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Abstract. In this paper we present a unified
convergence theory for estimating temporally dis-
continuous parameters in a general class of linear
parabolic systems. We apply this theory to es-
timate parameters in the Euler-Bernoulli beam
equation.

1. Introduction. Inverse or parameter
identification problems arise in several con-
texts, including bioremediation of contami-
nated groundwater [13], in population biol-
ogy problems [3], and in physical models for
flexible sturctures [4, 5, 8, 9]. The inverse
problems then consist of estimating these pa-
rameters, using data obtained from exper-
imental observations. The goal of this pa-
per is to present a general convergence and
stability theory for approximation methods
for the treatment of temporally discontinu-
ous parameter identification problems involv-
ing distributed parameter systems.

General theory for parameter estimation in
an abstract setting can be found in [7]. In
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that work (and its many references) one finds
that key components in inverse problem anal-
yses are continuity of the system state with
respect to the parameter, compactness of pa-
rameter spaces, and convergence of numeri-
cal approximations that is uniform with re-
spect to the parameters and consistent with
the topology of the observation space. For
general autonomous linear parabolic prob-
lems, the paper [6] contains the relevant anal-
ysis. The sesquilinear form approach con-
tained therein provides a unified way to han-
dle a wide variety of problems, with condi-
tions that can be verified in a straightforward
manner. In the paper [1] results which ex-
tend the framework of [6] to nonautonomous
parabolic problems were established in or-
der to allow general coverage of many prob-
lems, together with verifiable conditions on-
the sesqulinear form that determines the dy-
namics. In this paper we weaken one of the
conditions imposed on the sesquilinear form
in order to extend the results in 1] to allow
the estimation of temporally discontiuous pa-
rameters.

Estimation of discontinuous parameters is
crucial in certain applications. For example,
the reproduction function of an individual in
a population model depends is usually rep-
resented in terms of a discontinuous function
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of the form

yB <y<ya

_ 0
"(”y)’{ B(t,y) va<y

where yg is the birth size or age and y, is the
adult size or age (see for example, [12]). The
stiffness of a beam in a flexible structure may
decrease over a long period of time and could
form a discontinuity at a certain time, due
to aging. Fluctuations in water tables due to
precipitation cause changes in groundwater
velocity fields which in some cases must be
determined from tracer movements. To ana-
lyze these situations, it is essential to gener-
alize the existing theory to include time de-
pendent parameter problems.

QOur theory is based on the weak version
of the system in terms of sesquilinear forms
used in [6] and [1]. The theory depends on
the following properties of the time and pa-
rameter (g € Q) dependent sesquilinear form
o(t,q)(-,-) describing the system: continu-
ity with respect to the parameter, uniform
boundedness (both in time and the parame-
ter), and uniform coercivity in time and the
parameter.

The paper is organized as follows. In Sec-
tion 2, we present a theoretical framework for
the approximation and applications of this
theory to the Euler-Bernoulli beam equation
is discussed in Section 3.

2. Approximation theory for identifica-
tion problems. Let H be a Hilbert space
with inner product (-,-) and corresponding
norm | -|. Let V be a Hilbert space that
is densely and continuously imbedded in H,
with norm | - || and imbedding constant K :
for each ¢ € V, we have |¢| < K||¢||. We use
these spaces to form a Gelfand triple struc-
ture V — H = H* — V*. We consider the
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following abstract differential equation on H

u(t,q) = A(t,q)u(t,q9) + f(t,z,9)
(2.1)

u(0, q) = uo(q)

with parameter ¢ belonging to the set

BV, = {f € L'([0,T],Q):
f € BV([0,T],Q)n L>([0,T],Q),
I fll Lo (o,11,0) £ M1 and TV(f) < Mz}

Where
M
TV(f) = SUPE | f(tiv1) — f(t)ll@
=1

the supremum taken over all finite parti-
tions 0 < ¢ < -+ < ty < T, with @
being compactly embedded in the normed
linear space Cj . It is well known that
BV ([0,T],Q) is compactly embedded in the
space L'([0,7),Q) (see, [10]) hence since
BV, is a closed subset of BV([0,T],Q) then
it is compact in L1([0,T),Q). The operator
A is assumed to be determined by a time and
parameter dependent sesquilinear form on V;
ie, o(-,)(,): [0,0) x @ xV XV = C,
where o(t,q)(-,-) is sesquilinear for each ¢ €
[0,00) and ¢ € Q. Concerning o, we make
the following assumptions

(£0) The function o(-,q)(¢,¥) is measur-
able on [0,00), for fixed ¢,% € V and ¢ €
BV.

(1)

There exists Ko > 0 3 |o(t,q)(9,¥)| £
Koll#ll - |91l Vo, ¥ € V, q € BV uniformly
in t on each interval [0, T].

(£2) There exists ¢g > 0, Ao € R 3

a(t,q)($, 9) + Xold|* > coll¢l?, Vo €V, g €
BV, uniformly in ¢ on each interval [0, T}.




