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ABSTRACT

The problem of parameter identification, for single-
input, single-output, ARX systems, is considered. Re-
cent results in Hoo- nonlinear filtering are used to for-
mulate, for the first time, a nonlinear H,, time-domain
prediction-error-modelling (PEM) identification method.
The performance of the new method is guaranteed by
a preassigned bound on the ratio between the energy of
the prediction error of the obtained model, and the en-
ergy of the exogenous disturbances. The potential use-
fulness of the H,, time-domain identification method
is illustrated by a numerical example.

1. INTRODUCTION

The problem of identifying the parameters of a dy-
namic linear system is of prime importance to engi-
neering practice. A vast amount of research have been
devoted to linear system identification in the last decades
(1],(2]. Most of the conventional identification meth-
ods, for example the well known least-squares and ex-
tended least-squares methods, are time-domain algo-
rithms, which can be classified as prediction error mod-
elling methods [1]. These time domain methods are
intimately related to well known results in the theory
of linear and extended filtering [3].

In the last decade, many authors (see e.g. [4],[5])
have dealt with the problem of frequency-domain H. 00
-identification. These frequency-domain H,, meth-
ods are very different from the time-domain methods
They are basically methods to fit a stable transfer func-
tion, of a given order, to a finite sample of the fre-
quency response of a system.

At the same time, many published works have been
devoted to the topic of He-filtering (See [6] and the
references therein). The application of the time-domain
Ho-theory to system identification is attractive, since
such methods guarantee a bound on the ratio between
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the energies of the prediction error of the obtained
model, and the exogenous signals (measurement noises
and driving disturbances}, even if the statistics of these
signals are completely unknown. The question has
thus naturally arised whether the new H,, filtering
results can be applied successfully in the related field
of time-domain system identification.

A first attempt in this direction was made by {7,
where the parameters of the identified system were
treated as the states of a discrete-time trivial system.
The same approach was used by [8], to formulate the
first linear PEM H,, identification method. It was
shown there, that for long identification intervals, the
H,-optimal linear PEM identification method tends
to the well known LMS algorithm. The theory of
continuous-time H, identification was recently applied
in [9] to identify the parameters of continuous-time
systems. The approach there is not limited to linear
systems.

The approach of [7] and [9] is limited to the use
of linear H.o-filtering theory, while the problem of
identifying the parameters of a system on the basis
of noise-contaminated measurements is basically non-
linear. In this paper, we use the emerging nonlinear
Ho, -filtering methods [10][11],[12], to extend the work
of [8], and obtain, for the first time, a nonlinear PEM
H,-identification method.

The paper is organized as follows: In Section 2,
we introduce the time-domain formulation of an Hoo-
identification problem. The problem is analyzed and
solved in Section 3. Section 4 demonstrates the appli-
cation of the new method by a numerical example.

We use the following standard notation: The Eu-

clidean norm of a vector d is denoted by ||d]|2 2 4.
The Ly -norm of a vector signal {dy} € R" x L]0, N —
1] is denoted by [|d¢||2 £ S"N-"dtd,. The maximal
and the minimal singular values of a matrix A are de-
noted by #(A) and g(A), respectively.



2. PROBLEM FORMULATION

We consider the following linear, discrete-time, ARX
process:

n m
2 = —Zaizk—i'l' Zbiuk—i+ cowr , k€ [-n,N]
i=1

=1

(2.1)

Yk = 2k + (2.2)

where {a;} and {c;} are unknown fixed scalar parame-
ter sequences. The signal {wy} is an unknown driving
disturbance, and the signal {14} is the measurement
noise. We do not assume any statistical information
concerning {wi} or {vx}. The known constant cg is
used to weight the disturbances. In order to identify
the parameters of the system, we apply to its input a
known signal {u;}, and read the noisy measurements

