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ABSTRACT

In this paper we consider the problem of ininimizing a
given positive linear combination of the ¢; norm and
the square of the X, norm of the closed loop over
all internally stabilizing controllers. The problem is
analysed for the discrete-time, SISO, linear time in-
variant case. It is shown that a unique optimal solu-
tion always exists which can be obtained by solving a
finite dimensional convex optimization problem with
an a prior: determined dimension. It is also estab-
lished that the solution is continuous with respect to
changes in the coefficients of the linear combination.

1. Notation
The following notation is employed 1n this paper:
ER The 1-norm of the the veetor x € R™.
|22 The 2-norm of the the vector € R™.

z(A) The A transform of a right sided real
sequence = = (2{k))7L, defined as
k=oc

2(A) = Z z(k)AL.

k=0

The Banach space of right sided ab-
solutely summable real sequences with

the norm given by || z ||1:= Z |z (k).
k=0

The Banach space of right sided, bounded

sequences with the norm given by
2 o= supilaz(k)].
The subspace of £,, with elements 2

that satisfy k“‘“, z(k) = 0.

The Banach space of right sided square
summable sequences with the norm
1

k=ou 2
given by |} z ||a:= l:z I’(k)z}

k=0

The first two authors are with University of California
at Santa Barbara, the third is with University of Hlinois at
Urbana-Champaign and the fourth is with the Massachusetis
Institute of Technology

The isometric isomorphic space of £,
under the X transform z(A) wih the
norm given by || £(A) 2= z |2 -

The dual space of the Banach space
X. < z,z* > denotes the value of
the bounded linear functional z* at
reX.

WX, X) The weak star topology on X* in-

duced by X.

T The adjoint operator of T': X — Y
which maps Y™ to X~.

We have from functional analysis that (£,)* = £,

(Cn)' = fl, ([2)' = [g.
2. Introduction

Consider the standard feedback configuration of Fig-
ure 1 and let ¢, be the closed loop transfer function
which maps the exogenous input w to the regulated
output z.

Figure 1: Plant Controller Configuration

Many hmportant control problems can be reduced
to this setup where the objective is to mininize a suit-
ably defined measure of ¢, In the standard ¢; prob-
lem the design of an internally stabilizing controller
such that the fo, norm of the rcgulated output = due
to the worst case magnitude bounded disturbance w,
is addressed. It is shown in [3] that for the 1-block
case, the problem reduces to solving a finite dimen-
sional linear program. The analogous problem with
the signal measures being the ¢; norm is the standard
Hoo problem. The standard Ho problem is concerned
with the minimization of the energy contained in the




pulse response of the closed loop, ¢.,,. This can be
viewed as minimizing the variance of the regulated
output z due to a white noise input w. Both prob-
lems have been extensively analyzed in the past and
solutions have been provided (e.g., [7]).

All of the previous design problems refer to a sin-
gle performance measure. It is well known (see for
example [2]) that optimization with respect to a par-
ticular norm may not necessarily yield good perfor-
mance with respect to another. Thus, if enhanced
performance is required with respect to multiple mea-
sures then 1t is necessary to include all these measures
directly into the design process. In the recent years
such considerations have led researchers to focus on
the design of controllers to satisfy mixed performance
criteria. One of the main problems in this class is the
mixed Hy/H, design. For this problem the interest
is on the interplay between the H, and M., perfor-
mance measures of the closed loop. Several state-
space results associated with this problem and vari-
ants are available. The interested reader may consult
[6,13,14,15] to mention only a few.

In {5] it is shown that a wide variety of control
problems reduce to convex optimization problems and
it 1s argued that the present technology makes it pos-
sible to deem the problem solved if it can be reduced
to a convex problem. In this light it is appropriate to
exploit as much structure in the problem as possible
so that the standard software available becomes com-
putationally more efficient. Within this context sev-
eral results on multiobjective functions involving the
€1 norm are becoming available. In [4] the problem
of minimizing the ¢; norm of the closed loop under
linear inequality constraints is addressed. Every such
problem is equivalent to a linear programming prob-
lemi which has a canonical dual problem associated
with it. Contrary to the finite dimensional case it
is not true that every infinite dimensional linear pro-
gram has the same optimal value as its dual. However
it was shown by the authors that under some condi-
tions this “duality gap” does not exist between the
primal and the dual which is advantageous from a
computational point of view. The problem of mini-
mizing the €, norm of the closed loop while keeping
the H., normn under a prescribed level falls under the
above category.

