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Figure 1: A closed-loop configuration

Abstract

This paper considers the extension of a number
of passive multiplier theory based results, previously
known only for linear time invariant scalar systems,
to time varying multivariable settings. The extensions
obtained here have important applications to the sta-
bility of both adaptive systems and linear systems in
general. We demonstrate in this paper that at the
heart of the extensions carried out here lies the result
that if a stable multivariable, linear time varying sys-
tem is stable under all scalar constant, positive feed-
back gains, then it has a well defined square root.
The existence of this square root is demonstrated
through a constructive Newton-Raphson based algo-
rithm. The various extensions provided here though
different in form from their linear time invariant scalar
counterparts, do recover these as a special case.

1 Introduction and Problem
Motivation

This paper is concerned with finding time-varying,
multivariable generalizations of some multiplier the-
ory results involving Strictly Positive Real (SPR)
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functions.

The following is a well known result in linear sys-
tems theory [1]. Consider an asymptotically stable
linear time invariant (LTI), single input single output
(SISO) system with a strictly proper transfer function
H(s). Then the system in Fig. 1 is asymptotically
stable for all

(1.1)

if, and only if, there exists a SPR scalar operator Z(s),

such that
Z(s)(1+ H(s)) (1.2)

is SPR. The concept of a SPR operator is defined as
follows.

Definition 1.1 A real, square matriz transfer func-
tion Z(s) is Positive Real (PR) if:

0 < k <1,

1. Z(s) is analytic in the right half plane; and
2. for all Re[s] > 0,
Z(s)+Z8(is) >0

where the superscript H denotes the Hermitian
transpose.

We say Z(s) is SPR if for some a > 0, Z(s — a) is
PR.

From this result spring a number of other impor-
tant results of which two are cited below: The first
states that two scalar polynomials of equal degree
p1(s) and pa(s), have the property that p;(s)+ kpa(s)
is Hurwitz (i.e. has roots in the open left half plane)
for all k as in (1.1) iff there exists an asymptotically
stable minimum phase G(s), such that G(s)(p1(s) +
kp2(s)) is Strictly Positive Real (SPR) for all k as in
(1.1); in turn, this holds iff there exists an asymptoti-
cally stable minimum phase G(s) such that G(s)p;(s)
and G(s)(pi(s) + p2(s)) are SPR. As will be evident
in a later section of this paper, this has an important
application in certain adaptive systems problems in-
volving a single unknown parameter.

The second result concerns the stability of a class of
linear time varying (LTV) systems. Specifically, sup-
pose that the configuration in Fig. 1 is stable with
a degree of stabilily o for all k as in (1.1). Now con-
sider the LTV systems obtained in Fig. 1, when the
feedback gain k(t) is allowed to be time varying while
obeying

0 < k() <«1. (1.3)




Then it has been shown in [2, 3] that the closed loop
retains stability whenever, there exist T and § € (0, «)
for which

1 (MT1d, k() 1t
wr) [T <
(1.4)
where >0
a a2
[a]* = { 0; a<0
See [4] for an association between the result of [1]
and that of [2, 3], using tools that include the Popov-
Kalman-Yakubovic (PKY) Lemma.

The question addressed in this paper is: to whal
ezxlent do these resulls extend lo sysliems thatl are
LTV or for that malter multiple input multiple out-
put (MIMO) LTI? The ability to answer this question
depends critically on the existence of the square root
of certain LTV systems. This can be understood by
noting that the result of [1] can itself be viewed in
the following terms. The stability of the closed loop
of Fig. 1 for all £ € [0, 1] is equivalent to the trans-
fer function 1+ H(s) having a phase function that
lies in (—x,7), [5]. Accordingly, there is a well de-
fined square root of 1 + H(s). Then a Z(s) chosen as
a suitable approximant of the inverse of this square
root will be SPR, as indeed will be the product in
(1.2).

Having dispensed with some preliminaries in Sec-
tion 2, the first question we ask concerns square, LTV,
strictly causal continuous operators H (observe this
class obviously includes square MIMO, LTI operators)
such that both H and [/ + kH]~! are stable for all k
as in (1.1). Observe, that this corresponds to a sta-
ble closed loop of the form of Fig. 1, with the LTV
operator H occupying the position of H(s). Then,
using a Newton-Raphson technique, we demonstrate
in Section 3, that in such a case I + H does indeed
have a square root. Of course H is presumed to be
the operator relating inputs and outputs of a strictly
causal system. Stability correspcnds to the bounded-
- ness of the operator given suitable input and output
norms.

