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ABSTRACT

This paper presents two techniques for designing
robust predictive regulators for unstable plants subject to
unstructured modeling uncertainties. One technique is
based on H_, theory, and is applicable to systems where
the inputs and outputs are unconstrained. It is possible
to include an integrator in the robustified regulators,
hence guaranteeing the steady-state rejection of
asymptotically constant exogenous disturbances. The
control design problem reduces to a Nehari extension
problem, and is solved using a rigorous and systematic
approach. The second technique is based on [;/H,,
theory, and is developed for systems where the input is
subject to saturation constraints. An H__ constraint in the
form of a Nehari extension problem is used to ensure the
robust stability of the regulation loop, and an [y
optimization objective is used to address the input
constraints. The /;/H_, problem is solved via an iterative
algorithm with guaranteed convergence properties. A
numerical example demonstrates relevant features of the
robust-design procedure and illustrates the controller
performance.

1. INTRODUCTION

Predictive control techniques have gained
remarkable acceptance in industry. Currently there are
hundreds of predictive controllers deployed in oil
refineries and petrochemical plants alone (Seborg, 1994).
The underlying principle of predictive control is to
determine a number of future control increments that
optimize an open-loop performance functional over a
finite prediction horizon. Although more than one
control increment is usually calculated, only the first one
is implemented. At the next sampling instant, the output
measurement is used to update the prediction equations
and the same procedure is repeated. Since the control
principle involves sequential optimizations carried out at
each sampling interval, predictive controllers are
particularly adept at handling input and output
constraints. Currently there is an increasingly visible
interest to robustify predictive controllers through design
techniques that guarantee the stability and/or adequate
performance of the closed-loop system when the plant

model is uncertain. The robustness work reported in the
literature can be conveniently classified in two groups
depending on whether the predictive-control design takes
into consideration process constraints.

Robinson and Clarke (1991) investigate the effect
of a polynomial prefilter T on the robustness of
unconstrained Generalized Predictive Control (GPC).
Only two specific control designs are analyzed, namely,
a dead-beat and a mean-level controller, which can be
interpreted as special cases of GPC with specific choices
of tuning parameters. Although the analysis is insightful,
it is not strictly applicable to general choices of tuning
parameters. Kouvaritakis et al. (1992) introduce a more
rigorous approach to the robustification of unconstrained
predictive controllers of the GPC type. The technique
consists of reparametrizing the controller in terms of a Q-
parameter (Francis, 1987), and then searching for a
parameter that robustly stabilizes the system with respect
to unstructured model perturbations. In order to simplify
the design, the authors restrict the Q- parameter to be a
polynomial or a fixed-order transfer function, and then
find the undetermined coefficients using least-squares
methods. Also the predictive control design is based on
a pre-stabilized plant. In a very recent paper, Yoon and
Clarke (1995) elaborate on the robust implementation of
unconstrained GPC and give a comparison of designs
obtained through the filter T and an approximated Q-
parameter as in Kouvaritakis et al..

The robustification of constrained predictive
controllers is a yet more challenging problem, and the
results are even more scarce. Although there exists a
rich theory for the robust control of linear systems, little
is known for the robust control of systems with
constraints. Zafiriou (1990) includes process constraints
in a Dynamic Matrix Control scheme, and investigate the
robustness of the control system using a contraction-
mapping technique. The approach leads to robust
stability conditions which are rather conservative and
may not be practical for controller design because of
computational complexity problems. The analysis is not
applicable to unstable plants because the design is based
on FIR models. Genceli and Nikolaou (1993)and Zheng
and Morari (1993) derive conditions for the robust




stability of a predictive control system that uses a linear
objective functional rather than the more conventional
quadratic objective. Both of these approaches are also
based on an FIR model of the plant, where the
uncertainty in the impulse-response model is expressed
in terms of an interval polynomial.