In [9] the problem of minimizing the £; norm of
a single input single output transfer function while
keeping the H,, norm of the closed loop system un-
der a specified value is reduced to solving a sequence
of finite dimensional convex optimization problems
and an unconstrained Ho, problem. In [10} a similar
problem in continuous time of minimizing the maxi-
mum amplitude due to a specified input while keeping
the H norm below a given level is reduced to solving
a finite dimensional convex constrained optimization
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problem and a standard unconstrained H,, problem.

In [8] it is shown that the problem of minimizing
the Hs norm of ¢,, while keeping its £; norm be-
low a specified level reduces to a finite dimensional
quadratic programming problem. Optimal solution
is shown to be unique. In [11] it is shown that the
problem of minimizing the £; norm of ¢,,, while keep-
ing its 5 norm below a prescribed level reduces to a
finite dimensional convex optimization problem with
an a priori determined dimension. It is also shown
that the optimal is unique whenever the M2 norm
constraint is active.

In this paper we consider the problem of minimiz-
ing a given positive linear combination of the £; norm
and the square of the H; norm of ¢, over all stabi-
lizing controllers. This cost function has strong rela-
tions with the notion of Pareto optimal solutions with
respect to the £; and H, norms and can be used to
generate all such solutions. The underlying optimiza-
tion principle that allows us to transform the problem
into a tractable finite dimensional convex problem is
the Lagrange duality theorem [1].

The paper is organized as follows. In section 3 the
problem statement is made precise and the relation
of the problem to Pareto optimality is established. In
section 4 it i1s shown that the problem has a unique
solution and in section 5 the problem is reduced to
a finite dimensional convex optimization problem. In
section 6 an example is given to illustrate the theory
developed and in section 7 conclusions are given.

3. Problem Formulation

Consider the standard feedback problem represented
in Figure 1 where P and K are the plant and the
controller respectively. Let w represent the exogenous
input, z represent the output of interest, y is the mea-
sured output and u is the control input where z and
w are assumed scalar. Let ¢ be the closed loop map
which maps w — z. From Youla parametrization {16]
it is known that all achievable closed loop maps un-
der stabilizing controllers are given by ¢ = h —u % ¢
(* denotes convolution), where h,u,q € ¢;; h,u de-
pend only on the plant P and ¢ is a free parameter
in £;. Throughout the paper we make the following
assumption:

Assumption 1 All the zeros of u (the A transform
of u) inside the unit disc are real and distinct. Also,
u has no zeros on the unit circle.

The assumption that all zeros of u which are inside
the open unit dise are real and distinct is not restric-
tive and is made to streamline the presentation of the
Let the zeros of u which are inside the unit
, zn- Let

paper.
disc be given by zq,za,. ..

b= {¢ : lhere exists g € £} with ¢ = h — u=xq}.




® is the set of all achievable closed loop maps under
stabilizing controllers. Let A : £; — R™ be given by

3
Z1 1
3
2

h(:,,)
Theorem 1 The following is true:

= {pety ¢(zi)=h(z) foralli=1,.. . n}
= {¢ € & :A¢p =b}.

Proof: Given in [2]. n
The problem of interest is :

Given ¢y > 0,c2 > 0 obtain a solution to the following

mized objective problem:

v (1)
= infla|l¢lli +ell ¢ 1l2° c ¢ € 41, Ap=U(R)

In the following sections we will study the existence,
structure and computation of the optimal solution.
Before we initiate our study towards these goals it is
worthwhile to point out certain connections between
the cost under consideration and the notion of Pareto
optimality.

3.1 Relation to Pareto Optimality

The notion of Pareto optimality can be stated as fol-
lows (see for example, [5]). Given a set of m nonneg-
ative functionals f;, 7 = 1,...,m on a normed linear
space X, a point ¢y € X 1s Pareto optimal with re-
spect to the vector valued criterion f:= (fi,..., fm)
if there does not exist any 2 € X such that

file) < fizo) Vie {1,...,m} and

filz) < fi(zy) for some i € {1,...,m}.

