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Abstract

This paper presents a generalized sufficient con-
dition which guarantees stability of analog neu-
ral networks with delays. The condition derived
using a Lyapunov functional describes the rela-
tion between the neuronal gains and the network
weights. It can be used to assess stability of the
neural networks with multiple time delays hand-
ily. The condition is an extension of the results
presented in [1].
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1 Introduction

Theoretical study of neural dynamics and hard-
ware implementation of artificial neural networks
has advanced rapidly in the recent years [2]-[7]. In
particular, with advances in very-large-scale inte-
gration (VLSI) technology, electronic implemen-
tations of analog neural networks have created a
path leading to neural computers. However, many
problems such as switching delays, integration
and communication delays in the hardware imple-
mentation have arisen, which deteriorate dynamic
performance and lead to instability of hardware
neural networks. Study of neural dynamics with
consideration of these problems becomes more im-
portant in order to manufacture high quality mi-
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croelectronic neural networks. The time delay is
a key issue which causes instability of hardware
neural networks [1, 4, 8]. This problem is intro-
duced as follows.

The dynamic equations for analog neural
networks without delay can be described as fol-
lows (1, 4, 8]:

di; U; N
i—= ===+ ) Ty fi(u(t), i=12....N

dt R; vt
(L.

where the variable wu;(t) represents the voltage
on the input of the ith neuron. Each neuron is
characterized by an input capacitance C;, a de-
lay 7, and a transfer function f;. The element
of the connection matrix, Ti;, has a value 1 /Rij
when the noninverting output of jth neuron is
connected to the input of ith neuron through a re-
sistance R;;, and a value —1/R;; when the invert-
ing output of jth neuron is connected to the input
of ith neuron through a resistance R;;. The paral-
lel resistance at the input of each neuron is defined
as R; = (3°;|Ti;])~". The circuit equations for a
network of N neurons with delayed outputs cou-
pled via a resistive interconnection matrix are the
same as equation 1.1, with addition of delays 7;,

which are described as follows:

N

du; Uj X :

i~ = + D Tijfilui(t—13)),i = 1,...,N.
J=1

(1.2)

Ydt T R




When the connection matrix T = {13} is
symmetric, it is well known that system 1.1 is al-
ways a dynamics in gradient convergence. This
has been the basis for applications of the model
to the associative memory and optimization prob-
lems. However, when T is symmetric and pro-
vided the neuronal gains (defined as a slope of
fi(u) at u = 0) are sufficiently high, system 1.2 is
not convergent necessarily. Divergence may hap-
pen even if the deiays 7; are very small. In partic-
ular, even if the delays are all the same (rj=1)
across the network, the dynamics of system 1.2
is still not convergent as shown by Marcus and
Westervelt [1]. An extensive analysis of the effect
of one common delay and the stability of system
1.2 has been conducted in [1], especially consider-
ing network architectures. In [4] different possible
delay values are allowed across the network and
the network dynamics, in particular oscillations,
are considered instead of fixed point stability. The
time delay affecting the networks’ learning has
also been studied in [4].

Marcus and Westervelt, have investigated the
case in which C; = C, 7; = 7 and T are sym-
metric in system 1.2. By rescaling time, delay
T T = R
and Ji; = RT;;, are obtained. Neglecting ’ with-

and Ti; the new variables, ¢ —
out losing the generality, linearizing f;(u;(t — 7;)
around the equilibrium gives:

d’ll,,'
dt

N
= —1; + Z,[)’i(]ij’lllj(t - 7)
i=1

(1.3)

where £3; is the gain. It is convenient to repre-
sent the linearized form of the N delay equations
,N) along the N
eigenvectors of the connection matrix Jij

as amplitudes z; (i = 1,2,...

dx;
dt

N
= —x; + Zﬁi/\imi(t — T)

Jj=1

(1.4)

where ), is the ith eigenvalue of matrix .J. Denot-
ing A,.in and Amaz as the minimal and maximal
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eigenvalues of matrix J respectively, the following
results can be obtained using the characteristic
equations.

() If g < T\mITI’ ﬁi > —Apin(W? + l)% and w =

—tg(wT), § <wr < 7, the origin is stable.
1

(2) It B > = or 6 < o and A <

1
_/\min(w2 + 1)2> w
the origin is unstable.

—tg(wt), § < wr < T,

B

is a pitch-

- A’I"{lI
. . 1
fork bifurcation, whereas 8 = —/\mm(w2 +1)7,
w = ~tg(wr), § <wr < 7 is a Hopf bifurcation.

In this paper, a Lyapunov functional [9] is
employed to investigate the stability of the con-
tinuous Hopfield neural network with time delays.
A generalized sufficient condition that guarantees
stability of analog neural networks with delay is
presented. The condition can be described as: the
equilibrium of analog neural networks with delay
is globally asymptotically stable as long as the
product of the two-norm of connection matrix and
the neuronal gain is less than 1. This condition is
an extension of the results presented in [1].

