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Abstract - In this paper the detailed survey of the methods
of matched filter sidelobes suppression is presented. The
methods of mismatching the receiver by means of the
weighting filter which is in cascade behind the matched
filter are described first. Though such a procedure is no
longer applied, these methods are very significant because
they set the basis for all later algorithms for designing
mismatched filters. Different methods of (filters
mismatching are comparatively presented. They can be
roughly classified into the class of filters which suppress
maximal sidelobes (MINIMAX or MX filters) as well as
filters which suppress RMS sidelobes (LS and similar
ones). The new algorithms are offered, uniting the
properties of MX and LS. The LS algorithms serve as an
initial basis and converge towards the MX filters due to
the iterative application of adaptive weighting
coefficients. This enables considerable simplification of
the designing procedure and which is more important, it
can be applied to all types of sequences, which was not
possible up to now. This algorithm is generalized from the
suppression of sidelobes of the correlation function to the
suppression of sidelobes of the ambiguity function. In
such a way the algorithm for designing the Doppler
optimized mismatched filter design is obtained. The paper
also contains very detailed list of references in the domain
mismatched filters.

I. INTRODUCTION

Signal coding within a transmitted pulse is often
used in radar, sonar and communications systems in
order to spread the signal bandwith. Some code
sequences can give appreciable processing gain. The
major disadvantage is that the compressed pulse has
range sidelobes which limit the dynamic range for
closely spaced targets. The problem of sidelobe
suppression occurs from the very beginning of the
radar pulse compression application. In order to
conceive more thoroughly the problem and its
importance we are going to give a chronological and
methodical survey of the previous approaches to its
solving. Some of the methods are described in more
details owing to the originality of the idea or because of
the good results they achieve.
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Fig.1: Sidelobe suppression with weighting filter.

In addition to this introduction this paper has eight
sections. In the section 2 we analyzed the methods of
sidelobe suppression by receiver mismatching, i.e. by
filtering the output signal of the mismatched filter
(Fig.1). Such methods are older than the others
according to the time of their appearance, and they are
no longer used in practice. However, they have a well -
stated approach and the problem definition as well as
the basically indicated methods of mismatching the
matched filters itself. In the section 3 we analyzed the
problem of matched filters mismatching, or in the
other words, mismatched filter design. The application
of the LS error criterion to the problem of mismatched
filter design is analyzed separately in the section 4. The
class of LS methods gives the best results so far. The
Iterative Re weighted LS (IRLS) procedure, also
presented in this section, yields the solution according
to the minimax criterion (it minimizes maximal
sidelobes). The Doppler optimized mismatched filter is
described in the section 5. The design of such a type of
mismatched filters which can suppress sidelobes not
only for zero Doppler shift but also for the determined
range of Doppler frequencies is of an exceptional
importance in the domains of all military and almost
all non-military applications. In the section 6 the
method of minimax filter design has been presented.
The filter DIRLS algorithm application in SS
communication systems has been given in the section 7.

II. RECEIVER MISMATCHING OBJECTIVES

In early sidelobes suppression attempts a receiver
was mismatched, and not a matched filter. It was
achieved by adding the weighting filter for sidelobe
suppression in cascade behind the matched filter
(Fig.1). We shall refer to such a filter as a mismatching
filter.




Temes in 1962 noticed [1] that the sidelobes of
compressed pulse could be reduced by receiver
mismatching. In such a case, obviously, we must accept
certain decreasing of detection characteristics in order
to reduce sidelobes i.e. to reduce the probability of
false alarm. That mismatching is achieved using the
weighting filter for sidelobe suppression in cascade
behind the matched filter. The objective is to obtain
the desired frequency receiver response.
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Fig.2: Filter with delay line.

Mosca in 1967 in [2] considered the problem of
sidelobe suppression in radars with binary phase coded
signals. The filter transfer function could be
synthetisized using a filter with delay line (Fig.2).
Transfer function of such filter is:
kSl —/anf
m

W(f)=e /FrM x . (1)
m=-(M-1)

where 2M is the total number of weighting coefficients

X, andfis the input signal frequency.

McAulay and Johanson [3] obtained a similar
solution, four years latter although they did not refer to
the earlier Moskin’s work. Their optimal filter contains
the matched filter followed by the transversal filter, the
so-called transversal equalizator. The calculation of
filter coefficients for the particular objective function
is based on linear programming techniques.

