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1. AIM OF THE FACTORY DYNAMICS

The aim of a production process is to transform ob-
jects from raw materials, into semifinished and then into
finished products. As a consequence, the mathematics
which has been introduced to model a production pro-
cess deals with transformations of elements into the spa-
ce of the object quantities.

The space of the object quantities has been defined
in the Manufacturing Algebra (see the companion paper
(3]) as the Cartesian space having dimensions equal to
the cardinality of the different types of objects and coor-
dinate axes representing the quantities of the various ob-
Jject types. Then the Algebra deals with operations bet-
ween elements of such a quantity space. To provide an
example in terms of the Algebra, one can say that as-
sembling four wheels, one engine and one car body
yields a car as a product. No question is raised concer-
ning from where the components will have to be drawn
out, or when the assembling operation will have to be
carried out. The Algebra is formulated outside space
and time.

The Factory Dynamics aims instead at describing the
production process as it is evolving in the factory space
and during time. The term Dynamics has been appro-
priately introduced to recall the time and consequently
the dynamic evolution of the production process during
time.

The introduction of space and time does not modify
what has to be dealt with, i.e. the transformations of ob-
ject quantities, and the mathematical space where one
has always to operate, i.c. the space of thc object quanti-
ties already defined by the Algebra. What is new is the
distinction of the objects, not only according to types,
but also according to the place where they are located
and to the time when they are at a certain place. In the
language of Factory Dynamics one will say: an assem-
bling operation to be launched at time 1, will require

Sfour wheels to be drawn out of store A at time t,, one en-
gine to be drawn out of store B at time t, and one car
body to be drawn out of store C at time t;; the operation
will release one car at time t, at store D.

Let us point out that the complete interchangeability
of objects of the same type, which holds for the Algebra,
does not hold for the Dynamics, where the interchangea-
bility implies - beyond the property of belonging to the
same type - also the property of being at the same place
at the same time. According to the Dynamics, two ob-
jects of the same type but located at different places - or
located at the same place but at different times - have to
be considered as different objects. As a consequence, the
cardinality of the objects increases as well as the dimen-
sion of their quantity space. In summary: a quantity can
not be referred only to an object type, but also to the pla-
ce (space) where the object is located and to the location
time.

Therefore the Factory Dynamics will still apply the
Algebra as it has been defined, with the only peculiarity
of operating over an object quantity space of larger di-
mensions, since the cardinality of the objects under con-
sideration increased, because the objects differ not only
in type, but also in their locations in space and time. Be-
sides this rather formal distinction, the Factory Dyna-
mics differs from the Algebra because it aims at analy-
sing the process evolution in time.  To this purpose, a
new concept comes out, which is totally missing in Al-
gebra: the concept of state.

A state is the ensemble of information allowing a
clear separation between past and future: indeed, a state
summarizes all the effects the past history may have on
the future. Given the state, the past can be forgotten. The
dynamic approach which has been foliowed hereafter is
strongly based on the state concept and, as such, it can
fully meet the objective of writing the equations descri-
bing the time evolution of the factory state, under the




control actions and the effects of random disturbances.

2. THE FACTORY

2.1. Definition

The factory is a tool for implementing the manufac-
turing operations which have been introduced as ele-
ments of the Algebra. From a mathematical viewpoint,
the factory appears as a network of operators (storage
units, transport units, manufacturing units) which trans-
form quantities of objects through manufacturing opera-
tions, under the management of a production control
system.

Definition. A factory plant is the composition of
four mathematical entities: storage units, transport
units, manufacturing units and control units.

Storage, transport and manufacturing units can be in-
terconnected to form a network corresponding to factory
layout. Control units manage the factory production.

2.2. The time

The approach followed here is the onc of the discrete
dynamic systems; therefore the fime is an independent
integer variable € Z, evolving naturally in the direction
of the increasing integers with a finite step (called sam-
pling step) taken equal to the unit of time.

The factory is modelled as a cawsal system, in which
no cause can accomplish its effect at thc same instant
when acting. The minimum delay between a cause and
the corresponding effect is assumed to be onc sampling
step, i.e. one unit of time.

