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Abstract. This paper investigates local and global bifurcation phenomena in a power system with two cascaded
Load Tap Changer transformers. These devices regulate voltage at two different voltage levels. Conditions for
oscillatory behavior and the stability of the system are extracted. The interaction between the two devicesis aso
considered. More specificaly, it is shown how the cascaded time constants influence the monotonic or
oscillatory behavior of the system and the formation of a homoclinic loop bifurcation.
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1. INTRODUCTION

Power systems are highly nonlinear dynamical
systems. The nonlinear models describing power
systems can exhibit a wide variety of complex
behavior  [1-3]. Moreover  economic  and
environmental restrictions, along with the current
trend to open the power market, force modern power
systems to operate ever closest to their stability limits.
Consequently, power systems behavior becomes even
more dependent on nonlinear characteristics and more
complex. A great effort has been spent recently in
analyzing these nonlinear phenomena [4-6].

Load restoration dynamics play a significant role in
voltage instability phenomena [3,5,7,13]. An
important mechanism of load restoration is that of
Load Tap Changers (LTCs). These devices regulate
load voltages and therefore they restore indirectly
load power, even when transmission system voltages
are reduced. Voltage instability problems initiated by
LTC dynamics are analyzed in [7,8,10], using both
discrete and/or continuous LTC models. Oscillatory
behavior produced by the interaction between
cascaded tap changing transformers has been noticed
in [1,913]. It has been mentioned that these
oscillations appear when the time constants of all
LTCs belong to the same time frame. In [12], the
appearance of a limit cycle has been observed as a
result of the interaction between load and LTC
dynamics.

In this paper we analyze extensively from a stability
point of view a system with two cascaded LTCs in

both parameter and state space. The anaysis is
performed using bifurcation theory. More specifically,
we derive conditions for:

- Ogcillatory behavior

- Hopf Bifurcation

— Saddle Node Bifurcation

Apart from these local bifurcations we investigate
aso a global bifurcation, namely a Homoclinic Loop
Bifurcation (HLB).

Although LTC dynamics are discrete, we use
equivalent continuous models in order to perform
stability analysis. In [3,8] methods to provide straight
forward derivations of continuous tap dynamic
models from basic discrete ones are presented. These
methods consist of the identification of the
appropriate form and time constant data for
continuous - tap dynamic models.

2. BIFURCATIONS

The term bifurcation refers to the points in parameter
space, for which the qualitative structure of the
system changes for a small variation of a parameter
vector. More specificaly:

- At Local Bifurcations the change of the
qualitative structure of the system refers to local
properties, such as stability of equilibria and
periodic orbits.

- At Global Bifurcations the qualitative structure
of the system changes globally in the state space,



i.e. it is not restricted in the neighborhood of an
equilibrium point.

A Saddle Node Bifurcation occurs when a stable -
unstable pair of equilibrium points disappears or
emerges simultaneously. In power systems, this
bifurcation usually coincides with a maximum power
transfer point of the system. At this bifurcation, the
state matrix of the system becomes singular.
A Hopf bifurcation causes the emergence or
disappearance of a periodic solution through its
interaction with an equilibrium point. At this
bifurcation, a pair of complex conjugate eigenvalues
of the state matrix crosses the imaginary axis. There
are two distinct types of Hopf bifurcation depending
on the stability of the limit cycle:

e Atasubcritical Hopf bifurcation an unstable limit
cycle collides with a stable equilibrium. After the
bifurcation the equilibrium becomes unstable and
the limit cycle disappears.

e At a supercritical Hopf bifurcation a stable
equilibrium point becomes unstable and a stable
limit cycleis generated.

At a Homoclinic Loop Bifurcation one branch of the

stable manifold and one branch of the unstable

manifold of the same unstable equilibrium point
coincide. An isolated closed tragjectory (loop), passing
through the unstable eguilibrium point, is generated.

This trajectory is called a homoclinic loop. After this

bifurcation an unstable limit cycle is generated.