Sections 4 and 5 respectively provide the analogs
of the result of [1] and its first consequence mentioned
in the foregoing. Both these results assume that H is
finite dimensional, i.e. has a finite dimensional state
variable description. Section 5 also discusses the ap-
plication of this latter result to certain types of adap-
tive identification algorithms involving MIMO, LTI
systems. The results of this Section also resolve an
open problem presented in [6]. Section 6 derives the
analog of the [2, 3] result. Each of the results in Sec-
tions 4 through 6, though different from their SISO,
LTI counterparts, capture these as special cases. Sec-
tion 7 is the conclusion. Most proofs are omitted due
to space constraints. They can be found in [15].

32

2 Preliminaries

All systems in this paper will be represented by
square, LTV, real, continuous operators mapping L,
to Ly. Consider such an operator G. Then G will
denote the Adjoint of G, i.e. if G has impulse response
g(t,7) then G has the impulse response ¢'(r,t). For
an input signal z(t), Gz will denote the corresponding
output, i.e. if g(¢, 7) is the impulse response of G then

[Gz](t) = /0:0 g(t, T)z(r)dr. (2.1)

This operator is causal if g(t,7) = 0 V¢ < r. In this
case the upper limit in the integral of (2.1) can be
replaced by t. The norm of G will be the induced L,
operator norm. In the sequel we will use the terms
bounded and stable interchangeably to signify opera-
tors that have a finite norm. Moreover, the operator
G" for a positive integer n will designate the com-
bined operator obtained by a cascade of n operators
G. A bounded operator R : Ly — Lo will be called
the inverse of G if GR = RG = I. In such a case we
denote R = G~! and note that the existence of G~!
automatically signifies its stability. Further, G will be
called symmetric or self adjoint if
G*=G. (2.2)
Every symmetric operator G can in turn be ex-
pressed as:

G =G.+ Gac (2.3)

where G, is causal and called the causal part of G;
(4. 1s anticausal and called the anticausal part of G;
and together they obey
G: = Gqe. (2.4)
If a term such as ol appears in G then it will be
shared equally between G, and Gg.; i.e. each of G,
and G, will get 0.5al.
Two assumptions are needed.

Assumption 2.1 The operator H : Ly — Lg is
causal and [I + kH]™! : Ly — Ly is invertible and
causal for all k € [0,1]. Further, there exisi numbers
My and My such that:

NI+kH]T I <M VEe€[0,1];  (25)
and

1H]| < M,. (2.6)

Moreover, the impulse response h(t, ) of H is finite
for all finite t and 7.

Remark 2.1 The boundedness assumption on h(t,r)
precludes the presence of impulse functions in h{t, 7).



To provide the assumption on the state variable re-
alization (SVR) of H we introduce the following no-
tation. For a given continuous square matrix function
A(t) we designate

Aqlt) = a + A(t). (2.7)

We will be concerned with the notion of degree
of stability of operators such as H. To this end we
introduce H4 having SVR:

{4a(t), B(t),C(1)}, (2.8)

where each of A,(t), B(t), C(t) is a bounded, contin-
uous function of time. We also make the following
definition.

Definition 2.1 The matriz A(t) is ezponentially
asymptolically stable with degree of stability « > 0
(a-eas) if for the LTV system

z(t) = A()z(¢) (2.9)
e,y > 0 such that for all z(to) and t > to,
iz (@)e"C=) < el|a(to)]le™ 77", (2.10)

If « =0, we simply say that A(t) is eas. Further, we
will call a system with SVR, {A(t), B(t), C(t), D(t)},
all matrices bounded and continuous, a-eas ( resp.
eas) if A(t) is a-eas ( resp. eas).

Then we have the following assumption.

Assumption 2.2 The system Hy has an SVR
{Aa(t)) B(t): C(t)},

such that [Aq(t), B(t)] ts uniformly completely con-
trollable (u.c.c.), [7], [Aa(t), C(t)] is uniformly com-
pletely observable (u.c.0.), [7], and both the systems
H, and

{Aa(t) - kB(t)Cl(t)) B(t)) —kC(t)a I}
are eas, for all k € [0,1].