2.3. Space-time arrangement of the objects in the
factory

The concepts and the relevant mathematics of object
sets and object quantities, which have already been used
in the Manufacturing Algebra 3], are introduced also in
the factory, with the peculiarity of assigning to objects
an arrangement in the space-time dimension. Objects of
the same type must therefore be considered different
(that is, non-interchangeable from the viewpoint of the
feasibility of manufacturing operations) when they are in
different positions and/or at different times. The effect is
equivalent to a multiplication of the number of the ele-
ments belonging to the object set.

The places in a factory where the objects can be ar-
ranged, are denoted as storage units. Their cardinality is
assumed to be finite and equal to the integer n,. Hence
they can be ordered in a list and put in correspondence
with the integer set Z{1,n,}, so that the space in a factory
is described by the integers i=1,2,...n,.

All the actions performed in the factory are assumed
to produce their effects within a finite time delay, not
longer than a well-defined and finite time horizon.
Hence, having decided to model the time as a discrete
variable, the time horizon will be defined as a finite
number n; of sampling steps, starting from the current
time .

The above assumptions on space and time imply that
factory object quantities are described by a three-index
vector ¢, whose generic component g(Z, j, k) represents
the quantity of the object & which, at time ¢+, are pre-
sent in the storage unit i. Having denoted with
e n, the total number of objects potentially present in

all the storage units,
¢ n, the total number of the storage units,

* the total number of time units in a time horizon,
the dimension of the quantity vector ¢ equals n,(] +n)n,.

It must be however pointed out that the use of the tri-
ple of indices (i, j, k) is a simple convenience for a
more immediate understanding. In fact, it is perfectly
equivalent to consider ¢ as an ordinary vector of dimen-
sion n(1+n)n; indexed by a single integer r, the latter
being related to indices (i, j, k) by

r=i+(G+l)n +kn(n+l) )

2.4. The factory elements: storage units

A storage unit is a mathematical element introduced
to model stores and more generally any area of the fac-
tory which is used to store a quantity of objects, A stor-
age unit is a simple mathematical element consisting of
a vector of object quantities, which is a function of the
time ¢. This vector, indicated in the following as the state
of the storage unit, describes the object quantities which
are present in the storage unit at time ¢ and the object
quantities which, as a consequence of the commands al-
ready dispatched by the production control system, will
be present (stored) at the successive  instants
t+1 ,t+2,...,t+nj, where n; defines the time horizon.

Storage and drawing operations can be carried out.
In the case of storage, the state is incremented by the
quantity of stored objects and, in the case of drawing, it
is decremented by the drawn quantities. Constraints of
physical realizability can be imposed on the stateof a
storage unit, in terms of maximum and minimum (zero)
quantities which it can contain,

Let us remark that the state at the current time ¢
which, by definition, sums up the whole past history,
must necessarily take into account all drawing and stor-
age commands which at the same time ¢ have been al-
ready received but not yet carried out. By knowing the




time when those commands will be carried out, one can
predict the evolution of the object quantitics in the
stores; the prediction horizon corresponds to the maxi-
mum delay (time horizon) which can occur between the
reception of commands and their performance. In this
way the state of any store is the sum of the object quan-
tities actually present at time ¢ and the object quantities
expected at the successive instants ¢+7, t+2, ... till to the
horizon t+n,.

The state of all the factory storage units is then de-
noted by the three-index vector x, (function of time ¢),
whose generic component x/(i, j, k) represents the quan-
tity of the object £ which, at time t+j, is expected to be
in the store i, taking into account all commands dis-
patched at time f.

2.5. The factory elements: production units

_Transport and manufacturing units

A transport unit interconnects two stores and is ca-
pable of performing specific transport operations (the
identity operations defined by the Manufacturing Alge-
bra), drawing the object quantitics contained in the input
vector (equal to the output vector) from a store and stor-
ing them in the other one.

A manufacturing unit interconnects two stores, and
is capable of performing specific manufacturing opera-
tions, drawing the input object quantitics from the input
store and placing the output object quantities in the out-
put store. Input and output stores can be the same.

