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Abstract

A guaranteed state estimator produces a set of possi-
ble states based on output measurements and models of
exogenous signals. In this paper, we consider the guar-
anteed state estimation problem for linear time-varying
systems with a priori magnitude bounds on exogenous
signals. We provide a recursive algorithm to propagate
the set of possible states based on output measurements.
We then show that the center of the sets provides an op-
timal estimate in an £°°-induced norm sense.

1 Introduction

Stochastic state estimation provides optimal state es-
timates based on probabilistic models of exogenous sig-
nals. An alternative is to model exogenous signals as de-
terministic unknown but bounded quantities. The prob-
lem is then to construct a set of possible state values
based on measured outputs. Such an approach has re-
ceived considerable attention in the controls literature.
References [1, 5] present an overview of work in this area,
and reference [4] contains a collection of related confer-
ence papers.

Related to the deterministic setting is the induced-
norm optimal state estimation. This framework provides
optimal state estimates which minimize the induced-
norm from exogenous signals to estimation errors. Ref-
erence [6] considers the case where exogenous signals and
estimation errors are measured using the £2-norm, or sig-
nal energy, which leads to an H* optimal estimation
problem. Reference [7} measures exogenous signals and
estimation errors by the £°° norm, or signal magnitude,
which leads to an ¢! optimal estimation problem.

In this paper, we consider guaranteed state estimation
for linear time-varying systems. Under an assumed a
priort bound on exogenous signals, we present a recursive
construction of the set of possible state values. We then
relate the center of these sets to the ¢! optimal estimation
problem considered in {7]. In particular, we show that
the centers are also optimal in an #*° induced norm sense.
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The remainder of this paper is organized as follows.
Section 2 contains preliminary definitions and notation.
Section 3 presents an algorithm which propagates the
set-valued estimates based on output measurements.
The main results are in Section 4 which derives the £
induced-norm optimality of the centers of these sets. Fi-
nally, Section 5 has concluding remarks.

2 Notation

Let Z* denote the set of non-negative integers. For
z € R™, let z; denote the ith component of x and define
|z| = max; |z;|. Let £° denote the set of bounded one-
sided sequences in R™. For f = {f(0), f(1), f(2),...} €
£°°, define

Fll = sup [F(k).
keZ+

The dimension n is suppressed in £°° for notational con-

venience. The unit balls in R™ and £*° are denoted
Bgrn~ and Byx, respectively. The truncation operator
Py £7° — £ is defined by

P {f(0), (1), f(2),...} = {f(0), f(1),..., f(N),0,...}.

For M € R**™ and m € R?, let Set(M,m) denote
the subset of R™ associated with (M, m) defined by the
constraints

Set(M,m) ={z: Mz <m}.

For M; € R**", My ¢ R*, and m € R* consider the

subset, S, of R™ defined by

S ={z: Mz + Myw <m for some w € R}.

Define
Rack [( My M), m]
- {(M,m) ERM KRS = Set(M,m)} ,
i.e., Rack[(M,; M), m] is the set of matrix pairs

which give a direct characterization of S. The con-
struction of an element of Rack [( M1 M, ), m] may be
achieved through the Fourier-Motzkin algorithm which
is described in [3] and reviewed in the Appendix.
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3 Set-Valued Estimation

We consider the time-varying discrete-time linear sys-
tem,
z(k+1) z(0) = x,,
y(k) = (1)

where r is the state-vector, y is the measured output, d
is a process disturbance, and n is a measurement noise.

A(k)z(k) + B(k)d(k),
C(k)z(k) + n(k),

Define w = Z) In input/output form, the system (1)

takes the form,
Yy = Tyww + Tye To,

where T, denotes the mapping from w to y with the
initial condition x, = 0, and T, denotes the mapping
from z, to y with the input w = 0. Similarly define T3,
and Ty, .

