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Abstract. In this paper, an approach for estimating biological state and parameter variables
and for controlling a nonlinear wastewater treatment process is developed. Combination of a
nonlinear estimation procedure and a multivariable reference model control law provides
favourable performances for tracking a given model-based reference model despite disturbances
and system parameter uncertainties. Convergence of both estimation and control scheme are
demonstrated via Lyapunov’s method. Simulation study with additive measurements noises
and parameter jumps shows the efficiency and significant robustness of the control

methodology developed for this nonlinear process.
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1. Introduction

In recent years, the application of modern adaptive control
theories to biotechnological processes received an
increasing attention. A major difficulty for controlling
microbial processes lies in the scarceness of on-line
measurement of some key biological variables.
Furthermore, control design come up against the
nonlinear and nonstationary character of the process
dynamic behaviour. Therefore, identification of several
nonlinear parameters, often time-varying, is not
straighforward. To overcome measurement difficulties,
joint state and parameter estimation procedures were
applied for biological processes, e.g. least-squares
observer!, observer-based estimator? or extended Kalman
filter3. Controlling a partially unknown and nonlinear
system most often requires adaptive methods. Control
technics based on linear approximation of the nonlinear
system, may provide satisfactory results?. But for highly
nonlinear processes, conventional feedback controllers
must be detuned significantly to ensure stability.
Therefore, performance is often severly deteriorated. The
use of control strategies based on direct exploitation of
the nonlinear structure of the process model can be
expected to yield significantly improved performances.
Several applications in the field of bioprocesses have been
reported in the literature, e.g. nonlinear control schemes
based on standard pole placement’, predictive® or model-
reference’ type arguments.

In this paper, a method for controlling adaptively a
continuous flow wastewater treatment process is
developed and simulated. The control approach consists of
a model-based estimation algorithm combined with a
model reference adaptive control method. This type of
approach, originally introduced by Duarte and Narendra8,
results in a combined direct and indirect adaptive control
scheme. The estimator provides estimates of the
xenobiotic substrate concentration and of the time-varying
reaction rates which serve in the control law. The
estimation error model based on the Narendra’s error
model? is obtained by an extended linearization technique
using Kronecker’s calculation. The appropriate selection
of adaptive gains in the state estimator results in the error

system with prescribed stable eigenvalues. The control
objective is to track both biomass and pollutant
xenobiotic substrate residual concentrations at prespecified
trajectories. The desired profiles are generated by a
reference model of the same type as the system model.
The provided convergence proofs of both estimation and
control issues so as the parameter estimator equations are
based on Lyapunov’s method.

The paper is organized as follows. In §2, process model is
briefly described. The next section reviews the joint
adaptive state and parameter estimation method. The
structure of the multivariable model reference adaptive
control law is developed in §4. Finally, in §5, a number
of features of the proposed adaptive control scheme are
discussed and its efficiency demonstrated via simulation
study. A general conclusion ends the paper.

2. Process model

The biological system studied is a continuous flow
wastewater treatment bioreactor containing a mixed
microbial population (X) growing on a blending of two
types of substrates, a xenobiotic one (S) and an energetic
one (E). Combination of growth with dilution governs
the change in concentration of these main biological
variables. Mass-balance considerations give the following
nonlinear differential system

dXp/dt = (Hsp* Uep)X p - Xptt1 (£) - Xpit(1)

dSpldt = - Rs plsp X p- Spu1(f) + (S ™-Sp Jua(e)

dEp/dt = - Re pp X Epui (1) + (E™-EpJux(f)
with

‘lsp =#S(spl Epl ep)’ uEp =I1E(Spt Ep/ ep)

0

@

The energetic substrate concentration E, and the biomass
concentration X , are the measurable output signals of the
plant. The xenobiotic substrate concentration S, is

unavailable on-line, The dilution rate (1) of a solution
without susbtrates and the dilution rate (u;) of a solution
with both substrates at a concentration S "=E™, serves as
the control variables of the plant!0. The specific reaction
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rates models 4, and fg, are nonlinear functions of the
states Sp, X, and several constant kinetic parameters
noted by the parameter vector 8,6 R™. Rs and Rg are
known yields constant coefficients.

