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Abstract In this paper we will present some procedures for the analytic synthesis, by

means of feedforward and feedback standard regulators, of some SISO control systems when

the order of the system itself doesn't go beyond the third.

These procedures utilize normalized diagrams obtained in [12] which supply the relations

between the parameters of the above systems and their outputs to canonical inputs. Conse-

quently, these procedures supply, for each of the above systems, proper normalized dia-

grams which, therefore, can be utilized whatever the numerical values of the parameters are.
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1. INTRODUCTION

As we all know, in cases in which, in order to obtain

a required behavior of a SISO linear stationary sys-

tem, it is possible to assign the system poles with-

out having to vary or add on zeros, it is sufficient to

use a suitable algebraic feedback of the states. On the

contrary, when it is necessary to vary or add on ze-

ros, or when not all states are available and for some

reason it is not convenient to utilize an observer, the

synthesis can be made by means of the so-called reg-
ulators (standard regulators or compensating net-
works); with these systems, placed in the feedforward

or in the feedback loop, it is possible to assign not

only some of the required poles, but also some of the

required zeros.

As we also know, standard regulators are algebraic or

dynamic systems of the first or second order and their

output is proportional to the input, or to the deriva-

tive (or to the integral) of the input itself, or to a lin-

ear combination of these functions.

As to the design method of standard regulators, if the

feedback system is one of the types as in [8], that is

of the systems for which it is possible to determine

the relations between the system parameters and the

parameters of the system outputs to canonical inputs,

we can determine the regulator parameters analyti-

cally by imposing that the parameters of the overall

system lead to (at least approximately) the required

behavior. Moreover, it is possible to supply normal-

ized diagrams of the obtained relations so that it is

very easy to utilize this design procedures.

In the following paragraphs we will examine the ana-

lytic synthesis procedures of feedforward and feedback

standard regulators. As to the feedforward ones, we

will examine proportional derivative (PD) regulators

and proportional integral (PI) regulators while, as to

the feedback regulators, we will examine PD and the

so called hybrid regulators which are made up of a

proportional regulator and of a PD. In order to sim-

plify, we will only examine systems with algebraic

sensors and, moreover, the plant transfer function

Gs(s) has no zeros, but only real poles.

2. FEEDFORWARD REGULATORS

2.1 Design procedures by means of PD regulators
In this paragraph we will present some analytic de-

sign procedures of PD standard regulators in the situ-

ation in which the system plant is of the second (or

third) order, type 1. As to the design specifics, we

will assume that the maximum overshoot, the rise

time and the settling time are given, while the regu-

lator's transfer function, as we all know, is given by:

 Gr(s) = Kp(1 + Td s) (1)

SECOND ORDER, TYPE 1 PLANT

If the plant transfer function Gs(s) is of the second

order, type 1, considering (1), the feedforward-loop

transfer function is:

Gr(s)Gs(s) =  
Ks 

Kp 
(1 + Td s)

s(1 + τs)
 (2)

where Ks and τ  are, respectively, the gain constant

and the time constant of Gs(s). Consequently, nam-

ing Kt the sensor constant, the feedback system

transfer function is given by:



–
G(s)  =  

1

Kt
  

K
τ  (1 + Td s)

s2
 + 

1 + KTd 

τ  s + 
K
τ

 (3)

where:

K = KsKpKt (4)

As we can see, leaving aside 1/Kt, (3) is a second

order polynomial function with one zero and we can

write it in the form:

–
G(s)  =  

ω2
n(1 + 

s 

zδωn
)

s2
 + 2δωns + ω2

n
 (5)

assuming:

K
τ    = ω2

n 2δωn =  
1 + KTd 

τ   

(5')

1

Td 
   = zδωn

Since K and Td are the only unknown variables of

the three equations (5'), generally, it is not possible

to solve these equations for any tern of values of the

parameters z, δ and ωn; that means it is not possible

to assign arbitrarily the three system parameters (its

three poles) properly assuming K and Td. Therefore,

we will name admissible terns the terns of z, δ and

ωn values in correspondence of which, not only ωn
is positive and 0 ≤ δ ≤ 1, but also it is possible to

obtain values of the regulator parameters K and Td
satisfying equations (5').

