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ABSTRACT. Transfer function models used for early stages of design are large 
dimension models containing all possible physical inputs, outputs. Such models 
may be badly conditioned and possibly degenerate. The problem considered here is 
the selection of maximal cardinality subsets of the physical input, output sets, such 
as the resulting model is nondegenerate. This problem is part of the early design 
task of selecting well- conditioned progenitor models on which successive design 
has to be carried out. The established conditions for different type of degeneracy 
are used to define necessary and sufficient conditions required to guarantee 
nondegeneracy. A simple redesign procedure that guarantees transfer function and 
input, output nondegeneracy is suggested and parameterisation of all such solutions 
is given. The results provide the basis for selection of well-conditioned transfer 
function models, which may be used for subsequent control design. 
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1.INTRODUCTION 
 
The derivation of models that can be used for early 
design stages studies of processes requires the use of 
the system interconnection graph, the availability of 
simple models describing the fundamental dynamics 
of subprocesses and the selection of control (input) 
and measurement (output) variables. Before we 
embark on the investigation of the properties of the 
resulting model it is useful to include all possible 
inputs and outputs; at a later stage we can then 
determine the effective subsets of inputs, outputs 
using different “controllability”, “operability” 
criteria. Such models corresponding to all possible 
inputs and all possible outputs will be referred to as 
progenitor models [7]. Progenitor models are 
derived on the basis that possible inputs, outputs are 
selected using heuristics, physical arguments and thus 
the resulting transfer function may be of large 
dimensions and possibly not well behaved. The 

essential feature of such models is that the input, output 
variables are physical variables, on which specifications 
may be imposed. Transfer functions corresponding to 
subsets of the potential input and output sets are referred 
to as effective models and are submatrices of the 
progenitor transfer function. Different families of 
effective models may be defined. Characterising such 
families of models, in terms of a range of important 
properties, is an important part of the “process 
controllability” studies. 
 
This paper deals with a specific problem within the 
general area of selecting effective models, when we use 
as criteria the nondegeneracy of the effective transfer 
function and the nonredundancy of the instrumentation 
schemes i.e. independence of selected sensors and 
actuators. Nondegeneracy is a fundamental property for 
the effective model, since it is linked to the output 
function controllability [14], and thus to the solvability 
of a number of control problems. Conditions for the 
characterisation of system degeneracy and redundancy of 
the input, output structure of the system have been 



derived in [9]; these conditions indicate the criteria 
required to guarantee nondegeneracy and input, 
output scheme nonredundancy. Using these 
conditions simple sufficient conditions are given, 
which guarantee nondegeneracy and nonredundancy 
of the resulting effective model. The selection of 
maximal dimension effective models, which have 
both of the previous properties, is then considered 
using different criteria and parameterisation issues are 
discussed. The approach suggested here leads to a 
parameterisation of all maximal dimension effective 
models, which are nondegenerate and input, output 
nonredundant. The elements of this set may then be 
used for the selection of models having additional 
desirable properties. A more detailed exposition and 
proof of the results is given in [9].  
 
  
2.STATEMENT OF THE PROBLEM AND 
PRELIMINARY RESULTS 
 
The development of models, which may be used for 
evaluation of alternatives is an integral part of the 
Early Process Design of process plants [13]. Such 
models are usually developed for the entire plant, are 
based on the selected process flowsheet 
(interconnection graph and involve the use of simple 
models of the subprocesses). As such, they are large 
dimension models and their final structure is 
determined when the control structure is decided. The 
selection of control structures is a topic of strong 
interest within the process control area ([3], [4], [8], 
[11], [13] and references there in). This problem 
involves a number of key subproblems [8], which are: 
(i) The classification of process variables into 
potential inputs, outputs and referred to as Model 
Orientation Problem (MOP). (ii) Specification of 
effective sets of inputs, outputs on an oriented model 
and referred to as Model Projection Problem 
(MPP). (iii) Deciding on the way we couple effective 
inputs and outputs for control design purposes and 
referred to as Input – Output Coupling Problem (I-
O.C.P.). Most of the attention so far has been focused 
on I-O.C.P., when heuristics and diagnostic indicators 
have been used. For the first two problems, less 
attention has been given, especially from the Control 
Theory viewpoint; with the exception of the work in 
[3], [6], [8], [11] on some specific problems. In this 
paper we are concerned with the selection of the 
effective sets of inputs, outputs on a system, in order 
to satisfy criteria for the system nondegeneracy and 
the nonredundancy of the input, output scheme for the 
resulting effective model.  
 
