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Abstract. Continuous time nonlinear partially ob-
servable stochastic control problems are solved by ex-
plicitly determining the optimal control laws, which
are reminiscent of the linear-exponential-quadratic-
Gaussian and the linear-quadratic-Gaussian tracking
problems. Using these results we compute explicitly,
the optimal control laws for parameter identification
problems.

1. Introduction

Recent results (see [1, 2]) have revealed classes of
nonlinear partially observable stochastic control prob-
lems having optimal control laws equivalent to that as-
sociated with either the linear-exponential-quadratic-
Gaussian (LEQG) [3, 4, 5] or the linear-quadratic-
Gaussian (LQG) [6, 4] tracking problems. Historically,
related work can be found in [7, 8, 5, 9]. This program
is executed in two steps. First, a sufficient statistic (in-
formation state) summarizing the information available
to the controller is identified, and the partially observ-
able control problem is converted to an equivalent com-
pletely observable control problem in infinite dimen-
sions. The state of the completely observable control
problem satisfies a stochastic partial differential equa-
tion SPDE, similar to that associated with the condi-
tional density of the nonlinear filtering problem, known
as the Zakai equation [4]. Second, this SPDE is solved
explicitly for nonlinear systems in terms of only a finite
dimensional number of ordinary differential equations,
and the problem is then cast into one of complete ob-
servations in finite dimensions. The optimal feedback
control laws are then derived, and are shown to be rem-
iniscent of that associated with LEQG/LQG tracking
problems. It is important to note that in general, non-
linear partially observable control problems are infinite
dimensional.

In this paper, we extent the results on finite dimen-
sional nonlinear control problems considered in [1, 2]

(and explained above) to new classes. We then show
how to solve certain parameter identification problems
by deriving explicit expressions for implementing the
optimal control law.

We shall henceforth refer to the information state
associated with the usual integral cost function as the
Zakai equation, and to the information state associ-
ated with the cost function featuring both the integral
and the exponential of the integral (risk-sensitive) cost
functions as the Feynman-Kac equation.

The classes of problems to be treated in this paper
involve an R™—valued unobservable process %(-) sat-
isfying the stochastic differential equation

dz, = f(t,Z:)dt + Byu(t, y)dt + Gidwe, £(0). (1)

This is observed through an R4—valued process y(-)
which satisfies the stochastic differential equation

y(0) =0. (2)

y(-) is called the observation process, w(-), b(-) are, re-
spectively, R and R¢—valued independent Wiener pro-
cesses, independent of the random variable #(0), u(-) is
the control process, and t € [0, T, where T’ € R is fixed
and finite. The cost function to be minimized over the
controls u, which are non anticipating functionals of
the observations y, is of the general form

T
E* {/0 (L, 2, u(t, y))

exp 0 ( /0 t 6 (s, &, u(s, y))ds) dt

dy, = h(t, :)dt + N db,,

J&(u())

T
+ goz(iT)expO(/o £ (t, 2, u(t, y))dt

+ @i(Zr))}, 6>0. (3)

Here £4;,i,i = 1,2 are real valued functions and E
denotes expectation with respect to a certain proba-
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bility measure P%. Notice that the integral cost func-
tion is given by Jr(u(-)) = {J&(u(-)); 8 =0}, while
the exponential of integral cost function is given by

TEr(u()) = {J&(u(); L2=0,p2=1}.

2. Problem Formulation
2.1 Dynamics

We start with a reference probability space
(2, A, P) with a complete filtration {F;;t € [0,T]},
two adapted standard Wiener processes {wy;t € [0, T]},
{bs;t € [0,T]}, and an Fo measurable random variable
#(0) such that: w: [0, T]xQ — R"™, b:[0,T]xQ — RY,
z(0) : @ — R", are mutually independent, and an ob-
servation process y(-) given by

1
dy; = N/ db,, y(0) =0. (4)

