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Abstract.The speed-gradient method of control
design used previously for problems of regulation
and tracking is extended to oscillating systems
with energy-based objective functions. The concept
of swinging control is introduced meaning
achievement of arbitrary large level of the
objective function by arbitrary small control
level. The existence of swinging control for
Hamiltonian systems is established. Simulation
results for pendulum swinging problem are
demonstrated.

1. INTRODUCTION.

Control theorists paid recently much attention to
the control problems for nonlinear systems,
particularly for nonlinear oscillatory systems
arising in many fields of mechanics, electronics,
medicine, etc. The conventional control
objectives related to regulation or tracking can
be described by specifying the desired plant
trajectory x*(t) with the aim of making the real

trajectory close to the desired one, e.g. :
x(t) - x‘(t) — 0 when t-»o® (1.1)

However some application problems related, e.g. to
oscillations excitation {swinging) are not
reducible immediately to standard problems of
regulation and tracking and demand for new
settings. The well known problem of swinging up
and stabilizing a pendulum (see ([1-4]) can be
taken as example. The solutions to such problems
are usually based upon energy considerations or
specific tricks.

In this paper a new solution to the problem of
swinging pendulum hanging from the rotating arm is
suggested based on speed-gradient method
{5-10].Simulation results confirming the validity
of the method are presented. Section 2 gives
a pendulum control problem statement.
Speed-gradient algorithms for Hamiltonian systems
and energy-based objective functions are
described in section 3. In section 4 a few
versions of speed-gradient algorithm for swinging
the pendulum hanging from the rotating arm are
considered. Simulation results are discussed in
the section 5.

2. MATHEMATICAL MODEL OF ROTATING PENDULUM

This paper deals with the control of the
pendulum having the weight m-and length 2]2 (1z is
the distance from its axis to the center of

gravity) suspended from the horizontal beam having
length l’(see {1-3}). The beam may

rotate in the horizontal plane moving by the DC
drive. The Euler-Lagrange equations of the system

are as follows:
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where q .49, are generalized angular coordinates

Jl"lz

friction coefficients , M is input torgue. The
values of system parameters are as follows [2]:

are inertia of the arm and €4y G, are

1 0.215[m], 1,=0.113[m], J, = 1.75-10" '[kg-m"],

3,71.98-10"'[kg-m°], m=5.38 10" “[kel,
c,=0.118[N-m-s], ¢ =8.3-10 "[N-m-s].

Parameters ¢ , C, determine the dissipation . In
case when dissipation is absent (c FcF 0) the

system is conservative and may be described by
Hamiltonian equations. The sensors (potentiometer
and resolver) can measure coordinates 9 q,- The

system has kinetic energy T, potential energy n
and Rayleigh dissipation function R (dissipation
energy) as follows.
_1f . .2 2.2, 2 2 2.2 _
T = Z[qu1 + m(ll+lzsm qz)q1 + ml,q,
. . .2
- 2ml 1 cos(q,)a,q, + J g,

ﬂ=mglz(1—-cosq2),

BT AU
R = 2[C1q1 + cqu].

The main control aim is stabilizing the total
energy of the system H(p,q) = T(p,q) + Nl(p,q) at




the prespecified level H i The additional control
goal is stabilizing the arm position q' at the
prespecified value q::

q,(t)-—» q: when t-» ®, (2.3)
3. SPEED-GRADIENT ALGORITHMS FOR
MECHANICAL SYSTEMS

The convenient mathematical description for
controlled oscillating system is Hamiltonian form.
It allows for explicit describing surfaces of
constant energy which unforced motions belong to.
The Hamiltonian form of controlled plant equations
is as follows:

p=—2H(p,q,u) - 9 H(p,q,u)
24 ’ ap ’
where p,q € R" are generalized coordinates and
momenta; H=H(p,q,u) is Hamiltonian function
(energy of the system); u=u(t) € R” is input
(generalized force) Formalize the control aim

(3.1)

as approaching the given energzy surface of
unforced system:
5=1{ (p,q) : H (p,a)=H, } (3.2)

where Ho(p,q)=ﬂ(p,q,0). The objective (3.2) can

be reformulated as

Ho(p('l),(l(t))—~ﬂ=t when t oo, (3.3)
and expressed in the form (2.2), where
x=col(p,q), and

Qx) = 3 [ Hy(p,a) - H,) (3.4)

In what follows we assume the Hamiltonian is
linear in control: T
H(p,q,u)=H (p,q)+H (p,q) u

where Ho(p,q) is internal Hamiltonian describing
unforced motions of the system and Hi(p,q) is a

vector of interaction Hamiltonians [11]. The
Speed-Gradient (SG) method ([8-10] offers the
general form algorithm:

u=—7v Q (3.5)

where Q is derivative of Q with respect to the
system (3.1), ¥>0.

