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I-INTRODUCTION

I-1 - Performances improvement of mechanical systems
hits a breakpoint where internal material structure
cannot be neglected, due to excitation of deformation
modes impairing their behavior[l]. ”Simple” passive
approach is first proposed by upgrading material qua-
lities[2], but this way is expensive and not always ad-
apted[3]. Next methods of control are ”active”’[4], and
use adequate power dumping into the system. They
correspondingly require accurate enough models for
faithful representation[5,6].

Interactions of both rigid body and deformations dy-
namics result in intriquate highly nonlinear system of
ODE and PDE[7-12]. Usual attempts to simplify total
system reduce PDE’s to ODE’s by projection methods
to select a finite number of modes[13-16]. But a diffi-
culty remains in adequate observation of these modes
for reinjection into system feedback loops.

I-2 - Moreover the system exhibits specific structure
of ”complex system”[17] with torques applied to ge-
neralized (rigid) variables, ie there is no direct action
on deformation modes. So a mismatch between in-
ternal natural power cascade and outer power cascade
imposed by added feedback loops is always possible,
see Fig.1, especially when they are of similar ampli-
tude. Arrow 1 is the source effect from rigid onto de-

formation modes, and arrow 2 is the drift effect from.

feedback interaction of deformation modes onto rigid
dynamics. It is important for avoiding spillover effects
to account for both, as all power inside the system
circulates along this exchange structure.

A possible way is to project complete system dyna-
mics onto rigid dynamics driving system behavior[18],
which gives a modified rigid ”core dynamics” explicite

ly analyzed for rigid displacement dynamics characte-
ristic time 7, and deformation dynamics characteristic
time 74 such that 15 ~ €7, and deformation amphi-
tudes small compared to displacement amplitudes ie
AP ~ 5|OP| for any point P of the body by asympto-
tic expansion in €[19,20].

I-3 - This leads to "functional” control, recognizing
that, under deformation effects, exact trajectory know
ledge is no longer necessary as long as trajectories be-
come more and more complicated, and global structure
parameters are needed. So rather than precise actual
trajectory, the natural setting is a class of trajectories
belonging to a well defined function space (hence the
name), and control now expresses this belonging by a
fixed point property in this space.

The simple, robust and very global ”functional” con-
trol is not as directive as usual PD tracking control,
because acting only on rigid variables, and provides
asymptotic, but not always exponential, stability. It
is however interesting to look for this global control.
General results[21] will be illustrated here by appli-
cation on the simple example of a one-link mechani-
cal system with flexion and torsion deformations, the
equations of which are given in next paragraph within
Euler-Bernouilli approximation. Comparison will be
next made between classical control approach develo-
ped in third paragraph and present functional control
discussed in the fourth paragraph.

II-DYNAMICAL EQUATIONS OF
ONE-LINK DEFORMABLE SYSTEM

Dynamical equations follow from application of ele-
mentary Newton’s law, but Lagrange formalism[22-24]
simply gives complete equations of one-link deforma-
ble mechanical system in the following form
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with 8, 0,,, u(t,z), ¥(¢, ) respectively the articular
and actuator variables, and the deformation, flexion
and torsion, variables, (I7,l;) the coordinates of the
tip mass m with respect to the end of the link, see
Fig.2, and the various other coefficients characterizing
the beam as usual within Euler-Bernouilli approxima-
ticn[25]. Note immediatlythat on actuator eqn(7), are
acting both applied input torque r and bending mo-
ment M, = EI(d?u(t,0)/8z%), which is the only term
through which deformations are seen by rigid part of
the system.