In order to determine the admissible terns of δ, ωn
and z values, it is better to rewrite the equations (5')

in a proper form; in particular, assuming:

T = ωn  τ (6)

we obtain:

K = ωnT

(7)

Td
τ  

   =  
2δT – 1

T2
 z =  

T
δ (2δT – 1)
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On the other hand, if we suppose z to be positive, it

comes out:

T >  
1

2δ (8)

and, therefore, as could be easily obtained from the

first two equations in (7), also K and Td are positive.

Considering (8), figure 1 represents the graphs of the

last equation in (7).

We may sum up by noting that if, as already men-

tioned, the design specifics are the rise time ts, the

settling time ta and the maximum overshoot S, in

order to determine the admissible terns which satisfy

them, we can proceed as follows:

– by utilizing the graphs of the figures represented

in the Appendix of [12] as to the second order

systems with one zero, we can determine the

couples of δ and z values for which we can obtain

the desired maximum overshoot

– in correspondence with every couple δ and z ob-

tained, from the graphs of figure 1, we can obtain

the T values (and, therefore the ωn ones)

– by utilizing the graphs of the figures of the

Appendix mentioned above, we can choose the

admissible tern which approximates in the best

way the desired ts and ta values

– in correspondence with the chosen tern, from the

first and the fourth equation in (5) we can obtain

the Td and K values; lastly, from equation (4) we

can obtain the Kp value.

EXAMPLE

On the basis of a unitary feedback system whose

plant has a transfer function given by:

Gs(s) =  
1

s(1 + s)
 

Table1

S = 20%

δ z ωn
[s

–1
]

ta [s] ta [s] Td Kp

0,9 0,57 20 0,05 0,25

0,8 0,75 14 0,06 0,3

0,7 1,05 12 0,07 0,4

0,6 1,7 7 0,1 0,9

0,56 2,3 3,5 0,23 1,7 0,23 13,5

0,5 3,5 2,3 0,43 2,6
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we want to achieve a system design, by means of a

PD regulator, that will make the system output to a

unit step input present a rise time ts = 0,2 s, a set-

tling time ta = 2 s and a maximum overshoot S =

20%.

By applying the above mentioned design procedure,

we can write table 1.

As could be easily verified, a good approximation of

the desired specifics is given by Kp = 13,5 and Td =

0,23.

Please note that the ts, ta and S values present in the

table correspond, approximately, to the ones result-

ing from the system output to a unit step input

shown in figure 2. In the same figure it is also shown

that a decrease of the regulator time constant entails

an increase of the maximum overshoot without a

substantial variation of the rise time.   

THIRD ORDER, TYPE 1 PLANT

If the plant transfer function Gs(s) is of the third

order, type 1, considering (1), the feedforward-loop

transfer function is:

Gr(s)Gs(s) =  
Ks 

Kp 
(1 + Td s)

s(1 + τ1s)(1 + τ2s)
 (9)

where Ks,τ1 and τ2 are, respectively, the gain con-

stant and the time constants of Gs(s).

 Consequently, naming Kt the sensor constant, the

feedback system transfer function is given by:

–
G(s)  =  

1

Kt
  

KTd 

τ1τ2
 s + 

K
τ1τ2

s3
 + 

τ1 + τ2

τ1τ2
 s2

 +  
1 + KTd

τ1τ2
 s + 

K
τ1τ2

 (10)

As we can see, leaving aside 1/Kt, (10) is a third

order polynomial function with one zero and we can

write it in the form:

–
G(s)  = 

kω2

ns + ω3

nk zδ

s3 
+ (kz + 2) δωn s2

 + (1 + 2δ2kz)ω2

n s + ω3

n kzδ
 

(11)

assuming:

