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Abstract. The classic way to control a system, in a model based framework, is to obtain a

model of the system and then to use it for the design of a controller. For the class of systems

characterized by a large number of inputs and outputs, such as for the cross direction control of a

paper machine, we require a reduced computational time to produce the controller parameters. Our

solution to this problem is a direct adaptive predictive controller which operates in the Laguerre

shift operator domain and replaces the system identi�cation step together with the calculation of the

predictive controller parameters (controller that additionally contains input and output constraints)

by: 1) a least squares solution, 2) two simple linear algebra operations (QR decomposition and a

singular value decomposition) of a matrix constructed from input and output measurements of the

unknown system and 3) a quadratic program optimization or another least squares problem. The

modeling step is accomplished in a subspace identi�cation fashion. The resulting algorithm provides

major computational savings due to the reduced dimension of the system matrices together with the

absence of a speci�c state space model.

Keywords. Direct Adaptive Control, Constrained Model Based Predictive Control

(MBPC), Laguerre and Subspace Identi�cation

1. INTRODUCTION

This paper blends in an original manner three di�erent tech-

niques:

� Laguerre orthonormal function modeling,

� subspace identi�cation (the basics of it, without gener-

ating the state space model) and

� constrained model based predictive control.
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Although each of these techniques in itself is not new, com-

bining them, as is proposed here, is novel.

The subspace identi�cation was addressed in works by (Overschee

and Moor, 1996; Larimore, 1990). For the Laguerre identi�ca-

tion, the work presented in (Dumont and Zervos, 1986a; Nin-

ness and Gomez, 1990) represents a good source of infor-

mation. Links between the Laguerre identi�cation and pre-

dictive control were initially reported in (Zervos and Du-

mont, 1988; Zervos, 1988) or for a newer generation of such

controllers the reader can consult (M. Huzmezan, S. Kovach

and W.A. Gough, 1999; M. Huzmezan, G.A. Dumont, S. Ko-

vack and W.A. Gough, 2000). The link between subspace

identi�cation and the unconstrained predictive controller was

reported in (W. Favoreel and Gevers, 1999). The concept of

discrete subspace identi�cation in the Laguerre shift opera-

tor domain was investigated partly in (Fischer, 1997), for an

approach slightly di�erent to ours.



The class of systems that we address with this control method-

ology has a large number of inputs and outputs. An exam-

ple of such systems is the cross direction control of a paper

machine (Kristinsson and Dumont, 1996). Such systems are

frequent in industries that process a moving sheet of mate-

rial where a pro�le is shaped through an array of actuators.

The main challenges of such systems are the handling of a

very large number of variables and the diÆculty to produce

a model based on �rst principles. The �rst problem drove

us to compress the large number of inputs and outputs to a

more manageable value. The second problem implies that an

identi�cation algorithm has to be employed for the modeling

aspect.

Unfortunately, the amount of reduction produced by the com-

pression of the input and output spaces is not enough to

produce a real time implementation, yet. As a result, a di-

rect adaptive controller is required to reduce even further

the amount of time required to build an explicit prediction

model. The classic way to control a system, in a model based

framework, is to obtain a model of the system and then to use

it for the design of a controller. Based on the work of (W. Fa-

voreel and Gevers, 1999) we can replace the system identi-

�cation step and the calculation of the predictive controller

parameters (controller that now additionally contains input

and output constraints) by two simple linear algebra oper-

ations (QR decomposition and a singular value decomposi-

tion SVD) of a matrix constructed from input and output

measurements of the unknown system. Therefore, generat-

ing a direct adaptive predictive controller which operates in

the Laguerre shift operator results in major computational

savings due to the reduced dimension of the system matri-

ces together with the absence of a speci�c, say state space,

model.

The paper outline was generated with the aim of giving a

good overview of the techniques involved. This will enable the

understanding of the link achieved between them. The sec-

ond section deals with the compression strategy of the input

and output vectors. Section 3 shows how much from the con-

ventional subspace algorithm is employed (i.e. just the QR

and SVD decompositions) to construct a typical predictive

controller cost function. Section 4 gives an insight into how

a constrained predictive controller that deals with measured

and unmeasured disturbances is structured. Conclusions fol-

low explaining the diÆculties of applying this direct adaptive

control strategy.

2. THE LAGUERRE SHIFT OPERATOR DOMAIN

The motivation behind using a di�erent domain for systems

that have a large number of actuators (for instance up to

350 for a 10 m wide paper sheet) is addressed brie
y in the

introduction.

The natural question would be "why use an orthonormal ba-

sis". Several reasons can be o�ered:

� Due to the orthogonality of the polynomials we can

model a pro�le with a reduced basis of functions.

