

Proceedings of the 8th IEEE Mediterranean Conference
On Control and Automation (MED 2000)

Rio, Patras, GREECE 17-19 July, 2000

IMPROVED TRAINING OF MULTILAYER FEEDFORWARD
NEURAL NETWORKS FOR LARGE INPUT VECTORS

CATALIN-DANIEL CALEANU †, LYKOURGOS PETROPOULAKIS‡

† Department of Applied Electronics, Faculty of Electronics and Telecommunications, Politehnica
University Timisoara, B-dul V. Parvan, nr.2, 1900 Timisoara, Romania, catalin@earouter.ee.utt.ro
‡ Department of Electronic & Electrical, Engineering, University of Strathclyde, 50 George Street,
Glasgow G1 1QE, akis@icu.strath.ac.uk

Abstract. In this paper, a new fuzzy controller for inferring multiplayer feedforward neural networks
learning rate is presented. The key issue is using relative values of a performance attribute as fuzzy
controller inputs, resulting in an increased generality of fuzzy learning rate adaptation and a faster
training algorithm. Experimental results demonstrate improvements in terms of generalization
capability and of learning speed in both large pattern recognition and data processing tasks.

Key Words. Neural nets, fuzzy control, training, algorithm.

1. INTRODUCTION

In conventional gradient descend algorithms [5] it is
assumed that the learning rate η is fixed and uniform for
all weights in a layer. Usually η must be kept very small
to prevent parasitic oscillations and ensure convergence.
However, a very small fixed value of η slows the learning
process considerably. In fact a very large value for the
learning rate can result in an unstable learning
(optimization) process, whilst a small value η can result in
an appreciable and impractically long training periods.

The training time can be considerably reduced by
employing an adaptive (variable) learning rate. The
adaptation methods attempt to keep the learning rate at
each iterative step as large as possible while keeping the
process stable.

In this paper we show how a fuzzy controller, using the
relative values of performance attribute (e.g. Mean
Squared Error (MSE), Sum Squared Error (SSE), etc.)
and change of performance attribute, can be used to
dynamically alter the learning rate. The final result is a
faster and more robust training algorithm, which
outperforms classical adaptive learning rate gradient
descend training algorithms.

2. SYSTEM DETAILS

The fuzzy controller developed for this
architecture is based on two observations:
- quasi-totality of classical [3] or fuzzy [2], [6]
learning adaptation methods are based on
absolute value of change error, as fuzzy
controller input. The major drawback of these
methods is their dependence on the type of
neuron’s activation function and error signal
value. If we consider a particular neural network
architecture and, in the first case, a linear
activation function, the range of output error
could be 102 times bigger than the case of
sigmoid activation function, for the same neural
network structure. It is now clear that the design
of a universal fuzzy controller relay on the
absolute value of error is impossible and a
relative value of error is most appropriate;

- for increasing the generality of fuzzy learning
rate adaptation we deal with the relative value of
neural network’s performance attribute instead
of a particular form of this (e.g. MSE, SSE).

In conclusion, we propose as fuzzy Mamdami type
controller inputs, where the relative performance
attribute value is given as:

)1(

)(
)(

−
=

nperf

nperf
np … (1)

and the relative change of the relative performance
attribute value is given by:

)2(

)1(

)1(

)(
)(

−
−−

−
=∆

nperf

nperf

nperf

nperf
np … (2),

and where “n” denotes the current training epoch.

Instead of an incremental value as proposed in ([2], [6]),
we propose as output of the fuzzy controller a coefficient
“c” which multiplies the learning rate. The result is a
faster variation of the learning rate:

)1()(−⋅= ncn ηη … (3)

The training algorithm is inspired from classical method
of varying learning rate presented in [9]:







−
−⋅≥−⋅

−<−⋅
=

otherwisek

kwperfckwperfifkc

kwperfkwperfifkc

k

),1(

))1(())((),1(

))1(())((),1(

)(32

1

η
η
η

η ...(4),

where typical values of parameters are
 c1 = 1,05, c2 = 0.7, c3 = 1,04.

In the last case the new weights and the error are
discarded. The disadvantage of this method is that
parameters c1 and c2 are constant during the training
phase making impossible a rapid change in learning rate.

Our algorithm offers different fuzzy degrees for these
coefficients resulting in an increase in convergence speed.

The Membership functions for input and output variables
are shown in fig. 1, 2, and 3. The fuzzy-rule set for
controlling the learning rate parameter is presented in
Table 1 and the output variable versus two input variables
(control surface) is depicted in fig. 4.

Fig. 1. The membership functions for the relative

performance attribute

Fig. 2. The membership functions for the change

of relative performance attribute

Fig. 3. Membership function for output variable

“c”.

Table 1. The fuzzy-rule set for controlling the
learning rate parameter.

dp \ p p1 p2 p3 p4 p5

dp1 c5 c5 c4 c3 c2

dp2 c5 c4 c4 c2 c2

dp3 c4 c4 c4 c2 c1

dp4 c3 c2 c2 c3 c1

dp5 c2 c2 c1 c1 c1

Fig. 4. Fuzzy control surface

3. EXPERIMENTAL RESULTS

The proposed method has been tested on several problems
such as the parity problem, exclusive NOR problem,
function approximation problem and real problems arising
in pattern recognition.

