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ABSTRACT

The problem of robust, finite-time, H,,—tracking for
linear, discrete, time -varying uncertain systems is con-
sidered from the game theory point of view. No a pri-
ori knowledge of the dynamic model of the reference
signal to be tracked is assumed, and the parameters of
the system are not completely known. Two tracking
problems are investigated, depending on whether the
reference signal is perfectly known in advance, or pre-
viewed in a fixed-interval of time ahead.
A zero-sum game is defined where the controller plays
against nature that may choose any initial condition,
any bounded energy disturbance input and measure-
ment noise, and any set of the plant parameters in a
prescribed bounded region.

Conditions for the existence of a saddle-point solu-
tion to this game are not easy to find. Therefore, an
augmented state-space description that converts the

parameter uncertainty to bounded energy signal is used.
An augmented tracking game is then defined and solved.

It is shown that its saddle-point equilibrium, if it ex-
ists, guarantees a prescribed Ho.-norm performance of
the tracker in the original system, for all possible pa-

rameters.

1. INTRODUCTION

Tracking given or measured signals is one of the main
objectives-of control theory and practice. While opti-
mal tracking methods were based in the past on L,-
norm minimization techniques [1], [2], they were sus-
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ceptible to uncertainty in the plant parameters and
they required a full knowledge of the statistics of the
exogenous disturbance and noise signals.

This shortcoming has been partially alleviated by
attacking the tracking problem from the Ho,-norm min-
imization point of view. Tracking can be expressed as a
special case of the standard problem in the H,,, control
theory (3]. It has lately been shown that an improve-
ment on the standard problem approach to tracking
can be achieved by using the information that is gath-
ered on the reference signal during the operation of the
controler [4].

The H,, methods are insensitive to the exact knowl-
edge of the statistics of the exogenous signals, and
they may also reduce the design sensitivity to plant
parameter uncertainty. These methods may fail, how-
ever, to produce an acceptable tracking performance
in presence of large uncertainties. A method that in-
corporates the uncertainty description in the tracking
performance index has been suggested in [5], in the
continuous-time case, where the system parameters re-
side in a prescribed bounded region. If some sufficient
conditions are met there, this method guarantees a
prescribed tracking performance in spite of the uncer-
tainty. In the present paper we adopt the approach of
[5] and extend the results that have been lately de-
rived for the discrete-time Ho,-optimal tracking for
systems that are completely known [6], also to cases
with parameter uncertainty, where the uncertaiu part
of the plant state-space matrices is known to be norm-
bounded and may be time-varying.




2. PROBLEM FORMULATION

Consider the following linear, discrete time-varying sys-
tem (X4):

zryr = (Ar.+ AAg)zi + Bygwr + (Ba g + ABy)ug

+B3 1k

2 = [ Cixze + Dizere ]
Dz pu

Yt = (Cak + ACk)zr + (D22 + ADyp)ur + Doy g v

(21a-¢)
where z; € R" is the state vector, z, is an unknown
initial state, u, € R' is the control input, y, € R™ is
the measurement, r; € R’ is the measurable reference
signal, z; is the signal we want to minimize, w; € RP
is the disturbance input, and vy € R" is the measure-

ment noise. We assume that the uncertainty matrices
AA; and AB; are given by:

AAr ABp | _ | Hip
[ AC, AD; ] = [ Hax Fo[ Evp Eap ],
(2.2a—¢)
with

FTFR. <I ,VYk € [0 N]. (2.3)

We make the following assumptions:
Rix 2 D%, D1ag >0 and Ryy 2 D2y DT > 0.

We also assume that the measurement starts at k =1
and that CI,O =0 and D13,0 =0.

In the present paper we consider cases where {r;}
is not necessarily known a priori for the whole time
interval. We assume then that at any instant of time,
the unknown part of {r;} is a white noise discrete time
process of zero mean.

We want —C iz to follow Di3xri by consider-
ing also a weighted sum of the control effort u;. We
consider, therefore, for a given ¥ > 0, the following

performance index:
2, T p-1
Je(r,u,w,v,29, F) = —y*z25 R™ "¢

+Zi0 B R,y {26l = 7 (lwel® + lloell®)} , (249)

where Ep, +» Tme€ans an expectation over RH;,, h >
0 being the preview length of r, and where R; de-
notes the future information on r from time j on, i.e.

R; = {ri, j <i < N} . We are looking for u* and
{w*, v*, z§, F*} that achieve a saddle-point equilibri-
um, where u* is the minimizing tracking strategy.

