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Abstract. This paper deals with the stabilizability of invariant control systems defined 
on Lie groups. A stabilization technique is presented which under certain hypotheses 
can lead to a criterion assuring the existence of a feedback controller which steers 
every initial condition to a specified target point of the state space of these systems. 
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1. INTRODUCTION 
  
This paper deals with the stabilization 
of invariant control systems on Lie 
groups. By stabilizability it is meant 
that a feedback controller which steers 
every initial state to a specified target 
point exists. The stabilizing controller 
that will be proposed uses only a finite 
set of values of the control parameter. 
  
Let G be a real analytic and simply 
connected Lie group of dimension n 
and Lie(G)=L be the corresponding 
Lie algebra of left invariant vector 
fields on G. G is considered as the state 
space of the systems occurring in the 
sequel. Consider also the following 
control system on G:  

[ I [ X I [X

�

� � � � �= =  
where [ *∈ is the state of the system, 
and u is the control parameter taking 
values in a subset 8

D
 of the control 

space which is an analytic manifold U. 

Finally I * 8 7*� × → (where TG is 
the tangent bundle of G) is an analytic 
mapping. It is noted that the set 8

D
 of 

the acceptable control values can be 
much “smaller'' than the control space 
U, for example a discrete submanifold. 
The system described above is called 
invariant if the vector fields I Xon G 
are left invariant for every constant 
X 8

D
∈ . An invariant system on G will 

be identified with the subset 
Γ = ∈^ � `I X 8X

D
of L. It is always 

assumed that Γ contains the zero 
vector field. We write exptX, for the 
integral curve of ; /∈  passing 
through e (the identity element of G) at 
t=0. The integral curve of X through 
[ *∈ is then xexp tX. Furthermore if 
: 5⊆  we set expWX= 
∩ ∈^H[S � `W; W : . A point \ *∈  is 
accessible from [ *∈  for Γ  if: 
\ [ W ; W ;

N N
= H[S� ����H[S� �

� �
 with, 

W
L

>� , ;
L
∈Γ , i=1,..,k (the reader can 



find more details about these Lie 
theoretic preliminaries in Helgason 
1978, Varadarajan 1984). The Lie 
algebra of is the smallest Lie 
subalgebra of L which contains Γ . 
This is denoted by Lie( Γ ). 
  
Let us now proceed to the stabilization 
problem (treatments of various aspects 
of this problem can be found in Isidori 
1989, Sontag 1990, Tsinias 1989). An 
invariant system on G is called 
stabilizable if there exists a feedback 
control law X [= φ� �  such that the 
emerging closed loop vector field V 
with: 9 I [ [

[
= � � � ��φ  steers every 

initial state to a specified target point 
(in the sequel this target point will be 
the identity element but a modification 
of the results that will be presented 
later, covers the general case). Thus 
stabilization means the construction of 
a vector field V on G such that for 
every [ *∈ there exists some ; ∈Γ  
with 9 ;

[ [
= . 

  
2. THE CASE OF SOLVABLE 
STATE SPACE 
  
In this section a stabilization technique 
is presented for the case where the 
state space G is a solvable Lie group. 
This technique is based on an 
appropriate decomposition of the state 
space (technical notions and facts can 
also be found in Varadarajan 1984). 
Let us first give the definition of a 
solvable Lie algebra. This definition 
requires the concept of derived 
subalgebras. The derived subalgebra 
DL of a Lie algebra L is defined as 
follows: '/ / /=> � @. The k' th derived 
subalgebra of L is then:  

' / ' ' / ' / /
N N= =−� ��� �  

 
Definition 1. A Lie algebra L is called 
solvable if ' /

N =�  for some N ≥� . 
  

Observe that if L is solvable and 
' /

P ≠�  then ' / ' /
P P+ ⊂�  thus 

' /
N  strictly decrease until they 

become zero. A Lie group G is called 
solvable if its Lie algebra is solvable. 
  
Lemma 2. (Varadarajan 1984, Lemma 
3.18.5) Let G be a real analytic and 
simply connected Lie group. Suppose 
that / / /

U� �
� �����  are subalgebras of L 

such that: 
i) / / /

U
= ⊕ ⊕

�
���   

ii) if : / /
N N

= + +
�

���  then :
N
 is a 

subalgebra of L and an ideal of :
N+� for 

every k. 
Let also * *

U�
�����

�
 be the respective 

analytic subgroups corresponding to     
/ / /

U� �
� ����� . Then the *

L
’ s are all 

closed and simply connected and the 
mapping:� ����� � ���[ [ [ [

U U� �
→ , [ *

L L
∈  

i=1,...,r is an analytic diffeomorphism 
of * *

�
× ×���  onto G. 

