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1 Introduction

In the last years the study of invariant sets in the case
of dynamical systems in presence of unknown input
disturbances and/or parametric uncertaintis in the dy-
namic matrices of the system has had some attention
in literature. We cite as an example the papers [8], [9],
[10], [12], [18], [20] and [14]. See in this context also
the papers [7] and [13], where the robust controlled in-
variant problem was addressed, when the involved sets
are linear subspaces.

It is evident that the analysis of invariant sets is a
subproblem of the more general problem of constrained
system control. This paper is mostly based in fact
on results and methodologies developed by the same
author on this matter.

More in particular, we are concerned with the study
of maximal sets of initial states, contained in a given
set, starting from which a pointwise in time constraint
on the state is satisfied, for any unknown disturbance
in a given set.

The approach is based on the evolution, backward
in time, of the set of admissible states. This backward
evolution was already studied in [6] (see also [2] and [4]
where the same result is given in an earlier version),
to solve the general problem of deriving closed loop
optimal controller for linear dynamical systems with
linear constraints and linear functional. Moreover a
similar approach was also used in [5] to introduce a
generalization of positive systems.

Some authors (see [11] and [19]) solved problems in
linearly state-control constrained systems with a sim-
ilar backward recursion. I think that some results in
this paper (theorems 2 and 3, section 3) can even be
derived from results in [11] as a particular case.

The main advantage of our technique (see [6]) is that
we do not use projection algorithms, as done in [11]
and [19], so that we give an explicit expression of all
the involved polyhedra. Thanks to this explicit ex-
pression, In this paper we are able to give necessary
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and sufficient conditions for the existence of a ball in
the disturbance space exists such that the given con-
straints on the state are satisfied for all time (section
4). If such a ball exists, we can compute also its max-
imum radius. Moreover we give necessary and suffi-
cient conditions such that a bounded set, positively
invariant with respect to a given but arbitrary set of
disturbances, exists (section 5).

Another advantage is that, from a computational
point of view, in front of a good deal of numerical
effort, required off line, the computations to be per-
formed on line to solve the problem of determining the
maximal positively invariant set in a given set, with
respect to a set in disturbance space, are very simple
(no more than a constant number of inner products at
each step). The problem of considering also the control
(problem of controlled invariance) is an easy general-
ization, we do not perform here for space reasons.

All the results in this paper are stated both in gen-
eral, and in the case of polyhedral sets.

See [16] for a more complete discussion and exam-
ples. In [17] the problem of controlled invariance in dis-
crete time linear systems with disturbances and para-
metric uncertainties is addressed.

2 Notations and problem defi-
nition
Let us consider the system
z(t + 1) = Az(t) + Dé(t) (1)
with the constraint
() eX Vo(t) €A, tp <t LT (2)

where 2(t) € R™ is the state, 6(t) € R% is a disturbance
and A is a set in disturbance space. Somewhere in
the sequel the dependence of § on time is omitted, to




simplify notations. The horizon T may be finite or
infinite.

The symbols N'(F') and R(F) denote the null space
and the range of some matrix F'. The symbols £(A),
C(A) and Co(A) denote respectively the linear, convex
and conical hull of some set A. We denote the inte-
rior and relative interior of some set A respectively by
int(A) and rint(A). Given a matrix F' the symbol F;
denotes the ith row vector of F and given a vector f the
symbol f; denotes the ith component of f. The symbol
f > 0 means that all the components of the vector f
are nonnegative. If C is a convex cone, the polar cone
to C is the set C? = {y : (y,z).< 0, Vo € C} The
set R(F)X NP, F € R™*", being P the nonnegative
orthant of the space R™, is a pointed polyhedral cone.
A set of vectors formed taking a nonzero vector from
each of its extreme ray is called minimal generating set
of R(F)1 N P and is denoted by gen(F). We denote
by Q(F) € R™*™s n, = card(gen(F)), the matrix
whose column vectors are the elements of gen(F). In
[3] an efficient algorithm is given for the computation
of gen(F).

We make use of a result which will be recalled now
for readers convenience.

It was proved in [1] that a polyhedron P(F,v) =
{z : Fz < v} is nonvoid if and only if

Q(F)'v > 0. (3)

We give the following definition:

DEFINITION 1: Assume DA bounded. The system
(1) is A- stable if Vz(to) € R™ a neighborhood Ny,)
(possibly depending on z(tg)) of the origin exists such
that z(t) € Ny, Yt > to, Y6(t) € A.

