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1. Introduction

¢ Current results on the adaptive (on-line) parameter
. identification of nonlinear beam models are presented
- along with summarized theoretical results concerning
i the state and parameter estimators of such nonlin-
i ear systems. The nonlinearity involved is a piecewise
. linear stiffness function meant to provide a simple
¢ model of damage. The estimation scheme identifies
the time at which the system becomes nonlinear and
it provides an estimate of the stiffness function.

This problem involves approximation at several
levels. The plant is modeled by a partial differen-
tial equation, which must be solved numerically. The
identification algorithm considered here requires “full
state feedback” which means we must estimate the
infinite dimensional state from finite dimensional ob-
servations. We give a complete description of our
algorithm, along with a numerical example which il-
lustrates its utility.

The paper is organized as follows. In Section 2 we
give the basic problem statement. In Section 3, we
outline the adaptive algorithm and state appproxi-
mation. Estimates of the full state from partial ob-
servation is the topic of discussion of Section 4, and
in Section 5, we give our numerical results. Finally,
some conclusions and plans for future study are given
in Section 6.

2. Problem Statement

We consider the Euler-Bernoulli beam with Kelvin-
Voigt viscoelastic damping

wee(t, 2)+H[EI(t, wez(t, 2))+epIwiez(t, 2))zz = f(t, 2)
with the boundary and initial conditions given by

{ w(0,t) = w (0,¢)=0

w(l,t) =w(l,t)=0 0<z<d,
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{ w(-,0) = wo € HE(0,1),
wg(~,0) =w € L2(0, I).

The nonlinear term EI(t, wz.(t, z)) is given by

_ | ELwg(t,z) ifwz(t,z)>0
EI(t, wes(t, 2)) = { ElL,wz.(t,z) otherwise.
The goal here is to identify the beam parameters
adaptively. It is assumed that the beam displace-
ment and velocity are available for measurement at
each time ¢. In the next section, we give our algo-

rithm for estimating the beam parameters from state
observations.

3. Adaptive Estimator and Convergence

In this section we will assume that the stiffness
function is the sum of a linear term and a nonlinear
one. Additionally, we will assume that the damping
coefficient could also be considered unknown. This is
done in order to have a more general parameter es-
timator for the plant. For our numerical studies in
§5, we use this general framework for the identifica-
tion of the nonlinear stiffness function by treating the
damping coefficient as known.

Before we proceed with the abstract formulation
of the beam model, we need to provide some nota-
tion for the abstract spaces involved. Let H be a
real Hilbert space with inner product (-, -} and corre-
sponding norm |- |, and let V be a reflexive Banach
space with norm denoted by || - ||]. We assume that
V is embedded densely and continuously in H. It
follows that (see, for example [14, 15])

Vo H=H"<-V" (3.1)

where H* and V* denote the continuous duals of H,
and V, respectively. All of the embeddings in (3.1)
are dense and continuous. In particular, we assume
that there exists a positive constant Ky such that
lel < Kvlipll, ¢ € V. We identify the space Ly(0,1)
(see, [1]) with the Hilbert space H, and the Sobolev
space H3(0,1) = {p € H?(0,1) : p(z) = pz(z) =
0, z = 0,1} with V; then (3.1) is valid, see [1]. The
dual of the Sobolev space V is V* = H~%(0,1), see
[7, 15]. Here we use (-,-) to denote the usual duality
product obtained as the extension by continuity of
the H- inner product from H x V to V* x V, see
[2, 15].




We consider the nonlinear beam equation given in
variational form

(wth ‘P) + (‘hwzz + 9(‘]2, wzz)y Sorz)
+(q3wtzzy Sor::) = (Bu(t)a ‘)0), (32)

with the boundary and initial conditions given by

w(0,t) = w.(0,t) =0
{ wgz,t) =w(l,t)=0 * 05z
(3.3)
{ w(-,0) = wp € HZ(0,1),
wy(-,0) = wy € Ly(0,1).

The input operator B € (U,V*) is assumed to be
known, and the nonlinear function g(gs2, w.z) is given
by

_ | 2pwec(t, )
9(421 wu‘(t’ I)) - { qznwrr(tvz)

if wee(2,2)>0
otherwise.