Remark 2.2 If H, satisfies Assumplion 2.2 then it
also satisfies Assumption 2.1.

The LTV analog of SPR. is Strict Passivity, in turn
equivalent to the concept of a positive operator.

Definition 2.2 An operator P : Ly — Lo is called
Strictly Positive (P > ¢l > 0) if for all z in Ly

<z,Pz> > e<z,z>, (2.11)

where <, > denoles the norm in L.

In Section 4 we will need the concept of Spectrum
of a LTV operator.

Definition 2.3 The resolvent set p(H) of an opera-
tor H : Ly — Loy ts the set of all complez numbers
X such that [A\I — H}™! : Ly — L, exists. The com-
plement of all p(H) in the complez plane is called the
spectrum of H and is denoled o(H).
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3 Existence of the Square Root

The principal contribution of this Section is:
1. to demonstrate that subject to Assumption 2.1,
I+H has a square root and

2. to give an algorithm for constructing this square
root.

In the sequel, we say that G : Ly — Ly is the
square root of I + F with F : Ly — Ly if

G>=1+F. (3.1)

To compute the square root we propose the follow-

ing Newton-Raphson based algorithm,

Git1 = %[(1 + F)GI' + Gy (3.2)
When initiated with Gy = I, it will be shown that
the successive G; are rational in F, that G; and AG
commute, and that under suitable assumptions on F,
G; is invertible for all i. Observe if G; = G;4 then
G? =1+ F.

The global convergence of (3.2) is difficult to
demonstrate. On the other hand as will be evident
in the sequel, it is possible to determine a number ¢
such that whenever

IF] <, (3.3)

(3.2) converges uniformly whenever it is initiated by
Go = I,i.e. NR(I + F,I) exists. To circumvent the
apparent difficulty inherent in the restriction (3.3),
we will adopt a nested Newton-Raphson strategy for
determining the square root of I + H. Specifically,
we will select suitably small é; and 62, so that (see
(2.5,2.6)),

81 M2 <min {¢ 1}, (3.4)

and
62M1M2 S min {C, 1} (35)

Further, choose (1 — 6,)/62 as an integer (N.B. this
can always be done without violating (3.4,3.5)), and
define N:

1-46;

N = 5

. (3.6)

Note
01+ Néy = 1. (3.7)

Then the nested approach first divides the interval
[0, 1] into intervals [0, é1], [61,61 + 62], [61 + 62,61 +
26], etc. up to and including [6; + (N — 1)82, 1] (see
(3.7)). It then uses (3.2) to compute the square root
of [I+ 6, H]. Because of (2.6), (3.4) and the definition
of €, this is possible. It then uses the square root of
[I461 H] to compute the square root of [I+(8,+82) H],
etc. until eventually the square root of [I + H] has
been obtained. More precisely the nested algorithm
proceeds as follows.




1. f N =0, ie. §; = 1, then the definition of ¢ and
(2.6,3.4) assure that NR(I + H,I) exists. Thus,
from here onwards assume N > 0.

2. Find
3. For all 1 < m < N, determine, should it exist:

Vi = NR(I+ 68U HUL, D) (3.9)
and

Un = Un—1Vim. (3.10)

Remark 3.1 As will become evident in the sequel,
for each m > 0, Up represents the square rool
of [I + (61 + mé3)H], and V,, the square root of
(I + 86U HU;L,]. Moreover, Vi, ezists because
of (3.5,3.4) which together will be shown to force

16:Unl  HUZL I < e (3.11)
Notice also, (3.7), that Un is the square root of [I +
H].

The following Theore demonstrates the convergence
of (3.2) under small perturbations.

Theorem 3.1 Let FF : Ly — Lg be bounded and
causal, [ + kF]~1 ezist and be causal for all k € [0, 1]
and let Gy, be the sequence of operators defined by
(3.2) and Go = I. Then, there ezists an ¢ > 0
such that whenever (3.3) holds, so do the following
Jor all k € [0,1]: (i) there ezists bounded G(kF) =
lim; o0 G,(kF) : Ly — Loy, (ii) G(kF)_l Ly — Ly
ezists and both G(kF) and G(kF)~! are causal; (i11)
G(kF) and G(kF)™! commute with any operator that
commutes with F; (iv) G(0) = I, (v) G(kF) varies
continuously with k; and (vi) G*(kF) =1+ kF.

