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ABSTRACT

This paper investigates the problem of H, estimation
for uncertain, discrete-time, nonlinear systems with
nonlinear time-varying parameter uncertainty. A dis-
crete-time nomnlinear estimator i1s introduced so that
an H.,-norm-like measure of the estimation error is
guaranteed to be bounded by a prescribed level, for
all admissible uncertainties. An auxiliary estimation
problem is considered which results from the original
estimation problem by converting the family of norm-
bounded parameter uncertainties into a set of exoge-
nous energy bounded signals. Sufficient conditions for
the existence of an H, nonlinear estimator for the aux-
iliary problem are obtained, and it is shown that the
resulting estimator, if exists, guarantees the required
performance, when applied to the original problem, for

all the admissible parameters.

1. INTRODUCTION

One of the main reasons for the considerable effort
that has been devoted in the past decade to the de-
velopment of H., control and estimation is the good
robustness properties of the resulting designs {1]. Not
less important, however, is the fact that H., theory can
be readily extended to deal with systems with norm-
bounded structural parameter uncertainties [2], [4].
One of the methods to cope with parameter un-
certainty is to exploit the fact that the H., design
does not require the exact knowledge of the properties

of the exogenous inputs to the system. The bounded
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uncertainties can thus be translated into fictitious dis-
turbances in an auxiliary system [2]. H.,-control or
estimation that is designed for the auxiliary system is
guaranteed to achieve an H,-type performance value

when applied on the original uncertain system.

While H.-design techniques have been widely ap-
plied lately on nonlinear systems [5],{6],{7], only little
effort has been made to extend the robust H,-design,
that had been used so successfully on linear uncertain
systems, also in the nonlinear regim. In [8] the method
of [2] has been applied to obtain an H . -estimator for
uncertain continuous-time nonlinear systems with non-
linear time-varting parameter uncertainties. A robust
estimation technique is introduced there that is based
on the results of [6], for the corresponding nonlinear
problem with no uncertainty. The resulting estimator
secures an upper-bound to the ratio between the en-
ergy of the estimation error and the energy of the noise

inputs, for all the admissible parameters.

In the present paper, we develop a similar robust
estimation method for nonlinear discrete-time sys-
tems. In the continuous-time case of [8], the theory
for systems without uncertainty of [6] was readily ap-
plicable to the control of the auxiliary system. In the
discrete-time case the nonlinear control problemr has
been solved in a general setting by [7]. In order to solve
our estimation problem, and to be consistent with our
notations and way of presentation, we bring in Section
3, after formulating the problem in Section 2, a short
derivation of discrete-time nonlinear H..-control that
we need for the solution of the robust estiation prob-

lem in Section 4. The obtained results may not always




lead to a feasible solution. This is why we consider
in Section 5 the Extended Robust H, Filter which is
obtained by linearizing the equations around the zero
error vector. A demonstrative example is given in Sec-

tion 6.

2. PROBLEM FORMULATION

We consider the following uncertain discrete-time non-

linear system

zip1 = fizs) + Hi(zi) Fi(z) Ei(xi) + g1;(xi)ws,

Yi = hoi(x:) + Hoi(2:) Fi(2i) Ei(2) + kapi(z:)wy, M

where z; € R" is the system state, z¢ is an unknown
initial condition, y; € RP is the measurement, and
w; € RT describes an unknown disturbance which is
assumed to be in 5[0, N — 1]. The functions f;, g1;,
ho;, ko1;, Ei, Hi; and Hy; are known matrix functions
that are assumed to be smooth in their arguments.
The set {F;}, F; € R**J is a family of unknown matrix

functions satisfying;:

FT(x;)Fi(z;) <I, Yi€[0,N] V possible z;. (2)

The mappings f;, g1;, h2; and ky1; describe the nomi-
nal system of (1).
Our aim is to derive a filter for a priori estimating

of the state z; :

&, = F(Vi), (3)
where Y, £ {yr : k <i-1}, and F:L[0,N,R?] —

[,[0, N,R"], so that the estimation error satisfies a cer-
tain H . -type requirement for the whole admissible set
of uncertainties that is expressed by Fj of (2).

