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ABSTRACT

This paper presents the application of the controlled active
vision framework to several problems of eye-in-hand robotic
systems such as the derivation of depth maps from controlled
motion; the vision-guided, automatic grasping of static or
slowly moving objects; the active calibration of the robot-
camera system; the problem of automatically detecting mov-
ing objects of interest; and the computation of the relative
pose of the target with respect to the camera. All the algo-
rithms are experimentally verified on the Minnesota Robotic
Visual Tracker (a flexible eye-in-hand robotic system). We
have applied these techniques to transportation applications
(e.g., pedestrian detection and tracking, vision-based vehicle
following), inspection, and assembly (e.g., vision-guided ma-
nipulation of moving objects). It should be stated that this
work is not only limited to vision sensors. Our algorithms
can be used in active sensing systems that include a variety
of diverse sensors {e.g., force, tactile, sonar).

1.INTRODUCTION

In order to be effective, robotic agents in uncalibrated
environments must operate in a flexible and robust man-
ner. The computation of unknown parameters (e.g.,
the velocity of objects and the depth of object feature
points) is essential information for the accurate execu-
tion of many robotic tasks, such as manipulation, in-
spection, and exploration. The determination of such
parameters has traditionally relied upon the accurate
knowledge of other related environmental parameters.
For instance, traditional approaches to the problem of
depth recovery have assumed that extremely accurate
measurements of the camera parameters and the cam-
era system geometry are provided a priori, making these
methods useful in only a limited number of situations.
Similarly, previous approaches to robotic visual track-
ing assumed known and accurate measures of camera
parameters, camera positioning, manipulator position-
ing, target depth, target orientation, and environmental
conditions. This type of detailed information is not al-
ways available or, when it is available, not always accu-
rate. Inaccuracies are introduced by positioning, path
constraints, changes in the robotic system, and changes
in the operational environment. In addition, camera
calibration and determining camera parameters can be

38

computationally expensive, time consuming, and error
prone. In particular, depth derivation and tracking tech-
niques that rely upon stereo vision systems require care-
ful geometry measurements and the solution of the corre-
spondence problem, making the computational overhead
prohibitive for real- or near-real-time systems. Further-
more, many structure-from-motion algorithms use sim-
ple accidental motion of the camera that does not guar-
antee the best possible identifiability of the depth param-
eter. To be effective in uncalibrated environments, the
robotic agent must perform under a variety of situations
when only simple estimates of parameters (e.g., depth,
focal length, pixel size, etc.) are used and with little or
no a priori knowledge about the target, the camera, or
the environment.

One solution to these problems can be found under
the controlled active vision framework [1]. Instead of
relying heavily on a priori information, this framework
provides the flexibility necessary to operate under dy-
namic conditions when many environmental and target-
related factors are unknown and possibly changing. The
controlled active vision framework is based upon adap-
tive controllers that utilize Sum-of-Squared Differences
(SSD) optical low measurements as inputs to the con-
trol loop. The SSD algorithm is used to measure the
displacements of feature points in a sequence of images
where the displacements may be induced by manipu-
lator motion, target motion, or both. The measured
displacements are compared to predicted displacements
that are derived using the current parameter estimates in
the adaptive controller. The errors from these compar-
isons are then used, in conjunction with previous mea-
sured displacements, to update parameter estimates and
to produce the next control input. The control input is .
derived such that the amount of the error in the next
iteration will be minimized given environmental- and
manipulator-specific constraints. This type of adaptive
control technique is useful under a variety of situations,
including the application areas we have selected: depth
recovery, vision-based grasping, calibration, automatic
detection of objects of interest, and robotic visual track-
ing. To reduce the influence of workspace-, camera-,
and manipulator- specific inaccuracies, an adaptive con-
troller is utilized to provide accurate and reliable in-




formation regarding the depth of an object’s feature
points. This information may then be used to guide
operations such as tracking, inspection, and manipula-
tion. All the proposed algorithms are implemented on
the Minnesota Robotic Visual Tracker (MRVT), an ac-
tive vision testbed that integrates a traditional robotic
manipulator (a Puma 560) with a state-of-the-art com-
puter vision system to provide a unique and flexible sen-
sor based robotic system.

