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Abstract

This paper considers the stability of the interconnection of
a possibly infinite dimensional continuous time plant with a
sampled-data controller. First, the well known Kalman-Ho—
Narendra (KHN) conditions, which guarantee that a plant which
can be stabilized by a continuous time controller can also be
stabilized by a sample-data controller, are reviewed from an
input-output perspective. This perspective allows a straight-
forward extension from the case of idealized sampling and zero-
order hold usually consider in the literature, to the case of non-
standard sampling and hold.

Then, the class of plants which can be stabilized by a
sampled-data controller is characterized. It is shown that, from
a control viewpoint, the fact that the controller is sampled-data
imposes essentially no a priort constraint on the plant. The
characterization also allow the extension of KHN conditions to
the infinite dimensional case.

Finally, stability of the sampled-data configuration is ad-
dressed. It is shown that stability of the sampled-data intercon-
nection is equivalent to the stability of the discrete-time model
obtained by sampling the output and holding the input of the
continuous time plant. This coincides with the well-known result
for finite dimensional plants, but requires a completely different
treatment.

1. Introduction

Consider the sampled-data feedback configuration
illustrated in Fig. 1. Here a continuous time plant
G(s) is controlled by a discrete-time controller through
a sample and a hold device. The sampler S, takes
the continuous time output of the plant y(t) and pro-
duces an output 3, every h units of time, where h
denotes the sampling period which is assumed to be
fixed. The hold device H; takes the sequence of
values 4;, | < k and generates the control signal
u(t), kh < t < (k+ 1)h. For example, if Sy is the
idealized impulse-train modulation model (hereof refer
to as the “idealized sampler”), then 3, = y(kh), and if
‘Hp, is the zero-order hold then u(t) = Uy on the given
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Figure 2: Discrete-time equivalent

interval, but we do not want to exclude the possibility
of having generalized sampling and hold devices. In
sample-data control, the loop is closed by a discrete-
time controller which generates the discrete time con-
trol signal based on the discrete time measurement as
rendered by the sampling device. The resulting in-
terconnection of a sampler, a controller and a hold
is called a sampled-data controller. The interconnec-
tion of the hold, the continuous time plant and the
sampler is refer to as the discrete-time model for the
plant. Note that while the latter has a discrete-time
transfer matrix, the former is a time-varying operator
[2] and hence does not have a transfer matrix.

When using a sampled-data configuration, it is of in-
terest to know whether this a priori assumption in the
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structure of the controller imposes some limitations on
the set of plants that can be stabilized in closed-loop,
i.e., whether a continuous time plant which is input-
output stabilizable by a continuous time controller,
can also be stabilized by a sampled-data one. The
expression “input-output stabilizable” is used here to
stress that this is not stabilizability in a state-space
sense, but rather refers to the existence of a controller
which achieves internal stability of the closed-loop. If
the plant under consideration is finite dimensional,
then the answer is generically positive: a plant that
can be stabilized by a continuous-time controller can
also be stabilized by a sampled-data one, except for a
finite set of sampling frequencies. This was established
in [9] for £ stability and subsequently extended to
L? stability in [5] under the condition that the plant be
strictly proper or else the signals are pre-filtered before
being sampled, and to state-space models with output
delay in [6]. However, the general case of an infinite di-
mensional plant with a (possibly infinite dimensional)
discrete-time controller was left unanswered, and 1t is
not apparent how the techniques employed in [5, 6, 9]
can be modified to cope with this case, unless some
restrictive assumptions are imposed in the model.

In order to address the problem of stability of a
sampled-data interconnection, one begins by redraw-
ing the feedback interconnection as in Fig. 2, and stud-
ies the input-output stabilizability of the resulting dis-
crete time interconnection. This question is usually
formulated in a state-space setting, where the plant
G(s) is modeled by the state space equations

#(t) =
y(t)

stabilizability in continuous time is then equivalent to
having the triple (A4, B, C) stabilizable and detectable.
It is then possible (see, e.g., [16]) to derive a discrete-
time state-space model for G(z), and hence the ques-
tion is whether the resulting discrete time system is
stabilizable and detectable. This problem was consider
in [15] where, under the assumption of idealized sam-
pling and zero-order hold, sufficient conditions where
given in terms of the eigenvalues of A and the sam-
pling period h. The original result was subsequently
extended to more general state-space models in {10]
(there a necessary conditions was also given) and inde-
pendently re-discovered in [9]; a detailed discussion is
given in [16]. The conditions in [15], called the “KHN”
conditions in the sequel, are as follows.