The H, requirement is defined by determining first
an objective vector, z; € R?*, which may be interpreted

as an estimation error, namely,

(4)
We

also select some positive functional N{zg) on R", and

zi = hyi(zi) — hyi(2)

where hy; is a known smooth matrix function.

require that for a given y > 0
N-1 N-1
STzl < 7N (zo) + 3 el (5)
i=0 i=0

Yw; € I3[0, N — 1] and Vzy € R".
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We consider the following robust H, nonlinear es-
timation problem for (1) — (4):

Problem 1. For a given scalar v > 0, find an
estimator (3) that satisfies (5) for all the admissible
uncertainties that satisfy (2).

We make the following assumption:

Al: kz]i(l’)kzli(l')T >0, VzeR™.

The analysis of the above problem consists of two
parts. In the next section we consider the first part
which is a problem of discrete-time H, nonlinear con-
trol via measurement feedback. This problem has been
solved in [7] in a very general framework. In the present
work we suggest a simple method to generate the so-
lution of the H,, problem for some common practical
cases. Our results will be used in Section 4 to solve
Problem 1.

3. DISCRETE-TIME H,, NONLINEAR
CONTROL

Consider a system that is described by
zipr = fix:i) + g2;(zi)wi + g15(zi)wy

¥i = hoy(zi) + kans(zi)w;
zi = hyg(xi) + ki (zi)u;

(6)

where z; € R™, y; € R?, and 2z, € R*; v; € R™
is the control input, w; € R" 1s an unknown distur-
bance which is assumed to be a member of 5[0, N —1].
The mappings fi, 915, 92, h2i, k215, h1; and kyg; are
known matrix functions that are smooth in their argu-
nments. The objective is to design a control law {u;}
that achieves the Hoo-type requirement in the form of
(5).

There are two major approaches to solve this con-
trol problem:; one that is based on the theory of dissipa-
tive systems (see e.g. [10]) and the other is a dynamic
game approach [11].

i From the game theory point of view we define the

pay-off function

A N-1 ) ) N-1 )
Twiyui,20) & Y [l =7 (m0)+ 3 lwel) (7)

Satisfying (5) is equivalent to J being nonpositive. Fol-
lowing the approach of [6] and [12] this may be viewed

as a zero-sum dynamic game played by two adversaries




in which one minimizes J with respect to u;, and the
other maximizes it with respect to w; and zg. The
control problem is to find a minimizing saddle-point
strategy {u}} for J(w;, u;, zo)-

On the other hand, we can utilize the notion of dis-
sipative systems for discrete-time systems and define
a supply rate S; = %||w;||? — ||zi||?>. The system (6)
with the control law {u}} is said to be dissipative with

respect to {S;} if there exists a nonnegative family

{Vi(z)}, Vi(z) : R™ — R such that Vzo € R"

(8)

We observe that (8) implies (5), provided that Vy <
v2N(zg). Thus, the sufficient condition for {u;} to

solve the control problem is that {u;} makes (6) dissi-

Vi+1(1'i+1) - V,(:L‘,) <S; Yw; € 12[0, N — 1]

pative with respect to some nonnegative {V;}.
Similar to the continuous-time case (see e.g [6]) we
define

A 9
Hi(ui, wi, 23) = Vigr(zigr) = Vllwl® + 120 (9)

and (uf,wr,zy) = arg{rrlliinnlluaxrr;axHi(u,-, wi, z;)}.
Our aim is to obtain conditions f?or the existence of
such a set of nonnegative storage functions V; that sat-
isfy

— Vi(z;) + Hi(u} . w],z;) £0, V. (10)

If the set {u},w],z5} constitutes a saddle-point, we
say that the sequence {u}} solves the control problem.

The control problem is first solved in the state-
feedback case, where all the components of z; are ac-

cessible. We consider

Vi(zi) = 2] Qux (11)

where {Q;} is a family of positive semi-definite matri-
ces. We argue that this requirement is valid in many
cases, at least locally. Lemma 1 below provides a suf-
ficient condition for the set {Q;}. Before we state the
lemma we introduce some notations and make addi-
tional assumptions.

We define

Qi+1(z) - 77 01 (2)Qipr191,(x),

Qit1(z) £ [ =77 2Qip191:(x)n T (2)] 7' Qi

Ryi(x) 2 kyol (2)kigi(z).
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M1 (z) = Rii(z) + 92T (2)Qig1(2)g2:(2).