Transport units are just like to manufacturing units,
except for the peculiarity that they perform only identity
operations in which objects are moved from one store to
another one without any transformation. Therefore, in
what follows, transport and manufacturing units will be
treated as the same mathematical element and
generically indicated as production units.

The cardinality of the production units of a factory is
assumed to be finite and equal to the integer n,. Hence
they can be ordered in a list and put in corrcspondence
with the integer set Z{1,n,}, so that they can be de-
scribed by the integers r=1,2,..n,.

A production unit  is capable of performing only the
manufacturing (or transport) operations has been pro-
grammed for; those operations are assumed to define the
finite and countable set E_ of the elementary admissible
manufacturing operations of the unit r. As a conse-
quence, the production control system can only com-
mand a production unit r to perform an operation s be-
longing to E,. By considering all the production units of
a factory, the admissible set E of the elementary manu-
facturing operations of the whole factory can be defined,

where each elementary operation is associated to an in-
teger s, s=1,...,n,.

States of production units
A production unit is characterized by two logic

states: the waiting state and the working state. When in

the waiting state, it can receive from the production con-
trol unit the command of performing one of the admissi-

ble operations. Then it moves to the working state for a

time interval depending on the command, i.e. on the

manufacturing operation to be performed. As soon as the
commanded operation is terminated, it switches back to
the waiting state, ready to receive a new command.

Note that the time of permanence in the working
state does not necessarily coincide with the manufactur-
ing operation time. In fact, in complex units one should
distinguish between:

e the cycle time c(r,s), i.e. the time of permanence in
the working state, defined as the minimum time in-
terval between two successive commands (or be-
tween the productions of two successive objects),

o the manufacturing time t(r,s), defined as the time in-
terval between the command and the coming out of
the finished object. Manufacturing times can be
much longer than cycle times.

The cycle and manufacturing times are defined for
each manufacturing operation of the admissible set; they
can be deterministic or stochastic variables. In the latter
case the factory model will be a stochastic system.

Admissible manufacturing operations
Each admissible manufacturing operation is de-

scribed, in conformity with the Manufacturing Algebra,

by two input and ouput quantity vectors u and y and the
corresponding balance vector b. Those vectors are ex-
pressed using the already explained three-index notation

(i, J, k), where:

e i denotes the storage unit from which objects have to
be drawn (or in which they must be stored),

e j denotes the time counted from the dispatching in-
stant of the command, when drawing or storage will
effectively take place,

e kthe type of object.

It is worth pointing out that here the balance vector
b=y-u does not suffer any more a loss of information
with respect to input and output vectors as it happened
in the Algebra, where operations were defined as inde-
pendent of factory and time. Here, the arrangement in
time and space of drawing and storage operations pre-
vents reusable materials and some semifinished products
from disappearing from the balance vector. For this rea-
son, in the following any manufacturing operation will




be described by its balance vector.

Stochastic production units

Vectors u, y and b can be assumed to be stochastic
variables; in which case the model of the relevant pro-
duction unit becomes stochastic. To this end, let us re-
call here what has been already said in thc companion
paper [3] about randomness and how it can concern
three types of variables:
¢ the quantitics of input objects (f.i. in repair opera-

tions),

e the quantities of output objects (f.i. in the quality
control operations),

e the time j, when the drawing of the input objects or
the storage of the output objects takes place.

The assumption of a deterministic or stochastic model is

a choice to be made in connection with the type of proc-

ess and the objectives of the study.

Inputs to production units

The commands, which at a given instant ¢ are dis-
patched to all the production units of the factory, will be
described by a two-index vector ¥, whose component
ufrs) can take the values zero or one depending
whether or not the admissible operation s is commanded
to the production unit r at time ¢.

