
ALGORITHMS FOR COMPUTING FUZZY MODEL
NETWORK SYSTEMS

GANCHO VACHKOV♣ ,  TOSHIO FUKUDA♦

♣Department of Micro System Engineering, Nagoya University, Furo-cho 1, Chikusa-ku,
Nagoya 464-8603, Japan
E-mail: vachkov@mein.nagoya-u.ac.jp
♦ Center for Cooperative Research in Advanced Science and Technology, Nagoya
University, Furo-cho 1, Chikusa-ku, Nagoya 464-8603, Japan
E-mail: fukuda@mein.nagoya-u.ac.jp

Abstract: In this paper several algorithms for computing the specially proposed Fuzzy
Model Network Systems (FMNS) are presented and analyzed. FMNS are complex
structures consisting of a number of interrelated simple fuzzy model units and linear
junction units (modules). The main computation problem in FMNS is to calculate a part or
the entire set of the unmeasured variables in the system with a predetermined structure and
known set of measured variables. The computational algorithms presented in this paper
include: 1) non-iterative computation of a feedforward type of FMNS; 2) iterative inverse
calculation of one-dimensional fuzzy model units and 3) iterative calculation of closed loop
(cyclic type) FMNS by use of a specially proposed fuzzy iteration block. All the proposed
algorithms are explained and illustrated on numerical examples with comments about their
practical application to industrial systems and plants.
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1. INTRODUCTION

Many industrial processes or mechanical systems can
be considered from a system viewpoint as complex
systems with large number of input, output and
intermediate variables. Complexity of such systems
is represented not only by their size, but also by the
structure and the type of interrelations between the
variables. Let a system has input, output and
intermediate variables represented by the vectors X,
Y and V, respectively and a structure given by the
matrix S.  In the classical black box calculation and
identification approach only the inputs X and outputs
Y are taken into account with the structure S and the
intermediate variables V and relationship being
neglected.

Unlike the black box approach, the modular system
approach takes into account the internal structure S
and the intermediate variables V of the system. Here
a number of smaller models of typical system
elements (units, modules) are used, each of them
representing the relationship between smaller number

of system variables. They are called system modules
that use one type of a model with different settings of
its parameters for the different system units.

The modular approach is very useful in many
practical cases. For example these are the cases when
the available set of measurable variables includes
only certain part of the variables in X, Y and V and
the system structure S is known. Fault diagnosis
problems [1,4] are typical cases of a system
calculation under partial measured information. Here
the computation task is to find the possible system
inputs by using part of the measured outputs and/or
intermediate variables.

Fuzzy models can be successfully used as system
modules in the modular system approach. Especially
the Takagi-Sugeno (TS) fuzzy models [2,3,7] are
convenient modeling tools since they are considered
as universal approximators [3] of wide class of
nonlinear relationships. In this paper simplified one-
dimensional TS fuzzy models as well as linear
junctions are used as main units in the specially



proposed Fuzzy Model Network Systems (FMNS).
Then some computational algorithms for FMNS with
feedforward and loop structure are proposed and
analysed.

2. STATEMENT OF THE PROBLEM

We assume further that the Fuzzy Model Network
System under investigation is a complex
interconnected structure between M process
variables, represented by N one-dimensional non-
linear fuzzy model units and P junction points
(algebraic operator units). All M variables of the
system can be classified into the following three
vectors X, Y and V of the input, output and
intermediate variables, respectively. It is also
assumed that all N fuzzy model units have been
identified to a desired level of accuracy representing
in a plausible way the nonlinear relations between a
certain pairs of system variables. In order to enable
any kind of connection between the system variables
we assume that each junction point unit and each
fuzzy model have both input and output gain
coefficients, as follows:
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for the junction point unit with n inputs as shown in
Fig. 1. and

,).(. KyxFKxy =                                              (2)
for the fuzzy model unit, as shown in Fig. 2.  F(x) is
a nonlinear fuzzy mapping of the one-dimensional
fuzzy model, as described in the sequel.
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Further we assume that all the measured variables are
contained in the vector T with

VYXT ⊂                                                (3’)
In the general case some of the system variables
could be computed (retrieved) by using the
information of the measured variables in T and the
system units (models). Such variables form the

vector Z of the so called computable variables.
Finally if there are system variables that cannot be
retrieved by any computation scheme, they form the
vector W of the non-computable  (non-retrievable)
variables.  The following relationship exists between
the above defined vectors:

WZTVYX =                                (3’’)
Now the computation problem of a Fuzzy Model
Network System can be formulated is as follows:
Given a FMNS with structure S and vector T of
measured variables, find a maximal vector Z of the
computed variables, i.e.   Z→  max  or  W→  min.

