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Abstract

A linear time invariant MIMO plant with more in-
puts than outputs which is known to belong to a set
P is considered. In order to decrease the plant out-
put due to disturbances, it is embedded in a feed-
back structure. A design method is given to find a
controller to meet the following closed-loop specifi-
cations: (i) closed loop robust stability and distur-
bance rejection performances; and (ii) the control
efforts are members of a preferred optimal set for
one plant from the set P and n disturbances, or for
n pairs of plants and disturbances (n is the num-
ber of plant outputs). The Quantitative Feedback
Theory (QFT) is the framework for the proposed
design technique.

1 Introduction

A system is embedded in a feedback structure in
order to reduce its output sensitivity to plant un-
certainty for tracking commands, and to decrease
output which is due to unknown disturbances. This
has given rise to the question of how to design the
feedback parameters. The latest and most famous
design techniques which include robustness are H,,
p synthesis and QFT. The main advantages of the
QFT technique are that (i) it offers a design for the
exact amount of plant uncertainty,
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which naturally saves controller bandwidth com-
pared to techniques that suit only special struc-
tures of uncertainty; (ii} almost no iterations are
needed during the design process; and (iii) the un-
certain plant may be non-minimum phase includ-
ing delay, and/or can be given in a table form
for dense enough frequencies. Another property
of QFT that should be considered an advantage
1s that the closed-loop performances to be achieved
are given at each frequency, rather than by norms
of matrix transfer functions.

A very important property of a design is that the
control efforts should be optimal for a given opti-
mal criterion. Clearly an optimal criterion on each
plant is superior to a global one, as for example
the H,, criterion (Doyle et al., 1989). Most likely
there exist no controllers and/or prefilters that will
force optimal control efforts for each plant in the
uncertain set for one or a set of tracking and/or
disturbance inputs. Here, the framework of the
QFT (Yaniv and Horowitz, 1986; Yaniv, 1992) is
used to extend the general QFT specs, such as dis-
turbance rejection (Yaniv and Horowitz 1986) and
margins (Yaniv 1992}, to force the control efforts to
lie in a preferred set. This means that the control
efforts are close to optimal (within given tolerances)
either for one preferred plant from the uncertain set
P and n disturbances, or for n pairs of plants and
disturbances, where n is the number of plant out-
puts.

The paper is set out as follows. The problem is
stated in Section 2. In Section 3 the design algo-
rithm is developed; Section 4 is devoted to a design
example and the conclusions are given in Section 5.




2 Motivation and Problem
Statement

Notation 2.1 Bold capital letiers denote a mairix
and the same indexed lower case letter denotes ils
elements. Lower case bold letters denote a vector,
with the same indezed lower case non-bold letter as
its elements.

Consider the feedback system shown in Fig. 1,
where the uncertain plant P = [pi;] belongs to the
family P. The controller WG is a product of the
pre-controller W and the diagonal controller G. If
the plant has more inputs than output then the
same ‘closed loop output can be achieved by differ-
ent control efforts. Moreover it is natural that the
disturbance d has a special structure, for example
side wind on a four wheel vehicle will force correlat-
ed side force and moment around the vehicle center
of gravity. This example raises the question of how
to design the feedback of such system to achieve
good closed loop performance with minimal control
efforts. The fact that most practical system have
structured uncertainty, as in flight control and ve-
hicle control (Ackerman 1993) motivates to use a
structured robust framework. Based on all these,
the following problem is formulated.

Let the following notations and definitions hold:

e n,m - number of rows (outputs) and columns
(inputs) of P; n < m.

G = diag(g;), the nzn diagonal component of
the controller.

e W - the mzn non-diagonal component of the
controller.

e P;, u; and d; - n chosen plants in P for which
u; is the optimal control efforts that minimizes
the plant output y;

yi=Pu;+d;, i=1,...m, 1
for a certain criterion (see Remark 2.1).

e i1, - the closed-loop input to P; for the distur-
bance d;.

e a;(w) - a vector of m elements that represents
the control effort tolerances on the input of the
plant P; for the disturbance d;; its elements
are positive.

Remark 2.1 The optimal control efforts u; can
satisfy any given criterion, such as LQ), Hoo o7 any
engineering crilerion.
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Problem 2.1 Show a method of designing G and
W such that for all P € P, the system defined in
Fig. 1 1is internally stable, and satisfies the specs

[ (iw) — wi(iw)| < a;(w), i=1,.,n, (2)

where the last vector inequality means element by
element inequality.

