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1. Introduction

In this paper, we investigate different spatial
damping distributions for an abstract wave equa-
tion which would result in exponential stability
of the solutions while satisfying other appropri-
ately defined performance criteria. While even-
tual decay of solutions is of paramount impor-
tance both in theory and applications, differ-
ent physical systems modeled by the wave equa-
tion may require additional specific responses
from the system. In applications to large flex-
ible structures, for example, damping design ad-
dresses not only the dissipation of vibrational en-
ergy over a long period of time, but also reduc-
tion and control of displacement and vibrations
of the structure so that a desired type of motion
such as rapid slewing over large angles is achieved
in a specified time interval. Other design spec-
ifications such as constraints on the amount of
mass of the structure, or whether a particular
response is required during the motion, or at the
end of the time interval would result in different
active or passive damping designs. In this study,
our attempt is to address the question of “opti-
mal” damping design in an abstract setting and
precisely define and analyze various design crite-
ria which are of importance in applications. We
will further illustrate our results in application
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problem in the weak form we will follow the theo-
retical framework as outlined in [1], and assume a
Hilbert space V C H that is densely and contin-
uously embedded in H. Define a bounded, sym-
metric sesquilinear form oy(u,4) : VxV — C
which is continuous and coercive on V. This
sesquilinear form defines a densely defined op-

erator, the stiffness operator Ag, in H where

0’1(11,, ’&) = <A0u7 ﬂ’)H

for v € dom (Ag), and & € V. Similarly, we
can define the following bounded symmetric
sesquilinear forms on H, p(u, %) = (Mu, @)y and
po(u, ) = (Dgyu, @)y. In order to write equation
(1) in the first order weak form we define the fol-
lowing product spaces, H = V x H with product
norm |[.[}4 and ¥V = V x V, and a sesquilinear

o:V — C in the following way:

o((u, &), (4, 9)) = (i $)v + 01(u, 8) + pa(i, §).
Define w = (u,%),x = (¢,$) € V, and write

equation (1) in the weak form as
(b(t), x)n + o(w(t), x) = 0.

The above weak form gives rise to the following

first order state equation in H
w(t) = Aw(t)

where

to a one-dimensional damped wave equation, and
will present numerical results for different damp- A, = 0 I
ing designs for this example. -M~14y -M~1D,

with domain defined as
dom (Al) = {(¢,%) € H|¢ € V and Aod+D, € H)

2. Mathematical Model

The linear model for many problems related
to study of flexible structures and acoustics can
be given by the following second order abstract
wave equation :

By Lumer-Phillips theorem, one can show that
A, generates a Cp semigroup, S,(t), in the state
space H = V x H if D, is a bounded self-adjoint,
and nonnegative operator on V. Our design goal
is to model D, which is dependent on the design
parameter(s) a € (Q, = the Design Space) in
such a way so that the norm of the semigroup
solution of the equation above decays to zero in
a desired manner.

Mii+ Dait + Agu = 0 (1)

in a Hilbert space H where Ay is an elliptic op-
erator and M and D, represent the mass and
damping operators respectively. To cast the




3. Design Criteria

To formulate a performance index that is
based on the dynamical behavior of the solutions
one can consider the three following possibilities.

The first one is based on minimizing [|.Sq(7)||%,
given 7 > 0. While this criterion is useful in
many applications where the performance mea-
sure is based on a decay factor for a desired time
interval, mathematical characterization of this
problem does not yield formulation of an easily
implementable performance index.

A second frequently used criterion in the engi-
neering literature is minimization of the largest
eigenvalue of the operator A,, i.e.,

min  sup Re o(A,)

where o(A,) is the spectrum of the operator A,.
While this criterion is widely used in the finite
dimensional models, its use in conjunction with
infinite dimensional wave equation presents us
with several problems: The first problem is re-
lated to characterization of o(.A,), which is diffi-
cult to do in many cases. But even in cases where
0(A,) is easily defined, we still need to have the
spectrum determined growth assumption satis-

fied, (see [2]):

infw = {||S.(t)|| < Me** w € R} =supRe g(A,).

It has been shown (see [1]) that if the damp-
ing operator y, is uniformly coercive then S,(t)
is an analytic semigroup and o(.A,) is sectorial
and the spectrum growth determinant condition
is satisfied. But in general the vertical asymp-
tote of o(A,) is difficult to examine. Even in
cases where the first two problems are circum-
vented, minimization of the slowest decay rate
which the criterion amounts to does not result in
overall reduction of the energy in a finite amount
of time.