Az(t) 4+ Bu(t)
Cz(t) + Du(t); 1)

Lemma 1 (KHN Conditions) Consider a system
with state-space model as in 1 and assume that:

(a) None of the points jo"k, k # 0 is an eigenvalue
of A.
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() If a1 and ay denote two unstable eigenvalues of
A, then a; —az # ]zTik, k -',é 0

Then if the continuous time system is stabilizable and
detectable so is the zero-order hold discrete equivalent.

The KHN conditions imply that for almost all sampl-
ing rates, the discrete-time equivalent of a continu-
ous-time system with a zero-order hold will be input-
output stabilizable whenever the continuous time sys-
tem is so. The rates at which the KHN conditions do
not hold are referred to as pathological samplings.
Note that in spite of the fact that the two KHN
conditions reduce to a single one whenever the system
under consideration is real, they are usually stated sep-
arately, probably because they refer to two different
although related consequences of sampling. While the
first one appears because of the zeros introduced by
the zero-order hold (recall that the transfer function

of the hold in this case is equal to H,,; = 1"’;"'),
the second is related to an “aliasing” effect, by which
the high-frequency poles are folded back into lower fre-
quencies. Although the KHN conditions provide a sat-
isfactory answer to the stabilizability question, the ap-
proach in [15, 10, 16, 9] falls short of providing insight
into the mechanism that produces the loss of stabiliz-
ability at the critical frequencies. The conditions are
then hard to extend to other setups since they have to
be essentially re-derived, and no extension to infinite
dimensional systems is apparent.

In the first part of this paper we provide a detailed
input-output interpretation of the KHN conditions.
Such an approach was suggested earlier in terms of
hidden oscillations in [13] (i.e., before the original pub-
lication of the KHN conditions) and mentioned explic-
itly in [2] but to the best of our knowledge, a detailed
analysis is lacking in the literature. For simplicity, we
will only consider the case of poles with order one,
although the degree may be larger than one (see [14,
p.447]). Extension to the case of poles with order
larger than one is not straightforward using the tech-
niques to be discussed below, although one can argue
that an arbitrary small perturbation will reduce any
plant to the case considered.

When properly formulated, the input-output ap-
proach provides a natural explanation for the patho-
logical sampling rates in terms of pole-zero cancella-
tions. It also appears to be very rewarding, since it
allows a straightforward generalization of the KHN
conditions to the case of generalized sampler and hold
devices. Perhaps more interesting, the approach also
provides a way of extending the conditions to the case
when the plant under study is infinite dimensional.
This leads us to investigate which set of infinite di-
mensional plants, when discretized, can be stabilized




by a discrete time controller. As it turns out, plants
on this set can only have a finite number of unsta-
ble poles (i.e., they are meromorphic in a half plane
which contains the closed right-half plane), which pro-
vides some interesting connections with the notions of
ill-posed distributed parameter systems raised in [11].
This is one of the main results of the paper.

Although stabilizability of the discrete-time model is
clearly required, the question one is interested in when
considering the interconnection of a continuous time-
plant with a discrete-time controller is the stability of
the hybrid configuration. Stability analysis is compli-
cated by the fact that, because of the sampling device,
the system is periodically time-variant and hence has
no transfer function. In the finite-dimensional state-
space setting, this analysis was carried out in [9] and
subsequently extended in [5]; although input-output
stability was discussed, it was based on the fact that
an appropriately defined state-space model of the hy-
brid system was exponentially stable. This fact, which
is very natural for finite state-space models, has no ap-
parent translation to the general class of models con-
tained in the transfer function theory of infinite di-
mensional systems developed in [3, 7, 4]. Stability re-
sults established in these and related works (see, for
instance, [17]) cannot be applied to the present case
because of its time-varying nature. However, we will
show that the stability analysis can be nevertheless
carried out in an input-output framework although
not with purely algebraic tools. Together with the
characterization of the set of plants stabilizable by a
sampled-data controller, this stability result provides a
satisfactory answer to the fundamental question posed
in our opening remarks.

