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ABSTRACT

A method of approximating the controllability gramian,
observability gramian and the balancing transformation for
lightly damped mechanical systems is presented. the
approximation uses the special structure of the system i.e. the
positive definitness of the inertia, damping and stiffness
matrices, and the fact that the damping is small to reduce the
amount of computation considerably. Furthermore, in one
variation of the method, one can avoid the calculation of the
entire balancing transformation matrix and calculate only the
parts that are required for order reduction. In cases where the
reduced order is much smaller than the original that leads to
another substantial reduction of computation effort.

INTRODUCTION

The problem of approximating a high-order, lincar, time
invariant dynamic system by a lower order model is one of the
fundamental problems of system theory and has received
renewed interest in the last decade. Several approaches to the
problem were suggested. The method that represents the
beginning of the new era in model order reduction is the
truncated balanced realization method (Moore. 1982). In this
method a state transformation is used to obtain u realization
with controllability and observability gramians which are
diagonal and equal. This identifies the strong modes of the
system which are retained while other modes are truncated. The
method is heuristic and formally does not incorporate any
explicit criterion. However, it can be shown that it is closely
related to Ly minimization, i.e. quadratic error criterion. This
criterion is optimized in the optimal projection method
(Hyland and Bernstein, 1985) and its extensions, ¢.g. (Halevi,
1992). It should be noted that in muny cases the truncated
balanced realization method results in reduced order models
that are very close to the optimal ones. Another method that
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uses a similar criterion is the component cost analysis
(Skelton and Yousouff, 1983).

In undamped or lightly damped structures the most
common method of order reduction is modal truncation.
Mathematically this is a special case of the method of partial
fraction expansion. In general, i.e. in systeras that may be
overdamped or with large damping factor, this method does not
yield good approximations. However, for undamped systems
with disjoint natural frequencies it gives the optimal
approximation, and for lightly damped systems good
approximation where the accuracy depends on the level of
damping and the distance between the natural frequencies.

There is a considerable volume of works dealing with the
properties of the truncated balanced realization method, e.g.
(Enns, 1984, Kabamba, 1985, Moore, 1982, Pernebo and
Silverman, 1983) and its usefulness seems to be evident. The
computational aspects have also been considered and efficient
and reliable numerical algorithms for a general system were
presented (Laub et al, 1987, Safonov and Chiang, 1988).
Nevertheless the main problem in the application of the
method to structures seems to be the computational burden.
The steps that are involved in this method are

(i) Calculating the controllability and observability
gramians.
(ii) Calculating the balancing transformation and the

balanced realization.
(iii) Truncation of the balanced realization.
The orders of models of structures can be as large as
hundreds of thousands and steps (i) and (ii) in such cases may
require unacceptably long computation time. Another source of

-difficulty is the fact that due to the small dammping, the system
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dynamics contains terms which may be several orders of
magnitude apart.

Several works deal with the application of the truncated
balanced realization to structures (Mottershead and I'riswell.
1993, Williams, 1990 and 1994) and the algorithms there
exploit some properties particular to those systems. The main
difference between those methods and the method that is
proposed in this paper is that they consider the exact solution
of the balancing problem while we look for an approximate
one.

The main idea in the suggested method is to express the
lightly damped system as a small perturbation from the
undamped. The analysis that follows attempts to calculate only
the nonnegligible terms of the gramians and the baluncing
transformation and thus a substantial reduction in the
computation is achieved.

The material is organized as follows. Section 2 contains
the mathematical statement of the problem and some
preliminary results. Section 3 deals with the calculation of the
gramians and section 4 with the balancing transformation. An
example that demonstrates the use of the approximated method
is given in section 5. Section 6 summarizes the results of the
paper.

2. PROBLEM STATEMENT AND PRELIMINARIES
We consider the system

Mz+Cz+Kz=Fu
y=H,z

(n
(2)

m
where zeR is a vector of generalized coordinates and ue R

is a vector of generalized forces, i.e. forces and displacements
T

that enter the system via stiffness elements. The output yeR
is defined as some linear combinations of the generalized
velocities. The inertia matrix M is symmetric and positive
definite and for the sake of simplicity we assume that the
symmetric stiffness matrix K is positive definite as well. That
means that there are no rigid body degrees of freedom, or. if the
original system has them, our system is defined as the
deviation from the rigid body motion. The damping matrix C
is nonnegative definite and may be singular. However it is
assumed that the system is asymptotically stable, i.e. all the
solutions of

del(M32 +Cs+K)=0 3

have strictly negative real part. A complete analysis of the
conditions that M, K and C should satisfy for that may be
found in (Bernstein and Bhat, 1994). We just mention that
these conditions are mild and are practically satisfied for most
structures with C 2 0. Since we are interested in systems with
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light damping we consider the case where IICIl << (IMIl
HKII)Uz, and use the parametrization

C=0C, 4)
where 1 >> 0> 0 is a scalar and HColl is (roughly) of the order
of magnitude (IIMIl IKIN/2. We will show later that the exact
choice of o does not change the results as long as it is
sufficiently small and so is !CII.

