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Abstract

In this paper, it is considered the problem of modelling
and controlling the impact of a two-degree-of-freedom
body with an infinitely rigid and massive surface. Ba-
sic equations describing the motion of the body are de-
rived, both in condition of non-contact and in condition
of contact. A control scheme is proposed on the basis
of an observer that is able to asymptotically estimate
the impact-induced forces and to allow their asymptotic
compensation when the two-degree-of-freedom body is
in contact with the infinitely rigid and massive surface.
The paper is completed by a simulation test.

1 Introduction

The control of impact requires the study of the ba-
sic physical phenomena that happen when bodies collide
under the action of external forces (including the control
forces) and/or due to non-zero relative velocity. Several
books (see, e.g., [1]-[10]) considered in detail, with a rig-
orous and extensive treatment, the study of the basic
physical phenomena that attend the collision of bodies.
The study of these phenomena is especially important in
robotics {11, 12] because, each time a robotic manipula-
tor interacts with the external world, the highest forces
and greatest stresses (often, undesired) arise as a conse-
quence of impact. Many robotic systems can fail their
tasks if the impact forces are not properly recognised
and taken under control. Numerous attempts have been
made in the recent years to properly model the impact
in robotics (see, e.g., [13]-[16]). At the author’s knowl-
edge, while the problem of modelling the impact has
been widely studied, the problem of controlling the im-
pact is still an open problem, due to the sudden change
of the motion equations that happens when the bodies
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involved in the impact swish sharply from a condition
of non-contact to a condition of contact.

In this paper (which is an extension of [17], where
one-degree-of-freedom impacts are analysed), we con-
sider not only the problem of modelling the impact of
bodies, but also the problem of controlling the collision
before, after and during the period of impact.

The outline of the paper is as follows. The classical
theory of impact is briefly recalled in Section 2, with spe-
cial enphasis on two-degree-of-freedom impacts. Section
3 is devoted to obtain the motion equations describing
the two-degree-of-freedom impact that is schematically
represented in Figures 1 and 2. The control design is dis-
cussed in Section 4, while the proposed control scheme
is given in Section 5. The effectiveness of the proposed
controller is tested in simulation in Section 6, while Sec-
tion 7 draws the conclusions.

2 The classical theory of impact

The classical and simplest methods of the impact
analysis are based on the law of conservation of mo-
mentum and on the law of conservation of energy (the
latter law is valid under the assumption that the coef-
ficient of restitution is equal to 1). These laws can be
used to study the change in velocity of the centre of
mass of each body involved in the collision before and
after the impact, and the exchange of energy during the
period of impact. This approach can be used only when
the external forces that are exerted on each body in-
volved in the collision are either null or negligible with
respect to the impact-induced forces. Then, the classical
methods cannot be used for control purposes, since they
provide no information about the transient forces and
about the duration of the impact, and since the external
forces (which play often the role of input variables) will
be never negligible with respect to the impact-induced
forces, which constitute the output variables during the
period of impact. Whence, it is necessary to use more
basic equations for control purposes, which, due to their
complexity, are to be properly approximated. In ad-
dition, since the type of the equations to be used for




adequately describing the impact of two or more bod-
ies depends largely upon the geometry of the bodies and
upon the type of impact, suitable simplifications are also
needed to state general results.

In this paper, impacts will be considered under the
following two simplifications. The first simplification
consists in assuming that all the stresses induced by the
impact are well below the elastic limit, i.e., the plas-
tic deformations are negligible. The second assumption
consists in assuming that the centre of the radius of cur-
vature of the surface of impact lies on the line connect-
ing the centres of mass of the two bodies involved in the
impact, so that the sliding at the surface of impact is
avoided, together with its friction and rotational effects.
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Figure 1: Schematic representation of collision between
a two-degree-of-freedom body and an infinitely rigid and
massive surface, before and after the impact (z2(¢) < 0).