The third criterion which is based on physical
considerations of minimizing the total energy of
the system over a long time interval is more eas-
ily characterized and realized in actual physical
systems than the other two criteria. This crite-
rion for our problem can be defined as

min / RS, (t)ul2,dt.

a€Qa Jo

Minimization of the total energy is realized by
the characterization of the Datko Lemma which
basically states that if A, is exponentially sta-
ble on H then the minimum of the total energy

is given in terms of the solution to a Lyapunov
equation, in other words the following are equiv-
alent:

e A, is exponentially stable on H.
o [5° |1Sa(t)ul|dt is finite for all u € H.

o There exists a bounded nonnegative, and
self-adjoint operator II, on H that satisfies
the following Lyapunov equation

(A, + T, A, + R)u=0 (2)
for all u € dom (A,).

Then we have

/ IRY/2Sa(t)ul},dt = (Mau, u)n
0

where R is a coercive, self-adjoint operator on
H. In order to develop a criterion that is in-
dependent of the state vector u we consider the
following performance measures that are based
on minimizing the total energy.

min ||IL,}| = sup (I u, u)x (3)
e€Qa Juj=1

and

min  tr[1,Q = E(Il,u, u). (4)

8€Qa
Here, we assume that the initial data u is a
random vector with normal distribution of zero
mean and covariance @}, a nuclear operator, and
E denotes the expectation over the initial condi-
tion. In general II is not compact in H, there-
fore it is not always possible to define the trace
norm of II. In this sense, the second criterion
is the weighted trace norm of II with respect to
@ which in engineering applications is chosen to
be the subspace spanned by the dominant eigen-
functions for the nominal plant. If II, is compact
then the first criterion amounts to minimizing
zing the L* norm of II,, and the second crite-
rion is equivalent to minimizing L! norm of-T1,.

Our goal is to solve the optimization problems
based on (3) and (4) subject to some constraints
on the parameter a. In the following section we
consider a specific example and will present nu-
merical experiments to illustrate our theoretical
results.




In this section, we consider the following one
dimensional wave equation on interval (—1,1)
Uy = Ugz +a(z)u, with u(-1,¢t) = u(1,¢) = 0.
For this problem we are interested in finding the
optimal spatial distribution of damping subject
to some constraints on the total amount of damp-
ing material available. We choose the set of ad-
missible parameters Q, as the set of functions
a of bounded variation on (-1,1), BV(-1,1),
satisfying

0<a<a(z)<a (5)

and
1
/ a(r)dz = ay,y = Total Mass.  (6)
-1

Here, BV (—1,1) is chosen as a compact set of
Ly(-1,1) which allows jump discontinuities. We
can also use the finite dimensional parameteriza-
tion by the piecewise constant functions; i.e, if
one models a(z) as a piecewise constant function

a(z) = Y iX[zi—z._,)(2)
i=1

<zpy=1

where a; represents the amount of damping dis-
tribution over ns subintervals (z;_1, z;), then the
goal is to find the optimal values for a; with re-
spect to criteria (3) or (4) subject to the con-
straints (5) and (6).

5. Necessary Optimality Conditions

~-l=z9< 21 < ...

In order to show that the optimization prob-
lem discussed in the previous section is well-
posed, we need to show for each criterion the
existence of an optimal parameter and discuss
the necessary optimality conditions that charac-
terize the optimal solution. Here, we will only
mention the main results and refer the reader to
[3] for detailed statement and proofs. For the
first criterion

i IL|| = ,u,
min  f(e) = min [IL| |i}1=p1( als U)K

if we show lower-semi-continuity of f(a), from
compactness of the set @, we can obtain ex-
istence of a minimizing parameter a. We can
show that f(a) = ||II,|| is lower-semicontinous
provided the following condition is satisfied for

allueH

Ileu — Mzu as ¢ — a in Q,.

4. A One Dimensional Damped Wave Equation
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In [3], we have shown that II, does satisfy the
above continuity condition with respect to pa-
rameter a. In fact, we can prove the following
stronger result:

Theorem 1 Suppose dom (A,) and dom (A%)
are independent of a € Q,, a compact set , and
also 6A; = A, — A; satisfies

16Asll cr,2) — 0 as |la — &|| — 0,
then
T — el g(p,7) — O as |ja — @] — 0,

where I, is the solution of the Lyapunov equa-
tion
A ll, + M, A, + R = 0.

We can similarly argue existence of an optimizer
for the second criterion
J(a) =

min mm trII
a€ Qa €Qa aQ

by using the fact that the operator Q is nuclear,
therefore its range is relatively compact and also
by observation above that II, is continuous in
norm with respect to parameter a. In this case
the sensitivity operator %ﬂ is characterized by
the following equations:

AL+ 1A, + R = 0,

AA + AAT + QT =0,
0A,

(( 9a )Rm =0

where m is the dimension of the range of Q.

6. Finite Dimensional Approximations

For performing the numerical approximations,
we employ a Legendre-Tau method which is a
variation of the well-know Galerkin technique.
In this method the approximate solution is ex-
panded in terms of the Legendre polynomials,

L,(z), which are orthogonal with respect to the
L*(-1,1) norm. These basis elements do not
mdlvidually satisfy the boundary conditions as
in Galerkin method. The boundary conditions
are imposed on the approximate solution by use
of a non-orthogonal projection operator. For
more details on implementations of Legendre-tau
method to the wave equation see [3,4].




