
1. INTRODUCTION

The problem of robust triangular decoupling (RDT) via
state feedback, has been defined in [1]-[3]. For linear
perturbations and using state feedback, the RTD
problem has been solved in [4]. For system with
nonlinear uncertain structure the RTD problem, via
static state feedback, has been solved in [5]. Here, the
problem of robust triangular decoupling via static
measurement output feedback (RTDMOF)  is solved.
The general category of uncertain linear systems of
nonlinear uncertain structure is considered 

 ,x.(t) = A(q)x(t) + B(q)u(t) , yM(t) = M(q)x(t)
                                   (1.1)y(t) = C(q)x(t)

where  and .x ! ‘n, u ! ‘m, y ! ‘p yM ! ‘!

A(q) ! [!(q)] n"n, B(q) ! [!(q)] n"m, C(q) ! [!(q)] p"n

and  are function matrices dependingM(q) ! [!(q)] !"n
upon the uncertainty vector  that isq =  q1 " ql  ! Q/
independent of time.  is the set of scalar nonlinear!(q)
functions of .With regard to the structure of ,q A(q), B(q)

 and , no limitations or specificationsC(q) M(q)
(continuity, boundness, smoothness, etc.) are required.
The vector  denotes the measurement part of theyM(t)
state vector  while the vector  is the performancex(t) y(t)
output vector. The description (1.1) covers all cases of
linear time-invariant systems with uncertain structure.
The RTDMOF problem is studied by using a regular
static measurement output feedback law of the form 

                  (1.2)u(t) = KyM(t) + G"(t)

where  is an external input vector. According"(t) ! ‘m

to [1-8] and the controller to be physically
implementable,  and G are required to be independentK
of q. Thus, the RTDMOF problem can be interpreted as
in Fig. 1 and can be formulated as in definition 1.1.
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Fig 1. RTDMOF configuration
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Definition 1.1. The RTDMOF problem is solvable if
there exist independent of q matrices  and , such that K G

           C(q) sIn − A(q) − B(q)KM(q) 
−1B(q)G = T(s, q) ,

                                  (1.3)#q ! Q/

where  is an invertible (for every ) matrix havingT(s, q) q
the form ,T(s, q) =triang tij(s, q) , tii(s, q) $ 0 (#q ! Q/ )
where  denotes a triangular matrix (let lowertriang #
triangular) and  stands for the  element of tij(s, q) (i, j)

.                                                                           zT(s, q)

In this paper, the necessary and sufficient conditions for
the RTDMOF problem to have a solution, are
established. The class of all the independent of the
uncertainties RTDMOF feedback matrices, is
determined. The general form of the closed loop system,
as well as the respecting robust stability properties are
shown to be recasted to those in [5]. All above results
are successfully applied to control 4WS cars in case
where the measurement of the lateral acceleration is not
available. This case appears to be of great practical
importance. 

It is mentioned that, for the special case where
, i.e. the case of performanceM(q) = C(q) (#q ! Q/ )

output feedback, the RTD problem has been solved in
[8]. 

2. PRELIMINARY RESULTS

The equation (1.3), formulating the RTDMOF problem
can be rewritten as 

C(q) sIn − A(q) 
−1B(q) "

  Im − KM(q) sIn − A(q) 
−1B(q)

−1
G = T(s, q) , #q ! Q/

                   (2.1)

From (2.1) as well as the invertibility of the matrix
 and assumption that the matrix  (map matrix) isT(s, q) G

invertible, it is readily observed that for the RTDMOF
problem to be solvable, for every , it is necessaryq ! Q/
that  and the following conditions are necessary top = m
be satisfied

       (2.2)det C(q) sIn − A(q) 
−1B(q) $ 0 , #q ! Q/

                           (2.3)det G $ 0

Obviously, for the measurement output feedback case to
be solvable it is necessary for the respective state
feedback problem to be solvable. According to [5] (RTD
via state feedback) the following condition is necessary
to be satisfied

        (2.4)rank‘  Ci
$(q)B(q) 

T = i , i = 1,%, m

where the operator  denotes the rank of anrank‘[#]
uncertain matrix on the field of real numbers (see f.e.