3. State and parameter estimation

The model-based control law that will be presented
afterwards should incorporate real-time information on the
state S, and parameters s, and Ug. However,
measurements of neither variable is available.
Consequently, an adaptive state and parameter estimator is
needed. Instead of estimating the reaction rates directly as
time-varying entities, they are reconstructed on the basis
of their analytical expression via estimation of the
parameter vector 8,. This viewpoint forms the basic idea

of the underlaying adaptive estimation procedure.
3.1 Preliminar transformation

For observability purposes, a preliminar useful change of
coordinates is necessary. It consists of decoupling the
kinetic part of the unmeasured states from the specific
reaction rates2. This is generally possible for continuous
flow processes since linear relations link the reaction rates
and the different biological variable dynamics. In our case,
the following auxiliary state

ZP=XP +SP/R5 +EP/RE (3)

have a dynamical behavior described by
dZ,/dt = - Z, (w3 () +up(9)) +S "(URs+1/ReJur(®) (@)

which is independent from parameter vector 8,. The new
state vector is denoted §I,T= (2, X,E, }

3.2 Estimation reference model

As a state estimator the following model is used

dZJdt =-Z ur+ua)+S "(1/R s+ 1/R g)up+ a1 () exe+ o (t)€ee
dX Jdt = (et tge)X p-X plur+uz) +Pr(Oexe+Pr (O ece o)
dE Jdt =-Re ftge Xp~ Epy H{E™-EpJug+71 (1) €xe+12(£) e

where &.=X.-X, and &.=E~E, are the output
estimation errors. The specific reaction rate estimates
;ts¢=us(Ze,Ep,9,) and M:;@(Z,,Ep,ee) have the same
structure as in the original system model, but substitute

the unknown state and parameters by their respective
estimate. The goal in estimation design is to choose

appropriate time-varying gains oi(f), Bi(f) and ¥(¢)
(i=1,2) and a parameter adjustment law of 6, in such a
way that, when f—es, the limits &.=Z,-Z,~0,
Eys=Hse-Hsp— 0 and &g =plge-pigp0 are obtained.

3.3 Estimation error equations

The structure of the error system is demonstrated and
described with more details in Zeng et al 11. An extended
linearization technique using Kronecker’s calculation
yields to the linear error system of the form

de/dt =AEc+BeEg, ©®

where
eX=[ €z ex. €. ) €a=0:6p

- (u+ug) 0y a2 [ 0 ]

Y
®

A=

Axe P B | B<| Bx.
Aee M7 Bg.

Defining the state vector §,T=[ Z X, E, ], the elements of
matrices A, and B, are given by:

Axe=X O Hs+itg)

> AE! =X —X-RE”E")'
P 74

oz

€R
&6,

&)

& .6

Bx,:,(Mﬂlz_)‘ ,BFXQ(L%)'
0 g6 0 lge

eRP™(10)

3.4 Selection of estimation gains

The first issue of estimation design is to choose the
appropriate expression of the adaptive gains a(f), B{f)
and 7;(f) (i=1,2) in order to stabilize the dynamical feature
of the time-varying matrix A,. This task is realized by
imposing via state feedback desired stable eigenvalues of
A.. The following adaptive gains

o) =- /—‘-1—[171172- (um+uz)Xpr1+p2-ur-u2)], () =0

Ee
B1 (V= ~(p1+p2-ur-uz), B2 (=0, an
1 =0, (= -p3

lead to a characteristic polynomial of the form

det (pl - A.)= (p+p1Xp+p2Xp+P3). P1» P2, P3 >0 (12)

which roots are located in the left-half of the complex
plane.

The remaining problem is to find a suitable parameter
estimator resulting, together with error system (6), in the
convergent estimates of the xenobiotic substrate and the
time-varying reaction rates. This is realized via
Lyapunov’s method. Consider the following parameter
adjustment law

degJdt=-T.BIP e, (13)
where P, and I', are symmetric positive-definite matrices.
Let the quadratic function V, be a Lyapunov function
candidate of the form
_ T T p~1

Vel€erEge) = & PebetEg T e Eqe (14)
Evaluating the time derivative of V, along the trajectories
of (6) and (13) we obtain

dVdt = el{ATP 4P A Je. (15)
Since A, is asymptotically stabilized, the solution of the
matrix equation

AlPAPA=-Q. <0

16)
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where Q, is any symmetric positive-definite matrix,
yields to a symmetric positive-definite matrix P,. Hence
we have

v jdt=-10.6, <0

then, according to Narendra’s theorem!2, the following
conclusions can be obtained.

