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Abstract This paper proposes an approach for the
design of discrete-time decentralized control
systems based on model-based predictive control
(MBPC). The class of interconnected large scale
systems is considered and a model is used at each
control station to predict the corresponding
subsystem output over a long-range time period.
The interaction trajectories are estimated, and an
on-line improvement of them is performed. In
the case of subsystems with m-step delay
information patterns this estimation is based on
a linear model for the interconnections with on-
line updating of its parameters. For all other
cases an on-line discrete-time decentralized
model following controller is obtained.
Representative computer simulation results are
provided and compared for three nontrivial
example systems.

[. INTRODUCTION

The decentralized control of interconnected
dynamical systems has received an increasing interest in
recent years ([1], [2]). One of the benefits of decentralized
control is that the large scale systems can be decomposed
1110 many subsystems [4],[7], and the control, design and
implementation of each one of them can be performed
independently. This simplifies the overall control
problem. Moreover the computational burden can be
shared by all the control stations involved. The main
difficulty in designing decentralized control systems is the
limited information available for the control [3],[5],[8].
The set of the control stations is constrained to have
access only to local information, i.e. only measurecments
of local outputs and states (and no communication among
them are permitted [9]). This is exactly what characterises
a non-classical information pattern. Finally, the local
control stations cannot take into account the interactions
with the other subsystems, and therefore techniques to
deal with this problem must be developed. Recently, much
work has been conducted aiming at the analysis of
stability of decentralized control problems and the
«Ccvelopment of decentralized stabilizers using output or
siate feedback (6].

Moreover optimal decentralized control algorithms have
been developed for dealing with such problems. But it is
well known that optimal control is not very suitable for
complex industrial systems or general large-scale sysiems
since it needs an accurate model of the controlled system
and it is sensilive to parameter variations and to the
existence of stochastic disturbances.

A fundamentally new control appproach that does
not have the drawbacks of pure optimal control and it is
suitable for complex large scale systems is the so called
Model-Based Predictive Control (MBPC) approach [12-
14]. This approach was developed in the mid-seventies,
and allows for model uncertainties, it updates the output of
the model by closed-loop corrections, and optimizes the
control law on a moving horizon. In this paper the
decentralized control approach is combined with the
model-based predictive control approach. The result is a
unique control scheme called Decentralized Model Based
Predictive Control (DMBPC). This is achieved by a
suitable estimation of the interactions at each control
station [10].

Section II presents the problem formulation,
Section III introduces the concept of MBPC and deals with
the computation of the centralized part of the control
algorithm. Section IV proposes two techniques for
approximating the decentralized part of the control. The
first concerns the case of m-step delay sharing pattern and
a linear model for the interconnections. The second is
based on an on-line improvement for the predictions of the
interconnections which is based on a model of them.
Finally, Section V presents a set of representative
simulation results for three particular examples including
some comparisons, and Section VI gives some concluding
remarks.

II. FORMULATION OF THE PROBLEM

Consider a discrete time, linear, possibly time-
varying large scale system which consists of N-
interconnected subsystems, each of which has the
following state space description:




xj(t+ D=Ajx (0 +Bjui()+Ejzi(t) (1a)
xi(0)=xi, (1b)
ym;(D=Cixj(V) (1c)
for i=1,2,....N, where

xi(t) : is the nj-dimensional state vector of the i-th
subsystem at time t,

uj(t) : is the ri-dimensional control vector of the i-
th subsystem at time t,

Ymj(t) : is the pj-dimensional output vecior of the
model of the i-th subsystem at time t,

zj(t) : is the gj-dimensional interconnection vector
which describes the influence of all other subsysiems upon
the i-th one .

The vector zj(t) is considered to be a linear
combination of the states of all other subsystems, ic

N
z ()= .ZlLijxj(l), i=1,2,...,N withi#j (3}
1=
where L are matrices of proper dimensions assumed 10 be
known to every control station.

It is accentuated that the output ym{t) of the model
may generally have a small difference from the real output
yi(t) because of modelling errors or noise which affect the
whole system or parts of it.

