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Abstract

This paper addresses the robust performance problem
when the performance measure is the “steady-state”
value of an error signal. Necessary and sufficient con-
ditions are derived for robust steady-state tracking of
fixed (possibly unbounded) inputs in the presence of
siructured time-varying uncertainty are derived. These
conditions are easily computable and fit well with ex-
isting conditions on stability robustness and perfor-
mance robustness when the performance measure is
the level of disturbance rejection. Using these condi-
tions, it is shown that time-varying perturbations of
a nominal LTI plant can result in large steady-state
tracking errors to fixed inputs even if the nominal plant
and controller give zero steady-state tracking errors.
The derived expressions for the worst-case steady-state
tracking error give insight into how the time-variation
in the plant affect tracking errors and suggest that cer-
tain transfer function norms should be minimized to
reduce the effect of these perturbations on the steady-
state value of error signals.

Keywords: Steady-state Tracking, Robust Assymp-
totic Tracking, Stability Robustness, Finite Memory
Perturbations, Fading Memory Perturbations, Struc-
tured Uncertainty.

1 Introduction

The robust control literature contains various results
on the robust stability and performance of systems un-
der differing assumptions on the uncertainty. Differ-
ent signal norms are also considered by various au-
thors such as the Ly signal norm which gives rise to

*This research was supported by NSF grant ECS-9457485

Heo [t/ km theory, or the Lo, signal norm which gives
rise to Ly control methodology and the associated ro-
bustness tools. In both of these design methodolo-
gies, when robust performance is considered, the per-
formance measure is almost always taken to be some
induced system transfer function norm. This corre-
sponds directly to the problem of disturbance attenu-
ation when a class of input signals, or disturbances, are
assumed to enter the system. Although this is a useful
performance measure, it is by no means the only one
of interest. Other widely used performance measures
whose robustness properties are of great importance
from a practical viewpoint include such time-domain
measures as steady-state tracking errors of fixed in-
puts, rise-time, overshoot, undershoot, etc. Unfortu-
nately, the robustness of these “classical” performance
measures to plant uncertainty is not widely studied,
and more work remains to be done.

This paper addresses the problem of steady-state
tracking of fixed inputs in the presence of linear
norm-bounded structured perturbations. Steady-state
tracking, or asymptotic tracking and regulation Lave
been addressed in the literature by various authors
since the 1970’s. See [1, 2, 4, 5, 6, 11, 12] and the ref-
erences therein. Given a linear time-invariant plant,
the Internal Model Principle provides (when possi-
ble) a way for obtaining controllers which achieve zero
steady-state tracking errors. However, in the presence
of time variation in the plant, it can be shown that
the steady-state error may no longer be zero, and can
in fact be quite large. The objective of this work is to
provide tools for the analysis of steady-state errors of
linear time-invariant systems in the presence of time-
varying perturbations. First, we given nonconserva-
tive conditions for stability robustness of systems in
the presence of structured norm-bounded finite/fading
memory perturbations. Next, computable necessary
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Figure 1: Single-loop Tracking Problem

and sufficient conditions for robust tracking are given.
These conditions require the computation of a certain
hybrid matrix containing both the ¢; norm of certain
subsystems and the steady-state semi-norm of certain
signals in the system.

2 Notation

We use Z*t to denote the nonnegative integers. £o,

is the space of sequences z = {z(k)}$2, such that

lzlleo := sup |z(k)] < 0. ¢o is the subspace of £ of
k

sequences z satisfying z(k) — 0 as £ — oo. We define
the truncation operator P; as follows:

_ _[yt) t<k
Pry = =, z(t) = { 0 otherwise

We define the “tail” operator L as follows:

t)y t>k

Ly ==, 2(t) = { g( : otherwise

LTI operators on f£o will be viewed as elements
of ¢,, the space of sequences {M(k)}32, such that
Y reolM(k)| < oco. Every element M in £; defines
an LTI operator on £,, which acts by convolution, i.e.
y= M xz where z, y € {,,. For the remainder of the
paper, we shall drop the x and simply write y = Mx.
In this case, the induced operator norm will be equal
to 1M}