Under certain conditions the set of all Pareto optimal
solutions can be generated by solving a minimization
of weighted sum of the functionals as the following
theorem indicates.

Theorem 2 [12] Let X be a normed linear space and
each nonnegative functional f; be conver. Also lel

m

Sm ={ce R" :¢; >0, Zcir—‘l}

izl

and for each ¢ € R™ consider the following scalar
valued optimization:

Jnf ; ¢ fi(z).

If zo € X is Pareto optimal with respect to the vector
valued criterion f(zx), then there erists some c € Sy
such that zo solves the above minimization. Con-
versely, given ¢ € S,,, if the above minimization has
at most one solution zy then zo is Pareto oplimal
with respect to f(z). ]

In the next section we show that there is a unique
solution ¢q to Problem (2) for all ¢; and ¢;. Further-
more, since u is assumed to be a scalar, there is a
unique optimal ¢ € ;. Hence, in view of the afore-
mentioned theorem we have that if we restrict our
attention to parameters ¢; and ¢y such that (¢1,¢2) €
Sy 1= {(c1,63) 1 e1 + e = 1, e1,e0 > 0}, we will
recover the set of all Pareto optimal solutions with
respect to the vector valued function

f@)=(lh—uxgll,llh—u*g|2?)

where q € £;. Indeed, note that all the assumptions of
convexity and linearity are satisfied. Also note in the
case where c3 = 0 we have the standard ¢, optimiza-
tion which can have many optimal solutions [2]; non-
theless there is a unique solution among them which
minimizes the Hs-norm and this is in fact a Pareto
optimal solution. Moreover, in the case where ¢; =0
we have a standard Hs problem which is known to
have a unique solution [2]. For all other values of
(¢1,c2) € S2 we have a unique solution (to be shown
in the sequel).

To summarize, if ¢g is the optimal solution for
Problem (2) with (¢, c2) € Sa, then there does not
exist a preferable alternative ¢ with ¢ = h —u ¢ for
some ¢ € £ such that

Nl <l ¢ollr and {[ & ]l2 <[l ¢oll2

61l <l dofl and [[ &}z <[l boll2-

Conversely, all possible ¢’s that enjoy Pareto opti-
mality can be recovered by the solution to Problem 2
with (61,62) € 5,.

As a final note we mention that if (¢, ¢2) do not
satisfy ¢; + c2 = 1 then we can generate a new set
of parameters ¢;, ¢z as ¢ = ;i’c—z, iy = c—.%c—z with
¢1 + é3 = 1. These new parameters would yield the
same optimal solution as with (¢1, ¢2).




4. Existence, Uniqueness and
Properties of the Optimal Solution

In the first part of this section we show that Prob-
lem (2) always has a solution. In the second part
we show that any solution to Problem (2) is a finite
impulse response sequence in the third we give an a
priori bound on the length.

4.1 Existence of a Solution

Here we show that a solution to (2) always exists. We
use the following lemma to prove the main result of
this subsection.

Lemma 1 (Banach Alaoglu) Let X be a Banach
space with X* as its dual then the set {z* : z* € X* ||
* ||< M} is W(X*, X) compact for any M € R.

Theorem 3 There ezists ¢o € ¥ such that
c1ll o fls + call o 112" = inf{cll ¢ [l + call ¢ 112"},

where &:={¢ € €, : Ap = b}. Therefore the infimum

n (2) 1s a minimum.

Proof: We denote the feasible set of our problem
by &:={¢ € & : Ap = b}. Let B := {¢ € & :
el ¢ |1 + ca)] @ ||l22 < v+ 1}. It is clear that

v= ¢€ig£B{C1H o1 +call o H._,Q}.

Therefore given ¢ > 0 there exists ¢; € & N B such
that c1]| ¢i [|1+c2]| ¢i ”22 < I/+71.. B is a bounded set
in ¢; = ¢§. It follows from the Banach Alaoglu lemma
that B is W(c}, co) compact. Using the fact that co
1s separable we know that there exists a subsequence
{¢i.} of {¢:} and ¢¢ € ® N B such that ¢;, — ¢ in

the W(c{, co) sense, that is for all v in ¢g
<V, ¢, >o< v, ¢ > as k — oo. (3)

Let the j'* row of A be denoted by a; and the gth
element of b be given by b; . Then as a; € ¢y we have
as k — 0o,