  
From Lemma 2 above it is immediate 
that every [ *∈ has a unique 
expression of the form: [ [ [

U
=

�
���  

where [ *
L L

∈ .   
  
Now the main result, which is 
essentially a stabilizability criterion for 
a control systemΓ , can be stated and 
proved. 
  
Theorem 3. Let G be a real analytic, 
simply connected and solvable Lie 
group with Lie algebra L and a control 
system on G. If Γ Γ= −  (symmetry) 
and /LH ' / ' /

N N� �Γ ∩ =  for k=0,1,... 
then is stabilizable. 
  
In the proof of Theorem 3 a 
preliminary technical lemma is used 
(see also the similar well known result 
in Varadarajan 1984, Corollary 3.7.5). 
Let L be solvable and G ' /

N

N= GLP . 
Since the derived subalgebras strictly 
decrease there exists a basis 



^ ����� `; ;
Q�

 of L such that the first  G
N
 

vectors constitute a basis of ' /
N  for 

every k. For this kind of basis one has 
the following: 
  
Lemma 4. Let L be a solvable Lie 
algebra. Let also ̂ ����� `; ;

Q�
 be a basis 

of L of the form previously described. 
Then 0 VSDQ ; ;

L L
= ^ ����� `

�
 is a 

subalgebra of L and an ideal of 0
L+�  

for i=1,...,n-1. 
  
Proof. By construction of the basis for 
every i there exists a maximal k such 
that 0 ' /

L

N⊆ . 0
L
 is a subalgebra of 

L since > � @0 0 ' / 0
L L

N

L
⊆ ⊂+� . If 

0 ' /
L

N≠  then 0 ' /
L

N

+ ⊆
�

 and 

> � @0 0 ' / 0
L L

N

L+
+⊆ ⊂

�

� . If 

0 ' /
L

N=  then  0 ' /
L

N

+
−⊆

�

�  (=L  if 

k=0) and > � @0 0 ' / 0
L L

N

L+ ⊆ =
�

. In 
both cases 0

L
  is an ideal of 0

L+�  and 
the proof is complete.• 
  
Proof of Theorem 3. We shall first 
prove that Γ contains a basis of L of 
the form previously described. Indeed 
Γ  contains a basis of ' /

N  for every 
k=0,1,... such that ' /

N  is nontrivial. 
To see this let m be the maximal 
integer such that ' /

P ≠� . Since ' /
P  

is abelian and /LH ' / ' /
P P� �Γ ∩ =  it 

is clear that Γ contains a basis of 
' /

P . Now, if Γ contains a basis of 
' /

N  for some �≤ ≤N P  then Γ also 
contains a basis of ' /

N−� . If this is not 
the case then 
VSDQ ' / ' /N N� �Γ ∩ ≠− −� �  and  

> � @

� �

Γ Γ

Γ

∩ ∩ ⊆ ⊆

∩ ≠

− −

− −

' / ' / ' /

VSDQ ' / ' /

N N N

N N

� �

� �
 

which contradict the hypothesis 
/LH ' / ' /

N N� �Γ ∩ =− −� � . Thus one can 
choose a basis of Lie(G) contained in 
Γ  which is of the wanted form. Let 
^ ����� `; ;

Q�
 be such a basis. Now we 

are going to construct a feedback 

controller for Γ which is a piecewise 
left-invariant vector field V. It will then 
be proved that V steers every initial 
state x to e. From Lemma 4 it is clear 
that Lemma 2 applies, thus:  

* * * * 5;
Q L L

= =
�
��� � H[S  

For k=1,...,n define the following 
subsets of G:  

6 * *

6 * * 5 ;

6 * * 5 ;

6 * * 6

N N

N N NL

N N N

N N N

=
=

=

= =

+
−

+

−
−

−

− −

�

� �

� �

�

� � �

���

��� H[S

��� H[S

���

 

Observe that 6 *
Q

= , 6 H
�

� =^ ` . 

Furthermore the sets 6 6 6 6
Q�

�

� �
� � �����

± ± ±  
are pairwise disjoint and cover G. On 
each of these sets define the vector 
field V as follows: 9 ;

N
= −  on 6

N

+  

and 9 ;
N

=   on 6
N

−   since (from 
symmetry) − ∈;

L
Γ  for i=1,...,n. On 

6 H
�

� =^ `  we naturally define V=0. 
Observe also that for [ 6

N
∈  then 

[ W9 6
N

H[S ∈  for every t such that 
− < <ε εW  for some ε >� . This fact 
ensures that V is well defined as far as 
existence and uniqueness of integral 
curves are concerned. It is easy now to 
see that V steers every initial state x to 
e. 
  
