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Abstract —In this work we present a class of re-
current networks which are asymptotically stable. For
these networks, we discuss their similarity with certain
structures in the central nervous system, and prove that
if an interconnection pattern that does not allow excita-
tory feedback is used, then the resulting recurrent neu-
ral network is stable. We introduce a training
methodology for networks belonging to this class, and
use it to train networks that successfully identify a num-
ber nonlinear systems.

[. INTRODUCTION

Neurons and their interconnections constitute the Ner-
vous System in living organisms. The Nervous System by
design and/or training implements functionality that en-
ables the organism to survive in its environment. It is worth
therefore studying this functionality in relation to the struc-
ture and organization of the Nervous System, in the hope
that artificial analogs could be devised possessing interest-
ing properties and perhaps mimicking some of the func-
tionality found in Nature.

In what follows, we shall present some general observa-
tions regarding the organization and interconnection of
neurons in the Nervous System. We shall present the spe-
cialization of these principles in the structure of a particular
part of the Nervous System (the Cerebellum) and we shall
see that such a structure guarantees the stability of the part.
Further, we shall present artificial analogs in the form of
neural networks and a training method that allows these an-
alogs to learn the behavior of an arbitrary dynamical sys-
tem. Again, structures which were found in Nature, shall
prove crucial in training. Finally, we shall present exam-
ples where these artificial analogs have been applied.

A. Physiological Principles

In examining the structure of Nervous Systems, one can
observe that:

Neurons belong to physiologically and morphologically
distinct groups. Neurons within a group have similar prop-
erties (e.g. are all ihibitory, all are connected in a similar
manner with neurons of another group). and

307

Neurons are only connected locally. (A neuron does not
normally affect nor is affected by every neuron in the net-
work).

We understand the above general statements as the mac-
roscopic microscopic connectivity principles [8].

An example structure, which has been used extensively
is the cerebellum. This structure is found posterior to the
cerebrum and it is believed that it is used to make move-
ment smooth. Patients with trauma in their cerebellum pos-
ses the ability to move their limbs towards a desired
position, but the movement is jerky and erratic.

A section of the cerebellum can be seen in Figure 1. This
structure includes neurons belonging to four different
classes, namely Purkinje, Basket, Golgi and Granule cells.
The three first classes comprise inhibitory neurons, while
the only excitatory neurons are the Granule cells. Input is
provided via the Mossy and Climbing fibers, while the ax-
ons of the Purkinje cells are the only afferent (output) path-
ways.

It is noted that these neurons are connected in a particu-
lar fashion. For example, the axons of the granule cells be-
come elongated and are arranged in parallel to each other
forming the Parallel Fibers. Neurons from all the classes
but granule cells, receive input from the Parallel Fibers.
The absence of self loops (granule cells to granule cells via
the Parallel Fibers) contributes to the stability of the struc-
ture, as we shall formally prove in the subsequent. Addi-
tionally, the arborizations of both the dendrites and the
axons are limited, and thus neurons are affected by neurons
which are in their immediate vicinity (microscopic connec-
tivity principle).

Diagrammatically, one can represent the interconnec-
tions in a Nervous System by presenting the way that the
composing the structure neural classes connect. The inter-
connect for the cerebellum is presented in Figure 2. One
can verify the absence of any excitatory feedbacks.



Fig. 1. The structure of the cerebellum. PC: Purkinje
Cells, GrC: Granule Cells, GC: Golgi Cells, BC: Basket
Cells, PF: Parallel Fibers, MF: Mossy Fibers, CF: Climb-
ing Fibers, pa: axons of the Purkinje cells.

II. RECURRENT NEURAL NETWORKS,
STABILITY AND LEARNING

A. Recurrent Neural Networks

Neural networks with structures which obey the two
connectivity principles discussed earlier are described by
the differential equation [8].

O=-TO+Wf(O)+b (N
In (1), there are N neurons divided into k classes, and
0=10,0,..0]

= [01 0y ... ON]

Wi, W, .o W,

is the state of the neural net-

work, W = |
Wit Wig oo Wiy
is the network connectivity matrix, 7 = diag (7,) is the

diagonal matrix of neural relaxation constants, b is the in-
put to the neural network, and f (O) belongs to the class

of so-called neuromime functions, which are positive
monotonically non-decreasing satisfying a Lipschitz con-

dition and 36 € RN suchthat f(6) = 0.

The functions f(O) represent the nonlinearity of the
hillock, and define how the membrane excitation is trans-
lated to a train of action potentials. A commonly used func-
tion is the sigmoid, while the class of neuromime functions
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is more general and -includes in addition to the sigmoids,
piecewise linear and continuous functions for example.