Defining the state vector x = [zT ZT]T, the state space
realization of the system which has an order n = 2N is given

as
. 0 I 0
x={_M_1K _aM_IC(Jx+{M_1FJu (5)
y=[0 H,x (6)
Or. with obvious notation
X = Ax+Bu @)
y = Hx (8)

It is assumed that (AB.H) is minimal, i.e. controllable and
observable. The controllability gramian of the system is
defined as

v T
Q4" eABBTeA lat 9)
and it salisfies the Lyapunov equation
AQ+QAT+BBT=0 (10)
Similarly the observability gramian is given by
A T
P=[7 ¢ 'HTHeMat (11)
or
PA+ATP+HTH=0 (12)

Suppose one uses a state transformation x = Vx' then (A,B,H)

- (v-iay, v-1B, HV) and the new gramians are given by

Q =vlovhHT . p =vTpy (13)

It was shown by Moore (1982) that there exists a

transformation Vb such that the resulting gramians are
diagonal and equal

Qv =Py=diag(G} 0,20, >

e 2 0,20 (14)




Such realizations are called balanced. Let the new realization
(Ap. Bb, Hp) be

A, = Abn Ablz . By = Bbl
° Ab21 Abzz ‘ Bb:

(15)
Hy =[Hy,;  Hy,l

where the partitioning is conformal, i.e. the dimensions of
Abll, Bpl and Hpp are npx np, npx m and rx ny
respectively for some np < n. Then it is well known (Moore,
1982) that (Ap11. Bpy, Hpp) is a good (yet not optimal in
any sense) nrth order approximation of (A, B, H).

The first step in the derivation is the calculation of the modal
form of the undamped system (M, K). To simplify the analysis
we assume that the natural frequencies of the system ure
distinct. Let Q  be the diagonal matrix of the natural

frequencies and T the mass normalized modal matrix. Then we
have

TIMT=1y . TTKT=Q? (16)

Using the transformation z = TE and premultiplying ey. (1) by
TT we have

E+TTCTE+ Q=T Fu (17)

and the state space realization

T I 0 .

= + N
1-0? —orTe, 1Mt TTr [ (e
y=[0 HT]x (19)

This realization can be obtained from (5) - (6) by the state

transformation
T 0
\% =l: :' (20)
0T

and using the relationships (16). The common assumption of
proportional damping will make TICT diagonal as well
however we do not make it and TTCOT is considered to be a
full symmetric matrix. An important observation which is a
consequence of the stability of the system is that all the
diagonal elements of TTCOT are strictly positive. In the
sequel we will develop approximate expressions for the
gramians and the balancing transtormation that take into
account the special structure of the system and in particular the
fact that o is small.

As the last preliminary result, we present the following two
lemmas. These results are very simple (and probably might be
found, one way or another, in linear algebra texts) but are used
several times in the derivation.

Lemma 2.1: Let L} and Ly be two symmetric matrices and

let D be a diagonal matrix with distinct nonzero diagonal
clements. Then L] = DLy (or Ly =L3D) only if Li and Ly
are both diagonal

Proof: the (i,j) and the (j.i) elements of L1 are given by

Li(i.j) = DiLa(i.j)
Ll(i.i) = D_.L:(],l)

But L;(ij) = Ly(ii). La(ij) = LpG.i) and D;  Dj. Hence
Liijy=0 i j and the same holds for L,.

Lemma 2.2: Let D be a diagonal matrix with distinct nonzero
diugonal elements. Then the only solution of

L+1T=0
DL+LTD=0
is L=0.

Proof:  The (i,j) elements of the equations are

LG.,j) + LG.i)=0
DiL(i,j) + DjL(j.i) = 0

Since Dj; D; the two equations are independent and the

trivial solution is the only solution. The (i,i) elements are zero
because of the skew symmetry of L.

