A. 1. Kokkinaki

Computer Science Department,
University of Cyprus,
Nicosia, Cyprus.
csalk@turing.cs.ucy.ac.cy

Abstract

State transitions in Computer Integrated Manu-
facluring Systems result either from the execution of
the planned actions, or from the occurrence of unpre-
dictable events. One key requirement for task planning
designed for CIM systems, is the ability to monitor, or
track events, so as to respond to them appropriately.
Related issues include the specification and classifica-
tion of possible system faults, errors and failures which
may be provoked by various event occurrences. Cer-
tain constraints pertinent on event tracking in CIM
systems are analyzed in this paper and a classifica-
tion of faults, errors and failures is included. Fur-
thermore, an error specification language ts designed,
a recovery mechanism is proposed and some working
examples are presented.

1 Introduction

Planning methods designed for static environ-
ments, assume fully predictable effects of the exe-
cuted actions, unlimited resources and perfect infor-
mation about the domain. These assumptions do not
capture certain characteristics [15] of Computer Inte-
grated Manufacturing (CIM) systems. In CIM sys-
tems, state transitions may result either from the exe-
cution of the planned actions, or from the occurrence
of unplanned events.

In CIM systems, an event is similar to the con-
cept of a process in qualitative process theory [10].
That is, an event is something that acts over time
to change some parameters of the system. However,
in CIM systems, there is the additional requirement
that an event does not belong to the predefined set
of system actions, which transform the system from
one stage to some other, upon their successful execu-

187

Error Specification, Tracking and Recovery in Computer Integrated
Manufacturing

K. P. Valavanis
A-CIM Center, and
The Center for Advanced Computer Studies,
University of Southwestern Louisiana,
Lafayette, LA 70504.
kimon@cacs.usl.edu

tion. In automated manufacturing environments, un-
planned events can not be completely eliminated, re-
gardless of the enforced safety features. In many cases,
elimination, or prevention of all these events may not
be critical, or feasible. As noted in [19], events may be
instigated by other agents in the system, or just occur
(i.e. lighting bolt).

Some events may not affect the overall system
execution, whereas some others may instigate faults,
errors and failures in the system affecting the plan
execution, altering some actions effects in the system
etc. To act in a realistic manner, a task planning sys-
tem must, among other things, monitor the events in
its environment, so as to respond to those events that
affect, the plan execution. The ability to monitor the
events in the system is also referred as event tracking.
The concept of events (primitive and composite) has
also been examined in other research areas like Active
and Temnporal Databases [11, 17].

In a CIM system, faults are events which have
been sensed in the system. A fault may be a phys-
ical defect, environmental stress, operator’s mistake,
etc. Without loss of generality, in CIM systems, some
faults are expected; that is, it is anticipated that some-
thing may go wrong. Moreover, faults are unpre-
dictable, in the sense that there is no deterministic
specification on what type the next fault will be, in
which subsystem it will occur, or when it will take
place. However, some faults may be modeled a-priori.
That is, the system designers may include in the sys-
tem model “provisions” for certain classes of faults.
Features of the modeled faults include parametrized
information about the influence the faults exert on the
system. This paper focuses on modeled faults only,
and the term fault is used to mean a “modeled fault”
(a-priori) from now on. Fault detection and identifica-
tion are not issues included in the scope of this paper;

that is, it is assumed that there exists the underlin-
ing structure which is necessary to detect and identify
faults. In general, faults may be distinguished into:
i) Permanent faults, which remain in existence until a
specific recovery action is taken, i) Transient faults,
which appear and disappear, usually without caus-
ing irreversible system damage, and, iii) Intermittent
faults, which appear and disappear repeatedly.

An error is the manifestation of a fault, that is,
a detected discrepancy between the actual and the ex-
pected state of the system. The error is identified with
some delay (from the time the fault occurred until the
time the error was identified). This delay may be min-
imal and it can be estimated based on the detection
capabilities of the system. In view of the above classi-
fication of faults, errors may also be distinguished into
permanent, transient and intermittent. It is assumed
that only permanent errors require the initiation of a
recovery procedure. That is, transient errors do not
need to be recovered and intermittent errors may not
be recoverable.

