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Abstract

This paper presents an algorithm for the design of robust
output feedback controllers for linear uncertain discrete-
time systems. The algorithm utilizes a version of the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) optimization
method of conjugate directions and minimizes a perfor-
mance index that includes an LQR term to optimize per-
formance and a robustness term which is based on recently
developed bounds. The minimization of only the robust-
ness term which corresponds to the maximization of the
uncertainty bound is also studied. The case of unstruc-
tured perturbations in A has been the only one studied in
the literature; the present algorithm not only introduces a
unified approach to both unstructured and structured per-
turbations in A but also is shown to improve considerably
the existing unstructured uncertainty bound. Several other
cases involving unstructured/structured perturbations in
all the state-space matrices are also presented and exam-
ples, including an aircraft control system, are used to illus-
trate the results.

1. Introduction

The problem of determining a linear feedback control law
for uncertain linear systems has drawn considerable at-
tention. Several criteria have been used to characterize
the system uncertainties, so that the stability (asymptotic,
quadratic, exponential) of the uncertain systems is guaran-
teed if these criteria are satisfied, and several robust con-
troller design methods have been developed. These meth-
ods are based on He techniques (as in [3], [5], [24]), the
LQR/LQG formulation (as in [4], [16], [22]), the Guaran-
teed Cost Control approach (as in [14], [17]), optimization
techniques (as in {6], [7]) and the theory of Lyapunov sta-
bility /Riccati equations (as in [20], [21]).

All the above controller design approaches share the same
general objective, which is to find a stabilizing controller

that satisfies some stability conditions or is robust in some
sense, without considering the maximization of any of
the robust stability bounds existing in literature. This
has been done in [23] for continuous systems with struc-
tured uncertainties in the system matrix A and in [11] for
discrete-time systems with unstructured uncertainties in
A. The design in the first paper relies on the selection of
a weighting matrix not directly associated with the struc-
tured uncertainties and in the latter on the bound devel-
oped in [10]. In both papers, the information about the un-
certainty bound is part of the minimizing quantity, which
also includes the classical LQR cost. Therefore, the con-
troller design objective is twofold, that is to minimize the
LQR cost and maximize the perturbation bounds. A simi-
lar approach was used earlier in [19] for continuous systems
with structured uncertainties in all the state-space matri-
ces, under some quite restrictive assumptions imposed on
the perturbation matrices. Although the maximization of
some stability bound is not considered in the design pro-
cess, the information about the structured uncertainty is
directly included in the minimizing quantity.

Here, we present a unified output feedback controller de-
sign approach for both cases of unstructured and struc-
tured perturbations in A. Note that from the above dis-
cussion it is clear that for discrete-time systems, only the
case of unstructured perturbations in A has been studied
in the literature. Our approach is based on new results for
both the stractured and unstructured cases, which were
recently developed in [12]; these theorems have shown to
provide bounds that improve the ones obtained via the
methodology suggested in [10] and used in [11]. Our de-
sign not only provides a stabilizing static output feedback
controller that improves the unstructured bound for A de-
rived in [11], but is also capable of finding another such
controller that maximizes the bound for the case that A
is perturbed by known uncertainty matrices. In addition,
several other interesting cases are studied. In all these
cases, the minimizing quantity consists of two terms; one
is the robustness term, which is associated with the spe-
cific unstructured/structured bound we wish to maximize




and the other is the LQR term, which is associated with
the specific control performance we wish to maintain. Our
approach is also applied to a minimizing quantity comsisted
of only the robustness term, in order to find the controller
that maximizes the stability bounds, without considering
any control specifications. Note that only the case of static
output feedack is studied, since it can easily be shown that
the case of dynamic output feedback can be reduced to
that of static feedback as well. Finally note that our min-
imization algorithm utilizes a version of the Broydem fam-
ily method of conjugate directions, which is based on the
BFGS rule, [2], and that the case of state feedback can be
easily considered as a special case of the output feedback
case for C = 1.