[5-8]) and where , Ci
$(q) =








c1
$(q)
&

ci
$(q)








ci
$(q) = ci


 # i(q) 

 (q)

.The matrix  is analytically determined(i = 1,%, m) Ci
$(q)

in the Appendix. 

As proved in [5] condition (2.4) is equivalent to the
existence of functions  $ i(q) !!(q) (i = 1,%, m),

 as well as independent of the($ i(q) $ 0,#q ! Q/ )
uncertainties vectors  suchbi

$ ! ‘1"(m−i+1)(i = 1,%, m)
that 

    (2.5)ci
$(q)B(q)

i−1

j=0
% [bj

$] % = $ i(q)bi
$ , i = 1,%, m

where  is the i-th row of  and ci
$(q) C$(q) = Cm

$ (q) [b j
$] %

is an full column rank matrix being(m − j + 1) " (m − j)
orthogonal to the  vector .1 " (m − j + 1) b j

$, ([b0
$] % = Im)

Based on (2.5) the vectors  can constructively bebi
$

computed (see [5]).

If condition (2.4) is satisfied then the precompensator G
must be of the following form [5] 

 G = Jm+1(P$ )−1 ; P$ = triang (pi
$) j ,

                     (2.6)Ji =
i−1

j=0
%






Ij−1 0
0 [bj

$] +





where and [bj
$] + =  [bj

$] T(bj
$[bj

$] T)−1 [bj
$] % 

, while  and  are of zero dimension, and[b0
$] + = Im I−1 I0

where  are arbitrary parameters. Expression (2.6) is(pi
$) j

the general solution of , for the case of state feedback.G
Clearly, the set of precompansators solving the RDT
problem via MOF is a subset of the precompansator
characterisation in (2.6).  

3. SOLUTION OF THE PROBLEM

Define

 ,  &(q) = B(q)[C$(q)B(q)] −1

 ,  Ac(q) = A(q) −&(q)C$(q)A(q)
 Li(q) =  & i(q) Ac(q)& i(q)" [Ac(q)] 2n−1& i(q) 

    ;     & i(q) =





 'i+1(q) " 'm(q)  , i = 1, ..., m − 1
0n"1 , i = m

: i-th column of ' i(q) &(q)

Theorem 3.1. The necessary and sufficient conditions
for the solvability of the RTD problem for systems with
nonlinear uncertain structure, via static measurement
output feedback, are  and p = m

  (3.1)det C(q) sIn − A(q) 
−1B(q) $ 0 , #q ! Q/

         (3.2)rank‘  Ci
$(q)B(q) 

T = i , i = 1,%, m



       rank‘





M(q)Li(q)
ni(q)C$(q)A(q)Li(q)




 =rank'[Li(q)],

      (3.3)i = 1,%, m − 1

where  is the i-th row of the matrix ni(q)
.Jm+1

−1 [C$(q)B(q)] −1

Proof: see Appendix                                                      !

4. GENERAL FORM OF THE FEEDBACK
MATRICES 

Define ( i = −ni(q)C$(q)A(q)Li(q) M(q)Li(q)
‘

where the notation  denotes the projection (in& # \ # '‘
the field of real numbers) of an uncertain vector to the
subspace defined by the rows of the uncertain matrix
([5]-[8]). Also define  to be a M(q)Li(q)  ‘

%
) i " n

independent of  matrix being orthogonal over the fieldq
of real numbers to . The following theoremM(q)Li(q)
regarding the derivation of the feedback matrices is
presented. 

Theorem 4.1. Assume that system (1.1) satisfies the
conditions of Theorem 3.1. The general analytical
expressions of the independent of the uncertainties
measurement output feedback matrices  and ,G K
yielding RTD, are

 ,                     G = Jm+1(P$ )−1 K = Jm+1[R +*S] ;

       (4.1)R =







(1

&
(m







, S =








 M(q)L1(q)  ‘

%

&
 M(q)Lm(q)  ‘

%








where   and  are arbitraryP$ =triang pi,j
$ * =diag{ +̃ i}

matrices ( , ) +̃i =  (+̃ i)1"(+̃ i)) i  ) i =rank‘  M(q)Li(q) 
Proof: see Appendix                                                      !

From relation (A.10b) and Theorem 4.1, it is observed
that the closed loop system transfer function and the
characteristic polynomial are in forms analogous to
those in RTD via state feedback [5]. Hence, these
establishment in [5] can readily be extended to cover the
present case.