The paper is organized as follows. In the next two
sections we will investigate when a plant that can be
stabilized by a continuous-time controller results in
a discrete-time model which can be stabilized by a
discrete-time controller. Section 2 is devoted to fi-
nite dimensional plants, but as opposed to most of the
available literature, we will consider an input output
setting. This allows to consider generalized sampling
and hold devices with little extra work. Section 3 con-
tains the generalization to infinite dimensional systems
and describes the set of “good” infinite dimensional
plants from a sampled-data point of view. The stabil-
ity analysis for the hybrid interconnection is addressed
in Section 4. Section 5 contains the conclusions.

Preliminaries and Notation

The following notation and definitions will be used
when discussing the infinite dimensional case. Readers
are referred to [3, 7] for a detailed treatment.

Let f : R* — R be a function. Then f € A_(0y)
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for some oy if and only if f(t) = fa(t)+Y 5 fib(t—t:)
such that the function e 7' f,(t) € L1; t0 = 0,¢; > 0
for i > 0 and fie~ 7% € [, for some o < oy. f denotes
the Laplace transform of f and the corresponding set
is A_(0o). Here L () denote the standard Lebesgue
space space of absolutely integrable (summable) func-
tions. It is well known [3] that A_(go) (A_(00)) is a
commutative convolution Banach algebra (with point-
wise product). If f; = 0 for each i, then the function
belongs to L_(0g). To prevent the proliferation of no-
tation, the names refer both to functions and to ma-
trices of functions (i.e., transfer functions and transfer
matrices).

The convolution algebra A_(o0) = U, A_(0) is the
standard choice in the literature for modeling transfer
function of possibly infinite dimensional system; see
[11] for some examples. It is standard to define a sys-
tem as stable whenever it belongs to the sub-set A_(0).
This is a very general notion of stability which encom-
passes BIBO and exponential stability. It is worth
stressing that a system may belong to .A_(0) and be
stable in the above sense but still not be exponentially
stable in a strong sense; see [4] for a counterexample.
Of special interest will be the set B(0) which denotes
the set of functions that can be written as f = f, + f,
where f, € A_(0) and f, is a rational function with at
most a finite number of poles in the closed right half
plane.

The definitions above have natural counterpart in
discrete time. Given a sequence f = {f}, then f €
I3,—(po) if for some 0 < p < py the sequence {fxp~*} €
l;. A system is stable if it belongs to I; _(1). If fo =0
then f € 19 _(po). Similarly one can define I; _(oo)
and b(0). The reader is refer to [7] for details. Note
that I; _(po) is by itself endowed with an exponential
decay rate.

Finally, linear, possibly time-varying operators in
the time domain will be denoted by script letters. The
domain and range of the operators will be apparent
from the context.

2. Finite dimensional plants

The purpose of this section is to re-derive the KHN
conditions for linear time-invariant, finite dimensional
plants. This is the same setup as consider by the ref-
erences cited above, and allows us to introduce the
main idea in a simple and intuitive manner, without
the mathematical technicalities required to address a
more complicated problem.

For an interpretation of the first KHN condition,
let G(t) denote the impulse response of G(s). Then a




straightforward derivation shows that Gy = foh é’(kh—
7)d7 denotes the impulse response of the discrete time
system G(z) whenever Hj is the zero-order hold de-
vice. Since:

G(kh—T1) = 5—7!‘_7 f;‘ G(s)e***-")ds

where C contains all the poles in G(s), it follows that

s(kh-7)
27"]/ fG(s dsdr

271” G(s) / e!**="drds

1 R _ o—8h
—_ G(.&:)e""l [1——9——] ds,
Posd 8

27y

G

where the assumptions on G(s) allow to interchange
the order of integration. H G(s) has any pole at s =
j -Zi’ﬂk for some k # 0, then it will be cancelled by a

zeros of l;‘ii and hence will not affect the impulse
response Gi. More specifically, if D¢ denotes a disk
containing all points of the form e**, s € C, then for

each z outside D¢, G(z) can be computed as

oo
Gz) = Y Gzt
k=1
_ o—sh sh
_ 1 ( ) 1-e e ds.
onj s z—e'h
Assume that G(s) = .,E—QE and let C denote a circle

centered at the origin with radius larger that |a|; then
if a #jzh—"k, k # 0, then

et 1 1
z — edh

G(z) = G

{(where the second term should be interpreted appro-
priately if @ = 0) but G(z) = 0 whenever the condition
does not hold. This clearly shows that the first KHN
condition rules out an illegal pole-zero cancellation be-
tween the poles of the plant and the zeros of the hold
device.
To interpret the second condition, assume that the
plant satisfies condition ¢) and can be factorize as
N oq,

8§ —a;

G(s)

i=1

where by simplicity we have assumed that é(s) is
strictly proper. Then from the previous derivation,

N .

