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Abstract. We compare decentralized and centralized JLQ approaches combined
with additional nonlinear control design algorithm used by some authors to ensure
practical stability of uncertain systems. Simply we decompose the system into sub-
systems and consider two level control structure. In decentralized structure decision
makers of the lower level have only nominal linear models of their subsystems ne-
glecting interconnections between subsystems. A local controller is found using the
quadratic criterion for the subsystem and incorporates the information about its local
state. The role of the coordinator (upper level decision maker) is to ensure robust
-stability and guaranteed cost in spite of uncertainties represented by interconnections
among subsystems and deviation of parameters. In the centralized structure the roles
of decision makers of the two levels are inverted.
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1 Introduction In many practical situations, the natural state
space is hybrid: to the usual plant state in R®
we append a discrete variable taking values in
B = {1,2,...s} called the mode that describes sud-
den changes in the plant characteristics. It is typ-
ical case in the complex large scale systems, such
as manufacturing systems (see for example [2]),
power systems (see for example [11]) or redundant
multiplex control systems ([9]).

Design of feedback controllers for systems with un-
certain parameters has been a topic of interest
of system designers for many years. Parameter
uncertainty can be dealt with in variety of ways.
One possibility is constant parameter estimation
through extensive testing or through use of real -
time or nonreal time system identification. Alter-
natively, parameters may be accepted at their a
priori levels, and a control should be designed so
as to be, in some sense, robust or insensitive to
their variations. It is the latter approach that is
applied in this paper.

In this paper we consider systems which are linear
in the continuous plant state and whose mode dy-
namics is described via random jumps modelled by
a discrete-state Markov chain. One way of stabi-
lizing the linear stochastically stabilizable system
with markovian jumps is to solve the JLQ prob-
lem (see for example [5], [13], [8]). However the
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of the system is guaranteed only for the perfectly
measurable state variables and complete informa-
tion about the system parameters. Moreover an
optimal controller uses all the state variables to
construct a control vector. This is an overideal-
1zation especially in the case of a complex sys-
tem containing many subsystems interconnected
by incompletely known crosscouplings. The sit-
uation becomes especially complex for the piece-
wise deterministic processes when the controller
is designed under the assumption of the complete
access to the mode 1.e. discrete random state vari-
ables representing the form of the process.

To overcome at least a part of these difficulties
we propose to combine decentralized jump linear
quadratic (DJLQ) approach with nonlinear con-
trol design method used by some authors (see for
example [1], [6], [7]) to ensure practical stability of
uncertain systems. Simply we decompose the sys-
tem into subsystems and consider two level con-
trol structure. Decision makers of the lower level
have only linear models of their subsystems ne-
glecting interconnections between subsystems. A
local controller is found using the quadratic crite-
rion for the subsystem and incorporates the infor-
mation about its local state. The role of the coor-
dinator (upper level decision maker) is to ensure
robust stability and guaranteed cost in spite of un-
certainties represented by interconnections among
subsystems and deviation of parameters. The un-
certainty is described by deterministic inequality
model and the main assumption is the well-known
matching conditions. The coordinator uses the in-
formation about local states and bounds for uncer-
tainties to design the robust control actions which
are transmitted to the local decision makers and
added to the local control variables. This control
is nonlinear but it is bounded by the constraints
imposed on the uncertainties. Yet another possi-
bility is to design the JLQ controller for the overall
system described by a model without uncertainty
and to robustify this strategy by local nonlinear
law based on the local estimation of bounds for
uncertain variables. We call this approach a cen-
tralized one.

The paper is organized as follows. In section 2,
we establish a model of the system, a model of
the uncertainty and a nominal model used by the
local decision makers in the decentralized struc-
ture. Then, we state the control problem and we
describe an information structure in the system.
In section 3, we construct the control laws of the
local decision makers and the coordinator and we
give the main results of this paper in the form of
two theorems dealing with robust stochastic sta-
bility and guaranteed control property of the sys-
tem. In section 4 we compare the results with

those obtained for the centralized structure and
1n section 5, we present some concluding remarks.

2 Decentralized information
structure

We consider a decentralized system composed of L
interconnected subsystems described in the state
form by the following differential equation:

#(1) = AHE W) (1) + BAEO)W' (1) +
L
V(1) + ¢ (E(D), 2(0), O]+ AT(EW) (1)

j=Li#i
2 (0)=zbh; i=1,2,---,L (1)

where ' is a local state vector of the ith subsys-
tem, z*(t) € R™,

u’ is a local control, u(t) € R™:,

v’ is a coordinator control for the ith subsystem,
v'(t) € R™,

At (€1(t)), B(£'(t)) are local system and input
matrices respectively,

A (&(t)) represents crosscoupling between the ith
and the jth subsystems,

e'(£(t), z(t),t) are model uncertainties resulting
from parameter deviations and bounded nonlin-
earities acting in the range of the local input for
the ith subsystem, e'(£(t), z(t),t) € R™:.