Remark 2.2 The motivation for this kind of specs
on the control efforts are: (i) Inequality 2 bounds
the mazimum allowed deviation at each frequency
of the true control efforts from the optimal control
efforts for the pair P;, d;; and (i1) Time domain
specs on the average on any finite interval, of the
form

[ 10 - wifear < | i ()

can be replaced by specs of the form defined by in-
equality 2, see Krishnan and Cruickshanks (1977).
They also argued that in practice, inequality (3)
force almost the same as inequality (2) but in time
domain, that 1s

|ﬁi(t)_ui(t)| <at), i=1,.,m, (4)

which is a highly recommended spec for the common
saturation phenomenon.

3 Development of the Design
Procedure

In Fig. 1 the input to P; owing to the disturbance
di 18
& = ~[I+ WGP,]"!WGd,. (5)

The plant input @; for a given plant output is not
unique, because the plant has more inputs than out-
puts. Conditions on the structure of W such that
the plant input will be the optimal u; if its output
is the optimal output given by equation 1 are now
developed.

Lemma 3.1 Let P; and d; ben pairs (i =1,..,n)
of plants and disturbances such that ford = d; and
P = P; in Fig. 1 the plant input is u; and [u;...u,)
has full rank exzcept in a finite number of points in
the complex plane. Then
def

W = [u;..u,]JH = UH, (6)
where H is an nzn non-singular mairiz transfer
function, i.e., det(H) has a finite number of zeros.




Proof: Let x; be the input to W for the pair P;,
dz'. Then
def
[ul...un] = W[XIX"] = WX, (7)
whose left side has full rank except in a finite num-
ber of points in the complex plane, thus X! exists
because m > n (m is the number of rows in e-

quation 7). This in turn implies equation 6, where
H=X"1

Lemma 3.2 Suppose equation 6 ts true, the output

of P; 1s P;u;, and P;U and H are invertible. Then

the input to P; is u;l.

Let ﬁ1 denote the input to P;. Since P;U and H
are invertible, then from Fig. 1

1~1,j = UH(PiUH)_IP,‘Ui
= UP,U) 'Piy;

= icolumnof U(PiU)_IP,'U = u;. O(8)

A natural consequence from Lemma 3.1-3.2 is to
split W in Fig. 1 into

W = [u;..u,]H = UH, 9)

where
(10)

as shown in Fig. 2. A natural design process will
then run as follows: First design the square con-
troller H, and then design a controller G that solves
Problem 2.1.

U= [lll...lln],

Remark 3.1 Note that a solution is not guaran-
teed because even if the plant and U are minimum
phase, W = UH might change its high-frequency
gain sign, as in the following example. The two
122 plant has two cases, Py = [l — 2]/s and
P, = [1 1]/s, and the optimal control effort for
both plants is U = [1 1], which gives P1U = —1/s
and P2 U = 1/s. Clearly an LTI controller cannot
even stabilize these two plants simultaneously.

A design method for the controller G to satisfy
the closed-loop specs given in Problem 2.1 which
is based on the sequential QFT concept is now de-
veloped. Recall that the QFT design technique for
nzn MIMO system turns the design process into
an n step sequence of n SISO problems with the
same uncertain plant and controller for each step.
The solution of the ith set of n SISO problem-
s is the controller g;, giving a combined solution

1The plant input for a given plant output is not unique
because the plant has more inputs than outputs
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G = diag(g;). Solving these SISO problems is a
routine task in QFT. The main task during the de-
sign of each SISO problem is to find Bounds on
an open-loop transfer function. Each Bound is a
closed curve on the complex plane, dividing it into
two regions. One of these is called o(w), so that if
the open loop transfer function is shaped such that
at each frequency w it belongs to o(w) and satisfies
the Nyquist stability criterion, the synthesis proce-
dure must succeed. If several specs are imposed,
the Bound used is the Bound of all intersections of
the regions o(w) for all specs. In order to estab-
lish an algorithm to find Bounds on the open loop
of each design step that force the control efforts to
satisfy the specs of Problem 2.1, the following e-
quations are provided. Substituting equation 1 in
equation b gives
u—uw = [I + WGP,‘]“IWGP;U,‘ -y
= —-I+WGP,] 'u. (11)

