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Abstract. This paper presents an input-output point of view for the problem of optimal
command following and disturbance rejection of systems which are comprised of subsystems
that affect each other in a nested manner. In such a nested manner, a subsystem affects the
subsystems that are exterior to it but not the subsystems that are interior to it. By using model
matching methods the problem is shown to be convex. Techniques to solve this convex yet
non-standard problem are discussed.
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1. INTRODUCTION

In this paper, we take an input-output approach to con-
sider the optimal disturbance rejection problem in a
feedback structure where there are subsystems that are
interconnected in a nested fashion to form an over-
all system. In this nested fashion the the subsystems
connect to one another so that the flow of information
and control action goes from inside to outside. Any
control action at a particular nest (subsystem) depends
only on the information of the subsystems inside the
nest and not on any information outside of it. Also,
the control action at a particular nest (subsystem) does
not affect the subsystems (nests) inside it but only the
exterior ones. Several engineering applications may
posess such a nested structure where inner feedback
loops as well as external (outer) are present. The mo-
tivating application for this work is the case of inte-
grated flight propulsion control (e.g., [2]) where there
is a natural interior system, the engine, and an exterior
one, the airframe dynamics. These can be thought of
in a nested structure since the airframe controls, such
as the aerodyanamic surfaces, do not affect the engine.

The problem of interest here is minimize the norm of
the overall map from all external commands and dis-
turbances to the system variables that need to be reg-
ulated, subject to internal stability. The basic observa-
tion is that this problem can be casted as a closed loop
MIMO control problem with additional constraints on
the structure of the controller. Input-output methods
can then be used to transform the problem to a model

matching problem with convex constraints in the Youla
parameter. In the paper we provide a more detailed ex-
position of how to solve the problem in the case ofH2

and `1 optimal control.

2. PROBLEM DEFINITION

To illustrate the problem in simple terms we consider
only two nests. The generalization to n nests is straight-
forward. Thus we consider the case of Figure 1 where
there is a system comprised of two nests (subsystems.)
The internal subsystem consists of a plantG1 together
with its controller C1 whereas the external consists of
the plant G2 with the controller C2. The internal and
external subsystems have control inputs u1, u2 and
measured outputs y1 and y2 respectively. Due to the
nested structure depicted in the figure, the control in-
put u1 depends only on the measurement y1 whereas
u2 can depend on both y1 and y2. Moreover, y1 is af-
fected only by u2 while y2 is affected by both u1 and
u2. The overal system is subjected to exogenous inputs
(e.g., commands, disturbances, sensor noise) and there
are also outputs to be regulated. In particular, we allow
for inputsw1 affecting directly the internal subsystem,
inputs w2 that affect the external subsystem only, and,
inputs w12 that affect both subsystems. Similarly, the
outputs of interest z1, z2 and z12 are related respec-
tively directly to the internal, directly to the external
and to combination of both subsystems. Denote by

w :=

0
@ w1

w12

w2

1
A ;



g

-

?

6 6

�

-

�

�

?
��

�

?�
6

u1 u2y1y2

C2

C1

G1

G2

w1

w2
z2

z12

z1

w12

Fig. 1: Nested Structure

z :=

0
@ z1
z12
z2

1
A ;

and let the map from w to z be denoted as �.

The problem of interest is as follows:
Problem: Find Ci, 1 � i � 2 such that, subject to
internal stability, the norm k�k is minimized.

Throughout the paper we assume all systems to be lin-
ear time invariant and described in discrete-time. Also,
all the signals in Figure 1 are allowed to be vector-
valued. The norm k�k may refer to any norm, e.g.,
H2, H1 or `1. Since its particular type is not impor-
tant at this stage we will use the norm symbol gener-
ically. By internal stability here we mean that all sig-
nals in the system remain (finite gain) bounded in the
presence of bounded w and possible bounded additive
disturbances in yi and ui for all 1 � i � 2. A neces-
sary assumption for the problem to make sense is that
for all i = 1; 2 there exists a controller Ki operating
on yi alone to produce ui that stabilizes Gi alone.
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Fig. 2: Standard Framework

3. PROBLEM SOLUTION

3.1. Problem transformation

The above defined problem can be put in a standard
G�K control design framework of Figure 2 with the
following signal identifications:

y :=

�
y1
y2

�
;

u :=

�
u1
u2

�
;

and w and z as before.

The problem objective can be equivalently transformed
to finding a stabilizing controllerK that minimizes the
map from w to z i.e., �. However, for the controller
K to correspond to the nested structure of Figure 1 K
should be of the form

K =

�
K1 0

K12 K2

�

i.e., it should be an lower (block) triangular (l.b.t.) sys-
tem.