For a second order wave equation we seek an
approximate solution in the form

ua(t,2) = Y &(t)Lj(x).
7=0

The vector £(t) = (o, &1, ---, En—2) satisfies
M"E(t) + Dé(t) + KnE() =0 (7)

and an_j, and ,a, are determined as linear
combinations of ag,ay,...,a,—2 by applying the
boundary conditions on the solution u,. The
mass matrix M", damping matrix D", and the
stiffness matrix A", and are given by

(M™)i; = (Li,Lj)Ly(-11)
(Dn)i,j = Z/ * akL,'Lde,
k=1"Tk-1

(K™)ij = (S*Pa)i;-

In the expression for K™, §2 is the matrix repre-
sentation of the second order differential opera-
tor with respect to the Legendre polynomials and
P, is the projection operator that imposes the
Dirichlet boundary conditions at the two ends
on the approximate solution.

The first order form of (7) for 5 = [€7,€7] is

n=A"7
where
An _ On—lxn—l In—lxn—l
- —-M-"K® —-M—"D" N

In the above, M~" denotes the inverse of the
mass matrix M"™. For approximating the total
energy we take R in (2) to be the identity, and
we write its matrix representation as

On—-lxn—l ]
M" )

Kn
R" =
I: On—l xn—1

Assuming (A", R™) is detectable, then the total
energy in the finite dimensional space is given by

E™(u) = /0 TRt = g Mo 7(0) = 1o

where II" is the matrix representation of the
finite-dimensional approximation to II and is
equal to R™"II" where II" satisfies the follow-
ing Lyapunov equation

(AMTI™ 4+ fI"A™ + R™ = 0.
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The finite dimensional approximation of the first
performance index (3) can be written as

max eig (R~"1I") (8)

min
a€ Qa

To calculate the approximate performance in-
dex (4), we consider operator @ to be the pro-
jection onto a space spanned by the m domi-
nant undamped eigenfunctions of the equation.
If ®,,,, denotes the matrix representation of the
orthogonal projection that projects the finite-
dimensional solution space to the m-dimensional
space of range of ), then the matrix representa-
tion of the finite-dimensional performance index
becomes:

min tr ((@mnR‘n{)Z;‘n)(anﬁnégn)) (9)

a€Qa

7. Numerical Results

To perform numerical experiments for various
damping designs, we took the number of Legen-
dre polynomials in our approximations to be 20,
and the number of subdivisions for distribution
of the damping material to be 40. Also, to cal-
culate the second performance criterion, we took
m, the number of undamped dominant modes to
be 7. We first experimented with a few damping
designs and calculated the value of performance
indices (8) and (9) in each case. The following
figures demonstrate the distribution of a;’s over
the (—1,1) interval for these examples:
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Figure 1: Uniform distribution
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Figure 2: Center distribution
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Figure 5: Second optimal distribution with
min tr = 12.6311

The following table compares the different de-
signs and the corresponding values of the two
performance indices.

Damping designs Min(max(eig)) | Min (tr)
Uniform Distribution 1.4354 | 14.3064
1 Center Distribution 499.1038 | 15.3697
_ Corner Distribution 3.2690 | 18.6927
™ Optimal Distribution 1 1.2959 | 14.6744
Optimal Distribution 2 12.6311 9.3611

S‘ -D‘l -0“ -0.‘ -0.2 l; 0‘2 0.4 1} D‘l 1
Figure 3: Corner distribution.
Table 1: Comparison of different designs

(From this table, one can see that differ-

t d optimizati f damping dis- SRR . .
Next, we performed optimization of damping ent performance criteria yield different optimal

tributions with respect to the criteria (8), and

(9) and found the optimal values of a;’s in each
case. The graphs of optimal values of a; for each
performance index over the interval (—1,1) are
shown below.

_3[ -0‘.' -Oll -O‘l -0‘2 4 0‘2 0.‘ (1] 0‘] 1
Figure 4: First optimal distribution with
min max eig (II") = 1.2959

damping designs, and a design that performs
well with respect to one criterion, may perform
poorly with respect to the others,( compare the
results for the center and corner distributions).
But overall, the uniform damping design seems
to perform quite well with respect to either cri-
terion. The results also indicate that much is to
be gained by performing the optimization. The
key point in optimizing damping designs is to
carefully choose the performance criterion that
is most suited to the problem in hand. Practi-
cal and theoretical considerations should both be
taken into account in choosing the proper crite-
rion. For example, depending on the amount of
information on the physical modeling of the ini-
tial state vector or the number of dominant vi-
brational modes that need to be suppressed one
may choose either criterion that fits the require-
ments of the problem. The numerical results we
have presented here are only preliminary efforts
in optimizing damping designs and our future ef-
forts will address numerous issues concerning the




numerical and theoretical optimization of these
designs.
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