An Approach to the Optimization of High-speed Integer Algorithms

Nedeljko Ostojic
University Nikola Tesla, Nikodima Milasa 1, 59300 Knin,
Republic of Serbian Krayina, via Yugoslavia

Abstract

For a certain number of algorithms, efficiency is
crucial. Optimization of the number of arithmetical
operations is not enough when algorithm an is to be
implemented in VLSI. An approach to the
optimization of high speed sequential algorithms
suitable for implementation in VLSI is presented.
The approach is based on the weakest precondition
calculus. In this way, the care of correctness of
algorithm is taken through the optimization process.
The method is illustrated by the optimization of
average number of cycles needed per approximation
point of integer case circle algorithm. As a result, an
efficient incremental circle drawing algorithm
suitable for implementation in VLSI is obtained.
Although it asks for more arithmetical operations,
this algorithm implemented in VLSI is faster than any
other known circle generating algorithm. With the
same approach other aspects and different types of
algorithms could be optimized.

1. INTRODUCTION

The priority of algorithm efficiency is not as high as
that of its correctness or maintainability.
Furthermore, some techniques often used by
programmers in order t0 make a program more
efficient have adverse effect on program correctness
(see [1], [3]). On the other hand, in certain
applications efficiency is crucial: either to make a
system economically useful or because of the
particular nature of the application itself (e.g., real
time systems). In some applications speed is so
crucial that certain algorithms are implemented in
VLSI 10 achieve as high speed as possible.

The task of speed optimization based on hardware
characteristics is often left to the implementator. We
expose an approach for such a case. The techniques
presented belong to the class of "code improvement
techniques”, which are generally considered
undesirable [1] because of danger that they could

destroy program reliability. To avoid this, we suggest
the techniques based on weakest precondition
calculus, therefore the algorithm correctness could be
easily kept through the optimization process.

We want to stress that the algorithm design could
involve such constraints that an implementatcr could
fail to obtain the best solution. Because of that, we
propose that a designer and an implementator work
together, at least in the optimization phase.

The fact that certain arithmetical operations, e.g.
increment and decrement, are usually faster than the
others, has an influence on the algorithm
optimization. So, the approach with minimizing the
number of arithmetical operations could fail to give
the fastest solution even in a case when an algorithm
is implemented in programming languages. It is
particularly emphasized in cases when an algorithm is
implemented in VLSI.

To illustrate our approach in this paper we consider
the optimization of a circle generating algorithm,

Algorithms for drawing circles and circular arcs on
integer grids belong to the class of fundamental
algorithms of raster graphics. They are widely used
not only for drawing circular arcs on raster screens,
but also for incremental plotters, as well as for
brushing different types of curves [8].

Although the problem has been discussed in the
literature several times [2, 4, 6..8], the optimization
of this class of algorithms seems not to be completed
yet. Different environments ask for different types of
algorithms, as well as for the optimization of different
aspects: number of arithmetical operations, number
of cycles, number and complexity of VLSI chips
needed, etc.

During exercises with students we have studied
possibilities of the correct usage of optimization
techniques on algorithms for solving integer
equalities. The approach is based on the weakest
precondition calculus [3, 5]. Searching for examples

suitable for the illustration of these techniques, we
have studied. raster scan algorithms. (Students like
examples on interactive computer graphics.) The
formal approach is very interesting as an explanation
of the development of Bresenham’s line and circle
algorithms, especially as a tool for their optimization.
The main reason for this is in the fact that one could
think about relations (predicates), and not about
variables or values and combinatorial possibilities.

We agree with suggestions in literature {1, 3] that
an optimization is to be done as a separate phase. We
propose that a designer and an implementator
together, as the first step, define the problem
translating quality requirements and VLSI technology
constraints into algorithm requirements. After that it
could be useful that the designer explains the standard
solution in terms of weakest precondition calculus.
Then the implementator and the designer should try
to optimize the algorithm using weakest precondition
calculus and bearing in mind requirements from the
problem definition step. If possible, different
solutions of the problem are to be optimized, and
their efficiencies analyzed and compared.