Boundary Conditions are given by eqns(3,4,5) which
are simply expressing the equality between generalized
force vector F = col{—EI(8%u(t, z)/8z?),(8/dz(EI
(0%u(t, 2)/02?), ~GI(d7(t, z)/dx) to inertial force
produced by the motion of mass m in absolute frame
R (o) derived from kinetic potential
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III-CLASSICAL CONTROL OF COM-
PLIANT DEFORMABLE ONE-LINK
SYSTEM

II-1 - It 1s first convenient to restate eqns(1,2,3,4,5)
in functional evolution equation in normalized form.
Consider Hilbert space H = £3(0,1) x £2(0,1) x R3
with inner product

[(Ul, uz,Us,U4,Us)T,(vl,Uz,va,vas)]H =

1 5 0
/0 [ui(z)v1(2) + uz(z)va(z)]dz + Z u;jvj (10)

j=3
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Define u)(t,z) = u(t,z), us(t,z) = (¢, z), uz(t) =
u(t, 1), uq(t) = du(t, L)/dz,us(t) = ¥(t,1) and sub-
space V C 'H by

V = {u = col(uy, u, u3, us, us)| u1(.) € H2(0, 1),
Uz(.) S Hl(O’, 1), ‘U3(t) = u(t, 1), U4(t) =
du(t, z)

Tlx:ly us(t) = v(1,1), u1(¢,0) =0, (11)
8%y (t dult,
uz(t 0) =0,w 2 ual(2 -’II) xy u(gz:l:)lzzo -0

with H,,(0,1) the Sobolev space of order m[26] and
w? = EI/pAL*, w? = GJ/pK?®L? the two natural fle-
xion and torsion system frequencies. In V inner pro-
duct is

e uly = /01 {w? [6212352,1‘)] [azv(«;itz’z)] +

o2 [6u26(:tc,:c)] [802(t :1:)] }d +Zu,v, (12)

Define operator II by

Mu =col(uy, ua, u(uz + Aypuq + Arus),
;t/\f(U3+/\fU4+)\¢U5)+JJU4, (13)
,u)\t(u;; + AIU4 + Ajus

of the form II = diag(1, 1, M) with symmetric positive
definite

I BAg BA
M= |prs Js +u/\'2, HAf A (14)
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with g = m/Mo, Ay = l;/L, A = Iy/L, and My the
mass of the link.

111I-2 - Because II is positive definite, one can construct '
from H another Hilbert space H* with inner product

ool =l ol = [ fua(e)un()+
° . (15)
us(z)vz(z) + ZujMvj

j=3
and same topology (any ball of each space can be em-
bedded into balls of the other one).

Now define the operator K and its domain by
a? ,8% 0 u(t, z)
Ku= dzag(a 2wf e 21, —w? 322
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with

D(K)={u]ueV, M € H2(0,1),

Oz2
o1(t,.) ,
e € H1(0,1)}

(17)

Let the 5-vector © with remaining terms in 0, u(t, z),
u(t, L) from eqn(1). Then finally eqns(1,2,3,4,5) take
the simple operational differential form

d’u du

—Z +07'D— 4+ 0 'Ku=1"'0 18

az TPt K (18)
in Hilbert space H* which can be studied in this fra-
mework([27]. So initial system transforms into ”cano-
nical” normalized form above with “enlarged” vector
u containing all informations on it.

ITE-2 - Most properties of eqn(18) are now relying upon
operator ® = II"'K. Now selfadjointness and posi-
tive definiteness are physically related to nonexistence
of potential instability occuring in deformation system
from direct calculation of inner product in H* with pre-
vious definitions. Though M is manifestly symmetric,
independently of characterizing stiffness (or compli-
ance) of deformable segment bearing linkage, [Fu,v]g.
is not generally coercive, unless k = co (infinitely stiff
bearing), because of the non passivity of compliant sy-
stem.

However [Fu,v]y, is extendable by addition of a term
k(u,v) to a coercive form, allowing analysis of exist-
ence and uniqueness of solution of eqn(18) in weak
sense[28]. But further conditions are required for self-
adjointness of M[29]. In this case, simple eigenfunction
study can be developed for M in H from eqn(18) with
u given by a sum of sin, cos, cosh and sinh functions,
and using boundary conditions to eliminate the coeffi-
cients. Then as for classical case, eqn(18) is finally ob-
tained in projected form, out of which control analysis
can be developed and its coefficients be designed[30].