We assume that we are given an oriented linearised 
model that includes all possible variables that can be 
used for control and measurement; these inputs, 

outputs are referred to as potential sets. The model that 
corresponds to the potential inputs, outputs provides the 
basis for deriving all subsequent models based on 
effective input, output sets and it is thus referred to as the 
progenitor model and all inputs and outputs are physical 
variables. Given that the classification of internal 
variables into inputs, outputs has been done mainly with 
physical, process based criteria, a progenitor model may 
not be well behaving. That is the transfer function may 
be degenerate, there may be redundancy in the input, 
output schemes and a number of other fundamental 
properties may not have good values (i.e. condition 
numbers etc.). System models, which are degenerate, do 
not satisfy the basic condition of the output function 
controllability. It is thus desirable to select subsets of the 
potential inputs and outputs such that the resulting 
transfer function is “well- conditioned” in some sense. 
Amongst the basic criteria we can use are the properties 
of nondegeneracy of the system model and 
nonredundancy of the input and output scheme. Any 
submodel that satisfies the above three properties and has 
maximal cardinality for the input and output set will be 
called a normal progenitor model; clearly, a system 
may have more than one such models. The problem we 
consider here is the parameterisation and systematic 
construction of the family of normal progenitor models. 
 
We will assume that the progenitor model is described by 
the state space equations: 
 

(2.1)                                      u D  x C  y ,  u B  xA   x +=+=�

 
where 

or equivalently by the Rosenbrock’s System Matrix 
Pencil [14] P(s), and has a transfer function 

(s) r  q      D  B -1A) - I (s C  H(s) ×ℜ∈+= , where 
{H(s)} (s)rank  ρ ℜ= . Clearly r)(q,min   ρ ≤  and 

whenever strict inequality holds, then the system is 
called degenerate; when equality holds the system is 
called nondegenerate.  
 
Remark (2.1) [14]: ρ defines the maximal number of 
output variables that may be controlled independently, as 
well as the minimal number of independent inputs 
required to control ρ outputs.              
 
For the system D)C,B,S(A, for which n  q r, ≤ , we 
define the numbers: 
 

[ ]{ } [ ]{ } (2.2)             q D , Crank    r,  D ,Brank  
∆
 rτ

tt ≤=≤= lτ
 

r  q  D  , n  q  C  ,r n   B  , n n  A ×ℜ∈×ℜ∈×ℜ∈×ℜ∈



If  r)  l(τ ,r   rτ <<  the system will be said to have 
input (output) redundancy; otherwise, i.e. if 

r)  l(τr   rτ == , then it will be said to be regular.                                              
Regularity of the model is clearly equivalent to 
nonredundancy of both sensor and actuator schemes.  
 
PROBLEM: Given the progenitor model described 
by H(s), or S(A,B,C,D) define: 
(i) A maximal cardinality subset of the potential input 
and output sets such as that the resulting transfer 
function is nondegenerate, has the maximal possible 
normal rank and it is also regular. 
(ii) Parameterise all solutions with the properties 
described above. 
 
The above problem will be referred to as well-
conditioning of Progenitor models and part (ii) 
describes the parameterisation of solutions. Different 
types of criteria may be used for selecting the models. 
The well conditioning of progenitor models using as 
criterion the system nondegeneracy and input, output 
regularity is considered here. For the system 
described by S(A,B,C,D) we shall denote by 

(s)} {P  
∆
  , (s)} {P  

∆
 lΝlΖrΝrΖ ==  the right, left null 

spaces of P(s). A pair of polynomial vectors 

 (s)r  (s]u[ , [s]n  (s)x ℜ∈ℜ∈ will be said to be a right 

pair if for the composite vector ]t(s)u,t(s)x[  (s)ζ = , 

0  (s)ζ P(s) = . We introduce in a similar way the 
notion of a left pair as any pair of polynomial vectors 

 [s]q  (s)v , [s]n  (s)y ℜ∈ℜ∈ such that for 

]t(s)v,t(s)y[  t(s) =ξ , 0  P(s) t(s)ξ = . Note that for 

any right pair (s))u(s),x( , left pair (s))v(s),y(  we 

have that 1  )](y[  )](v[   1,  )](x[  )](u[ +∂=∂+∂=∂ ssss . 
 
