
ANALYSIS OF CONTROLLED HYBRID PROCESSING

SYSTEMS BASED ON APPROXIMATION BY TIMED

AUTOMATA USING INTERVAL-ARITHMETIC

OLAF STURSBERGz, STEFAN KOWALEWSKIy

z Process Control Lab (CT-AST), Dept. of Chemical Eng., University of Dort-
mund, D-44221 Dortmund (Germany), o.stursberg@ct.uni-dortmund.de

y Research and Development (FV/SLD), Robert Bosch GmbH, D-60441 Frankfurt
(Germany), stefan.kowalewski@de.bosch.com�

Abstract. This contribution describes an approach to investigate reachability
properties for a class of controlled hybrid systems. The continuous dynamics of
these so-called Switched Continuous Systems (SCS) is selected by the discrete out-
put of a logic controller. While reachability analysis is in general undecidable for
this class of systems, the analysis is known to terminate for the class of Timed

Automata (TA). In order to make reachability analysis amenable to the control
structure, we propose an approximating algorithm to convert a SCS into a TA.
Di�erent modi�cations and extensions of the procedure are given and the approach
is illustrated by the application to a chemical reaction system.
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1. INTRODUCTION

One topic which has been studied intensively in
the context of hybrid systems over the last few
years is the veri�cation of safety properties (see
e. g. [3, 7, 10]). To proof safe operation of a sys-
tem with either purely discrete or mixed discrete-
continuous dynamics reachability analysis is ap-
plied: Given an initial set of states S0, the set of
reachable states SR is computed and it is checked
whether a set of forbidden states SF intersects with
SR (SR \ SF = ??). This method has been in-
vestigated in various �elds of application as the
veri�cation of electronic circuits, the design of au-
tonomous traÆc systems and the investigation of
processing systems { which is our domain of inter-
est. Speci�cally, we want to determine whether a
given logic/supervisory controller guarantees that
devices like chemical reactors or vessels for the stor-
age or separation of substances will never reach
states which constitute a danger to the personnel,
the equipment or the environment of the processing

�The research presented in this paper was performed
while the author was with the University of Dortmund.

system. We analyze a hybrid processing system by
mapping the original model �rst into a timed au-
tomaton (TA) and then check safety properties of
the latter with existing veri�cation algorithms. In
contrast to methods which pursue the same objec-
tive and which we have previously published (com-
pare e. g. to [5, 6, 8]) the completeness of the model
transformation is always guaranteed and by using
interval-arithmetic the computationally costly step
of simulation is avoided.

While the following section de�nes the con-
trol structure under consideration more formally,
Sec. 3. contains a description of the algorithmic
procedure which converts the original hybrid sys-
tem into TA. This section also states some proper-
ties and possible extensions of the approach, and
Sec. 4. illustrates it by application to a chemical
reaction system.

2. THE CONTROL STRUCTURE

The considered structure of a hybrid processing
system controlled by a logic controller is shown in
Fig. 1: The process model is initially set up as a



Switched Continuous System which we de�ne as
follows:

De�nition 1

A Switched Continuous Systems (SCS) is given
by PSCS = fU;X;X0; fg with the �nite set
U = fu1; : : : ;upg of discrete inputs vectors uk =
(uk;1; : : : ; uk;m), uk;i 2 R and the continuous state
space X � Rn . We assume that the state space
is bounded1, i. e. xj 2 [xj;min; xj;max], j 2

f1; : : : ; ng, and X0 � X is a compact set of ini-
tial states. The continuous dynamics of the SCS
is determined by ordinary di�erential equations
_x = f(x;u): For x(t0) 2 X0, a trajectory of PSCS is
the continuous solution x(t) of the ODEs on a time
interval t 2 [t0; te], where the discrete input vector
uk switches �nitely often at distinct points of time
ts 2 [t0; te], and uk is held constant otherwise.
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Fig. 1: The control setting.

