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Abstract

This paper introduces a new approach to the H? design
for sampled-data systems, that is systems consisting of a
continuous-time plant and a discrete-time controller connected
via sampling and hold devices. The main feature of the proposed
approach is the presense of not only continuous-time, but also
of discrete-time performance specifications, which can be asyn-
chronized with the control loop, hence mixed specifications. It is
shown that this problem can be reduced to a finite-dimensional
pure discrete-time constrained H? problem. In the paper the
full state-space solution of the latter problem is derived. The
benefits of the proposed approach are demonstrated by a nu-
merical example.

Notations
£(t), £[k] :  continuous-time and discrete-time
signals, respectively;

G, G(s) : linear operator in continuous time
and its transfer matrix (if the lat-
ter exists);

G, G(z) : linear operator in discrete time and
its transfer matrix;

7+ St sampling operators with period h

((SEE)K] = £(kh +7), Sn = S0);

Hp :  (zero order) hold operator with
period h ((Hr€)(t) = £[k], Vt €
[kh, (k + 1)h));

A’ : transpose of a matrix A;
closed-loop mapping between dis-
turbances and controlled signals
when P is in feedback interconnec-
tion with C;

transfer function in terms of its
state-space realization;

1. Introduction and motivations

Consider the sampled-data (SD) control system
setup in Fig. 1. P is a continuous-time linear time-
invariant (LTI) generalized plant; K is a discrete-time
linear controller; the measured plant output y is sam-
pled by the sampling device S, with a period h; the
control input u is generated by the hold device Hy; w,
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Figure 1: Sampled-data control system setup.

is a continuous-time disturbance; and w4 is a discrete-
time disturbance (measurement noise, for example).
The main feature of this setup is the presence of both
continuous-time (z.) and discrete-time (Z;) regulated
outputs®, that implies stressing discrete-time perfor-
mance of some signals. In other words, we are con-
cerned with system performance at the intersampling
time as well as at the sampling instances kh,. This is
in contrast with previous approaches to the H? prob-
lem and is motivated as follows.

First, consideration of only a discrete-time objec-
tive (by discretizing the plant) may be undesirable,
since HZ-optimal controllers designed by this criterion
may produce bad continuous-time behavior. This is
so because of the complicated zero structure of dis-
cretized models and the appearance of lightly damped
zeros after discretization [2]. It is in principle possi-
ble to prevent the cancellation of discrete-time lightly
damped zeros by, for example, adding an extra penalty
on the control variable [2] or minimizing the L?-norm
of the signals after pre-filtering {12]. However, such ap-
proaches are ad hoc and hence add extra “fuzzyness”
into the design. Moreover, by using generalized hold
functions [8] or multirate digital controllers {11] it is
possible to achieve almost arbitrary good performance
in the sampled time instances at the expense of dete-

!Note, that k., the sampling period for z 4, needs not coincide
with h, the control loop sampling period.
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riorating the intersampling performance. This obser-
vation prompted researchers to treat the continuous-
time performance for SD systems directly; for SD H?2-
optimization see [6, 9, 3].

However pure continuous-time specifications also are
not always what is needed. Necessity in considering
(or emphasising) discrete-time performance, even for
the case when plant dynamic is continuous-time, arises
naturally in a good deal of practical problems, such as
fire control and so on. But if we will be concerned
only with continuous-time performance, we can ob-
tain unnecessary poor discrete behavior. Discrete-time
performance achievable with a controller, which is de-
signed on the basis of a pure continuous-time criterion,
can be essentially worse ihan is possible to get using
other approaches. Losely speaking, instantaneous per-
formance “dissolves” in a continuous-time one and it
might be undesirable.

Also, mathematical formulation of any practical
control problem always involves some auxiliary vari-
ables, which are needed to provide desirable behavior
of signals of interest. Frequently such an auxiliary sig-
nals can be naturally introduced in discrete time?.

So one ought to realize that SD design should in-
clude, beside others, some tradeoff between sampled
and intersampled performance. Starting from two ex-
tremes — a pure continuous-time and a pure discrete-
time treatments — it is reasonable to look for a solu-
tion, which takes into account both of these sides. The
setup in Fig. 1 reflects this desirement.