6. FOUR WHEEL CAR STEERING

A simplified linear single track model of a 4WS car with
arbitrary mass distribution is (see [1-3] and [5]) 
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where , , d11 = −lwcf
mulr

, d1 = lwcf
mlr

, d21 = (lfcf−lrcr)
l fcflw

d22 = −lwcr
mulf

 and where  is the laterald23 = cr
mlf

, b22 = −cr
mlf

af

acceleration of the front axle of the car,  is the yawr(t)
rate, while  and are the driver commands to'cf(t) 'cr(t)
the front and rear steering angles  and  (' f(t) 'r(t)

).  and u are the vehicle’s mass and'r(t) = 'cr(t) m
velocity.  is the length of the wheelbase ( )lw lw = lf + lr

with  and  the distance between the center of gravitylf lr

and the front and rear axle.  are the front andcf and cr

the rear “cornering stiffnesses”, depending on several
uncertain parameters like normal force, tire pressure,
tire temperature and most importantly on the adhesion
coefficient  between the road surface and the tire. The!
model uncertainties are ,  , the tire side forceu m
characteristics ( ) and  (for arbitrary masscf , cr lf

distribution). Clearly . lr = lw − lf

The design requirement is RTDMOF between lateral
acceleration and yaw rate. The feedback law is proposed
to be , where ['cf 'cr ]T = K [r ' f ]T + G["1 "2 ]T "1

and  are external inputs (  to command ). The"2 "1 af

required sensors are a gyro for , and a potentiometer forr
the steering angle . It is noted that the model has been' f

studied under the assumption of using an accelerometer
at the front axle for  [1-3], [5]. In practice, the lateraf

sensors appears not to be cost efficient and rather
sensitive to road disturbances. The model is of
nonlinear uncertain structure with respect to

, i.e. it is of the form (1.1).Theq = (u, m, cf, cr, lf )
uncertainties vary over finite domains, i.e. ,u !  u−, u+ 

,  andm !  m−, m+  , cf !  cf
−, cf

+  cr !  cr
−, cr

+ 
. Note that , ,  and .lf ! lf

−, lf
+  u− > 0 m− > 0 cf

− > 0 cr
− > 0

From Theorem 3.1 it is concluded that for the 4WS car
RTDMOF can be achieved. From Theorem 4.1, we get

,  where G =





(p1
$)1 0

(p2
$)1 (p2

$)2






−1

K =





−1 0
(,2)1 (,2)2






, ,  , ,  and   are arbitrary(p1
$)1 (p2

$)1 (p2
$)2 (,1)1 (,2)1 (,2)2

parameters with  and . G and F are(p1
$)1 $ 0 (p2

$)2 $ 0
independent of ,  and  . The RTDMOF transferlr lf lw

function is , where Hcl(s, q) =





t11(s, q) 0
t21(s, q) t22(s, q)






,t11(s, q) = cflwu(p1
$)1

−1

s(lrmu)+cflw

t22(s, q) = − scru(p2
$)2

−1

s2lfmu+scr  (,2)1u+lw  −cru[(,2)2−1]

t21(s, q) =
 u(h21)2s2+u(h21)1s+u(h21)0

(p1
$)1(p2

$)2 s(lrmu)−cflw[(,1)1u−1] s2lfmu+scr  (,2)1u+lw  −cru[(,2)2−1]

and where ,(h21)0 = cfcrlw(p2
$)2 − [(,2)2 − 1]

, and (h21)2 = crlrmu(p2
$)1

.(h21)1 = −crlrmu(p2
$)2(,2)2 + cf{ crlw(p2

$)1 + lfmu(p2
$)2}

The closed-loop characteristic polynomial, resulting
after achieving RTDMOF, is the product of the
denominators of  and . For ,h11(s, q) h22(s, q) (,2 )1 > −lw

u
 the closed loop system becomes stable. Thus,(,2)2 < 1

choosing  and  the closed loop system(,2 )3 < 0 (,2 )2 > 0



is Hurwitz invariant. Hence, RTDMOF with
simultaneous robust stability can be satisfied. 