This paper presents procedures for robustifying
constrained and unconstrained predictive regulators of
the GPC type, with a focus on the case where the plant
model is unstable and is affected by unstructured
uncertainty. The proposed approach uses the Youla
technique for parametrizing an unconstrained nominal
predictive regulator which is designed using well-known
strategies. In this sense, the design resembles that of
Kouvaritakis et al. (1992), except that no pre-stabilizing
compensator is used. The parametrized form of the
controller is then used to synthesize two robust predictive
controllers: (i) an unconstrained predictive regulator
designed using H_, theory, and (ii) a constrained
predictive regulator synthesized using emerging results
from [;/H_, theory. In both cases, the control-design
techniques follow a systematic procedure, and do not
require ad hoc approximations.

The manuscript is organized as follows. Section 2
presents a brief review of the method used for designing
nominal predictive regulators, and Section 3 discusses
the details of the technique used for parametrizing the
nominal regulator. Section 4 describes the proposed
algorithms for synthesizing robust unconstrained
(Section 4.1) and constrained (Section 4.2) predictive
regulators. An example is given in Section 5 followed
by concluding remarks in Section 6.

2. NOMINAL PREDICTIVE CONTROL DESIGN

Typically, predictive controllers are deployed by
executing at every sampling instant an algorithm that
solves a quadratic optimization problem. It is desirable
to represent the algorithmic controller in terms of transfer
functions, allowing the utilization of classical z-domain
tools to analyze stability and performance. Consider the
nominal process model

¥(2) = go(Du(z) +d(z) .1
where @
B(z

8D=" @2)

and y(z), u(z), and d(z) are the process output, input and

disturbance, respectively, and A(z) and B(z) are coprime
polynomials

A@@)=2"+a, 2" +..+a 2.3)

B(z)=b,z" +b, 2" +..+ b, (24)

of order n and m, respectively, where n>m. The nominal
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plant g,(z) is assumed to be unstable. The nominal
predictive control design is based on minimizing the
quadratic predictive-control functional

J(t) = z’[r(t +) =y +ip] + Ai[Au(z +)F @5

where {r(t+i)} is the sequence of future set point values,
{y(t+ilt)} is the sequence of predicted future values of
the output, {A u(t+i} is the sequence of future control
increments, A is the move-suppression parameter, and
parameters N, and N, are the prediction and control
horizons, respectively. The terms in the first summation
penalize future predicted errors, and the terms in the
second summation penalize excessive control energy. It
can be shown that the predictive-control law that
minimizes (2.5) can be expressed in terms of three
polynomials R(z), S(z), and T(z), arranged in the
configuration shown in Figure 1. Following the
development in (Crisalle et al., 1989) it is possible to
write the resulting control law in terms of transfer-
function operators in the form

R S
Lf)u(z)=T(z)r(z)— (,,Z)y(z) 2.6)
2z z .
which includes the polynomial operators
R(z)=z"+r 2" +...+1, 2.7
S(z)=s5,2"+s5,,2"" +...+5, (2.8)
N Ny-1
T@=ty, 2”7 +iy 27 +..+42 (2.9)
where
R(1)=0 (2.10)
T(1) = S(D (2.11)

and where the coefficients of polynomials R(z), S(z), and
the set-point advancement polynomial T(z) are functions
of the tuning parameters N,, N, and A, and of the model
polynomials A(z) and B(z). Note that (2.10) implies that
the predictive control law (2.6) includes an integrator. A
block-diagram representation of the predictive control
structure is shown in Figure 1a. The predictive controller
(2.6) is in regulation mode when r(z) =0.

It is useful to remark that the nominal model (2.1)
and the functional (2.5) are simpler versions of more
elaborate formulations that improve the design
performance at the expense of added complexity.
Typical enhancements are the inclusion of a lower
prediction-horizon parameter (Clarke et al., 1987), the
inclusion of a weighted end-point term in (2.5) to
guarantee stability for arbitrary parameter choices
(Demircioglu and Clarke, 1993), and the use of an
auxiliary (filtered) set point.

