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Abstract. An easy applicable regulator design for stable Linear Time Invariant (LTI)
systems with positive controls is presented. The synthesis algorithm is derived on the
basis of Lyapunov stability theory and quadratic performance measures. The synthesis
algorithm is given as a convex optimization routine, a set of Linear Matrix Inequality
(LMI) conditions together with the maximization of some variables. Performance im-
provement with respect to the open loop system will be attained, if the loop is closed
with the a priori imposed static state feedback control law, u = max(0, Fx), of which
the feedback matrix F has to be determined. Examples are given that illustrate the
applicability of the derived synthesis algorithms. More specifically, the examples show
that costs, i.e. output energy can be reduced and significant disturbance reduction can
be achieved.
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1. INTRODUCTION

This paper focusses on the regulator problem for
single input LTI stable systems with a positivity
constraint on the control variable. In particular
the control corresponding to the equilibrium po-
sition belongs to the boundary of the control set.
This makes the control problem more difficult since
it is not possible to design controllers that never
reach the bound imposed by the constraint. This
in contrast to constrained controller designs where
the equilibrium point is an interior point of the
constrained set.

Control system design that can explicitly deal with
a positivity constraint on the input is of great in-
terest. Not in the last place because positivity
constraints often arise quite naturally in industrial
practice. One could think of mechanical systems
subjected to a unilateral force, regulation of chemi-
cal processes with one-way valves, population con-
trol [6], control of product chains for sustainable
production (recycling rates), economic stabiliza-
tion policy (investments and taxes), to mention a
few.

In this paper simple control laws will be derived
that fulfil pre-imposed performance requirements,
and assure stability of the closed loop system via
a quadratic Lyapunov function, for the a pri-
ori chosen static state feedback control law u =
max(0, Fx). More specific, output energy can be
reduced and significant disturbance reduction can
be achieved compared to the open-loop system for
a suitably chosen F . Examples illustrate the theo-
retically derived results.

2. PROBLEM STATEMENT

Consider the following single-input LTI system

Σ :
{

ẋ = Ax+ bu+Bww
z = Cx+ du+Dww

(1)

interconnected with a given positive feedback con-
troller, with unknown F

CΣ : u = max(0, Fx) (2)

where the state x ∈ X ⊆ R
n is assumed to be

available for feedback, the input u ∈ R+, the to
be controlled variable z ∈ R

p, the disturbance or
exogeneous input w ∈ R

m that can not be manupu-



lated, and A,b,Bw,C,d,Dw,F matrices of appropri-
ate dimensions. X ⊇ 0, is assumed to be a con-
vex set such that x = 0 is an equilibrium point of
the closed loop system Σc, i.e. Σ interconnected
with CΣ. The a priori imposed control law was
suggested in [4], where stabilizability of open loop
unstable LTI systems is studied. The closed loop
system system is well-posed, i.e. the existence of a
unique non-sliding solution is assured globally for
the closed loop system [5]. The setup of the control
configuration is shown in Fig. 1.

Σ

u = max(0, Fx)

w z

u x

Fig.1. The general control system setup with the
a priori imposed positive control law.

The objective is to stabilize the origin and to im-
prove performance of the closed-loop positive con-
trol system in comparison to the autonomous sys-
tem, i.e. (1) with u = 0. Performance will be speci-
fied on the channel w → z, or performance require-
ments will be imposed on the controlled variables
z.

The closed-loop system, Σc can be rewritten as

Σc :




ẋ = Ax+Bww
z = Cx+Dww

if Fx ≤ 0
ẋ = (A+ bF )x+Bww
z = (C + dF )x+Dww

if Fx ≥ 0
(3)

This leads to the following observations. First of all
we deal with a switching system were the switch-
ing region, the halfspaces X� = {x | Fx � 0},
�∈ {≤,≥} depend on F , the static state feedback
gain, to be determined by the synthesis algorithm.
This in contrast with the usual problem formula-
tion from the field of hybrid systems, where it is
assumed that the switch regions are fixed [8]. A
second difficulty of this control system is that the
control u = 0, corresponding to the equilibrium po-
sition x = 0, corresponds to the boundary of the
control set U = {u | u = max(0, Fx) ≥ 0}. There-
fore in contrast to constrained controller designs
where the equilibrium point is an interior point of
the constrained set U , i.e. U = {u | ‖u(x)‖ ≤ 1},
we expect that in a neighbourhood of u = 0 the
constraint U = {u | u ≥ 0} is important [9].

A desirable property of the closed-loop system is,
that controller design based on quadratic perfor-
mance measures on the variables w and z, can be

automated and outperforms the open loop system.
This tractable objective, together with the fact
that the a priori imposed control structure leaves
the closed-loop well posed, makes the particular
choice for the positive control structure clear.

