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Abstract. In general, nonlinear output feedback
control problems are infinite dimensional. In this pa-
per we present, classes of nonlinear output feedback H*
control problems for which the optimal observer dy-
namics are linear, and the optimal control law is linear
feedback. These solutions are obtained by incorporat-
ing an information state approach to a dynamic game,
where the controller plays against the initial and final
states, and the disturbances entering the unobservable
and observable variables. The game is solved by first
solving explicitly the first order partial differential in-
formation state equation, to recover an equivalent full
information game subject to linear optimal observer
dynamics. The solution of the full information game
yields the optimal control law, which is linear in the ob-
server state. The results are applied to parameter iden-
tification problems with drift terms depending affinely
on the unknown parameters. The optimal control law
is shown to be linear feedback.

Key words: Nonlinear dynamic games, output feed-
back, information state, exact optimal controls, param-
eter estimation.

1. Introduction

Since the pioneer work of Zames [1] on the H*>, or
robust, control problem of linear systems, there has
been an increasing interest in having a complete the-
ory to cope with the disturbance attenuation problem
(see [2]). Originally, this problem was posed and solved
using frequency domain methods (which are restricted
to linear systems) by introducing the H* norm. The
frequency formulation approach of the disturbance at-
tenuation problem has been linked to the theory of
dynamic games using state space models (see [3]), as
zero-sum dynamic games with two opposing players;
the disturbance input and the control input. For feed-
back control systems, the theory of dynamic games has

been a powerful tool for solving both linear and nonlin-
ear disturbance attenuation problems. This is due to
the fact that the H°° operator norm can be interpreted
in terns of the L? — gain of the system which makes
the theory of dissipated systems applicable, (see [4]).

However, for analogous output feedback control sys-
tems, several issues associated with the controller de-
sign are not so well developed and understood. This is
due in part, to the fundamental difficulty that for gen-
eral nonlinear output feedback control problems one
has to introduce an observer state (summarizing the
observation history) on which the control action should
be based, and in part, because the information state is
infinite dimensional.

Our main objectives in this paper are the following:

1. Formulate the nonlinear disturbance attenuation
problem as a dynamic game using an information
state approach;

2. Show that large classes of nonlinear systems ad-
mit finite dimensional solutions of the information
state equation, and that the optimal observer dy-
namics are linear, reminiscent of that associated
with linear H°® control problems;

3. Show that the same classes yield optimal control
laws which are linear feedback, reminiscent of that
associated with linear H° control problems;

4. Solve parameter identification problems when the
unknown parameters enter bilinearly in the unob-
servable dynamics and compute explicitly the op-
timal control law.

Recently, using similar ideas, it is has been shown
in [5, 6, 7, 8, 9, 10, 11], that the information state
associated with partially observable exponential of in-
tegral control problems can be solved explicitly when




nonlinearities appear in the dynamics of the unobserv-
able state. In particular, in [5, 7] it is shown that the
finite dimenionallity feature of the information state
is preserve when the measurements are quadratic in
the unobservable state. In [9, 10], the results on fi-
nite dimensional information state are generalized con-
siderably; it is shown that finite dimensional con-
trollers exist whenever the sensor measurements are
quadratic in the unobservable state and the dynamics
of the unobservable states are nonlinear. Furthermore,
it is shown that large classes of nonlinear stochastic
control problems yield optimal feedback control laws,
reminiscent of linear-quadratic-Gaussian (LQG) and
linear-exponential-quadratic-Gaussian (LEQG) track-
ing problems.

It is important to note that this paper presents for
the first time, examples of nonlinear H* control sys-
tems with optimal control laws expressed explicitly as
a function of the observer state.

2. Problem Statement
2.1 Dynamics

The nonlinear system to be considered in this section
consists of an R™—valued unobservable variable z(-)
and an R¢—valued observable variable y(-) described
by the equations

z, = PR +g@E)+ fi
+ Bu(t,y) + Gowe, %(0), (1)
1
v = HiiE+h+ Nv, y(0)=0, 2

where t € [0,T], u(-) is the control input, w(-),v(-)
are deterministic disturbances, and z(0) is an unknown
initial state.

