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Abstract

This paper deals with controlled systems
with bounded dynamics uncertainty, in other
words, systems which evolution is governed by
a differential inclusion. Our aim is to derive a
control law such that the system is exponen-
tially stable, in the sense of a given candidate
Lyapunov function. We show that under regu-
larity assumptions, a set-valued evolution law
of controls that guarantee the exponential sta-
bility of the system can be found explicitely.
This enable us to select the minimal norm ve-
locity of control satisfying the stability con-
dition, and finally, to propose a single valued
explicit control scheme devoted to robust sta-
blization of non linear systems.

Introduction

This paper focuses on the control of a class
of systems, whose uncertainty is deterministic
and known by its bounds.

Several approaches has been proposed in the
field of control of uncertain systems. Among
them is the sliding mode control, introduced
by Soviet mathematicians in the seventies [15],
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which is now used in applications [14]. Lya-
punov stability theory has also been used for
deriving stable feedback controllers of uncer-
tain systems (see [13], [8], [4], [11], [10]).
Knowing bounds of the system uncertainty, or
the range of dynamics parameters, feedback
are constructed in order to meet a Lyapunov
stability condition. In the last past years, the
problem of robust controller design has been
addressed in considering the uncertain system
dynamics as a differential inclusion (see [9]).

Our approach follows both of these ideas:
We consider the evolution of the system
through a set of feasible velocities (the right
hand side of a differential inclusion), and we
construct a feedback that guarantee the closed
loop system to meet a Lyapunov stability con-
dition. It is also important to mention that the
synthesis of the control law is non parametric,
in the sense that we obtain the control input
value at each time, as the solution of a dif-
ferential equation. The determination of the
dynamics of control that allow to reject some
bounded disturbances is the main purpose of
this paper.

Let us consider the following uncertain sys-




tem:

2'(t) € F((t), u(t)) = f(=(2), Ot
1

The state of the system is denoted by z(-),
and the control input by u(-). In the follow-
ing, X denotes the state space, Z, the control
space (X and Z are finite dimensionnal vector
spaces). The unit ball of X is denoted by B.

The uncertainty around f(z(-), u(-)) is sup-
posed to be bounded ! by a C! real valued
positive function ¢(z(-)). In the following, f
will be supposed to be a C! map. Under these
assumptions, existence of solutions to (1) is
guaranteed?.

We also suppose that 0 is an equilibrium
of inclusion (1) (i.e. 0 € F(0,0)). Let us
consider a C? candidate Lyapunov function
Vi X — R+ satisfying V(0) = 0, and Vz # 0,
V(x) > 0. Our goal is to design a robust con-
trol law that can stabilize system (1) around
zero, in the sense that we want V to sat-
isfy the following property: For all solutions
((-), (0) = xq) of inclusion (1):

vt > 0, Ve(t)) < w(t)

where w(-) is the solution of w' = W¥(w),
w(0) = V(z(0)), and ¥ is a strictely increas-
ing function. An instance of such function
is ¥(w) = aw — b witha > 0 and b > 0,
which leads to ultimate boundedness condition
to the ball of center 0 and radius £ (in setting

V(z) = ||z|):

= - 2 < ezl - 2)

Let us point out that the control enter the dynam-
ics of the system with no uncertainty.

2Let us mention that z(-) is a solution of (1) if it is
an absolutely continuous function satisfying (1) almost
everywhere. Solutions to z’(t) € F(xz(t)) exists if F is
upper semicontinous with compact and convex values.
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1 Exponential stabi-
lization of uncertain sys-
tems

Definition 1 We shall say that V : X — R+
15 a Lyapunov candidate function if it is a C?-
map and satisfy:

¢ V(0)=0,and Vz#0, V(z)>0.

o There exist two class K functions® a(.)
and b(.) such that

b(ll«ll) < V() < a(llll)

Definition 2 Let be V : X — R% a Lya-
punov candidate function, G a upper semicon-
tinuous set-valued map with conver and com-
pact values, and ¥, a strictely increasing func-
tion.