3. CONTROLLER SYNTHESIS

As a first result, a sufficient condition for posi-
tive stabilizability, will be derived. From a control
point of view, these conditions may not seem to
be very interesting since the system Σ is already
assumed to be stable (the control law u = 0 sta-
bilizes the system), but they illustrate the trans-
formations that are involved in ariving at LMIs
for the quadratic performance problems that are of
interest. Furthermore it is a well known fact that
switching between stable systems, (3) may produce
an unstable system [7]. The positive stabilizability
conditions parametrize the family of positive con-
trollers (2) that quadratically stabilize the system
(3).

After the derivation of quadratic stabilizability
conditions, controller synthesis algorithms will be
derived based on performance measures that in-
volve the variables w and z. An algorithm will be
derived that computes a controller that minimizes
the ‘energy’ of the controlled variable z. Also an
algorithm will be proposed that computes a con-
troller, that minimizes (a popular measure of) the
influence of the exogeneous input w on the con-
trolled variable z.

As a first step the state-spaceX will be constrained
by Xa = {x | |Fx| ≤ a} where a ∈ R+ will be
chosen sufficiently large, i.e. such that Xa covers
at least the region of interest. Then the halfspaces
X� change into the slabsX≤ = {x | −a ≤ Fx ≤ 0}
and X≥ = {x | 0 ≤ Fx ≤ a}. Furthermore to ar-
rive at the synthesis inequalities it is neccesary to
replace these connected slabs by slabs that do not
contain the origin, and therefore are not overlap-
ping but their distance is small, X≤ = {x | −a ≤
Fx ≤ −ε} and X≥ = {x | ε ≤ Fx ≤ a} where ε >
0 can be chosen arbitrarily small. These regions
can then also in a non conservative way described
by ellipsoids, i.e. X≤ = {x | −a ≤ Fx ≤ −ε} ⇔
{x | ‖ξFx+ τ‖2 ≤ 1} and X≥ = {x | ε ≤ Fx ≤ a}
⇔ {x | ‖ξFx− τ‖2 ≤ 1} with ξ = 2/(−ε+ a) and
τ = −(ε + a)/(ε − a). The closed-loop system to
study then becomes

Σc :




ẋ = Ax+Bww
z = Cx+Dww

if ‖ξFx+ τ‖2 ≤ 1
ẋ = (A+ bF )x+Bww
z = (C + dF )x+Dww

if ‖ξFx− τ‖2 ≤ 1
(4)



3.1. Quadratic Stabilizability

To analyse quadratic stabilizability, we consider
the state equation of (4) without exogeneous in-
put w i.e.,

ẋ = Ax if ‖ξFx+ τ‖2 ≤ 1
ẋ = (A+ bF )x if ‖ξFx− τ‖2 ≤ 1 (5)

and investigate stabilizability. This means we in-
vestigate whether all trajectories converge to Xε =
{x | |Fx| ≤ ε} and finally since we deal with
a stable system the control input can always be
chosen such that all trajectories converge to zero
as t → ∞. This means asymptotic stability of
the closed loop system. A sufficient condition for
asymptotic stability of the positive control system
is therefore a quadratic stabilizability condition,
i.e. the existence of a quadratic function

V (x) = xTPx, P = PT > 0 (6)

that decreases along every nonzero trajectory of
the closed loop system (5). Since d

dtV (x) =
xT {ATP+PA}x if ‖ξFx+ τ‖2 ≤ 1 and d

dtV (x) =
xT {(A+ bF )TP +P (A+ bF )}x if ‖ξFx− τ‖2 ≤ 1
a sufficient condition for stabilizability can be ob-
tained by introducing the S-method, see e.g. [2].
The condition for stability thus requires the exis-
tence of a positive definite matrix P > 0, parame-
ters λ1 ≤ 0, λ2 ≤ 0, and a feedback matrix F such
that[

ATP + PA+ λ1ξ
2FTF λ1ξτF

T

λ1ξτF −λ1(1− τ2)

]
< 0

(7)
and[

AT
clP + PAcl + λ2ξ

2FTF −λ2ξτF
T

−λ2ξτF −λ2(1− τ2)

]
< 0

(8)
with Acl = A+ bF . These conditions are not con-
vex in the free variables, but after applying stan-
dard LMI results, i.e. taking the Schur comple-
ment of (7,8) followed by a congruence transforma-
tion with Q = P−1, again followed by a change of
variables FQ = Y , and once more the Schur com-
plement as in [3], the following equivalent require-
ments to (7,8) are obtained, namely there should
exist a positive definite matrix Q > 0, parameters
µ1 ≤ 0, µ2 ≤ 0, and a matrix Y such that[