K
τ1τ2

   = ω3
n  kzδ

KTd
τ1τ2

   = kω2
n 

(11')

τ1 + τ2
τ1τ2

   = (kz + 2) δωn
1 + KTd

τ1τ2
   = (1 + 2δ2kz)ω2

n  

Since K and Td, are the only unknown variables of

the four equations (11'), generally, it is not possible

to solve these equations for any values of the four pa-

rameters k, z, δ and ωn; that means it is not possible

to assign arbitrarily the four system parameters (its

three poles and the zero) properly assuming K and

Td. Therefore, we will name admissible four values
the values of the four parameters k, z, δ and ωn in

correspondence of which, not only ωn is positive, 0

≤ δ ≤ 1, k and z must be of the same sign to

guarantee the system stability, but it is also possible

to obtain values of the regulator parameters K and Td
satisfying equations (11').
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In order to determine the admissible four values of

the parameters k, z, δ and ωn, it is better to rewrite

equations (11') in a proper form; in particular, sup-

posing τ1 ≥ τ2 and assuming:

τ  = τ1 r = τ /τ2 T = τωn  (12)

γ =  
r + 1

kz + 2
 β = 1 + k (2δ2z – 1) (13)

we obtain:

K =  
δ k zT3

τ  r
 Td =  

τ
δ zT

 

(14)

γ = δT r = β T2

On the other hand, from (13) we get:

z =  
r + 1 – 2γ

γ (1 – β ) + 2δ2 
(r + 1 – 2γ)

 

(15)



k =  
γ (1 – β ) + 2δ2 

(r + 1 – 2γ)

γ  

If we suppose z, k to be positive, a sufficient condi-

tion to obtain this, assuming r ≥ 1, is:

β ≤ 1 0 ≤ γ ≤ (r + 1)/2 (16)

Considering the first equation in (16), in figures 3

and 4 are shown the graphs of the two last equations

in (14).

In conclusion, if as already mentioned, the design

specifics are rise time ts, settling time ta and maxi-

mum overshoot S, in order to determine the admis-

sible four values which satisfy them we can proceed

as follows:

– from figure 3 we can determine the couples of β
and T values (and therefore the ωn ones) corre-

sponding to the given r value

– in correspondence with every T value obtained,

from figure 4 we can determine the relative cou-

ples of γ and δ values; this way, we obtain a set

of four γ, δ, β and T values split up into subsets

with the same values as β and T
– in correspondence with every combination of four

values obtained, we can determine, by utilizing

relations (15) the relative combinations of the

four parameters k, δ, z and ωn
– having determined the admissible four values in

this way, by utilizing the approximate results

shown in the Appendix of [12] as to third order

systems with one zero, we can obtain for each of

them the relative ts, ta and S values and we can

choose, among the admissible four values, the

one which approximates the desired specifics in

the best way

– in correspondence of the four values chosen, from

the first two equations in (14) we can determine

the K and Td values; finally, we can obtain the

Kp value from relation (4).
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EXAMPLE

On the basis of a unitary feedback system whose

plant has a transfer function given by:

Gs(s) =  
0,02

s (1 +0,2s)(1+0,1s)
 

we want to achieve a system design, by means of a

PD regulator, that will make the system output to a

unit step input present a settling time ta = 2 s and a

maximum overshoot S = 5%.

Table 2

r= 2

ωn δ z k S [%] ta [s] Td Kp
7 0,9 0,62 0,8

1

0 1

7 0,7 1,02 1,0

5

5 1,5 0,2 258,5

7 0,6 1,4 3,3

6

11 0,8

7 0,5 2 4,5

6

30 1,13

By applying the above mentioned design procedure,

we can write table 2 from which we evince that a

good approximation of the desired specifics is given

by Td = 0,2 and Kp = 258,5.

