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Abstract

A control scheme for active vibration control of a flexi-
ble beam is proposed. The controller consists of a Lin-
ear Quadratic Regulator and of a spline based state
reconstructor. The weighting matrices of the LQR
are selected so as to modify only a limited number
of system’s poles, specifically the ones acting in the
frequency range of the disturbances, so limiting the
spillover phenomenon. On the other hand the spline
reconstructor gives an “instantaneous” reconstruction
of the state variables and spatially filters the beam
deformation measurements without introducing phase-
lag, and this contributes to increase the robustness of
the control scheme.

Computer simulations show that the proposed scheme
allows to reduce the vibration of a single-span beam
subject to a persistent, multifrequency disturbance,
reduces the interaction between controlled and un-
controlled dynamics hence increases the robustness
against spillover phenomenon.

1 Introduction

Flexible structure are characterized by low damping
factor, hence an active control scheme is necessary to
increase the damping factor. The design of these ac-
tive vibration controllers calls for a detailed dynamic
model of the flexible structure. Unfortunately the mo-
tions of flexible systems are described by partial dif-
ferential equations and, except for some simple cases,
no close solution of these equations can be expected.
To overcome this difficulty the partial differential equa-
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tions are usually replaced, via spatial discretization, by
a finite set of simultaneous ordinary differential ones.
Implicit in this approach is a system truncation: a sys-
tem of infinite order is replaced by a finite order one
(1],[2}.

It has been shown ([3],[4]) that a controller, designed
on a finite dimensional model approximation, can
destabilize the real system. This phenomenon was
firstly investigated by Balas in [5] and was termed
“spillover”. The spillover phenomenon is due to the
interaction between modelled and unmodelled dynam-
ics. The input spillover, i.e. the excitation of the un-
modelled dynamics by mean of the inputs, may deterio-
rate the performance of the control scheme, but it does
not affect the stability property of the system. On the
contrary, in the presence of a feedback controller, as the
deformation measurements contain both modelled and
un-modelled dynamics (observer spillover), the closed
loop system may be unstable These phenomenon is
dramatically emphasized in presence of dynamic ob-
servers needed for state feedback controllers.

The spillover phenomenon may be suppressed by
avoiding the interaction between modelled and un-
modelled dynamics. In order to reduce this interaction
various approaches have been proposed. In [1] the use
of a large number of sensors is suggested, in [6] an ob-
server is designed on the basis of a system model of
order greater than that used for the controller design,
in [5] the sensor data are prefiltered with a comb fil-
ter, in [7] and in [8] it is shown that a control system
based on distributed actuators and distributed sensors
is not affected by spillover phenomenon (for further
approaches see [9] and the references therein).




In this work we develop a technique for designing an
optimal state feedback controller which reduces the in-
teraction between modelled and un-modelled dynam-
ics without using distributed sensors. This goal is ob-
tained through a combined effect of a state observer
which reconstructs only some system modes, and of a
controller which modifies the dynamics of the recon-
structed modes only.

It is important to note that the energy stored in vi-
brating structures is usually concentrated in the first
modes of the system. Then it is possible to obtain good
performance by using a controller which increase the
damping factor of only the first modes without modi-
fying the high-frequency behaviour where the model
is less accurate. Such a controller can be designed
through a proper choice of the weighting matrices of
the performances index of an LQ regulator.

As far as the observer is concerned we propose to use
a state reconstructor based on spline shape functions
which interpolate the available deformation measure-
ments by taking into account the boundary conditions.
In particular a spline shape function for each class of
physical homogeneous state variables (e.g. displace-
ment, velocity of deformation, etc.) is defined. This
reconstructor is not based on a mathematical model
of the structure neither it use information about sys-
tem inputs, then it is intrinsically robust with respect
to parameter uncertainties and it may work correctly
even in presence of persistent disturbances. However
the most interesting property is that it operates as a
spatial filter, i.e. represents the spatial deformation by
means of only the low frequency modes.

