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Abstract: Robust Hs control problem for multi-input
multi-output 2-D systems is attacked by polynomial tech-
niques. The design procedure is shown to consist of the
same major steps as its 1-D counterpart: one linear 2-D
matrix polynomial equation and two quadratic 2-D matrix
equations called 2-D J-spectral factorization. As usual for
the 2-D case, every particular step is more involved both
theoretically and numerically.

1 Introduction

Polynomial techniques have become very popular in
the last decade. They were applied to solve standard
tasks in communication and control. In addition, they
have been employed recently to cope with some new
problems of robustness as Ho, optimization for stan-
dard (1-D) linear systems. On the other hand, polyno-
mial techniques have been generalized to cover stan-
dard problems for some non-standard classes of sys-
tems. This namely comprehends two-dimensional (2-
D) linear systems and filters, which are now of rising
importance in many areas of engineering and science.
Influenced by both the trends mentioned above, a gen-
eralization of polynomial techniques to cope with M,
problems in control of scalar 2-D systems has been
published recently [1]. The present paper is the first
attempt to study H.. problems for multi-input multi-
output 2-D systems. Namely, the sub-optimum H,
problem is tackled as a prerequisite to approach the
optimum solution.

It is shown that, as expected, all the basic steps of
the design procedure remain the same as in 1-D case.
However, their content is different and, namely, com-
pletely new numerical algorithins are required to per-
form every particular step of the design. In fact, sim-
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ilar situation happened when other 1-D control prob-
lems have being generalized to 2-D [2, 3].

A causal sequential matrix S(z1, zZ)ZZi,po S,-]-z’iz]é
is called absolutely summable if 3 [|S;;|| < oo and
minimum phase if, moreover, its inverse S~! is abso-
lutely summable as well. A conjugaie to S is denoted
by S* and defined by S(z1,22) = ST (271, 23").

A finite-extent causal 2-D sequential matrix p is
called (2-D) polynomial matrix. (in the indeterminates
z; and z3). A square 2-D polynomial matrix P(z;,z3)
is stable if det P(z;,22) # 0 on the closed unit bidisc

{zuzm) eCxCllal < Lzl <1}, (1)

A 2-D sequential matrix R(z1,z2) is called recur-
rent if it is described by a 2-D matrix polyno-
mial _fraction1 R(z1,20) = N(z1,29)D"Y(z1,22) =
D™1N(zy,22)(z1,22).

The key concept of the paper is the co-norm, which
is a useful tool in many areas of control and filtering.
For a recurrent absolutely summable sequential matrix
R is defined via

1R(21,22)lle0 =

sup /\rln/azx (R (21, 22)R(21, 22)) (2)

lz21}=1,]z2]=1
sup A2 (RT (e=9w1, e Iw2) (eI, elw2))

wi,W2

where Anax(A) denotes the largest eigenvalue of the
(constant) matrix A. The number A2 AR A) is the
largest of the singular values®

oi(A) = AV ARA), i=1,2 -0, (3)

of the m x n matrix A.

IThroughout the paper, all polynomial fraction will possess
causal denominator and, hence, they will be well defined. For
more details on polynomial matrix inversions see [4, 5].

2Here the superscript H denotes the Hermitian.




In particular, for a 1-D sequence this reads

IR(21,22) oo sup A (R*(z1)R(z1))

[l

|z1]=1

sup Al (RT(e™3*1)R(e*))
(4)
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1-D Standard Solution
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As a starting point, let us consider the standard 1-D
problem which is defined by the well-known configu-
ration of Fig 1. The block marked “G” is the “plant,”
that is, the system to be controlled. The signal w rep-
resents external, uncontrollable inputs. The signal u
is the control input. The output z has the meaning
of control error, which ideally should be zero. The
signal y, finally, is the measured output, available for
feedback via the controller, which is the block marked
«J¢ » Such a structure has been attacked for 1-D sys-
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Figure 1: The standard Ho problem

tems via polynomial techniques by Kwakernaak [6].
The plant is represented by the rational transfer ma-
trix G such that

3 ]=

The dimensions of the subblocks
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of G follows from
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Without loss of generality, it is assumed [6] that

1. The dimension of the external input w is at least
as great as that of the observed output y, that is,
k1 > ma, and Gy has full normal row rank.

9. The dimension of the control error z is at least as
great as that of the control input u, that is, my >
ks, and G5 has full normal column rank.
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Using a proper transformation, the assumptions can
be always met.

In the configuration of Fig. 1, the closed-loop trans-
fer function H from the external input w to the control
error z is easily found to be given by

H = G + GIQI((I - ng]i’)_lel. (7)
In the polynomial approach, we assume that the plant
is represented in left coprime matrix fraction form

G=D7'N. (8)

Similarly, we represent the compensator K in right
matrix fraction form as

K=YX"" (9)

Closed-loop stability is determined by the roots of the
closed-loop characteristic polynomial which, when par-
titioning

m; M ki ko
D = [D] DQ], N = [N1 Ng], (10)
reads
det ([D1 D2X — N2Y)). (11)

These roots are precisely the closed-roots poles. From
them, however, only the roots of

det(Do X — NoY) (12)
are assignable with Gag = D31 N, aleft coprime poly-
nomial matrix fraction representation of Gz. Follow-
ing [6], we shall call the controller (9) stabilizing if and
only if it makes all the assignable poles stable.