The term “error recovery” is frequently over-
loaded to signify different concepts. Error recovery
in automation may follow the emerging standard ter-
minology from the area of “reliable computing” [5],
as pointed out in [6]. Error recovery and failure han-
dling was primarily considered from the perspective
of situation assessment, followed by locally triggered
reactive operations [1, 2, 9, 13]. As outlined in [4], it
is important for a CIM system, to provide a frame-
work for on-line dynamic planning system which must
be capable of replanning in case an unexpected situ-
ation arises, and to plan opportunistically, that is, to
have the flexibility to reach the same goal state in dif-
ferent ways, depending on the availability of system
resources.

Every identified error has some characteristics
which may be parametrized. Error parameters in-
clude, but are not limited to: i) the time the error
was identified, ii) the agent(s) affected by the identi-
fied error, and ii1) the action {or actions, if any) which
was affected by it.

The extent of an error refers to the agents in the
system that have been affected by that error. De-
pending on the extent of the error, errors may be
distinguished into: i) Isolated errors (only one agent
affected), and ii) Segregated errors (more than one
agents affected).

The span of an error refers to the actions which
have been affected by that specific error. Depending
on the span of the error, errors may be distinguished
into: 1) Null point error (no action affected), ii) Single

point errors (only one action affected), and iii) Mult:-
ple point errors (more than one actions affected).

It is interesting to note that an isolated error
may not be a single point error. To elucidate this,
consider the following case. Assume that an agent has
been affected by an error while it was executing an
action. Moreover, assume that the affected action has
synergetic dependencies on some other action(s) exe-
cuted in parallel by some other agent(s). Therefore,
although only one agent has been affected by the er-
ror, more than one actions have been affected by the
error’s occurrence. Similarly, a segregated error might
be a null point error, that is, an error affects some
agents, all of which were idle at that particular time
instant.

Finally, depending on its span, an error may be
proclaimed to be a failure. That is, a failure is an
error with a span that includes one or more actions
in the current plan. Failures are critical; the initia-
tion of their recovery procedure must have the highest
priority. The recovery procedure for a failure, or an
error may result into a normal state (if the recovery is
successful), or in the fatal state, as shown in Figure 1.

FAILURES ! Normal State |

ERRORS

FAULTS

Figure 1: Classifications of abnormalities

The rest of this paper is organized as follows:
Section 2 presents a formalization of the above discus-
sion. The proposed error specification language and

an error recovery mechanism are presented in Section
3. Section 4 presents some working examples while
section 5 concludes this paper.

2 Definitions of Faults, Errors and

Failures

In this section, we present the definitions of
faults, errors and failures in the system; an extented
analysis may be found in [16].

Definition I: The set S = {s1,s3,---,5.5;} denotes
the set of agents in the system. Every agent is ca-
pable of performing (sequentially} a specific set of ac-
tions over a period of time. It is assumed that there is
complete knowledge about the agents capabilities and
their individual sets of actions.

Definition 2: The set A = {a;,a,---, a4/} denotes
the set of actions performed by the system agents.

Defimtion 3: The set F' = {f1, f2,---, fir|} denotes
the set of the modeled faults in the system. A faull
is an unplanned/unanticipated change in the system.
Every fault occurrence is associated with the time in-
stant at which the fault came into existence.

Definition 4: The set E = {e/e: system error } de-
notes the set of all possible errors in the system. An
error is a discrepancy between the actual and the ex-
pected state of the system.

Every error is associated with certain character-
istics which may be parametrized. An analysis of these
parametrized characteristics follows.

Definition 5: The extent, T., of an error e,e € E,
in the system, is defined in terms of the set of agents

which are affected by the occurrence of the error e.
That is,

Y. ={z/z € S,z affected by e}
e An error e,e € F is called isolated, iff |Y.| = 1.

¢ An error e,e € E is called segregated, iff
Te| > 1.

Definition 6: The span, ¥, of an error e, e € E, in the
system, i1s defined in terms of the set of actions which
are affected by the occurrence of the error e. That is,

¥, = {x/z € A, ¢ affected by €}

¢ An error e,e € E is called a null point error, iff
|¥.| = 0.

189

e An error e,e € E is called a single point error, iff
(W] =1.

e An error ¢,¢ € F is called a multiple point error,
iff (W] > 1.

Definition 7: The timestamp of an error e,e € F is
denoted as . and it is defined as the point of time the
error e was detected.