Lemma (2.1): For the system S(A,B,C,D), let 

{ } { }P(s) dim  θ  ,P(s)dim  η lΝr Ν == ,

{ }P(s)(s)rank  τ ℜ=  and { }H(s)(s)rank  ρ ℜ= . Then, 

ρ n   τ += , ρ -r   {H(s)} dim  {P(s)}dim  η === rΝr Ν  

and ρ - q  {H(s)} dim  {P(s)}dim  θ === lΝl Ν .                                                                             
  
Remark (2.2): The system is degenerate, if and only 
if { } q)n r,(nmin   P(s)(s)rank  τ ++<ℜ= . That is we 

can use either P(s) or H(s) for characterisation of the 
property. Some relationships between degeneracy and 
input, output loss of regularity are described below 

and this provides some classifications of the different 
types of degeneracy. 
 
Proposition (2.1): For the system S(A,B,C,D) the 
following properties hold true: 
(i) If q ≥ r (q ≤ r) and the system is not input (output) 
regular, then it is degenerate. 
(ii) If a system is not input or output regular, then it is 
degenerate. 

(iii) Let [ ]
��
�

��
�== tDtBrank   r τ,D C,rank   lτ . Then, 

if q ≥ r and τl < r, the system is degenerate; if q ≤ r and 

rτ < q, then the system is degenerate.                                              
  
For the pencil P(s), the null spaces Nr {P(s)}, Nl {P(s)} 
are characterised by a set of column, row minimal 
indices (cmi, rmi) [2], which are also referred to as right, 
left indices of P(s) [1] and are denoted by 

ρ} -n   .η1,........  i :i{ε  c ===pΙ , 

ρ} - q  .θ1,........  j :j{µ  r ===pΙ . Such sets may have tr 

zero cmi and tl zero rmi; in fact, 
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[ ]{ } (2.3)                             ρ - q  l τ- q  D, Crank  - q  lt ≤==
 
The numbers tr, tl which characterise 0 – cmi, 0 – rmi 
respectively, express the order of input, output 
redundancy and are referred to as input-, output – 
redundancy index correspondingly.  
 
Proposition (2.2): The numbers τr = rank {[Bt, Dt]} and 
τl = rank {[C, D]} provide bounds for 

{ }H(s)(s)rank  ρ ℜ=  and in particular ρ ≤ min (τr, τl ). 

The case of ρ = min (τr, τl ) implies: 

(a) If τr ≤ τl, then all indices in c
pΙ  are zero, or the set is 

empty; in particular, if r > τr, then all cmi are zero and if 

r = τr, then c
pΙ  is empty and the system is 

nondegenerate. 

(b) If τl ≤ τr, then all indices in r
PΙ  are zero, or the set is 

empty; in particular, if q > τl  then all indices in r
PΙ  are 

zero and if q = τl, then r
PΙ  is empty and the system is 

nondegenerate. 
(c) If ρ = τr = τl and at least one of r, q is equal to ρ, then 
clearly we have nondegeneracy and redundancy for the 
index that is greater than ρ. If r, q > ρ, then we have both 
degeneracy and input, output degeneracy. 



                                                           
The case where tr = r - ρ (tl = q - ρ) is referred to as 
total input – (output-) irregularity. When at least 
one such condition holds true, that implies that 
degeneracy of the transfer function may be removed 
by eliminating redundancy in the corresponding part 
of the instrumentation map. The type of system 
degeneracy inferred from the input, output 
redundancy is called simple. Another type of 
degeneracy that is linked to properties of the internal 
mechanism and is referred to as strong degeneracy 
[9] and considered next. 
 
 
3. STRONG SYSTEM DEGENERACY AND 
SUFFICIENT CONDITIONS FOR 
NONDEGENERACY 
 
In the previous section we examined issues of 
degeneracy and input, output redundancy, which are 
linked to zero values of cmi, rmi. Here we will 
consider the case of nonzero indices. Results 
describing strong degeneracy are described [9] and 
this leads to sufficient conditions for nondegeneracy 
and input, output regularity. The sets of indices [1] 
Ip

c, Ip
r may contain nonzero indices and this is 

characterised by the following result. 
 
