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Abstract

In this paper, we investigate the possi-
bility of formulating ouput feedback, LEQG
control problems as pure ML (maximum
likelihood) estimation problems. This for-
mulation allows us to apply powerful recur-
sive estimation algorithms for constructing
optimal controllers. This formulation can be
used to study a number of related problems
such as decentralized control (not considered
here) from a new perspective.

1 Introduction

Consider the discrete linear stochastic system

z(k+ 1) = Agz(k) + Bru(k) + v(k) + Mev(k),
k=0,1,.,N—1,
(1.1)
y(k) = Cra(k) + Nev(k), k=0,1,...,N -2,
(1.2)

where z(0) is a Gaussian random vector with mean
zo and variance Py, v(k) is a known input sequence
and v(k) is a white unit variance zero-mean Gaussian
sequence.

We are looking for the controller obtained from

i T
u(k‘)‘éli-l‘(Q/H)E{exp(—mgw(k) w(k))(}m)
where

w(k) = Frz(k) + Gyu(k) — z(k), k=0,..,N-1
(1.4)

w(N) = Hz(N) — 2(N), (1.5)

where z(k) is a known sequence (e.g. a trajectory to
be followed).
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When 6 > 0, we have a risk seeking problem [1],
# < 0 corresponds to the risk averse situation and
thus the H,, problem. In this paper, we consider
only the risk seeking case.

2 Formulation as an estimation
problem

Let us start with the following result which is the
basis of what follows.

Lemma 2.1 Let 8 > 0 and consider the problem
min —(2/6) E{exp(~0/2(w(k)"w(k))) |y}
where

w = Fr+Gu—z (2.1)
y = Czx+ Du+ N, (2.2)

where v is a unit-variance zero-mean Gaussian vec-
tor. The optimizing u equals the ML estimate of u
based on the following observations:

z = Fz+Gu+whl/? (2.3)
y = Cz+Du+ Nv, (2.4)

where w is now to be interpreted as a unit-variance
zero-mean Gaussian vector.

Let us now go back to the control problem by con-
sidering that we are at the stage N — 1, i.e., we have
already applied u(0) through u(N —2), and we have
just observed y(N —2). Then, thanks to Lemma 2.1,
to compute u(N — 1) we need to solve the xo-graph
estimation problem (see [2] for details on xo-graph
estimation problem) depicted in Figure 1:
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Figure 1: xo-graph for computing u(N — 1)

where
_ [ =(k)
Xe = ( u(k) ) ’
X'k = :E(k),
Oux : v(k) = —z(k+1)+Axz(k)+ Bru(k)+ My v(k),

Od,k : I/(k)—Bku(k) = —x(k—i-l)—l—Akx(k)-}-MkU(k),

O; : zo = z(0) + Don(0),

where 7(0) is a a unit variance zero-mean Gaussian
vector and Do DT = P,.
Oo,k : y(k) = Ckl’(k) + Nkv(k),
Oo : 0= —y(k) + Cra(k) + Niv(k),
Ocy : z(k) = Frz(k) + Gru(k) + 61/ 2w(k)
Ocn : z(N) = Hz(N) + 6" %w(N),

where w(k) is to be interpreted as a unit variance
zero-mean Gaussian vector sequence independent of
o(j).

The xo-graph representation of ML estimation
problems is a convenient way of representing the ob-
servation equations (the O’s) and the unknowns (the
X’s). Everything on the left side of the O’s are sup-
posed known, on the right we have the unknowns.

Operations that we use on observations are A
which is the combination (addition) and = the ex-
traction. Combination means simply putting to-
gether two observation, and extraction of an un-
known from an observation correspond to eliminating
all the other unknowns and constructing an observa-
tion of smallest size that include only the unknow of
interest. If the unknown in question is estimable, ex-
traction corresponds (or is equivalent) to construct-
ing the estimate and the estimation error. For details
see [2].

- OgN-2 — XN-1 — Ogn-1 — Xn

3

OC,N—I

It is easy to see that Oo,k can be dropped com-
pletely as far as estimating £ and u is concerned be-
cause y(k) which is considered to be unknown ap-
pears only there.

The control u(N — 1) is thus nothing but the
smoothed estimate of u(N — 1) which can be ob-
tained as the combination of a forward “Kalman fil-
ter” in which in addition to the usual observations
we have the cost function interpreted as observations
and a backward filter based solely on “cost observa-
tions”. This amounts to reducing the xo-graph into
that of Figure 2 where Oy y_1 represents the con-
tribution of all the past observations on Xy_; and
Op,n—1 those of the future.