3. CALCULATION OF THE GRAMIANS.

3.1 Controllability Gramian.

We start with the realization (18) - (19) which we write as

X=(A, +0A|)x+Bu (21)
y = Hx (22)
where
0 1 0 0
AUZ 2 g Alz -
-Q° 0 0 -aC,
(23)
B= 0 H=[0 H]
=g} H=
and
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C,=T'c,T, F=T'F , H=H,T (24)

The Lyapunov equation which determines the controliability
gramian Q is

(Ay +0AQ+Q(A, +0A) +BBT =0 (25)

Notice that the gramian exists only for asymptotically stable
systems. Ay is the matrix of the undamped system and all of

its eigenvalues are on the imaginary axis, i.e. it is not
asymptotically stable. Therefore the Lyapunov equation for «
=0 does not have a solution. Since we assume that the damped
system is stable, a solution exists for all a>0. To approximate

the solution for small o we use the following structure

-1
Q=0 Q +Q (206)

Substituting it into eq. (25) and equating like powers of o we

1

get for o' and o

A,Q +QAT =0 (27)

AQo+A1Q +Q,AL +QAT +BBT =0 (28)

We partition Q; and Q, as

41 9p2 q; 12
q12 92 ¢ qsz 9>
Then eq. (27) can be written as

T 2

|:CJ12 +4qp2 4 ~q; Q2
ol i
q; -Q%q; -Q%q;5 —qLQ?

From Lemmas 2.1 and 2.2 it follows immediately that
q12 =0 and that qq and qp are diagonal. Using the fact that
q12 =0 eq. (28) can now be written as

_ T -
412 +0dp q;—g,Q

=0
- 2 1 T2 = = =T
4, —Q7q; -Q7°q)13 - q1Q7 - Cyqa ~¢2C, + FF

(29)
The (1,1) block implies that ¢, is skew symmetric, which in

turn implies that the diagonal elements of qull +aszQ2

are zero. So by looking at the diagonal entries of the (2,2)
block we find that

(42)5 = (F_FT)“ 12(Cy )y (30)

This completely determines qp. q;, which is diagonal as well,
is given by

(1) = (425 /©F 31)

To simplify the notation in the forthcoming derivation we will
use

fEFF ) o =Gy (32)
Substituting qsz =-—q;, into the (2,2) block we obtain

51292*92617 =60q2 +qZEO—FFT (33)

or
(@125 =(Cod2 +42C, ~FF ) (0] ~0]) (34)

A more explicit formula is
(@12 =[(Eo ij ((42)ii +(q2)jj)—(ﬁT)ij]/(m]2 -o}) (35)

Since qpy is skew symmetric only the upper triangular part
(j>i) needs to be calculated. Eq. (29) does not fully define
q, and ¢, and there are infinitely many diagonal matrices

satisfying this equation. However, to minimize the error of our
approximated solution we set G =q, =0. This point will

be discussed later.
To summarize, the solution algorithm is as follows

1) Calculate the diagonal ¢ from eq. (30) (N elements)
2)  Calculate the diagonal g1 from eq. (31) (N elements)
3) Calculate the skew symmetric q)p

(N-(N-1)/2 elements).

from eq. (35).

Q is then given by

-1 -
o
QS[ e } (36)
4z @ q;

If one is interested in the gramian of the original system (5)-
(6) then the transformation is qp — quTT. q2 - quTT
g — T(_hzTT and all the zero submatrices remain unchanged.
Also the skew symmetry of ¢q;, does not change by the

congruent transformation.




;
3
?
i
]

3.2 Error__Analysis

We can analyze
approximation (36) from two points of view: equation error
and solution error. In general the equation error is

the error associated with the

E=a(A;Q, +Q,A]) (37)

Assuming that q; and q, are nonzero we get

0 41.C
E=(X.|:_. —T __(112 g :| (38)
Coq12 C(nql +q2C0

The choice G, =0 (which implies q; =0) minimizes the
norm of the error. A more meaningful approach is to look at
the error of the solution. For analysis purposes we add one

more term to the series representation of Q.
Qz07'Q+Q +0Qq (39)

The coefficient matrices of @’! and a® are made zero by the
choice of Qp and Qj. Partitioning

Qu =|:.q']1‘ {]2:| (40)
412 92

and equating the o term to zero we get (assuming for the

moment general ﬁl and Gz).

