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Abstract

As the first part of this work, a model initially de-
veloped for optimal grasping is being adopted to ad-
dress optimal fixturing of a rigid workpiece. The model
is tested using 2-D workpiece configurations used in
other pilot studies reported in the literature. While
verifying some of the findings reported elsewhere in
the literature, the model also yielded other useful in-
sights regarding optimal fixturing designs.

In an effort to establish the association between min-
imizing the normal maximum reaction force to mini-
mizing the workpiece deformations, an energy crite-
rion is employed to assess optimal fixturing conditions
for a deformable workpiece subjected to drilling forces
and moments., This second part of the study, is car-
ried out with the aid of a simply supported beam
which is fully constrained in the out-of-plane direc-
tion. The total elastic strain energy or work done by
the drilling loads is calculated analytically as a func-
tion of the fixture clamping locations. Through a con-
strained energy minimization, optimal clamping loca-
tions have been obtained for a wide combination of a
concentrated force, and a bi-axial bending moment.
These loads simulate various manufacturing drilling
processes. The reaction forces corresponding to the
energy based optimal solutions were compared to re-
action force solutions of non-optimal fixturing config-
urations.

The results suggest that, the energy based optimiza-
tion does not necessarily yield minimal reaction forces
at the clamping locations as suggested elsewhere. This
energy-based optimization approach yields fixturing
configurations which in addition to minimizing the en-
ergy of the deformable workpiece, in the decoupled
loading cases also minimizes the deformations in the
neighborhood of the drilling loads thus assuring higher
accuracy of the manufacturing drilling process. With
the aid of the simple beam workpiece, it is shown that,
the method provides an attractive alternative for fix-
ture optimization for one, two and possibly other ana-

lytically tractable three dimensional deformable work-
pieces.

1 Introduction

The quality and accuracy of manufacturing processes
such as drilling or milling on a flexible or deformable
workpiece depend on the fixturing which provides
workpiece positioning. and constraint. Fixtures are
often designed by experienced engineers that utilize
general guidelines and personal experience. Auto-
mated Fixturing Design (AFD) that is based on a CAD
part model is a highly desired capability that indus-
try is still lacking [1]. Initial fixturing design models
were developed using rigid body kinematics address-
ing workpiece motion either under various geometri-
cal constraints or aiming at inhibiting all workpiece
motion [1-3]. In addition to the rigid body kinemat-
ics approach, recent studies [2-5] addressed fixture or
grasping optimization through the minimization of an
objective function mainly linked to the clamping re-
action normal and tangential friction forces. The ob-
jective of those studies, was to select the clamping lo-
cations associated with statically admissible but op-
timized reaction forces exhibiting a minimum in the
maximum normal reaction force. In those studies, it
was hypothesized that minimizing the maximum nor-
mal reaction force led to fixturing designs which also
minimized the workpiece deformations in the neigh-
borhood of the manufacturing process and thus the
energy of the workpiece. In other recent studies [6-8],
the elasticity of the workpiece was incorporated into
fixture optimizing algorithms. These methods mostly
based on finite elements, used various fixture optimiza-
tion criteria. Among others, these criteria included

" minimizing the elastic energy of the deformable work-

piece or equivalently the work done on the deformable
workpiece, minimizing a deformation index or a fix-
turing force or minimizing a maximum effective stress
aiming at minimizing the damage induced by the man-
ufacturing loads.




A planar multifinger force closure, where z,,
is the normal force and z; the frictional one.

As discussed above, the freedom and constraint of
rigid workpieces have been studied by the robotics
community [9-10] that has addressed various grasping
quality and stability issues. Although there are funda-
mental differences between the requirements of object
grasping and workpiece fixturing [11], the mathemat-
ical formulation of the quality of a grasp [4-5] can be
adopted to address the design of optimal fixturing. As
the first part of this work, a model initially developed
for optimal grasping is being adopted to address opti-
mal fixturing of a rigid workpiece. The model is tested
using 2-D workpiece configurations used in other pilot
studies reported in the literature.