In order to describe which drawing and storage op-
erations follow a specific command, the multi-index ma-
trix B, resulting from the composition of the balance
vectors b of all manufacturing operations which can take
place in the factory, is introduced; its generic element
b(ijk;rs) represents the object quantity to be drawn (if
negative) or to be stored (if positive) according to the
following indices:
¢ |, index of the store where the operation is performed
e j, time, in number of sampling steps and counted

form the dispatching time ¢, when drawing/storage

will take place

¢ £, index of the object to be drawn or stored

* 7, index of the production unit which performs the
drawing/storage operations

¢ s, index of the operation requiring drawing/storage.
The relation

p.=Bu, @

generates a multi-index vector p, whose component
pfijk) represents the total of storages (if positive) or
drawings (if negative) of the object k, occurring in the
store i at time t+j as a consequence of the command u,
dispaiched at time ¢.
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2.6. The factory elements: the control units

Control units aim at managing a network of manu-
facturing, transport and storage units, which could in ex-
treme cases be reduced to one single unit or be extended
to the whole factory. For the time being, it is seen as a
black box described only in terms of input-output, as it
follows.

e It receives commands from a higher hierarchical
control level in terms of manufacturing operations,
which can potentially be performed by the network
of units placed under its control. In other words, the
command dispatched by the higher level refers to a
manufacturing operation which can be the result of
an algebraic composition (in terms of additions and
multiplications) of the elementary operations which
the production units under its control are capable of
carrying out. Note that the algebraic composition of
an operation corresponds to a plan including both the
elementary operations to be carried out and their or-
der of performance.

¢ It receives information from the field on the state of
the stores, manufacturing and transport units.

e Afier having verified the availability of the input ob-
jects in the input storage unit, it dispatches the rele-
vant commands to the manufacturing and transport
units which are in waiting state. Those commands
have been already introduced through the definition
of the vector u,.

In conclusion, a control unit performs what usually is
called a real-time control, which is nothing else than
putting into operation a manufacturing program set up
by a higher hierarchical level, without taking into ac-
count randomness and unpredictable events which may
occur in the field.

The search for an efficient and robust control logic is
within the objects of this research. It is just for meeting
such requirements that, in the following chapters, the
factory network will be described in terms of state equa-
tions.

3. THE FACTORY STATE EQUATIONS

3.1. The storage state equations
The time evolution of the state of the storage units is

described by the following linear discrete dynamic
model:

©)

x,,=Ax +Bu,

where:

e x, is the threc-index state vector of all the factory
storage units,




¢ B is the 3x2-index balance matrix of all the admissi-
ble manufacturing operations which can be per-
formed by all the factory production units,

e gy, is the two-index command vector dispatched by
the production control system,

¢ A is a square 3x3-index matrix, forcing the state x, to
shift forward in time; its entries are defined by the
following relations:

afijk;ij+1k)=I for j<n; and any i,k
a(i,1,k;ilk)=1 for any ik
a(ij k:1,r.s)=0 otherwise 4

3.2. Stability, controllability and observability

The factory state equations given by cquation (3) are
linear and time invariant. One can easily verify that they
have the following properties.

Stability

The system is dynamic, of order n(/ +n)n, . Note
that n, m, n, are respectively the number of storage
units, the number of sampling steps or lags defining the
time horizon and the number of types of objccts. It turns
out that the eigenvalues of the matrix A are all 7 or 0:
more precisely n;n, eigenvalues are equal to 7, whereas
the remaining nnpn, are 0. Hence, the system is de-
scribed by a network of adder and delay clements.

Controllability.
The controllability depends upon the rank of the ma-
trix W, defined by

W.=IBABA’B ... A"B | o)

where n denotes the order of the system. The system
is controllable if and only if such a matrix has full rank,
i.e. rank n. From the physical viewpoint the controllabil-
ity depends upon the manufacturing operations for
which the production units are enabled. To this end, the
transport system is particularly important; if the trans-
port units make possible to carry out displacements of
any object between any pair of storage units, then the
system can turn out to be controllable, otherwise it is not
said that the system will be fully controllable.

In case of non completely controllable system, the
subsystemn of the controllable state variables must be
found out, and the system order will have to be reduced,
limiting the study of the control strategies to the control-
lable subsystem alone.

The system controllability is essential to the control
of the system state both in closed and in open loop, but it
is not essential that all the state variables used for
modelling the factory be controllable, for what concerns
the production management. Instead it is essential that

the only part of the system which is controllable be ca-
pable of attaining the production objects. In other words:
the whole potentiality of a factory is not necessarily re-
quired for developing the production process, but the
part which is necessary must be controllable.