QAT +AQ ξY T

ξY −µ1(1− τ2)

]
< 0 (9)

and[
QAT +AQ+ Y T bT + bY ξY T

ξY −µ2(1− τ2)

]
< 0

(10)
Hence we arrived at stability conditions in terms
of LMIs. If a solution to (7,8) exists, then a

stabilizing controller can be computed as u =
max(0, Y Q−1x) and V (x) = xTQ−1x is a Lya-
punov function for the system. Stability is assured
for the regions {x | V (x) ≤ c} ⊆ Xa where c > 0
a constant, since the regions {x | V (x) ≤ c} are
(controlled) invariant sets for the closed loop sys-
tem.

For the transformation from (7,8) to (9,10) to
be possible it is neccesary that τ2 > 1. This
is achieved by constraining the state-space and
choosing slabs that do not contain the origin. Fur-
thermore, we succeeded in arriving at LMI condi-
tions by converting the feedback matrix F in a non
conservative way from the switch region into the
LMI formulation. Because a quadratic Lyapunov
function candidate is used only closed-loop stabil-
ity of open-loop stable systems can be proved. This
can be seen from (9). For this LMI to be negative
definite the (1, 1) block has to be negative which
means that A has to be Hurwitz. Furthermore it
can be seen that the derivative condition on the
candidate Lyapunov function for the regime where
u = 0 (9), depends on the control vatiable Y . This
is a desired property because the control variable
can be chosen in such a way that it influences the
closed loop dynamics of the system positively.

Introducing more sophisticated candidate Lya-
punov functions, e.g. piecewise quadratic func-
tions, will by our present knowledge not lead to
LMI conditions. However more sophisticated can-
didate Lyapunov functions are needed to prove
positive stabilizability for systems that are open-
loop unstable. Another possibility is of course to
use a different feedback strategy. We think that
both approaches could be fruitful in proving posi-
tive stabilizability for more general system descrip-
tions but at the cost of more computationally ex-
pensive algorithms. The transformation from (7,8)
to the finally obtained LMIs (9,10) in the new vari-
ables makes it possible to synthesize several con-
trollers based on quadratic performance analysis.

3.2. Minimizing the Output Energy
Given (4) with Bw = Dw = 0. A positive con-
troller u = max(0, Y Q−1x), that reduces the out-
put energy L(x0, x, u) =

∫ ∞
t=0

z(t)T z(t)dt, with ini-
tial condition x0 = x(0) contained in a symmetric
set around x0 = 0 with respect to the system with-
out controls can be obtained as a solution of the
minimization of trace(Z), with Z a slack variable,
subject to a positive definite matrix Q > 0, param-
eters µ1 ≤ 0, µ2 ≤ 0, and a matrix Y such that


 QAT +AQ ξY T QCT

ξY −µ1(1− τ2) 0
CQ 0 −I


 < 0, (11)




 M ξY T QCT + Y T dT

ξY −µ2(1− τ2) 0
CQ+ dY 0 −I


 < 0

(12)
and [

Z I
I Q

]
> 0 (13)

with M = QAT +AQ+ Y T bT + bY . Furthermore
Vu(x) = xTQ−1x is a Lyapunov function for the
system and Vu(x0) is the smallest upperbound for
L(x0, x, u) that can be obtained using quadratic
Lyapunov functions.
Also a lowerbound for the cost L(x0, x, u) can
be computed by maximizing traceP subject to
P > 0, λ1 ≤ 0, λ2 ≤ 0 and[ −L+ λ1ξ

2FTF λ1ξτF
T

λ1ξτF −λ1(1− τ2)

]
< 0 (14)

and[ −Lcl + λ2ξ
2FTF −λ2ξτF

T

−λ2ξτF −λ2(1− τ2)

]
< 0 (15)

with L = ATP + PA + CTC, Lcl = Acl
TP +

PAcl + CT
clCcl, Acl = A + bF , Ccl = C + dF

and with F = Y Q−1 obtained from the syn-
thesis problem above. Furthermore Vl(x0) =
xT

0 Px0 is the largest lowerbound for the out-
put energy L(x0, x,max(0, Y Q−1x)) that can be
obtained using quadratic Lyapunov functions
and the suggested feedback. So Vl(x0) ≤
L(x0, x,max(0, Y Q−1x)) ≤ Vu(x0). Further-
more the cost L(x0, x, 0) associated with the au-
tonomous system, Va(x0) = xT

