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Abstract. Mobile manipulator systems, comprised of a mobile platform with one or more
manipulators, are of great interest in a number of applications. This paper presents a
methodology for computing actuator commands for such systems that allow them to follow
desired end-effector and platform trajectories without violating the nonholonomic
constraints. Based on a reduction of the system dynamics, a model-based controller is
designed to eliminate tracking errors without requiring large gains. The validity of the
methodology is demonstrated using differential-drive and car-like mobile manipulator
systems.
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1. INTRODUCTION

Mobile manipulator systems consist of a mobile
platform equipped with manipulators. Applications
for such systems abound in mining, construction,
forestry, planetary exploration and the military.

A host of issues related to mobile manipulators
have been studied in the past. These include dynamic
and static stability, force development and
application, control in the presence of base
compliance, dynamic coupling issues, etc. see for
example [1-4]. However, in these studies, the mobile
manipulator system is assumed to be non-moving.

Mobile platforms are subject to nonholonomic
constraints that arise from wheel kinematics. Motion
planning for mobile platforms is concerned with
obtaining open loop controls which steer the
platform from an initial state to a final one, without
violating the nonholonomic constraints, see for
example [5-6]. The emphasis here is in obtaining a
desired final state for the driving platform and
possibly of its trailers and not in path following. A
survey on recent developments in control of
nonholonomic systems can be found in [7].

Moving mobile manipulators systems, present
many unique problems that are due to the coupling of
holonomic manipulators with nonholonomic bases.
Seraji presents a simple on-line approach for motion
control of mobile manipulators using augmented
Jacobian matrices, [8]. The approach is kinematic and
requires additional constraints to be met for the
manipulator configuration. The proposed approach

can be equally applied to nonholonomic and
holonomic mobile robots. Lim and Seraji describe
the design and implementation of real-time control
system applied on a 7 degree-of-freedom (DOF) arm
mounted on a 1-DOF holonomic platform, [9]. The
redundant equations are solved using weighted pseudo
inverses and a geometry-based control scheme.

The dynamics of nonholonomic systems are
more complex compared to those of holonomic ones.
Saha and Angeles derived the equations of motion of
such systems using a Newton-Euler approach and a
natural orthogonal complement of the matrix
associated with the velocity constraint equations
written in linear homogeneous form, [10]. Sarkar et
al. developed a unified approach to the control of
mechanical systems subject to holonomic and
nonholonomic constraints, [11]. This approach was
used for trajectory tracking and path following.

This paper focuses on trajectory following and
control for mobile manipulators. Two commonly
available platforms, a car-like and a differentially
driven platform, equipped with a two-link
manipulator, are used. The differential kinematics for
the two systems is derived to map platform and end-
effector velocities to actuator velocities, without
violating the nonholonomic constraints. This allows
specifying paths and trajectories for both the platform
and the manipulator end-effector. Next, Lagrange’s
method and orthogonal complements are used to
obtain the reduced equations of motion. A model-
based controller is designed for the differentially-
driven mobile manipulator (DDMM) that eliminates
tracking errors. To illustrate the proposed



methodology, the problem of crack sealing is studied,
in which the end-effector follows a complex path
while the platform moves along a smoother path.

2. KINEMATIC MODELLING OF MOBILE
MANIPULATORS

The most commonly available mobile platforms use
either a differential drive or a car-like drive. The
former employs two independently driven wheels
with a common axis, and casters that add stability to
the mobile platform. The later is a tricycle design in
which the driving front wheel is also used for
steering.

2.1. Differential Drive Mobile Manipulator
Consider the mobile manipulator system depicted in
Fig. 1.
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Fig 1. Mobile manipulator system on a
differentially-driven platform.

The platform moves by driving the two
independent wheels as shown in the figure. We
assume that the speed at which this system moves is
low and therefore the two driven wheels do not slip
sideways. Hence, the velocity of the platform center
of mass, uG , is perpendicular to the wheel axis. Its x

and y components are given by

˙ cosxG G= u j  and ˙ sinyG G= u j

Eliminating uG  from the above equations we obtain

˙ sin ˙ cosx yG Gj j- = 0 (1)

Eq. (1) is a nonholonomic constraint and cannot be
integrated analytically to result in a constraint
between the configuration variables of the platform,
namely x yG G,  and j . As is well known, the

configuration space of the system is three-
dimensional (completely unrestricted), while the
velocity space is two-dimensional. This constraint,
written for the manipulator mount point F, becomes

˙ sin ˙ cos ˙x y lF F Gj j j- + = 0 (2)

where lG  is the distance between G and F. Due to the

nature of this constraint, the planning must be
designed at the differential kinematics level.

To construct viable system trajectories, the

differential kinematics are written for simplicity for
point F on the mobile platform and for point E of the
end-effector.

