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ABSTRACT

In any transform coding scheme the central operation is the
reduction of correlation and thereby, with appropriate
coding of the transform coefficients, allows data compres-
sion to be achieved. The transform efficiency and ease of
implementation are to a large extent mutually incompatible.
There are various orthogonal transforms such as
Karhunen-Loeve, discrete cosine, Haar, discrete Fourier
etc., but the application depends upon the criteria applicable
in any particular case. In this paper, we present a discrete
| approximate Fourier expansion (AFE) of stationary and
L pon-periodic signals with (theoretically) uncorrelated
cocfficients. Some mathematical properties are derived and
preliminary simulation results compare the performance of
such an expansion with that of discrete cosine transform.

1. INTRODUCTION

Transform coding is one of the well known approaches to
efficient waveform representation at medium to low bit
rates. The first step in transform coding, the transform,
represents a method of converting a signal into a form that
is more amenable to quantization. This step is typically
considered a "decorrelation step" to allow each of the
 coefficients tobe quantized independently of the others. The
efficiency of a compression algorithm is measured by it’s
data compressing ability, the resulting distortion, as well as
b by the implementation complexity. The optimal decorre-
Iation transformation is the Karhunen-Loeve transform
(KLT) ".The KLT has the property that for any integer
t M < N where M is the size of the transform and N is the size
of data vector, it packs the maximum average energy into
some M coefficients ?. Unfortunately, no efficient com-
putation of the KLT exists, and also it does not have
desirable properties of trigonometric series. Another
complication in applying KLT is that its basis functions are
not fixed but are data dependent. For stationary random
sequences there are other unitary transforms which
approach to energy packing efficiency of the KLT. Exam-
ples are discrete cosine, Fourier and sine transforms. These
- transforms are members of a large family of sinusoidal
transforms all of which have a performance equivalent to
the KLT as the size N of the data vector approaches infinity
B For continuous-time non-periodic signals, an approxi-
mate trigonometric series expansion with uncorrelated
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coefficients is briefly discussed in reference [4]. The
approximation can be made arbitrarily close by making a
transform parameter small enough. In this paper we extend
this expansion to sampled signals and we explore the
capability of coding 1-D signals and images.

The paper is organized as follows: In section 2, we present
the approximate Fourier expansion for sampled stationary
andnon-periodicsignals and weshow that theresulting AFE
coefficients are uncorrelated. In section 3, some mathe-
matical properties of this expansion will be presented, and
section 4 presents an error analysis of the expansion. In
section 5, we determine the transform efficiency by com-
puting the decorrelation efficiency of the expansion.
Finally, section 6 presents experimental results followed by
conclusion in section 7.

2. DISCRETE APPROXIMATE FOURIER
EXPANSION

For continuous-time non-periodic signals, an approximate
Fourier expansion can be expressed as [

()= i ce

k m -0

where ¢, are random variables given by:
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We extend the approximate Fourier expansion to sampled
signals as:

dt (2)

R M jkon
£(n)= 3 ce 3)
k=M
where:
. sin(-;'-) o
C = z x(n)—m—-e » k=0,t1,..,d:M (4)

Wewill verify the validity of such an expansion later. It will
be shown later that depending on the value of w,, the

coefficients c, could be periodic or pseudo-periodic. Since _

. . 2n
w, is auser defined parameter, we can write w, = T Where




L is a positive real number. The AFE for discrete signals
can now be written as:
e

~ M J L
)= 3 ce
k=0

b
sm( T) Y.
2 x(n)——=e * (6)
n = =00
where the value of M is yet to be determined.

For two-dimensional signals we can consider a separable
extension of (5) and (6). If k, and k, are integers and

)

assuming the same w, = LE along both frequency axes, then

in 2-dimensi0ns, the AFE pair can be extended as follows:

#(m,n) = 2 2_0 up T (7)

sm( ) sm( T) e.j%‘(),l,, +hp)

Chp,= 2 Ex(m n) (8

3. PROPERTIES OF THE EXPANSION

In this section, we will examine some important properties
of this expansion. We will consider only the case of 1-D
sampled signals.

a) Mean value of coefficients:

Property {x(n)} for k=0

Efat= {E otherwise ©)
Pro hd jkoo,n
" Efo}-Efxtn y 3 e, (10)

The summation term in (10) represents the Fourier trans-
sin( %)
b

except when k=0 where it has the value of 1, the property
is proved.

form of

evaluated at o = kw,. Since this is zero

b) Correlation of coefficients:
Property: The coefficients of the AFE are uncorrelated.