Additionally a degree of computability can be
formulated as a ratio of the number of computed
variables over the total number of the unmeasured
variables, that is:
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3. ALGORITHM FOR COMPUTING
FEEDFORWARD SUBSYSTEMS

The standard computing approach used in any type of
complex systems, is based on a preliminary
decomposition of the overall system structure into a
number of sub-systems from two different types,
namely: feedforward type (non-cyclic) subsystems
and cyclic type (loop subsystems) as in [4,5]. Then
the subsystems from the feedforward type are
computed in a non-iterative way provided that the
computation order of the units is preliminary
analyzed as a certain sequence of units.

This standard computing approach assumes that all
input variables are measured and all output and
intermediate variables are to be computed. However
in our more common statement of the problem the
measured variables T could be located anywhere in
the system structure.

An example of a feedforward subsystem with two
measured variables (the bold circles •  ) is shown in
Fig. 3.
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Fig. 3. Example of feedforward type of network
system

The general computing algorithm of a feedforward
subsystem, shown below is based on the concept of
forward and backward (reverse) computability of the
units as follows:



A system unit is called to be in a status of forward
computable unit if its output is not measured and all
of its inputs are measured or have been computed in
previous computation steps.

Similarly, a system unit is in a status of backward
computable unit if it has only one not measured input
and all other inputs, including the output have been
measured or computed in previous steps.

The proposed computing algorithm of the feed-
forward system consists of the following main steps:

1. Search for existence of a forward computable
unit in the system structure.
a) If “Yes”, perform a forward calculation of the
unit. Mark the new computed output stream
(variable) with ○.  Go to Step 1.
b) If “No”, Go to Step 2.

2. Search for existence of a backward computable
unit.

a) If “Yes”, perform an inverse calculation of this
unit. Mark the computed output by ∆. Go to
Step 1.

b) If “No” Stop.]

Table 1. shows the performance results of this
algorithm for 4 different examples of initial measured
variables. The solution of Example 1 is also
displayed graphically on the structure in Fig. 3. It is
seen that Examples 1,2 and 3 correspond to a fully
computable system (d = 1), while Example 4 has a
solution with 4 non-computable variables ( ) with
degree of computability: d = 4/11 = 0.364 < 1.

     Table 1. Computability of the System in Fig. 5.
No Stream Ex. 1 Ex. 2 Ex. 3 Ex. 4
1 0 - 1 ● ● ∆ ∆
2 0 - 2 ● ∆ ∆ 
3 1 - 3 ❍ ❍ ∆ ●

4 1 - 4 ❍ ❍ ∆ ●

5 1 - 6 ❍ ❍ ∆ ●

6 2 - 6 ❍ ∆ ∆ 
7 3 - 5 ❍ ❍ ❍ ❍

8 4 - 6 ❍ ❍ ● ●

9 4 - 8 ❍ ❍ ● ●

10 5 - 7 ❍ ❍ ❍ ❍

11 6 – 10 ❍ ● ● 
12 7 - 9 ❍ ❍ ● ❍

13 8 – 9 ❍ ❍ ❍ ❍

14 8 – 10 ❍ ❍ ❍ ❍

15 10 - 0 ❍ ❍ ❍ 
16 11 - 0 ❍ ❍ ❍ ❍

4. FORWARD CALCULATION OF THE
FUZZY MODEL UNIT

As mentioned in the previous sections, a one-
dimensional TS fuzzy model is used for the fuzzy

unit in Fig. 1. as a non-linear approximator [3]. It
possesses large flexibility in a sense that the fuzzy
model parameters can be adjusted for any kind of
assumed relationship between a given pair of system
variables. The one-dimensional TS fuzzy model
consisting of L fuzzy rules has the following format
[2,3,7]:

LixppyTHENAisxIF iiii ,...,2,1,)( 10 =+=     (5)

where Ai is a fuzzy set with Gaussian type
membership function:
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 The tuning parameters of this fuzzy model are:
centers ci and spreads σi of the membership functions
as well as the consequence parameters: p0i and p1i,  i
= 1,2,…,L .

