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Abstract. The main purpose of this paper is to give a physical interpretation of invariant zeros and
indices in terms of the general zero-output behaviour of a linear dynamical system.

1. Introduction.

Linear time invariant multivariable systems
may be considered as an interconnection of
other subsystems, which may themselves be
considered as an interconnection of other
subsystems of lower order (Rosenbrock &
Pugh 1974). Besides the definition of a
hierarchical theory of systems. Rosenbrock &
Pugh (1974) also considered some of the
implications the transformation of strict system
equivalence (Rosenbrock 1970) applied to the
subsystems have on the subsystems higher up
in the hierarchy. However in case where the
impuisive behaviour of systems. is under
consideration, then an extension of those
known resuits seems t0 be necessary. The
reason for this extension is the disadvantage of
the transformation of strict system eguivalence
in that it preserves only the finite and not the
infinite frequency bebaviour of the system.
One objective of this paper is then to extend
the known results of Rosenbrock & Pugh
(1974), so that the impulsive behaviour of the
system and its subsystem is inciuded. Another
objective is 1o consider as an appiication of
this theory the problem of reducing a general
linear muitivariable system to an equivalent
generalised state space form.

2. Preliminary results.
Consider the set

P(p,m) of (r + p) X (r + m) polynomial
matrices with 7 2 max(—p,—m). A matrix
transformation with many important systems
theory implications is the following :

Definition 1. (Hayton et. al. 1988) Let
T (s), T.(s) € P(p.m). T,(s), T,(s) are

said to be fullv equivalent (f.e.) if there exist
polynomial matrices M(s), N(s) such that

T, (s)
(Mo Tz“))(-zlv((s))=‘) Q2.1

where the compound matrices

(M To0) (fb((l)))

satisfy the following :

(i) they have full normal rank,

(ii) they have no finite nor infinite zeros.

(iii) the following McMillan degree conditions
hold

Syy (M) Ty(9)=8y,(T,(9)

T,(s) '
1)) _
Om (—N(s)) = 53 (71(9)

A linear time invariant multivariable system 3,
may be represented by an (r+ p) X(r+m)

(2.3) -

(with r>0) polynomial system matrix
P(s) = A(s)  B(s) 24)
D= —cs) Des) (2.

with det{ A(s)] # O as has been desribed by
Rosenbrock or by the normalized form of P(s)
A(s) B(s) 0'0

(T(s) U) ~C(s) D(sy 10
P(s) = |

vV 0 0 -1 01
D

0 0 -1.0

(2.5)

as has been denoted by Verghese (1978). Let
the set of all such matrices be denoted by

P(p,m). Then we have

Definition 2. (Hayton et. al. 1990)
P,(s), P.(s) € P(p,m) are said to be full
system equivalent (f.s.e.) if there exists
polynomial matrices

M(s), N(s). X(s), Y(s) such that

M(s) 0Y) A B(s))
X(s) 1 \-G() D
\—,—_—_—

P (s) .
Ay By())N(s) ¥(s)
2 () ¥ 6
~Cy(®) Dyl 0

(s)
isafe. tmmformmion.




Some resuits concerning the transformation
of full system equivalence, which are
indicative of its importance in the generalised
study of linear systems behaviour, are
included in the following

Theorem 1. (Walker 1988, Hayton et. al.
1990, Karampetakis & Vardulakis 1993)
(i) Full system equivalence is an equivalence
relation.
(ii) Under full system equivalence the
following are invariant
(a) the generalized order f and the

Rosenbrock degree d,

(b) the transfer function and thus the finite

(c) the sets of finite system poles and zeros,

(d) the sets of finite and infinite decoupiing
ZE10S,

(e) the controllability and observability

indices
(iii) Every system matrix P(s) is full system
equivalent with a generalised state spac

system. .
3. Hierarchical Theory of Systems
and Full System Equivalence.