Finally the matrices A;, B;, E;, C; are of proper

dimensions, i.e. Aj € Mp;xn;, Bj € Mp;xrj» Ei€ Mnjxq; -

Cj € Mpjxnj where Mkxs is the set of matrices of kxs
dimensions.

The problem is 10 find at every time t the best
control uj(t) for the i-th subsystem, which leads the
output current value yj(t) to its set-point wi(t). The
control must be “the best” in the sense of minimizing a
cost function which will be described later.

Moreover the control laws must be specified in a
decentralized way, i.c. the control laws are assumed o0 be
of the form uj(t)=Yy;(Iij()) , i=1,2,...,N, where y;j(t) is a
function of the available information set Ii(t) of the i-th
subsystem defined as follows :

Li={ yi(1), yi(2),..., yi(® ; ui(1), ui(2),...,0i(t-1) ;
xi(0), xj(1),......, xi(0)}

1j(0)=0
This means that Ij(t) consists not only of the measurement
of the current output yj(t) but also of the past outputs
yi(r), uj(r) r<t. The information set Ij(t) does not contain
zi(t) which is necessary for the computation of uj(t) but
not available to the i-th control station because it depends
on the non-available states of the other subsystems Xj(l),
JEL .

In the following, predictive control techniques will

be used to satisfy the problem requirements. It will be
shown that the”control laws are of the form :
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ui=uiO+uid@® , i=12,..N A3)
where ui€(1) is the centralised part of the control, i.e. the
part that is available to the i-th control station, and uid([)
is the decentralized part of the control law which depends

on information not available to the i-th control station,
and more especially depends on z;(t) and predictions of it.

I1II. MBPC AND COMPUTATION OF THE
CENTRALIZED PART OF THE CONTROL

Model-Based Predictive Control is a control
algorithm which uses a model for open-loop predictions,
optimizing the control inputs on a moving horizon and
updating the outputs of the model by closed loop
predictions.

Especially, at each time 1, the output yj(t+k) is
predicted over a future period of time k=l,2,...,Ly where
Ly is the prediction horizon. The predictions are
symbolised by yp;(1+k/t) and are determined by means of a
model, for example a state space model like (1a-1c). The
predictions  yp;(1+k/t) , k=1,2,....Ly depend on future
control values uj(t+k/t) , k=0,1,....L, , where L, is the
control horizon (Ly<Ly). In the control horizon we have:

uj(t+Ly+k/O)=uj(t+Ly-1) , k=0
The i-th subsystem output predictions can be
calculated as :

Yp A+ kWy=y, (+k)+q +ky @)
where, by (1a, b),

Yo L+ k)= Cixi(l+ k/t)

k ko i1
=C.[A x )+ ZAi B (t+k=~ji
=1
k j-1
+ZAi Eizi(t+k—j/[)],

=1

k=1,2,...,Ly 5

and qj(t+k/t) is the cloded-loop correction vector based on
the available information set at time t. A recommended
form for gj(1+k/t) is the following:

q;(t+k/D=y;(D—-y ,;(D (6)
where yi(t) is the measured value of the output vector at
tume L.

A reference trajectory ri(t+k/t), k=1,2,...Ly is
defined over the prediction horizon, which describes how




we want to guide the output vector yj(t) to its set-point
wi(D), i.e.

r;(t+k/0=w,(1+k/0+v, (1+k/V) (1)

where V(t+k) is a correction vector based on the previous
error information set {wi(t)-yi(t), wi(t-1)-yi{t-1),..., wj(1)-
yi(D}.

A simple form which gives good results is the
following:

v;(t+k/D)= a*lw;(0-y; (D] (8)
where (O<a<l1 is a tuning parameter that specifies the
desired closed-loop dynamic (a—0:fast control; a—1:slow
control).

The reference trajectory is initiated at the current
measured output i.e. ri(t/)=y;(1).

