Cautious stable predictive control: a guaranteed stable predictive
control algorithm with low input activity and good robustness

J.R. Gossner

B.Kouvaritakis

Department of Engineering Sciences, Parks Road, Oxford. OX1 3PJ

email:

basil kouvaritakis@eng.ox.ac.uk

J.A Rossiter
Department of Mathematical Sciences, Loughborough University, Leicestershire LIE11 3TU

email:

Keywords: Predictive control, guaranteed stability,
constraints, robustness

Abstract

Current predictive control strategies with guaranteed
stability can be very highly tuned due to the use of
a sufficient but not necessary end-point constraint in
the formulation of the system input/output predic-
tions. Hence they are likely to demand overactive
input trajectories and can also have poor robustness
properties. Here a necessary end-point constraint is
developed for stable predictions and then used to de-
fine a predictive control algorithm with guaranteed
stability. The use of this end-point constraint re-
sults in a control law with less active input signals
and therefore it is less likely to cause difficulties in
the presence of system constraints. As the controller
is less highly tuned it is also expected to be more
robust.

1 Introduction

Generalised predictive control (GPC) [1] has been
used as a basis for predictive controllers with guar-
anteed stability, e.g. stabilising 1/O receding horizon
control (SIORHC) [2], constrained receding horizon
control (CRHPC) [3] and stable generalised predic-
tive control (SGPC) [4]. As it transpires all three
approaches [2-4] give identical control laws [5] (hence
they will all be referred to simply as SC). All three
approaches employ the same end-point constraint,
that is the system output predictions are forced to
assume a fixed value equal to the set point beyond
the output horizon. However, this end-point con-

J.A. Rossiter @ lut.ac.uk

straint is tantarmount to requiring an explicit cancel-
lation of all the system poles from the output pre-
dictions and therefore can also require highly active
predicted inputs. SC controllers have three unde-
sireable properties: (i) they can give highly tuned
and hence overactive responses ; (ii) they may en-
counter difficulties meeting hard input/output con-
straints and hence give rise to instability; (iii) they
often have poor robustness properties.

The objective of designing a receding horizon pre-
dictive control algorithm with guaranteed stability
however can be achieved without the stringent re-
quirement of SC [2-4]. The proof of the stability of
SC algorithms can be established by showing that the
appropriate performance index is a stable Lyapunov
function. It will be shown in this paper that a simple
modification of the standard GPC performance index
slightly and by putting some suitable constraints on
the system input/output predictions, it is possible
to specify GPC performance indices which are sta-
ble Lypanuov functions and hence give rise to stable
control laws. More importantly, the end-point, con-
straints on the system predictions need not be nearly
as exacting as those employed in SC; SC conditions
are sufficient for stability, but not necessary. Here
we derive necessary conditions. Tlis means that the
resulting control laws are less highly tuned and this
will have implications when dealing with hard input
constraints (e.g. actuator rate and absolute limits);
a detuned algorithm is less likely to drive a system
hard and therefore input constraints will be easier
to deal with. As a by product the control laws also
have improved robustness properties.

In this paper we give in section 2 a brief description
of SC (we use SGPC as it has good muneric proper-
ties and is computationally efficient [5] and provides
the natural framework for the new work presented
in this paper). Using the SGPC framework, in sec-
tion 3 we introduce further predictive control algo-

rithms with guaranteed stability: mean level (ML),
cautious mean-level (CaML) and cautious stable pre-
dictive control (CaSC). These algorithms have pro-
gressively less stringent end-point constraints with
none as stringent as that used in SGPC and the
last having only that which is necesssary for stabil-
ity, hence we expect the algorithms to use progres-
sively less active input signals and hence to behave
progressively better in the presence of constraints.
Similarly the algorithms become progressively more
robust. A comparison of the performance with and
without constraints and the robustness of the result-
ing control laws is given in section 4.