Assumption 0.1 1. U is a non-emply subset of R™;
2. f:[0,T] x R® — R" is Borel measurable, |f(t,zZ) —
f(t,2)| < klz — z|*, where n =integer; 3. h : [0.T] x
R* — R is Borel measurable, |h(t,z)] < k(1 + |Z|);
4. N :{0,T] - L(R%RY),N = N*, 38 > 0 such
that N > B1l4; 5. G- [0,T) — L(R*;R*), 3B >0
such that G > Bol,; 6. &4 : [0, T)xR* xU — R, p; :
R* — R,i = 1,2 are Borel measurable, {£;(t,%,u)| <
E(1+ |Z|? + [u]?), |o:i(Z)] < k(1 +12]7), ¢ 2 1,i=1,2;
7. the distribution of £(0) is, Ni(dz) = qf(Z)dZ,
[1Z|?d1§(z) < oo ; 8 N,G,B, f h are Borel mea-
surable and bounded in t.

Write {F};t € [0, T]} for the complete filtration gen-
erated by {y,;0 < s < t < T} and assume that
{F:;t €[0,T}} is generated by {Z,,w,,5,;0< s <t <
T}.

Definition 0.2 The sel of pre-admissible conirols de-
noted by U, consists of F{ —predictable functions with
values in U. The set of admissible controls denoted by
U is defined by U = {u € U; E[A*(T)] = 1}, where
foru €U, A¥(-) is the {Fi;t € [0, T]} —adapted process

A%(t) = exp {/0‘ h(s,%,).N'dy,

t
_ %/ h(s,z‘:,).N,‘lh(s,i,)ds},

such that for the system (2, A, P; F;) and for each u €
U, when w(-) is replaced by w¥(-), there is a strong
solution Z%(-) satisfying the Ito equation (2).

The definition of admissible controls implies that for
u € U a new measure P* can be defined through the
Radon-Nikodym derivative %’;—l;—, = A¥(T), (see [10]).
Then, Girsanov’s theorem states that P¥ is a proba-
bility measure on (£, .A; F;) and that for the system
(22, A, P¥%, F;) the stochastic processes (zU(-), y(-)) are
(weak) solutions of (1), (2) (see [10]).

2.2 Infinite Dimensional Control Problem
From [1] we have the following representation theorem.

Theorem 0.3 Let ¢ : R — R be a Borel mea-
surable twice continuously differentiable function and
assume that q2(¢) has density function ¢°(%,t)
¢(£,{y(s);0 < s < t},t) defined by gf(¢)
(8,4°(t)) = Jg 0(2)d°(z,t)dz. For each u € U define
.1 . 82 8
Ad 2Tr (GG 652¢) + (f + Bu) .ﬁdz

= Tr(GG"D26) + (f + Bu) Dso.

Then ¢°(-) satisfies the SPDE

dgi(¢) = q7(A(t)g)dt + 0gf (£1(t, z, u(t))¢)dt
+ qf(h(t,z)d:).N,'ldy,, qg(i) = qo(ivt):

where y(-) is given by (§). Furthermore, for u € U the
total cost function (3) is represented as

T
J&(u(-)) E {/0 (2(t, -, u(t), ¢’ (1)) dt

+  (p2exp(p1),¢°(T))}. (5)

(From the representation of Theorem 0.3 we obtain
an evolution equation for the Feynman-Kac informa-
tion state given by

dg! = (AQ)" +08(t 2, u(t)) gt
+ h(t,z)g{ N7 'dy, qb(2), (6)

(A(%)* denotes he formal adjoint of A(t)) and an evo-
lution equation for the information state (6 = 0) given
by

dg: = A(t)* qedt + h(t, £)q:. N dy:, qo(). (7N

3. Solutions of Feynman-Kac Equation
3.1 Control System S},

The objective of this section is to obtain explicit so-
lutions for the infinite dimensional state process ¢°(.)
governed by the SPDE (6), in terms of a finite num-
ber of ODE’s forming the finite dimensional sufficient
statistics for the estimation problem. Thus, by car-
rying out the integration of inner product terms (-, -)
present in (5), (whenever possible), we recover a cost
function which is of standard finite dimensional form,
expressed in terms of the sufficient statistics. We shall
use the notation a.8 = a*S.