When the predictive controller is used as a




regulator the set-point r(z) is identically zero at all times,
and the closed-loop dynamics are fully characterized by
the equations

[A(DR(2) + B(2)S(2)] (2) = A(R(2) d(2) (5 15

[A(2)R(z) + B(2)S(z)] u(z) = A(z)S(z) d(z) @2.13)

The stability of the closed-loop for a given nominal
predictive controller can thus be easily checked by
calculating the roots of the characteristic polynomial
A(z)R(z)+B(z)S(z). Furthermore, due to the presence of
integral action in the controller, perfect steady-state
disturbance rejection is guaranteed for all disturbance
signals that reach a steady-state.

3. REGULATOR PARAMETRIZATION

In this section the nominal predictive controller
(2.6) is parametrized in terms of a transfer function Q(z)
according to Wiener-Hopf design (Youla er al., 1976).
Consider a nominal predictive controller (2.6) that
stabilizes the closed loop system (2.12)-(2.13). Hence,
the nominal closed-loop characteristic polynomial

A’(2) = A(z)R(2) + B(2)S(2) (3.1
of degree 2n is Schur. In order to parametrize the
controller, consider a coprime fractional representation
of the nominal plant model (2.2) of the form

go(2)= "]Y‘(Z—)

3.2
M) 3-2)

where N(z) and M(z) are proper and stable transfer
functions that satisfy the Diophantine equation

N(z) X(z)+M(2) Y(z)=1 (33)
for some pair of stable and proper transfer functions X{(z)
and Y(z). (Note the use of italicized capital letters for
transfer functions, and non-italicized capitals for
polynomials.). A suitable (M(z), N(z)) pair can be readily
derived from the nominal characteristic polynomial (3.1).
Factoring the closed-loop characteristic polynomial in
the form A*(z)=A,(z)A,(z), where both A,(z) and A,(z)
are of degree n, and then dividing both sides of (3.1) by
the product A;(z)A,(z) yields

A@RE@ . B@S@ _

— (34)
A(DA,(2)  A(DA, Q)

Stable and proper factorizations that satisfy (3.3) are
finally obtained by defining

A(z) ,
A,(Z)

M(z):= N(z):= —Af((zz)) @3:3)
1
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-5 |
Az(z)

_R@@
A,(z)

X(z): Y(z): (3.6)

where X(z) and Y(z) are clearly stable and proper rational
transfer functions. Setting r(z)=0 in (2.6)to obtain the
regulator form, and using (3.5)-(3.6) leads to the control
law
Y(2) u(z) = X(2) y(2) (3.7
The set of all solutions to (3.3) can be written in
terms of the transfer functions (3.5)-(3.6) and a proper
and stable transfer-function Q(z) through the well-known
relations (Youla et al., 1976)

X'(z) = X(2) + M(2)Q(2)
Y'(2)=Y(2) - N(2)Q(2)

(3.8)
(3.9)

Therefore, the set of all stabilizing predictive regulators

with the structure (3.7) is obtained in the parametrized

form

[Y(2) = N(2)Q(2)] u(z) =[X(2) + M(2)QR)] ¥(z)
(3.10)

to yield the control scheme shown in Figure 1b. Clearly,
setting ((z)=0 reduces the parametrized predictive
regulator (3.10) to the nominal predictive regulator (3.7).
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Figure 1. (a) Structure of a nominal predictive controller. (b)
Structure of the parametrized predictive controller featuring the
Youla parameter Q(z).

4. ROBUST DESIGN

When the nominal model (3.2) is not exact due to
the presence of modeling errors, the plant transfer
function g(z) may be written in the form

g(2)=g,(2)+A(2) (4.1)
where g (z) is the nominal plant model, and A(z) is an
unstructured perturbation. Without loss of generality, we

treat the case of additive perturbations, described by the
magnitude bound

|Ae®)|<|W(e®)| Vo 42)




where the uncertainty weight W(z) is a stable and proper
transfer function. Following the standard approach the
perturbation A(z) is also assumed to be stable (Francis,
1987). The case of multiplicative perturbations, as well
as other typical unstructured uncertainty representations
can be treated in an analogous fashion.