We shall start this section with a review of
the philosophy of the hierarchical theory of
systems. The hierarchical theory of systems
views that every system Y may be considered
as the interconnection of other subsystems
Z,,Z,,....L,. Evary subsystem X, may then
be considered as the interconnection of other
subsystems X,;,X, ,,....Z; . of lower order.
Accordingly in this way we define an
hierarchy of orders 0.1.2.....p ; the order 0
corresponds (0 the system Y. itself. the order 1
corresponds 0 the subsystems X, the order 2
corresponds 10 the subsystems X, ; e.tc.. The
order q will be considered as the level of
greatest subdivision of ¥ and its elements are
considered as the fundamental elements of ¥.
In a certain semse the level of greatest
subdivision can be considered as the level at
which the sysiem becomes decoupled.

The above scheme is more theoretic rather
than practical and for these reasons we shall
describe the resuits as they related to the torm
of matrices in our specific field of linear. time
invariant, multivariable systems.

Consider therefore a system Y which is
formed by the interconnection of subsystems

Z,.Z,.....L, which have the following form
A;(P)B; (1) = B(p)u; (1) i=12...n

3.1

r.Xr. r.xm.
where A,(p) € Rip] © |, B(p) e Rp] ¢ !

p;Xr. p.xm.
. ClpeRpl" . D(p)eRpl "
with corresponding system matrices :
A.(8) B.(%) (p,+r)x(m.+r.)
— [ i I 3 [3 3
Pi(9)= (-cl. (s) D, (s)) & Rls]
3.2
The system Y, corresponds to the linear
multivariable system
A(p)B(t) = B(p)u(r) 53
y(t) = C(P)B) + D(p)u(t)
where  A(p) € Rip)”", B(p) e Rip) <",
Cp) € X(p1”™", D(p) € R(p)P*™
Rosenbrock system matrix :

(A9 B(s)) . (p+rxim+r)
P(s) = (—C(s) D(s)) € R[s]
(3.4)

We wish first to express P(s) explicidy in
terms of the subsystems

P,(s), P,(5),.... P, (s) and their
interconnections. The specific form ot the
interconnection equations we consider is

n
M'(l) = _El F"jyj(t)*' Klu(t)

with

n (3.5
0= I Ly
F','_j e m’"l"l’/, K, e mm,x;n

and L, € R”*” fori=1.2,..,nand j=1.2.....n.
For this purpose, first define

with

T [§ g x1
Bs =B Bpn) e RO
T [?_‘ m; x 1
ug(r) = (ulu) u,,(t)) e R\
T [i P <l
ve(t) = (_vl(t) y,,(t)) € K(1) =l
Ag(5) = block diag(A;(5) -~ Ap(s)
By(s) = block diag(B,(5) -+ By(5))
Cy(s) = block diag(C, (+). Ca(5)
Dy (5) = block diag( D) (s), Dy (5))
Fa A2 Fin
po| F21 Fa2 Fon | TP
Fn,l Fn,2 Fr.n
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K=(KT kI .. K’{)Teszﬁ""‘
- Ly) PP (o)

where m=Ym,p=Yp;,. Then the

i=l i=l
equations of X,,Z,,...,Z, can be written
concisely in the form :

As(p)Bs (1) = Bs(pus(t) a7

ys(1) = Cs(p)Bs (1) + Dg(plus (1)
which comresponds to the subsystem matrix
As(5) Bg(s)
Py(s) = (_ Co(s) Dy (s)) 3.8)

In the same way the composite system
equations for £,,Z,,...,Z, interconnected as
in (3.5) can be written as

Ag(s) Bg(s) 0Y &c(0) 0
-Cg(s) Dg(s) 1 §-ug(t) = 0 - |u(t)
0 -1 FAy® ) \K

FON
¥n=(0 0 L) -us(0
ys()