Control System (Sl): Suppose assumptions 0.1
hold, the dynamics, observations, cost function are

(Fgl.,'g + gg(i) + ff) dt + Bg’(l(t, y)dt + Gidw,,

(HeZ + hy) dt + N} db,
Je(u(-) = (3),




respectively.

Al: 261 (t,z,u) = Qiz.z + Ryuu + 2m,z + 2n4u +
Zl(t z U) Qg §Rnxn, R, € %mxm, me € (?Rm)‘; Q =
Q*">0,R=R">0.

If u € ¥ and Al hold the information state associated
with control system S} is given by

%Tr (G:G} Dsaq) dt

dgf
0 6, -

FT (¢¢ (Fi& + g:(2) + fi + Beu)) dt

[/} .

3 (Q,i‘.i + Riuu+ 2mz + 2niu + 41 (8, 2, u))
¢¢ (H:% + h:) N 'dy,. (8)

+
+

Theorem 0.4 Suppose assumptions 0.1 hold, u € U,
and there ezists a function ¢ € Cz:tl (R" x [0,T]) sat-
tsfying the partial differential equation

oo, . 1

" 1
o+ 377 (GiGiDzad) + 5

D;¢:..G:Gy D: ¢

1. -
§i§Ag£ +Z.6:+ 6

Btu-Di'¢h

+ (Fiz+ fi) .Dzéy =

v gh(Ew - (9)

where the functions ZI(-),[\ [0, 7] — L(R™; R"), A=
&:[0,T) — R™,6 :[0,T] — R are to be chosen so

that (9) yields explicit solutions. Suppose Al hold and
there exisis a 8 < 6™ such that

HIN7'H, + A, —0Q, >0, Vte[0,T).

Then the control system S} with nonlinear function

9:(2) = G:Gy Dz ¢(%,1) (10)
admits ezact solutions for the Feynman-Kac equation
given by

exp (¢(Z,8) + c: + Ay)
exp (—1P N & — 1) (3 — 7y

(2m)% |3

¢’(2,1)

)

» (11)
where r(-), P(-), P = P*, ¢(-), A(-) are given by

dre = {F P (-6Qi+14/)}rat
(ft = Pi&y + Byuy) dt + 6Pym dt
P.H N (dy, — Hyridt — hedt), r(0)(12)

F,P,+ P,F; — P, (H;N;'H,

Ai- HQz) P+GG;, P(0),  (13)

g/o“{[q, BT (P . - ~—l)}
g_/ot (R,u,.u, + 2r,.[m] — '%']

2[n,u, ~ %’]) ds,

t
/ (Hsr: + h:)'N:_ldys
0

l 1
1 / N7 (Hor, + by) [2ds.
2 Jo

Proof. See [1]. O

Theorem 0.4 implies that whenever (9) admits explicit
solutions the Feynman-Kac equation evolves on a fi-
nite dimensional manifold (i.e., the state space of ¢%(-)
is finite dimensional). If we set é(-) = 0 (which im-
plies that A(-) = 0,5(-) = 0,6(-) = 0), we recover
the explicit solution of the Feynman-Kac equation cor-
responding to the LEQG regulator problem given in
[3, 5], while by setting § = 0 we recover the conditional
density of the LQG problem (unnormalized). The fun-
damental difficulty with obtaining explicit solutions of
(9) is caused by the presence of the term Bu.D:d;.
One can eliminate this term by choosing ¢;(-) appro-
priately. However, this approach will imply that the
function ¢;(-) should contain the term %B,u..D,-,«bg,
and thus excludes the case when the function £;(-) is
quadratic in Z,u. Towards eliminating this term we
consider an alternative control system.

