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ABSTRACT

A new adaptive stabilizer design procedure is pro-—
posed for the case when the right hand side of the
reduced system depends nonlinearly on additional
nonlinear integrator variables. The global stabi-
lity theorem and its corollary for the case of
tracking problem are given. The iterative design
procedure is illustrated by the model example.

1. INTRODUCTION

In recent years, we have seen intensive
development of adaptive control theory for
nonlinear plant models [1-3]. Several iterative
design schemes were suggested (e.g. [4,5,6,7])
giving more simple tools for nonlinear feedback
design with full-state measurement.

Many of the earlier results were used only when
growth conditions on the nonlinearities or
"extended matching conditions" on the location of
unknown parameters were imposed [8]. Such
conditions restricted the applicability of the
corresponding schemes.

Investigations of the state-feedback problem
resulted in a systematic design procedure called
adaptive backstepping [4] which overcame some of
the limitations. This design procedure when
applied to so-called "parametric-strict-feedback"
systems guarantees global stability for all types
of nonlinearities. For a more general "parametric-
pure —feedback" systems an estimate of the region
of attraction can be provided. However, the resul-
ting controllers employed multiple estimates for
each unknown parameter. This overparametrization
was reduced in half in [9] and then completely re-
moved in [10] by the idea of adaptive backstepping
with tuning functions.

Given any nonlinear system, in order to apply the
above backstepping procedure, &a parameter—
independent diffeomorphism should be found to
transform the system at hand into the
"parametric-strict-feedback” or "parametric-pure-
feedback"” canonical form. However, the necessary
and sufficient conditions for the existence of the
diffeomorphism are formulated in [4] only as
local. Therefore, there are no final results
verifying the global validity of these transfor-
mations.

It is to be noted that the adaptive scheme propo-
sed in [7] allows to enlarge the class of systems
that can be stabilized using the approach of [4].

In this paper a new iterative design procedure is
proposed to stabilize systems with nonlinear
dependence of the reduced subsystem right hand
sides on additional integrator variables.

The present design procedure provides global
results for above mentioned systems without
assuming the "parametric-strict-feedback” or
"parametric-pure- feedback" canonical form. It
based on the earlier results [11] using the ideas
of backstepping and tuning functions and, there-
fore, removes the need for overparametrization. On
the other hand, this adaptive control scheme
extends the speed-difference algorithm [12,13] to
the adaptive case.

The paper is organized as follows. In Section 2
the problem statement is given. The algorithm
description and applicability conditions for the
system with one input integrator are presented in
Section 3. In Section 4 some extensions of the
above results are discussed. Both stabilization
and tracking problems are considered.In Section 5
we illustrate our procedure by example of system
with two integrators. Finally, the conclusion is
given in Section 6.

2. PROBLEM STATEMENT

Consider the following plant model
x=f (x,v ) + Of(x,v )

{¥1=¢1(x,v1,v2)

\'rr=¢r(x,v1,...,vr,u) (2.1b)

wher x€RNis the state, uER1 is the input _and
vitR , i=l...r are measurable variables; 6€R is

unknoun constant parameter.

The problem is to find the adaptive control
algorithm

u=U(x,v1,...,vr,6,t) (2.2)

s
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0=B(X,V .V ,Ort) (2:3)
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where 0 is the estimate of the 8,




which guarantees the boundedness of the system
(2.1)—(2.3) trajectories and the achievement of
the control objective

QUx(t),8(t),t)0 as t-o (2.4)

where Q(x,9,t)20 is the given objective function.

If vi1 were the plant input, the Speed-Gradient
algorithm [3,14] would achieve the goal (2.4)
under some stabilizability conditions. The
presence of the input nonlinear integrators chain
in (2.1b) does not allow to apply the general
methods used in the compensation and feedback-
linearization approaches.

We present a new design procedure to stabilize
(2.1) based, on the one hand, on the ideas of
backstepping and tuning functions [11] and, on
the other hand, on the speed-difference algorithm
[12,13}].

3. ADAPTIVE STABILIZATION ALGORITHM FOR
NONLINEAR SYSTEM WITH ONE INTEGRATOR

Consider a single input nonlinear system

x=f_(x,u) + 6f(x,u) 3.1
where x€RN is the state, uGR1 is the input and
6eR is an unknoun constant parameter.
Let us assume that we have designed an adaptive
control law

u=t, (x,0,t) (3.22)

0=, (x,0,) (3.2b)

where 0 is the estimate of the 6,

which guarantees the boundedness of the system
(3.1)-(3.2) trajectories and the achievement of
the control objective

Q(x(t),é(t),t)ﬂho as tro

for the given objective function Q(x,6,t)20.
These properties are ascertained by the inequality

3 a 3 a
B0 1 g 01 x 2, ) ' TGl 5 -p(Q0,0)
N o 1 (3.3)
for all x¢R, 6€R
where
V8,008t + 5 (6-0)7 20, 10 (34)

is the Lyapunov function for (3.1);

p(q) is a positive for q>0, continuous function.