The classical assumption of a quasi-static behaviour
[17] during the impact is not made in this paper. The
guasi-static behaviour assumption would imply the as-
sumption that all the stresses are transmitted instanta-
neously to all the points of the bodies involved in the
impact: this is not certainly satisfied when the bod-
ies involved in the collision have non-uniform geometry
and non-linear properties. Impacts involving these bod-
ies can be conveniently described by multi-mass lumped
systems, such as the one described in Figures 1 and 2,
which is the simplest multi-mass structure representing
the impact of a two-degree-of-freedom body against an
infinitely rigid and massive surface. During the impact
only the two-degree-of-freedom body will be deformed.
The two-degree-of-freedom body will be adequately de-
scribed as composed by four bodies, as depicted in Fig-
ures 1 and 2: two of these bodies are rigid and have
masses m; and mg, respectively, while the other two
bodies are flexible and have negligible masses (the to-
tal mass of the two-degree-of-freedom body is m; +m,).
Then, the motion of the two-degree-of-freedom body is

well described in terms of the positions z;(t) and z,(t)
of the centres of mass of the two bodies m; and ma,
respectively. The position z3(t) of the centre of mass
of the infinitely rigid and massive surface can be as-
sumed to be in a steady-state and equal to z3(t) = ¢,
for some constant c. The two-degree-of-freedom body is
assumed to be internally deformed if the centres of mass
of bodies m; and my are closer or farther than r5 (i.e., if
za(t) —x1(t) > 12 or Z(t) —x1(t) < 712), otherwise (i.e.,
if zo(t) — z1(t) = r12) the two-degree-of-freedom body

is assumed to be internally non-deformed, where ry5

is some positive constant. The two-degree-of-freedom
body and the infinitely rigid and massive surface are as-
sumed to be in contact if the centre of mass of body m,
and the centre of mass of the infinitely rigid and massive
surface are closer than ro3 (i.e., if z3(t) — zo(t) < ro3),
while not in contact if these centres of mass are farther
than ro3 (i.e., if z3(t) — z2(t) > ro3), for some positive
ro3. For convenience, one can take ¢ = 793 so that the
inequalities z2(t) < 0 and z2(t) > O discriminate the
condition of non-contact from the condition of contact.
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Figure 2: Schematic representation of collision between
a two-degree-of-freedom body and an infinitely rigid and
massive surface, during the period of impact (z2(¢) > 0).

3 Motion equations

As shown in Figures 1 and 2, the motion is assumed
to be positive toward right and is controlled by force
f(t), which is exerted on mass body m; and is assumed
to be positive toward right. Before and after the impact
(i-e., when z,(t) < 0), the equations of motion of the
two-degree-of-freedom body are

my Zy(t) + $12(:1(t) — z2(t) +112) = f(¢), (1a)
i‘ﬁiz(t) - m(tl(t) —xo(t) + T12) 0, (1b)
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where ¢12(a) represents the impact-induced force as a
function of the internal deformation o.

During the period of impact (i.e., when z(t) > 0), the
equations of motion of the two-degree-of-freedom body
are

my I (t) + ¢12(:E1 (t) - :Ez(t) + 7‘12) = f(t), (2&)
my fl:'g(t) - ¢12(x1(t) — $2(t) + T12) + ¢23(.’E2(t)) = 0, (2b)

where ¢93(0) represents the impact-induced force pro-

duced at the surface of impact as a function of the exter-
nal defcrmation # > 0. Even for perfectly elastic bod-
ies, the impact-induced forces ¢i12(cx), $23(3) may not
be linear functions of a and 3 > 0, respectively; linear
elastic reaction forces happen only for small deforma-
tions a and 8 > 0. General forms of the reaction forces
d12(cx), p23(B) as functions of the deformations a and
B = 0, which are useful for representing many collisions,
are

d12() a, a”, (3a)
¢23 (:6) = bm ﬂm, (3b)
where n, a, and m, b, are constants. Constants

n 1 and m 1 characterise linear elastic colli-
sions, while n = 3/2 and m = 3/2 characterise Hertz
elastic collisions. Good values for constants a;,b; and

19 \3/2 T3 \3/2
a2, by/y are a; = E12(ﬁ) , by = Eza(m) )
12 1 T23 1
= By 22 by = By /2B L
G2 = BB\ 546 T3’ 7 T I\ 946703 Whete

Eyy and FEj3 are the internal and external modulii of
elasticity, respectively.

4 Discussion on control design

In this section, the control of the body before, during
and after the impact is discussed, under the assumption
of linear elastic deformations (i.e., under the assumption
that n = 1,m =1 in (3)).

