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Abstract

A combination of a physically motivated con-
stitutive model and a neural network is presented to
approximate the response of a fluid damper devel-
oped for seismic protection of structures. The perfor-
mance of the proposed technique is validated against
experimental data.

1. Introduction

Conventional seismic design of buildings and
bridges relies on the ability of structures to behave
inelastically and dissipate the induced seismic energy
through hysteretic action. Commonly, structures are
designed to absorb earthquake energy through local-
ized damage of their supporting members.

An alternative approach to dissipate the seis-
mic energy is to introduce damping devices within
the structural system, thereby preventing the devel-
opment of undesirable damage. Different dissipative
devices have been proposed, including friction
dampers, viscoelastic solid and fluid dampers and
lead extrusion dampers. In particular, fluid dampers
have received considerable attention because of their
small size and ability to dissipate a substantial
amount of energy. A critical review of the various
energy absorbing systems has recently been pre-
sented by Constantinou and Symans (1993).

The dynamic analysis of structures equipped
with additional dampers requires the availability of
constitutive models that approximate with fidelity the
response of added dampers. The dynamic response of
fluid dampers is, in general, nonlinear viscoelastic
and depends primarily on their construction, the
shape of their orifice and the type of fluid used. Pre-
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vious studies concentrated on the development of
macroscopic linear constitutive models to approxi-
mate the response of these devices.

In this paper, we advance the concept of com-
bining a simple physically motivated model and a
neural network to approximate the response of a
practical fluid damper designed for seismic protec-
tion of structures.

2. Motivation

Traditional fluid dampers utilize a cylindrical-
shaped orifice and produce forces proportional to the
square of the velocity of the piston rod; this perfor-
mance is usually unacceptable in shock isolation.
Other types of fluid dampers, initially developed for
military applications and recently tested for seismic
protection of structures (Constantinou and Symans,
1993), have orifices with specially shaped passages
to alter flow characteristics with fluid speed. The
response of these dampers is nearly viscous at low
frequencies, whereas for frequencies beyond 4 Hz
the response exhibits substantial elasticity. A classi-
cal Maxwell model was found capable of predicting
this response in a satisfactory manner.

A photograph of the damper studied herein is
shown in Figure 1. The damper consists of an outer
cylinder and a double ended piston rod that pushes an
electrorheological (ER) fluid through a stationary
annular duct. This device can be used as a passive
damper or as a semiactive damper, since the mechan-
ical properties of the ER-fluid within the damper can
be modified when a voltage is applied across the
outer cylinder of the bypass and the inner rod. More
information about the construction and response of
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Figure 1. Photograph of fluid damper

the damper under the presence of electric field can be
found in Makris et al. (1995).

When the damper is purely passive (no electric
field), its response is nearly linear viscoelastic. Minor
nonlinearities in the response are observed when the
piston-rod reverses motion. When the damper is acti-
vated with the presence of an electric field, the non-
linearities in the response become more pronounced.
Figure 2 shows recorded time histories and force-dis-
placement loops from the damper in the absence of
electric field (E=0.0 kV/mm) and in the presence of
electric field (E=3kV/mm). All the data in Figure 2
was generated with a 0.4 Hz sine wave with 0.1 or
0.2 inch amplitudes (left and right, respectively).

In principle, the dynamic response of the
damper can be approximated with physically moti-
vated constitutive models based on the mathematical
theories of viscoelasticity and viscoplasticity (Makris
et al., 1993; Graesser and Cozzarelli, 1989). Never-
theless, when nonlinear response prevails, such an
approach becomes rather complicated and involves
stiff differential equations. Note that the solution of
these equations may involve a considerable computa-
tional effort. On the other hand, when a neural net-
work alone is used to predict both transient and
steady-state response of the damper, the prediction is
mediocre. This is due to fact that earthquake inputs
contain a small number of large spikes and a non-
smooth spectrum. Figure 3 illustrates the prediction
of the recorded force from the damper by the neural
network when subjected to the 1992 Petrolia earth-
quake displacement input.

The philosophy advanced herein is to use the
simplest possible physically motivated model to
approximate the linear component of the damper
response and a neural network to capture the nonlin-
ear behavior in addition to the remaining part of the
linear response. In this way, the localized spikes of
the response are approximated with the physical
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Figure 2. Recorded time histories (top) and force-
displacement loops (bottom) of semiactive fluid
damper with E= 3 kV/mm (solid line), and no field,
E= 0 kV/mm (dotted line)

model and the neural network has to predict a
response with smaller variability in amplitudes.

In the present study, our effort concentrates on
characterizing the damper response in its purely pas-
sive stage (E=0.0 kV/mm). Nevertheless, the devel-
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Figure 3. Top: displacement time history of the
1992 Petrolia earthquake; center: recorded and
predicted force with neural network; bottom:
difference between recorded force and neural
network prediction




oped procedure is general and can be used to
characterize the damper response at any of its stages.

3. Macroscopic constitutive model

The simplest physically motivated model that
approximates, to a certain extent, the response of the
fluid damper is the classical Maxwell model of vis-
coelasticity
du(t) (1)
dt

dP (1) _

P A
(0 + dt

C

where P(t) and u(t) are the force and displacement
histories developed at the piston-rod of the damper,
A is the relaxation time of the damper and C is the
zero-frequency-damping constant. Parameters A and
C must be calibrated by fitting experimental data
extracted from dynamic testing.

The equivalent linear mechanical characteris-
tics of the fluid damper have been determined using
the testing arrangement shown in Figure 1. A hydrau-
lic actuator imposed a displacement on the piston rod
and the force needed to support the damper cylinder
was measured by a load cell that was connected
between the damper and the reaction frame (left side
of picture). Harmonic displacement histories at dif-
ferent frequencies were imposed and the recorded
force-displacement histories were used to extract the
mechanical characteristics of the damper. Figure 2
shows such recorded force-displacement loops at fre-
quency 0.4 Hz and amplitudes 0.1 and 0.2 inches.