Let add one input integrator to the system (3.1):
i:fo(x,v) + Of(x,v) (3.5a)

v=0(x,v,u) (35b)

N
where x€R , u, v are scalar;

Definition . A function G(z,t) is called locally
bo_unded uniformly in 20 if for any B>0 there
exists C(B) such as lG(z,t)lisC(B) for lzll<B; t20.

Theorem. Consider the system (3.5) with the
following assumptions:

A). Q(x,(i,t) satisfies the growth conditiom:
Q(x,8,t) 2 a(lixli+161)) for some a(u)20 such
that a(u)»e as pro;

B). There exists the function ¥(x,v,z) such that
0(x,v,‘l‘().(,v,z))=z for all x€R”, v,z€R1 H
(solvability condition for the subsystem
(3.5b))

C). Therg exist the smooth function ao(x,a,t) and
ro(x,e,t) which satisfy the inequality (3.3);
(stabilizability condition for the subsystem
(3.5a))

D). Q(:), ¥(-), fo(-), f(+) are the smooth
functions; %y Tos 8Q/dx, 4Q/a8, aao/at,
aao/ae, c’h:o/ax, aro/ae, aaolax are locally
bounded uniformly in t20
(smoothness condition);

Then the control law
U=W(X,V,(X1(X,V,6,t)) (3-6)
and the parameter update law

A

8=t _(x,v,8,t) (3.7)
where
a3
—a%lfo(x,v)—f (x,a )]
a= -y (v-a)) - ¥ £
0 0 1 v—a
o
a3
Bx F-fxe)] ~ 50
-, e (6+ ——7) +
0 30
da da
3
+,J_ia_x° f{x,v) + 2
30 ae !
aao . a‘xo
+ gy o (x,v)+8f(x,v) 1+ a3 for vea
and
of (x,x ) Bf (x,x )
— _ aQ [ a o’ o
ul Vo(v_“o) 7‘l ax v _71 % T (e+
3a da
!
+ —9_7)+1£ga—0 f(x,v) + —>1_ +
a6 ag °X 56 1
aao R
tap [ xv)eef(x, v+ -~ for v=,

B
3
T,=t -,—13—,‘0 f(l,V)(V—ﬂo)+7—£[fo(x,v)—fo(x,txo)]




where v, ¥ 11>0 are constant design parameters,

o’
guarantees the boundedness of the system

(3.5)-(3.7) trajectories x(t), 6(t), v(t) and the
achievement of the control objective

Q(x(t),8(t),t)»0; v(t)—ao(x(t),e(t),t)-*o as t>o,

Proof: The augmented Lyapunov function candidate
for the system (3.5)-(3.6) is defined as follows:

bv i) o(xd.tys L (0-6)% + 1 2 _
V,x8,v,t)= QO 3 (0-0)" # 7 (v=ey)” =

vix O the L 2
=V(x,0,t)+ 27’(\1—010) 20

Now calculate its time-derivative with respect to
(3.5),(3.6):

T 9Q :. 8Q 2 3Q 1 o ah 1
Vl- —a% X+ ﬁ' e+—a%‘ - —Y_ (9—6)3'0- —vsv—(lo)[‘b(x,v’u)_

dax 2
o

—2 652 1=22 ¢ (xvr ST Of(x,v 1+

3
3t Fax

1 - 1 80(0 %
—7(6-6)6 + -1—(v—<xo)[<l> -—0 -
1 o0

£
4]
-3 foxv)- 55 Of(x,v)- -1

Then
v

o a d
Vl= 5()% fo(x,v)+ 34;_ ef(x’mo)+ aé

29 [o-
Tt aé |6 1:0]+
8 - A
#3241 06yt -0+ ST I VIFlra) +

da
v S2 11wt - 5 fn(v-ey)]

+ 82 o1 (x,v)-flxa, ) ,—: (v [¢(x,v,u)

_ aau é 0 £ aau 5{ aao
a6 T 3x oV 3¢ V) -3¢ 1

Eliminate (0-8) from the last expression with the
choice 9=t1(x,v,6,t) where T, is defined in (3.7).