The discrete inputs uk 2 U are the control sig-
nals by which the controller determines the con-
tinuous evolution of PSCS . The output of the
system, so-called process events, are generated if
a process variable xj crosses a speci�ed thresh-
old (see Sec. 3.). These events are reported to a
discrete controller for which we assume that its
logic can be modeled by a �nite state automaton
C = fPE;ZC ; ZC

0 ; U; �
C ; Cg. The set U is the

same as in PSCS , and Z
C denotes the discrete state

set with a subset ZC
0 � ZC of initial states. The

controller reads a process event " 2 PE, and de-
pending on " a transition z1 ! z2 between two
states z1; z2 2 ZC is triggered according to the
state transition function �C : PE � ZC ! ZC .
When the state z2 is reached, a new control sig-
nal uk can be emitted by the output function
C : ZC ! U .

The target of our model transformation is a timed
automaton which we de�ne similarly to [1] by:

1If this does not apply, one can obtain a bounded
state space e. g. by the transformation exj = �(xj) =

xj=

q
1 + x2j=ex2j;b when exj denotes the transformed variable

which is de�ned on the interval [�exj;b;�exj;b], exj;b 2 R.
Additionally, the function f has to be transformed by
_ex =

d�(x)

dx
� f (x ;u).

De�nition 2

A Timed Automaton (TA) is an 8-tuple PTA =

fU;ZP ; ZP
0 ; PE; V ar; �

P ; Inv; P g in which U ,
PE, ZP , and ZP

0 again denote the sets of control
signals, process events, discrete states, and initial
states respectively. V ar = fv1; : : : ; vpg is the set of
clock variables where each clock v 2 V ar evolves
with the rate _v = 1; all clock variables are ini-
tialized to vj := 0. The state transition function
�P : U � ZP � Æ(v) ! ZP determines transitions
z1 ! z2 for two states z1; z2 2 ZP depending on
a current control signal uk 2 U and on so-called
guards Æ(v) which are conjunctions of expressions
(
P

1�k�p ak � vk) � c, ak 2 Q, �2 f<;�;=;�; >g,

c 2 Q. A clock value can be reset to zero (v := 0)
with a transition. The invariant function Inv(z)
speci�es which conditions must be true for the
clock values if PTA is in state z; the invariants
are of the same type as the guards. Finally, the
output function P : Z � Z ! PE can generate a
process event when a transition occurs. A run of

of PTA is a sequence
�0
! z0

�1
! z1

�2
! z2

�3
! : : : with

zi 2 ZP , z0 2 ZP
0 . The values �i (i = 0; 1; 2; : : :)

with �i � �i+1 denote the points of time at which
transitions according to �P occur, and they corre-
spond to the evaluations of a clock v 2 V ar which
is initialized at �0 but never reset again.

Instead of using the input and output signals U and
PE to model the communication between the pro-
cess model PTA and the controller C one could as
well use synchronization labels. In both cases, the
generation of a process event instantaneously leads
to a new controller signal, i. e. there is no delay of
the controller response. Also for a process model
given as PTA, we assume that the number of pro-
cess events generated on a bounded time interval
is �nite. We now propose a transformation algo-
rithm to convert a process model of the type PSCS
into the type PTA in order to be able to perform
reachability analysis for the controlled system.

3. TRANSFORMATION INTO

TIMED AUTOMATA

The transformation scheme is basically split into
two steps: The �rst partitions the continuous state
space of the SCS into a �nite number of elements
and assigns a discrete state of PTA to each ele-
ment. Transitions among these states are then de-
termined in the second step based on the dynamics
of PSCS .

3.1. State Space Partitioning

A �rst partition of X is obtained from considering
those thresholds for each state variable xj for which
the controller has to compute a new control signal.
These thresholds and the bounding values for xj
are speci�ed as a so-called ordered landmark set :

Lj = flj;1 = xj;min; lj;2; : : : ; lj;pj = xj;maxg (1)



where lj;k+1 > lj;k. The set PE (introduced
in Sec. 2.) is formed by assigning a process
event "j;k(xj ; lj;k) to a landmark lj;k with k 2

f1; : : : ; pjg:

"j;k =

8<
:
+1 if xj(t < te) < lj;k ^ xj(t = te) = lj;k;
�1 if xj(t < te) > lj;k ^ xj(t = te) = lj;k;
0 else:

(2)
The example in Fig. 2 shows a partition which
is initially given by L1 = fl1;0; l1;2; l1;4g, L2 =
fl2;0; l2;2; l2;3g. Process events PE = f"1;2; "2;2g
are generated if l1;2 and l2;2 are crossed in appro-
priate directions. In order to obtain a more regular
X -partition, additional values can be inserted such
that the distance �j;k = lj;k+1 � lj;k of adjacent
landmarks does not exceed a speci�ed bound. In
Fig. 2 the landmarks sets are extended by l�1;1, l

�
1;3,

and l�2;1 respectively (and the indexing is adapted).
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Fig. 2: State space partitioning and event genera-
tion.