€i(t) is an irreducible and continuous time discrete
state Markov process representing a local mode of
the ith subsystem and taking values in a finite
set B = {1,2,...,s'} with transition probability
matrix P = {p,ipi} from mode o to mode @
during the time interval [t, ¢ + d¢], given by:

Parpr = Pr{€i(t + 1) = FlE'(t) = o'} =

_ qi,p,& + o(6t), if o' £ 8 5
T 14+¢., 6t +o(6t), ifof = F (2)

atat

In this relation, qfl,-p,— stands for the transition

probability rate from mode o' to mode #* and
satisfies the following relations:
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Qhigr 20 (3)
q:;r"a" == z q;-ﬁ- (4)

pieBiatEpr

z(t) is an overall system state vector composed
of the subsystem state vectors z*(t),i = 1,2,...,L
taking values in R™ x R”2 x ... x R™Z, while the
mode £(t) of the overall system contains modes
of the subsystems £(¢) and takes values in the
product set B = B! x B? x ... x BE.

It is assumed that the unknown cross-couplings
satisfy the following matching conditions (see for
example [6], [1])

AY(E(t)) = BH(E(t)) DY (£(1)) (5)

where the matrix DY (£(t)) for each £(t) = a =
[al,..., al] satisfies the following relation:

DY ()]} < d(e) (6)
and d”(«) is a known scalar.
Uncertainty e'(£(¢), z(t),t) is assumed to be
bounded for each £(t) = a = [a!,...,aL] (' rep-

resents the transpose operation; this notation will
be used subsequently in text) by:

lle* (e, z(2), | < F(@z(D)]

where fi(a) is a known scalar.

A nominal model of the 7th local decision maker
has a simplified form:

a'(t) = AT(E()2" (1) + B (€' (1)) (1) (8)

and is used to find a control u’(t) minimizing a
local quadratic performance index:

J—E { / T OQE @) 1)+

0

u' (6B (6(0)u (t)dt } (9)

where the cost weighting matrices Ri(€'(t)) and
Q' (£'(t)) are symmetric respectively positive def-
inite and positive semidefinite for each £(¢)*.

Each ith nominal model is assumed to be
stochastically stabilizable [5] and each pair
(A¥(a%),C'(a')) is observable for all o € B
where C¥'(a*)Ci(a') = Qi(a?). Tt is also assumed
that all state variables of the ith subsystem are
perfectly measurable. The information transmit-
ted to the coordinator at each time ¢ consists of
values of the state vector norm ||z*(t)||, the mode
€i(t) and the control u'(t) for each i = 1,..., L.
Based on these informations, the robustification
control v(t), i = 1,..., L is evaluated by the co-
ordinator and then transmitted to the ith sub-
system. The design objective is to find a feed-
back control law that guarantees robust stability
of each subsystem. Moreover 1t will be shown that
the control ensures robustness of the overall sys-
tem in the sense of guaranteed cost property [4],
[10] given by the inequality:

L L
J = ZJi < Zz"gl{i(ai)xg
i=1 izl

where K'(a'), (o’ € BY) is the set of the unique
positive solutions of the coupled Riccati equations
corresponding to the local JLQ problem (8)-(9)
given by:

AP (@)K (o) + K (o)) A% (o) ~
Ki(a')Bi(a*)R' ™ (') B (o' ) K (o)

+ ) qap K () + Q') =0
pi=1
ateB (11)

The coordinator uses his own resources to realize
his control policy v*(t) thus its cost is not included
in the local performance index.

3 Control law design

The feedback control used in each subsystem is the
sum of the local decision maker strategy and the
coordinator’s one. The local control law is found
by minimizing (9) for the nominal model of the ith
subsystem (8) and has for any given £(t) = o' the
following form [5]:
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u(at,t) =

R Nah) B (o) K ()2 (1) (12)

The corresponding optimal cost for the nominal
model is given by (for £€(0) = o*):

T = ' K (o)) (13)

The coordinator has an information about the
structure of the overall system including bounds
on the incompletely known crosscouplings (5), (6)
and uncertainties (7), and the actual information
about the values of u(£'(1),1), ||z'(t)|| and £'(t)
from all subsystems. This information is used
to construct the control law v' defined for each
£(t) = « as follows:

vi(a,t) =
adulenl) pi(ar, [|z(t)]])

TR (at)ut(a? 1)l

(s

where p'(«, [lz(2)[]) is an upper bound on the en-
tire uncertainty 7'(a, z(t),t) for the ith system,
defined as:

(14)
if wi(at,t) #0
if ui(a*,t) =0

0 (o, 2(t),t) =
L
3" Di(a)ai(t) + e (a,2(t).t)

j=1#

where the matrice D' (a') comes from the use of
the Eq. (5).