2 Background to SC

With z the Z-transform variable and z~! the delay
operator, the system model is taken to be
b(z)
— 1 _

v = SuE =g ()
a(z) = 1+ ... +apz™™, bz) = bo + ... +
b,_1z~"t1. The difference equation a(z)A(2)y(z) =
2 1b(2)(Au(2)); A(z) = a(2)A(z), A = 1— 21,
is simulated forward in time n, samples with n,
changes in control to give the prediction equation

Yy =Cy'[[eAu + HAu — Hay] (2)

where the vectors are defined as

(Yt+1 [Auy
Yy : Au :

—

| Ytin,

Aut+n -1
3 d 3
Yt Aug_y ()

y=| |i A

| Yt—n L Augopiy

Cm, Hy, are (ny, x n,) Toeplitz and (n, x q) Han-
kel matrices respectively where if m(z) = m,+ ... +
mgz~ 1 then Ci, is defined as having its i, j element
equal to m;_;. H,, has its i,j element given as
miyj—1. [y is the first n, columns of C,, and M,,
is defined from C,,, = [T, M,,,].

2.1 Stable Generalised Predictive
Control [4]

In GPC, all control changes Au;,; beyond a hori-
zon n,, are set to zero (Augy; = 0,i > n,) and the
the aim is to minimise over Au;;,0 < ¢ < n, the
aggregate of the sum of the squares of the next n,
predicted output errors and the sum of the squares
of the next n, future control changes. This is sum-
marised as minimise Jgpc over A u

Jope =7, — yll3 + MAu|3 (4)

In SGPC the future control moves are further con-
strained so that the predicted output reaches a fixed
value after n, samples, i.e.

Tt Jepe (5)

subject to

Yt+i = Tt4n, (’L > ny) and AUH,; = (), (’L > 'flu) (6)

Theorem 2.1 SGPC gives rise to a stable control
law.

Proof: It can be shown that when r is constant there
exists a control trajectory A u at sample t + 1 such
that

JGPC,H = Jgpc, — (Tt+1 - yt+l)2 -)\(A’ltt)2 = =(]o)

7
This is because at time ¢ it is assumed that ry; —
yt+i = 0,1 > ny and Augy g = 0,7 > n,. Fur-
thermore as Jsgpc is minimised at each sampling
instant, Jgpc,,, < Jo and therefore Jgpc is mono-
tonically decreasing (non-increasing) with time until
it reaches zero. O

One way of realising constraint (6) is via a closed-
loop as in Fig.1 where X(z), Y (2) satisfy the bezout
identity

a(2)A(2)Y (2) + 2~ 1b(2) X (z) = 1 (8)

X

Figure 1

If the input to the loop is ¢(z) the input/outputs are
given by

y(2) = 27b(2)c(2);

The end-point constraint (6} is enforced by choosing
the predicted future ¢(z) according to

Du(z) = A(z)c(z) (9)

Ttt+ny

50) (10)

Ctyi = Coo, 12n, With cop =

wheren, =n.+n-1and n, =n,+n+1.
The system input/output predictions are then

= Fb£+Mble+Hb£;

Au = Tac+ Maleo +Hac (11)

with T4, T (ny X n.) matrices and

Ct

Ce41 1
- 7 . (12)

c
—
Cttn.—1 1

€ now constitutes the degrees of freedom that can
be used to minimise Jgpc.

The control law is derived by substituting the system
predictions (11-12) into the performance index (4)
and solving for the optimum c. Of the optimum ¢
only the first element is used ‘and then the whole c
vector is recomputed at the next sampling instant.
Hence the control law implied is

cc = —-Sc + P, T

P = T(FTF(,+)\FTFA) !

S = P[Fbe-i—)\FAHA]

-0, P(I‘TMbl +)\I‘TMAI)/b(l)]

(13)

where e is the first standard basis vector and O is an

n, — 1 vector of zeros. Further if S = [S,, 51, ...] and
Pyy,] define

P, = PIT-

P’r = [Prl)Pr% ey

S(z) = So+S1z71+ S22+ ...

Pr(z) = P‘I'lz + Pr2z2 + . + Prnvznv (14)

Theorem 2.2 The SGPC control law of equations
(18) can be implemented by the controller K(z) =
Ni(2)/(Di(2)A(z)) with the configuration of Figure
2. where Ni(z), Di(z) are defined from

a(2)A(2) Di(2)+2"1b(2) Ny (2) = 14271 S(z) = Pe(2)
(15)

N,

Figure 2.

