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Abstract: This paper develops robust estimation algorithms for state-space models that are

subject to bounded parametric uncertainties. Compared with existing robust filters, the new

filters perform data regularization rather than de-regularization and they do not require existence

conditions. The resulting filter structures also turn out to be similar to various (time- and

measurement-update, prediction, and information) forms of the Kalman filter, albeit ones that

operate on corrected parameters rather than on the given nominal parameters.
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1. INTRODUCTION

A central premise in the Kalman filter theory is that the
underlying state-space model is accurate (see, e.g., [1]).
When this assumption is violated, the performance of the
filter can deteriorate significantly. This filter sensitivity to
modeling errors has led over the years to the development
of several robust filters; robust in the sense that they
attempt to limit, in certain ways, the effect of model
uncertainties on the overall filter performance. Three of
the most distinguished approaches to state-space estimation
in this regard are M filtering, set-valued estimation, and
guaranteed-cost designs.

One limitation of Ho designs for on-line (i.e., recursive)
filter operation is that they require continuous testing of
certain existence conditions (see, e.g., [2]). When a condition
fails at any particular iteration, the desired Ho perfor-
mance is lost and the filter can diverge. In addition, the
design of Ho filters requires accurate state-space models.

In robust set-valued estimation, one attempts to construct
ellipsoids around state estimates that are consistent with
the observations (see, e.g., [3,4,5]). Here again one is faced
with existence conditions that can at times be violated more
often than in a typical Hoo implementation.

1 This work was partially supported by NSF ECS-9820765.

In guaranteed-cost designs, one attempts to construct state
space estimators that lead to bounded error variances (see,
e.g., [5,6]). The results that are available in this framework
turn out to involve an observer structure that is similar
to Kalman filtering. The arguments and the derivation,
however, are limited to time-invariant quadratically-stable
nominal models and hold for steady-state operation (i.e.,
only over infinite-time horizons).

In this paper we introduce a procedure for robust state-
space estimation in the presence of modeling uncertainties.
Compared with the standard Kalman filter, which is known
to minimize the regularized residual norm at each itera-
tion, the new filters minimize the worst-possible regularized
residual norm over the class of admissible uncertainties.
In addition, the framework proposed herein distinguishes
itself from earlier robust designs in the following ways: a) it
performs data regularization rather than de-regularization.
In this way, no existence conditions are required — they are
automatically satisfied just like standard Kalman filtering,
b) it applies to finite-horizon problems and to time-variant
state-space models, c) it provides some geometric insights
into the nature of the solution, and d) it exhibits promising
performance when compared with Hoo, set-valued state
estimation, and guaranteed-cost filters.

We start our exposition by formulating a least-squares prob-
lem for uncertain data. Once this is done, we shall then focus
on the state-space estimation problem.



2. UNCERTAIN LEAST-SQUARES

As is well-known, many estimation techniques rely on solv-
ing regularized least-squares problems of the form

min [zTQz + (Az — b)TW (Az — b)] (1)

where T Qu is a regularization term with Q = QT > 0, and
W = WT > 0 is a weighting matrix. The unknown vector
z is n—dimensional, while A is N X n and bis N X 1. Both
A and b are assumed known with A called the data matrix
and b the measurement vector. The solution of (1) is

& =[Q+ATWA|~ATWb. (2)

In practice, the nominal data {A4,b} are often subject to
uncertainties. Such errors can degrade the performance
of the estimator (2) — see [7]. This motivated us to
introduce in [8] a generalization of (1) that can account
for uncertainties in {A4,b}. Thus let J(z,y) denote a cost
function of the form J(z,y) = 27 Qz + R(z,y), where

T
R(z,y) 2 <Aa:—b—|—Hy) W(Az—b+Hy)

Here H is an N Xxm known matrix and y is an m X1 unknown
perturbation vector. Comparing the expression for R(z,y)
with the term (Az — b)T W (Az — b) that appears in (1), we
see that we are representing possible sources of uncertainties
in A and b by the additional term Hy. The incorporation
of the matrix H provides the designer with the freedom to
restrict the uncertainty y to certain range spaces.