3.2 Control System S2
Control System (SZ): Suppose assumptions 0.1 hold
the dynamics, observations, and cost function are

(] = (R0 o5 e [ 50
Bgu(i,y)]dt

| g:(O-""t) ]dt+ [ B2u(t,y)
z(0)

] [ 2(0)

Fiz.dt + g(t, 2;)dt + f.dt

Biu(t, y)dt + Gowy,

(Hi(t)z: + Ha(t) 2

hi(t) + ha(t)) dt + N} dby, y(0) = 0
Hy# + hedt + N2 db,.

T&(u(-) = (3),

[ G} 0
| 0 G}

dw,

|

dw;

J9
5%

respectively, where * = (z*, z*) and z(-), z(-) are, re-
spectively, R"1, R"~"1 —valued processes.
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(15)

dt

(16)

(17)




A2: Al hold, 4,(t,z,u) = £,(t,z,u), F12.(GG)™! =
0,B!=0.

Theorem 0.5 Suppose assumptions 0.1 hold, u € u,
and there erists a function ¢ € ij,l (R" x [0,T]) sat-
isfying the partial differential equation

i) 1 1
9¢: 3Tr (GIG}*D2¢,) + §D,¢,..G,IG,‘D,¢

+
+ (Fu(t)z + f1(t)) -D:¢:

-
%I.A¢I+Z.Ut+6¢ + 551(t,1,1‘), (18)

ot

where the functions €,(-),A(-), A = A*, a(-), 6(-) (de-
fined similarly as in Theorem 0.4 are to be chosen so
that (18) yield ezplicit solutions and

e[y 2] w[1]
Suppose A2 hold and there ezists a 8 < 8 such that
vt € [0, T].
Then the control system SZ with nonlinear function

9:(z) = G1G} " Dy ¢(z, 1) (19)

HiN7H,+ K —6Q > 0,

admits ezact solutions for the Feynman-Kac equation
given by
qo(i',t) = exp(é(z,t)+c+ Ar)
exp (—3P71(E = )2 = 1)

(2m)3 P e

where the functions r(-), P(-),A(:),c(-) are given by
(12)-(15), respectively.

Proof. See [2]. D

3.3 Examples of Finite Dimensional Systems

In this section we shall present certain classes of non-
linear functions g(-) that admit finite dimensional so-
lutions for the Feynman-Kac equation.

Theorem 0.6 Suppose u € U and there erists 6 < 6°
such that

HIN7'Hi+ A, —0Q, >0, Vte[0,T]

Let A : [0,T] — L(R™;R™), (:[0,T]—-%R", n:
[0,T7] — R, define Ta(t,z) = %A,z.x +z.( + e,
Zl(t,z,u) = 0, (ie, &L(t,%,u) = quadratic in Z,u).
The Feynman-Kac information state ¢°(-) associated
with system S% given in Theorem 0.5 admits ezplicit
representations, al ieast for the following three classes:

Class 1 (Rational Nonlinearities). A solution of
(18) is

¢R,(:c,t) = Fz(t,t).

This implies that the nonlinear drift term g(-) is
GG}
%A‘I.I + .l'.(g + Nt

gi(z) = (A +G),

where
A, Fr1(1)" A¢ + AcFia(t) = 6: Ay,
Ge Fii(t) ¢+ Acfi(t) = 6:Ce,
) 1 .
U §Tr (GiGF*Ad) + f1(t) e = by,
A 0, o =0, & = arbitrary.

Class 2 (Exponential Nonlinearities). Suppose
11,92 :[0,T] = R. A solution of (18) is

éE,(z,1) = log {7 exp (T2(z,1)) + 77 exp (~T2(z, 1))} .
This implies that the nonlinear drift term g(-) is

gi(z) =
71 exp (P2(z,t)) — 77 exp (-Ta(z, 1))
i exp (T2(z,t)) + 77 exp (-T2(z, 1))

where

A, Fii(t)*A¢ + A Fyy(t) = 0,
G Fii(t)*¢ + Adf1(t) = 0,

. 1 )
n ‘iTT (GiG*Ad) + f1(t) £ =

GiGi* (Aez + (i),

A = AGIG"As, 01 = MGG G,
1d

1. .
6 = 3G GiG G+ 5o (logre?)

