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ABSTRACT

This paper presents methods and results on neural network
based identification of a multiple segmented telescope
system. The neural net identification procedure is the
first step toward the development of a neural controller,
which will be designed and used for vibration suppression
and figure maintenance. Different network structures are
developed, tested and evaluated. The networks are trained
on input/output data provided by a reduced order model,
which has been obtained from a high order finite element
model of the structure. After training is completed, the
networks are validated as system identifiers, by
comparing the neural network response to the system
response for various control and disturbance inputs. The
identification procedure is performed at the subsystem
level and at the overall system level. It is seen that the
networks perform very well as system identifiers for all
tests.

1. INTRODUCTION

With the need for higher resolutions, the next generation
of telescopes will be space based and will require very
large mirrors. To circumvent the problems that a large
monolithic mirror has (large weight, difficult to
manufacture, difficult if not impossible to send to space
etc.), segmented mirror telescopes are an effective
alternative. A segmented mirror reflector consists of
mirror panels, which when formed together become a
parabolic primary mirror that magnifies the images from
space. A monolithic reflector depends on the mechanical
properties of its material to provide the dimensional
stability required for good optical performance. A
segmented reflector relies on its support structure for
stiffness and rigidity and an active control system to
maintain alignment of the individual panels.

To study the complex dynamic behavior of large
segmented optical systems, NASA has funded a five-year
project to design and construct a test-bed in the Control
and Structures Research Laboratory (CSRL) at the
California State University, Los Angeles. The CSRL test-
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bed serves as a generic experimental facility capable of
performing experiments that simulate the complex
dynamics of a large segmented optical system. It is being
used as an experimental facility for addressing in an
integrated way, problems associated with structural
dynamics, control , optics, electronics, actuators and
sensor design.

The segmented reflector telescope investigated in this
work consists of 6 hexagonal mirror panels arranged in a
ring configuration, attached to a supporting truss structure
(Fig. 1). Each mirror is 1m from edge to edge, and the
focal length of the entire primary mirror is 2.4 m.
Interferometric edge sensors and accelerometers are
attached to the back of the panels to measure
displacement. Each panel has three voice coil actuators,
placed equidistantly, for high precision control of each
mirror. The large size of the telescope makes the structure
flexible to external forces, such as thermal fluctuations
and solar disturbances. Control algorithms have to be
developed to achieve a telescope figure maintenance
within 1m in a dynamic disturbance environment.
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Fig. 1 Segmented telescope concept

This paper presents results on the identification of the
segmented reflector telescope, based on neural network
methods. The identification procedure is the first step
towards the development of a neural controller. Fig. 2




shows the preliminary design for a neural controller
working in conjunction with a neural identifier for the
vibration suppression and figure maintenance [Yen,
1994]. For the purposes of the present work, a telescope
structure was designed and modeled at CSRL. The design
presented here is one of three alternative designs done at
CSRL and which are currently being evaluated,
[Mirmirani et al., 1995]. The structure was designed to be
structurally as simple as possible, and it is comprised
almost exclusively of tetrahedrons. For creating the
control model, the secondary mirror is modeled as a
triangular truss with its mass lumped at three nodes. The
primary mirror panels are also modeled as triangular
trusses with their mass lumped at three nodes. A finite
element model was obtained based on this design,
through the program IMOS, developed at the Jet
Propulsion Laboratory, [Boussalis et al., 1993].
Subsequently, a model reduction technique (Guyan
reduction ) was performed. The reduced order model of
the overall system has 36 states, consisting of 18
displacement variables and their derivatives.
Decentralization on the system is performed by isolating
each physical subsystem (mirror panel along with its
associated structural members). Each isolated panel is
represented by a 6x6 system, and has 3 control inputs and
3 measured outputs (designated as locations 1,2,3 for each
panel). Also, a disturbance force is assumed acting on the
system.
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Fig. 2: Control of the structure through neural networks
(TDL.= tapped delay line)

The neural network identification results are based on the
reduced model described above. Several network
structures and different training strategies were developed,
tested and evaluated. Initially single input / single output
subsystems were identified at the panel level. Through this
initial approach, familiarity was obtained with the system
at hand, the system responses and required training
procedures. Next single input / multi-output transfer
functions were identified for each subsystem, and
subsequently the multi-input/multi-output subsystems
representing each isolated panel were modeled by neural
nets. Finally, the overall system was identified by a neural
network. Feedforward neural networks trained by
modified back propagation algorithms were tested and
were found to be good representations of the system. The
following sections describe the network architectures,
training strategies and identification results in detail.
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3. NEURAL NETWORK BASED
IDENTIFICATION OF STRUCTURES

