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Abstract We consider the problem of mini-
mizing makespan in a no-wait flowshop with three
machines. A lot consists of many tdentical items
of the same product. Lot streaming (lot sizing) is
the process of creating sublots to move the completed
portion of a production sublot to downstream ma-
chines so that operations will be overlapped. for
each product, we first consider the number of sublots
as given, and we obtain optimal continuous-sized
sublots. Some general results are proved for the gen-
eral no-wait flow-shop with an arbitrary number of
machines. These results are then applied to the 3-
machine case, to find the optimal size sublots. Then,
using this solution, and assuming there is a setup
time between the transfer of batches, the optimal
number of sublots 1s derived for the 2-machine no-
wait flow-shop. For the 3-machine cases, we distin-
guish two situations. A closed form formula 1s proved
in the first, and a lower bound 1s provided in the sec-
ond.

Key words and phrases: No-wait flowshop, lot
streaming, batches.

1 Introduction

We consider the problem of lot streaming of a sin-
gle product through 3 machines in no-wait flowshops
in order to minimize the makespan. A lot consists of
many 1dentical items of a given product. Lot stream-
ing 1s the process of creating sublots to move the
completed portion of a production sublot to the next
machines. The creation of sublots permits the over-
lapping of different operations on the same product
and may therefore reduce the makespan. Summaries
of literature on lot streaming are given by Baker
(1990, 1995), Potts and Van Wassenhove (1992), Tri-
etsch and Baker (1993), and Vickson (1995).

Szendrovits (1975) models a single product with
equal-sized sublots requiring treatments in a multi-
stage flowshop production system where the process-
ing sublots are continuous in the sense that each
product must be processed continuously on each

machine, so that there 1s no idle time between its
sublots. But there may be idle times between the
production runs of different products. Goyal (1976)
studies the problem of finding optimal sublot sizes for
the above model. In our flowshop model, processing
of sublots 1s no-wazit: the processing of a sublot on a
machine 1s started as soon as the processing of the
sublot on the preceding machine has ben completed.
This may lead to machine idle times between succes-
sive sublots. Lotsizing and scheduling problems in

no-wait flowshops arise in chemicals processing and
petro-chemical production environments. Another

example of the no-wait situation arises in hot metal
rolling industries where the metals have to be pro-
cessed continuously at high temperature. In recent
years, a considerable amount of interest has arisen in
no-wailt scheduling problems. This interest appears
to be motivated as much by applications as by ques-
tions of research interest (refer to the survey papers
on no-wailt scheduling by Hall and Sriskandarajah

1996, Goyal and Sriskandarajah 1988).

Potts and Baker (1993) deal with the lot stream-
ing problem of one product in a general flowshop
while Glass, Gupta and Potts (1994) deal with only

the three-machine flowshop. Baker (1993) and Vick-
son (1995) deal with the problem of lot streaming

and scheduling multiple products in the two-machine
flowshop where the buffer between machines is un-
limited. In this paper, we consider two-machine flow-
shop with no-wait constraint. We study the problem
allowing continuous-sized sublots.

In our model, we first assume that the number of
sublots for each product 1s fixed, then we show how
the optimal number of sublots may be computed, or,
in the worst case, bounded from below, when setups
are assumed 1nbetween the processing of sublots are
assumed.

The paper 1s organized as follows. In Section 2, we
state some general. results for the m-machine case.
In particular, we show that, between the process-
ing of any two consecutive sublots, at least two of



the machines never remain 1dle. Also, we show that
neither of these need to be slowest machine. This
provides 1n particular a new elementary proof of the
result in Sriskandarajah and Wagneur (1999) for the
continuous sublots sizes. A closed form formula for
the optimal number of sublots 1s proved for the 2-
machine case.

In Section 3, we analyze the 3-machine environment,
and, in the first of two cases, we give a closed form
fomula for the continuous sublots sizes, while in the
second case, we provide an algorithm which yields
the continuous sublots sizes in at most n — 1 steps.
A short discussion then conclude the paper.

1.1 Notations

X : the total number of items (or units) in the sublot
J; X; 1s a rational number.

¢; ; the ratio X;/X;_; of two consecutive sublots.
a; : the unit processing time on machine 1.

n : the number of sublots for the product considered.

W = > X, : the total number of items (units) de-
=1

manded for the product.

M : makespan for the single product problem.

[ ;” : machine k£ idle time prior to the processing of
sublot 7.