(i) If B, is persistently exciting, i.e.

T+

V1>0,37,5>0 I T B(dt 211 a8

T

the error system (6) with (13) is uniformly
asymptotically stable, i.e. we have when —eo, £,—0 and
£g.—*0. It means that we can estimate the unknown
constant parameters vector and hence the time-varying

parameters, i.e. sl= [ &us, &g, 10

(ii) In the case that the former condition is not satisfied
the error system (6) and (13) is uniformly stable, i.e.when
o0, £,~+0 and £4,— some constant vector. However, if
the state vector &,(f) is persistently exciting, i.e.

T+
V£>0,317,5>0 I &) ElOat 201 (19)

T

the time-varying parameters can be estimated, i.e. &,—+0
albeit the constant parameters are not directly estimated.

In each case (i) and (ii), estimation of the time-varying
specific reaction rates, which is our design, is ensured.
The estimate of variable S, is directly reconstructed using

relation (3) with the auxilliary state estimate Z,.
4. Adaptive multivariable control

The control objective is to regulate and track the biomass
and pollutant substrate concentration of the plant (Xp, S,
respectively) at desired values (X, S, respectively) by
acting on the control variables u;(r) and uy(¢). In deriving
the control law, it is first assumed that all the necessary
process variables can be measured. Then the inaccessible
variables are substituted by their estimates provided by
the previous estimation algorithm.

4.1 Model reference control

The reference model that is used to generate the reference
inputs r1(?) and ry(¢) for u;(r) and ux(r) is based on the
plant model and described by the following nonlinear
equations

dX Jdt = (Msectllpc)X - Xcr1(0)- Xoro(t)
dSc/dt = -RsptsX,; - Scri(DHS ™-ScJrat)
dE /dt = -Repig X, - E.ri(VHE™E 1)

20

The reference reaction rates are determinated on the basis
of the biological knowledge about the process using the
same structure as the plant, i.e. s =p(S,, E., 6.) and
Hoe =Me{S,, Eq, 6.). In order to eliminate the control errors
despite of the variations of process parameter, the
following adaptive control law is used

an.

u (D=1 (Dex+ya(D+r1(D+r2()+6, () V1))

w(D=a(N)esc+ya () +ra)+5(7)

where £.=S.-Sp and &~=X.-X), are the output control

errors. ¢i(f), Yi(1) and §(r) (i=1,2) are adaptive gains to be
suitably choosen.

4.2 Control error equations
The adaptive feedback gains given by the expressions

O1(0= - (B ¥ 6ig)
&)= - [6us(Sp+RsXph6us, Sp] 1™

with equations (20), (21) and (22), lead to the linear
control error system of the form

(22)

dejdt =A e+B. ¥ 23)
where

&T—_— [ ex c £St ], em‘::llsc-l.lsp, E”E‘,=l“a-“lﬂ7 (24)
Msctlpc+Xpr-(r1+72) 0

A= m m (25)

Rsttsc+Sppr1-S™ @2 S @r-(r1+r2)

X, 0

B=|"" .| ¥T=lwvi ] (26)
Sp -S

A necessary stability condition of error system (23) is
that the dynamical matrix A, is stable. The following
adaptive gains

O1(0=- (Usctliec) X pr 02()= 92> 0 @n
lead to a time-varying characteristic polynomial given by
det(pl - A;)= (p+ri+r)ptr1+ra+S™py)

Since ry, rp , §™ and ¢, are positive, the roots of (28) are
stable eingenvalues of matrix A..