V is said to be a W-universal Lyapunov

function associated to the differential inclusion
z'(t) € G(x(2)) if ils satisfies

Sup  {(V'(z),w)} +¥(V(z)) <0

weG(zr)

We know that if G is a Lipschitz set valued
map, defining a differential inclusion

z'(t) € G(=(1))

satisfying 0 € G(0)), and if V is an universal
lyapunov function associated to the set-valued
map G, then all solutions starting at z(0) = z,
satisfy lim;_ 1ooz(t) = 0.

Let us consider the set valued map U(z) C
Z associated to system (1):

U(z) :={v, sup (V'(z), w)+¥(V(z)) <0}
weF(z,v) )
(2

3 A function ¢ is said to be a class K function if it
is continous, non decreasing, and such that ¢(0) = 0.




which is nothing else than the set of controls
enabling system (1) to admit the function V
as an universal Lyapunov function.

To find controls such that V be a univer-
sal Lyapunov function associated to system (1)
amounts to look for solutions of the following
system under constraints:

{x’(t) € F(z(t),u(t)
u(t) € U(z(?)

Robustness of the control law will be guaran-
teed if all solutions of the differential inclusion
(1) satisfy the constraint u(t) € U(z(t)).
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Definition 3 Let X be a finite dimensional
vector space and K a subset of X. We shall
say that a solution z(-), z(0) = zo € K of the
differential inclusion z'(t) € G(z(t)) is viable
in the subset K C X f for all ime t > tg,
z(t) € K.

A subset K C X will be said to be invariant
under the map G if all solutions of the differ-
ential inclusion z'(t) € G(z(t)) starting from
zo € K are viable in the set K.

Actually, invariance of a set K under a set
valued feedback map can be characterized by
a geometrical condition, thanks to the invari-
ance theorem({1]. This geometrical condition
involve the Bouligand’s tangent cone which is
defined hereafter.

Definition 4 Let be K € X, a subset of a
normed vector space X, and x € K. The
Bouligand’s tangent cone of K at point z, de-
noted as Tk (z) is:

h
{v €X| lim inf EE+AY) _ o}
h—0t h
where di is the distance to K function:

dx(2) = inf llz ~ o

Theorem 1 (Invariance theorem) Let us
suppose that G : X — X 1is a Lipschitz map,
with compact values, and let us consider a
closed subset K C X. Then the two follow-
ing statements are equivalent:

1. For all 2y € K all solutions of the differ-
ential inclusion

z'(t) € G(z(t))
are viable in K.

2. V€K, F(z)CTk(z)

In order to apply the invariance theorem to
the system (3) (for the set Graph(U)), we in-
troduce a auxilliary evolution law of the con-
trols which amount to set a bound on the ve-
locities of the controls:

u'(t) € p(x(t), u(t))B

where p is a non negative Lipschitz function,
and let us consider the new system of differen-
tial inclusions:

{:c’(t) € F(z(t),u(t)
w'(t) € p(z(t),u(t)B

submitted to the constraint:

(4)

(z(t), u(t)) € Graph (U)

2 Robust
closed loops

dynamical

The problem is now to derive a control law
such that Graph(U) be invariant under the
map

F x pB : (z,u) ~ (F(z,u), p(z,u)B)

This can be done by applying the invariance
theorem to the system (4).

95




As f and ¢ are C! maps and p is Lipschitz,
the set salued map F(z,u) = f(z,u) + ¢(z)B
is Lipschitz. Moreover, it has compact values.