Now, while y itself is not known, we shall assume that we
know a bound on its Euclidean norm, say ||y|| < ¢(z), for
some known nonnegative function ¢(z). Observe that the
bound on y is allowed to depend on z. Consider then the
problem of solving

& = argmin max J(l'ay) (3)

z [lyll<é(z)

This statement can be interpreted as a constrained two-
player game problem, with the designer trying to pick an
estimate # that minimizes the cost while the opponent {y}
tries to maximize the cost. The game problem is constrained
since it imposes a limit (through ¢(z)) on how large (or how
damaging) the opponent can be. Observe further that the
strength of the opponent can vary with the choice of z. We
shall assume that H and ¢(z) are not identically zero, i.e.,
H # 0 and ¢(:) # 0, since if either is zero, then the game
problem (3) trivializes to the standard regularized least-
squares problem (1).

In the sequel we shall focus on the following specialization
of (3),

T
min max wTQw + ((A +8A)z — (b+ ﬁb)) w () (4)
z §A

ob

where the compact notation (-) refers to the term (A +
0A)z — (b+ 6b). Here {6A} denotes an N X n perturbation

to A, 6b denotes an N X 1 perturbation to b, and {JA, §b}
satisfy a model of the form

[64 6] = HA[E. B (5)

where A is an arbitrary contraction, ||A|| < 1, and
{H, Eq, E}} are known quantities of appropriate dimensions
(e.g., Ep is a column vector). Perturbation models of this
form are common in robust filtering and control and can
arise from tolerance specifications on physical parameters.
In order to verify that (4) is a special case of (3), simply let
y = A(Egz — Ep) and ¢(z) = ||Eqz — Ep||. One can also
handle the case in which the uncertainties {§ A, db} in (4) are
bounded, say ||0A|| < n and ||db]| < 7 for some nonnegative
scalars {n,7p}, instead of (5). In this case, problem (4)
would be a special case of (3) with the choices H = I and

¢(z) = nllz|| + 7.

2.1 Solution

Let A be a nonnegative scalar parameter and define the
following functions of A:
A T tor
W) =W +WH(X - HTWH) ' HTW (6)
A
Q) = Q +\E] Eq (7)
-1
A
z(\) = [Q(A)+ATW(A)A] [ATW(A)b+ AET B|  (8)

G 22T (NQz(N) + M| Baz(A) — B> +
+ [Az(A) — bITW(N)[Az(}) — b] 9)

where the notation X! denotes the pseudo-inverse of X.
The following result is from [8].

THEOREM Let

A= arg min G(N). (10)
AZ[|HTWH]|

Then problem (4)—(5) has a unique solution & that is given
by

2=[Q+ATWA]" [ATWb+ AELE,] =2(}) (1)
where

+AETE, = Q()), (12
+WHQAI - HY'WHHTW =w(}). (13

T 0

We shall denote the lower bound on A in (10) by A\; =
||HTW H||. Then note that W () > 0 for any A € [)\;, 00),
so that G(A) is nonnegative for all such A. The function
G(A) can also be shown to have a unique global minimum
in the interval (A;, o0).

Compared with the solution (2) of the standard regularized
least-squares problem (1), we see that the expression for &



in (11) is distinct in two important ways: a) the weighting
matrices {Q, W} need to be replaced by corrected versions
{@, V?’} and b) the right-hand side of (11) contains an
additional term that is equal to S\Eg Ey. This means that,
with X given, the #in (11) can be interpreted as the solution
to a regularized least-squares problem with cross-coupling
between z and unity.

