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Abstract The problem here considered is that of ob-
taining a state-space representation of an input-output
relation characterizing a process described by linear dif-
ference equations with periodic coefficients. For a given
periodic process, under the assumption that it has no null
characteristic multipliers, necessary and sufficient condi-
tions are given for the existence of a linear periodic sys-
tem whose input-output behaviour coincides with that
of the original process, for all the initial times. For the
general case (i.e., processes possibly with null character-
istic multipliers), the causality property is studied giving
sufficient conditions for a process described by linear dif-
ference equations with periodic coefficients to be causal.

1. Introduction

The study of the problem of finding a state-space rep-
resentation of a process that can be modelled by lin-
ear difference (or differential) equations with constant
coefficients (solved by Rosenbrock [1] via strict system
equivalence) was extended in [2, 3] to processes that can
be modelled by linear difference equations with periodic
coefficients (whose period will be denoted by w) of the
following form:

Z Ti(t)&(t + 1)

> Ui(tyu(t +1), (1a)

i=0

y(t) = Y Vit)E(t+4) + Y Wi(t)u(t +1), (1b)

1=0 =0

for some integer r > 0, where t € Z,£(t + 1) € R™
is the vector of the internal variables or pseudo-state,
u(t + i) € IR? is the input, y(t) € R? is the output,
Ti(t), Ui(t), Vi(t) and W;(t), i = 0,...,r, are real pe-
riodic matrices of period w (briefly w-periodic), and the
Ti(t),1 =0, ...,r, are possibly square. Equations (1) were
termed the model of the process under consideration.

In [2] conditions were given under which it is possible
to obtain a description of (1) in state-space form, within
the class of models that were called system equivalent to
model (1) at some (initial) time to. In [3] weaker con-
ditions were given under which it is possible to obtain a
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state-space representation that is “largely system equiv-
alent” to model (1) at some (initial} time t;.

The interest of obtaining a description of (1) in state-
space form is motivated by the variety of processes that
can be modelled by linear difference equations with pe-
riodic coefficients (see, e.g., [4, 5, 6]) and by the re-
sulting attention devoted to linear periodic discrete-time
systems, for which a control theory (based on a state-
space description) is developing, including eigenvalue
assignment, state and output dead-beat control, dis-
turbance localization, model matching, robust tracking
and regulation, and block decoupling [7]-[15]. Although
[2, 3] gave state-space representations of the whole input-
pseudostate-output behaviour of model (1) for the out-
put and pseudostate responses beginning at the same ini-
tial time ty at which system equivalent or largely system
equivalent state-space representations were obtained, the
analysis was not complete for the output and pseudostate
responses beginning at a different initial time. Then, the
purpose of this paper is to focus the attention on the
mere input-output relation specified by model (1), by
looking for a state-space representation of it that gives
rise to its output responses beginning at any initial time,
and by studying its causality. At the best author’s knowl-
edge these problems have not yet been solved, although
the different problem of finding a periodic realization of a
periodic rational matrix or impulse response matrix was
studied by several authors (see, e.g., [16]-[19]), the con-
ditions for the causality of input-output maps only were
given in [20], and in [2, 21] only the necessity of these
conditions for the causality of model (1) was shown. In
Sections 2 and 3 all the background material is recalled.
In Section 4 it is shown that, under the same assump-
tion considered in [2], an w-periodic system that is sys-
tem equivalent to model (1) at some time tq is also a
state-space representation of the input-output relation
specified by model (1), and, in addition, that the condi-
tions given in [20] are sufficient for the causality of the
input-output relation specified by model (1).

2. Basic notations and time-invariant
characterization of periodic processes
Henceforth, the identity matrix of dimension v will be
denoted either by I,,, or simply by I; A will denote the
w-steps forward-shift operator, A~ its inverse. In addi-




tion, let R,(A), v € Z*, be defined by:
— 0 I(w—l)u
R,(A) := [AIV o ] , (2)

where Z7 is the set of positive integers.

Let a vector function 2(t) € IR” be given, with t € Z;
for any k € Z, the w-stacked form of z(t) at (the initial)
time k is defined by

au(h) = [Tk +hw) ... Tk +hw+w—1)]" , heL

From now on, whenever the operator R,(A) will be ap-
plied to zx(h), the operator A will have the meaning of an
w-steps forward-shift in the k variable, or, equivalently,
a one-step forward-shift in the h variable. Let an w-
periodic matrix H(t) € IR"** be given, with t € Z, rep-
resenting the linear map z(¢t) = H(t)w(t); for any k € Z,
the w-stacked form of H(t) at (the initial) time k is de-
fined by Hy, := diag {H(k),H(k +1),...,H(k +w — 1)},
and represents the induced linear map between the w-
stacked forms at time k of the vector functions z(t) and
w(t), i.e. zx(h) = Hew(h), h € Z.