In an effort to establish the association between min-
imizing the normal maximum reaction force to mini-
mizing the workpiece deformations, an energy criterion
is employed to assess optimal fixturing conditions for a
deformable workpiece subjected to drilling forces and
moments. This second part of the study, is carried
out with the aid of a simply supported beam which is
fully constrained in the out-of-plane direction. As a
result, and without loss of generality, the mechanical
complexity reduces appreciably requiring knowledge of
the mechanics of the deformable workpiece, i.e., the
elastic beam, only within its plane. Furthermore, for
slender beams, i.e., a height to length ratio h/l < 10,
a mechanics of material approach can be employed in
establishing the mechanics and thus solutions for the
elastic energy stored in the deformable workpiece. Un-
der the above conditions, the total elastic strain energy
or work done by the drilling loads is calculated analyt-
ically as a function of the fixture clamping locations.
Through a constrained energy minimization, optimal
clamping locations can be obtained for a wide com-
bination of a concentrated force, and a bi-axial bend-
ing moment. These loads are used to simulate various

manufacturing drilling processes. The reaction forces
corresponding to the energy based optimal solutions
can then be compared to reaction force solutions of
non-optimal fixturing configurations. Such a compar-
ison will test the hypothesis used in rigid body fix-
turing models that minimizing: the maximum normal
reaction force leads to minimum deformations at the
location of the manufacturing process. The grasping
model adopted for optimal fixturing shall be presented
next.

2 A grasping model adopted for
optimal fixturing

For a planar multifinger force closure, shown in Figure
1, the grasping model can be expressed as:

G,z

=n

+ Gf'&f:E(o) (1)

where z,, € R™ and £y € R™ are vectors of the nor-
mal and frictional finger forces, respectively, and F(6)
€ R?® is a vector of the generalized external load ap-
plied at the object along a given @ direction (in the
planar case 0 < # < 2w). G, and Gy € R? x R™
are the equilibrium balancing parameters that depend
on the object geometry and contact characterization.
In a physically realizable grip the normal finger forces
ought to be non-negative

xll;207i:1) (2)

and if a Coulomb friction model is used z,, and zy
have to satisfy

|zf,' < HZn; 5 = 17 (3)

where p is the static coefficient of friction.

Equations {1)-(3) constitute a force closure model,
the solution of which does not necessarily exist. In
fact in many practical applications, when a feasible
solution does exist it may not be unique. Such ambi-
guity is often overcome by introducing a mathemati-
cal functional, that is minimized subject to constraints
(1)-(3). Hershkovitz et al. [5] has selected convex func-
tionals that address the ambiguity in the problem so-
lution and furthermore generate grasping quality in-
formation. These functionals are:

Hl(-fn) = Z(I),Z“ = ||En||2 (4)
i=1

H,(T,) := max |z,,] (5)

1<i<m




Fig. 2 The radial function r (¢) and surface normal
direction ¢ (¢) capture the geometric descrip-
tion of a planar object that is single valued
in polar coordinates.

H3(Tn) = Y (2n, + Dlog(zn, +1) = Y 2n,.  (6)
i=1 i=1

H,(%,) is the square of the Euclidean-norm of the fin-
ger normal forces. It represents the energy level of
linear systems, and in nonlinear domains H,(Z,) has
an energy-like characteristic. Human-beings tend to
minimize their muscle efforts when performing force
closures [12] and [13]. Such behavior is captured by
minimizing H, (T, ).

H,3(T,) is an l-norm of the normal finger forces.
Obviously, large grasping forces may damage the ob-
ject and it was demonstrated [12] and [13] that human-
beings tend to avoid it. The minimization of H»(ZT,)
simulates this grasping behavior. Notice that the se-
lected H; (Z,,) and H2(ZT,) functionals are convex and
therefore they possess global minima.