We define the observation history by Y; =
{y(s);0 < s < T} and introduce the following assump-
tions:

Al. Ft € mnxn’ ft € mﬂth € !Rd)(n’ h’t € §Rd;

A2. N, e R¥*4 N = N* N >0;

A3. G, € RG> 0,

A4. g:[0,T] x R® — R"™, remains to be determined;
A5. wu(-) takes values in U = R™ and the set of
admissible controls is defined by

U = {u:[0,TIxC(0,T;%%) - U,
u(-,y) € L*([0,T}; ®™)} ;

A6. (w(),v(-)) € L*([0, T} ®™*?), (2(0),z(T)) € ®*"
are unknown;

AT. p: R SR L0, T|XR*" XU SR, p: R" - R;

A8. p((0)) = —z5|P(0)~2(£(0) — §)I” + 56(£(0),0).

Definition 0.1 (Disturbance Attenuation).  Given

6 > 0 and t € [0,T], the disturbance attenua-
tion problem consists of determining a control u €
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U such that for all w(-) € L%[0,T);®R"),v() €
L%([0, T); ®2), (£(0); Z(T)) € R?" the following inequal-
ity holds:

Pu) = foT U1, T, u(t,y))dt

1

< 9

Whenever the upper value of this disturbance atten-

uation is bounded, the optimal disturbance attenua-

tion level specified by 0* (i.e., &) is obtained from
= = infuet SUP(y z.) SUP(w,zo) 1% (1)-

Recall that in the general formulation of the distur-
bance attenuation tracking problem one has to specify
the signals to be controlled. In our formulation these
signals are represented by the function £(-). Also, since
we are interested in the tracking problem we introduce
the assumption

A9. 2l(t’ ia ’U.) = Cl + C27 where

(1 = QEE+ Ruuu+ 2mux + 2n,u,
Q = Q*'>20, R=R"'>0,

1 -
G = G gt D + Utz ).

Remark 0.2 Notice that part of (2 is given by
|G’t_%(:i: — Fyx — f; — Byuy — Gywn)|?, therefore, the
controller is to be designed so that tracking is achieved
while deviations of the model from being linear are pe-
nalized.

2.2 Dynamic Game

The disturbance attenuation problem will be solved
using a game theoretic information state approach.
That is, we identify an information state which sum-
marizes all the information available to the controller
and, thus, carries the information {Y},u,;s € [0,T}}.
To this end we introduce the functional

T
J%(u()) = sup sup {%P(-’Eo)+/o ((t, Z¢, ue)dt

(U)ET) (wyiﬂ)
1 2 2 o(Zr)
25 [lwe]? + Jve[?] ) dt + 5 [ (3)

and we define the sup pairing “< -,- >” by < p,q >=
sup,esn {P(2) + q(z)}. From the definition of J%(u(-))
we deduce the alternative definition of 8* given by §* =
sup {6; infyey J%(u(-)) < 0}.

Recall that for feedback controls (i.e., u = u(t,z))
(see also [3]) the disturbance attenuation problem can
be cast in terms of minimizing over u € U, the func-
tional J?(u(-)), subject to the evolution in time of the
state z(-). Since in the present context the control is
output feedback (i.e., u = u(t,y)), we shall derive an

~p(@(0)) + fy § (lwel? + N, Fuil?) dt — o(r)




evolution equation for the “information state” on which
the control action should be based. The following the-
orem derived in [12], by applying large deviations tech-
niques to the partially observable exponential of inte-
gral control problem is now introduced. The results
of the theorem has been previously incorporated inde-
pendently in [13], as a new means for solving nonlinear
disturbance attenuation control problems.