Using the notations

Gk = diag(O,...,O,gk,O,...,O),
Ciwi = I+ W[G — Gk]Pi,
wi = (Wik, Wok, ..., Wme) and
p. = thekrowof P;, (12)
then (the proof is in the Appendix)
C—~1 ic—.l
[T+ WGP~ = i} - Sk TP (1)
1+ 9:P; Cri Wi
Substituting equation 13 in equation 11 gives
CilwipiCrt
W —u = —Cilu + 9r ki TR Vi u;  (14)

14 gepi C ' wi
and the specs 2 will be
9k Cl:ilwicpgccl:il

Clu; — -
ICeus 1+ gxpi Cyllwy

w|<a;i=1,.,n.

(15)

Remark 3.2 The solution of inequality 15 is a
domain or(w) in the compler plane such that if
gr(w) € op(w) then inequality 15 is valid. For a
given k it includes mx*n inequalities, i.e, i =1,...,n
and m is the length of the vector a;.

The proposed sequential process to find oy (w) will
then be as follows: In the first step, £ = 1, solve
inequality 15 for each one of the plants P; when the
unknown g;, i = 2,..,n, are assumed to be infinity.
The intersection of all these solutions is o1 (w). Now




shape g, to satisfy the Bounds of oi(w). In the
kth step, solve inequality 15 for each one of the
plants P; where g; for i = 1, ..,k — 1 are known and
the unknown g;, i = k + 1, .., n, are assumed to be
" infinity. The intersection of all these solutions is
ox(w). Finally, shape g to satisfy the Bounds of
Tk (w)

There are computing difficulties in calculating
C,;-l because some of its elements are co and/or
~ 0. The following is a simple formula to calcu-
late it when some of the g;’s are 0 and/or co. Let
G“ = diag(gx) be a diagonal controller whose di-
agonal elements o = «j, ..., oq are zero, G;! a di-
agonal matrix whose diagonal elements o are 1 and
the elements «;, @ > [ are 1/g,, (for g,, = oo it is
0), P, the same as P except that the « rows are
zero, and W, the same as W except that the «
columns are zero. Then (for proof see Appendix)

I+ WGP]™! =1- W,[P, W, +G]'|'P,.
(16)
Successful application of the proposed design al-
gorithm depends on two points: (i) Does there exist
a controller G that stabilizes the uncertain plant
PW and satisfies the Bounds as calculated in each
design step? A solution for this problem for a large
class of plants has been given by Yaniv (1991) and
by Perez et al. (1993); and (ii) Is o1 (w) a Legiti-
mate Bound (see definition 3.1) for all £ and w?

Definition 3.1 We shall say that o (w) is a Legit-
imate Bound tif there ezists a positive scalar ci(w)
such that g € op(w) if |gr(w)| > cx(w).

Design to QFT specs must have Legitimate Bounds
in low frequencies because the low-frequency specs
force large control efforts. This is true also for the
specs 2, where the lower permitted deviation of the
plant input from the optimal input forces larger
control efforts. To see this, substitute equation 16
into equation 11 to get

lim Wy — U = [I — W[PW]_IP]uk

gi—oo,i=1,..,n

= u; — U[PU]"'Pu; = 0(17)

The next Lemma proves that Bounds calculated by
the proposed algorithm to satisfy the specs 2 are
Legitimate Bounds.

Lemma 3.3 The Bounds o (w) as calculated from
inequalities 15 are Legitimate Bounds.

Proof: By induction. For k = 1, ¢4, ..., 9, are as-
sumed to be oo in the definition of Cj;, and so,
from equation 17, o1{(w) is a Legitimate Bound. If

80

or{w) 1s a Legitimate Bound then inequalities 15
are valid if in the definition of Cy;, ¢, = oo for
m = k+ 1,..,n. Hence there exists cxqq(w) such
that if |gr41(w)|] > cr41(w), inequalities 15 are
valid.

