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1 Introduction

We consider here the problem of modeling inexact
boundary conditions when using partial differential
equations to describe the dynamics of structures such
as beams, plates and shells. When analyzing such
structures, it is common to assume ideal edge condi-
tions which leads to the use of fixed-end (zero displace-
ment and slope) or simple (zero displacement and mo-
ment) boundary conditions. In applications, however,
such conditions are rarely attained due to constraints
and limitations in materials, clamping mechanisms, et
cetera. This can lead to significant changes in struc-
tural dynamics. For example, energy loss through an
imperfect clamp can lead to natural frequencies that
are 20--30% below those predicted by a model in which
fixed boundary conditions are assumed [8]. This dis-
crepancy between the model and actual physical struc-
ture can lead to spurious results when performing sim-
ulations and degradation and potential destabilization
when the model is incorporated in a PDE-based con-
troller.

In collaboration with D.E. Brown, V.L. Metcalf and
R.J. Silcox, Acoustics Division, NASA Langley Re-
search Center, we have been investigating modeling,
parameter estimation, and control issues in the con-
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text of a clamped circular plate with surface-mounted
piezoceramic patches. In this lecture, we consider
advantages and limitations associated with the use
of the model presented in [4] to model edge physics
for this plate (the reader is referred to [5, 7, 9] for
other approaches for this problem). An outline of the
model, discretization techniques and parameter esti-
mation method are given with further details con-
tained in [1]. Parameters in the model are then de-
termined through least squares techniques using ac-
celerometer data from the experimental plate, and the
model] response is compared with the data. This pro-
vides an initial test regarding the suitability of the
mode] for describing the physics of the experimental
plate.

2 Modeling Equations

We outline here a weak form of the model for a par-
tially clamped thin circular plate of radius @ and thick-
ness h with piezoceramic patches bonded in pairs to
its surface. The region occupied by the unstrained
neutral surface of the plate is denoted by [y. The
piecewise constant density, Young’s modulus, Pois-
son ratio, Kelvin-Voigt and air damping parameters
are denoted by p, E,v,cp and <, respectively. Dis-
placement in the transverse direction is indicated by
w while external surface loads are represented by f.
Thus Ty = {(r,0,v) : 0<r<a,0< 8 < 2r,w=0}.
To provide a framework which facilitates analysis,
approximation and implementation, it is advantageous
to consider a weak form of the modeling equations.
To this end, we take the state z = (w(a,-), w(:,-))
in the space H = L%(0,2x) x L%(T;) (see [4] for de-
tails). A suitable space for test functions is V = {¥ =




As detailed in [4], a weak form of the model for an
axisymmetric plate is then
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for all ¥ = (n(a,-),n(-,*)) € V. The overbar here denotes
complex conjugation and the differential is dy = rdfdr. A
typical internal plate moment is given by
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(see [3, 6) for details regarding the derivation of the mo-
ment expressions My, My and M,s). As discussed in (3],
the density p and parameters D = 12(’;‘": y:¥ and ¢p in
the moment expressions are discontinuous due to the geo-
metrical and material changes resulting from the bonding
of the patches to the plate.

The active contributions due to s piezoceramic patches
and a driving force f are modeled by the right hand side
components. Here x;(r,8) denotes the characteristic func-
tion which has a value of 1 in the region covered by the
i** patch and is 0 elsewhere. Moreover, u,(1) is the voltage
into the i*® patch and K7 is a parameter which depends on
the geometry, piezoceramic material properties and piezo-
electric strain constants (see [3] for details).

As discussed in 4}, the boundary conditions in the sixth
and eighth components of (1) admit slight displacements
and rotations at the boundary r = a. The parameters k,
and c. denote stiffness and damping contributions when
boundary displacement occurs with similar interpretations
for kp, and ¢y, when accounting for boundary rotation. In
applications, the boundary parameters ki,ce,kp,cp, the
piezoceramic material parameters K2 i = 1,---,s, and
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the plate parameters p, D,v,cp and ¥ should be consid-
ered as unknown and must be estimated using fit-to-data
techniques.

3 State Approximation

The state and test functions in (1) are infinite dimen-
sional and must be approximated before parameter es-
timation and control methods can be implemented. As
discussed in [2, 10], an appropriate choice for basis and
Fourier-Galerkin expansion of the plate displacement is
BY(r,8) = r™IB™(r)e'™® and

M N™
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Here B;'(r) denotes a cubic spline that is modified so as
to satisfy the condition g_qé";(o_) = 0 when m = 0. This
guarantees differentiability at the origin and implies that
N®=N+2whenm=0and N =N +3 when m # 0
where N denotes the number of modified cubic splines.
Thus a total of N = (2M 4 1)(N + 3) — 1 basis functions
are used when approximating the plate displacement. As
discussed in the [2, 10], the inclusion of the weighting term
™l with /= 0if m = 0, = 1 if m # 0 is motivated
by the asymptotic behavior of the Bessel functions (which
make up the analytic plate solution) as r — 0. It also serves
to ensure the uniqueness of the solution at the origin. The
Fourier coefficient in the weight is truncated to control the
conditioning of the mass and stiffness matrices (see the
examples in [2]).

