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Abstract.The problem of synchronizing two systems
with models formed of linear and nonlinear parts
is considered. The solution for systems with
hyper-minimum-phase linear part is given under
weakened matching conditions. Appiication of the
proposed technique is demonstrated by example of
synchronizing two Chua’s circuits.

1. INTRODUCTION

The synchronization of dynamical systems is an
interesting phenomenon having numerous
applications in mechanics [4,5), communications
[31], biology [22]. Some time ago the problem was
attacked by control theorists [24,35] who used
conventional linear model of systems to
synchronize. Of particular interest is the problem
of synchronizing two or more systems when not only
initial state (phases) but also values of some
parameters are not available to the controller
designer. This more complicated problem will be
refered to as one of adaptive synchronization.

A stream of publications arised quite recently
devoted to the problem of synchronizing chaotic
oscillations based on strongly nonlinear models,
see surveys [8,29,33]). These papers are
published mainly in physical or electronical
journals treating the corresponding applications.
The unified framework for synchronization and
control of dynamical (including chaotic) systems
based on Lyapunov stability concept is developed
in [37]. Another related formulation was
suggested in [14] where also the general method
of synchronization is described based on the
reference model and speed-gradient approaches
developed previously in nonlinear afapitve control
field [13-18].

The present paper examines the adaptive
synchronization further. The problem of
synchronizing two systems with models formed of
linear and nonlinear parts is considered. The
solution for systems with hyper-minimum—phase
linear part is given under weakened matching
conditions.

The general adaptive and nonadaptive
synchronization problems as in (4,14] are reviewed
in section 2. Section 3 recalls the speed-gradient
method. The main result for the
hyper-minimum-phase systems is presented in
section 4. An example synchronization of two Chua
circuits is given in cection 5.

2. SYNCHRONIZING OSCILLATIONS
AND MODEL REFERENCE CONTROL

The prob!em of (two or more) oscillating processes
synchrqmzation is formulated as follows
[4,5]. Given equations of r interacting subsystems
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n

. i,
X,= ‘(xl,...xr,u,t),xeRi yi=1...r (2.1)
and the equation of connection system

u=U(x,,...X ,u,t), uer", (2.2)

find conditions of__existence and stability of
T-periodic solutions xi(t), u(t) of (2.1), (2.2).

In terms of control theory the set of equations
(2.1) represent the controlled plant model.
Moreover the connection system (2.2) can be
regarded as control algorithm while xi(t) is no

more than the trajectory of the reference model
that is solution of (2.1) for inputs ui(t)

specified as T-periodic functions of time.
Therefore the general synchronization problem is
formally a special case of the nonlinear reference
model control problem for the case when the
solution of reference model coincides with the
solution of plant model in some T-periodic mode.
In synchronization problems the structure of
connection system (2.2) is usually given, while
some physical parameters ensuring the control aim
are to be determined.

Based on the above formulation the adaptive
synchronization problem can be posed as follows.
Given equations of controlled systems

X,=F (X yeeX oW, GE), i=lier (2.3)

where E€E is vector of unknown parameters, find
the equation of the control algorithm

u=U(x1,...xr,0,t)) (2.4)
and adaptation algorithm

6=O(x1,...xr,9,t) (2.5)
ensuring the control goal

Bx (t)-"x,(t) H<b for t>t, (2.6)

The problem (2.3)-(2.6) looks very much like the
general adaptive control problem Lll,lS], if the
notation is introduced x=(x1...x2&R , n=73ni and

the objective Qt=||x(t)— x(t)§. The difference is

that x(t),T, and Qt in the problem (2.3)-(2.6) are

not given a priori Note that the periodicity of
x(t) can be removed without any losses. However
the existing model reference adaptive control
methods cannot be applied directly to theproblem
because they usually require asymptotic stability
of reference model. As to oscillatory systems they
correspond to the boundary of stability region
while chaotic systems are locally unstable (see
[36].




For special case of linear controlled plant the
high-gain adaptive stabilizer was suggested in
[24]. In [28] the identification-based adaptive
phase-locked loop design was suggested. The
synchronization algorithm for two chaotic systems
(drive and response) was suggested [7]. The idea
of {7] is to replace the part of the response
system state variables by the corresponding state
variables of the drive system. The synchronization
model is as follows:

v=f(v,w), w=f(v,w) (drive) 2.7)
v =f(v',w'), w=f(v,w’) (response) (2.8)
In [30,37] the general convergence

(synchronization) conditions are given for scheme
with linear synchronizing signal and full state
measurement:

x=f(x) (2.9)
x=f(x)+K(x~x) (2.10)

Note that (2.9) corresponds to the reference model
while (2.10) is just the controlled plant. The
terms "drive-response"” or "master-slave" systems
are also usable. It is shown [30,37] that the
distance between solutions of the systems (2.9)
and (2.10) is small provided K>0 is sufficiently
large. On the other hand the results of [4,14]
give conditions of the control aim achievement
with arbitrarily small K. Such conditions are
important for control of oscillations because the
lifetime of oscillatory systems extends usually to
large number of its periods and the energy per
period of reasonable control should be
sufficiently small (so called swinging control,
see [17].

