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Abstract. In the paper linear abstract retarded dynamical
systems defined in infinite-dimensional Hilbert spaces
are considered. Using frequency-domain methods and
spectral analysis for linear selfadjoint operators necessary
and sufficient conditions for approximate relative
controllability are formulated and proved. The method
presented in the paper allows to verify approximate
relative controllability for abstract retarded dynamical
systems by consideration approximate controllability of
suitable simplified abstract dynamical systems without
delays. Moreover, as an illustrative example approximate
relative controllability of retarded distributed parameter
dynamical system is investigated. Presented results
extend to more general class of retarded dynamical
systems controllability theorems known in the literature.
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1. Introduction.

Controllability is one of the fundamental concept in
modern mathematical control theory [1], [4]. Roughly
speaking , controllability generally means , that it is
possible to steer dynamical system from an arbitrary
initial state to an arbitrary final state using the set of
admissible controls. In the literature there are many
different definitions of controllability which depend on
the type of dynamical system [1], [4], [7], [11], [13-17],
[20], [22], and [24]. For infinite dimensional dynamical
systems it is necessary to distinguish between the notions
of approximate and exact controllability [1], [3], [4], [5],
[6], [7], [14], [16], [20], [22], and [24]. It follows directly
from the fact, that in infinite-dimensional spaces there
exist linear subspaces which are not closed [4]. On the
other hand, for retarded dynamical systems there exist
two fundamental concepts of controllability, namely
relative controllability and absolute controllability [1],
[4], [7], [11], [13], and [17]. Therefore, for abstract
retarded dynamical systems defined in infinite-
dimensional spaces the following four main kinds of
controllability are considered: approximate relative
controllability,  exact relative  controllability,
approximate absolute controllability, and exact absolute

controllability. The present paper is devoted to a study of
the approximate relative controllability for linear infinite-
dimensional retarded dynamical systems defined in a
Hilbert spaces. For such dynamical systems direct
verification of the approximate relative controllability is
rather difficult task. Therefore, using frequency-domain
methods [1], [8], {13] it is shown that approximate
controllability of linear retarded dynamical system can be
checked by approximate controllability criteria for
suitable defined simplified infinite-dimensional
dynamical system without delays. General results are
then applied for verification of approximate relative
controllability for distributed parameter dynamical
system with one constant delay in the state variable.The
results presented in the paper extend to a more general
class of linear abstract retarded dynamical systems
previous controllability theorems given in [1], [3], [4],
[8], [11], [13], [16], and [22].

2, System description and basic definitions.

First we shall give the basic notations and terminology
used throughout present paper. Let X be separable
Hilbert space. For a set E c X symbol Cl E denotes its
closure. For a given real number h > 0 we shall denote by
Lx([-h,0],X) separable Hilbert space of all strongly
measurable and square integrable functions from [-h,0]
into X. Let us introduce the space [1], [4], [9], [11], [13],
Mx([-h,01,X) = X x La([-h,0],X) denoted shortly as M,
which is also separable Hilbert space with standard
scalar product
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Ay : X 2 D(Ag) — X denotes linear generally unbounded
self adjoint and positive definite operator with dense
domain D(Ay) in X and compact resolvent R(s;Aq) for

all s in the resolvent set p(Ag). Then operator Ay has
following properties [2], [4], [22], and [24] :




1) Operator A; has only pure discrete point spectrum
op(Ag) comsisting entirely with isolated real positive
cigenvalues

O<si<sa<..<§<...  , limyesi=+o

Each ecigenvalue s; has finite multiplicity n< o
1=1,23,.. equal to the dimensionality of the
corresponding eigenmanifold .

2) The eigenvectors Xz € D(Ag) , for i=1,23,...
k=1,2,3,....n; , form orthonormal complete set in the
separable Hilbert space X .

3) Ao has spectral representation
im0 kmn

Ax=Y5Y (x) x5 for x€D(4)4
im] k=1

Fractional power Ag'? of the operator Ag can be defined
as follows

im0 k=n;

onx = ZS'% Z(x,xik )X x, forxe D(Ao}é)

i=] k=1

D(A05)={X€ X fsii::(x,xik>xl2(oo}

Operator A2 is selfadjoint and positive-definite with
dense domains in X.

