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ABSTRACT

This paper considers the problem of stability analy-
sis of linear systems with a single, possibly varying,
time-delay. We develop a method based on linear ma-
trix inequalities to determine a bound for the time-
delay which ensures global uniform asymptotic stabil-
ity. The proposed method has the advantage that can
be tested numerically very efficiently and was shown,
via a simulation example, to give less conservative re-
sults.
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1. INTRODUCTION

The stability of dynamical systems involving delayed
states is a problem of theoretical and practical inter-
est as time-delays are frequently encountered in many
processes and very often is the cause for instability.
A number of techniques for stability analysis of lin-
ear systems with time-delay in the state variable have
been reported in the literature over the past decades.
Criteria for global uniform stability which are indepen-
dent of the size of the time-delay have been proposed
by a number of investigators; see, e.g. [1], [4] and [13].
Since for these stability criteria the time-delay is al-
lowed to be arbitrary large, these stability results are,
in general, conservative for many important applica-
tions. Recently, increasing attention has been devoted
to the development of methods for delay-dependent
stability analysis, i.e. stability criteria which depend
on the size of the time-delay (e.g. [5], [6], [8], [9], [11]
and [12]). Over the past few years, delay-dependent
stability criteria, which are given in terms of the solu-
tion of either a Lyapunov or Riccati equation have been
proposed in [8], [11] and [12]. A common feature of the
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latter results is that they involve the tuning of a scalar
and/or a symmetric positive definite matrix. However,
to the best of our knowledge, no tuning procedure for
such scalar and matrix is available, which makes the
use of these methods somehow difficult, specially when
it is required to find the largest possible bound for the
time-delay which ensures global uniform asymptotic
stability.

This paper is concerned with the problem of sta-
bility analysis of linear systems with delayed state.
We consider the case of a single, possibly varying,
time-delay and attention will be focused on develop-
ing delay-dependent stability criteria based on linear
matriz inequalities. The stability analysis problem
treated here is to determine an upper-bound 7 for
the time-delay 7(t) such that the system is globally
uniformly asymptotically stable for any 7(t) satisfying
0 < 7(t) £ 7. The linear matrix inequality (LMI)
approach developed in this paper has few advantages
over the existing methods for delay-dependent stabil-
ity analysis such as those in [8], [11] and {12]. Firstly,
the LMI approach is computationally very efficient as
it can be solved numerically using interior point meth-
ods: see, e.g. [2] and [7]. Secondly, it does not in-
volve any tuning of a scaling parameter and/or a pos-
itive definite matrix as is the case with the methods
of (8], [11] and {12]. Thirdly, the problem of finding
the largest possible bound for the time-delay which en-
sures global uniform asymptotic stability can be easily
solved using the proposed LMI approach.

Notation. R* = [0,00), R™ denotes the n dimen-
sional Euclidean space, R™"*™ is the set of all n x m
real matrices, || - || denotes the Euclidean vector norm,

and the notation X > Y (respectively, X > Y), where
X and Y are symmetric matrices, means that the ma-
trix X — Y is positive definite (respectively, positive
semi-definite).




2. MAIN RESULT

Consider the following linear time-delay system

(t) = Az(t) + Aqz(t — 7(t)) (1)
z(8) = ¢(F), VOe[-s,0, s>0 (2)

where 7(t) is a varying time-delay which satisfies
0<7(t) <s, Vt >0,

z(t) € R™ is the state, A and Aq4 are nxn real matrices,
and ¢(-) is the initial condition.

In this paper we shall develop delay-dependent con-
ditions for global uniform asymptotic stability of the
system (1)-(2). More specifically, our objective is to
determine a bound 7 for the time-delay such that the
system (1)-(2) is globally uniformly asymptotically sta-
ble for any 7(t) satisfying 0 < 7(¢) < 7. A linear
matrix inequality approach will be developed in this
paper for solving the latter stability analysis problem.

We shall adopted the following assumption for the
system of (1)-(2).

Assumption 1 The matriz A+ Ag has all its eigen-
values in the open left-half plane.

We observe that the above assumption, which cor-
responds to the asymptotic stability of system (1)-(2)
without time-delay, is indeed necessary for the global
uniform asymptotic stability of system (1)-(2) in the
presence of time-delay.

The next theorem provide an LMI method for ob-
taining a bound on the time-delay guaranteeing the
global uniform asymptotic stability of system (1)-(2).