The paper is organized as follows. First, in the next
section, we illustrate the problem definition step by
translating quality requirements and VLSI technology
constraints into algorithm requirements. Section 3
gives a development of common solution viewed from
the aspect of the weakest precondition calculus. That
makes a bases for section 4, where optimization
techniques based on the weakest precondition
calculus are discussed and implemented. Section 5
discusses optimized solution efficiency and compares
it to the other solutions available to the author.
Section 6 illustrates possibility to introduce such
constraints in design phase which prevent
implementator from achieving the best solution. The
last section gives the conclusion and suggests the
areas of possible implementation of techniques
exposed in the letter.

2. PROBLEM DESCRIPTION

We propose that the designer and the
implementator, as the first step, define the problem
translating quality requirements and VLSI technology
constraints into algorithm requirements.

In our illustration, the task is usually defined as the
problem of activating the sequence of pixels whose
centers are "the nearest” (according to certain
metrics) to the circle defined by

fx.y)=x*+y*-r?=0

70

where r-is-integer (or sometimes half integer: 2*r is
odd). 1If it goes for circular arc, then starting and
ending conditions are defined.

There are other requirements concerning either the
quality of the approximation or hardware constraints.
Different metrics and kinds of approximations are
discussed in [7]. An example of hardware
constraints could be find in [8].

For the sake of presenting our approach, we have
chosen a circle with the center in origin and integer
radius. Pixels lie on grid lines. The algorithm has to
select the same points as most widely used Bresenham
circle algorithm [2,4,6].

The part of algorithm which has to determine the
next approximation point may use only integer
addition and/or subtraction in the arithmetic logic
unit (ALU), as well as repetition and selection
mechanisms with logical expressions in the guards.
Magnitude comparisons are to be avoided.

Inside one cycle it is possible to execute the
following set of actions:

- conditional incrementation or decrementation of
some registers before and after an action in the
ALU;

- one either addition or subtraction at most in the
ALU,;

- storage of the ALU output in some register (which
could be incremented or decremented only before an
action in the ALU);

- switching to the next state according to the values of
most significant bits of the ALU and registers.

The most significant bits of all registers and the
ALU are available for use in the guards of control
statements.

3. AVIEW OF THE STANDARD SOLUTION

When the problem description is finished, it could
be useful that the designer explains the standard
solution in terms of weakest precondition calculus.
Although this step is not necessary, it makes a good
preparation for the subsequent optimization phase.
Let us consider our illustration.

Exploiting the eight-way symmetry, authors usually
consider an octant of circle [4,6]. Starting from the
beginning of the first octant (counting from O°
counterclockwise), the first point to be initialized is (7,
0). After that, there are only two points available: in
the first octant these are north (x, y+1) and northwest
(x-1, y+1) points. It is not difficult to show that for
integer case the choice could be made up according to
the sign of the sum (see [4]):

foe-Ly+1) + fo y+1).

If the value is negative the north point is to be
selected, otherwise the northwest point is to be
selected.

The standard technique of taking invariant relation
outside repetition mechanism {3, 5] is used to avoid
the calculation of squares. To achieve that, the
invariant relation
Pd: d =f(x-1,y+1) + f(x, y+1)

=(x-1)?+x?+2%[(y+ 1)*-r?)]
is initialized in the point (7, 0) executing the simple
statement "d ;= 3-2%".

There are two progression statements, depending
on whether the next point is to be activated by an axial
or a diagonal move. So, the axial move is performed
executing:

Sa:"y:=y+1"
and the diagonal move is performed by concurrently
changing both coordinates:
Sd: ",y :=x-1, y+1"
Using the weakest precondition calculus [3,5] we

could calculate how progression statements destroy
the relation Pd. Consider the axial move:

wp(Sa, Pd) = wp("y :=y+1", Pd)

= wp(y:=y+1",
d=(x-1)2+x*+2*[(y+1)*-r?%))

which, after substituting all occurrences of y by y+1
yields
=d=(x-1)+x%+2*[(y+ 1)’ -1%)]
+4*(y+1)+2.
Now it is easy to recognize the sequence:
Sacd: "y :=y+1;d :=d+4%+2"

which keeps Pd invariant (proof that Pd = wp(Sacd,
Pd) is left as an exercise to the students),
simultaneously making progress.