This problem is very difficult to solve. We there-
fore consider the following auxiliary system for a given
{ex}, € #0 Vi € [0 N]:

(B2): i1 = Arée + [B1x iHl,k]wa,k + Ba gk

+B3iri

zak = C1x€x + D12 pta i + D1z are

Yok = Co2x&i+[0 %Hz,k]wa,k""Dn,kva,k +Daz gk ,

where

4 Cri
Cl,k = 0 )
&by

and Dl3,k =
0

We also define the following index of performance:
Ja(r’ua: wmvaafmf) = —72fg‘R°1£o

+E£V=OER;‘+;. {lIC1 €k + D13 xre + D1z ptua k||
= Y (llwa kll? + v,k 1)} (2.7)

We prove the following lemma:

Lemma 2.1 Consider the systems (X,) and (X2), to-
gether with the performance indices (2.4) and (2.7),
respectively. Assume that {ur} and {ug i} are gener-
ated by the same controller, namely, ur = Gy -y +G, -1
and g x = Gy Yo,k +Gr 1. Then, the following holds:

sup Je(r,u,w,v,z0, F)
zo,w,v,F

< sup Ja(r: Ug, Wq, Va, €0, f)
£0,Wa,Va

for all admissible {er}.

Proof: For any given zg, {wx}, {vi}, {Fi} and {r:}
in (2.4), for (X,), and any admissible{e; } we take

Wi

=20 Wak = | wp (B 46y + Bypuan) |




;
P
1

Vak = Vk.

Then, we find that for all ¥ € [0 N — 1],
§k+1 = Tkt1 s Yok =Yk, UYgk = Ui,
which means that
Ja(r g, Wa, Ve, €0, €) = JE(r,u, w,v,20, F)

+Ze0ER, ,, (llex(BLeze + Eapw)|* -
lex Fe(Er kze + Eapur)|*} > Je(r,u, w,v, 20, F).

The problem of finding the saddle-point equilibriur?l
solution to the zero-sum game that is described by
(22) and (2.6 a-c),(2.7) has been solved in [6], for the
special case where

T
Daax =0 and [ g}vk ] Dy2r =0, Vk € [ON].
Diag

In order to use the latter solution, we apply the fol-
lowing transformation

Uk = Uak + Rf}, (D1 C1 kb + DT x Disare], (2.8)
where R ; = Df“l_)lg,k. We obtain then that
€41 = (A ~ B2 Ry DT, 1 C1 06k + Bapila

+[B1 %Hl,k]wa,k +(Bax — Bz,ka,}g sz,kDm,k)"k,
(2.9)
Ja(rauaa Wq, Va, Eoi €) = Eiv:OERh.H. {"1-)12,kﬁa,k“2

+I(I — Drap Ry DT, 1) # (Crabe + Disere)||?
— Y (|[wakll? + lvall?)} — 7T R0 . (2.10)

3. THE ROBUST STATE-FEEDBACK
TRACKING PROBLEM

We use the representation of (2.9) with the perfor-
mance index of (2.10) and we assume access to the
state . Since, in this case, {vi} does not affect the
controller, nature will take v; = 0.

We obtain from the solution in [6] that the problem
stated in (2.5a-c) and (2.7) has a saddle-point equilib-
rium iff 3 P; > 0 Vi € [0 N] that solves

Py = A{Mk.f_l/ik + é’ir:kél,k R P(N) = élT:Nél,N,
(3.1)
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and satisfies
VI — B Pey1B1p >0 k€0 N 1],

and
Y’ R'-Py>0, (3.2a,b)

where
Mip1 2 QenlT+ By RTL BT, Qeia]™?,
Q41 = Peya[I - 7_231,1:1;{,,1’1”.1]'1 (3.3a,b)
A2 A —eByu(Rig + GET E2) 'EL By
CTCrp = CT(I — Dyap Ry DT, )Cr
=Cl Cra + GET (I + € E2x R{LET,) By,

and
Bis £ [Bis lHu:] .
€k

The saddle-point strategy is given by

& = (2R - Py) 16, , (34)

» - BT - > D -
W =772 [ _1_}11; ] (I=7"2Pey1B1pB]p)™?
T 1,k

[0k41 + Piy1(Arés + Bagitax + Bagri)), (3.5)

and

Upp = _Rl_,i Bg:kMkH[-‘ikfk + Baxre + Pk_+l102+1] )
(3.6)
where 0, = Ep, ,, {0k+1}, and where 0; satisfies