It is important to realize that system output is given
by bending moment M, directly measurable by strain
gage cemented at link origin, whereas here this quan-
tity has to be projected on base functions, and neces-
sarily only a finite number of them is kept. When ei-
genvalues decay fast enough with their rank, complete
initial system may be expected to ”almost” reduce to
the retained finite dimensional subset. Discussion of
this ”almost” characterizes equations which are home-
omorphic to finite dimensional systems.

For regular enough boundaries, nonlinearity in system
equations can be shown to be controlled by a finite di-
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mensional control constructed on this subset, by using
extension of Popov’s theorem([31-33]. For linear sy-
stem, the control is obtainable by H, optimization
method[34], but it is easily understandable that the
solution along this approach is always suffering from
antagonistic requirements of both restricting reasonn-
ably the base subset and forcing the system to exhibit
a preassigned time dependent behavior.

IV-GLOBAL CONTROL OF DEFOR-
MABLE, COMPLIANT ONE-LINK
SYSTEM

IV-1 - Though appealing, the previous result is nevert-
heless impaired by the difficulty of constructing actual
control law requiring higher order, generally unacces-
sible deformation modes. On the other hand, unless
specifically required, there is no real need to determine
deformation and error parameters as long as system
behavior follows prescribed trajectory. More import-
antly, observable bending moment is not directly used,
but has to be processed in classical PD control ap-
proach where all knowledge about system dynamics is
going through mode representation, of course poorly
suited for this situation.

So one should step back from this approach, and take
more advantage of the very specific structure of com-
plete (rigid + deformable) system, in order to follow
a more global approach where the objective of trajec-
tory behavior control is more directly reached without
diverting, as above, into (side) problem of deforma-
tions determination and associated representation. It
is already clear from eqn(8) that deformation effects
summarize to simple mass motion located off link tip
at end of vector (Iy,1;), suggesting that few global in-
formations are really necessary for controlling the sy-
stem, ie that its motion can be restrained to smaller
subspace.

To show that system motion can be constrained, con-
sider simple linearized form of eqns(6,7)

d2Ad dAg

_— _— ¢ —_ = a 60 t

Ja e + F, 7 + K(A0 — Abp,) = Mg + 8,(t)
d?Af dAb )

Jm ozt Fn a tT K(A#6 AY=U (19)

rejecting in the term 6,(t) the effect of external per-
turbations and of nonlinear (small) terms, with Af =
0 — 04(t), Abm = 0, — 84(t), and define around de-
sired trajectory 6(t) = 6,4(¢) the discontinuity surface
S = 0[35] by

Af dAg
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t t t
b5/ Abdt + bs/ Al dt + b7/ M,dt (20)
0 0 0

To show that syste_m trajectory goes to S = 0 and stays
on it, let Lyapounov function V = §2/2, and take its
derivative along system trajectory. One gets

dv

dt(‘t) = S{OPIS U + (3151 + b7) Mo + by 64 (2)
dA0 A6,

+ep—— 7 +c2—— 7 + c3A0 + caAOn } (21)

with¢; = b5+b2J,;11”2[\,—b1J‘:1]<, cy = bs—lea—lBa,
cg = by — bz],;le, cq4 = bg — ng;,lr2K + lea_lI\,.
Defining the control
dAG dA0
kaAB,, + IcmMa + DsgnS

with D > ||64(t)||L., + 7, 7 > 0 small, coefficients k;
can be determined so that

V() < bad ' 9|S| < 0 (23)

showing the property that system trajectory is forced
to remain on S = 0 once reached with the only as-
sumption of boundedness of perturbation term.

IV-2 - Now with previous result expressing the lay-
ered structure of system motion organized along the
"sheets” S = 0, asymptotic tracking stability for in-
itial system will follow. For weak enough compliance
case, eqns(6,7) reduce to only one equation by addition
with 6,, ~ § = ¢, and their shift, because K is finite
very large but not strictly infinite, can be included in
the bounded term 6,(t).

Consider now Lyapounov function

1 [dAq\® 1 . D3
= —_ —~poA —=.
W=Kg+ p1 ( 7 ) + 21’2 9"+ B

{[5(om2224 240Y" o (2t
N ,(azg(tf)) +u? (?1%)2}@ (24)

manifestly positive definite for positive p;.

