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Riccati Equations and Normalized Coprime Factorizations for
Strongly Stabilizable Infinite-Dimensional Systems

Ruth F. Curtain*

Abstract

The first part of the paper concerns the existence of
strongly stabilizing solutions to the standard algebraic
Riccati equation for a class of infinite-dimensional sys-
tems of the form X(A, B,S~1/2B*, D), where A is
dissipative and all the other operators are bounded.
These systems are not exponentially stabilizable and
so the standard theory is not applicable. The sec-
ond part uses the Riccati equation results to give
formulas for normalized coprime factorizations over
H. for positive real transfer functions of the form
D+ S-Y2B~(s] — A)"'B.

Keywords: normalized coprime factorizations, stro-
ng stability, positive real, dissipative, Riccati equa-
tions, infinite dimensional systems, colocated sys-
tems.

1. Introduction

Most of the theory for Riccati equations concen-
trates on the existence of solutions which are exponen-
tially stabilizing. Here we consider systems for which
this theory is inapplicable, because they are not expo-
nentially stabilizable by a bounded feedback. Specif-
ically, we consider systems E(A,B,S“I/Z’B",B,D),
where A 1s dissipative on a Hilbert space Z, B €
L(U, Z), where U is a Hilbert space and S, D € L(U)
with S~! € £(U7). The case S = I, D = 0 has been
considered in Balakrishnan [2] and Levan [9], [10]. If
S = I, these are usually termed “colocated “ systems
and there exists a considerable literature on such sys-
tems, see Balakrishnan {3).

The colocated configuration is often preferred in
designing controllers for large scale flexible systems,
see Joshi [7], and there is considerable interest in
their properties, especially robustness properties. In
this direction, we deduce formulas for normalized co-
prime factorizations of the transfer function G(s) =
D+5-1/2B*(sI1—A)~! B, under the extra assumption
that G(s) is positive-real. Since positive-real systems
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have good robustness properties (see Curtain and van
Keulen [5]) this is not so surprizing. The formulas for
the normalized coprime factorizations are not surpriz-
ing either; that have the same form as for the matrix
case, see Meyer and Franklin [11]. The surprizing
feature is that we can only do this under the extra
assumption that (I + D)~1S~1/2 ig strictly postive.
In order to establish the formulas for the normalized
coprime factorizations we need to establish some re-
sults on Riccati equations. We give conditions for the
existence of unique, strongly stabilizing solutions of
the following algebraic Riccati equation

(AQ)"Qz + QAgz+ QB(Rp)™!B*Qz+
BS~Y28p8-12B*; = 0 (1.1)

for z € D(A), where Ag = A~B(Rp)~!D*S~/2B*—
B(Rp)™'B*Q,Rp = R+ D*D,Sp = I + DR™'D*
and R € L(U) is a coercive operator.

By strongly stabilizing we mean that the semi-
group Tg(t) generated by Ag has the property that
Tq(t)z — 0 ast — oo for all z € Z. Similar results
were given for the case D = 0 in Balakrishnan [2],
but he needs to assume that A — BB*(@) was dissipa-
tive; it is not at all clear when this is satisfied. The
basic assumption we need is that the output operator
has the form S~!/2B*: this is how we show that the
system is optimizable and so (1.1) has at least one
self-adjoint solution. Our motivation for considering
the general form of (1.1) with the feedthrough terms
D is that we need this form to obtain the formulas
for the normalized coprime factorization of G(s).

2. Riccati Equations

We begin by considering the existence of strongly
stabilizing, self-adjoint solutions @ € £(Z) to the al-
gebraic Riccati equation.

A*Qz+QAz—QBR™'B*Qz+BS"'B*2 =10, (2.1)
for 2 € D(A), under the following assumptions:
Al. Ais the infinitesimal generator of a strongly con-

tinuous contraction semigroup T'(t) on the sepa-
rable Hilbert space Z;

A2. U is a separable Hilbert space and B € L(U, Z);




A3. § = S € L(U) and is coercive, i.e., (Su,u) >
ellu|)? for some € > 0;

A4. R= R € L(U) and is coercive;
A5. E(A, -, B) is approximately observable;
A6. A has compact resolvent;

A7. ©(A, B, -) is approximately controllable.

First we recall several well known results from the
literature, but for completeness we also supply short
proofs.