4 Example

In Fig. 1 the uncertain plant family is

k11
ka1

k12
kay

1.5(s + a)

2.5(s +a) ] - (18)

1
P=——
s(s+2) [
where k17 € [1.5,2.5], k12 € [3.5,4.5],
ko € [4.5,5.5], kg € [2.0,3.0] and a € [0.5, 1.5].
Let

20 40 15(s+1)

Pr= 50 25 25(s+1)

-l |

for which the two optimal inputs that cancel the
disturbances

1 —
R e B I
oo sl @
are
1 0.15 0.5
u1:s+3 0(.)3 and u2:s__‘;—i 82
(21)

The closed-loop specs 2 are the same for all chan-
nels, that is, the plant input vector w; for distur-
bance d; and plant input vector u, for disturbance
d, should satisfy

[ (iw) — w;(iw)| < ay, (22)
where the vector a; has the same entry in each of
its element for a given w. These are 0.01, 0.02, 0.05,
0.1, 0.2, 0.4 and 0.5 for the frequencies 1, 2, 5, 10,

15, 20 and 30 respectively. From equation 6, using
H=1,

. [015 05
W= ——1| 03 02 (23)
s+ 0 06

4.1 Design

Fig. 3 shows the Bounds which solve inequality 15
for £ = 1, assuming g2 = oo, and which intersect




with the usual QFT Bounds that guarantee stabil-
ity for all plant uncertainty with margin condition
(Yaniv 1992):

1+ L;| > —4db; (24)

Fig. 3 also presents the open loop for the nominal
plant derived from the chosen nominal P;W. The
controller g, is

3414 5/0.4)(1 4 5/3.2)(1 4+ 5/10.5)
M= T+ 5/25)(1 + 5/70)(1 + 5/70 + 52/702)°
(25)
Fig. 4 shows the Bounds which solve inequalities 15
for k = 2 for g, (now g; is known, as given in equa-
tion 25) and which intersect with the usual QFT
Bounds that guarantee stability for all plant uncer-
tainty with the condition 24. Fig. 4 also presents
the open loop for the nominal plant derived from
the chosen nominal Py W. The controller g, is

~113(1 4+ 5/2.2)(1 + 5/20)(1 + 5/16.5)
92 = W+ s/5)(1 +5/10)(1 + 5/83 + 52/83%)
(26)
Fig. 5 presents the Bode plot of 5 elements of the
nondiagonal controller WG.
(the element 31 is 0).

4.2 Simulations

Simulations that validate Performance 22 are pre-
sented in Fig. 6. The * mark is the maximum al-
lowed value for all 6 plant elements. Clearly these
are all below the * sign in each frequency. In Fig. 4
the open loop touches the Bounds at w = 5,10,
so that no overdesign should be expected. This is
shown in the simulation in Fig. 6, where the * sign
touches the highest plant input. This fact guides
the designer in eliminating overdesign, i.e., by shap-
ing the controller to be as close as possible to the
Bounds. Simulations that validate Performance 24
are presented in Fig. 7.

Time domain simulations that represent the out-
put and the control efforts of the plant P, for plant
output disturbances d; and dj are given in Fig. 8
and Fig. 9. The optimal control efforts shown by
the dot lines. Fig. 10 and Fig. 11 show the output
and the control efforts of the plant P; for plant
output disturbances d; and dj for 33 cases of the
plant uncertainty, dot lines coresponded to nominal
plant P;.
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5 Conclusions

This paper extends the QFT design technique for
MIMO nzn systems to nzm systems (n < m) with
output feedback, to have either (i) control efforts
for n pairs of plants and disturbance commands to
lie in a preferred set, or (ii) control efforts for one
plant and n disturbance commands to he in a pre-
ferred set. It was shown that the controller must
have a special structure of the form WG, where
W is a function of the optimal control efforts and
G is a square nzn controller. The algorithm pre-
sented here, to calculate the QFT Bounds to satisfy
the control effort tolerances in each step of the se-
quential design process, must succeed in the sense
that it result in Legitimate Bounds. An example of
a highly uncertain 223 plant which emphasized the
efficiency of the technique in leading the designer to
solutions with almost no overdesign was presented.

Appendix

The proof of equation (13) is a trivial consequence
of Kailath (1980, p. 655), applied on the right side
of

[I+WGP|"! = [I+W(G-G,)P+WG:P|!
= [C+gkukv]_l (27)

where u = w; and v/ is the kth column of P.
Proof of equation (16): Since rows and columns o
of G* are zero and G* diagonal

I+WGP=1+W,G°P,=1+W,G,P,,
(28)
where G is the same as G, except for the diagonal

zero elements, which are replaced by 1. Now use
Kailath (1980, p. 656) and substitute G;! = G 1.
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Figure 1: A MIMO one DOF feedback structure
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Figure 2: The modified feedback structure
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