The set valued map U can be computed ex-
plicitely:

Uz)={ve Z, a(z,u)<0}

where

(V'(z), f(z,u)) + ¢(=) |V’ ()]
+¥(V ()

We observe that the graph of U is defined
by inequality constraints and that a(-,-)is a C!
map. Moreover, as f is continuous, Graph {U)
is a closed subset of X x Z. Then, the invari-
ance theorem applies: Graph(U) enjoys the
invariance property (with regards to the set
valued map F x pB) if and only if V(z,u) €
Graph (U)

(F(:L’, u)? p(l‘, U)B) - TGraph(U) (1"1 u)

Let us recall that the tangent cone to the
graph of a set valued map is the graph of a set
valued map, called the contingent derivative
(see [3] for details) defined as follows:

a(z,u) =

Definition 5 Let be X and Y, two normed
spaces. Let be F : X — Y, a set valued map,
and y € F(z). The contingent derivative of F’
at point (z,y) is the set valued map denoted by
DF(z,y): X — Y and defined by:

Graph(DF(z,y)) = Tgrapn(r) (2. 9)
If F = f is a single valued map, we set

Df(z) =Df(z, f(x))

Actually, the graph of the contingent deriva-
tive of a map F at point (z,y) is the tangent
cone to the graph of F at point (z,y).
According to the definition of contingent
derivatives, the invariance condition becomes:

Y(z,u) € Graph (U),
() DU(z,u)(y)

yeF(z,u)

plz,u)B C (5)

Under condition (5), all solutions of the sys-
tem of differential inclusions (4) are viable in
Graph (U).

Therefore, the couple (z(¢), u(t)) remains vi-
able in Graph (U) whenever it satisfies the fol-
lowing system of differential inclusions*

() € F(z(t),u(?t))
() € Nyer@uey PUE®D), u(®))(y)
(6)

3 Explicit robust dynami-
cal closed loop

In order to implement the robust dynamical
closed loop, we need to find an explicit for-
mulation of the set valued right hand side of
inclusion (6). Let us recall at the onset the
following results about tangent cones of sets
defined by inequality constraints:

Proposition 1 Let us consider a C! map g :
X — R, and suppose that
KN={ze X, g(z)<0}

Then Tk (x) 1s:

{fveX, (¢(z),v) <0} if g(z)=0
X if g(z)<0
0 if g(z)>0

We observe that the graph of Tk (-) may
not be closed. Moreover, if we compute the
tangent cone to Graph (U) at point (z, u), and
use it in inclusion (6) a discontinous right hand
side will then appear, which is non desirable in
our framework. In order to avoid this kind of
non regularity of the feedback map, we prefer

4This scheme is nothing else than a dynamical
closed loop (according to the terminology adopted in

{1])-
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to consider the subset of Tk (z) denoted by
T (), and defined as follows:

ag(z) + (¢'(z), v) < 0}
where « is a positive constant. We know that

T (z) C Tk (x)

T,%(:c):{veX,

Moreover, when g is a C! map, the graph of
T%() is closed. We can then consider the
subset of the contingent derivative of the set
valued map U denoted by: DU (z, u)(y) and
defined by:

{v € X, aa(z,u) + (a'(z, u), (y,v)) < 0}

and replace the dynamical closed loop defined
by the second inclusion of (6) by

(1 DU®((t), u(t))(y)

yEF(2(1),u(1)

u'(t) €

Let us now give an explicit form of this in-
clusion. As a(-, ) is not differentiable at z = 0,
we overcome this difficulty in considering a set-
valued feedback map whose graph is contained
in Graph (U):

U':={ueZ a'(z,u)<0}

with

Then, according to proposition (1) we have

{vez, (al(z,u),v)<
(al(z,u), y) — aal(z,u)}

So, we have the following equivalent state-
ments:

v e[| DU (2, u)(f(z,u) + ré(z))

réeB

DU (z,u)(y) =

0

inf,ellz <a£)(:c, u), f(z,u) + ¢(z)r)

)3
(al(z,u),v) < (al(z,u), f(=, u))
—¢($) ”1111‘(1', u)” - aal(xv u)
Finally, the evolution law of controls provid-

ing invariant state-control solutions to system

(4) is

<a,1‘(z,u),v> <

!