2.PREVIOUS WORK

In accomplishing visual servoing the camera may ei-
ther be mounted on the manipulator (if the camera is
mounted on the manipulator’s end-effector, the configu-
ration is called eye-in-hand) or it may be statically lo-
cated. In both these instances, the traditional approach
to visual servoing has been to decouple the problems of
obtaining information about the target (from the camera
image) and manipulator control {2, 3, 4]. This approach
is known as look-and-move approach. Since initial work
in this area was typically hampered by the available com-
putational power, it was obvious to see in physical exper-
iments that a manipulator was looking and then mov-
ing (hence the name look-and-move). Recent advances
in computers have made enough computational power
available so that look-and-move is not very obvious in
physical experiments even though the basic philosophy
of separating the computer vision and manipulator con-
trol problems still persists. It is also worth mention-
ing that in visual servoing emphasis has been typically
placed either on the computer vision processing compo-
nent or the manipulator component.

Several research efforts have focused on using com-

uter vision information in the dynamic feedback loop
5,6,7,3,8,9, 10]. Weiss et al. [10] have proposed a
model reference adaptive control scheme for robotic vi-
sual servoing. In this work servoing is performed with
the goal of reducing the error between desired image at-
tributes (center-of-mass, first or second moment of the
image) and the current image attributes. The verifica-
tion of the proposed algorithms has been limited to sim-
ulations. Allen [2] has proposed an approach that uses
image-differencing techniques in order to track and grab
a moving object. Distributed Kalman filter techniques
as a solution to the visual tracking problem have been
proposed by Brown et al. [11]. Koivo and Houshangi
[12] have proposed an adaptive scheme for visually ser-
voing a manipulator based on the information obtained
by a static sensor. Feddema and Lee [7] have pro-
posed a MIMO adaptive controller for eye-in-hand vi-
sual tracking. Their work has been used as the basis for
our approach. Several other researchers [13] have pro-
posed strategies for vision-based exploration. Finally,
B. Ghosh L14ihas addressed several vision-based robotic
issues with the aid of a new “Realization Theory” for
perspective systems.

The proposed work describes a methodology for inte-
grating sensing (in this case a vision sensor} with con-
trol. Furthermore, our approach assumes only a partial
knowledge of the mapping between the target and the
camera. The adaptation mechanism is used to deter-
mine the mapping between the target and the camera.
It is not used to determine the unknown dynamics of
the manipulator. We assume that a manipulator con-
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troller has already been designed and is now available
to us. So while we address the problem of using vision
information in the dynamic feedback loop, our paradigm
is different. Specifically, we claim that combining com-
puter vision with control can result in better measure-
ments (better tracking can improve low-level vision pro-
cessing). It is in this context that we view our current
work, which shows that noisy measurements from a vi-
sion sensor when combined with an appropriate control
law can lead to an acceptable performance of a visual
servoing algorithm. Our approach is dynamic because
it incorporates the target’s dynamics and kinematics in
the system model as compared to the classical look-and-
move approach which is static. In addition, the cam-
era model and the noise characteristics of the computer
vision measurements are included in the design of the
robotic visual tracking strategy.

Using the controlled active vision framework, we have
proposed algorithms {15, 16, 17] that address real-time
robotic visual tracking of moving objects. To achieve
this objective, computer vision techniques for detection
of motion are combined with appropriate control strate-
gies to compute the actuating signal for driving the ma-
nipulator. The problem is formulated from the system’s
theory point of view. We have introduced sophisticated
use of multiple windows and numerically stable confi-
dence measures in order to improve the accuracy of the
computer vision measurements. The selection of the con-
troller is based on the computer vision technique that is
used for the computation of the displacement vector. For
example, a large number of windows provides accurate
measurements and thus, a simple controller is adequate.
On the other hand, a small number of windows provides
noisy measurements and therefore a stochastic controller
must be used. In order to circumvent the need for ex-
plicitly computing the depth map of the target, adaptive
control techniques are proposed. This is an important
contribution of our work since our algorithms do not re-
quire accurate knowledge of the camera model and the
environment. Moreover, there is no need for continu-
ous calibration of the eye-in-hand system (at least for
tracking and servoing tasks).

