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Abstract.

In this paper, both discrete-time and continuous-time
periodic linear systems are analyzed and discussed. The
concepts of eigenvalue, eigenvector, characteristic mul-
tiplier, steady-state response, and of blocking zero are
stated in a unique framework for both classes of systems.

1 Introduction and notation

The interest of considering periodic linear systems is
motivated by the large variety of processes that can
be modeled by (difference or differiantial) linear equa-
tions with periodic coefficients (see, e.g., [1]-[2] for the
continuous-time ones and see [81]-[9] for the discrete-time
ones). A control theory is developing for periodic linear
systems, and contributions on several control problems
have been given, including eigenvalue assignement, state
and output dead-beat control, disturbance localization,
model matching, robust tracking and regulation, block
decoupling, and adaptive control [18]-[19] .

The aim of this paper is to express in a unique frame-
work the concepts of eigenvalue, eigenvector, character-
istic multiplier, steady-state response, and of blocking
zero both for continuos time and discrete-time linear
systems.

The class of the linear periodic systems of period w
(briefly, w-periodic) that are considered in this paper, is
described by:

Az(t) A()z(t) + B(t)u(t), (1)
y(t) C(t)z(t) + D(t)u(?), (2)

where A is either the differentiation operator or the one-
step forward-shift operator, t € T', T = IR if A is the
differentiation operator or T = Z if A is the one-step
forward-shift operator, w € T,w > 0, z(t) € IR" is the
state, u(t) € R? is the control input, y(t) € IR? is the
output to be controlled (which is assumed to be mea-
sured), and A(:), B(-), C(-), D(-) are real matrices that
are w-periodic [continuous, if T' = IR] functions of t € T'.

i

2 Analysis of w-periodic homogeneous linear
systems

Consider an w-periodic homogeneous linear system
described by the following equation:

Az(t) = A(t)xz(t). (3)
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Definition 1 (See [31] for the case T = IR and ¢y = 0).
A complezx )\, is an eigenvalue at the initial time
to € T of the w-periodic matriz A(t) if and only if there
exists an w-periodic [differentiable with respect tot € T,
if T = R] vector function vy, (-) €C" of t € T, vy, (t) #0
for allt € T, which is referred to as a right eigenvec-
tor at the initial time ¢ty of A(t), such that the vector

function £,(-) of t € T, defined as follows
v (AT Ve Tt > ty, if T = Z,

& (t) == { «
(4)

is solution of (3) from the initial time t = to; such a
vector function &,(-) ts called an eigensolution at the
intial time #; of (3) with eigenvalue A, .

v (£ =) Wt e Tt > ty, if T =R,

The following lemma is classical (see, e.g., [31]).

Lemma 1 System (3) is exponentially stable if and only
if all the eigenvalues at the initial time tog € T of ma-
triz A(t) have negative real part if T = IR, or modulus
smaller than 1 if T = Z, for all ty € T.

The following lemmas can be easily stated and proved.

Lemma 2 (See [31] for the case T = IR and ¢, = 0).
Let vy, (-) € €" be an w-periodic vector function of t €
T [which is assumed to be differentiable, if T = R,
different from the zero vector for allt € T. Then, v, (t

s a right eigenvector at the initial time tg € T of AEt;
with eigenvalue A,, € C at the initial time to € T if and
only if the following relations hold:

Of;o(t) = [A(t) - ’\h)I}U&)(t)v
VteT,t>t, if T = R, (5)
Uty (t + 1) = %A(t)vtﬂ (t)’
to
VteT,t >t if T =Z,\, #0, (6)
0 = A(to)vy(to + hw),

Vhe Z,if T =1Z,\, =0. (7)

Proof. (Necessity) If the vector function &, (-) of t € T
defined in (4) is solution of (3) from the initial time
t = tg € T, then the following relations hold
Oy (£)eM0 ) Ay, (EePa 1) = A(t)uy, ()Mo,
VvteT, t>t, if T=R, (8)
vt + DX = Altu (02",
VieT, t >, if T=2. (9)




