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Abstract. Modular redundancy, the traditional approach to fault tolerance, is prohibitively
expensive because of the overhead in replicating the hardware. In this paper we discuss
alternative techniques for fault tolerance in sequence enumerators that are implemented as
linear finite-state machines (LFSM’s). Our approach replaces a given LFSM with a larger,
redundant LFSM that preserves the evolution and properties of the original one. The state
of the larger LFSM is a linearly encoded version of the state in the original machine and
allows an external mechanism to perform error detection and correction by identifying and
analyzing violations of the code restrictions. In this paper, we characterize the class of
appropriate redundant LFSM’s and demonstrate a variety of possibilities for fault tolerance,
ranging from no redundancy to full replication.
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1. INTRODUCTION

The traditional, but rather inefficient, way of designing
fault-tolerant systems is to use modular redundancy:
by replicating the original system we perform the de-
sired function multiple times in parallel; the outputs
of all replicas can then be compared (via an external
voting mechanism) and the final result can be cho-
sen based on what the majority of the replicas agrees
upon. In an effort to utilize redundancy in more effi-
cient ways, a number of researchers have focused on
using coding techniques to achieve fault tolerance. Ex-
amples of such research work include arithmetic codes
[1], and algorithm-based fault tolerance (ABFT) tech-
niques, [2]. More broadly applicable and systematic
approaches for introducing redundancy in computa-
tions that can be modeled as abelian groups, semi-
groups or semirings have been studied in [3, 4].

In this paper we discuss fault-tolerance in linear finite-
state machines (LFSM’s) with particular focus on se-
quence enumerators. Our approach, which was devel-
oped in [5] for general dynamic systems1, consists of

1This technique has also been used to construct fault-tolerant lin-
ear time-invariant dynamic systems and Petri nets, [6, 7].

mapping the state of a given LFSM into the higher di-
mensional state space of a larger, redundant LFSM in a
way that preserves the evolution and properties of the
original one. By detecting and analyzing violations
on the enforced state code, an external mechanism can
detect and correct failures that corrupt the state of the
redundant machine. Depending on the machine im-
plementation, these violations could be the result of
hardware, software or communication failures.

In this paper we assume that the error detection/correction
procedure is fault-free2 and focus on the structure of
the corresponding redundant LFSM’s. By formulat-
ing the problem of constructing redundant implemen-
tations as an embedding problem, we solve it in a sys-
tematic fashion and completely characterize the class
of appropriate redundant LFSM’s. This characteriza-
tion exposes flexibilities that were not considered in
previous work, the implications of which are demon-
strated in this paper for the case of fault-tolerant se-
quence enumerators that are built out of unreliable2-
input XOR gates and single-bit memory elements. Fault-
tolerant sequence enumerators can be useful in imple-

2This (common) assumption is reasonable if the complexity of
error detection/correction is considerably less than the complexity
of the state evolution mechanism of the system, [6]. In [5] we ex-
tended this approach to also handle failures in the error-correcting
mechanism.
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Fig. 1: Digital controller implementation based on a
loadable sequence enumerator.

menting reliable digital controllers as shown in Fig. 1
for a loadable sequence enumerator. The techniques
that we discuss here are appropriate for handling er-
rors in the “counting” or in the “sequence enumera-
tion”. Fault tolerance in digital controllers is a rich
topic by itself (see, for example, [8, 9] and references
therein) and we will address it explicitly in future re-
search work.

This paper is organized as follows. In Section 2 we
provide an introduction to LFSM’s and characterize
the class of appropriate redundant embeddings for a
given machine. In Section 3 we discuss the conse-
quences of our approach for the case of sequence enu-
merators that are implemented using XOR gates and
single-bit memory elements. We conclude in Section 4
with a discussion of future research directions.