Proposition (3.1): For any system S(A, B, C, D) with 
r inputs, q outputs, transfer function H(s) and 

{ }H(s)(s)rank  ρ ℜ=  the following properties hold 

true: 
(a) The numbers ρ, τr, τl, r, q satisfy the conditions:  
ρ ≤ τr ≤ r  and  ρ ≤ τl ≤ q. 
(b) The system has τr – ρ nonzero cmi, if and only if  
ρ < τr ≤ r  and all such indices are nonzero, if τr = r. 
(c) The system has τl – ρ nonzero rmi, if and only if  
ρ < τl ≤ q and all such indices are nonzero, if τl = q.                                               
 
Proposition (3.2): The system S(A,B,C,D) with q ≥ r 
and ρ < r has a right index with value k, if and only if 
there exists a set of vectors { }ku ,...,1u ,0u  such that 
the following conditions are satisfied: 
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For the given system, we define the following set of 
matrices: 
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In terms of the above matrices, we may state some tests 
for nondegeneracy as shown below [9].  
 
Remark (3.1): If q ≥ r, then the maximal possible value 
of right index of P(s) is: 
(i) If D ≠ 0 and rank (D)=δ, then εmax = n – q + 2δ – 1. 
(ii) If D = 0, then εmax = n – q – 1.             
 
Theorem (3.1): For the system S(A,B,C,D) with  
q ≥ r, the following properties hold true: 
(i) If D has full rank, then the system has no right indices 
of any value and it is thus non-degenerate. 
(ii) If D ≠ 0 and rank (D) = δ < r, then the system is non-
degenerate, if and only if the matrix Mr is full rank, 
where 1 - 2δ  q -n   τ += .  
                                                                  
Corollary (3.1): For the system S(A,B,C,D) with       
q ≥ r, the following properties hold true: 
(i) If CB is full rank, then the system has no right indices 
and the system is non-degenerate. 
(ii) The system with CB rank deficient is non-degenerate, 
if and only if the matrix τM~ ′  is full rank, where 

1 - q -n   τ =′ . 
 
The results in this section characterise a type of 
degeneracy, which depends on the models inner structure 
and will be referred to as strong degeneracy. The 
distinction between the simple and strong type is the 
nature of associated indices, that is zero and non-zero 
respectively.  
 
 
4. WELL CONDITIONING OF TRANSFER 
FUNCTIONS: SELECTION PROCEDURES AND 
PARAMETERISATIONS 
 
The results in the previous sections provide criteria for 
selecting subsystems of H(s), or P(s) which satisfy the 



input, output regularity requirements and the 
conditions for non-degeneracy. Although, input, 
output redundancy may imply degeneracy, input, 
output regularity does not guarantee non-degeneracy. 
Guaranteeing non-degeneracy may be achieved by 
using the sufficient conditions based on the D, CB 
matrices, or testing selections using the full rank tests 
based on τM~ ,τM ′ matrices; which however are not 
easy to use for making initial selections. Two 
different strategies for model selection can be made, 
and these are referred to as Direct and Indirect 
methods. 
 
4.1 Direct Method for Well-conditioning 
 
We assume that q ≥ r and that the S(A,B,C,D) model 
is degenerate. If D ≠ 0, then degeneracy implies that 
D is rank deficient and if D = 0, then necessarily CB 
has to be rank deficient. 
 
Remark (4.1): If q ≥ r, S(A,B,C,D) is degenerate, a 
redesign leading to )D~C,,B~(A,S~ with D~  full rank 
leads to a system which is non-degenerate and has 
full rank input and output structure. If D = 0, a 
redesign procedure leading to )C~,B~(A,S~  with B~C~  
full rank yields a system which is non-degenerate and 
has full rank input and output structure. 
          
The meaning of redesign of D, or CB is that we aim 
to define a maximal subset of the columns of D, or 
CB that guarantee the maximal full rank property. 
This procedure is clearly sufficient, but not necessary 
and leads to a system of smaller dimensions, as far as 
input, output structure is concerned. Note that we 
would like to achieve this selection without 
transforming the matrices D, CB, since it is desirable 
to keep the physical variables involved in the original 
model. It is clear that if the transformation of the 
input, output structure is allowed, this problem is 
trivial. 
 

Definition (4.1): Let [ ]  ,rq  rt ,...,2t ,1t  T ×ℜ∈=  

{ }r  i 1,  it ∈= , q ≥ r with rank (T) = ρ < min (q, r). 