Remark 3.2 We nole that the convergence rate is
faster than exponential.

Using this Theorem we now prove the convergence
of the nested algorithm.

Theorem 3.2 Consider the nested Newion-Raphson
algorithm, ie. (8.3-3.10), with NR(I + F,I) the
convergent point (should it ezist) of (3.2) initiated
with Gy = I. Suppose Assumption 2.1 holds as do
(3.4),(3.5) and (3.7) and that ¢ is as in Theorem
3.1. Then the bounded operators Uy : Ly — Lo and
U;l : Lg — Ly ezist and

Ui =I+H.

We will prove this Theorem using an inductive ar-
gument. To this end the following Lemma helps sus-
tain the induction.
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Lemma 3.1 With the condilions of Theorem 3.2 in
Jorce suppose that for some 0 < m < N the following
hold.

1. The bounded operators U,,_1 and ils inverse ez-
ist; and both commule wilh any operator that
commutes with H.

U _, =[I+ (61 + (m — 1)) H]. (3.12)
Then the bounded operators U, and ils inverse ez-
tst; both commute with any operalor thalt commules
with H; and
UZ = [I+ (6 + mé;)H]. (3.13)
Proof: First observe that because of item 1 of the
Lemma statement

”‘52U;1—1HU;1—1“ = ”‘52HU;31||
= |I62H[I + (8 + (m = 1)8)H] Y|
< baMi Mo
< e (3.14)

where the last two inequalities arise consequent to
(2.5,2.6,3.5,3.4, 3.7). Thus, from Theorem 3.1 and
(3.9), Vi and its inverse exist and commute with any
operator that commutes with U,;1, HU ! . Then be-
cause of the commutativity and invertibility hypothe-
sized in item 1 of the Lemmastatement, U,,1 | HU !,
commutes with any operator that commutes with H.
Hence V;, and its inverse also commute with any op-
erator that commutes with H. Thus, from (3.10)
U1 exists and together with U,, satisfies the required
commutativity property.

Because of (3.9)

Vi=T1+6U; Y HU . (3.15)

Further, the commutativity property established on
Vin assures that V,; commutes with both U,,_; and
H.

Thus, from (3.10) (3.12) and (3.15) we obtain,

I

= Um—lvrflUm—l
= (Um—lvm)2
Un-
This completes the proof. [ |

Theorem 3.2 then follows readily from Lemma 3.1,
and the fact that that (2.6) and (3.4) ensure that Up in
(3.8), together with its inverse, exists and commutes
with any operator that commutes with H.

Um—l[l + 62U,:11_1HU,;_1.1]Um-1

(3.16)



It is clear from (3.8), (3.9) and Theorem 3.1 that
each of the operators Uy and V,,, m = 1,---, N are
obtained as the limit point of uniformly convergent
sequences. Thus, by running each procedure implicit
in their determination for a finite but arbitrarily large
number of iterations, one can obtain a X such that
with X the square root of I + H, || X — X|| is arbitrar-
ily small. Since the convergence rate is greater than
exponential one can expect the number of iterations
needed to secure an acceptable tolerance to be small.
Also note that not only are X and X causal stable,
but they also have inverses that are causal stable.

In Section 4 we will be concerned with the con-
tinuity of the square root X(kH) of I + kH as k
varies continuously in [0,1]. To obtain X(kH) for
k < 1 one can introduce an obvious modification of
the nested Newton-Raphson Algorithm under study.
Specifically, define integer p; and real 0 < py < 6
such that for some integer 0 < m < N,

k=06, +muy + po.
Select
Vi1 (n2) = NR(I 4+ poU HUZ T).

Then
X(kH) = UmVm41(p2).

Remark 3.3 Indeed, from (iv,v) of Theorem 3.1 one
can readily deduce that X(0) = I and X(kH) varies
continuously with k.