The structure of the network is reflected in the structure of
the connectivity matrix W. Each submatrix W,; represents

the interconnection weights between class i and class ;.

Fig. 2. The structure of the cerebellum.

A} Purkinje (Inhibitory) AyBasket (Inhibitory)
A3 Golgi (Inhibitory) N granule (Excitatory)
e; Climbing fibers €, mossy fibers

B. Asymptotically Stable Recurrent Neural Networks

The condition on W that guarantees asymptotic behavior
is that it must contain all of its positive entries on one side
of the main diagonal. In the subsequent, we analyze the sta-
bility of a small example structure, the complete analysis
can be found in [8].

The system
T,0,+0, = f,(0,)
T,0,+0, = —f,(0
2V2 2 f2( 1) (2)
with T, and T, diagonal positive matrices and f(0) = 0,
is asymptotically stable in the large with solutions which
are bounded from above and below by functions of the
form ¢ *'pP (t) where P(t) is a vector polynomial in .
The connectivity matrix corresponding to (2) is

W = I:O 1} and it obeys the condition of having all its
-10

positive entries on the same side of the diagonal.

The solution can be written as

—~1
-1t

—T;lt —TIls 1
0,=¢ '0p+e J’Oe 7' £,10,(s)]ds




~1 ~1 ~1

=Tt -T,s__
Opte J‘Oe 273 £,10,(s) 1 ds

~1

_Tl
Thus O, 2 ¢

~1
-1

'0,, and 0,<¢ 20,

Substituting in the original,

< = -T; '
0,Se  Opte

t —TIls -1 -T, s
J.:)e T, file = Oylds
Since f, (*) is non-negative and non-decreasing

~1
T

O0,<e 0]0+e_Tt13] (1) or

0,<e”' {0, +|P, (D]}

where T = min(TIl, T

A similar procedure is followed for O, and for the general
case.

This gives an easy way to check whether a neural net-
work is stable. For instance, the neural network shown in
Figure 2. is stable provided that the connection weights in

submatrices W, and W, are non-positive (i.e. inhibitory).

This result is extremely useful in the area of identifica-
tion and control. A most important feature of a controller or
model is that it must be stable. This is accomplished by en-
suring that the structural condition on the connectivity ma-

trix W that guarantees stability, is maintained.

C. Parameter Adjustment In Stable Neural Networks

This section discusses a method for adjusting the
weights and other parameters of neural networks that are
stable in the sense described in Section . The general ap-
proach that is used here is to define some a criterion and
then adjust the parameters in a direction that will decrease
this cost. In this sense the technique is similar to linear re-
cursive adaptive methods [4] and to classical back propa-
gation [5]. However, since the stable neural networks
described in Section have certain restrictions on the polar-
ity of the connection of classes, a straightforward gradient
adjustment is not possible. A solution for this is also pre-
sented here.

D. Gradient of Cost Function

The general equation for calculating the behavior of the
class of neural networks of interest here is

TO + Wf (0) +b

0=- 3)

using the same notation introduced in section 2. One possi-
ble criterion for measuring the performance is the quadratic
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cost function

J(e) =1/2(0-0)TA(0-0,) = 1/2eTAe 4

where O, is the desired state of the neural network. Matrix
A is used to eliminate from the cost any neurons whose
state is not crucial. A is a diagonal matrix with ones corre-
sponding to output neurons and zero's elsewhere. As in oth-
er recursive adaptive methods [3],[9], parameters 9 in the
neural network are adjusted along the negative gradient of

‘l_e - a_‘l
& - "3
ation is used to allow for the calculation of this gradient for
parameters associated with neuron j:

aJ _ aJ9%0;  do;

= = =y
3% = 3,3 - Vi ®)

this cost, i.e., . The chain rule for differenti-

The notation y i is used to denote the derivative of the cost

with respect to the activation of neuron j. If neuron j is an
output neuron, this derivative is simply

(6)

In a manner analogous to traditional back propagation of
the error [9], this gradient may be calculated for units that
are not output neurons by using the values of the gradient
in all the neurons & that have neuron j as inputs:

'Yj = Oj_odj‘

do
Yj = ;Ykéo_lf = ;YkAkj @)
J

Here, the notation A,q. has been introduced to represent

the partial derivativedo,/do ;- To calculate A, it is nec-

essary to use the differential equation which defines the be-
havior of the neural network. Rewriting (4) specifically for
neuron k, and using the operator D to represent differentia-
tion results in

(te+ D)o, = Y wyf (0)) +by ®)
J

Differentiating (8) with respect to o ; Tesults in

Ay = (T Ay +w,if (o) . )

All the derivatives required in (5) to adjust a parameter
0 have now been obtained, except for the derivative
do j/ 20 . The next section discusses the case when 0 is a
connecting weight. A similar technique can be used to ob-

tain a formulae for adjusting any of the other variables that
parameterize the neural network such as the relaxation con-

stant T or parameters of the activation function f( )

(61.071.