{w}
We look for a predictive model of the form

2= — E & (Ye—i — Vk—¢) + Z i’iuk—i (2.3)
i=1 =1

that will provide a good prediction 2; of the next out-
put z; of the system, on the basis of the available mea-
surements Y* = {y;|i € [0,k — 1]} and the known sig-
nal sequence {ux}. We say that the predictive model
of (2.3) achieves an H, performance level of (P, v) if:

llesaall3 < o2 [85Pofo + llwelly + fll3]
V {w}, {vi} € [0, N —1] (2.4)
where ¢; is the following prediction error:
€k = 2k — CoWk — %k ,
and
0 =[—a1---—an, by by, Vk_1--Vk-n]. (2.5)

We can obtain an approximate solution for the prob-
lem of achieving the above performance level, by using
the nonlinear H, filtering theory of [12]. We define

dk = [ W Vi ]t f (26)
and readily find that

0k+1 = Aek + Bdk (27)
2 = Ck(ek)gk + cowi (2.8)

and
Ve = Ck(b’k)ek + Dd;, (2.9)

where

0n+m
B = 02ﬂ+m 1

On-—l
Ck(ak) = [yk—l cYk—n , Uk—~1"""Uk—m , G1 " .an] .

and
D‘—‘[Co 1]

Remark: Many common system identification
methods assume an ARMAX model structure, where
the term Cow; in (2.1) is replaced by E:=0 CiWk—;-
The additional terms in the ARMAX model serve as a
coloring filter for the unknown driving signal {uwy}. It
is not difficult to apply the theory of the present pa-
per to develop an ARMAX H,, -model identification
scheme. The motivation for doing so is however du-
bious, since Ho-theory does not assume any specific
color for the driving signal.

3. THE IDENTIFICATION PROCESS
We consider the following estimation scheme:

ék+1 = Aék -+ Gk(ék) (yk - 21:) s éo =0 (3.1&)

£ = Cr(0r)0x (3.1b)

where G € R2**™ . The estimation error e; = 0; — 0y
thus satisfies the following:

ex+1 = Fi(er,0:,Gr) + Grde , €0 =0 (3.2)

where
Gr = B—GiD (3.3)
Fi = [A - Gkék(ek)] ex (3.4)
Ci(0:) = Ci(6:) + 0L Ey (3.5)
and
0 0 0
Ei=| 0 0 o0]. (3.6)
-1 0 0

We define the following Hamiltonian:
A 5 .
H(er, Gk, de,7) = Viga (Fk(ek, 0. Gi) + gkdk)

2
— 72 |l + lfex 1]l (3.7)




where
Vi(er) =7%eiQrer , Qo=Po , Qe >0 ,Vke[0,N].
We then obtain the following result from [12):

Lemma 3.1 Letd; denote the mazimizing disturbance
signal
d; = arg n}iax’H(ek,Gk, dk,7)
k

Then, if

H(ex,Gr,d;,7) — Vi(er) <0 , YEe[0,N—1] ,
(3.8)

on the estimator of (3.1a,b) achieves the performance level
re (P09 7)
-
‘a vvv
It Lemma 3.2 The estimator of (3.1a,b) achieves the
)a; performance level of (Py,¥) if the following conditions
l”‘c Qi1 2 (Gr—Gi)de(0:) (Gr — Gp)' + AQp A"
—G}é:(0x)GY' + BB? (3.9)
I~ §iQr41Gx >0 (3.10)
Qr>0 (3.11)
are satisfied for all k € [0, N — 1], where
) ¢1(8x) = DD' + Cr(0x)Q; 1 C1t (6:) (3.12)
i = (407G + BD) i (0)  (3.13)
and
Qr 2 Qi + 772G (8:)C1(6:) . (3.14)
Proof:

If follows by (3.1a,b),(3.2) and (3.7), that

v *H(ek,Gx, dx,7)
= [Ff + digt] Qus1 [Fr + rde] — didy

Completing to squares, we obtain that

Y *H(ex, G, di,7) =

{4 - FQundi (1~ 3Quinde) ™} (- 5t Qunsii)
X {dk — (I - L Qrs1dr) ™" §£Qk+1Fk}

HF [Qigr + Qrgrdin (I - 95 Qr+191) 7131 Qe 1] Fi(3.15)