Lemma 1 [2, 21]. For any vector function z(t) € R”
and for any w-periodic matriz H(t) € R"** (t € Z), the
following relations hold for all k € Z:

R, (A)zk(h) = zkt+1(h),
R (AYHkR N (A) = Hiyr;

(3a)
(3b)

relation (3b) still holds with A replaced by a scalar com-
plex variable.

By introducing the w-stacked forms &, (h), ue, (h), Yz, (h)
at time to,ty € Z, of vectors £(t), u(t),y(t) and the w-
stacked forms 7; 4, , Ui ¢, Vi,t, and Wi, at time o of ma-
trices T;(t), U;(t), Vi(t), Wi(t), i =0,...,7, by Lemma 1
model (1) can be expressed in the following form, which
is called the w-stacked form at (the initial) time to of
model (1), or, briefly, w-stacked model at time to:

Z()(A)gto(h) = ufo(A)ut()(h)’
yt()(h)zvto(A)gto(h) + Wt()(A)uto(h)7

(4a)
(4b)
where

ﬁ()(A) = ﬂyt()Rin(A)* utu(A) =
=0

2

ui,t()R;(A)v th(A) = Zv'i,toR:‘n(AL Wt()(A) =
0 1=0

T

> Wi, R5(A) [21]. The following polynomial matrix
i=0

of A: ~T(A) U (D)

V(D) Wi(D) 5)

is termed the w-stacked system matriz at (the initial)
time to of model (1), thus extending the time-invariant
Rosenbrock system matrix [1]. The following assumption
is justified by the subsequent Proposition 2, and will be
assumed to hold throughout the paper.

Assumption 1 The polynomial matriz Ty, (A) is square
and nonsingular.

s@) = |
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Proposition 1 [2, 22] If Assumption 1 holds for ty =
to € Z, then it holds for any to € Z, and the polynomial
det(7;,(A)) is independent of the initial time tg.

The following proposition clarifies that Assumption 1 is
not restrictive. It is based on the following three types
of elementary operations on the scalar rows of (4a): (i)
multiply any row by a non-zero real constant c; (ii) inter-
change rows 7 and j; (iii) add a multiple, by a polynomial
d(A) in A with real coefficients, of row j to row i.
Proposition 2 [2, 21] If Assumption 1 does not hold,
then one (or more) of the following situations occurs for
equation (4a): (a) by a finite sequence of elementary op-
erations of types (i), (i), and (iii) on the rows of equa-
tion (4a), one of the scalar rows of the transformed equa-
tion of (4a) can be reduced to the trivial identity 0 = 0;
(8) there exzists an w-stacked input function ug,(-) for
which (4a) admits no solution for h > 0; (7y) there exist
solutions of (4a) for h > 0 and for any u.,(-), but they
depend on an infinite number of arbitrary and indepen-
dent initial conditions.

If Assumption 1 holds, then, for each input function u(-),
there exist solutions &,(-),yi,(-) of (4) for h > 0, and
they depend on arbitrary and independent initial condi-
tions whose number is equal to the degree of det (T, (A)).

If Assumption 1 holds, the degree of det (7;,(A)) is called
the order of model (1).

Under Assumption 1, for a fixed initial time £, the ap-
plication of the z-transform to both sides of (4) — with
all the “initial conditions” of &,(h) that make unique
the solution of (4a) [21] put equal to zero, and a suitable
number of initial values of u;,(h) equal to zero — yields

Yo (2) = Gl (2) Uty (2), (6)
where wuy,(2) and wy,(z) are the z-transforms of
ug,(h) and yy,(h), respectively, and GM(z) :=
Vt(,(z)’ft;l(z)ut“(z) + Wi, (2) is called the w-stacked
transfer matriz of model (1) at (the initial) time to.
Lemma 1 yields [2, 21):

GY ., (z) = Ry(2)GY(2)R; (2), V2 €T, Vtg € Z. (7)

In view of the discussion in [2], under Assumption I,
the polynomial det (7;,(z)) was called the characteristic
polynomial of model (1), and its zeros were called the
characteristic multipliers of model (1) with correspond-
ing ordered sets of structural indices at time ty defined
as their nondecreasing sequences of multiplicities as ze-
ros of the invariant polynomials of 7;,(2). In a similar
way, under the same Assumption 1, the invariant ze-
ros, input decoupling zeros, and output decoupling zeros
of model (1) at time to were defined to be the zeros of
the invariant polynomials of SM(2), [-T;(2) U (2)],
[-TT(z) VI(2)]T, respectively, with ordered sets of
structural indices at the same time defined as their non-
decreasing sequences of multiplicities as zeros of such
polynomials. All types of zeros were shown to be in-
dependent of time to (together with their ordered sets of
structural indices), except for the null ones {2, 23].




