THE LYAPUNOV EQUATION FOR UNBOUNDED CONTROL
OPERATORS

George Weiss
Dept. of Electrical Engineering
Ben-Gurion University
Beer Sheva 84105, Israel

weiss@bguvm.bgu.ac.il

1. Some background

The aim of this paper is to clarify the relationship be-
tween the admissibility of unbounded control opera-
tors for strongly continuous operator semigroups and
the solvability of certain Lyapunov equations. More-
over, we derive certain stability results for such semi-
groups, in terms of the associated Gramian. In this
section we give some general facts about admissible
and infinite-time admissible control operators, follow-
ing Hansen and Weiss [5], Ho and Russell [6], Salamon
(9], {10] and Weiss [11], [12] (our notation follows [5]
and [11]). The material on the connection with Lya-
punov equations and stability is in Section 2.

We need a notation for some spaces which will be
used. Suppose A is the generator of a strongly contin-
uous semigroup T = (T;)¢»0 on the Hilbert space X.
For any n € N define the space X_,, as the completion
of X with respect to the norm

lzll-n = I(BI — A)™"z],

where # € p(A) (X-, does not depend upon 3). We
put Xo = X. Then (81 — A)~! extends to an isomor-
phism from X_,, to X_,41. T extends to a strongly
continuous semigroup on X_,, whose generator is an
extension of A, with domain X_, ;). The extended
semigroup is isomorphic to the initial one. We denote
the extensions of T and A by the same symbols. Let Z,
be the Hilbert space obtained by endowing D((A*)")
with the norm

llzlln = I(BT — A7)"z]|.

We identify X with X*. It follows that Z; = X_, for
any n € N. For z € Z, and z € X_,, we denote by
(z,z) the duality pairing which reduces to the usual
scalar product on X if z € X.

Definition 1.1. With the above notation, let U be a
Hulbert space and B € L(U, X_1). Then B is said to be
an admisstble control operator for T, if for some 7 > 0
and any u € L%([0,00),U) we have &,u € X, where
®,u is defined by

¢,u= /1 T, Bu(s)do.
0

If B is admissible then for any 7 > 0, ®, defined
above is a bounded linear operator from L2([0, 00), U)
to X (this follows from the closed graph theorem). In
other words, for each 7 > 0 there is a k, > 0 such that

I®-ullx < kellulla Vue L2([0,00),U). (1.1)

The concept of admissibility is important because it is
equivalent to the solvability, in a reasonable sense, of
the differential equation

#(t) = Az(t) + Bu(t). (1.2)

More precisely, if B is admissible, then for any z¢ € X
and any u € L} ([0,00),U), the X-valued function z

defined on [0, c0) by
t
z(t) = Tﬂo-l-/ T:_,Bu(c)do
0

is continuous (in X), and it is a strong solution of
(1.2) (in X_;). Any abstract linear control system
may be represented in the forl41 (1.2), with admissi-
ble B € L(U, X_1), see [10], [11] for the definition and
for details.

The space B(U, X, T) of all admissible control oper-
ators for T with domain U is a subspace of £L(U, X_,).
This space becomes a Banach space with the norm

BN, = sup ||& ullx,

uli,2<1

where the choice of 7 > 0 is unimportant for the topol-
ogy of B(U, X, T).




Definition 1.2. With the above notation, an opera-
tor B € L(U,X_1) is infinite-time admissible for T
if B e B(U,X,T) and for any u € L?([0,00),U), the
function 7 — @, u (from [0,00) to X ) is bounded.

If B is infinite-time admissible then the constant k.
appearing in (1.1) can be chosen to be independent of 7
(this follows from the uniform boundedness theorem):

®,ullx < kllulla  Yue LX([0,00),U). (1.3)
It is easy to see that an admissible B is infinite-time
admissible if and only if, for any u € L?([0, 00), U), the
strong solution z of (1.2) with z(0) = 0 is bounded (in
the space X).

We denote by B(U, X, T) the space of all infinite-
time admissible control operators for T with domain
U. B(U, X, T) becomes a Banach space with the norm

1Bl = lim [IB]], . (1.4)

(The completeness of this space follows from the com-
pleteness of B(U, X, T).) If the semigroup T is expo-
nentially stable, then I;(U,X,T) = B(U, X, T). Oth-
erwise (even if T is strongly stable) the two notions of
admissibility are not equivalent.