Finally, we should mention that in the state-space context
further ahead, the matrix W will be positive-definite so that
W(X) itself will always be positive-definite. Therefore, if
we restrict the minimization in (10) to the open interval
(Az,00), then the pseudo-inverse operation in (6) can be
replaced by the normal matrix inversion, so that

w iy =w-t - x1HHT. (14)

3. THE KALMAN FILTER

Our objective now is to describe one way to incorporate the
uncertain least-squares formulation into a Kalman filtering
context. We start by reviewing the standard Kalman filter.
Thus consider a state-space description of the form

zi11 = Fyz; + Giug, 120, (15)
yi = Hiz; + v;, (16)

where {zo,u;,v;} are uncorrelated zero-mean random vari-
ables with variances

T

o zo IIp, 0 0
E u; uj = 0 Qid;; O (17)
v; vj 0 0 R;d;;

that satisfy IIp > 0, R; > 0, and Q; > 0.

The Kalman filter provides the optimal linear least-mean-
squares estimate of the state variable given prior observa-
tions. More specifically, introduce the following predicted
and filtered estimates:

A . .
Z; =1.L.m.s. estimate of z; given {yo,...,yi—1}

. A . .
#;; = 1.l.m.s. estimate of z; given {yo,...,yi}

and the corresponding error variances P; and P;;, respec-
tively. Then {&;,%;;} can be constructed recursively as
follows (see, e.g., [1]):

Zip1 = Fify;, 120 (18)
&iq1ji41 = Bit1 + Py HE L R e (19)
€it+1 =Yi+1 — Hit1Zip1 (20)
Piy1 = FiP;FT + GiQ;GT (21)
Piy1)i41=Piy1 — PipiH R T Hip1Pia (22)
Reit1=Rit1+ Hip1 P HY (23)

with initial conditions

&0j0 = Pojg Ho Ry 'yo, Pojo = (g + HG Ry ' Ho)™*

Equations (18)—(23) are known collectively as the time-
and measurement-update form of the Kalman filter. It can

be further seen from these equations that the following
prediction form of the Kalman filter also holds:

Bi11 = Fid; + KiR le;

e,i €11

Piy1 = FiPF + GiQ:G] — KiR_ ;K] (25)

£0=0 (24)

K;=F;P,HT, Py =1I,. (26)

3.1 A Deterministic Interpretation

Each step (18)—(23) of the time- and measurement-update
form of the Kalman filter admits a useful deterministic
interpretation as the solution to a regularized least-squares
problem, as we shall now explain (a related simplified
discussion can be found in [9]). This interpretation will
suggest a robust extension that will enable us to employ
the result of the earlier Theorem.

Given {#;;, P;; > 0,yi+1}, consider the problem of esti-
mating z; again, along with u;, by solving

min (l‘z - jili)TP“—il(') + u?Q;luri— (27)
{=iu;} (Yit1 — Hi+1-’13i+1)TRi_+11(')
If we make the substitution z;11 = Fiz; + G;u;, then the

cost in (27) reduces to a regularized least-squares cost of
the form (1) with the identifications

z — col{z; — &;)5, ui}y, b+— yiy1 — Hip1Fi#y);
A<—Hi+1 [Fi Gz] ) Q(_ (P,;‘_il@Qi_IL W<_Ri_+11

We shall denote the minimizing arguments of (27) by #;;41
and 4;|;41. From the solution (2) of any such regularized
least-squares problem, we obtain that £;;41 and 4;);41 can
be determined by solving

Pz'_ul + Fr oL p-l g Eilip1 — Bi|s
Qi_l G:T ivi R Hipr [-] Bijig1

T
F; T -1 N
= I:GZT] Hit1 Ry (!Ii+1 - Hi+1Fi2iu)

i

If we now define the quantities (in agreement with the state-
space constraint (15)):

R A R LA
Zit1)i41 = FiZyi01 + Gillgir1, Zip1 = FiZyg,

as well as Piy1 = FiP;FT + G;Q;GY, then the above
equations collapse to the time- and measurement-update
form (18)—(23) of the Kalman filter.