We can repeat the analysis for the diagonal move:
wp(Sd, Pd) = wp("x,y:=x-1,y+1", Pd)
= wp('x, y:=x-1,y+1",

d=(x-1)?+x*+2*[(y+ 1)’-1?))
which, after substituting all occurrences of x by x-1
and all occurrences of y by y+1 yields
=d=(x-1)+x?+2*[(y+ 1)*-1%)]
—4r[(x-D)-(y+ 1))+ 2.

It could be proved that the sequence:
Sded: "x, y :=x-1, y+1;d := d-4*(x-y) +2"
keeps Pd invariant, simultaneously making progress.

Therefore, the solution in a Pascal-like notation
could take form:
procedure circle (r : integer);

{ assumes center in origin }

vary, y, d : integer;
begin {circle }

x:=r

y:i=0

d:=3-2%,

whilex < y do begin

activate_circle_points (x, y);
yo=y+I;
ifd <0 thend:=d + 4% + 2
else begin
x:=x-1;
d:=d-4*(xy) + 2
end

end {while};

if x=y then activate_circle_points (x, y)
end {circle };

The procedure activate_circle_points (x, y) could
make use of the eight-way symmetry to activate not
only the first octant points but the full circle. There
are also variations with the arbitrary center, but the
program body is similar to the form given above.

At this point, the implementator and the designer
together should consider drawbacks of solution from
the implementator point of view. Such consideration
for our illustration follows.

Although a simple one, the algorithm body asks for
multiplication and four arithmetical operations per
axial move or six arithmetical operations per diagonal
move. Only one or two operations are
increments/decrements. Besides, magnitude
comparison is needed in the guard of the iteration
mechanism.

After these considerations, the implementator and
the designer are ready to start the optimization phase.
The rest of this section is intended for the readers who
are interested in the particular problem given in
illustration.

Multiplication has been eliminated and the number
of arithmetical operations has been reduced to five
(after introducing new local wvariables for
optimization) per diagonal move in [2]. It has been
shown in [6] that, if magnitude comparison is
allowed, the number of arithmetical operations could
be reduced to two per axial and four per diagonal
move without the use of local variables.

The common characteristic of the mentioned
solutions is that they need at least two
aditions/subtractions per diagonal step, without
increments/decrements by one of some variables.
Some of them also ask for magnitude comparison in
the guard of the iteration mechanism.

4. AN APPROACH TO THE OPTIMIZATION

Bearing in mind the requirements given in the
problem description, we shall try to optimize the
algorithm in the sense that the optimized solution
uses only allowed operations, and that the number of
cycles per approximation point is as small as possible.
In our example, we have to eliminate the
multiplication and the magnitude comparison. Also,
the number of aditions/subtractions is to be reduced.

Although there are nice demonstrations of using
program transformation techniques in scan
conversion algorithms, e.g. [9], they have not been
implemented on circle-drawing algorithms yet. On
the other hand, programers are discouraged to use so
called "code improvement techniques”, which are
generally considered undesirable [1] because of
danger that they could destroy program reliability. To
avoid this, we suggest the approach based on weakest
precondition calculus, therefore the algorithm
correctness could be easily kept through the
optimization process.

The common orderly technique is to recognize
certain relations which stay invariant during the
execution of the repetition mechanism, and to take
them outside the iteration body. In this way, some
operations are either eliminated or replaced by
cheaper ones. We shall expose separately three
variants of implementing this technique, because the
each of them could be applied on a number of integer
(including almost all variants of circle generating)
algorithms.