3 Motivation

In this section, we provide the motivation for investi-
gating the robust steady-state tracking problem. Con-
sider the system in Figure 1. P, is a linear time-
mvariant plant, while K is a linear time-invariant sta-
bilizing controller. A is a causal norm-bounded uncer-
tainty which belongs to a certain class of admissible
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perturbations, say A. The exact characterization of
the class A will be discussed later. r is a fixed refer-
ence input to be tracked by the output y, and e is the
tracking error. The objective is to make the error e
as small as possible in the “steady-state”. One possi-
ble way one might pose the robust tracking question is
as follows: What is the worst case “steady-state value
of the error” as A is varied over the class of admissi-
ble uncertainty A? The most common measure of the
steady-state value of e is given by limg_, o |e(k)]. This
is both reasonable and practical, but the limit may not
always exist. In fact, this is the case in many impor-
tant cases (e.g. e(k) = sin(6k)). We will generalize
this definition to include the cases when the limit does
not exist by defining the steady-state semi-norm of e
as follows:

llellss := lim sup |e(k)].
k—o0

Note that when limg_, ., |e(k)] exists, it will be equal to
llellss. It should be emphasized that ||.||ss is a semi-
norm on the space £,,. On the other hand, ||.||ss does
define a norm on the space o, /¢y (€0 modulo ¢g). The
definition of ||.||ss can be extended to the space £, as
follows: |le||ss = max; [|e;]lss. With this definition,
llellss 1s a measure of the mazimum persistent peak of
the signal e. One consequence of this definition is that
llellss < lle|joo for all € € £oo.

Using the {}.||ss definition, our tracking problem be-
comes that of determining the quantity supa¢a |lel|ss
for a given robustly stabilizing controller.

The next question to be addressed relates to the
class of perturbations to be considered. The class of
perturbations commonly used is the class of norm-
bounded uncertainty, i.e.

A:={A:lo — € : Ais linear, causal and ||A]| < 1}
where |[|A]| is the induced operator norm. For this class
of perturbations the stability and performance robust-
ness problems have been completely resolved [3, 8, 9],
and computable necessary and sufficient conditions for
robustness exist. However, for our purposes this class
of perturbations is “too large” in some sense. More
precisely, a perturbation A € A can have infinite mem-
ory. For example suppose A has the following matrix
representation:




It is easy to see that A is admissible. But A maps
{1,0,0,...} to the the sequence {1,1,1,...}, and the
effect of the input at time k£ = 0 affects the output
for all time. Clearly, this is not a very realistic model
for uncertainty. A much more reasonable model for
uncertainty is the class of perturbations which have
fading or finite memory. See [10] and the references
therein. We will call a bounded linear operator A a
fading-memory operator if A maps cg into c¢g. Thus
inputs which go to zero are mapped to outputs which
also go to zero. Similarly we will call a bounded linear
operator A : £, — £ a finite memory operator if A
maps finite sequences into finite sequences. Let App
denote the subset of A of fading memory operators,
and let Ap denote the set of finite memory operators.
Clearly Ap C App C A. For the rest of the paper
we shall take Ap to be the class of uncertainty. All
the results obtained will apply equally well to the class
App.

4 Robustness Against Finite
Memory Perturbations

Before the question of robust steady-state tracking in
the presence of finite memory perturbations can be
addressed, the stability robustness against this class of
uncertainty must be addressed first. As mentioned ear-
lier, stability and performance robustness conditions
when the class of perturbations is A are known (see
[3, 8, 9]). Since Ap C A, these conditions remain
sufficient when the perturbations are restricted to the
class Ap. It is an interesting fact that these same con-
ditions remain necessary when the class of perturba-
tions is Ag. This is the first main result of the paper,
and will be addressed next.