< aj, i, >—< aj, o> forallj=1,2,...n (4)

As A(¢i,) = b we have < a;,¢;, >= b; for all k

and for all j which implies < a;,¢0 >= b; for all

J. Therefore we have A(#¢) = b from which it {ollows

that ¢o € ®. This gives us ¢1]| ¢o |[1 +cal| do ||2° > v.
From (3) we have for all N,

N

> {erlbi ()] + (04, (1))} — (5)

j=0

N
> {algoli)l + eal¢o(4))’} as k — o0 (6)

3=0
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As c1|| ¢ix |1 + c2l] ¢, l2® < v+ % we have that

N
S ferldin ()] + 2, ())*} < v+ % 7

i=0

Letting & — oo in (7) and using (6) we have that for
all N

N
> {ealdo(d)| + e2(0())?} < v

i=0

By letting N — oo in the above inequality we con-
clude that c;|| ¢o ||1 + c2l] ¢0 ng < v. Therefore, it
follows that cil} o |1 + c2]] do ||22 = p. This proves
the theorem. |

4.2 Structure of Optimal Solutions

In this subsection we use a Lagrange duality result to
show that every optimal solution is of finite length.
First we give the following definitions, where we de-
note the interior of a set by int.

Definition 1 Let P be a conver cone in a wvector
space X. We writex > yife—y € P. We writez >0
ifz € int(P). Simiarlyz <y ife—y € —P:=N
and r <0 if z € int(N).

Definition 2 Let X be a vector space and Z be a vec-
tor space with positive cone P. A mappingG : X — Z
is conver if Gtz + (1 — t)y) < tG(z)+ (1 — 1)G(y)
forall z,y in X and t with 0 <t <1 and is strictly
conver if G(tz + (1 — t)y) < tG(z) + (1 — t)G(y) for
alz,ym X andt with0 <t < 1.

The following is a Lagrange duality theorem.

Theorem 4 [11,1] Let X be a Banach space, 2 be a
convez subset of X, Y be a finite dimensional space, Z
be a normed space with positive cone P. Let f : Q — R
be a real valued conver funclional, g : X — Z be a
conver mapping, H : X — Y be an affine linear map
and 0 € int[range(H)]. Define

po :=inf{f(z): g(z) <0, H(z)=0, z € Q}. (8)

Suppose there exists £, € Q such that g(x1) < 0
and H(z,) = 0 and suppose py 1s finite. Then,

po = maz{p(z,y):2* >0, 2" €Z", yeY}, (9)

where o(z=, y):= inf { f(2)+ < g(z), 2" > + <
H(z),y > r € Q } and the mazvmum 1s achieved
for some 5 >0, z5 € Z%, €Y.

Furthermore if infimum in (8) is achieved by some
zg € Q then

(10)

< g(zo), 25 > + < H(zo),y0 >=0,




and

zo minimizes f(z)+ < g(z), 25 > + < H(z),y0 >, (11)
over all z € Q.(12)

We refer to (8) as the Primal problem and to (9) as
the Dual problem.

Lemma 2

- f b— A
v = max inf {c1l| ¢ [l + c2ll ¢ ll2*+ < ¢,y >}
(13)

Proof: We will apply Theorem 4 to get the result.
Let X,Q,Y, Z in Theorem 4 correspond to ¢,,£¢,, R* R
respectively Let v == v+ 1, g(¢) = ai]| ¢ |1 +
ca| 6 ||2° — v and H(¢) := b — Aé. With this no-
tation we have Z* = R.

A has full range which implies 0 € int{range(H)).
From Theorem 3 we know that there exists ¢ such
that g(¢o) = c1ll do |11 +czl| 6o [l2" =7 = =1 < 0 and
H{(¢y) = 0. Therefore all the conditions of Theorem 4
are satisfied. From Theorem 4 we have

v= max  inf {eill 6 Il +call ¢ 112"
+<g9(#). 2>+ < b—-A¢,y >}

Let zo € R, yo € R™ be a maximizing solution to
the right hand side of the above equation. ¢¢ being
the solution of the primal we have from (10) that
< g(®0),2z0 > + < H(¢o),yo >= 0 which implies
that < g(¢0), 20 >= 0. As g(éo) # 0 we conclude
that zp = 0. This proves the theorem.