E. Weight Adjustment

Let © represent a connecting weight w ;; which connects

(input)
§;i = do;/ow ;. Differentiating (10) with respect to w;,

neuron i to neuron j. Use the notation

the differential equation for § ji 1s obtained:

gji = - Tjéj,‘ +f (0,')
Using this equation and the results of the previous sec-
tion, equation (7) may now be written as

(10)

aw ..

L= —HY,-§,~,-

7 (an

with ¥ | calculated using (6) or (7) as appropriate.

F. Weight Clamping

Section describes a class of neural networks that are as-
ymptotically stable. This condition is guaranteed provided
that the connectivity matrix W has all of its positive entries
on one side of the diagonal. However, (11) gives a formula
for adjusting the connection weights that may violate this
condition. To combat this, it is necessary to check the po-
larity of certain crucial weights after each weight adjust-

ment. For instance, if the weights labeled W,, and W, in
Figure 2 are guaranteed to be non-positive, then the neural
network will be stable. Thus after any weight in W,, and

W,, is adjusted using (11), it should be checked to ensure

that it is not positive. If it is positive, then it is clamped at
0. This ensures that inhibitory connections remain inhibito-
ry throughout the training procedure.

[II. IDENTIFICATION

The term identification is used in this section to refer to
the process of developing a model of an unknown system
by observing its input/output behavior [3],[9].

This section uses the results of the previous section to
identify some unknown systems. A suitable neural network
architecture is proposed and some motivation for this con-
figuration is given.

A. Identification Architecture

Consider the simple nonlinear system described by the
relation

Y (12)
1+4y

y = u-

If y remains relaiively constant near some value y_,

then this system can be approximated by a first order linear
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-1
system that has a pole at (1 + 4y§s) . If y varies from this

value significantly, then the 'pole’ can be thought of as rov-
ing in some sense. Although this is not an exact description
of the behavior of the system, it does illustrate one of the
more common types of nonlinearity which is encountered
in real systems.

To take advantage of this type of nonlinearity, the archi-
tecture of Figure 3. is proposed for general system identifi-
cation. Labels I and O refer to the input and output of the

system, and 9\6 and 57\[2 to two classes of neural networks.

+ S

O
_ +

Fig. 3. An Architecture for System
Identification

The block marked S is a special connection of classes
called the “scheduler class”. The idea of this class is that it
schedules which neurons will be active and when, thereby
emulating the movement of the “pole” for large variations
of the state variable or input. Neurons in the scheduler class
have a “peaked” response as shown in Figure 4. Each neu-
ron in the class has a peak at p that occurs at a different
value. Figure 3. shows that the scheduler class receives in-
put from I and O. Depending on the values of the input and

output, different neurons in 9\[1 and 9\&3 will be active.

1 -
0.87
0.67

Output

0471

0.2t

0 I
p
Input

Fig. 4. Response of Scheduler Neurons

This allows the neural network to take advantage of the
type of nonlinearity discussed above. The example de-
scribed by (12) is well suited to this kind of architecture
since neurons with different relaxation constants may be




activated depending on the level of the output.

This behavior can be obtained by a network of neurons
where both inhibitory and excitatory paths emanating from
a common origin drive the same output class. An example
of a four neuron-network as depicted in Figure 5. This net-
work is asymptotically stable and it was trained to have the
“peaked” response depicted in Figure 4. Similar structures
exist in the cerebellum. The granule-Purkinje and granule-
Basket-Purkinje paths (c.f. Figure 2.) are the excitatory/in-
hibitory paths emanating from the same common origin
and affecting the same target output class.

Fig. 5. A network of neurons exhibiting “peaked” re-
sponse.

IV. APPLICATIONS

We have used the neural networks described above to
successfully identify a number of nonlinear dynamical sys-
tems. These include a robot arm, the dynamics of boat un-
der rudder input and the influence of the temperature on the
magnitude of the pilot signal obtained from a network of
high-frequency cable-television-distribution amplifiers. In
the following sections, we shall present these identification
experiments, together with convergence measurements.