In Section 2 the model of the vibrating structure, a
flexible beam, used for the controller design is de-
scribed. In Section 3 a procedure for the design of
an optimal controller which modifies the dynamic of
only a limited number of modes is developed. In Sec-
tion 4 the spline based reconstructor is presented. In
Section 5 the robustness analysis of the control scheme
is developed. Finally in Section 6 some conclusive re-
marks are presented.

2 Model of a Flexible Beam

In this paper we consider the one-dimensional can-
tilever beam shown in Fig. 1. By considering only
bending deformations in the vertical plane, the free

motions are described by the well known equation:

v (z,t) 8% 0%v(z,t
m(=) G a2 [E’%] =0 (@

where m (z) is the mass per unit of length at abscissa z,
v(z,1) is the vertical displacement, E1T, is the flexural
rigidity. The boundary conditions are

v(z,t)=0
atz =0 V¢ (2)
EIZ_M =0
Oz

and

8%v(z,t)
Bl =57 =0
atz=L Vt (3)
Pv(z,t)
Bl —5m— =0

where L is the length of the beam.

Z
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Figure 1: A cantilever beam.

In order to obtain a finite dimensional model, we di-
vide the flexible beam in n elements, and assume that
the shape of each of them is described, at each instant,
by the corresponding elastic strain. This hypothesis is
realistic if the inertia forces acting on the i-th element
and due to the distributed mass of the element, are
negligible with respect to all the forces exerted by the
remaining part of the structure on the extreme of the
element itself. This can be considered as a straightfor-
ward extension of the De Saint Venant principle.
This approach was developed by the authors in an ear-
lier paper [2]. The resulting dynamic model of the
beam in the presence of both control and disturbance
discrete forces is given by:

Mi+Fqg+Kq=1u 4)
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where ¢ = (v, a9, ..., vn+1,a,,+1)T is the vector of la-
grangian coordinates, 1.e. displacements v; and slopes
o; at abscissae z;, 1 = 1,...,n + 1 of the spatial dis-
cretization (z; = 0, 2,41 = L), M and K are mass
and stiffness matrix respectively, F' is the proportional
damping matrix and u is the vector of external gener-
alized forces (for further details see [2]).

Equation (4) may be rewritten in the equivalent state-
space form

. 0
z=|:_M0_1K _MI_IF]2+|:M_1:|u:Az+Bu
(5)

where

. . . . T N
z = (vg,ag,...,vn+1,an+1,v2,ag,...,vn+1,an+1) € R

(6)

Model (5), unlike the models based on the modal ap-
proach, is characterized by the fact that the lagrangian
coordinates and the generalized forces represent actual
displacements and actual inputs, respectively.

3 Feedback Controller

The main aim-of an active vibration controller is to
subtract elastic energy to the flexible structure. The
sources of this energy may be considered the distur-
bances acting on the system: earthquakes, wind, pres-
sure waves at the fuselage in turbofan, asymmetries of
the engine in cars, and so on.

All these disturbances present a limited frequency
spectrum. Hence the controller must be able to reduce
the resonance peaks of the system at the frequencies
within the disturbance bandwidth.

It is important to note that, even if in presence of
discontinuous disturbances the high frequency modes
may be excited, because of the exponential stability
property of system (4) and of the low amplitude of
their residues, they “naturally” goes to zero provided
that the control signal doesn’t excite them. As a con-
sequence the controller should be able to lower the
magnitude frequency response in correspondence of the
first n-resonance peaks of the system, where n essen-
tially depends upon the frequency spectrum of the dis-
turbances.

Although the frequency shaping technique [10] could
be used to allow this aim, unfortunately this technique
doesn’t guarantee robustness properties. Therefore we
propose to use an LQ regulator with a proper choice
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of the weighting matrices. This choice is based on the
following

Theorem 1 Let’s consider system (5), and, for any
integer v < N/2, let I’ = (I’IT Fg‘) be the eigenvector
mairiz of A, ordered with increasing values of the asso-
ciated eigenvalues, where I't € R2V*2”_ Then, for any
gwen positive number q, the LQ regulator minimizing
the performance indez

J= oosz uT Ru) d
| Qs+ R a ™
with
T A - 5~ | gl O
Q=r"TQr! Q—[ 0 0] (8)

modifies only the first 2v eigenvalues of the system.
Moreover only the dynamics associated with these
eigenvalues affect the control signal

Proof. The LQ problem given by system (5) and the
performance index (7), (8), can be rewritten in the
eigenvector basis, as

min J:/ (nT[q102" 8]7]+uTRu) dt  (9)
0

s.t.