(3.4)
The unknown parameters are ¢ = {q1, ¢2p, ¢2n,93} €
Q, where {Q, (-, -)o.|-|q} is the parameter space. For
this specific problem, the parameter space is identi-
fied with the Euclidean space R* i.e. Q = R! In
order to simplify the above beam equation and in-
clude all the parameters in the equation, we define
the indicator function (¢, z) to be

_J1 if wez(t,2) >0
oft,z) = { 0 otherwise

and rewrite the above beam equation in weak form

(3.5)

(wtt; ‘P) + (41 Wzz + 2p0Wry + gon(l — 0)w:,, ¢rz)
+(q3wt.¢xa ‘P:z:) = (Bu(t), <P>, (36)

It is desired to identify the parameter g on line
(adaptively), given that measurements of the state
(w(t), we(t)) of the plant (beam) are available.

We define, in a similar fashion to the linear case
presented in [9], the (state and parameter) estimator
in the form of an initial-value problem

(ver, @) + (41 V22, Pzz) + (930122, Poz)
+<dl(t)w11‘ + ézp(t)aw:r + g2n(t)(1 — a)w,,, ‘P::a:)
Hd3()Wizz, pre) = (Bu(t), ) + (¢ Wrz, Prz)
Hg3Wizz, P2z}, P EV, (3.7)

where v(t) is the state estimate of w(t),
(Diflt), plq =
(P W, 0oz = 022) + (0100 = wiz2)), (38)
forpe @,y >0,

v0)=weV, n)=v€eH F0)=q€EQ,
(3.9)
where the regressor vector W is given by

W= [wzz QW (1 - Q)U)zr wwz]Tv
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a(t) = [41(), G2p(t), G2n(t), §3(t)] is the vector of
the (adaptively), estimated parameters and p =
[p1,P2p, P2n,p3] € Q. The above estimator has the
series-parallel configuration (see [11}), where filtered
values of the plant state and estimates of the param-
eters are used in the state estimator equation.

Remark 3.1 The well gosedness of the plant equa-
tion has been treated in the paper by Banks, Gilliam
and Shubov in [{].

Remark 3.2 It should be noted that ¢* =
(91, 93p) 93n, 93) € Q is a vector of design parameters
chosen to satisfy certain conditions as in Lemma 3.4
below. In this case q3,,q5, can be chosen as g3, =
95, = ¢3 and we have in this case a linear esti-
mator. A much simpler case would be to choose
9p = @3, = 0, ie. ¢* = (q7,0,0,q3). Either choice
would give a linear equation for the state estimator.
If, on the other hand, the design parameters (g3, ¢3,)
are not sel equal, then the state estimator becomes
nonlinear and the analysis more involved. For sim-
plicity, we take throughout this paper 92 = g3, = 0.

Using the more compact notation for the regressor
vector and the comments of Remark 3.2, we now
(re)write the plant, and state and parameter estima-
tor equations in variational form

Plant:
(Wit ) + (9 W, 02s) = (Bu(t), ) (3.10)
State Estimator:
(‘U", <P) + (q'- [_j, ¢z:) = (Bu(t)’ ‘P)
+Hg* - )] W,pes)  (3.10)

Parameter Estimator:

(D:q(t),p)q = (p- V-l;, (Vzz = Wez) + Y(Vizz — Wizz)),
(3.12)

where the vector [_j is given by

U= [vzr QUzz (1 - a)'vzz vtzz]T-

As was observed above, despite the fact that the
plant is nonlinear, the state and parameter estima-
tors are linear. This would then simplify the finite
dimensional approximation theory necessary for the
implementation of the above proposed estimators.

In order to guarantee convergence of the adaptive
estimator, we must impose a form of a boundedness
condition on the beam state, namely the admissible
plant.



Assumption 3.3 (Boundedness of plant) A
plant is a pair (¢, w) with ¢ € Q and w a solution to
the initial-value problem (3.2), (3.3) with w,w; € V,
a.e. t > 0, for which there exists a constant g > 0
such that

|(p~ W, bz)

< ulplglélv
for almost everyt >0, pecQ and allp € V.