The problem to be solved in this paper is the prob-
lem of minimizing the H? norm of the closed-loop map-
ping between the external signals w, and wq and the
regulated outputs z, and z4 in the setup in Fig. 1.
It will be shown that this problem is equivalent to a
pure discrete H? problem with a periodic controller.
The latter problem, in turn, can be reduced to a
time invariant H? problem with constrained controller
feedthrough matrix [10]. Our treatment of this con-
straint is different from those that have been proposed
in the literature. Rather than handle it via some in-
termediate steps, we will do it directly in terms of con-
troller parameters. To this end the ideas of Trentelman
and Stoorvogel [13] are extended to the constrained
case. The resulting formulae are very simple, both
analytically and computationally.

The paper is organized as follows. In Section 2 we
formulate the problem to be considered and discuss
its main features. Section 3 contains some prelimi-
nary material: in Subsection 3.1 we review the notion
of the H%-norm for periodic systems, while Subsec-
tions 3.2 and 3.3 are devoted to the separate treat-
ment of the slightly simplified issues of continuous-
time and discrete-time performance respectively. The
mixed problem is considered in Section 4, where a
state-space solution is given. In Section 5 an illus-
trative example demonstrating the potential benefits

2The illustrative example bellow demonstrates this point.

116

of the proposed approach is considered. Finally, in the
last section concluding remarks are given.

2. Problem formulation

In this section we will describe the plant under con-
sideration, state some assumptions used in the sequel
and pose the problem to be considered.

We start from the state-space realization for the gen-
eralized plant in Fig. 1:

A |Bie B B
— Clc 0 Dllcd DlZc
P(s) = Cia| 0 Dizga Diaa (1)
Cy | 0 Dig 0

where the partitioning is compatible with Fig. 1. The
assumptions that Dj;14. = 0 and D33, = 0 are made
to guarantee L2-stability of the sampling operations,
D;i.c = 0 to provide boundness of the H? norm of
the closed-loop system. Similarly, D;; = 0, to make
closed-loop operator well defined. In addition we make
the following assumptions:

(A1): The triple (C;, A, B3) is stabilizable and de-
tectable;

(A2): The control loop sampling period h is non-
pathological with respect to A (see [6]).

The above assumptions guarantee the existence of
discrete-time stabilizing controllers. Moreover, for the
sake of simplicity we will assume that

(A3): h, = Nh for some N € Z; and 7 € [0, h).

Now let us define our requirements for the system in
Fig. 1. To this end we write the closed-loop operator
F(P,HrKSp) from w. and wy to 2z, and 2, as:

Zc _ T, We T, cWa We
Z4 - wq )

7-14105 T;d‘w,g
Since the disturbance signal wy is assumed to be of
the form wg = Hpwy and the controlled output is
Z4 = S,’“ zq rather than z4, we are interested in the
following operator

The operator T, is quite complex since its domain
and image spaces contain both continuous-time and
discrete-time signals. But if the discrete-time con-
troller X is N-periodic we can consider the 7,,, as Nh-
periodic. To see this, let us define the continuous-time
o-delay operator D, (( = D, & ((t) = £(t — 0))
and the discrete-time backward shift operator i (¢ =
Uf & (k] = €[k — 1]). Then it is not difficult to
verify (since S} = SyaD_,) that

I
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which justifies considering the operator 7, as Nh-
periodic operator. But in this case it is natural to
seek discrete controllers among the class of N-periodic
operators and, since for periodic systems the notion
of H2-norm is well defined (see [9, 3] for detailed dis-
cussion), we can pose the following optimal control
problem:

OP: Find a finite-dimensional discrete-time N-perio-

dic controller X, which internally stabilizes the
plant P and minimizes the performance index

()

| which will be referred to throughout the paper as the
. sampled-data H? problem with mized discrete/conti-
. muous specifications.

The problem OP is more general than those that
have been considered in the literature. First, we treat
both continuous-time and discrete-time performance
issues simultaneously. Next, the shift included in the
operator Sy allows one to “asynchronize” control loop
" operations and signals whose performance we are con-
cerned with, which may be useful in many applica-
" tions. Finally, we allow the external disturbances
to be both continuous-time and discrete-time®. The
problem considered in [3] did not explicitly contain
_ discrete-time disturbances and therefore the approach
~ in [3] allows to consider only a restricted class of pre-
filtered (via strictly proper filters) discrete measure-
ment noise (since the sampling operator is unbounded
at L?). This disadvantage was partly overcome in [9]
- {(see also [4]), where discrete sensor noise was incorpo-
rated via a nonzero matrix D;14. However since the
matrix B4 was still zero, the treatment in [9] did not
allow sensor noise to be correlated with plant distur-
bances. Moreover, there are other sources of discrete-
time disturbance in sampled-data systems, digital ac-
tuator disturbances for instance, that might be more
naturally modeled in discrete time. Hence, the intro-
- duction of the B,4 is justified.