3. System equivalence and large system
equivalence: background material

In order to find a description of model (1) in state-
space form that takes into account the whole input-
pseudostate-output behaviour, two (mw + qw) x (mw +
pw) polynomial system matrices S(A) and $?(A) with
real coefficients were said to be strictly system equivalent
if a relation of the following form holds (2], thus extend-
ing the notion introduced in [1]:

43 2]ow [ 4] o

where M (A), N(A), X(A) and Y (A) are polynomial ma-
trices in A with real coefficients, and M(A), N(A) are
square and unimodular.

The following further operations on the w-stacked form
(4) at time to of model (1) were considered in [2], thus
extending the similar operations used in [1}:

(a) for each [ = 0, ...,w — 1, add to the vector component
E(to + hw + 1) of &,(h), v scalar components, v > 0,
which are defined to be equal to zero for each h > 0;

(b) for each | = 0,...,w — 1, remove from the vector
component £(to + hw +1) of &, (h), v scalar components,
0 < v < m, if they are equal to zero for each £ =0, ...,w—
1, for each h > 0, for all input functions u(:) and for all
admissible initial conditions.

Then, two w-periodic models M; and Ms of the type (1),
satisfying Assumption 1 and having inputs and outputs
of the same dimensions p and ¢, respectively, and corre-
sponding w-stacked models M} of the form (4), i = 1,2,
at the same time tg, were said to be system equivalent at
(the initial) time to [2] if there exist an operation of the
type (a) or (b) to be carried out on M}, and an operation
of the type (a) or (b) to be carried out on M7, such that
the w-stacked system matrices at time to corresponding
to the resulting w-stacked models at time ty are strictly
system equivalent.

The following extra operations on the w-periodic model
(1) were introduced in [3]:

(c) add the following vector equations to equations (1):
Gt+1) = Galt), yw—2, (9a)
Cw—l(t + 1) = ’U.(t), (gb)
so that, defining

() = [T (1) G3 (1) - CI_a () ET ()T, (10)
a new model of the form (1) is obtained, with £¢X(t) €
R™H@~DP instead of £(t);
(d) if vector £(t) can be partitioned as follows:

60 =T O GO . e e W

so that (;(t),i = 1,...,w—1, satisfy (9) and £°(t) satisfies
an [m — (w —1)p]-dimensional vector equation of the form
(1a), and a g-dimensional vector equation of the form

i=1,2,...

(1b), with £9(t) instead of £(t), then remove equations
(9) from the given model.

The w-stacked system matrix at time tg of the model
obtained after that an operation of the type (c) has been
carried out on model (1), is strictly system equivalent to
the following one:

SHE(A) =
[ -R,(A) L, ... O 0 0 ]
0 —R,(A).. 0 0 0
0 0 . I, 0 0
0 0 ..-R,(A) © L,
0 0 .. 0 —Ti(A)]| U(A)
| 0 0 0 vko(A) Wko(A) |
_[-TE)  uh(b)
"[v,ﬁ,(A) VJL,(A)]’ (12)

having w — 1 block rows and columns in addition to

SM(A).

Then, two w-periodic models M; and M, of the type (1),
satisfying Assumption 1 and having inputs and outputs
of the same dimensions p and g, respectively, were said
to be largely system equivalent at (the initial) time to [3]
if there exist a finite number of operations of the type
(c) or (d) to be carried out on M,; and a finite number
of operations of the type (c) or (d) to be carried out
on Ma, such that the resulting models, M; and Mo,
respectively, are system equivalent at time ¢o.

Proposition 3 [2, 8] The relation of system equivalence
at time ty and the relation of large system equivalence at
time to between two w-periodic models of the type (1) are
equivalence relations.

A special case of model (1) is that of a linear w-periodic
model in state-space form, i.e., a linear w-periodic system
described by:

z(t+1)
yt) =
where t € Z, z(t) € IR" is the state, u(t) € IR? is the

input, y(t) € IR? is the output, and A(-), B{-), C(-), D(:)
are real w-periodic matrices.

A(t) z(t) + B(t) u(t),
C(t) z(t) + D(t) u(t).

(13a)
(13b)

The system equivalence relation at time ty between two
models of the form (1) (or, specifically, between a model
of the form (1) and a system of the form (13)) was studied
in [2]. The corresponding results are summarized by the
following proposition and remark.

Proposition 4 [2] Given two w-periodic models M,
and Ma of the type (1), satisfying Assumption 1 and
having inputs and outputs of the same dimensions p and
q, respectively, pseudo-states of dimensions m;,i = 1,2,
and the following w-stacked system matrices at time ty:

—Tp,i(B) Uy, (D)

SM(A) = i=1,2,

Vi il &) Wy, i(A) ]’ (14)
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if My and My are system equivalent at time to, then for
each input function u(t),t > to, the solutions of My and
My fort >ty in the pseudostates are biuniquely related,
and their solutions for t > to in the output are exactly
the same.