The objective is to design a robust predictive
controller that stabilizes the closed loop for all the
members of the uncertain family of plants (4.1)-(4.2).
The stability robustness of the closed loop shown in
Figure 2, which includes the parametrized controller
(3.10) and the uncertain family of plants (4.1)-(4.2), can
be analyzed using the # -theory results summarized in
Theorem 4.1 below.

Theorem 4.1. A necessary and sufficient condition
for the robust stability of the closed-loop system of
Figure 2 is the inequality condition (Francis, 1987)

|W(z)Cz2) 52|, <1 @3)
where
C(z) = 2B+ M(2)O() @.4)
Y(z)— N(z)Q(z)
and
S(2)=M(z)[Y(z) — N(2)Q(z)] (4.5)

This paper deals with two variants of the robust
predictive regulator design. First is treated the case
where the manipulated variable is unconstrained. The
second problem treats the case where the robust regulator
is designed taking into account input constraints.

d
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Figure 2. Structure of a robust predictive controller for a plant
with an additive uncertainty. An exogenous disturbance d(t)
affects the plant output.
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4.1 Unconstrained Regulator Design

We propose a systematic procedure for solving the
robust synthesis problem without resorting to
approximations for the Q-parameter. A particular
challenge to the design problem posed is the objective of
including an integrator in the robustified controller in
order to guarantee effective disturbance rejection. In the
following subsection we develop a design technique for
the case of an unstable plant with no poles on the unit
circle. The next subsection treats the case where the
plant is unstable but has poles on the unit circle, as in the
case of an integrator.
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4.1.1 Unstable Plant with no Poles on the Unit

Circle.

Consider the robust predictive controller design
problem for the case where the nominal plant model
8,(z) is unstable but has no poles on the unit circle. The
synthesis problem is attacked by recasting the robust
stability condition (4.3) in the equivalent model-
matching form

@+ L0 <1 (4.6)
where

Ti(z) = W(z) X(z)M(z) 4.7

T,(2) = W()M*(2) (4.8)

Inequality (4.6), which is affine in the unknown
parameter Q(z), is obtained by substituting equations
(4.4) and (4.5) into inequality (4.3). The model-
matching problem is commonly approached in the
context of % control theory using the y-iteration process,
where (4.6) is substituted by the alternative inequality

| T+ L0 <7 4.9)

where y is a positive scalar parameter selected by the
designer. A robust design is obtained if a Youla
parameter (J(z) is found for a specified y< 1. The key is
then to be able to synthesize a Youla parameter with a
reliable algorithm.

We make use of a z-domain technique proposed by
Rotstein and Sideris for solving the model-matching
problem (Rotstein and Sideris 1992; Rotstein, 1993).
The algorithm solves the problem of approximating a
stable transfer function R(z) with an antistable (all poles
outside the unit circle) transfer function Ux(z), where the
tilde superscript denotes the conjugate operation Q¢ (z):
=Q( 1/z). This problem, also known as the Nehari
extension problem (Maciejowski, 1989), calls for finding
an antistable function Q;(z) such that

|R(2)+ Q;2)|. s v (4.10)

The original condition (4.9) can be cast to the form
(4.10) through a series of norm-preserving operations, as
follows. Factor T5(z) as Ty(z) = Top(z)Tp(z) where
Tp(z) is an all-pass function and Ti,,(z) is a stable
minimum-phase function, then find T,,(z)=T,,(1/z) and
carry out the decomposition

T (DT(2)=R,(2)+ R.(2) (4.11)

where R,(z) and R, (z) are an antistable and a stable
transfer function, respectively. Using the property that
“ T, (2)G(2) IL =|G(z)|.it is possible to write the
equalities

1T+ L@0w@|, =

T, (T, + T, ()0@)
R,()+ R+ T, (0], @12




Defining R”(z):=R.(z) and Qp(z):=Ry(z)+T1p(2)Q(z), and
since" G (z) " =|G(z)||.» 4.12) reduces to the desired
form -

7@+ @0 =R+ G @] @13)

After Qp(z) is found, the solution to the original
model-matching problem (4.9) can simply be recovered
as

0(z) = T.L(2) (Ry(2) + 0y(2) (“.14)

Finally the robust predictive regulator design is obtained
by substituting the Youla parameter (4.14) and the
factorizations (3.5)-(3.6)in the scheme (3.10).