3.IMPACT OF THE CONTROLLED ACTIVE
VISION FRAMEWORK

Vision-based control and active vision can have a sig-
nificant impact on space applications, intelligent high-
ways, manufacturing, and nuclear waste clean-up efforts.
Vision-based control can enhance the performance of in-
dustrial robots in assembly lines, aid in better alignment
of an object with the camera in automatic inspection
systems, improve the automatic assembly of electronic
devices (surface mount technology), assist in the real-
ization of vehicle following (platooning), make possible
autonomous satellite docking and recovery, and improve
the efficiency of outdoor navigation techniques.

It is important to mention that there is an absence
of a framework that covers all the issues that are intro-
duced by integrating the vision sensor and more gener-
ally any sensor in the feedback loop of a robotic device.
We think that there is a significant waste due to the
fact that there is a trend to build systems that only ad-
dress the use of specific sensing modules in the feedback
loop. Small changes in the hardware or the software of




a specific sensing module require significant re-design of
the whole system, thereby increasing the cost and the
development time. We claim that the controlled active
viston framework addresses many sensor-based control
issues and provides a unified way of looking at problems
of this type. It is not only limited to robotic visual ser-
voing [18].

The idea behind all this is simple: “move the sensor
in a controlled way in order to derive the best possible
knowledge about the aspects of the environment rele-
vant to the task, and then try to accomplish your task.”
The gains from this research can be summarized to sig-
nificant reduction of hardware (e.g., we have shown that
by efficiently using the motion of the eye-in-hand sys-
tem we can achieve monocular full 3-D robotic visual
tracking instead of using stereo), drastic reductions in
software (you do not need significant amount of code for
calibrating the eye-in-hand system since adaptive algo-
rithms are used), and improved safety by introducing
robust mechanisms for integrating the human operator
in the feedback loop. Moreover, our algorithms do not
require significant investment in image-processing hard-
ware and can be immediately applied to any available
robotic device. For example, the transfer of our algo-
rithms from a direct-drive arm to a PUMAS60 took two
days. Since the algorithms are designed in order to use
the existing robot controllers, there is no need for mod-
ifying the internal electronics of the industrial robots
used.

4.DETAILS ABOUT THE CONTROLLED
ACTIVE VISION FRAMEWORK

Sensory information enhances the robot’s capability by
continuously updating the robot’s view (or model) of
the world and the task. The completeness and accuracy
of this view depends on the existence of a framework
for the integration of sensory information with the other
components of a robotic system. The proposed struc-
ture of such a framework is described in [1]. Its basic
components are:

1. Vision Sensor: The vision sensor in this case is
the CCD camera that is used in the experiments.

2. Target: The target is charactarized by a num-
ber of parameters that describe its structure and
motion (Shape, Motion).

3. Estimator: The estimator continuously updates
the values of the parameters of motion and of
the robot’s dynamical model based on the motion
measurements and their associated variances.

4. Manipulator Controller: This module issues
the control commands by taking into considera-
tion the output of the estimator and the dynami-
cal model of the robotic device.

To date, researchers have looked separately at the
components of the above system. Some [12, 10] have
dealt with the dynamics of the model (component 4)
and some [19, 2, 20] with the vision algorithms (compo-
nents 1, 2, and 3). Our approach is that we should look
simultaneously at all the components of the above men-
tioned system. One cannot control a robotic device by
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ignoring the model of the camera and the available com-
puter vision algorithms. Both, the robotic device and
the computer vision algorithms play a significant role in
the selection of the appropriate control scheme. For ex-
ample, simple control (PI) strategies are adequate for ac-
curate motion measurements while stochastic controllers
are needed for noisy measurements. In addition, accu-
rate camera modeling introduces a number of coeflicients
that have to be computed, either on-line or off-line, if sat-
isfactory tracking performance is desired. On the other
hand, the robotic manipulator is a device with limited
tracking capabilities. If these constraints are ignored,
the servoing/tracking algorithm will provide infeasible
control commands. We view visual tracking and servo-
ing and generally, active vision from a framework that
pays attention to both the computer vision algorithms
and the control techniques. This requires that new con-
trol algorithms be developed to confront the noise in
the measurements and the nonlinear dynamic model of
the robot, and that new computer vision techniques for
motion detection be developed. Finally, we claim that
combining control with computer vision can enhance the
quality of the visual measurements and create new, flex-
ible, and reliable robotic tracking devices.

