Multivariable adaptive control of bioprocess
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Abstract : This paper presents a multivariable
adaptive control of a continuous-flow
fermentation process for the alcohol
production. The linear quadratic control
strategy is used for the regulation of
substrate and ethanol concentrations in the
bioreactor. The control inputs are the
dilution rate and the influent substrate
concentration. A robust identification
algorithm is used for the on-line estimation
of a linear MIMO model’s parameters.
Experimental results of a pilot-plant
fermenter application are reported and show
the control performances.
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1. INTRODUCTION

During’ the last years, there has been an intensive
research in the application of the adaptive control
approach to bioprocess controls [Bastin and Dochain
90]. This approach has to cope with the physical time-
varying parameters uncertainties. Most of those studies
deal with the control problem of a single input/single
output system to represent the bioprocess.

The biotechnological processes to be controlled are
inherently multivariable in nature. Indeed when
searching an optimal steady state for an alcoholic
fermentation process, a double setpoint is generally
defined for both substrate and product concentrations.
Those setpoints can correspond to the stationnary state
in which the process productivity is maximal. The
control scheme allows to speed up the transitory state to
a steady state and ensure the follow-up of reference
trajectories.

Among the adaptive control algorithms, Linear
Quadratic Gaussian (LQG) control appear as being the
most attractive. This adaptive control algorithm, is
based on the minimization of a quadratic cost function.
This control scheme is associated with a robust
estimator in charge of unknown parameters estimation.
The theoretical and experimental results have been
reported in the literature for this approch [Samson 82,
Roux et al. 92]. Based on linear multivariable model, a
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LQG controller has been studied and analysed [M’Saad
and Sanchez 92].

In this paper, the multivariable LQG is applied to the
control of both substrate and ethanol concentrations
inside an alcoholic fermentation process. Since the
carbon dioxide production rate is strongly related to
ethanol production rate [Mota et al. 87] and responses
quickly to the change of dilution rate [Sato and
Yoshizawa 88], ethanol production rate can be derived
from the on-line carbon dioxide production rate. In this
study, we then consider the substrate concentration and
the carbon dioxide production rate as the output
variables, and the dilution rate and the influent substrate
concentration as the input variables of an identified
model; the last one is applied to the on-line control of a
continuous alcoholic fermentation process. This control
scheme would allow the tracking of prespecified
reference trajectories for both substrate concentration
rate and carbon dioxide production rate.

The paper is organized as follows: in section 2 the
experimental pilot-plant fermenter is described. The
control algorithm is given in section 3 and the
parameter estimator is presented in section 4. In section
5, the adaptive LQG control is applied to the biorector
and some results are discussed. A general conclusion
ends the paper.

2. DESCRIPTION OF THE FERMENTATION
PROCESS

The experimental alcoholic fermentation plant we are
concerned with is a typical continuous fermentation
process. The growth medium, composed of several
mineral salts and vitamins, and containing a carbon-rich
substrate (glucose), continuously flows through a
bioreactor, whose biological activity is sustained in
order to accomplish the conversion of substrate into
alcohol product. The strain used is Saccharomyces
cerevisiae UGS. The glucose source is cerelose. Stirrer
speed, temperature and pH are monitored and maintained
under local analogue control in 2 1 SGI 2M fermenter. A
level sensor is used to maintain the fermenter at
constant volume.

The influent glucose concentration and the dilution rate
are used as control inputs in order to regulate the
substrate and the ethanol concentrations in the reactor.
The values of the typical operating variables and
parameters for the experimental plant are summarized in
table 1.
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Table 1 : Operating variables and parameters

— Parameters Values
Active volume (1) 1.5
Temperature (°C) 30
stirrer speed (rpm) 200
pH 3.8
Dilution rate (1/h) 0.02 - 0.26
Influent substrate concentration (g/1) 10 - 300

The on-line glucose analysis is carried out by an YSI
27A enzymatic analyser fully automated by LAAS-
CNRS [Queinnec et al. 92]. The output gas flow of the
reactor is almost completly formed of carbon dioxide,
oxygen and nitrogen. The carbon dioxide production rate
is measured on-line through the Guy-Lussac
stoechiometric equation which gives the carbon dioxide
production rate. The operation principle is to measure
the time that the gas takes to push a given volume of
water.

