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1. Introduction

In this paper we intend to present and discuss
several new and recent results on the convergence
and approximation of nonlinear algorithms, opera-
tors and sernigroups, with particular emphasis on the
case when they act on different Banach spaces. Such
approximation and convergence problems arise natu-
rally in many situations, including, for example, pa-
rameter estimation and identification theory and the
numerical solution of partial differential equations.
Thus the introduction of different spaces as well as
the corresponding projection and embedding opera-
tors is motivated, inter alia, by the approximation of
differential equations via difference equations, since
the difference operators act on spaces different from
the one on which the differential operator acts. A sim-
ilar situation occurs in identification problems (see,
for example, the book [2] and the paper [4]).

2. Main Results

We begin by considering families of approximations
to Banach space. Let Z and X, be (real) Banach
spaces with norms |- | and |- |,, n = 1,2, ..., respec-
tively, and let X be a closed linear subspace of Z. We
make the following assumptions.

Foreachn = 1,2,...there exist mappings P,: Z
Xnand B X, — Z satisfying

(i) |Paz ~ Payla < M|z —y| for all z and y in Z,
and

(ii)

|Enzy— w¥n| < M|zn—yn|, for all z, and y, in Xa,

where M is independent of n;

(iii) "li.n&J |EaPpz — 2| = 0 for all z in X;

(iv) PoEpz, =z, for all 2,, in X,,.
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Note that we do not assume that the spaces X,, are
subspaces of X, or that the mappings P, and E, are
bounded linear operators. See [8], [15] and [16] for
related settings.

The sequence {E,} is said to be asymptotically
linear if it satisfies
v)

If lim Enz, =2, lim E y, =yand z,y € X,
n—00 n—o0
then

lim Ey,(az, + Byn) = az + Py for all scalars o and 8.
n—0o0

For positive r we denote the resolvent (I4+rA)~! of an
operator A by JA. The domain of A will be denoted
by D(A) and its closure by cl(D(A)). The range of A
will be denoted by R(A).

Theorem 1. Let A+ wl be an m-accretive oper-
ator in X and let S be the semigroup generated by
—A. Let Aq +wl be an m-accretive operator in X,,,
n=12.., and let S, be the semigroup generated
by —~An. Assume that {E,} is asymptotically linear.
if

lim E,,J,“z"z,, = J;:z for some rg > 0 with rqw < 1

n—0o0

whenever £ € X, z, € X, and lim Epz, = z,
n—oo

then

nll’rrgo EnSn(t)z, = S(t)z
whenever z € cl(D(A)), zn € cI(D(A,)) and

nlim Enz, =z, and the convergence is uniform on
—00

bounded t-intervals.

To prove this theorem we first show that its hypothe-
ses imply resolvent convergence for all » > 0 with
rw < 1. Then we modify an idea due to J. Kisynski
[9] (see also [7]) according to which a convergent se-
quence of semigroups is viewed as a single semigroup
on an appropriate space of convergent sequences. A
different, more direct, proof yields a companion the-
orem where the asymptotic linearity of the sequence
{E,} is not assumed, but the resolvent convergence
of the operators for all positive r with rw < 1 is one



of the hypotheses. Complete proofs of these two the-
orems, as well as several corollaries, examples and
applications, can be found in [10]. These new ver-
sions of the nonlinear Trotter-Kato-Neveu theorem
are nonlinear analogs of the recent results for semi-
groups of linear operators presented in [8]. They also
include a result in an unpublished manuscript of Ph.
Benilan, M. G. Crandall and A. Pazy, as well as the
one space results in [3] and [7].

Turning our attention to nonlinear algorithms, we
continue with the following nonlinear version of Cher-
noft’s theorem.

Theorem 2. Let A+ wl be an accretive operator in
X satisfying R(I+rA) D cl(D(A)) for all 0 <1 < 1o,
and let S be the semigroup generated by —A. Let {p,}
be a sequence of positive numbers converging to 0, and
for each n let F(p,) be a mapping ifrom a closed con-
ver subset C,, of X, into itself. Suppose that

(‘) |F(pn)zn - F(Pﬂ)ynin < anlzn —Un In for all z,,
and y, in C,,, where a, = 1 +wpp+0(pn);

(ii) Pa (cl(D(A))) C C, for each n;
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(iii) lim En(I4r(I= F(pn))/pn)  Paz = Jiz for
n-—

all z in cl(D(A)) and 0 < r < 1.

If {k,} is a sequence of integers such that
hm knpn =1, then llm EnF(pn)*" Paz = S(t)z for

aIl z in cl(D(A4)), and the convergence is uniform on
bounded t-intervals.

This theorem is a nonlinear analog of the linear re-
sult presented in [13]. It includes the one space linear
[5] and nonlinear [3] theorems. In its proof we use the
companion theorem to Theorem 1 mentioned above
and a lemma in [12]. A complete proof of Theorem

2, as well as an example of its applicability, can be
found in [11]}.

Next we consider the converse of our results,
namely the question of convergence versus resolvent
consistency. In general Banach spaces they are not
equivalent because there are semigroups which do not
have unique generators [6]. But with some restric-
tions on X and X,, we can show that the convergence
of semigroups does imply the convergence of resol-
vents by using the geometry of sufficiently nice Ba-
nach spaces. This shows that the hypotheses of our
theorems are not only sufficient, but also necessary.
We illustrate this with the following converse of The-
orem 1.

Theorem 3. Let X* and X, be uniformly convez
dual Banach spaces with moduli of convezity éx(¢)
and 6,(c) respectively. Let A+wl be an accretive op-
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erator in X such that R(I+rA) D cl(D(A)) forr >0
with rw < 1, and let S be the semigroup generated by
~A_ For each n; let A, +wlI be an accretive operator
in X, such that R(I +rA,) D cl(D(Ay,)) forr > 0
with rw < 1, and let S, be the semigroup generated
by —A,. Suppose that

(i) the sequence {En} is asymptotically linear;

(i) &(¢) = inf{6x (€),bn(€):n > 1} is positive;

(iii) Pp (cl(D(A))) C cl(D(An)) for each n > 1;

(iv) cl(D(A)) is convez;

(v) nllngo EnSn(t)Ppz = S(t)x for z € cl(D(A)) and

the convergence is uniform on bounded t-intervals.

Then lim E,,J,A"P,,:c = J;“z forr > 0 with rw <
Nn—0o0
1 and z €cl(D(A)).

In the linear case (that is, when A, A,, P, and
E, are all linear), such a result is a consequence
of Lebesgue’s Dominated Convergence Theorem be-
cause (I + rd) "tz = [Pe " S(t)z dt for all z in X
and positive r. In the nonlinear case the proof is
more difficult. We use Banach limits and the “opti-
mization method” for establishing strong convergence
in infinite-dimensional Banach spaces. This method
also yields a converse of Theorem 2. Complete proofs
can be found in [10] and in [11]. For examples of
other problems to which variants of this “optimiza-
tion method” were applied see [14].

3. Conclusion

Finally, we mention that our ideas are useful in
other settings too. We refer, in particular, to non-
linear Volterra integral equations and to functional
differential equations, and to more general product
formulas. In this way we can obtain extensions of the
results in [1] and in [14]. It would also be of interest
to quantify our results by obtaining rates of conver-
gence.
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