Relation (5) is obtained from (8), taking into account
that etolt=%) £ 0 for all t € IR. For X, # 0, relation (6)

is obtained from (9), taking into account that /\Sf,_"’) #0

for all t € Z. For \;, = 0, relation (7) is obtained from
(9), by the w-periodicity of vy,(:), taking into account

that A" %) = 0 and A" =1 for t = t,.

to

(Sufficiency) If the nonzero w-periodic [differentiable,
if T = IR] vector function vy (-) of t € T satisfies (5)-
(7) (with vy, (t) that is arbitrarily chosen different from
the zero vector for all t € T, t # to+ hw, if T = Z
and )\, = 0), then relations (8),(9) hold, whence &,(t)
defined in (4) is solution of (3) from the initial time
t=tyeT. 0O

Remark 1 By Lemma 2, in the cases T =R and T =
Z, )\, # 0, a solution z,(t) of (5) (if T' = IR), or of (6)
(if T = Z,\, #0), is a right eigenvector at the initial
time tq € T of A(t) with eigenvalue A, if and only if it
is an w-periodic function of t € T different from the zero
vector forallt € T m]

Lemma 3 Let v, (t) €C" be a right eigenvector at the
initial time to € T of A(t). Then, the value A, €C such
that (5) (if T = R), or (6) (if T = Z and A, # 0), or
() (f T = Z and A\, = 0), hold, is uniquely determined.

Proof. Consider the case T = IR. Suppose there ex-
ists two values )\;, €€ and A, € € such that (5) holds

with A, = 5\,4, and \;, = \,. Then, by subtraction one
obtains: _ R
[AI»() - )\/,(,]Uf,“(t) = 0’ vt € R. (10)

Since v, (t) # 0 for all t € IR, equation (10) implies

Ay = Ay, as was to be proved.
Consider the case T' = Z. Suppose there exist two

values A, €T, A, # 0, and A, €C, X, # 0, such that
(6) holds with A, = Ay, and A, = Ay, i.e., such that

Apvi(t+1) =
vam,(t + 1) =

A(t)vto (t)’
A(t)'l)f," (t) )

vt € Z, (11)
vVt € Z. (12)
By subtracting (11) from (12), one obtains
Mo = Aglv (t+1) =0, Vte L. (13)
Since vy, (t) # 0 for all t € Z, the equation (13) implies
A, = Ay, @s was to be proved.
Finally, by absurd, suppose that (6) and 87) hold, with

A, # 0. Replacing in (6) t by ¢, and in (7) h by 0, one
obtains the following relations

Uty (tO + 1) =

%A(tO)%(to),

to

Alto)ve, (o),

0 =

which imply v, (tg + 1) = 0, in contradiction with the
hypothesis that v, (t) # 0,Vt € T. a

Lemma 4 Let v, (-) €C" be an w-periodic vector func-
tion of t € T [which is assumed to be differentiable, if
T = R/, solution of (5) (if T =1R) or of (6) (if T = Z
and )\, # 0), from the initial time t =ty € T. If v, ()

is different from the zero vector for somet =t € T, then
it is different from the zero vector for allt € T.

Proof. The lemma is proved by showing that if vy, (¢) is
equal to the zero vector for some t =t € T', then v, (t) is
equal to the zero vector for t = £, that is a contradiction
of the hypothesis of the lemma. By (5) (if T = R), or
by (6) (if T = Z and A\, # 0), if v, (¢) is equal to the
zero vector for t = £, then it is equal to the zero vector
for all t > £, whence for t = £ + kw, for some k € Z such
that £ + kw > £. The proof follows by the w-periodicity
of vy, (-) that implies vy, (f) = vy, (t + kw) = 0. o

Let fi>(t, T, A )y &, T € T, be the state transition matrix
of (5) (it T =IR) or of (6) (if T = Z and A, # 0), ie.,
a matrix such that:

d - .
&@(t, 7, Ato) = [A(t) - A&)I]Q(t,T, /\tﬂ),

Vt,reT,t>1, if T=1R, (14)

L awydit,m ),
Ao
Vi,reT,t>71,if T=12Z,\, #0, (15)

<i>(‘r, A, =1, VreT. (16)

é(t + 1,7', Ato) =

By the w-periodicity of A(-), it is stressed that

S(t+w, T4w,Ay,) = B(t, 7, N,), VT ET,t>7. (17)

The following lemma gives conditions for a complex
A, to be an eigenvalue at the initial time ¢y € T of A(%),
in the cases T =R, and T = Z, A, # 0.