We establish the convergence of the state estima-
tor and, with the additional assumption of persis-
tence of excitation, parameter convergence. We as-
sume throughout this section that the boundedness
assumption of the plant, Assumption 3.3, is satis-
fied. Using equations (3.10) and (3.11) for the plant
and estimator states, respectively, and denoting by
r(t) = q(t) — q the parameter error, we have that
e, where e = v — w, and r satisfy the initial value
problem

(ese, p) + (@3 €120, Pzz) + (4] €22, Prz)
H{r W (1), 0sz) =0, €V t>0,(3.13)

(De(t), p)q = (P W, €2z + Yerzz), PEQ t >0,
(3.14)
e(0)e V, e(0) e H, r(0)€ Q. (3.15)
It should be noted that the state error initial con-
ditions given by e(0) = v(0) — w(0) and e(0) =
v¢(0) — w(0) are not necessarily known, since the
beam initial displacement and velocity are not as-
sumed to be known. We now establish a Lyapunov-

like estimate for the system (3.13) - (3.15).

Lemma 3.4 If v is chosen to salisfy

- 2
7>ma.x{1{v,1‘—_",K,"}, (3.16)
4 3

then there ezist constants p,o > 0 such that for all
t>0

eI + e + Ir®)3
t
+p /o (eI + les (D2} dr < €

where

€ = o {[|e(0)}|? + le:(0) + |r(0)13} .

Remark 3.5 In the case that the plant initial con-
ditions, (w(0), w(0)), are known, then the state esti-
mator’s initial conditions could be taken identical to
the plant initial conditions, i.e. €(0) = 0, e(0) = 0,
thus making the bound £ of the Lyapunov estimate of
Lemma 3.4, only a function of r(0).
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The convergence of the state estimate is easily estab-
lished. It is essentially an infinite dimensional exten-
sion of Barbilat’s lemma (see [12]), and was used for
the adaptive estimation of time invariant parameters
of second order distributed parameter systems in [9].

Theorem 3.6 Assume that the plant satisfies the
boundedness condition. Ify satisfies the bound (3.16),
then the energy functional given by

E(t) =7 {(Q;ct:(t), ezz(t)) + Iet(t)lz}
+2(e(t), e (1)) + (a3€=2(t), es2(1)) + Ir(®)[G (3.17)
s nonincreasing and

: 2 _ : 2 _
Jim le(®I? =0 and Jim |eif? =O0.

Parameter convergence is established via the addi-
tional assumption of persistence of ezcitation, a rich-
ness condition that is imposed on the plant.

Definition 3.7 ([9, 10]) The plant is said to be
persistently excited if there exists Ty, 80,60 > 0,
and a sequence of positive real numbers {t;:}52,
with limy_tx = oo, such that for each p =

(P1,P2p, P2n, P3) € Q with |plg = 1 and each posi-
tive integer k, there exists a t} € [tx,tr47,] such that

ti+do -

/ pW(r)drev*
t

and

Z €g.

tr+do -
/ p W (r)dr
34 Ve

k

We can now prove parameter convergence by im-
posing the persistence of excitation condition onto the
plant information.

Theorem 3.8 If the plant is persistently excited then

Jim [r()|g =0

Proof. The proof of this theorem is similar to the one
given for the linear case in [9)]. o

4. Finite Dimensional Approximation

The estimator given by (3.7) - (3.9) is infinite di-
mensional and consequently its implementation re-
quires some finite dimensional approximation. We
briefly outline a Galerkin approach and present some
convergence results.

For each n = 1,2,..., let H" be a finite-
dimensional subspace of H with H® C V, n =




1,2,..., and let Q" be a finite dimensional subspace
of Q. Consider the Galerkin equations for v and r”
in H™ and Q" that correspond to (3.7) - (3.9)

(v, #) + (41022, 02:) + (0300, 022)
Hdr (Dwzz + ‘igp(t)awu + §2.(t)(1 — @)wzz, 072)
+(33 () wizz, ¥2.) = (B u(t), ") + (g1 Wz, ¢7)
+(q;wtzzs ‘P'zlr)y Son EH", (41)

(Deg"(t),p")@ =
<p"- W, (025 = Wes) + 7(V0;, — wtrt)> 1 (4.2)

for p” € Q",
v*(0), v (0) € H*, q"(0) e Q".