The extended landmark sets partition X into � =Q
j pj cells which are of hyper-rectangular geome-

try. We de�ne a mapping DX : fX ; Lg ! � (with
L =

S
j Lj) that maps the set of cells into a set

� = fd1; : : : ;d�g of index vectors d . Each com-
ponent dj of an index vector contains the number
of the corresponding interval of xj :

dj = DX (xj ; Lj) =

�
k if xj 2 [lj;k�1; lj;k[;
pj if xj 2 [lj;pj�1; lj;pj ]:

(3)
It was shown in [9] that a transformation method
that is based only on a cell partition requires some
additional e�ort to allow lower time bounds for
transitions which are di�erent from a guard "t � 0"
(i. e. the TA must be extended by discrete vari-
ables). This can be avoided and the accuracy of
representing the continuous state x in PTA can be
improved by a further partition: For each of the
(n � 1)-dimensional hyperplanes which constitute
the boundary of a cell d a uniform grid is intro-
duced. The granularity of the grid is determined
by choosing parameters �1; : : : ; �n 2 N, where �j

speci�es the number of elements in which an inter-
val [lj;k; lj;k+1] is partitioned. Figure 2 shows the
case that each side of the cell d = (2; 3) is divided
into two elements (�1 = �2 = 2). A discrete state
zd ;g is assigned to each boundary element which
is obtained from this partitioning. The index vec-
tor g = (g1; : : : ; gn) determines the location of the
state on the boundary, i. e. a component gj spec-
i�es the number of the element counting from the
landmark with the lower k-index. (The invariant
coordinate of the boundary element gets a '+' or '-'
denoting the lower or upper side of the cell, as for
the state z(2;3);(1;+) in Fig. 2). Using this scheme,

the set ZP contains a number of

�� =

nX
j=1

0
@(pj + 1) �

nY
k=1;k 6=j

�k � pk

1
A (4)

discrete states. Whereas the internal region of a
cell is not explicitly assigned to a discrete state
in ZP , the transformation method described in
the next section ensures nevertheless that the be-
haviour of the SCS is completely captured by PTA:
The idea is to represent the behavior of PSCS in the
timed automaton by just modeling all intersections
of continuous trajectories with the cell boundaries.

3.2. Determination of Transitions based

on Interval-Arithmetic

The following algorithm for determining the tran-
sitions of PTA (according to �P ) uses interval-
arithmetic to evaluate the continuous dynamics of
PSCS . This choice accounts for the fact that we
have to compute the gradients _x for regions of the
state space instead of single points x only. Let I
be the set of all bounded intervals I = [i1; i2] =
fx 2 Rji1 � x � i2g where i1; i2 2 R. Interval-
arithmetic (see e. g. [4]) provides rules for the
standard binary operations A!B with A;B 2 I,
! 2 f+;�; �; =g and numerous unary operators
�(I) = [min(�(x));max(�(x))], x 2 I (as e. g. eI

and In). If we replace all operations in f by the
corresponding interval operations, we can rewrite
the continuous dynamics of PSCS to:

[ _x ] = bf ([x ];u); (5)

where bf denotes the interval functions and [x ] =
([x1;1; x1;2]; : : : ; [xn;1; x1;2]), (xj;1; xj;2 2 R) is the
state interval vector. The gradients are ob-
tained as the gradient interval vector [ _x ] =
([ _x1;1; _x1;2]; : : : ; [ _xn;1; _x1;2]).