A simple but important fact is that B € B(U, X, T)
if and only if there exists ® € £L(L%([0, 00),U), X) such
that for any u € L?([0, ), U)

du = lim ®,u
T—00

(in X). (1.5)

In this formula, by writing “in X” we mean that the
limit converges in X. In order to prove (1.5), we use
(1.3) to show that for 0 < 7 < ¢

1®eu — ®rullx < kllullzarav) -
Clearly ||®|| < k, k being the constant appearing in

Let o > 0 be such that for any 8 > o, e=#||Ty|| — 0
as t — oo. Let C, denote the set of complex numbers
s with Re s > a. By taking in (1.5) u(t) = ve™®,
where v€ U and s € C,, and estimating ||®u|, we
obtain that for K = k?/2

K

Res’ Vs € Ca.

lI(sI — A)_IB“%(U,X) <

Thus, the above estimate is a necessary condition for
the infinite-time admissibility of B. It has been con-
jectured in Weiss [12] that it is sufficient as well, and
various partial results in this direction have been ob-
tained in [5] and [12] (these papers assume that the

semigroup is exponentially stable, but this is not a sig-
nificant restriction). Related material and extensions
are contained in the recent papers of Grabowski [3] and
Grabowski and Callier [4]

We give now the dual formulation of the concepts
introduced above. For any B € L(U, X_;) and any 7 >
0, the dual of &, is an operator in £(Z, L2([0, 00), U))
(we make the identification U = U*) which is given by

@0 = { 5T 57

v Z .
0 t>rT, €4

It follows that B € B(U, X, T) if and only if for some
(hence for any) 7 > 0, ® extends continuously to X.
In other words, there is a k; > 0 such that

/0 @) )E dt < Bz}, Vzez.

We have B € B(U, X, T) if and only if B is admissible

and the constant k, appearing above can be chosen

to be independent of 7. Assume B € L(U,X_;) and

define for every z € Z; the function ¥z on [0, 00) by
(¥z)(t) = B"T,z, Vze2z.

It is now clear that B € B(U, X, T) if and only if there

is a k > 0 (in fact the same as in (1.3)) such that

/owu(w)(t)n%dtskznzu&, Veez,. (16)

Equivalently, B € 3(U, X, T) if and only if ¥ has an
extension to X which is bounded as an operator from
X to L*([0,00), U). This extension, still denoted ¥, is
the adjoint of the operator ® defined in (1.5):

V=9, (1.7)

A formula for ¥ which is valid on X will be given in
Remark 2.6.

2. The Lyapunov equation and the con-
trollability Gramian

In this section we describe the relationship between
infinite-time admissibility and the Lyapunov equation.
This connection has been investigated by Levan [7]
(who assumed that B € £(U, X)) and by Grabowski
[2]. Related results have appeared in Russell and Weiss
(8]. The main result of this section is the following the-
orem, parts of which are contained in [2]. We use the
notation of the last section.



Theorem 2.1. Let T be a strongly continuous semi-

group on the Hilbert space X, with generator A. Let U

be a Hilbert space and assume B € L(U,X_,). Then

the following three statements are equivalent:

(1) B is an infinite-time admissible control operator
for T.

(ii) There exists an operator P € L(X) such that for
any z € Z,

,
Pz = lim | T,BB*T;zdt

T—0Q 0

(in X). (2.1)
(iii) There ezist operators I € £(X), I1 > 0, which
satisfy the following equation with terms in
L:(Zl, X_l).'

AT+ T A* = —BB". (2.2)

Moreover, if B is infinite-time admissible, then the fol-

lowing two statements are true:

(I) P defined in (2.1) is the smallest positive solution
0f (2.2). In other words, P > 0, P satisfies (2.2)
and, if 1 € L(X), IT > 0 and (2.2) holds, then
P<I.

(II) Forany z € X,

tl_l.l'glo PiT;z =0 (i X).

Proof. First we shall prove that (i) < (ii) = (iii) =
(1). As in Section 1, we denote (¥z)(t) = B*T;z, for
any ¢ € Z; and any t > 0.

(i) => (ii): Assume (i) holds. Then & defined in

(1.5) is a bounded operator from L2([0, ), U) to X.