Lemma 5 (See [31] for the case T = IR and t; = 0). In
the case T =R, or T = Z and A, # 0, the complex A,
is an eigenvalue at the initial time ty € T of A(t) if and
only if the following relation holds:

det[®(to + w, to, Ay} — I] = 0. (18)

Proof. (Sufficiency) By Lemma 2, number A,, €C is an
eigenvalue at the initial time to € T of A(¢) if and only
if there exists an w-periodic [differentiable, if T = ]Rl
vector function v, (-) € C" of t € T, v, (t) # 0 for al
t € T, such that (5) holds (if T = IR), or (6) holds (if
T = Z and ), # 0). Any solution of 25) (if T =1R), or
of (6) (if T'= Z and A, # 0), can be written as follows:

’U',(,(t) = q)(ta to, )‘tn)vm(tO)’

One can replace in (19) t by t+w, to obtain (by virtue
of (17))

VteT,t>t.  (19)

B(t + w, tg, Ay )V (to)
(t +w,to + w, Ay ) (o + w, to, Ay )ty (o)

i)(t’ to, A&))é(tO + w, to, )\u))vto(to)v
Vt € T,t > tq. (20)

vlo(t + w)




If (18) holds, then there exists a vector v, (to) £ 0
such that

D(to + w, to, Ay )vs, (to) = vy (to)- (21)

Taking into account (21), equation (20) becomes

Ut +w) = O, to, My )i, (t0)
o= w,(t), VteT,t>t.  (22)

The w-periodicity of v, (-) implied by (22), and the
property that v, (t) # 0, for all t € T, implied by
vy(tg) # 0 and by Lemma 4, prove the sufficiency of
condition (18).

(Necessity) If the solution v, (t) € €", v, (t) # 0 for
allt € T, of (5) (if T = IR), or of (6) (if T = Z and
Aty # 0), is w-periodic, then by replacing in (19) ¢ by
to + w, one obtains

g, (to) = ®(to + w, to, /\t(,)'UL(,(tO),
with vy, (tg) # 0, which implies the necessity of condition
8). 0
Let ®(t,7), t,7 € T, be the state transition matrix of
(3), i.e., a matrix such that:
Ad(t,T) =
o(r,7) = I,

A@)e(t,7), Vt,reT,t>r1, (23)
VreT. (24)

By the w-periodicity of A(:), it is stressed that

Pt+w,7+w)=d(t,7), Vt,reT,t>7. (25

Lemma 6 In the case T =R, or T = Z, )\, # 0, the

state transition matrices ®(t,7,),) and O(t, 1) satisfy
the following relations:

(i>(t, T, Ay) = P(t, 'r)e_’\‘"(t_r),
Vti,reT,t>1, if T=1R, (26)

B(t,7,\) = B(t, 7)A, 7,
Vt,reT,t>1, if T=12,\, #0. (27)

Proof. By virtue of (16) and (24), a simple substitution
shows that (26) and (27) hold for t = 7.

Consider the case T = IR. One can take the time
derivative of both sides of (26), to obtain (by virtue of

(23))

d.
E@(t, 7, Agﬂ)

= A(t)e™ NP, T) - A, B(t, T)e M (t-T)

= [A@) - ’\L«)I]‘i)(tv 7, M),
vt,re R, t >,
as was to be shown on the basis of (14)

Consider now the case T = Z,\,, # 0. One can re-
place ¢ by t +1 in both sides of (27) to obtain (by virtue

e (-7 diii(b(t’ T) = Ay ®(t, 7)e Mo lt=7)

of (23))

S(t+1,7,N,) = ©(t+1,7)A 7

1 (-7
= —A@®)®(t, AT
/\l()

= —A®P(t+1,7,0,),
Vt,re Z,t >,

as was to be shown on the basis of (15). a

The following lemma gives conditions for a complex
Ai, to be an eigenvalue at the initial time ty € T of A(z).