Any ρ-subset of the set { }r  i ,it ∈  of columns that is 
linearly independent is said to form a natural basis 
for the space colsp{T}, has a measure of 
orthogonality σ (Grammian, condition number etc)  
and is referred to as a σ-natural basis. The natural 
basis with the highest degree of orthogonality will be 
called a proper basis of colsp {T}. The selection of a 
proper basis for a set of vectors has been previously 
addressed in [10] as a problem of selection of “best 
uncorrupted base” and an algorithm for achieving this 

is introduced here using the notion of the Grammian [2].  
 
Definition (4.2) [13]: Let mx,...,2x ,1x  ∈ nℜ , 

1=ix . The matrix: 
 

(4.1)           
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where ( , ) denotes inner product, is called the Gram 
matrix of the set and G  )mx,...,2x ,1x(G   mG ==  is 
called their Grammian.           
 
Remark (4.2). Note that  1  G  0 m ≤≤ and this 
characterises the degree of orthogonality. An alternative 
test for closeness to normality of a normalised selected 
set with a basis matrix A, can be the condition number of 
the corresponding matrix.  
              
We will use the Grammian as the criterion for selection 
of natural bases with degree of orthogonality greater than 
a given number 1)  σ  (0 σ ≤< . The set of all natural bases 
with orthogonality σ : 1  σ  σ ≤≤  may be defined as 
follows: 
 
Direct Method for Well-conditioning: Let 

[ ] r  q ,rq  rt ,...,2t ,1t  T ≥×ℜ∈=  be a matrix that may 
represent D, or CB, ρ = rank {T} and assume all its 
columns to be normalised. The selection of the well-
conditioned model involves: 
STEP (1): Select an acceptable order of orthogonality σ  
and using the Grammian test we define the set of all 
column submatrices {Ta}, of T which correspond to 
index sets a = (i1, i2,…, iρ) and have orthogonality degree 

σ  σ ≥ . 
STEP (2): For every set of indices a = (i1, i2,...,iρ) 
associated with {Ta}, define the subsystems { }σ H, = {Ha 
: a = i1, i2,…, iρ) having as inputs those corresponding to 
the set a = i1, i2,…, iρ) of indices defined before. This 
procedure leads to a set of systems { }σ (s),aH  σ S, =  
for which Da, or CBa is a matrix with orthogonality order 
at least σ .                                                                                              
 
The above procedure produces submodels, which are 
always non-degenerate and are input, output regular. 
However, it may lead to systems with unnecessarily 
small numbers of inputs (outputs), if rank of D, CB are 
small. The second approach aims at avoiding such 
problems. 



4.2 Indirect Method for Well-conditioning 
 
The second approach is based on the selection and 
parameterisation of all subsets of inputs and outputs 
for which input and output regularity is guaranteed 
and then testing for non-degeneracy using the tests 
derived before. We rely on the selection of natural 
bases for selecting the suitable input, output sets of 
variables. For the progenitor model S(A,B,C,D) we 
denote by: 

[ ] [ ] (4.2)          
t

qg

t
1g

  D C, G  ,rf ,...,2f ,1f  
D
B

  F
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and let rank (F) =  q  l τ (G)rank  r,  rτ ≤=≤ and 

ρ{H(s)}rank (s) =ℜ . Without loss of generality we 
may also assume that the columns of F and the rows 
of G are normalised. 
 
Definition (4.3): For the matrices F, G we shall 
denote by: 

{ } { }
�
�
�

�
�
� ==

�
�
�

�
�
� == )

rτ
l ,...,1(l  γ,γG G ,)

rτ
j ,...,1(j  β , βF F

 
the set of all submatrices of F, G which correspond to 
the natural bases of F, G and associated with set of 
indices β, γ respectively. The subsets of {F}, {G}, 
which have a degree of orthogonality greater or equal 
to some value { }σ , will be denoted by { } { }σG ,σF  

correspondingly. We denote by: 
ΩF = { ∀ β: β = (j1, j2,…,

rτj }, 

ΩF = { ∀ γ: γ = (l1, l2,…,
lτl }, the set of sequences 

characterising the natural bases of F, G respectively. 
For every GΩ   γand FΩ  β ∈∈  we shall denote by 

D)C,B,(A,γβ,S  the subsystem of S(A,B,C,D) 

corresponding to the β set of inputs and γ set of 
outputs.                       
 