The upper bound p*(a, ||z(t)]]) is defined by the
following formula for any £(t) = a:

lI7* (e, 2(2), )| =
L
Y Di(@)ai(t) +¢€(a,z(t), )l <
j=l,j#d
L
< Y I (@) @Ol + e (e, 2(1), Ol <

i= 11‘#
< Z d(a) Hr’(t)ll+f’(a)ZIlr’(t)Il—

j=1lj#i

= (e, llz(®)ID) (15)

_/dAn\

If we define d* = 0, then

pi(a llz@l) =

—Z(d” @) + f1 (@)l (O

Thus the coordinator control law is also bounded.

To find the sufficient conditions for robust stochas-
tic stability, let assume Lyapunov function candi-
date for each subsystem 7 in the form:

V(z' a') =

2 Ki(a')z' = Si(z, o)

(17)

where Si(z?,a’) is the optimal cost to go for the
nominal model of the ith subsystem (8) starting
from z§,£(0) = a'. Its expression is given by

(13).

The following theorem gives the required condi-
tions.

Theorem 3.1. Assume that the ith subsys-
tem described by the state equation (1) meets
the matching conditions (5)-(7) and is governed
by the control law (12) and coordinator control
(14). Then the overall system remains stochasti-
cally stable in the whole ranges of uncertainty.

The next theorem states the conditions for the
guaranteed cost property.

Theorem 3.2. Assume that the ith subsystem
described by the state equation (1) meets the
matching conditions (5)-(7) and is governed by
the control law (12) and coordinator control (14).
Then the value of the performance index (9) for
the subsystem does not exceed the optimal cost
for the nominal model (8) given by the function:

S¥(zh,£(0) = o) = 2 K* (o)} (18)

The theorems may be proven using the same ar-
guments as in [12] where however one level control

structure has been used.
m]

If the performance index of the overall system is
defined as a sum of the local indices then the pro-
posed control strategy guarantees the cost given
by the formula (10).




4 Centralized JLQ problem
and its robustification

In the centralized structure decision maker of the
upper level has only linear models of the overall
system neglecting uncertainties resulting from im-
precisely known parameters of the subsystems and
local environmental disturbances. A controller is
found using the quadratic criterion for the system
which is the sum of local cost functions and in-
corporates the information about its state. The
role of the local decision maker is to ensure robust
stability and guaranteed cost in spite of the un-
certainties The uncertainty is described by deter-
ministic inequality model and the main assump-
tion is the matching condition. The local decision
maker uses the information about local states and
bounds for uncertainties to design the robust con-
trol actions which are added to the control vari-
ables transmitted by the coordinator to the sub-
system. This control is nonlinear but it is bounded
by the constraints imposed on the uncertainties.
More specifically the coordinator control law for
the ith subsystem is now given by:

v (e, t) =
~R 7 (a) B (a) Ki(a)a() (19)

where Ki(a) is the ith block row of the solution
K.(a) to a coupled Riccati equation for the entire
system:

Al(@)K (a) + K. (a)A(a) -
K (a)B(a)R™!(a)B'(a)K ()
+2_ dasKe(B) + Q(e) = 0
peB
aeB (20)

Ko(e) = [KY(a), -, Ki'(a),- -, KF (a)) (21)

z is the state of the system combined of the
states of all subsystems while matrices A,B,R,Q
are combined of the respective matrices for the
subsystems.

On the other hand the local control law has now
the following form:

w'(ad, 1) = (22)
Terareadn o' (o, [l (@)l]) if v'(a?,1) # 0
0 if v*(a*,t) =0
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where p*(o, ||&*(2)|]) is an upper bound on the lo-
cal uncertainty e*(o*, 2*(t),t) for the ith subsys-
tem, given by:

llef(o, 2" (), 1)} < fi(a)l|z* ()] (23)

where fi(a') is a known scalar.