The standard robust stability problem in the pres-
ence of structured uncertainty can be stated with the
aid of Figure 2. In the figure, M is a linear time-
invariant stable system with n inputs and n outputs.
It represents the nominal part of the system and is
typically composed of the LTI plant(s) and stabilizing
LTI controller(s). A represents the system uncertainty
and will be assumed to belong to the class:

Dr(n) := {diag(A1,...,An) : A; € Ap.}

So Dp(n) is the class of structured norm-bounded finite
memory perturbations.

Definition 1 (Robust Stability) The linear tune
invartant system M in figure 2 is ts said to be ro-
bustly stable (against finite-memory perturbations) if
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Figure 2: Robust Stability Problem

VA € Dp(n), the map (r1,r2) — (e1,e2,y1,Y2) takes
bounded sequences to bounded sequences and has a
bounded induced norm.

Equivalently, M is robustly stable if (I — MA)~! is
£.-stable for all A € Dp(n).

Define M as the following n x n nonnegative matrix:

[| M1l [|M1nlh
M = :
”Mnn“l

We now give the following simple condition for robust
stability:

Theorem 1 (Robust Stability)

M s robustly stable (against finite-memory perturba-
tions) if and only ifp(ﬁ) < 1, where p(.) is the spec-
tral radius.

(| Ml

Proof. The proof will be omitted.

Remark: The above theorem should be viewed in
connection with a related theorem given in [9] where
it was shown that p(M) < 1 is necessary and sufficient
for robust stability when the perturbation class is

D(n) := {diag(A1,...,A,) : A; € A}.

It can be shown that when performance is measured
by the level of £, disturbance attenuation, robust
performance against finite memory perturbations can
be reduced to robust stability, and thus robust per-
formance conditions can be computable. Again this
“equivalence” among the two notions of robustness has
been shown to hold [8] when the perturbation class is
D(n).

5 Steady-State Tracking

The tracking problem motivated in section 1 is a spe-
cial case of a more general class of tracking problems
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Figure 3: Robust Steady-State Tracking Problem

which we consider next. Consider the system in Fig-
ure 3 which represents the general steady-state track-
ing problem.

In the figure, M is a linear time-invariant stable
system representing the nominal part of the system. A
represents the system uncertainty and will be assumed
to belong to the class:

Dp(n) := {diag(A1,...,An) : Ai € Ap.}

r is a fixed reference input, while e is the output whose
steady-state value is of interest (typically the tracking
error). M is (n+ 1) x (n+ 1), and can be partitioned
accordingly

M11 Ml,n+1

M=

Mn+1,1 Mn+l,n+1

1t is also convenient to partition M as follows:
M.

(;) =0 M2)(5)

In this general setting, we give the definition for robust
steady-state tracking:

Definition 2 (Robust Steady-State Tracking)
The linear time-invariant system M in Figure 3 is said
to achieve robust steady-stale tracking if

1. The interconnection of M and A is £, -stable for
all A € Dp(n) (Robust Stability).

2. sup |lellss < 1.

AEDF(R)
Remark: Note that robust steady state tracking does
not necessarily imply that the tracking error will al-
ways go to zero. Rather it implies that the steady-
state semi-norm of the error will be less than a certain
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prescribed value (here normalized to one) for all ad-
missible perturbations.

In what follows, we will not restrict r to be bounded.
This allows us to consider such fixed inputs as ramps,
parabolic functions, or any signal which is polynomial
in the time-variable. For the remainder of this section,
however, we will impose the requirement that

| M;17||ss < oo i=1,...,n+1

The case when some of these quantities are infinite is
addressed in the next section.

The results that follow will be based on a fundamen-
tal (n + 1) x (n + 1) nonnegative matrix derived from
the problem data. We will refer to this matrix as the
Steady-State Norm Maltriz. It is defined as follows:

Msgs =
|Muirllss | M12]]1 (1M1 sl
[IMa17||ss | Ma2(|x (1M2n41ll1
IMngra7llss  [[Mnyr2(h HMnt1,n41lla

In the sequel we shall provide necessary and suffi-
cient conditions for robust steady-state tracking in the
terms of the steady-state norm matrix defined above.
In proving these results, we will refer to the following
two lemmas:

Lemma 1 Lel H : €os — {o, be any bounded lin-
ear fading memory operator. Let ¢ € Ly. Then
|Hz||ss < [|H||||zllss, where ||H|| is the tnduced £

operator norm.