4.1 Control design under the condition
of non-contact

When the two-degree-of-freedom body is not in con-
tact with the infinitely rigid and massive surface, it is
possible to define the following state-space transforma-
tion:

Zl(t) = .’L‘Q(t), (43.)
2(t) = @), (4b)
ult) = %(zl(t)—xz(t)+rlz), (4c)
alt) = ;—;ul(t)—m(t)), (4d)
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which is non-singular with the following inverse trans-
formation

o) = ’Z—fzg(t)+zl(t)—r12, (5a)

&) = T—]"’z4(t)+z2(t), " (5b)

Tao(t) = (1), (5¢)

I2(t) = zft). (5d)

In the z-coordinates, motion equations (1) become
2(t) = z(t), (6a)
() = (), (6b)
z3(t) = z(t), (6c)
) = T et + -2 f@). (6d)

It is easy to see that system (6) is in the controller
canonical form, whence that the design of a suitable
feedback control law for the motion equations is a
straightforward task before and after the impact.

4.2 Control design under the condition
of contact
When the two-degree-of-freedom body is in contact

with the infinitely rigid and massive surface, it is possi-
ble to define the following state-space transformation:

Zl(t) zz(t), (7&)
z(t) = @(t), (7b)
z3(t) = :L—; (z1(t) — z2(t) + 712) — %.’L‘g(t), (7¢)
a) = SLnO-00) - Law, ()

which is non-singular with the following inverse trans-
formation

() = Z2z(t) + 2(t) - rip+ ﬁzl (), (8a)
a1 a;

() = 224(0 + 2(t) + ﬁzQ(t), (8b)
a; ai

() = =(t), (8c)

Eat) = z(t). (8d)

In the z-coordinates, motion equations (2) become

at) = =(t), (9a)

Z9(t) 23(t), (9b)

z3(t) = 2(t), (9¢)

at) = -~ ann)+ 2
—7:11:2 a1(t) = -at). (9d)




It is easy to see that system (9) is in the controller
canonical form, whence that the design of a suitable
feedback control law for the motion equations is a
straightforward task also during the period of impact.

4.3 Control design under the condition
of non-contact/contact

It is readily seen from the above subsections that the
control of the body is an easy task, provided that we
are able to recognise the condition of contact from the
condition on non-contact (which is certainly a unrealis-
tic assumption, as discussed later on). As a matter of
fact, denoting by d(t) the reaction force induced by the
impact, i.e.

0,
a(t) :{ “biza(t),
(10)

the motion equations can be rewritten as follows both
in condition of contact and in condition of non-contact

in condition of non-contact
in condition of contact,

(11a)

m1 Z1(t) + ar(z1(t) — z2(t) + 112) = f(2),
0. (11b)

mo i‘Q(t) - al(x1 (t) — IL‘Q(t) + 7"12) + d(t) =

In the same manner, the z-coordinates can be defined
as follows both in condition of contact and in condition
of non-contact

z(t) = z9(t), (12a)

at) = ), (12b)

z(t) = T(:L_IQ (z1(t) — z2(t) + 7112) + %Z—d(t),(l‘.’c) :

alt) = (i) - da(t)) + —d(t).  (12d)
mo mo

In the z-coordinates given by (12), motion equations
(11) become

() = z(t), (13a)

Ht) = z(), (13b)

z3(t) = zl(t), (13c)

. my + my a;

2(t) = —Wa1z3(t)+m1m2d(t)
=T )+ —dit). (13d)
miyme o ma

Denoting by h;,i = 1,2, 3, 4, the suitable positive real

numbers such that the polynomial

h(s) := s + hys®+ hys? + hys + hy (14)

is Hurwitz with the desired spectrum, and denoting by
ZR2(t) the desired reference signal (which is assumed
to be differentiable the needed number of times) to be
tracked by z5(t), under the (unrealistic) assumption that
the d(t) term is measurable, as well as its time deriva-
tives d(t) and d(t), a feedback control law that ensures
the asymptotic tracking of zp2(t) by z2(t) with the de-
sired transient behaviour expressed by (14), is

F(8) = (my + ma)zs(t) — d(t) — ’Z—fd'(tn

mimsy

"2 (a1 () = 28(0) + ha(a(®) - 2 (0)

+ ha(2s(t) = 2y (1) + ha(za(t) - 23) — 2{fy(1)) , (15)

where -”75;)2 (t) denotes the i-th time derivative of z(t),
i=0,.. 4

As a matter of fact, the closed loop system (13), (15)
takes the following form:

L(t) = (), (16a)
Bt) = (t), (16b)
Z3(t) = z(t), (16c)
Za(t) = —hz(t) — haa(t) — haza(t)
—haz4(t), (16d)

(where z;(t) = z(t) — m%;”,i = 1,2,3,4), indepen-
dently of the fact that the ﬁwo—degree—of—freedom body
is in contact with the infinitely rigid and massive sur-
face or not. This nice behaviour is certainly difficult to
be actually realised, since the d(t) term will be in gen-
eral not measurable. In practice, we will not be able to
recognise by measurements if two bodies are in contact
or not: it is very difficult to distinguish a sequence of im-
pacts of small period of duration, one close to the other
one, from one impact of long duration. This motivates
the introduction of the state feedback control law pro-
posed in the following section, which compensates the
reaction force (if it is present) on the basis of an estimate
supplied by a reduced order observer.