Assumptions: For all z; € R"
A2: Ry; >0 Vie[0,N]
A3:Q; >0 Vie[o,N—1].
Consider the case where in (5) N(zg) =
ngoxg, Py > 0, consider the family of positive semi-
definite matrices {Qi}io that satisfy A3 and consider
the following inequality for allz € R™:

Lemma 1.

~2"Qiz + b1 (2)h14(2) + ST (2) Qi1 (2) fi(2)
—[b] (@)kr2i(z) + £ (2)Qi1 (2)92: (2] M) ()
k2] (2)h1s(2) + g2 (2)Qiga () fil@)] <O (12)
Vie [0,N—1], Qn =0 and Qo < ¥2Py. Then the pair
(uf, w]) with
u; = — i;11(zi)[kl2?1(xi)hli(xi)
+ 927 (2:) Qi1 (xi) fi(xi)], (13)
wi =77 ] () Qv () fi(2:) + g2y (zi)ui(w:)] (14)
conslitules, logether with 23 = 0, a saddle-point for
the game with the objective function of (7).
Proof: Substituting (11) in (9) and replacing r;
by z we arrive at the following representation for H;

(all the arguments have been omitted below for conve-

nience).
Hi = (ST + vl go] + wl 1]) Qisa (fi + 9200 + 91,w0)
+hy T hyg + 200 ] kipsus + ul Ryjus — v w] wy
= T Qi1 fi + 1T hyy
— 2T+l i T)Qiv191,Q7 } Qi
{wl =327 + 0@, Q Y

arp T ~ A
+2[h1] kv + fT Qigrg2:]us + ul (Ri; 4 g2] Qivr92:)ui.

ot (u?

A completion to the squares then leads to

-2 T N
Hy= =y {w] =y 2T + ol 0 Qi 90,Q7 )

Qiv1{wi —772Q L T Qisi (fi + myui)}
- T
g + M (ki Ry + 92T Qg1 i) Mg
(i + M7\ (kyal hii + 927 Qiad 1))

~[h T ko + f,;TQi+192,-]Mi:Lll (ko) hyy+




92l Qinr(@) il + [T Qusa fi + il hyy. (15)

It follows from the last result that u; of (13) and w;
of (14) minimizes and maximizes H;, respectively. [t
also follows from the structure of H; and assumptions
A2,A3 that H; 1s a concave function in w; for all u;
It is

easily verified then that maxH;(u], w;) = H;(u], w])
w

and a convex function in wu; for arbitrary w;.

and minH;{u;, w}) = Hg(u::w:-‘), which leads to
Uy

Hi(ui,wi) < Hi(uj, wi) < Hi{wi, wy).

The result for zy follows from the fact that the pay-off

function of (7) can be written, using (9), as

= N N-1 N
J= Z H.-—ZW+V0_72N(xC) = Z H:'—ZVi
i=0 i=0 = —~

—z§ (¥ Py — Qo)zo
and the maximizing initial condition is thus zero. VVV
Remark 1 The inequality of (12) reduces to the
discrete-time Riccati inequality when the linear case
is considered (see e.g. [3]).

In the output-feedback case we want to examine,
similarly to [6], whether z; in the feedback control law
strategy of (13) may be replaced by some estimate &;
and still keep the dissipativity of the system. We look

for an estimator of the form
Zi1 = fi(:) + 91:(2)w] (£:) + g2,(2:)u; (2:)
+Gi(2) [yi — hai(2:) — k21:(2i)w] (2:)], 20 = 0. (16)
where {G;} is a family of matrix functions to be de-

termined.

In order to simplify the notation we write

ari(zi) S wi(z),  ani(zi) 2 ui(z),

hoi(z:) 2 hoi(2;) + ko1 (zi)ag(2i),
Filwi) £ filw) + gri(a)on(as),
w; £ Q21 [wi — any(=:)].

