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Abstract

The paper demonstrates the usefulness of stan-
dard control mechanisms such as the relay, zero
hold and time delay for feedback control of drift-
free systems. A novel switching feedback strategy
is formulated which accomplishes set point control
for such systems. The strategy can be treated as
a new type of sliding mode control ; however it
does not erhibit chattering. An advantage of the
strategy is that it can handle constraints on the
controls and seems easy to implement.
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1 Introduction

The purpose of this paper is to describe a novel
procedure for the construction of feedback set
point control for controllable systems without
drift.

In principle, the procedure is applicable to con-
trol systems of the type

&= filz)u, (1)
=1

where fi,..., f, are linearly independent, smooth
vector fields in R™ with m < n, and wu; are
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Lebesgue integrable control functions on the in-
terval [0,00). A admissible trajectory for sys-
tem (1) is an absolutely continuous function t —
z*(t) € IR™ which satisfies (1) almost every-

where and corresponds to an admissible control
de f
U = (Upyeery Um)-

We will limit our attention to real analytic sys-
tems, l.e. systems for which the vector fields
fiyi=1,...,m are real analytic. Morover, we will
assume that the system is completely controllable,
i.e. that for every pair of points 27 and z; there
exists an admissible control which steers the sys-
tem from z7 to zs.

For real analytic systems, complete control-
lability is equivalent to the well known LARC
(Lie algebraic rank condition): if L(fy, ..., fm) de-

notes the Lie algebra of vector fields generated by
de f

fl«-mfms and L(flvfm)(‘r) = {f(??) : f €
L(fi....,fm)}. then L(fi,..., fm)(z) must span
IR" for all z € IR™.

Although the LARC guarantees the existence
of an admissible control which steers the system
from any point z; to any point zg, it is not ob-
vious how to construct such a control;explicitly.
IHere, two approaches are possible: control in open
loop (requiring the construction of a control func-
tion t — wu(t),t € [0,1]), or in a feedback loop
(requiring the construction of a feedback strategy
x = u(x),x € IR™ both of which are supposed to
accomplish the task of steering the system from
point xy to point x3 . A number of papers have
been devoted to this problem [7, 8, 9] where var-




ious constructions ’in open loop’ have been pro-
posed. Relatively fewer papers are concerned with
the construction of feedback controls [3, 4, 5, 6].

In this paper we construct a feedback strategy
which steers system (1) from any given intial point
x1 to any desired set point z, with bounded feed-
back controls u(z) € [-1,1], z € IR*. Without
the loss of generality, the desired set point is taken
to be 9 = 0. The proposed approach employs a
quadratic ’guiding function’; V' (z):

V(e) < (1/2)2" (2)
(This choice is of course arbitrary; other types of
guiding functions can be considered provided they
satisfy a given set of assumptions).

Although V is positive definite, proper and de-
crescent, it is not a Lyapunov function for (1) as,
clearly, there might exist points z € IR™ = # 0 at
which the standard inequality

V(:z:) = imTfi(z)ui <0 (3)
=1

cannot be satisfied by any uy, ..., 4. Such points
are members of the set S

S sins;n..n8, (4)

where, under given assumptions on the system
.. . . d
and the guiding function, S;,¢ € {1,...,m ief m
are hypersurfaces
def n T .
Si={z€eR":2 fi(z) =0} iem (5
such that f; is never tangent to S5;, : € m. To
ensure the latter, other types of guiding functions
can also be considered .
Exterior to the set S, a standard feedback con-
trol can be used:

def —sign(zT fi(z)), forz € R*\S i€m

(6
If the system never traverses the set S then (3)
and (6) imply that V(z) < 0 along the trajec-
tory of the system , and hence that z*(t) — 0 as
t — oo, by virtue of standard properties of the
function V.

uz(m)
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Once z € S, the above strategy fails in that
V(z) = 0 regardless of the controls.

At this point, the proposed strategy is based on
considering the ’Lie bracket extension’ of system
(1), i.e. the system

r
&= Z Je(z)vg, (7)
k=1
where the first m vector fields fi,..., f,, are the
same as in (1), and the new directions of instan-
taneous motion f,41,..., f, are Lie brackets of the
fi,t € m. The new f;,7 € m are selected in such
a way that, for all z in some region G of interest,

(8)

(Such a choice is always possible, if the region GG
is bounded and if the LARC holds. In many cases
of interest, e.g. when the f; are polynomial vector
fields, G’ can be taken to be equal to IR™.)