The above framework also allows this system to be
used for recovery of the object’s shape information. Con-
trolled movement of the manipulator can provide us with
an estimation of the depth of a point. As an exten-
sion to this, controlled movement can be used for active
calibration of the camera. In other words, we can use
this technique to estimate the coefficients of the camera
model.

The integration of computer vision with control has
significant importance since it addresses both, theoreti-
cal and experimental research issues. On the theoretical
side, it deals with issues such as sensory feedback, vision-
based control, nonlinear control, interaction between vi-
sion and control, representation of motion, detection of
motion, noise reduction, active vision, and selection of
appropriate features for visual tracking. On the experi-
mental side, it addresses issues such as system integra-
tion and real-time performance.

In addition to robotic visual servoing, the potential
of the controlled active vision framework has been tested
on the following tasks:

e Automatic detection of servoing targets:
We use a figure/ground approach in order to de-
tect objects of interest.

¢ Vision-based robotic grasping: We employ
adaptive control and computer vision techniques
in order to approach and grasp a static or slowly
moving object.

e Active calibration: The idea is similar to the
ones mentioned before. Based on the motion of
the robot-camera system , we try to estimate the
intrinsic parameters of the camera and the rela-
tive pose of the object with respect to the camera.
This algorithm can be useful to the vision-based
robotic tasks that require calibration of the eye-
in-hand system.

e Computation of shape through the con-
trolled motion of the eye-in-hand system:
We derive depth maps by effectively using the con-
trolled motion of the camera.
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5. MATHEMATICAL FORMULATION OF
THE PROBLEM

This section covers the mathematical model of our ap-
proach (the different tasks require slight modifications
of the model). In particular, we assume a pinhole cam-
era model with a frame {R;} attached to it. Consider
a static target with a feature, located at a point P with
coordinates (X, Ys, Zs) in {Rs}. The projection of this
point on the image plane is the point p with image co-
ordinates (z,y) given by

&

where f is the focal length of the camera and -, 7y, are
the dimensions (mm/pixel) of the camera’s pixels. In
addition, it is assumed that Zs > f. If (¢;,cy) is the
origin of the image coordinate system {F;} then

To=2x+c,and yo =y +ocy (2)

where z, and y, are the actual image coordinates
in {F,}. Let us assume that the camera moves
in a static envirogxment with a translational veloc-
ity T=(T,,T,,T;)" and with an angular velocity
R:(RT,Ry,RZ)T with respect to the camera frame
{Rs}. The velocity of point P with respect to the {R}

frame is P
— =-T - P. 3
o R x (3)

By taking the time derivatives of the expressions for x
and y and using (1) and (3) we obtain:

T. [T. _ xyy ;o Yy
SLL I LR A1y S R, + LY R, (4)
Zs  Zsya f ('Yx f Ry Yo
T. [T, ;v TYYa TYr
vmyst - 2 gLy Y yp  Wep Tl (s
st Zs7yy ('Yy f ) f v Yy ( )

where u = & and v = §. The terms u and v are also
known as the optical flow measurements. If we assume
Yz =7y = f =1, equations (4) and (5) become:

T, 1T 2
u—-xZ—Z—s—f—xsz—(l-{—w)Ry-i—sz (6)
T. T
v=yZ - Z—” +(1+y*)R, — zyR, — zR,. (7)

To keep the notation simple and without any loss of
generality, in the mathematical analysis that follows, we
use only the relations described by (6) and (7). As-
sume that the optical flow of the point p at time kT is
(u(kT),v(kT)) where T is the time between two consec-
utive frames. It can be shown [4] that at time kT, the
optical flow is:

uw(kT)=pzuo(kT) + uc(kT) (8)
v(kT)=pyvo(kT) + vc(KT) (9)
where u.(kT') and v.(kT') are the components of the op-
tical flow induced at the time instant &7 by the servo-

ing motion of the camera, and uo(kT) and vo(kT) are
the components of the optical flow induced at the time
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instant kT by the possible motion of the target. The
coefficients p, and i, are defined as:

_ _ 1 Moving Target
Kz = Hy = { 0 Static Target (10)