Or = Abryr + Bere , On = CTyDisnrn,  (3.7)
with

Ap = A{ M4y Py}, and By = AT Me41B3 s +CT D3 .
(3.8)
The resulting saddle-point control is

ui = @ — Riiel B3, B1 i
= — Ry} Bi e Mry1(Baire + P05 1)
- Rl_’,lc(Bg:kMk+1x‘ik + fiEg:kEl,k)fk- (39)

We distinguish between two information patterns

of {r¢}:




i. Model Following:

In this case, {r;} is known a priori for all k €
[0, N]. Then, 65, in (3.9) is obtained by:

N—-k-1 »
Oiy1 = Pr410n + 55" Yay1 BN -j,

E<N-2 (3.10)
where
Pry1 2 Arp1Arga ANy
and
ApprApyze AN_j
Yppp ;=4 <N -k-1 (3.11a,b)

I j=N-k-1

ii. Preview tracking

Given that at time &, r; is known for i < min(N, k+

h), where h is the preview length. Then, the con-
trol law is given by (3.9), where 6§ , ; satisfies the
following:

E_;'l=1'/;k+1,jBk+h+l—j"k+h+1—j
E+h<N—1
Opqr = ) .
Dry16n + 2?;11‘/’k+1,jBN—j rN_j
k+h=N
(3.12)
where 41, ; is obtained from (3.11b) by replac-

ing Nbyk+h+1. -

Note that on-line tracking occurs for A = 0. In
this case we get Eg {r;} =0fori>k+1,and
0i41 = Eg,{0k41} = 0. As a result, the on-line
optimal control law is given by

up = =R (BY s M1 Ax + GBS E1 k)6

p—-1nT
_Rl,k B2,kMk+l B3’k Tk .

- 4. THE ROBUST OUTPUT TRACKING
FEEDBACK

. In the case where the information on the state-vector
of (2.9) is obtained through noisy measurements, na-
| ture can affect the outcome of the auxiliary tracking

game by selecting a nonzero measurement noise se-
quence. We assume that the measurement is given by
(2.5¢) and we look for the control sequence {u;} that
minimizes the auxiliary performance index of (2.10),
based on the information that is available on {r}.

We start by considering the model following case,
where {r;} is known em a priori for all k € [0 N]. We
denote: :

Orr 2 Ryp + BT Qi41B2;
and (4.1a,b)

P 2421 B;I:kPk+lBl,k
Using the results of [6] we obtain the following result.

Lemma 4.1 The performance indez of (2.10) is given
by

Ja(r) 1__‘0) ﬁ)a, ”aaEO; 6) = _72”60 - 65“%{—1_7—3P°

+ZioEg, ,, {llEas + Criéell’}
— 5ol Wael® + llvaell?) + T(r),  (42)

where J(r) is a term that depends only on r;,
i€ [1 N),

~ ~ 1 ~ -~
G £Q2,, Te(BiiMiy1As + €1ET L E1 )
- -1 a1
Wop 27 PR, wak — 7_1Ph+%1BxT,k [Pe+1(Axée
+Bapua i + Baire) + 0k41]

and
fap 2 Qz+1ua,k+o;$1Bg:ka+l [Bsere + P} i0k41] -

\AYAY)
We thus represent the system by:

k41 = Anbr+BpWap+Boslia s+ Basre+Baibiyr
Y "—% =
Yak = C24€k + Dazpuqr + [0 ;Hz,k]‘ﬂ’kﬂ Wq k

+D21,kva,k + [0 %Hz,k]ﬁﬂllég:k [Pe+1(Arée

+Ba sk + Bapre) + k4] (4.3a,b)

where
n _ — A - ~_1
Ay = (I-v2B1x By Piy1) " Ar, Bip = 1B1i P

L -1 ~_d o4 1
B2,k = Pk+1Qk+lBZ,ka;1; BS,k = Pk+1Mlc+lB3,lc ’
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WA T

and Byy = PL (M Py — 1) (44a—e)

Introducing
Ga e = Yai — [0 —Hap) Pyl BTy [Pesa (B
Ya,k = Ya,k [0 e—k' 2,1:] k+1 l,k[ k+1( 2,k Ya,k

+Bs ki) + Ok41] — D2z xtta i (4.5)

we obtain

~ 2 ~ -
Jag = Copbe + [0 lH2,k]Pk+*1ﬁ’a,k + D2y kvay
€k
(4.6)

where
A A i p—~1 BT
Cop =Cop + o ;Hz,k]Pk+1Bl,kPk+1Ak .