Inequality (3) along a trajectory of the ex-
tended system takes the form

span{fi,i €1} = R".

Vo(z) = Z aT fi(z)v; < 0 (9)

By of (8), the
trols v; i/ —sign(zT fi(z)), i € r yield Ve(r) =
Sy 2T fe(z)] < 0 whenever @ # 0, forcing z
to converge to the origin. However, there are no
controls # which produce velocity of system (1) in
any of the directions fp,41,..., f;.

Despite this obvious fact, our strategy selects
a vector field f; which corresponds to the lagest
‘coefficient’ |27 fo(z)| s € {m + 1, ...,r} in V.(z).

A special feedback switching strategy is then
introduced which involves only control elements
such as the relay, time delay and zero hold,
which produces an ’average’ direction of motion
of the system (defined later) which is — f(z) if
2T fo(z) >0, and f,(z) if 27 f,(z) < 0.

For simplicity of exposition, we discuss here
only the case when a current, desired direction of
motion fs is a first order Lie bracket [f;, f;], but
the strategy can be extended to cover the case of
more complex Lie bracket directions. Hence, we
further limit our attention to systems in which
m=n— 1.

virtue con-




The switching strategy is based on the action
of relay elements, associated with each of the sur-
faces S;, ¢ € m, and the fact that f; is never tan-
gent to .5;.

The state of a given relay element ¢ further de-
pends on the position of the system state with
respect to the ’switching surfaces’ .S; over a finite
time interval [t — A;, ¢] in the past with respect to
the current time ¢. The ’time delay’ A; may be
interpreted as the time needed for a relay element
to change state after it is activated. The action
of the individual relay elements is then svnchro-
nized centrally, in a well specified way, to produce
the desired average motion, as can readily be ver-
ified by employing the Campbell-Baker-Hausdorff
formula .

As a result the system 'slides’ on the S surface
or rather remains in some finite ¢-neighbourhood
of it.

Since the motion of the system in the direction
—fs(z) (orelse in the direction f(z)) decreases V1,
, then the ’average motion” in the same direction
also causes an ’average’ decrease in the guiding
function V' along the trajectory of system (1).

The switching strategy is finally incorporated
into a global feedback strategy in which the av-
erage motions take place in the directions which
agree with the largest coefficients |z7 f,(x)| in
V.(z) for x € R".

If the switching delays A; are reduced to zero
as *(t) —» 0, e.g. as functions of some power p €
(0,1] of the actual value of the guiding function
V(2“(t)), then it can be shown that V (z*(t)) — 0,
implying asymptotic convergence of the controlled
trajectories to the origin, 2“(¢t) —» 0 as t — oc.

In the feedback strategy outlined above controls
switch values at finite intervals of time, whi-h are
bounded from below by the smallest delay A\; i €
m. Hence, there is no chattering and the existence
of solutions of (1) is not endangered.

As will become clear, the time delays on the
relay elements need not be small. Large delays
which are equivalent to large deviations of the
system’s state from the switching surfaces are al-
lowed as long as the guiding function decreases
‘on average’. The latter can be verified on line,
hence allowing for delay adjustment.
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The strategy has the advantage of using uni-
formly bounded controls , is particularly straight-
forward, and seems simple to implement.

2 The control problem and as-
sumptions

An e-neighbourhood of the surface S is denoted
by S + B(0;¢), i.e.

S+ B(0;¢) o {reR:3pe Sst. |lz—p|l <e}

(10)

For a general smooth vector field f on R™ , we

let exp(tfl(p) denote the solution, at time t, of
@(t) = f(x(t)) with initial condition z(0) = p.

We also use the symbol z%(t; zq,to) (or shortly

x%(t)) to denote the trajectory of the controlled
svstem (1) passing through the point (zo, o).

The set point control problem

SPC: Find a feedback control strategy in
terms of uniformly bounded controls

ui(z" : (~oo,t]) €[-1,1] iem

(11)

(—o0,t]) signifies a possible
dependence of the controls on the state of the
controlled system z* in the past (with refer-
ence to the moment ¢ at which the controls
are evaluated ) such that:

in which u;(z¥ :

for anv given pair of points z; € IR™ and
Ty € IR™,

r(t;21,0) =z, (12)
as t — oo.