Equations (8) and (9) will henceforth be used with &
instead of kT. Equations (8) and (9) do not include
any computational delays that are associated with the
computation and the realization of the servoing motion
of the camera. If we include these delays in the model,
equations (8) and (9) are transformed to:

u(k)=pzuo(k) + uc(k — d +1) = peuo(k) + g~ ue(k) (11)
v(k)=pyvo(k) + ve(k — d + 1) = pyvo(k) + ¢~ ve(k) (12)
where d is the delay factor (d € {1,2,...}) and ¢~ ! is the
backward shift operator [21]. For the time being, it is
assumed that d = 1. From (6) and (7), u.(k) and v.(k)
are given by:

T.(k)  T(k)
Zs(k)  Zs(k)
—[1+2® (k) Ry (k) + y (k)R (k) (13)

vc(k):y(k)gz E’;; - Z E:; + 1+ 52 (k) R (R)

—z(k)y(k)Ry (k) — x(k)R. (k). (14)

uc(k)=z(k)

+ z(k)y (k) Rz (k)

We substitute u(k) and v(k) in (11) and (12) with an
approximation to the optical flow, obtained by dividing
the z and the y disparities ((z(k+ 1) — z(k)) and (y(k +
1) — y(k)), respectively) by the time interval 7. As a
result, equations (11) and (12) can be written as:

z(k + 1)=x(k) + Tuc(k —d + 1) + p2Tuo(k) + vo (k) (15)
y(k+ 1)=y(k) + Tve(k —d + 1) + pyTuo(k) + vy (k) (16)

where the white noise terms v, (k) and v, (k) are included
to model the inaccuracies of the model (neglected accel-
erations, inaccurate robot control, etc.). v, (k) and v, (k)
are white noise terms with variances o2 and o, respec-
tively.

For every feature point we obtain two equations that
relate the new feature coordinates to the previous coor-
dinates in terms of the sampling time (T) and the op-
tical flow. Equations (15) and (16) can be represented
compactly in matrix-vector form (also known as state-
space form) as (the subscript f denotes the state-space
description of a specific feature):

xf(k + 1):Af(k)xf(k) + Bf(k - d + l)ucon(k - d + 1)
+Er(k)ur(k) + Hf(k)Vf(k) (17)
where Af(k) = He(k) = I, Ee(k) = T diag{pu., ny},

x¢(k) € R%, Ucon(k) € RS, us(k) € R%, and ve(k) € R2.
The matrix Be(k) € R*5 is:

5 O 25 wkyk) ~(1+22(k) (k)
Be(k)=T

0 5 25 (P k) —a(k)y(k) (k)




The vector x¢(k) = (z(k),y(k))7T is the state vector,
ucon(k) = (Tﬂt (k)’ Ty(k)’ TZ (k)’ Rz(k)’ Ry (k)a RZ (k))T is
the control input vector, ug(k) = (uo(k),vo(k))7 is the
disturbance vector, and vg(k) = (vz(k), vy (k)T is the
white noise vector. The measurement vector yg(k) =
(yz(k), yy(k))T for this feature is given by:

ye(k) = Cexe(k) + we (k) (18)

where we(k) = (w,(k), w,(k))T is a white noise vector
(we(k) ~ N(O,W)%Kz,md C¢ = I;. The elements of the
covariance matrix are set to some constant values.
Plausible estimates of these elements can be computed
from the image. The measurement vector is computed
using the Sum-of-Squared Differences (SSD) algorithm
which is described in [16].

The state-space model for N(N > 3) feature points
can be written as:

z(k +1) = A(k)x(k) + B(k — d + 1)ucon(k — d + 1)
+E(k)d(k) + H(k)v (k) (19)

where A(k)=H(k)=Isn, E(k)=Tdiag{ps,py, iz,
By}, x(k) € R?N  d(k) € R?V, and v(k) € R*™. The
matrix B(k) € R?NX6 is:

Bf(l)(k)
k) = .

B¢ ™M (k)
The superscript (j) denotes each one of the fea-
ture points ((j) € {(1),...,(N)}). The vector
x(k) = (@D (k),y k), .., a™ (k),y™ (k)T is the
new state vector, and v(k) = (vg(gl)(k),v,(,l)(k),
o0 (E), oM (k)T is the new white noise vec-
tor. The new measurement vector y(k) =
(" (k). 45 (k). ., g™ (), 3™ (k)T for N(N 2 3) fea-
tures is given by:

y(k) = Cx(k) + w(k) (20)

where w(k) = (wi(k),w{" (k), ..., wd" (k), wY (k)T
is the new white noise vector (w(k) ~ N(0,W)) and
Ce = Ian.