It is noted that if the future set-point values
wi(t+k/t), k=1,2,...,Ly are unknown at time t, on¢ can
assume that :

wi(t+k/t) = wi(t) k=1,2,..,Ly

All the above are illustrated in Fig.1.
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Fig.1. The reference trajectory, the set-point trajectory,
the prediction horizon and the coincidence horizon

The cost function of the i-th contrQl station has the
form:

y

2
minJi(l)z Ly “ri(t+ k/t)—yp‘([+k/l1
k=L, ' Q (k)
L,-1 ,
LEDYN TRCES 0/ ®)
k=0 Ri(k)

where Q;(k) 20 for k=Lg,....Ly and R(k)>0 o
k=0,....Ly-1.

Since Jj(t) varies with time t and has a moving
optimisation horizon, only the first term in the optimal
solution is implemented to control the i-th subsystem.
The optimization parameter Lg determines, togerther with
Ly, the “coincidence horizon” we want the predicted output
to follow the reference trajectory over the time interval
[t+L0,...,l+Ly]. The basic concepts of the MBPC
structure as it is applied to the i-th subsystem is shown in
the Fig.2.
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Fig.2. The basic MBPC structure
Let us now proceed to the computation of the

optimal control in the i-th control station. To this end,
the following notation is introduced:

T

9Pi: [ypi(H» l/t),...,ypi(l+ L/l (10)
T

9mi:[ymi(l+ l/l),...,ymi(l+ Ly/m)] an

f‘i: [r(t+ l/t),...,ri(1+ Ly/l)]T (12)

T
Q. =1lq,(t+ 1),...,q.(t+ L /)] (13)




T
= [ui(t/t),ui([+ l/l),...,ui(l+ L,-1m]1 (14
T
= [wi(t+ l/t),...,wi(t+ Ly/[)] (15)
T
=[o(t+1),..., v.(t+ L /1) (16)
A 2 L)’
d=[CAx,CAXx,..., C.A. x] a7
"1 1 1 1 1 1 1 1
T
2i= [Zi(t/t)’zi(H l/t),...,zi(t+ Ly -1/1] (@18)
Then, from equation (5) one obtains:
dW+s0@+s 2 19
I O=d,0+S70,00+5 2,0 (19)
where
L
*
S={} (20
"LF v
and L, F, V are the following block-matrices
CiAOB 0... ..0
C,AIB C,AOB..
L= 1 1 1
L,-1 L,-2 0
CA B, C.A B. C.A B.
L 1 i i 1 1 1]
[ L, 2 ]
CiA B CiA Bl
L +1 L, 3
F-|C.A B. CA B .C.A B,
1 1 1 3 1
L1 Ly-2 L,~-L +1
CA B. CA B...CA B.
- 1 1 1 1 1 |8
1 Ly-Ly
[C(ZA)B ..... c( X A)B] (1)
k=0
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0
C A‘E 0 . .0
1 0
C A CAE . .. 0
S ,(l)— 1 1 1 1 (22)
! .0
Lyt Ly -2 0
CA E CA, E...C AE,.
L 1 1 1 1 1 1 1 1 14
Moreover
Yo, (=Y, (0+q;(1) (23)
}i([)z&i([)-"{)i(l) (24)
and so the cost function (9) can be rewritten as:
2 2
J(l)—~{= p (U= O H Wl iR ) (25)
where
Qi=diagl0,0...., 0,Qi(L) QLo+ D, QL] (26)
R=diag[R;(0),R;(1),...R,(L,~1)] 27

Optimizing the cost function defined by (25) together with
(19), (23) and (24) one gets:

dJ i(t)
Y :i v

aﬁ()[2[(5 0.+

K, Q00,0

+K )+ 0, Tok. 00 ©1)

8
" It ){ (S’ 0 (l)] Q. (l)S 0.(0)

+ Esi Qi(t)Ki(t)+ lZS:TAQi([)Ki(l)
+Ri(1)ﬁi(t)
=S’:TAQi(l)S:0i(l)+S?T/(\)i([)Ki(t)
+R.O0.O)