H3(Z,,) possesses the basic properties of an entropy
function [14]. This function has a global minimum
and for any non-negative T,, H3(T,) > 0. In a re-
cent study Lee and Rim [15] observed that, in force
closures, the applied contact forces of the individual
human fingers maintain fixed ratios. Hershkovitz [5]
postulated that the different contributions of the fin-
gers are due to their physiological variations. They
further assumed that mechanical manipulators, that
possess identical finger structures, generate high qual-
ity grasps when their contact forces are uniform. A
uniform force distribution is obtained when H3(Z,,) is
minimized.

Hence, three types of grasping quality measures that
evaluate a grasp from three different perspectives have
been proposed. These measures are based on the en-
ergy level of the gripper, the maximum finger force ap-
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Fig. 3 Optimal fixture designs for a downward force
F (a), and a clockwise torque 7 (b). The
values of the fixture indices are 0.718, and
0.048 [unit force], respectively.

plied on the object, and the degree of uniformity of the
grasping contact forces. The maximum applied finger
force has also been the quantity that researchers, who
address the development of fixture design algorithms,
minimize [3]. In fact equations (1)-(3) together with
objective function (5) is a generally accepted formula-
tion for evaluating a fixturing index, that is analogous
to the quality of a grasp.

When the geometrical description of the workpiece
is incorporated into the force closure equations (1)-(3),
one can recast the mathematical model as

Gn (2’5(2) P (9)) "Ly (Q)
+Gr(or(2), v (2) 2, (¢) =E(9)

(7)

(8)

szi ((rbl)l S KT, (¢z) ’ (9)
where m is the number of supports, g€ R™ is a vec-
tor of the contact locations, and z, (¢) and z; ()
€ R™ are vectors of the normal and frictional reac-
tion forces. r (@) and ¢ (#) are the radii and normal
surface angles at the contact locations, and G,, and G ¥
€ R® x R™ are the equilibrium balancing parameters,
that depend on the workpiece geometry and clamping
locations. F(f) and p follow the definitions of Equa-
tions (1) and (3). Here it is assumed that the object is
planar and single valued in polar coordinates, as shown
in Figure 2.

By minimizing an objective function (Equation 5)
subject to the constraints expressed in Equations (7)-
(9), one can identify m clamping locations that result

1 =1,
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Fig. 4 Fixture designs for a downward force F (a),
and a clockwise torque 7 (b) that are sug-
gested by Brost and Goldberg [3]. The val-
ues of the fixture indices are 0.825, and 0.056
[unit force], respectively.

in the highest fixturing index value. This is done for
a given manufacturing process and a known external
load F(#). This formulation is used for selecting opti-
mal fixture designs that support a prismatic workpiece,
when (i) a downward force and (ii) a clockwise torque
are applied. The optimal fixtures for the applied force
and torque are shown in Figures 3(a) and 3(b), respec-
tively. When the friction coefficient p is set to 0.2, the
corresponding values of the fixturing indices are 0.718
and 0.048 [unit, force], respectively. Figure 4 depicts
the fixtures selected by Brost and Goldberg [3] for the
downward force (Figure 4(a)) and the clockwise torque
(Figure 4(b)). The indices of these fixtures turn out to
be 0.825 and 0.056 [unit force]. Hence, the fixture de-
signs depicted in Figure 3 have better ratings than the
fixtures selected in [3]. To further synthesize a milling
process, a loading combination of up and downward
forces and a clockwise torque is considered. The op-
tima) fixture design for this case is shown in Figure 5
and its index value is 0.719 [unit force].

Hence, formulating the fixturing problem as a con-
straint optimization (Equations (5), and (7)-(9)) is a
promising powerful tool. Nevertheless this model does
not capture the deformations that are.imposed on the
workpiece, and inevitably affect the accuracy of the
manufacturing process. It is therefo;é desired to ex-
tend the fixturing formulation to incorporate models
of deformable objects. Thus, an energy based model
for optimal fixturing of deformable bodies shall be pre-
sented next.