In the case that u, = p, = 1, we can combine
equations (19)-(20) into a MIMO (Multi-Input Multi-
Output) model (a similar model can be derived for the
case iz = ftyy = 0):

(1-2¢7" + ¢ 2)y(k) = B(k — d)ucon(k — d)
—B(k—d—1)ucon(k —d—1) +n(k)  (21)

where n(k) is the white noise vector. The new white
noise vector n(k) corresponds to the measurement noise,
to the modeling errors, and to the noise introduced by
Inaccurate robot control. If we assume B(k—d) ~ B(k—
d—1) then (21) can be rewritten as a MIMO ARX (Au-
toRegressive with auXiliary input) model. This model
consists of 2N MISO (Multi-Input Single-Output) ARX
models. In addition, the new model’s equation is:

(1—2(]_1-*-(]——2))’(]6) = B(k-d)Aucon(k_d)+n(k) (22)
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where Aucon(k — d) is defined as:
Atcon(k ~d) = Ucon(k — d) — Ucon(k —d —1).  (23)
The control law in this case is

Ucon (k) = —[BT()QB(K) + L + La] ' [BT(k)Q -
{(@+)y(k) —y*(k+d) —dy(k—1)

m=d—1
~dB(k - d)ucon(k ~d) + Y B(k—m)
Ueon(k = 1)} ~ Laticon(k — 1) (24)

where B(k) is the estimated value of the matrix B(k)
and y*(k) denotes the desired location of the features.
This control law corresponds to the objective function
(Q, L, and Lq are weighting matrices)

Jk+d)=E{ly(k+d) - y"(k+d)]"Q
ly(k+d) — y*(k + d)] + Ucon” (k)L
Ucon (k) + Aucon” (K)Lg
Aucon(k)|Fi} (25)

where the symbol E{X} denotes the expected value of
the random variable X and F} is the sigma algebra gen-
erated by the past measurements and the past control
inputs up to time k. The selection of the weighting ma-
trices Q, L, and Lg allows one to place more or less
emphasis on the control input, the control input change,
and the servoing error when attempting to satisfy the
control objective. Similar objective functions can be de-
signed for a variety of tasks (e.g., dynamic reposition-
ing, derivation of depth maps). The matrix B(k) is de-
pendent on the estimated values of the features’ depth
Zs(])(k) ((7) € {(1),...,(N)}) and the coordinates of the
features’ image projections. In particular, the matrix
B(k) is defined as follows:

S (1
. B;" (k)
Bk)=| '.
(N
BV (k)
where ﬁgj )(k) is given by:
By =T
- =(9) (k) . . . .
;GIT,) ° 0w 2D kD (k) -1 - @D k)? YO k)

) ; i ; ;
—1 vl ) 4w k)2 2 (k) ) (k) -2 (k
pam ;(—Jﬁk—) RO Ry k) ~219 (k)

The depth ZY (k) for each individual feature is esti-
mated by using the techniques described in [21, 22, 23).
The computed rotational and translational displace-
ments are fed to a cartesian robot controller that pro-
vides the actuating torques. The use of this scheme
allows us to successfully track a 3-D moving target in
a poorly calibrated environment (the errors in the ini-
tial estimates of the depth related parameters and the
focal length are 100% of the actual parameters’ val-
ues). The algorithms are implemented on the Minnesota
Robotic Visual Tracker (MRVT) system. The MRVT is




a multi-architectural system which consists of two main
parts: the Robot/Control Subsystem (RCS) and the Vi-

