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Abstract. The fundamental and the transition matrices of the continuous-time generalized state-space 
system are defined. Then the solution of the generalized state-space model is given in terms of the 
fundamental matrix directly for the given system, without applying any decomposition in fast and slow 
subsystems. The proposed solution is actually a generalization of the solution of the regular state-space 
equation and provides insight for the particular properties of the generalized systems. The set of 
admissible initial conditions is directly determined from the solution and the decomposition of the 
solution into two orthogonal subspaces easily results by applying orthogonal operators. The 
fundamental and the transition matrices may be calculated in terms of the system's matrices via  
algebraic recursive algorithms.  
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1. INTRODUCTION 
 
Consider the singular or generalized continuous time, 
linear time-invariant (LTI) dynamical-algebraic 
system  [1],[2] 

000 )(  ,  ),()()( xxBuAxxE =≥+= −− tttttt!   (1.1a)    

)()( tt Cxy =                                              (1.1b) 

where mnnmnn xxx ,,, ℜ∈ℜ∈ℜ∈ CBAE  and rankE ≤ 
n. Moreover the term Dx(t) is absent in (1.1b), 
without loss of generality, since (1.1) can incorporate 
a direct-feed term, due to the singularity of E. The 
given system is assumed regular, or equivalently the 
pencil )( AE −s solvable, i.e. 0)det( ≠− AEs . Note 

also that in (1.1) )(tx! is the distributional derivative, 

since the initial condition is −
0t , in contrary to the 

regular systems, where the ordinary derivative (right-

hand derivative at 0t ) is used. For any piece-wise 

continuous distribution x(t), )(tx!  is related to the 

regular derivative )(tx′  by the relation [3] 

),[),()()()( 000 ∞∈−+′= − ttttttt xxx δ!            (1.2a) 

],[),()()()()( 000000
+−−+ ∈−−−= tttttttttt xxx δδ! (1.2b) 

Singular systems find applications in engineering 
systems (electrical circuits, interconnected systems, 
robotics, systems with derivative feedback), 
economic and biological systems, time series analysis 
and singularly perturbed systems. Singular systems 
(also called generalized or semi-state or descriptor 
variable systems) are governed by singular 
differential equations that consist of algebraic, as well 
as first order differential equations, which may result 
to impulsive behavior of the system. The impulsive 
behavior causes a number of special features that do 
not appear in classical systems, such as impulsive 
terms and input derivatives in the state response, 
nonproperness of transfer matrix, nondifferentiable 
functions, noncausality between input and state or 
output and consistency of initial conditions. The 
singular systems may be considered as a 
generalization of the classical systems, since they are 
reduced to them in the case where E is a nonsingular 
square matrix. Although in the state space equations 

)()( tt Axx =! the analysis may be accomplished in 

terms of A, it was not possible to carry out the 
analysis in the singular case )()( tt AxxE =! in terms of 

A and E using existing techniques (Drazin inverse 
[2], Weierstrass form [4], [5], deflating subspaces 
[5],[6], shuffle algorithm [7]). However the 
derivation of the analytic expressions of the 
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fundamental and transitional matrix sequences of 
singular systems [8],[9] permits the complete analysis 
of solutions and properties of )()( tt AxxE =! and 

finally of (1.1), in terms of A and E. Thus the use of 
the fundamental matrix (FM) leads to the 
development of an algebraic methodology for the 
analysis and design of generalized state-space 
systems, which is called the Fundamental Matrix 
Approach (FMA). The FMA constitutes an efficient 
methodology for the generalization of the whole 
theory of linear systems, using computationally 
attractive algebraic techniques.  
 
The FM sequence of singular systems is calculated 
using recursive algebraic relations in terms of the 
coefficients of the adjoint and the characteristic 
polynomial of the pencil )( AE −z and finally in 

terms of A and E [8]. Based on FMA, complete 
solutions of forward, backward and symmetric cases 
of discrete singular systems have been derived [9]. 
Moreover, various analysis problems (controllability 
and observability criteria [10], stability [11], minimal 
realization using generalized Hankel matrix [12]), as 
well as synthesis problms (P-D feedback for 
decoupling and pole assignment of singular systems 
[13],[14]) have been studied, using the FMA. The 
extension to the 2-D generalized state-space systems 
is currently under consideration.                                                                                                                                                             
 
In this paper the general expressions of the 
fundamental and transition matrices of the continuous 
time singular systems and the complete analytic zero 
state and zero input solutions are derived. 
 