We obtain the following description for the of the
closed-loop system (6)-(16):

[x] _ [ i filzi) + g2i(xi)azi(&:)
i LA(@) 4 92:(20)a2i(2:) + Gi(2:) K
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. 914(z:) ] ~=-1
+ R i1 Wi
[Gi(l‘i)kzu(xi) il
where K;(z;, ;) 2 ilgl-(l'i) — ho,(2;).
A 1
= M,
from (15) that for u; = a2;(2;) we require that

(17)

Denoting ; [ewas{x;) — aa;(2;)] we obtain

N-1 N-1
2 MIEl* < 9* 37 aill® + 28 (v Po — Qo) 2o (18)
i=0 i=0

This is again an H-type requirement of the form of
(5). Also here the controller looks for a minimizing
{v:} while his adversary can deviate fromn his strategy
of Lemma 1 by choosing nonzero @; and zy. To satisfy
(18) we are looking for storage functions of the form

{Ui} : Ui = (Z,’ - :i‘,')T"Vi(.I,‘,' - .Z',)
We define
. A A . .
Fi(zi, &) = fi(zi) = fi(Zi) + [92:(2i) — g2,(2i)] 2 (24),
N Al
Roi(2i) = ka1 i) Q7 (zi)kar] (24),

- LA _o -1 .
Wigi(zi,2:) = I — v 2Q A (zi)[g1,(2:) — Gil#:)
kor, (2T Wigs [91:(20) — Gi(@:)ka1:(2:)] Q14 (21),

- A _

Wip1(2:) = [T+ 97 Wig191:(2:) Q7 (i) (ko] (1)

Ro; k(2@ (z:) — Darl (2:)]7 Wi,

and assume that for all z € R and ¥i € [0, N — 1]
A4: W,;H exists and I—'y'zﬁfiﬂ(Gi—g“Q;}l kgllTRQi_l)
Ryi(Gi — 91,Q7 1 kar] Ry )T > 0.
A5: Ry; >0 Vie[0,N).
We then obtain the following result:
Lemina 2: Consider the system of (6). Suppose that:
1: Assumptlions A2-Ab are salisfied.
2: Inequality (12) is satisfied for some set of positive
semi-definile maltrices {Qi}fio for all i € [O,N — 1]
and allz € R™.
3:There exists a family of positive semi-definite mairi-

ces {W,-}f\;o that satisfies the following inequalily for
alzeR™, Vie [O,N - 1]:

—(z — 2)TW;(z — &) + 5z, 2) T 0i(2, &) + {Fy(z, 2)
—01:(2)Q (2)kar] (&) RoT (@)K (2, £)}T Wiy
{Fi(2,2) — 01,(2)Qi (2)kar] (2) Roj ' (2) Ki(s, 2)}
~V KT (2,2)Ro; (2, 2)Ki(2, ) <0, (19a)




Wo =7 Po = Qo. (198)

4: The following holds for some set {G:‘}?I:O and for
ie[0,N—-1]

(61(8) ~ 91, @ @) Ro () Wi

{Filz.2) - g1:() Q7 (221 ] () Ray ' (2) Ki(z, 2))
= ~? RQ:I(I)I\’,-(z, ). (20)

Then, the control problem is solved by the oulput feed-

back u; = ag;(z;) for

20(2i) + GF (i) [y — hai(24))-

(21)

Proof: Similarly to the proof of the Lemma 1 we
define

Tip1 = fi(zi) + 92;(2)a

. AN _ _
Hi(wi, Gil@:). i, 2:) = Uipr (ziwr) + 0:ll® — ¥ )|wi |

We omit all arguments for clarity and rewrite the last

equation in the form

:[F,-T—- +w Q

wl-‘

' (91; — Gikari)TIWig

GikZIz)Q1+1w11+” ] —7 ;r Wy

[Fi — GiKi + (g1; —
Ck'n,) [1—7 wx+1

Gik21:)T] ™ Wiy

= —y*{w; — 7_2Q_i_+%1 (91; —
(91: — Gik?li)Q—i_-{-ll(gli -
(Fi — GiK;)YT W1 {w; — V_ZQ;%] (91; — Gika1y)T
I =vWip (01, — Gik21:)Q7 (g1; — Gika1)T]™!
Wi (Fi = GiK:)} + (FT — KT GT)[I — v Wi (91,
—Gik21i)Q;—+11(gli_Gik'Zh')T]_lW
Note that

1
=y *Wisr(g1; —

Gik21:)Qi 4 (91, —
=[I- 7_2Wi+1GzR2iCT]_lWi+l‘

where G; = G; — gliQ;ll chJRgi_l and where by A3
and A4 the above inverses are all well defined.