6;-" 1 J’“ /X;_1 “normalized” machine & idle time.

1.2 Assumptions

1. All W units of the product are available at time
ZEero.

This assumption limits the analysis to the static no-
wailt flowshop for which the quantity of the product
to be produced for a planning horizon 1s known 1n
advance.

2. The product can be treated as infinitely divisible.
3. The processing of sublots 1s no-wazt.

4. Consistent sublots are used to ensure no-wait pro-
cessing of sublots.

This assumption means that the sublot sizes remain
the same on all machines.

5. The processing of a sublot 1s proportional to its
size, 1.e, the processing time of sublot ;7 on machine
2 18 (It'Xj :

1.3 Motivation for the No-Wait Lot Stream-
ing Model

Our motivation in studying this problem is derived

from the following real world problem that arises in a

manufacturing system called “anodizing line” which
1s a flowshop made up of a series of chemical pro-
cessing tanks (Hsu and Stein 1991). The line pro-
duces many types of products for the commercial
and automotive industries such as pipes, trim and
truck grilles. The objective here 1s to produce the
daily production requirements of various products in
the shortest possible time. In front of the line 1s a
racking area, where items of a product are loaded
onto racks prior to chemical processing. Since the
shapes of products are different, each product has
its own racks. The number of racks available for a
product (n;) is limited. The products need to be
processed as no-wait for two reasons : (1) there is no
buffer between tanks (i1) once a rack exits a tank it
must immediately enter the next one or the products
will be ruined due to deterioration of the items while
exposed to the atmosphere. Since it 1s a chemical
process, the processing time of a rack (or a sublot)
in a tank depends on the total surface area. Hence
the processing time 1s proportional to the number of
items 1n a rack.

2 Basic Formulas for the m-machine Lot
Streaming Problem

We consider here the problem of lot streaming for
a single product. We assume that the number of
sublots for the product is fixed. In other words,
we have to determine the optimal value of X;,j =
1,2,...,n, so that the makespan 1s minimized. We
seek for a closed form formula, giving the optimal
size, when the product 1s considered as infinitely di-
visible.

We define a sequence S as the ordered set of the
sublot indices: S = {1, 2,...,n}. The Gantt’s chart
of the schedule obtained from the sequence S 1s
shown in Figure 1 and Figure 2.

We write [ ;" for the 1dle time on machine k£ inbetween
the processing of sulots 7 — 1 and j. The reader
may refer to Section 1.1 for the description of the
notations used.

Makespan may be computed on any of the machines,
in particular, for machine £ (1 < £ < m), we have :

i ai_l_i:f‘f (1)

£—-1
M=Xi) ai+aW+X,
g=1 1=£+1

Z a,;ZO.

0
where we define ) a; =
=1 i=m-+1
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Figure 1: Sublots release and processing times

Let r; stand for the release time of sublot j (Figure
1). We have r; = 0, and, as a consequence of the
no-wait constraint, for 7 = 2, ..., n, we must have :
ri 2 ri—1+a1.X;-1

ry -+ (IlXj 2’_ rs—1 T (11X_j-—1 + GQXj—l

llllllllllllllllllllllllllllll

k-1 k

ri+ () ai)X; 2> rj—14+a1 X I(E i) Xj-1
=1
L R -

ri+ (2 ai)X; >rj—1+ a1 X (Z i) Xj-1.
§=—1 g =2

Hence r; > rj_1 + a1 X1+

k—1
2(1}}48&){ {0 XJ 12611 Xj 1'21 ai-}.

Since we want to minimize makespan and there 1s no

other constraint on s the sublots must be released
as soon as p0331ble 1.€.

k—1
P = B ZX -l—gl(l}ca&x {0, X _ 12&; X; ;ai}.

rs— 1—|—a1X 211 we get:

1 _
I; ,ax {OJ’{'_lZ:a1 Xy ;ag}

Let E ; stand for the ratlo of two consecutive sublots :

Also, since ri —

= £;X;—1, Then
1 k =1
Ij = zg}ixm{o Xj- 1(;2lfI - & 1_; a;)} =
k—1
Xj_lzg}gaéxm{o (;Qai == ;ai)}, ] = 2,?1
Writing d; = Xiil we get
k k—1
: - o -y | e
0; _zg}ca&xm{o Zgai E‘?;a:}j 1=2,...,n, (2)
Lk
Let A7 = i;(ai —&5ai-1),k=2,...,m, and
A; =0, j=2,...,n. Then (2) becomes:
1 _ k
0; = lﬁa%xm A3, (3)