The paper is organized as follows. In section 2, we present
without proofs the new theorems of [12] for the cases
of unstructured and structured perturbations in discrete-
time systems. In section 3, we study the case of unstruc-
tured/structured perturbations in the system matrix A,
and present an algorithm based on the BFGS rule that
solves the minimization problem. In section 4, we consider
unstructured/structured perturbations in either the input
matrix B or the output matrix C and in section 5, unstruc-
tured/structured perturbations in either (A, B) or (A,C).
In section 6, we study the case of unstructured pertarba-
tions in all state-space matrices. In section 7, we provide
illustrative examples for some of the cases studied above
and finally in section 8, concluding remarks are included.

2. Preliminaries

We consider the linear discrete-time system

o(k+1) = A z(k) (1)

where £ € R" is the state vector and A an asymptotically
stable matrix. Then, for every symmetric positive definite
matrix @, we can find a symmetric positive definite matrix
P, which is the unique solution of the Lyapunov equation

ATPA-P+Q=0 2)

When A is perturbed by the matrix AA, then for the per-
turbed system '

y(k+1)=(A+AA)y(k) 3)

the following theorem has been proven in [12]. First define

0 =ATPZ7'PA (4)

Theorem 2.1 Consider the linear discrete-time system
( 1 ) where A -is an asymptotically stable matriz that
satisfies ( 2 ). Suppose that A — A + AA, then the
perturbed system ( 3 ) remains asymptotically stable, if
(AA)T (@Z+P)(AA) + L0 < Qor

Omin — Omaz 1 ]
omas(84) < \/ O

where P, Q are definedin (2 ), Q1 in (4 ), Z can be any

positive definite matriz of appropriate dimensions, and a
any positive number that satisfies

Omaz (Ql )

omen(Q) (©)

When the perturbation matrix AA is described by

(™

where x;,7 = 1,..,m denote real, uncertain parameters
and A;,? = 1,..,m are constant, known matrices, the fol-
lowing theorem has been proven in [12]. Obviously, we
have used the definitions K = [k km]T, and
A=[AT AT ... AT,

Theorem 2.2 The linear discrete-time system ( 8 ) with
structured perturbations of the form of ( 7 ) remains asymp-
totically stable, if the uncertainty parameters satisfy

ing < amin(Q) - o’ma:(i Ql)
' a?naz(A) ama:(aZ + P)

(8)

=1

where 01, ki, A are defined in (4),(7) (7) respec-
tively, Z can be any positive definite matriz of appropriate
dimensions, and a any positive number that satisfies (6).

The above theorems provide bounds that improve the ones
obtained via the methodology of [10]; this is demonstrated
next. The main point of the approach used for the theo-
rems above is the appropriate selection of a positive definite
matrix Z and a positive number o that maximize the sta-
bility region within which the uncertain parameters vary.

Example 2.1 Consider the following uncertain
discrete-time system { 3 ) from [10] with

0.20 0.30
4= (0.10 —0‘15)




R = sphere radius = 0.0606
Rc = cube radius =0.0603

Figure 1: Example 2.2

We choose Q@ = I, ¢ = 02702 and Z =
2.0399 —0.2037 .

(_0.2037 1.4586 ) Using ( 5 ) of Theorem 2.1, we

obtain omaz(AA) < 0.6787, which compares favorably to

the result of [10], which is omaez(AA) < 0.6373.

Example 2.2 Consider the same nominal system, but
now with structured perturbations of ( 7 ), that is

—-05 9 1 06
( 0 —3)"43‘(1 0.3)

(10)

1.3462 —0.1184
—0.1184 0.8786 /°
Using ( 8 ) of Theorem 2.2, we obtain « + k3 + k3 <
(0.0606)2, that is a sphere with radius R = 0.0606, whereas
the method of [10] gives |x;| < 0.0348 for i = 1,2,3. As we
can see in Fig. 1, the defined cube is completely included
in the sphere found above, which shows that our bound is
less conservative than the one of [10].