Lemma 3 The following s true:

v = max inf {ea]l 6 |l1 + ¢2]| @ ||2°

YER™ $€ly,(i)u(i)>0
—<¢v>+<by>},

where v := A*y.
Proof: From (13) it easily follows that

v = max Inf {c +
maxinf {ar]| ¢ |l

coll ¢ |I2°— < ¢, v >+ < by >}

where v := A*y. Suppose ¢ € ¢} issuch that ¢(i)v(7) <
0 for some . Then choose ¢, € ¢, such that ¢(j) =
¢(j) for all j # 7 and ¢,(¢) = 0. It follows that

all ¢ i + eoll g ll2°~ < 9.0 > > ciflor [ +
c2|| ¢ “22— < ¢1,v>.

Therefore, in the infimization above we can re-
L strict ¢ to satisfy ¢(2)v(¢) > O for all ¢. This proves
the lemma. [ |

The following theorem shows that the solution
to (2) is unique and that it is a finite impulse response
sequence.

Theorem 5 Define T:={¢ € £, : there exrists L*
with ¢(i) = 0 if i > L*}. The following s true:

. 2
=m nf c c 16
v y€%§¢g,‘;ﬁ)vmzo{ il é i +eall @]l (16)

— <o, v>+<by>}, (17)

where v(i) = (A*y)(?). Also, the solution to the pri-
mal (2) is unique and the solution belongs to 7.

Proof: Let yo € R™ be the solution to the right hand
side of (17). Define vo := (A" yo0)(Z) and let

L(d) = C1|l¢”1+02”¢|l) —<dvg>+<by >
It is clear from Lemma (3) that

= inf L inf L(9).
v=iof L(¢) = inf . L(#)

As vg is in £; we know that there exists L* such that
vo(2) satisfies |vg(Z)| < ¢y if i > L*. Suppose ¢ is such
that ¢(2)v(i) > 0. Then it follows that

= S {6(D) ersgn(vo(i)) - voli)) + ex(9(i))?}
i=0
+ < vyo, b> .
If it is also true that |vg(i)| < ¢; then it follows that
$(i)(crsgn(vo (7)) — vo(i)) + c2((1))* 2 0,

with the equality holding only when ¢{z) = 0. There-
fore, in the infimization of

L(¢)

inf
&(i)vo(i)>0

we can restrict ¢ to satisfy ¢(i) = 0 whenever |vg(i)] <
c;. It follows that we can restrict ¢ to 7 in the in-
fimization because if 1 > L* then |vg(3)]| < ¢;.

In Theorem 3 we showed that there exists a solu-
tion ¢ to the primal (2). ;,From Theorem 4 we know
that ¢ is a solution to ¢12£f L{¢). As L(¢) is strictly
convex in ¢ we conclude that the solution to the pri-
mal (2) is unique. ;,From the previous discussion it
follows that ¢y €7 and that ¢g is a solution to the
problem

L*

oo ( 204 Z{c‘|¢(’)l+c’(¢(’)) —¢(D)vo(i) 4 < yo,b >

This proves the theorem. ]

4.3 A priori Bound on the Length of the Op-
timal Solution

In this section we give an a priori bound on the length
of the solution to (2). First we establish the following
three lemmas.




Lemma 4 Let ¢ be a solution of the primal (2). Let
yo represent the corresponding dual solution as ob-
tained in (17). Lel vy := A*yp then,

cao(i) = L= if u(i) > ¢
= MZ‘F& lf vo(i) < —C1
0 if |vo()} < .

Also, || vo Jjeo < o where o = 2¢5(|| b ||1+£2] A ll25)+
Cy.

Proof:Let L(#) be defined as in the proof of Theo-
rem (5). We have shown that

v=inf L = inf  L(¢).
PEL, (4) #(i)vo(i)20 2

Suppose |{vo(?)| = ¢1. As ¢o minimizes L(¢p) we have
¢0(1) = 0. In the proof of Theorem (5) we have
shown that if |vg(3)| < ¢; then ¢¢(7) = 0. Therefore,
Cquo(i) =01if Ivo(l)l S Ci.

Suppose vp(i) > c; then it is easy to show that
there exists ¢(7) such that ¢(¢) > 0 and

¢(i)(e1 sgn(vo(i)) — vo (1)) + c2(8())* < 0.