Rihaczek and Golden in 1971 using the analysis
procedure in frequency domain like Mosca founda
solution for the filter which suppresses sidelobes on
the matched filter output [4]. Good results are
obtained for acceptable filter lengths. The method is
applicable only to Barker’s sequences which have the
positive sidelobes of the autocorrelation function
(ACF). It is applicable to the combinations of such
Barker’s sequences as well.

They obtained the coefficients of the filter with the
following transfer function in Z domain:

M Am . 2
H(z)= Ao+ ) —2—(zm+z ) (2)
m=1
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The realization of this function is given in Fig.3. The
filter consists of M adding elements, M multiplier, and
2 times 2M dely elements.
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Fig.3: Schema of R-G filter.

In order to enable modeling, we have transformed
Rihaczek - Golden (R-G) filter from Fig.3 into the
equivalent canon form of the filter with the finite
impulse response (FIR), sece Fig.4. This equivalent
filter consists of equal numbers of delay elements and
twice more multipliers.

OUTPUT l A

Fig.4: Schema of FIR filter equivalent to The R-G
filter.

Efficiency comparison of different methods for
sidelobe suppression is based on the relative
mismatched filter length, or the matched filter length
+ the length of filter with weight function in the case of
mismatched receiver. There is a dilemma what the
length of Rihaczek - Golden filters: the number of delay
elements or number of coefficients? From the point of
realization, the most acceptable solution is obtained by
the equivalent schema. According to this, the exact
length is equivalent to the number of delay elements.
From here follows that in canonical form every second
element would be "0". It is very important to be aware
of this when comparing results. Comparative analyses
show that the sidelobe suppression with The R-G
filters is not so attractive as it seems in the first
moment.




Hua and Oksman [6] have chosen the reduced
version of the R-G filter as a subject of optimization.
The reduced filter is based on only first four elements
of the transfer function developed in convergent
exponential series. The authors designated such filters
as the (R-G)opt. The results obtained with such filters
were compared to results of minimax filters designed
by linear programming [7]. Such comparison is not
correct, because it suggests that the (R-G)gpy filters
obtain quoted results with the basic filter length equal
N, which is not true. Which realization of the R-G or
the (R-G)opt filter is chosen - either direct, canonical
or reduced - such filters are either longer or more
complicated for realization.

III. MATCHED FILTER MISMATCHING
OBJECTIVES

In the previous section we have presented the most
important ways of sidelobes suppression based on
receiver mismatching. Such a way does not only
complicate the realization and compound the receiver,
but at the same time makes the equipment more
expensive and enlarge its dimensions. Here the need
for mismatched filter design which could make the
compression filter simpler and less expensive has been
recognized. So, the objective is to design a filter which
simultaneously performs compression and
mismatching according to the given criteria. Such
solutions are not only economical, but also give better
overall results.

The ideas for mismatched filters design have come
from the field of signal deconvolution. The
presentation of some works which treat this fruitful
approach follows.

Deconvolution method

Acroyd and Ghani in 1973 published the paper [8]
which was the turning point in the field of sidelobes
suppression in radars with pulse compression. It turned
to be the most quoted paper in works concerning
mismatched filters up to that time. The authors applied
geophysical methods [9,10], which were not familiar
enough to researchers in the field of radars and
telecommunications. This was correctly pointed out by
the authors. We think their merit for the perception of
the solutions from a completely different field at first
glance is indisputable. This case shows that similar and
different fields hide questions and potential answers
which are nearly the same.

In seismic and medical ultrasonic, sound signals
propagation is used in order to determine a media
structure by signal analyzing. Mostly, the objective is
the estimation of media pulse response. Geophysicists
Treitel and Robinson [9] have analyzed non recursive
filters design in a way that the pulse response of the
given input sequence approximates the desired output
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satisfying the criterion of the least mean square (LMS)
error. Cavin at all. [10] have developed optimal
convolution filters design for the geophysical Ricker
wave using linear programming. This idea was later
implemented on the radar problem by Zoraster [7] .