Proof: The SGPC control law is summarised by
eqns. (9) in conjunction with eqn. (13) which gives

_lbzP z) ()

A!Z)P :z) (Z)
(16)
However eqns. (16) also arise from the controller of
eqn. (15) in the configuration of Figure 2. (A more
comprehensive proof of the equivalence is in [4]). O

Remark 2.1 It was shown in [4] that the imple-
mentation of Theorem (2.2) has advantages over the

implementation of eqns. (13) in conjunction with
the configuration of Figure 1 and therefore is to
be preferred. It is further noted therefore that the
X(z),Y(z) of eq. (8) and the loop of Fig. 1 are never
actually used and need not be computed.

Remark 2.2 It is noted that P.(z) is anticausal as
it operates on future set-point changes.

The SGPC control law is summarised in algorithm
form in section 3.5.

3 Stable predictive control
laws from necessary or suffi-
cient conditions

3.1 Class of stable predictions

Stable predictive control laws work by first selecting
a set of stable input/output predictions and using
these predictions in a suitable performance index.
However, the predictions used by SGPC egn. (11-12)
in fact define only a subset of the whole class of stable
predictions. This is so because of the requirement
(eqn. 6) that the predicted output reach and remain
at the set point within n, samples and the control
increments used to bring this about are themselves
zero beyond n,, sampling instants. The widest class
of stable predictions comprises weighting sequences
with stable poles, not all of which lie at the origin.

To define the whole class of stable input/output pre-
dictions we use the notation

T(2)m™ (2) (17)

where the roots of m*(z) are outside or on the unit
circle and the roots of m™(z) are strictly inside the
unit circle. Hence m™ (z) contains the unstable roots
of m(z) and m~(z) contains the stable roots of m(z).
Define 7+, Ny~ to be the orders of m*(z), m™(z2)
respectively.

m(z) =m

Theorem 3.1 The entire set of stable input/output
prediction pairs for the plant 2~ 1b(2)/a(z) is given
by

u(z) =

at(2)

b=(2)

271t (2)

a_—(z)—c(z) C(Z) € RHOO

(18)

c(2) y(2) =

Proof: Consider the plant equation

27 1b(2
Zb=)

y(2) =)

If y(z) is to be stable then it is clear that the input
u(z) must both be stable and cancel any unstable
poles, i.e.

u(z) = a™(2)f(2)

However, alternatively it can be argued from eqn.
(19b) that given that y(z) is stable, u(z) is stable iff
y(z) cancels any unstable zeros, i.e.

f(2) € RHoo (20)

=bT(2)e(z) e(z) € RHy (21)

y(2)

For a stable input/output pair both constraints (20)
and (21) must hold simultaneously which implies
that

a(2)

u —a+z z arn uz) =
(2) (2)f(z) and wu(2) ()

e(z) (22)

and hence

b™(2)f(2) = a™(2)e(2) = e(2),

Substituting this back into (20) and (21) gives eqn.
(18). a

c(z) € RHy (23)

Remark 3.1 It is noted that eqn. (18) can be
realised by the configuration of Figure 1 with
X (2),Y(z) defined from

a(2)A(2)Y (2) + 27 10(2) X (2) = a= (2)b™(2) (24)

rather than the bezout identity of eqn. (8)

3.2 Cautious SC

A sensible predictive control law should employ nec-
essary conditions for stable predictions rather than
conditions which are only sufficient because this will
release as many degres of freedom as possible for
dealing with system constraints and optimising per-
fomance. The entire class of stable predictions is
defined through eqn. (18). However, because the
input/output predictions arising from such a class
are infinite impulse responses, the stability results
of Theorem 2.1 are not readily applied. Stability in
SC is guaranteed because the predicted errors are
zero beyond n, samples; this implies that finite hori-
zons are equivalent to infinite horizons and hence the
performance index is a stable Lyapunov function as
with the usual LQG. Such a condition can only be
reintroduced with the predictions of eqn. (18) if the
performance index is altered from that used in stan-
dard GPC (eqn. 4); this is discussed below.