Class 3 (Ratio of Sinusoidal Nonlinearities). A
solution of (18) is

¢s,(z,t) = logsin(T'2(z,t)).
This implies that the nonlinear drift term g(-) is
cos(T2(z,t))
sin(F2(z,t))’

where A(-),¢(+), n(-), 8(-), A(-), o(-) satisfy certain equa-
tions (similar lo those of classes 1, 2).

gi(z) = GiGgl' (Az + )

Proof. Substitute the solutions into the evolution
equation of ¢(-). O

Similar re_ﬁults hold if we consider the system S}
and we set £;(t,%,u) = 2 Byu;..(G:Gy) " g(t, ). Addi-
tional classes of nonlinear systems with finite dimen-
sional Feynman-Kac equation are given in [1, 2].

Example 0.7 Suppose z:[0,T]xQ— R, z:[0,T]x
Q—-R, y:[(0,T] x Q2 — R and consider
dz, = -Nz3dt+ z.dt+dw!, =z(0),I1>0,
dz zdt + zdt + u(t, y)dt + dw?,  2(0),
dyt = Igdt + ngt + dbg




If we set £1(t, z.u) = 3|z3M|?, the Feynman-Kac equa-

tion is finite dimensional and is obtained from Theo-

rem 0.5 by setting ¢(z,t) = —Sz%.

3.4 Control System S3

We have thus far presented classes of nonlinear sys-
tems that admit finite dimensional solutions for the
Feynman-Kac equation. Whether or not the systems
8%, 82 admit finite dimensional solutions for their asso-
ciated Feynman-Kac equations depends on whether or
not one can solve the partial differential equations (9),
(18), respectively. Here, we shall show that by defining
the function £;(-) appropriately, if g(-) is the gradient
of a potential function, that is, g(t,%) = G:G;D;é:,
then the Feynman-Kac equation corresponding to sys-
tem S. is finite dimensional (similar results hold for
the system S%).

Control System (S2): Suppose assumptions 0.1
hold, consider the control system S with time invari-
ant nonlinearities g(£), assume Al hold, define

bt2u) = GG [FE + it ol2) + Brult )]
+ Tr (GG Dag(3),

and consider the cost function Js3 = Jg(u(-)) = (3).

Define
Q = Qi+ %F,‘(G,G;)“F,, tel0,7T),

R + -;-B,"(G,G,‘)‘IF,, te[0,T),
my+ 557 (GG R, L0, T),
ne + %f{(G,G:)“B,, te[0,T).

Theorem 0.8 Suppose assumptions 0.1 hold, u € u,

and there ezists a 6 < 6* such that

H!N7'H,-0Q¢ >0, Vte[0,T].

Assume (without loss of generality) F1.B; = 0.
Then the control system S2 with nonlinear function
g(-) given by the gradient of some potential, that is,

admits ezact solutions for the Feynman-Kac equation
given by

¢¢(z,t) = exp(d(F t)+ci+ )
exp (=3P (Z - 1i).(2 -
(2m)3| P
where c(-) is given by (15) and r(-), P(:), P = P*, A(")

are solutions of the following equations:

dre = (Fi+0P.Q°%) rdt+0Pm{"dt

(fedt + Byuy) dt + P.H} N (dy:
nggdt - hgdi) , T(O), (23)

F:P,+ P.F; — P, (H; N, H,
-8Q}) P+ G:G;, P(0), (24)

Ay = 0/ {Q’r. r,+Tr(PQ‘)+ ftl }ds

@
+ 3 / (Rfu,.u, + 2r..mf" + 2nfu,) ds. (25)
0

Proof: Write the Feynman-Kac equation and verify
the results. O

4. Information State
4.1 Control System S2

In this section we shall show that the information
state satisfying the Zakai equation admits finite dimen-
sional solutions for certain nonlinear systems as well.

Control System (SZ): Consider the control system
SZ with cost function given by

T
J(“('))=E“{/0 fz(t,inu(i,y))dt+¢(5r)},

A3: A2 hold and ¢, = 0.