In order to present the convergence results we make
the following standard Galerkin assumption made
similarly for the linear case in [9].

(4.3)

Assumption 4.1 The solution to the initial value
problem (3.7)-(3.9) is such that v(-) € Lo(0,T;V)
and vy(-) € Lo(0,T;H) and the subspaces H"
and Q" are such that there ezist functions v,(-) €
Ly(0,T; H™) and gu(-) € L2(0,T;Q") such that
vy — v in C(0,T;V), 9, — v in C(0,T; H) and
Ly(0,T; H), #n — © in La(0,T;H), gn — q in
C(0,T;Q), and g,, — ¢ in L2(0,T; Q).

Theorem 4.2 We assume that Assumption 4.1 is
satisfied and thal the plant satisfies the boundedness
condition, Assumption 3.3. Let the pair (q,v) be the
solution to the initial value problem (3.7) - (3.9), and
for each n = 1,2,..., let (q",v") be the solution to
the initial value problem (4.1) - (4.3) with

v"(0) = va(0), ¥"(0) = 9(0), 37(0) = gn(0).
Then
v* = v in C(0,T;V),
9" =9 in C(0,T; H) and L,(0,T;V),

and
a\n - 71: in C(O) T; Q)

Proof. The proof of this theorem is rather standard
for the online parameter estimation of infinite dimen-
sional systems and, due to the linearity of the param-’
eters for this problems, most of the arguments leading
to its proof are identical to the ones used in the linear
case, [9].

The above theorem uses a finite dimensional ap-
proximation of the state and parameter estimator
and the full infinite dimensional state of the plant w.
From an implementational point of view, it is more
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convenient to replace w in the approximating estima-
tor (4.1) - (4.3) by a finite dimensional approximation
wy,. We require the following additional assumption

(as in [9)).

Assumption 4.3 For the plant given by (3.2) (or
(3.10)), there ezists wn(-) € C*(0,T; H™) such that
wy, — w and W, — w in C(0,T; V).

Theorem 4.4 Assume that (q,w) satisfies the
boundedness condition and that Assumption 4.1 and
Assumption 4.3 hold. Let (q,v) be the solution to
the instial value problem (3.7) - (3.9) and for each
n=12..., let (qn,v") be the solution to the ini-
tial value problem (4.1) - (4.3) with w replaced by w, .
Then

v* — v in C(0,T;V),
9" — v in C(0,T; H) and Ly(0,T; V),

and
" —q, in C(0,T;Q).

Proof. Once again, the proof of this theorem follows
from the linear case presented in [9].

5. Example and Numerical Results

In this section we present some of our numerical
findings. We consider the Euler-Bernoulli beam with
piezoceramic actuator, [5, 6, 7], given by

{
‘/0 {watt¢ + (EI (wz:) + cDthzr) ¢.1:::} dz

I
= ( /0 Kax{a,.a,1(2)¢=zdz> tpatch(t), (5.1)

where p is the beam linear mass density, uparca(t) is
the voltage applied to the patch, Kp is a parameter
which depends on the geometry and piezoceramic ma-
terial properties (e.g., see, [3]) and X[z, z,](z) is the
characteristic function over the interval [z;, z5]. Us-
ing the Galerkin scheme outlined in §4, we discretize
the beam in terms of spline expansions (see [13]).
Modified cubic splines on the interval (0,!) with re-
spect to the uniform mesh {0, %, 2;‘, ..., 1} were used
to approximate (3.7) - (3.9). We denote the 1-D cubic
splines by {B"}7"! and the approximating subspace
H™ = span{BP}’-}!. For each n = 1,2,..., let P"
denote the orthogonal projection of Ly(0,!) onto H"
and set v, = P"v. We also let P, be the orthogonal
projection of HZ(0,1) onto H™ with respect to the
HZ(0,1) inner product, and set w, = P,w. As was
noted in [9] we have

(Pn¢::: 'p:r)Lg = (¢zz, ¢2,)Lg, lbn e H"



and by letting

n-1

wn(t) = Paw(t) = Y WP(t)B}(2),

ji=1

where W"(t) € R*~! is the coordinate vector for
wn(t) with respect to the spline basis {B} ;-';11, we
have that

1
wh(t) = (K™)™! / w<(t, ) D2 B} (z)dz,
0
J=12,...,n—1 where K" is the (n — 1) x (n - 1)

stiffness matrix and is given by

{
K" =[K");; = /0 DﬁB;'(z)DzB;‘(z)dz.

