predictor.

First a FOPDT transfer function is considered.
In order to obtain the IMC controller, the process
model, ~G = Kme

��ms=(Tms+1), must be factored
as in eqn. (2). If a �rst order Taylor series ex-
pansion is used for the time-delay approximation,
then the following equations are obtained

~G+ = (1� �ms) (6)

~G
�
=

Km

Tms+ 1
(7)

The IMC controller can be obtained from eqn. (3),
assuming a �lter with n = 1, as

Gimc =
Tms+ 1

Km(�s+ 1)
(8)

Eqn. (8) shows that, once the parameters of the
model, K and T , are known, then only the �lter
parameter, �, remains to be selected. The classic
controller,Gc, can then be obtained using eqn. (5)
to give

Gc =
Tms+ 1

Km�s
(9)
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Fig. 3. IMC representation of Smith predictor

Eqn. (9) can be rearranged as a PI controller,
which has the following controller parameters

Kp =
Tm

Km�
(10)

and

Ti = Tm: (11)

Here, the Integral Squared Error, ISE, criterion,
which is given by

JISE =

1Z

0

[r � c(t)]2dt (12)

is used to �nd an optimal solution for the �lter
parameter, �. The Laplace form of the output
signal, C(s), in the Smith predictor con�guration
can be obtained from Fig. 1,

C(s)

R(s)
=

GcGm

1 +GcGm

e��ms (13)

assuming a perfect matching between the process
and model. Substituting the proper values for
Gc(s) and Gm(s) into eqn. (13) and assuming a
unit step change into the system gives

C(s) =
1

s(�s+ 1)
e��ms (14)

The time domain solution is obtained by assuming
a �rst order Taylor series expansion.

c(t) = 1� (1 +
�m

�
)e�t=� (15)

Putting eqn. (15) in to eqn. (12) results in

JISE =
(�+ �m)

2

2�
(16)

Taking the derivative of eqn. (16) with respect
to �, produces � = �m. Finally the PI controller
parameters are

Kp =
Tm

Km�m
(17)

Ti = Tm (18)

Processes with SOPDT transfer functions are also
very common. This is why a similar result as

for a FOPDT transfer function is derived for
SOPDT transfer function too. Following the same
procedure as for FOPDT transfer function and
assuming ~G = Kme

��ms=(T1ms+1)(T2ms+1), it
can easily be shown that the classical controller
can now be implemented as a PID controller with
the following parameters

Kp =
T1m + T2m

Km�m
(19)

Ti = T1m + T2m (20)

Td =
T1mT2m

T1m + T2m
(21)

Some Remarks: It is known that the ISE
criterion usually gives an oscillatory closed loop
response with long settling time. Thus the time
weighted version of the ISE criterion, that is
the ISTE criterion, can be used to �nd a new
value for the �lter time constant. However, it can
easily be shown from eqn. (12) that this does
not give a solution. Also, the approximation used
for the time delay is poor. Therefore, a higher
order Taylor series expansion can be used but it
again can be shown from eqn. (12) that a solution
cannot be obtained. Alternatively, a 0=1, 1=1 or
1=2 Pad�e approximation can be used but the
expressions obtained are more complicated and an
analytical solution is not possible.

2.1 Autotuning Procedure

The block diagram for autotuning of the Smith
predictor con�guration is shown in Fig. 4. The au-
totuning procedure to �nd controller parameters
can be carried out as follows:
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Fig. 4. Block diagram for autotuning of the Smith
predictor

� When the controller needs to be tuned,
switch from the controller mode to relay
mode. At the same time, open the switch "S"
so that the original relay feedback con�gura-
tion is obtained.

� Measure the limit cycle parameters and esti-
mate parameters for the FOPDT or SOPDT
model plant transfer function using the re-
lay feedback method proposed by Kaya and
Atherton [11].



� Find tuning parameters using either eqns.
(17)-(18), if the FOPDT model is used, or
eqns. (19)-(21), if the SOPDT model is used.

� Switch from the relay mode to the controller
mode with calculated tuning parameters for
the control of the process. At the same time,
close the switch "S" so that the Smith pre-
dictor con�guration is reobtained.

3. ROBUSTNESS ANALYSIS OF THE
PERFORMANCE

The robustness analysis of the proposed controller
design is done using the block diagram shown in
Fig. 1. The characteristic equation of the system
given in Fig. 1 is

1 +Gc(s)Gm(s) +Gc(s)[P (s)� Pm(s)] = 0 (22)

where P (s) = G(s)e�thetas is the actual plant
transfer function and Pm(s) = Gm(s)e

��ms is the
model of the plant. If the uncertainties are given
by P (s) = Pm(s) + ÆP (s), where the ÆP (s) is
the uncertainty in P (s), then eqn. (22) can be
rearranged as

1 +Gc(s)Gm(s) +Gc(s)ÆP (s) = 0 (23)

which then gives

jÆP (s)j = j1 +Gc(s)Gm(s)j
jGc(s)j (24)

the norm bound uncertainty region [13] in order
to maintain the closed loop stability.