In addition: () the matrices in
each of the pairs (SM(z), S{(‘:{Q(z)), (T20.1(2), Tiy 2(2)),
([_7;0,1(2) utu‘l(z)]) [_7;(),2(’1‘?) uiu‘2(z)])’
([FT3:() VE (2], [~ TT2(2) VE2(2)]7), have the
same Smith form, apart from some unit invariant poly-
nomuals, equal in number to wimi — ma|; (B) the or-
ders of My and My coincide; () the w-stacked transfer
matrices of My and My at any initial time coincide;
(6) My and My have the same nonzero invariant ze-
108, nonzero input (output) decoupling zeros at all times
and the same corresponding ordered sets of structural in-
dices (apart from w|my — mg| null structural indices),
the same characteristic multipliers at all times, and the
same ordered sets of structural indices of their nonzero
characteristic multipliers (apart from w|lm; — my| null
structural indices).

Remark 1 By Proposition 4, if a system Mj of the
form (13) is system equivalent at time ty to a given model
My, then its output responses from time tg, and all the
features of M, that are listed in items (), (v) and (6) of
Proposition 4, are specified by the original model M;
in addition, the state response of Mj from time tg is
biuniquely related with the pseudostate response of M,
from time to. Hence, such a system M, is controllable
[resp., reconstructible] if and only if M; has no nonzero
input [resp., output] decoupling zeros, it is stabilizable
[resp., detectable], if and only if M; has no input [resp.,
output] decoupling zeros outside the open disk of unit
radius, it is reachable [resp. observable] at time ¢, if and
only if M; has no input [resp., output] decoupling ze-
ros at time ¢y [23]; moreover, the order, the w-stacked
transfer matrix at any time ko, the asymptotic stability
[24], the rate of convergence of the free motions, all the
characteristic multipliers of system AMj, and even the
number and the dimensions of the Jordan blocks cor-
responding to each nonzero characteristic multiplier, in
the Jordan form of the monodromy matrix of system
My [23] at any time kg, are determined by the proper-
ties of the original model Mj; in addition, S,Q(’)’YQ(Z) has
full row-rank for any ko € Z and for any nonzero z €C if
and only if SM,(2) has full row-rank (it is recalled that
such a condition on the stacked system matrix SM ,(z)
of the w-periodic system M; described by equations of
the form (13), is necessary and sufficient, together with
stabilizability and detectability, for the existence of a
solution of the robust tracking and regulation problem
when the w-stacked forms of reference signals and dis-
turbance functions have a time dependence of the form
zM 2] > 1 [12)). a
In view of the above discussion, it is reasonable to look
for an w-periodic system of the form (13) that is sys-
tem equivalent at time t to the given w-periodic model
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(1). This probelm was solved in [2] under the following
assumption, which implies Assumption 1.

Assumption 2 The polynomial matriz T, (A) is square
and such that 7 (2)|,=0 is nonsingular.

Proposition 5 (2] If Assumption 2 holds for to = o €
Z, then it holds for any ty € Z.

Lemma 2 [2] For the w-periodic model (1) and its cor-
responding w-stacked form (4) at time to, under Assump-
tion 2, there exists an w-periodic system of the form (13)
that is system equivalent at time to to model (1), if and
only if its w-stacked transfer matriz Gt””l (2) satisfies the
following conditions:

(i) GM(z) is a proper rational matriz;

() if GM(z) is rewritten as GM(z) = F,(2) + Qy,, with
Fi,(2) strictly proper and Q,, constant, and Q,, is de-
composed into blocks of dimensions q x p, then Q:, is
lower block triangular.

If conditions (i) and (i) hold for to = to,t9 € Z, then
(i) and (ii) hold for all ty € Z.

Lemma 2 allows to solve the problem of finding a system
of the form (13) that is system equivalent to model (1)
at time to under the assumption det (7;,(0)) # 0. In
[3] the general case was considered within large system
equivalence, and the found results are summarized by
the following proposition, remark and lemma.
Proposition 6 [3/ Given two w-periodic models M,
and My of the type (1), satisfying Assumption 1 and
having inputs and outputs of the same dimensions p and
g, respectively, pseudo-states of dimensions m;,i = 1,2,
and w-stacked system matrices at time to SM,(A),i =
1,2, tf they are largely system equivalent at time to, then
for each input function u(t),t > to, the solutions of M,
and Mz for t > tg in the output are exactly the same,
and their solutions for t > to +w — 1 in the pseudostates
are biunigquely related.