To design SG-algorithm for the problem (3.1),
(3.4) calculate O :

Q= (H,~H){H ,H Ju , (3.6)
PH OH 3H. JH'
0 1 (4] 1 .
where [H.H, 1= - 18
p dgq 8q 79p
Poisson bracket (differentiation of vectors is
componentwise).
The finite forms of SG-algorithms look as follows:
us=-y (HD—H‘){HO,Hil (3.7)
U= - ¥ sign {(H,-H,)[H,,H 1} (3.8)
where ¥>0 is gain coefficient.
Let us formulate the result allowing to analyze
the behavior of systems with algorithms

(3.7),(3.8). To give precise formulations define
recursive Poisson bracket:
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ke 1,

1 Kk
apll};‘l_[ﬂo’ﬂil’ ap“o KH’—[HO,ap"oﬂll, k=1,2,...(3.9)

Functions Ho(p,q), Hl(p,q) should be sufficiently

smooth. In case when Hl is vector-function the

above definition is component-wise.
Theorem [7]. Consider system (3.1) together
with the control algorithm
u(t)=-YP((Hy-H,) [H, H,1(t)), (3.10)

where ¥>0, W(z,t)TzZBHzNa for B>0, 5>0 and for all
zeR"™; and
limp(z,t)=0 wuniformly in t20.
Z+0
Then u(t}0, i.e. trajectories of (3.1), (3.10)

approach the trajectories of unforced system.
Let also the unforced Hamiltonian Ho have only

isolated dimD=2n,
D=span{ap: H:’ k=1,2...}. Then for any trajectory
o

equilibria and where

there is an alternative: either a)the control aim
(3.3) is achieved; or b)the trajectory tends to an
equilibrium of the unforced system. The set of
initial conditions from which trajectory tends to
the unstable equilibrium is contained in a
countable set of manifolds having dimension not
greater then 2n-1, i.e. has Lebesgue measure zero
and its supplement is an open dense set.
The proof of the theorem can be found in [71.

Remark 1. Suppose that the system (3.1) is

Lagrange system,i.e.

Hy(p,a)=p'A” ' (a)p+i(q) (3.11)

where A(q) is positive-definite matrix of kinetic
energy and Il(g) is potential energy. In this case

equilibria of unforced system have the form (0,q),

where q is a stationary point of potential MNM{q).
Suppose that all the stationary points of l{q) are
isolated. Then it follows from theorem that
almost all the trajectories of the control system
either achieve the goal set (3.2) or converge to
some local minimum of potential li(q).

Remark 2. The condition dimD=2n is a kind of
observability condition because it means that the
identity y(t)=0 implies p=0,q=0, where y=H_ (p,q)

is vector of "natural” outputs (see[11]).

4. ALGORITHMS OF SWINGING ROTATING PENDULUM.
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‘algorithm preserves the form (4.1) but according
to theorem 2 it guarantees convergence not to
Point, but to domain which size decreases when ¥
increases.

To achieve the additional aim (2.3) the
additional objective function is introduced

Q (q1 —q_:‘)2 and the trick is applied

2
consisting in interlacing speed-gradient motions
along Q and along Qz. It seems reasonable to move

along Qinear the region of a phase space where
élis close to maximum and along ()2 when f11 is

close to zero (more exactly, when |é1|<€ ). In

the other time we take u = 0, i.e. we use the
dead zone.
The problem of convergence without

measurement of 1'11 and c']z seems interesting.
The observer equation for estimation of vector

. T
x=lq,q,,9,,9,] is as follows.

2=rR)+k(9-8)+D )y, (3.2)

where K 1is the gain matrix of appropriate
dimension and D(x) has the structure corresponding
to equation (2.1) resolved for highest
derivatives.

It can be shown that the observer works for the

proper choice of K if the plant
(2.1) is hyper-minimum-phase (HMP) [7]. If the
plant is not HMP, it is possible to transform it
into augmented HMP form introducing some shunt
(paralle]l feedforward compensator).

The described algorithms were analyzed by
computer simulation.

5. SIMULATION RESULTS

The simulation r.esults for system (2.1) affected
with control sc¢gnal (4.1) without dissipative
forces (ci=c2=0) are illustrated by Fig.1 (the

system energy plot) and Fig.2 (phase plot). The
value H_ was calculated for the maximum deviation

a, = 45 , ¥ = 100, while the initial deviation is
5 . Similar plots in presence of dissipative
forces for ¢, = 0.006{N-m-sl], ¢ 2= 8.3-10'5[N-mos]

are shown at Fig.3,4. The other pictures
demonstrate the results for systems with the
observer (Fig.5,6 - without dissipation; Fig.7,8 -
with dissipation).

It can be seen that the dissipative forces produce
oscillatory transient processes for total energy.
However the desired energy level H, is achieved in

all cases. In observer-based system the transient
time increases from 0.03{s] to 0.08[s] but can be
reduced by the proper choice of K (we took
gain coefficients K”=100 ).

6. CONCLUSIONS

The applicability of the speed-gradient method to
the problem of swinging the two-degree-of-freedom
mechanical system has been demonstrated. The
resulting algorithms are more simple compared with
the exisiting ones [1-4]. The proposed approach
may be applied in robotics, e.g. for design of
brachiation robot [12] or legged valking robots
[13-14].
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