Defining
F; = F gl,Q,+1k21, Re7K;,
—1
r; = [st_l Y 2GTW, 1+1GJ
we obtain
Hi =5 o — v {w; — 72Q1 A (91, — Gikars)T

i1 (F,'-G,’K,’)%-f)?f),’.

Gik21;)T] Win

G W (B — GiK)Y Wons
v Wi41GiR2:GT)™
— VKT Ro ' Ki + 4%
;+1F Ry 'K; i]-

[r— 7_2W,-+1G,-R2,~
{72 @7 (§1:—Gikars) 1T —
Wis1(F; — GiKi)} + FET Wi F

YT GT Wi Fi— R KT [y 2GT W

1

Similar to the proof of Lemma 1 it follows that

@] = 772Q1 3 (91 — Gikary) I~y 2W;1GiRy7 ' GT) ™

Wi (Fi — GiKy),
= 0 and G} of (19), constitute a
saddle-point for the game with the objective function

of (18). The strategy of uj = a;(&;), with £; of (21),
then solves the control problem. vvv

together with zj

4. DISCRETE-TIME H,,-ESTIMATION OF
UNCERTAIN NONLINEAR PROCESSES

We solve the robust estimation problem by applying
the approach that has been proposed in [2], for the lin-
ear case, and has been used in [8] for the corresponding
nonlinear estimation problem in the continuous-time
case. According to this approach we convert the set of
parameter uncertainties into an exogenous, bounded
energy signal in an auxiliary system that does not en-
counter any parameter uncertainty. We shall show that
the solution to the H.-estimation problem that is as-
sociated with the latter system guarantees a solution
to the original problem.

The performance index of (7) that is associated
with Problem 1 is a function of operator F of (3), the

uncertain part F; of (2), and zo, namely:

N-1 N-1
A
J(wi, F,z0, F;) = Y sl = V[N (o) + Y Nlwil)]
i=0 i=0
(22)

The robust estimation problem is to find the saddle -

point operator F* that minimizes sup J(w;, F, 2y, F}),
w,,F.
where w; € I3[0, N — 1,R"] and 2o € R™.

The above problem has been solved in [9] for the
corresponding case without parameter uncertainty. Uti-
lizing its approach we introduce the following auxiliary

system:

Zaiyt = filzai) + T Hri(Tai)Wai + 91:(2ai)wi,

Yai = h2i(zai) + L H2i(xai)wai + k21i(zai)wi, (23)
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where z,; € R™ is the state, wq; € R is the additional
disturbance which belongs to I3[0, N — 1, R}], ya; € R?
is the measurement, the mappings fi, g1;, ho;, k214, Ei,
Hy; and Hy; are as in (1) and (4), and {e;} is a se-
quence of nonzero scalars to be chosen later.
Associated with the system of (23) we introduce an
estimate 2o, = Fo(JV}), where )¢ 2 {Yas s <i-1},
together with a penalty vector z,; € R*+/ given by

i = [hli(%i) - hli(ia.)] ’

eiEi(zq;) (29)

where the mappings hy; and E; are the same as in (1).
We define the following performance index for the
estimation problem for the auxiliary system (23)-(24):

N-1
A
Ja(wi1wai1faivxao!6i): § :“Zai“:)_‘yz[N(xao)
i=0

N-1 N-1
Ml 4 Y ), (25)

i=0 i=0
where N(-) is the same as in (22). We look for an
estimator &,, = Fo(Y#) with 2., = 0 that satisfies
Ja <0 for all w; € L{O,N — 1,R"], wy; € 1[0, N —
1,R!] and z,9 € R™.

Applying the same arguments used in [8] we readily
arrive at the following result:

Lemma 3. Consider the systems of (1) and (23)-
(24) together with the performance indices (22) and
(25), respectively. Let Fu(-) be a given operator such

that sup Ja(wi, wa;, Fa, Lay, ;) 15 bounded Vz,, € R".

Wa ;W

Then, 1t follows that for any admissible sel {¢;}

sup J(wi, Fa, 2o, Fi) < sup Ja(wa;, wi, Fa, 2o, €;)

w,, Fy Wa, W,
forallzg € R™ .

