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Abstract. This paper deals with robust stability analysis of polynomials where uncertain
coefficients are polynomic functions of the second order of interval parameters. The
method consists in determination of a convex hull overbounding the value set of such a
family and using Zero Exclusion Theorem. An arbitrary stability region can be chosen.
Presented method states only sufficient condition of robust stability due to nonconvexity of
the value set. Both computational and graphical way of using this method are possible. The
computational efficiency of presented method and more general method based on Sign-
decomposition is compared.
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1. INTRODUCTION

Robust stability of linear systems with parametric
uncertainty has been strongly developing in past two
decades since the well-known Kharitonov theorem
[5] have been published. This theorem solves the
robust stability for interval polynomials. The next
significant step has been achieved by solving of
robust stability for polynomials with parametric
uncertainty of affine structure by Edge Theorem [1].
In the last few years polynomials with multilinear
and polynomic structure of coefficients are of great
interest. The robust stability analysis of those
polynomials appears to be too complicated for
statement of a simple solution.

Nowadays there are only few approaches which treat
this problem generally. One of those is the technique
using Bernstein Expansion [4]. This method states a
necessary and sufficient condition for Hurwitz
stability of polynomial with polynomic parameter
dependency by checking the Hurwitz determinant for
positivity using the Bernstein iterative algorithm.

An interesting method for the analysis of robust
stability of polynomic interval polynomials was
introduced in [3] for continuous case and in [2] for
discrete case. Both methods state a necessary and
sufficient condition on the coefficient space using the
Modified Routh and the Modified Jury table
respectively. Positivity of elements of both tables is
tested by Sign-decomposition.

The traditional tool for robust stability analysis
consists in using Zero Exclusion Principle. This
principle makes it possible to replace
multidimensional problem in the coefficient space by
two-dimensional analysis of the value set in the
complex plane. Surprisingly simple result on robust
stability of multilinear interval polynomials based on
this principle is given by the Mapping Theorem [7].
This theorem states that the value set of such a family
of polynomials evaluated in an arbitrary point in the
complex plane is contained in the convex hull of the
value set of vertices polynomials. This theorem gives
only sufficient condition for robust stability but an
arbitrary stability region can be chosen. However the
Mapping Theorem cannot be used for polynomic
parameter dependency.

A method using Zero Exclusion Principle is
described in [8]. This method combines Bernstein
algorithm and the analysis of the value set to state a
necessary and sufficient condition for Hurwitz robust
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stability of a polynomial with polynomic structure of
its coefficients.

An efficient method analyzing robust stability of
polynomials with uncertain coefficients being
polynomic functions of the second order of interval
parameters is presented in this paper. A sufficient
condition is derived by overbounding the
(nonconvex) value set by a convex hull for an
arbitrary point in the complex plane lying on the
boundary of chosen stability region and by
determination whether zero is excluded or included.
This test can be done either in computational or in
graphical way. Profitting from appropriate properties
of presented procedure the former is recommended
especially for high number of parameters. This
method can be used in principle for polynomials
where the coefficients are polynomic functions of
higher order than two but in such cases numerical
algorithms for determining the zero points of
multivariate polynomic functions have to be used and
whole procedure becomes very complicated.

The main advantage of presented method consists in
its high computational efficiency which is shown by
comparison with the method derived in [2].

Even if the presented method can be used in practice
for stability analysis of polynomials with coefficients
being polynomic functions of the second order only,
it has great importance for example for stability
analysis of Takagi-Sugeno fuzzy systems.

2. PRELIMINARIES

First of all it is necessary to introduce the concept of
multilinear and polynomic interval polynomials.

Let us consider a family of polynomials whose

coefficients are polynomic functions of lQ ℜ⊂∈q
in the form:
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where s is not necessarily the Laplace operator and

[ ]
[ ] liqqq

qqq

iii

T
l

,,1      ,

21

�

�

=∈

=
+−

q
(2)

is an interval (vector) parameter.
Let us suppose that each coefficient ck(q) can be
written as
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Then the polynomial P(s,q) is referred to as a
polynomic interval polynomial. For m=1 for all
k=0,...,n (cj(q) are polynomic functions of the second
order) the polynomial P(s,q) is said to be a
polynomic interval polynomial of the second order
(of degree n). If ck(q) for all k=0,...,n are multilinear
functions (i.e. if for all i=1,...,l ck(q) are linear
functions of qi when the qr, r≠i are held constant), the
polynomial P(s,q) is said to be a multilinear interval
polynomial.