For the class of control systems S¢ we know from
Theorem 0.3 (see (5)) that for v € U the cost cri-
terion has the equivalent representation J(u(:)) =
{J&(u(-)) = (7); 0 = 0}, where ¢(-) is governed by
(5). Consequently, from Theorems 0.4, 0.5, 0.6, we de-
duce the next theorem.

Theorem 0.9 Suppose assumptions 0.1 hold, u € U,
and there ezists a function ¢ € Cz’,l (R x [0,T]) sat-
isfying the partial differential equation

—6(% + %Tr(G}G,“Di¢,)+%D,¢,.G}G}*D,¢,
+ (Fu(t)z + fi(t)) -Dzé:

1 -
EIA¢.2+ I.(.Tg + 6:, (26)

where A(-),5(-), 8(-) are defined as in Theorem 0.5 and
A3 hold.

The Zakas equation associated with the control system
S& having nonlinear function g(t,z) = G!G!* Dy ¢(z,t)
admits ezact solutions

q(z,t) exp (¢(z,1)) x €xp (—%P,_l(i —r) (% - ,.t))

(27)3| P4
exp (¢: + A),




where the r(-), P(-), A(-), ¢(-) correspond, respectively,
to (23)-(25) with = 0, and (15).

In addition, the information state g(-) admits explicit
solutions for at least the classes of nonlinear functions
&(-) considered in Theorem 0.6 corresponding to £; = 0.

Proof. Follows from the results of the previous sec-
tions by setting 6 = 0. O

5. Exact Optimal Control Laws

In Sections 3, 4 we have presented general theo-
rems that render finite dimensional solutions of the
Zakai and Feynman-Kac equations for general classes
of nonlinear control systems. In this section we shall
present sufficient conditions for identifying nonlinear
control systems having optimal control laws reminis-
cent of LEQG and LQG tracking problems.

5.1 Equivalence of Nonlinear and LEQG

The developments of this section will be based on the
results of Theorem 0.8 associated with system S3. Nev-
ertheless, similar results will hold for the remaining sys-
tems S, S as well.

Control System (S%;): Consider the control system
82, assume (without loss of generality) F;.B; = 0, and
introduce the cost function J&,(u(-)) = {Jsé ; la=

0}.

Since the system S&;, is a special case of the control sys-
tem 8, from Theorem 0.8, we know that the problem
of minimizing J,(u(-)) is equivalent to the following
finite dimensional completely observable problem:
Minimize over 4 € i the cost function

T
io,TE {expg/o (r,Q:.r,
+ Rlu(s,y).u(s, y)) ds

T
X exp g / (2r,.m?" + 2nlu(s,y)) ds
0

JE1(u ()

x  (rr) x Ao},

where f\o,, = exp(co,t), co,¢ = ¢ (see (15)),

T
ig,T = exp g/o {Tr (PgQ') + = it } dt,

Pa(r) = /R- p2(Z) exp (g[QTE.i + 2m7-£])
exp (¢(z,T) - 1 P71 (% — rr).(2 — r1))
(2x)%| Pt

subject to observer dynamics given by (23), (24).
For u € U we now define a new measure P* through
the Radon-Nikodym derivative %Pp—l Fr =Aor. Then

dz,

Girsanov’s theorem states that P* is a probability mea-
sure on (Q,A;f(‘,",)'and that, if the stochastic process

b4(-) is defined by
db® = dy, — (Hyry + hy) dt,

then 5%(-) is a Wiener process with covariance N(-),
when defined on the system (2, A, P¥; 73 ,). Therefore,

we define for each u € & the cost-to-go function

Sgl(r, t) =

T
inf £ {sﬁz(rr)exp 3 [ (ot

it,T u€U
+ Rlu(s,y).u(s,y)) ds

9 T
x expy / (2r..mJ"* + 2nju(s, y)) dslf(’,”,} :
4

and for z € R",p € R"*, s € R we introduce
MY (2, p,5) = inf {p.Bgu + g (RS u.u+2nfu) s} .
uweY

If we now define the second order operator

RS S +>:(>:<

i=1 =1

0

+ 0P ;m; )+f.) R (rQ’r+2rm»)

where F; = F; + 0P.Q!, a(t) = P.H;N;'H,P,, by
using dynamic programming arguments (see [5, 1]) we
deduce the 2"¢ order Hamilton-Jacobi (HJ) equation

0
=Ser(r,t) + M&(r,D.Sgr(r,t),Sei(r,1))

ot
+ jEl(t)SEl(rr t)) (27)
Sei(r,T) = ¢or). (28)

Consequence we have the next verification theorem.