Besides the mentioned geophysical methods, the
application of methods from the field of automatics
mismatched filters design is also very interesting. This
approach has been suggested by Mese and Giuli [12]
from the Italian school of automatics. The proposed
method can be applied to complex, i.e. polyphase
sequences. It must be pointed out that this approach
had nonsignificant response. Anyway, this method has
to be mentioned, because it could not be reduced to the
other methods. The main disadvantage is related to the
method complexity and the absence of advantages in
relation to other known methods.

ECF as mismatched filter

The analogy between the antenna sidelobe
suppression and the matched filter suppression has
been used from the very beginning. It achieved the
most complete and fruitful form in works of Evans and
Fortman [ 11]. The problem could be defined as time
invariant FIR filter design.

Fig.5: Envelope constraint.

The output signal Y = s*x, where "*" means
convolution, has to be put in the pulse envelope with

the upper and lower bounds € " and €~ (see Fig.5).

Optimal Envelope Constrained Filter (ECF) is defined
as a filter which minimize output noise power keeping
acceptable pulse shape.

This kind of problems is usually solved by
minimizing the mean square difference between y and
the desired pulse shape. However, in a number of
applications, a "soft" LS approach is unacceptable
because there could appear narrow but high jumpings
out of the desired pulse shape. The solution could be
sensitive to the structure of desired pulse. Moreover, it
is not often evident which shape could lead to solution.




The optimal filter can be defined by
X ==(SA\)/2, where A is the vector of Lagrange
multipliers, designates approximation and
R=R"-R".

Testing this method on several sequences has shown
that for some sequences very good results and for some
very bad results are obtained. Thus, we can conclude
that, in spite of an attractive idea and very simple
realization, the ECF method does not give acceptable
results for radar applications. But we can not exclude a
possibility that a modification of this method could
give better results.

In [19] Teo, Cantoni and Lin have introduced
anew method for the optimization of envelope -
constrained filters with uncertain input (ECUI). This
problem has been examined elsewhere, but the
proposed algorithm for its solution has, in general,
inferior convergence characteristics.

IV. LS ALGORITHM APPLICATION

In the previous section we have mentioned LS filters
which minimize the square error of filter response. In
this section, LS algorithm will be explained in more
details. Most of good results in sidelobe suppression
has been obtained with LS filtering.

Definition:

We have the sequence S=(S,,S55,...,55)
which can be complex, and have to find the coefficients
of the desired FIR filter X = (X |, X 2,..., X y) .
Then the expression for the filter response or
convolution W=(P,,Vy,..., Vy.pm-1 )T forms

the set of linear equations which may be presented in
matrix form:

Sx=vy , (3)
where
s, 0 0 0]
s, S, 0 0] o)
s, = 4
ol sy sao s, S, 0 S
| O 0] 0 sy O_(N‘M_I)XM

where N is the sequence length and M is the filter
length (M 2 N).
If it is chosen that the filter response P is equal to
the pulse sequence & then the set of (N+M-1) linear
equations with N unknown x; will form

Sx =58 (S)
The relation for LS filter coefficients estimation can be

found which approximates the filter with an ideal
response:
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£=(S75)"'s7s (6)

B-C optimal mismatched filter

Looking for perfect binary sequences whose ACF-s
have zero sidelobe level, Marvin N. Cohen and Philip
E. Cohen have searched all possible binary sequences
with the length of 14 to 48 which give the minimal level
of maximal sidelobes. For those sequences, the authors
have analyzed sidelobe suppression. Baden and Cohen
in [13] have described a method which gives excellent
results for biphase sequences. The description of
Baden - Cohen (B-C) method follows.

For the input sequence {s;} the authors search

for filter coefficients { x; } which minimize Integrated

Side Lobe (ISL) levels. They named such filters the
optimal ISL filters. In case when maximal sidelobes
level is minimized, they use the term of optimal Peak
Side Lobe (PSL) filters. ISL is related to sidelobe
energy, so its minimization is related to LS. Thus, the
ISL filter is adequate to the LS filter and the PSL filter
is equivalent to the minimax filter.
Optimal ISL filter:

Let s= {s;} be a vector which describes the

known input sequence, and let x = {x,;} bea vector
which describes the unknown filter’s coefficients. CCF,
i.e. filter response is given by the vector ¢ = {V,} ,

and w = {w,} is the weighting vector. The problem

solution is similar to Evans’s one [11].
The filter coefficients could be obtained by

A

_A (7)
X=3

y''s ,

whereY =[Y ;] whose elements are defined by:

_ 2 2
Y= i (WS 14iSkei) ~W58,S;
i=-p

1<k, l,<p. (8)

S is the signal matrix defined by (4), and the constant
A is the Lagrange multiplier. In (7) A/ 2 is a scaling
factor which does not influence the filter structure. So,
it could take an arbitrary value.