Then, noting that

-t =
1 0

8a
1 3 g 132 (£, w1 xe,)]

obtain:

© A 3 v 3
V= 5%%"‘"'“#%ef(x’mu)+ aé Yot a‘%*
+ 22 [1(x,v)-Flxa N6+ 22— 1)
X 0 a0

Ao da
+ 1 —a 8Q o g
1 d - ¥ —T,-
¥ (v 0)[ ¥ 3x f(x,v) 1

1

a(xo “ aao
- g L xvHef(xv))- 5 ]

Replacing u=‘l’(x,v,a1(x,v,6,t)) from (3.6) and

using the stabilizability condition for the
subsystem (3.5a) we have

V.5 ~(v-a,)1,-P(Q60:8) (3.8)

Thus, (3.6)-(3.7) is designed to make the time
derivative of Vl nonpositive.

Integrating (3.8) over interval [o,t] gives

- L ~
0=Q(x(1),8(t),1)s V) s V) - Jo(Q(x(s),8(s),s)ds-
(4]

t -
1y T (v(s)<,(x(s),0(s),5) ds (3.9)
0

It follows from (3.9), the growth condition A) and
the smoothness condition D) that the boundedness
of trajectories of the system (3.5)-(3.7) and the
achievement of the control objective

Qx(1),0(1),t10;  v(t)-« (x(1),6(t),t)0  as

can be established according lines of the proof of
the Theorem 1 in [12]. g

4. DISCUSSION

The theorem of Section 3 gives the following
procedure for the control algorithm design: first
to view v as the control and to stabilize the
reduced system (3.5a) by the control and garameter

update laws defined as umo(x,e,t) and 9=t0(x,9,t)

i.,e. to satisfy the inequality (3.3) in the
stabilizability condition C). Then augmenting the
subsystem (3.5a) by the integrator (3.5b) and
accounting for the fact that v is not the actual
control to use (3.6)-(3.7) to describe the control
and update laws which guarantees the achievement

of the control objective for augmented system
(3.5).

The above iterative design procedure can be
extended to the system (2.1a) with rz1 integrators
(2.1b) when (2.1) satisfies the assumptions A)-D)
of the Theorem and, moreover,the functions Q(*),
(xo(-), fo(-), f(-) are r times continuously

differentiable (i.e. belong to c") and all partial
derivatives of Q(*), ao(-), ro(-) for the order

not more then r are locally bounded uniformly in
t20.

This design procedure is iterative. At its i-th
step the subsystem with i integrators, i=l...r, is
stabilized with respect to a Lyapunov function

- - 1 ~ o
vi (X,V1,..Vi,e,t)=Q(X,e,t)+'2_7" (9_6) +

1 2 1 2 .
+-—2—(V1—(10) +....+-—2—(Vi—(!i_1) y i=1..tr




by the design of a control law « (x,v_,..v ,6,t)

and a update law ti(x,v,‘,..vi,e,t), i=tl..r.,
called in [10] as stabilizing and tuning
functions. The update law for the parametric

estimate and the feedback control u are designed
at the final step.

Corollary 1 (tracking problem).The special case of
above theorem covers the case of tracking problem
using the objective function

Q(x,8,t)=)h{x)-r(t)| >, where h(x), r(t) are known
scalar functions. It follows from the theorem that

the algorithm (3.6)-(3.7) can be applied and
ensures the trarcking goal |h(x)-r(t)! "0 as t»o,
if h(x), r(t)ec, and, wmoreover, the first r

derivatives of r(t) are bounded and known.

Corollary 2 (convex case).In the case when the
functions f(x,v) and fo(x,v) defined in (3.5)
are convex in v the adaptive controller can be
simplified. Indeed, let the inequalities

afo(x,v)

fo(x,v‘)—fo(x,v) 2 {v-v’) &y

f(x,v’)-f(x,v)z (v—v')ﬁ%-",—v)—

be satisfied for all v, v’ER1, xer",
Then the adaptive control law

U=V(X,V,G1(X,V,9,t)) (4.1a)
S S
8=t (x,v,6,t) (4.1b)
where
~ of (x,v)
a ’
o, (x,v,8,t)= -7 (v-a )~ 11?3 —OBT_ -
af (x,v) - B
- 98Q ’ aQ 3Q 0
¥ (6+ —=—7) + y—= —=— f(x,v)+
1 9x ov ae ae 9 ’
a(lo auo “ auo
+ 65 T, t3x If (x,v)+61(x,v)] + 37 ,

rl(x,v,e,t) is defined in (3.7),
guarantees the boundedness of the

(3.5), (4.1) trajectories x(t), 8(t), v(t) and the
achievement of the control objective

QEX(E),0(1),120; v(E)x, (x(t),6(£),t)20 as t+ov,

system

Remark 1.
The present adaptive stabilization algorithm
(3.6), (3.7) has the least possible number of

parameter estimates, i.e. it is not overparametri-

zed [10]. Thus, the addition of a new integrator
to the system (2.1a) does not produce new
estimates of the unknown parameter 6.