*Th x A *T A
=18, QST+ R 0.+ QK (0
whence
0 =-15; Qs+ k 0175 0k,0
©8)

where




K.(0= ﬁi(t) +AO-LO+S2 O (29

or
ﬁi(t)z [ﬁi(m s:Tf)i(t)S:]_ls?Tf)i(t)[wi(m

.- 04,0-d (-5 2w

i.e.
A A
0.(0=D.(O M+ d. (1-8 O~ d. )
- ADi(t)S 2.0 (30)
with
D,W=[R,+S} QWS 17's]1Q, (v (31)
Note that the assumptions made imply that
2
CRNCREN Ty
~=——5 =R()+S. QS >0
(90 (1)

and so the problem is always solvable with the criterion
being minimized.

The first term of the optimal control in equation
(30) is the centralised part of the solution i.c.

b 0=D.ww o 0-00-d0 3

which is realizable in a decentralized way because it
depends on information which is locally available to the i-
th control station.

On the other hand the second term of equation (30),
i.e.
depends on information which is not available 1o the i-th
control station. This information is the extended

interaction vector 2 i(t) which consists of present and
future values of the interaction vectors zj(t+k/t),
k=0,1,...,Ly-1. None of the previous vectors are
available to the i-th control station because they al! depend
on the states (present and future) of the other subsystems.
So we need to approximate or to predict them using
interaction models. This is done in the next section.

IV. APPROXIMATIONS FOR THE
DECENTRALIZED PART
OF THE CONTROL

P It is well-known that MBPC techniques can
manage very well systems with unusual dynamical
behaviour and introduce in a natural way feedforward

control action for compensating the disturbances. If we
consider zj(t) in the dynamical equation (la) as a
disturbance for the i-th subsystem, then for the case of
weakly coupled systems in which the elements of the
matrices E;, i=1,2,...,.N are small enough we can make
the assumption that udi(l)=0, and let the centralised part

u®i(t) alone to control the system. Two different
techniques for the case where this is not true are the
following.

(a) The case of problems with m-step delay sharing pattern
and a linear model for the interconnections.

A decentralized control problem is said to have an
m-step delay sharing pattern when it permits the spreading
of its information through the subsystems but with delay
of m time steps. Clearly each control station obtains
instantaneously all information about its associated
subsystem, and after a delay of m time steps all the
information available to all control stations.

For our problem this means that at time t in the i-
th control station the vectors x;(t-m), j#i and all the past
values xj(t-m-k), k>0 are known. Then one can calculate
zi(1-m) using equation (2) as:

N
AEm=Y Loxem) | s (34)
=1

i.e. zj(t-m) is well known to the i-th control station at
time t. The preassumption that the vector zj(t-m) is the
output of a linear model having order p and coefficients
ajj, )=1.2,...,p, i.c.

p
7(t-m)= a2 (-m-j) (35)

=1

where Z.(1= M) s an estimate of zj(1-m), is now made.
The coefficients ajj of the linear model (35) can be
calculated on-line at every time t in the least squares
sense by minimizing the norm of the error vector:

el_(t):zi(l—m)— Zi(l—m) 36)

After having calculated the coefficients ajj one can use the
model (35) to produce the predictions zj(t+k/t),
k=0,1,...Ly-1 that are needed in equation (33) in order o
approximate the decentralized part of the control udi(t).
The predictions are:

P
Zi(l— m + k/t) = Zaijzi(n— m + k— jjt),
=1
k:l,2,...m,m+l,...,Ly+m—1 37
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Then 2i(l) = ﬁ’i (1) implies

[zi(t/l),zi(H— 1/[),...,zi(t+ Ly - 1/1]
=z, z.(+1M,...7 t+L - 1)

and so

(38)

d A
0’ W)=-D.S 2.(v
i itii,

(b) On-line improvement for the predictions of the
interconnections, based on a model for them.

In this approximation a method will be suggested
which provides on-line improvement for the predictions of
the interconnections. This method will reduce the
dependence of the predictions from the original model used
for them. Moreover, the case of problems that do not
have m-step delay sharing patterns will be covered, where
one cannot use a linear model for the interconnections
with on-line computation of its parameters because of the
non-spreading of the information.