Proof: Consider the ideal low-pass filters of center fre-
quency ko, and bandwidth w,:

Hw)={' (" "%)“"’ << (" *%)‘”"

0 otherwise

where -mn<w=mn is a discrete frequency variable. The
corresponding impulse response is given by:

(1)

(12)

If x(n) is the input to this filter, the output of k will be:
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Jkw (n -7) Sln[

W) = i@x(t)e  — 3)
At n=0 we have:

© oo x sin{ ==
%0 = 3 x@e™™ ,(n ). & (14)

Since individual filters are non-overlapping, their outputs
¢, and ¢, are orthogonal i.e.,

E{y, 0y (0} =E{cc.} =0, for k=m (15)
Since from property (a), E{c,} =0 exceptat k=0, we
conclude that the coefficients are also uncorrelated.

(c) Periodicity:

Property: If o, = E, and L is a rational number, then the
pe ty (4 L

coefficients ¢, and the reconstructed signal £(n) will be
periodic.

Proof: From (6) itis evidentthat if the complex exponential
is periodic, then the coefficients will be periodic. If L =7

~25kn N
where P, Q areintegers, then e P willbe periodic with

period P. From (5) it can also be noticed that the recon-
structed signal will be periodic with the same period. Under
these conditions, the upper limit of the summation in (5) is
M = P. In the special case where L is aninteger (@ =1),
then the period will be L. If the signal x(n) is of finite
duration L, then the pair of (5), (6) canbe viewed asa DFT
pair of the signal x(n)f-‘i—‘—), i.c. the signal x(n) windowed
by the main lobe of the sinc function. It should also be noted
that when L is not an integer, then there will be a
"pseudo-periodicity" in the coefficients with period P = int
{ L },i.e. the coefficients within a pseudo-period P will not
be exactly equal, but similar. From this it can be concluded
that an integer value of L will always result in a computation
of less number of coefficients.

4. ERROR ANALYSIS

In this section, we will compute the mean square error
between original and reconstructed signal. The main
objective here is to evaluate an upper bound on w, so that
error does not exceed certain percentage of the average
power of x(n). We define the mean square error as:

E{jx(n)-£(m)|*}
e = 2E{%(n)|"}-2E{|
We have used the fact that E {|x(n)|*} = E {|£(n)|?} (the

proof is omitted for now). Using c,=y,(0) (output of k filter)
as proved in section (2), we get

E{x(n)c;} = E{x(n)y;©} = R, (n)

(4 =




But cross-power-spectrum of x(n) and y,(n) equals S (w)
H' (w); therefore

k+17200,

Ef)e} =5 [ SO0 0w)e b = 5 [ swean
! o -1rys

Summing along all k's, we get:
3 (k +12)0,
M » -'kmon 1 M jow - k"’)'
3 E{xinie}e” ™ = 3 j S, (w)e’
| T 4 k=-M
k-12k,
(k+12)w,,
3 ) 1 jlw — km)n
Efx(p'(m)}=5- 2 S w)e’
E= M 1y,
Using this equation and the fact that:
- E{|x(n)|’} = E{|£(n)|?}, we get after some manipulations
that:
N * 120,
-1 3 J S w1 - cos(w —keo ] dw (16)
TrMy Ao

The second part of this equation depends on » and is
generated by E {|x(n)£'(n)] } . This shows that the x(n) and
X (n) are individually but not jointly wide-sense stationary.
- i they were, the mean-square error e would be independent
of time.

t Upper bound on error: In equation (4) if w,n < x for every
f min (O,N-1) where N is the length of the signal, then from
equation (16) we have
. mon
2 sz( 2 )

1 w —kw,)n
1-cos(w —kw,)n = 2 sinz(——-——)—

for every w such that [w - kw,| < w_;
Therefore,
2 L,fon) =
€< _sin ( T) L!Sx(w)dw
 Rearranging the right hand side of the above equation, we
gt

€ < 4sin (

) f S, (w)dw

b' s4sin2( 0%) E{|x(n)|?} 17
FThis means that in order for mean square error not to exceed
joertain percentage of the average power of x(n), ®, should
chosen such that

sin’(0, N/4) « 1 (18)
he above is a worst case estimate assuming that S,(w) is
moncentrated at the end points of each integration interval
from (k-12)w, to (k+1/2)w,. If S,(w) does not vary
eciably in these intervals, then equation (16) can be
odified by replacing S,(w) by a constant in each integration
erval as

-i ‘2' s sm((u n/2) siw,n/2)] 1
T

sin{w,n/2)
2 S(w) o, [l— o ]
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sin(w,n/2) 1 ¥
e =z[1_—w? 5. 2, ©.5,00)
This can be simplified as:

sin( &i)
2
mon
2

This means that in the limit as w, tends to zero, mean square

error approaches zero in mean-square sense.