In fact both the scheme (2.7),(2.8) and the scheme
(2.9),(2.10) are special cases of the system

x=F(x), x=f(x)+g(x)u, (2.11)

where u=U(x,x) is the control/synchronization
signal to be determined (In case of (2.7),(2.8) we
may assign x=(v,w), g{x)=1, u=f(v,w’)-f(v',w’)).

Note that the known applications of
Pecora-Carrol’s method [7] ( for Rossler system
[71) Chua’s cirquit [32], Lorenz equation [10]have
function f?(v,w) linear in v. Hence the

convergence of the synchronized trajectories in
this scheme (as well as in the scheme (2.9),(2.10)
) can be established by means of speed—gragient
method (see Theorem 1 below for Qt=lv-v'l or

Qtzllx—)_{ 1%). 1t is clear that other choice

ofobjective function leads to other algorithms and
the extended convergence conditions.

3. SPEED GRADIENT ALGORITHMS

A great deal of existing nonlinear adaptive
control and synchronization algorithms can be
analyzed and designed in the following framework.
Suppose the main loop (2.4) is already chosen and
substitute (2.4) into (2.3). The ©btained dynamic
equations

x=F(x,6,t), t20 (3.1)
(dependence on & is omitted for simplicity)
represent some controlled plant with new input
vector 0. Now achieving the control goal

Q0 for t+ (3.2)
for the plant (3.1) can be regarded as a
new control problem.
To solve this problem introduce function ©(x,6,t)
as a speed of changing Qt along trajectories of
(3.1). Particularily for memoryless functional
Q‘=Q(x(t),t) we have u(x,O,t)=(VxQ)TF(x,9,t). Then

we can build the speed-gradient algorithm in its
most general, so called combined form looking as
follows [1].

4 (6+m(x,0,0)]=-TV w(x,6,t) (3.3)
where @( ) satisfies pseudogradient condition

vTVﬂZO and TF=I''>0 is mxm gain matrix. The

equation (3.3) can be rewritten in integral form

0=-9(x,6,t)-T/ ¥ Qds

The main special cases of (3.3) are SG-algorithm
in differential form

d—‘:-e = IV 0(x,8,t) (3.4)
and SG-algorithm in the finite form
9=-V(X,9,t) (35)

The typical forms of algorithm (3.5) are linear
and relay ones:

6 = - v w(x,6,t), (3.5a)

0 = - Tsign{V o(x,6,1)} (3.5b)

where components of vector sign{z} are signs of
the corresponding components of vector z. The
stability theorems for SG-systems (3.1),(3.3)
can be found in [Fradkov, 1990]. We recall here

just the two typical results.

Theorem 1 (combined form). Assume that the right
hand sides of the system (3.1),(3.3) are smooth
functions in x,0 which are bounded together with
derivatives in any region where the function
Q(x,t) is bounded. Assume also that w{x,0,t) is
convex in © and the following stabilizability
condition is valid:

there exists O*GR' such that
«(x,6,,1)<0. (3.6)

for all x€R", t20.

Then Q(x,t) is bounded along each trajectory of

(3.1),(3.3). Moreover if the asymptotic

stabilizability condition is valid
U(X,et,t)S—P(Q(X,t)) (37)

where p(Q)>0 for Q>0, then the goal (3.2) is
achieved for all trajectories of (3.1), (3.4).

The proof of the theorem is based on Lyapunov
function

V(x,0,0=0(x,1)}+(27) N80, 1° (3.8)




In the case when it is difficult to find constant

"ideal" control 6*, satisfying (3.6) or (3.7),

SG-algorithms in finite form may be applied. Their
applicability conditions are as follows.

Theorem 2 (finite form). Assume that function
Q{x,t) is smooth and the right hand side of the
system (3.1) is smooth function in x,0 , bounded
together with its derivatives in any region where
function Q(x,t) is bounded. Assume that equation
(3.5) is solvable for € for any x€R" and a
solution of system (3.1),(3.5) (e.g. Filippov
solution) exists locally for any initial x(0)eRr".
Assume also that w(x,0,t) is convex in 6 and
satisfies stabilizability condition (3.6).
Then Q(x,t) is bounded along each trajectory of
(3.1),(3.5).