Assumption 3.1 We make the following assumptions
on (1) throughout.

a) Tpy ¢ £° — €*° and Ty, @ R™ — € are bounded
linear operators.

b) A(k) is invertible for all k € Z*.
¢) w € By= and z(0) € Br-.
d) d, n, and y are scalar-valued signals.

Under appropriate observability conditions, Assump-
tions 3.1a~b are made with minimal loss of generality.
In the time-invariant case, they can always be achieved
through the use of a conventional observer as a kind of
preliminary feedback. Assumption 3.1c represents the a
priori model on exogenous signals initial conditions. As-
sumption 3.1d is for notational convenience. The meth-
ods considered here easily extend to multivariable sys-
tems.

We are interested in constructing an estimate of the
state vector based on output measurements. Towards
this end, define the set-valued map W : £° x Z+ ~» R"®
as

W(y7 N) = {(w, :Eo) & B[oo X BR’R :

Pny = Pn(Tyww + Tys, o)} -

In other words, W (y, N) denotes the set of admissible
exogenous signals and initial conditions consistent with
measured data up to time n. Similarly, define the set-
valued K : £*° x Zt ~s R™ given by,

Ky, N) = {£eR": &= (Toww+ Tig,o)(N)
for some (w,z,) € W(y,N)},

i.e., K(y, N) denotes the set of possible state-vectors at
time N consistent with the measured data up to time NV.
Finally, define the set-valued K : R ~ R"™ by

K@) ={£ € R":v=C¢+v for some |v| <1}.
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The set K (v) represents the set of possible states based
on a single measurenient.

The following algorithm (see also [1, Section 20]) prop-
agates the set of possible states in a recursive manner.

Algorithm 3.1 Let y € £* be a prescribed measture-
ment trajectory.

Initialization
K(y,0) = K(y(0))[ ] Br~-
Propagation

K(y,N) = K(y(N)()
{§:§:A§+Bé for someéeK(y,N—l),!&] gl}.

Note that all sets are constructed with a causal depen-
dence on the measurement trajectory, ¥.

The following theorem describes a computational im-
plementation of Algorithm 3.1.

Theorem 3.1 In the framework of Algorithm 3.1,

K(y(N)) = Set(M(N),(N)),

and

K(y,N) = Set(M(N), m(N)),

where (M(N), m(N)) belong to the Rack [-] of the ma-
trices

M(N —1)A"! —M(N-1)A"'B m(N — 1)
0 1 1
0 -1 ’ 1
M(N) 0 m(N)

Proof The condition z(N) € K(y(N)) is equivalent to
ly(N) - Cx(N)| < 1,

which is equivalent to

C 1+ y(N)
which is the matrix description of K (N).
Now according to Algorithm 3.1, the condition z(N) €

K(y, N) is equivalently described by the two conditions
z(N) € K(y(N)) and

A7 lg(N) - A 'B§ ¢ K(y,N — 1)



for some |6 < 1. Using that K(y, N — 1) = Set(M(N —
1), m(IN — 1)) leads to the equivalent statement,

M(N-1)A4"!' -M(N-1)A"'B

0 1 <a:(N)>

0 -1 )

M(N) 0
m(N —1)
1
S 1 k)
m(N)

for some 6. An application of the Rack [-] operator leads
to the desired result. [ |

We see that the set of possible states forms a polytope
described by a collection of inequalities. The computa-
tional burden of a real-time implementation amounts to
the computation of the Rack [-] operator, which essen-
tially requires the solution of several small linear pro-
grams to remove redundant constraints. The Rack [/
operator is a notational convenience for the Fourier-
Motzkin algorithm described in [3]. For the sake of com-
pleteness, this is reviewed in Appendix. Since these sets
may be described by several inequalities, the real-time
applicability of these methods is questionable. This con-
sideration has led to the construction of approximate
simplified descriptions of K (y, N), in particular through
bounding ellipsoids. See {1, 5] and references contained
therein for further discussion on these topics.