Theorem 0.3 For a given output path y() €
L%*([0,T];R9), starting state T, = %, and for a fixred
strategy u € U define the information state ¢°(-) by

t
sup sup {%p(zon /0 (€5, &0 us)

wWER™ FoeR"

- 2% [|w,|2 +|N"¥(y, — H,%, — hs)|2]> dS} C)

P&t =

where the unobservable state £%(-) satisfies the back-
ward equation

::i:a = Fai:s +ga(5’3) + fa + Bsua + Gaws, I = 5:7

where s < t < T. Then, ¢ = ¢°(%,t) satisfies the
1st order partial differential equation (PDE) evolving
forward in time
(7] . .
pris —Dzq] (R + f; + 9,(%) + Bou(s,3))
. 1, .
t, %, us) — @IN %(yt — HyEe — b)) ?
1
sup {_D:EQta'Gtwt - 2—9‘|wt|2} ) (5)

@0 = Fp(Eo), ©)

a_%’a%g""' 3427‘ . The optimal distur-
bance attenuation problem is cast in terms of minimiz-
ing over u € U, the functional

Pu@)=  sup (<ot 251 (7)
y€L2([0,T);R4)

where Dz = (

3. Finite Dimensional Problem
3.1 Solution of Information State Equation
The control problem stated in Theorem 0.3 by (5),
(6), (7), although fully observable, is infinite dimen-
sional. In this section we shall determine classes of non-
linear functions g(-) entering the unobservable dynam-
ics (1) that yield explicit solutions of (5), (6). Equiv-
alently, the optimal observer dynamics will be deter-
mined in terms of a finite number of ODE’s which
form the sufficient statistics of the estimation problem.
First, we give a precise definition of the system to be
considered.

Control System X;: Suppose A1-A9 hold and the
dynamics and observations are given by (1), (2), re-
spectively.

Theorem 0.4 Suppose there exist functions ¢ €
Ctl,’: (R™ x [0, T]) satisfying

o9 1

ot 2
6- . 1

+§£(t, Z,u) — 5|G,.Di¢,|2 — Bu.D; ¢y, (8)

+ (ng + ft) Dz = ."i!l-iti + Z.6¢ + 6

where the functions £(-), A(-),5(-), 6(-) are to be chosen
so that (8) yields explicit solutions, and there erists

0 < 0* such that
H!N7'H,+A,—0Q, >0, Vte[o,T].

Then, the information state of system ¥, with nonlin-
ear drift term g(-) given by

9:(Z) = G:G; D:z¢(2, ) (9)

admits explicit solutions given by

&(8,1) = 56, 1) = 55l PHE— ) + R ,(w), (10)

where

. ~
Zg,t(u) = /0 % {[Qs - %]1‘,.1‘, + R,u,.u,

7 6
+ 2r,[m}— %] + 2n,u, — 27’

1 -1 2
-0—|N, (ys — Hyrs — h)|* ¢ ds.
Further, the disturbance attenuation problem of system
¥} is now equivalent to the finite dimensional com-
pletely observable minmaz game of determining the op-
timal u € U that minimizes the functional
1 1, _1 ©p
6 ~ 2
P = sw{<go- giprie-mpt >
+ Lr)}, (11)
subject to optimal observer dynamics described by only
two statistics r(-), P(-) satisfying the ODE’s:
e = {Ft —-B (;\t —th)}Tt + [
— PGy + Boug + 0Pym;
+ Pth'Nt—l?Jt, ?]t = Yt — Htrt - hh 7'(0),(12)

P, = F,Pi+PF; —P,(H;N;'H,
+ A - oQt) P.+GG:,  P(0). (13)

Proof. Using the hypothesis of the theorem verify that
(10) satisfies (5), (6). O

According to our earlier investigations in [9, 10] asso-
ciated with stochastic control problems, there is a fun-
damental difficulty in solving (8) because of the pres-
ence of the term Byu,.Dz¢,; the functions g(-) resulting




from these solutions will not yield interesting nonlinear
systems X; which can be encountered in real applica-
tions. Of course, one way to remove this terms from
(8) is to use £ to cancel Byuy.Dz¢;. Alternatively, we
introduce the following control system:

Suppose the dynamics and observations are de-
scribed by

4] - (28 20][2] (4]

o [ [

1 1
|G @]ld] ] o
= FiZe + g(t, %) + fo + Beu(t,y) + Guwy,

1
Ye = Hl(t)x, + Hg(t)Zt + ht + Ntydvty (15)
1
= HiZi+ by + NPv, y(0) =0,

respectively, where * = (z*, z*), and z(-), 2() are, re-
spectively, ™1 R™~ ™ —valued unobservable states. In
addition, we introduce the assumption

A10: G} € R ™ G > 0, U(t,Zu) = Ut,z,u),
Fi2 =0, B! = 0.