G e*h 1 1
D Gi— ——
. i}
i=1

G(z) =
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Ifan,—a, # _7 2%k, k # 0 for each m and n, then G(z)
will have N poles located at e**, and hence the KHN
conditions imply that if a continuous time system is
input-output stabilizable, then the resulting discrete-
time model assuming a zero-order hold also is. -

If for some indices n # m and k # 0, a, — a,, =
jZT"k then e*"* = e%»* and hence the n-th and m-th

terms add to (Gn/an + Gm/am) f%:-%

is single-input, single-output, the degree of G(z) ap-
pears to be lower than that of G(s) since G(z) has a
hidden mode. If R(a, ) > 0' this implies that G(z) has
an unstable hidden mode, which precludes its input-
output stabilizability. It follows that the KHN condi-
tions are also necessary in the scalar case (see [16] for
a state-space proof). In the multivariable case, with
G, and G,, matrices, the order may or may not drop,
depending on these residues. Taking this observation
into account, it is possible to formulate the following
necessary and sufficient condition for stabilizability.

If the system

Lemma 2 Let G(s) be a continuous time system
with poles at a; and corresponding residues G;, i =
-y N, G(z) the discrete time model resulting from
a zero-order hold. Then the continuous-time and
discrete-time stabilizability are equivalent for a given
h if and only if
(a) None of the poles a; is of the form jo"k, k#£0.
(b) For any two poles an,am with non negative real

part, Gn—am # 12k, £ # 0 OF ap—am = j 22, k #
0 and rank (G + Gm) = rank(G,) + rank(Gm)

2.1. Generalized Hold and Sampler

Although the ideal sampler and first-order hold are
the most extensively studied and used in practice, non-
conventional samplers and holds have received atten-
tion recently because they arise naturally in many sit-
uations (e.g., in multirate systems) and may offer some
improvements over standard devices. For a tutorial on
this subject and a pointer to the literature the reader
is referred to [1]; for possible limitations and a word of
warning see [8]. The purpose of this section is to ex-
tend the KHN conditions to the the non-conventional
setting. Suppose that the device M), is a generalized
hold, such that

(Hru)(kh+ 1) = Yk € Zt,

fa(r)u T €10, h),

and the device S, is a generalized sampler, such that

h
(Sry)k41 = /0 fs(h—t)y(t + kh)dt Vke ZT.

1R(x) denotes the real part of =




Then, repeating the calculations above we can get

z —esh’

G(2) = Gor' + %; }fc Fs(s)C(s) Fa(s)

where

h
Fs(s) = /0 fs(h = 1)e*"dr,

h
Fa(s) = /0 =" fay(r)dr,

and Gy is some matrix. This suggests the following
extension of the KHN conditions on generalized hold
and sampler case.

Lemma 3 (KHN Conditions — GH&S) Let G(s)
be a continuous time system with poles at a; and cor-
responding residues G;, i = 1,---,N. Let Hy, Sy be
a generalized hold with hold function fy and a gener-
alized sampler with sampling function fs such that the
sets 23 = {z: R(z) > 0, Fy(z) has reduced row rank}
and Zg = {z: R(2) > 0, ﬁ‘s(z) has reduced col. rank}
have no finite accumulation point. Assume that:

(a) For any pole a;, a; € Zn U Zs.

(b) For any two poles a,, a,, with nonnegative real
part, @n — Gy, 7 jz—,:’-k, k#£0.

Then if the continuous-time system is input-output
stabilizable, so is the discrete-lime system.