Consider any initial [ *∈ . Let for 
example [ 6

N
∈ + . There exists some 

W
N

>�  such that: [ [ [ W ;
N N N

= −� �
��� H[S  

for some [
L
's in *

L
, i=1,...,k-1. Thus 

the application of − ;
N
 leads the state 

on the subset 6
N−�  within the finite 

time W
N
 since  

[ W ; [ [ W ; W ;

[ [ 6

N N N N N N N

N N

H[S � � ��� H[S H[S � �

���

− = −
= ∈

−

− −

� �

� � �

 
Inductively one can see that the state 
eventually reaches 6 H

�

� =^ `  and 
remains there under the application of 
the zero vector field. Thus V is a 



stabilizing feedback controller for and 
the proof is complete.• 
  
Remark 5. If a feedback controller 
which steers every initial state to a 
point [ H≠  is wanted then the 
stabilizing vector field V is defined as 
follows: 9 ;

N
= #  on . [6

N N

± ±=  
  
Remark 6. The stabilizing vector field 
constructed as before depends on the 
basis of L which is contained in Γ . 
Thus the stabilizing feedback 
controller is not unique and depends on 
the choice of a particular basis of L 
contained in Γ . 
  
Remark 7. Since the proposed 
feedback control law is piecewise 
constant and incorporates only a finite 
number of values of the control 
parameter it can be used in the case 
where the control parameter is 
restricted to belong to a discrete subset 
of the control space. 
  
Remark 8. As shown in the proof of 
Theorem 3 the conditions of this 
theorem imply that VSDQ /� �Γ = . This 
is a strong assumption and in fact 
stronger than the accessibility 
condition /LH /� �Γ = . In order 
however to construct the presented 
stabilizing control law this assumption 
is necessary. 
  
  
3. THE CASE OF SEMI-
SIMPLE STATE SPACE 
  
In this section the case where G is 
semisimple and noncompact is 
examined. Some mathematical 
preliminaries which are also treated in 
much greater detail in Helgason 1978 
are given below. 
  

Let L be a Lie algebra. The radical of 
L, rad(L) is the maximal solvable ideal 
of L. Now one can define: 
  
Definition 9. A Lie algebra L is called 
semisimple if rad(L)=0. 
  
A Lie group G is called semisimple if 
the corresponding Lie algebra is 
semisimple. Let L be a semisimple Lie 
algebra and consider the Cartan 
decomposition / / 3= ⊕

�
 where /

�
 

is a compact subalgebra (that is there 
exists a compact Lie group with Lie 
algebra isomorphic to /

�
) of L and P a 

subspace of L. Let also A be a maximal 
abelian subspace of P (all subspaces of 
this kind have the same dimension). 
An element α  belonging to the dual 
space $
  of A is called a restricted 
root of (L, A) if:  
/ ; / < ; < ; < $� � ^ �> � @ � � � `α α= ∈ = ∀ ∈ ≠�

 
Fixing a Weyl chamber one can order 
the roots and determine the set of 
positive roots Σ + . Then  

/ / $ /= ⊕ ⊕ +
�

 

where / VSDQ /+ += ∈^ � �� `α α Σ  and 

/ $ /
�

= ⊕ +  is solvable. The above 
decomposition is known as the 
Iwasawa decomposition. Now the 
following theorem can be stated: 
  
Theorem 10. Let G be a real analytic, 
connected and semisimple Lie group 
with Lie algebra L. Consider the 
Iwasawa decomposition 

/ / $ /= ⊕ ⊕ +
�

 

Let + + +
$�

� � +  be the Lie subgroups 

of G corresponding to / $ /
�
� � + . Then 

the mapping � � � �[ [ [ [ [ [
$ $� �

+ +→  is an 
analytic diffeomorphism of 
+ + +

$�
× × +  onto G. Furthermore 

+ +
$
� +  are simply connected. 

  
A proof of this theorem can be found 
in Helgason 1978, Chapter VI, 



Theorem 5.1. One can express the 
Iwasawa decomposition in a different 
form as follows: 

/ / / * + += ⊕ =
� � � �

�  

where / $ /
�

= ⊕ +  and + + +
$�

= + . 
Next we impose hypothesis (H) on G: 
  
 (H) Let G be a Lie group with Lie 
algebra L. If / / /= ⊕

� �
 is an 

Iwasawa decomposition of L then /
�
 is 

solvable. 
  