Focusing on the platform first, expressions are
derived that relate the wheel rates to the linear
velocity of point F and to the platform rate of
rotation, j̇ . Simple analysis shows that these

differential kinematics are described by
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where   J̇ l  and J̇ r  are the angular velocities of the left

and right wheels respectively and the symbols c and s
have been used instead of cos and sin. Eq. (3) shows
that the output velocities are nonzero even if only
one wheel is rotating. Furthermore, in contrast to car-
like mobile platforms, this type of platform has the
ability to change its orientation on the spot.

Keeping the first two equations in matrix Eq. (3)
and displaying the rotation matrix explicitly, we can
write

  

˙

˙

˙

˙
x

y

c s

s c

r r

l r

b

l r

b

F

F G G
r

é

ë
ê

ù

û
ú =

-é
ëê

ù
ûú - × ×

é

ë

ê
ê
ê

ù

û

ú
ú
ú

é

ë
ê

ù

û
ú

j j
j j

J
J

2 2 l (4)

From this equation we observe that if lG = 0 ,

i.e. if the manipulator is mounted on the axis that
connects the wheel centers, then the second matrix in
Eq. (4) becomes singular. This is because all points
along this axis must have a velocity perpendicular to
it, and therefore, one degree of freedom is lost.
Mounting the manipulator away from this axis
removes this problem.

The end effector linear velocity is found using
the fact that the base velocity is known and given by
Eq. (4). Therefore, this velocity is written as
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where ẋF , ẏF , are the x and y components of the

velocity of E, and the Jij  (i, j = 1,2) terms are the

elements of the fixed-base Jacobian of the
manipulator employed, given by

J l l11 1 1 2 1 2= - - +sin( ) sin( )J J J (6a)

J l12 2 1 2= - +sin( )J J (6b)

J l l21 1 1 2 1 2= + +cos( ) cos( )J J J (6c)

J l22 2 1 2= +cos( )J J (6d)

where l1, l2 , are the lengths of the upper arm, and the

forearm respectively, and J1, J2 , are the joint

variables of the manipulator, see Fig. 1.
Note that the platform rotation rate, j̇ , is still



present in Eq. (5), as an input term. This rate is
written in terms of the wheel rates using the third
equation from Eq. (3). Next, combining Eqs. (4) and
(5), the forward differential kinematics of the mobile
manipulator system is obtained as
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2.2. Car-like Mobile Manipulator (CLMM).
Next, consider a simple mobile manipulator system
whose platform includes a front and rear wheels, see
Fig. 2. The rear wheels are parallel to the main axis
of the car while the front wheel is used for steering
the platform. Again, the wheels do not to slip sideways.
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Fig. 2. Car-like mobile manipulator system.

For simplicity, the manipulator is mounted at
point F, where the steering wheel is located also. For
this point the nonholonomic constraint is written as
˙ sin ˙ cos ˙x y lF Fj j j- + = 0 (8)

where ẋF  and ẏF  are the x and y components of the

velocity uF  of point F respectively, and l  is the

distance between the point F and the back wheel axis.
The differential kinematics of the car-like mobile

platform are described by the following equations
˙ cos( ) cos( )x rF F= + = +u j g w j g (9a)

˙ sin( ) sin( )y rF F= + = +u j g w j g (9b)

˙ sin sinj u g w g= =F

l

r

l (9c)

where g  is the steering angle, u wF r=  is the

velocity at point F, w  is the front wheel angular
rate, and r  is its radius. Eqs. (9) can be written as
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Eq. (10) maps the two input velocities, uF  and ġ , to

the three output velocities, ˙ , ˙x yF F  and j̇ . If one

eliminates the input velocities, the nonholonomic
constraint given by Eq. (8) results. Inspection of Eq.
(10) reveals that one of its columns is zero Therefore,
if the mobile platform is not moving (uF = 0) then

neither the position nor the orientation of the
platform can be changed using the steering wheel.

Eq. (10) is in a form not suitable for planning
because its Jacobian contains a zero column. To
solve this problem, the first two equations in Eq.
(10) are rewritten as follows
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Note that this change of the input velocities gives a
Jacobian form that is always invertible. When
inverted, it results in two variables from which the
desired rate and steering angle can be found after
simple manipulation.

As in the case of the differentially-driven system,
the end-effector linear velocity is written as
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where the J i jij , ( , , )= 1 2  are defined in Eqs. (6).

Next, the platform rotation rate j̇  is substituted

using Eq. (9c) and the resulting equation is appended
to Eq. (11) to yield the system differential kinematics
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where w  corresponds to the last column vector in Eq.
(13) and the remaining variables have been defined
before.

3. PATH PLANNING FOR THE CRACK
SEALING PROBLEM

The task we tackle in this section is to generate the
desired driven wheel rate inputs so that the platform
and the end-effector follow given trajectories. A
typical application for this problem is the robotic
crack-sealing, where a robotic mobile platform is
required to follow a given path, while the end-effector
must follow some crack on the pavement.