Control System X,: Suppose Al, A2, A4-A10 hold
and the dynamics and observations are given by (14),
(15), respectively.

The equivalent of Theorem 0.4 applied to system £,
is stated next.

Theorem 0.5 The results of Theorem 0.4 remain
valid for the nonlinear control system £, provided (8),
(9), (10) are, respectively, replaced by the following
equations:

O

1
e + §|th-Dz¢t|2 + (Fu(t)x + fi1(t)) Dz

%z.Atx + z.0¢ + 6 + gf(t, z,u), (16)

9:(z) = G} G} Dy ¢(z, t), (17)

P@Y = 560~ 5l i@ r)P
+ ﬁ,t(uL

Lemma 0.6 Consider the nonlinear system I, and
suppose Fll = 01 Gl = Inyy fl = 0; andg € Czl:(%nl) is
the gradient of a potential, that is,

g(m) = D:¢(I),

If the function () is given by

it z, u) = %{g(t, z)|?,

then (16) is satisfied. Therefore, the optimal observer
dynamics are obtained from (12), (18) by setting A =
6=Fn=fH=0.

Proof. If the hypothesis of the theorem are satisfied by
Theorem 0.5 we know that any time independent func-
tion ¢ : R™ — R will satisfy (16), simply by setting
A =0,0 =0,6 =0, thus g(-) is the gradient of some
potential function and hence, the optimal observer dy-
namics are obtained from (12), (13). O

3.2 Examples of Finite Dimensional Systems

In this section we shall present certain classes of non-
linear functions g(-) that admit finite dimensional so-
lutions for the information state equation.

Theorem 0.7 Suppose u € U and there exists 6 < 6*

such that
H!N;'H, + A, —0Q, >0, VteloT).

Let A e R™M*™ (€ ™ n, € R, and define
.1
Ta(t,z) = §Atz.a: +x.6e + e,

The information state ¢°(-) associated with system X,
gwen in Theorem 0.5 admits explicit representations,
at least for the following two classes:

Class 1 (Rational Nonlinearities). A solution of
(16) is

¢R2 (.’B, t) = IOg Fz(l‘, t)
provided the function [ is defined by
- et
Ut z,u) = b—thl.Dz(ﬁRz (x,t)|%.
This implies that the nonlinear drift term g(-) is

GlGy*
Az + TG+

gi(x) = (Az +G),s

where

A, Fii(t)*Ae + AcFra(t) = 6. A,
ée Fi(t)* G + Acfi(t) = 6:¢e,

e fi(t).¢e = 6eme,

A, 0, oo =0, 6 = arbitrary.




Class 2 (Exponential Nonlinearities). Suppose
v,42:[0,T) = R. A solution of (16) is

i, (x,t) = log {7} exp (C2(z, 1)) + 7 exp (—T2(z, ) }
provided the function ? is defined by

£ = 51} D, (2,0
This implies that the nonlinear drift term g(-) is

7L exp (T2(z, t)) — 72 exp (—T2(z, 1))
vLexp (T2(z, t)) + 7Z exp (—T2(z, 1))
GiGY™ (Dvz + G,

ge(z)

A.t Fi1(t)*Ac + AFra(t) =0,
e Fia(t)*G + Aefi(t) =0,

. 1d v
. = =—— | log =
Nt f(t).Ge T (Ogrng )

1d
A, 0, g:=0, 6t:§'£(10g7t17t2)'
Proof. Substitute the solutions into the evolution
equation of ¢(-). O

One can obtain similar results by considering the
control system X;. Additional classes with finite di-
mensional information state equations are found in
[9, 10]. An example with polynomial nonlinearities is
presented next.