Before considering the OP some preliminaries are
required. These are introduced in the next section.

. 2
J= ||TzW||H=v

3. Preliminaries

$.1. H%-norm of sampled-data systems

In this subsection we briefly recall the ideas of [9]
and [3] concerning the H2-norm for periodic systems.
Given an N h-periodic stable system G, denote its re-
sponse to the Dirac é-function 6(t —8), 0<6< Nh, by
go(t). Then the H%-norm of G is defined as

1 Nk 2
ﬁ/o llgell2d8-

3Note that the presence of the w4 may also be treated as
the combination of the approaches of Chen and Francis [5] and
Khargonekar and Sivashankar, and Bamieh and Pearson [9, 3].

IGlI%s =
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Since we are interested in the sampled-data system
(2), assume that G results from the feedback intercon-
nection of a time-invariant continuous-time plant, a
sampling and a hold devices with a sampling period h,
and a discrete-time N-periodic controller. Then it is
natural to expand

1 (&=t
2
N (Z ﬁ./o ||9ih+6”2de) . (4)
i=0

In the case of shift-invariant discrete controller K, (4)
can be reduced [9, 3] to

2
G112

2 = 2112
G152 = 1F (G, Kl gga (5)
where G is some finite-dimensional discrete shift-
invariant plant, which does not depend on K. As is
shown in subsections 3.2 and 3.3, the same result is
valid for each term in (4), namely for

1
2 - =
”g”H’,i “h

1,...,N). (6)

h
/ llgintoll5d0, (i
0

Hence, the norm in (4) can be treated just as H2-
norm of an N-periodic discrete-time system. Treating
HZ%-norm of discrete-time periodic systems is simpler
than its sampled-data counterparts. This suggests a
separate consideration of ||G ||§,,’.-.

Using the definition of H2-norm for periodic systems
it can be easily shown that the criterion J in (3) is the
weighted sum* of a continuous-time (intersample)

T2 [ Towe Tocwstn |3 = 1wl (72)

and a discrete-time (sample)

Ja = ||87 [ Tewe TewwiMn ] (7b)

2
(8
performance indices. For the sake of clarity we will
consider in this section the issues of continuous and
discrete performances separately. Moreover, for the
discrete-time case we will treat the following simplified
index

T3 =1 Toawe Tewws™n 3 = 1 Tulllys (76)

(that is h, = h), rather than (7b). In the next section
(7b) will be considered.

3.2. Continuous-time performance

In this subsection we will be concerned with per-
formance index J. (7a). Hence we can extract the
“Intersample” part P, from P:

A |Bi. B B
P(s)=| Cic| 0 Ditea Diac (8)
Cy | 0 Dyg 0

4 All weights are assumed to be absorbed in the generalized
plant P.




Figure 2: Continuous-time performance setup.

P, is depicted in Fig. 2. For this plant we consider
minimization of J. by discrete-time N-periodic con-
troller K. Such a problem is very close to the ones
considered in [9, 4] except that here the controller is
periodic and Byg # 0. Thus we give here only the final

result:

Lemma 1 Given the continuous-time plant P., (8),
form the discrete-time generalized plant

A| B B
PC(Z) = C:lc Qllc D12c 1 (9)
Cy | Dax 0

where, denoting ¥(0) = f; eA'dt,
A=e4* B,=%(h)B;, C;=Cq, (10a)
By = [Bic ¥(h)Bia], Dn= [0 Daal, (10b)
Dy = [0 Ditea |, (10c)
B, is any matriz such that

h
BB, = / 4B B, eAtdt  (10d)
0

and C1c, D11ca and Dia. are any matrices such that

Cllc h
Dllcd [C1c Di1ea Dizc] = / I(t)Tc(t)dt,
12¢ 0
(10e)
where

A By B
Tc(t) = [Cic Dirca Dizc]expq | 0 0 0 |t
0 0 0

Then a discrete-time N -periodic coltrollerf stabilizes
P, iff it stabilizes P., and for any K andi=1,...,N

= =2 1
“Tzcwniﬁ,.‘ = ||T(PC’K)HH=,.‘ + 3 tr{M.},

where

h ph—t ,
M, = Clc/ / e’ B B e* *dsdt Cy..
0 voO

118

Figure 3: Discrete-time performance setup.