We choose Q@ =1, a = 0.40, Z = (

3. Perturbations in A

We consider the linear discrete-time system

z(k + 1) = Az(k) + Bou(k), y(k)= Coz(k) (11)

where £ € R" is the state vector, v € R" is the input vector
and y € R? is the output vector. Both unstructured and
structured perturbations for the system matrix A are of in-
terest here, that is A = Ag+AAand A = Ap +Z:’;l KiAi.
We apply the static output feedback law u(k) = Ky(k).
Defining Ag = Ao + By K Cy, the closed-loop systems are
described respectively by z(k + 1) = (A¢ + AA)z(k), and
z(k +1) = (Ao + Z::l n.'A.-)z(k).

3.1. Design without performance specifications
Our objective is to find a stabilizing output feedback gain
K that maximizes the bounds of ( 5 ) and ( 8 ). Due to the
similarity between these two relations, we present here a
unified approach for both the unstructured and structured
cases. For the closed-loop systems above, relations ( 2 )
and ( 4 ) can be translated into

AlPA,—P+Q=0, @ =ATPZ'PA, (12)

Since Q in ( 12 ) is selected beforehand, in order to maxi-
mize the bounds of ( 5 ), ( 8 ), we need to

e (A.1) : minimize Omaz(aZ + P)

o (A.2) : minimize Omax(: )

For (A.1), we choose to minimize the quantity -see [13]-
Ju = Tr(e®Z? 4+ 2aZP + P?). For (A.2), we have
o'ma:(:,_ Ql) < % Ugnnz(Ao) a?na::(P) a'ma,(Z-l). Since
Z is selected beforehand and an upper bound of omaz(P),
that is Tr(P?), is already minimized in Ji;, for (A.2) we
simply choose to minimize Jiz = 1 Tr(AJ Ao), which is an
upper bound of 107,..(Ao). Note that the minimization
of the sum of T'r(% A Ao) and Tr(P?) is an indirect and
harder way to minimize their product; in other words, we
impose a more demanding task on the minimizing process.
Note also that « is included in the minimizing quantity, be-
cause we need to satisfy the positiveness of the numerator,
as indicated in ( 6 ). Therefore, the minimizing quantity
is given as Jll = Ju1 + Ji2 under the condition that ( 12)
holds. This is clearly a gonstra.ined minimization problem.
By including ( 12 ) in J;, we finally reduce the problem to
an unconstrained minimization one, with the minimizing
quantity finally given by

= Tr[ o*Z® +2aPZ + P? + é AT A,
+L; (ATPA - P+Q)] (13)

where L; € R"*" is the Lagrange multiplier matrix. Next,
we need the following properties from [1]

a 2 T
o5 Tr(x?) 2X (14)

G
5y Ir(4:1Y By) AT BT (15)

a
W TT(AzYTBz) B A, (16)

5‘;— Tr(AsY BsYT) AsYBs + AJYB] (17)




for any X € R™*" Y € R"*™ A; € R*", B, € ®™*,
Ay € §RIXm’ B, ¢ %nxl’ As € %nxn' 33 € gmxm With
these properties, we have

aJ

3L = AL = A PA-P+Q (18)
%ﬁl = AL = 2aTr(2%)+2Tr(PZ)

_;12. Tr(AT Ao) (19)
% = Ap = 2P+2aZ+ ALTAT - LT (20)
% - A} = %BOTBOKCOC‘,T+ %BOTAoCoT

+BJ PBoKCo (L1 + LT)CT

+BgPAo(L1 +riycd (21)

To minimize ( 13 ), we use a version of the Broyden fam-
ily method of conjugate directions, which is based on the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) update rule;
details in {2]. The proposed algorithm is presented next.

Initialization Step Let ¢ > 0 be the termination
scalar. Choose an initial stabilizing gain

(22)

(=)

where (7})T,1 = 1,..,r are the 1 x ¢ rows of K,, which
stabilizes (Ao, Bo, Co), that is Aq stable. Also, choose an
initial symmetric positive definite matrix D; € RT9%79. Let

T
y1 =11 =((r)7 (¥)7) (23)
be a column vector consisting of the transposes of the rows

of A;. Also let k = 5 =1 and go to the Main Step.
Main Step
MI1. Substitute the gain matrix K; in the gradients of

( 18 )-( 20 ), set them to zero, that is A, =0, AL = 0,
A% =0, and solve for P, a, L, respectively, in that order.