In Section 6, in our search for the analog of the re-
sult of [2], we are concerned with the square roots of
systems H having an SVR and comparing them with
the square root of H,. Observe that while in this
case X may not have a SVR, its approximant X will.
In order to ensure that the SVR of the approximate
square root of H is related to that of H, in a manner
that facilitates future analysis we first present the fol-
lowing Lemma which follows easily from a Bounded
Real Lemma type result deducable from a result in

[9].

Lemma 3.2 Suppose for some « > 0, H, has
SVR {A«(t), B(t),C(t)}, (see (2.7)) and H has SVR
{A(t), B(t),C(t)}. Then

|Hall < M

tmplies that
lH|} < M.

In a similar vein ||[[I + kHq]7!|| < M; implies
NI+ kH]™Y| < M;. Thus, define M; according to
I + kHal™Y| < My and ||Hq|] < M2z and select the
parameters §; in (3.4,3.5) with these M;. Then one
can operate successfully the Nested Newton-Raphson
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iterations for both I + H and I + H, using this same
pair of é;. What is more, if H has degree of eas «
then so does X. Moreover, if one carries the nested
Newton-Raphson iterations for the same number of
times with respect to both H and H,, and if X so de-
termined for H has SVR {A:(t), Bz(t), Cz(t), I}, then
the corresponding approximate square root of H, can
be shown to have SVR

{al+A,(t), B:(t),C:(t), I} = {Aza(t), B:(t), Cs(t), I}.

(3.17)

Observe also that the SVR corresponding to the
inverse of this approximate square root will be eas.

4 Existence of Passive Multipliers

Having demonstrated the existence of the square root
of I+ H, we now generalize the result of [1] and its first
implication discussed in the Introduction. Instead of
focussing on PR type properties, we will consider SPR,
type (or strict passivity) properties. This is simply a
matter of minor technicality in an attempt to avoid
having to deal with singular situations.

In the spirit of [1] the principal result we derive
takes the following form: Under Assumption 2.2 there
exist operators, X1, and Xz4, both eas and having eas
inverses, for which:

1. Xi14X24 1s Strictly Positive.

2. X1al[l + Ha)X 24 is Strictly Positive.

Observe that, since in the LTI, SISO case all op-
erators in question are mutually commutative, this
directly reduces to one direction of the Brockett and
Willems result. The other direction will be discussed
later. In keeping with the requirements of the next
Section, in our discussion here, we will pay special
attention to degree of stability considerations.

In view of the results of Section 3, the starting point
of our development here will be that there exists an X
which is causal stable and has a causal stable inverse
such that

X?=1+H,. (4.1)

Hence,

X =[I+HJ)X ' =X I+ H,] (4.2)

We need to concern ourselves with the Spectrum of
X, specifically that it is in the open right half plane.

Lemma 4.1 Suppose H, satisfies Assumption 2.2
and X is oblained as the convergent poinl of the
Nested Newton-Raphson Algorithm of Seclion 3.
Then, there exists an ¢ > 0 such that for every
A €a(X)

R(A) > .

where R denotes the real part.

(4.3)




It is easy to see that X~ also obeys (4.3). Thus,
in light of (4.2), we have proved that [I + H,] can be
multiplied from the right by an operator with spec-
trum in the open right half plane, to yield another
that too has similar spectral properties. A SISO, LTI
operator with such a spectrum is necessarily SPR. But
of course a general linear, even MIMO, LTI operator,
need not be. Herein lies the need for finding a combi-
nation of left and right multipliers.

In light of the discussion at the end of Section 3,
and the closed and bounded nature of o(X) it follows
that an X, obtained by utilizing a sufficient num-
ber of iterations in the underlying nested Newton-
Raphson algorithm, will have the property that both
[I + H,)XZ! and X, have spectra confined to the
open right half plane. In other words the spectral
confinement property is essentially robust.