The first problem we address in this paper is the
following:

P1: Find the maximal set X;, of initial states, such
that the constraint (2) is satisfied. If such a set of
initial states is nonvoid, we say that problem P1 has
solution.

The second problem is the following:

P2: Let us assume that the set A is a ball in some
norm. Given the set ¥, find the maximal ball in dis-
turbance space such that problem P1 has solution.

The definition of positive invariance with respect to
some disturbance set A is the following:
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DEFINITION 2: A set X is A-positive invariant
(shortly A-p.i.) if AX + DA C X.

In the infinite horizon case, we can reformulate prob-
lem P1 as:

P1’: Given the sets ¥ and A, find the maximal A-
positively invariant set contained in ¥. Denote this
last set by X*.

Another question that seems us interesting is that
of characterize a system, stating if a bounded non-
void A-positively invariant set exists or not (problem
P3). We perform our analysis for some given but ar-
bitrary bounded disturbance set A. Notice that in the
undisturbed case this problem has always solution, for
any system, because the set {0} is surely positively
invariant, and moreover it is contained in any other
positively invariant set.

We study all the above problems both in general,
with no assumption on the involved sets, both in the
case of polyhedral sets. In this last case we give com-
putable conditions.

A final remark is on order. We refer to systems in
the form (1), where output variables are not defined.
This i1s not a limitation, because a constraint on the
output implies a constraint on the state, even in case
of additive output disturbances. This is evident in the
polyhedral case. In fact if we consider the systemn

z(t+ 1) = Az(t) + D6(t)

y(t) = Cz(t) + En(t)
where 7 € Il = {7 : M7 < m}, with the constraint:

yt)eY ={y:Sy<s}, 0<t<T

we can say that y(t) € Y if and only if z(¢) € £ = {z :
SCr < s— g} where ¢; = max,en(SE)im, to <t < T.

3 Problem P1

We proved in [14] that the maximal A-p.i. set con-
tained in a given set ¥ is well defined and unique, if
3 is convex. In the following theorem we state some
other properties of A-p.i. sets, which are useful to de-
duce properties of maximal A-p.1. set, contained in a
given set.

THEOREM 1. Assume DA convex and let X be a
nonvoid A-p.1. set.

i) The set C(X) is A-p.1.

— - —
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i) If DA is a cone, Co(X) is A-p.i.

iif) If DA is a subspace, £(X) is A-p.i.

iv) The set X is A-p.i.

v) If0 € DA, the set aX is A-p.i., for all a > 1.

vi) Let us assume int(DA) # @, 0_€ int(DA) and
DA symmetric. If a bounded nonvoid A-p.i. set X
exists, the system (1) is A- stable.

PROOF:
1) Given two arbitrary points z; and z, in X, we
can write:

Az, +DACX
Azy+ DAC X

and therefore, given arbitrary a; > 0 and a; > 0,
a1 + ay = 1, from the convexity of DA it follows that

A(a1zy + asz3) + DA C (o1 X + azX)
and finally
Az+ DA CC(X) Vze(C(X)

i) If X is A-p.i. it follows that AX + DA C X.
Therefore «AX + DA C aX, for any nonnegative a €
R. Moreover if Az; + DA C X, 1 € X and Az, +
DA C X, z3 € X it follows that A(z; + z2) + DA C
(X 4+ X) and hence Co(X) is A- p.i..

iii) The proof is straightforward. Apply the same
technique of the point ii) above.

) If AX+DA C X it is also true that AX + DA C
X and hence AX + DA CX.

v) If X is A-p.i. it follows that AX + DA C X.
Therefore «AX + aDA C aX, for any o > 1. More-
over if 0 € DA we have that DA C aDA and hence
aAX + DA CaX, for any o > 1.

vi) If DA is symmetric, and a A-p.i. set X exists, we
have that AX + DA C X and also —AX + DA C —X.
Therefore, applying statement i) of this theorem, the
set Z = C(XU—-X)is a A-pi. set. It is easy to
see that 0 € Z and from AZ + DA C Z we deduce
that DA C Z. Therefore, because int(DA) # 8, it
follows that int(Z) # @ and 0 € int(Z), because 0 €
int(DA). This means that for any initial state z, or
zo belongs to Z or a value a,, > 1 exists such that
Zg € az,Z. In statement v) of this theorem we have
stated that aZ, o > 1,is A-p.i., if Z is A-p.i. and if
0 € DA. Therefore, in either cases above, z(t) belongs
to a neighborhood of the origin, Vzo, V¢ and for any
disturbance, and hence, by definition, the system (1)
1s A-stable. O