Theorem 0.10 Consider the control system S&,; with
admissible controls, which are of separated form u(t) =
u(t,r). Ssppose Sgi(-) denotes the solution of the HJ
equation (27), (28) then
Seq(r(0),0) < E&—~ Teq(uC )) Vuell.
Tor
Further, letting u*(t) = u*(t,r), where u* is a Borel
measurable function minimizing HY; given by
R!7'B; D, Sgi(r,t)

o t+ Dr R.f'—lnf"
) =-—"7 Sei(r,t)y 0 (29)

and r(-) =
drg = {Fg +0Pth}r¢dt+fgdt

+ Byu*(t)dt + 0P,m{*dt + P,H; N, 1dbY,

r(0), B* = Wiener process (30)

r¥"(.)) is the corresponding solution of




(in the strong sense) we have

I () _ e Ii(u()
I

Ser(r(0),0) = [
0,T ued Ior

Proof. See [5]. O

It is important to note that the results of The-
orem 0.10 imply that for any nonlinear function
¢(-) obtained from Theorem 0.8 (hence, g((z) =
G}G!*D,é(z,t)), the optimal observer dynamics are
reminiscent of that associated with the LEQG track-
ing problem. If we set ¢y = 1 we can not expect to
be able to solve the HJ equation (27), (28) explicitly,
and hence determine the optimal control law (see [1]
for a detailed exposition). Thus, unless the terminal
cost of the HJ equation is the exponential of quadratic
form SLo(r, T) = ¢2(r) = exp §{Qr.r+2rmr], we might
not be able to obtain explicitly the optimal control
law. This observation gives rise to sufficient conditions
for identifying nonlinear partially observable stochas-
tic control problems, reminiscent of LEQG problems,
stated in the next theorem.

Theorem 0.11 Consider the control system S&,. The
optimal control law u* € U minimizing the total cost
function J%,(u(")) is linear feedback, reminiscent of the
LEQG tracking problem, tf the following hold:

1. The function g(-) is defined by

9(t. %) = GiG7 D:¢(z, 1), (31)

2. The function p3(-) is defined by

¢2(Z) = exp(—4(2,T)). (32)

Proof. If the condiﬁons 1, 2 of the theorem are sat-
isfied, we know that the terminal condition (28) of the
HJ equation is an exponential of quadratic function. O

Next, we present the optimal control laws correspond-
ing to the classes of nonlinear control systems defined
by 8%;, when the sufficient conditions of Theorem 0.11
are satisfied.

Theorem 0.12 (Ezact Optimal Control Laws). Con-
sider the control system S%;, denote by j(AB) the spec-
tral radius of AB, and define

where P(-) is given in Theorem 0.8 and S(-) is the so-
lution of the Riccati differential equation

S + F!Si+S.F -5 (B,Rf"lB,'
- 0G:G})S:+Q¢, Sr=Qr.