Now we let V™(t) € R*~! be the vector represen-
tation of the state estimator v"(¢),

n-1
v ()= D VI ()B} (2).
i=1

Then the finite dimensional (approximated) state
estimator equation corresponding to (4.1) is given by

M"D}V"(t) + g3 K" D(V"(t) — W"(t))
+a K"(V"(t) - W (1))
+(@7'(8) + d3p(t)a” + g, (1)(1 — ™)) K"W™(2)
+GF K W (t) = KBF™(t) (5.2)

where the (n — 1) X (n — 1) mass matrix M™ is given
by

{
M™ = [M"); = /0 B}(2)B}(2)da,
and F™(t) is given by
Fr) = [F)

i
/ X[al,a,](l')Df.B?(Z) dl'] upa‘ch(t)
0

az
[ 028001 de syt

ay
The parameter estimator equation corresponding to
(4.2) is given by

g1 (t) = M[W ()T K"Ga(t), (5.30)

G2p(t) = dap [WP(@)]T K a™(8)Ga(2), (5.3b)

Gon(®) = dan WP ()T K™(1 — a”(1))Ga(t), (5.3¢)
G (t) = A[Wr ()T K Ga(t), (5.3d)

where G, (t) is given by Gn(t) = [E,,(t) + 7E‘,,(t)]
with E,(t) = W™(t) — V"(t) and Ay, Agp, A2n, A3 are
positive constants acting as adaptive gains (see [9]).
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Figure 5.1: Beam with piezoceramic actuator

Remark 5.1 The plant displacement and velocity
that are used in the above state and parameter esti-
mator are obtained via an interpolation of the discrete
(spatially) measurements provided by a finite number,
(m — 1), of sensors assumed to be mounted at equal
intervals along the length of the beam as seen in Fig-
ure 5.1 below.

If fort > 0, we let wy(t,-) denote the inter-
polate to the (m — 1) displacement measurements,
{w(t, L) ;";11, then we have

m-~1
W (t) = wm(t, ) = Y (B (z), t>0, (5.4)
j=1

where ((t) = (L™)™! Wy (t) with the (m—1)x (m—
1) matrix L™ given by
1]
L™ =[L™);; = B (':E) L 4i=1,...,m-1, (5.5)

and the (m — 1)-vector Wi, (t) is given by [W,(2)]; =

w(t, &), i=1,...,m — 1. It then follows that
Wh(t) = (K™)~ K™™(L™) ™ Wn(t) (5.6)
Wh(t) = (M™)TIM™™ (L™ Wa(t) (5.7

where the (n —1) X (m—1) matrices K™™ and M™™
are given by

(k"™ = (DB}, DB}, (58)
[Mn'm]ij = <B?7B]"n): (5.9)
fori = 1,2,...n =1, j = 1,...,m — 1. Here,

the matrices K™™ and M™™ denote the V-
and H-— inner products of the estimator and in-
terpolationg splines, respectively. The vectors
Wn(t) = [w(t,LD),..., w(t,2=1])] and Wn(t) =
[welt, %1), cowe(t, -"‘m;ll)] used above are the vectors
of beam displacements and velocities at the points
(x1,...,2:Ll). These beam displacements and ve-
locities are the observations taken from experimen-
tal data via the output of proximity sensors placed
along the beam, as shown in Figure 5.1. For simu-
lation purposes we implemented these displacements




and velocities by simulating numerically the nonlin-
ear beam plant, given by equation (5.1), via a finite
dimensional approximation scheme similar to the one
used for the state estimator equation (5.2). Thus, we
have
N-1
w(t,z) = w¥(t,z) = Y WN()BY (2),

i=1

(5.10)