In addition: (a) the w-stacked transfer matrices of M,
and Mgz at any initial time coincide; (3) M, and
My have the same nonzero characteristic multipliers,
nonzero input decoupling zeros, and nonzero output de-
coupling zeros at all times and the same corresponding
ordered sets of structural indices (apart from w|m, — ma|
null structural indices); (v) St(A;{ 1(A) has full row-rank if
and only if SM,(A) has full row-rank; (5) if Stlgf‘i(A),
t = 1,2, have full row-rank, then M; and M, have the
same nonzero invariant zeros at all times and the same
corresponding ordered sets of structural indices (apart
from wimy — my| null structural indices).

Remark 2 By Proposition 6, if a system M, of the
form (13) is largely system equivalent at time ¢, to a
given model M, then its output responses from time
to, and all the features of My that are listed in item
(8), (v) and (6) of Proposition 6, are specified by the
original model M;. Hence, such a system M, is con-
trollable [resp., reconstructible] if and only if M, has
no nonzero input [resp., output| decoupling zeros, it is




stabilizable [resp., detectable], if and only if M; has no
input [resp., output] decoupling zeros outside the open
disk of unit radius [23]; moreover, the w-stacked trans-
fer matrix at any time ko, the asymptotic stability [24],
all the nonzero characteristic multipliers of system Mo,
and even the number and the dimensions of the Jordan
blocks corresponding to each nonzero characteristic mul-
tiplier, in the Jordan form of the monodromy matrix of
system My [23], at any time kg, are determined by the
properties of the original model My; in addition, by the
results in [2], S ,(2) has full row-rank for any ko € Z

and for any nonzero z €C if and only if S}, (2) has full
row-rank. On the contrary, the orders of two models M,
and M that are largely system equivalent at time tg do
not coincide, in general, since (12) yields

detT.E(A) = AP@~DdetT;, (A). (15)

Lemma 3 [3] For the w-periodic model (1), under As-
sumption 1, there exists an w-periodic system of the form
(13) that is largely system equivalent at time to to model
(1), if and only if the w-stacked transfer matriz G} (z)
satisfies conditions (i) and (ii) of Lemma 2.

4. Main results

As it was previously recalled, the results in [2, 3] give
solution to the problem of finding, for a fixed initial time
to, a system of the form (13) that is system equivalent (or
largely system equivalent) at time ty, to a given model
of the form (1). In particular, Lemma 2, under the as-
sumption det 7;,(0) # 0, allows to find a system of the
form (13) whose output responses for t > #g coincide
with those of model (1), and whose state responses for
t > to are biuniquely related with the pseudostate re-
sponses of model (1) for t > tg — so that several features
and properties of it coincide with those of model (1) (see
Proposition 4 and Remark 1) —. As far as the mere input-
output behaviour is concerned, however, it seems worth
to ask whether the found system is also a state-space rep-
resentation of the input-output relations defined through
model (1), not only for the fixed initial time tg, but for
any other initial time kg.

In order to give an answer to this question, some further
notations will be introduced. For each initial time to €
Z, let Ty, be defined as Ty, := {t € Z: t > to}, let Uy,
Ef,.and Y;? be the sets of all the input, pseudo-state, and
output functions, respectively, over T;,, taking values on
IR?, R™, and IR?, respectively, i.e. Uy := {u(-): u(t) €
R?, vt € T}, B, = {§() : &t) € R™, Vt € Ty},
Y oo={y(:) : y(t) € R, Vt € Ty, }. The members of
tor =10 and Y;* will be generically denoted by u(-k.
£(-), and y(-), respectively.
For each initial time tq € Z, a subset Ra’{ of the set Uy, x
Y;* can be associated with model (1), namely the subset
Ri, of Ul x Yy consisting of all the pairs (u(-),y(-)) €
Ug x Y, such that u(-) and y(-) satisfy equations (1) for
some £(-) € E; , that is, relation R is the subset of all

the pairs (a(-),%(-)), u(-) € U, §(-) € Y,*, such that, if
the process described by equations (1) is subject to the
input function u(t) = @(t) for all ¢ > to, then F(t) is one
of the possible output responses y(t) satisfying equations
(1) for all t > to, for some &(-) € Ef . With this definition
of RM, the family of relations

to
RM = {RY, t, € Z}, (16)

wholly characterizes the input-output behaviour of the
process described by equations (1), since, for each initial
time to, it contains all pairs (u(-),y(-)) € Uy, x Y that
satisfy equations (1). From now on, with an abuse of ter-
minology, RM will be called the input-output relation of
model (1). It is worth to stress that the input-output re-
lation RM of model (1) enjoys the property of the closure
with respect to the restriction of the input and output
functions, namely, that the following condition holds:

w(),y() €RY = (uO)lg,, ¥Oir,,) € RY,

Vto,t1 € Z,t > to, (17)

where u(-)|T“ and y(')le.l denote, respectively, the re-
strictions of u(-) and y(-) over Tg,.

