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Abstract. The paper addresses the precision missile guidance problem where

the successful intercept criterion has been de�ned in terms of both minimizing the

miss distance and controlling the missile body attitude with respect to the target at

the terminal point. We show that the H1 control theory when suitably modi�ed

provides as e�ective framework for the precision missile guidance problem. Existence

of feedback controllers (guidance laws) is investigated for the case of �nite horizon and

non-zero initial conditions. Both state feedback and output feedback implementations

are explored.
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1. INTRODUCTION

This paper considers the formulation of the preci-

sion guidance control problem where the control

objective is to minimize the target/interceptor

miss distance and, in addition, satisfy the termi-

nal constraint on the interceptor body attitude

relative to the target. This latter requirement en-

sures that the warhead principle axis is pointed

towards the target aim point and lies within the

lethality cone about this point. The above two re-

quirements, taken together de�ne suÆcient condi-

tions for maximasing warhead e�ectiveness. The

need for the precision missile guidance problem

has been brought about as a result of recent devel-

opments in weapon system and sub-system tech-

nologies as well as a shift in guided weapon system

deployment and operational philosophies.

In the past, due to real-time computing con-

straints, major simpli�cation of engagement kine-

matics model, performance index and constraints

had to be implemented in order to render the so-

lution suitable for mechanization of a real system.

These simpli�cations lead to relatively straight-

forward feedback guidance laws, such as \the op-

timum guidance law" or the \augmented propor-

tional navigation" with a time-varying (time-to-

go) parameter (see e.g. [2, 4, 7, 16]). The perfor-

mance of the resulting systems does not meet the

criterion that could be classed as \precision guid-

ance". However, with recent technological ad-

vances, particularly in computing, the past con-

straints do not apply. It is now feasible to look

at guidance strategies that are aimed at, more ac-

curately, placing the interceptor (warhead) with

respect to the target (aim point) in order to max-

imize warhead e�ectiveness.

Firstly, we formulate the precision missile guid-

ance problem as a linear-quadratic optimal control

problem. The associated performance index is de-

�ned in a way to that explicitly takes into account

both the end-game relative target/interceptor re-

quirements as well as missile acceleration require-

ments. Then the optimal controller can be ob-

tained from the corresponding Riccati di�erential

equation. However, this approach gives the op-

timal solution for the case of non-maneuvering

targets. Moreover, a signi�cant shortcoming of

the optimal control approach is that all the states

of the target/interceptor system are typically as-

sumed to be precisely known. However, in all

practical situations only some states of the sys-

tem are available for measurements and even these

measurements are subject to noise and uncertain-



ties. In other words, the precision missile guidance

problem is an output feedback control problem.

Another shortcoming of the optimal control the-

ory is its lack of concern for the issue of robustness.

In the design of feedback control systems, robust-

ness is a critical issue. This is, the requirement

that the control system will maintain an adequate

level of performance in the face of signi�cant plant

uncertainty. Such plant uncertainties may be due

to variation in the plant parameters and the e�ects

on nonlinearities and unmodeled dynamics which

have not been included in the plant model. In

fact, the requirement for robustness is one of the

main reasons for using feedback in control system

design. Furthermore, robustness is extremely im-

portant in the precision missile guidance problem

because of possible unknown target maneuvers.

One of the most signi�cant recent advances in the

area of control systems was the theory of H1

control (see e.g. [1, 3, 14]). The use of H1 con-

trol methods has provided an important tool for

the synthesis of robustly stable output feedback

control systems (see e.g. [9{13]). In this paper,

we show that the H1 control theory when suit-

ably modi�ed provide as e�ective framework for

the precision missile guidance problem. Our com-

puter simulations prove that in the precision mis-

sile guidance problem with disturbances, the H1

control guidance law gives a much better perfor-

mance than the linear quadratic optimal guidance

law.

2. TARGET - INTER-

CEPTOR KINEMATICS

MODEL

In order to develop precision guidance laws, tar-

get/interceptor engagement kinematics need to be

de�ned in terms of the relative target/interceptor

variables (system states), including target aim-

point and warhead principle axes, and the inter-

ceptor steering commands (control inputs). Using

these state variables, the guidance requirements

may be implemented by de�ning a performance

index that is optimized subject to state and con-

trol constraints.