Figure 5 shows the system output to a unit step in-

put when we choose, as regulator parameters, the

ones obtained above; as could easily be verified, the

maximum overshoot and settling time values are

quite similar to the ones in table 2.
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2.2 Design procedures by means of PI regulators
In this paragraph we will present some analytic de-

sign procedures of PI standard regulators in the case

in which the system's plant Gs(s) is of the second (or

third) order, type 0.

As to the design specifics, we will assume that max-

imum overshoot, rise time and settling time are

given, while the regulator transfer function, as we all

know, is given by:

 Gr(s) = Kp (1 + 
1

Ti s
  ) =  

Kp
Ti s

  (1 + Ti s ) (17)

SECOND ORDER, TYPE 0 PLANT

If the plant transfer function Gs(s) is of the second

order, type 0, considering (17), the feedforward-loop

transfer function is:



Gr(s)Gs(s) =  
KsKp(1 + Ti s)

Ti s(1 + τ1s)(1 + τ2s)
 (18)

where Ks,τ1 and τ2 are, respectively, the constant

gain and the time constants of Gs(s). Consequently,

naming Kt the sensor constant and assuming:

K =  
KsKpKt

Ti
 (19)

the feedback system transfer function is given by:

–
G(s)  =  

1

Kt
  

KTi
τ1τ2

 s + 
K

τ1τ2

s3
 + 

τ1 + τ2
τ1τ2

 s2
 +  

1 + KTi
τ1τ2

 s + 
K

τ1τ2
(20)

 On the other hand, as could be easily seen, equation

(20) is quite similar to (10) and, therefore, we can

determine the Kp and Ti regulator parameters by uti-

lizing the procedure shown in Paragraph 2 and con-

sidering relation (19).

EXAMPLE

On the basis of a unitary feedback system whose

plant has a transfer function given by:

Gs(s) =  
2,85

s (1 +0,022s)(1+0,004s)
 

we want to achieve a system design, by means of a

PI regulator, that will make the system output to a

unit step input present a maximum overshoot S =

20% and a rise time ts = 0,008 s.

As stated above, we can determine the Kp and Ti
regulator parameters by applying the procedure

shown in Paragraph 2 as to the systems of third

order, type 1 plant. Since, from the second equation

in (16) it must be γ ≤ 3,25, we can choose γ = 2 as

a tentative value and, therefore, we can write table 3.

Table 3

γ  = 2

δ ωn
[s

–1
]

z k Kp Ti S
[%]

ts  [s]

0,8 136 0,6 2 1,115 0,014 16 0,009

0,7 140 0,7 1,6 1,025 0,013 18 0,008

0,6 150 0,8 1,5 1,039 0,013 19 0,008

0,5 181 0,9 1,2 1,298 0,011 25 0,007

1

0.8
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Table 3 shows that, choosing Kp = 1,039 and Ti =

0,0133, we can obtain the maximum overshoot S
value and the rise time ts value nearest to the ones

desired.

Figure 6 shows the system output to a unit step in-

put when we choose, as regulator parameters, the

ones obtained above; as can easily be verified, the

maximum overshoot and rise time values are quite

similar to the ones in table 3.

THIRD ORDER, TYPE 0 PLANT

If the plant transfer function Gs(s) is of the third

order, type 0, considering (17), the feedforward-loop

transfer function is:

Gr(s)Gs(s) =  
KsKp(1 + Ti s)

Ti s(1 + τ1s)(1 + τ2s)(1 + τ3s)
 (21)

where Ks,τ1, τ2 and τ3 are, respectively, the gain

constant and the time constants of Gs(s). Since (21)

is a fourth order system, in order to design it analyt-

ically, it is necessary to reduce its dynamic order.