As any optimal minimizes L(¢) we know that
o(i)(c18gn(vo (7)) — vo(i)) + ca(0(¥))* <0,

which implies ¢o(z) > 0. Solving for the optimal by
putting the derivative equal to zero we have ¢; —
vo(%) + 2¢a¢0(i) = 0 (Diflerentiation is valid because
¢0(?) > 0). This implies that c3¢0(é) = *2UJ=% . Sim-
ilarly, it follows that ca2¢¢(i) = "—"(—'%Tﬂ when vg(1) <
—c1. It also follows that

Il vo lloe < 2¢2|| @0 Jloo +¢1 < 2¢al] G0 |1 + 1 <
. 2 2
Zea(lP R [l + LA Jl27) + cr
1

The last inequality follows from the fact that h
is an achievable closed loop map. This implies that
a = 2cx(|| h|li + 2| A ||22) + ¢y is an a priori upper
bound on || vg ||ec. This proves the lemma. u

Lemma 5 (2] If y € R™ is such that || A%y |lo < @
then there exists a positive inleger L™ independent of
y such that |(A*y)(3)] < ¢y for alli> L™,

Proof: Define

1 1 1 ... 1
21 Z9 z3 Lo Zn
* —
Al = ,
oL L oL L
Z3 29 23 e By

A} : R — RE+!. With this definition we have A%, =
A*. Let y € R be such that || A*y [l < o. Choose
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any L such that £ > (n—1). As z;,i =1,...,n are
distinct A} has full column rank. A} can be regarded

as a linear map taking (R™,|| . [l1) — (RX*L || - |leo)-
As A} has full column rank we can define the left
inverse of A%, (A})~! which takes (REH,|| . o) —

(R™,|| . |l.). Let the induced norm of (A4} )" be given
by || (A3)"" Jloo,1- ¥ € R™ is such that || A"y |leo < @
and therefore || ALY |l < «. It follows that,

il <) (A7 oot 1| ALY oo < (18)
1 (A7)~ Moot @ (19)

Choose L* such that
omax [zl (4D ena<en (20)

There always exists such an L* because |z;| < 1 for
all k =1,...,n. Note that L* does not depend on y.
For any i > L* we have

a
1]

n

(A" 9@ =1 ziuh)| < max |zl y [}

x
it
—

< max_|al" [ (AL) 7 o @
k=1,..,n

The second inequality follows from 19. From 20 we
have |(A*y)(#)] < ¢ if ¢ > L*. This proves the
lemma. |

Theorem 6 Every solution ¢y of the primal (2) is
such that ¢(i) = 0 if i > L* where L* given in
Lemma (5) can be determined a priori.

Proof: Let y, be the dual solution to (2) and let
vp := A*yp. From Lemma 4 we know that || vg {|ec <
a where o = 2c2(|| h |]1 + 2{| h l2°) + 1. Applying
Lemma 5 we conclude that there exists L* (which
can be determined apriori) such that lvg(i)| < ¢ if
i > L*. We have shown in the proof of Theorem (5)
that ¢o(7) = 0 if |vg(7)| < ¢1. We conclude that ¢ = 0
if i > L*. This proves the theorem. u

The above theorem shows that the Problem (2)is a
finite dimensional convex minimization problem. In
fact, it is a quadratic programming problem which
can be solved numerically with very efficient methods
(see for example [1]).

5. Continuity of the Optimal Solution

In this section we show that the optimal is continuous
with respect to changes in the parameters ¢; and ca.
First, we prove the following lemma:

Lemma 6 Let {fi} be a sequence of functions which
map R™ to R. If f, converges uniformly to a function
f onasetSCR™ then

lim min fi(z) = min f(z
k—»ooxesfk( ) xesf( ),




provided that the minima ezist.
Proof : Let min f(z) =
€S

€ > 0 we know from convergence of the sequence {fi}
to f that there exists an integer K such that if & > K
then

f(zg) for some 2y € S. Given

1fe(z0) = fzo)l < ¢
= fr(z0) < €+ f(20)
= min fi(z) < €+ f(20)
= lim min fi(2) < ¢ + f(=o)-
As ¢ is arbitrary we have klim meigfk(z) < f(=zo).