Fig. 5 Optimal fixture designs for a combination of
upward and downward forces and a clockwise
torque. This load combination represents a
milling process, and the fixture index is 0.719
[unit force].

3 The flexible workpiece model
for optimal fixturing

3.1 Optimization criteria

The quality and accuracy of manufacturing processes
such as drilling or milling depend on the local deforma-
tion fields induced in the deformable workpiece by the
manufacturing loads. Thus, it is desirable to minimize
the manufacturing displacements and angle of rota-
tions in the drilling or milling regions. Such, displace-
ment minimization requires the use of an optimally
designed fixture that could provide the necessary kine-
matic constraints required by the manufacturing pro-
cess while minimizing the workpiece deformations in
the the local domain where the manufacturing process
is performed.

In recent years, several objective functions have
been proposed aiming at designing optimum fixtures.
For example, Lee and Haynes [6] employed an elas-
tic strain energy function minimization to obtain via
finite elements optimal three-dimensional fixure con-
figurations. Other optimizing objective functions in-
clude a deformation index function, a fixturing force
function or a maximum effective stress function aiming
at minimizing the damage induced by the manufactur-
ing loads. In this part of the study, an elastic strain
energy minimization criterion will be used to assess
optimal fixture configurations. For linear elastic sys-
tems, the choice of the elastic strain energy function
as the optimization objective function is a logical one
since at least for the decoupled loading case, it leads to
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Fig. 6 (a) A slender flexible workpiece subjected to
a manufacturing force F and bending mo-
ment M. This system is used to develop the
mechanical model for optimal fixturing of de-
formable bodies.

(b) A schematic of the mechanical slender
beam model simulating the inclined drilling
manufacturing process and fixturing configu-

rations shown in Figure 6a.

the minimization of the local displacements as shown
below.

For linear elastic systems, it can be shown that the
elastic strain energy @ stored in the flexible workpiece
is related to the potential work done by the applied
loads, 2, as follows:

206 =Q (10)
where
g=1 / — (11)
2 )y
and
) :/ T uds (12)
Sr

where 0;; and ¢;; are the components of the stress and
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Fig. 7 (a) Deformation components such as the de-
flection ¢ and rotation @ of the neutral axis
of the slender workpiece shown above, could
be used to assess the quality and accuracy
of the manufacturing processes performed on
flexible workpieces.

(b) Free body diagrams for the entire flexible
slender workpiece as well as for parts of the
workpiece corresponding to sections 1-1, 2-2,
3-3 and 4-4.

strain tensors respectively with the indices 7, j varying
from 1 to 3, while summation from 1 to 3 is implied
over the repeated or dummy indices i and j. Alsoin the
above equations, V denotes the volume occupied by
the flexible workpiece whereas St denotes the traction
boundary over which the tractions T induced during
manufacturing and other mechanical loads are applied
and u denotes the displacement vector. The elastic
potential energy of the deformable workpiece associ-
ated with the manufacturing loads can be obtained in
terms of ® and (2 as follows:

q::@-ﬂ:-lﬂ:—l/ T uds  (13)
2 2 Js,

In accordance with equation (12), the potential work
done by the applied loads 2 can be obtained in terms




of the applied manufacturing force P and moment M
and distributed load g and their work conjucate mid-
plane displacements ¢ and ¢ and uy(z) experienced at
their point of applications as shown in Figure 7a. More
specifically