Consider the sequence of sets:
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Ft:{.l‘Al'+BA(_:Et+1} t:toT—l (4)
Ypr=X%X

We can state the following theorem:

THEOREM 2.

i) Problem P1 has solution if only if the set ¥, is
nonvoid for any t,to <t < T.

i) Xy = St

iii) The set X* is given by lime,_, _ o, Ty,

PROOF: It suffices to note that T'y_, is the set of
all and nothing but the states admissible with respect
to the constraint at T, i.e. the states starting from
which the constraint at 7 is satisfied. The set Lp_; is
the set of states that enjoy the above properties and
moreover satisfy the state constraint at 7 — 1. This
last set £7_; plays the role of state constraining set at
T'—1 for the second step of the recursion. Generalizing
at a generic ¢, we can say that ¥; is the set of states
admissible with respect to the constraints at ¢t > ¢, and
hence the statements follow. O

From the above proof, it is evident that, because
the admissible states with respect to the constraints at
t > 1,1t <T, are also admissible with respect to the
constraints at t > {5, ¢ < T', 13 > t), the sequence {%,;}
1s monotone decreasing, ie. L7 D Xp_; D ...%; D
LD,

We can formulate the following corollaries of theo-
rem 2, which consider three relevant particular cases.

The first one states a necessary and sufficent condi-
tion such that the set ¥ is A-p.i., so that the backward
recursion defined in theorem 2 reduces to only 1 step.

The second one states a necessary and sufficient con-
dition such that the backward recursion defined in (4)
becomes finite, even in the infinite horizon case.

The third one states a condition such that it is pos-
sible to remove the constraints z(t) € £, t =ty,...1,
for some t. The statements are self-evident and there-
fore the proofs are omitted. (See also [5] for details on
this matter).

COROLLARY 1. X* =X ifand only if © C T'p_;.

COROLLARY 2. X* = X; for some t if and only if
E{_l = Et‘

COROLLARY 3. We can remove the constraint
z(t) € X, t =to,...t, obtaining the same set X,
as in the original problem, if and only if Ty C ¥.




3.1

In this subsection, as in the subsequent subsections
where the polyhedral case i1s analyzed, we assume that
the sets ¥ and A are polyhedral, 1.e.;

The polyhedral case

Y={z:Gz<v,G€ R}
A={6:F§<hFeR>Y

(5)
(6)

With these assumptions, theorem 2 is reformulated
in the following

THEOREM 3.
i) Problem P1 has solution if and only if the poly-
hedron

Ty ={z:G()xr < g(t)} (7)
where
G(T) =G
G(t):(G(tgl)A> t=to,...T—1 (8)
g(T)=v
g(t):(g(t+lg—g(t)) t=to,..T—1 (9)
g(t)i = Igleag([G(t +1)D];6 (10)

is nonvoid for any t in the set [to,T].

ii) In the finite horizon case the maximal set X, Is
a convex polyhedron and coincides with the set ¥, .

1ii) The set X* is convex and is given by
limto_._oo Eto-

PRQOF: We only outline the proof. In this case
I'roy = {z :.G(T)Az < ¢g(T) — §(T — 1)}. The set
¥; = Ty N ¥ can be obtained generalizing the above
expression of I'y_q to arbitrary ¢.0

Performing the substitutions in formulas (8) and (9),
it is easy to give the explicit expression of G(t) and g(t)
as follows:

GAT—t
GAT——t—l
G(t) = : t=to,... T -1
GA
G
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GAT—t—-l
GAT—t—2
§(t); = max : D6 (12)
GA
G i
or, equivalently
GAT—t—l
GAT—t—2
§(t): = max : Y (12)
GA
G

REMARK 1: It 1s useful to remark that if A is
simmetric, it follows that the vector g(t) is nonnegative
for any ¢.

Theorems 4 and 5 below are the reformulations of
corollaries 1 and 3, in the polyhedral case.