The algorithm to determine the transitions of
PSCS basically consist of three tests to check
whether a transition z1 ! z2 for a pair of states
(z1; z2 2 ZP ) is possible. In order to reduce
the overall computational e�ort, this structure was
chosen such that the computation for z1 ! z2 stops
immediately if a test reveals that the transition
does not exist in PTA:



Algorithm 1

Do the following for each pair of a control signal
u 2 U and a cell d 2 �:

1. Compute the vector [ _x]d (which contains all gra-
dients occurring in the cell d) through Eq. 5
by using the state interval vector [x]d =
([l1;d1�1; l1;d1 ]; : : : ; [ln;dn�1; ln;dn ]).

2. Choose each state zd;g1 that is assigned to cell d
as the source state of a transition, and:

(a) compute the gradient vector [ _x]d;g1 for the
region of the source state zd;g1 (let j be the
invariant coordinate of [x]d;g1).

(b) Test A: Check whether the sign of [ _xj ]d;g1
allows a transition from state zd;g1 into the
cell d { this applies for maxf[ _xj ]d;g1g � 0 if
zd;g1 lies on the lower cell border (in coor-
dinate j), respectively for minf[ _xj ]d;g1g � 0
if [x]d;g1 is part of the upper cell border. If
this test fails the procedure continues with
the next state in step (2.a).

(c) If each component [ _xj ]d;g1 (j 2 f1; : : : ; ng)
contains the value zero, a self-loop transition
zd;g1 ! zd;g2 is possible.

(d) Choose each state of cell d (except of zd;g1)
as possible target state zd;g2 of a transition,
and:

i. Test B: Based on the signs of the vector
[ _x]d, check whether the transition zd;g1 !
zd;g2 is possible { this applies if for each
coordinate j 2 f1; : : : ; ng a positive (neg-
ative) value is contained in [ _xj ]d while the
distance sj between the regions [x]d;g2 and
[x]d;g1 is positive (negative). If not, the
procedure continues with the next target
state (step 2.d).

ii. For each coordinate, compute a time inter-
val:

4tj =

�
sj;min

maxf[ _xj ]dg
;

sj;max

minf[ _xj ]
>0
d g

�
(6)

if the distance sj is positive, or a time in-
terval:

4tj=

����� sj;min

minf[ _xj ]dg

����;
���� sj;max

maxf[ _xj ]
<0
d g

����
�

(7)

if sj is negative. The parameters sj;min

and sj;max denote the distance which must
be covered at least, or at most respectively
in coordinate j. The indices <0 and >0

mark the negative and positive part of an
interval.

iii. Test C: Check whether the intersection
of the time intervals of all coordinates is
empty:

4td;g1!g2 =
\

j=1;:::;n

4tj = ?? (8)

Then, the transition zd;g1!g2 does not ex-
ist and the procedure continues for the
next target state in step 2.d.

iv. For 4td;g1!g2 6= ? the transition zd;g1 !
zd;g2 is possible provided the guard v 2

4td;g1!g2 is true for the given u 2 U .

The procedure is illustrated in Fig. 3: If the �rst
component of [ _x ]d ;(�;3) contains a value� 0, a con-
tinuous trajectory exists through which the cell d
is not left immediately, i. e. a transition within cell
d is possible (test A passed). For the combination
of zd;(�;3) and a target state zd;(4;�), test B checks
whether the values in [ _x ]d have appropriate signs
to allow the transition zd ;(�;3) ! zd;(4;�); this
is the case for maxf[ _x1]dg > 0, minf[ _x2]dg < 0.
Finally, the time intervals 4t1 and 4t2 are com-
puted, and if these intervals overlap the transition
zd ;(�;3) ! zd ;(4;�) is assessed to be possible (test
C).

If carried out for all cells and all control sig-
nals, this algorithm maps all continuous trajec-
tories of PSCS which connect di�erent parts of a
cell boundary into discrete transitions. The tra-
jectories which end inside of a cell region [x ]d are
captured as self-loop transitions of those states
zd ;g that pass test A. Furthermore, the trajectories
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Fig. 3: Determination of transitions.



which start inside of a cell d have to be considered
(this is only relevant for the cells which include the
initial region of PSCS): In this case, an additional
state zd is assigned to cell d and transitions from
zd to all states zd;g are introduced with an guard
which includes the transition times4td;g1!g2 of all
transitions which have been computed for d with
the current u .