2. INTRODUCTION TO LFSM’S AND
SEQUENCE ENUMERATORS

Linear finite-state machines (LFSM’s) form a very gen-
eral class of finite-state machines with a variety of ap-
plications, including sequence enumerators, random
number generators, encoders and decoders for linear
error-correcting codes, and cellular automata. The state
evolution of an LFSMS is given by

qs[t+ 1] = Aqs[t]⊕Bx[t] , (1)

wheret is the discrete-time index,qs[t] is the state
vector and x[t] is the input vector. We assume that
qs[·] isd-dimensional,x[·] isu-dimensional, andA, B
are constant matrices of appropriate dimensions. All
vectors and matrices have entries inGF (2), the Ga-
lois field of order2, i.e., they are either “0” or “ 1”.
Matrix-vector multiplication and vector-vector addi-
tion are performed as usual except that element-wise
addition and multiplication are taken modulo-2. Oper-
ation⊕ in (1) denotes vector addition modulo-2.
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Fig. 2: Example of a sequence enumerator.

One can obtain an LFSMS ′ (with d-dimensional state
vectorq′s[t]) that issimilar to S in eq. (1) through a
similarity transformation, [10]:

q′s[t+ 1] = (T−1AT)︸ ︷︷ ︸
A′

q′s[t]⊕ (T−1B)︸ ︷︷ ︸
B′

x[t] ,

whereT is aninvertibled× d binary matrix such that
qs[t] = Tq′s[t]. The initial conditions for the trans-
formed LFSM can be obtained asq′s[0] = T−1qs[0].

The linear feedback shift register (LFSR) in Fig. 2 is
an example of a sequence enumerator. It is imple-
mented using single-bit memory elements (flip-flops)
and2-input XOR gates (a2-input XOR gate performs
modulo-2 addition on its binary inputs and is denoted
by⊕ in the figure). The state (“current count”) of the
enumerator is given by the values stored in the single-
bit memory elements; the corresponding state evolu-
tion equation can be written as the state evolution of
an LFSM

qs[t+ 1] = Aqs[t]⊕ bx[t]

=


0 0 0 0 1
1 0 0 0 0
0 1 0 0 1
0 0 1 0 0
0 0 0 1 0

qs[t]⊕


1
0
0
0
0

x[t] . (2)

Note that whenx[·] = 0 andqs[0] 6= 0, the LFSR
acts as an autonomoussequence enumeratorand goes
through all non-zero states (essentially counting from1
to 31). For example, if initialized at

qs[0] =
[

1 0 0 0 0
]T

,

the LFSR goes through statesqs[1] =
[

0 1 0 0 0
]T

,

qs[2] =
[

0 0 1 0 0
]T

, ...,qs[30] =
[

0 1 0 0 1
]T

,

qs[31] =
[

1 0 0 0 0
]T

. The reason for this be-
havior is that thefeedback polynomialfor the shift reg-
ister has been chosen to be primitive, [11].

Given the state evolution description of an LFSM (as
in eq. (1) or eq. (2)), there are a number of possible
implementations (using2-input XOR gates and flip-
flops). The situation is similar to the case of linear
time-invariant dynamic systems [5, 6], and the case of
state variable descriptions, [12]. Here, we assume an
implementation where each bit in the next-state vector



qs[t + 1] is calculated using aseparateset of2-input
XOR gates (i.e., no hardware is shared, as is the case
in Fig. 2). This implies that a failure in a single XOR
gate can corrupt at most one bit in the next-state vector
qs[t+ 1]. We also assume that the calculation of each
bit in qs[t+ 1] is based on the bits ofqs[t] that are ex-
plicitly specified by the “1’s” in matrix A of the state
evolution equation (e.g., the third bit ofqs[t+1] in the
LFSR of Fig. 2 is calculated based on the second and
fifth bits of qs[t]). Under these assumptions, a single
failure in an XOR gate corrupts at most one bit in the
state vector of our redundant implementation; there-
fore, we can focus on detecting/correcting single-bit
errors.

In order to protect a given LFSMS (with d state vari-
ables and state evolution as in eq. (1)) against corrup-
tions of bits in its state vector, we embed it into a re-
dundant LFSMH with η state variables (η ≡ d + s,
s > 0) and state evolution

qh[t+ 1] = Aqh[t]⊕ Bx[t] . (3)

The initial stateqh[0] and matricesA, B are chosen so
that the stateqh[t] of H at time stept provides com-
plete information aboutqs[t], the state of the origi-
nal LFSMS, through a decoding mapping, and vice-
versa. More specifically, we will restrict ourselves to
decoding and encoding techniques that are linear in
GF (2); i.e., we assume that there exist

• ad×η binarydecodingmatrixL such thatqs[t] =
Lqh[t] for all t, and

• an η × d binary encodingmatrix G such that
qh[t] = Gqs[t] for all t.