4. ROBUST STATE-SPACE ESTIMATION

Consider now an uncertain state-space model of the form

Tit1 = (F; +0F)zi + (Gi +0Gi)u, >0, (28)
yi = Hiz; + vi, (29)
[0F; 6Gi | = M;A; [ By By | (30)

for some known matrices {M;, E¢,;, Eq4 ;} and for an arbi-
trary contraction A;, ||A;|| < 1. Observe that for generality



we are allowing the quantities {M;, E ;, Eg,;} to vary with
time. Also, due to space limitations, we shall explain how
to handle uncertainties in H; elsewhere.

Now assume that at step ¢ we are given an a priori estimate
for z;, say #;);, and a positive-definite weighting matrix P;);.
Using y;+1, we propose to update the estimate of z; from
ii|i to ii|i+1 by SOlVil‘lg

(mi — &:3)" P, Wi ) +ulQt

max (31)
(yi+1 — Hit1Tit1) Ri+11( ) )

min (
{ziui} oF;
aG;

subject to (28)—(30). This problem can be seen to be the
robust version of (27) in the same way that (4)—(5) is
the robust version of (1). Now (31) can be written more
compactly in the form (4)-(5) with the identifications:

z <— col{z; — 2314 ui}, b— yiy1— Hit1Fi%;; (32

0A +— Hi+1MiAi [Ef,i Eg,i :| (33
06— —Hita M;AiEy %y, Q «— (P, ‘o) (

1
W<—Rl+1,

H<+— Hi11M;, Eg <— (
By« ~Epidi; A Di, Ae— Hipr [Fi Gy (36

)
)
34)
[Efi Egil(35)

)

According to our earlier Theorem, the solution {&;; 1, %iji+1}

is then found by solving the system of equations:

(Q+ATWA) 2 = (ATWb+ NETE,)  (37)

where 2
SET B, \ET.E. .
a_ Pt|z —f_)‘”Evf,iE‘fsz TZE)i,iEQa't (38)
NEj By, Q; '+ AELE,,
oA S $-1 T \~1
W 2R = (Ripa — X\ " Hipa M;MTHE ) (39)

Moreover, A; is the minimizing argument in the interval

N> ||MIHE (R} Hipa M; =R (40)
of the corresponding scalar-valued function G(A) in (9) con-
structed with the identifications (32)—(36). [The expression
for G(A) is of course time-dependent. However, for simplic-
ity of notation, we have not indicated this time-dependence
explicitly.]

Now substituting (38)—(39) into (37), we can solve for
{&i|i+1,Us)i+1} and obtain, after some algebra, the time-
and measurement-update robust algorithm listed in Ta-
ble 1. The major step in the algorithm is step 3, which
consists of recursions that are very similar in nature to the
time- and measurement-update form of the Kalman filter
(cf. Equations (18)—(23)). The main difference is that the
new recursions operate on modified parameters rather than
on the given nominal values Note further from the listing
in Table 1 that Q '>Q;'and Rit1 < Riy1.

2 Without much loss in generality, we are considering here
the scenario described at the end of Sec. 2.1, viz., that the
minimization of G(A) is performed over the open interval
(A1,5,00) defined in (40).

Assumed uncertain_model: Eqgs. (28)-(30).

Initial conditions

X -1 -1 -1 -1
$0|0 = PolngRO Yo, P0|0 = (HO + HgRO HO)

Step 1. If Hi;1M; = 0, then set \; = 0. Otherwise,

determine A; by minimizing G()) over the interval
()\l’i,oo).

Step 2. Compute the corrected parameters:

~ I . -1
Q' = Qi + N [1+ MiBpi Py BT By
§i+1 = R,,+1 - A HH—IM M H1,+1

—~ -1

Py = ( i+ NEL By )
5o — PiiEf ;A7 T+ By i Py EY )" Ef i Py

Gi=G; — AiF; i\iEf,,;Eg,i

F; — \iGiQiEL ;Ey;)(I

~

Fy = ( - f\iP“,-E}':iEf’,-)

~

If \; = 0, then simply set @ Qi, Riy1 = Rija,

Zl'L_ L|zaG = Gy, and F, F;.