3. THE TWO CASCADED LTCsSYSTEM
3.1. System description

The system studied in this paper consists of a constant
voltage source (infinite bus) feeding an isolated load
(purely resistive), through a lossless transmission line
and two transformers equipped with LTCs. The
reactances of the two transformers are X; and X,
respectively. The system is shown in the one line
diagram of Fig. 1. The transmission line connects the
infinite bus to the transformer through a total
reactance X,. The reactive losses of the two
transformers (i.e. on reactances X; and X,) are
compensated by a capacitor (of admittance B). Table
1 shows the network and system parameters (pu on
100MVA base).
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Figure 1: The two cascaded L TCs power system
Table 1: Network, Load and L TCs parameters
Xo | X4 X, B Ve Ve | V.
0.1 0.2 0.15 3.33 | 1.036 1.0 1.0

The load is represented as a constant admittance G.
The LTC dynamics are described by the following
two differential equations (continuous model):
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where:
r,, r, arethetap positions (state variables)

V., V.2 arethe secondary voltage set points
T,, T, arethe corresponding time constants

As seen in (1), (2) the LTC controllers are integral
regulators.
The secondary voltages V,, and V, of the

transformers are given by the following expressions:
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where E, Xt are the Thevenin equivaent voltage and
reactance at A, B (see Fig. 1). Note, that the time
constants T,, T, and the load admittance G are

considered as the variable parameters of our system.

3.2. Equilibrium Conditions

The equilibrium points of the system are defined by
the following nonlinear algebraic equations:
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Figure 2: PV curve of the system
where V,, V,, are given by (3), (4). From the

solution of the above system we can find two pairs of
equilibria, one corresponding to normal transmission
system voltage and one corresponding to low voltage.
In Fig. 2, we can see the equilibrium points of the
system for various loading levels, in terms of a PV

curve. In the same figure, P (=GV,?) is the power



consumed by the load and V is the transmission

voltage close to theinfinite bus (see Fig. 1).

The following remarks can be made on Fig. 2:

« For P<P'(=298pu) the system has two
equilibrium points, one corresponding to high
voltage V and one corresponding to a low value
of voltage V.

« For P=P’ thetwo equilibrium points coalesce
and disappear. This point is a Saddle Node
Bifurcation of the system.

«+ For P>P the system has no equilibrium
points.

3.3. Linearization
Linearizing around an equilibrium point, the system
(1) — (2) becomes:
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Note that, A;, A,, A, A, arefunctions of load
admittance G. At this point we remark that A; <0
for al values of G, whereas A,, changes sign

depending on G.
The matrix:

A'=T7"A (8)
isthe state matrix of the system.
The characteristic polynomial of the system is given
by [9]:

22 —E—Aﬂ +i@ + ET—DA EZ 0 (9
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where:

Da=AuAn —AA, (10)

is the determinant of A.

4. LOCAL CONDITIONSFOR
OSCILLATORY BEHAVIOR AND
STABILITY

4.1. Oscillation Condition

We want here to derive the region in parameter space,
where the system exhibits oscillatory behavior.

According to the characteristic polynomial (9), the
damping factor { of the system is given by:
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where: y =T, /T,

For a given load admittance G and provided that
AL A, >0, itiseasily shown that the damping factor
* hasalocal minimum with respectto Y, given by:

_ [AuAn
Crin = "o, (12)

Considering that A, isaways negative (for all values
of G), (12) holdsaslongas A, <O0.
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Figure 3: Variation of damping factor
In Fig. 3 we can see the variation of damping factor ¢
asafunction of theratio T, /T, , for different values of
the load admittance G. In the same figure, the dotted

line shows the minimum value ¢ ;,
Note that, for G=>254, A,, becomes positive
(A, 20),s0 {,;, cannot be defined.

We consider that, near the equilibrium the system
exhibits monotonic behavior regardless of time
constants T,, T, as long as the following conditions
hold:

— The damping factor « has alocal minimum ¢

with respect to y .

for agiven G.

min

- The local minimum value {,,, iS greater than
0.707.
The threshold value of ¢ . =0.707 is chosen

because it correspondsto a second-order linear system
that does not exhibit overshoot. These conditions refer
to local oscillations (close to the stable equilibrium
point).

As shown in Fig. 3, for loading level bellow
G =1.66pu there are no local oscillations. For higher
values of the load, local oscillatory behavior depends
on the relative speed of the two regulating
mechanisms, i.e. on the ratio of time constants T, /T, .