(£3) For q,§ € BV, ae. t > 0 and all
¢, € V, we have that

IO’(t, Q)(¢, 1/)) - G'(t, é)((ﬁ’ l/))l
< llg(®) = g(dlizllel - .

Under these assumptions there exists a
family of uniquely determined linear oper-
ators A(t,q) : dom(A(t,q)) — H, with
dense domains, satisfying o(t,q){(o,¥) =
(-A(t,9), ), V¢ € dom A(t,q), v € V.

Our main goal in this paper is a conver-
gence theory for least squares based param-
eter estimation. Toward that end, we next
consider an approximation method based on
a sequence of Hilbert spaces HY, N =
1,2,..., with orthogonal projections PV :
H — HY. The following assumption about
these approximations will be needed for our
convergence results.

(A1) The subspaces HV are subsets of
V, and Vv € V, we have that ||PNv—1v| — 0.

This assumption is satisfied by many finite el-
ement and spectral schemes (see 7, 11, 14]).
The Galerkin approach to approximation in-
volves restricting o(t,q) to HY x HV, yield-
ing bounded linear operators A™N(t,q) satis-

fying
a(t,q)(¢", ") = —(AN(t,q)p", ¥™).

Using the above assumptions the following
theorem has been proved in [2].

Theorem 2.3.  Suppose that (X0) -
(£3), and (A1) hold, and that ¢V —
¢ in LY([0,7],Q). Then we have that
ulV(t,q") — u(t,q),in H, uniformly on [0,T].

We have thus obtained, based on the as-
sumptions given above, that u™(t;¢V) —
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u(t;q) in H, when ¢V — ¢ in L([0,T7],Q).
To put this result into the context of least
squares estimation, we consider a continuous
map C: H — Z, where Z is a normed linear
space. Given z € Z, one determines an ap-
propriate parameter value for the system by
minimizing

J(¢) = ICu(q) - 2|

The continuous dependence results above in-
dicate that a minimizer exists within the
compact set BV,.

In order to compute minimizers, we must
make some approximations. Approximation
u™N of the state variable u, as discussed above,
lead to a cost functional

IV(q) = ICu™(q) - 21I%

to be minimized. The convergence results
of the previous sections guarantee that if
¢V — ¢ then JN(¢V) — J(g), which will
give us (as in [7]) subsequential convergence
of minimizers.

Below we discuss an example, illustrating
the application of this general theory.

3. Euler-Bernoulli beam equation with
Kelvin-Voigt damping
The following example indicates the straight-
forward manner in which the assumptions
above may be verified.

We consider the following equation:

Y + (EIyz:J: + CDIyrzt)x:c = f(ta .’L‘)
(3.4)
¥(2,0) = y.(¢,0) =0

EIyza: + cDIy:czt(t7l) = 07
(Elyzz(t’ l) + CDIyz.rt(t, l))z: =0

y(O,z) = yﬂ(z)a yt(o’z) = yl(z)




This equation describes the transverse vi-
brations of a cantilevered Euler-Bernoulli

beam with Kelvin-Voigt internal damping.
The state variable u(t, z) is the displacement
along the beam at time t at position z. The
parameter EI(t,z) is the stiffness coefficient,
and cpI(t, z)is the Kelvin-Voigt damping co-
efficient which reflects the assumption that
the bending moment depends not only on
the strain, but also on the strain rate as
well. The function f represents external dis-
tributed forces applied to the beam. For fur-
ther details on this model, see [5].

The equation above may be written as
a first-order system in the usual way: De-

fine w(t,2) = [y(t,2), (2, ) and F =
[0, f(t,2)]7. Then denoting 325 by D?, we
see that (3.4) is equivalent to

wy = A(t, Q)w(t, z) + F(t,z), (3.5)

where (formally)

A= 0 I
~ | -D*EID?) D*cplID?)
with the initial condition w(0) = wo =
(30, 11)-

To write equation (3.5) in a weak formula-
tion, we define the following spaces

HE(0,1) = {u € H*(0,1)|u(0) = u(0) = 0}
H = H}(0,1) x L*(0,1)
V = H}(0,1) x H}(0,1).

The inner product on the L%(0,1) will be
denoted by (-,-) and for the space HZ(0,!)

we use the inner product

<(¢? "p)) = (¢z1‘9 w:m:)

and the associated norm ||| - ||| (which is
equivalent to the usual H7(0,!) norm by
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Poincare’s inequality). Finally, the inner
products for the spaces H, V will be taken
to be the usual product space inner prod-
ucts, and will be denoted as in the abstract
formulation (-,-) and |- |, and (-,-)v and || - ||
respectively. Then as in [6] the weak form
of the beam can be written in terms of the
following sesquilinear form: with w = (u,v)
and X = (¢, ¥) elements of V, define

U(t, q)(w7 X)= "((vs ¢)) + 01 (t’ q)(ua w)
+0‘2(‘v, 'p)