4 (> Induced-Norm Optimal
Estimation

4.1 Problem Formulation and Main Re-
sult

In this section, we show that the set-valued observer in
Section 3 can be used to provide optimal estimates in an
induced-norm sense.

Define the scalar variable

z(k) = H(k)x(k).

As in Section 3, define T}, and T, as the mappings
from exogenous signals and initial conditions, respec-
tively, to z.

We now define the our optimal estimation problem.

Definition 4.1 An estimator is any causal (possibly

nonlinear) mapping ® : £>° — (.

Definition 4.2 The estimator ®* is pointwise opti-
mal if for any other estimator, ®,

I(Tzww + Tza:o)(N) — ((D*y)(N)!
Nl (w, o)l

sup
(w,z,)eW (y,N)

< sup (Toww + Toz,)(N) — (‘Dy)(N)l’
(w,30)EW (y,N) fl(w, z,)||

for all N € 2% and all possible measurement trajecto-
ries.

The estimator ®* is uniformly optimal if for any
other estimator, @,

sup [(Teww + Tpz, o) (N) — (2*y)(IV)

i (w30 I €1 | (w, zo) |l N
y=Tyww+Tyz, %o
sup (Toww + Tpr, o) (N) = (PY)N)|
If(w,x0) | <1 [l (w, xo)” ’

szyww+Tyz,,Io
forall N € Z+.

Reference [7] considers the uniformly optimal estima-
tion problem. In the case of zero-initial conditions and
time-invariant dynamics, the uniformly optimal estima-
tion problem can be solved as a standard ¢; model-
matching problem (cf., [2]). For non-zero initial con-
ditions, the resulting model matching problem is time-
varying. The resulting solution leads to a uniformly op-
timal estimator which is not recursive, i.e., the optimal
estimate at time NV requires storage of all measurements
{y(0),...,y(N)}. Reference [7] goes on to provide an ap-
proximately optimal estimator which is recursive after a
fixed number of time-steps.

The following proposition summarizes the results of 7]
needed here.

Proposition 4.1 ([7]) There exists a uniformly opti-
mal linear (time-varying) estimator, (). Furthermore,
the associated worst-case estimation error, y(N), defined

by

”(Tzww + sz,,wo)(N) - (Qy)(N)”

¥(N) = sup ;
(V) [(w,z0) | <1 [l (w, o)l
y=Tyww+Tyz, 20
satisfies
W= sup 1Tt Lo ]

I[{w,zo) <1

[[(w, o)l
0=Tyww+Tyz,To

Proposition 4.1 states that the cost of the uniformly opti-
mal estimator (at any fixed N) is given by the worst-case
estimation error incurred for the measurement trajectory
y=0.

The present estimation problem considers non-zero
initial conditions and time-varying dynamics. We will
show that the set-valued observer in Section 3 defines an
pointwise optimal estimator. In addition to pointwise
optimality being stronger than uniform optimality, an
advantage is that the construction in Section 3 is recur-
stve.
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Definition 4.3 Consider the set-valued observer of Al-
gorithm 3.1. Define

2(y,N) =min{¢: (€ K(y,N)},

Z(y, N) = max {¢ : ¢ € K(y,N)},

vo(y, N) = 20) ;ré(y, N)

The central estimator, &, : £*° — {*°, is defined as
(®cy)(N) = 2(y, N).

Our main result is the following.

Theorem 4.1 The central estimator, ®., Is pointwise
optimal.

4.2 Proof of Main Result

This section is devoted to the proof of Theorem 4.1.

Since we are interested in pointwise optimality, we will
consider a single “experiment”, i.e., a fixed measurement
trajectory, ¥, and estimation time, N. This will simplify
the presentation a great deal by dropping notational de-
pendence on y and N throughout. Thus, for this fized
measurement trajectory, y, and estimation time, N, we
will use the following shorthand notation:

e 2,%Z, and z.—rather than z(y,N), Z(y,N), and
ze(y, N),

e zo—rather than (Qy)(N), and
e y—rather than y(N),

where @ is the uniformly optimal estimator as in Propo-
sition 4.1 and (V) is the associated cost at time N.
Define r : [2,2] » R* by

7(2) = min {[|(w, z,)]| :
(w,z,) € W(y,N) and 2 = (T + Toz,T0)(N).} .

