
1. INTRODUCTION

Independent control of the flight variables of an aircraft
is a central problem in flight control systems [1]-[9].
With regard to the lateral motion of an aircraft it is
noted that there is a coupling between the lateral
velocity  and the roll modes in the sense that they are all
influenced via aileron and rudder commands. This is an
undesirable effect in many lateral manoeuvres [8]. It is
important to eliminate the coupling between the roll rate
and the sideslip angle, thus, allowing the pilot to
perform manoeuvres by applying simple commands (see
f.e. [1]-[4]). This design goal is required to be satisfied
independently of actuator failure. In particular, the error
of the actuator is considered to be due to malfunctions
of aileron actuator. 

In this paper, a static state feedback law yielding robust
input output triangular decoupling between the sideslip
angle and the roll rate of an aircraft is proposed. The
problem is proven to be solvable for almost all flight
conditions in the sense that an inequality involving
known aerodynamic stability derivatives must be
satisfied. According to aerodynamic data this inequality
is almost always satisfied. The explicit characterisation
of all the independent of the uncertainties static state
feedback controllers solving the problem, is derived in
terms of the aerodynamic derivatives of the aircraft as
well as free parameters that can be used to satisfy pole

assignment requirements. The results are illustrated via
simulations. 

2. THE AIRCRAFT MODEL AND CONTROL
OBJECTIVE

2.1. Lateral motion model
Consider the case of linear systems with nonlinear
uncertain structure, i.e. the case of systems described by

 ,        (2.1)x.(t) = A(q)x(t) + B(q)u(t) y(t) = C(q)x(t)

where ,  and  are the state, input,x ! ‘n u ! ‘m y ! ‘m

and performance output vector, respectively, and where
 denotes the set of real numbers. The matrices ‘

,  and A(q) ! [!(q)] n"n B(q) ! [!(q)] n"m

 are function matrices depending uponC(q) ! [!(q)] m"n

the uncertainty vector , where  isq = (q1,", ql) ! Q/ Q/
the uncertainty domain and  is the set of all!(q)
functions of .q

The lateral linearized motion of an aircraft with actuator
failure can be expressed by system (2.1) since the model
depends upon errors of the actuator. For the above
mentioned uncertain case, the lateral-directional
equation of motion of  a fixed-wing aircraft [8] turns out
to a system of equations of the form (2.1), with

 , x(t) =  !(t) p(t) r(t) "(t) 
T

                     (2.2)u(t) =  #A(t) #R(t) 
T
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The variable  is the sideslip angle  increment,  is!(t) p(t)
the roll rate increment,  is the yaw rate increment, r(t)

 is the roll (bank) angle increment,  and "(t) #A(t) #R(t)
are the rudder and aileron commands, respectively. The
parameter  is the nominal value of the flight path%0

angle. The parameters , ,  Yi Li Ni ( i ! { $, p, r, #R, #A})
are lateral directional stability derivatives [8]. The
parameter  is the gravitational acceleration and  isg U0

the forward velocity. The variable  is an uncertainq
parameter which appears due to malfunctions of the
aileron actuator. 

2.2. Control objective
The objective of the present design scheme is to control
independently the sideslip angle and the roll rate (or
angle) in the presence of the uncertainty . Theq
independent control of the lateral motion variables
facilitates the aircraft placement and maintenance to
desired orientation, following precisely the pilot's
commands.

To system (2.1) apply the static state feedback law 

                     (2.4)u(t) = Fx(t) + G&(t)

where  is the external command&(t) =  !c(t) pc(t) 
T

vector  and where  and  denote the commands!c(t) pc(t)
driving the performance variables  and , respec-!(t) p(t)
tively. The design objective can be formulated as an
input-output decoupling design scheme which must
robustly be satisfied for every value of the uncertain
parameter .q

3. NECESSARY AND SUFFICIENT CONDITION
FOR ROBUST TRIANGULAR DECOUPLING OF
THE SIDESLIP AND ROLL RATE 

In this section  it is investigated under which condition
(over the lateral stability derivatives) robust triangular
decoupling between  and  is achieved. Applying!(t) "(t)
the results presented in [10] to the present case, the
necessary and sufficient condition for robust
input-output triangular decoupling between the sideslip
and the angle, via a static state feedback law
(independent of the uncertainty ), is q

                                 (3.1)L#AY#R # 0

According to aerodynamic data (see for example [8]) the
condition (4.1) is almost always satisfied.