3.9)

which corresponds to the system matrix

[ Ag(s) Bg(s) 0 .0
| ~Cs() Dg(®» 110
Prw= 0 L Fox (3.10)
T T 0 -L0

under the assumption that

As(s) B_y(S) 0

det| -C;(5) Dg(s) T ]=0 (3.11)
0 -1 F

It is important to know which properties of 2
remain invariant under transformations of a
particular type applied to the subsystems X,
i=1,2.....n. Rosenbrock & Pugh (1974) shown
that the finite pole/zero structures of 3, remains
invariant under any strict system equivalence
transformation of the subsystems X,
i=1,2.....n. However some certain questions
remain concerning the infinite pole/zero
structures of ¥. Answers to these questions
may be obtained as a consequence of the
following

Theorem 2. Every invariant of X under full
system equivalence is invariant under ail
transtformations of fuil system equivalence

applied to the systems X, i=1,2,...n.

Proof. Any system matrix P, (s) which is full
system equivalent to the system matrices
P.(s) can be written as

M. (s) 0 Ai(") B.(s) _
Xi(s) 1 -Ci(s) D;(s) -
(S —

P(s)

' ' (3.12)
| AG) B(® (Ni(s) Y;‘(S))
-Ci(s) D\ O y
[
P(s)
where (3.12) is a full system equivalence

transformation. Consequently any set of such
transformations applied to

P,(5), P,($).... P, (s) can be represented by
the full system equivaient transtormatons :
(M(s) 0) Ag(s)  Bg(s))
X(s) I (—Cs(s) Ds(s))_

-

Pg(s)
. : (3.13)
[ As(s)  By(9) [ N(® Y(s))
-Cs(s) DgHN O 1
Ps(s)
where
M(s) = block diag(M, (), -, Mn(5))
N(s) = block diag(N;(s), -+, Nn(s))
' (3.19)
X(s) = block diag( X, (5), X (5)
Y(s) = block diag(¥, (5) Yo(5))

On applying the interconnection defined
previously, a composite system matrix Plx (s)
is obtained from P;(s) and it is readily
confirmed that

M) 0 0 0O

Xs)y I 00 _
Pz‘”—

N(s) Y(s) 0.0

pesl O T 0 M s

= 5 . .

> 0 0 10
ToTT o0

is a full system equivalence transtormaton

since the relevant compound matrices of the

above transformation are related via strict

equivalence transtormatons to
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T Ag(s)- Bg(s) 0 0)

—Cy(s) Ds(s) 1

(M(s) X(s) g
0 -1 F K
0
0

S o1
Ag(s) ~Cs(s)
Bg(s) Dy(s)
0

0 0 -L
= —N(s) =Y(s) 0 0"
0 -1 0 O
0 0 -I 0
\ 0 0 0 -I
T The above compound matrices are constructed
0) from the compound matrices of the full
equivalent transformation (3.13) via strict
equivalence transformations and thus satisfy
the conditions of full equivalence. Therefore
the transformation (3.15) is a full system
X equivalence transformation, which verifies the
theorem. .

3.17D

S~ 0 o0
X

C OO ~NO OO0 C

-~

|
O\OOOONOOOOO
S~~~ 000

It thus follows that any operation of full
system equivalence on the subsystems X,

|
™

0
0
0
0
0
0
0
0
I
L
0

OO0 00 O~ o
R R N N e - =)
~ o o0 Cc o oo

(= e R BN BN = BN < T =

i
~

T i=1.2,....n or equivalently to the system X

corresponds to a transtormation of full system
equivalence on the composite system Y. In the
case where the matrices F, K and L are not
constant but-polynomial (respectively proper)
we observe that the compound matrices of the
transformation (3.15) satisfy the conditions of
full equivalence (C U {eo}-equivalence)
provided that (3.13) is a transformation of this
type and therefore Theorem 1 remains the
same.