Remark: The conditions in Lemma 3 are also neces-
sary in the SISO case. A necessary condition for the
MIMO case may be given as in Lemma 2:

n;
rank Z Fs(a;)GjFy(a;)
Jj=1

= Zrank (Gj)
Jj=1

for all i and all j such that e®* = e%*,

3. Infinite Dimensional Plants

In this section we characterize the class of infinite
dimensional systems which can be stabilized using a
sampled-data controller. A4_(o0), A_(0) and B(0)
denote the set of all models under consideration, all
stable models and all models with at most a finite
number of poles in the closed right half plane respec-
tively. Corresponding sets for discrete-time systems
are l; _(o0), I1,-(po) and b(0). The reader is referred
to the section following the introduction for precise
definitions.
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We will first argue that not every infinite dimen-
sional system can be stabilized by means of a sample-
data controller and describe the set in which stabil-
ity can be achieved. We will relate this to the well-
posedness notion of Helmicki et al. [11] to show that
the class considered is large. Finally we will address
the problem of extending the KHN conditions to the
infinite dimensional case, assuming for simplicity an
ideal sampler and a zero-order hold. Since the class of
discrete time systems resulting from sampling the class
of infinite dimensional systems enjoys nice properties
[12], the extension is straightforward.

3.1. Sampling Infinite-Dimensional Systems

We now proceed to characterize the class of plants
that can be stabilized by a sampled-data controller.
We begin by considering the following Lemma, essen-
tially borrowed from [11].

Lemma 4 Let the plant G(s) and controller K(s)
both belong to A_(o0) and assume that the closed-
loop system is internally stable (in the sense that any
closed-loop transfer matriz belongs to A_(0)). Then
G(s), K(s) are meromorphic in a region containing
the closed right half plane.

Remark: Lemma 4 says that if a plant is to be in-
ternally stabilized by linear time-invariant feedback,
then it can have no essential singularity in the right
half plane.

By changing the domains of definition, one can write
the discrete-time version of this lemma.

Lemma 5 Let the plant G(z) and controller K(z)
both belong to I, _(po) and assume that the closed-
loop system is internally stable (in the sense that any
closed-loop transfer matriz belongs to Iy _(1)). Then
G(z), K(z) are meromorphic in the ezterior of a disk
contained in the open unit disk.

Now suppose that a system with transfer function
G(s) € A_(o0) is to be controlled by means of a
sample-data controller. The discrete-time equivalent
when using idealized sample and a first order hold is
G(z) € l1,_(po), where py = €°°® [12]. Suppose that
this system is internally stabilized by some controller
K € l1,—(p1), p1 > po. Then, from Lemma 5 G is
meromorphic outside a disk contained in the open unit
disk. Since the function is analytic outside a disk of
radius po it follows that it has a finite number of poles
outside the unit disk, i.e., a finite number of unstable
poles. Under the assumption of internal stability there
cannot be unstable hidden modes in G, and hence G(s)
can only have a finite number of unstable poles. This
is summarized in the following theorem.




Theorem 1 Let G(s) € A_(0o) and assume that its
discrete time model computed an idealized sampler and
zero-order hold G(z) can be internally stabilized by a
controller K(z) € l1,_(p1). Then G(s) € B(0), i.e.,
the continuous time plant has only a finite number of
unstable poles.

Since the set B(0) is a proper subset of A_(c0), one is
tempted to conclude that there are some linear time-
invariant systems which may be stabilized by means of
a linear controller but cannot be stabilized by using a
combination of sampling, hold and discrete-time con-
troller. Recent work by Helmicki et al. [11] suggests
that this is not the case, since it is shown there that
any plant which can be stabilized by a strictly proper
controller or otherwise gives rise to a strictly proper
closed-loop, belongs to the set B(0). It follows that,
from a control viewpoint, the assumption required by
the fact that the controller is discrete-time does not
introduce an a priori restriction on the set of models
that can be considered.

3.2. The KHN Conditions

We are now ready to extend the KHN conditions to
the set B(0) of possibly infinite dimensional systems.
Let G(s) € B(0) and factorize

G(s) = Gu(s) + Guls), (@)

where G,(s) € A_(0) and G,(s) is a rational anti-
stable transfer functions with poles at a;, 1 =1,:--,n.
Suppose now that a discrete time model is computed,
assuming an ideal sampler and a zero order hold.
Then, by linearity (see also [12]), it is possible to
compute this model by considering the discrete time
ones for G, and é’u, say G,(z) and Eu(z) respec-
tively. Clearly Gy(z) is a rational function with all its
poles outside the unit disk, and from [12, Theorem 1],
G,(z) € 11,_(1).