Lemma 7 (See [33] for the case T = Z). The complex
A, is an eigenvalue at the initial time t) € T of ASt) if
and only if (only if, in the case T = Z and \,, = 0) the
following relation holds:

det[®(to + w,to) — My, ] = 0, (28)
where 1, := e (if T =1IR) ormy, := X (if T = Z).

Proof. For T'= Z and X\, = 0, the proof is trivial since
(28) reduces to det[®(t; + w,ty)] = 0, which is implied
by (7) for h = 0, i.e., by det[A(ty)] = 0.

For T = IR, and for T = Z, X\, # 0, the lemma is
proved by the following relations, which are yielded by
(18) and (26), (27), taking into account that 7, # 0:

0 = det[®(to +w,to, Ay) — I
= det[<I>(t0 + w7t0)7]t;1 — I]
nt;ﬂdet[Q(tO + w, tO) — ntol] (29)

By virtue of (29), if T = R, or T = Z, A, # 0,
then 7, # 0 and therefore relation (18) implies, and is
implied, by relation (28). O

Definition 2 (See [31] for the case T = R, t; = 0, and
[33] for the case T = Z). The polynomial

Pio () == det[®(ty + w, to) — m, 1] (30)

is referred to as the characteristic polynomial at the
initial time ty of the w-periodic matriz A(t), and the n
T00tS Myy,1 = 1,2, ...,m, of py () = O are referred to as
the characteristic multipliers at the initial time to

of A(t).

Lemma 8 (See [33] for the case T = Z). The charac-
teristic multipliers at the initial time ty of the w-periodic
matriz A(t) are independent of the initial time t,.

Proof. Consider the case T = IR, and T = Z, ), #0.
If n, is a characteristic multiplier at the initial time to
of matrix A(t), then equation (28) implies the existence
of a nonzero vector vy, (to) such that .

[®(to + w, to) ~ meIlug, (o) = 0. (31)

The solution v, (t) of (5) (if T = IR), or of (6) (if
T = Z,)\, #0), from the initial time t = ¢, and such




an initial condition vy, (to) is a right eigenvector at the

initial time ¢y of A(t) with characteristic multiplier 7.
For any t; € T, t; > ty, one can left multiply (31) by

matrix ®(¢; + w,ty + w), to obtain (by virtue of (25))

0 = {q)(tl + w, to) - TM)‘I’(tl +w,to + w)]vlﬂ (tO)
[®(t1 + w, 1) ®(t1,t0) — M @ (t1, to)]vea (o)

= [CI)(tl +w, tl) - 7714»]17(’51)’ (32)

where 9(t1) := ®(t1,t0)vi,(to). If 0(t1) # O, then (32)
implies that

det[®(t; + w,t1) — i I) =0, (33)

namely that 7, is a characteristic multiplier at the initial
time ¢; of A(t), as to be shown. If T = IR, then ®(t;,%o)
is nonsingular, whence v, (to) # 0 implies f;(t12 #0. If
T = Z, n, # 0, suppose, by absurd, that 9(t;) = 0.
Then,

‘I)(thto)’vtn (t()) =0. (34)

From (34), one obtains

vto(tl) = "h; :

O(t1, to)vi, (o),

which is a contradiction of the property that if 7, is a
characteristic multiplier at the initial time ¢, of matrix
A(t), then the following vector function

t—1

T
Ut(,(t) = Ty, v q)(t,t())'l}to(t()), t e Z,t > to,

is an eigenvector at the initial time ¢y € T of A(t), with
characteristic multiplier 7.
Consider the case T = Z, A, = 0. Since

w—1

det[®(to + w, to)] = [ ] det[A(K)], Vto € Z,
k=0

the property det <I>§t0 + w, tO% =0 for some tg =ty € T

implies that det{®(ty + w,tp)] = 0 for all t; € T, i.e,,
m, = 0 is a characteristic multiplier of A(t) at each
to € Z, as was to be shown.