We will assume that the target and the interceptor

(missile) are moving in one plane. Let xT (t) 2 R
2

and xM (t) 2 R2 be the coordinates of the target

and the missile at time t, respectively. Further-

more, let vT (t) and vM be their velocities, that

is

_xT (t) = vT (t);

_xM (t) = vM (t):

Introduce the relative target/missile variables

xR(t) := xT (t)� xM (t);

vR(t) := vT (t)� vM (t):

Furthermore, let aM (t) 2 R2 be the missile accel-

eration at time t, and let aT (t) 2 R
2 be the target

acceleration at time t. Introduce a new state vari-

able

x̂(t) =

2
664
x̂1(t)

x̂2(t)

x̂3(t)

x̂4(t)

3
775 :=

�
xR(t)

vR(t)

�
2 R4:

Then, using the second Newton's law, we can de-

scribe the target/interceptor motion by the fol-

lowing state space equation

_̂x(t) = Ax̂(t) +B1aM (t) +B2aT (t) (1)

where

A =

2
664

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

3
775 ;

B1 =

2
664

0 0

0 0

�1 0

0 �1

3
775 ; B2 =

2
664

0 0

0 0

1 0

0 1

3
775 : (2)

Let T be the so-called \time-to-go". In these no-

tations, our �rst control objective to minimize the

miss distance at time T can be stated as follows

x̂1(T )
2 + x̂2(T )

2
! min : (3)

Furthermore, let

V =

�
V1
V2

�
2 R2

be the vector that describes the desired end-game

missile/target geometry. Then, this objective can

be formalized as

(x̂3(T )� V1)
2 + (x̂4(T )� V2)

2
! min : (4)

Finally, we would like to minimize the missile ac-

celeration over the whole time interval [0; T ]. This

natural requirement can be interpreted as

Z T

0

kaM (t)k2dt! min : (5)

Here k � k denotes the standard Euclidean norm.



3. OPTIMAL CONTROL

APPROACH

In this section, we suppose that the plant is de-

scribed by the following linear di�erential equa-

tion

_x(t) = Ax(t) +B1u(t) (6)

where x(t) 2 Rn is the state, u(t) 2 Rm is the

control input. We assume that the initial condi-

tion of the system is given,

x(0) = x0 (7)

where x0 2 R
n is a given vector.

With this system let us associate the performance

index

J [x(�); u(�)] :=

1

2
(x(T )� h)0XT (x(T )� h) +

�

2

Z T

0

ku(t)k2dt: (8)

Here XT � 0 is a given matrix, h 2 Rn is a given

vector, and � > 0 is a given constant.

The linear quadratic optimal control problem can

be formulated as follows:

To �nd the minimum of the functional (8) over

the set of all [x(�); u(�)] 2 L2[0; T ] satisfying the

equations (6) and (7),

J [x(�); u(�)] ! min : (9)

Introduce the following Riccati di�erential equa-

tion

� _X(t) = A0S(t) + S(t)A

�
1

�
S(t)B1B

0
1
S(t);

S(T ) = XT : (10)

Furthermore, introduce the following equations

� _r(t) = (A�
1

�
B1B

0
1
S(t))0r(t);

r(T ) = XTh; (11)

uopt(t) = �
1

�
B0
1
S(t)xopt(t) +

1

�
B0
1
r(t); (12)

� _g(t) = �
1

2�
r(t)0B1B

0
1
r(t);

g(T ) =
1

2
h0XTh: (13)

Now we are in a position to state the following

theorem.

Theorem 1 Consider the linear quadratic optimal

control problem (6), (7), (8), (9). Then, for any

x0, h, XT � 0 and � > 0, the following statements

hold:

(i) The minimum in the linear quadratic opti-

mal control problem (9) is achieved.

(ii) The Riccati di�erential equation (10) has a

unique solution on the time interval [0; T ].

(iii) The optimal control law [xopt(�); uopt(�)] is

given by the equations (10), (11), (12).

(iv) The optimal cost in the problem (9) is

1

2
x0
0
S(0)x0 � x0

0
r(0) + g(0)

where g(�) is de�ned by (13).

Proof

See [6]. 2

We now can apply Theorem 1 to our precision mis-

sile guidance problem. In this case, u(�) � aM (�),

x(�) � x̂(�) and the equation (6) coincides with

(1) for aT (�) � 0. The coeÆcients of the system

(6) is de�ned by (2). The control objectives (3),

(4), (5) can be interpreted as the optimal control

problem (9) with the cost function (8) where

XT := I4; h :=

2
664

0

0

V1
V2

3
775 : (14)

Here I4 is the unity square matrix of order 4.

4. H1 CONTROL

In this section, we present some results on H1

control problem, that will be applied for the pre-

cision missile guidance problem.