Lemma 6 (KHN Conditions - IDS) Let G(s) be
a continuous time system, é(s) € B(0), such that its
necessarily finite dimensional unstable part G, (s) has
poles at a;. Assume that:

(a) None of the points a; = j-z—hik, k #0.

(b) If a;, and ai, denote two unstable poles of G (s),
then a;, — ai, ¥ j%"k, E#0

Then if the continuous time system is input-output sta-

bilizable so is the zero-order hold discrete equivalent.

Remark: Stability in the Lemma is in the .4_(0) and
l1,_(1) sense for the continuous and discrete time re-
spectively.
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4. Stability of Feedback Configuration

We will now show that if a controller K(z) stabi-
lizes the discrete time model, then the hybrid config-
uration will also be stable, in the sense that bounded
signals w;, w, will map into bounded signals ey, e; (see
Fig. 1). For finite dimensional plants, this was estab-
lished in [9] for £ stability and in [5] for £? stability,
by considering a state-space realization for the plant
and the discrete-time controller and defining a state for
the hybrid system. Stability of the discrete-time con-
figuration is then equivalent to exponential decay of
the sampled state, and the values at the intersampling
are generated by the open loop plant; since the sam-
pling period is finite, boundedness follows. L7 stability
requires the inclusion of a strictly proper anti-aliasing
filter. The approach has no apparent extension to the
infinite dimensional case, specially if we do not want
to assume that a state space model is available. A
proof in the input-output setting is made harder by
the fact that the hybrid configuration is time-varying,
which violates the starting assumption of most alge-
braic approaches to closed-loop stability (e.g., [17] and
the references therein). To circumvent this difficulty,
we will need at some point to manipulate state-space
representations; this will not conflict with our general
framework since existence of this realizations is guar-
anteed by Theorem 1.

Let G € B(0) be the plant (by Theorem 1 this is
without loss of generality because otherwise the plant
cannot be stabilized) and write G(s) = G,(s) + Gy (s),
where G,(s) € A_(0) and G,(s) is an n-dimensional
strictly proper transfer function, which has all its
poles in the right half plane. Consider a minimal
state space representations (4, B, C, 0) for é’u(s). Us-
ing standard state-space tools [17] it is possible to
write a left coprime factorization (LCF) of Gy(s) =
D.(s)"'N,(s), where D.(s), N(s) have realizations
(A+Lc,L,C,I), (A+ LC,B,C,0) for some L such
that A + LC is Hurwitz. By conmstruction, G(s) =
D.(s)"1 (f)c(s)é,(s) + ]Vc(s)) is a LCF of G(s). Re-
call that N.(s), D.(s) € A_(0) are left coprime in
A_(0) if there exist U(s), V(s) € A_(0) such that
N.(s)U(s) + D.(s)V(s) is unimodular in .4_(0), i.e.,
its inverse is also in .A_(0).

Consider now the discrete time model S, GH; with
transfer function G(z) = G,(z) + Gu(z). We will
assume for simplicity that S; is the idealized sam-
pler and My is a first order hold. The discrete-
time transfer matrix G,(z) has a state space real-

ination Gy(z) = (e4%, f eA7drB, C,0) with a LCF




Gy(z) = Dy(2)~'N4(2) where

h
(e“‘" + L4C, / e*"drB, C, 0)
0

(e*® + LgC, L, C, ).

J_V_d(z) =

54(2) =

Here L4 is such that e* + LyC has all its eigen-
values inside the open unit disk. Under the KHN
conditions, the realization for Dj(z) is minimal and
(Da(2)G4(2) + Na(z), Da(z)) is left coprime.

Discrete-time stability
Let K(z) denote a controller achieving internal sta-
bility for the discrete-time configuration illustrated in
Fig. 2. Here stability is to be understood in the sense
that the transfer matrix between w;, W, and &;, €,
I+KQG KQ

T g e e

belongs to I3, _ (1), which implies [*° stability and hence
I? stability since the system is linear time invariant.
Here

wy
W2

Q(x) = (I - G(2)K(2))™".

For later use, note that

Q_G:Q—D;1 (Edaa +ﬁd)’

which implies, by the left coprimeness of the corre-
sponding transfer matrices, that the transfer matrix

a(z)ﬁgl(z) is also stable.