The straightforward (non-iterative) calculation of the
above fuzzy model with a weighted average method
for defuzzification is written as follows:
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5. ITERATIVE INVERSE CALCULATION OF
THE FUZZY MODEL UNIT

The proposed general computing algorithm in
Section 3 is based on the ability of inverse
calculation of the fuzzy model unit. The problem of
inversion of the fuzzy models has been studied from
analytical and numerical calculation viewpoint in
[2,6]. It is an iterative procedure usually based on the
observer concept as in [6] and by using different
optimization techniques such as Newton-Gauss
iteration scheme [2,6] or Levenberg-Marquardt
algorithm as in [2], steepest descent method and
possibly others.

Fig. 4. shows in a graphical way the correct inversion
problem in the case of monotonously increasing
function )( xfy = . In Fig. 5.  the problem of
ambiguity of the inverse solution is graphically
demonstrated. Therefore in order to get a reliable and
meaningful solution, the inversion procedure should
be constrained in a preliminary fixed feasible
boundaries.

In this paper we accept the observer concept of
iterative inversion, as shown in Fig. 6. As easily
noticed, this is an iterative procedure of gradually
adjusting the unknown input until the output of the
process model matches the real (known) output. Here
we use an original fuzzy iteration control scheme as



discussed further.
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The classical and simple Gauss-Newton iteration
scheme used for fuzzy model inversion in [2,6]
updates the input value )(

^
kx  with an increment

)(kdu  according to the error )(ke  and the function
derivative )(kdf , as follows:
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where k  is the current iteration number and 1<η  is
a predetermined learning rate. In more concrete form
the Gauss-Newton iteration scheme could be written
as:

)]([

)()()1(
' kxf

kyykxkx ∧

∧
∧∧ −+=+ η                           (9)

For the one-dimensional SISO type fuzzy model and
consequences of the fuzzy rules taken as singletons

oii py = , the derivative )(kdf can be calculated
analytically as shown in [2] as:
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where vi are the normalized firing levels:
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and )(xfl  is the fuzzified value of the input x by the
l-th Gaussian membership function as in (6).

It is easy to realize from (8) and (9) that the Gauss-
Newton iteration scheme works well and would lead
to a fast convergence if the function
derivative )(kdf  as well as the approximation error

)(ke  are different from zero. Otherwise a quite slow
learning or even undefined calculation value may
easily occur and break the learning process. This
calculation problem can be realized by the graphical
representation of the control surface of the Gauss-
Newton iteration scheme shown in Fig. 7. Here the
instability of this iteration scheme becomes obvious
in the areas with near zero derivatives.

-1

-0.5

0
0.5

Error 
 e(k)

-1.5
-1

-0.5
0

0.5
1

Derivative 
     df(k)

-8
-6
-4
-2
0
2
4
6
8

Increment
     du(k)

-8
-6
-4
-2
0
2
4
6
8

Increment
    du(k)

        Control surface of the 
Gauss-Newton Iteration Scheme

.
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scheme

6. FUZZY ITERATION CONTROL BLOCK

In order to improve the performance of the Gauss-
Newton iteration scheme, we propose the use of a
fuzzy approach to approximate the original control
surface from Fig. 7. by a respective two-dimensional
fuzzy model.
For the approximation process we used 7 Gaussian
membership functions for each input, namely the
deviation (error) E and the function derivative DF, as
shown in Fig. 8
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The singletons of the fuzzy model have been adjusted
roughly by approximate reasoning and human logic
based on the shape of the original control surface in
Fig. 7. Table 2 shows the Fuzzy Rule base with the
singletons of the fuzzy model.

Table 2. Fuzzy rule base with singletons
PB -3 -2 -1 0 +1 +2 +3
PM -4 -3 -2 0 +2 +3 +4
PS -7 -5 -3 0 +3 +5 +7
ZR -9 -6 -3 0 +3 +6 +9
NS +7 +5 +3 0 -3 -5 -7
NM +4 +3 +2 0 -2 -3 -4
NB +3 +2 +1 0 -1 -2 -3