Besides, if the asymptotic stabilizability
condition (3.7) and the following strong
pseudogradient condition

¥V 0(x,0)2B19 w(x,0)I° (3.9)

are valid for some B>0, 6>0, then the goal (3.2)
is achieved for all trajectories of (3.1), (3.5).

Note that Lyapunov function proving the theorem 2
is just the objective function Q(x,t). Choosing
various types of plant equations, input and output
vectors, various objective functionals and
vector-funtions  ¢(x,6,t) , one can obtain
different structures of control algorithms.

In adaptive control problems the SG-method can be
used both for the main loop and for adaptation
algorithm design. In the latter problem the
equation (3.1) represents the generalized
controlled plant , obtained by substitution the
main loop control law into the plant equation. In
this case the inputs of the plant are adjustable
parameters (controller parameters , the parameters
of adjustable model etc.). Different applications
of SG-method to regulation and tracking algorithms
design can be found in [1,11-16].

4. ADAPTIVE SYNCHRONIZATION OF TWO NONLINEAR
SYSTEMS WITH HYPER-MINIMUM-PHASE LINEAR

PART

Consider the problem of synchronizing oscillations
of the controlled system

%=AX + f(x,t)}+Bu, y=Cx (4.1)
with the trajectories of the reference model

xm=fm(xm,t), ym=me. (4.2)
where xeR”, meRn are state vectors, y€R1, ymERl

m .
are measurable outputs, u€R" is contro! variable.
The synchronization aim is formalized as follows:

lim e(t)=0 (4.3)
t-»®@
where e=x-x
m

Suppose that both the parameters of linear part
A,B,C and the nonlinearities f(.), fm(.) are

unknown to the system designer. In other words
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they depend on some vector of unknown parameters
E€E. The problem is to determine the control law
using only measurable variables and perhaps some
information about nonlinearities such that the aim
(4.3) is achieved for all E€E,

To solve the problem write down the error
equation:

é:Ae+®(x,xm,t)+Bu (4.4)
where 0=Axm+f(x,t)—fm(xm,t). Now impose the main

restriction on the class of the problems: suppose
that the following representation is valid:

m
T
"’fZlBi[E‘z‘(x,xm,t)wi(x.xm,t)], (4.5)
where Bi are the columns of matrix B, Eiel?" are

vectors of unknown parameters and the values of
: . N .

vector-functions z‘(.)eR and scalar functions

vi(.) are measurable. Assumption (4.5) means that

all the nonlinearities and uncertainties act in
span of the control. It does mean however (unlike
the standard matching conditions) neither that the
unknown parameters appear linearly in the model,
nor that all the uncertainties can be cancelled by
the proper choice of control (because the term
with A in right hand side of (4.4) may not be
cancellable). So (4.5) may be called weakened

matching condition.
To solve the posed problem choose the following
natural structure of adaptive controller:

T T
u‘=6m(y—ym)+61izi(x,xm,t)—vi(x,xm,t) s (4.6)

1 N
where OOiER, GuER , i=1,...m are vectors of

adjustable parameters. The adaptation algorithm
can be chosen by SG-method using objective
function Q=eTPe, where P=PT>0 is a positive
definite matrix. Acting along lines of section 3
we obtain the following adaptation algorithm in
integral form

0, (=¥, (w ()T Jiw (s)ds  (4.7)

. . T
where j=0,1; i=1,...m; wm=(BiPe)(y—ym);

T . o7 . .
w“-(BiPe)zx, Iji-g‘izo are gain matrices and

w“(w)Twzo for all w. However algorithm (4.7) is

not applicable because it requires nonmeasurable
state error e(t). To obtain its realizable form
the feedback Kalman-Yakubovich lemma can be
employed. Start with the following definition.

Definition 1 ({11], see also {2]). System )'(=Ax+Bu,

y=Cx where ueRr”, yer” is called
hyper-minimum-phase if it is minimum-phase (i.e.
the polynomial @())=det(AI-A)detW(}r), where

W(2)=C(\I-A)"'B is stable) and the matrix

CB=1imAW(X) is symmetric and positive definite.
Ar®
Lemma 1 [12]. Assume rank(B)=m. Then there exist

. L. . T
positive definite n*n matrix P=P >0 and the m#l
matrix 6 such that

i




T T
PA +A P<0, PB=C, A*=A+BG*C

if and only if the system x=Ax+Bu, y=Cx is
hyper-minimum-phase.

Now we are in position to formulate the main
result of the paper.

Theorem 3. Let function xm(t) be bounded, and

functions  z (x,x ,t), v (xx ,t) i=l,.m be
bounded in any region {(x,t): [[x}l<r, t20 }.
Choose l#m-matrix G with columns gi,i=l,...l| such
that the system with transfer function

T - . L.
W(A)=G C(XI-A) '8 is hyper-minimum-phase for all E€&
and take the adaptation algorithm (4.7) where

T T
wome ly-y My-yp ) wo = vy )z,

T . . T
Ij‘i=lj‘i20 are gain matrices, lpji(w) w20 for all w,

i=0,1; i=1,...m.

