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Abstract

In this paper a continuous time state
space approach to the problem of mod-
eling the factory dynamics is proposed.
Several manufacturing structures are ex-
amined and an illustrative example is
presented, to highlight the applicability
of our modeling technique.

1 Introduction

The purpose of this paper! is to propose
a new approach for the modeling of a fac-
tory plant. The problem can be stated as

follows: ] .
Factory Dynamics Modeling Prob-

lem: Find a mathematical model that
will describe the unknown factory dy-

namics with a prescribe degree of accu-
racy; in other words the error between
the actual dynamics and these of the pro-
posed model should rely within a “small”
neighborhood of zero. The dimeusion of
the above mentioned neighborhood is a
design requirement which will strongly
affect the behavior of a future developed

control law.
Until now, the modeling of factory dy-

namics has been based upon the folow-
ing three methodologies: (i) Queuing net-
works [1]-[3], (ii) Activity cycle diagrams
[4] and (iii) Petri nets [5]-[7] However, the
above methodologies, basicaly lead up to
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quite involved procedures and moreover
lack the property of adaptation which is
crusial in order to deal with problems like
accomodation of disturbances created by
the plant facilities, by the environment,
or by variable working times and plant
failures,

In this paper, we propose a new model
which we believe shows great promise in
the direction of on line dynamic modeling
of manufacturing systems. Crusial to its
development is the notion of “basic mod-
ule” which describes a single operation,
performed by a machine, with its corre-
sponding output buffer. Thus our manu-
facturing system model can be viewed as
a general interconnection of “basic mod-
ules”. These “basic modules” can adapt
in order to “catch” the various operations
that may take place in a plant and/or to
cover for variable working times.

In the paper, we shall present the
model in more detail by deriving math-
ematical relationships for some basic
structures like Single Input Single Out-
put series, or MISO series, MIMO and
parallel interconnections, just to name a
few. Moreover, an illustrative example
will be given.

2 The Model

A manufacturing system can be viewed
as a general interconnection of machines
(M) and buffers (B). In order to better
understand the operation of such a sys-
tem it is usefull to divide it into basic
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modules. In this context the term “basic
module” is used to describe a machine
with its corresponding output buffer.

As it can be seen from figure 1, each
“basic module” is set in operation, (it is
controlled), through the switch S. Ob-
viously, if S = 1 then the “basic mod-
ule” is engaged, otherwise it is disen-
gaged. It is obvious, that from the mo-
ment the switch S is closed, § = 1, a

time T is needed for the machine M to
make a product which is automatically

placed on buffer B. Thus, if one mea-
sures the content of the buffer, he will

notice a behaviour, of the form shown in

ig. 2, which is a delayed unit step func-
tion. Hence, another way of representing
it, is as a unit step response of a first
order delay element which as it is well
known from basic control systems theory
it can also take the form:

z
y

—az + au (1)
T

where a is a positive constant with

_f 1 ifs=1
1o ifS=0
and y demotes the content of the buffer.
Thus graphically we obtain the approx-
imation shown in Fig. 3. Note, how-
ever, that all intermidiate values between
0 and 1 do not have any physical inter-
pretation. Equation (3.1) is meaningfull
for the mathematical analysis and for the
development of the “apropriate” control
law. The buffer will take a product af-
ter the delay element has reached it is
steady state value (z,,) which is designed
to be equal to one and the time needed
to achieve such a goal is approximately
equal to 5a. To verify that z,, = 1
take z|,s = O thus —az,, + au = 0 or
Tss = u, a > 0. However, since u is a
unit step function, we have that u = 1
hence z,, = 1. Moreover, the time re-
quired for the switch S to be on, is at
least equal to 5a, otherwise the delay el-
ement will fail to reach its steady state
thus leading to modeling imperfections.
When such a situation appears we say
that the switch S is “too fast”. Figure
4 illustrates this problem. The solid line

presents the actual behaviour, while the
dotted line the model behaviour. In fig. 4
the switch which closes at ¢ = 0,(5 = 1)
opens at time t = Ty < T. Thus the

switching frequency f, should be at least
equal to 1/T, f, < = &. In what fol-
lows we will discuss some fundamendal
interconections of “basic modules” an

we shall derive their corresponding math-

ematical models.

2.1 Series Single Input Single
Output Interconnection

In this subsection we will discuss the case
where we have two machines, M;, M,

with three buffers including one input
and one output buffer. In this structure
B, is the input buffer with infinite capac-
ity buffer B; is assumed to have a max-
imum capacity by and buffer Bs;, (out-
put buffer), is also assumed to be upper
bounded by b3. In this interconection we

have two “basic modules” connected in
serries. From the above we can come up

with the following mathematical model:

Ty = —a1T) + a1y
Ty = —aTy+ axup
Vi = T1— U

Y2 = X2

where y;,y; are the contents of buffers
B,, B; respectively. Along with the
above, the following constraints also hold
a) 0 < y1 < b, b) 0 < yp < bzo. The
above SISO series interconnection can be
expanded to the case where we have n
“basic modules” as follows:

—Az + Au
Iz — Fu

T
y

where z = [z;,7z2...,7,]7, ¥y =
[ylayZ--"yn]T7A:diag[alya'?"-aan]

010 ---0
0 0 1 0
E=1:: :
000 ---1
0 00 ---0

and I is the identity matrix. Again 0 <
Yi<bit10,1=12,...,n
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2.2 Series Multiple Input Single
Output Interconnection

In this subsection we extend our proposed

model to include the case where machine
1 has multiple inputs. Figure 7, presents

schematically the case. However in the
above structure only one input is active
at a time. Thus [, SI; < 1. As previ-
ously we assume the infinite capacitance
of the input buffers, while buffers B; and
B, are constained by b1 and bog repec-
tively 0 < b; < b5 ,7 = 1,2. From the
above we can derive the following math-
ematical model

n
&1 = —a121 + a1 Y_ v;
i=1

where v; = SI;, t =1,2,...,n and a; >
0.