Optimal PSL filter:

That filter minimizes maximal sidelobes. The
iterative procedure is used to adopt the weighting
function w in (8). For binary sequences this method
produces nearly the same results as the method
described in the following subsection.




Iterative Reweighted Least Square (IRLS)

To avoid nonlinear problems in minimax filter
design, P. Rapaji¢ and A. Zejak proposed the IRLS
procedure [14,15] which can be used for real as well
as complex codes. Using this procedure we can obtain
minimax filter coefficients:

%(n)=[S"(0)R(n-1)S(O)] -

*S"(0)R(n-1)d"(0)  (9)
where S(0) is a signal matrix which is constant and

therefore it has the index "0". R(n)=diag(r(n)), where
r(n) is the weighting vector.

Response [Db]

0.5 0.6 0.8 7

0 0.2 0.4 X
t/T (T — pulse duration)

Fig.6: Sidelobe suppression with IRLS for 34-element
B-C sequence. Maximal SL =-27.81dB; suppression
=-6.72dB.

The main advantage of this method is that it solves a
very important problem of sidelobe suppression for
complex sequences. At the same time, it produces
equally good results for particular sequences as the
methods which solve only those sequences. For
example, B-C optimal filter, which is especially
projected for B-C ’perfect’ binary sequences, produces
identical results [13] as the IRLS procedure (see
Fig.6).

V. MINIMAX FILTERING

The methods considered till now are based on the
minimization of total energy distributed in sidelobes of
compression filter response. Such filters, being based
on the minimization of total energy of sidelobes, allow
for a small number of very high jumpings of sidelobes.
Although those singular jumpings contain low energy,
they could exceed detection threshold and cause false
alarms. Because of that, compression filters which
minimize maximums of sidelobes (called minimax
filters) are more acceptable in radar systems. Design
methods of minimax filters are based on linear
programming algorithms [7,10]. As it seems, they are
applicable to binary phase coded signals only.
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Let us formulate the problem of filter design in a
way which allows the linear programming approach.
The transmitted binary coded signal could be presented

using real elements S; such that s, == 1 and
1 £i < N. There are M filter coefficients and they are
represented with x; such that M 2 N. Using this
notation, let us consider the following problem:

M
. -(M-N)/2
maximize Z X5

i=1

subject to

M 10
3 xs< (10)
i=1

M
=) x,s0<), 1-N<k<M-1, k#(M-N)/2.

=1

In (10) we have a linear objective function with M
variables and 2(M+N-2) linear inequality constraints.
This type of optimization problem is classified as a
linear programing problem. Any linear programing
problem which has a finite solution can be solved in
finite number of steps by an iterative and monotonic
"simplex" algorithm. Zoraster [7] applied linear
programing for minimax filter design.

For binary sequences, according to published
papers, the best sidelobe suppression is achieved using
minimax filters produced using linear programming
algorithms. Using them as reference, we shall compare
several concurrent methods for mismatched filters
design on 13-clement Barker sequence.

Let us compare minimax filters to ILRS filters,
proposed by Rapaji¢ and Zejak [14,15], and to LS
filters. For 13-element Barker sequence, the
coefficients of MX and ILRS filters are nearly
identical. This is very important for the verification of
ILRS method. It shows that ILRS method efficiently
replaces complicated algorithm based on linear
programming. What is more important, ILRS method
solves sidelobe suppression of complex sequences.

Comparative characteristics of mismatched filters
for zero Doppler of 13-element Barker sequence are
given in Tab.1l. It could be seen that LS filter has
excellent suppression of sidelobes, which is its main
intention.

As conclusion, we could say that IRLS filters,
according to minimizing maximal sidelobes criteria, are
minimax filters.

!
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Tab.1: Comparative characteristics of mismatched filters
for zero Doppler of 13-element Barker sequence.