The idea presented in this section is a complete
contrast to the decentralized one described before
nevertheless the same properties of the closed-loop
system 1.e. robust stochastic stability and guaran-
teed cost property are ensured (see [3] for proof).
The main differences between the two approaches
are in the complexity of computation performed
by the specific levels and the amount of informa-
tion required by decision makers in order to de-
sign their strategies. In the decentralized struc-
ture the coordinator should only be endowed in
the sufficient amount of additional resources to
support the action of local decision makers which
should be able to solve quite complex local systems
of the coupled Riccati equations. The information
processed by the coordinator is very simple and
could be easily obtained from the subsystems. In
the centralized structure the complexity of the full
order coupled Riccati equation solved by the co-
ordinator may be really huge. On the other hand
local decision makers have very simple task and
should only care to compensate the effect of un-
certainty disturbing locally their subsystems.

5 Conclusion

The main idea of the paper i1s to decompose the
complex system into subsystems and to use hierar-
chical structure to ensure robustness in the sense
of robust stability and guaranteed cost property.
This purpose can be realized in two different struc-
tures. In the decentralized approach the control
law minimizing the quadratic cost is decentralized
while the effect of imprecisely known crosscou-
plings and uncertainties disturbing the subsystems
1s compensated by the coordinator. Although the
control law depends on perfectly measurable state
variables and modes but due to decentralization
the local decision maker needs only to measure
the local state variables. On the other hand the
coordinator needs only an aggregated information
from the subsystems in the form of the local con-
trol actions and the norm of the local state vectors.




In the case of MIMO large scale system decom-
posed into SISO subsystems it enables to transmit
only three numbers from each subsystemn to the co-
ordinator at each time t and only one number from
the coordinator to each subsystem. Moreover in
this case the matching conditions imposed on the
uncertain crosscoupling are not restricting at all.
The centralized structure leads to the huge com-
putational effort at the coordinator level where the
coupled Riccati equation system should be solved.
On the other hand the coordinator must only use
the nominal model of the system while a knowl-
edge of the uncertainties is used by local decision
makers to design a simple local strategy which ro-
bustifies the closed-loop system.

Literatura

(1] Barmish, B. R., Corless, M. and Leitmann,
G., “A New Class of Stabilizing Controllers
for Uncertain Dynamical Systems”, SIAM
Journal of Control and Optimization, Vol. 21,
No. 2, 1983, 95-102

Boukas, E.K. and Haurie, A., “Manufac-
turing Flow Control and Preventive Main-
tenance: A Stochastic Control Approach”,
IEEE Trans. Autom. Contr., Vol. AC - 35,
No. 9, 1990, 1024-1031.

Boukas, E.K., Swierniak, A., Simek, K.
and Yang, H., “Robust Control of Com-
plex Piecewise Deterministic Linear Systems
- CJLQ Problem”, System Modelling Control
8, Vol.1, 1995, 134-138.

(3]

[4] Chang, S.S.L., and Peng, T.K.C.: “Adaptive
Guaranteed Cost Control of Systems with
Uncertain Parameters”, IEEE Trans. Autom.

Control, Vol. AC-17, No. 4, 1972, 474 - 481.

411

AN

[5] Ji, Y. and Chizek, H., “Controllability,
Stability, and Continuous-Time Markovian
Jump Linear Quadratic Control”, 1EEE
Trans. Autom. Contr., Vol. AC-35, No. 7,
1990, 777-788.

Leitmann, G.: “Guaranteed Asymptotic Sta-
bility for Some Linear Systems with Bounded
Uncertainties,” Trans. ASME, Vol. 101, 1979,
212-216.

[6]

Leitmann, G.: “On the Efficacy of Nonlinear
Control in Uncertain Linear System”, ASME

J. Dynam. Systems, Measurement. and Con-
trol, Vol. 102, 1981, 95-102.

[7]

Mariton, M. : Jump Linear Control Systems,
New York: Marcel-Dekker, 1990.

(8]

[9] Siljak, D.D., “Reliable Control Using Multi-
ple Control Systems”, Int. J. Contr., Vol. 31,
No. 2, 1980, 303-329.

[10] Swierniak, A. and Boukas, E.K., “Ro-
bustification Procedure for JLQ Problem”,
Z.N. Pol.Sl., s.Automatyka, Vol. 114, 1994,

267-275.

[11] Swierniak, A. and Simek, K.: “Guaranteed
Exponential Stability in Partly Unknown
Large Scale Systems”, SAMS, Vol. 12, 1993,

159-165.

[12] Sworder, D.D. and Rogers, R.O., “An
LQ-solution to a Control Problem Associ-
ated with a Solar Thermal Central Receiver”,
IEEE Trans. Autom. Contr., Vol. AC-28, No.

5, 1983, 971-978.

[13) Wonham, W.M., “Random Differential Equa-
tions in Control Theory”, Probabilistic Meth-
ods in Applied Mathematics, Vol. 2, (A.T.

Bharucha-Reid Ed.), N.Y., 1970, 131-212.