(3.16) This theorem shows that any property of Y
which is invariant under full system
equivalence is unaffected by the particular
choice of representation (within full system
equivalence) of the subsystems X.. Thus we

can show the following

M(is) X(s) O
0 I 0
0 0 1
. _ 0 _
A'S(s) —C"s(s) 0
Be(s) Dg(s) -1
0 I F
0 0 K

©C O~ OO0 ONOOOCOCO OO

1]
t~

(=]

Ag(s) Bg(s) O

-Cs(s) Dg(s) O

-N(s) -Y(s) O

0 -1 0

I = Theorem 3. Let a linear, time invariant,

multivariable system 3, which comes from the

0 interconnection of the linear, time invanant,

0 multivariable systems X, i=1,2,...n (see

0 (3.9)). Then there exists a generalized state

0 space description X of T which is full system

0 equivalent with the composite system 2, and

which is an interconnection of subsystems in

0 generalised state space form.
0
0

(=R =R ]

=)
COe ~C comoc oo oo

Proof. Let X, be a full system equivalent

generalized state space system of Z ; under the

0 -1 following full system equivalence
K transformation (Karampetakis & Vardulakis
1993) :

0 IA-Cis) Di(s))~

S O~ 0o 0

SO 00O ~NCO 5o o o
|

S

)|

O ~No c oo oo
=
|
™~
o

O O O O OO O ~
O C OO0 OO ~0O
-0 O oo CcC o o
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—Ci 0 0 1

Then, according to relation (3.15), we shall
obtain the following full system equivalence
transformation

=(’Ei 4 Bi)(Ni(") f i(’)) (3.18)

M 0 010)
0 700
0.0 110 T=
0 0 0(I)
sEq—A;, B, O ;oYN(s) Y(s) 010
| -G 0 1;0 ] 1 0o
ool i Fakf o o 10
o o -LlofA 0 "0 ol
(3.19)
where
SEg — Ag = block diag(sEy — Ay, . SE, - Ay)
B, = block diag(B. . B,)
C; = block diag(C;, . Cp)

M = block diag(M;, -, Mp)
N(s) = block diag(N, (), . Ny (s))
Y(s)=blockdiag(Y1(s), -y Y,,(s))

(3.20)

which verifies that the generalised state space
description

PE;-A; B 0O 0
I,: -Cs 0 I x(=]0 |u()
0 -1 F, K

yn=(0 0 L)x(r)
(321
is full system equivalent to the system ¥..

Theorem 4. The linear, time invariant,
multivariable system Y which comes from the
interconnection of the linear, time invariant,

multivariable systems X, i=1.2,....n (see (3.9))
is full system equivalent to the generalised
state space system

(PEg — Ag + BoFCy )Es(8) = BoKus) a

_vs(t) = Lc_ygs(t)
Proof. It is easily seen that the transformation

22)

sEg-A; B 0.0
I -BF B 0Y =G 0 10
0 L 0,I)j__0 -1 F.K
0 0 -L:i0
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_(sEs—Ag+ BsFCg [ BKY(1 0 0'0
B N < <y ' By (R R N
(3.23)

is a full system equivalence transformation.
From the full equivalent transformation (3.19)
and the symmetry property of full system
equivalence we finally obtain that the
composite system Y will be full system
equivalent to the generalized state space
system (3.22) which verifies the theorem.

Example 1.
Consider the following systems :

I (pz +5p+ 6)ﬁl(t) =(p+ 1)“1(')

» @0 =(5-2p)B)®)+(3p +2)uy (1)

E.D
and
2
e+t p7PD) _(p+1
[
ﬁz(’)
_ @)
yz(‘)'(l 0)(x2(t)
N —
ﬂz(‘)
(E.2)

and takes the following equations of
interconnection between X, and X, :
"1(') =-y@®+ y2(t)+ 2u(t)

U (8) = ) (1) — u(1) (E.3)

NOESHOESNG)
Therefore we can define the matrices

1 -1 2
(o))
-1 0 -1 (Ed

L=(1 -1)
The Rosenbrock system matrix of the
composite system Y will have the following
form :
Ag(s) Bg(s) 0 10