Substituting forGm(s),Km=(Tms+1), and Gc(s),
from eqn. (9), gives

jÆP (s)jFOPDT =
Km

p
�2!2 + 1p

T 2
m!

2 + 1
(25)

the norm bound uncertainty region. For low fre-
quencies the norm bound uncertainty region for
j�P (s)jFOPDT is given by the steady state gain
of the model Km. The magnitude of the modelling
errors, jP (j!) � Pm(j!)j, at low frequencies is
given by (K�Km). This illustrates that at low fre-
quencies, the closed loop stability is only a�ected
by the uncertainties in the steady state gains of
the plant and model. Also, it is seen that very high
modelling errors, that is 100%, in the plant and
model steady state gains is allowed for maintain-
ing the closed loop stability. For high frequencies
the norm bound is given by Km�=Tm. Thus the
larger the value of the �lter time constant � the
larger norm bound uncertainty region, that is, the
permission for larger modelling errors.

Similarly the norm bound uncertainty region for
the case when the plant is modelled by the
SOPDT is obtained as

jÆP (s)jSOPDT
=

Km

p
�2!2 + 1p

[1� (T1mT2m!)2]2 + (T1m + T2m)2!2
(26)

For low frequencies the norm bound uncertainty
region for jÆP (s)jSOPDT is again given by the
steady state gain of the model Km. Since the
modelling errors are again given by (K � Km),
a very high value for modelling errors, namely
100%, is allowed at low frequencies. For ! !
1, jÆP (s)jSOPDT ! 0. Thus this implies that
the choice of � has little a�ect on the stability
of the closed loop system at high frequencies.
However, the mid-frequencies are more a�ective
on the stability of the system, therefore it can
still be expected that the larger values of � gives
larger margins to maintain the closed loop system
stability, as a large value of � gives larger norm
bound uncertainty region at mid-frequencies.

4. AN EXAMPLE

One example is given to illustrate the use of the
method. The example is given to both illustrate
the performance robustness of the presented de-
sign method in the case of a mismatch in the time
delay, the most detrimental case to the system
performance and compare the performance of the
proposed design method with some other existing
ones.

Consider the SOPDT transfer function given by

G =
e�5s

(6s+ 1)(2s+ 1)

which was simulated in Simulink. The constant
input to the relay feedback system was 0:1 and
the relay had unity heights and no hysteresis. The
resulting asymmetric limit cycle parameters were
0:603, �0:508, 10:609 and 0:309 for amax, amin,
�t1 and !, (see reference [11] for notations). The
steady-state gain, Km, the time constants, T1m
and T2m, and the dead-time, �m, were calculated
as 1:000, 6:001, 1:999 and 5:001, respectively.
These process parameters gave the PID controller
parameters of Kp = 1:600, Ti = 8:001 and Td =
1:500, using eqns. (19)-(21). Step response of the
Smith predictor with these controller parameters
for matching and �50% mismatch in the time
delays are shown in Fig. 5. Also, a disturbance
at t = 75 with magnitude of d = �0:1 is injected
into the system is shown. Obviously, the response
of the system is quite satisfactory in all three
cases, although, a relatively large mismatch in the
time delay is assumed. Alternatively, if a better
performance is required, as mentioned before in
the introduction, retuning can be done to �nd
new process model parameters and hence new
controller parameters.
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Fig. 5. Step and disturbance rejection responses
for the example

To compare the performance of the proposed de-
sign method with some other existing methods,
Benouarets and Atherton [6] and Lee et al [9], re-
sponses to a step change and disturbance rejection
are given in Fig. 6. The proposed method gives
faster respose to step change and disturbance re-
jection than the others for this example.
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Fig. 6. Step and disturbance rejection responses
for the example

5. CONCLUSIONS

An autotuning method for Smith predictor con-
trollers has been given based on exact limit cy-
cle analysis for FOPDT and SOPDT plants. The
Smith predictor was represented as an equivalent
IMC controller and this enabled to de�ne the PI or
PID controller parameters to be de�ned in terms
of the model parameters and the �lter parameter,
�. It was ssumed that a model of the plant could
be found using relay autotuning method (Kaya
and Atherton, 1998), this meant that only one
parameter, namely the �lter parameter �, was
left for tuning. The ISE criterion was used to
�nd the �lter parameter, and simple equations

were obtained to tune the Smith predictor. The
method is very simple and has given improved
results compared with some previous approaches.
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