All procedures for sampling, injection and control of the
analyser are managed by a Programmable Logic
Computer (PLC). The pilot is linked to a PC
compatible microcomputer. Process monitoring and
control are achieved using dedicated software written in
Turbo Pascal composed of a group of tasks including
data acquisition and storage, graphic display, printing,
PLC management, parameter estimation and evaluation
of the control signal if necessary. Interfacing between
the microcomputer and the process is carried out by a
RTI 815 board from Analog Devices’ family.

3. LINEAR QUADRATIC CONTROL

Our strategy consists of two inputs and two outputs
control system. The output variables are the substrate
concentration S(¢) and the carbon dioxide production rate
CER(1) and the input variables are the dilution rate D(t)
and the influent substrate concentration s,(). The
dynamic of the alcoholic fermentation process can be
described around their steady state values by the
following incremental model representation

AGGHAG YO = B HAG Hu-D+C(HE®D 6))

where A", B, c@@™ and A(™) are mxm
polynomial matrices
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y(t) : output vector

u(t) :input vector

g :backward shift operator
I : mxm identity matrix

The matrix integrator A-1(47") is introduced to eliminate
the steady-state error. t denotes the discrete time index

(number of sampling period). &) is a vector of m
uncorrelated sequences of random variables with zero
mean value and finite variances. The matrix A(¢™") and
B(g™) are relatively left coprime. The controllability and
observability of the system are assumed.

By using a simple algebraic manipulation, the process

model representation, equation 1, can be written as
follows
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{y, (t)} represents the desired reference sequence vector
which is chosen so that Ay, () =0. Generally, this
assumption is not very restrictive .

The dynamic behaviour can also be represented by the
motion of a point in an n-dimensional space. Several
internal representations of linear discrete systems in
terms of state-space exist.

From equation 1, a state space model is obtained
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where n =max(n,+1,np+1,nc).

In general, some states of system are not accessible then
the following state observer [Samson 82] is used

X(t) = H¥(t-1) ©
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where
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and () denotes the observer error and the polynomial
matrix P(g7") corresponds to the observer dynamics.

The control objective is based on the minimisation of
the following cost function
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where Q is an mxm weighting positive matrix. The
control law which realizes the above control objective is
given by

Au() = -K()X(t) +G() ®
with
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The matrix R(t) is the solution of the following
algebraic Riccati equation

R(t+1) = Ag[R(t)—R(t)130[Q+13£R(t)Bo]_1 BY R(t)] Ao
an
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where R(0)> 0.
When t -, R(H)>R", where R'corresponds to the

unique positive definite matrix solution of the algebraic
Riccati equation.
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The Riaccati equation is iterated only once, starting each
time from the resultant of the iteration performed at the
previous sample instant. This significantly reduced the
computational burden.

The implemented control input u(t) at time t is

u(t) = u(t—1)+ Au(t) (13)
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4. THE PARAMETER ESTIMATOR

The adaptive controller is obtained by simply invoking
the certainty equivalence principle, which consists of
replacing the process model parameters
0= [A,,...,A,.,,Bo,...,B,,z,,cl,...,c,.c]Tby their estimates when
deriving the control law. To estimate the model
parameters, equation (1), the following RLS parameter
adaptation algorithm has been used
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F(t) is the adaptation gain matrix and ¢() is the
obseravtion vector containing the delayed outputs,
inputs and the sequences of random variables.The
parameters A,(t) and A,(¢) are forgetting factors, which
are chosen to provide a better adaptation.

The numerical robustness of the estimation algorithm
and consequently that of the adaptive control algorithm
can be increased by using [M’Saad et al. 86] : Data
filtering and conditioning, normalisation of data,
factorization UD of the adaptation gain matrix, lower
bound of the adaptation gain and parameter estimation

. freezing.