� A reduced number of members of this basis functions

is eÆcient at compressing and �ltering the data.

� Limitations on adjacent actuators (which are usually

imposed by their design) are conventionally dealt using

cumbersome schemes. In our case they are dealt with

implicitly since they represent limits on the parameters

of the orthonormal polynomials.

� Since the number of parameters to control is reduced,

this amounts to the control of the low frequency compo-

nents of the pro�le. In other words, the frequency con-

tent of signals used within the actuator and the sensor

data can be reduced.

There are some problems associated with this way of com-

pressing data which will be addressed later within this sec-

tion.

Various basis functions can be used in the compression pro-

cess among which we can enumerate: Laguerre, Gram, Cheby-

shev and spline polynomials or even wavelets. All of them got

pros and cons when it comes to a practical implementation.

One possible solution is provided by Laquerre polynomials.

In this paper we use this example due to the author's experi-

ence and acceptability achieved in industry by such a basis.

A possible disadvantage of the Laguerre basis comes from

its causality. This implies that the spectral coeÆcients will

depend upon which direction we process the data. Although

this does not fundamentally a�ects our work it does require

further investigation.

Dumont et. al.(Dumont and Zervos, 1986b) considered sys-

tem identi�cation based on Laguerre orthonormal functions.

This method proved its simplicity when dealing with the rep-

resentation of transient signals, closely resembling the Pade

approximation for systems exhibiting dead time. In this pa-

per the meaning given to the Laquerre orthonormal series

representation is slightly di�erent since it will be used for

the approximation of a function such as an actuator pro�le.

The Laguerre function, a complete orthonormal set in L2,

has the following Laplace domain representation:

Li(s) =
p

2p
(s� p)i�1

(s+ p)i
; i = 1; : : : ;N (1)

where i is the number of Laguerre �lters (i = 1; N), p > 0

is the time scale, and Li(x) are the Laguerre polynomials.

The reason for using the Laplace domain is the simplicity of

representing the Laguerre ladder network.

This network can be expressed as a stable, observable and

controllable state space form, see (Zervos, 1988), as:

l(j + 1) = Al(j) + bu(j) (2)

with l(j) =
�
l1(j); : : : ; lN (j)

�T
being the state of the lad-

der. A is a lower triangular square (N � N) matrix having

the following form:

A =

2
66664

�1 0 : : : 0
��1�2 � �3

Ts
�1 : : : 0

: : : : : : : : : : : :

(�1)N�1�N�22 (�1�2 + �3)

TN�1s

: : :
��1�2 � �3

Ts
�1

3
77775
(3)

In a similar manner the b matrix is de�ned as:

bT =

h
�4 �(

�2

Ts
)�4 : : : �(

�2

Ts
)N�1�4

i
(4)



In the above equations (3) and (4) �1; : : : ; �4 have the follow-

ing representation:

�1 = e�pTs

�2 = Ts +
2

p
(e�pTs � 1)

�3 = �Tse
�pTs �

2

p
(e�pTs � 1)

�4 =
p

2p
1� �1

p

where Ts is the discrete system sampling time and p 2 [0 : : : 1]

the Laguerre network pole. The Laguerre coeÆcients repre-

sent a projection of the function to be approximated onto a

linear space whose basis is formed by an orthonormal set of

Laguerre functions.

The above state space representation is used to generate the

state history for all positions j 2
�
1 : : : J

�
(where J is the

total number of actuators or measurements) based on an im-

pulse in the "command" (u(1) = 1; u(2) = 0; : : : ; u(J) = 0).

The following equation relates actuator position or sensor

measurements to the Laguerre spectral coeÆcients, through

the Cs matrix:

2
64
y(1)

y(2)

: : :

y(J)

3
75 =

2
64
l1(1) l2(1) : : : lN (1)

l1(2) l2(2) : : : lN (2)

: : : : : : : : : : : :

l1(J) l2(J) : : : lN (J)

3
75
2
64
c1
c2
: : :

cN

3
75 (5)

�y = Cs�c (6)

Therefore the least squares solution of the compression prob-

lem is �c = (CsCT
s )
�1CT

s �y.

By dealing with orthonormal �lters during "data compres-

sion" we will have a diagonal dominant matrix (CT
s Cs). Large

sets of data can make this matrix diagonal. The ratio be-

tween the number of Laguerre �lters and the amount of data

recorded (in this case the number of actuators or sensors)

has to be small since we can otherwise get a singular matrix

(CT
s Cs). From the perspective of a real time implementa-

tion, the matrix (CT
s Cs)

�1 can be precomputed as it depends

only on the Laguerre network realization (i.e. its impulse re-

sponse) in the particular space in which we are operating.