!
w =P6+M€+q/ uy (z)dz (14)
Jo

where

=c P +caM + 139
0 = ca P+ caaM + ca3q (15)

uy () = ¢35 ()P + ca2 ()M + c33(T)g

In the above deformation expressions, the principle
of linear superpoition is used to express the total dis-
placements due to the simultaneous application of the
loads, P, M and ¢ via the aid of the compliances ¢;;
i,7=1,2,3 of the flexible system. The system compli-
ances can be obtained either through the Castigliano’s
energy method approach or by solving for the elastic
curve of the beam and then obtaining the displace-
ments and rotations of interest at the manufacturing
location. In any case, with the aid of equations, (10)
through (15) it becomes clear that when minimizing
either the elastic strain energy ® or the work done by
the applied loads € or their difference which represents
the potential energy of the system ¥, leads to the min-
imization of the work conjugate displacements 6 and
6M and u,(z) induced by the decoupled application of
the manufacturing loads P and M and the weight of
the workpiece ¢q. In the case of coupled loading, i.e.,
simultaneous application of arbitrary combination of

.load P, moment M and load intensity g, the energy
minimization does not necessarily yield minimum dis-
placements and/or rotation. However, at least when
P, M and q are applied independently from one an-
other, and, in order to optimize the fixture for mini-
mum displacements, the elastic strain energy function
% will be adopted in seeking optimal fixture designs
for the manufacturing process performed on a flexible
beam as shown in Figure 6a.

3.2 The mechanical model

The model used in this part of the study simulates an
inclined drilling manufacturing process on a flexible
beam which is laterally fully constrained by a friction-
less surface as shown in Figure 6a. It is assumed that
the workpiece under consideration has an aspect ratio
R/l < 10, thus rendering a mechanics of materials ap-
proach adequate in the energy calculations. For the

purpose of this study, all contact surfaces are assumed
to be frictionless. Under these conditions, the mechan-
ical model shown in Figure 6b is used to simulate the
drilling manufacturing process shown in Figure 6a.

3.3 Elastic strain energy estimates

The elastic strain energy of the flexible beam shown
in Figure 6b will be estimated using a mechanics of
materials approach. Thus, the shear stress contribu-
tions to the elastic strain energy of the systems will
be neglected assuming that h/! < 10. The remain-
ing bending moment contribution can be evaluated as
follows:

{
® = %/0 (M(2))2de (16)

where, E is the elastic modulus of the flexible work-
piece, I = bh3/12, is the second moment of inertia
with respect to the bending axis z — 2 and M(z) is the
bending moment equation as a function of z which
measures distances along the axis of the deformable
beam. Due to loading discontinuities along the axis
z, and due to the discrete kinematic constraints im-
posed through the fixture support system, the moment
equation M (z) is piecewise continues in the interval
0 < z < [. When the loads, P, M, q are applied si-
multanously, the following moment equations are ob-
tained:

M, =—%qz% 0<z <al

My =Ryzy — %q(zz —+ al)2 0<z < (X -a)l
M3 = Roz3 — %q[zg +(1=-8)? 0<z3<(B-X)I

0<zy <(1-5)
(17)

N
My = —5qzxj

where R, and R; are the reaction forces which are
given by:
Ry = ey {9128~ 1) + 2PI(B - X) - 2M}

Ry = 55ty {gl*(1 - 20) + 2PU(X — o) — 2M}
(18)

With the aid of the above moment equations, the ex-




pression for the elastic energy ® takes the form:

P = 240151,@1? (Z?=1 A;a-D 4 Z?:l B,p51

+32, CiafC D + T5, Dia?fC) + Eia*B)

(19)
where, the index ¢ varies from 1 to 5 and }_ implies
summation over the index i of the terms following it.
The various constants A;, B; and C; were found to
depend on the applied loading and in particular the
relative amounts of concentrated force P, moment M
and distributed load ¢ and were found to be:

A1 = 5¢; + 10cs + 10X cs

Az =0.0

Az = 10¢; + 40c; + 40X 2c3 + 40cs + 40X c5 + 80X cg

Ay = —6¢; — 120X ¢y — 80X3¢cs — 40X 3¢y — 120X cq
—60X%cs — 10X %cs — 240X %¢q

A5 =00
(20)