Then all the trajectories of the system (4.1),
(4.2), (4.6), (4.7) are bounded and the aim (4.3)
is achieved.

To prove the ‘theorem consider the Lyapunov
function candidate

1T 1 2 2
V(x0,t)=ze Pet; L ”90,‘—6:““ -1+“91i-§i" -1]
i=1 r r

o 1
(4.9)

where matrices P=PT>0 and 9:“ to be determined
later. Standard calculations of vV give

x T T T
-8,,) (y-y )e PBig (y-y )1
(4.10)

m

- T T

V=e (PA‘+A*P)e+_ZI(9
i=

(131

~ where A*=A+B6: C. Choosing P and Bzi mentioned in

Lemma 1 yields inequality
\'/S—eTQe (4.11)

where Q=QT>0. From (4.11) and boundedness of
xm(t) we conclude that V(x(t),8(t),t) is bounded.
Hence e(t), Gm(t) and B“(t) are bounded too and
the first statement of the theorem is proved.
Since zi(t), vi(t) are bounded e(t) is also
bounded. Now the last statement of the

®
theorem follows from fez(t)dt«n.

0

Remark 1. Reference model (4.2) as well as the
controlled plant need not to be stable. It is
important for control of oscillations and chaotic
motions.

Remark 2. For the case when both plant and
reference model are linear stable systems the
algorithm (4.7) generalizes the algorithms of
papers [27,3] (see also the book {34]). To
transform the algorithms of [27] to the form (4.7)

take w(w)=w, f(x,t)=0, fm(xm,t)=Ax*+Bu*, where

X (O=S, X (S u_(1), u ()=S, X (1)}+5 u (1),

and ;-(t). ;-(t) are state and input of the

reduced order reference model, S S are

21’ 22

appropriate constant matrices,

z, z:;-(t).

z“=xm(t),

Theorem 3 applies to design of both conventional
nonlinear adaptive control problems and adaptive
control of ascillatory and chaotic systems, as it
is shown in the next section.

5. ADAPTIVE CONTROL OF CHUA’S CIRCUIT
The so called Chua’s circuit became popular
recently as a benchmark example of simple 3rd
order nonlinear system exhibiting various forms of
chaotic behavior. Its mathematical model in
normalized form (see e.g.[8,371) is as follows

dx/dt=al(y-f(x)),
dy/dt=x-y+z, (5.1)

dz/dt=-a2%y,

where f(x)=M_*x+0.5(M_-M )*(Ix+11-Ix-11). The
o 10

equations of controlled Chua’s circuit can be
written as follows:

dx/dt=al(y-f(x))+bl#*u,
dy/dt=x-y+z+b2%u, (5.2)
dz/dt=-a2*y+b3*u.

Suppose that the value of al is unknown. Introduce
the reference model ("driving circuit”):

dxm/dt=a1m(ym-—f(xm)),
dym/dt=xm—ym+zm,
dzm/dt=—a2¥ym,

where aln is a given value and the control aim

e(t)»0 when t»>® (5.4)

T,
where e=(x—xm,y—ym,z-zm) is state error vector.

Defining the objective function Q(e)=eTPe, where

P=PT>0 is positive-definite matrix and applying
the speed-gradient method twice (for the main
loop and for the adaptation loop design) we
obtain the following adaptive control law:

u=9°Cel0i(y--f(x) )+al_(f(x)—f(xm) }/bt  (5.5)

where 90,9' are tunable parameters, and

C=(c1,c2,c3) is a raw vector of output error
weights. According to the Theorem 1 the adaptation
algorithm in the differential form is as follows.




2
d0/dt=-y (Ce)?,

(5.6)
d61/dt:—71Ce(ym'f(x))’

The theorem 3 implies that the aim (5.4) is
achieved when CB>0, where B=(b1,b2,b3)T

The simulation was performed for three values of
parameter al: al=9, al=10.6, al=7, the first two
corresponding to chaotic behavior of the system,
while the third one showing periodic
motions. Choosing different values of reference
model parameter alm we achieve different behavior

of the controlled system, modifying its periodic
and chaotic attractors and synchronizing the two
chaotic motions. see Fig. 4-3,

6. CONCLUSIONS

The general adaptive synchronization problem
statement allows to unify and analyze different
results in the field. The speed-gradient method
and Feedback Kalman-Yakubovich Lemma give a simple
powerful approach to adaptive synchronization
algorithms design for nonlinear systems.

The author is grateful to A.Markov for performing
simulations of adaptive controller for Chua’s
circuit.
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