One of the challenges is the choice of the Laguerre network

pole which in fact determines the spatial scale. It is expected

that the designer can make an a priori choice (a pole closer to

1 models a fairly smooth pro�le of the actuator positions or

sensor measurements versus a pole closer to 0 which models a

rather rough pro�le). We recommend a �xed pole for the en-

tire control/identi�cation procedure as the Laguerre network

representation can be computed in advance. Optimization of

the pole is beyond the scope of this paper. More about the op-

timal Laguerre pole choice can be found in (Zervos, 1988; Fu

and Elshafei, 1991).

Now having the entire compression framework clear we can

see how the measured position of the actuators, which in the

case of a paper machine 
ex the slice lip using the adjacent

actuators as fulcrum, in
uences the basis weight of the paper

at several locations around the actuator. Figure 1 shows an

example of the approximation of a given actuator pro�le with

a Laguerre network of a 15th order. See (Kristinsson and

Dumont, 1996) for a good overview and additional references

are provided on paper cross directional control.
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Fig.2 The approximation of a given actuator profile with a 15 filter Laguerre network
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Fig. 1. The approximation of a given pro�le with a

15 �lters Laguerre network

To simplify the controller design, the number of Laguerre

�lters used to model the actuator pro�le is an integer sub-

multiple of the one modeling the measured pro�le. As a con-

sequence, o�-diagonal terms of the corresponding transfer

matrix will be small, therefore providing a good condition

number for the process transfer matrix.

At this stage we have determined the spectral coeÆcients of

the Laguerre networks that characterize the pro�les de�ned

by the input and output vectors. In the following sections we

denote by u(k) and y(k) the "input" and output, respectively,

the spectral coeÆcients determined at time k.

3. THE SUBSPACE IDENTIFICATION METHOD

Our approach is based on a fairly new identi�cation method

that was developed in last decade (Overschee and Moor,

1996) called subspace system identi�cation, mainly because

it deals with the projection of the row space of one matrix

onto the row space of another matrix. The main motivation

for this is the lack of convergence problems since the method

is non-iterative (batch type of identi�cation) and is numer-

ically robust since simple linear algebra operations such as

QR or SVD decompositions are involved.

We need to introduce some of the concepts of subspace lin-

ear identi�cation, since we are not going to go the full path

(until a state space model is generated). This will lead to an

economy in terms of computations.

Our goal is to obtain a dependence between the estimated

(predicted) outputs and past outputs, inputs and future in-

puts of the following form:

Ŷf = Lw

�
Yp
Up

�
+ LuUf (7)

where Up =
�
uT
�	+1 : : : uT

�1 uT0

�T
and

Yp =
�
yT
�	+1 : : : yT

�1 yT0

�T
are the 	 values of inputs



and outputs, respectively, that are situated in a �xed size

moving window that extends from the present into the past.

Along the same lines Uf =
�
uT0 uT1 : : : uTN2�1

�T
and Yf =�

yT0 yT1 : : : yTN2�1

�T
are the N2 values of inputs and out-

puts, respectively that are situated in a �xed size moving

window that extends from the present into the future. There-

fore Yf 2 R
N2�p, Up 2 R	�m and Yp 2 R	�p, where m, n

and p are the system inputs, states and outputs, respectively.

Looking at equation (7), we see that the matrices Lw and Lu,

which are de�ning the linear predictor, are required. Coming

back to the starting point of the subspace algorithms we can

state the following dependencies:

Yf = ��Xf +H�Uf +Hs
�Ef (8)

Yp = ��Xp +H�Up +Hs
�Ep (9)

where 	 = � + � + � � 1 the number of available mea-

surements in the past split in two interlaced sets, one used

for prediction and one for validation. This implies that a

suÆcient amount of data has to be acquired, prior to any

identi�cation process taking place, such as to meet the iden-

ti�ability conditions. The available measurements of inputs

and outputs (uk, yk for k 2 f1; : : : ; � + � + �g ) that are

assumed to be generated by the following state space form:

xk+1 = Axk +Buk +Kek (10)

yk = Cxk +Duk + ek (11)

and are �rst organized in the following block Hankel matrices:

Up =

2
64
u1 u2 : : : u�
u2 u3 : : : u�+1
: : : : : : : : : : : :

u� u�+1 : : : u�+��1

3
75 (12)

Uf =

2
64
u�+1 u�+2 : : : u�+�
u�+2 u�+3 : : : u�+�+1
: : : : : : : : : : : :

u�+� u�+�+1 : : : u�+�+��1

3
75 (13)