Consider a rectangle involving M,_;, M, (Figure
2), and sublots X,;_;, X;. We have :

If—l + {Ip_lX' ~— {IpXj_l -+ ij
equivalently 5;5’_1 +&ap—1 = a, + 47

M & X p-2 _
p-2 p=2 3=1 l 3 IF'Z xj
M da X p-1

p-1 p-1 j-1 l a]:ah—l XJ

: P
s - x‘ | apxj 2

P N\ 71=1 3

P
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Figure 2: A schedule for the sequence of sublots

SlIl’lIlElI’ly Ip-—-? + Ap— QXJ — Ap— 1XJ 1 —+ Ip 1 and
fsp 2+Egap 2:03;0 1+(5p =5
Ellmlnatmg 6;’ N between these equations yields:

‘5?_2 +&i(ap-2+ap_1) = Ap—1 + Qp + 53?

More generally, considering My, My41, ..., M,, we
have,
Vi, p, 1<k<p<m,and j=2,...,n
p—1 p
05 +6& > ai= ) a;i+4 (4)
1=k i1=k+41
1€
p p—1
k
0 =05 —[ ) ai—&) ai]
i=k+1 t=k

Since (4) holds for all j, we may temporarily drop
the subscript. For k£ = 1, this yields :

6 =6"—AP , p=1,.... m (5)

We have the following statement.

Lemma 1

min 6 =0
1SpSm

Proof

Let £ (1 < ¢ < m) be such that §' = A®. Then

=, L]

As a straightforward consequence of Lemma 1, we
have the following statement.

Theorem 1
For any sublot j5 there 1s a machine which remains

actlve between the processing of sublots 7 —1 and j .
-

Note that Theorem 1 holds independently of the

sublot sizes. Also, this statement comforts our in-
tuition from Figure 1 that r; can be “pushed to the

left” until one of the I vanishes.




We 1ntroduce dummy machines M,, M,,41 with
unit processing times a, = @py41 = 0. The following
statement may be called the Fundamental Theorem
of lotstreaming in no-wait flowshops.

Theorem 2

Borp=1,..., m, we have : O =0 &

Mﬁ.
]

Inmax

{ im min
p+1<e<m+1 f

< < . {i=k+1
} ¢S 0<k<p-1l TN

=P 1=k
Proof
Forp*—'l (51—0 = A1 <0,£=2,...m <
{
> a; — EZai<0 £=2,...m =
e
=K, 0 =2,u..m &

Now min {5
U Y E::ﬂi

Clearly, for 1 < p<m, é# =0 & §' = A2 &

VE(1<E<m), AL< AP
l £—1 P p—1
Ve Za—ﬁZafSZai—‘EZai ——
=2 =1
Vi> p, Z a;<£z%$@nd ,
t=p+1 VE < pPE Zai L ), Gy &%
= 1=£41

p

> a

VE>p, 22— < fand W <p, E<EE - —
Ez:ﬂi Ez:ﬂi
1=p =4

£ p
2. o ).
1i=p+1 t_£+1

p+1f31<a£}fin1 s < 6 = 1<Igl<11131 1
> F i
y=p =il

p
2, @
1=4£41

But

> 0 1s finite, hence 1t 1s also

£

> a

Mh

Clearly, max =Zf~— = max =&
p+1<£<m p+1<£<m+1
a; :z:fh
t=p t=p
p
2 ai
For p = m, the inequality £ < min ==— is

0<<p—1 S
=4

straightforward, and

max -———=23mh —(<¢, |
p+1<L<m+1 ¥ G

It 1s a well-known result in flow-shop scheduling the-
ory that a necessary condition for optimality is that
the slowest machine is never idle. It is of primary
importance to know wether this also holds for the
lotstreaming problem considered here. For in this
case, the minimum makespan problem would become
much more easy to solve. Indeed, if M, is the slowest
machine, then, setting Jf =0, 79 =2,...,n yilelds,
by (1):

M = Xlzat+wW—|—X Z a; (7)

1=£41
and we would just have to minimize

X Z +X, ), a;, which is relatively easy.
NOWXJ -f_;, i—1 ]—2

i=f+1
N =
Xj:XlnfiJZQ;u

.n. Let & = 1. Then

W = Xlzl—[fz,alld

K=l

J
&

3 =1
nJ
>, 11 &

g=1 =1

ij ,jzl,....}n. (8)

Hence we would have to minimize F:IR"~! — IR,
£—1

>t 3 all6

_£+1 ya=1

defined by F(&s,...,&,) =

> I1e

ya=] =1
However, for the lotstreaming problem in the no-wait

environment 1t 1s generally not true that to keep the
slowest machine always active 1s optimal.
stated 1n Theorem 3 below.