5. APPLICATION

The LQG multivariable controller described above has
been implemented on the pilot-plant fermentor. Real-
time experiment is conducted to emphasize the
performance of the proposed adaptive controller. Several
experiments have been performed to determine a suitable
tuning parameters values. We have kept a set of design
parameters that seems to be satisfactory. The results
presented in this study are carried out according to the
following experimental planning.

Recall that the objective is to regulate both the
substrate concentration and the carbon dioxide
production rate at the desired profils by acting on the
dilution rate D(f) and on the influent substrate
concentration s, ().



Both inputs D(z) and s,it) are applied through auxiliary
controls. D(t) corresponds to the total of two specific
flow rates Di(t) and D,(t). D:(#) represents the specific
flow rate of a solution without glucose. D;(t)
corresponds to the specific substrate feeding rate from a
solution with s, glucose concentration. The
relationships among D(t), s,(t),Di(t) and D,(t) are
given by the following equations

D(t) = D1 (t)+ Dy(t) (15)
(t
san=—22 5 o
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The sampling period is set to 10 minutes. The plant
model structure is m=2,na =2,nb =1 and nc = 0.
The reference sequence is generated by the equation
(1-1.647'+0.6447 D)y, (1 =0.044,¢-1). The control
0.01 0

design parameters are P(@H =1, Q =[ ] and
0 0.005

R(0) =1001.

The parameter estimator initial values are F(0) = 10001,
6(0)=0, A, =095 and A, = 1. The gain matrix
trace is constrained to be not less than 0.1. A
preliminary open-loop identification is used to get a
reasonable initial values for both the parameter
estimates and the adaptation gain. For this, two
decorrelated PRBS inputs are applied, during 2 hours, to
the process.

Data from a real-life experiment are shown on figures 1-
6. Figures 1 and 2 show the time evolution of the
substrate concentration S(¢) and the carbon dioxide
production rate CER(t) respectively.

The set-point of S(¢) was changed from 5 g/l to 7g/1 at
t=6h30, and then to 5 g/l at t=17h30. The set-point of
CER(t) was changed from 4 g/l to 3 g/l at t=13h30, and
then to 4 g/l at t=23h30.

The corresponding off-line measurements of ethanol
concentration are given in figure 3. At the steady-state,
the ethanol concenteration reached 54 g/l and 39 g/l.
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Fig.1: Substrate concentration evolution.
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Fig.2: Carbon dioxide production rate evolution.
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Fig.3: Off-line ethanol concentration evolution.

Figure 4 shows the time evolution of the two auxiliary
control variables D, (t) and D2(t). The time evolution
of the input variables, that are the dilution rate D(r) and
the influent substrate concentration s,(t), are shown on
figures 5 and 6 respectively.
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Fig.4: Specific flow rate without/with glucose.
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Fig.5: Dilution rate evolution.
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Fig.6: Influent substrate concentration evolution.

After a transient for the adaptation during the initial
stage, the outputs S(¢) and CER(t) follow the desired
reference model. We note that the steady-state regulation
errors, figures 1 and 2, are kept within acceptable
limits.

These experimental results confirm the multivariable
nature of the fermentation process. Indeed, it is clearly
shown that a variation of one of the inputs induces
significant variations of both outputs. In the present
study, the selection of optimal set-points is not
discussed.

External disturbances, set-point changes, are efficiently
rejected by the multivariable controller. The control
variables D(t) and s,(t) remain smooth.
In spite of the variation of the desired outputs, the
control of the fermentor is perfectly performed by the
LQG control algorithm presented above.
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6. CONCLUSION

In this paper, an adaptive multivariable LQG control
startegy for an alcohlic fermentation process and
application results have been presented. Experimental
results on a pilot-plant fermentor have been presented to
illustrate the behaviour of the control bioprocess.

The good behaviour of the adaptive control scheme on a
linear multivariable model of a fermentation process
shows the feasibility of such a control strategy.

It is worth noticing that the proposed adaptive LQG
controller could be used directly to control the ethanol
concentration when on-line measurements are available.
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