Defining the augmented noise vector

. A @a,k
W = ’
Va,k

(4.3) and (4.6) are rewritten as

€xp1 = Arbs + Biiie +di,and Jap = Caxbx + Dy,
(4.7a,b)

where
o . - 72 -1
B, = [Bl,k 0] , Dy = [[0 :;Hz,k]Pk.,.’l D21,k] ,

and di = By pliat + Bagre + Bailryr -

It follows from (4.7a,b) that the problem becomes
an Ho-filtering game problem with correlated mea-
surement and process noises. In order to obtain an
equivalent system with uncorrelated noises, such that
we could apply the results of the a posteriori filtering
as in [6], we decompose:

@y = (I- DT (D DT )~ D) w4+ DT (D DT )~ Hu?,

and get wﬁz) = (D,,D{)“}(ga,k — C3€:). Denoting
fik = A, — BkiJ{(D,,D{)-IC‘z,,, the equivalent filter-
ing game is then the following:

Given the system

feer = Axe + Be(I - DT (DLDT) ' DbV + 44, .
(4.8)
and
Jak = Copbe + (D DD}, (49)
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with di = dy + Be DT (Dy DT )45 Find a minimiz-
ing estimation strategy for the game that is defined by
the following performance index:

Ja(", Ua, q, 0, 6) = ’—72"60 - Ea“it—l_.y-zpo
+21kv=0ER|,+h {"i‘a,k + él,kfkuz}
— 2o (w2 + w1 + J(r) . (4.10)

Assuming that (3.1) has a solution P, > 0 over
[0, N}, satisfying (3.2a,b), we consider the following
Riccati equation:

Te = Zu[I+(CT (DL DY) ' Cop — v 2CT Cre) 2]
(4.11)

with r

Zip1 — ArZi A, — Be(I - bf(bkbf)_lﬁk)BT =0

o =[R! =1 3(Po+CoCr)"' .  (4.12a,b)

The solution of the latter estimation game is stat-
ed in the following theorem, for the a posteriori case,
where u, can use the information on {§,:, 0<i<k}:

Theorem 4.1 Consider the system (2.1a) with the mea-
sured output (2.1c). Assume that {ry} is known a pri-
ori for allk < N. Then, the auziliary tracking problem
with output-feedback has a saddle-point solution iff

i. 3P, >0Vie[0 NJ that solves (3.1) and satis-
fies (3.2a,b), and

4. 3X; >0Viec[0 N] that solves (4.11)-(4.12).

Under the latter, a saddle-point tracking strategy is giv-
en by:

up = —Q;.élél,kék—R;:Bg:kMk+l[Ba,krk+P]:.:1ek+1] ,
(4.13)
bwhere Oy 41 satisfies (3.7). The ‘estimate’ £, is defined
y

g1 = - Lk+1X£:.)1)—l[Ak£k + Ligr{ye+1

—Co i1 (Arbe—di)+ X (B3 p41Te 41+ Py 0k42) i)
bo=8, (4.14a,b)
with

L E Zkég:k(bk[){ + C’z,kaC“{,‘)‘l , (4.15)




where £ is defined in (3.4), and X{}),
given by

and X,(‘?l are

X,(,l) = (6 *Ho e HY . Qe41Ba + D22,k)é;.élél,k
and
XD = (Daap RTL BT, — 62 Haop HT ) Miy .
vvv

The above theorem addresses the case where {ry}
is @ priori known for the whole time interval. Using the
reasoning of [6] we obtain that in the case where the
reference signal is measured on-line, or with a preview
h > 0, nature’s saddle-point strategy, that is a function
of the ’error’ & — fk, will not change. However, the
saddle-point control strategy of the auxiliary tracking
problem can no longer be given by (4.13) since 04 is
" not known. The control strategy in this case satisfies

ERH,.{f:‘a,k + C'l,kék} =0.

We thus readily obtain the following result, by apply-
ing the operator Ep, ., on uj of (4.13) and on & of
(4.14).