4.1.2Unstable Plant with Poles on the Unit Circle

When the nominal plant model g (z) has poles on
the unit circle, the standard % control theory is no
longer applicable. In addition, the factorization (4.11) is
no longer possible because no minimum-phase stable
transfer function can possibly satisfy the equality. This
difficulty is circumvented by introducing a change of
variables that maps unit-circle poles to a circle of larger
radius. Let z =47 where d<1 is a scalar, and define the
operators

T' (2)=T,(62) (4.15)
T, (2)=T,(5) (4.16)

Then the design problem (4.9) can be posed in terms of
the transformed variable Z in the form

17 D+ G @), <y (4.17)

and can be solved for (J(z)using the base-case
algorithm as described in Section 4.1.1. The z-domain
Youla parameter is simply recovered by transforming the
result back to the original space, i.e.,

Q)= /0 4.18)

The final robust predictive controller design for this case
is obtained by substituting the Youla parameter (4.18)
and the factorizations (3.5)-(3.6) in the structure (3.10).

Using the Maximum Modulus Theorem, it follows
that the transforied design problem (4.17) is related to
the original problem (4.6) through the inequality

1T @+ @2 @] 2| L@+ L@@, @19
If no Q' (Z)can be found that satisfies (4.17), then a

larger value for § should be adopted and the design is
repeated.

As previously discussed, the closed-loop dynamics
of the nominal system described by (2.12) guarantees
that asymptotically constant disturbances will be rejected
because R(1)=0. However, this is not necessarily the
case for the robust design. From Figure 2 it follows that
the transfer function for the robustified predictive
controller is

yz) _ A(2)R(2) _A@B(@)

= 4.20)
d2) ADRQD+BQ@S@ Al 2¥

The synthesis procedure may not necessarily yield a
Youla parameter satisfying Q(1)=0. Then the robustified
predictive regulator may display unacceptable
performance at the steady state unless the nominal plant
has an integrator (i.e., A(1)=0) or is a self-regulating
process (B(1)=0). Clearly, the robust predictive
controller will attain perfect steady-state disturbance
rejection for all the plants belonging to the uncertain
family (4.1) only if the Youla parameter has a zero gain,
i.e., O(1)=0. This gain constraint can be introduced in
the robust predictive control design through a simple
modification of the factorizations (3.5)-(3.6). First the
integrator is extracted from the nominal predictive
controller by writing R(z)=(z-1)R'(z), and then (3.4) is
rewritten in the form

A@(z-YR' (2) +
A (2)A,(2)

A (2)A,(2)

B@)S@) _, @“.21)

Introducing the modified coprime factorization

M(z):= (z=DA(z), N(z):=N(z) (4.22)
zA(z)

and

X(2):=X(2), Y(z):= ZR(2) (423
A,(z)

leads to operators that satisfy the Diophantine equation
(3.3), and the design can proceed as before, solving the
problem (4.10) using the modified factorizations (4.22)-
(4.23). Note that the definition of M(z) in (4.22) is
equivalent to designing a controller for a nominal plant
which has been augmented by an integrator. Hence this
plant is treated using the formulas (4.15)-(4.18). After a
solution to (4.10) is found, the Youla parameter Q(z)
used in the parametrized predictive control structure of
Figure 2 is constructed by re-associating the augmented-
plant integrator with the controller to obtain

O(z) = (i;_.l_)Q‘(z ) (4.24)

The resulting controller includes an integrator since
(4.24) satisfies the zero-gain condition Q(1)=0.