It follows from Lemma 3 that a solution of the es-
tirnation problem (23)-(25) provides a solution to the
estimation Problem 1. In view of this, we will solve the
problem of (23)-(25) instead of solving the problem for
(1) with the performance index (22). This leads to the
following estimation problem:

Problem 2. For a given scalar v > 0, find a se-
quence {€;},e; # 0 and Fo(-) so that (25) with r,, = 0
remains nonpositive for all wy; € 1[0, N -1, R*], w; €
LL[0,N - 1,R"], and z,, € R".

110

Remark 2 The operator F4(-) which solves the above
auxiliary estimation problem provides a solution to
Problem 1, namely, the estimator h;;(&;) with #; =
Fa(Vi) ensures the performance of (5) for all admissi-
ble Fi(z;) satisfying (2).

The solution to Problem 2 can be obtained by solv-
ing an H,, nonlinear control problem for a related sys-

tem. Defining

ga (i) & [%Hu(m) ni@i)],

A

ka,(x) gz—_Hzi(Ii) kayi(zi) ],

it is easy to see that Problem 2 is equivalent to the
following :

Problem 3. Given the system

Ta, = fi(Za,) + ga,(2a,)we,,
Ye, = ll?i(za,) + ka,(ra,)wc‘
_ [hu(l‘a,) } + [—1
T e Ei(za,) 0"

where z,, € R™ is the stale, u., € R° is a conlrol

(26)

mpul, we, 1s the disturbance input, y., € R is the
measured oulpul, z,, € R*Y is the controlled output,
and {e;} is a sel of nonzero scaling parameter to be
chosen. Find a control law {u. }, u., = hy;(Z4,), with
za, = Fa(Yf), such that

N-1 N-1

Yozl <IN (o) + 3 Ml T (27)
i=0 i=0

for all we, € LI0O,N — 1, R**"] and r,, € R™, where
N
Vi=A{yer 1k < i1}

In light of Remark 2, it follows from the above that
if the control law operator F,(-) solves Problem 3 the
Fa(Yi) solves Problem 1.

estimator hy;(z;) with r,

Problem 3 can be solved using the results of Sec-
tion 3. Thus, defining

Qaig1 () 2 1= 7727 (2)Qis10a.(x:),  (28a)

He

Roa,(2:) = ko (2)Qari (z)RT (20), (28b)

Qaiq1(z:) = =772 Qi+19a,(zi)gT (2:)] 7' Qi1
(28¢)
Warni(z0) 2 {1 = 772 Wig 1 ga, (20)Qary ) (2:) (1~




kT (2:)Rag M@ ka, (2:)Qaipr (€0)]9T (2:)} " Wiy,
(28d)

we obtain the following:

Theorem 1. Consider the system of (1) with the
estimation error of (4). Suppose that
1: There exists a family of posilive semi-definile ma-
trices {Qi}i]\ic that satisfies, for a nonzero ¢;, the fol-
lowing inequality for allz € R™ and Vi € [0, N — 1]:

2T Qiz + 2 E] (z)Ei(2) + T (2)Qaip1(z) filz) <0,

QN =0, Qo<7P. (29a — ¢)
2: There extsts a family of posilive semi-definile ma-
trices {W,-}fio that satisfies for all z € R™ and Vi €
[0, N — 1] the following:

hii(z))"
(h13(2) — h1y(2)) + FI (2, 8)Waigs () Fe, (2, 2)

—(z— ) Wiz - &) + (hii(z) -

Y KI(z,8)Ry; (z)Ke,(z,2) <0 (30a)
Wo =7*Po — Qo (30b)
where
F. (z, :z:) F. (z,%)
"ga;(‘c)QaiH(’?)kai x)R3; (z)K,, (z.2),
Fel2,8) 2 [ - 7 ga (x)gT(2)Qi1] ™"

[I Y ga (J;\ga (1' QH—I] ft(z
Ke,(2,2) £ hay(z) = hoi(2) + 7 ke, (2)97. (2)

Qaigr (@) fi(2) = v %ka, (£)97.(£)Qaig 1 (2) fil )
3: A1, A2 are salisfied, Ry, > 0, Qa, > 0,

ai+1
exists and Vi € [0, N — 1] and z € R".
I =77 Wais1(Gi = gaiQaryrkal Roz)Rea, (G,
gazQaz-}-lk RZ_I) >0 (31)

4: The following holds:
* (o 5 —1 T -1 T -
(G1(®) = g0, (@)@ s (@kal ()27} (2)) Waiga(2)
Fe(z,28) = v° Ro; N (2) K, (2, 2).
Then the estimation u., = hy;(2,41) with
=[l- 7'29a.(ii)gf,(fi)Qi+1]_1fi(ii) + G; (i)
[yi — hai(Z;) — 7 (x,)ga (xz)QHl( )fz(l'z)] (33)

solves Problem 1.

