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ABSTRACT

The method of nonlocal stabilization of the program

motion is developed under condition of incomplete

information about vectors of state when some coor-

dinates are unobservable.

1. INTRODUCTION

The problem of control law design is a key one in

control theory. The methods that have been devel-

oped in automatic control theory are associated with

bringing the controlled system to a given constant

state under the fundamental assumption that per-

turbations are small. Since the actions on a system

can have �nite values, nonlocal stabilization prob-

lems arise. These problems should be considered

in their original nonlinear statements without using

any simpli�cations, in conditions of controls bound-

edness. The control goal can be either stabilization of

a given state or stabilization of a given program mo-

tion. These problems are considered in the paper in

conditions of incomplete information about the state

vector when certain coordinates are unobservable.

2. STATEMENT OF THE PROBLEM

The deviations x of controlled system from program

motion are described by ODE

_x = f(x; u; t); x = kxik
n
i=1; x 2 Gfkxk � hg;

u = ku�(t)k
m
�=1; u 2 U (2:1)

Functions f(x; u; t) are continuous in common. Con-

trols u(t) are integrable functions on a �nite interval

and take their values in a bounded convex domain

U . The control goal is formalized by the identity

x(t) � 0 (2:2)

Subvector x1 = kxsk
p
s=1; 0 < p � n contains ob-

servable variables. The varying domain of unobserv-

able variables x2 = kxkk
n
k=p+1 is denoted by G(x1).

The problem is to �nd a depending on observable

coordinates control u(x1; t) for which the zero solu-

tion (2.2) of corresponding closed system

_x = f(x; u(x1; t); t) (2:3)

is asymtotically stable in the large, i.e. in a �nite

region ~G � G [1]. Admissible functions u(x1; t)

are chosen from the set D of multivalued upper

semicontinuous (with respect to inclusion) functions

u(x1; t) [1,2]. Remind the corresponding de�nition

[3]. A (generally multivalued) function u(x; t) is

referred to as upper semicontinuous one with re-

spect to inclusion at a point fx; tg if the deviation

d(U(x1; t1); U(x; t)), (d(A;B) = supa2A �(a;B)) of

the values set U(x1; t1) of the function at the point

fx1; t1g from the set U(x; t) at the point fx; tg tends
to zero as fx1; t1g ! fx; tg. It is well known [3]

that a bounded function r(�) is upper semicontin-

uous one with respect to inclusion on a closed set

M if and only if its graph (i.e. the set f(y; z) :

y 2 M; z = r(y)g is the closed set. The func-

tions u(x; p; t) which satisfy the extremum conditions

(p; f(x; u(x; p; t); t) = minu2U (p; f(x; u; t)) are upper

semicontinuous ones with respect to inclusion. Thus,

the value set U(x1; t) of function u(x1; t) is closed and

bounded.

A solution x(t) of (2.3) when u(x1; t) 2 D is an ab-

solute continuous solution of the corresponding dif-

ferential inclusion [2,3]

_x 2 F (x; t); F (x; t) = fy : y =

n+1X
s=1

�sf(x; u
s);
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u
s 2 coU(x1; t); � 2 A = f�s � 0;

n+1X
s=1

�s = 1gg

(2:4)

where us is chosen independently from the convex

hall of the upper semicontinuous set U(x1; t) of val-

ues of a function u(x1; t) 2 D at the point fx; tg.
Asymptotic stability of the zero solution of (2.3) is

understood as that for inclusion (2.4). Therefore

the derivative of the Lyapunov function v(x; t) 2
C
1fG; [0;1)g by virtue of the inclusion (2.4) is ex-

pressed by the relation [4]

( _v)(2:3)
�
= ( _v)(2:4) =

@v

@t
+ max

z2F (x;t)

�
@v

@x
; z

�
(2:5)

The Lyapunov functions method is the universal

one in stability theory because the classical Lya-

punov theorems are inverted in most cases. It could

be believed that requirements of the Lyapunov func-

tion existance for the di�erential inclusion (2.4) is

not natural since invertion of the Lyapunov theo-

rems is obtained for di�erential equations. However,

the inclusion in question is generated by the di�eren-

tial equation (2.3), and therefore requirement men-

tioned above is not an additional assumption. The

inverse theorems for the selector-linear inclusions are

obtained in [4].

To establish stability of the zero solution of (2.3)

(or (2.4)) is a quite complicated problem because

we have no eÆcient method of determining whether

some control u(x1; t) is stabilizing or not. Thus the

eÆcient solution of stabilization problem should in-

clude two functions: a stabilizing admissible control

u(x1; t) and a Lyapunov function v(x; t) that proves

asymptotic stability of the solution x = 0 of (2.3).