Theorem 3.2 The performance index

Joasc = 17, = I3 + MA@ (25)

s Y are the vectors of future values of r(z) =
(2)y(z) and Ad is the vector

), 9(2) = a

ere

a”(z)

o

246

of future values of A(z)i(z) = b~ A(2)u(z) and the
predictions for y(z), A(z)u(z) are taken from eqn.
(18) with

—T,

Ttin, ¢ (1)z
bt (1)A(2)
(26)
(ny = Mg+ + N, Ry = N+ + ne + 1) results in a
stabilising control law.

1-n.

c(z)=c+...+ctyn.—12

Proof: Substituting in for y(z), u(z) from equn. (18)
it is clear that

#(2) = 27 (2)c(2) and Ad(z) = AT(2)c(2)
(27)

Then substituting in for c(z) from eqn. (26) gives
Ft+,~—§,+,- =0, (’L > ny) A'&H»i—l =0, ('L > Tl“) (28)

Clearly then, eqn. (28) is equivalent to conditions (6)
and hence by the same arguments as those in The-
orem (2.1), Joasc will be monotonically decreasing.
Therefore the resulting control law will be stabilising.
0

3.3 Mean-Level SC

CaSC uses a necessary condition for stable predic-
tions and hence will have more degrees of freedom
available for handling constraints and performance
than SC. Recently {6}, it was also demonstrated that
a mean-level type of result could be applied even to
unstable plant by expanding the class of stable pre-
dictions. Here we show that the mean-level (ML)
algorithm uses a sufficient but not necesary condi-
tion for stable predictions and so, although it uses a
wider class of predictions than SC, it uses a smaller
class than defined in eqn. (18).

The mean-level algorithm [6] considers predictions
where Lim y;,; = 7,7 — 00, but restricts itself to a
finite Au(z), i.e it assumes

A1Lt+i_1 =0 (29)

1> Ny,

In general we expect CaSC to be better than ML,
as it employs more degrees of freedom, however ML
control allows explicit input constraint handling be-
cause the future input trajectory, Au, is finite and
therefore can be computed explicitly at each sample
instant. CaSC on the other hand (omputes the opti-
mum A% and Au(z) = Ad(z)/b”(2) and so explicit
input constraint handllng requires a horlzon longer
than n, to allow for the poles implicit in 1/b7(2)
In practice however CaSC is less likely to drive the
system against constraints and so this apparent ad-
vantage of ML often does not materialise. Moreover,
both algorithms are equivalent in the handling of out-
put constraints.

The prediction equations employed by a mean-level
control law are described next.

Lemma 3.1 The class of input/output pairs of sta-
ble predictions with infinite impulse response output
predictions and finite inpulse response input predic-
trons are given as:

_ z7M(z)
y(Z) - a_()

(30)

Proof: Using the conditions of eqn. (20) and using
y(2) = 27 1b(2)e(z) in place of eqn. (21) gives

a’(2)f(2) = a(2)e(2) (31)

Therefore e(z) = f(z)/a(z), so selecting ¢(z) =
f(z) gives rise to eqns. (30) where Au is a FIR
if ¢(z) is selected to have the same form as in eqn.
(26). o

Theorem 3.3 The mean-level control defined by the
meemisation over the coefficients of g(z) of

Iur = 1Au3 (32)
where Aw 1is defined in egn. (30b) and

ra~(1)

aG)” - BY

g(z) =c+... +ct+nr121""° +

(ny =ng,+ +n.+ 1) s stabilising.

Proof: The proof is analogous to that used in The-
orem (2.1). O

3.4 Cautious mean-level SC

Mean-level SC allows for explicit input constraint
handling, but does not place any weighting on tran-
sient output errors, which therefore could be very
poor. Rather, it only requires the end-point con-
straint that Lim y¢,; = r,1 — oo . These transient
output errors can be incorporated by a slight modifi-
cation to the standard GPC performance index simi-
lar to that used in CaSC; the resulting algorithm will
be called CaML.