If the conditions of Theorem 0.11 hold, then for 8 < 6*
the optimal control law corresponding to the class of
control systems Sz;, is given by

W) = ~RETB] (Sir+ k)~ RO Ind® = ~R0 ol
- R'B: ((I-OSgP,)'IStr,+k;),

where r(-) = r¥’(-), P(-) satisfy (23), (24), respectively,
while the control gains are

L. + Zi(Fi+60PQ)) + (F} +0QIP) T + Qf
- = {B.RI7'B; - OP.H; N 'HP} E: =0,

1 - -
Sr = 3{I-0QrPr)™ Qr+Qr(1-0PrQn)7'},
ke ki (F: + 0P, H; N H,P,%,
0P,Q° — B,R.f-’lB;z,)
m + (f; +0m! P, — nfR{ 7B} ) £ =,
kr mr (I - 6PrQr)™".
Furthermore, the optimal total cost associated with sys-
tem SL; is given by
. 0
T (w* () = Iorx exp 5 (Z(0)r(0).r(0)
+  2k(0)r(0) + £(0)) ,
where the deterministic functions Z(-), p(-) are:
pr + Tr(PH{N 'HPX,)+ 0k,P,H;} N, H,P.k}
+ 2k (fi+0Pm")
IR (Bik; +nf") =0, pr =0,

6? -
?nT (I - QPTQT) 1 PTn}

[ —6PrQrl} e"p{
T -
+ g/o (Tr(Pth)+2f‘of‘)dt}.

Proof. Solve (27), (28) explicitly. O

5.2 Equivalence Between Nonlinear and LQG
Clearly, one can establish equivalence between non-

linear and LQG partially observable tracking problems,

following the developments of Section 5.1 (see [2]).

6. Parameter Estimation and Control

In this section we suppose that systems S%,
1,2,3 contain unknown constant parameters
©1,03,...,0,_,, which we desire to estimate as
well. Specifically, we have the situation when the
"1 —valued unobservable process z(-) and observation
process y(-) are described by

(Fui(t)z: + f1(t)) dt + g(z¢, ©)dt

i =

da:t =




Blu(t, y)dt + dw!, z(0), (33)
dys = (Hi(t)z:+ Ha(t)© + hy)dt + N} db,,
(Hi&.dt + hy) dt + N2 db,, y(0) = 0, (34)

where £ = ( g ) and

n—n,;

9(z,0) = Y_ 6;Aiz, {A}
i=1

Here, © is an n — n;—dimensional vector (i.e., © C
Rr-m1xn-n1 ) Notice that since O is a constant vector,
we can take this as part of the dynamics by introducing
the equation

do =0, ©(0). (35)

The parameter estimation and control problem of in-
terest is defined as follows:

Parameter/Control System (Se): Suppose as-
sumption 0.1 hold (with z* = (z*,0")), the dynamics
are given by (33), (35), the observations are given by
(34), and the cost function to be minimized over u € ¥
is defined by

5 = {Jg.(u(-)); £=0, b= glFul)z + Ai()

+ o(2,0)+ Bu(t.y)lf + 3Tr(Deg(=,0) }.

Although system Se is slightly different from sys-
tems S,1 < i < 3, the analysis of the previous sec-
tions goes through, by taking ¢(z,0) = D,¢(z,0),
where ¢(z,0) = 3.3 ="' ©;A;z. The Feynman-Kac
equation for the system Sg is explicitly solvable and is
obtained exactly as in Theorem 0.8. In addition, if we
use Theorem 0.11, that is, set p2(£) = exp(—¢(z, 8)),
the optimal control law is obtained exactly as in Theo-
rem 0.12 and thus, it is linear feedback and equivalent
to that associated with the LEQG tracking problem.
It is important to note that one can introduce more
general classes of parameter/control systems than Se.
These generalization follow from the results of the pre-
vious sections and should appear elsewhere.

7. Conclusion

In this paper we have considered stochastic control
problems when the unobservable dynamics are nonlin-
ear, the measurements are linear in the unobservable
state, and the cost criterion features both the integral
and the exponential of integral cost criteria. We have
presented specific classes of unobservable nonlinearities
leading to finite dimensional solutions for the Feynman-
Kac equation and the Zakai equations, in terms of a

finite number of ordinary differential equations form-
ing the optimal observer dynamics. We have then de-
rived sufficient conditions for constructing partially ob-
servable nonlinear stochastic optimal control problems
which are equivalent to LEQG and LQG tracking prob-
lems. In addition, we have shown that a class of pa-
rameter identification problems leads to optimal con-
trol laws that can be implemented in real-time.
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