By = —5¢; — 10¢4 — 10X cs

B, = 20c¢; + 40cs + 40X cs

Bs = —20c; + 40¢; + 40X 2c3 — 20¢4 — 20X c5 + 80X cs

By = 6c; — 120X ¢y — 80X 3¢c; — 120X 2y +40X3¢q
—40X3¢s + 10X *cs — 240X %¢cs

Bs = 120X2¢, + 40X %c3 + 60X 2¢cq + 20X 3cs + 160X 3cs
(21)

C1 = 10¢; + 10c¢s

Cy; = —40c¢; — 40c¢s

Cs = 20c¢; — 80X c3 — 80cy + 20¢s — 80X cs — 80cs

Cy = 10¢; + 40cp + 160X 2c5 + 240X ¢4 + 40c4
+40Xcs + 120X 2¢s + 320X cs

Cs = 0.0
(22)
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D1 =0.0
Dy =0.0
D3 = 40c¢; + 40c3 + 80cs

Dy = —40¢; — 80X ¢z — 80cy — 40cs — 80X ¢c5 — 80cs

D,5 =0.0
(23)
and
E1 = —10(31 — 1005
(24)
where c;, ¢ = 1,2..6 are defined as follows:
c = ¢l
Ca = .’\l2
C3 = P2l2
(25)
Cq4 = qle
Cs = ql3P
Cg = PIM

As the next step in this part of the study, the strain
energy equation given above will be minimized to iden-
tify optimal support locations through the dimension-
less parameters o and 3, under the constraints im-
posed by the manufacturing process under considera-
tion. The pertinent constraints in this problem are:

X—-a>005
B-X

v

0.05

O0<a<X

o

X<pB<10 (26)

R, #0.0
Ry £0.0
18 —al >0.10
While minimizing the elastic strain energy to obtain
optimal fixturing locations, the normal reaction forces
corresponding to the optimal energy solutions can be

compared to the corresponding reaction forces ob-
tained for all other non-optimal fixture designs. Such




T

< Pure Moment M

R=03'
L g=qlfs .

. Pure Force P |

Minimum Normalized Strain Energy; -2;-3?—1¢

20 30 40 50 60 70 8 0
Loading Phase Angle; y=arctan -';,L[(Degrees)

Fig. 8 Trends in the minimum normalized elastic
strain energy stored in the deformable work-
piece due to the combined application of var-
ious amounts of a manufacturing force P and
moment M as measured through the loading
phase angle .

a comparison, will test the hypothesis used elsewhere
in the literature that minimizing the maximum reac-
tion forces does indeed yield minimum deformations in
the elastic workpiece.

4 Results and discussions

As shown schematically in Figure 6b, the load intensity
g is used to simulate the weight of the workpiece and
possibly other distributed pressure loads externally
imposed during the manufacturing process whereas,
the loads P and M represent the in-plane components
of the inclined manufacturing force F' and moment M
shown in Figure 6a. In this work, parameter studies
are carried out for the cases wherein the load inten-
sity ¢ is relatively small compared to the manufac-
turing loads P and M. More specifically, results for
normalized workpiece weight § = ¢l/S = 0.0,1.0,2.5
and 5 are presented. For these cases, the manufac-
turing loads are assumed to be exerted at a location
X = 0.3 and 0.6. For example, in Figure 8, the min-
imum normalized elastic strain energy of the flexible
workpiece is plotted against the phase angle of loading
¥ = arctan($%) for X =0.3.

As shown schematically in the above figure, the

Loading Phase Angle; y=arctan —lg—[— (Degrees)

Fig. 9 Optimal locations for the (a)-left and (b)-
right fixturing locations as a function of the
loading phase angle ¢¥. The various curves
reflect the effects of superimposing a load in-
tensity g onto the manufacturing loads P and
M. The results for ¢ = 0 and ¢ = 0° cor-
respond to pure bending whereas those for
q = 0 and v = 90° correspond to pure force
loading.

phase angle of loading v is used to represent various
concentrated force P and bending moment M loading
combinations. For example, when ¢ = 0, 9 = 0 rep-
resents a manufacturing process inducing only a pure
bending moment loading whereas, ¢ = 90°, represents
a manufacturing process which induces a net in-plane
force P while inducing no bending moment. Thus, by
introducing the phase angle of loading 1), the current
model, can be used to simulate a wide range of self-
similar manufacturing processes. In that respect, the
results of this study are general and can be used for
the development of improved fixturing for workpieces
subjected to the class of manufacturing processes en-
compassing the entire spectrum of P and M loading
combinations.