Therefore, assuming:

Ti = τ3 K 'p  =  
Kp
Ti 

 (22)

we can cancel the zero of the regulator and one pole

(generally the fastest) of the plant and, therefore, we

can write (21) in the form:

Gr(s)Gs(s) =  
KsK 'p

s(1 + τ1s)(1 + τ2s)
 (23)

Consequently, naming Kt the sensor constant and

assuming:

K = K 'p KsKt (24)

the feedback system transfer function is given by:

–
G(s)  =  

1

Kt 

  
K/τ1τ2

s3
 + 

τ1 + τ2 

τ1τ2
 s2

 + 
s

τ1τ2
 + 

K
τ1τ2

 (25)

Leaving aside 1/Kt, (25) is a third order polynomial

function and we can write it in the form:



–
G(s)  =

ω3
n pδ

s3 
+ (p + 2) δωn s2

 + (1 + 2δ2p)ω2
n s + ω3

n pδ
 

(26)

 assuming:

K
τ1τ2

  = ω3
n  pδ

τ1 + τ2 

τ1τ2
  = (p + 2) δωn

(26')

1

τ1τ2
  = (1 + 2δ2p)ω2

n  
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In order to determine the admissible terns of δ, ωn
and p values, it is better to rewrite equations (26') in

a proper form; in particular, supposing τ1 ≥ τ2 and

assuming:

τ  = τ1 r = τ /τ2 T = τωn  (27)

we obtain the equations:

Kτ  = T  
1 + T(T – 2δ)

2 δ + T(1 – 4δ2
)
 p =  

1 + T(T – 2δ)

T δ(1 – 2Tδ 
)

 

(28)

r =  
2Tδ + T

2
(1 – 4δ2

)

1 – 2Tδ  
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Supposing p to be positive, from the second equa-

tion in (28) we obtain:

0 < T <  
1

2δ 
 (29)

Consequently, from the first equation in (28), we can

easily see that, in correspondence with the admissi-

ble terns, it always comes out K > 0.

Considering (29), figures 7.a and 7.b show the

graphs of the last two equations in (28); these

graphs, thanks to the use of the normalized variable

T , can be utilized whatever the τ1 and τ2 plant pa-

rameters values are.

In conclusion, in order to determine the admissible

terns, we can proceed as follows:

– in correspondence with the r given value, from

figure 7.a we can determine the couples of δ and

T values (and therefore the ωn ones) and from the

latter, utilizing the graphs in figure 7.b, we can

determine the corresponding p values.
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Having determined the admissible terns of δ, ωn and

p values in this way, if, as already mentioned, the

design specifics are rise time ts, settling time ta and

maximum overshoot S, in order to satisfy the same

specifics, we can proceed as follows:

– in correspondence with each admissible tern,

from the figures represented in the Appendix of

[12] as to the third order systems, we can obtain

the relative ts, ta and S values

– having chosen the tern corresponding to the ts,

ta and S values which satisfy the desired specifics

in the best way, from the first equation in (28)

we can determine the K value and, lastly, from

(22) and (24) the Kp value.

EXAMPLE

On the basis of a unitary feedback system whose

plant has a transfer function given by:

 Gs(s) = 
2,85

(1 + 0,004s)(1 + 0,010s)(1 + 0,022s)
 (30)

we want to achieve a system design, by means of a

PI regulator, that will make the system output to a

unit step input present a maximum overshoot S =

25% and a rise time ts = 0,02 s.



By applying the above mentioned design procedure

as to the systems with third order, type 0 plant, con-

sidering the first equation in (22) we obtain:

Ti = 0,004

Thus, (23) comes out:

Gs(s)Gr(s) =  
2,85K'p

s(1 + 0,01s)(1 + 0,022s)
 (31)

We can then write table 4 from which we evince that

a good approximation of the desired specifics is

given by Kp = 0,53.

Figure 8 shows the system output to a unit step in-

put when we choose the regulator parameters as the

ones obtained above; as could easily be verified, the

maximum overshoot and rise time values are quite

similar to the ones in table 4.

