Adaptive Process Control using Recurrent Neural Networks:
a Feasibility Study

Thierry Catfolis and Kiirt Meert

Expert Systems Applications Development Group
Department of Chemical Engineering
Katholieke Universiteit Leuven
de Croylaan 46, B-3001 Heverlee, Belgium
Thierry.Catfolis@CIT.KULeuven.ac.be
Kurt.Meert@CIT.KULeuven.ac.be

Abstract

In this paper we present the results of a feasibility study
about the use of recurrent neural networks for adaptive
process control. A network architecture based on the Real-
Time Recurrent Learning (RTRL) algorithm developed by
Williams and Zipser (1989) is tested on a bioreactor control
problem. Two networks, the first a model of the system, the
second a controller, are clustered together into one large
network. Both parts are adaptive and react on changes of
the real system. The results of the experiment show that a
recurrent network can easily be used as a controller and
that the presented adaptation techniques are adequate for
use in time-evolving environments.

1. Introduction

The use of artificial neural networks for real-life problems
has been studied extensively during the last five years.
Applications range from character recognition (Hussain and
Kabuka, 1994) over operational research (Burke, 1994) to
finance (Chakraborty et al., 1992). Typical chemical
engineering problems like process modelling, diagnosis,
system behavior prediction or process control are difficult
to solve due to the non-linearity and high complexity of the
system. The basic properties of artificial neural networks,
like their approximation capabilities, their ability to leamn,
their robustness to noise and their non-linear behavior, seem
to make them good candidates for solving these chemical
engineeting problems. Narendra and Parthasarathy (1990),
Mayosky et al. (1993) or Turmner et al. (1994) proposed to
use artificial neural networks for the identification and
control of dynamic systems. Ungar et al. (1990), Catfolis
(1993) or Farell and Roat (1994) used neural networks for
fault diagnosis and process monitoring purposes. In this
paper we propose a recurrent network based architecture
for process control. The non-linear properties of the network

225

make control of a complex non-linear system feasible and
the temporal processing properties of the recurrent network
make the implementation of such an adaptive controller
easier.

In the next section we give a small introduction on neural
networks and describe the RTRL algorithm that is used in
the experiments. In section 3 we review the use of artificial
neural networks in process control. In scction 4 we build
the adaptive control architecture and in the following section
we explain the adaptation principles used in this paper. In
section 6 we use this adaptive controllcr on a bioreactor
problem.

2. Neural networks and dynamic
systems

Artificial neural networks are a mathematical representation
of some elementary brain processcs. Basically, these
networks are a complex structure of processing clements or
nodes connected together with links. Onc of the most
important properties of artificial neural nctworks is their
leaming capability. For an introduction in artificial neural
networks see Matheus and Hohensee (1987). Foranindepth
description see Rumelhart et al. (1986). The different
network architectures can be divided into two classes, based
on the network topology.

2.1. Feedforward neural networks

The first class, called feedforward networks, have a simple
topology that do not contain dirccted loops. Many types of
feedforward peural networks cxist but the hest known type
is certainly the back-propagation network. This is basically
a gradient descending optimization algorithm. For a
description of this algorithm see Freeman ¢t al. (1991) and
Rumelhart et al. (1986). These networks perform a static
non-linear mapping of the input data on the output data based

on some examples leamed during the training - or learning
- phase. This property makes them a good candidate for
solving static problems. Because of their simple topology,
they were until recently the most studied networks. Many
of the first real-world neural network applications were based
on feedforward networks due to the well known behavior
of these networks.

The strength of these networks (their simple architecture,
their static behavior) is also their weakness. Dynamic
problems, such as control problems, are very difficult to
solve without some complex manipulation (data buffering,
time delays, ...) of the data. For details on these problems
see Catfolis (1994).

2.2. Recurrent neural networks

The second class of network architectures are the recurrent
networks. These networks contain directed loops in their
representing graph. These feedback conpections enable
these networks to solve dynamic problems. There exist also
many types of recurrent neural networks. The most general
recurrent architecture is the fully connected architecture
where all nodes are connected to all nodes. In this paper we
will concentrate on one specific type of fully connected
networks that will be used in the following experiments:
the real-time recurrent learning algorithm, developed by
Williams and Zipser (1989). This algorithm is also a gradient
descent method and since the leaming phase is activated
after each time step rather than after a certain number of
time steps, this algorithm is well suited for on-line leaming,
and thus for adaptation problems.