Remark 2 By the proof of Lemma 8, one has obtained
the following properties. In the cases T = IR, and T' =
Z, )\, #0,if Ay is an eigenvalue at the initial time g
of A(t) for some ty = to € T, then it is an eigenvalue
at the initial time ty of A(t) for all ty € T. In the case
T =Z,\, =0, if A, = 0 is an eigenvalue at the initial
time to € T of A(t) for some ty = to € T, the property
that \;, = 0 is an eigenvalue at the initial time ¢t € T of
A(t) for all tg € T, is not necessarily true (the property
det[A(to)] = 0 for some to = tg € T does not imply the
property det[A(tg)] = 0 for all tp € T'). ]

Lemma 8 allows the following definition to be intro-
duced.

Definition 3 (See [31] for the case T = IR, and [33] for
the case T = Z). The following polynomial

p(n) := det[®(w,0) — 7]

is referred to as the characteristic polynomial of the
w-periodic matriz A(t), and the n roots of p(n) = 0 are
referred to as the characteristic multipliers of A(t).

By Lemmas 1, and 8, and Definition 3, the proof of
the following lemma is trivial.

Lemma 9 System (3) is exponentially stable if and only
if all the characteristic multipliers of matriz A(t) have
modulus smaller than 1.

3 Analysis of w-periodic inhomogeneous linear
systems

Consider an w-periodic inhomogeneous linear system
described by the following equations

Az(t) = A(t)z(t) + B(t)u(t), (35)
y(t) = C@)x(t) + D(t)u(t). (36)

Assumption 1 The complex number a €C (o # 0, if
T = Z) is such that 0 :=e™ (if T =1R), or 0 := o” (if
T = Z), is not a characteristic multiplier of A(t).

Definition 4 (See [34] for the case T = IR and a = 0).
Under Assumption 1, the vector function (, () of t € T,
which is defined as follows

Ciolt) == z,(t)ect=), VteT,t >t, if T=TRR,
DT zp(t)altl), Ve Tt > ¢, if T = Z,
(37)
where tg € Z, 2, (-) €C" is an w-periodic [differentiable,
if T = R/ vector function of t € T, is an exosolution
at the initial time ty of (35) if and only if it is the so-
lution of (35) from the initial time t = o corresponding
to the following input vector function

u(t) == w(t)e?t=0) Vte Tt >ty if T =R,
T wt)alt=®, Ve Tt >t if T = L,
(38)
where w(-) € 8P, and SP is a set of complex-valued w-
periodic [continuous, if T = Z] p-dimensional vector
functions of t € T; vector z,,(t) is referred to as a right
exovector at the initial time ¢y of (35) corresponding
to the input vector function (38).

Lemma 10 Let z,(-) €C" be an w-periodic vector func-

tion of t € T [which is assumed to be differentiable, if

T = IR]. Then, under Assumption 1, the vector func-

tion (,(-) of t € T defined in (37), is an exosolution at

the initral time to € T of (35) corresponding to the input

Zec‘tior function (38) if and only if the following relations
old:

[A(t) — al]z,(t) + B(t)w(t),
VteT,t>ty, if T=R, (39)

~ AWz (t) + ~B)u(?)
VteT,t>t, if T=2Z.  (40)

Z1,(t)

Zto(t + 1)




Proof. (Necessity) If the vector function (,,(-) of t € T'
defined in (37) is the solution of (35) from the initial time
t = tg € T corresponding to the input vector function
(38), then the following relations hold

1y (D200 1z (1)e ) =

A(t)z&,(t)eu(t—to) + B(t)w(t)ea(l,—lﬂ)’

2z, (t 4+ Daltti—h) =

A(t)z, ()a"™) + B(tyw(t)al "),
VteT,t>tg, if T = L. (42)

Relation (39) is obtained from (41), taking into ac-

count that e*¢=%) £ 0 for all t € IR, while relation (40)
is obtained from (42), taking into account that (by As-
sumption 1) alt=%) £ 0 for all t € Z.