OfN-1 - XN-1-OpnN-1

Figure 2: Reduced graph !

2.1 Forward filter

The forward filter is actually just a standard Kalman L

filter in which z’s are considered as measurements in

addition to y’s.
In the xo-language, L

v

Of k41 = Eak4+1)(O56 AOok AOc i AOgpi)

where

A

0y = O;.

This yields the following filter (we have dropped the
subscripts k for the sake of simplifying the expression

only):




APAT + MM’ AP.CT + MNT AP FT -] —Bu(k) + v(k)~ A
2k+)=(0 0 0 1) MTN +CP.AT  CP.CT + NNT  CP.FT 0 y(k) — C2(k)
- FP. AT FP.CTFP.FT + 61 0 —Gu(k) + z(k) - F
-1 0 0 0 0

with

:i?(O) =29

and Py, which in some sense can be interpreted as error covariance associated with the filter obtained by

the following recursion:

AP AT + MM’
MTN + CP.AT
FP AT
-1

Peyr=—(0 0 0 1)

At N — 1, the contribution of the past can be
suminerized as follows:

Ofn-1: 2(N—-1)=2z(N ~1)+ Dn_1np(N — 1)
where n(N —1) is unit covariance and Dy~ D% _, =
Py_;.

2.2 Computation of u(N — 1)

The control u(N — 1) can now be computed from
ObN-1 = Eg(N-1),u(N-1)(Oc,N-1,0a N1 A Oc.N),

Oy ,n-1 and O, n_1 as follows. Let

u(N=1)(Ob N1 AOf N_1 AOc n_1)
N—-1)=u(N-1)+ Kn_1p(N - 1)

then u(N — 1) = 4(N — 1) is the optimal control.

& [1]

2.3 How to compute other u’s

The key result is the following

Lemma 2.2 Consider the ML estimation problem
y— Kzi = Lay+ Mv

where v is unit-variance zero-mean Gaussian and y
and x, are known, and suppose the solution is

Tzy = Z(y — Kz4).

Now consider the ML estimation problem for z, in
the following two cases:

Qky1 + MMT
0
AT
BT

Ek)y=(0 0 I 0

-1

AP.CT + MNT AP FT _J 0
CP.CT + NNT CP.FT 0
FP.CTFP.FT 1+ 91 0 0 0
0 0 0 1
o (Case 1
y=Kzi+ Lzyg + Mv
e Case 2
y=Kz1+ Lzy+ Mv
and

Zy=ZKzy + Tz,.
Then the ML estimates coincide in the two cases.

In principle, to compute u(N — 2) we have to
take into account the strategy used at N — I, how-
ever, thanks to Lemma 2.2, we do not have to. In a
sense this result says that at any time k, compute all
future controls u(j), j = k, ..., N—1, (based solely on
information up to & — 1) and use only u(k). In prac-
tice of course we do not actually compute all future
u’s; we can obtain directly u(k) by constructing the
proper backward filter for solving the xo-estimation
problem illustrated in Figure 3.

To construct the solution, we can use the back-
ward filter

Obk = Xo(k)u(k)(Obk+1 A Ock AOgk).

with Op ny-1 as previously defined.
This yields the following backward filter:

-1

0 A B E(k+ 1) + v (k)
91 F G z(k)
FT 0 0 0
GT 0 0 0
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with Qg satisfying

Qry1+ MMT ¢

Qe=~=(0 0 I 0

Finally, u(k) can be computed as “ollows. Let

dAN

A B 0
0 8 F G 0
AT FT 0 0 I
BT GT 0 o 0

then u(k) = i(k) is the optimal control.

Eu(k)(Of,k A Oc,k A Ob,k) : ﬁ(k) = u(k) + Kk[l(k) So,
Pi 0 0 I o\! &(k)
0 Qxy1+MMT 0 A B E(k +1) + v(k)
uk)=(0 0 0 1 0)] o0 0 9 F G 2(k)
I AT FT 0 0 0
0 BT GT 0 o0 0
00,0 Oa,k—l
O __ X .. __ Odj—2— Xy_1— Oup—1 —_ Xp __ — Xv-t — Ogn-1 . X
O Oc k-1 Oc.x Oc N-a Oc.N

Figure 3: xo-graph for computing u(k)

3 Conclusion

Preliminary results presented in this paper are a first
step towards a complete formulation of LEQG prob-
lems in terms of estimation problems and the use
of powerful recursive estimation algorithms for con-
structing their solutions.
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