Theorem 3.4 The performance index

Joamr =17, = Y113 + Al Al (34)

gives rise to a stable control law if the predictions
are those derived from egn. (30), with c(z) as in
eqn. (33) and i’:‘% defined as in Theorem 3.2 and
Ty = Np + N, Ty = Ng+ + N + 1.

Proof: This parallels that of Theorem 3.2.

c(2); Au(z) = At (2)c(z); c(2) € RHu

3.5 SC algorithms

For convenience the algorithms in this paper have
been presented as arising from an optimisation over
the future values of ¢(z) (i.e. ¢(z)) which is defined
as the input to the configuration shown in Figure 1
but with the implied X (2),Y(2) different for each
controller discussed. In practice the system predic-
tions would not be computed as given in eqn.(11),
but by simulating the model forward in time. How-
ever, as mentioned in Remark 3.1, doing full closed-
loop system predictions on the configuration of Fig-
ure 1 for SGPC, and using these predictions in the
performance index results in a closed-loop controller
of configuration 2. Conveniently this controller can
be computed far more efficiently as discussed in The-
orem 2.2. This methodolgy carries over to CaSC,
ML, and CaML and so without proof (the reader
is referred to [4] for full details), the efficient algo-
rithms for computing the control laws presented in
this paper are given next. In each case the controller
K(z) = Ni(2)/Dr(2)A(z) and prefilter P,.(z) are ap-
plied in the configuration of Figure 2.

Remark 3.2 It is noted that while GPC, SGPC and
mean-level control give rise to a strictly anti-canasal
prefilter P.(z), CaSC and CaML give rise to a bi-
causal prefilter. For convenience the causal part will
be derived from a vector P, (which multiplies r)
and the anti-causal part will be derived from a vec-
tor Py, (which multiplies I.)- ie.

Pr(z) = Prcl + PrCQZ‘-Q -+- .+ P‘r(:u*Z-n“v +
Pratz + Praae® 4+ Py 2™
(35)

Define O as an ny, — 1 row vector of zeros and P.{z) =
P,y + Paz7 '+ ... where P, = [Py, Py, ..].

Algorithm 3.1 The SGPC «algorithmn is defined
through the diophantine equation

a(2)A(z2)Dr(z) + 27 'b(2) Ni(2) = Po(z) (36)
where

= eT(PfTy + AI'4T) !

P. = [1,PIITHy + X' H,))
P, = PIT—[0,P(TT M1+ AT M41)/b(1)]
(37)

Algorithm 3.2 The ML algorithm is defined by
a(2)A(2)Di(z) + 27 1b(2) N (2) = o™ (2)P.(z) (38)
and
CT(F£+ Fae)t

P
P. = [1,PrL, H, (39)
P, = —PI'j,Ma+la™(1)/6(1)

Algorithm 3.3 The CaML algorithm is defined by
a(z)A(2)Di(z) + 27 1b(2) Ni(2z) = a=(2) Po(z) (40)

and

P = €T(ITTy+ AT, T +)!

P, (1, P[TT Hy + AT'T, Ha+)]

PITH,-

o = PIT —[0,P(CTMpl+ AT, Mas1) 23]
(41)

[+]
fl

P,
P,

-
[+

]

Algorithm 3.4 CaSC is defined by

a(2)A(2)Di(z) + 27 1b(2) Ni(2) = a~ (2)b™ (2) Pe(2)
(42)

and

P = CT(FZ+Fb+ +AF£+FA+)"1
P = [1:P(F{+Hb+ +/\FE+HA+)]
P.. = PITH,-

P,

3

(43)

Remark 3.3 In the definition of m*(z)m~(z) (eqn.
(17) it was assumed that m*(z) contained all the
strictly unstable roots of m(z) and m~(z) all the
stable roots. However, it may be that it is better in
some cases to include in m*(z) all the roots outside
a circle of radius R, where R < 1. This is because
the CaSC, CaML and ML controllers automatically
include a=(2) in the closed-loop pole polynomial (see
algorithms above); hence if one desired all the closed-
loop poles to be at least as fast as R, then one would
need to redefine a=(z) to exclude those roots with
modulus greater than R, and hence include them in
at(z).