(32)

Ziq)
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Remark 3 Note that inequality (29a) is a nonlin-
ear analogous of the Discrete Bounded Real Lemma
and that it is equivalent to the dissipativity property
between the signals w; and ¢; E;(z;).

5. THE ROBUST EXTENDED H,, FILTER

Similar to the derivation of the well known extended
Kalman filter [13] the condition of (30a) can be lin-
earized in the neighborhood of the estimated trajec-
tory {Z;}, or equivalently, about {e;} = 0.

We first introduce the following notations which we

shall use in the sequel:

[3{[ 7'29a.(x)yaT.(r)Qi+1]_lfz'(l‘)}]

4(:r)— s

G (#)Qary (£0)kT (&) RoZ} (8:)Coa, (5),
Ci, _[ahl (z)] B cz,(@,.)é[M] |

(34a)

9 oz
. [ay-?ka.(z)yz,(z)dam(x)f,-(z)}J (34b, ¢)
Oz c=3
We define |
T 2 =W+ CT @00 (@) + AT () Wairs () Ai(20)
—92CT (#:)Ra3 (&:)Ca, (2:),

where W, is defined in (28d) and assume that there
existx G7 (i) that satisfies

T

AT (2:)Waiy) (2:)G(2:) = v2CT(2:)Ra3 (1)

+ AT (2 Wai g1 (20)00,(8)Qai s (20K (30) Rz (32)
(35)
where {Z;} is given by {33). We obtain, in the next
lemma, the conditions that guarantee the dissipativity
of the system of Problem 3, with respect to the in-
dex of (27), at the neighborhood of {e;} = 0. These
conditions are therefore sufficient for the solution of
Problem 1.
Lemma 4. Assume that A1, A2 hold and ihat
(35) has a solution, and suppose there ezists a family of
positive semi-definite malrices {Q;}, and a nonzero

sequence {&;} that satisfy (29a-c) Vi € [0, N — 1] and




Vz € R™. In addition, suppose that the family of posi-
tive semi-definite matrices {W;}_, that satisfies con-
dition 3 in Theorem 1 satisfies also Vi € [0, N — 1} the
following:

JL4+61<0, Wy=92P - Qo, (36)

for some 6§ > 0, where &; is defined in (33) and G} (Z:)
s given by

G} (3:) = Y*Warpn (8)(ADT(2:)CT (2:) Ra7 ) (&)

SN R N IR
+ 9a,()Qair1 (B)RT (2:) Rz (&), (37)
and where DY is a left pseudo inverse of D. Then
the estimale uc, = hy,(£i41) solves Problem I, at the
neighborhood of {e;} = 0.
Proof: By expanding (30a) about e = 0 we readily

obtain the following requirement for {W;}

T T N T \IAY SNA (i

e {=Wi + C{(£:)C1.(2:) + A (2:)Waig1(2:)Ai(2:)

—72C3 (#:) Rag (£:)Ca,(2:) Ye + d([|e]f?, %),

where d(||e[|?, £;) is of the order of ||e||? for a given ;,
that is, d(||e[}®, £:)/||e]|* — 0 as e — 0. Since our hori-
zon is finite, it follows that there is some neighborhood
of the origin in R™, €, such that d(||e||3, £;)} < 8lle||
for all e € Q and for all z;,i € [0, NV — 1]. Using now
(29a-c) and (36) we find that as long as e; € Q for

all 7 € [0, N] we can apply Theorem 1 to conclude the
proof. vvv

6. EXAMPLE

In order to demonstrate the use of the above theory we
consider the Robust Extended H., Filter for a simple
second order problem.