In a similar way, for each initial time t4 € Z, a subset Rf)

of the set U x Y, can be associated with the linear w-
periodic system (13), namely the subset Rf“ of Uy x Y,
consisting of all the pairs (u(-),y(:)) € Uf, x Y;:, such
that u(-) and y(-) satisfy equations (13) for some initial
state z(tg) at the initial time tg. The family of relations

RS := (R}, to € Z} (18)

wholly characterizes the input-output behaviour of sys-
tem (13), and trivially enjoys a property similar to (17)
rewritten with Ry and R instead of R} and R}, re-
spectively.

+Thus, the main problem studied here consists of finding,
if any, a linear w-periodic discrete-time system of the
form (13) such that

RS =RM, (19)

i.e., such that
Ry =RM, Ve Z, (20)

that is, such that, for all the initial times, the set of all
the input-output pairs of model (1)} coincide with the set
of all the input-output pairs of the found system.

The problem thus defined will be called Problem 1, and
an w-periodic system of the form (13) satisfying condi-
tion (20) will be called a state-space representation of the
inputvoutput relation RM of model (1).

It is stressed that, by the periodicity of the coefficients

- oﬁ%oth model (1) and system (13), for any ty € Z, the

following conditions hold:

RS e = RS, Vhel, (21a)
Rt heo RM, VheZ, (21b)

so that (20) holds if and only if the following conditions
are satisfied for some 3 € Z:
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RE=RM r=fto+1,....,00+w—-1. (22)

As already mentioned, it is of particular interest to con-
sider the special case of a linear w-periodic system of "
the form (13) that is system equivalent to model (1) at
some time to, and to check whether such a sistem is also
a state-space representation of the input-output relation
RM of model (1); such a problem will be called Prob-
lem 2. Also Problem 1 will be studied under the same
Assumption 2 that was considered in Lemma 2. The
following proposition and lemma will be useful.

Proposition 7 [2] For the w-periodic model (1) and its
corresponding w-stacked form (4) at time to, if Assump-
tion 2 holds, its w-stacked transfer matriz G (z) satis-
fies conditions (i) and (ii) of Lemma 2, and its order n
is less than or equal to mw, possibly after a preliminary
operation of the type (a) has been carried out on (4),
then SM(A) is strictly system equivalent to the following
matrix:

—Imw—ﬁ 0 0
0 E,, — Az | &, | = SM*(A)  (23)
0 Li() I Pt()

where Ey,, Jy,, Ls,, and Py, are constant matrices, and
E,, is nonsingular.

Lemma 4 Under Assumption 1, if there exists a state-
space representation of the input-output relation RM of
model (1), then its w-stacked transfer matriz at any ini-
tial time to coincides with the w-stacked transfer matrix
GM(z) of model (1) at the same initial time to.

Proof. In view of the procedure for the computation of
the solutions of equation (4a) given in {21], which was
based on multiplying both sides of (4a) by a unimodular
polynomial matrix L(A) such that L(A)7;,(A) is in the
Hermite lower triangular form, and denoting by u the
maximum degree in A among all the entries of T;,(A),
L(A)T,(A), and V,,(A), and by v the maximum degree
in A among all the entries of Uy, (A), L(A)U, (A), and
W, (A), it is possible to check that (6) holds if all the
initial conditions that make unique the solution of (4a) in
&, (h) are chosen equal to zero and if the values of u, (h)
are chosen to be zero for each h =0,1,...,v + mu.

Let S be a state-space representation of R™ of the form
(13). The w-stacked form (4) at any initial time ¢y for
system S can be written as follows:

RTI(A)It()(h) = Aiuzi()(h) + Bt()utu(h)7 (243‘)

yt()(h’) = Ctuxt(l(h) + Dtuutu(h’)’ (24b)
where A4,,, B;,, Ci,, Dy, are the w-stacked forms at time
to of matrices A(t), B(t), C(t), D(t), respectively.

The z-transform of the w-stacked form at time tg of the
output response of S, from the initial state z(tg) = o,
has the following expression:

Yoo (2) = G2 (2)us, (2) + Uy, (2)Z0, (25)

where G;,S:;(Z):zct()(nn(z) - At())_lBtn+Diu
and W, (2):=2Cy,(Rp(2) — Ay, )"IT, T:=[00 ... 0 I,)T.

