
NOMENCLATURE 

Viscous friction constantBm :
 Rotor currentir :
 Motor moment of inertiaJ :

 Constants related to the characteristics of the!1,!2 :
DC motor (dimensions, shape, material ,etc.) 

  Rotor inductanceLr :
  Rotor voltageVr :
  Rotor resistanceRr :

 Transmission ratior :
Load torque, torque generated by the motorTl, Tm :

 Induced voltage (back emf.)Vb :
Position of the load, motor shaft position" l, "m :
Angular velocity of the load, angular#l, #m:
  velocity of the motor shaft

1. INTRODUCTION

Position/speed control of DC motors appears to be a
basic control application having attracted significant
interest during the last decades (see f.e [1]-[7] and the
reference therein). 

In this paper, for a permanent magnet DC motor, perfect
position/speed control with simultaneous load torque
rejection is studied, using a P-D feedback law. The
problem is proved to be always solvable. The P-D

feedback law solving the problem is determined.
Stability properties and robustness are investigated. The
above results are illustrated via simulation for a 75 watt
DC motor (35NT2R82- 426SP).

The contribution of the present paper, as compared to
existing results in the field (see f.e. [8] where the
position error is fed back via a PD controller), is the
complete rejection of the load torque and perfect
command following. The disadvantage (as compared to
results using static controllers see f.e [1]) can be
summarised to the difficulties in implementing the
derivative term. With regard to this issue it has been
proven that that the speed and/or position are linear with
respect to the current derivative error. 

2. POSITION-SPEED CONTROL OF A
PERMANENT MAGNET DC MOTOR

2.1 Model description
The system of permanent magnet DC motor is
characterized by a set of three linear first order
differential equations. The first equation is the definition
of the angular velocity of the rotor and it’s position  

. The second equation is the application ofd"m
dt =#m

the third Newton’s law for the load i.e.
. The third equation describesJ d#m

dt + Bm#m = Tm − rTl

the electrical balance in the rotor winding  
.Lr

dir
dt + Rrir = Vr − Vb
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The coupling between electrical and mechanical
equations, is rising from the nonlinear characteristics of
the motor, is expressed by the following relations

 and . Hence, the set of theTm = !1$ir Vb = !2$#m

equations describing the DC motor is:

   ,    ,       d"m
dt =#m

d#m
dt = −Bm

J #m + km
J ir − r

J Tl

           (2.1)dir
dt = − kb

Lr
#m − Rr

Lr
ir + 1

Lr
Vr

where  and . The performance outputkm = !1$ kb = !2$
is the angular velocity of the load, let  , or the position#l

of the load, let . These variables are related with " l #m

and  via the transmission ratio  (between gears) as"m r
follows

  ,                        (2.2)#l = 1
r #m " l = 1

r "m

2.2 Speed Control
In this subsection, the problem of controlling the angular
velocity of the load is studied. To the system (2.1) apply
the P-D feedback law

     (2.3)Vr = f1
d#m

dt + f2
dir
dt + k1#m + k2ir + gw

where ,  and ,  are the degrees of freedom off1 f2 k1 k2

the derivative and proportional term, respectively. The
parameter  is the precompensator gain and  is theg w
external command. Choosing the degrees of freedom to
be

      (2.4)f1 = 0, f2 = Lr, k1 = kb − 1
r , k2 = Rr

the P-D feedback controller takes on the form 

        (2.5)Vr = Lr
dir
dt + (kb − 1

r )#m + Rrir + gw

Substituting the controller (2.5) to the DC motor
description (2.1) the resulting closed loop system
becomes

 ,     (2.6a)ir = J
km

rg dw
dt + Bm

km
rgw + r

km
Tl #m = rgw

while the output variable  takes on the form #l

                             (2.6b)#l = gw

From (2.6b) it is concluded that, using the feedback law
(2.5), perfect output control of the angular velocity of
the load, has been achieved. For the formal definition of
the problem of perfect output control, see [9 and 10]. 

With regard to the BIBO stability of the closed loop
system, it is mentioned that if   is bounded, thew
boundness of  and  is guaranteed. Furthermore if#m # l

the first derivative of  is bounded then, according tow
(2.6a) the current   is bounded. With regard toir

asymptotic stability it is observed that for  , itw = 0
holds that 

#l(t) = 0, #m(t) = 0, ir(t) = r
km

Tl(t) (!t > 0)

With regard to the robustness of the closed loop system
two types of uncertainties are nominated. The first is the
viscous friction   which is in general not known butBm

not significantly varying upon the time. The second is a
controller implementation error resulting in computing
the derivative of the current. In practice the current
derivative is implemented in the controller as follows:

(instead of  ). The quantity   is thedir
dt + ed(t)

dir
dt ed(t)

implementation error of the derivative of the current.
Clearly, this is a highly time varying uncertainty. Taking
into account the derivative error the controller takes on
the form . Vr = Lr

dir
dt + Lred + (kb − 1

r )#m + Rrir + gw

Substituting the controller to the open loop system (2.1),
the resulting closed loop system takes on the form

 and the output variable  is #m = rgw + Lrred #l

. #l = gw + Lred

The output performance error  is equal # l(t) − gw(t)
. This is linear with respect to   and independentLred ed

upon . Note that the controller is also independent of  Bm

. Clearly the robustly good performance of closedBm

loop system is guaranteed for any   and for smallBm

current derivative implementation error.

For the implementation of the control law, it is
mentioned that measurements of   (eq.  ) and  #l #m ir

are used. The first variable can be measured via a
potentiometer or a high resolution (great number of
holes per circle) optical encoder while the second via
ammeter. 