sion Processing Subsystem (VPS). The RCS consists
of a PUMA 560 manipulator, its associated Unimate
Computer/Controller, and a VME-based Single Board
Computer (SBC). The manipulator’s trajectory is con-
trolled via the Unimate controller’s Alter line and re-
quires path control updates once every 28 msec. Those
updates are provided by an Ironics 68030 VME SBC run-
ning Carnegle Mellon University’s CHIMERA real-time
robotic environment. A Sun SparcStation 330 serves
as the CHIMERA host and shares its VME bus with
the Ironics SBC via BIT-3 VME-to-VME bus exten-
ders. The VPS receives input from a Panasonic GP-
KS5102 miniature camera that is mounted parallel to the
end-effector of the PUMA and provides a video signal
to a Datacube system for processing. The Datacube
is the main component of the VPS and consists of a
Motorola MVME-147 SBC running OS-9, a Datacube
MaxVideo20 video processor, a Datacube Max860 vec-
tor processor, and a BIT-3 VME-to-VME bus extender.
The bus extender allows the VPS and the RCS to com-
municate via shared memory, eliminating the need for
expensive serial communication. The VPS performs the
computer vision algorithms, calculates the desired con-
trol input, and supplies the input vector via shared mem-
ory to the Ironics processor for inclusion as an input into
the control software. The video processing and calcula-
tions required to produce the desired control input are
performed under a pipeline programming model using
Datacube’s Imageflow libraries. We conducted multiple
runs for the tracking of objects that exhibited unknown
two- and three-dimensional motion with a coarse esti-
mate of the depth of the objects. The results from these
experimental runs can be found in [24].

6. INDIVIDUAL TASKS

6.1. Automatic Detection of Servoing Targets

While many researchers have focused on the control
or computer vision aspects of the robotic visual servo-
ing/tracking problem, few efforts have been reported in
the area of automatic detection of moving objects of in-
terest. We propose a scheme that uses a figure/ground
approach. This approach is one of a family of image-
differencing algorithms. When detection is considered,
it is helpful to view an image as a set of pixels that
belong to one of two categories: figure or ground. Fig-
ure pixels are those that are believed to belong to one
of several objects of interest, while ground pixels belong
to the surrounding environment. The proposed scheme
maintains a ground image that represents the past his-
tory of the environment. For each pixel in the current
image, a comparison is made to the corresponding pixel
in the ground image. If the pixels differ by more than a
threshold intensity amount, then the pixel is considered
to be part of a binary figure image. We plan to improve
the computational performance of the system with the
use of spontaneous and continuous domains. Domains
are areas in the image where objects of interest are ex-
pected to appear. Therefore, we may have to search only
an extremely small part of the image.
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6.2. Vision-based Robotic Grasping

We propose a flexible system based upon the controlled
active vision framework that robustly grasps objects in
the manipulator’s workspace. The system operates in an
uncalibrated space with an uncalibrated camera. The
object of interest is not required to appear in a spe-
cific location, orientation, or depth, nor is it required to
remain motionless during the grasp. Additionally, we
decompose the motion into coarse and fine segments by
using two different classes of object features during op-
eration. We use the idea of “coarse” and “fine” points
during the operation of the system to guide the manip-
ulator’s movements. Consider approaching a building
that you wish to enter. At long distances, you use the
building as a whole to guide your approach. This is sim-
ilar to the use of coarse points in our system to guide
the early, coarse movements. Once you are near enough
to the building to identify the entrance, the entrance
itself becomes the guiding feature, while the entirety
of the building is ignored. This is similar to the use
of fine points in our system. When the object domi-
nates the field of view of the camera, fine points are
used to guide the manipulator motion. Coarse points
are selected while the object is at relatively far distances
from the end-effector. The system automatically aligns
the gripper with the object and forces the optical axis
of the camera to pass through the centroid of the ob-
ject. It then drives the manipulator toward the object
while maintaining proper gripper and optical axis align-
ment. When the object 1s in motion, these alignment
constraints result in the tracking of the object by the ma-
nipulator. When the coarse points approach the bound-
aries of the image plane, fine points are selected. These
are used to drive the end-effector the remaining distance
to the object and to-signal when to grasp the object
using a pneumatic, two-fingered hand. Proper orien-
tation is maintained throughout by visual information
derived from either the coarse points or the fine points,
depending on the type of points being used to guide the
manipulator.

The selection of features happens automatically based
on the confidence measures reported in [16]. These con-
fidence measures are also used on-line for the evalua-
tion of the visual measurements that are provided by
the Sum-of-Squared Differences (SSD) optical flow algo-
rithm. Finally, experimental results from this approach
can be found in [25].

6.3. Active Calibration

The controlled motion of the eye-in-hand system can be
used in order to compute the pose of the target with re-
spect to the camera frame. In addition, we are able to
compute the piercing point of the optical axis (param-
eters ¢; and ¢,) and produce accurate estimations for
the scaling (parameters f/v, and f/v,) and distortion
factors. The whole problem can be modified in order
to use the motion of the camera in a way that certain
ill-conditioned sub-problems are simplified. The tradi-
tional approach is a static one and tries to compute sev-
eral camera parameters from static views of the world.
This problem which is closely related with the sensor-
placement task has an impact on several areas such as
satellite docking.