This 1s




Theorem 3
In an optimal solution, the slowest machine need not

be always active.

Proof
The statement will be proved by assuming the first

machine 1s the slowest and i1s never idle, and, for
an 1nstance of the problem, we will compute the
optimal sublots sizes, and the minimum makespan
M; compatible with this condidion. Then we pro-
vide another set of sublots for this instance, and we
show that the makespan M, for these sublots satisfies

Mo < My .

Instance : m = 3, n = 3. The machine processing
times area=5,b=4, ¢= 3, and

M =aW + (b+ c)Xs. Lot size is W.

WE} have: Xl — =3 W; Xg — —EE

ZHE:

F=1 1=1

> I

=1 1=1
Xy = £ and F(g) = GFedats

> I1e

(b“l'ff)'fa

ZH&

y=1 =1

of the particular values of @ > 0,6 > 0, and ¢ > 0).

Hence F' 1s an increasing function of & . It fol-

lows that &, must be chosen at its lower bound, 1.e.

£y = max{b/a (b+c¢)/(a+b)} =b/la=4/5.

= (04)8al+6s) 5 0 and €5 = 4/5.
SIESs

j=1lw=1

Then X; = 25W/61, X, = 20W/61
X3 = 16W/61, M; = 5W + 112W/61 = 417TW/61 .
On the other hand, let

X1 =5W/12, X, = W/3, X5 = W/4. Then

My =5W +TW/4 =2TW/4 < 41TW/61 . a

> (0 (note that this holds independently

Similarly, 2 T Ea

Remark 2.1 In the counterexample above, we
have I} = bX, —aX3 = W/12. So we “pay” W/lQ
time units of machine 1 idle time, and we get a bonus
of 7(X3 — X3) = 21W/244 time units from the re-
duced size of X3. Thus Cper = M + I3 —7(X3 —
X3)=M+W/12 -21W/244 = M — W/366 .

More generally, from M = aW + (b + ¢)X,, we see
that a decrease of one unit of X3 yields a decrease
of a 4+ b times units of M . The cost 1s measured in
terms of machine 1 idle time, whose cost per unit
1s a. Although the correspondance AX,, — Ij} 1S
not straightforward, the intuition behind the result

1s that if a < b+ ¢, then it may pay-off to redcue X,
at the cost of some extra machine 1 idle time.
Clearly, the same holds true for any number of ma-
chines m > 2.

By Theorem 3, we cannot assume that the slowest
machine should always remain busy.

It is easy to see that the % = % (£;) are piecewise
linear functions of £;. Let J¢ stand for a maximal
interval where (5;? (¢5) 1s linear. Then M (resp gé‘f ) is

a piecewise differentiable (resp continuous) function
of (fj Oll JE :

From (1), wa have :

M=&1W+Xn2ai:—|-21jl —=
o iz

a W + nW H’EJ"'XH:(H&)

> [l&l =

The followmg statement holds for £ = 2,... n, and

any maximal interval of linearity of the 4} .

Lemma 2.2

The sign of % 1s constant on Jg, .

Proof "

Letu—HEJ—I-Z(H&) :ZH{;-.Then
=2 y=1 =1

M = W(a1 + ). It is enough to show that

gg‘tv gg’t 1s independent of &, .

6131 -1

We have u = Y ([] &)d; + ([] =i:)d;
y=2 5= . 'ifl
+gf<_z; (T wii)s! +
J
&),

=1 45¢
Hence u 1s an affine function of £, in J¢, , which may
be written as u = a1 + (1€, , where 54,‘} splits into a4

and 1nto ,8153 J with aq, ,61 mdependent of E;_: Simi-

arly v = 5 16+ & )0+ 5 11 &) =

:f 11= j=L41 i=£+1
g+ [B2€e 18 also an afﬁne functlon of & in Jg, (with
o, 2 iIndependent of & ). =
q £

>

Let £ = argmax{=2——, Lg(p) = =2—, and
? Zﬂ,‘ Zﬂ,‘
1=p i=p
p p
o 2
k = argmin =2— Ug(p) = == Write £}

q Zﬂi

=g s=k
for the optimal value of &; .