Eventually, PTA results from the following assign-
ments: the sets U of PSCS and PTA are equiva-
lent; ZP follows from the partitioning in Sec. 3.1.;
ZP
0 is the set of states which are assigned to the

cells that contain X 0; PE is the set of events that
are obtained from the initial cell partition; V ar
contains just one clock variable v; the function �P

speci�es the transitions which are determined from
the procedure described above, and the clock v is
reset with each transition; the transition guards
are the conjunctions of a control signal u and a
time constraint v 2 4td;g1!g2 ; Inv(zd;g ) is given
by 0 � v � td ;g;max where td ;g;max denotes the
largest upper time bound of all transitions through
which zd;g is left; the function P generates an
event "j;k 2 PE when a transition into a state zd;g
occurs which is assigned to a landmark value lj;k
of the initial cell partition.

3.3. Modi�cations and Extensions

To take into account that the parameters occur-
ring in models of processing systems are often
not known precisely, the method can easily be ex-
tended to the case of uncertain parameters. If a pa-
rameter in f is given by q 2 I = [qmin; qmax] rather
than by a constant q 2 R, the computation accord-
ing to Eq. 5 is straightforward: To obtain the gra-
dient interval-vector [ _x ] by interval-arithmetic, a
parameter interval [qmin; qmax] is dealt with in the
same way as with the interval argument [x ].

It shall be noted that due to the nature of interval-
arithmetic the computation of [ _x ] for an interval
vector [x ]� according to Eq. 5 can lead to large
over-approximations for some functions f . This
means that for the diameter h[ _xj ]i := _xj;2� _xj;1 of a
component of [ _x ] applies: � = h[ _xj ]i=h[ _xj ]

reali � 1
(while a conservative approximation is assured).
h[ _xj ]

reali denotes the diameter of the gradient in-
terval [ _xj ]

real which would be obtained if _x =
f (x ;u) was evaluated for all x 2 [x ]�. In these
cases it might be advantageous to retrieve [ _x ] from
constrained optimization instead (for a �xed u):

[ _xj ] =

�
min
x2[x ]�

(fj(x )) ;�min
x2[x ]�

(�fj(x ))

�
; (9)

with j 2 f1; : : : ; ng. While this modi�cation pro-
duces smaller values of the ratio h[ _xj ]i=h[ _xj ]

reali

for many functions fj , a conservative approxima-
tion ([ _xj ] � [ _xj ]

real) is only guaranteed for convex
functions fj . The computational e�ort is usually
much smaller if interval-arithmetic is used.

Another extension worth to be mentioned is the
case of switched continuous systems for which the
state space X is divided into a set of r disjunct
regions X i with

Sr

i=1X i = X and X i \X j = ;

(i 6= j, j 2 f1; : : : ; rg), and where a speci�c ODE-
system _x = f i(x ;u) is assigned to each X i. The
method described above can be applied straightfor-
wardly if the boundary between each pair of adja-
cent regions is an (n � 1)-dimensional hyperplane
that is orthogonal to one coordinate (xj = lj;k).
Then the boundary is inserted into the landmark
set Lj and the computation of [ _x ]d is carried out
under consideration which f i is valid in the cell d .
In the case that a region boundary is given by a hy-
perplane that is not orthogonal to any coordinate,
the method can be applied if one can �nd a similar-
ity transformation which results in an orthogonal
cell partition of X .

4. AN APPLICATION EXAMPLE

The application to a chemical reaction system (see
also [6]) is used to illustrate the approach from
Sec. 3.1./3.2.: The dynamical behavior of the
chemical reactor is modeled by the SCS:

_x1 = s1k1(k2 � x1)=x3 � k3x
2
1 exp(�k4=x2);

_x2 = (s1k1k5 + s2k6k7 � x2(s1k1 + s2k6))=x3

�k8x
2
1 exp(�k4=x2);