Without the loss of generality, we assume that
T 0 (or else, the coordinate system can be
translated as necessary). We need the following

assumptions:
Controllability :
Al.

span{fi(x), [fi?fj](:v)’ ;,J € n___l} = R"
(13)
for all x € IR™ ;




Regularity of the surfaces S;
A2.

span{d[2” fi(2)], i € m} = R™ (14)

Additionally,

< fi(z),d[2T i€m,z € R”

(15)

fi(x)] >#0,

for all z € IR™ , where m = n — 1.

Assumption A2 guarantees the existence of a tan-
gent plane (or tangent vector) to S at every
z € IR™ and ensures that f; is not tangent to

Si.

3 The switching sfrategy

The aim in this section is to determine a local’
feedback control strategy which produces an "av-
erage’ motion of the system in a direction which
is not directly admissible.

We will say that the average’ motion of system
(1) in the direction +[fi, f;] (or in the direction
—[fi, f;] respectively) is T-nonzero at a point p, if
for a given constant T € (0, 00)

T
| e s e o >0 6)
( or < 0, respectively ), where 2%(t) denotes the
trajectory of the controlled system (1) emanating
from point p.

Let G(x) denote a matrix whose rows are
dizT fi(2)],i € n—1 , and F(z) denote a ma-
trix whose columns are fi(2),i € n—1. Before
we specify the switching strategy let us note the
following

Proposition 1

e The controls

Y sign(a” fi(x)),i€en—1 (17)

()

steer the system (1) to a point x #0, z € S
in finite time, or else the controlled trajectory
converges asymplotically to the origin.
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e Sliding motion on S (in the sense defined by
Filippov [2] or in the sense of equivalent con-
trols [1]) does not occur (when G(z)F(z) is
nonsingular), or else is not defined uniquely

(when G(x)F(2) is singular).

We also note the following immediate conse-
quence of the definition of "average’ motion on S,
the definition of the Lie bracket extension of (1),
and inequality (9).

Proposition 2 Suppose that a pointp € S, p # 0
is the initial state of system (1) at time 7 > 0 and
the indices t,7 € n — 1 are such that

pT i, 1)) = maz{p"[fa, S)(P)],

aben—1) (18)

Further suppose that system (1) is controlled in
such a way that up, =0 for k # 1,7, and

— the motion of system (1) at p is T-nonzero in

the direction +[f;, ;] if pT[fi, fi1(p) <O,

the motion of system (1) at point

— or else,
p is T-nonzero in the direction

pTfi fi1(p) > 0

Under these conditions, there exists an ¢ > 0
such that if the controlled trajectory of system
(1) remains in S + B(0;€) over the time interval
[r.7+ T, then the guiding function V exhibits an
‘average’ T-nonzero decrease along the controlled
system trajectory in the sense that

T+T .
/T V(2 (6))dt
V(1)) -

Vi(p) < —0.5M(p) (19)

d
where x*(t) el qu

M (p) def |/

For | € n—1let S} and S; denote the two
open domains to the left and right of each surface

Siie. ST (o eﬂ?”- T fi(z) > 0} and S ¥
{e € R": 2T fi(x) < 0}.

The switching strategy described below is ini-
tialized at a point p € S, when the trajectory of

(t;p, 1) and

U i)

‘())dt]  (20)




system (1) with m = n— I, using the control (17),
first traverses the surface 5.

Suppose that to each surface S,/ € n — 1 there
is attached a relay element of a special charac-
teristic and the same time delay, A, whose task
is to implement the control w;. The switch-
ing feedback strategy consists of time intervals
[ts,tsq1). 5 € IV (called switching cycles) at the
beginning of which a relay clement is allowed to
change state. The duration of the switching cycles
[ts,ts41] is bounded from below by the constant
A, and determined by a svnchronizing supervi-
sory controller whose action will be made precise
later.

Further, suppose that cach of the relay elements
obeys the same rule for change of state at time ¢.

wet(ts+)) =1 if a*(tsm4) € 57 (21)
wa(ts4+)) = =1 if a"(tsi+) € S (22)

where 2"(t;+4) denotes the value of the controlled
trajectory x" to the right of the point ¢, i.e. at
the beginning of the current switching cycle, and
, consequently, #“(ts-1+) denotes the value of the
state at the beginning of the previous switching
cycle. (Thé above rule is well defined since the
state " cannot remain on S; if u; # 0.)

The value of u;, determined at the beginning of
each switching cycle, is maintained until time 3
at which u; is temporarily set to zero. The time
t; is determined as follows

t,=A
if vy >0 and 2"(t,+) € S,
or else if u; < 0 and 2"(t,4) € S5, (23)
> = time ¢ at which 2"(¢) returns to S,
if w; <0 and 2“(t,+) € ST,
or else if u; > 0 and a"(t,4) € S, . (24)

The end of the switching cycle is then determined
as the time t,4; at which all controls in the system
are on hold (temporarily zero), after which the
next switching cycle begins.