with N >> n. Therefore the vectors Wpn(t) and
Won(t) are given by

e = ot 21) o (1 2200)]
~ [B;." (%I)]“WN(t), (5.11)
and !
Won(t) = [B;V (%I)L whu), (5.12)

fori=1,....m—-1,j=1,...,N -1, where WN(t),
WN(t) are the infinite (approximated) dimensional
vectors of generalized coordinates of the beam dis-
placement and velocity and are given by

wh@) = (Who), = W), wh.,).
W@ = [Wh) = [Whe,.. W0
Therefore, the beam displacement and velocity gen-

eralized coefficient vectors W™ (t) and W"(t) are then
approximated by

Wn(t) & (K™)"1K™m™(L™)~! [B;V (#1)] wha).

12

Wh(t) & (M™)" ' M™™(L™)~} [B}V (#1)] ) Wwh ().

1

Remark 5.2 Because the plant information is re-
quired to be infinite dimensional, in this case we take
the indez N much larger than the parameler estima-
tor’s discretization indez, n. Due to implementation
restricitons and computational efficiency, we have the
number of observations to be less than the estimator’s
index n. Thus, we have

N»n>m.

We summarize the above numerical implementa-
tion below:

Step 1. Generate the (N —1)-dimensional (“approx-
imated infinite dimensional”) plant displace-
ment and velocity vectors W™ (t) and W/ (t)
using
MND2WN(t) + ¢aKVN D,WN (1)
+(g1 + g2p0" + g2n(1 - ™) KN WN (1)
=KBFN), (5.13)
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Wy =

1
(KN)-! / D2wo(z)D2BN(z) dz

wN = (MN)“/ lwl(z)B,N(z)dz (5.14)
v}

where K and MV are the (N — 1) x (N — 1)
stiffness and mass matrices, respectively. The
forcing (input) term is similarly given by

FN@) = [ * D2BN(z) dz] Upatch(t).

ay

Step 2. Use this “approximated” infinite dimen-
sional information at the (m — 1) sensors to
project them onto the estimator (n — 1) splines
via

(K™ k™™ (L™)~! [B}’ (il)] ) W (t).
and ¥

(M™)- M™m(Lm™)-1 [B}V (-7‘;1)] WM.

L2

Step 3. Implement the state estimator (5.2) and the
parameter estimator (5.3) using the approxi-
mated measured beam displacement and veloc-
ity, Wn(t) and W"(t).

Remark 5.3 Because of the terms o™ (t) and (1 —
oV (t)), equation (5.13) was actually generated by

MNDIWN(t) + s KN DWN (t) + o KN WP (1)
+) (‘Iszgf(t) + a2 K} '_E(t)) wN (@)
£§=0

=KBFN(@), (5.13)’
where the family of (N — 1) x (N — 1) matrices
NE 1" N2, 1" .
{K£’+ (t)}€=0 and {K&_ (t)}€=0 are given by

- {
[Kgf(t)]ij = /o a™(t,z¢)DIBY (2)D2B) (z) dz

[Kg::'(t)] y = /Ol[l—aN(t, zg)]Dﬁva(z)DZB}v(x) dz

fori,j=1,..N-1,£6=0,1,...,Z and the points
z¢ are given by

1:5=-£_—1, £E=0,1,..., 2.

The indicator function o™ (t,z¢) is given by

N _J 1 ifwea(t,ze) >0
o (t, z¢) —{ 0 otherwise.
Note that
K™ =Y (KYF@ + K2 w).

I}
o

§



Similarly, equations (5.2) and (5.3b), (5.3¢c) are given
by

M"D?V"™(t) — g3 K™D E,(t)
—qi K" En(t) + 4T ()K" W"(t)

+3° (a5 OKEED + B OKEED) W)
=0

+EPRK W (t) = KBF(t) (5.2

(1) = Aap (W) () (TEo0 KEE(1)) Ga(t), (5.35)

in(®) = X (W) (1) (Toco K£2() Ga(0), (5:3¢)
where Ep(t) = W™(t) - V"*(t) and the family of (n—
1)x(n—1) matrices {K?'f(t)}:—-o and {K?_E(t)};o

are given in an analogous manner by

_ 1
[Ke0], = [ @t 200280028} o) e

7] =
_ !
[xefo)], = /o [1 - (¢, z¢)| D2 B? (z) D2 By () dz

fori,j=1,...n=1,£=0,1,...,E with the indicator
nction o™ (t,z¢) given in an analogous manner.
€