Now, rewrite G5 (z) as G3 (2) = GM(z) + G, (2), then
equation (25) becomes:

;yt()(z) = G?(/)I(z)ut()(z) + ét()(z)ut()(z) + \I’t()(Z)IEO. (26)

Assurie, by contradiction, that one of the entries of ma-
trix Gy, (2) is nonzero, say the entry g; j,(2) in the i-th
row and j-th column, and denote by ¢y, ¢y € Z, the mul-
tiplicity of the null zero of §; ;:,(z) (where £y < 0 means
that §; jt,(z) has a null pole of multiplicity ¢), and by
¢y > 0,4, € Z, the maximum multiplicity of the null pole
in the entries of the i-th row [¥,, (2)]; of matrix ¥, (z).
Choose an input function @(-) € U, such that only the
j-th entry of the z-transform %,,(z) of its w-stacked form
at time to @,(h) is nonzero, and, in particular, equal to
1/2%, with £ € Z,£ > max(v + mu, £p + £o). In view of
(20), there exists an initial state xg of system S such that
the w-stacked form at time ¢y of the cutput response of
system S from the initial state zg at time ¢y under the
input function (-) coincides with the w-stacked form at
time t¢ of the output response of model (1) to the input
function @(-), corresponding to zero initial conditions of

é‘t()(h)'
In view of (6) and (26), this implies that the following
equality must be satisfied for some xy:

- 1
0= [wt()(z)]izo + gi,]'yto(z);[' (27)
Now, rewrite §; j.t(2) as §ijto(2) = Gijio(2)2%. By
partial fraction expansion of the rational right-hand side
of (27), the hypothesis £ — €y > £, yields §; ;:,(0) = 0,
that is a contradiction. ]

The following theorem gives the solution of Probelm 1,
under the same Assumption 2 that was considered in

Lemma 2.
Theorem 1 Under Assumption 2, Problem 1 admits a

solution if and only if conditions (i) and (ii) of Lemma
2 hold.

Proof. (Necessity) If Problem 1 admits a solution, by
Lemma 4 any state-space representation of R has the
same w-stacked transfer matrix as model (1), at any ini-
tial time to. Since a state-space representation of RM
has the form (13), it is well known that its w-stacked
transfer matrix satisfies conditions (i) and (ii) of Lemma
2 (see, e.g., [23]).

(Sufficiency) It is recalled that, by Proposition 5 and
Lemma 2, if Assumption 2 and conditions (i) and (ii) of
Lemma 2 hold for a ty = {3 € Z, then they hold for all
to € Z. Now, for an arbitrary tg € Z, by Lemma 2 it is
possible to find a linear system S of the form (13) that is
system equivalent to model (1) at time to. Hence, taking
into account Proposition 4, the sets of input-output pairs
Ry and RYM satisfy the following equality:

Rip = Ry - (28)
On the basis of (28), condition (22) (and therefore con-
dition (20)), can be proved by showing that:

S _ M P —
Riti =Ry =12, ,w—1

(29)
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Equality (29), in turn, is implied by (28) and by the
following ones:

S
Rta l Ty,

RY |, =

Ry, ti=to+1,...,t0 +w— 1, (30a)
RY, ti=to+1,...,t0 +w —1,(30b)

where R§ ., and RM |, denote the set of all the input-
output pairs obtained by restricting to the interval T,
the input-output pairs in the set R;S;, and 'Rﬁ’f , respec-
tively. In view of the closure property (17), and of the
similar property of system .S that consists of (17) rewrit-
ten with R and R instead of R} and R}/, respec-
tively, conditions (30) are implied by the following ones:

Rilr, > R, ti=to+1,...,to+w—1,(3la)
Rilln,, D RYM, ti=to+1,...,to+w—1.(31b)

As for condition (3la), for a given initial time ¢, €
Z,t; > tg, and a given pair (ui(-),11(:)) € Rfl, there
exists an initial state z(¢t;) = x; of system S such that
the output response under the input signal u(t) = uq (%)
for all t > t;, coincides with the function y,(¢) for all
t > t;. In addition, system S is time reversible by
Assumption 2 [2]; hence, there exists an initial state
z(to) = zo such that the free response of S from z, at
the initial time ¢¢ coincides with z; at time t;. This im-
plies that, for any pair (u;(-),y1(-)) € Rf, there exists a
pair (uo(-), yo(-)) € Ry, such that (uo(-)lr,, %()lr,) =
(u1(-),y1(*)), i-e., condition (31a) holds.

Condition (31b) can be proved similarly. By virtue
of Proposition 7, rewritten with t; instead of tg, and
of a proposition similar to Proposition 4 that can be
stated for strict system equivalence, for a given initial
time t; € Z,ty < t; < tg + w, the output responses
y(t) of model (1) from the initial time ¢; can be ob-
tained in w-stacked form from a linear time-invariant
system S, characterized by a quadruplet of constant ma-
trices (Ey,, Ji,, Lt,, Pr, ), with Ey; being nonsingular (see
(23)). Therefore, for the given time ¢; and for any pair
(u1(-), y1(-)) € R}, there exists an initial state ¢ of sys-
tem S, such that the w-stacked form of y;(t) can be ob-
tained from the initial state z{ of S, under the w-stacked
form of ui(t) as input signal. In view of the nonsingu-
larity of E;, and of the periodicity of model (1) (which,
by (21b), implies that also R{‘:’_u can be obtained in w-
stacked form through S,, as well as 'R,f,‘f ), there exists
an initial state 22, := E lz‘f of system S, such that,
defining as follows the input function u_,(-) € Uy, _:

U_w(t) 0,t=¢t; —w,t1 —w+1,...,t; — 1,
u_,(t) = wi(t), VteTy,,

and denoting by y_.(-) € Y{;_, the output response of

model (1) that is obtained in w-stacked form through
system S, as its output response from z2 , to the w-
stacked form of u_,(+), the following relations hold:

(u—w(')’ y—w(')) € RM (323')

ol =) yeol)ln = (). (32b)

Since tg > t; — w, relation (32a) yields:

(t-w()I7yr -0 ()lT,,) € R (33)

Since t; > to, (32b) and (33) imply (ui(-),n (")) €
RM|r,, - o
Corollary 1 If model (1) satisfies Assumption 2, then
an w-periodic system of the form (13) that is system
equivalent to model (1) at some initial time tg, is a state-
space representation of the input-output relation RM of
model (1).

Corollary 1 gives the solution to Problem 2, while Theo-
rem 1 gives the solution to Problem 1 under Assumption
2, i.e., under the same assumption under which the con-
ditions for the existence of a system of the form (13) that
is system equivalent to model (1) were given in [2].

At the best author’s knowledge, Problem 1 in the general
case (i.e., without the assumption that det 7;,(0) # 0) is
still open, as well as the problem similar to Problem 2
that can be defined for large system equivalence instead
of system equivalence. However, the results in [3] allow
to study the causality of the input-output relation RM of
model (1). This is the object of the following discussion.

It was shown in [21] that, for each initial time ¢, € Z,
there exists a set X,,, with each element of it being the
“initial condition” of the function £(-) € =} (consisting
of the v; > 0 values of the j-th compenent of &, (h) for
h=0,1,...,v;—1, foreach j = 1,2,..., mw), such that,
for each u(-) € Uy, equation (1a) admits a unique solu-
tion £(-) € E}, (hence also equation (1b) admits a unique
solution y(-) € Y;) for each element of X, , i.e., for each
“initial condition”. Therefore, according to the follow-
ing definition, the input-output relation R™ of model
(1) admits at least one parametrization.

Definition 1 If, for each initial time tq € Z, there exist
a set Xy, and a family of functions ¥y, = {fy, o : T3, ¥
Ug — R, o € Xy, } such that

(i) for each (u(-),y(-)) € RM, there exists an element
a € X, such that

y(t) = ft(),a(t7u('))v vt e Ttu; (34)
(ii) for each a € X,,, the following relation holds:
(u(), froa(u()) € RY, Vu(-) € Ug, (35)

then the pair (X;,, Fy,) is called a parametrization of
R, and the family of such parametrizations of RM,
to-€ Z, is called a parametrization of the input-output

relation RM of model (1).

On this basis, the following definition of causality of the
input-output relation RM™ of model (1) is standard (see
[25] for a similar one).

Definition 2 If, for each initial time ty € Z, there exists

a parametrization (Xy,, {fio,a : Tto X U, —» R%, a €

X1, }) of RM that satisfies the following property:
ul(')l[to,t] = u2(')|[t0,t], ui(-),uz(-) € Ut € T,

= ft(),a(tvul(')) = ftl),a(t7u2('))’ Va € Xtm (36)

351




then the input-output relation R™ of model (1) is said
to be causal. Model (1) is said to be causal if its input-
output relation RM is causal.

The causality of linear w-periodic input-ouput maps was
studied in [20], where it was shown that conditions (i)
and (ii) of Lemma 2 are necessary and sufficient for the
causality of such a map. In this paper, the more general
case of the input-output relation RM™ is considered. In
[2, 21] it was shown that conditions (i) and (ii) of Lemma
2 are necessary for the causality of model (1), on the
basis of a stronger notion of causality. By the following
theorem, such conditions are sufficient for model (1) to
be causal, for the above given definition of causality.
Theorem 2 If conditions (i) and (i) of Lemma 2 are
satisfied, then the linear w-periodic model (1) is causal.
Proof. If conditions (i) and (ii) of Lemma 2 hold for
some ty = %y, by Lemma 2 they hold for all t, € Z.
By Lemma 3, for each ty € Z there exists an w-periodic
system S, of the form (13) that is large system equiva-
lent at time ¢y to model (1). By Proposition 6, for each
to € Z, Sy, trivially provides a parametrization of Rt’“’)’ .
In addition, for each ¢y € Z such a parametrization sat-
isfies property (36), thus proving the causality of RM,
hence the causality of model (1). O
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