4.2 Constrained Regulator Design

The objective in the present section is to design a
predictive regulator with disturbance rejection properties,
and such that it recognizes that the input must satisfy a
constraint of the form [u}}_ < 8. The exogenous signal d
represents a persistent but bounded disturbance such that
| 4]l < 1, where without loss of generality the unity
bound represents the result of a signal normalization. Let
T,(z) represent the closed-loop transfer function
between the manipulated variable and the disturbance,
i.e. u(z)=T,(z)d(z). Carrying out elementary block
diagram algebra in Figure 2, T, (z) is shown to be affine
with respect to the transfer function Q(z) and is given by

T (2)=T,,(2)+T,,(2)0() (4.25)
where
T, (2)=-M(2)X(2)

T,,,(2) =-M@2)X(2)M(2)

Notice that both u(t) and d(t) are [_-signals because they
are bounded. Using the fact that the operator 1-norm
IT.l, = Y. l| (where t; denotes the i-th impulse
response coefficient) is related to the infinity norms of
the signals u(z) and d(r) through the relationship (c.f,
Dahleh and Diaz-Bobillo, 1995)
7., = sup . @26)
jd]..s1
it follows that constraints on the input can be effectively
incorporated into the regulator design strategy by
minimizing (4.26). Hence, the problem of satisfying
saturation constraints on the input, guaranteeing
simultaneously robust stability of the closed-loop can be
precisely stated as follows:

u = anMf_“TM“l 4.27)

subject to

xR+ 0z (2. <1 (4.28)

The [,/H_, problem (4.27)-(4.28) calls for finding an
optimal Q-parameter that minimizes the 1-norm of 7,
and simultaneously satisfies the robust-stability condition
(4.28). If the optimal solution satisfies u’ < B, then the
predictive regulator satisfies the constraint specifications
on the input. On the other hand, if y° >/ there is no

robustly stabilizing regulator that can satisfy the input
constraints.

Remark 1. Notice that (4.27) is in a semi-
infinite optimization form. It is possible to exploit the
special structure of the problem to find a global
suboptimal solution by considering a modified truncated
problem, as shown in (Sznaier, 1994). First (4.27) is
transformed to a finite-dimensional optimization problem
by keeping only the first N impulse-response coefficients
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of T,,(z). The resulting problem is convex and simple to
solve. The solution Q_(z)=Y" gz to the truncated
problem is then used to solve a chari extension problem
of the form ||R"(z) + Q. (z) + 27" Q,(2)|_ <1, Where Os(z)
is now the unknown parameter. The [/H, problem
(4.22)-(4.23) has thus been decoupled into a finite
optimization and an unconstrained Nehari problem, with
a suboptimal solution Qz(z) given by Qi(2) =

0r()+27V05(2).

Remark 2. Solving the finite-dimensional
problem may not guarantee satisfaction of the input
constraints at times greater than the horizon N. The
following simple modification yields a good overall
behavior. Introduce a change of variables that places the
poles of the closed-loop system inside a disk of radius
smaller than one, thus forcing a decay ratio on the time
response. For a given &< 1, define H_ 5:={G(z)e H _:
G(z) analytic in |¢|> 6 }. Thena Youla parameter Q(z)
is sought such that O(z) € #_ ;. This can be interpreted
as adding the requirement that the closed-loop system
poles must lie inside a disc of radius § < 1. A
parametrization of all possible closed-loop transfer
functions that satisfy this additional requirement can be
obtained by simply changing the stability region using
the transformation z = §Z, where O<d<1 is a real scalar.
Details can be found in (Sznaier, 1994).

The modified /;/H.. problem can then be decoupled
into a finite-dimensional convex optimization and an
unconstrained Nehari extension problem, as shown in
Remark 1, providing a suboptimal solution to (4.27)-
(4.28). Once (4.27)-(4.28) is solved for a suboptimal
parameter Q(z) the final regulator design is obtained by
substituting the Q-parameter and the factorizations (3.5)-
(3.6) in the predictive regulator scheme (3.10).