m

r

(u',al(z, u))

f(z,u) + ¢(z)B

(az(z, ), f(z,u))
—¢(z) [|az(z, u)]|

—aal(z,u)

IN

()

We can now state the fbllowing theorem:

Theorem 2 Let us consider f : X x Z — X

al(z,u) = (V'(z), f(z,u)) + (z)N(|V'(z)|)) a C'-map and a control system defined by

+¥(V(z))

The function N is supposed to verify
N([V'()ll) > |IV'(z)|| and to be such that
z ~ N(||V'(z)||) be a C! function®.

Let us set

al(z,u) = ——(—M;:’“
al(z,u) = 22w

1+.1_‘&2d0

®For instance the function N(s) = Y

satisfy these requirements.

2'(t) € f(x(t), u(t)) + ¢(=(t))B

where ¢(-) : £ — R is a C! non-negative map.
Let us suppose that 0 € f(0,0) + ¢(0)B. Let
us consider V : X — R a Lyapunov candidate
function.

Then, whenever there exists solutions to the
system of differential inclusions (7), they ver-
ify the universal Lyapunov property:

(Vi(2(1)), w) < —¥(V(2(1)))

sup
we f(=(1),u(t))+¢(=(1))B
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In other words, whenever the controls are
solutions to the differential inclusion (7), the
solution u(') is a robust stabilizing control map
of system (1).

In order to implement this scheme, we can
select a solution among all the controls pro-
viding the robust stabilization of the system,
through a selection procedure. This is ex-
plained in the next section.

4 Heavy robust dynamical
closed loops

In order to implement the robust dynamical
closed loop, one can select at each time, the
minimal value of the norm of u/(t) (following
an idea proposed in [2]). This is consistent
with the aim of minimizing chattering® of the
control system. The selection process can be
done explicitely.
Let us set

Finally, the heavy robust dynamical closed
loop control scheme Is:

{w'(t) € flz(t),u(t)) + #(=(t))Bx

u’(t) = u,
9)
where
||aa11(f;‘u))”2 d(-l'v u) if d(fﬂ, u) <0 and
N d(z,u
ul, = Wla_,“%})'ﬁ > p(z,u)
0 if d(z,u)>0

Actually, this control scheme can be viewed
as a closed loop feedback, in the sense that the
control law is given by a time varying function
of the system state.

Under the assuptions of theorem (2), the so-
lution of (9) is asymptotically and exponen-
tially stable, whenever the perturbations re-
mains bounded by the state function ¢(z).

An illustrative example Consider the sys-

d(z,u) = (a}(:c,u),f(:v,u)) — é(x) ||ai(.7:,u)||tem z'(t) = 2(t) — u(t), where both z and u

—aa'(z,u)
Consider the minimization problem

Min |w|)?
(w,al(z, u) < d(z,u)

which is nothing else than a quadratic minimi-
sation problem under linear inequalities con-
straints. Its solution can be found thanks to
Kuhn and Tucker optimality conditions”

W= %d(z,u) if dzu) <0 o
w=90 if dz,u)>0

8As it is done using the so-called suction control
technique in [14].
"When d(z,u) < 0 and IHEw]

al(z.)

> p(z,u), no

absolutely continuous solution to differential inclusion
(7) exists.
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are scalar functions of time. No uncertainty is
considered, for sake of clarity. Let us choose as
Lyapunov candidate function V(z) := 1/2z2,
and ¥(s) = s (which means that we want the
system to be exponentially stable at zero). In
that case, Graph (U) = {u, oz% —uz < 0}
(see figure (1)) where o = 3/2. First, we ob-
serve that slow selutions, constructed in pick-
ing the minimal norm control in Graph (U),
i.e. the solution of

Min
u€Graph(U)

{lJull}

is the linear control law u(t) = oz(t).