Theorem 1  Consider the system (1)-(2) satisfying
Assumption 1. Then given a scalar 7 > 0, this sys-
tem is globally uniformly asymptotically stable for any
time-delay 7(t) satisfying 0 < 7(t) < 7 if any of the
following equivalent conditions holds:

(i) There exist symmetric matrices P > 0, P, > 0
and Py > 0 solving the following LMIs:

(A+Ag)TP+ P(A+ Ag) +27P  TPA4A 7PA?

FATATP ~7P 0 <0.
F(ADTP 0 -7P,

(3)

P — P <0, P, - P <O. (4)

(i) There exist symmetric matrices X > 0, X; > 0
and Xs > 0 solving the following LMIs:

X(A+A)T + (A4 A X + 27X + TA4AX 1 AT AT
+7A2X,(A%)T <0 (5)
X-X,<0, X-X,<0. (6)

Before proceeding to the proof of Theorem 1 we
recall the following inequality.

Proposition For any z, y € R"™ and for any sym-
metric positive definite matriz X € R**",

22Ty <2TX 1z 49T Xy

For the sake of simplicity of notation, we shall omit
in the sequel the dependence on t in the time-delay.

Proof of Theorem 1

(i) Consider the following time-delay system:

. 0
£(t) = (A + Ag)E(t) — Aqg / AE(t + )

-1

+AgE(t — 7 + 6)]df (7)
£(0) = ¥(9), VO e[-250] (8)

where 1(-) is the initial condition and 7 is a varying
time-delay which satisfies 0 < 7(f) < s for all t > 0.
Let z(¢), t > 0, be a trajectory of the system (1)-
(2). Since
0

z(t—71) = z(t) — / z(t 4 0)do
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0
= z(t) - / [Az(t + 0) + Agz(t — 7 + 6)]d8

-7

it follows that any solution of (1)-(2) is also a solu-
tion of (7)-(8). This implies that the uniform asymp-
totic stability of system (7)-(8) will ensure the uniform
asymptotic stability of (1)-(2); see, e.g. [3]. In the se-
quel we will study the stability of system of (7)-(8) in
order to ascertain the uniform asymptotic stability of
system (1)-(2).

Introduce the Lyapunov function candidate for the
system of (7)-(8)

V() = T (t)PE(t) (9)

where P is a symmetric positive definite matrix. Then
the time-derivative of V' (£) along the solution of (7)-(8)
is given by

V() = £7(t) [(A+ A))" P+ P(A+ Ag)| £(1)
+m(& ) +m2(6, ) (10)

where

0
m(é,t) = -2 /_ ET(t)PALAE(t + 6)do

0
m(&,t) = =2 [ €T()PALE(t — T + 6)do.




Note that in view of the Proposition, we have that
for any n x n symmetric matrices P, > 0 and P, > 0

m(E,t) < /_ OT (€7 (t)PAAP Y AT AT Pe(t)
+&T(t + 6)PiE(t + 6)] db
= 7¢T(t)PAZAP] AT AT Pe¢(t)
n /OT Tt +O)PiEE+6)do (11

and

IA

/ U [P AZE (A2 Pe)
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n2(€,t)
+ET(t =7+ O)Poé(t — 7 + )] db
= €T (t) PALP; (AT Pe(t)
N /"T E7(t— T+ 0)Pt(t — 7+ 6)dh.  (12)

In the light of the Razumikhin-type stability theo-
rem (see the Appendix), we assume that for some real
number 6 > 1, the following inequality holds:

VIEO)] < 8VIE()], Vo€ [t—2s, 1. (13)

Hence, using (11)-(12) in (10) and considering (13) we
obtain

V(g) <ETt) [(A+ A)TP + P(A+ Ag) + 276P

+7PAGAPT AT AT P + rPAL Py Y (A2)T P £(t)
(14)

where P, and P, are any n x n real symmetric positive
definite matrices such that P, < P and P, < P.
Now, we define the the matrix function

S(P,P1,Py,0) £ (A+ Ag)TP + P(A + Ag)

+aPAGAP[ P ATATP + aPA%P; Y (A2)TP + 2P
(15)

where P, Py and P; are real symmetric positive definite
matrices and a is a real number.

Since S(P, Py, P,¢) is monotone increasing with
respect to a (in the sense of positive definiteness), we
have that if for some scalar 7 > 0 there exist symmetric
positive definite matrices P, P; and P, satisfying the
inequalities

S(P,Pl,Pz,‘l-') <0, P1 <P, PQSP, (16)

then there exists a sufficiently small 6 > 1 such that
for any 7(t) < 7

W2 - [(A+ A)TP + P(A + Ay) + 276P
+TPAGAPT AT AT P + rPALPy (45T P > 0.
This implies that for any 7(t) < 7
V(€) < =Amin(W) JIE(1)]2

where Ap,in (W) denotes the minimum eigenvalue of W.
Hence, it follows from the Razumikhin-type theorem
that the system (7)-(8) is globally uniformly asymp-
totically stable for any time-delay 7(t) < 7.