Proof. For any integer n, z = L,z + P,z. Now for
any m

I

| Lo H ]} oo | LmH Lnz + L H Przl|o

|LmH Lnz||oo + | L H Paz|joo

<
< NHILnzlloo + 1| Lm H Pazloo

Taking the limit of both sides, first as m goes to infin-
ity and then as n goes to infinity we have ||[Hz||ss <
I1H]| [z} ss-

The next lemma is related to the properties of square
nonnegative matrices. Although its proof is provided
elsewhere (e.g. [9]), we will provide a short proof here
for convenience.

Lemma 2 Lel A be a square nonnegative matriz (i.e.
a;; > 0). Then p(A) < 1 if and only if z > 0 and
z < Az imply z = 0, where the inequalities < and >
are laken componeniwise.




Proof. To prove sufficiency, suppose p(A) > 1. By
Perron-Frobenius theory for nonnegative mateices (see
[7]) p(A) is an eigenvalue of A and has a corresponding
nonnegative eigenvector, say £. Thus AZ = p(A)z >
Z. This proves sufficiency.
To show necessity, suppose p(A) < 1. This implies
that (I — A)"!' =T+ A+ A? + ... exists and is non-
negative. Now suppose z > 0 and ¢ < Az. This
implies (I — A)z < 0. Multiplying this last inequality
by (I — A)~! we get that £ < 0. Thus £ = 0 and the
necessity is proved. |
We are now prepared to provide sufficient conditions
for robust tracking.

Theorem 2 If p(Mss) < 1, then M is robustly stable
and [lellgg < 1 for all A € Dp(n).

Proof. Applying Lemma 2 above, we can see that
p(Mss) < 1 implies p(ﬁgg) < 1 which is neces-
sary and sufficient for robust stability. Now suppose
Jlellss > 1 for some A € Dp(n). For such a A, define

€= A(I - Mng)_lMglr.

Now e is given by

e = Myr+ M€
Since [| - ||ss satisfies the triangle inequality, we have
1 < lellss
< [IMurllss + IMa2fl; llss
+ o F 1Myl énllss - (1)
Now, define

Y= (I - MQQA)_IMQ]"".
Clearly

MaoAy + Moy r
Myo€ + Mo r.

<
|

Using the fact that [|A]| < 1, and applying the triangle
inequality we have

Killss < llwillss
< Miviarllss + IMigazll; [1allss
oo IMip gl lnllss - (2)
Equations (1) and (2) together imply that
(L 1}illgg »-- - ll€nllgs) is a solution to the system of

inequalities < Mgsz. By Lemma 2, this is equiva-
lent to p{Mss) > 1. The proof is thus complete. W

The next lemma shows the effect of adding an input
in ¢g on the value of the steady-state tracking semi-
norm (see Figure 4).
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Figure 4: Auxiliary System used in Lemma 3.

Lemma 3 Suppose the inlerconnection in Figure 4 is
stable for all A € Dp(n). Then for any A € Dp(n),
llel|sg remains unchanged for any d € 3.

Proof.
We only need to show “A([ - MggA)‘I(l”SS = 0 for
d € cj. Because A is finite-memory, this will be the
case if “(I - MQQA)”IdHSS =0.

Let 7j := (I — My A)~1d. Then 7j = My Afj + d.

Now

illss [1(M22); Af} + di| 5
(I(M22): Al 5.6
= |[(M22)a1Arijs + ... + (Ma2)in Aniin|ls s
< {lMa2)illy linllss
+ .+ (|(Ma2)inlly 1l ss -
Therefore, z := (||171||S§\,...,||ﬁn||55) solves the

system of inequalities z < Mysz. But by robust sta-
bility, p(M32) < 1. This, together with z < Mayz
imply (by Lemma 2) that = 0. This completes the
proof. u

Lemma 4 Given any two sequences of real numbers
n and §. There exists A € Ap salisfying An = € if
and only if

L ||1Pe€llo < [ Penlloo

2. For any m € Z%, there exists m € Z% such that

Vk.