Note that uk 2 R
m, xk 2 R

n and yk 2 R
p are the system

inputs, states and outputs, respectively. The noise sequence

ek 2 R
p is supposed to be zero mean Gaussian with variance

E[epeTq ] = S�pq . The number of columns � in the above

block Hankel matrices is typically much larger (say 100 times)

than the number of block rows � or �. In fact the choice of �

is connected with the MBPC prediction horizon. The block

Hankel matrices Yp, Yf and Ep, Ef containing the outputs

yk and the measurement noise ek, respectively are de�ned in

a similar manner as in equations (12) and (13).

The past and future state sequences are de�ned as Xp =�
x1 x2 : : : x�

�
andXf =

�
x�+1 x�+2 : : : x�+�

�
, respec-

tively.

The matrices ��, �� have the form of the extended ob-

servability matrix, H�, H�, H
s
�
, Hs

�
being block Toeplitz

matrices containing the system's impulse response to the de-

terministic input uk and stochastic noise ek. For the general

case when q 2 N0 they are de�ned as follows:

�q =

2
64

C

CA

: : :

CAq�1

3
75 (14)

Hq =

2
64

D 0 : : : 0

CB D : : : 0

: : : : : : : : : : : :

CAq�2B CAq�3B : : : D

3
75 (15)

Hs
q =

2
64

I 0 : : : 0

CK I : : : 0

: : : : : : : : : : : :

CAq�2K CAq�3K : : : D

3
75 (16)

We can write the following linear predictor Ŷf = LwWp +

LuUf based on the given past inputs and outputs organized

as Wp = [YT
p ;U

T
p ]
T and future inputs Uf . By minimizing

a least squares criterion:

min
Lw;Lu

kYf �

�
Lw Lu

� �Wp

Uf

�
k
2
F (17)

we produce the required matrices for the predictor stated in

equation (7).

The standard way of solving the above least squares problem

is via a QR algorithm:"
Wp

Uf

Yf

#
=

"
R11 0 0

R21 R22 0

R31 R32 R33

#"
QT
1

QT
2

QT
3

#
(18)

Therefore Ŷf = L
�
W

T
p U

T
f

�T
where:

L =
�
Lw Lu

�
=
�
R31R32

� �R11 0

R21 R22

�+
(19)

This decomposition leads to the solution of the problem de-

�ned in (17) since Ŷf is de�ned as the orthogonal projection

of the row space of Yf onto the row space of [WT
p ;U

T
f
]T:

Ŷf = Yf =

�
Wp

Uf

�
= Yf

�
Wp

Uf

�+ �
Wp

Uf

�
(20)

With L determined, we know that Lw = L(:; 1 : �(m + p))

and Lu = L(:;�m + 1 : end). The matrix Lw still contains

part of the noise, which we do not want to include in our

model. Therefore an SVD decomposition:

Lw =
�
U1 U2

���1 0

0 �2

��
V T
1

V T
2

�
(21)

is required such as to retain (by inspection) only the system

Lw = U1�1V
T
1 that contains the dominant singular values.

4. DIRECT ADAPTIVE PREDICTIVE CONTROL

The concept of predictive control involves the repeated op-

timization of a performance objective over a �nite horizon

extending from a future time (N1) up to a prediction horizon

(N2) (Clarke and Mohtadi, 1989; Huzmezan, 1998). Given a

set-point, a reference is produced by pre-�ltering and is used

within the optimisation of the MBPC cost function (22). Ma-

nipulating the control variable over the control horizon (Nu),



the algorithm drives the predicted output, over the predic-

tion horizon, towards the reference. Predictive control is used

instead of a conventional passive state or output feedback

control technique due to is its simplicity in handling varying

time delays and non-minimum phase systems.

In terms of the algorithm the predictor employing the "inter-

nal model", based on the measurement of the past inputs and

outputs, provides the optimizer with the future predicted val-

ues of the outputs. The optimizer contains the cost function

(22) involving adjustable weights if necessary with the main

task of computing the present control move such that the

predicted output follows the reference in the desired manner.

The form of the quadratic cost function to be optimized is:

Jk =

N2X
l=N1

k(ŷk+l � rk+l)k
2
Q(l) +

NuX
l=0

k�uk+lk
2
R(l) (22)

The minimization is performed subject to constraints on:

� the input levels: umin�ul�umax

where k�l�k +Nu � 1

� the input rates of change: �umin��ul��umax

where k�l�k +Nu � 1

� the output levels:

ymin�ŷl�ymax where k�l�k +N2

In normal operation the weights Q(l) and R(l) are inde-

pendent of k, but if necessary they may need to vary with

k. The norm k:k2Q within the cost function is de�ned as

kxk2Q = xTQx. For prediction it is assumed that �ul = 0

for l�k+Nu. As formulated, the optimization is a quadratic

programming (QP) problem, and can be solved using stan-

dard algorithms.