Finally, using Schur complements we obtain that
the inequalities of (16) are equivalent to the those of

(3)-(4).

(ii) Using the new variables X £ P!, X, 2 P! and
X = P2_1, it can be easily obtained that the condi-
tions of (16) are equivalent to the following inequalities

X(A+A)" + (A+ Ag)X + 27X + 7A4AX, AT AT
+7A2X,(ADT <0

X-X1<0, X-X<0

which concludes the proof.

\AYAYS

Remark Theorem 1 provides delay-dependent condi-
tions for global uniform asymptotic stability of linear
time-delay systems in terms of the solvability of lin-
ear matrix inequalities. This is in contrast with the
results of (8], [11] and [12] which are given in terms
of the solution of either a Lyapunov or Riccati equa-
tion. We note that a common feature of the methods
of [8], [11] and [12] is that they involve the tuning of
a scalar and/or a symmetric positive definite matrix.
However, it happens that both the scalar and the ma-
trix to be tuned enter the bound on the time-delay
nonlinearly and, to the best of our knowledge, no tun-
ing procedure for such scalar and matrix is available.
This makes the use of these methods somehow difficult,
specially when one wants to find the largest possible
bound for the time-delay which ensures global uniform
asymptotic stability.

The stability criteria of Theorem 1 have the ad-
vantage that they are given in terms of the solution
of linear matrix inequalities, and thus do not involve
any parameter tuning, as is the case with the meth-
ods of (8], [11] and [12]. Indeed, the stability criteria
proposed in this paper can be tested numerically very
efficiently using interior point algorithms, which have
been recently developed for solving linear matrix in-
equalities; see, e.g. [2] and [7]. Observe that the LMI
(3) of criterion (i) is of dimensions 3n x 3n whereas




the LMI (5) of criterion (ii) is n x n. This makes the
criterion (ii) numerically more attractive.

Another advantage of the LMI approach is that
the problem of finding the largest 7 can also be easily
solved without the need of tuning any parameter. For
instance, using the stability criterion (ii) of Theorem 1,
the largest value of 7 can be computed by solving the
following quasi-convex optimization problem in X, X,
X9 and 7:

maximize T

subject to X >0, X3 > X, Xy > X, ¥ > 0 and (5).

Note that the above optimization problem has the
form of a generalized eigenvalue problem, which can be
solved numerically very efficiently; see, e.g. [2] and [7].
Similar optimization procedure also applies to the sta-
bility criterion (i). a

3. AN EXAMPLE

Consider the following linear time-delay system which
has been analysed in [11] and [12]:

() = [ 20 }x(t) + [ o ]z(t—T(t))
(17)

where 0 < 7(t) < s for all t > 0, where s > 0, and
with the initial condition

z(6) = ¢(6), VO€[-s,0]. (18)

With either of the stability results of Theorem 1,
it has been obtained using the software package LMI
Lab that the system (17)-(18) is globally uniformly
asymptotically stable for any time-delay 7(t) satisfy-
ing 0 < 7(t) < 0.8571. On the other hand, the crite-
rion of [11] guarantees the global uniform asymptotic
stability of (17)-(18) if 0 < 7(t) < 0.4629, whereas
the method of [12] (with the correction as suggested
in [14]) gives a bound of 0.2189. Note that the time-
delay bound provided by our method is 85% larger
than that obtained in [11], which is a significant im-
provement. Hence, for this example, Theorem 1 gives
a less conservative bound for the time-delay which en-
sures global uniform asymptotic stability than those
obtained via the methods of [11] and [12].

4. CONCLUSIONS

The problem of stability analysis of linear time-delay
systems has been addressed. A linear matrix inequal-
ity approach to delay-dependent stability analysis has

been proposed. The LMI approach developed in this
paper has two significant advantages. First, it is com-
putationally very efficient as it can be solved numeri-
cally using interior point algorithms. Another advan-
tage is that the problem of finding the largest bound
for the time-delay to ensure global uniform asymptotic
stability can be easily solved using the proposed LMI
approach and does not involve the tuning of a scaling
parameter nor a positive definite matrix, as is the case
with some of the existing delay-dependent stability cri-
teria.