Ty = —aT2+ aguz
N = I1— Uz

Y2 = I2

up = 8

with
n
Z’U,‘ <1
i=1

0<b;i<bip,i=1,2

Again we can extented the above formu-
lation to include n-“basic modules”.

—Az + Au
Iz — Fu

z
4

where [ is the identity matrix, A
dia!][‘ll az.. -an], T = [x1 Zg.. "'”"]T’?T’
W y2.-w] v =20, w5 ug. .. uy)

010 ---0
0 0 1 0
E=1:: :
0O 00 --- 1
0 00 ---0

Again 0 < y; <bjy10,t=1,2,...,n

2.3 Multi Input Multi Output
Interconnection

Whenever we have Multi Input Multi
Output interconnection the following
model can be applied.

In Fig. 9 we have one machine with two
mutually exclusive inputs and two corre-
sponding outputs. Thus we have a Two
Input Two Output setting. As we did in
the previous subsections we can impose
constraints on the buffers like: B, B,
to have infinite capacity while B3, B,
are bounded by bso and by respectively.
Hence the following mathematical model
can be derived

(i?l = —a171+ a1
T3 = —aTy+ axup
h = o
Y2 = T2

with uj +u; < 1,0 < gy < byo i =
1,2 where y; and 3y, are the contents
of the buffers Bjs, By respectively. The

above model can be extended to include
n-inputs, n-outputs.

—Az 4+ Au
T

z
y
where ¢ = [z wz---zn]T, y =

[ v2.. -yn]Ta A = diag[a}' az...a,)
Again y is the buffer content.

2.4 Parallel Interconnection

The parallel interconnection of machines
is nothing more than a number of SISO
series structures together with a MISO
interconnection model. For example take

the case where we have two machines
1, M2 1n parallel. Their corresponding

output buffers constitute the inputs on
machine M3 which is in a MISO form.
As we did in the previous subsections we
assume infinite capacity for the buffers
By, B; while buffers B, B4, Bs are uper-
bounded by a positive constant. How-
ever, now we do not assume that the in-
puts of the MISO basic module are mutu-
ally exclusive. On the contrary, all inputs
are needed in order for machine M3 to
produce an element. From the above dis-
cussion we can derive the following math-
ematical model:

Ty = —-a1T1+ a1y
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Ty = —aaTy + azug

. Uz + Uy
3 = —a3z3+ asz( 2 )
Y = T1—ug

Y2 = T2 —1uy4

Y3 = =3

0 < Y < bOi ,i: 17273

Observe that the denominator in the
expression for &3 must be equal to the

total number of parallel inputs, since the
parallel module operates only if all cor-
responding inputs are set to one. In this
Wway we can view ﬂ#’- as another control
input, for which we know that its admis-

ible values are either zero or one. The
above can be easily extended to include

n parallel branches.
z
y

—Az + auy
Iz — Fus

where [ is the identity matrix and z

[561 T2.. -$n+1]T, y = [yl Y2 .. 'yn+1]T’

diaglay ay...anan41],

[Un U1 ...Up1 Uny 1]T,

u2n= [1.1'12 Uz .. ..unQ]T. with Un+1 1 =
i=1(*2) and E is a (n + 1 X n) matrix

of the form:

1 00 0
01090 0
E=1]: :
0 00 1
0 0 O 0

where again y is the buffer content.

2.5 Example

In this example we consider the struc-
ture shown in figure 13. The above ex-
ample contains two MIMO “basic mod-
ules” My, M;. Define u; = Sy,u
S4,U3 = Sz,u4 = 53,U5 = 55 and 31
content of By, y3 content of Bg, y3
content of By, yy content of By, ys
content of B4 Constraints:

e B, B have infinite capacity
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e B; are upper bounded by b,y , i =
2,3,...,6 respectively.

Employing the above we can derive the
following mathematical model:

Ty = —a1Ty) +ajyy
Ty = —ar2 + axuy
T3 = —a3T3+ azug
Ty = —asTs+ asus
i = Ty —ug

Y. = T2

Y3 = T3 — Uus

Y4 = T4— Uz

Ys = s

with
0<y; <by, 1= 1,2,...,5

upt+uz < 1
ust+ug < 1
or in matrix form

—Az + Au
Iz — Fu

T
y

OSyiSbio, i = 1,2,...,5

1
1

Uy + U

<
ug + u, <

T [z1 z,.. .xs]T
y [v1 y2...ys]7
A = diagla; a;...a5)

where [ is the identity matrix and E is
a 5 X 5 matrix of the form.

00100
0 00 00O
E=100 0 01
01000
000 00O




3 Conclusions

The purpose of this report is to propose
a new model for describing the evolution
of a factory plant. Our proposal is simple

and_at the same_ time it can be seen to
work satisfactorily. However, we should

always have in mind that we build mod-
els to control a factory. Hence wheather
a model is “good” or “bad” is staight-
forwardly connected to showing that the

model under_ consideration leads relative
easy to the development of suitable con-

trollaws. On the basis of the above state-
ment our model shows great promise.
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Figure 7: MISO Series Interconnection
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Figure 6: SISO Interconnection (n-“basic modules”)
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Figure 9: Two Input Two Output case
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Figure 8: MISO Series Interconnection (n-“basic modules”)

Figure 9: Two Input Two Output case




Figure 10: n-Input n-output case
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Figure 12: Parallel Interconnection of n series branches
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Figure 13: An example