2. FUNDAMENTAL MATRIX 
 
For the derivation of the fundamental matrix of the 
generalized systems, we need to apply generalized or 
distributional derivatives of functions with “jump” 
discontinuity” at t0 that contain Dirac operators. 
Consider the generalized continuous time, linear 
time-invariant (LTI) dynamical-algebraic system 

(1.1). Suppose that  ),[   ),(  ),( 0 ∞∈ −tttt xx ! are 

continuous and of exponential growth and )(tx has a 

discontinuity at t0 [2, vol. 2]. Therefore, 

),[ ),( 0 ∞∈ −ttx!  is treated as the distributional 

derivative )(D tx . Then the Laplace transform L- of 

),[   ),( 0 ∞∈ −tttx! , using (1.2a) and (1.2b) in the 

corresponding areas, gives 
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since [ ] )]()([)( 0
+

+ −=′ tsstL xXx , 1)]([ =− tL δ and

0)]([ =+ tL δ . In the case where 0x =− )( 0t , 

then )()]([ sstL Xx =− !  [2]. Equivalently, (2.1) may be 

derived considering that the restriction of 

),[    to)( 0 ∞+ttx denoted by 
),[ 0 ∞+t

x  [3]. Applying 

(2.1) on the homogeneous zero input equation 
)()( tt zizi AxxE =! , we obtain 

)()()( 0
−=− tss zi ExXAE                (2.2) 

The Laplace Transforms on )()( tt zizi AxxE =! for 

restrictions 
),[ 0 ∞+t

x , 
],[ 00

+− tt
x  are 

)()()( 0,
+=− tss ziF xEXAE                         (2.3)            

xxExEXAE 000, )()()()( ∆−=−=− +− ttss ziI    (2.4) 

respectively, using [ ] )]()([)( 0
+

+ −=′ tsstL xXx  and 

(2.1). Moreover, the Laplace L- transform on the 
nonhomogeneous equation (1.1) yields 

)()()( 0
−+=− t(s)ss ExBUXAE                 (2.5) 

 
Definition 2.1 
Any nonsingular matrix )(tΦ , with )(1 t−Φ  existing 

for all t, and satisfying the equations 

(2.6b)                                      ),[,0)(det

(2.6a)        ),[ ),()()(
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∞∈−−=
−
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ttt

tttttt

Φ

AΦAΦΦE δ!

is said to be a fundamental matrix )(tΦ  of the 

generalized system (1.1). Note that (2.6a) is written 

for ),[ 0 ∞∈ +tt  in the known form 

)()( tt AΦΦE =! that holds in the regular systems. 

! 
The fundamental matrix )(tΦ is not unique and 

therefore does not depend on t0. Therefore, it results 
from (2.6a) that the Laplace Transform L- of the 

)(tΦ  is determined by ZΦAE =− )()( ss , where 
nxnℜ∈Z  may be any constant square matrix. 

 
Assuming that the given system is solvable and taking 
Z equal to the unity matrix, then )(sΦ is selected to 

be the generalized resolvent matrix 1)( −− AEs . The 

Laurent series expansion of  1)( −− AEs  about 

infinity in the area of convergence Rsr << , where 

R may be any arbitrary great finite positive number 
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with the exception of R=∞ and r is the radius of the 
circle that includes all the finite eigenvalues (isolated 
regularities) of the matrix pencil )( AE −s , is given 

by 

(2.8)   (s)(s)ss      

),()()]([)(
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k
k sstLs

where nxn
ii ℜ∈= ),( AEΦΦ  is the (forward) 

fundamental matrix sequence [8],[9] and μ is the 
index of nilpotency of the pencil )( AE −s . Note that 

μ is the maximum order of infinite zeros of )( AE −s . 

In (2.8), )(sFΦ and )(sΙΦ are the finite and impulse 

fundamental matrices respectively, i.e. the parts of 
)(sΦ corresponding to the finite and infinite 

eigenspace of )( AE −s respectively. Moreover, 

)(sFΦ and )(sΙΦ correspond to the strictly proper 

part and to the polynomial part of the associated 
transfer function respectively. The fundamental 
matrix )(tΦ may be computed by applying the 

inverse Laplace transform 1−
−L to (2.8), as follows: 

)()(])[()]([)( 111 ttsLsLt IF ΦΦAEΦΦ +=−== −−
−

−
−

                                         (2.9) 
The finite fundamental matrix )(tFΦ is given by                    

( )
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where 1(t) denotes the unit step function and use of 

the property 0,)()( 0000 ≥== iii
i AΦΦΦAΦΦ , 

was made [9]. Moreover, the impulse fundamental 
matrix )(tIΦ results as the inverse generalized 

Laplace transform L- of the polynomial part 
 )(sIΦ of )(sΦ , which represents exactly the 

restriction  ][ 0tx of  ),[ 0 ∞tx to t0 and is given by 
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where )()( tkδ  is the kth distributional derivative of 

)(tδ . Multiplying )(sΦ  from the left with 

)( AE −s , it results that 

0)()( EΦΦAE =− ss F                                (2.13a) 

1)()( −−=− AΦΦAE ss I                            (2.13b) 

µδ −≥=− − kkkk      ,)(1 IAΦEΦ              (2.13c) 

Moreover, the multiplication of )(sΦ from the right 

with )( AE −s  gives: 

EΦAEΦ 0))(( =−ssF                                (2.14a) 

AΦAEΦ 1))(( −−=−ssI                            (2.14b) 

µδ −≥=− − kkkk       ,)(1 IAΦEΦ          (2.14c) 

It results from (2.13c), (2.14c) that for k=-μ, it holds 
0EΦEΦ == −− µµ   .                 