We define P = &, so that P € £(X). Then (1.5)

and (1.7) show that for any = € Z;, Pz is given by

(2.1), so that (ii) holds.

(ii) = (i): Let P € L(X) be defined by (2.1) (this

formula defines P since Z; is dense in X). Since for

any z € 7y, ||¥z|]? = lim, o H\Il:cH%,([O,T]'U), we get

|¥z||? = (Pz,z), Vzez. (2.3)

This shows that (1.6) holds (with k2 = ||P||), so B is
infinite-time admissible.

(ii) = (iii): Let P € £(X) be defined by (2.1). We
show that (2.2) is satisfied for Il = P. Let z,y € Z,
and for ¢ > 0 define f(t) = (B*T,z, B*T;y). Then f
is continuously differentiable and

d * ™ » TV * Y T 4x
d_tf(t) =(B*'T;A"z,B T;v) +(B*T;z,B*T; A ).
Integrating both sides on [0, 7] gives

£(r) - £(0) = < / "TBBT Az, y> N
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+ </ T:BB*T;z dt,A*y> . (2.4)
0

Since A*z € Zi, by (ii) each of the above integrals

converges (in X) as 7 — co. Hence lim,_ o f(7) also

exists. Since by (ii) the integral [ f(t)dt has a finite

limit as 7 — oo, we must have f(7) — 0 as 7 — oc.

We then let 7 — oo in (2.4) to find that

(PA’z,y) + (APz,y) = —(BB"z,y).

Since Z3 is dense in Z;, the above equality holds for
any y € Z,. This implies (AP + PA*)z = —BB*z,
for any z € Z,. Since both AP + PA* and BB* are
in £(Z1, X_1), again by a density argument P satisfies
(2.2).
(iii) => (i): Assume II € £(()X), Il > 0 and II satis-
fies (2.2). For any z € X and any ¢ € [0, ), we define
Ey(z) by Ey(z) = (IT;z, T}z). Then Ei(z) > 0 and
for any z € Z), Ey(z) is a continuously differentiable
function of t. By (2.2) we have that for any z € Zy,
£ Bz) = ~(BB'T;2, T2) = —|B*Talf? < 0,
(2.5)
so that E(z) is nonincreasing. Since E;(z) is a contin-
uous function of z, from the density of Z; in X we con-
clude that for any z € X, E;(z) is nonincreasing. This
can be written in the following form: for 0 < 7 <t,

T.nT, < T,0T,.

It is a well known fact that any decreasing positive
operator-valued function has a strong limit. Thus,
there exists [Io, € £(X), e 2 0, such that for all
zeX

Jim T, IT;z = Nz  (in X). (2.6)
It is clear that 0 < I, < II. Integrating (2.5) on
[0, 00) we get that for z € Z;

(llz, ) — (ooz, z) = /Ow IB*T;z|?dt = |2

(2.7)
(From here we see that (1.6) is satisfied, so that (1)
holds.

Now assume that B is infinite-time admissible and
let us prove statement (I). We see from (2.3) that P >
0. We have seen earlier that P satisfies (2.2). If I €
£(X), T > 0 and (2.2) holds, then by (2.3) and (2.7)
we have that for all z € Z;

(Pz,z) = (llz,z) - (Heoz, z), (2.8)

so that P < II, as claimed in (I). Finally, to prove (II)
we take I = P in (2.6) and (2.8) and obtain I, = 0.




By (2.6) this implies lim;— o (T; P Ty 2, z) = 0 for any
z € X, which is precisely (II). a

If B is infinite-time admissible for T, then P de-
fined in (2.1) is called the controllability Gramian of
T and B. Equation (2.2) is called a Lyapunov equa-
tion (this name is also used for slightly different equa-
tions). In several papers, the connection between the
solvability of a Lyapunov equation and the stability of
T was investigated; see, e.g., Levan [7] and the refer-
ences therein. We shall briefly discuss this connection.

Suppose that B is infinite-time admissible for T, so
that the Gramian P defined in (2.1) exists. It is clear
from (IT) of Theorem 2.1 that if P is invertible (i.e.,
P > eI > 0) then T" is strongly stable, i.e., Tiz — 0
as t — oo, for any z € X. This is the best possible
result under the given assumptions, see Example 2.4
below.