”PkLrﬁf”oo < ”Pch1n7]||00 Vk.

Proof. The proof of this lemma will be omitted here.

Theorem 3 Suppose M is robustly stable and that
llellss < 1, for all A € Dp(n). Then, p(Mss) < 1.




Proof. Suppose p(Mgs) > 1. It follows by Lemma 2
that the system of inequalities:

z < Mgsz (3)
has a nonzero solution z > 0. If z; = 0 then the sys-
tem of inequalities y < ﬁzzy has a nonzero solution
y > 0, which is equivalent to p(ﬁzz) > 1. Hence the
system will not be robustly stable. If on the other
hand z; # 0, we will show that for some admissible
perturbation, A, |le|]|ss > 1, and the proof would be
complete. Since the solutions of the system of inequal-
ities £ < Msgz form a cone, we may without loss of
generality take £, = 1. Given A € Dp(n), e is defined

(4)

- o

& =
These equations have unique solutions y and £. While
replacing equation 5 by

_ (Mu M2
Mg2; Mp2
Ay

§ = Ay +d) (6)
for a given d € ¢? will in general change the resulting
e, according to lemma 3 the steady-state value of e
will be unchanged. With this in mind, we proceed by
constructing £, A € Dp(n), and d € ¢? which satisfy
equations (4) and (6), and which result in e satisfying
llellss > 1. This construction is described next.

The idea in the construction is to utilize the solution
of the system of inequalities: £ < Msgz in order to
choose £. The choice of ¢ will be such that

1. When M;5¢ is added to Mj;r the resulting sig-
nal, e, has the largest possible steady-state value,
which we show to be larger than 1.

2. When the signal M35¢ is added to Mjqr, the re-
sulting signal, y, will have the largest possible
steady-state value, and will be such that it can
be (modulo a signal d € ¢?) mapped back to € by
an addmissible A.

Here are the details. Given a sequence of positive real
numbers E = {e1,¢3,...} € ¢,, a vector signal £ can
be chosen such that:

l6i(k)| = ziy1,  VE

(M)

and for some positive integers Ny < Ny < Ny < ...
(which depend on E)
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le(No)| > z1—e1, |pi(N)]|>22—€
o |Yn(No)| 2 2ag1 — @ (8)
le(Nag1)l > z1—e€2, [y1(Nng2)| > 22— €2

(9)

e Jyn(Nang1)| 2 Zny1 — €2

More specifically, one can choose a suffiently large
integer Ny > 0 and then specify £(k) for 0 < k < Ny
in such a way that |(k)] = 241 and

[e(No)|

[(Myrr+ Mi2€ + ... 4+ My n1&:)(No)|
[IMii7||ss + [|M1z2]1z2
+...+ ”M1,n+1”117n+1 — €

v

If follows that |e(Ng)| > 1 — €, since by the first in-
equality in (3)

=1

< NiMurllss + |Mizlhzz + .+ [|[Myna([12n41

1

Next, one can choose N7 > No, and £(k), for Ny +1 <
k < N; such that |&(k)| = ;41 and

ly1 (N1)]

[((Mayrr + Maséy + ...+ My pnt1€n)(N1)]
Mz1r||ss + || Maz||122

+...+ |IM2npiliznsr — @

v

Invoking the second inequality in (3), we establish that
lyi(N1)] > z2 — €1, and so on.

Proceeding in this manner, £ can be constucted so
that all the constraints in (8) are satisfied. In the same
way, £ can be further extended so that the constraints
in (9) are satisfied, and so on.