5) Operators Ag and A generate analytic semigroups
on X. '

We shall consider linear abstract retarded dynamical
control system described by functional differential

equation [9-13]

x(f) = Ayx(t) +cAl x(t - h) + jirfbjuj 0 @1

J=1
with initial conditions
x(0)=g’ € X x(®) = g'(t) € Ly([-h,0],X) (2.2)

where h> 0 is a constant delay and c € R is a given
constants,

beX , for j=1,2,3,...m.

It is generally assumed that admissible controls
u;(t) € L(J0,0),R) for j=1,23,..m.

It is well known that retarded system (2.1) with initial
conditions (2.2) has for t>0 unique so called mild
solution x(t;g,u) € X [9], [18-19], In dynamical system
(2.1) the space of control values is finite-dimensional and
control operator B : R™ — X is given by

j=m

Bu=Y b u (1) 2.3)

=

Since X isa Hilbert space, then adjoint operator
B": X - R™ is defined as follows [13]

B ({86 (8) ), )

2.4)
In what follows we shall give short comments on spectral
decomposition of the retarded dynamical system (2.1).
The detail analysis of this problem can be found in [11],
[12], [25].
First of all, for each z € C we introduce the densely
defined closed linear operator

A(z; A, AP) = zI — A, - cexp(-zh) 4F  (25)

where I denotes the identity operator on X. The retarded
resolvent set p(Aq,Ao'"?) we understand as the set of all
values z € C for which the operator A(z;Ao,Ao”z) has a
bounded inverse with dense domain in X. In this case
A(Z; A0, A0 is so called retarded resolvent and denoted
by R(z,AuA¢). The complement of p(Ag,Aot™) in the
complex plane is called the retarded spectrum and is
denoted by o(Ao,Ao”z). It is well known that the retarded
resolvent set p(Ao,Aom) is open in C and retarded
resolvent R(z;Ao,Ao”z) is analytic function for
z e p(Ag,Ag?). Let us denote by po(Ag,Ag”)  the
connected component of the resolvent set p(Ao,Aollz)
which contains the right half-plane of the complex plane.
Let x(t;g,0) for g € My([-h,0],X) be mild solution of
homogeneous dynamical system (2.1). Moreover, define
family of linear bounded operators S(t) : M; - M,, for
t>0and g € M; by

S(Hg = (x(1,8,0) , x(s;8,0)) (2.6)
where x(s;g,0) = x(t+s;2.0) , s € [-h,0] (2.7)

Then S(t) is strongly continuous semigroup of linear
bounded operators on M,. Let A be the infinitesimal
generator of semigroup S(t). Since operator A, has
compact resolvent then spectrun o(A) is pure discrete
point spectrum consisting entirely with countable set of
eigenvalues. In fact we have

jm00

o (4)=Jo, | 2.8)

i=1

where

o, = {z €C:A(2)=z~s,— cexp(—zh)si% = 0}
for i=123,.  (29)




Now, we shall introduce various concepts of
controllability for retarded dynamical system (2.1). It is
well known that for retarded dynamical systems there
exist two fundamental notions of controllability namely,
related controllability and absolute controllability. In the
present paper we shall concentrate on the relative
controllability. Since dynamical system (2.1) is defined in
infinite-dimensional space X then it is necessary to
distinguish between exact relative controllability and
approximate relative controllability. However, since
control operator is finite dimensional and therefore
compact, then dynamical system (2.1) cannot be exactly
relatively controllable for infinite-dimensional space X
[21], [23]. Thus , in the sequel we shall concentrate on
approximate relative controllability. First of all, let R,
and R, , t > 0 denote attainable sets given by

R ={x(t,0,u)e X u€ L,([0,¢],R™)}
and R,=|JR (210)

t>0

Definition 2.1. Dynamical system (2.1) is said to be
approximately relatively controllable in time t> 0 if

CiIRy=X.

Definition 2.2, Dynamical system (2.1) is said to be
approximately relatively controllable in finite time if

CIR,) =X.

Several others definitions of controllability for retarded
dynamical systems can be found in monographs [1] and

[4].
3. Approximate controllability.

In this section we shall formulate and prove criteria for
approximate relative controllability in finite time of
retarded dynamical system (2.1). First of all we shall
introduce the following notation [1}, [4], [22]

(bl,x,.,>x (bz,x“>x ...... (bm,x,.,>x
B - (bl,xn)X (bz,xn)\, ...... (bm,xn)A
(b, ,x,,,‘) (b2 X )X ...... (bm,xml )X

Jor =123 .. 3D

Let us recall modified version of necessary and sufficient
condition for approximate relative controllability in finite
time.