It is seen that the minimization of HTzcwHi{:,i is
equivalent to the minimization of H 2-norm of a pure
discrete-time system. Also, Lemma 1 indicates that
the discrete-time generalized plant P, does not de-
pend on i, which is of great importance and allows
us to establish the following

Corollary 1 Given the continuous-time generalized
plant Pe, ( 8), and the discrete-time generalized plant
P, (9), a discrete-time N -periodic controller K stabi-
lizes P, iff it stabilizes P., and for any K

= =2 1
I Tecollis = 1F(Pe, B)llgra + 3 tr{Mc}.

8.3. Discrete-time performance

Here we consider the discrete-time performance in-
dex J} (7c) for the plant P. Hence we can extract the
“sampled” part P4 from P:

A lBlc Bld B2
Py(s)=| Cia| 0 Dizaa Diza |; (11)
C; | 0 Doy 0

which is shown in Fig. 3. Although such a problem,
to the best of the authors’ knowledge, has not been
considered yet, the ideas of [9, 3] can be easily extended
to this case.

Lemma 2 Given the continuous-time plant Pq, (11),
form the discrete-time generalized plant

A | BL B
Py(z) = | Ciq | D1ia Dr2a | (12)
C2 | Dn 0

where the matrices A, B1, By, C2 and D31 are defined
in (10a) and (10b), and

Cra = Crae®", (13a)

Di2q = D12a + Cld/ etdt By, (13b)
0

Dia=[0 Diaa+ CldfOTeA‘dt Bia |- (13¢)




Then a discrete-time N -periodic cor_zfrollerf stabilizes
Pga iff it stabilizes Py, and forany K andi=1,...,N

2
1Tl s = 1F (P2, Blga s + {Ma},

where
T i
M = Cyq / etB; B e4tdt C},.
o]

It is not surprising that this case is also reducible to
a finite-dimensional discrete-time H? problem and the
following corollary can be established:

Corollary 2 Given the continuous-time generalized
plant Py, (11), and the discrete-time generalized plant
P4, (12), then a discrete-time N -periodic controller K
stabilizes Pg iff it stabilizes P4, and for any K

1Tl = 1F(Pa, Ol + tr{Ma}.

Now we are in a position to consider the mixed prob-
lem posed in Section 2.

4. Solution of the mixed problem

To combine the results of Corollaries 1 and 2 let us
define a discrete-time generalized plant P having the
following realization:

A | By B,

Cic | Diie Dz
Ci4 | Diia Diza |’
Cy | Dy 0

P(z) = (14)

where the parameters are defined in (10) and (13).
Then, partitioning the feedback interconnection of P
and X as:

0= 7 |

it is not difficult to see (using the results of the pre-
ceding section) that

= 2
T
17l = || 55, |
VnTa ||y
where the expansion operator Vy is defined as

Vo (=Vui & qh={ §F REmedv=0

+tr{x M. + M;}, (15)
2

Thus, we can see that our mixed discrete/continuous
sampled-data H? problem is reduced to a discrete-time
periodic H? problem. To handle the latter we will use
the lifting technique of {7}, which allows to convert a
periodic problem to an equivalent time-invariant one.
To this end let us define the discrete-time sampler Sy
and the discrete-time lifting operator Wy (see [7] for
detailed discussion of their properties):

Sn: (=38nE & ([k]=¢E[NEk];

_E[NE]
_ E[NE+1]

Wr: (=WnE & (k= :
E[NE+ N —1]

Since the operator ) Wy is an isometric isomorphism in
22 and WV y = Sy [7] we have:

“[ Vo ]

and the operators )_’V—NTCW}‘V and ENTdW;, are shift-
invariant [7). However the controller K is still periodic,
that is, our problem is not a standard H2-optimization
problem yet. To transform it to a time-invariant one
let us define the following operators

2

¥
H3

WnNT.
SNTd N

Wy 0 0 -
P=| 0o Sy o0 |P [ y‘;N WO* ]
0 0 Wy N
(the partitioning is compatible with that for P) and
K = WhEWy.