(Sufficiency) If the w-periodic [differentiable, if T =
IR] vector function z,(-) of ¢t € T satisfies (39)-(40),
then relations (41),(42) hold, whence (;,(t) defined in
(37) is a solution of (35) from the initial timet =ty € T
corresponding to the input vector function (38). O

It is now possible to state the following corollary to
Lemma 10.

Corollary 1 Under Assumption 1, a [differentiable, if
T = IR] vector function z,(-) €C" of t € T is a right
ezovector at the initial time tg € T of (35) corresponding
to the input vector function (38), if and only if it is an
w-periodic solution of (39), (40) from the initial time
t = to.

The following three lemmas specify the conditions un-
der which a right exovector is unique, is independent of
the initial time ¢y € T, and exists.

Lemma 11 Under Assumption 1, if there exists a right
exovector z,(t) at the initial time to € T of (35) cor-
responding to the input vector function (38), then it is
uniquely determined.

Proof. By absurd, suppose there exist two w-periodic
vector functions 2,(-) and Z,(-) of t € T [which are
assumed to be differentiable, if T = IR], such that (39),
(40) hold with 2,(-) = %,() and z,() = Z,(-). By
subtraction of the equations thus obtained, one obtains

?fn (t) = [A(t) - al]zfo(t)’
VteT,t>ty, if =R, (43)
2+ = ZAWDZ0),

VteT t>ty, if T=2, (44)

where Z,(t) := %,(t) — Z,(¢). Since, by Assumption 1,
the complex number « is such that o = e™ (if T = R),
or 0 = o (if T = Z), is not a characteristic multiplier
of A(t), Lemmas 2, 3 and 4 imply that Z,,(t) = 0 for all
teT. 0

Lemma 12 Under Assumption 1, if z,,(t) is a right ex-
ovector at the initial time ty of (35) corresponding to
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the input vector function (38) for some ty = ty € T,
then it is a right exovector at the initial time ty of (35)
corresponding to the input vector function (38), for all
theT.

Proof. By Lemma 10, equations (39), (40) hold for
to = fo. Since, by Assumption 1, e*("%) £ 0 for all
teT,t>ty(ifT =MR),orall™™ £0forallt e T,t >t
(if T = Z), with ty being an arbitrary element of T', one
can multiply both sides of (39) rewritten with ¢y = o for
ealt=t) and both sides of (39) rewritten with to = £, for

alt=t)_ The resulting equations imply that the following
vector function

Colt) = z,(t)edt=), Ve T,t > ty, if T =R,
DT g (0)altw), Yt e Tt > to, if T = Z,

is a solution of (35) from the initial time ¢ = ¢y corre-
sponding to the input vector function (38). The arbi-
trariness of ¢y proves the lemma. a

Lemmas 11 and 12 allow the term erovector to be
used, instead of the term exovector at the intial time ty,
to represent an w-periodic solution of (39), (40), which
(if any) is uniquely determined. From now on, subscript
to will be omitted in the representation z;,(t) of a right
exovector.

Under Assumption 1, the following relation:

det[] — ®(t +w,t)o”!] = o "det[o] - ®(t + w,t)]
# 0, vVteT,

where ®(t, 7) is the state transition matrix of (3), implies
that matrix [ — ®&(t + w,t)o™!] is nonsingular for all
teT.

The proof of the following Lemma is omitted for space
reasons.

Lemma 13 (See [34] for the case T = IR and a = 0).
Under Assumption 1, the exovector z(t) of (35) corre-
sponding to the input vector function (38) erists and is

gwen by:
2(t) = [T -®F+uwt)e ] .
+w
/ B(t + w, )" =T) B(r)w(r)dr,
t
if T =R, (45)
() = é{z — Bt 4w )]
t+w—1
> ot +w,m)e I B(r)w(T),
T=t
if T =Z, (46)
forallteT.

The following lemma gives conditions for the exosolu-
tion of (35) corresponding to the input vector function
(38) to be attractive.




