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Two-parameter Compensation Scheme :
Application to the Minimum Number of Unstable
Zeros Decoupling Problem

S. BOUSSAID, A. BENAMARA and J.P. GUERIN
Laboratoire d'Automatique de Grenoble
E.N.S.LLE.G, Domaine Universitaire, B.P 46
Saint-Martin d'Heres - France. Tel.76 82 62 28 ; Fax. 76 82 63 88

Abstract : In this paper we examine the problem of internally stabilizing and
simultaneously diagonally decoupling a linear multivariable system with a "minimum
number of unstable zeros" (in some sens ) in the decoupled system by two-parameter
compensation. Based on our results in [4] where it was proved that any given plant (P)
of full row rank can be decoupled with internal stability by the considered configuration
(computation of the decoupling compensators is easy). The existence of some solution to
the decoupling problem with a "minimum number of unstable zeros" in the decoupled

system is derived.

Keywords : linear multivariable systems, decoupling, two-parameter compensation,
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I. INTRODUCTION

The linear time-invariant system decoupling
problem ( or noninteracting control ) was
extensively investigated in the last decades by
geometric approach as well as a transfer
approach. For authoritative references
representing important steps in the
development of this theory, see [4], [6], [7],
[10], [11] and [15]

In the paper [4], by using the transfer
approach, we have presented an algebraic
design method for diagonal input-output maps
which can achieved by a stabilizing two-
parameter compensation. This problem is also
referred to a two-degree of freedom design in
[7].

More precisely, we have considered the
following multi-input multi-output (M.I1.M.O)

system  X( P,K,C) :
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where P is a given proper transfer of a plant ;
and K, C are proper controllers to design such

that the system 2. ( P,K,C) shown in the
figure is internally stable and the input-output
map € — y is diagonal and nonsingular
with "a minimum number of unstable zeros".
This problem is refered to a decoupling
problem by two-parameter compensation with
internal stability.

Based on the results given in [3], the
following are proved in [4] :

a) Any plant P of full row rank can be
decoupled by the closed-loop system shown in
the scheme above with internal stability ;
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b) For the "generic" case of plants P
(the genericity is in the sens that det.D and the
piggest invariant factor of N are coprime,
where (N, D) is any right coprime
factorization of P) we have exhibited a
solution to the decoupling problem which
garanties a minimum number of unstable
zeros in the decoupled system.

The aim of the present note is to
investigate the stable decoupling problem with
a minimum number of unstable zeros in the
general case. We show that the solution to the
problem above is not unique, and some
solutions can be derived from the particular
solution to the decoupling problem with
internal stability, presented in [4]. Our
approach will largely use some results
concerning the "skew-prime" proper and
stable matrices and the "skew-complements"
of these matrices.

The paper is organized as follows. A
short mathematical background is given in
section II. Section III gives the formulation of
the considered problem and some preliminary
results. The section IV is devoted to the
existence of solutions to the "minimum
number of unstable zeros" decoupling
problem. Some concluding remarks end the

paper.

II. NOTATIONS AND PRELIMINARIES

We denote by Rps the ring of proper
and stable rational functions, and by 9° the
degree function defined from Rps to Z, by :

* 0° f(s)= ordre of infinite zero + number
of finite unstable zeros of f(s) (counted with
their multiplicity ), if f(s) # 0

* 0° f(s) = o0 , if f(s) = 0.

Note that Rps is an Euclidean Domain (with
this degree function).

Rp denotes the ring of proper rational
functions. Mp and Mps denote the set of
Matrices over Rp and Rps respectively. Up
and Ups are the groups of units of Mp and
Mps respectively. We denote by A the ring
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of Mps - matrices which are diagonal and
nonsingular.

Let P € Mp. We say that (N, D) €
Mps x Mps is a right coprime factorization
(rc.f)of Pif:
iyP=ND-l
ii) N, D are right coprime (r.c) ; i.e. :
XN+YD=I;with Xand Y inMps .

Let us recall that i f (N, D) is a r.c.f of
P € Mp, then all the r.c.f of P are given by
(NU, DU) where U € Ups.

DEFINITION 1.1 : Let A, B € Mps . We say
that (A, B) are skew-prime if there exists X
and Y in Mps such that : XA + BY = I .