_x3 = s1k1; (10)

in which the state variables are the concentration
of the reacting substance (x1), the reactor temper-
ature (x2), and the liquid level (x3). The constants
k1 to k8 are the model parameters and the discrete
input vector u = (s1; s2) contains the switching
variables s1; s2. These variables model the valve
settings for the inow of reactants (s1) respectively
the reactor cooling (s2), where si = 1 refers to an
opened and si = 0 to a closed valve. Using the in-
put set U = fu1;u2;u3g = f(1; 0); (0; 0); (0; 1)g,
a discrete controller realizes the following three
phases of the process: The �lling of the reactor is
started by setting the input to u1, and a reaction
timer is started. (This timer can either be included
in the SCS as additional state variable or in a con-
troller model of the TA-type.) If an upper limit xu3
of x3 is reached, the controller switches the input
to u2, i. e. the reaction proceeds without cooling.
Since the reaction is exothermal the temperature
x2 increases. In order to avoid that the reactor
content starts to boil, the cooling is switched on
(u3) at a speci�ed temperature threshold xs2 (but
x2 shows an overshooting behavior for a given eÆ-
ciency of the cooling device). It is important that
the cooling is not switched on at a too low temper-
ature, because then the product yield will be low.
For the controlled system, we want to investigate
whether the threshold xs2 was chosen such that a
boiling temperature xb2 is never reached and that
the product yield (determined via x1) exceeds a de-



sired value when a speci�ed reaction time is elapsed
(measured by the reaction timer).

To solve the problem the switching rules sketched
above are transformed into the controller model
�rst, i. e. depending on the measured signals (the
process events xu3 , x

s
2) the discrete inputs u are

set appropriately. The state space X of SCS is
partitioned into cells by 4 landmarks for x1, 4 (re-
spectively 5) landmarks for x2 and 3 landmarks in
L3. The values 2 or 3 are chosen for the parti-
tioning parameters �j . Depending on these values
the state space of the PTA-model comprises 300
to 882 discrete states. The transitions including
guards and the invariants were determined by ap-
plying aMatlab implementation of the algorithm
in Sec. 3.2. Requiring a computation time of 7 to
36 minutes (on a Pentium 200 PC) models of the
PTA-type with 4547 to 17896 transitions were gen-
erated.

In order to analyze the composition of the models
PTA and C with the model-checker HyTech [2],
both models are transformed in the correspond-
ing input language. We supplied the requirement
speci�cation that none of the states assigned to the
high temperature level (xb2) must be reached and
that an x1-state corresponding to a high product
yield has to be reached within the reaction time.
For di�erent con�gurations (i. e. di�erent values
for k1 to k8 and for the partitioning parameters)
we could investigate which threshold value xs2 is
suitable such that both requirements are ful�lled.
While the analysis needed a computation time of
only 1 to 4 minutes, the memory requirement of
HyTech for the largest models exceeded 150 MB.
Hence, the size of this example roughly marks the
complexity of systems which can be analyzed with
HyTech.

5. CONCLUSIONS

The scheme to transform PSCS into PTA allows
to perform reachability analysis for the class of
switched continuous systems algorithmically. By
applying model checking tools for timed automata
to the transformed model (in conjunction with a
behavior speci�cation such as a set of forbidden
states) we gain information about safety proper-
ties of the original model. Obviously, the model
conversion is an approximation that has an impact
on the veri�cation result: On the one hand, the
approximation is conservative since the use of the
gradient intervals [ _x ]d ensures that all continuous
trajectories of the SCS are represented by discrete
transitions in PTA { hence, if a forbidden state is
found not to be reachable in PTA the same ap-
plies for the original system. On the other hand,
the model PTA contains behavior without a corre-
spondence in PSCS for two reasons: First, the use
of interval-arithmetic operations leads in general to
gradient intervals [ _x ] that are larger (� > 1) than
those which would be obtained if one evaluated the

function f for all points in [x ]d . Secondly, the algo-
rithm permits that each value in [ _x ]d can be valid
in each point within the cell d , i. e. it is abstracted
from the change of gradients along a continuous
trajectory leading to an over-approximation of the
transition guards. Both points promote the situa-
tion that a forbidden state is found to be reachable
in verifying PTA whereas this result does not hold
for PSCS . Thus, a repetition of the procedure with
a re�ned partition is helpful to reveal whether one
can trust a negative veri�cation result.

Acknowledgements: Thanks go to S. Engell for
helpful comments and to S. Panek for his part in
implementing the transformation algorithm.
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