Consider the time-invariant system of [9]

Tiy1 = Az; + Bw;, (383)
where
0.569 0.763 1.267
A=1 _o.763 0.416] and B = [ -1.625]’

We assume here that the measurement is described by

yi = Cz; + HyF(z;)E(z;) + sin(2xy,) + 0.5n;, (38b)

where z;, is the first component of the two dimentional
state-vector z;, C = [3 0], Ho =2, E(z;) =[1 0]z,
|F(z;)] <1 Vi€ [0,N] and Vz; € R%. We consider
the time-interval [0, N], where N = 500, and we are
looking for an estimate of Cz;, where C; = [0 1].

We have chosen v = 10.9, ¢ = 0.1 and have intro-
duced

ko = gHz 0 0.5] and g, =[0 B 0].

Using the theory of Section 5 we have to solve (29) and
(36). Inequality (29) does not depend on the current
estimate #; and we can thus find a solution {Q;} off-
line. After 30 steps we obtained that the solution of the
equation, that results from (29) by taking the equality

sign, converges to the constant matrix

0.0311 0.0041]

Q= [0.0041 0.0250

The matrix @ thus solves (29) for all i < 470.
In (36), the only term that depends on {Z;} is

CQ_(i‘,‘) = [3 + 2005(25:1‘) 0]

Using monotonicity arguments that are similar to those
of [3], we can guarantee that {W;} solves (36) if it sat-
isfies (36) for Cy = [1  0]. Since the latter matrix does
not depend on {Z;} we can solve (36) off-line. The so-
lution of the equation, that results from (36) by taking

the equality sign and 6 = 0, slowly converges to

_[5.94 0.63
71063 5.90]°

Thus, with the assumption that Wy = W, the matrix
W solves (36) for 6 = 0, Vi € [0, N].

We compare the result of our robust estimator with
the one obtained by the H,, nonlinear estimation method
of [9], for the near-minimum value of ¥ = 2.7, and
with the result that is obtained by the EKF proce-
dure, where we designed the two filters for the nominal
system of (38), namely for F = 0.

We describe below the simulation results for {w;}
and {n;} that are uncorrelated standart Gaussian white
noise processes. We simulate the above three estima-
tors for the worst values of the uncertainty F, namely,
for each estimator we describe the estimation error in

the worst case, where we take F = —1 for the Robust
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extended H., estimator and F' = | for the estimator
of [9] and the EKF.

The advantage the Robust extended Hy, filter is far
more significant in the case where, say, w; = v/2sin(0.14)
and {n;} is still standart white noise. In Fig. 1 and
Fig. 2 we compare the worst case errors, that are ob-
tained in the case of F' = I, for the three estimators.
The resulting l;-norms of the estimation errors are dis-
played in Table 1.

Estimator Is-norm of the estimation error
{w;} is white [ w; = v/2sin(0.17)

Robust 77.17 45.46

Filter of {9] 102.84 62.80

EKF 140.49 330.81

Table 1. Comparison between the I3 error norms of

the three estimator designs.

7. CONCLUSIONS

In the present paper we have introduced a robust H,
estimation method for nonlinear time-varying processes
with norm-bounded time-varying uncertainties. We
have formulated an auxiliary nonlinear control prob-
lem and showed that the H,, control solution for this
problem ensures the solution to the original problem.
A sufficient condition has been derived for the solvabil-
ity of the auxiliary system. This condition leads to an
estimation procedure that extends the recent results of
[9] to systems with parameter uncertainties.

In the present work we have chosen a specific quadra-
tic structure for the various storage functions. This, of
course, may not be the optimal choice, and it may thus
lead to an overdesign. Moreover, the minimizing G is
not always feasible, in the sense that it is not a function
of Z; only. This is why a linearization around the zero
error vector is suggested which leads to the Extended
Robust Ho, Filter.

The approach we have adopted is one of a priori
estimation type, where the current measurement is not
available for estimation. Similar results can be derived

also for the a posteriori case.
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Figure 1: Comparison between the worst case results of the Robust Extended Ho, Filter and the filter of [9] in the
case where the driving disturbance is v/2sin(0.1).
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Figure 2: Comparison between the results of the Robust Extended H, Filter and the EKF in the case where the
driving disturbance is /2 sin(0.17).
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