Since the operator P is shift-invariant, so is the op-
erator P, and its realization is

. fipl B B,
v Py Pjo g 7
#e = ] = [ & B B | 0
Cz | Doy Do
where
Ap = }iN, (17a)
B; = [ AN-1B. AN-2B. .. B ], (17b)
Clc c
2
, Crcd ‘ G2 4
C, = , Co= : y o (17¢)
CICEN‘l o
Cra c A
Dl:c 0 0
Ccht Dlg'c (1]
Dy = . : oy (17d)
C’lclN"" B,’ C'lch_sB,' e Dlic
Dyiq 0 ... 0
Da; 0 ... 0
CZB:' Dz.’ 0
Dy = . : . .|, (17e)
C.AN-2B; G,AN-B; ... Dy

with i = 1,2 and D,; = 0, of course.
The lifted controller K is also shift-invariant and
hence it can be represented by a state-space realiza-

tion, e. g. %) - [é—ﬁ%} (18)
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However, due to causality requirements [10], the ma-
trix Dg in (18) can no longer be considered as arbi-
trary, but rather it should be constrained as

DK € TN) (19)
where the set TV consists on N x N block matrices of
the following form:

My, 0 0
™= m My Mz - Y
My Mn: MyN

_ Now, simple manipulations with the lifting operator
Wy yield [7):

WN 0
0 Sy

]f(f, KWy, = F(P,K).

and thus we can reformulate our sampled-data H?
problem as a discrete-time constrained H? problem:

OP.: Given the plant P with realization (16), find an
LTI controller K, which internally stabilizes P
and minimizes the performance index

M v s 2
I = |1 F(P, Kl = (20)

subject to (19).

If this problem did not contain the constraints, it
would be a standard discrete-time H? problem, the
solution of which could be found using well estab-
lished machinery (see the books [1, 2], for instance, and
[13] for a comprehensive treatment of various singular
cases). Fortunately, since the only controller parame-
ter to be constrained is the feedthrough “D” matrix,
the approach in {13] can be extended quite directly to
our case. The solution of the OP, is outlined bellow.

First, let us make the following standard assump-

tion, which guarantees the uniqueness of the solution
of OP,:

(A4): The transfer matrices P13(z) and P}, (z) are left
invertible on the unit circle.

Second, note that our case differs from that consid-
ered in [13] not only by the presence of the constraint
(19), but also by the presence of nonzero matrices D1y
and bzz. To get rid of the latter matrix we will use
the following well known “trick”: the action of a con-
troller K on the plant Pis equivalent to the action of
the controller (I — KD3,)~1X on a plant, which is P
with ﬁzz = 0. It is therefore clear that in solving the
OP. we can take 522 = B. Having solved for K we
then implement I\é,»m,,lsz

IVC,-,,,,,I = k([ + bgg’VC)_l.

5The inversion is always well defined, since the feedthrough
part I + Doy Dy of the operator under inversion is block lower
triangular with identity diagonal blocks.
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Finally, let us consider D;. As is shown in [13] for
the case bu = 0, the choice of the parameter Dx
in the H? optimization problem is independent of the
other controller parameters and is based on the follow-
ing parameteric optimization problem:

min tr{(DxDx Dy)'(Dx Dx Dy)+2 M1 D}, (21)

Dg
where Dx and Dy are any square matrices such that®
DIXDX = b;zbu + BIZXB'z, (223.)

DYD;; = Eglbgl + CzYC'Z, (22b)

where X and Y are the stabilizing solutions of the
following algebraic Riccati equations:

X = ApXAp + C,C1 — (C) D12 + Ap X B,)

(D', D12 + B,X By)~Y(D,C1 + By X Ap), (23a)
Y = ApY Ay + B1 B} — (ApYCY + B D}y)

(D21 D%y + C2Y Ch) Y (D21 B, + C2Y A)), (23b)
and

M; = D31 B | XB, + C,Y(C D12 + A' X B3).

Recall that for any stable discrete-time system

[l = ooy + [[45]

which implies (since when bzz = 0 the feedthrough
term of the operator .7-'(73,72:) is Dyp + ﬁmbxbgl)
that in our case the presence of ﬁu changes the H 2
cost only by the quantity:

2

H9’

tl‘{f)lubll} + ZtI{quDuDK.bgl}.

Thus we have that for nonzero matrix ﬁu the con-
troller feedthrough matrix Dk should be found not
from the problem (21), but rather from the problem

min ¢(Dg),

n (24)

where
#(Dx) = t{(DxDxDy) (DxDxDy)}
+2t{ (M + DBy, D1a) D }. (25)

The foregoing discussion delt with the unconstrain-
ed problem. Now we are in the position to take into
account the constraits (19). Because the matrix Dg
is sought as the solution of the problem (24) indepen-
dently of the other controller parameters, we should
just modify (24) as follows:

“min_ ®(Dk).