. [4a o B

’7‘[ 0 Az]n+[l§2]u (10)
where nn = I}

Ay 0
[0‘ Az] = TI71A, A, € R¥*%  and

- - 1T
[Bl Bz] = I'"'B. Hence, by Lemma 1 given in
Appendix, Theorem 1 follows. |

z are the modal coordinates,

It is important to note that, even if in the con-
trol signal there are no contribution of the modelled
high-frequency dynamics, the direct feedback of ac-
tual measurements may introduce spillover. Indeed the
measurements contain all the frequencies of the sys-
tem, hence we must introduce a filtering system which
screens out the unwanted frequency.

4 State Reconstruction

In order to implement the proposed state feedback con-
troller, taking into account that only a limited num-
ber of measurements are available, a state observer is
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Figure 2: Spline interpolation function fitting the dates
(x) in the knots (o).

needed. Classical observers, besides to increase the or-
der of the controller, considerably deteriorate the per-
formance of the whole system especially in the presence
of model uncertainties and of unknown persistent ex-
ternal disturbances. Moreover their presence empha-
sizes the spillover phenomenon.

In this work we propose a technique that allows to ob-
tain an “instantaneous” reconstruction of state vari-
ables which works correctly even in presence of persis-
tent disturbances or parameter variations and reduces
the spillover effect [11]. The technique is based on the
spline approach.

The spline approach

Let § = (y1,- .., Ym) be msamples of an unknown func-
tion y(z) at m knots T = (Z1,...,Zm) (see Fig. 2). A
cubic spline interpolating these samples is composed by
r = m — 2 polynomials which coefficients fi1, ..., Bia,
i=1,...,r can be arranged in a vector f given by:

B = D(z)y (11)

where D is a matrix depending upon the abscissae Z;
of the knots and on boundary conditions imposed at
the extreme of the z-interval in terms of values of the
interpolated function and/or its derivative [12].

The spline reconstruction of the function y(z) at the
generic abscissa z can be written as

(=) = s(z,7) D(Z)y (12)

where s(z,T) is a vector function which selects the
piece of cubic spline at abscissa .
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As shown in [13], the error between g(z) and the ac-
tual value y(z) and the error between the z-derivatives
of §(z) and of y(z) are bounded and depends on the
maximum interval Az between two consecutive mea-
surement points. From equation (12) it follows that,
once the boundary conditions have been specified, the
values that the function § assumes in a finite number
of specified points z;,...,z, can be expressed in the
compact form

Y =5(z1,.. ., 20, Z)DE)§ = T(z1, ..., 2n, E)§ (13)
where
S(.‘L‘l,f)
S(z1,...,20,T) = (14)
s(zn,T)

The state reconstruction problem

Let’s return now to the single-span beam described in
Section 2. The state vector of the spatial discretized
model at instant ¢ is composed by the following vari-
ables:

[v(zg, t),.. ., v(Tnq1,t) a(z2,t),...,0(Tny1,t) 0(z2,1),

. T
N 13(1:,,1.1 s t) : d(zz, t), ceey d(z,..H, t)]

Let’s assume that a limited number k of vertical ve-
locity measurements v(t) = (v1,..., %) at abscissae
Z = (Z1,...,Zi) are available at each time instant.
Moreover, in virtue of (2) and (3), at the extreme z = 0
and z = L of the beam we can assume that, V ¢,

, ..
o(z,t) =0 9 :;S; ) _y
. atz =0 atz =L
(1) _, Boz,t)
0z o5 0
- (15)