4.1 Elimination of multiplication

Let us consider again the mechanisms Sacd and
Sdcd. Although 4 is the constant which is the power
of 2, and multiplying by it is simple shifting, we have
to do that shifting in each compensation statement.
The idea is to introduce a new variable, say dd, and a
new invariant relation, in our case d = 4*dd. Because
the result of comparing the expression 4*dd to 0 is the
same as that of comparing dd to 0, it would be enough
to use only one of the variables d, dd. In this way we
could eliminate multiplying by 4, if it is possible to
initialize and keep the invariance of just introduced
relation.

72

So, let us try to eliminate the multiplication by 4
introducing a new variable and a new invariant
relation:

Pdd’: d = 4*dd.

Now we have to answer the question: "how the
progression mechanisms Sa and Sd followed by the
compensation statements for restoring Pd, impact the
relation Pdd’?" Using the weakest precondition
calculus we obtain

wp(Sacd, Pdd’) =
= wp("y:=y+1l;d:=d+4%+2", Pdd’)
= wp(y:=y+1l,d:=d+4%+2",d = 4*dd)
which, after substituting d by d+4*+ 2 yields
= wp("y:=y+1", d+4%+2 = 4*dd)
and, after substitutingy by y+1:
= d+4*(y+1)+2 = 4*dd.

So, the result of executing the sequence: "y :=y+1; d
;= d+4*+2" is the enlargement of the left side in
Pdd’ by 4*(y+1)+2. To restore the truth of Pdd’ the
right side has to be enlarged by the same amount.
Obviously, the compensation statement for axial
move should be:

"dd :=dd + (y+1) + 0.5".

After the similar analysis of
wp(Sdcd, Pdd’) =
= wp(", y:=x-1,y+1;d := d-4*(x-y)+2", Pdd’)
= d-4¥((x-1)-(y+1)) + 2 = 4*dd,
we recognize the compensation statement for the
diagonal move:

'dd :=dd - (x-1) + (y+1) + 0.5".

Although we have avoided multiplication, there is
another problem: both compensation mechanisms ask
for the addition of noninteger value 0.5. Because of
that, we should redefine the last invariant relation
into:

Pdd: (d = 4*dd + res) and (0 < res < 4).
It is important to note that the restriction of the

domain of res in the second term of the conjunction in
the definition of Pdd ensures

(dd < 0=d < 0) and (dd=20=d20)
i.e. that 4 always has the same sign as dd, if zero is
associated with the positive sign.

After considering wp(Sacd, Pdd) and wp(Sdcd, Pdd),
it is not difficult to recognize appropriate
compensation mechanisms:

Sac: ifres=2 then begin

dd:= (dd+1) + (y+1);
res :=res - 2

end

else begin
dd :=dd + (y+1);
res:=res + 2

end

Sdc: ifres =2 then begin

dd:= (dd+1) - (x-1) + (y+1);
res :=res - 2

end

else begin
dd:=dd- (x-1) + (y+1);
res:=res + 2

end

So, we know how to keep Pdd invariant when it has
been initialized properly. How to initialize it?

To initialize Pd in state (x=r, y=0) we have t0
initialize d to 3 - 2*r. It is not difficult to prove that
the selection mechanism

if odd (r) then begin

dad := (1-r)/2;
res:=1

end

else begin
dd := -r/2;
res:=3

end

would initialize the relation Pdd in state (x=r, y=0).
(It is obvious that the execution of this mechanism
establishes 4*dd + res = 3 - 2*%. The weakest
precondition calculus could be used to prove this
formally.)

4.2 Reduction of aditions/subtractions introducing
boolean variables

It could be noted that we need the variable res only
to determine the value of the boolean expression (res
>2) in the guards of Sac and Sdc. We could eliminate
this variable and all arithmetical operations with it, if
we introduce a new boolean variable and a new
invariant relation:

Ppar: par & (res = 2).

This relation is affected only by the changes of the
variable res. There are two statements which destroy
relation Ppar: if par is true this is "res .= res-2", and if
par is false this is "res := res+2". In both cases Ppar
could be restored by the same mechanism: "par : = not

"

par”.

73

The initialization of relation Ppar is quite simple:
par is to be initialized to true if r is even, and to false if
ris odd.