~Cy(s) Dg(s) I |0

B S R 4B
0 0 L0

2 . |
s +55+6 0 (_)’ s+1 0 0o 0'o
0 s+1 s 0 s+t 0 o'lo
0 0o 1 0 0o o olo
_ pE R 0 0O 35+2 0 1 010
- 0 I 0 o 0 0 110
0 o o0 -l 0 1 -1,2
0 0o o0 ] e
T 0T T % Td "o T o Tato
(E.5)




Consider also the full system equivalent
generalized state space systems Z, and Z,
(see Bosgra & Van Der weiden (1981),
Karampetakis & Vardulakis (1993)) of

Z, and Z, respectively :

55+6 s+1 —s 01 0)
25-5 35+2 0 1:0
2R1= 5 0 1 0,0{ESs
0 -1 0 011
S0 0o "o -no
and
s+1 0 s+1 -s 0'0
0 1 0 0 0:0
-1 0 0 0 1,0
‘=10 s 0o 1 010]%?
0 0 -1 0 0'1
0 0 0 0 -1o

Then the full system equivalent generalized
state space system of the composite sysiem
(E.S) will be the following :

(PEg — Ag + BoFCg )& (1) = BgKu(r) 8
(k.
ys() = LC&g (1)

where
PE —A +BFC, =
(5s+6 s+1 -+ 0 0 0 0 0 0
26-5 35+2 0 1 0 0 0 0 0
s 0 1.0 0 0 0 0
0 -1 0 0 0 0 0 0 -l
= 0 0 0 0 s+1 0 s+1 -5 O
0 6 0 0 0 1 0 0 0
0 0 0 0 -t 0 0 o0 1
0 0 0 0 0 s 0 1 0
0 0 0 -1 0 0 -t 0 0
(E.9)
T
BK=(0 0 0 2 0 0 0 0 -1)

(E.10)

LC, =(O O 010 000 -l)
(E.11) «

4. An Application of the

Hierarchical Theory of Systems.

A direct implication of Theorem 3
concems the reduction of a general polynomial
description to a full system equivalent
generalized state space form. More
specifically, consider the polynomial matrix
description ;

I: A(p)B@1) = B(pu(r)

y(0) = C(p)B(8) + D(p)u(t)
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and let its normalized form (Verghese1978) be
the following :

Alp) B OY B®) (0
Z:|-Clp) D(p) I)|-u@) =0 [u@®)
0 -1 0N ¥ I
v e et
T(p) E(r) U

B

y)=(0 0 I)] ~u@)

v y®)
()

&)
4.2)
Then we have the following :

Theorem 5. Let {C, sE-A, B} be a strongly
irreducible realization of T(s)™'. Then the
generalized state space system :

S Ex(t) = Ax(t) + BUu(r)

y(t) = VCx(¢)
is full system equivalent to the system Y of the

form (4.1)<(4.2).
Proof. It is easily seen that Y is an
interconnection of the following three systems

4.3)

I: Iﬂl (0)=Uu (1)

(4.4a)
yl(l) = Iﬂl(t)
}.'.:,_ T(p)ﬂz(t)=1u2(t)
(4.4b)
Y (1) = 1B, (1)
i 1B () = Tua(n)
3 3 3 (4.4¢)

y3(0) = VB3(1)
under the following interconnections :

ul(t) 0 0 0 yl(t) !
uz(l) =—t=1 0 0 y2(t) +1 0 [u(t)
u3(l) 0 -1 90 y3(0) 0
R St
F K

Ay
y)=(0 0 I) y, (0
[ i

L y3(t)
(4.5)
Z, is strongly irreducible (has no finite nor
infinite decoupling zeros) and thus any
generalized state space realizaton of its
transfer function i.e. T(s)™', will be full

system equivalent to this system
(Karampetakis & Varduiakis 1992). Thus
according to our initial assumption that ({C,




sE-A, B} be a strongly irreducible realization

of T(s)™")then S, :

Sy Ex(t) = Ax(1) + Bu,y (t)

@4.6)

Y5 (1) = Cxy (1)

is full system equivalent to the system Z,.