Now we prove the other inequality. Given ¢ > 0 we
know that there exists an integer K such that if k >
K then

|fe(z) — f(z)| < € foranyz € S
= fi(z) > f(x) — € > f(zo) —¢ for anyz € S
= min fe(z) > flzg) — ¢
) > f(=o) -

As ¢ is arbitrary we have kllm mm fe(z) > f(zo).

= kllm mm fr(z

This proves the lemma ]

Theorem 7 Let ¢t € [a1,b1] and ¢k € [az,b3) where
a1 >0, az > 0. Let ¢ be the unique solution to the
problem

vy = Eln kNl o I+ ck|l ¢ Hz , (21)

and let ¢y be the solution to the problem

vi= E;i:anl“¢”1+C'2“¢”22, (22)

where c1 € [a1,b] and co € [as,by]. If ¥ — ¢ and
c2 — cq then ¢ — ¢q.

Proof : We prove this theorem in three parts; first
we show that we can restrict the proof to a finite
dimensional space, second we show that v;, — v and
finally we show that ¢x — ¢9. Let y; represent the
dual solution of (21) and let vy = A*yx. Let
the upper bound on || v; ||, be as given by Lemma

4. Therefore, oy = 25(|| h |l + Sk [1,*) + f <

2b(|| h || +22 2|l A lla®)++b1. Let this bound be denoted
by d. Choose L* such that

Jmax Jzel™ (A7) oo d < ar.

where L 1s such that L > (n — 1). Therfore, it follows
that

lloo1 g < cf.

 max |zl | (7)™
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for all k. From arguments similar to that of Lemma
5 and Theorem 6 it follows that ¢g(i) = 0 if ¢ > L*
for all k. Therefore we can assume that ¢, € RL".

Now, we prove that vy — v. Let ¢, be the solution
of the problem

= min b b Z
vi = min 1l @ [11 + 62| ¢ ]2

As ¢k < b, and ¢k < by we have that vy < v, for all k.
Therefore, for any k we have cf|| ¢k I+ k| ok ||2
vy which implies || ¢p ||} < 4 < & L and |} ¢ ||2

= k=

g4
Let fu(®) := cfll ¢ [l + k| ¢ |I>* and f(9) :=
all ¢l +02||¢||2 .Let S := {¢ € RI* : A¢ =

bllélh < an Al é ”2 < f:} Then it is clear that
Vg 1= mlncl” 1l + ekl oIl

We prove now that fi; converges to f uniformly on
S. Given € > 0 choose K such that if £ > K then
Ik —e1| < 35+ and [} —co| < 5,4 Then forany ¢ € S
we have

|fr($)—F( o) = I ei—en)ll ¢ [li+(ch—e2)l| ¢ I|2"] <
ek — ald + ek — el <e

Therefore it follows that fi converges uniformly
to f on S. From Lemma 6 it follows that v, — v.

We now prove that ¢p — ¢g. Let B := {¢ €

)l @ lly < &} then we know that ¢ € B which
is compact in (RL", [| - {1). Therefore there exists a
subsequence ¢, of ¢ and ¢ € RL™ such that ok, —
@.

As cf — ¢, c'2C — ¢3 and ¢g, — ¢ we have that
Jr,(¢r,) — f(H). As vy converges to v it follows that
Je(@r.) — f(¢o) (note that vy, = fi (¢¢,) and v =
f(¢0)) and therefore f(¢) = f(¢o). As Agy, = b for
all i we have that A¢ = b. From uniqueness of the
solution of (22) it follows that ¢ = ¢y. Therefore we
have established that ¢x, — ¢y. From uniqueness of
the solution of (22) it also follows that ¢, — ¢go. This
proves the theorem. n

6. Conclusions

In this paper we solved the problem of minimizing
a linear positive combination of the ¢; norm and the
square of the H» norm of the closed loop transfer func-
tion for discrete-time SISO feedback systems. This
way all Pareto optimal solutions with respect to £,
and Hy norms can be generated and trade-off studies
can be performed. The unique solution to the prob-
lem is readily obtained by a quadratic programniing
problem of a priori determined demension. Also, con-
tinuity of the solution with respect to the linear com-
bination coefficients of the problem was established.




The main tool for the development of the paper

is the Lagrange duality theory. Such a tool can also
be used for MIMO problems where the above SISO
results seem to have natural extentions. This remains
the subject of current research.
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