‘We describe here the basic elements of the RTRL algorithm
needed to understand the proposed control architectures in
the next sections. For a complete description and derivation
of the algorithm see Williams and Zipser (1989).

Figure 1. A basic RTRL network with 2 input nodes
(m=2), 5 recurrent nodes (n=5) and 1 target node. The
first layer is connected to the second RTRL layer. The

RTRL layer is fully connected

A basic RTRL network consists of two layers, an input layer
with m nodes (m is the number of input data from the
environment used by the network) and a RTRL output layer
with n nodes. The set of input nodes is called I, the set of
recurrent nodes U. A subset of the RTRL nodes is called
the target set (T) and consists of the target nodes. These are
the nodes with a known, desired output value in the training
set. Each RTRL node has a sct of input links, an activation
(the sum of the weighted inputs). an output value (the
sigmoid transformation of the activation) and a set of output
links. The input nodes have only an output value (the input
data from the environment) and a set of output links. The
output links from these input nodes is directed to all nodes
in the RTRL layer. The nodes in the RTRL layer have their
output links directed to all nodes in the RTRL layer. All
links have a weight that can be changed during the training
phase. Figure 1. gives an examplc of a RTRL network
with 2 inputs and 1 output.

2.2.a. Network dynamics in the learning phase

For aRTRL node i (thus i € U), we can calculate the output
value yj(t) at time t by means of

YiO=F(Xy;jt-D*Wy(t-1)) forjeUul
J

with Wij(t) the weight associated with the link between node
i and node j and F;j() is the transfer function of node i, usually
a sigmoid function. The output value of the input nodes is
the data from the environment.

The parameter AWj;(t) used by the training algorithm to
update the weight Wjj, is calculated by means of

AW (1) = a*Z(ek(t)*pijk(t)) forje Uulandk,ieU
k
with o the learning rate and e (t) the error of node k at time
t. This error can be calculated with the following formulas:
e;(t)=targety;(t)—calculatedy;(1) forieT
e;()=0 forieT

The parameter p;jk(t) is a dynamic parameter called impact
that describes the importance of the link between node j
and node i on the output value of node k. This parameter is
calculated with the following formulas

pijk(t) =0 fort=0.fori,keUandjeUul
and
pijk(t+1)=Fi((Zym(t)ka(l))(ZWk](l)pi”(t)+§ikyi(l))
m | ’ ;

fort+1+0andjmeUulandi.l.keU

with F’g() the derivative function of Fi() and 3jk the
Kronecker delta.

The following formulas are used to update the weights.
Wij(t)=Wij(t- 1)+AWij(t) foreacht
Before starting the leaming phase all pijk(O) are set to zero.

At each cycle, AWij(0) is calculated and the new Wj; are
calculated by adding AWij(t) to Wj;.

2.2.b. Network dynamics in the running phase
The output value of the RTRL nodes is given by

Vi) =F(Xyj(t-1)*W;(t-1)) forjeUuI
i

with Wij the weight associated with the link between node i
and node j. This weight is constant during the running phase.
The output value of the input nodes is the data from the
environment.

2.2.c. Properties of the RTRL algorithm

The RTRL algorithm has a simple computation scheme (see
equations). But it has also some major drawbacks. The
main problem is that the calculations are not local. This
means that all weights and all activities have to be known
for the calculations of a new activity. Another, practical,
problem is that the algorithm has a very slow convergence.
A method for speeding up the RTRL algorithm has been
developed by Catfolis (1993). But the main advantage of
this algorithm is the possibility to train fully connected
networks without any a-priori knowledge of the temporal
nature of the problem.

rk+1)

—{z0 > u(k

. Contryl

7-Mp{network] 1

k+1
Yg)

|

Process

Figure 2. Indirect adaptive control using feedforward
networks. Remark the complex feedback structures with
the delay lines.

