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ABSTRACT

The problem of fixed-order observers for systems with
deterministic ,i.e. known, input is considered. The re-
duced order observer is required to preserve the steady-
state gain matrix of the observed system and to mini-
mize the transient estimation error. The solution con-
sists of a modified Riccati equation and two modified
Lyapunov equations coupled by three projection ma-
trices. Explicit expressions for the optimal reduced
order observer are given in terms of the solution of the
modified Riccati equation and by the three projection-

8.

1. INTRODUCTION

In this paper, we consider the problem of designing
a reduced order observer for systems subjected to s-
tochastic disturbances, (unknown), and deterministic
[8], that the

estimation error is independent of the determinstic in-

input (known). It is well known, e. g.

put if and only if an asymptotic observer is used. In
the

Kalman filter is automatically an observer. However,

the full order case, the optimal estimator, 1. e.

the observer structure property is not preserved in the
The reduced or-

der estimators, [3, 5] can not be applied in presence

standard reduced order estimation.

of a deterministic input. In [4], the problem of re-
duced order optimal state estimation for systems sub-
jected to colored noises and deterministic input was
solved. The structure of an observer was imposed in
addition to estimation optimization. It was assumed
there that the input acts only on part of the system

and the order of the estimator was pre-constrained to
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be at least equal to the order of the subsystem driven
by the deterministic input. Under the same assump-
tion, [2] have designed an optimal asymptotic observer
for a pre-specified unstable subspace. These results
are not applicable when the effect of the deterministic
input is not restricted to a subsystem. Consider, for
example, a system without noises, it is then clear that
the known input acts on the entire system. Hence, spe-
cial treatment is needed in presence of a deterministic
input. A common assumption is to consider the deter-
ministic input as generated by known dynamic stable
system excited by white noises [1]. [10] gave a subopti-
mal solution to the reduced order estimation problem

with known input.

In this paper, we approach the problem in a dif-
ferent way. We assume that the deterministic input
consists of a series of step functions of different levels.
We also assume that no error remains before the next
change in the value of the step. It is therefore required
that the steady-state estimation error is zero and the
additional degrees of freedom will be used for the min-
imization of the transient estimation error. Hence the
reduced order observer preserves the steady-state gain
matrix of the observed system.This property is impor-
tant for many physical applications such as navigation

and guidance.

The problem of steady-state gain preservation in
order reduction problems was first introduced by [11]
for model order reduction. There are some similari-
ties between the preliminary steps of the problem of
[11] and that of the problem solved here. However,

the solution procedures are different due to the essen-




tial difference that exists between model and observer
order reduction problems.

This paper is organized as follows. Section 2 con-
tains definitions and states the problem. In Section 3,
we present the main results of the paper. The results
of the paper are summarized in Section 4.

2. PRELIMINARIES AND PROBLEM
FORMULATION

Consider the following linear continuous time-invariant

n-th order system :

#(t) = Az(t) + Bu(t), (2.1

y(t) = C=(),
where z(t) € R" is the state-space vector, y(t) € R is
the measured output and u(t) € R™ is a deterministic

(2.2)

input,.
The objective is to design a n, < n order observer:

i’e(t) = Acze(t) + Beu(t) + Key(t), (2'3)

Ye(t) = Cez () + Dou(t) + D.oy(t), (2.4)

We define the augmented state vector
~ T 7 -
(1) & [ 27(@t) 2T(@) ] , &) € R", where &2 =
n + n. and denote the observation error as

e(t) = Lz(t) — ye(1),

then, the augmented state equation is given by

L0 1=l e 21201+ ]“((“’)
25

et)= [ L— DpsC —C. | [ ;((’t)) ] — Dotu(t) .
(2.6)

It follows from (2.5)-(2.6) that the observation error is
directly affected by the input, i.e.

e(s) = Teu(s)u(s).
In the full order observer, [8],
Ac=A—KC, B, =B, Ko =K, Doy g =0

and this structure leads to T.,(s) = 0. The same holds
for the Kalman filter since it has the structure of a
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full order observer. In the deterministic reduced order
(Luenberger) observer of [9], ne = n — r, it is also
obtained that Te,(s) = 0 by the choice

Ae = (Co — KC)ALy, B, = (C2 — KC)B, -
K. = (Cs — KC)A(L: + L2K),
Ce = LZ) Del = 01 De2 = (Ll +L2I<)$

B

and C} is an arbitrary matrix chosen such that the left
side of (2.7) exists. In [2, 4, 6], Teyu(s) = 0 is required,
but these works consider systems in which the deter-

where

(2.7)

ministic input affects only part of the overall system.
To satisfy this constraint, a full order observer is de-
signed for the deterministic subsystem. In the other
cases of reduced order observers, T,,(s) # 0 and the
problem is how to make T, (s) 'small’ in some sense.
To deal with this problem, one needs to make some
assumptions on u(t). The reduced order estimation
literature, e.g. [5], [3], generally disregards the influ-
ence of a deterministic input and deals only with the
minimization of the estimation error due to stochastic
disturbances. If u(t) does exist, a common approach is
to consider u(t) as a stochastic signal with known spec-
trum. Technically, it can be considered as a measured
output consisting of noise only ([1])