Its derivative along solution of eqn(18) taking into ac-
count boundary conditions from eqns(3,4,5), can, after
some algebraic manipulations, be cast in the form

dW _ dAg dAq

. a+6s— B
a 7 le [U+M + t dt] (25)

+ p2Aq + paM,

with @ = 0 and M, = wj(0%u;/dx*(0)). It is first
possible to choose gain coefficients »; in extended PD
control form

dA
U=riAq+r; dtq
so that dW/dt is negative definite. But using control
expression which makes V' = 0, ie S’ = 0 in eqn(21),

one even gets
2
W _p (—qu) (27)

with P positive definite. The invariant set of dW; /dt is
thus dAq/dt ~ 0, at closed loop system equxhbrlum all
other higher order derivatives are also 0. On the other
hand, from eqns(1,2) second order space derivatives of
8%y(z,1)/8z? and ¥(z,t) are 0 at equilibrium, imply-
ing when solving for z-dependence and accounting for
boundary conditions that 8%u(0,t)/dz% = 0 as well,
and, from actuator and control eqns(6,7), it follows in
turn that Ag =0 and U = 0. Hence the largest invari-
ant set of dW; /dt is the null solution of the system. So
with extended PD type control of eqn(26), the system
asymptotically tracks a prescribed trajectory with at
the same time asymptotic decay of deformations be-
cause here u(z,t) and u'(z,t) are both going to 0 by
LaSalle theorem[36]. The result is not modified by exi-
stence of external perturbations, and exact knowledge
of system parameters is not even required because of
the flexibility of possible choice of gain parameters.

+ T3Ma + 7'460 (26)

So the present result is a robust one. Because M,
1s directly measurable by strain gages at link origin,
control implementation, of global nature, is evidently
much simpler than classical PD one requiring defor-
mation modes analysis, projection onto these modes,
and signals reconstitution through observer. This is
confirmed by elementary analysis of one-link flexible
system with steplike input, see Fig. 3.

V-DISCUSSION AND CONCLUSION

Complicated general N-link mechanical systems, with
appropriate generalized coordinates, can be cast in
the form of conventional operational differential equa-
tion in adapted functional space, on which classical
PD control analysis applies. But this approach re-
lies upon state space representation requiring develop-
ment of modes analysis for observables projection on
representation frame. As usual, this implies solving
approximation problem, with consequences on pawer
flow accuracy of resulting model. More fundamentally,
system observables are forcedly represented by their
projection and are painfully reconstituted afterward
by theory, by essence limited to linear case.
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From observation that bending force acting onto each
link is directly measurable, another approach is pro-
posed here, directly using this information as a whole
without any representation filtering. A motivation is
in the remark that system dynamics are not comple-
tely free, but organized in layered structure with well
defined and explicit representation. Then explicit con-
ditions for asymptotic trajectory tracking on this lay-
ered surface are defined in terms of only addition of
.bending force acting on the link on top of previous
classical PD terms.

Though algebraically involved to obtained, the mea-
ning of actual result is elementarily understood by no-
ting that for any system, the variation of its energy
is equal to the work done by applied exterior forces.
This is exactly observed here, where for a link, on top
of actuators and exterior applied forces, deformations
are acting only through bending moment at link origin.
So only these intrinsic elements are really needed for
system dynamics control, thus called a ”global” con-
trol. On the other hand, the role of the bending mo-
ment part added to the classical PD feedback is, simi-
lar to usual force feedback, to change inertia-damping-
stiffness parameters for this exterior force, and so, to
change system response to these effects.

It is thus important to properly design actuators re-
sponse to deformation frequencies, with an advantage
to micro-Macro structure[37] splitting apart in a natu-
ral way large amplitude-low frequency and small ampli
tude-high frequency responses required here. Finally,
note that the present result is easily generalizable to
nonlinear dynamical case as well, because it is never
needed more than lagrangian structure of the equati-
ons and their associated ”natural” boundary conditi-
ons[21]. Present results may even be improve by using
additional asymptotic robust controller to drive faster
error to zero.
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Fig 3 : Typical Response of a Flexible Link with Various
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