Remark (4.3): For proper systems S(A,B,C,D), D≠0, 
the subsystem D)C,B,(A,γβ,S  that corresponds to 

some GΩ   γand FΩ  β ∈∈  is not necessarily input and 
output regular. This implies that the process of 
selecting sets GΩ   γand FΩ  β ∈∈  to guarantee input 
and output regularity are not always independent. In 
fact, although we can always make the system input 
regular with cardinality τr, or output regular with 
cardinality τl, achieving both may not be possible.         
 

The above indicates that progenitor models may be 
classified as shown below: 
 
Definition (4.4): Given a system S(A,B,C,D) we say 
that: 
(i) It is input-output independent, if any selection of 
the maximal τr number of independent inputs does not 
affect the selection of the maximal number τl of 
independent outputs and vice versa; otherwise, it is 
called input-output dependent. 
(ii) It is called input-output regularisable, if for at least 
a GΩ   γa is  thereFΩ  β ∈∈  such that the subsystem 

D)C,B,(A,γβ,S  is input, output regular; otherwise, it is 

called input-output non-regularisable.  
                                     
Proposition (4.1): The system S(A,B,C,D) is input-
output independent if at least one of the following 
conditions holds true:  [C]rank   D] [C,rank = and/or 

]rank[B]D,rank[B ttt = . 
 
Remark (4.4): A strictly proper system S(A,B,C) is 
always an input-output independent system. 
Furthermore, any input-output independent system is 
always input-output regularisable.   
      
Remark (4.5): For a model S(A,B,C,D) the maximal 
number of inputs and outputs required for input and 
output regularity is τr, τl respectively. These values can 
always be achieved for input-output independent 
systems, but not necessarily for the case of input-output 
dependent, where they act as upper bounds.         
 
The problem of determining the maximal values of 
cardinality of inputs, outputs, as well as the 
parameterisation of the corresponding family of systems 
is considered below in an algorithmic manner. The 
overall family of such systems will be denoted by f  
and every subfamily, with )q ,r( ′′  input, output 
cardinality (which is input-output regular) will be 
denoted by q,rf ′′ . f  will be referred to as the input-

output regular family and can always be partitioned as a 
union of subsets with different indices )q ,r( ′′ . 
 
Searching Algorithm for determining the input-
output regular family <f>: 
 
Consider the progenitor model S(A,B,C,D) and let 

 ,r~  ]tD ,t[Brank   rτ ==  q~  D] [C,rank   lτ == and 

assume for simplicity that q~  r~ < . Defining f  and the 
corresponding indices )q ,r( ′′  involves the following: 
 



CASE (I): Input – Output Independent Systems 
 
For this case the maximal cardinality is )q~ ,r~(  and the 
family of q~,r~f  systems is constructed as: 

 
Maximal Cardinality Family: Consider the sets of 
indices { })r~j ,...,1(j  β  FΩ == , { })q~l ,...,1(l  γ  GΩ == . 

If Bβ, Cγ, Dβ,γ denote the submatrices corresponding 
to these indices then for GΩ   γ and FΩ  β ∈∀∈∀  the 
subsystem S(A, Bβ, Cγ, Dβ,γ) is a maximal cardinality 

)q~ ,r~(  input-output regular subsystem.  
 
CASE (II): Input – Output Dependent Systems 
 
For this case the search involves a number of steps: 
STEP (1): For all FΩ  β∈  define the submatrices Dβ 
corresponding to the set β of columns, qβ = rank [C, 
Dβ], and let { }FΩ  β  ,βqmax   1q ∈∀= . 

(a) :q~  1q =  Then the search stops and the maximal 

number of inputs, outputs that guarantee regularity is 
)q~ ,r~(  and the system is input-output regularisable. 

The parameterisation of the family is done as follows: 
 
Maximal Cardinality Family: Let FΩ′  be the subset 

of sequences of FΩ  for which q~  βq = . For every 

such FΩ  β ′∈  we shall denote by { }γ(β)  all sequences 
in ΩG, which correspond to natural bases of G row 
space. Thus, we define the set of sequences 

( ) { }{ }β γ  γand FΩ  β   γβ, 
∆

GF,Ω ∈′∈∀=  and for all 

( ) GF,Ω   γβ, ∈  the maximal cardinality )q~ ,r~(  regular 

family is defined by S(A, Bβ, Cγ, Dβ,γ). 
(b) q~  1q < : Then the system is not input, output 

regularisable and ( )1q ,r~  is a maximal number of 
inputs solution. The corresponding family of 
solutions with ( )q~  1q ,r~ <  cardinality is constructed as 
before. 
 