Now we can construct d € c§ by specifying its ith
component:

l€illoos9n (i (0))
e1 sgn(yi(k))
€2 sgn(yi(k))

k=0
1<k<N,

di(k) == Nu+ 1<k < Nopy

This d was constructed so that

IPeilloo < |Pe(y + d)|le ¥k and
VYm € Z1,3Im € Zt such that

WPeLwnéilloo S| PiLm(y + di)|leo Vk




By Lemma 4, there exists A € Dp(n) such that & =
A(y + d). This completes the proof. [ ]
Remark: Note that if any of the entries ||M;ir||ss
in Mgss is replaced by a smaller number to form
the matrix Mgg, then from the proof it is seen that
p(Mggs) > 1 implies the existence of a destabilizing
perturbation. This fact will be used later in treating
the case when some of the entries of Mg are infinite.

Combining the last two theorems we have the main
result of the section:

Corollary 1 p(Mss) < 1 is both necessary and suffi-
ctent for robust steady-state tracking.

6 Robust Tracking Conditions

in the Case of Unbounded
Signals

We have previously made the assumption that the en-
tries of Mg are finite. It is possible, however, that this
condition is not met. This would be the case when one
or more of the terms ||M;;r||ss are infinite due to the
application of an unbounded reference input r. In this
case, will provide a condition for robust tracking which
using concepts from graph theory. See [7].
We begin by defining the following objects.

Definition 3 Let A be a n x n nonnegalive matriz
(with 0o an allowable eniry). The directed graph of
A, denoted by T(A), is the directed graph on n nodes
Py, Py,...,Py, such that there is a directed arc in T'(A)
from P; 1o P; if and only if A;j # 0.

Definition 4 A directed path in a graph T is a se-
quence of ares P;, — P;,, P, > P, ... P;,_, — P, _.
The number of successive arcs in the directed path is
the length of the directed path.

Example 1 The graph of the matriz A defined by

0 1 0 o0
02 0 0 0
oo 0.2 05 1
0 0 0 07

A=

1s shown in Fig 5.

Definition 5 Let T(A) be the directed graph of A.
The weight of a directed path P;, — P;,, P
P, P; — P, i T is the product A, -

Aiin Ay

—>

i2i3 - z.m—lim'
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Figure 5: Example Graph

The following lemma relates the entries of A™ to
directed paths of length m in the directed graph of A.
It is a small modification of a theorem which appears
in [7] (see pg. 358).

Lemma 5 Given an n x n nonnegalive matriz A. Let
['(A) be the directed graph of A with associaied nodes
P1,...,Py. There exists a directed path of length m
from node i to node j if and only if (A™)i; #£ 0, in
which case (A™);; is the sum of the weights of all the
directed paths of length m from node i o node j.

Proof. The proof is by induction. For m = 1, the
lemnma is immediate. Suppose, the assertion holds for
m = q. Now

n

(ATH1)i; = (AN Arj # 0

k=1

if and only if (A9);; and Ag; are both nonzero for some
Py. This means that there exists a directed path from
node P; to node Pj of length q and a path from node P,
to node P of length 1. This is equivalent to having
a directed path from node P; to node P; of length
g+ 1. Now, since (A?);; is the sum of the weights
of all the directed paths of length ¢ from node P; to
node Py, then (A%);x Ag; is the sum of all the directed
paths of length ¢ + 1 from node P; to node P; which
pass through node k immediately before terminating
in node j. Summing over all k£ we get the sum of the
weights of all the directed paths of length ¢ + 1 from
node P; to node P;. |

We now return to the tracking problem. The fol-
lowing theorem characterizes the worst-case tracking
error when some the steady-state value of some of the
signals in the loop are infinite.

Theorem 4 Consider the steady-state tracking prob-
lem for the system in Fig. 3. Let M be robustly sta-
ble. Suppose ||M;,17llss, ..., [|Mi17||ss all equal co.
Let I'(Mss) be the directed graph associated with Mss.
Then




1. If there is a directed path from node Py to any of

the nodes Pi,, ..., P;, then supy |le||ss = oo.

2. If, on the other hand, no directed path exists from
node Py to any of the nodes Pi,,..., P;,, then
supy |lellss < 1 if and only if p(Mgg) < 1, where
Mg is oblained from Mss by replacing the oo
entries with 0s.