The order in which A and B are cited is taken
in consideration. This avoids the definition of
internal and external skew-primness as in
[16].

THEOREM 11.2 :Let A, B e Mps , of
dimensions qxp and pxm, respectively. Then
the following conditions are equivalent :

1) the pair of matrices (A,B) is skew-prime

2)there exists a pair of Mps-matrices, A
and B, of sizes rxm and qxr, respectively such
that :

AB = ABand (A, B) are left coprime, and
(A, B) are right coprime.

Furthermore if A is square and det.A#0 ( resp.
B is square and det. B#0 ), then :

i) B=UBV (resp. A = U AV) where U
and V are in Ups

ii)det B = u. detB (resp. det A = u. det A)
where u is a unit of Rps.

The pair ( B, A ) is said to be a skew-
complement of the pair (A, B).

This theorem is proved by Wolovich ([16]) for
the polynomial functions case, the proof
remains valid for any principal ideal domain,

in particularly for Rps.




II1. PROBLEM DESCRIPTION AND
PRELIMINARY RESULTS

We consider the M.I.M.O linear, time
invariant system X.(P,K,C) described by the
configuration below :

e * u
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Fig.1. The system 2(P,K,C)

Let us consider the following problem : given
a plant Pe Mp of size [xm, rankP = [, (the
rank of the matrices is defined as the number
of columns or rows which are independent
over Rp), we wish to design two proper
controllers K and C such that the resulting
feedback system 2.(P,K,C) shown in Fig.1 is
internally stable and the input-output map :
€ — Yy is nonsingular, stable and decoupled
and have a "minimum number of unstable

zeros " (i.e : PC . (I + KPC)'l € A and
0°PC.(I + KPC)-! is minimal).

To give the full solution of this problem we
need some preliminary results concerning the
decoupling problem. This is done hereafter.

DEFINITION III.]1 : let P=ND! € Mp
where (N, D) is any r.c.f of P. We say that
QeMps, such that PQe Mps, is admissible
relatively to P iff:

i) Q=DRA ;
A eMps N Up

ii) (D,R) are skew-prime and (NR, A) are
skew-prime.

with R e Mps and

THEOREM 111.2 ([3]) : Let P e Mp. The
two following statements are equivalent:
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i) there exists controllers K and C in Mp
such that the system Z( P,K,C) is internally
stable

ii) there exists a stable precompensator Q
(i.e. QeMps) which is admissible relatively
to P and the transfer matrix from e to y
(Fig.1) is equal to the product PQe Mps.

It appears, from the theorem above, that
the decoupling problem with internal stability
using the configuration shown in the Fig.1 is
equivalent to the following one. Given a plant
P € Mp of size [xm, rankP = [, we have to
prove the existence of a precompensator
Q € Mps of seize mxL, such that :

i) PQ e Mps, diagonal and non singular

ie. PQe A ;

i1) Q is admissible relatively to P ;

iii) PQ have a "minimum number of

unstable zeros".

The solution of the decoupling problem when
relaxing the condition iii) above is contained
in the following theorem :

THEOREM II1.3 Let P € Mp of size [xm,
rank P = L. Then there always exists Q €
Mps of size mxL such that :

i)PQ eA

ii) Q is admissible relatively to P.

Proof : The complete proof of the theorem
can be found in [4].

Let P € Mp of size [xm, rank P =F.
An r.c.f (N, D) of P can be derived from the
Smith MacMillan form of P (see [14]) :
P=ND-1 with:

8 m-[
N=V[n...0] 3.1)
V € Ups and n = diag.{n;, ..., ng} with

n; / njy fori=1,.,[-1, and n;eRps for
i=1,.,L[. '
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where I; is the (Lx[)-identity matrix. In this
way we can see that PQ is decoupled.

Lxm,
Q€ It is shown in [4] that Q = D.Qg,where D
and Qg are defined as in (3.2) and (3.3) is
admissible relatively to P.
orem IV. DECOUPLING WITH MINIMUM
] NUMBER OF UNSTABLE ZEROS
> = . It is clear that the solution Q=D.Qq
n the given in the last section may introduce a large
number of unstable zeros in the system. Then
it makes sens to characterize a stable and
1 admissible precompensator Q (e Mps ) which
(3.1) ; garanties a "minimum number of unstable
zeros" (in some sens) in the transfer matrix of
with a decoupled system given by PQ € A.
s for

DEFINITION 1V.] : let Pe Mp and Qe Mps
PQ € A and Q is admissible

such that

4)
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relatively to P. We say that Q is minimal if
for any admissible Q' € Mps such that PQ' €
A, we have 0° det.(PQ) < 3° det.(PQ’) .