0 Px0 can be com-
puted exactly with the solution P of ATP +PA+
CTC = 0. The minimal cost L(x0, x,KLQR(P )x)
which is associated with a linear quadratic reg-
ulator (LQR), VLQR(x0) = xT

0 Px0 can be com-
puted with the solution P of the matrix Ri-
catti equation ATP + PA + CTC − (PB +
CT d)(dT d)−1(BTP + dTC) = 0. This means that
VLQR(x0) ≤ L(x0, x,max(0, Y Q−1x)) ≤ Va(x0)
also holds. Of course, since we restrict ourselves
to positive controls, serious performance degrada-
tion can occur for certain initial conditions com-
pared to the optimal LQR design. However we
can do at least as good as the autonomous sys-
tem. Furthermore there are always initial con-
ditions for which we can do better then the au-
tonomous system. By comparing the bounds
VLQR(x0), Vl(x0), Vu(x0), Va(x0) with each other,
following the analysis presented in [1], it is possi-
ble to relate performance accuracy, e.g. minimal or
maximal costs L(x0, x,max(0, Y Q−1x)), to regions
in the state-space without doing simulations.

A slightly modified version of this performance
problem for which the cross term 2xTCT du is omit-
ted in the costfunction is given in the Appendix.

3.3. Disturbance Reduction
The next objective is to compute a feedback that
minimizes the influence of the disturbance w on
the output z as much as possible. The inten-
tion is to improve performance of the closed-loop
positive control system with respect to the sys-
tem without controls. Formally a positive con-
troller, (2), will be computed that reduces γ sub-
ject to sup‖w‖2 �=0

‖z‖2
‖w‖2

< γ and (4) with respect

to the system without controls. Here ‖y‖2
2 =∫ ∞

0
y(t)T y(t)dt, w is assumed to be Lebesgue in-

tegrable. The gain sup‖w‖2 �=0
‖z‖2
‖w‖2

is known as
the L2 induced gain of the system and is in the
case of a LTI system equal to the H∞ norm of
its transfer function. The solution to this problem
can be obtained by the minimization of γ subject
to Q > 0, µ1 ≤ 0, µ2 ≤ 0, and a matrix Y such that




QAT +AQ ∗ ∗ ∗
ξY −µ1(1− τ2) ∗ ∗
CQ 0 −I ∗

BT
w +DT

wCQ 0 0 N


 < 0

(16)
and



M ∗ ∗ ∗
ξY −µ2(1− τ2) ∗ ∗

CQ+ dY 0 −I ∗
O 0 0 N


 < 0 (17)

with M = QAT +AQ+ Y T bT + bY , N = −Iγ2 +
DT

wDw and O = BT
w +DT

wCQ+DT
wdY . The ∗ el-

ements follow from the symmetry of the matrices.

4. EXAMPLES

Consider a LTI mechanical oscillator (1) with A =[
0 1
−1 −0.4

]
and b = [0 1]T and suppose that

we have to stabilize it applying a force in only one
direction, i.e. u ≥ 0. We suggest the positive con-
troller (2) with feedback matrix F unknown. Fur-
thermore we want to impose performance require-
ments on the variables w and z. The exogeneous
inputs w and the controlled variables z will be spec-
ified later as a result of the specific control problem
formulation.

The slabs X≤ = {x | −a ≤ Fx ≤ −ε} and
X≥ = {x | ε ≤ Fx ≤ a} are parametrized
with a = 100 and ε = 0.0001. The exam-
ples were evaluated in matlab with the devel-
oped positive control algorithms. Typically the
function [F,Q] = H2 pos(A, b, CTC, dT d, 2CT d)
computes the controller parameters that mini-
mizes the output energy. The function [F,Q, γ] =



H inf pos(A, b,BwC, d,Dw) computes the con-
troller parameters that maximizes disturbance re-
duction.

4.1. Minimizing the Output Energy

The objective in this example is to compute
a positive controller that minimizes the energy
L(x0, x, u) as defined in the Appendix. with

CTC =
[
10 0
0 10

]
and dT d = 1. As a solu-

tion to the quadratic performance problem, the
minimization of the output energy we obtain:

Q =
[
0.0385 −0.0077
−0.0077 0.0415

]
and F = Y Q−1 =

[−0.2543 −1.2714]. In Fig. 2 and Fig. 3 simu-
lation results are shown for the initial condition
x0 = [0.7 −0.7]T . They illustrate the perfor-
mance improvement of the positive control sys-
tem with respect to the autonomous sytem.More
specifically, in Fig. 2 the open-loop system re-
sponse versus the closed-loop system response is
depicted. The costs associated with these trajecto-
ries are L(x0, x, u = 0) = 21 for the open-loop sys-
tem, and L(x0, x, u = max(0, Fx)) = 5.64 for the
closed-loop positive control system. Also the corre-
sponding positive control is shown. The costs asso-
ciated with an optimal LQR design without unilat-
eral control constraint equals L(x0, x, u = KLQRx)
= 5.47. In Fig. 3 the open-loop versus closed-
loop trajectory in the phase space is shown for the
same initial condition. Also the computed switch
line Fx = 0, is shown in this picture. The region
above this line corresponds to u = 0. Also, the el-
liptical level curves from the quadratic Lyapunov
(energy) function, i.e., the controlled invariant sets
are shown. Energy decreases along every nonzero
trajectory of the closed loop system.
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Fig.2. Open-loop system response versus closed-
loop system response.
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Fig.3. Open-loop versus closed-loop trajectory in
the phase space.

4.2. Disturbance Reduction

In this example the objective is to minimize the in-
fluence of w on z, i.e. the L2 induced gain. There-
fore we consider again the mechanical oscillator but
with disturbance input matrix Bw = [0 1]T , and
output function C = [1 0], d = 0, and Dw = 0.
For the simulation examples the disturbance in-
put is chosen as w = sin(w0t). Here the fre-
quency of the disturbance input is chosen w0 = 1
which is equal to the eigen-frequency of the open-
loop oscillator system. As a solution to this prob-
lem, the minimization of the influence of w on

z, we obtain: Q =
[
0.4002 −0.0802
−0.0802 0.4003

]
and

F = Y Q−1 = [−0.1950 −0.9734]. Fig. 4and Fig.
5 illustrate performance improvement of the posi-
tive control system with respect to the autonomous
sytem. The L2 induced gain of the open-loop sys-
tem, which in this case equals the H∞ norm, can
also be obtained from Fig. 4 as the maximum am-
plitude of the response.
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Fig.4. Simulation example showing significant dis-
turbance reduction of the positive control system
compared to the autonomous system.
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Fig.5. Approximate L2 induced gain obtained from
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5. CONCLUSIONS

State feedback synthesis algorithms are derived for
single input LTI systems with positive controls.
These algorithms are based on Lyapunov stabil-
ity theory and performance considerations. The
examples show that the closed loop system out-
performs the open-loop system.

Extensions are possible in several directions, in
general performance improvement can be ob-
tained for performance criteria that are based on
quadratic functions of the exogenous inputs and
controlled variables (outputs). Also the synthesis
inequalities for dynamic state feedback, and ob-
servers can be derived. This to deal with situations
for which the state isn’t accessible.
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APPENDIX: Minimizing the output energy
without cross-term

Given (4) withBw = Dw = 0. A positive controller
u = max(0, Y Q−1x) that reduces the output en-
ergy L(x0, x, u) =

∫ ∞
t=0
(zT z − 2xTCT du)dt, with

initial condition x0 = x(0) contained in a symmet-
ric set around x0 = 0 with respect to the system
without controls can be obtained as the solution of
the minimization of trace(Z) subject to a positive
definite matrix Q > 0, parameters µ1 ≤ 0, µ2 ≤ 0,
and
 QAT +AQ ξY T QCT

ξY −µ1(1− τ2) 0
CQ 0 −I


 < 0, (18)




M ξY T QCT Y T dT

ξY −µ2(1− τ2) 0 0
CQ 0 −I 0
dY 0 0 −I


 < 0 (19)

and [
Z I
I Q

]
> 0 (20)

with M = QAT + AQ + Y T bT + bY . Further-
more V (x) = xTQ−1x is a Lyapunov function for
the system and xT

0 Q−1x0 is the smallest upper-
bound provable via quadratic functions for the en-
ergy L(x0, x, u). Also a lowerbound for the cost
L(x0, x, u) can be computed by maximizing traceP
subject to P > 0, λ1 ≤ 0, λ2 ≤ 0 and[ −L+ λ1ξ

2FTF λ1ξτF
T

λ1ξτF −λ1(1− τ2)

]
< 0 (21)

and[ −Lcl + λ2ξ
2FTF −λ2ξτF

T

−λ2ξτF −λ2(1− τ2)

]
< 0 (22)

with L = ATP + PA + CTC, Lcl = Acl
TP +

PAcl + CT
clCcl − CT dF − FT dTC Acl = A + bF

and Ccl = C + dF and with F = Y Q−1 obtained
from the synthesis problem above. Furthermore
Vl(x0) = xT

0 Px0 is the largest lowerbound prov-
able via quadratic functions for the output energy
L(x0, x,max(0, Y Q−1x)).
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