 The method (trainfuzzy) has been implemented in Matlab
v.5.2 using Neural Network Toolbox v.3.0 and Fuzzy
Logic Toolbox v.2.0, and

compared with gradient descend with momentum
(traingdm) and gradient descend with momentum and
variable learning rate (traingdx) predefined methods. The
training times given below are CPU times required for
training on a PC INTEL PII, 333MHz. In our
experiments, iteration is said to be completed when all
training patterns are presented and weights of the MLP
are modified.

Experiment 1- Approximation of a Function: The task of
training a function is a stringent one. In this experiment
an application of the proposed approach to build a
network, which approximates the following function, is
presented:

]2sin7.0[8.02.0)(x)(x xf π++= ...(5)

We assume 0 ≤ x ≤ 1. The training data are taken at
intervals of 0.1; thus we have 11 data points. We used 101
evaluation points taken at intervals of 0.01. The
evaluation data is used to verify the interpolative power of
the network.

The results for the best numbers of hidden units are
presented in Table 2. The training process was stopped
when MSE reached the value of 0.003.

Fig. 5 depicts learning profiles produced for this problem
and indicates that the proposed learning method yields
much faster learning.

Table 2. Comparative results on the
approximation of a function problem.

Train.
Meth.

hidden
units

Itera-
tions

Train.
time
[s]

Init.
Lear.
 rate

Train.
set
[%]

Test
set
[%]

traing
dm

9 15
0

18.89 0.65
cons.

3.560 2.360

traing
dx

9 59 5.50 0.65 2.785 0.936

 train.
fuzzy

9 34 3.91 0.65 2.482 0.009

Fig. 5. MSE versus number of iterations for
approximation of a function problem.

Experiment 2 – Pattern Recognition Problem:
The problem consists of the recognition of 100
facial images (10 subjects x 10 images/person)
from AT&T Database of Faces (formerly The
ORL Database of Faces) [4]. The images are
divided into 50 training images and 50 test
images. The images format is 56x46 pixels. We
carry two types of experiments:

a) The images are applied without any pre-
processing to one hidden layer MLP.

The size of the neural network will be:
56 x 46 = 2576 input neurons, with 50 hidden
neurons and 10 output neurons. The problem is
quite difficult because of the large number of
input neurons and it cannot always be easily
tackled by other fast training algorithms
(Fletcher-Powell conjugate gradient, Polak-
Ribiere, Levenberg-Marquardt). The results for
the best numbers of hidden units are presented in
Table 3. The training process was stopped after

80 epochs or a MSE of 0.03. Figure 6 illustrates the
training process.

Table 3. Comparative results on the pattern recognition
problem.

Train.
Method

hidden
units

Itera-
tions

Train
time
[s]

Init.
Learn.
 rate

Train.
set
[%]

Test
set
[%]

traing
dm

50 80 105.73 0.01
cons.

90 90

traing
dx

50 80 90.63 0.01 4 10

 train
fuzzy

50 76 84.53 0.01 2 4

Fig.6. MSE versus number of iterations for pattern
recognition problem.

b) Feature vectors are extracted from three image regions
(see details in [1]) through interest operator method [7].
Then feature vectors are classified with the same type of
neural network. In this case only 3 pattern/class are
required for a 100% recognition rate (Table 4).

Table 4. Recognition rate using feature extraction

technique.

Number of

pattern/class

Correct test set recognition rate

[%]

1 84,4

2 98,7

3 100

4. CONCLUDING REMARKS

In this paper, we propose a method for fast
training of multilayer perceptrons (MPL). A
number of experiments for classification as well
as for approximation have been conducted and
some of them are presented. The experiments
show that the proposed method is able to train
MPL’s much faster than traditional gradient
descend algorithms. We conclude therefore that
owing to this fast learning training rate and the
simplicity of the approach, this method would be
useful in several practical implementations of
real-world problems.

5. REFERENCES

[1] Caleanu C.D. – “Parallel neural processing of
interest regions in facial recognition”,
Transactions on Electrotechnics, Electronics and
Communication, pp.129, Timisoara,
Romania,1999
[2] Choi J., Arabshahi P., Marks R., Caudell T., -
“Fuzzy parameter adaptation in neural system”,
International Joint Conference on Neural
Networks, Vol.1, pp. 232-238, Baltimore, 1992.
[3] Cichocki A., Unbehauen R., - “Neural
Networks for Optimization and Signal
Processing”, John Wiley & Sons, pp.146-157,
1993.
[4] ftp://ftp.uk.research.att.com:pub/data/
 att_faces.tar.Z
[5] Haykin, S., “Neural Networks. A
Comprehensive Foundation.”, MacMillan
Publishing Company, NY, 1994.
[6] Hertz D., Qing H., “Fuzzy-neuro controller
for backpropagation networks”, Proceedings of
the Simulation technology and Workshop on
Neural Networks conference, Houston, TX, pp.
570-574, 1992.
[7] Moravec H., “Robot Rover Visual
Navigation”, Univ.of Michigan Research Press,
1981.
[8] Verma B., - “Fast Training of Multilayer
Perceptrons”, IEEE Trans. Neural Networks,
vol.8, pp.1314-1319, Nov., 1997.
[9] Vogl T., Mangis J., - “Accelerating the
convergence of the backpropagation method”,
Biological Cybernetics, vol. 59, p 257-263, 1998.