This definition implies that the number of
unstable zeros in the decoupled system PQ is
smallest than any one other decoupled system
PQ..

The notion of minimum which will be
considered in the next is always in the sens of
the definition IV.1.

Every Q € Mps which satisfies the definition
IV.1 is said to be an admissible minimum
decoupling precompensator (a.m.d.p). It is
clear, from theorem III.2, that any a.m.d.p Q
gives at least a pair of proper controllers (K,C)
solution to the decoupling problem defined in
section III with a minimum number of
unstable zeros in the decoupled system.

Relaxing the admissibility condition for the
precompensator Q € Mps we firstly give the
parametrization of all precompensators
Q € M ps such that, for a given plant
P e Mp, PQ € A. And secondly, we derive
some solution to the a.m.d.p problem.

A. Parametrization of the set of decoupling
and stabilizing precompensators

For any given plant P € Mp, of size
[xm, rank P = [. We denote by C = {Q €
Mps, of size mxl, such that PQ € A } the
set of all stable precompensators Q which
ensure, for given plant Pe M p, that the

product PQ is stable, diagonal and
nonsingular.

We are now able to characterize the
elements of the set C . Before doing this, let

us recall the following :

for any given plant P € Mp, of size [xm,
rank P =L, w e consider the r.c.f (N, D) given
by (3.1) and (3.2). We know that a
decoupling solution is given by the
precompensator Q defined as :



Q=D.QpeMps , of seize mxL, with

n
Qy=1{----| Vle Mps
0
with m = diag{n;, ..., nf} ; where

nj=ng.n;! € Rps, fori=l, .., [ and satisfies :
PQ=Vn.nV-l=n I.
In this way, we see that PQ is decoupled.

Now define :

* Bi= g.c.d. Coliln V-1} - the greatest
common divisor of the elements of the column
number i of the matrixn V-1 fori=1,..., [.

4.1

* B =diag{B;} € A for i=1, ..,[. 4.2)

*Ro =fi. V-L. B e Mps 4.3)

Note that it is easy to see that :
PQ=DQ=Vn.nV-1=VnRoB =B € A
where fo=VnRp € A

PROPOSITION IV.2 :Every Q € C is
given by the following form :

Ry, Y
Qy=D.| ----
X

with Y € A and Xe Mps.

Proof : For a complete proof of this
proposition, the reader is refered to [1, 4].

This  proposition gives a
characterization of the set C of all the stable
precompensators Qe Mps, which are not
necessarily admissible, such that the product
PQ e A, for a given plant P € Mp of size
Cxm.

B. Problem solution

In this part we are going to give a
solution to the decoupling problem with a
minimum number of unstable zeros. Before
doing this , we will precise the notion of
minimum given in definition IV.1.

PROPOSITION VI.3 : The precompensator

RO Y
Q=D.|----|e C
X
_ Ry Y
is minimal iff for allQ=D.| -._. |which is
X
in C and is admissible, we have

d%(det y) < J%det?), where Yand are in
A

Before stating the main theorem, we give an
intermediary result which derive a subset of
admissible decoupling precompensators. This
subset will be used in the main theorem.

RO Y
LEMMA IV.4 : For every Q=D.| ----
X
which is in C and is admissible, it is true

RO
that Q,=D.|----|.y isin C and

admissible.
Proof : the proof is given in [1,4].

Let us now give the main result solving the
problem in consideration :
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MAIN THEOREM : Let Q=D.|---- 'Bl
0
pe in C and admissible, with B; in A.If B,

and [ (defined in (4.1) and (4.2)) are coprime,

Ry
then Qun=D-|----
0

is admissible

relatively to P.

The following corollary allows us to
completely characterize a solution of the
problem.