Consider the case of the city bus O-305 with [1]:

 , , lf = 3.67[m] lr = 1.93[m] m = 10000[Kg],
,c f = 198000[N/rad], c r = 470000[N/rad] u = 10[m/ sec]

The uncertain parameters are limited to be the virtual
mass , the velocity ,  and . Choosem u cf cr

 (,2)1 = 1.0017, (,2)2 = −6.80851, (p1
$)1 = 10, (p2

$)1 = 0
and  and use  the commands (p2

$)2 = 0.0987 "1(t) = 0
and . The trajectories of the response"2(t) = 0.4 sin(2t)
of the resulting robust closed loop system are illustrated
in Fig. 2 for nominal values of the uncertainties
(continuous lines),  deviation from the nominal+10%
values (dashed lines) and  deviation from the−10%
nominal values (dotted lines). According to Fig. 2 the
performance of the closed loop system appears to be
satisfactory.

9. CONCLUSIONS

The problem of robust triangular decoupling for systems
with nonlinear uncertain structure, via static
measurement output feedback, has extensively been
solved. The necessary and sufficient conditions for the
problem to have a solution, have been established. The
class of all independent of the uncertainties controller
matrices solving the problem has explicitly been
characterized via an analytic formula. The results have
successfully been applied to control 4WS cars.
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APPENDIX

A. Construction of Ci
$(q)

The vectors , are determined by the followingci
(#i(q))

recursive definitions [4 and 5]: 

         #1(q) =min j : c1
(j)(q)B(q) $ 0 , j = 0,%, n − 1

       (A.1); c1
(j)(q) = c1(q) A(q) 

j

 # i(q) =min



 j: rank






Ci−1
$ (q)B(q)

ci
(j)(q)B(q)




 = i, j = 0, .., n − 1






  (A.2)i = 2,%, m

  ci
(0)(q) = ci(q) (i = 1,%, m),

 ci
(j)(q) = ci

(j−1)(q) I − B(q)Ci−1
+ (q)Ci−1

$ (q)  A(q)
 (A.3)(j = 1,%, n − 1, i = 2,%, m)

where 

Ci−1
+ (q) =  Ci−1

$ (q)B(q) 
T
"

 Ci−1
$ (q)B(q)   Ci−1

$ (q) B(q) | D(q)  
T −1

and  is the i-th row of . Since the rationalci(q) C(q)
matrix  is of full raw rank, theC(q) sI − A(q) 

−1B(q)
above definitions are well stated, i.e. there always exist
integers ,  suchj1(q) ji(q) ( j1(q), ji(q) ! 0, ..., n − 1 )

that: , , c1(q) A(q) 
j1 B(q) $ 0 rank






Ci−1
$ (q)B(q)

ci
(j i)(q)B(q)




 = i

 Thus, it holdsfor i = 2, ..., m.

 (A.4)rank Ci
$(q)B(q)  = i , #q ! Q/ , i = 1,%, m

       ci
(j−1)(q)B(q) = c̃ i

(j−1)(q)Ci−1
$ (q)B(q) , j = 1,%,# i(q) ,

                         (A.5)i = 2,%, m

where .c̃ i
(j−1)(q) = ci

(j−1)(q)B(q)Ci−1
+ (q), j = 1,%,# i(q)

The vector  is the vectorc̃ i
(j−1)(q) (j = 1, ...,# i(q))

involving the coefficients that satisfy the dependence
relation (A.5).

B. Proof of Theorem 3.1 
Proof: The necessity of  and of (3.1 and 2) hasp = m
already been proven and a precompansator is derived in
relation (2.6). In order to derive the rest of the
solvability conditions, define the interactor of the open
loop system, let . The interactor is a polynomialLI(s, q)
matrix with respect to , with coefficients dependings
possibly nonlinearly upon the uncertainty vector . Theq



polynomial matrix  is invertible for everyLI(s, q)
particular  and has the property q

 
LI(s, q)C(q)[sIn − A(q)] −1B(q) = C$(q)[sIn − A(q)] −1B(q)

  ;         (A.6)rank C$(q)B(q)  = m (#q ! Q/ )

The interactor is of the form (see [4] and [5])

    ;       LI(s, q) =
i=1

m

%
j=0

# i(q)−1

% Ji,j
I (s, q)