In this way we have eliminated multiplication. The
price is paid through the introduction of the boolean
variable par, the conditional incrementation of the
variable dd and the negation of the variable par in
each step. This is acceptable, because all these
operations could be done in the same cycle with one
addition/subtraction.

4.3 Reduction of aditions/subtractions introducing
integer variables

There is still need to compare the magnitudes of
variables x, y, as well as 1o make 1two
aditions/subtractions in the case of the diagonal move
(in the statement "d := d-x+y"). One could try to
climinate both of these imperfections by introducing
a new integer variable defined by the following
predicate:

Pdxy’: dxy = x-y.

If Sa destroys Pdxy’, it could be restored by executing
"dxy := dxy-1". 1If Sd destroys Pdxy’, it should be
restored by executing "dxy .= dxy-2". Again, it seems
we could not afford only the increments/decrements
of input variables for the ALU, because dxy is to be
decremented either once by two, or twice by one.

The idea is to redefine Pdxy’ in such a way that the
value of dxy would be appropriate for the ALU input
just after the first decrementation of dxy. Obviously,
Pdxy’ is to be redefined into
Pdxy: dxy = x-y-1.

In this case, dxy is prepared for the input in the ALU
after a simple decrement by one (statement "dxy :=
dxy-1"). After the value of dxy is forwarded to the
ALU, it could be decremented once again in order to
keep the truth of Pdxy.

The initialization of Pdxy could be done by
initializing dxy by x-1 when y is 0.

4.4 Optimized solution

Keeping Pdd invariant ensures that both variables 4,
dd have the same sign in all states ever encountered in
the course of computation (according to the
definition of Pdd and assuming that zero is associated
with the positive sign). So, there is no need to use
both of them. For the reason of simplicity, we shall
borrow the name from the variable 4 and use it
instcad of dd. Having on mind that (I-r)/2 in case
when r is odd has the same result as -r div 2, we could
summarize our algorithm in the following form:

procedure circle (1 : integer);
{ assumes center in origin }
vary,y, d, dry :integer;
par : boolean;
begin { circle }
x:=r
y:=0
par := even(r);
d := -r div 2; { Pd has been initialized }
dxy := x-1; { Pdxy has been initialized }
while dxy < 0 do begin
activate_circle_points (x, y);
ifd<0 then begin
"increment conditionally d; increment y;
decrement dxy";

d:=d+y;
par := not par
end

else begin
“increment conditionally d; increment y;
decrement x, dxy";
d:=d-advy;
par := not par; "decrement dxy"
end

end {while};

"increment dxy";

if dxy = 0 then activate_circle_points (x, y)
end {circle};

We have reduced the set of operations in iteration
step to one adition/subtraction of two integer
variables, and several increments/decrements. All
these could be done in the same cycle, according to
the requirements given in section 2.

5. OPTIMIZED SOLUTION EFFICIENCY

If there are more than one algorithm solving the
same problem, they are to be compared. If we have
only one, it is good practice to try to make another
one. See section 6 for illustration. Anyway,
optimized solution efficiency is to be analyzed.

In our example, each iteration step of the optimized
solution takes exactly one cycle and produces exactly
one approximation point. Obviously, the average
number of cycles per approximation point is one.

Other algorithms available to the author ask for
more than that. A solution with considerably less
arithmetical operations [6] in an implementation
according with the requirements for VLSI given in
section 2, would ask for one cycle per axial step and
for two cycles per diagonal step, even if magnitude
comparison was allowed. The average for that case
could be estimated like this: the total number of

74

approximation points in each octant is approximately
rxcos(i/4)=r/y2 . There are rx(y2-1)
approximation points which are computed with axial
moves, and rX(1- 1/\/5) approximation points
which are computed with diagonal moves. That gives
the average of

rx(2-1) + 2xrx(1-1//2)
r/\/E

N

The circle generating part from circle-brush
algorithm given in [8] asks for even 3x /2 cycles
per point. Although it has stronger requirements on
algorithm properties, it should be reconsidered in the
light of results obtained here.

cycles per point.