Proof. We start by proving the first assertion. Sup-
pose that in I'(Mss), there is a directed path from
node P, to P, where P, € {Pi,...,P;,}. Let
A(K) be the matrix obtained from Mss by replac-
ing ||Mi,irllss,-- - IMiirllss by K € IR. We will
show that limg . p(A(K)) = oo. This will imply
that supa |le|lss = oo, since the remarks following
the proof of Theorem 3 indicate that sup, |le||lss > 1
whenever p(A(K)) > 1.

For K > 0, there is a directed path from node P,
to node P, in the graph T(A(K)). It is easy to see
that in this case, one can find a directed graph having
length m < n between these two nodes. Let a > 0 be
the weight of such a path. Since Ay (K) = K > 0,
it follows by definition that there is a directed path
of length 1 from node P, to node Pj, and hence
there is a directed path from node Py to itself of
length m 4+ 1. The weight of such a path is equal
to Ka. Applying lemma 5, we have (4A™+1); > Ka.
Now since the diagonal entries of a nonnegative ma-
trix bound from below its spectral radius we obtain
P A(K)) = p(A+(K)) > Ka. Taking the limit
as K — oo, we have limg _. o, A(K)

We now prove the second assertion. Suppose there
is no directed path between P, and any of the nodes
Pi,,...,P;, in ['(Mss). We will show that the worst-
case error will not change if we replace the system M
by another system M’ which is identical to M with
the exception of certain entries which are specified as
follows: M{ , = --- = M/ ; = 0. Since Mgy is fi-
nite, p(M%g) will determine the robust steady-state
tracking properties of the system.

The relation between r and e is described by

= 00.

e = Mur + MiA(I = Mg A) ™ Hwa + -+ + Wny1)

M217" 0
0 :
where wy 1= . ey Whpl = 0
0 Mayiar
Let m € {i1,...,ip}. Clearly, m # 1. otherwise

there would be a path between node P, and itself. The
component of e which is due only to M, 17 is given by

ew,, = M2A(I — Moy A) " Ly,
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The proof will be complete by showing that e, =0,
since this implies that My, 17 does not affect e at all.
Since [|A[| < 1, it follows that Vk:

| Pef11}oo

1Peew lloo < (1| M2lly 1M1 g1l

1 Pe falloo

where f := (I — M22A)"lwp,. If we define S := (I —
M3z)~! (the inverse exists because p(Maz) < 1 by
robust stability), it is not difficult to show that

”Pkfz”oo S Si,m-—lnpkalr“oo;

where we have used the fact that all but the m — 1
entry of wy, are zero. So we now have
n
| Prew,lloo < N1PeMmirlloo D I1M1isally Sim—1-
k=1
Since

S=(I—-Myp)'=I+My+Mi+---. (10

Note that ﬁw completely determines those paths in
the graph ['(Mgss) which do not begin or end in node
P;. Hence the (7, j) entry ofﬁgg is nonzero if and only
if there is a directed path from node P41 to node P;4
which does not pass through the node P; in the graph
I'(Mss). With this in mind, it follows from equa-
tion (10) above and from Lemma 5 that Sk m_1 # 0 if
and only if either 7 = m + 1 or in the graph I'(Mss)
there is a directed path (of any lenght) from node
Py 41 to node P, which does not pass through node
Py. Consequently, ||Myiq1]], Sijm—1 # 0 only if there
is a directed path from node P; to node Pp. Since
such a path cannot exist by assumption, it follows that
|M1i41ll; Si;m—1 = 0, for alli. Therefore ey, =0 and
the result follows. u

Example 2 Suppose for a given system M, M, 1s
given by

0 1 0 0
02 0 0 0
oo 02 05 1
0 0 0 07

The graph of this malriz appears in Fig. 5. Clearly,
robust stabilily is achieved since p(ﬁzz) < 1. As there
is no directed path from node Py to Ps, robust lracking
is delermined by

M, =

ro_
M, =
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