In Fig. 4, the boundary of local oscillations is shown
as curve 1 inthe parameter spaceof Gand T, /T, .



4.2. Stability Conditions

The stability conditions of system (7) are:

. trA'<0

1. detA’'>0

According to (8) the trace of the state matrix A’ is

given by:

ra =P A (13)
T2 Tl

Note that:

e Aslongas A, <0 (giventhat A, <0) stability
condition (1) holds regardless of the values of
time constants T, and T, .

e If A,=20 (this holds for load admittance
G = 2.54), there are time constants values T,, T,
for which condition (1) is violated.

According to (13) and condition (1), the stability in

termsof Ty/T, (for G = 2.54) isdefined by:

l < M (14)
T2 A22

And the stability boundary is given by:
T2 A22

Relation (15) is the condition for Hopf bifurcation
(where a pair of conjugate eigenvalues of A’ crosses
the imaginary axis). After the Hopf bifurcation the
system becomes oscillatory unstable.

When stability condition (1) is violated, the system
encounters a Saddle Node Bifurcation, and the state
matrix A’ becomes singular.

Note that, matrices A" and A' become singular

simultaneoudy  (detA'=detA), therefore the
condition for Saddle Node Bifurcation is:
detA =0 (16)

5. ANALYSISIN THE PARAMETER SPACE
From the preceding analysis we can plot the stability
and oscillatory regions in the parameter space of load
admittance G and time constant ratio T,/T, (as in
Fig. 4). From Fig. 4 we conclude the following:

«  For light loading conditions (G <1.66):

— The system does not exhibit oscillatory
behavior near the equilibrium point (for any
combination of time constants T, T,).

- Theequilibrium point is stable.

 For medium loading

(1.66 <G < 2.54):

— There is a loca oscillatory region in the
parameter space (to the right and above curve
linFig. 4).

— The equilibrium is stable (for any
combination of time constants T, T,).

conditions

* Highloading conditions (G > 2.54)

— The stable monotonic region in the parameter
space shrinks.

— There is a region in the parameter space
where the equilibrium is unstable. This
happens after a Hopf bifurcation (curve 2 in
Fig. 4) is encountered.
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Figure 4: Oscillatory and stability region in parameter
space

e For loading above the Saddle Node Bifurcation

value G=298pu there is no longer an

equilibrium.
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Figure 5: Eigenvalues of the system (T,=40s, T,=20s)

The eigenvalues of the linearized system (7), for

specific values of time constants (T, =40sec,

T,=20sec) and increasing load admittance G, are

plotted in Fig. 5, in the form of a root locus. For this

plot the parameters move along line ¢ in parameter

space (see Fig. 4).

From Fig. 5 we notice the following:

— At point A (G=0.96pu) the two real eigenvalues of
the system become complex.

- At point HB (G=2.81pu) the imaginary axis is
crossed. ThisisaHopf bifurcation of the system.

- At point B (G=2.97pu) the complex eigenvalues
become real again.

- After point B one real eigenvalue becomes zero at
point C (G=2.98pu). This is the Saddle Node
Bifurcation of the system. There are no
equilibrium points after this value of G.

6. ANALYSISIN THE STATE SPACE

In previous sections the local behavior of the system
near its stable equilibrium point was investigated. In
this section, we perform simulations to investigate



global dynamics of the system, e.g. the region of
attraction of the stable equilibrium point, limit cycles,
global bifurcations etc.
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Figure 6: Monotonic behavior (T,/T,=0.1)

The simulations are performed for a load admittance
G=2.8pu. For this loading the system has two
equilibrium points. One corresponding to high
network voltages (1; =0.8036, 1, =0.9220) and one
corresponding to low network voltages (; = 0.4180,
r, =0.9220). Note that, equilibrium points are
independent on the time constants T, , T,.