The question remains as to how one can convert
the spectral confinement requirement to a strict pos-
itivity requirement. According to [8], the open right
half plane spectral confinement of the two operators
mentioned in the foregoing suffices for the existence
of a symmetric operator P = P%, such that

X%P + PX > 0; (4.4)
and, in view of (4.2)
[(I+H)X NP+ P[(I+ Ho)X >0, (4.5)

Observe also that as X is causal, stable invertible,
by post and pre-multiplying (4.4) by X! and [X?]~1,
respectively, we obtain:

[X°]"'P+ PX1 >0 (4.6)
in other words both P[(I 4+ Ha)X~!] and PX~! are
strictly positive. Moreover in view of the robustness of
the strict positivity property, we can further state that
in all these expressions, one can replace X by X, as
long as X, is obtained by carrying the various stages
of the nested Newton-Raphson algorithm through to a
sufficiently large number of iterations. Consequently
we have obtained the existence of a symmetric P, for

which:

(I +H)X;N°P+ P[(I1+ Ho) X' >0 (47

and
[(X317'P+ PXJ' > 0;

simultaneously hold.

In other words the objectives stated at the begin-
ning of this Section are apparently met with associa-
tions between P and X; and X! and X,.

However, there are several respects in which (4.7)
and (4.8) need to be developed further. To begin with
the symmetric nature of P implies that it is noncausal,
thus making its implementation practically infeasible.

(4.8)
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Moreover, keeping the goals of Section 5 in mind, it is
desirable to obtain multipliers that are both finite di-
mensional and reflect in an appropriate way informa-
tion concerning the degree of stability of H. Finally,
given that part of our objective is to provide imple-
mentable algorithms, it behooves us to go beyond the
mere existence of P and to enunciate implementable
algorithms for its construction. To achieve these ob-
Jjectives we first provide an algorithm for computing P
by employing an obvious analog of the Cayley trans-
form.

Lemma 4.2 Adopt the hypothesis of Lemma 4.2, and
let X, be an approzimation to the operator X such
that (4.5, 4.6) hold for a symmelric P. Define

To=[(I+ Ha) XY (4.9)

Then Ty + I has an inverse (by defintion bounded)
and with
Qo =[To = I(Ta+ D! (4.10)

P is given by the following uniformly convergent se-
ries:

P= i[ﬂg]"nf,.
i=0

Further for every n > 1, the causal part of P, be-
low can be realized by some eas SVR of the form
{al + Apn(t), Bpn(t), Con(t), Dpn }, with all matrices

continuous:
n

P, =) [oafq,.

i=0

(4.11)

Observe also that the uniform convergence of the
power series realizing P and the robustness of the
strict positivity property together assure that for suf-
ficiently large n, P, obeys both:

[(I+ H)XZNP+ Pa[(I+ Ho) X7 > 0. (4.12)

and

(X217'P, + P, X! > 0. (4.13)

Of course P, is also symmetric. It follows from [10]
that P, has a spectral factorization of the form:

P, =W°W, (4.14)
and that W can be chosen to have the same A and C

matrices as the causal part of P,. Thus in fact W is
eas and has a SVR of the form:

{al + Ayu(t), Bu(t), Cult), I}, (4.15)

with all matrices continuous, [10]. Further, from [11],
W~! can be chosen to be eas as well (see [12], for a
Newton-Raphson based algorithm for computing W).

We then have the following Theorem that captures
one direction of the result of [1].




Theorem 4.1 Under Assumplion 2.2, there ezrist eas
and eas invertible operators X1 and W, with SVR
of the form above, such that

W+ H)X;'W™) + W+ H )XW=t > 0.

(4.16)

and
WXZIW= P+ WX W™ >0, (4.17)
Proof: Follows from (4.14) and the multiplication

of (4.12) and (4.13) by [W?]~! from the left and W !
from the right. |

Remark 4.1 This theorem also says that there is a
causal operator WX;1W~1 that is strictly positive
(i.e. (4.17) holds) and such that the product of this
operator with W(I + Ho)W ™1 is also positive (i.e.
4.16) holds). Because in the time-invariant scalar
case the various operators commute W drops out of
the picture. This difference reappears in the next sec-
tion when we generalize the result of [2].

Before discussing the second direction of the [1]
result we turn now to the following Corollary.

Corollory 4.1 Under Assumption 2.2, there ezist
eas and eas invertible operators X;! and W, with
SVR of the form above, such that for all k € [0, 1]

WI+kH)X'W™ P+ W(I+kH )XW= > 0.