THEOREM 4. The set ¥ is A-p.1. if and only if

max(GA)z < v, —max(GD);6, i=1...g (13)

€L seA

PROOF: Apply corollary 1, remembering the ex-
pression of the set I'p_; given in theorem 3 and notic-
ing that 3 C I'y_; if and only if conditions (13) are
verified.O

THEOREM 5.
maxeer, Giz < vy,
lowing expression:

If for some t, t;, < t < T,
i=1...9, then X, has the fol-

Xi, = {z : G)A" "z < g() - 2}
2z = %aﬁ([G(i)D]ié + %rleaA)([G(ﬂAD]ié +...+

+ max[G(f) AP D,é.

max (14)

PROOF: It is easy to verify that 'y C % if
maxger; Giz < v;, ¢ = 1...g. The set ¥; has the

expression
G(H)z(t) < 9(1).

Substituting now for z(t) the dynamical equation (1),
we have the inequality

G@)(Az(f — 1) + D§(E — 1) < g(I) ¥6(—1) € A



which have a solution if and only if the following in-
equality has a solution

G@t)Az(t —1<g(#)—d

where

The last inequality describes the set £; — 1. We can
now perform another substitution for z(f — 1), and so
on, obtaining the expression (14) for the set X;, = X;,)
att =t¢p.0

REMARK 2: In the statements of the above theo-
rems it is required to solve g linear programming prob-
lems at each step of time, being g the number of row of
the matrix G. In all these problems the constraining
set 1s the same, while the functional to be maximized
is different, for each problem. This task become trivial
if we apply the method developed in [1]. In fact, as
it was analyzed in [15], if a linear programming prob-
lem is reformulated in dual form, the dependence of
the minimum or the maximum of the problem from
the linear functional can be explicitated. This means
that a more heavy computation, not depending on the
functional, may be performed off-line, while for each
problem the minimum or the maximum can be easily
found, given the functional.

4 Problem P2

In this section we denote by A a unitary ball in the
disturbance space, and A = pA, with p > 0 to be
determined. The set ¥ 1s given.

The sets defined in (4) become:

Et’p:I‘typﬂE t:to,T—l
Ftyp = {CL‘ : Al‘+pDA g Et-l—-l,p} t= to . T-1 (15)
Sr,=%

We can state the following theorem:

THEOREM 6. Given a norm, a ball in the distur-
bance space such that problem P1 has a solution exists
if and only if the problem:

min (maxp: 'y, ts nonvoid, toc <t < T
tE[O,T)( Pt 0= )

has a nonnegétive solution p*. If such p* > ( exists, it
is the radius of the maximal disturbance ball.
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4.1 The polyhedral case

In this subsection we show that applying condition (3)
we can explicitly solve problem P2.
From equation (9) we have

9,(T) =

) t=to,...,T—1 (16)

g(t): = mag[G(t +1)DJ;é (17)

13
It is easy to compute that the bound vector g,(t) €
RI(T=t+1) has the structure

9,(t) = 91(t) — pga(2)

(18)

where ¢;(t) and g2(t) don’t depend on the parameter
p and have the form:

aw=| (19)
g2(1) = + : ot

N ( ﬁ(TO— ) )

where g(T —i) € R%*, i=1...t.
Let us define now the set

A= {p: Q(G(®)) [9:(t) — pga(t)] > 01}
where G(t) was defined in (8) and (11).

(21)

REMARK 3: Notice that in [3] it was showed that
Q(G(t + 1)) is a submatrix of Q(G(t)). More in par-
: _ QG+ 1) Q1)
ticular, Q(G(t)) = ( 0 Qon(t) )’ where

Q12(t) and Q32(¢) are matrices to be determined.

Applying now the nonvoidness condition (3) to poly-
hedron defined in (7) with the position g(t) = g,(t) we
can state the following theorem:




I

THEOREM 7. A ball in the disturbance space such
that problem P1 has a solution exists if and only if the
problem:

min maxp
t€fto,T) pEA:
has a nonnegative solution p*. If such p* > 0 exists, it
is the radius of the maximal disturbance ball.

PROOF: From theorem 3 and condition (3) we have
that ¥, is nonvoid if and only if Q(G())g,(t) > 0.
Substituting for g,(t), this imply p € A;. Therefore
problem P2 has solution if and only if p € A,;, NA; N
..M Ar_1 # 0. The statement follows. O

REMARK 4: Because A is a ball, it is obvious
that g»(t) > 0, V¢, and hence Q(G(t)) g2(t) > 0, Vi.
Therefore the above theorem 7 is satisfied if and only
if g1(t) € —(R(G(t))* NP)? or equivalently if and only
if g1(t) € R(G(t)) + P. In particular this last condi-
tion is true if v € P, i1.e. if 0 € ¥. Therefore we have
deduced, as a particular case, the well known prop-
erty that problem P1 has always solution if 0 € ¥ and
A =0.