M2.  Substitute these parameters in ( 21 ) and compute
(eD”
1 .
Ak, = (24)
(o2)"

1,..,7 are the 1 x ¢ rows of A}‘—].
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M3. Define VJi(y;) = ((¢7)7 (e)T)T. It
IIVJi(y;)ll < ¢, STOP. The optimal gain is K;. Other-
wise, go to M4.

M4. If j > 1, update the positive definite matrix D;
T T
Ps—1Pj— -1D5-19;-1
D,=DJ-_1+’TJI[1 JTJ 3
P]_.lqj——l pJ_qu—l
_[DJ—IQJ—IPJT—1 +PJ—19_1T—1 D;_1]

(25)
Pf-] 95—

where p,.1 = AJ-—ldJ—l =Y;—¥;-1,and ¢;_; = VJI(!IJ)"
Vi (yj-1)-

Ms. Defire d; = —D;VJi(y,), and let ); be an
optimal solution to the problem of minimizing Ji(y; +
Ad;) subject to A > 0. Let y,40 = y; + \d,

((Tf+1)T e (Tﬂ'H)T )T, which implies that
(Ti1+l)T
L (26)
()7

where obviously (r,j“),l =1,..,r are ¢ X 1 column vectors.

Ms. If 5 < rq, replace j by j + 1 and repeat the Main
Step. Otherwise, if j = rq, let y1 = z44; = Yrq+1, replace
kby k+1,let j =1 and repeat the Main Step. aa

Several issues need to be discussed here. First, note that
the line search in (M5) is restricted to stabilizing gain ma-
trices. Therefore, the selected new gain matrix needs first
to stabilize the closed-loop system and then minimize J;.
Since our algorithm is an indirect version of the BFGS algo-
rithm, as an alternative to the stopping criterion of (M3),
we could use another quite practical criterion. Specifically,
we may consider monitoring J; and stop when we see that
J1 is sufficiently small and the derived bound derived is sat-
isfactorily large. From ( 19 ), we can easily see that there is
at least one real positive solution for . For our algorithm,
we choose to keep the largest vilue of a, since we also need
to satisfy the positiveness of the numerator of {(5) and
( 8), as discussed before. Finally, note that for optimiza-
tion problems similar to the one we study here, alternative
methods based on gradient-type and nongradient-type al-
gorithms have been proposed in [8] and [18] respectively.

3.2. Design with performance specifications

In the previous subsection, we focused on finding an out-
put feedback gain K that maximizes the bounds of (5)
and ( 8 ). If, in addition to this objective, we also wish
to attain a specific control performance, then we need to
include in our minimizing quantity a term that evaluates
this control performance. Therefore, we consider the fa-
miliar LQR cost J, = 3% 27 (k)Quz(k) + u7 (k) Ry u(k),




where Q;, R, are positive definite matrices of appropriate
dimensions. For the nominal system (Aq, Bo,Co) with the
output feedback law u(k) = Ky(k), we finally choose, see
(13], the following modified cost J» = Tr(P2 Xo), where

P, is the solution of the Lyapunov equation

AT P Ay — P+ Q=0 (27)

We have defined @ = Q1 + CTEKTRIKCy, Xo =
E[z(0)2T(0)] > 0. Usually, [15], we consider z(0) uni-
formly distributed on a sphere of radius o, that is Xo =
ol,.. with ¢ = 1 the obvious choice. Therefore, the over-
all minimizing quantity, which is associated with both the
robustness of Ag and the control performance of the closed-
loop system is given by

Ja = Tr[a’Z® +2aPZ + P+ iAng + L (AT PAo

-P+Q)+ P Xo + Lz(A{Pon — P+ Q)] (28)

where, similarly to ( 13 ), we have reduced the problem
to an unconstrained minimization one by including ( 27 ).
Due to the introduction of P> and L, in the new cost Ja,
we need to consider its partial derivatives with respect to
these new matrix variables as well. For the same reason,
we have some additional terms in A} of (121 ).