5 The proposed control law

Under the assumption of linear elastic deformations,
the proposed feedback control law takes the following
form

at) = —3u&i(t) + &)
~ (M (t) + mads(t)) — 3uf(t), (17a)
&) = -3u’a(t) + &s(t)
— 8’ (mudi(t) + maia(t)) — 3u>f(t),(17b)
&) = —pal) - 3pt (mady (t) + mads(t))

M
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- BPf(), (17c)
dt) = &(t)+3p(miii(t) + moa(t)), (17d)
d(t) = &(t) + 3uP(mud1(t) + mada(t)), (17e)
dt) = &(t)+ pd(mudi(t) + mada(t)),  (176)

z1(t) z(t), (18a)

Zz(t) i‘z(t), (l8b)

z3(t) = 4 (z1(t) — z2(t) + 712) + —l—-(i, (18c)
my ma

4t = @) - &)+ —-d0, (18

O = (m+ma)z(t) - d() - ﬂl‘d'(o

mimsa

(h1(21(t) — zR2(t))

+ hz(zz(t) - IR ()
ha(z3(t) ~ ziah(t))

ha(za(t) - 25(8) — =fey(t), ), (18e)
where (17) is a reduced-order asymptotic observer for
the estimation of the d(t) term, as well as of its time
derivatives d(t) and d(t), and (18) is the feedback control
law (12), (15) with the terms d(t), d(t), d(t) substituted
by their estimates d(t),d(t), d(t) supplied by (17).

In the z-coordinates given by (18a)-(18d), motion
equations (11) can be rewritten as follows:

a) = =), (19a)
Blt) = a)+ (A0 - do), (19b)
2'3(t) = Z4(t), (19(:)
. mp +m
Z(t) = ——mlmz

+

+ r‘;—‘%(d(t) —d@)). (19d)

Taking into account that
my&(t) + mzfi2(t) = d(t) + f(t), (20)

under the action of the feedback control law (18e), equa-
tions (19) take the following form when the body is not
in contact with the surface

ZZ(t)v
a(t) - ~-d),

Z(t) =
Z(t) =

(21a)
(21b)
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B = Z), (21c)
54(t) = —hlfl(t) h22~,'2(t) h323(t)
~ 3u
b - (W ¥ —) dw), (21d)
where
dt) = —3pd(t) + d(), (22a)
dt) = —3u2d(t) +d(t), (22b)
dity = -ud), (22c)

Z(t) == z(t) — z(,;zl),z = 1,2,3,4, and p is a suitable

positive real.

Taking into account {20), under the action of the feed-
back control law (18e), equations (19) take the following
form when the body is in contact with the surface

A(t) = &), (23a)
) = a0+ o-d)-do), (@)
f() = a), (23¢)
Z4(t) = —hizZ1(t) — heZa(t)

—  h3z3(t) — haZy(t)

+ (-fni+—) (d(t) - d(t)), (23d)

where

dt) = 3udt)-d@)+de),  (24a)
dt) = 3o - do) +de),  (2an)
dt) = ) - o), (240)

Zi(t) == z(t) - x%}l),i =1,2,3,4, and u is a suitable
positive real.

As one can see, system (21),(22) is asymptotically sta-
ble for all positive u, i.e., the closed loop system (11),
(17), (18) is asymptotically stable when the body is not
in contact with the surface, for all positive u. If d(0),

d(0), d(O) are chosen equal to 0 and the body is (at the
initial time t = 0) not in contact with the surface, then
d(t) = 0, d(t) = 0, d(t) = 0 for all times ¢t up to the
time of the first contact between the body and the sur-
face, and, in addition, in such a period the behaviour of
the Z;(t)’s will be exactly the desired one (16). On the
contrary, the asymptotic stability of (22), (23) depends
strongly on the value of u. It can be easily recognised
from (24) that the estimates d(t), d(t) d(t) of d(t), d(t),
d(t) are designed so to negatively react against varia-
tions of the estimation error d(t) — d(t), and that such
an effect can be increased by making greater the value of




4. In addition, for small values of the estimation error
d(t) — d(t), it is noted that the behaviour of the Z(t)’s
will be very close to the desired one (16).