4. EXPLICIT CHARACTERISATION OF THE
ROBUST TRIANGULAR DECOUPLING
CONTROLLERS

It is of great importance to derive the explicit
characterisation the controllers matrices yielding
triangular decoupling between   and  i.e.!(t) p(t)
independent control of  and  by the external!(t) p(t)
commands . Based on the results of [6]!c(t), and pc(t)
and the data in (2.2) then the general explicit formulae
of the robust triangular decoupling  controllers matrices

 and , are F G
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where  and  are arbitrary'2,1, '2,2, '2,3, '2,4, '1,1 p2,1

parameters and  are arbitrary different thanp1,1, p2,2

zero parameters. 

Relations (4.1) and (4.2) are explicit formulae
implementable by elementary operations upon the
stability derivatives and the values of ,  and . Theg %0 U0

matrices  and  depend upon the parameters of theF G
aircraft model, which is linearized around an
equilibrium (operating) point. For a manoeuvre
involving more than one operating point, the values of
the controller have to be renewed by look up tables. This
task can be carried out by an adjustment mechanism (in
a real time computer) assigning also the closed loop
poles. The explicitness of (4.1 and 2), allows the
adjustment mechanism to be executable in very short
time.

5. GENERAL FORM OF THE CLOSED LOOP
SYSTEM 

The general analytical expression of the triangularly
decoupled closed loop transfer function is 

Hcl(s, q) =



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h1,1(s) 0
h2,1(s, q) h2,2(s, q)


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where

 , h1,1(s) =
(p1,1)−1

s − '1,1 − Y$

,h2,2(s, q) =
(p2,2)−1(a0s2 + a1s + a2)
!0s3 + !1s2 + !2s + !3

h2,1(s, q) =
(p1,1)−1(p2,2)−1(#0s3 + #1s2 + #2s + #3)
(s − '1,1 − Y$)(!0s3 + !1s2 + !2s + !3)



and where 

, a0 = −qL#A U0Y#R

,  a1 = [L#A(N#R + NrY#R) − L#RN#A − LrN#AY#R ]U0q
 a2 = q sin(%0)g(−L#A N#R + L#R N#A)

,   !0 = −L#A U0Y#R

!1 = U0{'2,3N#A Y#Rq + L#A [N#R + (Lp + Nr + '2,2q)Y#R]}
!2 = −gL#A L#R cos %0 − gL#A N#R sin %0 +

U0{−L#A LpN#R + L#A L#RNp} +
U0{'2,2q(L#R N#A − L#AN#R) + L#A Y#R(LrNp − LpNr) +

+'2,4qL#A Y#R − '2,3qY#R(LpN#A − L#ANp) +
'2,2qY#R(LrN#A − NrL#A) + tan %0'2,4N#A qY#R}

!3 = g cos %0(−L#AN#R Lr + L#ANrL#R +
'2,3q(L#RN#A − L#A N#R)) +

'2,4qU0(L#RN#A − L#AN#R + Y#R(LrN#A − L#A Nr)) +
g sin %0(L#AN#R Lp − L#A NpL#R − '2,2q(L#R N#A − L#A N#R)) +

'2,4(−LpN#A + L#A Np)qU0Y#R tan %0

 #0 = U0L#A(−L#Rp2,2 + p2,1Y#R)
#1 = −U0{ N#A q[('2,3p2,2 + p2,1)L#R + p2,1Y#RLr] +
L#Ap2,2(−L#RNr + '2,3N#Rq + L$Y#R + '2,1qY#R − L#R Y$) +

L#Ap2,2LrN#R + L#Ap2,1[qN#R + ('1,1 + Nr + Y$)qY#R ]}
#2 =
−U0p2,2{ N#A q['2,1(L#R − LrY#R) − '2,3(L$Y#R − L#R Y$)] +