Eqs. (7) and (13) can be used to generate desired
input velocities so that the platform and the
manipulator’s end-effector both follow desired
trajectories. Since both equations take into account
the nonholonomic constraints, the computed wheel
speeds result in motions that are achievable by the



mobile manipulator system. The platform angular
velocity j̇  is found using the last equation in Eq. (3)

or Eq. (9c). The platform orientation is found by
integrating this angular velocity.

We assume that the shape of the crack to follow
is available. Setting some time in which the task
must be accomplished results in the desired end-
effector trajectory described by xE,d(t) and yE,d(xE,d).

The curve followed by the point F on the
platform either is arbitrarily specified on the
condition that the distance between (xE, yE) and (xF,
yF) is within the reach of the manipulator, or
corresponds to a prescribed path for which the same
condition follows. Otherwise, the task is not feasible
and, as we will see, a singularity will occur. If the
motion of point F is not prescribed but is free, then
it is advantageous to choose it so that it is smooth
and that its curvature does not violate any steering
angle constraints.

The forward kinematics of the two systems are
described by Eq. (7), (13), in which R  is a block
rotation matrix and therefore is always nonsingular.
The matrices Ja and Jb become singular only when

det
sin

,Ja = = Þ = ±l l l r

b
G 1 2

2

2
2

0 00 0 180
J J (14)

det sin ,Jb = = Þ = ±l l r1 2

2

2 2

0 00 0 180J J (15)

which means that a singularity arises when the
manipulator is fully extended or folded. Indeed, in
such case the desired location for E is not within the
reach of the manipulator, and a tool at E cannot
follow the desired path (crack). This problem can be
overcome by re-planning the path of F.

4. DYNAMICS OF THE DIFFERENTIAL
DRIVE MOBILE MANIPULATOR

Applying Lagrange’s equations of motion directly
cannot yield the dynamics of mechanical systems
subject to nonholonomic constraints. Additional
terms describing the constraint forces must be added.

The system is subject to a single nonholonomic
constraint, which is described by Eq. (2). This
equation can be written in matrix form as

A(q)q 0˙ = (16)

where,

A(q) = -[ ]sin cosj j lG 0 0

˙ ˙ ˙ ˙ ˙ ˙q = [ ]x yF F

T

j J J1 2

To derive the equations of motion for the mobile
manipulator system, first let L( , ˙ )q q  represent the

unconstrained system Lagrangian. Assuming that the
mass and the moments of inertia of the casters and
the driving wheels are negligible, this is equal to
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where m0, m1, m2, J0, J1, J2 are the masses and the
moments of inertia of the platform, the first and the
second link respectively, and ˙ , ˙ , ˙ , ˙ , ˙ , ˙ ,x y x y x yG G A A B B  the

x, and y components of the velocities of the center of
mass of the platform, and the first and the second link
respectively.

Adding constraint forces as input terms forms the
equations of motion of the constrained system. Here,
these forces are responsible for not allowing the
wheels to slip sideways. The constrained dynamics
are written in vector form as

        

d

dt

L L¶
¶

¶
¶

l
q̇ q

A (q)T- + - =xx 0 (18)

where q = [ ]x yF F

Tj J J1 2  are the generalized

coordinates, l is the Lagrange multiplier that

corresponds to the constraint force, and         xx represents
the externally applied forces.

Expressing Eq. (17) in terms of the generalized
coordinates and substituting the result into Eq. (18),
the system equations of motion are obtained as

        M(q)q V(q, q) E(q) A (q)T˙̇ ˙+ = -tt l (19)

where M(q) is the 5́ 5 inertia matrix, V(q, q)˙  is the

vector of position and velocity-dependent forces,
E(q)  is a 5́ 4 input transformation matrix,

          tt = [ ]t t t tl r

T

1 2  is the 4-dimensional input torque

vector, comprised of the left and right wheel torques
and the first and second manipulator joint torques, and
l  is the Lagrange multiplier.

Eq. (16) shows that the constraint velocity is
always in the nullspace of A(q), so it is possible to

define four independent velocities
˙( ) ˙ ˙ ˙ ˙v t

T= [ ]n n n n1 2 3 4  such that

˙ ˙( )q S(q)v= t (20)

where the matrix S(q) contains the base vectors of

the nullspace of A . The selection of the base of the
nullspace allows the independent velocities to have a
physical meaning. We choose S(q)
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to be of rank 4 since det( ) = (1+l )r / b 0G

2 2 2S ST ¹ .