The identification and control of structural systems based
on neural networks has received considerable attention
recently. The massive parallelism inherent in neural
networks, their learning abilities, their fault-tolerance and
their approximating properties make them a good
alternative choice for identification of unknown structural
systems, even when nonlinearities are present. Some of
the previous works on structural identification based on
neural networks can be found in [Chassiakos et al., 1991a;
1991b], in [Masri et al., 1992; 1993] and also in
[Housner at al., 1995]. Feedforward neural networks have
been used by the authors to identify nonlinear internal
forces in unknown structures. These networks represent
static maps between their inputs and outputs and can be
trained by standard back propagation. A static map,
however, cannot approximate the dynamics of a
dynamical system. Several methods have been proposed
for the approximation of dynamical systems by neural
networks. In [Chassiakos et al., 1992] neural networks
with dynamic neurons have been successfully used to
approximate the nonlinear dynamics of a robot
manipulator, in continuous time. In [Narendra and
Parthasarathy, 1990] the dynamic back propagation
method has been used to train these networks. In the
present work we follow a discrete-time approach, which
enables us to use feedforward networks and train them by
back propagation. The delayed outputs of the system are
fed back to the network as input, together with delayed
system inputs, and the network can be trained by back
propagation methods.

The approach taken here consists of the following steps:

] Obtain frequency response characteristics of the
system and each subsystem. The frequency response
will give a general idea as to what input signals
should be chosen for training of the network; it will
also provide guidelines as to what order delays may
be used to represent the system.

° Identification of a SISO (single input/single output)
transfer function on panel 1. This is a relatively
easy problem, but it provides us with enough
experience as to the type of network, order of delay
and training procedures.

. Identification of SIMO (single input/multi-output)
transfer functions for each panel ( 1 input/ 3 output
transfer functions). This problem is one level of
complexity higher. Based on the experience of the
previous step and on the frequency response
information, appropriate network structures and
network sizes are chosen and tested.

. Identification of MIMO (multi-input/multi-output)
transfer functions for each panel (3 input / 3 output
transfer functions). For this harder problem several
network structures were tried and evaluated until




one was eventually chosen. Information from the
previous step can be used to decide on the
networks for this step. The networks chosen in this
step represent the isolated subsystems, and they will
be used for a decentralized controller, as subsystem
neural identifiers.

. Identification of the overall system.

For all the above steps, the training phase is followed by

the validation phase. The network response is calculated

first for the training inputs and subsequently for any

arbitrary inputs. The weights are kept at their optimal

values and the network is tested as a system identifier.

4. IDENTIFICATION OF SUBSYSTEMS
AT THE PANEL LEVEL

4.1 SISO subsystems: Initially the SISO transfer
function from input 1 to output 1 on panel 1 was modeled
by a neural network. Its frequency response shows that it
has a resonant frequency of = 2000 rad/sec, and that it
exhibits second order characteristics with a zero at the
origin. Based on this, two delayed outputs y(k-1), y(k-2)
and one delayed input u(k-1) were fed to the input layer of
the network at time r=k. The training input is chosen as a
swept sine signal, with linearly increasing frequency,
which passes through the resonant frequency of the
structure:
u(t) =sin(w(tr)*1r)
and the frequency ®(t) is given as a function of time by

w(t)=w, +((of —O)O)t/tf
where the initial frequency is ®,=400 rad/sec, the final

frequency is @, = 5000 rad/sec and the final time ¢, =
0.15 sec .

A two layer network trained by back propagation with
momentum and adaptive learning rate is used. Based on
time response characteristics, the system outputs were
scaled-up by a scaling factor of 400 and fed back to the
input layer of the network. During the training phase it
took about 500 iterations for the sum of square errcrs to
settle to a small level (Fig. 5 - top). The network was
tested with swept sine, step, random and periodic inputs
and was seen to be an excellent identifier of the SISO
subsystem. Some of the test results are shown in Fig. 5,
where the neural net output (dotted line) is compared to
the system output (solid line) for swept sine input (Fig.
5b) and for random input (Fig. 5¢,d).