26
Hmn, (26)

6 According to the assumption (A4) the matrices Dy and Dy
are nonsingular [13].




The standard completing to square arguments give
&(Dk) = u{(DXﬁKDY+Ma)'(DXﬁKDY+M,,)}
—tr{ M. M.},

where

1
M, = (Dlx)-l (M]_ + bnﬁ'ubm) (D’y)—l
It is clear that we can always choose the matrices Dx
and Dy from (22) such that Dx € TN and Dy € TV.
Then Dg € ™ o DxDgDy € ™ , and since the
matrix M, does not depend on D, the problem (26)
has the following solution:

Dk = —-Dy' (IitM.) D37, (27)

where IIT denotes the orthogonal projection on the
space

Having solved for an optimal Dk, the other con-
troller parameters can be calculated as in [13]:

fix =AP+B2FP+HPCZ—32DKC'2, (288.)
Bg = Bng — Hp, (28b)
Ck = Fp — DxCs, (28¢)

where the state feedback matrix Fp and the output
injection matrix Hp are given by

Fp = —(D'yDx) Y(D};C1 + ByXAp),  (28d)

Hp = —(ApYCYy + B1D4,)(Dy DY)t (28e)

As can be seen, the only difference between the con-
strained and unconstrained [13] cases is the orthogonal

projection operator Il in (27) that does not compli-
cate the computations.

5. Example

To illustrate the possibilities of the approach pro-
posed in this paper let us consider an example. Let
the continuous-time plant y(t) = Gu(t) have the fol-

lowing transfer function
0 1 0
o —o1 ] il1]].
0

[1 o]]
A sampled-data controller with a sampling period
h = 3/4is to be designed. The control goal is to provide
good transient against arbitrary initial conditions y(0)
in the plant output. It is not difficult to verify that
arbitrary y(0) can be modeled as an discrete-time im-
pulse at the input, connected with the state vector
through the vector’

o (L) 1112

"Since in this case By, = 0, we will suppose in the sequel the
presence of only the discrete-time external input wq.

1 —_—
s(s+0.1)

G(s) =
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plant output, y(t)

05 1 It 1

Figure 4: Plant output under a discrete (dotted line) and
a sampled-data (solid line) designs.

First, we minimize the £2-norm of the discretized plant
output [k}, which corresponds to the generalized plant

[6 i JI[%] [7]

P(s) = t? o] o o (29)
1 0 0 0

and a pure discrete design. The result is shown in
Fig. 4 by the dotted line. As it is seen, though at
the sampling points the plant output behaves in an
excellent manner, significant intersample ripples take
place. Next we minimize the L?-norm of y(¢). This sit-
uation corresponds to the generalized plant (29) and
a sampled-data design. The result is shown in Fig. 4
by the solid line and looks significantly better than
the previous one. However the behavior is still shghtly
oscillatory, which is an inherent problem of the H?2
approach. The natural idea for preventing these oscil-
lations is to add some penalty of the signal y(t) into
the criterion. However, intuitively it is clear that in or-
der to prevent the intersample oscillations of an output
signal for second order systems, it is justified to penal-
ize the signal y(t) only at the points kh. To check this
point let us consider two approaches: the sampled-
data design and the mixed design proposed in this pa-
per. For the former we consider the generalized plant

g —01]1 ]
P(s) = ;A 3 .
[1

and minimize the L?-norm of the continuous-time 2-
dimensional controlled output, while for the latter we

0| 0 0




plant output, y(t)
o o o =4
N oW B (4,

o
-

Figure 5: Plant output under a sampled-data (solid line)
and a mixed (dashed line) designs.

consider the generalized plant

(o —oa J[[%] [1]
@@= 1007000 o
1 0 0 0

and make the mixed design. The parameter X € [0, 1]
can be adjusted to provide desirable tradeoff between
penalties of y and y. For a fair comparison of these two
approaches we compare results for values of A, which
provide equal values of the quantity [~ y(t)%dt for
both approaches. Then in all of the cases the mixed
approach led to better responses of y(t). One typi-
cal case is shown in Fig. 5. Both cases in Fig. 5 gave
Jo” y(t)®dt = 0.6, were X = 0.368 and A = 0.153 were
used for the sampled-data and the mixed designs re-
spectively.
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6. Concluding remarks

In this paper a new approach to the H? design
for sampled-data systems has been introduced. The
main feature of this approach is the presense of both
continuous-time and discrete-time (hence mized) per-
formance specifications. It has been shown that this
problem can be reduced to an equivalent discrete H?
problem with constraints on controller structure. A
state-space solution for the latter problem has been

122

provided. This solution makes it possible to handle
controller constraints directly in terms of controller
parameters. Finally; a numerical example has demon-
strated the potential benefits of the approach.
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