Corollary 4.1 Given that at time k, r; is known for
i< k+ h. Then, the saddle-point control stralegy of
the auziliary tracking game is given by
“_l o %
up = —Qp H1C1k€
~ Ry B3 Mip1(Bagre + PRl 05,1)  (4.16)

where
€ee1 = (I = Lea X{9) Ak, + Lesalvens
—Co i1 4Aké) + Xlgi)l(Ba,k+lrk+l + Prly0540)
—02,k+1‘ik] + Cik},
€, = 725065, (4.17)

and where
dy = Pk_+11Qk+1[BZ,k“k + Baxri
-25 AT
+1" BBy i B,y {0641}

2 -~ Pl
+2 Hy g H (D DY) ),
k
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Yo b = Yk — 5;2H2,kH¥:ka+l(Bz,kuk + B3 1y
+ Pk—-:l ERI:+A+1 {0k 41}) — Do pup . (4.18a,b)

The vector 07 is given by (3.12) and Ep, ,, . {0k41} is
computed from (3.10) by replacing N by k+h+1 and
by taking O p40 = 0.

When v is measured on-line, h = 0 and the opti-
mal control strategy is given by (4.16) with 0541 = 0.
The estimate 2,, is given by (4.17) with Eo = Byry,
0i+2 =0, and B, {041} = Biyiriyr in (4.18a,b).

The above results have been derived for the a pos-
teriort case, where the measurement of y; (and r) is
available for the control ugx. In the a priori case, we
assume that ui can only be based on y;, ¢ < k. The
solution to the estimation game that is described by
the cost function (4.10) is given then by the following
theorem. ‘

Theorem 4.2 Consider the system (2.1a) with the mea-
sured oulput (2.1c). Assume that {r;} is known a pri-
ort for allk < N. Then, the a priori auriliary tracking
problem with output-feedback has a saddle-point solu-
tion iff
i. 3P >0Vie [0 N] that solves (3.1) and satis-
fies (3.2a,b), and

i. 3 X; that solves (4.11)-(4.12) so that D; DT —
C2,:5:CT; <0 Vie o N -1).

Under the latter, a saddle-point tracking strategy ts giv-
en by (4.13) where & is replaced by

€1 = Aebat+Li[ga p—Copbil4de , Eo =63, (4.19)
where Ly = jkEkCV{k(Dk[)g‘)‘l .

The result for the case where the reference signal
is measured either on-line or by a preview is stated as

follows:

Corollary 4.2 When, at time k, r; is known for i <
k + h — 1 the minimizing tracking strategy is given by

up = -Q;2Crabs

— R7 B3 s My (Bare + PrEgy . {841}
(4.20)




where € satisfies (4.19), with £ =
with Y,  replaced by

77 2Eg, _, {00},

fak = yr — (g "H2 k H{ 1 Qr41B2k + D2 i )ur

— €5 2Hop H] y Qir1(Baere + Py 6541),

and with

(4.21)

dr = P, Qes1[Bagur + Baxre + P} 05,y

2
+ %fH 1Lk H3 p(De DY) gae] (4.22)
k

where 07, is given in (3.12) and Eg, ., {0k41} is
computed from (3.10) and (3.11a,b) by replacing N by
k+ h and by taking O 4p = 0.

When ri is measured on-line, namely, when r; is
known only for ¢ < k and h = 0, the corresponding

mintmizing control strategy is given by
* At oA . 53=% A 2
up = -Qk+lclykuk = —Qk+1cl,kfk , (4.23)

with 07, = 0 and Eg,_ {041} = 0 in (4.21) and
(4.22).

5. EXAMPLE

We consider the system of (2.1a) with the following
objective function:

J = {0 B, {IICrze — rel|® + 0.04]|ui |1}

—722£v=o”wk“2

where N is assumed to be very large, and where :

) o |

0 1 11
_1+55k]’33"“[1] andC“[o 0

We assume that |6¢|| < 0.04, V k. We also define the
uncertainty matrices:

0 1

0.25
—0.8 1.6+ 6

A = [ 05

By, = [

Ei=[0 .04],E2=.2,H1=[0

1] and H, = 0.

We first design a controller for the nominal sys-
tem, i.e F' = 0. Using the H,, standard model, r; is

|
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considered as a disturbance so that the augmented dis-
turbance vector is now [w] r{]T. Using the notation
of the standard problem, we define

Jou=[0 7]

D3y = 02x2, D22 = 02x3.

We then get that the minimum possible value of ¥ is
near vy, = 2.61. The obtained control law is then u; =
K,z; with K, = [-1.0991 2.0395], and the resulting
closed-ioop transfer function from r; to Cyz; is

Gs = (22 + 1.7386)(z% + 0.4395z — 0.2991)~1.