−L#A{ L$N#R − L#RN$ + q'2,1(N#R + NrY#R) −
'2,3(N$Y#R − N#RY$) + Nr(L$Y#R − L#RY$) −

Lr(N$Y#R − N#RY$)} − '2,4q tan %0(L#R N#A − L#A N#R)} −
p2,1q{ U0'2,1(L#R N#A − L#A N#R + LrY#R N#A − NrY#R L#A)

−Y$U0(L#RN#A − L#AN#R + LrY#R N#A − NrY#R L#A) +
g sin %0(L#RN#A − L#A N#R)}

#3 = tan %0|{'2,4qU0p2,2[−L#A N$Y#R + L$Y#R N#A

−N#AY$L#R + L#AN#R Y$] − p2,2g cos %0[L#A N#R L$ −
L#AN$L#R + '2,1q(L#R N#A − L#A N#R)] −

p2,1g cos %0[−qL#R N#A(Y$ + '1,1) + qN#R(L#A'1,1 + Y$)]}

Choosing , the stability of  is'1,1 < −Y$ h1,1(s)
guaranteed. Using the results in [11], the
parameters  can be chosen such that'2,1, '2,2, '2,3, '2,4

the polynomial  is Hurwitz!0s3 + !1s2 + !2s + !3

invariant (robustly stable). Since the number of
transition poles is equal to the system dimension then
the closed loop system can become robustly stable.

From the triangular form of the closed loop system it is
concluded that 

  , {!(t)} = h1,1(s, q) {!c(t)}
   { p(t)}= h2,1(s, q) {!c(t)} + h2,2(s, q) { pc(t)}

Choosing  then it holds that ,{!c(t)} = 0 {!(t)} = 0
 and hence  { p(t)}=h2,2(s, q) { pc(t)}

{"(t)}= 1
s [h2,2(s, q) { pc(t)}+ tan %0 { r(t)}]

It is noted that due to structure of  and of h2,2(s, q) { r(t)}
the pole at zero is simplified. 

6. SIMULATION FOR A FOUR ENGINED
EXECUTIVE JET AIRCRAFT (ALPHA)

Consider the four engined executive jet aircraft
presented in [8]. The decoupling results will be applied
to yield independent control of the lateral motion
variables. This aircraft is consider to fly at see level with
velocity . The parameters of the aircraftU0 = 67.7 m/ sec
are , , , ,Y$ = −0.014 L$ = −4.05 Lp = −1.85 Lr = 0.52

, , , ,N$ = 1.34 Np = −0.25 Nr = −0.19 N#R = −0.64
, , ,  . TheY#r = 0.034 L#A = 2.21 L#R = 1.11 N#r = −0.64

gravitational acceleration is . One mayg = 9.81 m/sec
easily verify that the decoupling condition (3.1) is
satisfied. Choosing , , '1,1 = −9.986 '2,2 = −8.93282
'2,1 = 0, '2,3 = 75.011, '2,4 = −63.6329,

 and  the root locus of thep1,1 = 1, p2,1 = 0 p2,2 = 0.019
closed loop system poles for   is shown inq ! [0.8, 1.2]
Fig. 1. 
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Fig. 1. Root locus of the closed loop system poles with
respect to actuator uncertainty  q ! [0.8, 1.2]

Consider the external commands pc(t) = 0.0157 [rad]
and . The performance of the closed loop!c(t) = 0
system for the case of a roll manoeuvre

) is illustrated in Fig. 2 for ("(t) = 0.0157 [rad], !(t) = 0
(dotted lines), (continuous lines) and q = 0.8 q = 1 q = 1.2

(dashed lines). According to Fig. 2 the performance of
the closed loop system appears to be satisfactory. 

8. CONCLUSIONS

For an aircraft in lateral motion with actuator failure,
independent control between the roll rate and the
sideslip angle has been achieved. The results are based
on I/O robust triangular decoupling via static state
feedback. The set of all robust controllers solving the
problem and the respective general form of the
triangularly decoupled closed-loop transfer function,
have been derived. Finally all above results has been
illustrated by application to the data of a four engined
executive jet aircraft. 
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Fig. 2: Roll manoeuvre
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