In the rest of this paper if A∈ℜl,l  is a (l×l) matrix
then Aij denotes the element of A lying on the
position (i,j), if b∈ℜl is a vector then bi denotes the
element of b lying on the i-th position.

3. ALGORITHM

Let
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be a polynomic interval polynomial of the second
order. To avoid dropping in degree, cn(q)≠0 for all
q∈Q is assumed. Then each coefficient ck(q) can be
expressed as
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Presented method deals with the value set of P(s,q)

evaluated at some complex point 0
00

ψjesss == .

The image P(s0,q) can be expressed as
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where ( ) ( )qq 00
ImRe  , ss cc  are polynomic functions of the

second order and are given by
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Our task is to determine the minimum and maximum

distances ( ) ( )ϕϕ 00
maxmin  , ss hh  of the point [0,j0] from the

set P(s0,q) in the complex plane in some direction ϕ,
ϕ∈[0,π] respectively (see Fig.1).

Remark 1: It has to be noted that the distance is
measured from the point [0,j0] in the direction ϕ,
ϕ∈[0,π]. It means that the distance can be negative
(in such a case the distance is measured from the
point [0,j0] in the direction π+ϕ).
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Fig. 1 Minimum and maximum distance of P(s0,q) in
a direction ϕ

It can be easily shown that finding the minimum and
maximum distances is equivalent to finding the
minimum and maximum value of the function

( )q0scϕ , q∈Q
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From (9) follows that ( )q0scϕ  is a polynomic function

of the second order of q. It means that ( )q0scϕ  is

bounded and ( ) ( )ϕϕ 00
maxmin  , ss hh  are finite.

The problem of finding extreme values of ( )q0scϕ  on

a box Q is a task of mathematical programming.
General formulation of a task of mathematical
programming is as follows.

Let us consider the problem of minimization of a
function f0(x), where the constraints are given in the
form of inequalities

( ){ }mjbff jj ,,1,)(min 0 �=≤xx (9)

Necessary conditions of extreme values can be
determined by the following theorem.

Definition 1: Let a point 0x satisfy all constraints of
(9). Let J(0x) be the set of indices, for which the
corresponding constraints are active (e.g. inequality
changes to equality):

( ) ( ){ }jj bfjJ == xx 00 (10)

The point 0x is said to be a regular point of the set X
given by constraints in (10), if the gradients

)( x0
jf∇ are linearly independent ∀j∈J(0x).

Theorem 1 [6] Let *x be a regular point of a set X
and a function f0(x) has in some neighbourhood of *x
continuous first partial derivatives. If the function
f0(x) has in the point *x the local minimum on X, then
there exists a (Lagrange) vector *λ∈ℜm that
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hold ∀j=1,...,m.

Remark 2: For maximization of a function f0(x) the

last inequality of (11) is replaced by 0* ≤jλ .

To apply Theorem 1 for solving our problem it is
necessary to check whether the preconditions of this

theorem are satisfied. As ( )q0scϕ  is a polynomic

function of the second order, its first partial
derivatives are continuous ∀q∈Q and the second
assumption is satisfied. In our case
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Then
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where e(i)=[0,...,0,1,0,...,0]T with 1 on the i-th
position. Because for some q∈Q only even or only
odd constraints (or none of them) can be active

liqq ii ,,1 )( �=∀< +− , ( )qjf∇  are linearly

independent ∀q∈Q, j∈J(q). It means that all points
q∈Q are regular ones.

According to Theorem 1 it is necessary to determine

the gradient ( )q0scϕ∇ . From (8)
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follows from (5)
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From (7)
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After substituting (12), (13), (14), (15), (16) and (17)
to (11) the following system of equations and
inequalities is obtained:
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The important fact is that the equation (18-i) is linear.
The computational procedure of solving (18) runs as
follows. At first all solutions of (18-ii) (nonlinear) are
determined. This corresponds to determining of all
the parts of the box Q – the interior and all the parts
of the boundary of Q (all manifolds with the
dimension i, i=0,...,l-1 containing only points on the
boundary of Q). Each solution of (18-ii) corresponds
to 2l linear equations (from (18-ii) it follows that at
least one of λ2i -1, λ2i, ∀i=1,...,l has to equal zero; if
λ2i -1=0 then either λ2i=0 or qi=-qi