3. Neural network based control
architectures

Control schemes based on neural networks are generally
made by replacing the linear models in the classical control
schemes by non-linear neural networks. This non-linear
character of the networks poses severe problems to the
analysis of the stability. In most cases. the neural network
used in control schemes is a feedforward network. The input
of the network is formed using a process input history. The
assignment of inputs and outputs is determined according
to the requirements of the actual problem. The schemes can
easily be adapted to MIMO cases by applying the time
window to all relevant process inputs and outputs. However,
the careful design of history windows of process inputs and
process outputs is quite difficult and depends on the system
dynamics. For unknown systems, this task can become
unfeasible. The use of recurrent neural networks offer a
solution for this difficulty since they develop through
leaming an internal representation of the temporal relations
between input and output. The control schemes derived for
feedforward networks (Figure 2.) are significantly more
complex than the one derived for recurrent peural networks
(Figure 3.).

(k+1)

u(k)

> >

y'k+1)
/ Mode)
z-! netwo! +

Contryl
netwo

y(k+1)
P

Process

Figure 3. Indirect adaptive control using recurrent
networks. Remark the diffcrence in the fecdback lines
compared to the scheme with fecdforward networks.

4. Application of recurrent networks in
control

The training of a neural network with the RTRL algorithm
requires the knowledge of input-output data. The input data
for the controller network is nothing else than the classic
input for a controller: the setpoint and the previous system
output. The output data , on the contrary, is the error of the
implemented controller i.e. the difference between the
control action of the ideal controller we want to build and
the control action of the implemented controller. In other
words, we do not know what the output is because we don't
have anideal controller as benchmark. In the indirect scheme
using backpropagation networks (Figure 2.) we are able to
back-propagate the error from the network model into the
controller. This solution can not be used for recurrent
networks, due to the fully connected structure of these
networks. Chovan et al. (1994) proposed to combine the
two separate networks (the model and the controller) into
one large recurrent network and to train this entire network
in ope step with the RTRL algorithm - see Figure 4. For
this network the input-output data are known: inputs are
setpoint and previous system output, output is actual system
output.

4)

()
(\ Controller cluster
@

7

/7/\

SP t_‘gi),

C1 \ / 0
Ee— O

C1 R

c2

input layer

_ rtrl layer

Figure 4. The clustered network consists of a model
cluster and a control cluster. This network was used in
the bioreactor tests.

228

The building of the controller consists of three steps:

1. Training of a recurrent network model of the
system.

2. Add an untrained recurrent (control) network to
the trained model.

3. Train the entire recurrent network without
altering the model part of the network - step 3 is
thus training the controller network.

5. Adaptation techniques for recurrent
networks

A requirement for many control systems is adaptability. This
means that the controller should be able to evolve if the real
system is evolving and to lower the controller error (the
difference between setpoint and system output) caused by a
change of the system. These changes can be induced by
many elements such as temperature evolution, fouling in
heat exchangers, catalyst deterioration in reactors, etc. In
the control scheme we use in this study, two neural networks
are present. The first network is a model of the system, the
second network is the controller. Both parts of the control
architecture have to change when the environment is
evolving. The adaptation of the model network is done with
the error-injection principle as described by Catfolis (1994b).

Error feedback connection

e;(t-1) @
y1t-1)—O
y2t-1)—)
y3(t-l)—a-o

_/

Figure 5. The error-injection principle as adaptation
method for the recurrent network model.

The idea is to give as input to the model network the error
of the model - the difference between model output and
system output. See Figure 5 for anexample. The advantages
of that method are a higher stability and a better and faster
model. We achieve this lower computational cost by not
using the RTRL algorithm as adaptation rule.

The adaptation of the controller part is done with the RTRL
algorithm. The difference between the setpoint and the
model output is used by the RTRL algorithm to change the
weights of the - controller part of the - network.

6. Simulation studies of recurrent
neural controllers

'We applied these ideas to control a bioreactor. This problem
was suggested by Ungar (1990) to be used as a benchmark
for neural controllers. This system consists of a continuous
flow stirred tank reactor (CFSTR) containing water and cells
(e.g. bacteria). These cells are consuming nutrients
(substrate) and producing more cells and some other
products (e.g. alcohol). Such bioreactor system can become
very complex due to the self-regulatory mechanism of cells,
and their changing behavior in a changing environment. For
example, a small lowering of the temperature of the cells’
milieu can cause a complete interruption of the cell
production. However, Ungar selected a simple problem
without complex structures like multiple reactors or unsteady
operations. We call this system thus relatively simple,
because it has only a few variables, but the control problem
is very difficult due to strong non-linearities. These non-
linearities make the bioreactor system also extremely
complex to model. Figure 6. shows the system.