A. Identification of a PUMA 560 Robot

A two-link robot arm is known to have its dynamic re-
sponse governed by the differential equation

H(q)§+h(q,9)q+Fq+g(q) = ®v (13)
where the state g contains the angle 0, that the first link
makes with the vertical and the angle 8, that is formed be-

tween the two links;H (g) is the 2x2 inertial matrix;
h(q,¢) models the Coriolis and centripetal forces; F is
the friction matrix; g (g) represents the gravitational

torque; and @ is the voltage-to-torque conversion matrix
[5]. All of these variables rely on many machine-specific
factors, such as dimensions, weights, inertia, and joint fric-
tion. To obtain an accurate model, one measures directly as
many variables as possible. This was done for a PUMA-
560 robot. Lengths, masses, and inertias were obtained
through direct measurement [2]. Variables which could not
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be easily directly measured were the matrices F and @ rep-
resenting four unknown scalars in total. Classical RLS pa-
rameter estimation was used to identify these variables, and
the final response to the input vector shown in Figure 6 is
shown in Figure 7. The deviation of the model from the ac-
tual response underlines the difficulty in identifying com-
plex systems using traditional model based methods.

A neural network with an architecture as presented
above was trained to identify the dynamic response for 9, ,
the angle that the first link makes with the vertical. Both
v, (#) and v, (#) (the actuator control voltages) were used
as inputs to the system. The neural network had an archi-
tecture similar to that shown in Figure 3, except that 9\[;2
was not included. Class 9\[1 contained 5 neurons as did the
scheduler class.

1500

0 Time (seconds) 12
Fig. 6. The Control Voltages used to drive the robot.

Convergence of the response was rather slow; typically
convergence was attained after several hundred thousands
of training epochs. After training was completed, the neural
network followed the actual response of the robot close-
ly.The response is shown in Figure 8.

454

3.5

(radians)

—_ . model

25 —— actual

L5 —— T T
0 2 4 6 8 10 12
Time (seconds)
Fig. 7. Actual and model response to input shown in Fig-
ure 5.
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Fig. 8. Measured and Neural Net Response for a PUMA
560

The error as a function of the training epoch is depicted
in Figure 9. As it can be seen, the error diminished very
rapidly in the beginning, then the training spent quite a bit
of time seeking isolated minima, but when it found them,
the improvement was drastic and fast.
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Fig. 9. The training error for the PUMA 560 experiment,
as a function of the training epochs.
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B. Identification of a Boat

A boat may be treated as a SISO system, with the rudder
angle as the input and the heading as the output [1]. We
have used a recurrent neural network to identify this behav-
ior. Figure 10 shows the data which was used to train the
neural network. This is equivalent to approximately 2 min-
utes of data collected from a boat and shows both the rud-
der angle and the heading of the boat.

The training method consisted of applying the input to
the neural network, calculating its response, and using the
measured heading to generate an error signal for weight ad-
justment. Figure 11 shows the response of the trained net-
work to the training data. The vertical line delineates the
data that were used to train the network, while the remain-
ing of the figure depicts the response of the network to in-
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put that was not used to train the network.

5 08
S
s 0.6
£
Z 04
'%';o 0.2 | Rudder Angle (normalized)
< Heading (normalized) ————
0.0
Time

Fig. 10. Rudder Angle and heading during a Training Run
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Fig. 11. Measured :::n(‘ie Neural Net Response to 12
Minute Test Run

The neural network follows the measured response well.
The difference between the measured and neural net re-
sponse is due to the fact that the measurement noise in the
heading is a stochastic process which cannot be predicted
by the deterministic neural net model.

C. Random techniques to speed the training convergence.

Convergence is achieved rapidly once the training has
reached the region of “attraction” of an optimum point.
Finding the regions of “attraction” is considerably slow.
We are using random perturbance during training to force
the state to be dislodged from non interesting regions.

The first technique we use is that of exploratory search-
es. Several random disturbances to the weights are offered,
and each is followed for a short number of epochs. The one
that has reduced the error the most is chosen for a longer
search. This technique can be applied at any point during
the training, currently we have implemented it only at the
start. The second technique, introduces smaller and smaller
random disturbances to the weights as a function of the
number of training epochs (akin to “simulated annealing™).




Both techniques seem to speed the convergence signifi-
cantly. An example is shown in Figure 12.

10 T T T

Error

. :
1000 1500
Training Epochs

500 2500

Fig. 12. The training error as a function of the training ep-

ochs for the network identifying the rudder angle. Random

disturbances to the weights are introduced during the train-

ing. The sudden jumps in the error signify the introduction
of a disturbance.