Under the above assumptions, the redundant machine
H concurrently simulates the original machineS (qs[t] =
Lqh[t]). Furthermore, there is a one-to-one correspon-
dence between the states inS and the states inH (i.e.,
qh[t] = Gqs[t] andqs[t] = Lqh[t]).

Clearly, the redundant machineH enforces an(η, d)
linear codeon the state of the original machine. An
(η, d) linear code usesη bits to representd bits of in-
formation and is defined inGF (2) by anη × d gen-
erator matrixG with full-column rank, [13, 11]. The
d dimensional vectorqs[·] is uniquelyrepresented by
theη dimensional vector (codeword) qh[·] = Gqs[·].
Error-detection is straightforward: under fault-free con-
ditions, the redundant state vector must be in the col-
umn space ofG; therefore, all we need to check is that
at each time stept the redundant stateqh[t] lies in the
column space ofG (in coding theory terminology we
need to check thatqh[t] is a codeword of the linear
code generated byG, [13, 11]). Equivalently, we can

check thatqh[t] is in the null space of an appropriate
parity check matrixP, so thatPqh[t] = 0. The par-
ity check matrix has row rankη − d ≡ s and satisfies
PG = 0. Error-correction associates with each valid
state inH (of the formGqs[·]), a unique subset of in-
valid states that get corrected to that particular valid
state3. Since a single failure in an XOR gate results in
the corruption of a single bit, error-correction can be
performed using any of the methods used in the com-
munications setting, [13, 11].

Theorem 2.1 In the setting described above, LFSMH
(of dimensionη ≡ d+ s, s > 0 and state evolution as
in eq. (3)) is a redundant version ofS if and only if it is
similar to astandardredundant LFSMHσ whose state
evolution equation is given by

qσ[t+ 1] =
[

A A12

0 A22

]
qσ[t]⊕

[
B
0

]
x[t] . (4)

Here,A andB are the matrices in eq. (1),A22 is an
s× s binary matrix that describes the dynamics of the
redundant modes that have been added, andA12 is a
d × s binary matrix that describes the coupling from
the redundant to the non-redundant modes. Associ-
ated with this standard redundant LFSM is the stan-
dard decoding matrixLσ =

[
Id 0

]
, the standard

encoding matrixGσ =
[

Id
0

]
and the standard par-

ity check matrixPσ =
[

0 Is
]
.

Proof: The proof of the theorem is discussed in [5]
(it follows similar steps as the proof of the theorem in
[6]). 2

Given a pair of encoding and decoding matricesL and
G (they need to satisfyLG = Id), and an LFSMS,
Theorem 2.1 completely characterizes all possible re-
dundant LFSM’sH. Since the choice of the binary
matricesA12 and A22 is completely free, there are
multiple redundant implementations of LFSMS for
the givenL andG.

3. FAULT-TOLERANT SEQUENCE ENUMERA-
TORS

In this section we discuss fault tolerance in sequence
enumerators that are implemented as LFSM’s. As we

3This subset usually containsη-bit vectors with smallHam-
ming distance from the associated valid codeword. The Hamming
distance between two binary vectorsx = (x1, x2, ..., xη) and
y = (y1, y2, ..., yη) is the number of positions at whichx andy
differ, [13, 11]. The minimum Hamming distancedmin of a code
(collection of binary vectors of lengthη) determines its error detect-
ing and correcting capabilities: a code can detectdmin−1 single-bit
errors; it can correctb dmin−1

2
c single-bit errors.
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Fig. 3: Redundant implementation based on a check-
sum condition.

illustrate via an example, choosingA12 and/orA22

appropriately can lead to designs that make better use
of redundancy. Additional examples can be found in
[5].