   ,     Ji,j
I (s, q) =








Ii−1 0 0
−sc̃i

(j)(q) s 0
0 0 Im−i−1








Ji,−1
I (s, q) = Im

According to (A.6), the equation (2.1) takes on the form

 sP(s, q)C$(q) sIn − A(q) 
−1B(q) =

         (A.7)G−1 − G−1KM(q) sIn − A(q) 
−1B(q)

where 

     P(s, q) =triang pij(s, q) = s−1  T(s, q) 
−1

 LI(s, q) 
−1

(A.8)

Expand both sides of (2.1) in negative power series of ,s
to yield

 s[P0(q)s0 + P1(q)s−1 +"] "
[C$(q)B(q)s−1 + C$(q)A(q)B(q)s−2 +"] =

G−1 −-M(q)B(q)s−1 −-M(q)A(q)B(q)s−2 −"

where . The later equation is satisfied if and- = G−1K
only if the coefficients of like powers of , in both sidess
are equal. Clearly, it suffices only the first 2n + 1
coefficients to be equal. So, the equation is reduced to
the following set of algebraic equations

                   (A.9a)P0(q) = P$Jm+1
−1 [C$(q)B(q)] −1

 -M(q) + P0(q)C$(q)A(q) "
 B(q) A(q)B(q)" [A(q)] 2n−1B(q)  =

  (A.9b)− P1(q) P2(q) " P2n(q)  K$(q)

where (2.6) has been used and where 

K$(q) =

 













C$(q)B(q) C$(q)A(q)B(q) " C$(q)[A(q)] 2n−1B(q)

0 C$(q)B(q) " C$(q)[A(q)] 2n−2B(q)
& & ( &
0 0 " C$(q)B(q)













Equation (A.9a) is always solvable for .P0(q)
Postmultiplication and premultiplication of equation
(A.9b) by   and , respectively, the[K$(q)] −1 [P$] −1

following design equation is derived

[P$] −1-M(q) + [Nm(q)] −1C$(q)A(q) "
 &(q) Ac(q)&(q)" [Ac(q)] 2n−1&(q)  =

 P̂1(q) P̂2(q)" P̂2n(q) 

where  and Nm(q) = C$(q)B(q)Jm+1 P̂j(q) = −[P$] −1Pj(q)

Define 

 P̂(s, q) = P̂0(q)s0 + P̂1(q)s−1 + ... = −[P$] −1P(s, q)

Since  is a lower triangular matrix the i-th row of P̂(s, q)
, let , is of the formP̂j(q) p̂ i,j(q)

p̂ i,j(q) =  p̃ i,j(q) 01"(m−i) 

where 

     p̃ i,j(q) =eiP̂j





Ii

0



 (j = 0,%, 2n)

and  is the unity vector having the unity in itsei 1 "m
i-th position. According to the above definition, the
design equation can be broken down into the following
two equations

         (A.10a).̃iM(q)Li(q) + ni(q)C$(q)A(q)Li(q) = 0

       p̃ i,1(q)" p̃ i,2n(q)  =  .̃iM(q) + ni(q)C$(q)A(q)  "
    '1(q) " ' i(q)  " [Ac(q)] n−1  '1(q) " ' i(q)  

(A.10b)

where  is the i-th row of  and  is theni(q) [Nm(q)] −1 .̃i

i-th row of . The equation (A.10a) governs the[P$] −1-
general form of , while (A.10b) gives the.̃i

parameterization of the RTDMOF closed loop system.
Equation (A.10a) is a linear non homogeneous uncertain
equation. According to [5-8], the equation (A.10a) is
solvable for  (with  independent of ), if and only if.̃i .̃i q
(3.3) is satisfied. 

C. Proof of Theorem 4.1
According to [5-8] the general form of all independent
of  vectors , solving a linear equation of the form ofq .̃i

(3.8a), is 

 .̃i = +̃ i  M(q)Li(q)  ‘

% + ( i

where  is an independent of +̃i =  (+̃ i)1"(+̃ i)) i  q
arbitrary vector with . Since) i =rank‘  M(q)Li(q) 








.̃1

&
.̃m








= (P$)−1-

it holds that 

- = P$







+̃1  M(q)L1(q)  ‘

%

&
+̃m  M(q)Lm(q)  ‘

%








+ S

 
Using the relation , relation (4.1) is derived.K = G-
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Fig. 2. Trajectories of the response of the RTD closed
loop system
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