NB NM NS ZR PS PM PB    e
                                                            df

The result of this kind of “soft” approximation is
shown in Fig. 9.  The control surface there resembles
the original one in Fig. 7., but is much smoother and
does not have disruptions at the zero derivative point.
This fact gives a kind of preliminary confidence for
the principal ability of the fuzzy control block to
operate satisfactory the learning process in a wide
range of derivatives and errors.
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Quite often may happen that the function derivative
)(kdf cannot be calculated analytically by use of

(10) and (11). These are cases when the iteration
scheme is used for other more complicated and
nonlinear objects than just a single-input fuzzy model
inversion.  Then the function derivative )(kdf can
be estimated numerically, by the following equations:
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The change-of-error )(kde is evaluated as:
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Then the function derivative will be:
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In order to make a kind of standardization of the
performance of the fuzzy iteration block, the
following normalization procedures with saturation
are introduced for the error )(ke , function
derivative )(kdf  and the increment (control action)

)(kdu :
1)(1 +≥≤− kE                                            (16)
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Here SFe, SFdf and SFdu are predetermined scaling
factors for the error, function derivative and the
control action (increment) of the fuzzy iteration
block. They are the tuning parameters of the whole
fuzzy iteration scheme. Actually they change the
saturation level of the respective variable thus
changing the performance of the iteration block.
Therefore the careful selection of SFe, SFdf and
SFdu is very important for the total iteration and
computation process.
The final iterative inversion scheme based on the
proposed fuzzy iteration block can be summarized as
follows:
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             (22)

where )(kDU is the output of the fuzzy model from
Table 2, and Fig. 8. that produces the smooth control
surface shown in Fig. 9.:

])(),([)( kDFkEFkDU =              (23)

Extensive simulation experiments have been carried
out to compare the performance the Newton Gauss
iteration block and the proposed Fuzzy Iteration
Control block. In the case of inversion of a single
one-dimensional fuzzy model unit it has been found
that the fuzzy iteration control block is more



sensitive to the tuning of the scaling factor for the
output SFdu than to the tuning of the other two
scaling factors: SFe and SFdf.  This block also
exhibits some degree of robustness as shown in Fig.
11. where even with inaccurate tuning, (SFdu =
0.35), it does not oscillate significantly. The reason is
in the implemented fuzzy logic similar to the
switching control type fuzzy controller that puts
upper and lower levels on the oscillation process..
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7. ITERATIVE COMPUTATION OF CLOSED
LOOP  SUBSYSTEMS

The fuzzy model network structure may have also a
cyclic type (closed loop) subsystems, as the one
shown in Fig. 11. Generally the computational
scheme of such systems requires iterative
calculations where a set of so called “torn”
(disconnected) streams [4,5] is used to control the
convergence of the iteration process, as the “torn”
stream 5 in Fig. 11.
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Fig. 11. A closed loop subsystem with one “torn”
stream: 5.

Then the computational strategy of this system
consists of a repetitive calculation of all the units in a
specified computation sequence, for example: ( 3 – 7
– 6 – 8 – 1 – 2 – 4 – 5 – 9 ) for the system in Fig. 11.
Fig. 12. shows some different possible cases of
nonlinear relationships during the iteration process
until convergence with gain G=1 is achieved.
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Fig. 12. Nonlinear relationship between the input and
the gain of the closed loop system.

Usually the non-linearity in the iteration loop here
cannot be expressed analytically and numerical
evaluation of the derivatives should be used.
Therefore the proposed above fuzzy control iteration
block could be an appropriate tool for efficient
conversion in computing the closed loop systems
since it does not require analytical calculation of the
derivative and relies on its numerical evaluation.
Some preliminary numerical simulation carried out
on the system in Fig. 11. have snown that the fuzzy
iteration block reaches convergence faster than the
widely used simple iteration (substitution) method.
Still the problem of proper tuning of the scaling
factors of this block needs to be further analysed.

8. CONCLUSIONS

In this paper some computational algorithms for
feedforward and closed loop fuzzy model network
systems FMNS have been proposed and analysed.
The standard structure of such systems consists of
two types of system units: one dimensional fuzzy
models and linear junction points that are able to
represent arbitrary relationships between any system
variables.

A special fuzzy iteration block is proposed to carry
out the iteration process in the fuzzy model inversion
as well as in the loop system calculation. This block
exhibits a kind of robustness and works with
numerical evaluated derivatives. By use of the
proposed computational algorithms maximum degree
of computability of the total system can be achieved.
Future research is aimed at a feasible algorithm of
learning all the model units in the FMNS.
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