The basic equations for this bioreactor are:

%:-Clwc,(l—cz)ecz/’
48 Cpw+Cy(1=CpeCaly LB
dt l+ﬂ—C2

C] is the dimensionless cell mass conversion and is the
controlled parameter, Cp is dimensionless substrate
conversion, w is the flow rate into the reactor (and thus also
out the reactor because we assume a constant volume reactor)

G

Control setpoint

— §

wswamseswr 1

Figure 6. Basic elements in the bioreactor system. Only
the relevant elements are shown (e.g. the level control
system is left out for convenience).

and is the controlling parameter (control action). The
constants B and y are temperature dependent parameters
controlling the cell growth and putrient consumption. In
our experiments we kept ¥ constant at (.02 and we changed
B between 0.48 and 0.30. The first equation explains that
the change of cell mass in the reactor depends on the amount
of cells leaving the reactor - C|w - and the amount of cells
created in the reactor - C[(1-C2)eC2/Y - which is proportional
to the amount of cells and non-linearly depending on the
amount of substrate. The same reasoning can be done for
the change of substrate in the reactor. As Ungar explained,
this scheme is not a completely realistic model of a
bioreactor, but it provides a challenging system for process

setpoint

0.14 £ e pid adapt

0.12 + cl nn adapt

gﬂ H

0.1 +

0.08 +

0.06 +

0.04 1+

0.02 ¢+

Figure 7. Example of the controller behavior in an unknown region. The adapted parameter B is here around 0.30. Shown
are the setpoint of Cy, Cy controlled by the neural controller and C1 controlled by a PID controller.

229

r(k+1)

- w(k) > >
Ci'(k+1)
71>
ANN) == | ANN -
Control M I’" Z ¥ Model N

Cok+1)

Cy(k+1)
—

Proces:

Figure 8. Indirect adaptive control using recurrent neural
networks applied on the bioreactor problem.

control. There are many reasons for that: the equations are
highly non-linear and exhibits limit cycles, optimal behavior
occurs near unstable region and a desired setpoint can be
found with different control actions.

The control architecture derived from the ideas in previous
sections is shown in Figure 8.

The output of the neural controller (the control action w) is
used by the model and by the bioreactor. The difference
between the output of the bioreactor and the output of the
model is due to the model. This error is used to adapt the
network model by using the error-injection principle. The
difference between the model output and the setpoint is
caused by the controller. This error is used to adapt the
controller network by using the RTRL algorithm. In Table

0.06
0.04

0.02 +

I some of the results of our experiments are shown. For all
experiments B evolved between 0.48 and 0.3. Inexperiment
A we tested a neurocontroller without any adaptation
possibility. In experiment B we used the same network but
with the adaptation techniques. Experiment C is the same
problem, but controlled with a PID controller which is tuned
as good as possible. This means that, when the PID controller
is tuned with a classical method (e.g. Ziegler-Nichols) for p
= (.48, it will become very unstable for all values of B lower
than 0.40. The error in Table I is the average error over a
range = 0.35 to B =0.30. The extreme value for the error
of experiment C is mainly due to the change of the system.

Experiment A Experiment B Experiment C

neurocontrol neurocontrol PID control
non adaptive adaptive (non-adaptive)
error 0.0059 0.0051 0.0131

Table 1. Results of the experiments.

Figure 7. gives an example of the system behavior for B =
0.30 using a neurocontroller or a PID controller. Figure 9.
gives an example of the model behavior for 8 =0.30. The
advantage of the adapted model is a smaller error, what will
result in a better controller performance.

Conclusion and further research

In this paper we have demonstrated that recurrent neural
networks are good candidates for solving complex control
problems. The bioreactor benchmark proposed by Ungar
is very difficult to control with a simple PID controller, due

0-1

~-0.02

-0.04 -

-0.06 1

Figure 9. Example of the model behavior in an unknown region. The adapted parameter B is here around 0.30 . The bold
line is the error of the adapted model (model output - system output), the normal line the error of the not adapted model.

230

to the non-linearity, the unstable regions and the multiplicity
of the problem. For the adaptive neurocontroller, the results
were promising. The use of recurrent networks makes the
implementation of the control architecture easier than when
using feedforward neural networks. The only problem
encountered is the error of the system model. Further
research will focus on two domains. First, how to solve the
model error ? Possible solutions are to use a neural controller
together with some classic controllers or to use models with
amore than one-step ahead prediction. The second research
domain is a stability analysis of recurrent neurocontrollers.