Step 3. Now compute:

Bip1 = Fidy);
i+1]i+1 i+1 i+1)i+1 140 €1
€i+1 = Yi+1 — Hip1Zi41
Py = FiPFy + GiQiG;
Piy1jiv1 = Piy1 = Pt H RO Gy Hipa Piga
Reit1=Rig1+ Hip1Pi HY

Table 1: Listing of the proposed robust filtering algorithm in
time- and measurement-update form.

Some simple algebra will show that the recursions of Table 1
can be manipulated into an alternative so-called prediction
form, which propagates the quantities {Z;, P;} directly, as
shown in Table 2. We should remark that the recursion for
P; in the table is not a standard Riccati recursion since the
product GiQiGtT is also dependent on P;.

When the F; are invertible, the robust algorithm can also be
rewritten in an alternative so-called information form that
propagates the inverses of the matrices P;|; rather than the
matrices themselves. The recursions are shown in Table 3.

4.1 Two Special Cases

The recursions in all forms can be further simplified in two
special cases: Eg; = 0 (i.e., no uncertainty in G;) and
E}":,-Eg,i = 0 (i.e., the uncertainty in G; is orthogonal to
that in F;). In the first case (Eg4,; = 0), it is easy to see that
we get Q; = Qi, G; = Gi, and F; = Fy(I — j\iPWE;{:iEf,i).
In the second case (E}"’iEQ,i = 0), we obtain the same

simplifications for {@, E} while @,- becomes



-1

Qi= (Q{1 +NETE ,i)

In both cases, the recursion for P; in Table 2 now becomes
a standard Riccati recursion.

Assumed uncertain model. Same as in Table 1.

Initial conditions: #o = 0, Py = Iy, and Rg = Ro.
Step 1la. Using {ﬁi,Hi,Pi} compute F;;:
Pyi= (P '+ HIR;'H;)~
=P, — P,H;:I‘(j'il + HiPng')ilH,;Pi

Step 1b. Determine the optimal scalar parameter j\l as
in step 1 of Table 1.

Step 2. Same as in Table 1.
Step 3. Now update {&;, P;} to {Z;41, Pi+1} as follows:
Biy1=Fibi + RRHT R e
ei =y — HiZ;
Piy1=F,PFT - fiﬁ;:f? + azaza?
Re;=1+H;PH,

[Hgvﬁi—q'/z \/;\_zE}:z] .

— —T
K;=F;PH, ,

=T
where H; =

Table 2: Listing of the proposed robust filtering algorithm in
prediction form.

Assumed uncertain model. Same as in Table 1 with the
additional assumption that F; is invertible.

Initial conditions:

0\0m0|0 = HJ Ry yo, Po—lo1 =1;" + HJ Ry Ho.
Steps 1 and 2. Same as in Table 1.
Step 3. Compute:

1 N _
Pz’+1|i+1zi+1|i+1 =

1
+ I:(Pz+1\z+1

T p-1
Hi+1Ri+1yi+1 +

T p—1 —1a
i+1Ri+1Hi+1)FPIz] ii Lili

— TH—1 70— 1 T
PZJFWr1 FyTP'F; —K,,ER KX+
+ H,L+1RH_1H1+1
K, ;=F; TP 1F 1G;

il
R,i=Q;'+GFF TP 'F G,

ilé

Table 3: Listing of the proposed robust filtering algorithm in
information form.