Let us now look for dynamical feedbacks,
1.e. absolutely continous feedbacks, solution of
a differential equation with measurable right
hand side. The scheme presented above aims
to keep the couple (z,u) in the set Graph U)



(for exponential stability in our framework).
The derivative of control is chosen in such
a way that invariance conditions (which in-
volves the contingent cone to Graph(U) at
each point (z,u) of Graph(U)) holds true.
Unfortunately, when we consider the tangen-
tial condition at ¢ = 0, for v > 0, we ob-
serve that 2’ > 0 = u < 0. Therefore all
solutions starting from the set {(0,u),u > 0}
leaves Graph (U), whatever the control value
is, and whatever the derivative of control v’
is®. Let us now consider the system:

r = z-u
{ W' < p

One way to avoid the emptyness of the set of
absolutely continuous feedback regulating ex-
ponentially stable solutions is to consider the
viability kernel (see [1], [12]) of Graph(U),
which is the set of initial conditions (g, ug) of
system (10), such that there exist at least one
solution viable in Graph (U/). For our simple
example, this set can be explicitely computed.
In case z > 0, it is the set of (x,u) satisfying
u > oz and u < g,(z) where u = g,(z) <
z = p/le™¥? +u/p—1) ~ u?/2p. All solu-
tions starting from Graph (U), but outside the
viability kernel leave Graph (U) in finite time.

In figure (1), we consider the system z’ =
r — u with V(z) = z2/2, and ¥(s) = s.
We bound the chaterring of control by p =1
(ie. |u'| < 1), and we approximate the vi-
ability kernel of Graph (U) with respect to
the dynamics z — u,[—1,+1] (denoted by
Viab,_y (—1,+1](Graph (U))) by: v 2> 3z/2
and u < V2z.

We applied the control scheme proposed in
theorem (2), but in replacing Graph (U) by
Viabg _y [-1,+1] (Graph (U)). Indeed, doing so
insure existence of absolutely continous con-
trols regulating the system exponentially to-

(10)

8 Actually, the solution leaves Graph (U) because we
do not accept discontinous feebacks

wards zero (this is also motivated by the fact
that some trajectories starting in Graph (U))
leaves Graph (U) whatever the control is).
Therefore, existence of solution to equation (9)
is guaranteed in this case.

Computer simulation results are plotted
in figure (1). The viability kernel is plot-
ted (area between the curve z ~» 3x/2
and £ ~ V2z. A trajectory starting from
Viabg_y (~1,41] (Graph (U)) (initial condition
is (2(0), u(0)) = (0.6,0.9)) is plotted when v’
is computed using equation (9). We observe
that this trajectory is viable within Graph (U),
and that the constraint |u’| < 1 is respected
(see (1)).

We plotted in figure (1)
a solution starting outside the viability kernel
Viabg .y [-1,+1] (Graph (U)) (initial conditions
are (z(0),u(0)) = (1,3/2)). We can check that
the solution to equation (9) starting from that
point, is such that |u'(tg)| > 1. Therefore the
scheme (9) do not admit any solution starting
from that point.

Conclusion

The method we proposed consist to keep
the couple (state, control) within the set of
stabilizing controls Graph (U) in minimizing
chaterring. The theorem we proposed provides
viable evolution laws of the control within the
set Graph (U), whenever they exist. In fact,
the ilustrative example shows that there is no
reasons for Graph (U) to be a viability kernel
with respect to the state dynamics and the
proposed control dynamics (in the sense that
some initial conditions may lead to solution
which leaves Graph (U) whatever the control
action is).

Therefore, in order to insure existence of at
least one absolutely continous solution (z,u)
to inclusion (7), it necessary to use the vi-
ability kernel Viabpy,p, (Graph(U)) as set
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Figure 1:

scl}gme

Simulation of the proposed control

4
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of constraints, rather than the set Graph (U).
This is also means that we need to know the
viability kernel of Graph (U). For non linear
systems this set can be only computed by nu-
merical approximations [12].
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