4 Simulation Comparisons

The motivation behind designing new stable pre-
dictive control algorithms was to use only neces-
sary conditions for stable predictions. Such a set
of predictions would be a wider class than those cur-
rently used by either SGPC or ML and hence would
be less likely to use active inputs or to give over-
active output responses. Here, two examples will be
presented with the closed-loop responses to a step
demand in r(z) from each of the four algorithms,
SGPC, ML, CaML, CaSC. As expected, it will be
seen that SGPC drives the system very hard and
hence uses highly active inputs. ML only costs the
input activity and hence the transient errors may be
poor, though the responses are slower. However, as
it is still restricted to a FIR for A, the inputs are
still more active than they need to be. The same
problem is shared by CaML, but as transient output

o = PIL —[0,P(CT My 1+ AT, Ma D)=t

248

errors are included, its performance is generally bet-
ter though the difference can be small. Finally, CaSC
demonstrates reasonable performance with low input
activity.

In many real problems there are input constraints
and failure to take these constraints into account can
lead to instability, especially if the plant is open-
loop unstable. CaSC because it has a less exacting
end-point constraint than SGPC, CaML, and ML,
is less likely to demand input signals exceeding the
input constraints and hence will perform better and
more safely in the presence of constraints. This is
illustrated in example 1.

CaSC is less highly tuned than ML,CaML and SGPC
and hence we would expect it to give a more robust
controller. In this section we also compare the ro-
bustness of the four controllers given in this paper in
Algorithms 3.1-3.4. A measure of robustness is given
by

R_ Ni(z)a(z)
a(2)A(2)Di(z) + 27 1b(z) Ni(z)

(44)

For a closed-loop with good robustness |R| should be
small.

Remark 4.1 For convenience it is assumed in the
following simulations that the advance knowledge of
the set-point is limited to P, ie. r¢y; = 7¢1pn, Vi >
P?.

r

4.1 Example 1

The model is given by

a(z) = 1—-1627140.13272+0.21273
b(z) = 1—2727' 414272 (45)
and has an unstable pole at z = 1.4 and an unsta-
ble zero at z = 2. The control parameters are taken
to be n, = 2,A = 1, P = 3 (ny, n, are determined
automatically from n, and the plant model). The
output/input responses are plotted in Fig. 3a,b re-
spectively and illustrate the expected characteristics.
SGPC is the most highly tuned and has very active
input and output responses. CaML and ML are very
similar though as expected CaML is quicker than
ML and slightly more active. CaSC is the least ac-
tive and gives the best performance; in fact it settles
as quickly as SGPC.

The robustness |R| eqn. (44), for each controller,
is plotted as a function of § where z = €/ for
0 < 0 < n. in Fig. 3c. The same ordering is il-
lustrated with CaSC being the most robust while
SGPC is the worst. ML is slightly more robust than
CaML since CaML has a more stringent objective in

that its performance index inchides a measure of the
transient predicted errors.

Figure 4a,b,c are simulations on the same model, but,
now with input constraints

|ug) <1 and |Awug} < 0.3 (46)

It is noted that only CaSC gives rise to a stable con-
trol law. The other algorithms try to use more rate
(Fig. 4c) than is available and as a result fail. Typi-
cally a quadratic programming approach to solving a
control optimisation with constraints might be used,
however in this example ML, CaML and SGPC fail
to find a feasible solution for n. < 6 whereas CaSC
succeeds with n, > 2.

4.2 Example 2

For this example the model is

= 1-12"1 4+00127240.12273

= 1-24z-1 4081 (47)

which has one unstable zero at z = 2 and no unstable
poles - however the slowest pole is at z = 0.8. Se-
lecting the control parameters n, =2, A =1, P"* =
gives the responses in Fig. 5a,b. Here it is noted that
ML, CaML and CaSC are detuned so much that the
output responses become unsatisfactory though the
improvement in robustness over SGPC (Fig. 5¢) is
between 4 and 5 times.