4.2 SIMO subsystems: The next step is the identification
of single input / multi-output subsystems for each panel.

The same swept sine input as in the SISO case was
applied to location 1 (Fig. 6 - top). The neural network
used has the structure shown in the block diagram of Fig.
3, with 7 inputs and 3 outputs. A two layer network was
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initially chosen, with 10 hidden nodes, so that the weight
matrices W11 and W12 are of dimensions (10x7) and
(3x10) respectively.

PANELj (SIMO)
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Fig. 3: Neural net for identification of transfer functions
G11,G12 and G13

Tig. 6 compares the prediction of the neural network to
the system response after training. It is seen that the
network is doing an excellent job in reproducing the
system. There is a slight difference between network
prediction and system response during the initial time in
the plots for y2 and y3. This difference is due to the fact
that the contribution of outputs y2 and y3 to the network
input layer is very small as compared to the contribution
of yl. One way to increase this contribution is to use
higher scaling factors for y2 and y3. This approach was
tried and it proved to be very successful. It was not used
though, because of the desire to keep uniform scaling.
Uniform scaling will be necessary for the identification of
the MIMO subsystem and of the overall system. The
network was validated by testing it with a random input
and a unit step input applied to location 1. The results
were very good, even though the network was never
trained on these particular inputs.

During identification of the SIMO subsystem, several

different training strategies and network structures were

tested. The results, however, did not show much of a

difference from the results of the network described

above. Some of these strategies are given next:

e since the model is a linear system, the network
nonlinearities (sigmoid functions, such as hyperbolic
tangent) were replaced by linear functions, and the
network was retrained and tested again.

e tests were performed that forced the bias vectors to
be kept constant equal to zero during training.

e different order delays were tried for the input and
output, since the transfer functions G12 and G13
exhibit complex zeros at = 1000 rad/sec, and
higher order phase characteristics. This increased the
complexity of the network without any visible
increase in performance.




Since these different strategies did not produce significant
changes in performance, it was decided to keep the
network structure as described initially in this section.

4.3 Identification of MIMO subsystems: For the
identification of the full multi-input/multi-output
subsystem representing each panel, it was decided to use
the trained networks obtained in the previous section. The
initial idea was to use the three separate networks
corresponding to  each panel: for panel j (j=1,...6)
network NNI1 represents the SIMO transfer functions
Gl11, G12 and GI13 from input 1 to the three outputs;
network NN2 represents the SIMO transfer functions
G21, G22 and G23 from input 2; and network NN3
represents the SIMO transfer functions G31, G32 and
G33 from input 3. Since these networks were already
trained in the previoius section, it was decided to keep
them separate and use their optimal weights as initial
weights for training of the MIMO subsystems. This
network structure uses a combination of the trained
networks NNI1, NN2, NN3 and two additional
unmodifiable layers, one at the input and one at the
output. The input unmodifiable layer is implemented by a
matrix WO, which is a fixed matrix. It does not get
updated during training, and its role is to distribute the
inputs ul, u2 and u3 to the networks NN1, NN2 and NN3
respectively. Similarly, the output unmodifiable layer is
implemented by a fixed W3, which is used to sum up the
corresponding outputs of each distinct network. The
overall network represents the 3-input/3-output transfer
function of panel j. Data of input/output pairs are
generated from the state space representation of the panel

x=Ax+Bu+B.F
y=Cx+ Du

where B and B, represent the control influence and

disturbance influence matrices respectively.

® training initialization: Training of this network is
performed on NN, NN2 and NN3 only, whereas W0
and W3 remain fixed. The three networks NN1, NN2
and NN2 are initialized at the optimal values obtained
in the previous section, through the SIMO training.

® [raining input: initially the same swept sine as in the
previous section was used for all input locations. The
comments made in section 4.2 about the relative
magnitudes of each output are applicable here as well
and for this reason the training input was modified to
a swept sine of amplitude varying with time, as
shown in Fig. 7 - top. This signal was used as a
training input at location 1, whereas at locations 2 and
3 the same signal as introduced, but phase-shifted by
45° and 90°. This new training inputs, result in more
data points throughout the input/output space, hence
increasing the approximating accuracy of the
network.