In this paper, we consider the problem in a different
approach where we assume that the deterministic in-
put u(t) consists of a series of step functions where the
value of the step may change only after the observer
has reached steady-state. Based on this assumption,
we therefore take u(t) as a single step function and, in
addition, in order to avoid a steady state error (before
the next change in the value of the step), we require
that Tey(0) = 0. We can use the observer parame-
ters remaining free for optimization to minimize the
error during the transient period. The mathematical
formulation of the problem is given as follows:

1. The steady-state observation error is set to zero.

ii. The following quadratic cost criterion is mini-

mized:

Ju(Ae,Be;I{e;CeyDely De2) =




. T T
Jim [ {La) - 5.0)" {L20) - v}
(2.8)

We thus obtain that the problem is equivalent to
the minimization of the step response from u(t) to e(t)
in (2.5)-(2.5) under the constraint that the steady state
error is set to zero.

In order to formulate this problem as an L, opti-
mization problem, we introduce the following lemma:

Lemma 2.1 Consider the asymptotically stable LTI
system ¥, with state-space realization given by {A,,
By, Ci, Di}. Let the state-space realization of the
system Yo given by {Az, B2, Co, 0} with

Ay = Ay, By =B, Cy=CAT!,
and define the constant matriz
Dy =Dy — C1A'B;.

Then,

sz, (t) = hg,(t) + D2, (2.9)

where sz, (t) denotes the step response of £ and hy, (t)
denotes the impulse response of 3.

(The step response matrix is defined similarly to the
well known impulse response matrix definition.)
Proof: The proof readily follows from the definitions
of step and impulse responses of &; and L,.

We apply Lemma 2.1 to the system (2.1)-(2.2) and
we get that the optimization problem we want to solve
is equivalent to the minimization of the L,—norm of
the transfer function of the following auxiliary system:

. A 0 ~ B
A_[KCC Ae] ’ B_[BC]’
C=[1i-b.C -C. B (2.10a — )
with the requirement that
Dey — DesCB - LB =0, (2.11)

where
L=1A"", C=ca', C, =C.ATY,

ﬁel = Del - CeAe—lBe y be2 = De2 —_ CeA‘:II{e .
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The requirement (2.11) ensures the steady-state gain
preservation. The optimization problem is meaningful
only for stable minimal observers. We therefore as-
sume that (A., B., C.) is minimal and A, is stable.
The latter implies the asymptotic stability of A. Thus

the steady state covariance matrix
Q = lim,_, o E{2(t)37 (t)}
is the non-negative solution of the Lyapunov equation:

AQ+ QAT + BBT =0 (2.12)
The Lj-norm of the auxiliary system (2.10a-c) may be

written in terms of Q as

Ja =trace QCTC . (2.13)

Therefore, the optimization problem is the minimiza-
tion of (2.13) under the constraint (2.12), where, given
the relation (2.11), the parameters which remain free
for the optimization are only A, B.,C, and D,,. The
details of the optimization procedure are given in the
proof of Theorem 3.1.

Before stating the solution of the optimization prob-
lem in the next section, the following lemma. is needed:

Lemma 2.2 Factorization lemma [7]:
Let Q, P € R™™™ be nonnegative definite matrices
that satisfy

rank QP = n,, (2.149)

there ezist G, T € R**™ and M € R™*™ nonsin-

gular matriz, such that

QP =GTMT, 16T =1, (2.15)
and (G, M, T) is a factorization of QP. The matriz
r 2 GTT is an oblique projection matriz satisfying

ri=r.

3. MAIN RESULT

The following Theorem states the necessary condition-
s for the reduced order observer that preserves the

steady-state gain




Theorem 3.1 Assume (A, B, Ce, D1, De2) solve the ~ Proof: To minimize (2.13) under the constraint (2.12),

reduced order steady-state gain preserving observer prob-
lem. Then there ezist n x n nonnegative definite ma-
trices Q,Q, P such that (Ae, B.,K.,Ce, D¢y, D.2) are
given by

A, =TAv, GT — (GPGT) "YW TLT"LiwGT, (3.1)
B.=TB, (3.2)

Ke = (FA + (GPGT)-ID_{fJTﬁoL) c*,  (3.3)
C.=LinG" A, , (3.4)

Dey = Loy (B+GTB,), (3.5)

Des = L(C* + 0, GTK,) (3.6)

and Q, Q, P, satisfy the following equations:
(4-rav- (GPGTY 2T LT Liw) Q
+Q (A — Ay — (GPGT)-lf/fiTﬁfw)T
-nBBTrl =0

(3.7)

AQ + QAT + (TAI/ + (GPGT)“IDfﬁTfLDJ_u) Q

. P, T

+Q (TAV +(GPGT)~ 15T LTLDLV)
—BBT + 1, BBTT = (3.8)
PAvy +VTATP - VToT LT Lo r— +ToT LT Loy v
+ 0T LT Loy — ol Loy =0 (3.9)
rank QP = rank Q =rank P =n, (3.10)

where

C*=QCT(CQCY ', v=CC, v =1, —v,

(3.11)