To obtain a matrix system, the A’ dimensional approx-
imating subspace is taken to be HY = apan{B,‘:V } and
the product space for the first-order system is HY x HV,
The restriction of the infinite-dimensional system (1) to the
space H N x H¥ then yields a matrix system of the form

iV (1) = AV (1) + BV u(t) + FN (1)
vV (0) =y’

3)
where yV(t) = [wi(t), -, wa(t), 1(t), -, a(t)] de-
notes the 2/ x 1 vector containing the generalized Fourier
coefficients for the approximate displacement and veloc-
ity. Details concerning the construction of the component
vectors and matrices in (3) can be found in [2, 10].

4 Parameter Estimation

In order to attain an accurate fit of the model (1) to the
experimental apparatus under consideration, the param-
eters p, D, v,cp, 7, ke, ct, kp, cp, KE,..-,KB must be esti-
mated using experimental data in order to obtain an accu-
rate model fit to an experimental apparatus. One means




of doing so is by minimizing the least squares difference
between measurements of the experimental data and the
model response. We first summarize assumptions regard-
ing the nature of the parameters being estimated.

Due to the piecewise constant nature of the structure
when s patches or patch pairs are bonded to the plate,
it is assumed that the parameters p, D,v and cp can be
expressed as

s+1 s+1
p(r,8) = coxi(r,0) , D(r8)= coixi(r,6)

;1 s_+1
vr8) = cixi(r8) , cp(r8) =) cepixi(r,6).

1=1 =1

Again, xi(r,0) , i = 1,---, s is the characteristic func-
tion over the #** patch or patch pair and x,4; is the
characteristic function over the portion of the plate not
covered with patches. The damping due to air is as-
sumed to be uniform over the entire surface; hence v is
taken to be constant. Moreover, the boundary param-
eters ki, ¢y, kp,cp and patch parameters KB,... KB
are assumed to be constant.

For ¢ = (p, D,v, cp, 7, lc,,c,,k,,,cp,lCP,~--,KZf3) in
an admissible parameter space @ which incorporates
these constraints (see [4]), the finite dimensional pa-
rameter estimation problem is to find § € Q which
minimizes
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(4)

subject to wV satisfying the approximate plate equa-
tions (hence the coefficients {w}} of w" must satisfy
(3)). Data is measured and approximate solutions are
calculated at the points (7, 8) on the plate. The choice
of computed acceleration values of the model response
is due to the use of accelerometers for data collection
on the plate.

In the results of the next example, the minimiza-
tion of the functional (4) was accomplished via a
Levenberg-Marquardt routine with a stiff ODE solver
being used to integrate the system (3) in order to ob-
tain the model response at the sample points. This
minimization can also be performed with various con-
strained optimization routines in which case, parame-
ter constraints such as positivity can be enforced.

5 Experimental Example

For the experiment reported here, a thin circular plate
(having radius 9” and thickness .05”) mounted in a
heavy frame by a metal collar was considered (see [1]
for additional details regarding the experiments). The
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bolts in the collar were loosened slightly to permit
slight energy loss at the plate edge. Bonded to the
plate were a pair of centered piezoceramic patches of
radius .75"” and thickness .007".

The plate was excited by a centered strike with an
impact hammer and the resulting axisymmetric re-
sponse was measured by a centered accelerometer on
the opposite side of the plate. The data was collected
at a rate of 12 KHz so as to resolve all excited frequen-
cies.

The parameters p, D, v, cp,7, k¢, €1, kp, cp Were esti-
mated through the minimization of the functional (4)
and the model response with the estimated parameters
is compared with the experimental data in Figures 1
and 2. As noted in Figure 2, the first two frequen-
cies are quite accurately matched whereas the third
and fourth modes are overdamped in the model re-
sponse. The phenomenon of overdamping high fre-
quency modes is characteristic of the Kelvin-Voigt
damping model, and this leads to some of the variation
seen in the time histories in Figure 1 when comparing
the experimental data and model response. The slight
variation in the time histories is also due to the fact
that the model frequencies for the third and fourth
modes are slightly less than the corresponding exper-
imental results. Further results illustrating the use of
the boundary moment model are given in [1].

As demonstrated by the results in Figures 1 and 2
as well as a repertoire of examples in [1], the bound-
ary moment model does appear to describe some of
the mechanisms leading to the lowering of frequen-
cies when the plate is imperfectly clamped. Depending
upon the means of excitation and degree of loosening
at the plate edge, other mechanisms such as in-plane
movement and friction may contribute to the loss of
energy at the plate edge. Results regarding the mod-
eling of these phenomena from a PDE perspective will
be reported on in a future work.
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Figure 1. Time history of experimental data and
model response; (Experimental Data), - - —
(Model Response).
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Figure 2. Frequency content of experimental data
and model response; x (Experimental Data),
0 — - — (Model Response).