Hypothesis (H) implies that /

�
 is in 

fact abelian. Since /
�
 is compact it 

follows that (cf. Helgason 1978, 
Chapter II, Proposition 6.6) 
/ FHQWHU / '/= ⊕� �

� �
 with '/

�
 

semisimple. But '/
�
 has also to 

solvable as a subalgebra of the 
solvable algebra /

�
. This means that 

'/
�

�=  and /
�
 is abelian. The 

presented stabilization technique can 
be applied in the case of Lie groups 
satisfying (H). Taking into account the 
classification of semisimple Lie 
algebras (cf. Sagle and Walde 1973) it 
follows that L satisfies (H) iff it is of 
the form  

/ VO 5 VO 5= ⊕ ⊕� � � ��� � � �� �  l times 
where VO 5� � ��  consists of the � �×  real 
matrices of zero trace. In the following 
theorem the slightly modified 
decomposition is used in order to 
examine the stabilizability of a control 
system on a semisimple Lie group. 
  
Theorem 11. Assume that G satisfies 
(H) and let Γ   be a control system on 
G. If Γ Γ= − , /LH / /� �Γ ∩ =

� �
 and 

/LH ' / ' /
N N� �Γ ∩ =

� �
 for k=0,1,2,... 

then Γ   is stabilizable. 
  
Proof. Since G is simply connected +

�
 

is also simply connected. Γ  contains a 
basis ̂ ����� � ���� `; ; < <

� �µ ν  of L such that 

^ ����� `; ;
� µ , ^ ����� `< <

� ν  are bases of 

/ /
� �
�  of the form described in Lemma 

4. This is true because /
�
 as observed 

before is abelian and /
�
 is solvable. 

Now we can write  
* 5; 5;

5< 5<

= H[S� ����H[S� �

H[S� ����H[S� �

�

�

µ

ν

 

In a manner similar to the one showed 
in the proof of Theorem 3 one can 
construct a vector field V which steers 
every initial condition to e. Thus Γ   is 
stabilizable and the proof is complete.• 
  
 
 
4. THE GENERAL CASE 
  
In the previous sections the cases 
where the state space was solvable or 
semisimple were treated. These special 
cases are very important because every 
Lie algebra can be decomposed into a 
solvable and a semisimple subalgebra. 
Let G be any real analytic and simply 
connected Lie group with Lie algebra 
L. Let us now remind what the Levi 
decomposition of a Lie algebra is (see 
also Varadarajan 1984). If 
/ UDG /
U

= � �  then the quotient algebra 
/ /

U
�  is semisimple. A Lie subalgebra 

/
P

 of L is called a Levi subalgebra if 
/ / /

P U
= ⊕ . A Levi subalgebra of L 

is isomorphic to / /
U

�  so it is 
semisimple. Now one has the 
following theorems (for a proof see 
Varadarajan 1984, Theorem 3.14.1 and 
Theorem 3.18.13). 
  
Theorem 12. Any Lie algebra admits 
Levi subalgebras. 
  
Let G be a real analytic and simply 
connected Lie group with Lie algebra 
L. Let also / / /

P U
= ⊕  be a Levi 

decomposition of L and * *
P U
�   the 

Lie subgroups corresponding to / /
P U
� . 

Then * *
P U
�  are closed and the map 



� � �[ [ [ [
P U P U

→  is an analytic 
diffeomorphism of * *

P U
×  onto G. 

  
From this theorem it is immediate that 
* *

P U
�  are simply connected. Since 

*
P

 is semisimple it follows that *
P

  
admits the Iwasawa decomposition. 
Hence one can write:  

/ / / * * *
P P

= ⊕ =
� � � �

�  
where / / * *

� � � �
� � �  are as defined in 

Section 3. We let for notational 
simplicity / / * *

U U� �
= =� . Now the 

stabilizability of a control system on G 
is examined by stating and proving the 
following theorem. 
  
Theorem 13. Let G,L be as before. 
Suppose that /

P
 is any Levi 

subalgebra satisfying the hypothesis 
(H). Let Γ   be a control system on G. 
If Γ Γ= − , /LH / /� �Γ ∩ =

� �
 and 

/LH ' / ' /
N

L

N

L
� �Γ ∩ =  for i=2,3 and 

k=0,1,... then Γ  is stabilizable. 
  
Proof. It is evident that * * * *=

� � �
. 

Using the same arguments as in 
Theorems 3 and 11 it can be concluded 
that Γ  contains a basis 
^ ����� � ����� � ����� `; ; < < = =

� � �λ µ ν  of L such 

that ^ ����� `�^ ����� `�^ ����� `; ; < < = =
� � �λ µ ν  

are bases of / / /
� � �
� �  respectively of 

the form described in Lemma 4. Hence 
we have that:  

* 5; 5;

5< 5<

5= 5=

= H[S� ����H[S� �

H[S� ����H[S� �

H[S� ����H[S� �

�

�

�

λ

µ

ν

 

In a manner similar to that introduced 
in the proof of Theorem 3 one can 
construct a vector field which steers 
every initial condition to the identity 
element and the proof is complete.• 
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