|i 6112+€l;rz QIZ_QIQ:—GIZEU

o detde o el dete o g
qz_Q‘qx"Coq;rz _Q‘qlz"q;r:QZ_C..(l:_q:(n]

4, is skew symmetric hence the diagonal of
—qulz—d}‘zQz is zero. The diagonal terms of C, are non
zero, therefore @, must be zero. This leads to two

conclusions. First, that the choice q; and G, both equal to

zero which was made earlier is justified. Secondly, G, = 0
makes q;, zero as well so the nonzero terms of order o reside
only in the (1,1) and (2,2) submatrices which according 1o our
calculation have order of 1. The error is therefore two order
of o magnitude smaller. Actually g, and §, can be
calculated except the diagonal elements which are less
important since they are added directly to terms of order al.
Hence one can find an even more accurate approximation where
the error is of order a2,
3.3 Observability Gramian.

Similarly to what we did in the previous subsection we
write P as

P=alpl +Po (42)
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and the Lyapunov equation becomes

(oc‘lP1 +P,)(A, +aAl)+(A(, +0tA,)T(oc‘1P1 +P0)+HTH =0

(43)
Equating like powers of o we get for al and o®
T
PIA()+A()P1 =0 (44)
P A, +P A +AYP, + AT +HTH=0 (45)
As before Py and P, are partitioned as
P1 Pn2 P P
Pi2 P2 Pr2 P2
Lq. (44) becomes
2 2 — 2=
-p1Q’ - Q°pf, B~ QD =0 (46)
B - P00’ B2 + P12 = p2Co— Copa +H'H

and as for Q) we get that pj, =0 and that p; and p, are
diagonal. The partitioned form of eq. (45) is

2 2T = 2—
[‘PIQQ -Q%pyy P —£p,; }_0 47
- - "2 =T = = = T T
p1 —P2Q2 P12 + P12 —P2Co ~Cop2 +H H
From the (1.1) block it follows that ﬁI?_Q: is skew
symumetric 5o that the diagonal of p;, is zero. Hence
Py = hi/2ci (48)

where hi is the (i.i) element of ET}_I. p, is obtained

immediately from
(py)ii = ©Fh; /2¢; 49

Premultiplying the (2.2) sub block of (47) by Q2 and noting
that Qzﬁirz = —'[31202 we get

QP - P Q7 = QZ(PQEU +Copy ‘ETH) (50)

Hence for i#j ((py2); =0)

(P = m?[(ﬁo)ij ((Pz i +(P2)jj)*(HTH)ij]/(°’i2 -o}) (51)

P12 is not skew symmetric however the (ij) and (j,i) terms

2

differ only in the ®{ term that multiplies the rest of the

expression so the amount of calculation is not far from that of



the skew symmetric ¢q);. Using arguments similar to the
controllability gramian case we set p; =P, =0. The solution
algorithm for P is similar to that of Q and involves eqs (48),

(49) and (51), and it is given by
-1 -
~|% P1 P2
P= T o
P12 & py

4. BALANCING

In section 3 approximate expressions were derived for the
controllability and observability gramians for the case of
light damping,
those matrices exactly using any standard method to get the
balanced realization of the system. However, the motivation
for the approximations was to reduce the amount of
computational and to continue that we present now an
approximation of the balancing transformation.

ie. o << 1. At this point one can balance

As a first step we employ the state transformation

Q' o
Vo = o (52)
where
¢ 1/4
Tp; = diagd| = (53)
h;
Then, from the expressions for 4y 4y Py and p, we get
P 174
Ty = diagq] -+ (54)
hy
-1 T T
a”'X Q7 T, Pyl
Py, = T b_ll 12 1p1 (55)
TblPIZQ a X

(fih;)! "

2¢;

E=diug{

} (56)
At this stage we already have a crude approximation for the
balanced system, since if we neglect the ¢ terms as compared
to ol Q,, and P, are diagonal and equal. Order reduction
based on this transformation will be exactly the same as modal
truncation where the elements of Z] indicate which modes

should be retained, and the 'new’ C,, consists of the columns

and rows of those modes.
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The second step is to consider the transformation

v, = I+4a’LiL, oL, o
b2 al,  I+a’LyL 67
For a<<l, Vg7 is given by
vilo I+4+a’L,L, ~aL,
* —aL,  I+4a’L,L, (58)

where the deviation from the identity matrix in the product is
of order a*. Applying this transformation we get

o 'T+aE,

Ehz - le_ ZLT; +azE|z
- -L,2+a’ET,

Qe {q,ﬂ o'L+aE,

(59)

a”'Z+ak,

b, = ) P +ZL, +LT221+(12E,2 (60)
T pL+LIZ+3L, +o’E],

o'E+aE,
where

- 1= el = e =
G2 = QTG To) . P12 =Q Ty Bra Ty (61)

and E, E . E . El.ﬁz and filz are unknown matrices.
These matrices cannot be calculated since earlier in the
deviation we neglected terms of order o in the diagonal sub
blocks of the gramians. Our goal now is to nullify the terms of
order a®. That leads to