Theorem 2.2 
The fundamental matrix )(tΦ  of the generalized 

system (1.1) is given by 
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Proof: The fundamental matrix )(tΦ  should satisfy 

(2.6a). Applying the ordinary derivative on (2.10), we 
obtain 
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where use of (2.13a), (2.13c) was made.  
Equivalently, the above mathematical manipulations 
are derived using the fact that )( 1−−AΦ  is the 

projection on the infinite eigenspace AHI along the 
finite eigenspace EHF, hence 

0ΦAAΦ AΦ =− − 01
0)( te (where HF  and HI denote 

the finite and the infinite eigenspaces of the 
generalized pencil )( AE −s  respectively, for which 

n
IF HH ℜ=⊕ ) [9]. Now, applying the 

distributional derivative formula on (2.11), we obtain 
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The addition of (2.16) and (2.17) gives (2.6a). 
! 

For regular systems where E = I, it is seen from (2.8) 
that IΦ =0 , and therefore the fundamental matrix is 

reduced to tet AΦ =)( . Note that in the regular state-

space case there are not eigenvalues at infinity. The 
FM sequences 1,...,1,, −+−−= µµkkΦ and 
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calculated using recursive algebraic relations in terms 
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of the coefficients of the adjoint and the characteristic 
polynomial of the pencil )( AE −z and finally in 

terms of A and E [8],[16].  
 
3. TRANSITION MATRIX 
The forward transition matrix ),( 0

−ttΨ of continuous 
linear time-invariant generalized systems 
satisfies the transition property 

)()()(),()( 0000
−−−− −== ttttttt xΨxΨx           (3.1) 

since then the transition matrix is also time-
invariant, i.e. )(),( 00

−− −= tttt ΨΨ .  

 
Definition 3.1 
The forward transition matrix )( 0

−− ttΨ  of 
continuous linear time-invariant generalized 
systems is unique since it does depend on the initial 

time instant −
0t and is defined by the equations: 
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Solving (3.4) for )(sΨ and assuming that the given 

system is solvable, we obtain  
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 It is known already from discrete-time generalized 
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and in general 
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(3.5) the relation 11 −− =EΦΨ  , as well as (2.11) and 

the property 0,0 if ,1 <<−= ++ jijiji ΦAΦΦ  [9] 
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respectively. The transition matrix )( 0
−− ttΨ  may be 

computed by applying the inverse Laplace transform 
L- to )(sΨ , using the expression (3.16), as follows: 
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and ],[    ),( 000
+−− ∈− tttttIΨ  is the impulse transition 

matrix, given by 
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which is the zero input admissible initial condition. 
 

Considering the derivative of ),( 0
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since 0EΦ  is the projection on the finite eigenspace 

EHF  along the infinite eigenspace AHI [9].  
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Considering now the distributional derivatives of 

),( 0
−ttIΨ  we obtain:  
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The summation of (3.15) and (3.16) gives 
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which is the desired equation (3.2a). Note that for 

0)(  ),,[ 00 =−∞∈ + tttt δ and therefore (3.17) is 

reduced to (3.15). 
 
4. SOLUTION OF THE GENERALIZED     
STATE-SPACE MODEL 
 
In this Section we derive the general solution of (1.1), 
using the algebraic fundamental matrix approach. The 
zero input solution has been derived in Section 3 and 
it is given by (3.12). 

 

For the derivation of the zero state solution, we need 

to apply generalized or distributional derivatives of 

functions with “jump” discontinuity” at t0 that contain 

Dirac operators. If the ordinary derivative )()( tu i of 

the function )(tu exists for all t, with the exception of 

the point t0, and represents a locally integrable 

function, and if moreover, for both limiting processes  
−→ 0tt  and +→ 0tt  )(tu  converges, then the ith 

distributional derivative )(D )( tui  of )(tu is given by 

[17],[18] 
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Zero state solution 
Theorem 4.1 
The zero state solution of (1.1a) is given by 
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Proof: The zero state solution of (1.1a) may be 
determined from the inverse Laplace transform L- of 

)( )( 1 ss BUAE −− , as follows: 
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Note that the derivative of the first term of the right 
hand side of (4.3) is the ordinary derivative, since it 
is the right hand derivative at the origin. 
 
Making use of (4.1) for the calculation of the 

distributional derivative )(D )( ti u , we finally obtain 
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In the sequel we will verify that   )(tzsx satisfies 

(1.1a) for zero initial conditions 0x =− )( 0t . Indeed, 

applying the distributional derivative operator 
on )(tzsx in (4.3), we obtain 
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General state-apace solution 
Theorem 4.2 
The general  state space  solution of (1.1a) is given 
by 
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(4.8) 
Proof: The general solution of the generalized system 
(1.1a) results from the summation of the zero input 
and the zero state solution, which are given by (6.4) 
and (6.11) respectively. The solution (4.8) may be 
derived by following the Laplace transform approach. 
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