For our numerical simulations we assumed that
¢1 = 0 and that the damping coefficient, g3 is known.
The nonlinear stiffness (EI(wzz) = g(wzs)) is given
by

slwestt, =) = {

for 0 < z < I, t > 0, the damping parameter is
- epl(z) = gqa(z) = 0.001, 0 < £ < ! and the linear
mass density is p» = 1.35. The tuning parameters
(see [10]) ¢} and g3 are chosen to be

qi(z) = 80, g3(z) =0.02,
The adaptive gains Azp, A2, in (5.3b), (5.3c)’ are
A2p = Aan = 1 x 10°%,

TSwez(t, z) if wee(t,2) >0

T0w;(t,z) otherwise ’

0<z<L

the parameter v in (5.2)’ is ¥ = 1 x 103, the initial
guesses for the parameter estimates are
G2p(0) = §20(0) = 65
and the plant and estimator states are
v(0,z) = v4(0,2) = 0,
w(0,z) = 2 x 10732%(z - 1)?,
we(0,z) = 1 x 10~ 2sin*(27z /1) cos(27z /1),

for 0 < z < I. The beam length is | = 0.60 and the
(centered) patch covers a half of the beam length, i.e.
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Figure 5.2: Parameter gpp(t)

z1 = 0.15 and z5 = 0.45. The piezoceramic constant
is Kg = 0.002331655 and the voltage is

Uparch(t) = sin(150t) + sin(6507t)
+ sin(400xt) + sin(800xt).

We now describe the results of our numerical simula-
tions. We simulated the plant (3.7) with

g(wzz) = Towee 0<t<?2
_{ T5wgs if wee >0
9(wee) = { T0w,, otherwise 2<t<6.

This stiffness simulates a plant that initially (0 <
t < 2) has a linear stiffness parameter that becomes
nonlinear for 2 < ¢t < 6 and assumes different values
depending on the sign of the curvature (a(t) = 1 if
uzz > 0). In Figures 5.2, 5.3 we plot the actual val-
ues of the parameters (g2 = 75, and g2, = 75 for
t < 2, g2 = 70 for t > 2), their estimates based
on the ideal estimator (infinite dimensional estimator
using infinite dimensional plant information) and the
parameter estimates based on the approzimated es-
timator (the finite dimensional parameter estimator
using finite dimensional interpolated plant informa-
tion). We observe that both parameters §2p and g2
are identified and that the time (¢ = 2) that the non-
linearity occurs is sensed by the estimator. Specif-
ically, we observe that for the ideal case , we have
better convergence than the approzimated case (that
is, n = 8 dimensional estimator with m = 8 inter-
polation data and an N = 16 “infinite” dimensional
plant) as expected.
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Figure 5.3: Parameter §a,(%)

The finite dimensional estimator does provide an
acceptable estimate of the parameters given the
fact that only a small number of displacement and
velocity information is available. This is impor-
tant from the implementation point of view, as
it is seldom the case that full (infinite dimen-
sional) plant velocity and displacement is available.

6. Conclusions and Future Research

An extensive study is undertaken to test this estima-
tor numerically and specifically the relaxation of the
requirement of the full knowledge of the plant state
(w(t, z) and wy(t, z)) in the state and parameter es-
timator, (3.11), (3.12), via finite dimensional approx-
imation. Using results from our previous work, {8],
we use the finite dimensional approximation frame-
work developed there and present some of our more
recent numerical findings which use finite dimensional
approximation of the infinite dimensional plant state
(w(z,t) and wi(z,t)). Thus, the finite dimensional
approximation of the state and parameter estimator,
an easier system to implement numerically, uses a
finite dimensional approximation of the plant state.
The results are comparable to the ideal case thus sug-
gesting a succesfull implementation of this finite di-
mensional parameter estimator for the infinite dimen-
sional plant.
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