Considering the equivalent problem in Figure 2 all sta-
bilizing controllers, K, not necessarily with the lower
triangular structure required, are given by the Youla
parametrization [8]

K = (Yl�DlQ)(Xl�NlQ)
�1

= (Xr�QNr)
�1

(Yr�QDr)

where Q is a stable free parameter and
Yl; Dl; Xl; Nl; Xr; Nr; Yr; Dr can be obtained
from a doubly coprime factorization (e.g., [4, 7]) of
G22, where G22 is the map from u to y in Figure 2.
Considering the structure of G22 we have that it is of
the form

G22 =

�
� 0

� �

�



i.e.,G22 has a lower triangular structure. It is precisely
this structure that leads to the following key lemma in
resolving the problem

Lemma 3.1 There exist a coprime factorization ofG22

such that all stabilizing controllers K of G with lower
triangular structure are given by

K = (Yl�DlQ)(Xl�NlQ)
�1

= (Xr�QNr)
�1

(Yr�QDr):

where Q is lower (block) triangular i.e., has the same
structure as K.

Proof(Sketch) The proof in the case where G22 is sta-
ble follows by using the parametrizationK = �Q(I�

G22Q)
�1. In the more general case one can construct

an observer-based controller with the lower triangular
structure which in turn provides the coprime factors
with the lower triangular structure (the details are om-
mitted here.) An alternate proof can be provided along
the lines of [3].

With this key lemma at hand, the problem of minimiz-
ing k�k can be casted as

� := inf
K stabilizing; l:b:t:

k�k = inf
Q stable l:b:t:

kH � UQV k

where H; U; V are stable systems. Therefore, the
resulting problem is convex, yet infinite dimensional
(the pulse response coefficients of Q.)

3.2. Approaches for solving the equivalent prob-
lem

In principle, one can solve the problem by consider-
ing truncations of the Q parameter [1] and thus ap-
proximating the problem with a finite dimensional (the
pulse response coefficients of the truncated Q) convex
programming problem

�N := inf
Q

kH � UQNV k

whereQN is a Finite Impulse Response (FIR) of length
N , lower block triangular system. It can be easily
checked that �N ! � monotonically from above as
N ! 1. Then main shortcoming of this method is
that it cannot indicate how close to the optimal solu-
tion is the converging lower bound �N . To do so, one
needs converging lower bounds as well. In the sequel
we specialize the discussion to the optimal H2 and `1

problem to provide alternative methods.

3.2.1. H2-norm minimization

In this case we can invoke the projection theorem along
the lines in [6] to obtain the solution directly. To this
end let U = UiUo, V = VoVi be an inner-outer factor-
ization of U and V respectively. Define the subspace
M = fZ : Z = UoQVog with Q 2 H2 and lower
triangular. Then the following can be shown:

Theorem 3.1 The optimal solution Zo for the prob-
lem

� = inf
Z2M

kH � UiZVik

is given by the projection onto M

Zo = �MU
�

i HV
�

i :

Once Zo is found an optimal Q can be found as Q =

U�ro ZoV
�l
o where U�ro is a right inverse of Uo and

V �lo is a left inverse of Uo

3.2.2. `1-norm minimization

In this case one can use an extention of the scaled-Q
method in [5] to provide converging lower and lower
bounds to �. In particular, for the problem at hand let
PN denote the N th truncation operator and define the
two finite dimensional linear programs:

�N (�) := minmaxfkH �Rk ; � kQkg

subject to

PN (R) = PN (HQV )

and

�N (�) := minmaxfkH �Rk ; � kQkg

subject to

R = UPN (Q)V

where � is a scalar positive parameter. Then, using
elements of duality theory the following can be shown

Theorem 3.2 There exists an apriori computable �0

such that for all � with 0 < � � �0, �N (�) ! �

monotonically from above and �N (�) ! � monoton-
ically from below as N !1.

Hence, with the above theorem one obtains close to
optimal solutions to any any prespecified accuracy.



4. CONCLUSIONS AND DISCUSSION

In this paper we investigated the problem of optimal
disturbance rejection when a nested subsystem struc-
ture exists. Such a structure allows the problem to be
transformed equivalently to a controller design prob-
lem with the constraint that the controller be lower tri-
angular. The equivalent problem was shown to be a
convex model matching problem in the Youla param-
eter. Approaches via projection and duality theorem-
sto solve respectively the optimalH2 and `1 problems
were given. Several remarks are in order.

For the H1 problem a Nehari-based approach [6] to
get a sequence of converging lower bounds is possi-
ble. However, more efficient computaions are needed.
The author is currently pursuing an extension of the Q
truncation approach along the lines of [5] in order to
obtain converging lower bounds.

Finally, the case of multirate operation can also be re-
solved along the same lines. In particular, one can
consider the same problem in the case where the var-
ious nests recievesend signals with different sampling
rates e.g., the exterior nests may send information at a
slower rate than their interior. The details of this more
compex situation are currently studied and will be the
subject of future publications.
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