Proof: Follows from the fact that the above equa-
tion holds for £k = 0 and k¥ = 1 and the fact that
Positivity is convex property. n

Observe eas Strictly Positive operators have an in-
verse that is eas (a fact easily proved from the PKY
Lemma). Thus as long as H, is eas and one can
find eas and eas invertible operators W, X, such that
(4.16) and (4.17) hold, then the operator (I + Hq)™!
must be eas for all k € [0,1]. Thus the analog of the
reverse direction of the [1] result also holds.

5 Solution to a Problem Posed in [7]

Motivated by adaptive systems problems, [6] had
posed the following question: Suppose the following
set of square Matrix Polynomials:

{A1(s) + kAz(s)|k € [0, 1]} (5.1)

has all its members Hurwitz (i.e. the determinant is
Hurwitz). Does there exist a single LTI operator Z(s)
such that all members of the set

{[A1(s) + kA2(s)]2(s) k € [0, 1]}
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are SPR. The next Theorem shows that such con-
struction of SPR products is possible provided one
allows multiplication from both sides.

Theorem 5.1 There ezist, square, stable minimum
phase matriz transfer functions Z,(s) and Zy(s) with
the former strictly proper and the latier biproper, such
that with A;(s) and Ay(s) two square malriz polyno-
mials, and A;1A2 strictly proper, all members of the
set

{Z1(s)[A1(5) + kA2(5)1Z2(s) Ik € [0, 1]}

are biproper and SPR, iff all members of the set (5.1)
are Hurwilz.

The main application of this result is in output error
adaptive identification [13]. Consider the identifica-
tion of the proper MIMO plant:

[A1(s) + kEA2(s)]Y (s) = [Bi(s) + kBa(s)]U(s) (5.2)

with & a scalar unknown parameter and u(t) and y(t),
the input and output of the plant. To identify the
plant generally, one performs state variable filtering
to avoid explicit differentiation of the various signals.
This requires rewriting of the model as

Z1(8)[A1(s)+kA2(8)]Y (5) = Z1(5)[ B (S)+sz(S)(]U(S)

| 5.3)
such that Z;(s)[A1(s) + kAz2(s)] is biproper. Then,
for exponential convergence of the underlying iden-
tification algorithm, one requires that Z;(s)[A1(s) +
kA2(s)] be SPR. This can be seen readily from the
result of [14] which treats the SISO case. As k is un-
known the underlying SPR condition is difficult to en-
sure. However, suppose a priori bounds are available
for k. In fact without sacrificing generality, assume
that k£ € [0,1]. Then as long as [A;(s) + kA2(s)] is
Hurwitz for all k¥ € [0, 1], one can choose square, sta-
ble, minimum phase matrix transfer functions Z(s)
and Z,(s) such that the requirements of Theorem 5.1
are satisfied. Then, noting that Z,(s) is biproper, one
can rexpress the plant as

Z1(5)[A1(s) + kA2(5)]Z2(s)Y (s)

= Z1(s)[Bi(s) + kBy(s)]U(s)

where

Y(s) = 27 (s)Y (s)

acts as the converted output. Observe it can be con-
structed from Y (s) without any explicit differentia-
tion. Further, as Z;(s)[A1(s) + kA2(s)]Z2(s) is SPR,
the output error identification algorithm for this re-
defined system will be exponentially convergent.
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Figure 2: Closed-loop under time varying feedback.

6 Generalization of the Freedman
Zames Result

In this Section we generalize the second conse-
quence of the result of [1] namely that of [2]. To this
end the principal result to be derived is as follows:
Theorem 6.1 Suppose Assumplion 2.2 holds. Then
there ezists an eas and eas invertible operator W
(independent of k) such that, the operator [I +
k()W HoW=1]"1 is eas provided (1.3) and (1.4) hold.

Essentially, it states that provided the closed loop
of Fig. 1 (with H(s) replaced by Hj) is a-eas for
all time invariant feedback gains in the open interval
[0,1], then under a logarithic time variation bound as
in ([2]), by suitable pre and post filtering of Hy, the
closed loop in Fig. 2 is also stable. Observe, if H(s) is
scalar LTI, then the underlying commutativity recov-
ers the result of [2]. Moreover, the fact that the pre
and post filters W=! and W are independent of the
particular trajectory that the time-varying feedback
gain follows simplifies their selection.

The proof appeals to the time-varying version of
the Positive Real Lemma and Lyapunov techniques
developed in [4].
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