5 Problem P3

The idea is that of solving problem P1, being the con-
straining set a ball in the state space, with its radius p
as parameter, i.e. X, = pX, where ¥ is a unitary ball
in state space.

The sets defined in (4) becomes:

Etlp:rt’pﬂpz t:tOT‘—l
T,={c:Az+BAC S, 1,} t=to...T—1 (22)
Xr, = pX

We can state the theorem

THEOREM 8. Given a system (1) a bounded A-
positively invariant set exists if and only if a radius
p > 0 exists such that the set ¥, , is nonvoid for any
t € (—o0,T].

It 1s evident that p = 0 is a feasible solution of the
problem only if BA = {0}.

5.1 The polyhedral case

Let ¥ be a unitary polytopic ball in the state space,
so that
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E:{x:legl} 1=1 . (23)

Y, ={z:Gz < p1}

It is clear that the bound vector in (9) depends on
the parameter p.

9,(T) = p1

g,(t) = ( gp(t’L;i_g(t) ) t=to,..T—1 (24)

g(t)i = rglezgt[G(t +1)DJ;é.

It can be computed that

9,(t) = p1(t) — r(?) (25)
where 1(t) and r(t) € R¥T-*+1 r(t) doesn’t depend

on p and has the same expression of vector gs(¢) in
(19), ie.

9(T-1)

9(T - 1)
+ ( 0 ) (26)
The matrix G(t) is defined as in (8).

We are now in position to prove the following

THEOREM 9. Given a system (1) a bounded A-
positively invariant set exists if and only if a bounded
p > 0 exists such that

Q(G())'r(t) < pQ(G())'1(2)

tg <t < T, tg — —o0. (27)

PROOF: Apply condition (3) to P(G(t),g,(t) and
substitute for g,(¢) the expression (25). O

With some assumptions on the disturbance set, this
last theorem particularizes in the following

COROLLARY 4. Assume A symmetric.




i) Theorem 9 holds if and only if each component of
r(t) is bounded, t — oo.

ii) Assume DA bounded. A bounded A-positively
invariant set exists if Y . ||A¥|| < M, for some
bounded M.

PROOF:

1) In inequality (27) we can assure that the vector
Q(G(t))'1 is strictly positive for all ¢, thanks to the
definition of Q(G(t)). Therefore for a fixed t we can
always compute a nonnegative p such that inequality
(27) is satisfied. The problem is that the value of p
might become arbitrarily large. But this may happen
only if some component of Q(G(t))'r(t) tends to infin-
ity.

Because ¥, is symmetric, it follows that the matrix

H

—-H

subspace R(G) is strictly tangent to P, i.e. R(G)NP =

0. It follows that also R(G(t)) is strictly tangent to

P, and therefore the matrix Q(G(t)) cannot have zero

rows, for any ¢, because R(G)* intersects the interior

of P. Moreover the ith component of the vector r(t)
1s given by:

G has the structure G = , and hence the

(1) = , . 2Dy,
ri(t) = réréan(GD)J&+Ig1Eag<(GAD)]6+réréan(GA D); 6+
+...+ max(GA'™'D);é

fea
j=i—int(ifg)xg
which is equivalent to

ri(t) = max G; D§ + max G; AD§ + max G; A2 Dé+
sea s S€EA

+...+ maxG;A*"* D6 (28)
sfea

Thanks to the assumption on A, recalling remark
1, we know that all the elements of the last sum
are nonnegative, and therefore we can assure that
(Q(G(t))'r(t)); is bounded if and only if r(t) is
bounded.

ii) If in (28) we make the position D§ =y, y €T =
DA from the boundedness of T it follows that

VYeT, 3R |1l < R
and hence
ri(t) < ||G;||R+||G; Al R+||G; A?||[R+. . +]|G; A'F||R <
RIG;IL+[JAll + 1A% + .. + |4
Therefore if 5, _, oo||A¥|| < M, it follows that
Jlim ri(t) < MR||G;]|

and hence theorem 9 holds. O
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