Taking this reason into account we introduce the fol-

lowing de�nitions:

Definition 2.1. Admissible control u(x1; t) and

Lyapunov function v(x; t) are referred to as stabi-

lizing pair (S-pair) for the system (2.1) in domain G

if u(x1; t) is stabilizing control and v(x; t) is a Lya-

punov function satisfying criterion of asymptotic sta-

bility of x = 0 of the closed system (2.3) (or inclusion

(2.4) if u(x1; t) 2 D).

Definition 2.2. We say that system (2.1) is s-

stabilizable in G if in this domain there exists an

S-pair

S = fv(x; t); u(x1; t)g (2:6)

The stabilizability is understood in this paper

as s-stabilizability. The only di�erence between

the two concepts of stabilizability is thaht the s-

stabilizability requires existance of the Lyapunov

function v(x; t) that ensures stability in addition to

existance of stabilizing control.

Definition 2.3. Let us say that the stationary sys-

tem

_x = f(x; u) (2:7)

is stationary stabilizable in G if in this domain there

exists a stationary S-pair

S = fv(x); u(x1)g (2:8)

Admissible controls can depend on x if all coordi-

nates xi are observable, i.e. x
1 = x. It is possible to

introduce similar de�nitions of exponential stability,

strong stability, etc.

In accordance with the Lyapunpv method the

derivative (2.5) must be negative de�nite, _v(x; t) < 0,

where the inequality  (x; t) < 0 is understood here

and further in the Lyapunov sense, i.e. there exists

a function  0(x) such that  (x; t) �  0(x) < 0 for

all x 6= 0; x 2 G; t � t0.

Since components x1; x2 of the state vector x are

di�erent from the observability point of view, we will

use the following simple criterion of negative de�nite-

ness.

Lemma 2.1. A function w(x) is negative de�nite in

G if and only if the functions

w1(x
1) = max

x22G(x1)
w(x) < 0; x

1 6= 0 (2:9)

w2(x
2) = [w(x)]x1=0 < 0; x

2 6= 0 (2:10)

are negative de�nite.

Necessity of the lemma directly follows from neg-

ative de�niteness of w(x). Prove suÆciency by re-

ductio ad absurdum. Let functions (2.9), (2.10) be

negative de�nite while w(x) be not. Then there ex-

ists a point x0 = (x10; x
2
0) 6= 0 such that w(x0) � 0.

So we have

0 � w(x0) � w1(x
1
0) � 0

that implies w(x0) = w1(x
1
0) = 0 and x10 = 0. The

last means x20 6= 0 Then

0 = w(x0) = w(x10; x
2
0) = w(0; x20) = w2(x

2
0) < 0:

This contradiction proves the lemma.

3. CRITERIA OF STABILIZABILITY

Taking into account the lemma 2.1 consider the �rst-

order partial di�erential inequality

Lfv(x; t)g
�
=

min
u2U

max
x22G(x1)

�
@v(x; t)

@t
+

�
@v(x; t)

@x
; f(x; u; t)

��
< 0

x
1 6= 0 (3:1)

In the case of complete information about the state

vector inequality (3.1) takes simpler form

L0fv(x; t)g
�
=
@v(x; t)

@t
+min
u2U

�
@v(x; t)

@x
; f(x; u; t)

�
< 0



x 6= 0 (3:2)

For the sake of simplicity consider in detail only the

stationary stabilization problem.

Theorem 3.1 The system (2.7) is stationary stabi-

lizable in the class D of controls u(x1) 2 U if and

only if there exists in G a positive de�nite solution

v(x) 2 C1(G) of the partial di�erential inequalities

Lsfv(x)g = min
u2U

max
x22G(x1)

�
@v(x)

@x
; f(x; u)

�
< 0;

x
1 6= 0 (3:3)

L1fv(x)g =

max

��
@v(x)

@x
; f(x; u)

�
j x1 = 0; u 2 U� � U

�
< 0;

x
2 6= 0 (3:4)

where

U
� = U(0);

U(x1) = Argmin
u2U

max
x22G(x1)

�
@v(x)

@x
; f(x; u)

�
:

(3:4a)

If the function ~v(x) is such a solution of (3.3), (3.4),

the functions

~v(x); ~u(x1) 2 ~U(x1) =

Argmin
u2U

max
x22G(x1)

�
@~v(x)

@x
; f(x; u)

�
(3:5)

yield a stationary S-pair of (2.7).