The vector of the independent velocities is

  
˙ ˙ ˙ ˙ ˙v = [ ]J J J Jl r

T

1 2

Differentiating Eq. (20), substituting the expression



for ˙̇q  into Eq. (19) and premultiplying by ST , yields

        
S MSv( ) MSv( ) V S ET T˙̇ ˙ ˙t t+ +( ) = tt (22)

Note that since S AÎN( ), S AT Tl  vanishes from the
above equation. Equation (22) is further written as

        M v V E* * *˙̇ + = tt (23)

where M S MS* T= , V S (MSv V)* T= +˙ ˙ , and
E S E* T=  = ´I4 4 , i.e. the identity 4́4 matrix. Since

S  is non-singular, the reduced mass matrix M*  is
always symmetric and positive definite.

Eq. (23) can be transformed further in the
operational space using Eq. (7). The result is

        Mx V F J1
T˙̇ + = = - tt (24)

where M J M J1
T *

1
1= - -  and V  contains all the

velocity terms. Eq. (24) is in a very useful form
because it links the four input torques to the four
output accelerations.

5. MODEL-BASED CONTROL DESIGN

Eq. (24) is in the form of holonomic mechanical
systems and can be easily used for model based
control of the system. To this end, we use the
following control scheme

        tt = +J (Mx V)1
T *˙̇ (25)

where the auxiliary accelerations are given by

˙̇ ˙̇ ˙ ˙x x K (x x) K (x x)*
d v d P d= + - + - (26)

In Eq. (26), the subscript d corresponds to desired
values, and K v  and KP  are diagonal gain matrices

K Kv vi P pidiag k diag k= ={ }, { }

Assuming exact parameter knowledge,
substituting Eq. (26) into Eq. (25), and applying the
resulting torques to the mobile system equations of
motion, the error dynamics of the system result,
which are described by the following uncoupled linear
differential equations

˙̇ ˙e k e k ei v i p ii i
+ + = 0 , i = 1,…,4 (27)

where e x xi i d i= -, . Eqs. (27) permit the selection of

the gain matrices K v  and KP  so as to have the error

eliminated according to given specifications.

6. SIMULATION RESULTS

6.1 Trajectory Planning
First, the trajectories for the two mobile
manipulators shown in Figs. 2 and 3 are planned.
Their kinematics parameters are displayed in the same
figures. For the simulation run, the total time was
chosen equal to 6s and the initial posture of the
system was (xE

in, yE
in, jin, J1

in, J2
in) = (0.5m, 0.5m,

1200, -300, -200). The final positions for points F and

E were (xE
fin, yE

fin, xF
fin, yF

fin) = (2m, -2m, 1.9m, -
1.9m). The path for point F on the mobile platform
was constructed using a third order polynomial for the
time parameterization of xF and a second order
polynomial for yF=f(xF). The given path for the end-
effector and the platform are shown in Fig. 3.

Figs. 4 and 5 present snapshots of the motion of
the differentially-driven and the car-like mobile
manipulator system respectively. In general both
systems react in the same way. However the cusp
that appears in those figures takes place in different
positions and has a different shape. It can be seen that
the cusp of the differentially-driven mobile
manipulator is sharper than that of the car-like one.
This is not surprising as the differentially-driven
system has the ability to turn on the spot.
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Fig. 3. Desired platform and end-effector paths.
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Fig. 5. Animation of the motion of the mobile
manipulator with car-like drive.

6.2. Dynamics and Model-based Control
Next, we apply the model-based control algorithm to
the DDMM using the desired trajectories in Section
6.1. The mass properties are displayed in Table 1.



Table 1. Mobile manipulator mass properties

Parameter Value Units

m0 50.0 kg
m1 4.0 kg
m2 3.5 kg
J0 1.417 kg m2

J1 0.030 kg m2

J2 0.036 kg m2

The controller gains are selected to force the error
dynamics exhibit a critical response with a settling
time equal to 1 s. The resulting gain matrices are

K v diag= { }12  and K p diag= { }36

Fig. 6 and Fig. 7 show the torques applied on
the two driven wheels and on the joints of the
manipulator. As expected, small initial end-effector
and platform errors were eliminated by the controller,
without requiring excessive control gains.
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Fig. 6. Driving wheel torques.
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Fig. 7. Manipulator torques.

7. CONCLUSIONS

This paper focused on trajectory following and
control of mobile manipulators, using as examples a
CLMM and a DDMM system. Both system
platforms were equipped with a two link manipulator.
The differential kinematics for the two mobile
systems were written so as to map platform and end-
effector velocities to driven wheel velocities, without
violation of the nonholonomic constraints. This
allowed specification of paths and trajectories for both
the platform and the manipulator end-effector and
subsequent computation of actuator commands.
Orthogonal complements and the Lagrangian

methodology were used to obtain the reduced
equations of motion for the DDMM system. Based
on these equations, a model-based controller was
designed to eliminate tracking errors. The proposed
planning and control methodology was applied
successfully to a crack-sealing task using a DDMM.
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