Then, using the spline approach, we can reconstruct
the vertical velocity at the generic abscissa r and at
the points z5,..., 2,4, of the spatial discretization of
the beam. In particular by equation (12) and (13) we
obtain:

(16)

- o T -
(i)(:cg, 0, ..., 1)(1:,,+1,t)) = T(za, ..., 2041, E)0(t)

(17)

i(z,t) = s(z, Z)D(F)v(t)




As far as the remaining state variables are concerned,
namely the vertical displacements, the slopes and slope
velocities, they can be reconstructed by the vertical
velocities measurements in the following way:

(;)(Iht):"'v;](z"‘f'llt))T: T(z2”"’z"+l’f)/ ;)(T)dT

(18)
where it has been implicitly assumed v(z,0) = 0.
Moreover
- d ~
a(z,t) = Es(:c,i)D(f)i)(t) (19)
then
(&(22,), -, &(zn41,8)) =Sa(z2, - -, Tnt1,E) D(Z)5(t) =
=Ta(22,...,zn+1,f)‘l~')(t) (20)
(&(z2,1), ..., 8(2n41,1))T = Ta(z2s---,Zn41,E) [ 0(r)dr
° ()
where
d —
Es(::,z) .
Sa(xz, e ,In+1,f) = (22)
-Es(:c,f) ~
T=Tng

The state reconstructor scheme is shown in Fig. 3, the
re-ordination block is a combinatorial one which places
the reconstructed variables in the same order of the z
vector. It is interesting to note that the proposed re-
constructor is not based on the mathematical model of
the beam and it does not use any information about
inputs. Then it is intrinsically robust against paramet-
ric variations and works correctly also in the presence
of external persistent disturbances, provided that the
disturbance frequencies don’t exceed the frequencies
associated with the reconstructed modes.

An other interesting feature of the proposed state re-
constructor is its intrinsic filtering property. As a mat-
ter of facts, the beam deformation is approximated, at
each instant, by means of a cubic spline. In [13] it
is shown that the spline interpolation function has the
property of minimizing the overall curvature among all
functions fitting the measured values. Then, at each in-
stant, the deformation is approximated by means of the
lowest spatial frequency modes. This spatial filtering,
unlike the classical time-filtering, does not introduce
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phase-lag, hence it -does not deteriorate the stability
properties. A practical consequence of this filtering
action is that, even thought the disturbance inputs ex-
cite the high-frequency modes of the system, they tend
to be screen out in the reconstructed state variables.
In the next section we will show, via computer simula-
tions, that the spline observer can dramatically reduce
the spillover phenomenon.
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Figure 3: Reconstructor schema.

5 Simulation Results and Ro-
bustness Analysis

In order to show the effectiveness of the proposed
controller, we consider a flexible system shown in
Fig. 1 with the following parameters: EI, = 2.55 -
103 [Kg - mm®/sec?], m=0.28 - 10~% [Kg/mm], L=
2500[mm]. Moreover three force actuators at z; =
1100 [mm}, z; = 1650 [mm], and z3 = 2200 [mm)],
and three collocated vertical velocity sensors have been
considered. In order to obtain a finite dimensional
model, the beam was divided into 9 parts of the same
length. Moreover we consider the presence of the fol-
lowing force disturbance acting vertically at the tip of
the beam

d(t) = z ai [1 + sin(w,t)] sin (kwt + dsin(wpt))

k=1
(23)
where w = 250 rad/s, w, = 25 rad/s, wp, = 0.8 rad/s,
d=0.1, a;=5 mN, ay=3 mN, a3=2 mN (see Fig. 4).
On the basis of the disturbance spectrum, of the nat-
ural frequencies of the system and of the sensor loca-
tions, the matrices Q and R in the performance in-
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Figure 4: Disturbance time history.
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dex (7) were chosen so as to penalize the first three
modes:

oI 0] - .
Q =10%T T[(;s 0]1 1. R=diag[t,1,1] (24) o8

-1 1 n 1 1 L 1 1 n n

In Fig. 5 the bode diagrams of the open loop system 1 SR — P T T T
and of the closed one are shown. It is interesting to
note that the the high-frequency peaks are not modi-
fied. The performance of the proposed controller (op-
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Figure 6: Open loop behaviour.
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timal feedback of the reconstructed state) is shown by
comparing the open loop behaviour (Fig. 6) and closed
loop responses (Fig. 7).