Proof. Necessity. Let f�v(x); �u(x1); �u(x1) 2 �U(x1)g
be a stationary S-pair of (2.7). It means that �v(x) >

0; x 6= 0; x 2 G and its derivative by virtue of the

system (2.7) with u = �u(x1) 2 �U(x1) has the form

( _�v)(2:7) = max
z2F (x)

�
@�v(x)

@x
; z

�
=

max
us2co �U(x1)

max
�2A

n+1X
s=1

�s

�
@�v(x)

@x
; f(x; us)

�
=

= max
u2co �U(x1)

�
@�v(x)

@x
; f(x; u)

�
= �w(x) < 0;

x 6= 0; x 2 G (3:6)

The inequality (3.3) follows immediately from

(3.6) since

Lsf�v(x)g = min
u2U

max
x22G(x1)

�
@�v(x)

@x
; f(x; u)

�

� max
u2co �U(x1)

max
x22G(x1)

�
@�v(x)

@x
; f(x; u)

�
=

= max
x22G(x1)

_�v(x) = max
x22G(x1)

[�w(x)] < 0; x
1 6= 0

(3:7)

In the similar way choosing U� = �U(0) we obtain

L1f�v(x)g =

�
max

u2co �U(x1)

�
@�v(x)

@x
; f(x; u)

��
x1=0

= [�w(x)]x1=0 < 0; x
2 6= 0 (3:8)

SuÆciency. Let function ~v(x) be a positive de�-

nite solution of the inequalities (3.3), (3.4) and con-

trol ~u(x1) be chosen in accordance with (3.5). Now

we show that the functions (3.5) form an S-pair of

(2.7) in domain G. According to (3.6) the derivative

of ~v(x) > 0 by virtue of corresponding di�erential

inclusion

_~v(x) = max
�2A

max
u�2co ~U(x1)

n+1X
�=1

��

�
@~v(x)

@x
; f(x; u�)

�

� max
�2A

max
u�2co ~U(x1)

max
x22G(x1)

n+1X
�=1

��

�
@~v(x)

@x
; f(x; u�)

�

� max
�2A

max
u�2co ~U(x1)

n+1X
�=1

�� max
x22G(x1)

�
@~v(x)

@x
; f(x; u�)

�

= max
�2A

max
us2co ~U(x1)

n+1X
�=1

��Lsf�v(x)g = Lsf�v(x)g < 0;

x
1 6= 0 (3:9)

is negative de�nite in respect to x
1 because

 (x1; us) = min[ (x1; u) j u 2 coU ] where

 (x1; u) = max
x22G(x1)

�
@~v(x)

@x
; f(x; u)

�
:

The inequality (3.4) leads us to the conclusion

(taking into account (3.6))

[ _~v(x)]x1=0 =

"
max

u2co ~U(x1)

�
@~v(x)

@x
; f(x; u)

�#
x1=0

= L1f~v(x)g < 0; x
2 6= 0 (3:10)

It means that _~v(x) < 0, i.e. f~v(x); ~u(x1)g is S-pair

in G because ~v(x) > 0.

Note that distinctions between necessary and suf-

�cient conditions is only the equality U
� = ~U(0).

As it follows from Theorem 3.1, the �nal stage of

solving the control synthesis problem (not associated

with solution of partial di�erential inequalities (3.3),

(3.4)) is reduced according to (3.4) to a rather dif-

�cult minimax problem. This circumstance reects

essentially all features of the nonlocal stabilization

problem in the conditions of incomplete information

about the state vector. It will be noted that inequal-

ity (3.3) generates the required control ~u(x1) which

ensures asymptotic stability in respect to observable

coordinates x1 and simple stability in respect to un-

observable coordinates x2. The inequality (3.5) en-

sures satisfying limit relation x
2(t) ! 0; t ! 1 if

(3.4) is satis�ed.



Theorem 3.2. The system (2.1) is stabilizable in

the class D of controls u(x1; t) 2 U that depends on

observable variables x1 if and only if there exists a

positive de�nite in G solution v(x; t) with the in�nite

small upper limit of the partial di�erential inequal-

ity (3.1) and that of type (3.4). If ~v(x; t) is such a

solution, functions of the type (3.5) make an S-pair

of (2.1).

The proof of the Theorem 3.2 can be obtained with

the proper transformations the same way as that of

the Theorem 3.1.

If the state vector x is observable the stabilizability

criterion becomes simpler.

Theorem 3.3. System (2.1) is stabilizable when the

state vector x is observable (i.e. x1 = x) if and only

if there exists a positive de�nite in G solution v(x; t)

with the in�nite small upper limit of the partial dif-

ferential inequality

Lcfv(x; t)g =
@v(x; t)

@t
+min
u2U

�
@v(x; t)

@x
; f(x; u; t)

�
< 0;

x 6= 0; x 2 G (3:11)

If ~v(x; t) is such a solution functions of the type (3.5)

make an S-pair of (2.1).