Observability.

The observability of the system is necessary for the
design of the closed-loop control, i.e. of the real-time
control of the production process. Observability re-
quires the availability of a set of measurements, and
therefore the definition of the output variables through a
convenient matrix equation to be added for completing
the state equations (3). Consider the equation:

z,=Cx, ©

where:

e 7z is the output vector, that is the vector of the quan-
tities assumed to be measured. As a rule, it should
be a two-index vector of quantities of objects, whose
component z,(i,k) represents the quantity of objects k
which are in the storage unit i at time ¢ .

e (C is a matrix defining which state variables compos-
ing the vector x, have 1o be measured.

Therefore the observability depends upon the rank of
the matrix W, defined by

W,=ICCACA® .. CA"I" %)

whose rank must turn out to be full, that is equal to the
order n of the system.

Because of the peculiarity of the matrix A, it is easy
to verify that the observability requires to measure all
the quantities of the objects present in all storage units.
It is not necessary to measure those quantities at every
step, nor to measure them all at the same time, but it is
necessary to measure all of them, otherwise the
observability of the system state will be incomplete. The
state variables which turn out to be not observable, can-
not be subject to closed-loop control, but, if controllable,
they can be handled in open loop.

3.3. Event-models and synchronous models with slow
dynamics

The mathematical description of factory and produc-
tion processes presented up to now does not imply the
choice of specific informatic techniques for working out
the models and implementing the production control. It
is a formal mathematical description of the discrete
manufacturing processes in which, by using a rigorous
but very general language, it was attempted to avoid im-
posing a priori simplifying hypotheses, which could
have limited the generality of the approach.




The only somehow important simplification is the
modelling of time as a discrete variable, which however
allows to approximate continuous phenomena with the
desired resolution, if only a sufficiently small sampling
step is assumed. Hence the mathematical model intro-
duced is capable of applying various informatic tech-
niques depending upon the actual needs.

In order to achieve the best accuracy in the descrip-
tion of the phenomena, it seems convenient to use tech-
niques related with the succession of the events. In fact
process dynamics is clearly characterized by the connec-
tion of events which follow one another. The first cause
is the command, which the production control system
dispatches to a production unit being in the waiting
state. The command causes, in the shortest possible time
(i.e. after one time unit) the transition of the unit into the
working state and, after a certain time interval, the draw-
ing from the input storage units of the objects necessary
for achieving the commanded manufacturing operation.
Such a drawing operation can take place - in case of
more objects - even in successive times. After the manu-
facturing time is expired, the event occurs of storing in
the output storage units the objects which are the manu-
facturing products. Even in this case, if there are more
products, storage can occur at different times. The pro-
duction unit moves back from the working state to the
waiting state after the cycle time is clapsed: the cycle
time can be different from, typically shorter than the
manufacturing time.

Event-control logic seems therefore to be the most
natural solution for real-time managing the progress of
production processes. On the contrary, at least for cer-
tain purposes, the technique of discrete synchronous
models may be sometimes convenient. That holds in
particular whenever there is no interest in following the
detailed succession of the events, but it is desired to ana-
lyze only phenomena concerned with the slow factory
dynamics.

We already suggested in previous papers [1, 2] to
make use of synchronous models with a constant sam-
pling step, longer than the manufacturing times. The
commands are then concentrated at the sampling instant
and can correspond to the requirement of performing
more operations which, within the model approximation,
are is assumed to be carried out during the sampling
step. Starting with all production units in the waiting
state when commands are applied, one is back with all
units still in the waiting state at the end of the sampling
step and can strike the balance of the manufacturing op-
erations achieved, updating in this way the state of the
storage units.

Discrete synchronous model appears suitable in par-

ticular for the description of aggregated models with
sampling steps of the order of one day.