2 Condition for stability of neu-
ral networks with delay

Consider the following autonomous time delay
equation:

2(t) = f(uy), (2.1)

where f : C — R™ is completely continuous
and solutions of equation 2.1 depend continuously
on the initial function. We denote by a(¢) the
solution through (0,¢), ¢ € C and C denotes
C([—7,0], R™).

ItV :C — Ris a continuous functional as-
sumed as a Lyapunov functional, we define the
derivative of V along the solution of equation 2.1
as follows:

dv(e)
dt

l(s) = Hmsup %[V(mh((b)) -V(#)]. (2.2)




Lemma 1: Suppose V : C — R is continuous
and there exist nonnegative functions a(r) and
b(r) such that a(r) — co as r — oo
89 < _woon,
(2.3)
then the solution = 0 of equation 2.1 is stable
and every solution is bounded. If, in addition, b(r)
is positive definite, then every solution of equation
2.1 approaches to zero as t — 00.

Based on the above lemma, let us consider
the continuous Hopfield neural networks with de-
lays. Assuming C; = C and R; = R, equation
system 1.2 can be rewritten as:

a(|6(0)]) < V(¢),

du;(t)

N
=5 = —w()+RY T f(u(t=175). (2.4)

=1

RC

Using the transformations ¢’ = 4, 7/; = %,
Jij = RT;;; ;T = 1 and neglecting /, equation
system 1.2 becomes:

du;(t)

N
o = wt)+ D Jiifilui(t —15)).  (2.5)

j=1

Denoting a two-norm of matrix T = {Ti;}
by ||T|l2, (defined as [Amue(TTT)]2) and B =
max{f1, Bz, ..., On}, the main result is as follows.
Theorem: If §||J||2 < 1, then the equilibrium of
system 2.5 is unique and asymptotically stable.

The proof is given as follows:
(i) The equilibrium of system 2.5 is unique:

Suppose system 2.5 has a non-zero equi-
librium X° = (X?, X9, ...,X\)T, then
X =Y Jifi(X9), i =1, 2, ...,N. Let
Y° = (YIO’ Y20’ 'vYI(\;)Tv Yi“ = fi(X?),i =
1, 2, ...,N, then X" = JYyY X/Tx0 —
XOTJy0, | X2 =< |XO|J||2]Y"| and Y7 =
|F(XD < B;1XT) < BIXT), therefore

Y0 < g1 x°

1 X2 < Bl X2

which results in §||J]]2 > 1, contradicting with
the assumption. Thus |X° = 0 and the origin is
the unique equilibrium of system 2.5.
(ii) The equilibrium of system 2.5 is asymptoti-
cally stable:

Let ¢ = (¢1,02,---,0n)T, a(r) = r? and V
functional be:

N ) N 0
V(@) =D di0)+ ) [ ¢6)ds,  (2.6)
i=1 =1

—T;

a(r) tends to +oo as ¢ — oo, and obviously
a(|¢(0)]) € V(¢). Differentiating the V func-
tional with respect to equation 2.5, we have:

av (ue)
dt

N N
= 2 Z ’ll,i(t)fl,i(t) + Z “1,'2(t)
i=1 i=1

N
- Z ui(t —7;)
i=1 N
~(le@P + 3wt - )
i=1

N N
2D wi(t) g fi(ui(t — 75)).

i=17=1
(2.7)

In equation 2.7, let n = (fi(u(t —

™)), fa(ua(t — 72)),..., fn(un(t — 7v))T and
U) = (ui(t),u2(t),..., un(t)T, then the
second term in the right-hand side of equation
2.7 becomes UT(t)Jn. Suppose it is positive,
based on the Cauchy inequality, we have:

N = 1
il < B(D ke~ 7))’
i=1
and
N 1
UT(6)In < BTNl (Do udt —m))?, (28)
=1
then

dV (ug) 2 N 2
Bl Sl A 204 _ o
= < =(lu) +i2:1u,(t 7))




+2ﬁ|u<t)|||an(f:u?<t )k
< (- B

+(B|1J1]2 - 1)(%%@ =)
< (- AP (2.9)

Define b(r) as (1 — G||J]|2)|7|?, according to the
lemma, the equilibrium of system 2.5 is asymp-
totically stable.
Corollary: If the matrix J is symmetric, Aoz
denotes the m.ximum of absolute eigenvalue of
matrix J and G| Amaez| < 1, then the equilibrium
of system 2.5 is unique and asymptotically stable.
An example is given as follows to show the
abo. ¢ corollary:

0o -1 -1
J=]1-1 0 -1
-1 -1 0
The eigenvalues of matrix J is Ao = %, and

A3 = —1.
then the equilibrium of system 2.5 is unique and

According to the theorem, if § < 1,

asymptotically stable with respect to arbitrary
delays.

3 Conclusion

This paper presents a generalized sufficient con-
dition which guarantees stability of analog neural
networks with delays. The condition can be de-
scribed as follows: the equilibrium of analog neu-
ral networks with delay is globally asymptotically
stable as long as the product of the two-norm of
connection matrix and neuronal gain is less than
1. The condition can be used to design stable
analog neural networks with delays in practical
applications.
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