AL,

As P,Ag— P2+ Q

Aq

Ap

XJ + AoL3 Ag — L3 (33)
Ak + RiKCo (Lo +LT)CF

+ BTP,BoKCs (Lo + LT) CT
+BI P Ao (Lo + L3 ) Cd (34)

To minimize J4, the algorithm of the previous subsection
can be used again, the only difference -being that steps
(M1), (M2) have to be replaced by the following

Mla. Substitute the gain matrix K, in the gradients of
( 29 )-( 33 ), set them to zero, that is A%; = 0, A, =0,
A2 =0, AL =0, A?z = 0 and solve for P, P, a, L1, L»
respectively, in that order.

M2a. Substitute these parameters in ( 34 ) and compute
(DT
A%, = (35)

(02)”

where (of)T,I =1,..,m are the 1 x ¢ rows of A‘I‘t—j.

4. Perturbations in B or C

We consider perturbations in either the input matrix B or
the output matrix C. Since both cases are similar, we study
the case of perturbations in B. Therefore, we consider the
linear discrete-time system

z(k+1) = Aoz (k) + Bu(k),  y(k) = Coz(k)  (36)

with static output feedback for both unstructured and

structured perturbations in the input matrix B, that is
B=Bo+AB, B=Bo+ ) .., AiBi respectively.

4.1. Unstructured perturbations

It can easily be shown, [13], that the stability of the

closed-loop system is maintained, if omaz(AB) <

\/a,,..,.(Q)—amu(;‘; 2,)
a’m“((;?m . Hence, in addition to the mini-
maz o)

mization objectives of (A.1) and {A.2), we also need to

e (A.3) : minimize omaz (K Co)

Instead of (4.8), we choose to minimize its upper bound,
that is Ja = Tr[(KCo)T (K Co)]. The minimizing quantity
i1s Jg, = J1 + J2 when no performance specifications are
considered, where' J; is defined in ( 13 ). When perfor-
mance specifications are considered, then Jgf =Ja+ T3,
where J 4 is defined in ( 28 ). The algorithm of the previous
section can be used here for /g, and Jg¥ as well, the only
difference being that the term %\? =2 KCoCF needs to
be added to { 21 ) and ( 34 ).

4.2. Structured perturbations
It can easily be shown, [13], that the stability of
the closed-loop system is maintained, if Z:’;l A2 <

Tmin(@)=Fmaz(L ) * T T\T
a?nax(B*I\'Co)a'ma:(aZ-fP)’ where B* = (By ---B, ) .

Now, in addition to (4.1) and (A.2), we also need to

e (A.4) : minimize Omaz(B*KCo)

We choose to minimize Js = Tr[(B*KCo)T(B*KCo)] so
that the minimizing quantities are now Jp, Ji+ Jy,
Jg? = Ja+ Ji. The algorithm of the previous section




applies here for Jg  and Jgf as well, the only difference
now being that the term aa—;‘.‘- =2 (B*)TB*KCoCJ needs
to be added to ( 21 ) and ( 34 ).

5. Perturbations in (A, B) or (A, C)

We consider perturbations in the system matrix A and the
input matrix B or in A and the output matrix C. Since
both cases are similar, we study the case of perturbations
in (A, B).

5.1. Unstructured perturbations
We consider the linear discrete-time system

z(k+1) = Az(k) + Bu(k),  y(k) = Coz(k)  (37)

where A Ao + AA, B By + AB and static
output feedback is applied. Here, the stability of
the closed-loop system is maintained, if Omaz(AA) +
Omus(AB) Omaa(KCo) < |/ ‘mnl@tmec(z 0y
be shown, {13], that in order to maximize the stability re-
gion defined above, we need to satisfy the objectives (A.1),
(A.2), (A.8). We see that the present case has the same
objectives with the case of unstructured perturbatioas in
B or C we studied before.