Remark 2.
The stabilizability condition for the subsystem
(3.5a) is just the so—called "soft matching

condition” [15].

Remark 3. ) .
Applying to systems with the linear in v1 right
hand side and standard integrators, namely

406

i:fo(x) + 6f(x) + g(x)v
v=u

stabilization algorithm (3.6)-(3.7)

{11}, namely

the adaptive
coincides with

u= « (x,v,0)=

=T (v-a )+ 3;9[1'0()() + af(x) + g(x)vl] + 650 T+

3
a3 0 e
+ Yfal a5 [0 ——é%g(X)
x - N aao
0 = t](x,v,e): ro - T Bx f(x)(v—ao) (4.2)
5. EXAMPLE

Consider the nonlinear system with two integrators

2
x=- L= vox® (5.1)
\.H=V2 (5-2)
va=u (5.3)
where x,vi,v2 €R, ueR' is the input and
BeR " is an unknoun constant parameter.
This system violates the geometric "extended

matching” conditions and not in the "parametric—
pure-feedback"” form [4]. However, the system
satisfies the conditions of theorem in Section 3
and, hence, the iterative design procedure,
applyed to (5.1)-(5.3) with the objective function

Q(X)=%x220, is as follows.

Step 0:

Let © be an estimate of 6. In order to stabilize
the first subsystem (5.1), the following control
and parameter update laws can be selected:

u=x, (x,6)= x+0

I -
6:1'0()(,9):)(3 (5.4)

and let the Lyapunov function be V=%xz+% (6—6)2
It is easy to check that (5.4) stabilizes (5.1).

Because the

consider the subsystem (5.1) augmented by the
integrator (5.2).

ao(x,e) is not actual control,

Step 1:
Considering v1 as the integrator variable and v2
as the control we use the algorithm (3.6),(3.7) to
describe the control and update laws:

2

- - R 2.
"w1(x’v”9)=‘(v“x-9)+;—(x+v1+9)+'cl— ’2‘—‘” +0x°

4 A 3 a2
8=T_(x,v1,8)=x" ~(v1-x-8)x (5.5)

to stabilize the first two subsystems (5.1),(5.2)
with respect to the Lyapunov function

mo 1.2 1 22 1, 5.2
V1(x,v1,9)_ T X+ (6-6)"+ 2 (v1-x-8)




Because (x’(x,v1,9) is not the actual control,
consider the augmented system (5.1)-(5.3).

Step 2: T

Considering the vector [x,v1] as the state, vz as

the integrator variable and u as the control, we
have

f=[x2 OJT; fn=[ —xv12/2 VZ]T.

Then we use the algorithm (3.6)3\(3.7) for tlle
system  (5.1)-(5.3) with ai(x,vi,ﬁ), t](x,vi,ﬂ)
from (5.5) and Ql=Q+-%(v1—-ao)2 to find the control
and update laws:

u:uz(x,vi,vz,é):—(vz—-m)—[g% %—][0 I]T +

3Q1 . da1 a1 Ou 1 da1 du 1 N
+ aa [ax T I+ —=— 12+ 3% F-TY J(fo+6f)

A a dot1 da1
6:1:2(x,v1,vz,6)=t1—(v2—<x1)[—5;— 3v1 it (5-6)

The laws (5.6) are actual and stabilize the
closed-loop system (5.1)-(5.3) with respect to the
Lyapunov function

-~ - 2
v, (x,v1,v2,0)=Q1+ ;— (e-e)2+-;— (ve-a1)? =
-~ 2
= m-;— (e—e)2+—;— (v1—<10)2+—%- (v2—a1)

Thus, the given objective function Q(x(t),6(t))>0
as t o,

6. CONCLUSION

A new adaptive stabilizer design procedure is pro—
posed for the case when the right hand side of the
reduced system depends nonlinearly on additional
nonlinear integrator variables. The design proce-
dure is iterative and does not involve overpara-
metrization. For the case when the above dependen-
ce is convex the adaptive contol algorithm can be
simplified. The obtained stabilization and
tracking results extend the existing ones (e.g.[4,
11]) to the wider class of nonlinear controlled

systems.
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