Lemma 14 Under Assumption 1, let z(t) € C" be the
ezovector of (35) corresponding to the input vector func-
tion (38). Let ((t) €C" be the solution of (35) from the
initial time t = to € T, from an arbitrary initial state
¢(to) = zo, and corresponding to the input vector func-
tion (38). The function ((t) := ((t) — Cu(t), with (o (2)
being defined in (37), exponentially goes to zero for all
zo € R”, if and only if all the characteristic multipliers
of A(t) have modulus smaller than 1.

Proof. Tt is easy to see that ((t) satisfies the following
equation _ _
AG(t) = A()C(E)- (47)

Function ((t) exponentially goes to zero for all C(to) €
R, if and only if all the characteristic multipliers of A(t)
have modulus smaller than 1, as was to be proved. 0O

The definition of steady-state solution of an w-
periodic system of the form (35) given in [34] for w-
period input vector functions, is extended for input vec-
tor functions of the form (38), by the following defini-
tion.

Definition 5 Under Assumption 1, let (;,(t) be the ez-
osolution at the initial time to € T of system (35) corre-
sponding to the input vector function (38). Vector func-
tion (y, (t) is referred to as the state steady-state so-
lution of (35), (36) corresponding to the input vector
function (38) 'if and only if rela] > 0 (if T = R), or
la| > 1 (if T = Z), and all the characteristic multipli-
ers of A(t) have modulus smaller than 1. The output
solution of (35), (36) corresponding to such a (,(t) is
referred to as the output steady-state solution of
(35), (36).

The notion of blocking zero that has been given (see,
e.g., [32]) for time-invariant linear systems, is extended
for w-periodic systems under the following assumption.

Assumption 2 The set SP of the w-periodic [continu-
ous, if T = IR] functions w(-) has a p-dimensional base

B, := {wo(), w1(:), -, wp-1()},

for some p € Z,p >0, i.e., for each w(-) € S” there exist
p complez numbers cg, C1, ..., Cp—1 Such that the following
relation is satisfied

w(t) = cowp(t) + cwy(t) + ... + cpmrw,p—1(t), VEeT.
(48)

Remark 3 Assumption 2 does not seem to be restric-
tive.

Consider the case T = IR. For i = 0,1,...,w — 1,
consider the w-periodic function w;(-) : Z — {0,1} that
is defined as follows

wi(h+ kw) :=6(h —1), he{0,1,..,.w— 1L ke Z,

where 6(+) : Z — {0,1} is such that

1, t=0,
5(t):{ 0, t#0.

For each w-periodic function w(-), define w complex

numbers as follows:
¢ :=w(l), 1=01,.,w-1

Then, it is easy to see that (48) holds with p := w.

Consider the case T = R and @ € IR. Assume that
the input vector function (38) is the output free solu-
tion from the initial time ¢ = t; € IR of the following
w-periodic system (which is usually referred to as the
exosystem):

Tu(t) = Au(t)zu(t), (49)
u(t) = Cu(t)xu(t)’ (50)

where z,(t) € IR’ is the state, A,(-) and Cy(-) are real
matrices that are w-periodic functions of t € IR. Assume
that A,(t) is reducible (see, e.g., ‘34]) in the sense
of Floquet-Lyapunov to the diagonal constant matrix
A = ol, through the w-periodic Lyapunov transforma-
tion matrix W(t). Then, the input vector function (38)
can be expressed by

u(t) = Cu(t)W(t)cea(L_tO)v (51)

where ¢ € IR” is a vector dependent on the initial condi-
tions of (49). By comparing (38) with (51), one obtains

w(t) = Cu(t)W(t)g;

whence condition (48) is satisfied once the p column
vectors of Cu(t)Wét) are taken as the base functions
w;(-),4 € {0,1,...,w — 1}, of B,, and the p entries of vec-
tor ¢ are taken as the coefficients ¢;,i € {0,1,...,w —1}.