C=cA™t, ¢ =QCT(CQcT) ™,
p=CC, i =1I,-p, (3.12)
r=GTr, rp=1,-r1 (3.13)

and (G, M, T ) is a factorization of QP.
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we construct the Lagrangian:
£ =trace [QCTC +(AQ + QAT + BET)P| (3.19)

where P € R™™" is the Lagrange multiplier matrix.
We partition Q and P into n x n, n xn, and n, X n,

subblocks as

= | @1 Q2 ]
Q= [ Q. Q.
P [ zfi 1;;22 ] (3.15)
3L _ () vi
57 = 0 yields (2.12) and
9L _ ATP+PA+CTC =0 (3.16)
ac
A= PLQ1z+ PQy =0 (3.17)
ac
55 = PeBet PLB =0 (3.18)
oL T |, pT T
K. (P2Q12 + Pa@1)C™ =0 (3.19)
oc s o s A
3 = —(L = De2C)Q12+ CeQ2 =0 (3.20)
oL PR AO.AT o A AT AT
3D, =~ (L = DeaC)Q1C" + CeQ1,C7 =0 (3.21)

Expanding (2.12) and (3.16), we get

AQ, + QAT + BBT = ¢ (3.22)

AQi2+ Q1247 + Q:CTK] + BBT =0 (3.23)

AeQr+ K.CQr2+ QAT + QT,CTKT + B.BT = 0
(3.24)
PiA+ Pi3K,C + ATP + Q24T + CTKT PT,

+(L = DoyC)YT' (L — DesC) =0 (3.25)
Pi2A. + ATP1o + QAT + CTKT P,

+ (L= DCYC, =0 (3.26)

PyAe+ ATP, + CTC, =0 (3.27)

It follows from (3.27) and from the minimality of (2.3)-
(2.4) that P> > 0 and we assume that Q> > 0. We thus
define the following matrices:

Q=0Q1205'Q%, Q=@ - Q,




P=pP,P;'PL, P=P — P,

GT = Q12Q;", and T = —P;'P%,  (3.28a~1)

(3.2) derives from (3.18). We obtain from (3.17) that
I'GT = I,,_, thus (3.10) follows and the projection ma-
trix 7 is given by (3.13). (3.20) along with (3.28a-f)
leads to an expression for C,:

Co = (L= DoaC)GT

(3.4),(3.6) and (3.12) are obtained by substituting that
expression in (3.21) and assuming CQCT > 0. Substi-
tuting (3.6) in (2.11) yields (3.5). (3.19) leads to

cQrt =o (3.29)

Using (3.29), we compute Q5 '{(3.23) — (3.24)}I'T and
get
. =T4AGT - K,CGT (3.30)

Substitution of (3.4),(3.29) and (3.30) into CQ(3.26)P; ",
using the fact that GT Py = GT(GPPGT)™!, yields
K.. The expression for A, is obtained by substituting
(3.3) into (3.30). (3.7) follows from
G7T(3.24)G+(3.22)-(3.23)G-GT(3.23)T.
(3.23)G+G7(3.23)-7(3.23)G yields (3.8). (3.9) is ob-
tained from
IT(3.27)T+T7(3.26)T 4+(3.26)T using the identity:
PGT(GPGT)-1G = .

O

It should be noted that from the definition of v,
Q-equation (3.7) contains quadratic terms in @ and
then (3.7) has the structure of a Riccati-like equation.
Hence, the set of equations to be solved consists of a
Riccati-like equation and two Lyapunov-like equation-
s, all coupled. This is typical to L, order reduction
problems {7, 3] that always results in a set of Riccati
and Lyapunov equations.

From equations (3.11)+(3.13) it is seen that =, v
and ¥ are idempotent matrices satisfying:

02 =p

=v , (3.31)

i.e. they are projection matrices.

T is the optimal order reduction projection which
appears throughout the optimal order reduction litera-
ture ,e.g. [7]. v is the projection due to the singularity
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of the estimation problem [5]. © is a new projection
arising from the definition of the auxiliary system. The
following relation derived directly from the proof of the
theorem,(3.29), show the disjointness of two of the pro-
Jjections:

Tv=0 (3.32)

It may be also noted that the reduced order ob-
server obtained, (3.1)-(3.6), has the familiar structure

of a 'model’ part and a correcting term:

ze(t) = TAGT z.(t) + T Bu(t) + K.(y(t) — CGTz.(1)),
(3.33)
Here the ’model’ part is replaced by its restriction to

the range subspace of 7.

4. SUMMARY AND CONCLUSIONS

The problem of an optimal fixed order observer pre-
serving the steady state gain of the system was con-
sidered and solved in this paper. The observer is given
explicitly in terms of the nonnegative definite matrix
@ and the three projections 7, v and o. Extensions of
that problem, which are under work, are the design of
a reduced order observer for systems with determinis-
tic inputs which are not restricted to be step functions,
and for systems with stochastic disturbances in addi-

tion to the step deterministic input.
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