In CIM systems, the following constructors may
be used to specify composite errors. Similar concepts
have also been applied in Active Database systems to
support event detection [11, 12]. Using these construc-
tors, errors may be defined in terms of primitive errors
and/or composite errors.

Definition 8: The composite error e; V e;, is called
disjunction of errors e; and e, where e;,e; € E. The
disjunction of errors e; and e; occurs when either error
€;, or error e; occurs. It is true that:

T., if only e; has occurred
Y., if only e; has occurred
Y., UTe, if both e; and e; have occurred

Te,Ve] =

V., if only e; has occurred
V.. if only e; has occurred
¥, U\Iler if both e; and e; have occurred

\I’E‘Vej =

t., if only e; has occurred
te,ve; = te; if only e; has occurred
min(le,, te;) if both e; and e; have occurred
Defimition 9: The composite error e; A ej, is called
conjunction of errors e; and e;, where e;,e; € E. The
conjunction of errors e; and e; occurs when both errors
e; and e; have occurred, regardless of order. It is true
that:

Yeine; = Yo, | Te,
\I’e.AeJ- = q’e, U‘I,EJ'
te,ne; = maz(te,,tc;)

Definition 10: The composite error e;; e;, is called se-
quence of errors e; and e;, where e;,e; € E. The
sequence of errors e; and e; occurs when first error ¢;
and afterwards error e; have occurred. It holds that:

Tese, = Te, | Te;

\I’e,;ej = \I’e, U \Ile]
te, < Lo,
te.;e»,' - te

1

The following three constructors are also referred
as filters of the errors. These filters are set depending
on how many times a specified error pattern has been
identified during a specified time interval [t;,t;]. The
default time interval for the filters is from the time the
system starts until the time the system accomplishes
its goals, that is, the interval [to,t;]. However, it is
advisable to use the default time interval only when
it is absolutely necessary, because the detection of the
following filters is computationally expensive.

Definition 11: The filter of an error €,¢ € E denoted
by the ® constructor, that is, ®e IN [¢;,;], 1s set only
once, after the first detection of e even if multiple de-
tections of e occur during the specified time interval
[ti,t;]. It is true that:

Toe IN [tat;} = T.
\I’Oe IN [t,‘,t]'] = ‘Ile

toe IN [t t;]1 = te!

where t.! is the timestamp of the first detection
of the error e, e € E.
Definition 12: The filter of an error ¢,e € E denoted
by the ® constructor, that is, n ® e IN [t;,1;], is set
when the error e has been detected n times during
the specified time interval [¢;,1;}. In the degenerate
case, this filter is set every time (n = 1) the error e is
detected (alarm situation). It holds that:

T8¢ IN [tet;] = Te
‘I’n®e IN {t:,t5] =¥,
tn®e IN [t,‘,tj] = ten

where t," is the timestamp of the n'? detection
of the error e,e € E.

190

Definition 13: The filter of an error e,¢ € E denoted
by the — constructor, that is, —e IN [t;,1;], is set when
the error e has not been detected in the specified time
interval [t;,1;]. 1t is true that:

T INpe,=9
Y . IN [tat;] = 0

e IN ;) = U

Definition 14: When the following sequence of errors
e;=e IN [t,t + 7]

is identified, where: t. = ¢, t__ N [titr] = t 4+ 7, and
T < ¢, ¢ € Rt e = 0, then this sequence of errors is
called a transient error.

Definition 15: When the following disjunction of er-
rors

O(n®(e;me IN [t,t+7])) IN [t,t + ']V

©(n®(e;—e IN [t,t+7])) IN [t,1 + 7'];e

is identified, where: ¢, =1, t_, N ke =t T and
r<e,e€Rt e0,r<e, deR,e<e, e 20,
and n > 1 then, this disjunction of errors is called an
intermattent error.

Definition 16: A failure is defined as an error e, e € E,
(either primitive, or composite) that has a span ¥,
which contains one, or more actions forming the cur-
rent plan. That is, if the current plan includes actions
{ai,a;, -, an} while

\Ileﬂ{ai,aj,u',am};é(b

then, e is a failure.

Definition 17: We define as delay the amount of time
elapsed from the time the fault occurred until the time
the error (or failure) was detected.