2.3 Position Control
In this subsection the problem of controlling the position
of the load is studied. To the system (2.1) apply the P-D
feedback law

               Vr = f1
d"m
dt + f2

d#m
dt + f3

dir
dt + k1"m + k2#m +

               (2.7)+k3ir + gw

where , ,  and ,  ,  are the degrees off1 f2 f3 k1 k2 k3

freedom of the derivative and proportional term of the
controller, respectively. The parameter is the externalw
command. Choosing the degrees of freedom to be

         f1 = kb − %1, f2 = 0, f3 = Lr, k1 = −1
r , k2 = %1,

                        (2.8)k3 = Rr

where  is a degree of freedom, the control law takes%1

on the form

    Vr = (kb − %1)
d"m
dt + Lr

dir
dt − 1

r "m + %1#m + Rrir + gw
                                (2.9)



Substituting the controller (2.9) to the DC motor
description (2.1) the resulting closed loop system
becomes

 ,   ,     #m = rg dw
dt ir = J

km
rg d2w

dt2 + Bm
km

rg dw
dt + r

km
Tl

       (2.10a)"m = rgw

while the output variable  takes on the form and the" l

output 

                         (2.10b)" l = gw

From (2.10b) it is concluded that using the feedback law
(2.9), perfect output has been achieved for position
control.

With regard to the closed loop system BIBO stability, it
is mentioned that if  is bounded the boundness of w(t) "m

and  is guaranteed. Furthermore if the first and the" l

second derivative of  is bounded then, according tow(t)
(2.6a) the current  is bounded. With regard toir

asymptotic stability it is observed that for  itw(t) = 0
holds that 

" l(t) = 0, "m(t) = 0, ir(t) = r
km

Tl(t) (!t > 0)

With regard to the robustness of the closed loop system,
the uncertainties ,  (current derivativeBm ed(t)
implementation error) and  (position derivativee#(t)
implementation error) must be considered. If there exist
an optical encoder for speed measurement there is no
implementation error  in computing . For thise#(t)

d"m
dt

case the controller takes on the form:
Vr = (kb − %1)

d"m
dt + Lr

dir
dt + edLr − 1

r "m + %1#m + Rrir

. Substituting the controller to the open loop system+gw
(2.1), the resulting closed loop system takes on the form:

 and the output variable  is"m = rgw + Lrred " l

." l = gw + Lred

The output performance error  is  . It is" l − gw Lred

linear with respect to   and independent upon .ed Bm

Note that the controller is independent of  . the goodBm

performance of closed loop system is guaranteed for
small derivative implementation error. If only the
position   (eq. ) is measured (f.e. via a" l "m

potentiometer or an optical encoder) there is one
additional uncertainty in computing  , let . In this#m e#
case the term   in the controller substituted byd"m

dt
.d"m

dt + e#

3. SIMULATION FOR THE 75 WATT DC MOTOR
(35NT2R82-426SP)

The previous results will be applied to control a 75 Watt
DC permanent magnet motor. The parameters of the
motor are: Bm = 0.002 [kgm2/s], J = 71.4 ! 10−7[kgm2],

, , , km = 0.0497[Nm2/A] r = 2 kb = 0.312[Vs] Rr = 2.2[&]

and . The unknown load torque is shownLr = 0.0004[H]
in Fig. 1. 

3.1 Speed control
Choosing , the P-D feedback law is (given in (2.5)):g = 2

 Vr = 0.000714 dir
dt + (0.312 − 1

2 )#m + 2.2ir + 2w

The desired angular velocity of the permanent magnet
DC motor is . The derivative term in the20 [1/s]
controller is implemented via a backward discretization
(sample and hold) with sampling period equal to 0.001
[sec]. The performance of the DC motor variables, for
external input  and zero initial conditions, isw = 10 [V]
illustrated in Fig. 2a-d, where all motor’s variables are
presented. 

3.3 Position control
According to relation (2.9) and choosing g = 2, %1 = 0
(there is no measurement of the angular velocity), the
P-D feedback law is:

Vr = 0.312 d"m
dt + 0.0004 dir

dt − 1
2 "m + 2.2ir + 2w

The desired position of the permanent magnet DC motor
is chosen to be . The derivative terms in the4 [rad]
controller are implemented via a backward discretization
(sample and hold) with sampling period equal to 0.001
[sec]. The control input (voltage) is considered to be
saturated at . Saturation is a standard18 [V]
characteristic of any DC motor driver. The performance
of the DC motor variables (external input  andw = 2 [V]
zero initial conditions) are shown in Fig. 3a-3d.

4. CONCLUSIONS

The problem of perfect position or speed control with
simultaneous load torque rejection (with respect to the
load torque) for a permanent magnet DC motor, has
been studied using P-D feedback law. The problem has
been proven to be always solvable. The responses of all
state variables have been determined. Stability
properties of the closed loop system have been
investigated. The performance of the closed loop
system, in cases where the friction coefficient is
unknown and the derivative term is implemented with a
relative error, has been studied. It has been proven that
the performance of the closed loop system is
independent upon the friction coefficient and is linear
with respect to the derivative implementation error. The
results of the paper have been illustrated via simulations
for an Escap 35NT2R82-426SP permanent magnet DC
motor.
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Fig. 1. Load Torque
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       Fig. 2a. Speed 
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Fig. 2b. Rotor Current
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Fig. 2c. Rotor Voltage (Controller Output)
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Fig. 2d. Motor Power

Position Control



Time (sec)
0 2 4 6 8 10

0

1

2

3

4

5
Position (rad)

Fig. 3a. Position
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Fig. 3b. Rotor Current
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Fig. 3c. Rotor Voltage (Controller Output)
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Fig. 3d. Motor Power
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