With T, B and P as above, it is clear from (2.6)
and (2.8) that if T" is strongly stable, then P is the
unique positive solution of (2.2). (In [7] it is claimed
that T uniformly bounded implies the uniqueness of
P, which is wrong even if X is one dimensional.) If T
is strongly stable but T" is not, then (2.2) may have
many positive solutions. For example, if T is the left
shift semigroup on L?[0, 00) and B = 0, then any mul-
tiple of the identity I satisfies (2.2).

(From the preceding two paragraphs it follows that
if B is infinite-time admissible and P is invertible, then
P is the unique positive solution of (2.2).

The following proposition is a slight generalization
of a result in [7] (where only the case B € L(U, X) is
considered).

Proposition 2.2. With the notation of Theorem 2.1,
assume that B is an infinite-time admissible control
operator for T. If P > 0 and T is uniformly bounded,
then T is weakly stable, i.e., (Tiz,y) — 0 ast — oo,
foranyz,y€ X.

Weak stability is the strongest possible conclusion
under the assumptions of the proposition, as Example
2.5 shows.

Proof. Denote V = Ran P3, then V is dense in X
(because V is the orthogonal complement of Ker P3 =
Ker P = {0}). It follows from (II) of Theorem 2.1 that
for any z € X and any v € V, limy_oo(Tiz,v) = 0.
Let z,y € X be fixed. We claim that for any ¢ > 0 we
can find T > 0 such that (T;z,y) < ¢ for each t > T
Indeed, let v € V be such that (Tz,y — v) < § for all
t>0 (thls is possible by the uniform boundedness of
T). Now if T is such that (Tiz,v) < £ forallt>T,
then T is the desired number. The ex1stence of such a
T for any € > 0 means that (T;z,y) — 0. ]
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Remark 2.3. After Proposition 2.2 it is worth men-
tioning the following facts: Suppose that T is a weakly
stable (hence uniformly bounded) semigroup on the
Hilbert space X, and let A denote its generator.

(a) If for some (hence for any) s € p(A), (sI — A)~!
is compact, then T and T" are strongly stable. This
is well known and easy to prove.

(b) If (A) NiR is at most countable, then T and
T" are strongly stable. This follows from the stability
theorem of Arendt and Batty [1].

Example 2.4. Let T be the right shift semigroup on
X = L%[0,00). We take U = C and B = &, i.e.,
B*z = z(0) for each ¢ € Z; = H[0,00). Then it is
not difficult to see that B is infinite-time admissible
and P = I. Since P is invertible, we have that T" is
strongly stable, but T is not strongly stable.

Example 2.5. This is a refinement of the preceding
example. Let T be the right shift semigroup on X =
L%(R). We take U = I and decompose Bv = byv; +
bava + b3va..., for any v = (v1, va, vs...) € I2. We define
the components of B by by = 27%/25_, i.e. bkz =
27F/2z(—k) for each z € Z, = H(R). Then 1t is not
difficult to see that B is infinite-time admissible and
for any z € X, (Pz)(£) = ¢(£)z(£), where p(£) =
Yk>—¢27%. In particular, p(§) = 1 for £ € [-1,00)
and () decreases rapidly as £ — —oo. Since p(£) > 0
everywhere, we have P > 0. By Proposition 2.2 T is
weakly stable, but no stronger stability concepts are
true for T, since it is unitary.

Remark 2.6. Assume B is an admissible control op-
erator for T, and let ¥ be as in (1.7). We have seen
in Section 1 that for any z € 2, (Vz)(t) = B*T;«.
In order to obtain a formula valid for any z € X, we

may replace B* by its A-extension B). This operator
is defined as follows:

- _ : * — A*y—1
Biz, = ,\BTooB AQAI - A" 'z (2.9)

(X is real), for all z, in the domain

D(B}) = {z, € X | the limit in (2.9) exists } .

For more details about this operator we refer to the

paper [13]. We have that for any z, € X and almost
every t > 0,

(¥z,)(t) = BiT;z,.

Together with P = ®¥ this leads to the following ex-
pression for the controllability Gramian P (valid for
any r, € X):

Pz, = lim
T-— 00

T,BBRT T, dt (in X).
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