3.4. From the manufacturing algebra to the production
process in the factory

Note that the Manufacturing Algebra, and therefore
also the concept of production cycle, do not take into ac-
count the existence of manufacturing and storing units,
and of the factory layout. The manufacturing operation -
as it is defined in the Algebra - models a technological
manufacturing operation, without considering the ma-
chine which can carry it out and the stores from which
the input objects can be drawn and in which the output
objects can be stored. When in the Algebra a production
cycle is introduced, one only establish the performance
order of the operations and whether the output of one
operation shall be put at the disposal of other ones (se-
ries) or shall not (parallel).

A manufacturing operation introduced in factory
modelling is the implementation in the production plant
of a technological manufacturing operation defined in
the Algebra. Being an implementation, it is associated
by itself with one specific production unit, and in par-
ticular input and output objects must be referenced to
specific storing units. Furthermore a manufacturing op-
eration has now a precise placement in time, so that ob-
jects drawings and storages are specified by the delay
time of their taking place with respect to the command
dispatching instant.

This different characterization of the operation in the
algebra and in the factory has several consequences: the
first and more immediate is that two algebraically equal
manufacturing operations can turn out to be different
when they are implemented in the factory. It is sufficient
to implement them on production units operating on dif-
ferent storing units: they will turn out to be different, i.e.
not any more interchangeable. It will not be possible to
interchange them sic et simpliciter during the production
cycle of the factory, since they imply a different objects
handling.

It is now possible to conclude, that any production
cycle defined in terms of the Algebra as an operation be-
longing to the set A(S) including all the possible alge-
braic compositions of the elements of an independent set
S (3], can be implemented in the factory if the produc-
tion units are capable of carrying out the manufacturing
operations of set § and if the factory is equipped with an
adequate system of transport units which ensure a proper
handling of the objects during the production cycle.
Such implementation is not trivial and it could have sev-
eral possible solutions, among which the best must be
chosen according to pre-established optimality criteria.




Leaving aside the problem of the procedures for im-
plementing a production cycle in a factory - what lies
outside the limits of these pages - let us emphasize that
the result of the implementation turns out to be an or-
dered sequence of commands to the manufacturing and
transport units, corresponding to an ideal time evolution
of the previously defined command vector, denoted as
u,,, for distinguishing it from the actual value u,

The vector u,, represents an ideal scquence of com-
mands which could lead to the actual accomplishment of
the cycle if the mathematical model of the factory were
deterministic and perfect. Since however, in the best
case, some stochasticities in the manufacturing times
have to be expected, there is no doubt that the com-
mands must be adapted to the actual evolution of the
phenomena, That is the task of the rcal-time control
which - operating in closed-loop, i.c. receiving signals
from the field - must ensure the proper performance of
the cycle, notwithstanding the stochasticity of the real
process.

4. AGGREGATION AND HIERARCHICAL
ORGANIZATION

4.1. Introduction

One of the major drawbacks met when tackling the
two basic problems, previously mentioncd, is the high
number of variables needed for modelling a production
system. To avoid the difficulties caused by the complex-
ity of the mathematical model, the most promising way
seems to be hierarchical aggregation, which allows to
tackle the problem at different aggregation levels, al-
ways in a relatively simple situation.

The concept is the following: given a network of
storage units, transport units, manufacturing units with a
corresponding production control system, the network
can be transformed into a single equivalent production
unit operating on two storage units, respectively input
and output. In this way it is possible to aggregate into
equivalent units production lines, departments, plants
etc. up to considering the whole company as a single
equivalent production unit.

The aspect which seems attractive is the perfect
mathematical equivalence of the models obtained at the
different aggregation levels, what makes possible the
use of the same algorithms and control methodologies at
all hierarchical levels.

It is now important to emphasize the following fact:
a production unit as introduced when modclling the fac-
tory, is an intelligent entity, capable of carrying out - on
the basis of a simple command - a manufacturing opera-
tion within a set of admissible operations, drawing the

input objects from a special storage unit and giving back
the output objects to a special storage unit. To aggregate
a set of production units into an equivalent unit, the exis-
tence of a control system capable of managing the ag-
gregated production units and of interfacing it with the
external world is essential. The external world does not
need to know how the aggregation was made up nor
how it works; it must have the possibility of knowing
the aggregate exactly as a production unit.