From Theorem 2 and




Lemma 2.2, we have the following statement.

Corollary 2.3

For j=2,...,n,%2 #£0 :
55):0 '(:}5;;‘:(]3(1)
5%_0<=>€ € {La(p),
0; =0 <= &; = Lp(m)

Proof
By Lemma 2.2, M is an increasing or a decreasing

function of &;. Thus, §; must be selected at one of
the bounds of the interval in (6).

Moreover, for p =1 (resp p = m), M is an increas-
ing (resp decreasing) function of &, . |

Us(p)}, 1<p<m (9)

Remark 2.4
If ‘gg = 0, 1n J¢, then we may choose &, so that
(9) holds.

We now state our third fundamental theorem of lot-
streaming 1n no-wait flow-shops.

Theorem 4
For the optimal policy the following condition holds:

:J§=O.

V7, dk, p such that 5;-‘

Theorem 4 states that, for the optimal policy, we
have to operate the shop in such a way that there
are always two machines which remain busy between
the processing of two consecutive sublots.

Proot |
Let p = argmin{d;}. Then 65 = 0, by Theorem

1. If gg‘f # 0, then by Corollary 2.3, we must have

§; = Lp(p) or & =Un(p).
2, @

| l
It & = Lp(p) =t we have Y a; =
Zai 1=p+1
i=p
p=1
& 2. =
L=p
¢ P £—1
Zaf—ZangjZa.; € Zag,le Ap = Ay

Now &5 =0 <= d; = 4, Ag = 0 =1,
The case £ = Up(p) is similar. We leave it to the

reader.

oM
If e,
0,or & =Up(p) < 0.

The following statement is a straightforward conse-
quence of Theorem 4.

# 0, then we can always choose §; = Lg(1) >

Corollary 2.5 of Theorem 4 (Sriskandarajah &
Wagneur, 1999)

For m = 2, 51—62—0 and

& =W, X; = (“ﬂ/“l) s
Z(ﬂg/ﬂl

s T=2s:s05M; ]

Theorem 5

Vp(1<p<

m), Up(p) < Lp(p) = 6 >0 j=2,...,m

1n particulat :

a a .
P« 34 >0j5=2,....m  (10)
Qp ap—l
Proof
The inequality (5) is a necessary and sufficient con-
dition for 6% = 0. ]

In the next Section, we show how to compute the
optimal lots sizes X; in the case of 3 machines.

3 The 3-machine case

We assume 1n this section that m = 3. Also, we
write a; = a, as = b, a3 = c.

We study the maps (5;" (&), k = 1,2,3, and distin-
guish two cases :

1) < , and 2)g§§_

We have 51 = max{0,b —&;a,b+c—&;(a+b)}
52 — max{O £ia—b,c—E&;b},
5?:max{O,Sjb——c,{j(a+b)—(b+c)}_

Case 1)

By (10), we have: 67 > 0V j.
By Theorem 4, we then have 5} — 5? = 0, hence
E*‘—‘ t> J=2,...n, and we have :

F() = ——5—, and min F (), s.t. §; =47 =0
ZH&

y==l y=1

(or min F'(§), s.t. & = %‘g—,) j=2,...n,yields :
M — W(a _|_ — (b+C)n ) _
Z(a+b)“‘1“"(b+c)i

t=0

(a+b)" l
W(Z(a+b)“ 1= (bte)’ I C)

We have shown the following statement.

Theorem 6
[f b < ¢, then the minimum makespan is given by

choosmg&z_...—*&*—a—i—b [




We have (5} — b_gga agj = g:gf] )
0 &> 2

C_GJb :5,}' = [O:E]

05 =<0 & €[§, 2] , and
Eja—b &> 2
0 , & €10, £]

533: £jb—c ‘Ej = [E,% .
Eila+b)—(b+c) ,& € [2,00]

It follows that 5} and 6? never vanish simultane-
ously. 'Therefore, by Theorem 4, we must have
5‘;-2:0, Fims B oy B

By Theorem 2, this means that §; € [£
M=W(b+aX;+cX,), and

,2]. By (7),

==l se=d
The program becomes

min F'(§) s.t. & € [§,2], 1=2,..