Lemma 3.1. [13]. Dynamical system (2.1) is
approximately relatively controllable in- finite time if and
only if

(\KerB"R(z; 4,, A%) = {0} (32)
Z€ Po(Ao=Ao}é )
Theorem 3.1. Dynamical system (2.1) is approximately
relatively controllable in finite time if and only if
rank B;=n; for each i=1.23,... 3.3)

Proof. Necessity. By contradiction. Suppose that there
exists index ip> 1 such that

B <n, G4

Therefore, since the rows of (3.1) are linearly dependent,
then there exist real coefficients yy ,

k=n,~0

k=123,.,7,, Y.¥; >0 such that
k=1

k--n,-o k=n,-0

I;Yk<b]"xi°k>x - ; <bf’ykxiok>X =

k=n;
=<bj’ kZkaiok> =<bj’x0>X =0
=] X
for j=123...m

k=n,
where the nonzero element x° = Zy x X~ Therefore,
k=1
by formulas (2.4), (2.5), (2.9) and (3.5) we immediately
deduce that there exist an eigenvalue z, € O, and

nonzero element x° € Ker A(zo;Ao,Aom) such that such
that

B*x° =(<b1,x°>X,<b2,x°>X,...,(bm,x°>X) =0

Let ze p(Ao,Aom) . Since operator Ao s selfadjoint,
then by formula (2.5) operator A(z;Ao,A¢'?) is normal
and moreover its inverse operator A(z;AgAo )
'=R(z;A0,A0?) is also normal operator for all
z € p(Ao,A0'™). Furthermore, by formulas (2.6) and (2.9)
for a given z € p(Ao,Ao”Q) eigenvalues of the retarded
resolvent R(z;Ao,Ao”Q) are equal to A e C, for
i=1273,... Therefore, for x € X we have the following
equalities




R(z; Ao, A3 )%, = (oI - 4, - cexp(-zh) AF) " x, =

k=n,-o

=(d - 4, —cexp(-zm) AF) " Y v, x, =
k=1
ksnjo

= (2, =5, —cexp(-z,h)s )" Yy,x, =
k=l

=((A, (Z))'x° (37

Thus, from (3.5), (3.6) and (3.7) follows that

B*R(z; 4,, Al )x, = B*((A, (z,)) "%, =
=((A, (z))'B*x, =0
for each z€ p(4,,A?) (38)

This contradicts (3.2) and therefore, by Lemma 3.1
dynamical system (2.1) is not approximately relatively
controllable in finite time. Hence necessity follows.

Sufficiency. Since operator A, generates an analytic
semigroup T(t) for t>0, then (3.2) is necessary and
sufficient condition for approximate controllability in any
time interval of dynamical system without delays [20],
22]

j=m

X(£)= Ax()+ Y _b,u, (1) (3.9)

=

From (2.10) follows that attainable sets for dynamical
systems (2.1) and (3.9) are the same for t € [0,h], then by
Definitions 2.1 anad 2.2 follows approximate relative
controllability in finite time for dynamical system (2.1).
Thus Theorem 3.1 follows.

Corollary 3.1. Suppose that all the eigenvalues s; |,
1=1,23,... are simple, i.e. n;=1 fori=123,... Then
the dynamical system (2.1) is approximately relatively
controllable in finite time interval if and only if

J=m

Z(bj,xi >i #0 Jor

=1

i=123,... (3.10)

Proof. From Theorem 3.1 immediately follows that for
the case when multiplicities n=1 for i = 123, ..
dynamical system (2.1) is approximately relatively
controllable in finite time if and only if m-dimensional
TOW Vectors

B=|(ur), (ox) o (bws). |#0
for i=123, .. (311

Since relations (3.10) and (3.11) are equivalent then,
Corollary 3.1 immediately follows.

Corollary 3.2. Dynamical system (2.1) is approximately
relatively controllable in finite time if and only if

dynamical system without delays
j=m

X(0)=A4,+ Y bu,(f) 3.11)
j=1

is approximately controllable in finite time.

Proof. Comparing approximate controllability results
given in [1], [4] and [22] with equalities (3.3) in theorem
3.1 immediately follows that retarded dynamical system
(2.1) is approximately relatively controllable in finite
time if and only if dynamical system without delays
(3.12) is approximately controllable. Hence, Corollary
3.2 follows.