In other words, r(2) is the size of the smallest exoge-
nous signal/initial condition pair which can produce the
measured output as well as the value 2.

Similarly, define ¢ : [2,Z] — R by

Then the estimation error associated with z, can be ex-
pressed alternatively as

sup [$(2)|,

2€(z,7)

(compare to Definition 4.2).
Note that
rz) =r(z) =1.
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Similarly,
#(z) = —4(2).

However, ¢(-) need not be a symmetric (odd) function.
Furthermore we see r and ¢ can be derived from appro-
priate minimum distance problems, and are both contin-
uous functions.

Claim 4.1 The following inequality holds,

zZ—z
Z .
B =

In case of equality, z. = zg.

Proof The uniformly optimal estimator satisfies
1z — 2q| <7 (),

and
lz — zq| < yr(2)-

Since r(Z) = r(z) = 1, this leads to
zZ—2< 2.

In case of equality, zg = 2. is necessary. For example if
2Q < Z¢,
Z—zg > r(2),

which is a contradiction. |

Claim 4.2 Suppose z. < z; < Z. Suppose ¢(z1) < 7.
Then ¢{z2) > ¢(z1) for all zy > 2.

Proof Let (wi,z01) produce z; with minimum norm,
i.e., (U)l,l'ol) & W(y, N),

(w1, Zo1)ll = (1),

and
zZ1 = (Tzw’w1 + Tzzoxol)(N)'

Let (w«, Tox) C By X Brn correspond to the worst case
exogenous signal/initial condition pair for the uniformly
optimal observer as in Proposition 4.1. That is,

_ I(Tzww* + sz(,xo*)(N)l
[[{ws, ox )|

3

and
0= (Tyww* + Ty:c,,-ro*)(N)'

Without loss of generality, assume that
Ze = (TopWs + Top, Tox )(N) > 0.
One way to produce 22 is through

(w2, To2) = (W1, To1) + MW, Tox),




where h is appropriately scaled so that
]’LZ* =29 — 2]1.
By construction, (wq, ,2) consistent with the measured

data. However, it may be that ||(w2, zs2)| > 1.
We now compare ¢{z2) and ¢(z;1). First,

_ Z9 — Z¢ Z29 — Z¢
W22) = "5 2 Twnza)]
Z9 — Z¢

i .
~ wr zon)ll + A ([ (we, zo4) |

Thus proving the claim can be achieved by testing
whether

29 — Ze S BT _
(w1, Zo)ll + A [[(wa, Zo )l — [[{w1, Zo1)]|

¢(21)-

Towards this end, we see that

29 — 2 S AT %
(w1, Zo)|| + A l[(wes Tox) | — [[(wr, zo1)|
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((z2 — 21) + (21 — 2¢)) (w1, To1) |
> (21 — ze) ( (w1, Zo1) || + A [[(ws, Tox)||)

=

(22 = 21) [[(w1, o1} || 2 A2 = 2o) [[(wa, Zou )|

(=
(22— 20) [l wn, zon) | > 222 (21 = 2) (w00
(=
Zx 21 — X2
7= T al 2 Tnza =
Using the hypothesis,
B(21) <7
completes the proof. [ |

Claim 4.3 Suppose z. > z; > z. Suppose —¢(z1) < 7.
Then ¢(z2) < ¢(z1) for all z5 < 2.

Proof The proof is similar to the proof of Claim 4.2.1

Claim 4.4 The function ¢ Is monotonically non-
decreasing over the interval [z,7Z].

Proof Claims 4.2-4.3 imply that ¢ is monotonic as
long as |¢(2)] <.