Where

al(t’ Q)(u’ ¢) = (Elu:rz’ "/):u'),
02(ts q)(v’ 11’) = (CDIU_-,;_-,;, '/)zz)-

Then with w = (y,9), the weak form of
equation (3.4) can be written

(i(t), X) + o(t, g)(w(t), X) = (F(1), X),

forX eV

In terms of the abstract formulation de-
veloped in the previous section we will set

g = (El,epl), @ =(0,1),
Q = L=(Q) x L=(Q)
and,

Q

{(EI,cpl) € (C*H(Q))?:

co L EI<q,
c2<cpl<ecs

|EI|goa < cq, lepI|con < s
¢o, €1, ¢2 and c3 > 0}

Here the space C%!(Q) is the space of Lips-
chitz continuous functions with norm

f(z) = f(y)
T—-y |

sup
z,y€Q T#y

Ifllger = sup |f(z)l+



Using same arguments as in former example
one can establish the compactness of the set
Q in Q . Standard arguments and the fact
that EI(t,z) > ¢co and cpl(t,z) 2 c; eas-
ily verify the assumptions (£0) — (X2). For
verification of (X3) we let w = (u,v),& =
(¢,%) € V, and suppose that ¢ — ¢ in
LY([0,T),Q). Then we have that

lo(t, g)(w, X) = o(t,¢")(w, X)|
< Ial(tﬂ q)(u, ¢) - o1(2, qN)(u, d’)'
+|o2(2, ¢)(v, %) — a1 (4, qN)(vv ¥)|

<NEI) - E1¥ Ol ([ 1neelde)

([1outi)

lent(®) - coT®)lo ' :vnﬁdz)%

z !
( i |¢,,|2dz)
0
< Il - a0)lzllwliix]

We will point out that the above choice of
Q and @ is not an optimal one in the sense
that if one considers § = L'(0,1) and Q =
{f € LY0,)): |fliLo(ony < C1and TV(f) <
C1} and a modification of (£3) then it can be
shown that a covergence proof holds for pa-
rameters that are discontinuous both in time
and space (see [2]).

To ‘illustrate the computational methods
analyzed herein, we estimated the stiffness
parameter EI as a function of time from
computationally generated data. Our FOR-
TRAN program uses cubic B-splines to ap-
proximate the solution of the Euler Bernoulli
differential equation, and we used piewise
constant functions to estimate the parame-
ter. In the computations given below, we
use a beam of length 1, with p = 1,7 =
.01,¢epl = .01. We used 15 cubic B-splines for
the computations. For the generated data,
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we used for EI the function

12 ¢<0.35
EI@) ‘{ 10 ¢>0.35

which is constant with respect to the spatial
variable. The initial displacement and veloc-
ity are taken to be 0, and the forcing function
is given by

) 1
f(t,z) = 100sin(57¢) * mX[.495,.505](3),

which approximates a é function in the spa-
tial variable.

For data, we sampled the displacement
u(t;,z = 1) at 200 uniformly spaced time
points t; in the time interval [0, 1], as gen-
erated with the above model. In order to
examine the behavior of the least squares
identification procedure, we used as data the
actual model generated signal, as well as
the signal modified by Gaussian noise: z; =
u(t;, 1) * (1 +¢;), was used for data, with ¢; a
random sample from a zero mean Gaussian
random number generator. We used o = .01
and o = .1 for standard deviations for the
noise.

Our identification algorithm was given the
known values of p,v,cpl and f, and was
used to estimate EI(t) using using 10 piece-
wise constants functions. In order to imple-
ment the above mentioned compactness con-

- straints, we used a penalized (or regularized)

least squares cost of the form

200
J(ED) =Y |2 - u(t;, ;; ED)|?

i=1

+ﬂ/01\/|1~f[(t)l2+a dt

with a small positive constant and two dif-
ferent choices of 3, depending on the noise
level. Note that the integral term is (at least
for smooth EI) a differentiable approxima-
tion to the total variation of E'1.




In Figure 1, we see the results of minimiz-
ing Jg with 10 (dotted-line) piecewise con-
stant functions. The true EI function is the

solid line. We used the constant function
EI = 12 as our initial guess in the optimiza-
tion, which was carried out using the package
1mdif1 from netlib. The regularization pa-
rameter 3 used was 104 and a = 1075.

12.5 T v T v ¥ T v T

1.5¢

10.5F

05 08 C¢7 08
Time

[ 0t 02 04 09 1

Figl. EI estimates using 10 step fuctions, no
noise in the data.

Figure two represents the same procedure
as Figure 1 when the data was corrupted by
the above described noise. The solid line is
again the true EI; the dashed line is the es-
timate with ¢ = .01; and the dot-dash line,
o = .05. The regularization parameter val-
ues used for the two estimation runs were
a = 10758 =10"* and 8 = 1073, respec-
tively.
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Fig 2. EI estimates using 10 step functions
with two levels of noise using standard deviation

o =0.01,0.05
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