Table 4

δ ωn [s
–1

] p S [%] ts [s] Kp

0,5 60 6,2 15

0,4 90 8,5 25 0,021 0,53

0,3 75 9 35

y(t)

t [       ]–210

0 2 4 6 8 10 12 14
0

0,2

1

0,6

1,2

16 18 20

0,4

0,8

Fig.8

3  FEEDBACK REGULATORS

3.1 Design procedures by means of PD regulators
In this paragraph we will present an analytic design

procedure of PD standard regulators whose transfer

function, as already mentioned, is given by relation

(1).

As to the design specifics, we will assume that the

maximum overshoot, the rise time and the settling

time are given and, moreover, we will assume the

plant transfer function Gs(s) is of the third order, type

1. Consequently we can write the plant transfer func-

tion in the form:

Gs(s) =  
Ks

s(1 + τ1s)(1 + τ2s)
 (32)

where Ks, τ1 and τ2 are, respectively, the gain con-

stant and the time constants of Gs(s). Moreover,

naming Kt the sensor constant and taking into ac-

count relation (1), the feedback system transfer func-

tion is given by:

–
G(s)  =  

1

Kp 
Kt

  

K
τ1τ2

s3
 + 

τ1 
+ τ2

τ1τ2
 s2

 +  

1 + KTd

τ1τ2
 s + 

K
τ1τ2

 (33)

where K is given by relation (4).

As we can see, leaving aside 1/Kp 
Kt, (33) is a third

order polynomial function and we can write it in the

(26) form assuming:

K
τ1τ2

   = ω3
n  pδ

τ1 + τ2
τ1τ2

   = (p + 2) δωn

(34)

1 + KTd
τ1τ2

   = (1 + 2δ2p)ω2
n  

p = 
0,2

4,5
γ
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0,3
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In order to determine the admissible terns of δ, ωn, p
values (see Paragraph 2.1 above), it is better to

rewrite equations (34) in a proper form; in particular,

assuming τ1 ≥ τ2 and moreover:

τ  = τ1 r = τ /τ2

(35)

T = τωn  γ = δT

we get:

K =  
δ pT3

τ  r
 Td =  

T2
(1 + 2δ p) – r

Tδpωn 
 

(36)

r = γ(p + 2) – 1

On the other hand, assuming p positive, from the

third equation in  (36) we get:

0 ≤ γ ≤ (r + 1)/2 (37)

Considering (37), figures 9 and 10 represent the

graphs of the third equation in (36) and of the fourth

equation in (35).
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In conclusion, in order to determine the admissible

terns, we can proceed as follows:

– in correspondence with the r given value, from

figure 9 we can determine the couples of γ and p
values

– in correspondence with every γ value obtained,

from the figure 10 we can determine the corre-

sponding couples of δ and T values (and therefore

the ωn ones).

Having determined the admissible terns of δ, ωn and

p values in this way, if, as already mentioned, the

design specifics are rise time ts, settling time ta and

maximum overshoot S, in order to satisfy the same

specifics, we can proceed as follows:

– in correspondence with each admissible tern,

from the graphs of the figures represented in the

Appendix of [12] as to the third order systems,

we can obtain the relative ts, ta and S values

– having chosen the tern corresponding to the ts,

ta and S values which satisfy the desired specifics

in the best way, from the first and the second

equation in (36) we can determine the K and Td
values; lastly, from (4) the Kp value.

EXAMPLE

On the basis of a unitary feedback system whose

plant has a transfer function given by:

 Gs(s) =  
48,21

s(1 + 2,7s)
2
 (38)

we want to achieve a system design, by means of a

PD regulator, that will make the system output to a

unit step input present a maximum overshoot S ≤
5% and a rise time ta ≤ 12 ms.

By applying the above mentioned design procedure

we can obtain that assuming:

Kp = 0,0077 Td = 2,7 (39)

the output, to a unit step input, of the feedback sys-

tem presents a maximum overshoot S = 8% and a

settling time ta = 18 ms (fig. 11). Since these values

are a little higher than the ones desired, we can vary

the Kp and Td values; anyway, we can obtain

smaller values than the ones found above only of the

maximum overshoot and not of the rise time.
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In fact, as we can see from the figures of the

Appendix mentioned above, all the p values which

supply the maximum overshoot desired are higher

than 1 and, therefore, we cannot obtain settling time

values much lower than the one found above.