The linear part of the response is expressed in
the frequency domain through the dynamic stiffness,
X (w) , defined as

P(w)

K(w) = K, (@) +iK,(w) = uéw)

)

where P(w) and u (w) are the Fourier transforms of
the force and displacement histories respectively.
K,(w) is the equivalent storage stiffness of the
device and represents the elastic part of the response
whereas, K, (w), is the equivalent loss stiffness of
the device and represents its ability to dissipate
energy. K, (w) is related to the energy dissipated per
cycle, w,, by
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where U, is the amplitude of the harmonic displace-
ment and C(w) is the damping coefficient of the
device. Once the loss stiffness, K, (), is computed,
the storage stiffness, K, (w) , is provided by the rela-
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where P,, is the amplitude of the harmonic force.

C))

Figure 4 shows the experimentally measured equiva-
lent storage stiffness and damping coefficients of the
damper. The prediction of the Maxwell model given
by Equation (1) is shown with solid line. Parameters
C=460 1b-sec/in and A=0.0216 sec were calibrated so
that the Maxwell model results in the best possible fit
for the damping coefficient. In this way, the phase of
the response will be approximated with accuracy
from the Maxwell model, and the amplitudes will be
refined by the neural network.

4, Identification of the total damper response

In order to capture the true amplitudes of the
response and some of the nonlinear behavior, a neu-
ral network model is introduced in conjunction with
the aforementioned Maxwell model. Neural net-
works consist of many interconnected simple pro-
cessing elements called units (nodes), which have
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Figure 4. Equivalent storage stiffness (real part),
damping coefficient (imaginary part) of the fluid
damper at no field (E=0.0 kV/mm)




multiple inputs and a single output. The inputs are
weighted and added together. This sum is then passed
through a nonlinear function called the activation
function such as a sigmoidal function, a Gaussian-
type function or even a hard limiter like the signum
function. The processing units or neurons are inter-
connected; the strength of the interconnections is
denoted by parameters called weights. These weights
are adjusted, depending on the task at hand, to
improve performance. They can be either assigned
values via some prescribed off-line algorithms, while
remaining fixed during operation, or adjusted via a
learning process on line. Neural networks are classi-
fied by the network structure topology, type of pro-
cessing elements used and kind of learning rules
implemented.

The type of neural network used here is the
feedforward multilayer neural network, where no
information is fed back during operation. The back-
propagation algorithm is used to adjust the weights
of the neural network during training; details can be
found in Hertz (1991).

Neural networks have been used extensively
to model the behavior of nonlinear plants. They have
also been used in the control of systems and failure
diagnostic problems. They have proven especially
successful in cases where traditional control tech-
niques failed to give satisfactory results, see Antsak-
lis  (1992), Antsaklis (1993), Hou (1992),
Konstantopoulos (1994), Konstantopoulos (1995),
Miller (1990), Narendra (1990) and Warwick (1992)
for details. A theoretical study of the modeling of
mechanical behavior using neural networks has been
presented by Masri et al. (1993).

Herein, the neural network is trained with the
difference-signal between the recorded force on the
damper and the prediction of the macroscopic Max-
well model. Displacement histories from three differ-
ent earthquakes have been used as input to the fluid
damper. The resulting force needed to maintain the
motion was recorded with the load cell shown in Fig-
ure 1. Figure 5 shows the three input displacement
histories and the difference-signals between the
recorded force and the prediction of the Maxwell
model. These difference-signals have been used to
train the neural network. The three input histories are
records from the 1940 El Centro earthquake, the
1985 Mexico City earthquake and the 1987 Whitter
Narrows earthquake. The neural network used has
two hidden layers with 30 and 25 neurons in the first
and second hidden layers respectively. The inputs to
the neural network were the current and delayed val-
ues of the induced displacement histories together
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Figure 5. Input and output pairs used to train
the neural network

with delayed values of the neural network output,
which is the resulting force.

Figure 6 (top-left) compares the recorded
damper response with the prediction of the Maxwell
model. Figure 6 (bottom-left) shows the difference-
signal of the two time histories shown above. The
input to the damper is the displacement history of the
1992 Petrolia earthquake. A neural network was used
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Figure 6. Comparison of the predictions from the
Maxwell model alone (top-left) and a combination
of the Maxwell model and neural network (top-
right); the bottom plots show the difference-signals




to approximate this difference-signal. Figure 6 (top-
right) shows the prediction of the combined Maxwell
model and neural network. The difference of the
recorded and predicted responses is shown on Figure
6 (bottom-right). Comparing the two difference-sig-
nals in the bottom plots, one observes that the com-
bined model results in a better prediction.
Nevertheless the improvement is not dramatic. This
is because the response of the passive device that we
are investigating is nearly linear and the Maxwell
model predicts satisfactorily most of the response. In
other cases, however, where the damper operates
under the presence of strong electric field, the nonlin-
ear behavior is more pronounced and the proposed
modeling technique could show considerable advan-
tages. Comprehensive testing of the damper under
the presence of electric field is currently underway.

5. Conclusions

In this paper, a combination of a physically
motivated constitutive model and a neural network
was used to approximate the response of a passive
fluid damper developed for seismic protection of
structures. The proposed method utilizes the simplest
possible macroscopic model to approximate the lin-
ear part of the damper response and the neural net-
work 1s introduced to account for the remaining
response. The neural network used was trained with
the difference-signals between the recorded response
of the damper and the prediction of the Maxwell
model. The study reported herein shows that the pro-
posed method is practical and can be used with no
difficulty to predict the response of devices where
nonlinear response prevails.
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