The results shown in Figure 8, were obtained
through a constrained optimization process through
which a minimum of the elastic strain energy ® given
by equation (19) was sought by varying the fixturing
locations a and § within a kinematically admissible
domain under the geometrical and reaction force con-
straints given by equations (26). The optimum sup-
port locations obtained through the above process and
which correspond to the optimized energy results re-
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Fig. 10 Non-optimal reaction force predictions as
a function of support location measured
through the non-dimensional constants a and
B. As shown above, these results were ob-
tained, for pure bending loading applied at
X = 0.3. The solid circles represent the re-
spective reaction forces obtained through the
energy optimization process.

ported in Figure 8 are shown in Figures 9a and 9b.
It is of interest to observe that when the manufactur-
ing process is taking place closer to the left end of
the workpiece, i.e., X = 0.3, the optimum location
for the first support is predicted to be a = 0. This
appears to be the case for all range loading combi-
nations obtained for ¥ < 70°. In the above phase
angle loading regime, and while the optimum o fix-
turing location is predicted to be at the left end of the
workpiece, the 3 fixturing locations appear to decrease
from approximately 8 = 0.6 at ¢ = 0° to § = 0.45 at
¢ = 70°. During the above % interval, the optimized
elastic strain energy of the deformable workpiece ap-
pears to decrease monotonically with ¢ at constant S
values. Again, in accordance with the moment-force
loading sketch shown in Figure 8, S is used to denote
an effective loading force magnitude attributed to the
manufacturing process. It is also of interest to observe
that, when the loading phase angle 9 becomes larger
than 1 = 70°, the dominance of the concentrated force
becomes apparent yielding optimal fixturing solutions
at the close proximity of the manufacturing process
consistent with the imposed constraints. As discussed
earlier in this work, one of the objectives of this sec-
ond part of the study was to assess the validity of the
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hypothesis used in the rigid body optimal fixturing
modeling, that minimizing the maximum normal re-
action force does indeed correspond to minimizing the
deformations in the near vicinity of the manufactur-
ing process. In order to test the above hypothesis, the
reaction forces R; and R» given by equations (18) are
plotted against all possible o and 3 values not neces-
sarily corresponding to minimum strain energy. Such
results are shown in Figures 10 and 11 which were ob-
tained for a pure bending and pure force loading, i.e.,
q = 0 and 3 = 0° and ¥ = 90° respectively. On these
plots, the normal reactions forces B, and Rj corre-
sponding to the optimal solutions reported in Figures
9a and 9b are clearly marked using a solid circle. The
results shown in Figures 10 and 11, suggest that there
exist fixturing solutions other than the energy based
optimum solutions that yield normal reaction forces
which are smaller than those corresponding to the op-
timum solution. For example, for pure bending load-
ing, i.e., ¥ = 0°, and based on the principle of static
equilibrium, the reaction forces at the support loca-
tions are equal in magnitude and opposite in direction
forming a couple opposing the applied moment. Thus,
the magnitude of such reaction forces is inversely pro-
portional to the moment arm which in this case would
be the support spacing. Consequently, the reaction
normal forces reduce as the support spacing increases.
Thus, for the system under consideration, under pure
bending loading, minimum reaction normal forces ob-
tain when the support or fixturing locations are at the
two ends of the flexible beam. The solutions reported
in Figures 9a, and 9b suggest that the energy based
optimum fixturing locations do not correspond to min-
imum normal reaction forces. As discussed earlier in
this work, for the decoupled loading case, minimizing
the elastic energy does correspond to also minimizing
the work conjugate deformations. For example, for
pure bending loading, the work conjugate displace-
ment would be the angle of rotation at the point of
application of the manufacturing loads as shown in
figure 7a. Thus, based on the findings of this model,
in the pure bending loading case, the hypothesis used
by several rigid body fixturing models that minimiz-
ing the maximum normal reaction force also minimizes
the deformations is proven not to be a valid one. This
finding is furthered strengthened through the aid of
additional results obtained for the same flexible work-
piece subjected to manufacturing loads at a location
X = 0.6. These results which are similar to those re-
ported in Figures 8-11 are reported in Figures 12-15
respectively.