Hence, by (3.10), a maximizing disturbance exists, and
1s given by

* ~t A =1 oy =
di = (I — Gt Qr+18k) " 7LQr+1F% .
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We substitute (3.4) in (3.15) and obtain that
7_2Hk(ek) Gk; dir 7) =
N t
& [4 - GeCulon)]
[Qk+1 + Qrs1k (I — 35 Qr41dr) ™ 5L Qraa]
[A - G,,C*k(a,,)] e . (3.16)
Using the identity
Qk+1 [1 + 3k (1= §'Qusad) ™ §£Qk+1] =
~_ ~ oyl
(Qk.*l.l - gkgk)
and (3.16), we obtain that (3.8) is equivalent to
-1 ~ ~t ~ 1 A !
Qits 2 iuit+(4 - GiCu(0:)) @5 (4~ GuCa(01)
(3.17)
We obtain the condition of (3.9) by substituting (3.3)
in (3.17), and completing to squares, as follows:
~ . 1
Gk gy + (A - Gka(ﬂk)) Qi (A - Gka(f)k)) =
AQ;'A' 4+ BB
+ [G - (AQ;lékt(Hk) + BDt) ¢k_1(9k)] or(0e)
- t
x |G- (47 Crt(on) + BD') ¢x71(04)]
— (4Q7C44(6x) + BD) 6 (61)
~ t
x (4Q;'Cu'(6x) + BDY)
0

We want to make (3.9) as non-restrictive as possi-
ble. Our policy is thus to select G so as to minimize
the right hand side of (3.9). Note that such policy
is only sub-optimal, since, by (3.14) and (3.5), Qi1
depends on Gy.

It follows from lemma 3.2, and the fact that ¢;(6z) >
0, that it would be best to take G = G;. However,
G} is not available. The best approximation we know
for G} is

Gr = (AQ,;lé,,’(ék) + BD’) ée~l(6) . (3.18)

For Gy of (3.18) we have the following result:

Lemma 3.3 The identification algorithm of (3.1a,b),
with the gain Gy = Gy, achieves the performance level
of (Po,7) if, for all k € [0, N — 1], conditions (3.11)
and (8.10) are satisfied, and
Q_;_*l_l > AQ;lAt — quﬁk(ék)éz + BB + ékAkéi
—AQ; "6 Gy — Gi6LQp 1At (3.19)




where

Ar = 61(0x) — ¢ (0x) =

Cr(01)Q; Ci (8x) — Cr(61)Q5 " Ci'(Be) (3:20)
and

8 = Cu(0) — Cu(bs) =
[0...0, 0...0, —(a3—a1)...—(an —an) |(3.21)

Proof: R
Substituting G for Gy in (3.9), we obtain the fol-
lowing condition:

Qit: = (Gr-— G1)or (01)G + Grde(6x)(Gr — G})
—Gror(0:)GL + AQy 1A'+ BB (3.22)

We evaluate

(Gi — G})81(6%)

= (AQ'Cx(0x) + BDY) [T+ 6471 (6:) ]
~ (4Q;*Cy*(6x) + BD') - AQ; '
=GrAr — AQ; 6 .

The result of the lemma follows by substituting the
above result in (3.22), and using(3.20).

O

The values of A and §; are not known. However,
if we have the following estimate of the current identi-
fication errors

n 1/2
bok > |16kl = [Z(aa - di,k)z] (3.23)

we can easily establish the following bounds:
—AQ;'86GL - GrolQE AT < B, Av< A
and

élf:+1(ek+1)ék+1(0k+1)_éltc+1(ék+l)ék+l(ék+1) < Sk )

where

be=5(4Q7 [0 0 In]") ok Gl Fonime

Ac = 260x[[0 0 L ]Q7CHGE)|
+63:7 ([0 0 L)@ [0 0 L 1)
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and

_ 5 o
§r = ——2—Cr'(0:)Cr(fr)

[¢x00)
)e

( Cu(6e)]
+ 1+

o,k
We summarize our findings in the following theo-
rem:

0n+mxn+m 0
0 .