Example 0.8 Supposez: [0,T|xQ — R, z:[0,T]x
Q- R, y:[0,T] x @ —> R and consider

i = -Mzf+w, =z(0), >0,
4 = m+ztulty)+wl, 2(0),
Yy = Ty+ 2+ vg.

If we set £(t,z,u) = 112311|2, the information equation
is finite dimensional and is obtained from Theorem 0.5
by setting ¢(z,t) = —Tat.

3.3 Generalizations

We have thus far presented general classes of nonlin-
ear systems that yield finite dimensional optimal ob-
server dynamics. Next, we shall obtain additional gen-
eralizations by simply modifying the signal to be con-
trolled introduced in A9. Although we shall consider
only system Ij, the reader should be convinced that
similar generalizations will also hold for system ¥X3. To
this end we introduce the next assumption.

A11: 2(t, %,u) = (1+Cz, where (1 is given in A9 while
(2 is given by

& = SIGTLIRE+ fitg(td) + Balt, )
a -
+ ot ((GtG;)_lDig(ta z)) .

Control System Xj3: Suppose A1-A8, All hold and
the dynamics and observations are given by (1), (2)-

Define
. 1., -
Q! = Q+GF(GG) 'R, teloT),
. 1_, -
R! Re+ 5B{(GG) 'R, te0,T),
. 1., o
mf m; + aft (Gth) lFt, tE [0, T),
. 1., o
nf Ng + Eft (Gth) lBt, te [0, T).
Theorem 0.9 Suppose there erists a § < 8* such that
HN;'H,—6Q% >0, Vvtelo,T].

Assume (without loss of generality) Fy.B; = 0. Then,
the information state of system L3 with nonlinear drift
term g(-) given by

9:(%) = G:G; Dz ¢(%,1) (19)
admits explicit solutions given by
- 1 .. 1 -3,
¢°(&,t) = (%, t) — 55lP " (E - ro)|? + I3 (u), (20)

where

Ig,t (u)

1 rt
5/ {er,.r,+Rgu,.u,
0

1
2r, m&* + 2nfu, + §|G';l.f‘,|2
%le—%(ya ~ H,r, — ha)lz} ds.

The disturbance attenuation problem of system X3 is
equivalent to the minmaz problem of determining the
optimal control u € U that minimizes the functional

1 1, -1 ©
9 . f— b _——— 2 - 2 -
o)) sgp{<,,¢ SIPrtE—rol g >

b T}, 1)

subject to optimal observer dynamics described the
ODE’s:

Ty = {Ft + 0PtQ?} s + fo + Brug + 0Ptmf"
+  PLHIN; ', 9 = e — Here = he, 7(0),(22)

Pt = Ftpt’*-PtF; —Pt (H:Nt_lHt
+ —0Q9) P, +G.G;, P(0). (23)




Proof. Follow the derivation of Theorem 0.4. O

4. Exact Optimal Control Laws

In Section 3 we have presentec nonlinear systems for
which the information state equations admit finite di-
mensional solutions. In this section we shall present
sufficient conditions for systems I;, X2, X3 to yield op-
timal control laws reminiscent of that associated with
linear H*° tracking control problems.

Without loss of generality, the developments of this
section will be carried out based on the results of Sec-
tion 3.3 (Theorem 0.9), that is, by considering system
¥3. From Theorem 0.9 we know that in order to com-
pute the optimal control law we need to minimize over
u € U the functional (21) subject to observer dynamics
(22), (23). To this end we define

Z, =

| 1, -1,
sup {30060 - gg1PrH@ - rP

+ 90_(:_”_)} = arg sup {q (,7)+ w(z)},

arg sup

0 (24)

and we assume %, is unique. If uniqueness fails we
restrict the state space to X C R™. If we now define

o(%.)
0

we have the following full information minmax game:

¢(r,T) = ¢°(%,,T) + (25)