O

Definition 6 Under Assumptions 1 and 2, the complex
o is a blocking zero of system (35), (36) from the
input u(t) to the output y(t) if and only if the output
steady-state solution of (35), (36) corresponding to the
input vector function (38) s constant and equal to zero
for all the w-periodic vector functions w(-) € S”.

The following lemma gives necessary and sufficient
conditions for a complex « to be a blocking zero of sys-
tem (35), (36).

Lemma 15 Under Assumptions 1 and 2, the complex o
is a blocking zero of system (35), (36) from the input u(t)
to the output y(t) if and only of the following conditions
hold fori=0,1,...,p—1:

;W ot +w, T)e~ =T B(r)w;(r)dr
tm D(tywi(t) |
Ot +w,t) — Ie™
Im [ c(t) ]
VteT, if T=R, (52)

S @ (t + w, m)em T B(r)wi(7)
Im [ D(t)ywi(t) ] =

c

C(t)
VteT, if T=1Z (53)

Im [(I)(t—i—w,t) - Ia“’] ’




Remark 4 If conditions (52), (53) fori = 0,1,...,p—~1,
hold for all 8 € ¥, ¥ C Q, then the complex « is a
blocking zero of system (35), (36) for all 8 € ¥. O

Proof of Lemma 15. Since, by Assumption 1, e* # 0
and o' # 0 for all t € T, the complex « is a blocking zero
of system (35),(36) if and only if the output response of
the following system (if T = IR)

2(t) = (A(t) —al)z(t) + B(t)w(t), (54)
y(t) = C()z(t) + D(H)w(t), (55)
or of the following system (if T' = Z)
At+1) = éA(t)z(t) + éB(t)w(t), (56)
y(t) = C(t)z(t) + Dt)w(?), (57)

to each input vector function w(-) € S”, is constant and
equal to zero in correspondence to the unique solution
of (54) (if T = IR), or of (56) (if T = Z), that is w-
periodic. In view of Assumption 2, the linearity of sys-
tems (54), (55) and (56), (57) implies that the complex
a is a blocking zero of system (35),(36) if and only if
the output response of (54), (55) (if T’ = IR), or of (56),
(67) (if T = Z), with w(t) = w;(t), i = 0,1,...,p — 1,
is constant and equal to zero in correspondence to its
unique state solution that is w-periodic. Through a rea-
soning similar to the one used in the proof of Lemma
13, the unique w-periodic state and output solution of
(54), (55), with w(t) = w;(t), i = 0,1,...,p — 1, can be
rewritten as follows for all ¢ € R:

z2(t) = (t + w,t)e”*2(t)
. /t+w <1>(t tw, T)e—a(”“’_T)B(T)wi(T)dT, (58)
B(t) = C(H)z(t) + Dywilt), (59)

and the unique w-periodic state and output solution of
(56), (57), with w(t) = w;(t), i = 0,1,...,p — 1, can be
rewritten as follows for all ¢t € Z:

2(t+w) = Bt +w, t)a"z(t)
t+w—1
+= 3 Ot +w, ) IB(rywi(r), (60)

T7=1
y(t) = C(t)z(t) + D(t)wi(?). (61)
(Necessity) If 3(t) = 0 for all t € T, then equations
(58), (59) imply the necessity of condition (52), while
equations (60), (61) imply the necessity of condition
(53).

(Sufficiency) Since both sides of relations (52), (53)
are w-periodic functions of ¢ € T, then conditions (52),
(63) imply the existence of an w-periodic vector function
z(t) such that (58), (59) (if 7' = IR), or (60), (61) (if
T = Z), hold with g(t) = 0 for all t € T. Since the
exovector z(t) is uniquely determined, the sufficiency
proof is completed. o
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4 Conclusions

In this paper we have analyzed a class of linear pe-
riodic systems, both discrete-time and continuous-time.
For these systems, we have introduced well known no-
tions for linear time-invariant systems, such as the con-
cepts of eigenvalue, eigenvector, characteristic multi-
plier, steady-state response, and of blocking zero. Fu-
ture work will regard the possibility of using such no-
tions for the statement of an algebraic version of the
internal model principle for periodic linear systems.
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