Consequently, we can conclude that, in this situation

it is impossible to satisfy completely the desired

specifics by utilizing a PD regulator.

To conclude the paragraph, we can note that, some-

times, in addition to the plant output, we can measu-

re some more variables which represent the integral

and the derivative of the output itself and, therefore,

we can implement the regulator by utilizing directly

the measures of these variables. As we all know, the

so called tachometer-feedback control in a position

control system is an interesting example of these sys-

tems.

3.2 Design procedures by means of hybrid regu-
lators
If, as it may happen, by utilizing a PD feedback regu-

lator we cannot satisfy the desired specifics, we can

employ the so called hybrid regulators. As we can

see in figure 12, they are feedback regulators made up

by two parts in parallel; the first is made of a propor-

tional regulator and the second of a PD regulator

whose input is the measure of the output derivative

(namely, in the case of a position regulator, the velo-

city measure).

Consequently, considering (1), naming Kt the con-

stant of the sensor of the output derivative, Kc the

constant of the output sensor, Kac the gain of the

preamplifier of the latter sensor, the regulator transfer

function is:

Gr(s) = Kp 
Kt 

(1 + Td s)s + Kac 
Kc 

(40)

If the plant transfer function Gs(s) is of the third

order, type 1, we can write it in the form (32).

Consequently, considering (40),  the feedback system

transfer function is given by:



–
G(s)  =  

1

Kac 
Kc

 

Ks 
Kac 

Kc
τ1τ2

s3
 +  As2

 +  Bs +  
Ks 

Kac 
Kc

τ1τ2

 (41)

where:

A =  

τ1 + τ2 + Ks 
Kt 

KpTd

τ1τ2
  B =  

1 + Ks 
Kt Kp

τ1τ2
  

As we can see, leaving aside 1/Kac 
Kc, (41) is a third

order polynomial function and we can write it in the

(26) form assuming:

+
–

r (t)
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Ks 
Kac 

Kc
τ1τ2

   = ω3
n  pδ

1 + Ks 
Kt 

Kp
τ1τ2

   = (1 + 2δ2p)ω2
n  

(42)

τ1 + τ2 + Ks 
Kt 

KpTd
τ1τ2

   = (p + 2) δωn

Consequently, we get:

Kac =  

ω3
n pδ τ1τ2
Ks 

Kc
 Kp =  

τ1τ2 (1 + 2δ2p)ω2
n – 1

Ks 
Kt

 

(43)

Td =  
(p + 2)δωn τ1τ2 – (τ1 + τ2)

Ks 
Kt 

Kp
 

and, therefore, once we have determined, by utilizing

the figures of the Appendix mentioned above,  any

tern of δ, p e ωn values which satisfy the desired

specifics, from (43) we can calculate the Kac, Kp and

Td values.

EXAMPLE

On the basis of a unitary feedback system whose

plant has a transfer function given by (38) we want to

achieve a system design, by means of a hybrid regu-

lator, that will make the system output to a unit step

input present a maximum overshoot S ≤ 5% and a

rise time ta ≤ 12 ms.

By applying the above mentioned design procedure

we can obtain that, if the system plant is (38) and

assuming:

Kp = 0,379 Td = 0,207 Kac = 0,224 (44)

the feedback system output, to a unit step input,

presents a maximum overshoot S = 5% and a set-

tling time ta = 12 ms (fig. 13).

To conclude, we can note that, if the system plant is

of the form (38), in order to satisfy the desired

specifics, it is necessary to employ a derivative hy-

brid regulator, since, as we have seen above, it is

impossible to obtain a satisfying system behavior by

making use of a PD regulator.  
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