Acknowledgement

This research was done at the Expert Systems Applications
Development Group, headed by Prof. M. Rijckaert.

References

Burke, L.I. (1994) “Neural methods for the Travelling
Salesman Problem: Insights From Operation Research.”,
Neural Networks, vol. 7, p. 681-690

Catfolis, T. (1993) “A method for Improving the
Real-Time Recurrent Learning Algorithm.”, Neural
Networks vol. 6 p. 807-821

Catfolis, T. (1993) “Monitoring a Control System
with a Hybrid Neural Network Architecture.”, Proceedings
of the International Conference on Artificial Neural
Networks 93, p. 854, Amsterdam, Nederland

Catfolis, T. (1994) “Mapping a Complex Temporal
Problem into a Combination of Static and Dynamic Neural
Networks.” , Sigart Bulletin , vol. 5, no. 3, p. 23-28

Catfolis, T. (1994b) “Generating Adaptive Models
of Dynamic Systems with Recurrent Neural Networks.”,
proceedings of the IEEE International Conference on Neural
Networks ‘94, vol. 5, p. 3238-3243, Orlando, Florida

Chakraborty, K. , Mehrotra, K. , Mohan, C.K. and
Ranka, S. (1992) “Forecasting the Behavior of Multivariate
Time Series Using Neural Networks”, Neural Networks, vol.
5, p- 961-970.

Chovan, T., Catfolis T., and Meert K. (1994) “Process
Control using Recurrent Neural Networks.” preprints of the
2nd IFAC Workshop on Computer Software Structures
Integrating AI/KBS Systems in Process Control, p. 135-140,
Lund, Sweden

Farell, A.E. and Roat, S.D. (1994) “Framework for
enhancing fault diagnosis capabilities of artificial neural
networks.”, Computers and Chemical Engineering,vol. 18,
no. 7, p. 613-635

Freeman, J.A. and Skapura D.M. (1991) Neural
Networks. Algorithms, Applications and Programming

231

Techniques. Addison -Wesley, New York.

Hussain, B. and Kabuka, M.R. (1994) “A novel
Feature Recognition Neural Network and its Application to
Character Recognition.”, IEEE Transaction on Pattern
Analysis and Machine Intelligence, vol. 16, no. 1, p. 98-
106

Matheus, C.J. and Hohensee, W.E. (1987) “Learning
an artificial peural systems.”, Computing Intelligence, vol.
3, p. 283-294

Mayosky, M.A., Catalfo, J.M. and Acosta, G.G.
(1993) “Neural-Net-Based Control of Dynamical Systems:
A Case Study”, Applied Intelligence, vol. 3, no. 4, p. 267-
274

Narenda, K. , Parthasarathy, K. (1990) “Identification
and Control of Dynamical Systems Using Neural Networks”,
IEEE Transactions on Neural Networks, vol. 1, no. 1, p. 4-
27.

Rumelhart, D.E, Hinton, G.E. & Williams, R.J.
(1986) “Learning Internal Representation by Error
Propagation.”, in D.E. Rumelhart, J.L. McClelland and the
PDP Research group (eds.) Parallel Distributed Processing:
Exploration in the Microstructure of Cognition, Volume 1:
Foundations. MIT Press, Cambridge, MA.

Turner, P., Montague G.A., and Morris, A.J. (1994)
“Neural networks in process plant modelling and control”,
Computing and Control Engineering Journal, vol. 5, no. 3,
p. 131-134

Ungar, L. H. (1990) “A Bioreactor Benchmark for
Adaptive Network-based Process Control.”, in W. T. Miller,
R. S. Sutton and P. J. Werbos (eds.) Neural Networks for
Control. MIT Press, Cambridge, MA.

Ungar, L.H., Powell, B.A. and Kamens, S.N. (1990)
“Adaptive networks for fault diagnosis and process control.
", Computers and Chemical Engineering, vol. 14, no. 4/5,
p- 561-572

Williams, R.J. and Zipser. D. (1989) “Experimental
Analysis of the Real-Time Recurrent Leaming Algorithm”,
Connection Science, vol. I, p. 87-111,