The H1 control problem was originally intro-

duced by Zames in 1981 [15] and has subsequently

played a major role in the area of robust control

theory. Given a linear time invariant system

_x(t) = Ax(t) +B1u(t) +B2w(t); (15)

z(t) = C1x(t) +D1u(t);

y(t) = C2x(t) +D2w(t);

where x(t) 2 Rn is the state, u(t) 2 Rm is the



control input, w(t) 2 Rp is the disturbance input,

z(t) 2 Rq is the controlled output, and y(t) 2 Rl

is the measured output. A, B1, B2, C1, D1, C2,

D2 are real constant matrices of appropriate di-

mensions. Suppose that the exogenous distur-

bance input is such that w(�) 2 L2[0;1).

The control problem addressed in this section is

that of designing a controller that minimizes the

induced norm from the uncertainty inputs w(�)

and the initial conditions x0 to the controlled out-

put z(�). This problem is referred to as a H1

control problem with transients. The results pre-

sented in this section are based on results obtained

in reference [5]. The class of controllers consid-

ered in Reference [5] are time-varying linear out-

put feedback controllers K of the form

_xc(t) = Ac(t)xc(t) +Bc(t)y(t);

xc(0) = 0;

u(t) = Cc(t)xc(t) +Dc(t)y(t); (16)

where Ac(�); Bc(�); Cc(�) and Dc(�) are bounded

piecewise continuous matrix functions. Note, that

the dimension of the controller state vector xc may

be arbitrary.

In the problem of H1 control with non-zero ini-

tial conditions, the performance of the closed loop

system consisting of the underlying system (15)

and the controller (16), is measured with a worst-

case closed-loop performance measure de�ned as

follows. For a �xed time T > 0, a symmetric pos-

itive de�nite matrix P0 and a nonnegative de�nite

symmetric matrix XT , the worst-case closed-loop

performance measure is de�ned by

�(K;XT ; P0; T ) :=

sup

(
x(T )0XTx(T ) +

R T
0
kz(t)k2dt

x(0)0P0x(0) +
R T
0
kw(t)k2dt

)
; (17)

where the supremum is taken over all x(0) 2 Rn,

w(�) 2 L2[0; T ] such that

x(0)0P0x(0) +

Z T

0

kw(t)k2dt > 0:

From this de�nition, the performance measure

�(K;XT ; P0; T ) can be regarded as the induced

norm of the linear operator which maps the pair

(x0; w(�)) to the pair (x(T ); z(�)) for the closed

loop system; see [5]. In this de�nition, T is al-

lowed to be 1 in which case XT := 0 and the

operator mentioned above is an operator mapping

the pair [x(0); w(�)] to z(�). Another special case

arises where x(0) = 0. In this case, the supre-

mum on the right-hand side of (17) is taken over

all w(�) 2 L2[0;1), and the performance measure

reduces to the standard H1 norm de�ned as

�(K;T ) := sup

( R T
0
kz(t)k2dtR T

0
kw(t)k2dt

)
:

The H1 control problem with non-zero initial

conditions is now de�ned as follows. Let the con-

stant  > 0 be given.

Finite Horizon Problem Does there exist a

controller of the form (16) such that

�(K;XT ; P0; T ) < 2? (18)

The solutions of the both statedH1 problems can

be found in [5].

5. STATE FEEDBACK H1

MISSILE GUIDANCE

In this section, we apply the results of [5] to the

precision missile guidance problem.

The missile/target dynamics is described by the

equation (1) with the coeÆcients (2). In this case,

the whole state vector x̂(t) is available for the mea-

surement. Moreover, we assume that the measure-

ments are \perfect" (contain no noise). Let x0 be

an estimate of the initial condition x̂(0). Firstly,

we assume that aT (�) � 0 and solve the optimal

control problem (8), (9), (14) for the system (6),

(2). Let [xopt(�); uopt(�)] be the solution of this

optimal control problem. Furthermore, let

x(t) := x̂(t)� xopt(t);

u(t) := aM (t)� uopt(t);

w(t) := aT (t):

Then, x(�); u(�) and w(�) satisfy the �rst of the

equations (15) with the coeÆcients (2). Further-

more, let

C1 :=

�
0 0 0 0

0 0 0 0

�
; D1 =

r
�

2
I2: (19)

The main idea of our approach can be formulated

as follows. At the �rst step, we �nd the solu-

tion [xopt(�); uopt(�)] of the optimal control prob-

lem. Then, we design an H1 controller and use

it to compensate the target maneuvers aT (�) and

keep the real trajectory [x̂(t); aM (�)] of the mis-

sile/target system as close as possible to the \per-

fect" trajectory [xopt(�); uopt(�)]. Here we treat the

target acceleration aT (�) as the disturbance input.