LZ+28=q;, (62)

Ly +LYE=-p), (63)

Subtructing (63) premultiplied by X from (62) postmultiplied
by I we get
LI -2, =§,2+3p, (64)

The diagonals of both sides are identically zero and the off
diagonal terms of L1 are given by

(L) :[Zi(l.)ll)ij +Zj<al2)ij]/(z:|; ) (65)
Similarly we obtain
_Is .5 - 2 g2
(L2 '[Zi(Pll)ji +ZJ(Q12)ji]/(2j -Z) (66)




With this choice sz and Q,, have identical diagonal of

1 and the rest of their elements have order o or o2.

This is a good approximation of the exact balanced form. The
diagonal elements of Lj and Ly provide more degrees of

freedom however it is not clear how to use them.

order o~

If one is willing to trade accuracy for simplicity, a simpler
transformation is

A~ 1 Q.Ll 67
Vb, = oL, I (67)
-1 I —al,
Vor =) o1 I (68)
2

where the deviation from identity in the product \A/bQ\A/b‘QI is of

order o instead of o4, The derivation in equations (59) -

(66) remains unchanged so there is no loss of accuracy in that

respect. The advantage of this transformation becomes clear

from the following argument. Let V|, be the exact balancing
transformation and partition it and its inverse as

2|

Ve ={Vi Vo] . vgl=] ) (69)

Py

where V| consists of the first ny columns of V}, and {71 of

the first n. rows of Vy'. Then the reduced order model which

is obtained by truncating the balanced realization, as
explained in section 2, is given by

Ap1=ViAV, ; By =V,B; Hg =HV, (70)

So only \71 and V; are required for the order reduction
process. Considering Vb2 and (/‘;21 that means that only N,
columns and rows of Lq and Ly have to be calculated. That
requires the calculation of the same columns and rows of
qy; and Pj,. In cases where N; << N such approximation
leads to a sharp reduction in the required computation.

§. EXAMPLE

We consider the (synthetic) system in figure 1 with mj =
1, my =2, m3 = 3, equal spring constants k =1 and equal
damping elements C = o the input is the force f and the
output is defined as the velocity of mp. In matrix form
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1 00 2 -1 0

M=[0 2 0|, K=|-1 2 -1,
00 3 0 -1 2
1 00 0

C,=|0 0 0| .f=|1| . h=[1 0 0]
0 0 1 0

Notice that the input and the output are noncollocated and that
the damping is not proportional. The errors in the
controllability gramians was calculated as follows:

_ HQexacl _Qappnz
T Ry

. nPexact - Papp |2
T P,

and are depicted in figure 2 for 0 < & < 0.2 where for o = 0.2
the damping ratios were about 4 percent. In this upper value
the assumption @ << 1 barely holds but the approximation is
still very accurate with relative errors in the vicinity of 2
percent.

6. SUMMARY

A method for approximating the controllability gramian,
observability gramian and the balancing transformation for a
lightly damped structure was presented. The actual structure was
presented as a small perturbation from an undamped system by
means of the small parameter «. Then in the analysis that was
carried out, high powers of o were neglected and as a result the
calculation was drastically simplified. For example, for each of
the gramians only N + N(N - 1)/2 terms need to be calculated,
and an explicit formula for each one of them exists. This
should be compared to a number of operation of order (2N)3 in
the general solution.

The entire derivation hinges on the modal form of the
system and 'fluctuate’ about it. As a result the mathematical
steps do not obscure the physical insight into the system. As a
matter of fact there is a clear physical interpretation, that was
not given as a result of space limitation, to the structure of the
gramians and to their dependence on « (a‘l‘ o etc.).

For the simplicity of presentation and because of space
limitation only the case of velocity output and distinct natural
frequencies was considered. More general results were obtained
using this method and will be reported in future publications.
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Figure 1 : The system in the example.
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Figure 2 : The relative errors Eq (solid) and Ep (dashed)
Vs O .
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