In

Theorem 3.1 Suppose that the following recursion
Qr+1 =
“14t _ A (A 5 At A
{4Q5 A"~ G (Bu+ 64(80)) GL + BB' + 61 }
-2 [ék+1t(ék+l)ék+1(ék+1) + Sk] (3.24)

is solved by a sequence {Qx} of matrices which satisfy,
forke[0,N —1)], (3.11) and

it (Qk+1 +772 [ék+1t(ék+1)ék+l(ék+l) + 5k+1]) ge<lI,

()
Then, the estimator (3.1a,b) with Gy = Gx, where G
is given by (3.18) and (3.12), achieves the performance
level of (Po,7)-

vvv

Remarks:

o If the identification process converges, then we
may expect that for large values of k, 6 will
become negligibly small. In this case, the iden-
tification algorithm of Theorem 3.1 tends to the
extended H,, estimation algorithm of [12].

¢ If we assume that &g j is negligibly small, and if
we let ¥ — oo, then our results reduce to the
well known extended-least-squares (ELS) identi-
fication scheme [1].

4. EXAMPLE

Consider the following system:

2k
Yk

17241 — 0.852p 9+ up_1 +4up_2 + wr .
(4.1)

2k + Vi

We simulated the system of (4.1), with {wi} and {1}
that are random white sequences of unit intensity. The
known signal {ur} was also chosen as a standard white
signal of unit intensity. We applied the method of this
paper, with v = 2.5, to evaluate the parameters of




Ha Least- LMS Trae
squares
—a; | 1.6926 1.6588 | 19170 | 1.7088 |
—ay | -0.8423 | -0.8086 | -1.0562 | -0.8500
by 1.2846 1.2782 | 0.7800 | 1.0000
by 3.7953 | 3.8862 | 3.1869 | 4.0000

Table 4.1: Comparison between the identification re-
sults of the H,, and the least-squares algorithms, and
the true parameters of the system.

the system. We assumed that for large k, the identi-
fication error will be negligible. We have thus taken
bo,x = 0. With this choice for 8, the obtained Ho,
performance bound is meaningful only asymptotically,
for large values of k. For comparison, we have also eval-
uated the parameters of the system using the standard
least-squares identification, and the LMS [8] algorithm.
In all the algorithms, we assumed the correct order of
the system.

The identified parameters are summarized, after
300 simulation steps, in Table 4.1. The time-evolution
of the identified parameters is depicted in Figare 4.1
for the nonlinear H, and for the LS methods, and in
Figure 4.2 for the LMS. In Figures 4.3 and 4.4 we com-
pare the frequency responses of the models obtained by
the nonlinear H, identification, and LS identification.
It is seen that the H, identification algorithm yields
very accurate results, while the results of the least-
squares algorithm are heavily biased, due to the high
measurement noise that was present in our simulation.
The convergence of the LMS algorithm is poor.

" s L M H
] 50 100 150 200 250 00
Time

Figure 4.1: The time evolution of the identified param-
eters, for the nonlinear H,, and for the LS methods.

J .
)

Figure 4.2: The time evolution of the identified param-
eters, for the LMS method.

5. CONCLUSIONS

In this paper we have presented a nonlinear H, time-
domain prediction-error-modelling system identifica-
tion method. The new method can guarantee H,
performance, i.e. guarantee that the ratio between the
energy of the prediction error, and the energy of the
disturbances present in the identification experiment,
will be bounded by a prescribed positive number v,
if the bound (3.23) on the identification errors can be
estimated, and if the conditions of Theorem 3.1 are
met. The H,, performance of the identified model can
be guaranteed asymptotically, even if we do not have
an a-priori bound on the identification errors, if we as-
sume that after enough time have elapsed, the results
of the identification become precise.

Many aspects of H,, identification are left for fur-
ther research. For example, the convergence proper-
ties of the H, identification process, and identification
problems where the order of the system is unknown.
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