In Fig. 6, the phase portrait of the system, for
T,=5sec, T,=50sec (T,/T,=0.1), is depicted. In this
case, where the first LTC is fast enough compared to
the second, the system exhibits monotonic response
near the stable equilibrium point S.
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Figure 7: Phase portrait before the Homoclinic Loop
Bifurcation (T, /T,=1.0)
Point U is the unstable equilibrium point (saddle
point). The region of attraction of point Sis bounded
by the two branches of the stable manifold (W) of
the unstable equilibrium U (see Fig. 6).
By increasing time constant T, (T, =50sec) we have
the phase portrait of Fig. 7. In this case the dynamics
of both LTCs belong to the same time scale. The
system exhibits oscillatory behavior in the region of
attraction of the asymptotically stable equilibrium
point S. Thisregion is bounded by the stable manifold
(W) of the unstable equilibrium U (see Fig. 7).
Outside this region, the response of the system is
unstable (see trgjectoriesaand b in Fig. 7).
For further increase of time constant T, (T, =64.4sec)
we have the phase portrait of Fig. 8. From this phase
portrait we can see that one branch of the stable

manifold (W) and one branch of the unstable

manifold (W) of the unstable equilibrium point

coincide, i.e. an isolated closed trgectory, passing
through the unstable equilibrium point, is generated
(homoclinic loop). At this point the system is
structuraly unstable (in the sense that any small
parameter variation will break the homoclinic loop)
and undergoes a Homoclinic Loop Bifurcation. After
this bifurcation an unstable limit cycle, surrounding
the stable equilibrium point is generated.
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Figure 8: Homoclinic Loop Bifurcation (T, /T, =1.29)

The homoclinic loop bounds the region of attraction
of the stable equilibrium point, where the response of
the system is oscillatory (see trgjectory a in Fig. 8).
Outside this region, the response of the system is
monotonically unstable.
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Figure 9: Emergence of unstable limit cycle after the
Homoclinic Loop Bifurcation (T, /T, =1.42)

For further increase of time constant T, (T,=71sec)

we have the phase portrait of Fig. 9. In this phase
portrait we can see the emergence of the unstable
limit cycle (after the breaking of the homoclinic loop).
Now, this limit cycle bounds the region of attraction
of the stable equilibrium point. Outside this region
system trajectories are unstable.

In Fig. 10 we can see the phase portrait of the system
prior to the Hopf Bifurcation (note that at this
bifurcation the unstable limit cycle coalesces with the
stable equilibrium point). This phase portrait is
extracted for time constant T,=90sec. Outside the

limit cycle the response of the system is initialy
oscillatory and becomes monotonically after the

stable manifold W, (of the unstable equilibrium
point U) is overtaken (see Fig. 10). The Hopf



Bifurcation is subcritical since the limit cycle prior to
the bifurcation is unstable and shrinks.
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Figure 10: Shrinking Limit Cycle prior to Hopf
Bifurcation (T,/T,=1.8)

7. CONCLUSIONS

In this paper local and global bifurcations in a power
system with two cascaded Load Tap Changer
transformers were investigated. The anadysis was
performed in both parameter and state space.
Conditions for oscillatory behavior and the stability of
the equilibrium point were extracted.
The system encounters three types of bifurcations for
changing loading and time constants:
e Two local bifurcations (Hopf Bifurcation and
Saddle Node Bifurcation).
¢ One global bifurcation
Bifurcation).
Before the Saddle Node Bifurcation, the system has
two equilibrium points, one corresponding to high
network voltage and one corresponding to low
network voltage (which is aways unstable). The
former equilibrium point is stable until a Hopf
Bifurcation is met. More specificaly, for loading
above G =254, the system will exhibit oscillations
near the stable equilibrium point if the time constants
of the two LTCs are close enough. Also for a certain
value of the ratio T,/T, the system will undergo a

Hopf Bifurcation becoming unstable. Note that, this

bifurcation is the actual stability limit of the system

since the Saddle Node Bifurcation occurs always after
the Hopf Bifurcation.

Regarding the global dynamics of the system we note

the following:

e Prior to the Homoclinic Loop Bifurcation, the
region of attraction of the stable equilibrium point
is bounded by the stable manifold of the unstable
equilibrium point.

e After the Homoclinic Loop Bifurcation and prior
to Hopf Bifurcation the region of attraction of the
stable equilibrium point is bounded by the
unstable limit cycle, which surroundsiit.

e After the Hopf Bifurcation there is no stable
equilibrium point any longer.

(Homoclinic  Loop
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