For this case one can use a model of the form

z,()=A,z,(1-1) 39
where Agz; is the part of the whole sysiem matrix
Ag=A+EL (A=diag[Aj], E=diaglEj], L=[Ljj]) that
corresponds to the elements of the vector zj as it is

suggested by Singh ([ 6] C%apter 6). The predictions
provided by (39):

Z'i([+ k/t) = Az_z’i(t+ k - 1/0),
1
k:O,l,...,Ly—l (40)

are recognised as "crude” ones and therefore they need
improvement. To this end, using the extended vector

i’i(l)z [z’i(t/t),z'i(t+ 1/[),...,z’i(t+ Ly - l/l)]T (41)
one can produce a first approximation
ﬁ'i L=~ DiS iz’i ) (42)

for the decentralized part of the control which will feed

only the model of the i-th subsystem.

Then, suboptimal state space trajectories are produced as:
x’i(t+ )= Aix’i(t) + Biu’i(l) + Eizi(t) (43)

where U () is the first block vector of the extended
control vector

c d
ﬁ’i )= ﬁi(t) + ﬁ’i D)

An observation for X (1) is provided by:
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i’i(l+ = Aii'i(t) + Biu’i(l) + Eiz’i(t) 44)
Substracting (44) from (43) gives:
x'i(t+ - )‘(’i(t+ 1)= Ai[x’i(t)~ X'i(t)]
+ Ei[z i(t)— z'i(l)] (45)

Now, the problem is to minimize the norms of the error

vectors X (0= X'.(D and 2,(0 =7 (1) _To this end, an
additional optimization problem (at each control station) is
constructed, namely:

. 1 ’ 4 T ’ 4
min T 0= 5 (X', (L) =% (1)) G ¥ (1) - ;¢

lf—l

+ {
k=t

2 2
) -x W)+ [z 0=z W) ) @)
Mi Ti
where Gj=0, M;=>0, T;>0. For computational simplicity it
is assumed that tg=t+1 (one step ahead optimization

problem), so that the solution for Z;(V — 2. () will not

depend on future values X’;(K), X'.(K), k>t The
optimization problem (46) with the constraint
equation (45) is a linear regulation problem where
z(t)— Z (1) plays the role of control vector. Its
solution is well-known [7]:

20 - 2, 0= K, 0lx, )~ X' (0)]
1e.
z(y= Z’i(t)+ Ki(t)[X'i(l)— Y'i(t)] @7)

Here Kj(1) is the discrete time Kalman-matrix obtained
by:

K,0=—T7"E A1 [P, (0-M] (48)
where Pj(1) is the positive definite solution of the Riccati
equation:

PO-ATP(+DI+ET EFP,(+ DI ' A=M,  (492)
Pi([f):Gi (49b)
Equation (47) introduces an improvement zi(t) for the

"crude” estimation of the interconnection vector Z i(l)
obtained by the original model (39). So one can make an
improvement in the extended interconnection vector as
follows:




ﬁi(t) = ﬁ'i (t) with
é’i(t)z [Z'i(l/l)+ A i(1), z'i(l +1/)+ A i(1)
...,Z'i([+ Ly -1+ A i(1)]T (50)
where Aj(t) is the second term in equation (47), i.e.
A ()= Ki(l)[X'i(l) - X’i(t)] (51)

Thus an improved approximation for the decentralized part
of the control is obtained as:

d
ﬁi(l) =- DiS iﬁi(t)
which will be the control for the i-th subsystem.