1-

e ~ 2 E{lx(m)|% (19)

5. DETERMINATION OF TRANSFORM EFFI-
CIENCY

In this section, we concentrate exclusively upon the ability
of the approximate Fourier expansion to remove correlation
from the data source. In order to compare its performance
with other transforms, we will demonstrate that the basis set
of the Approximate Fourier Expansion provides a good
approximation to the eigen vectors of the class of Toeplitz
matrices as:

' 1 P p2 L. pN-h
plp..p¢g"7"
p=| ° ], O0<p<l.
. p" o

For image processing apphcmlons vy above provides a
useful model for the data covariance matrix corresponding
to the rows and columns of an image matrix. The covariance
matrix in the transform domain is denoted by W and is given
by

W= ApA”T (20)
where A is the 2-D matrix representation of an orthogonal
transform, A" is its complex conjugate. We will determine
transform decorrelation efficiency by calculating the
decrease in inter-clement correlation in the transform
domain covariance matrix compared with that in the data
domain equivalent. To demonstrate the approach, we take
the image block size of N=8 and evaluate equation (20) for
various values of p . The decorrelation efficiency is then
givea by!®

@y

where 3 X; , is total sum of data covariance entriesand 3 Y, ,

is total sum of transform covariances. This decorrelation
efficiency was computed for the approximate Fourier
expansion, discrete Fourier and discrete cosine transforms
and the result is shown in Table 1. From the results, it is
clear that for relatively less correlated data, the performance
of the approximate Fourier expansion is better than discrete
Fourier and discrete cosine transforms, where as for very
highly correlated data, its performance is better than discreie
Fourier and comparable to discrete cosine transform.




6. EXPERIMENTAL RESULTS

In this section we present preliminary experimental results.
The performance of this transform will be evaluated using
objective fidelity criterion. An objective fidelity criterion is
the mean square signal to noise ratio (SNR,,,). Here we

define mean square signal to noise ratio as follows:
N-1N-1 2
,20 'Zo(x i)
tm =

SNR,. =y "in

2 .EO(xi, =% ,')2

Since the performance of this transform depends on the
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choice of w, = LE, this transform was applied to a length of

a speech signal and the "Lena" image, and the SNR, was
computed for various values of L. Results are shown in
Figures 1 through 4. Figures 1.aand 2.adisplay the original
speech signal and "Lena" image, whereas Figures 1.b, 1.c
and2.b, 2.cshow the reconstructed speechsignal and "Lena"
image for different values of L. It is obvious from Figures
1.b, 1.c and 2.b and 2.c that smaller values of w, produce

closer approximations. This is expected since smaller values
of w, result in finer frequency resolution, whereas larger

values of w, produce acoarse resolution resulting in a large

error. This is in contrast to discrete cosine and Fourier
transforms where the frequency resolution is determined by
the size of the data vector. Figures 3 and 4 show SNR,, of
the reconstructed speech signal and "Lena" image respec-
tively when w, varies from high to low. It is clear from

these Figures that small values of w, (and hence more

coefficientstobe computed) yield higher SNR_,,. Moreover,
the computation of a relatively large no. of coefficients
compacts the energy in first few coefficients. This was
experimentally verified by computationof32and 102 A.F.E
cocfficients of the speech signal. The variance of first 16
coctficients in both cases is shown in Fig. 5. It is clear that
the area under the variance curve of first 16 coefficients of
102-point expansion is smaller than that of 32-point
expansion. Figure 6 displays the autocorrelation of the AFE
cocfficients of the speech signal. For comparison purposes,
the autocorrelation of discrete cosine transform and DFT
coefficients is also shown in Fig. 6. It is clear that the

autocorrelation of AFE coefficients is similar to that of
DCT, where as the performance of AFE is better than that
of discrete Fourier transform.

7. CONCLUSIONS AND FUTURE WORK

Wehave presented a preliminary analysis of anapproximate
Fourier expansion of stationary non-periodic sampled sig-
nals along with some simulation results. It was shown that
the frequency resolution of uncorrelated coefficients is
user-defined which is in contrast to the discrete cosine and
Fourier transforms where the maximum resolution depends
on the size of data vector. Preliminary simulations showed
that the decorrelation efficiency of the approximate Fourier
expansion matches closely to that of DCT and, therefore, it
can be used for transform coding of multidimensional
signals.

More work needs to be done to determine the potential of
this AFE in signal and image encoding for the purpose of
compression. In addition, the relation to other expansions
such as wavelet expansions can be determined. All these
task will be explored in the immediate future.
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0.75 0.8 0.85 0.9 0.95 0.97
AFE 97.15 97.59 97.73 97.83 97.9 97.92
D.C.T 92.71 95.39 96.64 97.82 98.94 99.37
DFT 69.76 78.26 83.12 88.38 94.02 96.37

llable 1. Percentage decorrelation efficiency of transforms for various values of inter-element correlation
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Figure 3. SNR_,, for the speech signal
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Figure 5. Variance of first 16 coefficients of 32-point and 102-point approximate Fourier expansion
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Figure 6. Autocorrelation of the A.F.E, D.C.T, and D.F.T coefTicients.
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