APPENDIX
Razumikhin-Type Stability Theorem

Let C, = C(]-s,0], ") for a given s > 0 de-
notes the Banach space of continuous functions map-
ping the interval [—s,0] into R™ with the topology
of uniform convergence. For ¢ € C,, define ||¢|. =
SUp_,<g<o l9(6)|| and C3, where a > 0, denotes the
set {¢p € C, : |l¢|lc < a}. Moreover, let z; € C, for a
given t, be defined by z:(0) = z(t + 6), V 6 € [—s,0].

Consider the functional differential equation of re-
tarded type

2(t) = f(t,2:) (A1)

where f : Rt x C¢ —» R™ is continuous and f(¢,0) =0
for all t € R. It is assumed that for any ¢ € C2 and
for any to € R, (A.1) with the initial condition

z,(6) = ¢(6), Ve [-5,0]  (A2)

possesses a unique solution.

Theorem A.1 ([3]) Consider the retarded functional
differential equation (A.1) and let v, v, w : RT —
Rt be continuous, positive definite functions, u, w
non-decreasing, and v strictly increasing. Suppose p :
RT — R+ is a continuous non-decreasing function sat-
isfying p(h) > h for h > 0. If there exists a continuous
function V : ® x R* — R* such that:

(a) u(llzl)) <V (t,z) <v([z]]), VieR, zeR”

(b) For anytg € R, the derivative of V(t,x) along the
solution of (A.1)-(A.2), defined as

V(t,2(t) = lim sup %[V(t +hyz(t + b)) = Vi, 2(0))]

satisfies V{t,z(t)) < —w(||z|), if V(t +6,2(t +9)) <
p(V(t,z(t))) for all 8 € [—s,0], t > to, then the solu-
tion x =0 of (A.1) is uniformly asymptotically stable.
Moreover, if u(h) — oo as h — oo, then the solution
x = 0 is globally uniformly asymptotically stable.




REFERENCES [13] A. Thowsen, “Delay independent asymptotic sta-
bility of linear systems,” IEE Proc., 129, pp.73-
[1] S.D. Brierly, J.N. Chiasscn, E.B. Lee and S.H. 75, 1982.

Zak, “On stability independent of delay for linear [14] B. Xu, “Comments on Robust stability of delay
;Xzstems’%QIEQ?f fgggs' Automat. Control, AC- dependence for linear uncertain systems,” IEEE
» PP- T ) Trans. Automat. Control, 39, p. 2365, 1994.

[2] S. Boyd, L. El Ghaoui, E. Feron and V. Balakr-
ishnan, Linear Matriz Inequalities in Systems and
Control Theory, Studies in Applied Mathematics,
Vol. 15, SIAM, Philadelphia, 1994.

(3] J. Hale, Theory of Functional Differential Equa-
tions, Springer-Verlag, New York, 1977.

[4] R.M. Lewis, and B.D.O. Anderson, “Necessary
and sufficient conditions for delay independent
stability of linear autonomous systems,” IEEE
Trans. Automat. Control, AC-25, pp. 735-739,
1980.

[5] T. Mori, “Criteria for asymptotic stability of lin-
ear time-delay systems,” IEEE Trans. Automnat.
Control, AC-30, pp. 158-161, 1985.

(6] T. Mori, and H. Kokame, “Stability of £(t) =
Az(t) + Bz(t — ),” IEEE Trans. Automat. Con-
trol, AC-34, pp. 460-462, 1989.

[7] Yu. Nesterov and A. Nemirovsky, Interior Point
Polynomial Methods in Convex Programming,
Studies in Applied Mathematics, Vol. 13, SIAM,
Philadelphia, 1994.

(8] S.I. Niculescu, C.E. de Souza, J.M. Dion and L.
Dugard, “Robust stability and stabilization of un-
certain linear systems with state delay: Single de-
lay case,” Proc. IFAC Symp. Robust Control De-
sign, Rio de Janeiro, Brazil, Sept. 1994.

[9] S.I. Niculescu, C.E. de Souza, J.M. Dion and L.
Dugard, “Robust stability and stabilization of un-
certain linear systems with state delay: Multiple
delays case,” Proc. IFAC Symp. Robust Control
Design, Rio de Janeiro, Brazil, Sept. 1994.

[10] J.C. Shen, B.-S. Chen and F.-C. Kung, “Memory-
less stabilization of uncertain dynamic delay sys-
tems: Riccati equation approach,” IEEE Trans.
Automat. Control, 36, pp. 638-640, 1991.

[11] J.-H. Su, “Further results on the robust stability
of linear systems with a single time delay,” Sys-
tems € Control Letts., 23, pp. 375-379, 199%4.

[12] T.J. Su and C.G. Huang, “Robust stability of
delay dependence for linear uncertain systems,”
IEEE Trans. Automat. Control, 37, pp. 1656-
1659, 1992.