It can

5.2. Structured perturbations
We consider again the system of (37 ) with A = Ao +
M4 KkiA;, B= Bo+ Z A;B;. Here, the closed-loop

=1
system remains a.symptotlcally stable, if Z:’;‘f‘m" 8 <
Um;n(Q)_Uma::(': )

L) o (a4 P where §; = Ki,t = 1,..,ma and
0i = Xicmg,i = ma+1,.,ma+ mp, and 0 =
(A7 An, (BIKC)T (BmgKCo)T )T

Therefore, in addition to (A.1), (A.2), we also need to
o (A.5) : minimize omaz(Il)

Similarly to before, we choose to minimize Js = Tr[ﬂTﬁ],
so that the minimizing quantities are J, 5 = Ji+Js, Jh=
Ja + Js. Hence, our algorithm can be used again, the only
diffrence being that the term M st 2 BTB L KCoCF
needs to be added to ( 21 ) and (34).

6. Perturbations in (A, B, C)

We consider unstructured perturbations in all system ma-
trices. Specifically, we consider the linear discrete-time sys-
tem
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z(k + 1) = Az(k) + Bu(k), y(k)y = Cx(k) (38)

where A = Ao+ AA, B = Bo+ AB, C = Gy + AC. Here.
the stability of the closed-loop system is maintained, if

o (Bane) < \/am.-,.(Q)ww(;ﬂl) 9)

Omaz(aZ + P)

where

Omaz{AA)
Omaz(AB)0maz(K)0maz(Co)
Omaz(Bo)0maz(K)omaz(AC)
Omaz{AB)Omaz{K)0maz(AC)(40)

il

a'maz(AABC)

+ 4+ +

This inequality defines a region in R* for Omaz(AA),
Omexz(AB) and 0maz(AC). It can be shown, see [13], that
in order to maximize the volume of this region, we need to
satisfy objectives (4.1), (A.2) above, and also

e (A.6): minimize Omaz(K)

which corresponds to the minimization of Js = Tr(K7T K).
Therefore, the minimizing quantities are Jipc = Jy + Jg,
J5c = Ja+ Js. Our algorithm can be used again, with
the addition of the term %@- =2K to (21) and ( 34).

7. Illustrative examples

Example 7.1 Consider the scalar system

z(k 4+ 1) = 0.5 z(k) + u(k), z(0) =1.0 (41)
with state feedback u(k) = K:c(k) This system was stud-
ied in [11], where the LQR cost J, = Ek o T (k) + 4 (k)
was used, that is @3 = R 1. The denved bound for
unstructured perturbations in the system matrix A was
Omax(AA) < 0.8436, for a gain of K = —0.3436. We
apply our method for the same LQR term. Choosing
Q = 1.30, Z = 0.60, initial stabilizing gain K; = 0.1
and positive definite matrix D 0.001, we obtain a
stabilizing gain of K = —0.49998, which corresponds to
Omaz(AA) < 0.99998, which compares favorably to the re-
sult of [11] given above. The components of the minimizing
quantity ( 28 ) that are associated with the robustness and
the performance objectives are J; = 1.69 and J, = 1.25
respectively.




Neglecting the performance specifications, as indicated by
the LQR cost. and focusing on just the maximization of
the robustness bound, that is the minimization of ( 13 ).
we obtain a stabilizing gain of K = —0.49999, which cor-
responds 10 Omaz(AA) < 0.99999 and J; = 1.6900. Note
that the same @, Z, K; and @; have been used. As we
see, 1n this scalar case, we obtain almost the same results
for the final stabilizing gain K, the uncertainty bound and
the robustness component J; of the minimizing quantity,
no matter whether the LQR term is included or not in the
minimizing quantity. Note, however, that this is not the
case, in general, for MIMO systems, as we can see in the
examples of [13] and the example that follows.