The following theorem, which ensures the desired
properties of asymptotic stability with a prescribed rate
of convergence and of steady-state response, can be
proved as Theorem 2 of [18], where it is also shown how
an estimate of the region of attraction of the closed loop
system (11}, (17), (18) can be obtained in case of non-
linearity (induced, in this case, by the non-linear elastic
deformations if they are present); the proof is omitted
because it is very similar to the one of Theorem 2 of
[18].

Theorem 1 Under the assumption that the h;,i =
1,2,3,4, are positive and chosen so that the polynomial
(14) ds Hurwitz (with the desired spectrum),

(i) the closed loop (11), (17), (18) is asymptotically
stable for all positive p and the %(t), ¢ = 1,2,3,4,
asymptotically converge to 0 for all zp2(t), when the
two-degree-of-freedom body is not in contact with the in-
finitely rigid and massive surface;

(ii) there exists a positive u* such that if p > p*
then the closed loop system (11), (17), (18) is asymp-
totically stable also when the two-degree-of-freedom body
s in contact with the infinitely rigid and massive sur-
face; in addition, if xg2(t) is constant, then the tracking
errors Z(t), i = 1,2, 3,4, asymptotically go to zero also
when the two-degree-of-freedomn body is in contact with
the infinitely rigid and massive surface;

(iv) if xpa(t) and its time derivatives are bounded,
then for any € > 0 there exists a positive u* > p* such
that if u > p! then the tracking errors z:(t), 1 = 1,2, 3, 4,
asymptotically become smaller than ¢ when the two-
degree-of-freedom body is in contact with the infinitely
rigid and massive surface.

The values of the lower bounds p*, 4 are cumbersome
functions of the system parameters and of the reference
signal: they can be easily computed following the same
reasoning used in the proof of Theorem 2 of [18]. In
practice, parameter p can be chosen by increasing its
value up to the accomplishment of the desired proper-
ties, which can be simply tested by simulation.

6 Simulation test

A simulation test has been carried out to confirm the
properties of the closed loop system (11), (17), (18) that
are stated in Theorem 1. For the sake of simplicity, only
elastic linear deformations are considered. The masses
mi,mg and the constants a;, b; have been chosen as
follows:

my; = 0.1 kg, my=0.1kg,

KY£]

a; = 10° N/m, b =10° N/m.

The two-degree-of-freedom body has been assumed to
be spherical with a radius » = 0.01 m; whence, r can
be taken as the distance rlyﬁetween the masses m; and
my, discriminating the condition of internal deformation
from the condition of non-deformation. Since the period
of impact under the action of constant external forces is
of the order of some milliseconds, the positive real num-
bers h;’s have been chosen as follows h; = 6.25 - 10'°,
hy =5-10%, hy = 1.5-10°%, hy = 2-10%, which correspond
to time constants equal to 2 ms. The reference sig-
nal zp4(t) has been taken constant so that the impact-
induced force is regulated to 1 N: i.e., zp2(t) = 1/a;.
Few simulative attempts have shown that a good value
of parameter u is u = 2000.
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For this values, Figures 3 report the time-histories
of the positions of masses m;, and m,, while Figure




4 reports the time-history of the impact-induced force
starting from the following initial conditions z;(0) =
—2r12m, 29(0) = —r13m, £;(0) = O0m/s, £3(0) = Om/s:
i.e., at the initial time the two-degree-of-freedom body is
in a steady-state position and is not in contact with the
surface; the initial condition of the &;(¢)’s have been cho-
sen equal to 0. These time histories have been reported
for an interval of 0.2 s. As one can see from Figure 3, the
positions of the two masses m, and m; asymptotically go
to constant values with a fast transient, while the con-
tact between the body with the surface begins at time
t = 0.02 s and continues for all successive times; whence,
the impact-induced force asymptotically reaches the de-
sired value of 1 N.

7 Conclusions

In this paper, it has been considered the problem of
modelling and controlling the impact of a two-degree-of-
freedom body with a infinitely rigid and massive surface.
Basic equations describing the motion of the body have
been derived, both in condition of non-contact and in
condition of contact. A control scheme has been pro-
posed on the basis of an observer that is able to asymp-
totically estimate the impact-induced forces and to allow
their asymptotic compensation when the two-degree-of-
freedom body is in contact with the infinitely rigid and
massive. Simulation results have confirmed the effec-
tiveness of the control scheme proposed here.
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