The reason why the responses in Fig. 5a,b are so
slow is the open-loop pole at z = 0.8 which is au-
tomatically included as a closed-loop pole, however
as mentionned in remark 3.3 the definition of in*(2)
and m~(z) (eqn. 17)) allows for R # 1, and so here
it is prudent to choose R = 0.75 so that the pole
at z = 0.8 was placed in a*(2). The resulting re-
sponses are given in Figs 6a,b. It is observed that
the responses are now satisfactory and once again
CaSC has caused a significant improvement in con-
trol activity. The non-minimum phase behaviour of
CaSC (-0.25) is half that of SGPC (-0.55). Also
the maximum amplitude control in CaSC (0.35) is
much less than that in SGPC (0.55). CaML and ML
fall between the two. The robustness plots Fig. 6c
also show a significant improvement with SGPC upto
twice as bad as CaSC.

4.3 Conclusions

It has been illustrated that it is possible to de-
sign predictive control laws with guaranteed sta-
bility which use necessary conditions for stable in-
put/output predictions as opposed to the sufficient
only conditions of earlier predictive controllers with

guaranteed stability. This gives rise to control laws
with less active input and output responses.

One key advantage of predictive control laws is their
ability to deal systematically and optimally with sys-
tem input constraints. However, the SC problem as
specified can be infeasible, i.e. it may not be possi-
ble to satisfy constraint (6) and the input constraints
simultaneously. In this paper only a necessary end-
point constraint has been used and hence the result-
ing predictive control problem is more likely to be
feasible and therefore admit a solution. However the
system predictions are now infinite impulse responses
as opposed to FIR and thus longer constraint hori-
zons will be required.

The CaSC controllers being less highly tuned than
the SC variants in general give a more robust closed-
loop. However, the work in this paper does not con-
sider T-filters [1] or use of a Q(z) polynomial [4] to
improve robustness, though one would expect these
to offer similar benefits to each control strategy. Q
and T are essentially observer based, they do not af-
fect the nominal tuning and therefore one would still
expect a less highly tuned algorithm to be more ro-
bust. Furthermore, Q and T will have nothing to
offer to the issues of constraint handling.

References

[1] D.W.Clarke, C.Mohtahdi and P.S.Tuffs Gener-
alized predictive control, Parts 1 and 2 Auto-
matica, Vol.23, ppl137-160, 1987

E.Mosca and J.Zhang. Stable redesign of predic-
tive control Automatica, Vol.28, No. 6, pp1229-
1233, 1992

D.W.Clarke and R.Scattolini. Constrained re-
ceding horizon predictive control Proc. IEE, Pt.
D, Vol.138, No.4, pp347-354, 1992

B .Kouvaritakis, J.A.Rossiter and A.O.T.Chang
Stable Generalized predictive control: an al-
gorithm with guarenteed stability Proc. IEE,
Vol.139, No .4, pp349-262, 1992

Rossiter, J.A. and Kouvaritakis, B. Robustness
and efficiency of generalized predictive control
algorithms with guaranteed stability Proceed-
ings IEE Conference CONTROL 94, Warwick,
ppl017-1022, 1994

Rossiter, J.A. GPC controllers unth quaranteed
tability and mean-level control of unstable plant,
33rd CDC, Orlando, pp 3579-3580,1994

Output responses

Sorc
[

]

Input responses

Nominal Robustness

10 15
Sampling instants

Output responses

10 15
Sampling instants
Figure 3a,b,c
Input responses

SGPC.CaM. ML

1 258

15 2
Frequency wT

Incremental Input responses

10 15
Sampling instants

Output responses

10 18
Sampling instants
Figure 4a,b,c
Input responses

SGPC.CaMLML

10 15
Sampling instants

Output responses

10 . . 15
Sampling instants

Nominal Robustness

10 15
Sampling instants
Figure 5a,b,c
Input responses

CaSC

1 25

15 2
Frequency wT

Nominal Robustness

10 15
Sampling instants

10 15
Sampling instants

Figure 6a,b,c

"

25

16 2
Frequency wT