We can summarize our method as the following

four step procedure:

Step 1. Applying Theorem 1, �nd the solu-



tion [xopt(�); uopt(�)] of the linear quadratic opti-

mal control problem (9) for the system (6), (2)

with the cost function (8), (14).

Step 2. Applying the results of [5] on state feed-

back H1 control to the system (15), (2), (19)

with P0 = I4 and XT ; h de�ned by (14), �nd sub-

minimal 0 such that the state feedback H1 con-

trol problem (18) has a solution for  = 0.

Step 3. For this sub-minimal 0, design the corre-

sponding state feedback H1 controller u(�). Here

x̂(t) is available for the measurement, and xopt(t)

is pre-computed.

Step 4. The resulting control command aM (�)

in our state feedback precision missile guidance

problem is given by the following equation

aM (t) = uopt(t) + u(t):

6. OUTPUT

FEEDBACK H1 MIS-

SILE GUIDANCE

In this section, we apply results on output feed-

back H1 control to the precision missile guidance

problem.

As in the state feedback case, the missile/target

dynamics is described by the equation (1) with

the coeÆcients (2). However, we now consider

the case when only the vector xR(t) is available

for the measurement. Moreover, we assume that

these measurements are a�ected by sensor noise.

This can be expressed in a vector form as

ŷ(t) = C2x̂(t) + n(t):

Here ŷ(t) 2 R2 is the measured output, n(t) 2 R2

is the sensor noise, and

C2 :=

�
1 0 0 0

0 1 0 0

�
: (20)

We apply robust �ltering methods from the book

[8].

Let x0 be an estimate of the initial condition x̂(0).

Again, as in the state feedback case, at the �rst

step, we assume that aT (�) � 0 and solve the op-

timal control problem (8), (9), (14) for the system

(6), (2). Let [xopt(�); uopt(�)] be the solution of this

optimal control problem. Furthermore, let

x(t) := x̂(t)� xopt(t);

u(t) := aM (t)� uopt(t);

w(t) :=

�
aT (t)

n(t)

�
:

Then, x(�); u(�) and w(�) satisfy the equations

(15) with the coeÆcients C2 de�ned by (20), and

A;B1; B2; D2 de�ned by

A =

2
664

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

3
775 ;

B1 =

2
664

0 0

0 0

�1 0

0 �1

3
775 ;

B2 =

2
664

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

3
775 ;

D2 =

�
0 0 1 0

0 0 0 1

�
: (21)

Furthermore, it immediately follows from the

above equations that

y(t) = ŷ(t)� C1xopt(t): (22)

Now let

C1 :=

�
0 0 0 0

0 0 0 0

�
; D1 =

r
�

2
I2: (23)

The main idea of our method can be formulated

as follows. At the �rst step, we �nd the solu-

tion [xopt(�); uopt(�)] of the optimal control prob-

lem. Then, we design an H1 controller and use

it to compensate the target maneuvers aT (�) and

keep the real trajectory [x̂(t); aM (�)] of the mis-

sile/target system as close as possible to the \per-

fect" trajectory [xopt(�); uopt(�)].

In this case, the target acceleration aT (�) and the

sensor noise n(�) are treated as the disturbance

input.

We can summarize our method as the following

four step procedure:

Step 1. Applying Theorem 1, �nd the solu-

tion [xopt(�); uopt(�)] of the linear quadratic opti-

mal control problem (9) for the system (6), (2)

with the cost function (8), (14).

Step 2. Applying the results of [5] on output

feedbackH1 control to the system (15), (20), (21)

with P0 = I4 and XT ; h de�ned by (14), �nd sub-

minimal 0 such that the output feedback H1

control problem (18) has a solution for  = 0.

Step 3. For this sub-minimal 0, design the cor-

responding output feedback H1 controller u(�).

Here ŷ(t) is available for the measurement, and

xopt(t) is pre-computed.



Step 4. The resulting control command aM (�)

in our state feedback precision missile guidance

problem is given by the following equation

aM (t) = uopt(t) + u(t):

7. CONCLUSIONS

The precision missile guidance problem was con-

sidered. A mathematically rigorous statement of

this problem has been given. We have compared

optimal control approach and H1 control meth-

ods for this problem. It has been shown that the

H1 control theory when suitably modi�ed pro-

vide as e�ective framework for the precision mis-

sile guidance problem. Both state feedback and

output feedback problems were considered.
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