The equation (7) can be rewritten in �Uf which represents

the control movement increment in the future as:

Ŷf = Lw

�
Yp
Up

�
+ Lu(U0 +M�Uf ) (23)

where Yp, Up have the same signi�cance as in (7), U0 =�
uT0 uT0 : : : uT0

�T
, U0 2 R

N2�m and M is a lower triangular

matrix, of the appropriate size, �lled with identity matrices

having dimensions de�ned by the number of control inputs.

Based on the equations (22) and (23) we can rewrite the cost

function in a vector/matrix format as:

Jk = (Ŷf � Rf )
TQ(Ŷf � Rf ) + �UT

f R�Uf = (24)

= (LwWp + Lu(U0 +M�Uf )� Rf )
TQ (25)

(LwWp + Lu(U0 +M�Uf )� Rf ) +�UT
f R�Uf

where

Rf =
�
rT0 rT1 : : : rTN2�1

�T
Q= diag(

�
QT
1 QT

2 : : : QT
N2�N1

�T
)

R = diag(
�
RT1 RT2 : : : RTNu

�T
)

The reason of including in the optimizer a model which con-

tains the plant model augmented with an integrator is the

rejection of step disturbances or the following of step refer-

ences. In the same spirit and based on the "internal model

principle" other signals like ramps or sinusoids can be tracked

or rejected by including their appropriate model in the con-

troller.

The part of the cost function dependent on the unknown vari-

able �Uf , which we subject to the optimization procedure,

has the form:

Jk =�UT
f [M

TLTuQLuM + R]�Uf + (26)

2[WT
p L

T
wQLuM + UT

0 L
T
uQLuM �RTf QLuM ]�Uf

=�UT
f A�Uf + B�Uf

This cost function (26) can be augmented, if required, with

the linear constraints re
ecting actuator or envelope limita-

tions. These constraints can be written in �Uf after several

algebraic manipulations (see (Huzmezan, 1998) for details):

��Uf � � (27)

If no constraints are to be imposed then the optimization of

the the quadratic problem has its solution via a least square

algorithm (by putting the trace of the cost derivative with

respect to �Uf to 0) and can be written as: �Uf = �A
+
B
T .

Otherwise a QP solver or equivalent has to be used. In both

cases only the �rst control movement will be implemented.

The main advantage of predictive control over other con-

trol methods resides in its ability to handle constraints but

equally well in the on-line optimization which can involve at

each time step a di�erent "model" (via the matrices Lw and

Lu updated continuously).

The last part of the control variable computation is repre-

sented by the conversion from the reduced number of La-

guerre coeÆcients back to the real actuator pro�le. Using

the �lter structure already in place at the time of the data

compression the function characterized by those coeÆcients

is generated and its corresponding values are fed back to the

actuators.

5. CONCLUSIONS

In our opinion there is a clear bene�t for speci�c systems

which exhibit a large number of inputs and outputs, to em-

ploy a controller based on the link between: subspace identi-

�cation (the basics of it, without generating the state space

model), Laguerre orthonormal function modeling and con-

strained model based predictive control.

From the practical perspective the features included at the

controller level allow us to talk about an immediate future

industrial implementation. Note that the same algorithm can

be successfully applied in the case of systems with a reason-

able number of inputs and outputs, but in such a case the

compression part becomes unnecessary.

Based on the theoretical development as well as simulations

we recognize, besides the bene�ts, several challenges that this

algorithm poses to the user:



� The Laguerre compression of noisy signals (such as the

actuator pro�le or output shape) represents a challenge

for the algorithm. It is known that the number of the

Laguerre �lters in
uences the bandwidth of the com-

pressed signal. There is no automatic way yet to decide

upon the number of elements in the series.

� The subspace identi�cation method is a batch type of

identi�cation. One of the reasons that pushed us to use

the present form of the algorithm is that by using the

conversion to a state space representation we will face

the problems associated with the initialization of the

state used in the prediction process. More insight has

to be gained with respect to this issue.

� For a constrained predictive controller the management

of the solution infeasibility is a well known problem. A

scheme to address this issue is mandatory. Our experi-

ence with mixed weight least square (MWLS) algorithm

will recommend it as a potential alternative.
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