(28)

The remaining problem is to determine a suitable
adjustment law of ¥ () using the observed signal so that
the control error tends to zero in time. This task is
realized using the Lyapunov’s method. Consider the
adjustment law of ¥ (1) of the form

d¥dt=-T.BIP.¢, 9
where P, and I are a symmetric positive-definite

matrices. Evaluating the time derivative of the following
Lyapunov function candidate

Vde, ¥)=elP e +¥TI;I Y (30)
along the trajectories of (23) and (29) we obtain
v Jdr=eT(ATP+PAJe. @31)

Since A is an asymptotically stable matrix, the solution
of the matrix equation

AlP+P A= Q. <0 (32)
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where Q. is any symmetric positive-definite matrix,
yields to a symmetric positive-definite matrix P.. Hence
we have

dV ldt = -e1 Q. £.<0 33)
we therefore conclude that the state error converge
uniformely asymptotically to zero, i.e. when t—+c, £.0.

5. Simulation results
5.1 Numerical values

Simulation results are obtained by using a 4th-order
Runge-Kutta algorithm to integrate the process equations
(1). The specific reaction rates are modelled as!3

Us{Sp» Ep, 8p) = Hsn Sp / (Kst+Sp+ax Ep) (34)
HeSp: Eps 6) = Hon Ep | (KetEptas Sp)

where 9[=[ps,, Ks a lg, Ke as ) The values of the

parameter vector components are Ug,=0.1, Ks=2, a=10,
Mz,=0.3, Ke=1.5 and as=0.1. The values of the yield
coefficients are Rs=1.11 and R=2.5.The feeding substrate
concentration is §™=E™=6g/l. The plant kinetic
parameters are submitted to 30% jumps to test the
estimator robustness. The outputs variables are polluted
with a 2% signal noise for more realistic measurements.
The roots of the characteristic polynomial of matrix A,
are py=0.05, p,=0.05 and p5=0.5. The tuning matrices of
the estimator are I,=diag{1.2,400,1¢5,7,100,20} and
P=l. The parameters of the control law are ¢=0.03, P=l
and T =diag{1.5¢3,1¢-3}.The values of the reference
parameter vector 6, components are Ug,,=0.12, K5.=1.6,
ag=12, p,.=0.36, Kg=1.2 and a5.=0.12.

5.2 Simulation results

Figures 1 and 2 illustrate the behavior of the controlled
outputs X, and S, and their corresponding reference

trajectories, X and S.. The reference inputs r; and r, are
depicted on figures 3 and 4 together with the actual
control u; and u;, applied in the system. In spite of the
variation of the desired tracking trajectories, the setpoints
were reached after short controller transient responses.
Although the high level of coupling of the process
dynamics, the effect of the coupling between the two
controlled variables was attenuated. The perturbations of
biomass regulation due to the jumps of g, at r=120h and
of K at r=240h are favourably rejected by the adaptive
controller. Figures S and 6 show the actual, estimate and
reference reaction rates behavior. The parameter estimator
is able to track suitably the reaction rates to their true
simulated values with relatively short transient responses.
The time-varying reaction rates identification, which is
our estimation design, is not influenced by convergence
of the constant parameters to biaised values (figures 7 and
8) even in presence of abrupt parameter jumps. This
occurence is due to the insufficient persistently excitation
of B/!) (case (i)) However, if only one of the parameters
vector component is unknown, it can be shown that the
estimated parameter converges to its correct value.
Simultaneously, the estimator provides good estimate of
unavailable xenobiotic substrate concentration (Fig 1) via

auxiliary state estimation (Fig 9). Moreover, significant
robustness of the estimator is demonstrated by efficiency
of tracking abrupt variations of reaction rates and of
unmeasured state values when the setpoints varies.

6. Conclusion

A complete estimation and control structure for a
nonlinear wastewater treatment process is developed. A
model-based multivariable model reference control law is
used in order to maintain both biomass and pollutant
substrate concentrations at prespecified levels. This
control law is combined with an adaptive estimator for
on-line tracking of unavailable state and time-varying
reaction rates. The persistently exciting condition of the
signals determines the observability of the system. The
main result is that the estimation of the time-varying
parameters, under state vector persistently exciting
condition, can be realized albeit the constant parameters
are not directly estimated. The efficiency of the adaptive
control scheme is demontrated via computer simulations.
The controller is able to reject disturbances and ensure
convergence with relatively short transient responses. The
estimator demonstrates significant robustness for tracking
abrupt jumps of the plant kinetic parameters. Moreover,
on-line estimation of main state and parameter variables
provides real-time informations on the culture physiology
appreciated by process users.
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