All criteria stated above remain valid with proper

transformations for discrete control systems de-

scribed by the di�erence equations

x(s+ 1) = f(x(s); u(s); s)

if S-pairs are taken in the form

Sd = fv(x; s);u(x1; s)g

and the functional inequalities

Ldfv(x; s)g =

= min
u2U

max
x22G(x1)

[v(f(x(s); u(s); s)) � v(x; s)]

are considered instead of the partial di�erential in-

equalities.

4. CONSTRUCTIVE METHOD OF STABI-

LIZING PAIRS DESIGN

The stabilizability criteria stated above have the

Lyapunov type. Such criteria give only principal so-

lution to the problem of stabilizability. To �nd the

required control solution of nonlinear inequalities in

partial derivatives should be obtained. No general

methods to solve such inequalities are known. It

turns out that this problem can be solved with com-

puter [1,5]. As a result, a composed method of solu-

tion of these inequalities is presented in this section.

This method is based, �rstly, on solution of inequal-

ities in a suÆciently small neighborhood of the co-

ordinate origin x = 0, and, secondly, on solution of

inequalities in a region � = G n B where B is small

enough ball kxk < �. For simplicity, we consider only

a stationary system (2.7).

For suÆciently small x and u system (2.7) may be

presented in the form

_x = Ax+Bu+ : : : (4:1)

A stabilizing pair of linear system

_x = Ax+Bu (4:2)

can be chosen in the form

S = fv = x
0
Lx; u = Cx

1g; kxk � � (4:3)

if number � > 0 is small enough.

Denote by Æ the radius of a ball kxk � Æ in the

invariant domain

x
0
Lx � �; � = max

kxk��
x
0
Lx; � > 0 (4:4)

of the system _x = f(x;Cx1). In order to solve the

control design problem we have now to construct an

admissible control u(x1) in the domain

� = fx : 0 < Æ � kxk � hg; 0 <  < 1

(4:5)

that ensures motion of (2.7) from � to the ball kxk �
Æ in �nite time. Thereafter the control is switched

from u(x1) to the linear control Cx1 that assures

that the motion of the system (2.7) remains forever

in the ball kxk � Æ and also tends asymptotically

to x = 0. This means that we have to solve the

stabilization problem not for the point x = 0 but

for the ball kxk � Æ taking into account mentioned

above possibility of swithing the control from u(x1)

to Cx1.

To solve the last problem the inequalities (3.3),

(3.4) must be solved in � (4.5).

If ~v(x) is a solution of these inequalities in the

domain G = kxk � h, it will satisfy conditions

~v(x) � � > 0; _~v(x) � ��; x 2 �; (4:6)

where _~v(x) is derivative calculated by virtue of the

closed loop system (2.7) with control ~u(x1) that is

determined in accordance with (3.5).

Applying the Weierstrass theorem one can �nd

from (4.6) that there exists in � a solution of (3.3),

(3.4) in the class of polynomials of �nite degree

v(x) =

NX
s=1

�s�s(x); (4:7)

where �s(x) denote some ordered monomials

x
m1

1 x
m2

2 : : : x
mn

n ;
PN

i=1mi � mN . Of course, we



can use any other full system of functions (trigono-

metric functions for instance) instead of monomials

as basis of series (4.7).

Thus the problem of solution of (3.3), (3.4) in � is

reduced to that for inequalities

g1(�; x
1) =

min
u2U

max
x22G(x1)\�

NX
s=1

�s

�
@�s(x)

@x
; f(x; u)

�
< 0;

x
1 6= 0

g2(�; x
2) = max

x1=0;u2U�

NX
s=1

�s

�
@�s(x)

@x
; f(x; u)

�
< 0;

x
2 6= 0 (4:8)

where U� has the form (3.4a). Inequalities (4.8) do

not contain unknown functions. This feature allowes

to solve these inequalities with the aid of computer,

in particular, by using methods of mathematical pro-

gramming. If ~� represents such a solution, we will

have an S-pair in �:

S =

(
NX
s=1

~�s�s(x); ~u( ~�; x1)

)
: (4:9)

Functions (4.9) taken together with functions (4.3)

give solution of stabilization problem.

CONCLUSION

The developed method allowes to solve a nonlocal

stabilization problem in condition of incomplete in-

formation about state vector. The same approach

can be applied to nonstationary case. The only dif-

ference is consideration of �nite time intervals on

which corresponded inequalities must be solved in

the case of exponential stabilization.
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