If it did not go for VLSI implementation, these
results may happen to be far away from the best. In
optimization techniques we introduce certain
relations and keep them invariant. So, the price of
optimization is paid through introducing new
variables and establishing and keeping their definition
relations invariant. Sometimes, this price is too high.
A careful analysis is to be done concerning the
number of machine cycles which are to be spent in-
different situations. The techniques exposed here
could be used for such analysis.

Sometimes, the definite answer depends on the
characteristics of available hardware. Certain
solutions, theoretically faster, have proved to be
slower on a specific hardware [8]. So, we have to
understand the method and techniques of
optimization, as well as techniques of estimating
"what is better”, to treat successfully a particular
problem in a given context.

6. INFLUENCE OF THE DESIGN PIASE

In this section, we want to stress out the importance
of cooperation between the designer and the
implementator. There is a danger that the output
from the design phase could involve such constraints
that optimization could fail to achieve the best
solution.

To illustrate this, suppose that the algorithm
designer has done the job reasoning as follows (and
not as it is described in section 3).

Starting from the beginning of the first octant
(counting from O° counterclockwise), the first point
1o be initialized is (r, 0). After that, there are only two
points available: in the first octant these are north (x,
y+1) and northwest (x-1, y+1) points. In both cases
we have to increase the value of the variable y by 1.
So, we could done this step unconditionally, and then

consider if there is need to decrease the value of
variable x. It is not difficult to show that for integer
case the choice could be made up according to the
sign of the sum:

feeLy) + fix, y)-
If the value is negative current point is to be selected,
otherwise the west point is 10 be selected.

Using the same optimization techniques as in
section 4 we want to avoid the calculation of squares.
To achieve that, the invariant relation
Pd: d =flx-1,y) +flxy)

=(x-1)?+x2+2*[y’-r¥)]
is initialized in the point (r, 0) executing the simple
statement "d ;= I-r".

There are two progression statements, depending

on whether we advance along y axes:

Sa: "y :=y+1"
Or x axes:
Sd: "x o= x-1"

Using the weakest precondition calculus [3,5] we
could calculate how progression statements destroy
the relation Pd. Consider the mechanism Sa:

wp(Sa, Pd) = wp("y:=y+1", Pd)
=wp('y:=y+1"d =(x-1)?+x?+2*[y*-r?)])
=d=(x-1)2+x%+2%[y*-r?)]+4%y+ 2.
Now it is easy to recognize the sequence:
Sacd: "d :=d+4¥y+2,y:=y+1"
which keeps Pd invariant simultaneously making
progress.
Consider the mechanism Sd:
wp(Sd, Pd) = wp("x :=x-1", Pd)
= wp("x:=x-1"yd = (x-1)?+x?+2*[y*-r?)])
=d=(x-1)2+x%+2*[y*-r?*)]-4*%(x-1).
It could be proved that sequence:
Sdcd: "x :=x-1;d:=d-4%"
keeps Pd invariant simultaneously making progress.

Therefore, the solution in a Pascal-like notation
could take form:
procedure circle (r : integer);

{ assumes center in origin }

varyx, y, d . integer;

begin {circle}

x:=r
y:=0;
d:=1-r

while x < y do begin
activate_circle_points (x, y);

75

d:=d+ 4% + 2

yr=y+I;
ifd =0 then begin
x:=x-1;
d:=d-4%
end

end {while};

if x=y then activate_circle_points (x, y)
end {circle };

If the implementator had started from this solution,
it is likely he would repeat the steps from section 4.

Trying to eliminate the multiplication by 4 the
implementator would introduce a new variable and a
new invariant relation:

Pdd’: d = 4%dd.