We apply the results obtained in [6], without pre-
view, i.e. h = 0, for the lowest value of 7. Fory = 0.86,
a value very close to the lowest achievable value of v,
the solution of the Riccati equation and the resulting
state-feedback gain are, respectively,

|

The closed-loop transfer function from r; to Cizy is
then
Go = (0.354z — .0002)(2% + .64592 + .0001)~! .

We finally apply the results of the robust design
given in Section 3 and obtain that the minimal value
of v is close to 2.5 for ¢ = 10.4. The solution of the
Riccati equation and the resulting state-feedback gain

1.0256 0.9281

09281 176 49] and Ko = [0.7999 2.2459).

are, respectively,

P=|

K, =[ —-0.6786 1.1173 ].

3.3705

—3.5951

—3.5951
12.4684

and

The resulting closed-loop transfer function from ri to
Cizg, for F =0, is
G, =(1.36162 — 0.2425)(2% — 0.4827z + 0.1214)"! .
The results, for the nominal case, of the standard
problem, [6] and the new robust design, are comput-
ed for r, = sin(0.5k) and wy = 0, and are compared
for N = 50 in Figure 6. The tracking error obtained
using the standard method is 2.6682. The one that
is achieved by the results of [6] is 0.3089, and the re-
sult for the robust design is 0.4623. As expected, the
method of [6] yields the best result since it is aimed at




the case where the system parameters are given with-
out any uncertainty .

We apply the results obtained by the three methods
on the actual system with FF = —1. Unfortunately,
the designs obtained by the standard method and the
optimal Hy, tracking method of [6] lead to unstable
closed-loop systems. The closed-loop transfer function
of the system found by the standard method is
G,(z) = (22 + 2.4063)(z + 1.2897)~1(2 — 0.4023)"1,
and the one found by the method of [6] is
G(z) = (0.0248z + 0.3199)(z + 1.26)~!(z — 0.126) 1.
As expected, the closed loop with F = —1 remains
stable when we use the control law that is obtained by
the new robust method. The corresponding transfer
function is given by
G,(z) = (1.2339z + 0.029)(2% — 0.2192z — 0.0144) 1.

Finally we apply the results of the new H,, robust
tracking of ry = sin(0.5k),for F = —1, with various
lengths of preview. The tracking error power for the d-
ifferent preview lengths are depicted in Figure 6. Note
that a drop in the error norm occurs at A = 1 (namely
a preview of 0.5 sec). This is due to a small increase
in the power of the control effort, that is normally low,
at this preview length. It is shown in Figure 6 how
the increase in the preview length reduces the tracking

€error.

6. CONCLUSIONS

The robust discrete-time tracking problem is solved
in this paper by defining, and solving, an auxiliary
tracking game problem. The minimizing saddle-point
control strategy of this game guarantees a prescribed
tracking performance of the actual controlled system,
for all plant parameters in a given bounded set. So-
lutions to the model following case, and to the case
where the reference signal is measured on-line or with
a preview, are obtained. These solutions entail an
overdesign that stems from the inherent nature of the
auxiliary game whose performance index provides on-
} ly an upper bound to the performance index of the
original problem. These solutions are also sensitive to
the selection of the parameter sequence {¢;} that de-
termines how, in the auxiliary game, the uncertainty
based disturbances split between the system input and
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the objective function.

In the present paper, we have assumed that in cases
where the reference signal is not a priori known for the
whole time interval, its future unknown part behaves
like a random white process. The theory developed
can, however, deal also with cases where some a priort
information is available on the reference signal. This
information should not necessarily be accurate, and it
may involve some parameter uncertainty. The uncer-
tain model that is assumed to produce the signal can
be incorporated into the state-space description of the
system, together with its parameter uncertainty, and
the method of the present paper can be applied on the
augmented system.

In the present paper, we have considered the finite-
horizon time-varying problem. A question may arise
what happens in the time-invariant case when the hori-
zon tends to infinity. The answer to this may be found
from the fact that the resulting feedback loop of our
solution is identical to the one obtained in (8]. Itis
shown in [8] that under mild assumptions this loop is
robust in the limiting infinite-horizon case.

The theory of this paper can also be applied in cases
of measurable disturbances. The measurable part of
the disturbance, that can be obtained on-line or by
a fixed preview, can be considered as a part of the
reference signal. This part will drive the system but it
will not appear in the controlled output.
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Figure 5.1: Comparison between the tracking errors obtained
by the different methods for the nominal system for rx = sin (0.5k),
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Figure 5.2: The power of the tracking error as a function of the preview length
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