-, if λ2i=0 then either
λ2i -1=0 or qi=qi

+ ∀i=1,...,l).  These 2l equations
together with l equations of (18-i) form 3l linearly
independent linear equations for 3l unknown
variables. It means that there exists a unique solution
(*λ,*q) (for each solution of (18-ii)) of (18). As the
number of manifolds with the dimension i, i=0,...,l-1
containing only points on the boundary of Q is
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In the next step it is checked whether 0)(* ≥t
jλ
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snt ,,1�= . Denote by Tmin (Tmax) the set of t for
which these conditions are satisfied.
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The minimum and maximum distances indicate that
the set P(s0,q) lies in the complex plane in the space

between the lines ϕ,
min

0sp  and ϕ,
max

0sp :

( ) ( ) ( ) ( )
( )

( ) ( ) ( ) ( )
( )ϕ

ϕ
ϕ

ϕ
ϕ

ϕ

ϕ

ϕ

sintan
1

  :

sintan

1
  :

0
000

0
000

max
ReIm

,
max

min
ReIm

,
min

s
sss

s
sss

h
ccp

h
ccp

+−=

+−=

qq

qq
(22)

To determine a convex hull overbounding the set
P(s0,q) q∈Q, the procedure described above is
performed for a set of ϕr∈Φ,
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(it means that the system (18) is solved for a set of
ϕ). The higher the number R is, the "more tight"
convex hull is obtained.

In the next step the set VΦ(s0) of intersections of the
following lines is determined:
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where insec(px,py) denotes the intersection of the
lines px and py. (see Fig. 2)

The coordinates of intersections are given by
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Now the key theorem of this paper can be stated.

Theorem 2: Denote by Conv A the convex hull of a
set A. Then
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Fig.2 Convex hull VΦ(s0) for R=5

Using Theorem 2 the Zero Exclusion Principle gives
a necessary condition for stability of a family of
polynomials (1).

Theorem 3 (Zero Exclusion Principle): The family
of polynomials (1) of constant degree containing at
least one stable polynomial is robustly stable with
respect to S if

( ) SssVConv ∂∈∉ Φ 00  allfor     0 (27)

where ∂S denotes the boundary of S.

The zero exclusion test can be performed in both
graphical and computational way. The latter is
recommended as described below because of saving
a lot of time.

Theorem 4 (Zero inclusion test): 0∈Conv VΦ(s0) if
and only if

( ) ( ) Φ∈≥≤ ϕϕϕ  allfor   0  ,0 00
maxmin
ss hh (28)

Theorem 4 makes it possible to decide about zero
exclusion or inclusion without computing the set of
intersections VΦ(s0).

To demonstrate the efficiency the computational
times (on Pentium II 400MHz/64MB) of presented
method for testing Schur stability and the method
based on Sign-decomposition [2] are compared in
Table 1.

The values in the upper and lower rows correspond to
the presented method and the method based on Sign-
decomposition respectively. The values the for
presented algorithm have been found out for R=6 and
a set of 30 points s0 regularly distributed around the
upper unit semicircle in the complex plane. It is
necessary to note that the computational times for on



Table 1 Comparison of computational times (in
seconds)

n l 2 3 5 7 10
2 3 22 130 5002
0,1 10 600 103 105

2,5 7 35 180 8005
0,2 55 1000 104 -
6 15 80 350 180010
0,5 260 104 - -
15 35 180 650 350020
2 1200 - - -

Sign-decomposition based method vary in a big
interval (in contrast to the presented algorithm). In
Table 1 the highest values are shown.

4. EXAMPLE

Let a family of discrete polynomials be given by
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The question is whether this family of polynomials is
Schur stable.

In this case the stability region S is the unit circle,
therefore the boundary ∂S=ejω, ω∈[0,2π]. The Zero
Exclusion Principle will be tested graphically. Due to
symmetricity it is sufficient to plot the value set only
for s0=ejω, ω∈[0,π]. The corresponding plot of the
convex hulls of value sets is shown on Fig.3 (R=6).
As 0∉VΦ(s0) for all s0∈∂S, the polynomial P(z,q) is
robustly Schur stable.

5. CONCLUSION

An algorithm for checking robust stability of a family
of polynomials with coefficient being polynomic
functions of the second order of an interval parameter
has been presented. A sufficient condition has been
derived by determination of a convex hull of the
value set. For checking whether zero is excluded or
included both computational and graphical way have
been used. The former is recommended because of
saving a lot of computational work. The main
advantage of this algorithm compared to general
methods for an arbitrary order of polynomic function
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Fig. 3 Plot of the convex hulls of the value sets

consists in the high efficiency which is demonstrated
by comparison with the method based on Sign-
decomposition. Moreover an arbitrary stability region
can be chosen. The presented method has been
illustrated on an easy example.
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