After the same treatment as in section 4, using the
same techniques, implementator should come to the
following algorithm (a step before eliminating the
magnitude comparison):
procedure circle (1 : integer);

{ assumes center in origin }

vary, y, d : integer,
begin {circle }

x:=r

y:=0;

par := even(r);

d := -r div 2; { Pd has been initialized }

while x < y do begin

activate_circle_points (x, y);
if par then begin

y:=y+1;
d:=d+y
end
else begin
d:=d+y;
y:=y+1
end;

par := not par;
ifd =0 then begin

x:=x-1;
d:=d-x
end

end {while};

if x=y then activate_circle_points (x, y)
end {circle };

Although this solution has considerably less
arithmetical operations (see [6]), in VLSI
implementation it would be slower than the solution
from scction 4. That is so because it asks for two
cycles when making the diagonal move. Elimination
of the magnitude comparison make things more
complicated. The transformation of this algorithm

into the form which asks for fewer cycles per
approximation point is rather complicated task, even
in this simple case.

Because of that, we propose that the designer and
the implementator work together during the
optimization phase.

7. CONCLUSION

An approach to the optimization of high speed
integer algorithms suitable for VLSI implementation
is considered. The techniques exposed belong to the
class of "code improvement techniques”, which are
generally considered undesirable [1] because of the
danger that they could destroy program reliability. To
avoid this, we suggest techniques based on weakest
precondition calculus, so that program correctness is
not destroyed during the optimization process.

The approach is illustrated on the integer case circle
generating algorithm. As a result, an efficient
incremental circle drawing algorithm suitable for
VLSI implementation is obtained. The output is the
same as in the Bresenham’s algorithm.

Each iteration step asks for exactly one either
addition or subtraction in the ALU, and all other
operations are only increments/decrements of four
register variables (plus negation of one boolean
variable). This enables the average of one cycle per
approximation point. The algorithms from the
literature available to the author ask for at least 2
cycles per approximation point in average.

This result is obtained using the optimization
techniques which are variations of getting invariant
relation outside repetitive construct. The approach is
based on the weakest precondition calculus, which
ensures an easy way to consider different possibilities
taking into the consideration relations (predicates),
and not variables or values. The author expects that
the exposed method of optimization could be applied
on the other contemporary integer algorithms as well.

The importance of cooperation between a designer
and an implementator is emphasized. It has been
illustrated how the algorithm design could involve

76

such constraints which prevent the implementator
from obtaining the best solution. Because of that, we
propose that the designer and the implementator
work together, at least during the optimization phase.

ACKNOWLEDGMENTS

I am indebted to Rade Tanjga, without whose
support this work would never be carried out, to
Predrag Rapaji¢ for help about references, to Aleksa
Zejak for his invaluable help and advices, and to my
students for motivation.

REFERENCES

[1] Armenise P.: A Srructured Approach to Program
Optimization, IEEE Transactions on Software
Engineering, Vol. 15, No. 2 (Feb. 1989), pp
101-108.

[2] Bresenham J. E.: Algorithm for Circular Arc
Generation, Springer-Verlag, 1985., p 213. (Not
available to the author, quoted according to
[61)

(3] Dijkstra E. W.: A Discipline of Programming,
Prentice-Hall. Englewood Cliffs, N.J., 1976.

(4] Foley J. D., Van Dam, A.: Fundamentals of
Interactive Computer Graphics, Addison-Wesley,
Reading, Mass., 1982, reprint with corrections,
July 1984.

[5] Gries D.. The Science of Programming,
Berlin-Heidelberg-New York, Springer 1981.

(6] Kuzmin Y. P.. A4n Efficient Circle-Drawing
Algorithm, Computer Graphics Forum, Vol. 9,
No. 4 (Dec. 1990), pp 333-336.

[7] Mcllroy M. D.: Best approximate Circles on
Integer Grids, ACM Transactions on Graphics,
Vol. 2, No. 4 (Oct. 1983), pp 237-263.

[8] Posch K.C., Fellner W. D.: The Circle-Brush
Algorithm, ACM Transactions on Graphics, Vol.
8, No. 1 (Jan 1989), pp 1-24.

[9] Sproull R. F..: Using Program Transformations to
Derive Line-Drawing Algorithms, ACM
Transactions on Graphics, Vol. 2, No. 4 (Oct.
1983), pp 259-273.