Example 7.2  Consider an aircraft longitudinal control
system from [9], whose the linearized continuous dynamic
model is given by

—0.0582 00651 0  —0.171
o ~0.303 —0.685 1.109 0
) = | _o0m15 —0658 —0947 0 z(t)
0 0 1 0
0 1
—0.0541 0
111 o | *®
0 0
100 0
010 0
00 0 1
where z(t) = (a(t) B() w(1) 01T, ult) =

(n(t) ()", a(t) and B(t) are the forward and verti-
cal speeds, t(t) is the pitch rate and 8(¢) is the pitch an-
gle. The control inputs n(t) and 7(¢) are the elevator an-
gle and throttle position respectively. Note that all states
are assumed available for measurement. We consider the
discrete-time model for T = 0.5 sec. The state-space ma-
trices are given by

0.9692  0.0283 —0.0112 —0.0842

AL —0.1302  0.6469  0.3584  0.0059
—0.0086 —0.2126 0.5644  0.0007
—0.0041 —0.0621 0.3873  1.0001
0.0017  0.4924
—0.1385 —0.0344

Ba = —0.4266 —0.0041 |* C2=1s (43)
—0.1170  —0.0009

We study the case of structured perturbations in the sys-
tem matrix Ag; specifically we assume that
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01 015 0 0
005 0 01 0
Ada = & 0 0 o0 o0
01 0 0 005
0 0 0 005
0 =01 0 0
Rl 0 0 o005 (44)
0 0 005 0

First we need to find the static output feedback matrix
that maximizes the stability bound ( 8 ), without consid-
ering performance specifications. We choose Q = 10721,

0.0110 0 0 0
7 0 0.0148  —0.0007 —0.0110 | . ..
0  —0.0007 0.0199 —0.0028 |’
0  —0.0110 —0.0028 0.0047
o —0.0264 —0.1722 3.0531 10.2700
gain Ky = (—1.6068 0.2706  0.0224 —0.0742 )’

that places the closed-loop poles at (0.20,0.70,—0.50 +
0.253), and D1 = Is. Our algorithm converges to the stabi-
lizing gain K = (—0.]089 —0.5016 2.2162  1.5402 )

—1.8981 0.0748 0.0317 —0.1342
which corresponds to the J; = 0.4468. With this gain, the
stability region for the uncertain parameters is defined by
the circle xf + x% < (0.6161)2.

Next, we include the LQR cost in the minimizing quantity
( 28 ) for Q] = 0.114, R1 = 0.0112, Xo 0.1]4. We
consider the same Q, Z, D1, K; as before and obtain the

—0.0672 —0.1988 1.4512 0.9723)

output gain K'={ _1"oor3 00895 0.0590 0.0641

which corresponds to J; = 0.3985 and J> = 0.0932. This
gain defines the circle k7 + k2 < (0.5269). Note that the
uncertainty radius here is more conservative compared to
the case of only the robustness specifications studied above.

Note that for the examples presented above and the nu-
merous examples of [13], our algorithm proved to be quite
fast. The algorithm, written in MATLAB code, converged
in just several iterations of the Main Step; this took ap-
proximately a minute on a Sun SPARCstation 10.

8. Conclusions

A fast optimization algorithm for the design of robust out-
put feedback controllers for linear uncertain discrete-time
systems based on the BFGS rule has been presented. The
minimizing quantity reflects the twofold optimization ob-
Jective, which is the simultaneous maximization of estab-
lished uncertainty bounds and the minimization of an LQR
performance criterion. The first objective is based on re-
cently established improved bounds that were developed in
[12]. Note that the algorithm has also been applied to the
case where the LQR term is not included in the minimizing




quantity, so that the only objective is the design of a sta-
bilizing controller that maximizes the uncertainty bounds.
In that case, the derived stability bounds are. in general,
larger than the ones derived in the case of the robust-
ness/LQR minimizing quantity. This was expected, since
the inclusion of the LQR term in the minimizing quantity
added an additional requirement to the optimization task.

Previous work was restricted to the case of unstructured
perturbations in A. Here, a unified approach to both un-
structured and structured perturbations in A has been pre-
sented. It has been shown that the present design process
improves significantly the unstructured bound of [11]. Ad-
ditionally, the cases of unstructured/structured perturba-
tions in B or C, in (A, B) or (A, C), together with the case
of unstructured perturbations in (A, B, C) have also been
studied. Note that the case of structured perturbations in
all the state-space matrices remains to be addressed.
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