Suppose that the sequence enumeratorS that we would
like to protect is the linear feedback shift register shown
in Fig. 2. In order to detect a single failure in an XOR
gate, we can use an extra “checksum” state variable (as
was suggested for linear time-invariant dynamic sys-
tems in [2] and for LFSM’s in [14, 15]). The resulting
redundant LFSMH has six state variables and state
evolution

qh[t+ 1] =
[

A 0
cTA 0

]
qh[t]⊕

[
b

cTb

]
x[t]

=


0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
1 1 1 1 0 0

qh[t]⊕


1
0
0
0
0
1

x[t] ,

wherecT =
[

1 1 1 1 1
]
. A hardware implemen-

tation based on2-input XOR gates and flip-flops is
shown in Fig. 3. Under fault-free conditions, the added
state variableqh6 [t] is the modulo-2 sum of all other
state variables (which are the same as the original state
variables in LFSMS).

The above approach is easily seen to be consistent with
our setup with encoding, decoding and parity check
matrices given as

G =
[

I5

cT

]
, L =

[
I5 0

]
, P =

[
cT 1

]
.

Using the transformationqσ[t] = T qh[t] whereT =[
I5 0
cT 1

]
, we see thatH is similar to a standard re-

dundant LFSMHσ with state evolution

qσ[t+ 1] =
[

A 0
0 0

]
qσ[t]⊕

[
b
0

]
x[t] .

Note that bothA12 andA22 are set to zero.

As stated earlier, there are multiple redundant imple-
mentations with the same encoding, decoding and par-
ity check matrices. For the scenario described here,
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Fig. 4: Second redundant implementation based on a
checksum condition.

there are exactly25 different LFSM’s (we get a differ-
ent system for each combination of choices for entries
in matricesA12 andA22). If we choose

A12 = 0 , A22 = [1] ,

then the same transformation (qσ[t] = T qh′ [t], T =[
I5 0
cT 1

]
) results in a redundant LFSMH′ with state

evolution equation

qh′ [t+ 1] =
[

A 0
cTA−A22cT A22

]
qh′ [t]⊕

⊕
[

b
cTb

]
x[t] =

=


0 0 0 0 1 0
1 0 0 0 0 0
0 1 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 1

qh′ [t]⊕


1
0
0
0
0
1

x[t] .

A hardware implementation based on2-input XOR gates
and flip-flops is shown in Fig. 4.

Both redundant sequence enumeratorsH andH′ have
the same encoding, decoding and parity check matri-
ces, and allow concurrent detection of single-bit errors
in the redundant state vector (and therefore, accord-
ing to our assumptions about hardware implementa-
tion, allow concurrent detection of a failure in a single
XOR gate). Clearly, the complexity inH′ is lower than
inH. The gain is not only in terms of the hardware in-
volved, but also in terms of minimizing the probability
of failure (since XOR gates may fail).

Note that one of the problems in encoding the state of
dynamic systems (in order to provide fault tolerance)
has been the cost associated with generating the redun-
dant bits, [16]. For example, in the original implemen-
tationH of the checksum scheme, generating one ad-
ditional bit costs more (in terms of2-input XOR gates)
than the linear feedback shift register altogether. As
illustrated in this example for the case of a non-zero
A22, we can obtain more efficient redundant imple-



mentations by exploiting the dynamics of the redun-
dant modes (given byA22) and/or their coupling with
the original system (given byA12). In [5], we discuss
how to systematically chooseA12 andA22 so that we
minimize the complexity (number of XOR gates) of
the fault-tolerant implementation.

4. SUMMARY

In this paper we studied a general approach for design-
ing fault-tolerant sequence enumerators by encoding
the states and dynamics of the corresponding LFSM’s.
The added redundancy can be used to protect against
hardware, software or communication failures. We
presented a variety of possible redundant implemen-
tations and described ways to minimize the hardware
cost and/or overall complexity by exploiting non-zero
redundant dynamics and coupling. The discussion in
this paper assumed fault-free error-correcting mech-
anisms; we relax this assumption in [5, 17], where
we use a related approach to construct fault-tolerant
LFSM’s largely out of unreliable components (unre-
liable XOR gates and voters). Future work should
better characterize the tradeoffs involved among the
different redundant implementations, particularly un-
der non-separate linear codes. We should also study
whether the two-stage approach to fault tolerance can
employ convolutional rather than block coding tech-
niques.
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