3 Error Specification and Recovery

In view of the previous discussion, an error spec-
ification language describes how errors, constructors
and filters of errors may be combined to describe com-
plex erroneous situations.

|
2
=

Grammar I') outlines a language for the descrip-
tion of erroneous situations. However, I'; is an am-
biguous grammar. For example, grammar 'y can
have more than one parse trees generating the string
e1 A €2;e3. The described erroneous state may result
i) when the conjunction error ¢; A ez is followed by
e3, or i1) when the sequence eg;e3 is conjugated with
the identification of the error ¢,. Therefore, it is im-
perative to define precedence relations among the er-
ror constructors and filters. In accordance with the
Boolean Algebra, the constructors are evaluated left
to right. In the following precedence hierarchy, con-
structors are presented in order of decreasiug prece-
dence; constructors at the same precedence level are
shown at the same line.

0.0
N
3

\

With the enforcement of these precedences, the
grammar 'y is transformed into grammar I's. How-
ever, grammar [y contains left recursions; that is the
leftmost symbol on the right hand side of the produc-
tion is the same as the symbol in the left hand side of
the production and this may lead the language parser
into infinite looping. The eliiination of left recursions
from I'; results into the final grammar 3.

GRAMMAR ',

error — error C error | (error) | filter |fault
C oAV

filter = T error IN [time, time]

T — ©| number ® |—

number — number digit | digit

time — number : number : number

digit — 0[1]2|3}4/5]6

7/819
fault — fi|fal---|fig)

GRAMMAR I';

error — error V templ | templ

templ — templ ; temp2 | temp2

191

temp2 = temp2 A temp3d | temp3
temp3d — (error) | filter | fault
filter — T error IN [time, time]

T — ©| number @ |-

number — number digit | digit
number

time — number : number :

digit — 0[1]2

314/56]7|8(9

fault — fi|fo]- "|f|F|

GRAMMAR T;

error — templ error’

error’ — V templ |e

templ — temp2 templ’
templ’ —; temp?2 ¢

temp2 = temp3 temp2’
temp2’ — A temp3 |¢

temp3 — (error) | filter | fault
filter — T error IN [time, time]
T — | number ® |-

number — number digit | digit
time — number : number : number
digit — 0[1]2|3]4]5|6]7{8|9

fault — fi|fa] -1 fip|

3.1 An Error Recovery Mechanism

An error recovery mechanism in the system may
be modeled as a deterministic automaton. Depending
on the identified error and the state of the system, a
recovery procedure may be initiated. The definitions
follow.

Definition 18: The state of the error recovery mecha-
nism at any instant, ¢, denoted by ¢(t), is an element
of a finite set &.

Definttion 19: The recovery action, that is the out-
put of the error recovery mechanism at the instant, ¢,
denoted by R(t) is an element of the finite set of the
recovery operations in the system, P.

Definition 20: The identified error, that is the input
of the error recovery mechanism at the instant, ¢, de-
noted by e(t) is an element of the set of the system
errors, E.

Definition 21: The transition function F(e,e) deter-
mines the state of the error recovery mechanism at
time £ + 1, in terms of the state and the identified
error at time ¢t. That is,

F:dxE—®

and

$(t+1) = F((t),e(t))

Definition 22: The output function G(e) determines
the recovery action at any time instant ¢, in terms of
the state at that time instant t. That is,

G: ¢ P

and

R(t) = G(e(t))

Definition 23: The error recovery mechanism is de-
fined by the quintuple

{Qi E7 P’ F(.l .)7 G(.)}

In this section, the derivation of grammar I's was
provided. I'z is an unambiguous grammar without left
recursions, which may be used for the description of
various system errors. The derived error descriptions
are based on the known set of faults and a given set
of error constructors. For every identified error, the
recovery mechanism presented in this section may de-
scribe some recovery procedure. To illustrate these
concepts, we present some working examples in the
following section.

192

4 A Case Study

The following examples are based on the config-
uration of the Robotics and Automation Laboratory
(RAL) within USL. RAL has three robots with at-
tached vision systems and two conveyor belts arranged
as shown in Figure 2. The Adeptl is dedicated to con-
veyor one and the PUMA robot is dedicated to con-
veyor two. The Adept3 can serve either conveyor one
or two and it is the only robot capable of picking up
heavy items. It is assumed that faults may occur in
a non-deterministic way. However, some faults can be
modeled in the system. A non exhaustive but repre-
sentative list of possible faults in the system follows.