Then according to Theorem 4, the full system

equivalent generalized state space system S of

the interconnected system Y will be the
following :

S: (pEg — Ag + BgFCi)&E(8) = BgKu(r) a7

y(1) = LC&s(0)

where
I 0 0
SEq-Ag={0 SE-A O
0 0 I
4.8)
Uu oo /1 00
Bi={0 B O} ; C=|{0 C O
0 01 00V
Thus
I 0 0
SEg — A+ BgFCy =1 -B sE-A O
0o -C 1
Bk =(v" o o)T @9

LC,=(0 0 V)
and therefore the Rosenbrock system matrix of
S will be

I 0 - 0 U
P.(s) = -B sE-A 0 0 (4.10)
S 0o -C 1,0

0 0 -V, o

Note also that the following transformation :
! 0 0 U

B I 0:0Y-B sE-A 0 10|_
0D o0ovVIiIjfo -c 110}
0 0 -vio0,

SE-A 1BUYO 1 010}
= e oo e~ — o X
v ol iy (R R

is obviously a full system equivalence (more
precisely a complete system equivalence)
transtormation. Thus the system :

S . Ex(t)= Ax(¢)+ BUu(t) "
y(r) = VCx(t) '

is a full system equivalent generalized state
space model of ¥ due to the transiivity
property of full system equivalence. It is
known however (Karampetakis et. al. 1994)
that the full system equivalence transformation

2)
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which relate the systems X and S’ is the
following :

T(s)CGE- A"} 0YsE-A BUY_
0 IN-vc o0

_(T(s) UYC 0 %)
“\-v 0AO0 I @

An implementation of the above construction
method may be found in the generalized state
space reduction models presented by
Vardulakis (1991) and in the extension of Tan
& VanDewalles's realization method presented
by Karampetakis et. al. (1994).

Example 2. Consider a system X described by
the following equations :
I: (p> +5p+6)B() = (p+ Dut)
¥ =(5-2p)B{t) + Bp + u(n)
or its normalized form (Verghese 1978) :
p?+5p+6 p+1 OY BB (0

(E.-D)

20-5  3p+2 1| -u)|={0 u@®
0 -1 0OpA y» 1
O -~ /e —t S——
T(p) E(r) v
y0)=(0 0 1)&®
|
v
(E.2)
It is easily shown that :
11 0 0
)y '={o 0 0 -1]x
9 11 3 -3
e et
C
s+2 0 0 oY1 o -
0 s+3 0 O -1 0 1
x
0 0 1 -s 0 1/3 1
0 0 0 1 0 0 1
SE-A
(E.3)

where {C. sE-A. B} is a strongly irreducible
realization. Then according to Theorem 4 the
system ;

p+2 0 0 oY [{wY) (-1
0 p+3 0 0 | 20 2
S: P 2 = u(t)
0 0 1 -pf 0 1
o 0 0 1AW 1
~— Nt N
PE-A x(1) BU
vin={(9 11 3 =3)xn) (E4)
[ U U—7

vC
is full system equivalent (o the system 2. *




5. Conclusions.

This paper presents a discussion of the role
of full system equivalence transiormation
within the hierarchical theory of systems.
More specifically we prove (Theorem 2) that
every property of a lincar multivariable system
Y which remains invariant under the
transformation of full system equivalence, is
unaffected by the particular choice (within full
system equivalence) of the subsystems X,

i=1,2,....,n of X. As a result of this conclusion
we have derived a reduction algorithm which
has the property to reduce any composite
linear multivariable system X to a full system
equivalent generalized state space form.
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