® training algorithm: a modified version of the back
propagation algorithm was used, which allows for
keeping selected weights of the network fixed,
without any updating.
After training was over, it was observed that many of the
elements of the trained matrices are close to 0. This is a
result of the structure imposed on the network (several
interconnections were set to zero), but it also suggests that
the network could be trained with a smaller number of
weights.
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Fig. 4 Neural net for identification of each panel

4.4 Networks of reduced size: The network structure as
described above produced very good results. However,
based on the last observation, it was decided to try a
network of smaller size. The new, smaller network has no
fixed weights, and all the parameters are updated by the
training algorithm. The training inputs are again swept
sine signals of varying amplitude. The same training
procedure was repeated for panels 2-6. From frequency
response plots of the control input to output transfer
functions for each panel, it was determined that the
corresponding transfer functions for each panel are similar
to each other (i.e. transfer function G12 of panel 1 is very
close to G12 of panel 2, etc.). As a result, as soon as the

-network for panel 1 was trained, the optimal values for
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this network were used to initialize the weights for the
network of panel 2, etc. This strategy resulted in reduced
training time for the remaining panels.

4.5 Validation procedure: The trained networks
representing each panel are subjected to different control
inputs, and their response compared to that of the system.
For uniformity of testing, all networks were subjected to
the same control inputs:

(a) swept sine input with varying amplitudes, which
was also used during training (Fig. 7)

random excitation (Fig. 8)

(b)




(©)
d)

step input

a periodic input with combined low and high
frequency components (Fig. 9)

The results for panel 1 only are shown in Figs. 7-9, where
the neural net output (dotted line) is compared to the
system output (solid line). Similar results were obtained
for the remaining 5 panels, and it is seen that the neural
networks perform remarkably well for all subsystems and
all inputs tested.

Regarding the weights of the trained networks, some
qualitative observations can be made:

o Matrices W1 are very similar to each other for
every panel. This is expected, since the MIMO
transfer functions for each panel are close to each
other and all networks were initialized with the
same weights. The same is true for matrices W2 for

all panels. -

. The bias vectors are close to 0. This is also
expected from the linear model used.

o The first three columns of matrix W1 have very

small values, for all panels. This suggests that the
three control inputs are weighted less in the network
than the outputs and that a smaller network could
perhaps be trained.

5. IDENTIFICATION OF THE

OVERALL SYSTEM

The final step in the identification phase is  the
identification of the overall system through neural
networks. An approach similar to the one described in
section 4 was initially considered: using the subsystem
neural nets individually and interconnecting them through
an additional input layer and an additional output layer.
Given, however the experience obtained in section 4
regarding this approach (resulting in large matrices with
many zero elements), it was decided to try a completely
new network of small dimensions with randomly
initialized weights. The network identifies the relation
from disturbance input to outputs for the overall system.
The disturbance forces act on three points of the structure.
A disturbance input determined in [Boussalis et al., 1993]
was used for training and is shown in Fig. 10 - top. Fig. 10
compares the system outputs to the neural net prediction,
for panel i only, when the overall system is subjected to
the disturbance input. It is seen that the network has
identified the overall system very well. Similar results are
obtained for all the remaining panels, when the overall
system is subjected to disturbance inputs.

6. CONCLUSIONS

The work presented in this report covers the neural
network based identification of a large segmented space
telescope. Several neural network structures and training
strategies were developed, tested and evaluated. It was
shown that two layer networks, whose inputs include
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delayed versions of the system outputs, can be effective
identifiers at the subsystem and at the overall system level.
The work currently under progress includes the
evaluation of the two additional structural designs
developed at CSRL and the preliminary study of neural
controllers, incorporating the neural identifiers described
in the present paper.
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Fig. 5: SISO subsystem (panel 1)
(a) sum squared error vs: number of iterations

(b) neural net prediction (dotted line) vs. system output

(solid line) for swept sine input
(c) random testing input

Fig. 6: SIMO subsystem (panel 1)

(a) swept sine training input

(b)-(d) neural net prediction (dotted line) vs. system
output (solid line) for swept sine input

(d) neural net prediction (dotted line) vs. system output

(solid line) for random input
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Fig. 9: MIMO subsystem validation (panel 1)

(a) periodic testing input at location 1

(b)-(d) neural net prediction (dotted line) vs. system
output (solid line) for periodic testing input
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Fig. 10: Overall system identification

(a) disturbance input

(b)-(d) neural net prediction (dotted line) vs. system
output (solid line) for disturbance input (only panel
1 outputs shown)
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