Therefore, if it is true that the conceptual design of a
hierarchical system follows a top-down approach, from
the highest toward the lowest levels, the design phase
must follow a bottom-up approach, that is the control of
the lowest hierarchical levels must be designed first,
moving then up, little by little, toward the higher levels
of the aggregation.

In the following paragraph the rules are given for de-
signing the production unit equivalent to a production
system consisting of more units.

4.2. The aggregation of a production system into an
equivalent production unit

Spatial ggregation

Considere first a production system composed of
storage units, transport units, production units intercon-
nected and managed by a production control system.
Then consider a set S resulting from the union of all
manufacturing and transport operations which can be
carried out by the units making up the system. Here it is
assumed that the operations of the set S are algebraic
independent. It results that the production system is po-
tentially capable of developing all operations of the set
A(S) spanned by S, and defined in [3]. Inside A(S), the
set §, will be selected, consisting of the minimal pro-
duction cycles of interest for the production plans of the
company. The cycles belonging to S, will then be pro-
grammed in the production control system, which, in
turn, will be enabled to receive, from a higher hierarchi-
cal level, the commands for their accomplishment.

Thus, the hierarchical aggregation is made. The
complex production system appears outside as a single
production unit capable of carrying out potentially all
the manufacturing operations included in the set A(S,)
and obtained from the algebraic composition of the inde-
pendent operations belonging to §,. For specifying the
operations of §,, it is necessary to compute, for each
minimum production cycle, the balance vector b=y,-u,
resulting from the algebraic composition.

To this purpose it is important to point out that in the
aggregation one must give up a detailed description in
favour of the simplicity of the aggregated model. The
details lost in the aggregation are:




¢ the structure of the systam which is aggregated: the
number and layout of its manufacturing, transport
and storage units are lost. One moves to a single
equivalent production unit, with two storage units,
one for input and one for output,

the detail of all the semifinished objccts which are

produced and employed during the production cycles

of the set §,. The higher hierarchical level does not
need to know the existence of those objects.

To carry out the computation of the balance vector
b=y,-u, corresponding to one of the production cycles
belonging to S,, the command sequence u,, t=1,....T,
where T is the time interval necessary to carry out the
production cycle, must be first constructed.

Then, in order to move from the complex production
system to the equivalent production unit, it is necessary
to subdivide the stores of the production system into:
¢ input-output stores,

» intermediate stores, inside the production system.
The latter ones will disappear from the equivalent pro-
duction unit, whereas the former ones will be preserved,
possibly included in a single equivalent store.

The practical procedure to move from the production
system into the equivalent production unit is the follow-
ing:
¢ The multi-index vectors B u, = p, are considered for

t varying from Ito T

* Then the vector p,, is formed by applying the fol-
lowing relation:

Pfid k)=Epfij-t+1 k)

In the vector p, q the elements corresponding to inter-
mediate stores are omitted, or rather the index i is
limited to the input-output stores. Then one obtains
the vector b, of the drawing-storage operations dis-
tributed in time and for the input-output storage units
corresponding to the equivalent operation performed
on the equivalent production unit.

Repeating the procedure for all the operations be-
longing to the set §;, and composing the resulting
balance vectors b, the matrix B, is obtained which
allows to write the state equations of the aggregated
system,

Time aggregation

In general it is likely that, when creating the equiva-
lent production unit of a complex production system, the
cycle time T will result fairly long. As a direct conse-
quence the resulting equivalent vecicr of drawing-
storing operations b, would be characterized by a large

number of lags, that is the dimension n; could be fairly

large.

Such fact is absolutely normal and simply shows
that, when moving to a higher hierarchical level, it is
convenient, as a rule, to increase the value of the time
unit (i.e. of the sampling step) used to describe the sys-
tem.

It is, indeed, quite normal to use different time units
(sampling steps) for different hierarchical levels, in-
creasing the resolution as one moves from the highest
hierarchical level to the lowest one. Should a change (in-
crease) of the time unit be decided, then the elements of
the vector b, which fall within the same new time unit
should be aggregated.

It is important to remark once more, that the aggre-
gation transforming a complex production system into
an equivalent production unit is possible only because
the production cycles of set S, have been defined and
the relevant production control systems exist.
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