Continuous to discrete stability
Consider now the time-varying operator from wj, w,
to Uy, ¥, (note that the operator notation is enforced):

]~ ~[
/2 - w2
)
QShG QSh wy |°

Since Sy : L — 1, it follows that 7% and T, are
bounded. To prove that 7, is bounded, write 7,5 =
Q_Dglﬁds,m;l (DG, + N¢); by a previous remark it
suffices to show that —D_dSh'Dc‘ ! is a bounded operator.
To show this, call ¥ = S, D 1wy, 5 = D47 and bring
the following state space representation:

h
Ty = ePE 4+ / eATL‘wl(kh + 7)dr
0
7 = Czp+ wl(kh)
£k+1 = (eAh + LdC) Zx + LgCTr + Lwl(kh)

Uy = C&r+4Cz +w1(kh).
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Introducing a new state &) = Zp + Zj:

(e** + LaC) ¢x + f(;‘ €™ Lwy(kh + 7)dT

Epp1 =
5 Ciy + wi(kh),

Uk =
from which the boundedness from £>* — I*° follows.
A similar reasoning also shows that 7,¥ is bounded.

Continuous-time stability
From Fig. 1, the closed-loop operator between w;,
w2 and ey, e3 is:

T T
To1 Ta

I+ HKQShG HWKQSh

G+OHKQRSG T+GHRKQS
The objective is now to show that discrete-time sta-
bility implies boundedness of 7 as an operator from
L to L. Since the operators from w,, ws to €; are
bounded and e; = Hpe; + w;, one only needs to care
for the mapping to e;. Consider, for instance, 73;.
By the stability from continuous to discrete-time, the
operator 8,73, is bounded. Write

T

(5)

T2y = T+ Toaa
= (G 4 Gu) (I + HAKQSKG) ;
Stability will then follows from the stability of 73;,,.

Consider the signal
w = (I + HaKQShG) w;

which, by the previous observation, belongs to £>.
It then suffices to show that if $,G,w®? € [® then
Guwel € L™,

Lemma 7 Let P be a strictly proper finite dimen-
sional continuous time system such that for some sig-
nal w € LP, Sy Pw € IP, where the sampling rate is
such that the KHN conditions hold. Then Pw € LP.

So we are now in a position to set the main result
of this section:

Theorem 2 Consider the setup in Fig. 1 and assume
that the KHN conditions given in Lemma 6 hold. Then
the discrete-time feedback interconnection in Fig. 2 is
stable (in the 1;,_(1) sense) if and only if the inter-
connection in Fig. 1 is stable, in the sense that the
operator from wy, wy to €1, ez is bounded as a map-
ping from L™ to L.

Remark 1: If the output signal y(t) is filtered by a
stable, strictly proper filter before being sampled, then
L? stability can be deduced following exactly the same
reasoning.




Remark 2: The assumption that the sample and the
hold devices are an ideal sampler and a first-order hold
can be easily lifted, subject to the constraint that Sy :
L% — I and Hy : I — L. The proof detailed
above remains the same? except for slight modification
of the continuous to discrete part and Lemma 7.

5. Conclusions and Further Work

In this paper we have investigated the control of a
possibly infinite dimensional continuous-time system
by a sampled-data controller. We have shown that
an infinite dimensional plant can be stabilized by a
sampled-data controller only if it has at most a finite
number of unstable poles and that the KHN conditions
also hold in the infinite dimensional case. We have ar-
gued that the set of stabilizable plants is “large”, since
plants which fail to satisfy this conditions cannot be
stabilized by a strictly proper controller or cannot re-
sult in strictly proper closed loop transfer matrix. Fi-
nally we have shown that under the KHN conditions,
stability of the sampled-data configuration is equiv-
alent to stability of the corresponding discrete-time
model in discrete-time. Our arguments are carried
over on an input-output framework and they apply
with little extra work to non-conventional sampling
and hold devices.

Our original interest in the stability problem of
sampled-data system was in the context of time-
varying plants described by their convolution kernel,
which arise in some adaptive control problems. It was
soon clear that finding a solution was made harder by
the fact that most stability anaylsis of hybrid config-
uration relied heavily on underlying state-space repre-
sentations. We believe that the content of this paper
bridges this gap. Moreover, as preliminary calcula-
tions show, our results pave the way for solving more
general and potentially interesting problems. This is
a topic of current research.
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