N = L—
i = '
| :\ =) M!-!——
Bind | ’
Canveyor2 '—— 7 _—~—___
Q_—— D
T e —/ 14,
. - 7 : ; |§§-
P = e i I;-‘*!
H =55 H
RGN, O i
I Canveyor 1 — - !
| i :
s | Bint1)
g il g
H Aceott
3 !
i
l
| ,
1——7 SUN ! Ethernac
i SPARC 2

Figure 2: RAL Configuration
o f1 : Conveyor belt one is out of order.
o f2 : Conveyor belt two is out of order.
o f3 : Adeptl is out of order.
o fs : Adept3 is out of order.
ofs : PUMA is out of order.

o f¢ : The global vision camera on conveyor
belt one failed to identify an incoming object.

o f7 : The global vision camera on conveyor
belt two failed to identify an incoming object.

fa

f

[o T —

€

ofs : The local vision camera on Adeptl
failed to identify an incoming object.

ofg : The local vision camera on Adept3
failed to identify an incoming object.

¢ f10 : The local vision camera on PUMA
failed to identify an incoming object.

Therefore, the set of faults in the system is
F = {fi,f2, -, fro}. When fault f; has been de-
tected, then we say that error e; has been identified,
or alternatively error e; has occurred. Assume the fol-
lowing recovery procedure for the following identified
errors:

ee; : Adeptl stops working;
Adept3 is set to its minimum velocity.

ocy : PUMA stops working;
Adept3 is set to its minimum velocity.

ec3 : Adept3d is set to its maximum velocity.

ecy : Adeptl is set to its maximum velocity;
PUMA is set to its maximum velocity.

ecs : Adept3 is set to 1ts maximum velocity.
ecs . No Operation.
ee7 : No Operation.
ecg : No Operation.
e¢cg : No Operation.

e¢ 0 : No Operation.

Assume that the sequence e;;e3 has occurred.
That is, a fatal error on conveyor belt one has been
followed by a fatal error on PUMA. Using the situation
assessment and reactive recovery method when e is
identified Adeptl is set to stop working and Adept3 is
set to work at a minimum speed. Similarly, when e3 is
identified, Adeptd is set to work at a maximum speed.
However, this is not necessary, because Adeptd needs
to handle objects in just one conveyor belt, that is
conveyor belt two. In the proposed approach, however,
we are able to specify that the composite error e1;e3
1s a special case in the system and it should have the
same recovery procedure as error ej.

193

Assume that the conjunction ez A eb has oc-
curred. That 1s, both Adeptl and PUMA went out
of order. The reactive recovery mechanism would pro-
vide an acceptable recovery procedure, that is to oper-
ate Adept3 at a maximumspeed. Even though Adept3
operates at its maximum capabilities, it is still possi-
ble that it misses some of the incoming objects. In our
approach, it is possible to specify that the composite
error ez A ed must have as its recovery procedure the
operation of both conveyor belts at their minimum
speed and the operation of Adeptd at its maximum
speed. Notice that the same result would be possible
with the reactive recovery approach, if the recovery
procedures for errors e3 and e are modified to include
the operation of the corresponding conveyor belt at a
minimum speed. However, those modifications would
have as a result the suboptimal operation of the sys-
tem, if only a single error (either es, or es) occurs.

5 Summary and Conclusions

In Computer Integrated Manufacturing Systems,
prevention or elimination of unpredictable events may
not be feasible. The occurrence of these events may
instigate system errors or failures. One key require-
ment for task planning designed for CIM systems is
the ability to track events and to respond to possible
erroneous states.

In this paper, a formal language for error speci-
fication was derived, a classification of errors was pre-
sented and a recovery mechanism was provided.

References

[1] Bastos, J. M., “Batching and Routing: Two
Functions in the Operational Planning of Flex-
ible Manufacturing Systems”, European Journal
of Operational Research, Vol. 33, pp. 230-244,
1988.

[2] Bertolotti, E., “Interactive Problem Solving for
Production Planning”, Al Applications in Manu-
facturing, Famili, A., Nau, D. S. and Kim, S. H.
Eds., AAAI Press, 1992.

Carberry, S., “Incorporating Default Inferences
into Plan Recognition”, Proceedings of the Na-
tional Conference on Artificial Intelligence, pp.

471-478, 1990.