Filter max RMS suppress SNR
type SL SL SL (dB) loss

(dB) (dB) MX | RMS | (dB)
MF -22.279 |-39.091

MX -25.691 |-41.245 3.412 R.154 |0.222
IRLS -25.762 |-41.243 3.483 Q2.152 (0.223
LS -24.005 |-43.286 {1.726 H.195 §0.143

VI. DOPPLER OPTIMIZED IRLS ALGORITHM

The optimization procedure for the mismatched
filter in a given Doppler band can be defined as a
procedure of forming a suitable shape of the ambiguity
function. Unlike standard filters, where the object of
shaping is the correlation function, in this type of
filters the object is the ambiguity function, or rather its
Sector.

Assuming that S, is a column vector which

describes the signal sequence for the particular
Doppler shift of frequency f, then

_ T .
sf—[sl_f.si',.s,\,_f] ;

- (j2nfi/N)
Siy=Si4.,° ,

(1)
where i=1, 2, .,N, N is the sequence length, and [ ]’
stands for transpose. The relation (11) gives the
generalization of the signal sequence. In a similar way,
the filter response can be described as:

sz(Ur)],f""’wl,[""’w(N*M‘])-f)T'(IZ)

where V) . is the matched filter response for a particular

Doppler shifted frequency and M is the filter length.
If a matrix is formed in such a way that its rows are
the filter response as in (11),

Vo= (W, vy, D7

P

(13)

where f,ed , (=1,2,....P, Pisthe number

of a particular Doppler shifts, then ¥, will represent

a sector of the digitized ambiguity function. The
desired ambiguity function corresponds to the desired
filter response,

= T
A@b_(df,""'d/,“"’dfp) ,

(14)

where d  is the desired filter response for a particular

Doppler shifted frequency.

Also, the block matrix corresponds to the signal
matrix,

Se=(S;,+-nS; .S, )7, (15)

where S, (16) is the signal matrix for a particular

Doppler shifted frequency, N is the sequence length
and M is the filter length (M2 N)

The IRLS algorithm can be generalized in the
following way:

K(R) =[SH(0)W,(n-1)S,(0)] -

SHOYW,(n-1)A,(n-1).(16)

where X is estimated filter coefficients, the upper script

H stands for the Hermitian matrix. W (n) is the block
matrix, made of diagonal matrices R(n)=diag(r(n)),
where r(n) is the weighting vector. The window
function which is included in the matrix W can be
understood as a corrective factor of the LS algorithm.

The analysis of implementation of the proposed
algorithm is carried out also for the most significant
and well known phase coded signals in radar systems:
such as Frank polyphase, P1, P2, P3, P4, Barker’s
binary and others.
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i L
o o.01 o3 ©.0a 5.08

0.02 O.
Doppler shift

Fig.7 The maximal SL levels as the function of the
Doppler shift. Comparative characteristics for

A - Marched, B - IRLS and C - DIRLS filter for the
16-element aperiodical P2 sequence. The Doppler shift
normalized as 4T, where T is pulse duration. The SL

normalized as 10log(sidelobes/mainlob).

It can be noticed that the DIRLS filter can suppress
very successfully the maximal levels of the SL. Among
all the sequences which have been analyzed, the highest
suppression has been achieved for the P2 sequence
(length 16) with normalized Doppler shifted frequency




f 4 =0.05. The amount of suppression was 4.019 dB.

In Fig.7, the Doppler characteristic of the maximal SL
levels is presented.

VIL. DIRLS ALGORITHM APPLICATION IN
SS COMMUNICATION SYSTEMS

Dealing with the optimization of mismatched
compression filters in the SS radar systems, the
possibilities to apply developed algorithms for solving
some problems in other types of SS communication
systems appeared [17,18].

The channel capacity of the SS CDMA
communications systems is directly affected by the SL
level of ACF and by the maximal level of interfering
signal crosscorrelation functions (CCF). The channel
capacity is defined as the permitted number of SS
CDMA signals in the same frequency range and
depends in every case directly on the level of
correlation functions. On the other hand, the SLs
increase drastically with the increase of the Doppler
shifts of frequency. From the analysis of these facts
came the idea to apply the Doppler optimized
mismatched filters to the suppression of SL in the SS
CDMA systems.