4. Example.
Let us consider retarded dynamical system with

distributed parameters described by the following partial
differential equation

w,(t,y)=wm(z,y)+wyy(t—h,y)+}':]b,(y)u,(t)

4.1

defined for t>0 , y € [0,L], with the homogeneous
boundary conditions

Ww(t,0) = w(t,L) = wyy(t,0) = Wy, (LL) = 0 (4.2)
and with initial conditions

w(0,y) = g°(y) € Ly([0.LLR) = X

w(ty) =g'(ty) € Lo([-h,0],X) (4.3)

bi(y) =bj e L[O,LLR) =X ,j=
functions,

1,2,3,...,m , are given
ui(t) € Lo([0,0),R) , j = 1,2,3,...m are scalar control
functions,

h>0 is a constant delay.

Retarded linear partial differential equation (4.1) can be
expressed in abstract form (2.1) by substituting
w(t,y) = x(t) € X and using linear unbounded differential

operator

Ay : X o D(Ap) - X defined as follows




Aok = AgW(Y) = Wiy (¥) .4)
D(Ag) = { x = w(y) € HY([O,LLR) :
W(0) = W(L) = Wyy(0) = Wy (L) = 0 } @.5)

where symbol H*([0,L],R) denotes fourth-order Sobolev
space.

The linear unbounded differential operator A, besides the
behaviour stated in section 2 has the following properties
(1], [4], and [22]

1. Operator Ao is self-adjoint and positive-definite
operator with dense domain D(Ap) in Hilbert space X .

2. There exists a compact inverse Ao and consequently ,
the resolvent R(s;Ag) of Ag is a compact operator for all s

€ p(Ao) .

3. Operator Aq has a spectral representation

4x = Aw(y) = fs,.(x,x,-)xx,- =

jm00

= ):Si[f w(y)x, (y)ajz}i )

i=]

where s;> 0 and x(y) € D(Ag) , i=1,2,3,... are simple
(multiplicities n; = 1) eigenvalues and corresponding
eigenfunctions of Ay, respectively. Moreover

(5) o2V a2
i_(L) ’ xz(y)—(L) SI“(L) fO"yE[O,L]

and the set {x(y) , i=1,2,3,... } forms a complete
orthonormal system in X.

4. Fractional power Ao can be defined by

AO%x= iis}%(x,x)){xi , for x€ D(Ao%) which

i)

is also a selfadjoint and positive-definite operator with a
dense domain in X.

Moreover, it should be remark that, although operator A,
being a differential operator does not at all ensure that
fractional power is also a differential operator. However,
particularly for the operator Ag'? we have

/

\
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Afx = Afw()=-w, ()
D(A) = {x=w(y)€ X:w(0)=w(1)=0} (46)

Therefore, linear unbounded differential operator Ag
defined by the formulas (4.4) and (4.5) satisfies all the
assumptions stated in section 3. Hence linear retarded
partial differential equation (4.1) has the following
abstract representation

Jj=m
X/(1) = Ax(t) = AL x(t =)+ Y b,u (1) @.7)
=

Therefore, using general results stated in section 3 it is
possible to formulate necessary and sufficient condition
for approximate relative controllability of retarded
dynamical system (4.1).

Theorem 4.1. Dynamical system (4.1) is approximately
relatively controllable in finite time if and only if

])f j\/%bj(y)sin("—zljgy 20

for i=123,.. (48)

Proof. Let us observe, that retarded dynamical system
(4.1) satisfies all the assumptions of Corollary 3.1.
Therefore, taking into account analytic formula for the
eigenvectors x(y) € Lx({0,L],R), i=1,2,3... and the form
of scalar product in Hilbert space Lx([0,L],R), from
relation (3.1) we directly obtain inequalities (4.6). Hence,
Theorem 4.1 immediately follows.

5. Final remarks.

In the present paper some controllability problems for
linear abstract retarded dynamical systems have been
considered. Using frequency-domain methods and
spectral analysis of linear unbounded selfadjoint
operators necessary and sufficient conditions for
approximate relative controllability in finite time have
been formulated and proved. These conditions allows us
to investigate approximate relative controllability in’
finite time for linear abstract retarded dynamical systems
by checking approximate controllability of abstract
dynamical systems without delays.The presented results
can be extended to cover more general types of linear
abstract retarded dynamical systems.
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