The computation of the pose can be modeled as a
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MIMO (Multi-Input Multi-Output) estimation and con-
trol problem. Based on our current knowledge about the
camera parameters and the camera position, we design
a recursive estimation scheme. Moreover, the next posi-
tion of the camera is computed by a control law that is
based on the estimated and not the actual values of the
system’s parameters. Several experimental results from
our approach are reported in [26]. The average errors
for the scaling factors are 5%, for the image center pa-
rz;meters are 26%, and for the extrinsic parameters are
8%.

6.4. Computation of Shape Through the Con-
trolled Motion of the Eye-in-hand System

In several inspection tasks, the shape of the object under
inspection plays a significant role. Moreover, the shape
of the object may indicate appropriate places for grasp-
ing it. We use a controlled motion of the eye-in-hand
system in order to derive a depth map of the target.
This approach helps us recognize its shape or moreover
find deformations of its initial structure. Contrary to
previous approaches [20, 19], we propose that we should
move the eye-in-hand system in a controlled way if we
want to have increased accuracy. In other words, our
scheme creates a task function for each patch or pixel on
the image. Then, we move the eye-in-hand system in a
way that we guarantee that the depth parameter is iden-
tifiable. It should be mentioned that the design of the
best possible trajectory (a set of y*(k)’s for every patch
or pixel) is an interesting and difficult problem. While
we are controlling the system in order to follow the de-
sired trajectory for identification, we are estimating the
depth of the patch or pixel with respect to the camera
frame. As a result, a simple self-tuning controller can
be designed for this task. In addition, since the com-
putational delays are significant, the estimation scheme
should be modified in order to include them. Otherwise,
the control commands turn to be invalid. The control
law that produces these image trajectories for each in-
dividual patch or pixel corresponds to the following ob-
jective function

J(k+d) = E{[y(k+d) -y (k+d)]" Qly(k + d)

—y"(k+ d)] + teon” (F)Lticon (k)| Fi}.  (26)
The control law in this case is
Ucon(k) = ~[BT(k)QB(k) + L)' BT (k)Q{[y (k)
S Bl - myucon(h— m)). (21

Since the identification of the depth often requires simple
motions, we generally use simplified forms of the previ-
ous control law. As a result, the computation of the
depth maps can be performed almost in real-time. Sev-
eral experimental results can be found in [27]. The aver-
age error in the estimation of the depth is 2%. Matthies
[19] has proposed an accidental motion in order to de-
rive the structure of an object. We claim that small
accidental motions of the camera may fail to produce
displacements. that will help the estimator to converge.
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7.CONCLUSIONS

This paper discusses possible applications of the con-
trolled active vision framework in the design of flexi-
ble and effective eye-in-hand robotic systems. The con-
trolled active vision framework states that a controlled
instead of an accidental motion of the camera can max-
imize the performance of any active vision algorithm.
The techniques proposed in this paper provide ways for
efficient operation of eye-in-hand robotic systems in un-
calibrated environments. For example, we propose a
scheme for vision-assisted grasping of static or slowly
moving objects. For the computation of depth maps,
we propose a technique that is based on the automatic
selection of features and the design of specific trajec-
tories on the image plane for each individual feature.
Unlike similar approaches, this approach aids the design
of trajectories that provide maximum identifiability of
the depth parameter. During the execution of the spe-
cific trajectory, the depth parameter is computed with a
simple estimation scheme that takes into consideration
the previous movements of the camera and the computa-
tional delays. We have also studied the problems of the
robotic visual tracking, the controlled active calibration
of the robot-camera system, the computation of the rela-
tive pose of the target with respect to the camera frame,
and the automatic detection of objects of interest. Our
framework can be easily adapted to other applications,
as demonstrated by the preliminary results of two trans-
portation related applications (pedestrian tracking and
vision-based vehicle-following [281]). All of the work pre-
sented in this paper has been implemented on the MRVT
developed at the University of Minnesota, demonstrat-
ing the flexibility of the algorithms that have been de-
veloped.
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