5. EXAMPLE

Consider the unstable second-order nominal plant
model

z+0.2
22 -06z+1.12
and the uncertainty weight

8(2)=

_0.63z+0.6174

Ma=—"""0s

Three regulators are designed: (i) a nominal
predictive controller (NPC), (ii) a robust predictive
controller (RPC), and (iii) a robust predictive controller
with integral action (RPCI). The nominal predictive
regulator is of form (2.6), and is realized using the design
parameters N=4, N,=2, and A=0, to arrive at the
polynomials

R(z) = 22 —0.8039z — 0.1961




S(z) = 0.8639z* —1.579z +1.0984

T(z) = 0.2914z* —0.01562° + 0.366z% + 0.3243z

which leads to a nominal predictive controller that
stabilizes the closed loop when the uncertainty is
neglected. However, the NPC regulator is not robustly
stabilizing because it violates the robust stability
condition (4.3), i.e. | W(z)C(z) §(2)|_=2.9 >1where ((z)
and S,(z) are calculated using Q(z)=0 in (4.4) and (4.5).

The RPC design is of the form (3.10). Since the
unstable nominal plant has no poles on the unit circle, the
design proceeds as discussed in Section 4.1.1. The
transfer functions Ty(z) and T,(z) are formed as
prescribed in (4.7) and (4.8). To solve the Nehari
extension problem we use y= 0.99, The algorithm
described in the main section leads to a Youla parameter
Q(z)=Ny(z)/Dy(z) of order 8. The RPC transfer
functions Y(z)-N(z)Q(z), and X(z)+M(z)(Q(z), are of order
9 in their minimal forms. The regulator is robustly
stabilizing because | W(z)C(z) S(z)||_=0.35<1.

Finally, the design of the RPCI is carried out as
indicated in Section 4.1.1, using again the specification
Y= 0.99 and 8= 0.9. The procedure leads to a Youla
parameter Q(z)=(z-1)NQ(z)/(zDQ(z) ) of order 9. The
resulting RPCI transfer functions Y(z)-N(z)Q(z), and
X(z)+M(z)Q(z) are of order 10 in their minimal forms,
and Q(1)=0, as desired. The RPCI controller is robustly
stabilizing because | W(z)C(z) §(z) | =0.49<1.

Figure 3 shows the results of a closed-loop
simulation test carried out to evaluate the nominal
regulation performances of the three control designs.
When a unit-step disturbance d(z) is introduced at t=12,
the NPC rejects the disturbance effectively, as shown in
Figure 3a. In contrast, the RPC fails to reject the effect
of the disturbance, and displays steady-state offset. The
RPCI, on the other hand, succeeds in rejecting the
disturbance, with slower dynamics than the nominal
controller. Figure 3b shows that the NPC achieves the
disturbance rejection at the expense of fairly energetic
control actions that follow the onset of the disturbance.
On the other hand, the RPCI prescribes more
conservative input adjustments, typical of robust
controllers. In many practical situations, the smoother
dynamics of the RPCI design may be highly preferable
over the more aggressive behavior of the NPC.

Figure 4 shows the results of a closed-loop
simulation test for a perturbed plant (A(z)#0), belonging
to the family (4.1). As in the previous example, an
external unit-step disturbance d(t) is introduced at 1=12.
The figure shows that the NPC is unable to control the
plant, causing unstable closed-loop dynamics. In marked
contrast the RPCI regulator is stabilizing, has offset-free
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behavior and manages to reject the disturbance without
excessive control action.
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Figure 3. Comparison of the performance of the nominal
predictive regulator (NPC), the robust predictive regulator
(RPC), and the robust predictive regulator with integral action
(RPCI) designed in the example, acting on a plant with no
uncertainty. A unit-step disturbance d{r) is introduced at t=12.

6. CONCLUSIONS

Systematic methods for robustifying predictive
regulators for unstable plants have been proposed in this
paper. Design procedures are given for both the
unconstrained case and the case of constraints on the
manipulated variable. Experience with these methods
shows that the unconstrained design technique leads to
controllers of reasonable order, whereas the constrained
design often results in very high-order controllers.
Although model reduction techniques may be used to
approximate the [;/H,, regulator, the large controller
order seems to be less of an issue in predictive control
applications, where high-order convolution models have
been used extensively.
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