COROLLARY IV.5 : For every
RO

Q=D.|----|.Yy which is in C and is
0

admissible with Yin A, there exists B; and Y,
in A such that :

i) Y= Pi. Y and B divides B(B= . B
with ain A );

RO
ii) Let Q =D.|----|.B; be in C is
0
admissible.

Since the set of the divisors, which are not
units, of B ( this set is denoted D(P) ) is finite,
there exists at least one B; in D(B) such that
0° (det B ) is minimal and Q=Qpis Bj in C
is admissible; this means that Q; is a solution
of the a.m.d.p problem.

The fact that the set D(pB) is finite is due to the
finiteness of the non-units elementary divisors
of B.

The proves of the main theorem and the
corollary are given in [1].
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V. CONCLUSION

In this paper we considered the problem of
decoupling with a minimum number of
unstable zeros under internal stability
condition. It appeared from the results that the
solution is not unique. But we shown that a
particular solution can be derived using the
results obtained in [4] concerning the
decoupling problem with internal stability.
One can note that the notion of skew-prime
matrices plays a key role in solving the
problem.

We do think that a challenging research is to
derive a constructive algorithm to get an
explicit solution of the problem.

REFERENCES

{1] Boussaid, S., 1992, Correcteurs stabilisants a
buts multiples -Aspects algebriques- Thése de
Doctorat de I'LLN.P.G. Lab. Aut. de Grenoble.

[2] Boussaid, S., Guerin, J.P., 1991, Equivalence
précompensateur-correcteur a deux degrés de
liberté. Application au découplage 1 / 1 avec

stabilité, ECC, Grenoble, 1251-1256.

[3] Boussaid, S., Guerin, J.P., 1994, Feedback
representation of precompensators: the general
case" Int. J. of control, to appear.

[4] Boussaid, S., Guerin, I.P., 1994, Feedback
representation of precompensators: application
to decoupling linear multi-input multi-output
plants™ Int. J. of control, to appear.

[5] Datta, K.B., Hautus, M.L.J., 1984 Decoupling of
multivariable cotrol system over unique
factorization domains, S..LA.M.J control and
optimiz., vol.22, N°1, 28-39.

{6] Dion, JM., Commault, C., 1988, The minimum
delay decoupling problem: Feedback
implementation with stability, S.I.A.M.J control
and optimiz., vol.26, N°1, 66-82.



[7]

(8]

(91

(10]

[11]

[12]

[13] .

(14]

[15]

(16]

Desoer, C.A, Nazli Giindes, A., 1986,
Decoupling linear multi-input multi-output
plants by dynamic output feedback : an
algebraic theory, IEEE Trans. on Auto. Control,
Vol. AC-31, N°8, 744-750.

Hammer, J., 1983, Feedback representation of
precompensators, Int.J.Cont., vol.37, N°1, 37-
61.

Hammer, J., Khargonekar, P.P., 1984,
Decoupling of linear systems by dynamic output
feedback, Math. Syst. theory 17, 135-157.

Hautus, M.L.J., Heymann, M., 1983, Linear
feedback decoupling- transfer function analysis,
L.E.E.E trans. auto. control, AC-28, 823-832.

Morse, A.S., Wonham, W.M., 1973, Status of
noninteracting control, LE.E.E trans. auto.
control, AC-16, 568-581.

Roth, W.E,, 1952, The equations AX - YB =C
and AX - XB = C in matrices, Proc. Amer;
Math. Soc. Vol. 3, 392-396.

Vardulakis,'A.‘I.G., 1987, Internal stabilization
and deéouplf‘r-ig in linear multivariable systems
by unity ottput feedback compensation, IEEE
Trans.on AutOE‘C‘ontrol, Vol.AC-32, N°8, 735-
739.

Vidyasagar, M., ‘1985, Control  system
synthesis: a factorisation approach, The M.I.'T
Press, Cambridge, Massachusetts, London,
England . :

Willems, J.C., 1980, Almost noninteracting
control design using state feedback, ILN.R.LA
conf. proc. Spinger—Vé_rfég Berlin-NewYork,
1980, 555-561. [

Wolovich, W.A., 1978, Skew-prime polynomial
matrices, IEEE Trans. on Auto. Control, Vol.
AC-23, N° 5, 880-887. '

170




	164.pdf
	165.pdf
	166.pdf
	167.pdf
	168.pdf
	169.pdf
	170.pdf