V. SIMULATION RESULTS

System (i): The present system consists of three
subsystems with state-space matrices:

[T R R
1~ L-0.3 02 2L 01 -0.4
[ 0 1} B [ 0.3 0.1}
3 L-02 -0.5 1 L-01 03
_[0.2 0} B [0.4 0.1}
2-L01 02 3-L 01 04

C1=[2 1]

A

A
B

C2=[—3 1.5] C3=[1 4]

L12=[2 1] L21=[—1 1] L, =00 2j

31

L13=[—10] {0 -2} L32=[-21]

Lys=

and 3-step delay sharing pattern. The proposed contoller is
applied to the following cases:

a) controller with no on-line improvement for the
predictions of the interconnections (see fig. 1.1-1.3), and

b) controller with on-line improvement for the
predictions of the interconnections (see fig. 1.4-1.6).
In both cases the predictions for the interconnections are
produced from a linear model for them since the system
allows the spreading of its information (3-step delay
sharing pattern). For the controller the parameters we used
are Ly=10, Ly=4, a=0.1, p=2, Q;=I; and R;=1073I; (J; is
the identity matrix of proper dimensions). The
improvement of the results is obvious in case (b) for both
the transient response and steady state response. '

System (ii): The system consists of two subsystems with
state-space matrices:

0.1 1 -05

025 -0.1 0.9} A _[ 0 1}
[-0.2 -03 04 27 [-02 03

~0.5 0.4 09
L 0.5 0 0.3

2 0 -1
C = 0 2 -05

"1o 2 -1

[ 02 0 0}

03 0
Bz‘[o 0.3]

L .=[-31]

12
-2 0 1
Lzl”[ 0 3 —1]

and does not allow the spreading of its information. Thus
its control will be based on the algorithm of section (IV-b)
and on a model of the form z;(t+1)=A,;zi(t). For the
controller we used the parameters Ly=10, Ly=4, Lo=1,
0=0.1, Q;=I; and Ri=10'3li. Figures 2.1-2.4 show the
results which verify that the control of systems without
m-step delay sharing pattern is more difficult.

System (iii): This system consists of three subsystems
with state-space matrices:

Ao
_[ 0 1}
37L-0.1 0.3

02 0
B, [0 0.2}

Ci=[2 1] Cr=[3 -2) C3=[1 2]

Li2=(-1 2] L21=[-1 2] L31=03 -2]

L13=(1 1.5] L23=[0 1] L32=[0 1]
and m-step delay sharing pattern.We apply the suggested
controller in the following cases:

a) controller with m=1 (sce fig. 3.1-3.3), and

b) controlier with m=3 (see fig. 3.4-3.6).
In both cases the predictions for the interconncctions are
produced from a linear model for them since the sysiem

allows the spreading of its information (1 or 3-step delay
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sharing pattern). For the controller the parameter values
Ly=10, Ly=3, Lo=1, a=0.1, p=2, Qj=I; and Rj=10-2[;
were used. One can easily see the delay that exists in the
results of case (b) in both the transient and steady state
response.

Note that the symbol xi[j] in the diagrams means
the j-component of the vector x of the i-th subsystem.

VI. CONCLUDING

The "optimal” control ui(t)=uic(l)+uid(t) is optimal
in the sense of decentralisation, but it remains suboptimal
in comparison with the solution that would be attainable
if the whole information was available to every control
station. The decentralized controller of section IV depends
weakly on the initial conditions and strongly on the
approximate model used for the interconnections. The last
dependence seems to be reduced by the on line
improvement for the predictions of the interconnections
based on the approximate model for them. On the other
hand the dependence on the linear model is reduced in the
case of systems with m-step delay sharing patierns due to
the on-line computation of its parameters in the least
squares sense.

A comparison between the two approximations
described in sections (IV-a) and (IV-b) reveals [he
following:

(1) The method of section (IV-a) can cover only
problems with m-step delay sharing patiern.

(i) If the problem has an m-step delay sharing
pattern, then there is the possibility of selecting between
the methods of (IV-a) and (IV-b).

The first method seems to be more suitable because
in this kind of problems the linear model for the
interconnections is obviously of less computational
complexity and the dependence of the control on a model
cf the form zi(t)=Az;zi(t-1) which sometimes may be
unstable (depending on the choice of the matrix Az is

avoided.

(iif) For problems with m-step delay sharing
patterns and unusual dynamical behaviour one can make
on-line improvement for the predictions of the
interconnections on the basis of a linear model for them
by the methods described in (IV-b). This may lead to a
closed-loop system with better behaviour.
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