The response of the matched filter with the
periodical orthogonal sequence for the zero Doppler
shifted frequency does not have sidelobes. More
precisely, the periodical ACF of orthogonal sequences
have SLs only on their edges. The practice often
imposes the use of non ideal periodical sequences, i.c.
sequences whose SLs of a periodical ACF are not equal
to zero. That is to say, practically there are not binary
periodical sequences (except the 4-bit Barker) with an
ideal periodical ACF, and on the other hand devices
with binary sequences are the easiest to be realized in
practice.
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The algorithm of periodical sequence mismatching
is made basically of the algorithms of aperiodical
sequences mismatching described by (16). Therefore
their relations are similar or the same so there is no
need to explain them again in detail. The speciality of
the DIRLS algorithm for periodical sequences when
compared to the algorithm for aperiodical sequences,
apart from the signal matrix S, is to be found only in
the corresponding periodical ACF. All expressions,
thus, remain the same and the content of the signal
matrix and ACF corresponds to the periodical
sequence.

The DIRLS algorithm of filtering was applied to the
set of orthogonal SS CDMA sequences, whose length
is 25. The method is applicable to other classes of
sequences and there is no essential difference in
behavior of this method depending on the sequence
class. It is important to notice the characteristic effect
which we did not find in aperiodical sequences. In
other words, periodical SLs of the mismatched filter
symmetrically decrease towards the center of the
Doppler range where the optimization was made. This
unexpected effect is clearly seen in Fig.8 where the
maximal and mean square periodical SLs are
comparatively shown, for the matched and mismatched
filters. It is important to notice that this phenomenon
regards the maximal as well as the mean square SL
levels.

VIII. CONCLUSION

In this paper the detailed investigation of the
method of the matched filters sidelobes rejection in
modern radar and spread spectrum communication
systems are presented. The main results of the above
analysis are as follows:

1. The method of the mismatched filter application
in the process of the sidelobes rejection is very
attractive and efficient.

2. It was showed that the new DIRLS algorithms can
be the optimized mismatched filters for all kind of
complex sequences, which is not the case with the other
known algorithms.

3. The DIRLS filters suppress maximal sidelobes in
accordance with the minimax criterion, so they can be
classified as minimax filters although the initial
criterion was the LS error criterion.

In special cases, the DIRLS algorithm gives the
following mismatched filters:

- IRLS minimax filters which suppress the highest
sidelobes, optimized for zero Doppler shifted
frequency. It is important for the cases where the
Doppler shifted frequency is near zero. In that case still
even suppression of the maximal sidelobes can be
achieved.

- LS filters which suppress RMS sidelobes level
optimized for zero Doppler shifted frequencies.




- DLS filters which suppress RMS sidelobe level
optimized for a given Doppler shifted frequency bend.

5. A variant of the DIRLS algorithm is developed
for the mismatched filters for periodic sequences,
which can be of wide application in SS communication.

6. The DIRLS algorithm can be used in designing
matched filters. It was successfully used to design
multilevel and periodic sequences, [15,18].

By applying the DIRLS algorithm for suppression of
periodical sidelobes used in the SS CDMA
communications, very significant results are obtained
for the non - zero Doppler shifted frequency. For the
investigated sequence with the normalized Doppler
shifted frequency £, =0.025, the suppression of 20.34
dB is achieved. However, it should be emphasized that
the DIRLS filter will have periodical sidelobes for the
zero Doppler shifted frequency while the matched
filter will not have them at all. Thus the DIRLS filter
for the zero Doppler shifted frequency considerably
worsens the self - clatter. This has to be taken into
account in the application of the DIRLS filter in the SS
CDMA  systems. The suppression of the

crosscorrelation interference is affected about 0.5 dB.
But it should not be forget that the investigation was
made for the orthogonal sequence which by its
composition already has the minimal cross correlation.

The theoretical capacity of the SS CDMA channel is
greatly affected by the interference between channels,
i.e. crosscorelation sequences and the feature of the

particular matched or mismatched filter influence
considerably the level of sidelobes. That is why the
existing theoretical apparatus for the analysis of the SS
CDMA system with matched filters is to be generalized
and made applicable for the analysis of the SS CDMA
system with mismatched filter.
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