Note that in order to minimize F'(£) , we have to take
both X; and X,, as small as possible. Hence, raughly
speaking, we must first increase the ;’s, and then,
decrease them. This means we have to take £; at the
upper bound first, and then at the lower bound. The
problem will then be to determine exactly when to
change from the upper to the lower bound. This is
stated 1n Theorem 7 below.

Theorem 7
If ¢ < % , then the optimal policy 1s given by

b b
5*:(—,...,—,5,...,3) forsomek, 1<k <n.
. Y S
k—1 n—k
Remark 3.1
l. Fork=1: {f*—(g— "1

For k =n, & = (2, ...,%).

Proot of Theorem 7
We prove the statement by induction as follows:

Initial step:

Ifcga,thengg_—_g.

Ifa<e,then§; = ¢.

Induction step

Suppose & = E’ t = 2,4.:57—1, and & = £, 1=
¢+ 1,...,n, where j < £. We show that :

*_b x __ C

Ej—E: Or Ef—'};

Initial step:

Let N (a&) stand for the numerator of ggi ). We

have N(2E) = Hég(c—a)—a(H Z H)

Similarly: N(5~) = (n’ﬁ 5.,;) (cf’_lﬁ & — a) =
(ge) (c—a+ c”f ﬁ ).

8

Hence ¢ > a = T >0 => & =F -

Induction step :

Let /@i:(g)i.—zr i Z/B’E: 71_(5')'18‘11(1

n—~
C¢= ). 7 . Then:
1 =0
atc(L)i=2(g)"" ‘HE.

P(E) = = .
Z(*’ +€J(1+ Z H £it H E,Zg )
i=0 —J+1 i=j+1  i=j41  i=0

ﬂ+cﬁ3'}'n ¢ HEI

= — > . We have:

B;+&; (1+ Z H §i+Co H E:‘)
k=j41 i=j+1 i=j+1
N(_) = 0;63771—2-8 H E‘I
_3+1
4
—a(l+ Z H &+ Cr 1 &)
k=341:1=7+4+1 i=7+1

= ( ﬁ lfi){cﬁj‘)’n-sz — Gcﬂ}

1=17+ N ———
Lie o1
—a(l+ > II &).
Similarly: k=j+1i=j+1
N(3E) =
£—1

BjTn—¢ H &(Bi+&(1+ 3 1 &) —aCe ]

-3+11—3+1 Ay
= (H_Ez-) DietcBimmcti(1+ 5 T1 &)

Clearly:
C,@j")’n_gBj < aCE (le Fj,f,’ < O) :> 3_";:_ < 0= f*

cBitn-tBj > aCy(T56>0) = 3£ > 0= §; = g

After at most n — 1 steps, all the £'’s have been
determined. [




Remark 3.2
We have I'; , =c —a.

Remark 3.3
Our solution i1s also optimal for the unconstrained

3-machine flow-shop.

4 Conclusions and further research

In this paper, we have shown how to optimally pro-
cess a single product in a no-wait flow-shop when
lotstreaming is allowed. We deal with the continu-
ous sublots sizes only.

It 1s clear that, in the case where no setups are nec-
essary Inbetween the processing of sublots, then the
optimal solution 1s to take each sublot of size 1. This
solution ensures the maximum overlapping of activi-
ties in the shop. However, this solution ceases to be
optimal when sum setups (e.g. cleaning) are required
inbetween the processing of consecutive batches. Re-
searchers 1n the field usually consider the number of
sublots as given. In order to determine the optimal
number of sublots in case setups are required inbe-
tween the batches, a hierarchical optimisation could
be performed:

- First, as we did 1n this paper, consider the number
n of sublots as given, and find the optimal sublots
sizes X7 (n),j=1,...,n,

- Then use the solutions X7(n), j =1,...,n, with n
a decision variable, and find the optimal n.
Although our closed form results are limited to the
J-machine case, we get a good 1nsight into the gen-
eral case, through our Theorems 1-3, which apply
to an arbitrary number of machines. however, this
problem 1s combinatorially explosive, since we have
to investigate (m — 1)! cases.

Due to space limitations, we did not investigate here
the multiple products problem, where the products
must also be scheduled. We have interesting prelim-
inary results in this direction, using the heuristics
extension of the Gilmore and Gomory algorithm due
to Rock and Smith (1983).

Further research should be pursued for the discrete
(e.g. integer) sublots sizes problem.

The author wishes to thank his colleague G. Le Vey
for being an attentive and critical audience in some
delicate proofs in the paper.
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