Now, suppose that at a time 7 > 0 the sys-
tem (1) reaches a point p € S, p # 0. Then, by
virtue of the controllability assumption, there ex-
ist indices ¢,5 € n— 1 such that |pT[fi, f;1(p)| =

maz{|p"[fx, f[](p)|, k1 € n=1} > 0 and V de-
creases in the direction +[f;, f;](p) or else in the
direction —[f;, f;]1(p).

An average motion of the system in the de-
sired direction and the desired orientation is im-
plemented as follows. First, all the controls ex-
cept u; and u; are set to zero: i.e. ug = 0,k €
n—1,k # i,j. Before initiating the switching
feedback strategy described above in the controls
u; and uj;, an additional, preliminary switching
cycle is executed in which the controls u; and u;
take the following values :

If, prior to time instant 7, the surfaces .5; and S;
are approached by the system from opposite sides
(ile. 2%(r—) € SN S]-+ or z¥(t—) € ST ns; ),
then

u; =0 fort € (1,74 A] (25)
it p"{fi, f](p) > 0

or else

u; =0fort e (1, 74+ A] (26)
if T S(p) < 0

while the value of the remaining control u;, or
else u;, over the same interval of time (7,7 + A]
is determined by (21) or (22). Similarly, if, prior
to time instant 7, the surfaces S; and S; are ap-
proached by the system from the same sides (i.e.
r'(r=) € S, NS; ora¥(r-) € Stn S;r ) then
the roles of the controls u; and u;, as determined
by (25) and (26), is reversed.

The switching strategy is then started, for s =
1,2,...,t; = 74+A, as described in (21)-(24). The
position of the system with respect to a surface S;
. at time fo+ (at the beginning of the switching
cycle corresponding to s = 0), is understood to
be the position of the system with respect to this
surface at the beginning of the preliminary cycle
(26) if u; # 0 for t < 7+ A, or else it is the
position of the system with respect to S; prior to
time 7 (in the case when u; = 0 for t < 7+ A).

By virtue of Proposition 1 , it is possible to
show that

Proposition 3 For any € > 0 there exists a time
delay A > 0 such that




e the time t} is finite with respect to both controls
u; and u; (the controlled trajectory returns to

SiﬂS]' )

e the trajectory of system (1) with the switching
control defined in (21)-(26) remains in S +
B(0;¢€) for all timest > 7.

It is easy to see that the above strategy can pro-
duce an average motion in the directions £[f;, f;]
at p. If, for example, the position of the system
with respect to the surfaces S;,.S;, prior to time
7 at which z(r) = pe€ Sis: p € Sz-‘"ﬂS;' and
pI[f:, fi1(p) < 0, then, it is easy to verify that
the switching strategy ( with its corresponding
initialization) produces the following sequence of
controls u;, u; :

-1,
—1,

over a corresponding sequence of switching cycles
[ts,ts41] , s =0,1,2,....

If the state of the system at time 74+ A (after
the initialization step) is p; and the delay A is
sufficiently small, then the state of the system,
say ps, at time t5 can be approximated by

ps =~ exp[A(fi = f;)] o exp[A(fi+ fj)] o
exp[A(=fi + fi)] o exp[A(=fi — fi)]p1 (27)

(Of course, the time intervals in which u; or u; are
nonzero are not exactly equal to A , but for small
A this approximation is reasonable and provides
an immediate intuitive insight).

Applying the Campbell-Baker-Hausdorfl for
the product of exponentials in (27) it is easy to
verify that

ps = exp[(A)?[fi, fillpy (28)

which motivates our claim that the above switch-
ing strategy produces average motions in the di-
rections associated with the first order Lie bracket
[fis 5]

In fact, more rigourous analysis confirms that,

Proposition 4 Regardless to the initial state of
the system prior to time T at which z"(t) = p €

S, and under the assumption that the projection
of = onto the Lie bracket zT[f;, f;](z) does not
change sign along the controlled system trajectory,
the above swilching strategy, together with its ini-
tialization, produces a T-nonzero motion :

e - in the direction + [f;, f;] at p
if pTf:(p), £i(P)] < 0 (29)

or else

e - in the direction — (f;, f;] at p
if pTfi(p), Fi(P)] > 0 (30)

with T > BA.