Note that ¢(z.) = 0. Thus by continuity, ¢ is mono-
tonic until ¢(2’) = v for some 2’ € (z,Z). Assume that
such a %’ satisfies 2’ > 2. Similar arguments hold in case
% < z.. Since z > 2/, Claim 4.2 implies ¢(Z) > ~, and
hence ¢(z) < —v. Claim 4.1 then implies that actually

$(z) =7 = —¢(2),
and z. = z¢g. Since 2z, = 2q,

ﬁ'—ZQ

6 = =

Thus, if ever ¢(2') = v, then ¢(2) < v for all Z € [2,7],
which completes the proof. [ |
The proof of Claim 4.4 states that the function ¢ satu-
rates at ++y if it ever achieves these values. In this case,
Ze = 2QQ-

We can now show that z. is the pointwise optimal
estimate. The cost of an alternative estimate, 2/, may
be expressed

<7

max |¢'(2)],
max [6/(2)

where . ,
e z—z

¢ (Z) = 7'(2) :

In case 2’ < z., then
¢'(z) > ¢(2).
In case 2’ > z., then

¢'(z) < ¢(2).
In either case,

max

'(2)] > max |¢p(2)],
mas 16/(2)] > max, 19(2)

which completes the proof of Theorem 4.1.

5 Concluding Remarks

This paper has considered the guaranteed state-
estimation problem for discrete-time linear time-varying
systems. Based on an a priori model of initial condi-
tions and exogenous signals, a set-valued observer was
constructed which recursively computes the set of possi-
ble state vectors consistent with measured output data.
It was shown that the centers of these sets correspond to
the optimal state-estimate which minimizes the induced
norm from exogenous signals/initial conditions to esti-
mation error. The algorithms easily can be modified in
the case of known initial conditions simply by changing
the a priori assumptions.

The estimation problems considered here were for
scalar-valued disturbances, noises, and estimates. How-
ever, the multivariable case requires only notational
changes.
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A  Fourier-Motzkin Elimination
Algorithm

For the sake of completeness, we review the Fourier-
Motzkin elimination algorithm described in [3].

For M; € R**", My € R?, and m € R? consider the
subset, S, of R™ defined by

S ={z: Myz+ Mow < m for some w € R}.
Define

Rack |[(M; M;),m]
= {(M, 1) € " x R* : § = Set(d,m) } .

Thus, Rack [( M1 M>),m] is the set of matrices which
give a direct characterization of S.

We now construct
an element of Rack|[(M; M), m|. In the following,
A(1,:) denotes the i*" row of the matrix A, and a(i) de-
notes the i** element of the column vector a. We begin
by defining the following indices:

I, = {i: My(i) >0},
I_ = {i: Ma(i) <0},
IO = {Z . MQ(Z) IO}.

Now suppose
Mz + Mom <m.

Then () — Mi(i.")
m(t) — M1(z, )z .
w ————""" Viel,.,
< M(a) +
and N MG
w> MO -MG)z

- Mo (i)
Thus for x € S, every upper-bound on w must be larger

than every lower bound on w. A pairwise comparison
shows that = € S if and only if,

mi_) — Mi(i-, )z

< m(z+) - Ml(i—iﬂ :)I
M>(i-) B

Ma(iy)

foralli_ € I_ and iy € I, as well as
Ml(io, I).’E < m(i()), Vig € Ip.

Thus, let M be the matrix formed by the rows:

M(_], :) = pz}i; = MQ(i_)Ml('i+, Z) — Mg(i+)M1(i_, Z),
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where a new row (indexed by j) is formed for each
i+ € Ip and i_ € I_, and

M(j,:) = piy = Mi(io,?),

where a new row is formed for each ig € Iy. Similarly,
let m be the column vector formed by the associated
elements

m(g) = mi . = m(iy)Ma(i-) — m(i-)Ma(iv),

T?L(_]) = My, = ’In(io),

Then (M,7) € Rack [( My M) ,m).

In general, this procedure creates redundant con-
straints which can be removed by solving appropriate
linear programs.
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