4.2 Suboptimal Implementations

The algorithms of Tables 1-3 require, at each iteration
i, the minimization of G(X) over (A\;;,00). It turns out
that a reasonable approximation that avoids these repeated
minimizations is to choose

Ai = (1 +a)/\l’i. (41)

That is, we set \; at a multiple of the lower bound — if
the lower bound is zero, we set 3\2- to zero and replace 5\1._1
by :\I (which is also zero). The parameter o could be made
time-variant; it serves as a “tuning” parameter that can
be adjusted by the designer. In our simulations, we have
observed that this approximation leads to good results.

4.3 Steady-State Results

It can be verified that in the time-invariant case, with
E;;"Eg = 0, and under a detectability assumption on {F, H}

and a stabilizability assumption on {F, Gal/ 2}, the above
suboptimal filters provide stable steady-state performance
for any IIp > 0 and o > 0. In addition, with uncertainties
only in F, if the nominal model is quadratically stable, then
the extended estimator-error system can be shown to also
be quadratically stable, and the variance of the estimation
error can be shown to be bounded. Details will be provided
elsewhere.

5. SIMULATION RESULTS

We consider the following example from [5]: R =1 and

0 0.9802 01
0.0198 1.9608 0.0195
M_[ 0 :|’E _[05]’Q_[0.0195 1.9605]'

We also use IIp = I and Zgo = 0. These values describe a
quadratically-stable time-invariant model of the form

P [0.9802 0.0196] . [1 0] H-[1-1],

Tiy1 = (F + MAiEf).’Z)i +u;, yi = Hz; +v;.

[We are simulating a time-invariant nominal model in order
to be able to compare with guaranteed-cost filters [5,6],
which are only available for steady-state operation.]

In the results shown here, each point in each curve is
the average over 500 experiments. Each experiment j fixes
A at a random value between -1 and 1 and generates
1000-long random measurements {y;}. The data is then
filtered by a partlcular algorithm leading to an estimated
trajectory {Z; G) } for the experiment j. At the end of the
500 experiments, we have 500 such trajectories (of length
1000 points each) for each algorithm and we can use them to
approximate the actual error variance curve by computing
the ensemble-average. Figure 1 shows the resulting curves.
[We don’t show a curve for the robust set-valued estimation
algorithm since it exhibited poor performance and suffered
from divergence problems.] In our simulations, we used the
approximation of Sec. 4.2 with o = 0.5.

The top part of the figure highlights the degradation in
performance by the Kalman filter due to modeling errors



(approx. 4dB relative to an optimal implementation that
uses the actual model). It is of course not hard to find
other examples where the performance of the Kalman filter
is significantly worse. [Try using M = co0l{0.1980, 0}.] The
plots in the middle row compare the performance of the
proposed filter to that of optimized guaranteed-cost designs
from [5,6]. In this example, the new filter shows better
transient performance.

The plots in the last row of Fig. 1 compare the performance
of the new robust filter with that of an H, filter. While the
leftmost plot suggests a good performance by the Hoo filter,
this result is actually a bit deceiving; if the H o is allowed
to run for a longer period of time, the existence conditions
will be violated (starting at iteration 1541) and divergence
occurs (as shown in the bottom rightmost plot of Fig. 1).
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Fig. 1. Error variance curves for different filters with
A selected uniformly within [—1,1].

Figure 2 shows the resulting variance curves when A is
chosen from within the interval [—1,0]. We see that for this
case the new filter exhibits the best performance among
the robust filters. We also see that the performance of
the Kalman filter is comparable to, or even better than,
the other filters. We should remember that robust filters
are by design well-suited for worst-case scenarios. Hence,
their performance will not be superior to non-robust (e.g.,
Kalman) filters for all possible uncertainties. There will be
situations in which non-robust filters will perform better.
The purpose of a robust filter should be twofold. On one
hand, it avoids degradation in performance under worst-
case conditions and, on the other hand, it should exhibit a
performance that is comparable to that of non-robust filters
under “normal” operating conditions.
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Fig. 2. Error variance curves for different filters with
A selected uniformly within [—1, 0].
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