Finally, additional optimal fixturing locations are
reported in Figure 16. In this figure, the manufac-
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Fig. 11 Non-optimal reaction force predictions as
a function of support location measured
through the non-dimensional constants a and
3. As shown above, these results were ob-
tained, for pure force loading applied at X =
0.3. The solid circles represent the respective
reaction forces obtained through the energy
optimization process.

turing load location as measured through the non-
dimensional constant X is varied from 0.2 to 0.8. Op-
timal fixturing locations for a and § are reported in
the interval 0 < 1) < 90°. As expected, manufacturing
processes associated with different amounts of force
and bending moment require fixturing configurations
which may vary substantially for processes inducing
bending only to those inducing force loading only.

5 Conclusions

The current manuscript presents an Automatic Fixtur-
ing Design (AFD) algorithm that utilizes force closure
models of a rigid workpiece. This algorithm turns out
to be instrumental in identifying fixtures that possess
optimal index values for a given load. The applied
load is determined by the manufacturing process that
the workpiece is subjected to. Nevertheless, fixture
designs have to address accuracy and rigid body mod-
els, that do not capture workpiece deformations, can-
not predict the workpiece accuracy. This manuscript
therefore suggests to incorporate into the AFD algo-
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12 Trends in the minimum normalized elastic
strain energy stored in the deformable work-
piece due to the combined application of var-
ious amounts of a manufacturing force P and
moment M as measured through the loading
phase angle ¥. These results are similar to
those reported in Figure 8, but were obtained
using X = 0.6.

Fig.

rithm models of deformable bodies. For that purpose,
a simple model for optimal fixturing of deformable
bodies has also been developed in this manuscript. Op-
timal fixturing designs have been obtained for a vari-
ety of manufacturing processes performed on a flexible
and relatively long workpiece. In general, the model
suggests that minimizing the strain energy or poten-
tial work done by the manufacturing loads does not
necessarily minimize the deformations/rotations in the
near vicinity of the manufacturing process. In the de-
coupled loading cases, wherein minimizing the energy
also minimizes the work conjugate deformations, the
model yielded optimal fixturing configurations which
do not necessarily exhibit minimum in the maximum
normal reaction force. This suggests that fixture op-
timization based on rigid body kinematics may not
necessarily yield optimal manufacturing processes and
thus, under a general state of loading, the elasticity of
the workpiece need to be used for optimal fixturing.
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ilar to those reported in Figure 9, but were
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Non-optimal reaction force predictions as
a function of support location measured
through the non-dimensional constants  and
B. As shown above, these results were ob-
tained, for pure bending loading applied at
X = 0.6. The solid circles represent the re-
spective reaction forces obtained through the
energy optimization process.
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a function of support location measured
through the non-dimensional constants a and
B. As shown above, these results were ob-
tained, for pure force loading applied at X =
0.6. The solid circles represent the respective
reaction forces obtained through the energy
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Fig. 16 Optimal locations for the (a)-left and (b)-

right fixturing locations as a function of the
loading phase angle 1. As shown, the various
curves correspond to the application of the
manufacturing loads at different locations,

ie, X =0.2, 0.4, 0.6,and 0.8.
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