For the above structure, the typical problem is [6]
as follows:

Definition - Standard H..-optimal problem.
Determine the controller K such that

e the closed-loop system is stable,
(%)

[t is well known that the solution of Hq,-optimal
problem consists of a chain of successive solutions of
H ..-sub-optimal problems with A approaching the op-
timal value Amin. In every step of iteration, the fol-
lowing problem solution is exercised:

Definition - Sub-optimal problem. For a given
A > 0 (and, in fact, A > Amin) determine the controller
ky such that

o ||H]|oo 1s minimal.

o the closed-loop system is stable,

o [|Hxlloo <A




Besides its repeated appearance in the M -optimum
search, the sub-optimal solution itself is known to
guarantee certain level of robustness [6]. This problem
has recently been solved both via state space methods
[7] and polynomial techniques [6]. We now briefly re-
view the polynomial solution of this problem developed
by Kwakernaak [6]. Although Kwakernaak derived
his polynomial solution for continuous-time systems,
1t applies, mutatis mutandis for discrete-time systems
as well.

The underlaying philosophy is to transform the orig-
inal problem to the solution of the rational matrix in-

equality

[ X* v* ]HA [ ;\, J > 0 on the imaginary axis,

(13)
which parameterizes the class of all controllers (9) that
warrant (=« ). Here, for A nonnegative, IT is the ra-
tional matrix

D3
I = [ ye }(NINI‘ — XDy D}) YDy  — No).
(14)
The next step is to find its rational symmetric fac-
torization of
I, = 2572, (15)
where Z, 1s a square rational matrix such that 7, is
both stable and minimum-phase. This rational fac-
torization can be reduced to two polynomial matrix
J-spectral factorizations, one for the denominator, the
other for the numerator. The former is the polynomial
J-spectral cofactorization

NiN7 = X2Dy D} = QaJ'Qs5, (16)

with @ square such that its determinant is Hurwitz.
Once @} has been determined, we may obtain poly-
nomial matrices Ay and Ay by the left-to-right fraction

conversion
Qi [Ds = Na] = AyATL (17)
By the second polynomial J-spectral factorization

AT Ay =T5JT, (18)

with T') square such that its determinant is Hurwitz,
we obtain the rational J-spectral factor Z) as

Zy =THAL (19)

This problem of computation of (16)-(18), which is
called J-spectral factorization, has received much at-
tention recently and workable algorithms have been
already derived [8].

Then, according to Kwakernaak [6], the class of all
controllers (9) that guarantee (#x) is given by

(20)

where i
E (1)
with A and B rational stable and A square such that
1BA oo < 1. (22)

There are two obvious special choices: A =T and B =
0 (centralsolution) or A = B = I (equalizing solution).

To result in a stabilizing controller, a stable A should
be chosen in (21).

3 2-D Case

Let us consider the standard structure again but now
all the signals u, w and z,y are vector 2-D causal se-
quences and R is a 2-D bicausal recurrent sequential
matrix. Consequently, D, N and and all their parts
are 2-D polynomial matrices with D bicausal.

The controller (9), in general, is expected with X,Y
ranging 2-D causal (not necessarily recurrent) sequen-
tial matrices with X bicausal. It is stabilizing provided

that
det(Do X — N,Y) (23)

is a minimum phase 2-D sequence (or, in particular, a
stable 2-D polynomial).

It can be shown that the solution of the 2-D prob-
lem follows the lines of the 1-D solution: At first, the
matrix polynomial J-spectral factorization (16) should
be performed to find a bicausal minimum phase 2-D
sequential matrix Q(z;,z2) such that

NIN? = XDy D} = Q,J'Q; (24)

This operation is a difficult and not yet quite clear
numerical problem even with a positive definite J be-
cause of its 2-D nature.

Then, the left-to-right conversion (17) is to be per-
formed. The linear operations for 2-D polynomial ma-
trices are now quite well understood and can be per-
formed relatively easily (see, e.g., [9]).

As the last step, J-spectral factorization (18) must
be computed to get a 2-D sequential matrix T'y(z;,z5)
such that det I'y is minimum phase and

ALJ'Ay =T3JTy (25)

This is probably the most difficult step as explained in
the next section.




4 2-D Spectral Factorization

The main difference between 1-D and 2-D solutions
emerges in the operation of spectral factorization. So
the numerator factorization (24)

NiN{ — XD Df = QxJ'Q;
exists whenever II(z;,2;) is nonzero on the unit torus
() eCxCllal=1lnl=1)  (27)

but, in general, it results in a factor Qx(z1,2z2) with
an infinite number of terms. Hence, @x(z1,22) is an
infinite 2-D sequential matrix rather than a 2-D poly-
nomial [10]. As an example, for the symmetric scalar
left hand side polynomial

(26)

A AR R I

it is not possible to find a 2-D polynomial Qx(z1,22)
to satisfy (24).

An algorithm to compute Qx(z1,z2) in the scalar
case has been published (see [10]) but in practice, it
always ends in a truncated (i.e., polynomial) version
Q@ (z1,22) of the sequence @Qx(z1,22). Of course, the
truncation must retain the stability of Qx(z;, z2) which
is yet another problem. The matrix case encountered
her, in addition, combines both indefiniteness and two-
dimensionality and remains unsolved thus far. It will
be a subject of further research.

The solution of (25) faces the same problems, of
course.

5 Conclusion

The problem of H, robust control has been discussed
for 2-D systems with scalar standard structure. It was
shown that the 1-D polynomial design procedure [6]
fits but its basic steps (spectral and J-spectral fac-
torizations) are to be replaced by their 2-D versions.
While the solution of the linear 2-D matrix polynomial
equation (17) is known [9], the problem of 2-D matrix
J-spectral factorization ((24) and (25)) is a subject of
further research.
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