In.order to evaluate the property of reducing the
spillover effect of the proposed control scheme, we con-
sidered a model obtained by dividing the beam in 18
parts. It has been noted that, by using the direct feed-
back of the state variables associated with the “9 part-
model”, the closed loop system becomes unstable. This

Figure 7: Closed loop behaviour.
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is not the case when the reconstructed state variables
are used.

To have a confirmation of the stability robustness prop-
erty of the proposed control scheme with respect to un-
modelled high frequency dynamics, we have schema-
tized these dynamics as multiplicative unstructured
perturbation. In other terms we assumed that the ac-
tual infinite-dimensional transfer function of the beam
P,(s) can be written as:

Py(s) = (I + A(s)) P(s) (25)

where P(s) is the transfer function of the “9 part-
model”, and A(s) represents the un-modelled high fre-
quency dynamics. Note that equation (25) represents
the multiplicative uncertainty at the plant output (see
Fig. 8) which is the critical point for the spillover phe-
nomenon. A measure of the robustness of the con-
troller is given by the so called “generalized stability
margin function” given by:

1
7 (K(w)(I - K(jw)P(jw))~1)

In [14] it is shown that if the transfer function P(s) is
proper and has no poles on the imaginary axis and the
perturbation A(s) is proper and is such that A(s) and
(I+A(s))P(s) have equal numbers of poles in the right
half plane then the compensator K(s) which stabilizes
P(s) will also stabilize all perturbated system such that

l(w) =

(26)

7(A3jw)) < (w) (27)

>F~ A(s)

+ P(s)

K(s)

Figure 8: Output multiplicative uncertainty.

In Fig. 9 the robust margin functions {(w) for various
control schemes are shown. In particular both an LQ
controller with the state weighting matrix @ = aI, and

with @ chosen as suggested in Theorem 1 are shown.
Finally, for the latter case, also the presence of a spline
reconstructor 1s considered. We can see that a suitable
choice of the control law and the use of a spatial filter-
ing as the spline reconstructor allows to dramatically
increase the robustness margin of the control scheme.

control schema with spline reconstructor

140 . . . . "
10° 10' 10° 10* 10 10° 10°
{rad’s]
Figure 9: Diagram of the robust  margin
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1/7 (K(I — KP)™!) for different control schemes.

6 Conclusion

In this paper a control scheme for flexible system was
presented. The proposed control is based on a proper
LQ regulator and on a spline reconstructor. The Q and
R matrices in the LQ index have been chosen so as to
weight a limited number of modes only. The spline
reconstructor, unlike classical dynamic observer, is an
“instantaneous” estimator of the state variables and is
not based on a copy of the system, hence it is intrinsi-
cally robust. Moreover the reconstructor introduces a
spatial filtering on the high-frequency modes which al-
lows to screen out the un-modelled dynamics without
introducing any phase-lag in the control loop.

It has been shown that this controller is robust against
the spillover phenomenon.

Appendix




Lemma 1 Let us consider the system

.| A0 B,
x_[o A2]1'+[Bz]u (28)
and the following performances indez
J :/ (=T [ @ 0 ]x+uTRu)dt (29)
o 0 0

where Q1 > 0 has the same dimensions of the A; block.
If the Ay matriz is Hurwilz then the oplimal feedback
control modifies the eigenvalues of A; matriz only.

Proof. 'The only semi-definite positive solution of the
Riccati equation is

P 0] (30)

pefB 0

where P; is the solution of the Riccati equation:

A1TP1 + P Ay - PlBlR-lBlTPI +@1=0 (31)

Hence the closed loop matrix i1s given by

A, = [ A —BiR'BTp, 0 }

—BQR_IB?PI Ay (32)
l.e. only the eigenvalues of A; are modified.
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