Full Information Game: Minimize over u € U the
functional
S (u(-)) = (26)

sup
yEL2([0,T];R4

){@(7‘, T) + Ty r(u)}

subject to (22), (23), where Ty +(u) is given in Theo-
rem 0.9. Towards solving this game, for Z € ®*,p € R
we introduce the Hamiltonian

1r€1£ {p Buu+ = (Rfu u+ 2ntu)}

% (Qi%.% + 2miE),

H(z, p)

-+

and we define the operator

i(Z( 1Jz]+0P.,m )+f.) -6%5’

where
F,=F,+0P,Q°, a(t) = P,H;N;'H,P..

If we now define the cost-to-go function

S(r,t) = inf sup {¢(r,T)
weU yeL2((0,T};R4)
+ Zr(u); re=r}, (27)
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by using dynamic programming arguments (see [11]) we
deduce the following Hamilton-Jacobi (HJ) equation

%smw +.&Qﬂnﬂ+gaﬂmﬂﬁdzﬂnn
+ H(r, D.S(r1)) =0, (28)
S(rnT) = orT). (29)

Note that we arrive at (28) by performing the maxi-
mization over y. In addition, it should be clear from the
context of (28), (29) that Isaac’s saddle point inequal-
ities are satisfied. Consequently, we have the following
verification theorem.

Theorem 0.10 Consider the control system L3 and
assume the admissible controls are of separated form
u(t) = u(t,r). Denoting by S(-) the solution of the HJ
equation (28), (29) we have
S(T(O),O) < Ja(u(')), Yu€U.

Further, letting u*(t) = u*(t,r), where u* is a Borel
measurable function minimizing H given by

u*(t)y = —R>"'B;D,.S(r,t) —

and r(-) = r¥’(-) is the corresponding solution of

010:
n,,

= (R+ 0Pth) re + fe + Beu®(t) + §Pmy"*
+ PH;N; %, r(0), — Hiry — hy,

Ty

we have

S(r(0),0) = J?(u*(-)) = inf sup
v yeL2((0,TIR?)

T8 (u(-)).

Proof. See [11]. O

Clearly, the results of Theorem 0.10 imply that for
any nonlinear function ¢(-) obtained from Theorem 0.9
(hence, g:(%) = GiG;* D:¢(%,t)), the optimal observer
dynamics are reminiscent of that associated with lin-
ear H™ or, robust tracking problems. Similar results
are obtained for the optimal control law in the next
theorem.

Theorem 0.11 Consider the control system 3. The
optimal control law u* € U minimizing the total cost
function J®(u(-)) is linear feedback, reminiscent of that
associated with the linear H™ or, robust tracking prob-
lems, if the following hold:

1. The function g(-) is defined by

g(t :B) GtGﬂl x¢(x t)a (30)
2. The function ¢(-) is defined by
o(Z,T) = -¢(Z,T)+ = i (QT:c I+ 2mrz). (31)




Proof. If the conditions 1, 2 of the theorem are satis-
fied, we know from (24) that

Z,=(—- 0PTQT)_1(7'T + 0Prmy).
Also, from (25) we have

PnT) = 5rrQr(I—6PrQr)'ry

0 *
+mT(I —_ OPTQT)_I + EmT(I — GPTQT)_IPTmT.

Therefore, the terminal condition of the HJ equation
(see (29) is a quadratic function of r. Hence, the result
follows. O

For completeness, we present next the solution of sys-
tem X3 when conditions 1, 2 of Theorem 0.11 hold.

Theorem 0.12 (Ezxact Optimal Control Laws). Con-
sider the control system X3 and assume conditions 1,
2 of Theorem 0.11 hold. Denote by p(AB) the spectral
radius of AB, and define

O‘i{supﬂ;PZO,S'zO, ﬁ(PS')<%, Vte[O,T]},

where P(-) is given in Theorem 0.9 and S(-) is the so-
lution of the Riccati differential equation

S, + F!S,+5F, -85, (B,Rf"‘B;
— 0G:G}) S, + Qf, St =Qr.