If a reduced input cardinality and increased output 
cardinality is desirable, then we proceed to the 
following step. 
 
STEP (2): For the matrix F, define all sets of 1-r~  
independent vectors of the columns of F 
(lexicographically ordered, denote this set by {F}1 
and let the corresponding set of indices be 

{ })1-r~j ,...,1(j  1β : 1β  1
FΩ == . For the set 1

FΩ  repeat 

STEP (1) and this leads to a new solution pair ( )2q 1, - r~  

where q2 ≥ q1. The construction of the corresponding 
family of subsystems follows along the lines described in 
STEP (1).        
 
The above algorithmic procedure defines the maximal 
cardinality for input, output regularity, as well as 
producing a parameterisation of q~,r~f  family, as well 

as families with orders less than )q~ ,r~( . We can now 
proceed to the description of the overall methodology for 
well-conditioning using the Indirect Method. 
 
Indirect Method for Well-conditioning 
 
For the system S(A, B, C, D) we define the maximal 
cardinality pair )q~ ,r~(  for which input, output regularity 
is guaranteed and let q~,r~f  be the corresponding 

family of input, output regular models parameterised by 
pairs of sequences ( ) GF,Ω   γβ, ∈  with 

( ) �
�
��

�
�== q~l ,...,1l   γ,r~j ,...,1j  β . The general element of 

this family is denoted by �
�
��

�
�= γβ,D ,γC ,βB A, S 

∆
 γβ,S . 

For each Sβ,γ we proceed with testing as follows: 
 
STEP (1): If Dβ,γ ≠ 0 and rank (Dβ,γ) = min )q~ ,r~(  or 

γβ,D~ = 0 and )q~ ,r~(min βBγ(Crank  = ) , then system is 

non-degenerate and search stops. 
STEP (2): If Dβ,γ ≠ 0 and rank (Dβ,γ) < min )q~ ,r~( , or 

γβ,D~ = 0 and )q~ ,r~(min βBγ(Crank  < ) , then test for 

full rank of the Toeplitz matrix Mτ (Theorem (3.1)), or 
respectively Toeplitz matrix τM~ ′  (Corollary (3.1)). If 

Mτ, τM~ ′  are full rank, then the system is nondegenerate 
and the search stops. Otherwise, the system is degenerate 
and we proceed to the testing of another Sβ,γ subsystem. 
STEP (3): If all elements of q~,r~f  have been tested for 

degeneracy and there is no element, which is 
nondegenerate, repeat the analysis of Steps (1), (2) for 
the smaller order family q~1,-r~f  etc. The overall 

procedure always leads to a nondegenerate system. 
 
The system of )q~ ,r~( -maximal cardinality subsystems, 
which are input-output regular and nondegenerate, will 



be denoted by q~,r~
of  and GF,Ψ  will denote the 

corresponding pairs of (β, γ) sequences. 
 
 
5. CONCLUSIONS 
 
The problem of selecting subsystems of a progenitor 
model S(A,B,C,D), or H(s), which have maximal 
input and output cardinality, are input-output regular 
and are nondegenerate has been considered in detail. 
We have given criteria for the presence of input, 
output redundancy and system degeneracy, and 
suggested procedures for how we can avoid such 
properties. The results lead to parameterisation of all 
subsystems, which are input-output regular and 
nondegenerate and have maximal cardinality )q~ ,r~( , 

and leads to the family q~,r~
of . Every system in 

q~,r~
of  has r~ -inputs and q~ -outputs and it is 

parameterised by a set of sequences (β, γ) ∈ GF,Ψ  

defining the subsets of inputs and outputs that has to 
be considered. Every element S(A,Bβ,Cγ,Dβ,γ) ∈ 

q~,r~
of  does not necessarily have a structure that is 

desirable, as far as other properties. In fact, Sβ,γ may 
be either uncontrollable, and/or unobservable and 
other properties may not hold true. This family 

q~,r~
of  may then be used as the starting point for 

additional investigations. 
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