D. Identification of the Pilot Measurements in a Cable-
Television Network of High-Frequency Amplifiers

A Cable Television Network incorporates a number of
high frequency amplifiers forming (for conventional net-
works) a tree. In more advanced networks the structure in-
corporates a double ring from which subscriber drops
emanate. In this work, we are focusing in conventionally
structured tree networks. There are two categories of am-
plifiers, the ones belonging to the main trunk and the ones
forming subscriber drops. Additionally, power supplies are
located throughout the network, each one powering a lim-
ited number (typically three) of amplifiers. The majority of
the main trunk amplifiers are equipped with a status moni-
tor which uses a reverse channel to report the status of the
amplifier to the head office. Subscriber drops and power
supplies are not normally monitored.

The values of the monitored variables are allowed to
vary within two intervals (warning and alarm) centered at
nominal values. If a value is outside these predefined inter-
vals then a warning or an alarm is issued.

There are several other modalities which manifest them-
selves as changes of behavior rather than significant chang-
es in the measurements.

In order to detect the onset of such behavior changes and
providing a diagnosis based on the properties of the ensu-
ing behavior we have used recurrent neural networks iden-
tify the behavior, and we present examples of identification
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of pilot measurements.
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Fig. 13. Pilot and Temperature data over several days in
October 1993. The shaded regions in the pilot data indi-
cate alarms (i.e. measurements outside preset limits).

Observe the fault initiation on October 394,

Although, the amplifiers are temperature compensated,
it has been observed that all the measurements vary with
the temperature. The typical variation is small when the
amplifier is properly adjusted. Because of drifts or mal-
functions, the amplifiers evolve to a “faulty” state where
they exhibit an altered pattern of behavior. A typical exam-
ple is presented in Figure 13. The behavior pattern depicted

during the first two days (until October 39 at 21:40) is rep-
resentative of a well tuned high-pilot amplifier. Observe
the small, temperature correlated variations of the pilot lev-
el around the nominal value of 39 db. Suddenly, on October

39at21:40, a significant change in the pattern of behavior
occurs. The standard fault detection techniques which are
normally in use, alert the user only if the values of a mea-
sured parameter exceed some preset limits. In this case the
pilot level did not exceed its threshold until the following
day, some eighteen hours after the start of the new behavior

in the evening of October 39, and then it stayed outside its
nominal range for only a limited duration.

Such a belated reporting in conjunction with the short
duration of the time during which a measurement stays out-
side its normal range, makes a diagnosis very difficult.




NN Output {(dashed line) and actual Forward Pilot

Normalized Amplitude

25 3 85 4 45 5
time (days)
Fig. 14. Actual and Neural Network (dashed line) re-
sponse for the pilot of E170005. The training set is delin-

eated by the vertical line at day 1.

[ 0.5 1 1.5 2

One may observe therefore that establishing a nominal
range of values, is not the best way of detecting the onset
of a “faulty” behavior pattern. In addition it does not accu-
rately identify periods during which the behavior is
“faulty”, and thus it makes an accurate diagnosis of the
fault problematic.

An accurate detection of a “fault” initialization and detec-
tion requires a model of the behavior of the measurement
in time and its dependencies. Any deviation from the mod-
el, would denote the onset of a “fault”, while the model of
the “faulty” behavior pattern, if it could be established,
would contribute to the diagnosis.

We have used recurrent neural networks, as presented in
Section II above, to model the behavior of the pilot mea-
surement and its dependence on the temperature of the en-
closure. Figure 14. presents the response of the trained
neural network (consisting of two classes each comprising
10 neurons, one being a scheduler class) together with the
actual readings for the pilot.

The neural network was trained with data from October
1, delineated by the vertical line on day 1 in the plot. Ob-
serve the abrupt change of behavior at the fault.

V. CONCLUSIONS AND DISCUSSION

In this work we have presented a class of recurrent net-
works which are asymptotically stable. We have intro-
duced a training methodology for networks belonging to
this class, and used it to train networks that successfully
identified a number nonlinear systems.

The systems which were used in our identification ex-
periments were actual systems and included a robot, the dy-

314

namics of a boat and the dependence of the pilot-signal
measurements on the ambient temperature of the enclosure
of a high-frequency trunk amplifier.

The response of the trained networks follows closely
that of the actual system, confirming the ability of these
structures to accurately model the system dynamics.

Finally, we are currently nsing the model obtained for
the dependence of the pilot-signal on the temperature to es-
tablish the onset of a “fault” by establishing the moment at
which measurements start deviating from the values pre-
dicted by the model. The characteristics of the behavior
pattern after the fault are indicative of the “fault” modality.
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