Darbyshire, 1. and Davies, B. J., “EXCAP: An
Expert Generative Process Planning System”,
Proceedings of the IFIP WG 5.2 Working Con-
ference on Knowledge Engineering in Computer
Aided Design, Gero, J. S, Ed., Amsterdam:
North-Holland, pp. 291-303, 1985.

[5]

(8]

(10]

[11]

(12]

[14]

[15]

Decker, K. S., Garvey, A. J., Humphrey, M.
A. and Lesser, V. R., “Control Heuristics for
Scheduling in a Parallel Blackboard System”, In-
ternational Journal Pattern Recognition Artificial
Intelligence, Vol. 7, no 2, 1993.

Doyle, R. J., “A Distance Measure for Attention
Focusing and Anomaly Detection in System Mon-
itoring”, Proceedings of the Twelveth National
Conference on Artificial Intelligence, 1994.

Dousson, C., Gabonit, P. and Ghallab, M., “Sit-
uation Recognition: Representation and Algo-
rithms”, Proceedings of International Joint Con-

ference on Artificial Intelligence, pp. 166-172,
1993.

Durfee, E. and Lesser, V. R., “Using Partial
Global Plans to Coordinate Distributed Problem
Solvers”, Readings in Distributed Artificial Intel-
ligence, Bond, A. H. and Gasser, L., Eds., Morgan
Kaufmann Publishers, Palo Alto, CA, 1988.

Firby, R. J., “An Investigation into Reactive
Planning in Complex Domains”, Proceedings of
the Sizth National Conference on Artificial Intel-
ligence, San Diego, CA, pp. 59-69, 1988.

Firbus, K., “Qualitative Process Theory”, Artifi-
cial Intelligence, 24, pp. 85-168, 1984.

Gatziu, S., “Events in an Active Object-Oriented
Database System”, Proceedings of the First
Workshop on Rules in Database Systems, Edin-
burg, 1993.

Geppert, A., Gatziu, S. and Dittrich, K. R.,
“Rulebase Evolution in Active Object-Oriented
Database Systems: Adapting the Past to Future
Needs”, Computer Science Department, Univer-
sity of Zurich, TR-95-13, 1995.

Kautz, H. A., “A Circumscriptive Theory of Plan
Recognition”, Intentions in Communication, Co-
hen, P. R., Morgan, J. and Pollack, M. E. Eds.,
MIT Press, Cambridge, MA, 1990.

Keller, R. M., “The Role of Explicit Control
Knowledge in Learning Concepts to [mprove Per-
formance”, Machine-Learning Technical-Report-
7, Rutgers University, New Brunswick, NJ, 1987.

Kokkinaki, A. I. and Valavanis, K. P., “On the
Comparison of Al and DAI Based Planning Tech-
niques for Automated Manufacturing Systems”,

194

(17]

(18]

(19]

Artificial Intelligence in Industrial Decision Mak-
ing, Conlrol and Automation, S. Tzafestas and H.
Verbruggen Eds., Kluwer Academic Publishers,
1994, pp. 569-627.

Kokkinaki, A. I., “A Dynamic Planning System
for Automated Manufacturing Environments”,
Ph.D. Thesis, The Center for Advanced Com-
puter Studies, USL, Lafayette, 1995.

Pissinou, N., Snodgrass, R., Elmasri, R., Mu-
mick, 1., Ozsu, M., Pernici, B., Theodoulidis,
B., “Towards an Infrastructure for Temporal
Databases”, ACM Sigmod Record, Vol. 23, no. 1,
pp 36-61, 1994.

Song B. F. and Cohen, R., “Temporal Reason-
ing during Plan Recognition”, Proceedings of the
Eleventh National Conference on Artificial Intel-
ligence, pp 247-252, 1991.

Tambe, M. and Rosenbloom, P. S., “Event Track-
ing for an Intelligent Automated Agent”, Time9/
An International Workshop on Temporal Repre-
sentation and Reasoning, 1994.

Van Beek, P. and Cohen, R. “Resolving Plan Am-
biguity for Cooperative Response Generation”,
Proceedings of International Joint Conference on

Artificial Intelligence, pp. 938-944, 1993.

|

	187.pdf
	188.pdf
	189.pdf
	190.pdf
	191.pdf
	192.pdf
	193.pdf
	194.pdf