As a consequence, there exists a A sufficiently
small to guarantee that the guiding function V ez-
hibits a T-nonzero decrease along the controlled
trajectory.

Some comments are in place to finalize this sec-
tion.

During application of the switching strategy
it may happen that the projection of the state
of the system z onto the Lie bracket direction
zT[f;, f;](z) changes sign. When this happens,
in order to maintain the ’average’ decrease of the
guiding function V, the switching strategy should
be restarted with the initialization step as in (25)-
(26).

To guarantee asymtotic convergence of V to
zero, the amplitudes of the controls must decrease
to zero as V approaches the origin. This can easily
be provided for, for example, by scaling the am-
plitude of the controls by a factor proportional to
some nonzero power of the current value of V.

The ’correct’ value of the delay A need not be
known a priori. The delay can be adjusted on
line in such a way that an average decrease in the
value of V can be observed.

4 The feedback law and its
properties
The discussion of the previous section justifies the

introduction of the following feedback law, whose
aim is to solve the SPC problem:




Set point control feedback strategy (SPCF)
Data: time delay A >0, n € IV , n > 3.
ol If pe IR™\ S, apply the controls

ui(z) = —sign(z? fi(z)), ien—-1 (31)

2 Ifpc S,

e2a Select control variables u; and u; satis-

fying (18) and set uy = 0 for all & # 4, ;.

Initialize the switching strategy for the

controls u; and u; as in (25)-(26) and

apply it as in (21)- (24).

e2c Interrupt the switching strategy if any
of the following events occur:

o2b

(i) the indices 7, j no longer satisfy the con-
dition in (18), in which case : repeat
starting from Step 2a;

(i) the projection of the current value of the
state of the controlled system 2 onto
the Lie bracket [f;, f;]1(z), «T[f:, f;](x),
changes sign; in which case : rescale
the amplitude of the controls by a fac-
tor proportional to the current value of
the guiding function V and reinitialize
the switching strategy, i.e. repeat from
Step 2b;

(iv) the state of the controlled system does
not return to the surface .S over an inter-
val of duration nA after the last switch,
or else, the value of the guiding function
V" does not decrease periodically (with
a period n switching cycles): in which
case set A = 0.5A and restart Step 1.

Propositions 2-4 provide a good basis to prove the
following

Theorem 1 The feedback strategy SPCE is well
defined and solves the set point control problem.

5 Example

The above feedback law has been applied to the
Reeds-Shepp convexified car model :

Bt = Al + fola(®)u,  (32)
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where

def

w(t) = [z1(t), w2(t), 23(t)]" € R"
fi(x) = [1,0,0]"

fa(z) = [0, sin(zy), cos(z;)]T (33)
The SPC problem was stated as the one to drive
the model from initial condition [zy, x5, 23](0)
[0.4,1.,0.8] to the origin. Figure 1. shows the
state variables versus time. It is visible that the
surface S =51 NSy ={r € R":2; =0}n{z €
R"™ : zasin(zy) 4 xacos(zy) = 0} = {2 € R™ :
ry = 0} is reached at about t = 5 . The feedback
strategy then enters its second stage of subse-
quent switches in the neighbourhood of S. These
switches cause sliding along the x5 axis which
is the direction +[f1, f5] at any point (0, z,0),
3 > 0. (The desired direction of average mo-
tion for the case when z; < 0 would clearly be
—[f1: f2], which could be observed if the initial
condition was opposite in sign.) This sliding mo-
tion produces an average decrease in the guid-
ing function V' whose plot is shown in Figure 4.
The control magnitudes are reduced by a factor of
V(2)%?% which can be seen from Figure 2. Figure
3 shows the actual trajectory of the car’s centre of

mass. The cusps in the plot correspond to revers-
ing of the car. The S ’surface’ which in this case
is the zy-axis, clearly consists of points at which
the car is positioned sideways to its goal.
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Figure 1, Plot of state vanabies x(t).

STOLTORT)

-02

386

Hunz.mumuw-uuuo.

04r

03

-

02t

0.

u‘(l),ul(l)
Eh b

:

H“HIH Hmu

-1
|

]ll’* zwu

I

¢

0.8

1i0x® 205 0% 40w 50 %

e

Figure 3. Plot of car trajectory.

OO o= 80

oF
02
04 . - - - .
01. 02 03_. 04- 05 06 - 07 08 » 09 1
xamj
Figure 4. Piot of guidng funchon vi*:.
2
¥
50 70 80