Then, for § < 6* the optimal control law corresponding
to the class of control systems L3 is given by

w'(t) = —RP7'BY(Sere+ k) - RY )"
= —R{™'nd" — RO By (- 05,P) Sre + K ),

where r(-) = % (-), P(-) satisfy (22), (23), respectively,
while the control gains are

e + Z¢(Fo+0PQY) + (F, +0QP) T, + Qf
- % {B,Rf’_lBt' — OPH;N;'H,P,} T, = 0,

i {(I ~8Q7Pr) ' Qr+Qr(I - 0PTQT)_1} ,

ke (Ft +0P.H; N, 'H,P,%,

0P.Q} — B,R)'BI%.)

md + (ft' +0mlP, — nfRf’—lB{) . =0,
kr = mp(I—0PrQr)".

FPurthermore, the optimal total cost associated with sys-
tem X3 is given by

P) = o+ (E0)r(0)r(0)
+ 2K(0)r(0) + p(0)),

where the functions Z(-), p(-) are given by
je + Ok PH; N H,Pk; + 2k, ( fe+ 0PmE)
-1 .
IR (Bik: +n*) P =0, pr=0,

9 - .
Tor g™ (I —0PrQr) ' Prm}

+ l/TK;—1 filfdt
20 0 t «Jt .

Proof. See [11]. O

5. Parameter Estimation and Control

In this section we suppose that systems X,
i = 1,2,3 contain unknown constant parameters
64,63,..,60,_n, which we desire to estimate as
well. For simplicity, we consider the case when the
R™ —valued unobservable state z(-) and observation
y(-) are described by

22 = Fu(t)ze + f1(t) + 9(z:, 0)
+ Bju(t,y) +w;, z(0), (32)
L
Y = Hl(t)zt + H2(t)9 + hy + N2 v, (33)
Htjt + ht + Nti-vta y(O) = Ov

where £ = ( g ). The nonlinear function g(-) is given
by

n-n;

g(z, 9) = E 9,—A,-1:.
i=1

Here O is an n — n;—dimensional vector (i.e., 8 C
Rr-mXn-n1 ) Since © is a constant vector we can
take this as part of the dynamics by introducing the
equation

6=0, ©6(0). (34)
The parameter estimation and control problem of in-
terest is defined as follows:

Parameter/Control System Xg: Suppose Al-A2,
A4-A8 hold (with z* = (z*,0*)), the dynamics are
given by (32), (34), the observations are given by (33),
and the signal to be controlled £(-) is given by All with
(2 defined by

&= 3Pz + Hilt) + 9(z, ©) + Blult,y) .

Although system Xg is slightly different from sys-
tems Z;,1 < i < 3, the analysis of the previous sec-
tions goes through, by taking g(z,8) = D.¢(z,6),
where ¢(z,0) = 1z.3 7" 6;A;x. The informa-
tion state equation for system Xg is explicitly solv-
able and is obtained exactly as in Theorem 0.9. In




addition, if we employ Theorem 0.11, that is, by set-
ting o(Z) = —¢(z,6) + § (Qr#.Z + 2mri), the opti-
mal control law is obtained exactly as in Theorem 0.12;
thus, it is linear feedback and equivalent to that associ-
ated with the linear H*, or robust tracking problems.
We note that additional generalization of system Xg
are possible and should appear elsewhere.

Finally, we point out that the analogous risk-
sensitive stochastic control problem of the current pa-
per is treated in [14].

6. Conclusion

In this paper we have considered nonlinear output
feedback M, or robust control tracking problems, and
we have presented explicit solutions of the information
state equations in terms of a finite number of sufficient
statistics forming the observer dynamics. We have then
derived sufficient conditions for constructing nonlinear
output feedback tracking problems which are equiva-
lent to linear H* control tracking problems. In addi-
tion, we have shown that the class of parameter iden-
tification problems with the unknown parameters en-
tering affinely in the drift of the unobservable state,
lead to optimal control laws that can be implemented
in real-time.
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