Lemma 2.1 Suppose that S(t) is a weakly stable Cp-
semigroup on the Hilbert space Z, i.e, {z,S(t)y) — 0
as — oo for all 2,y € Z. If its infinitesimal generator
A has compaci resolvent, then S(t) is strongly stable,
i.e., S({)z > 0 ast — oo forallz € Z.

Proof a. We show that S(t) is uniformly bounded in
norm for ¢ > 0. Since T'(t) is weakly stable, we have
that

IT(n)z| < M.

uniformly for n = 1,2, ... and from the uniform bound-
edness Theorem we obtain

IT(m)Il < M

for all n = 1.2,... Any ¢t > 0 may be written as
t=n+6 for some 0 <6 <1 and so

Tl = [T+ 8)I < I T@INTS)I]
< MMpmaz(1,e*) = M, < oo,

where ||T(t)|| < Mie“t.

b. There exists a A € R such that (A — A)~1 is
compact. Thus (A] — A)~!T(n)y has a convergent
subsequence in Z for any y and n = 1,2, ... Since T(2)
is weakly convergent to 0 as n — oo, we must have
(M - A)~T(n,)y — 0 as r — oo for a subsequence
n.. The strong continuity of T(t) shows that in fact
(Al — A)~'T(t)y — 0 as t — oco. Suppose now that
z € D(A), i.e., there exists y € Z such that z =
(AI — A)~'y. Then

Tt = T -A)y
M—-A)"'y—0 ast— oo

Finally, since D(A) is dense in Z, for z € D(A) and a
given € > 0, there exists an £ € D(A) : ||z — z|| < €.
Thus

IT@):=Nl < T ()2 — T(t)z(| + 1Tzl
< Tz — =l + 1IT@)=|]
< Me+||T(t)z|] by part a.
and ||T'(¢)z|] — 0 as t — oo proves the result. |
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Lemma 2.2 Suppose that assumptions Al, A2 and
A6 hold. The semigroup Tg(t) generated by A— BB*
s a contraction semigroup and for x € Z there hold:

IA

[Tl & < glel @2
0

/0 IB*Ty(t)z| d

IN

1
S el 23)

Proof a. Tg(t) is a contraction semigroup since
its infinitesimal generator A — BB* is dissipative;
—-BB* <0.

b. We establish (2.2) by differentiating [|T5(t)||?> with
respect to t for £ € D(A)

|Ts(t)||? ((A- BB")Ts(t)r, Ta(t)z) +
(Te(t)z,(A - BB")Tp(t)z)
(ATp(t)z, Te(t)z) +

(Ts(t)z, ATp(t)z)~2||B* Ta(t)z|®

d
dt

f

and since T(t) generates a contraction semigroup, A
is dissipative and

d *
g ITe®el + 2B Ts(®)=]* < 0.

Integrating, we obtain
t
ITa(t)z]? +2 / 1B Ts(t)z]%ds < |Jz]?

which establishes (2.2) for £ € D(A). Since D(A) is
dense in Z, it extends to all z € Z.

¢. (2.3) is proved similarly to (2.2) by differentiating
||B*T3(t)z||? for £ € D(A*), and noting that since Z
is a Hilbert space, T*(t) is also a contraction semi-
group. [ |

We remark that under assumption A5. Tpg(t) is
strongly stable, see Benchimal [4], Slemrod [12], and
Arendt & Batty [1]. However, we do not need this
result in our application.

Lemma 2.3 If the Riccati equation (2.1) has a
strongly stabilizing solution, then it is unique.

Proof Suppose that @, and Q2 are both strongly
stabilizing solutions of (2.1), i.e., Tg,(t) — 0 ast — oo
forz € Z,i=1,2, where A~BB"Q); generates Ty, ().
Rearranging (2.1) we obtain

(A—BR'B"Q1)"@1z+ Q:(A— BR™!B*Q,)z
= —-@QBR™'B*Q,z-BS™'B*:,



and

(A— BR™'B"Q1)*Q2z + Q2(A— BR™'B*Q,)z
= —@1BR™!'B*Qyz—- BS~'B*:.

Subtracting gives

(A= BRTIB*Qi)"(Q1— Q2)z +
(Q1 —Q2)(A-=BR™!B*Q,)z =0

which implies that for 2,y € D(A) there holds

2 (T, (9. (Q: — Q)Ta, ()2) =o0.
Thus

(T, ()y, (@1 — Q2)Tq,(t)z) = constant,

-and this constant must be zero, since both Q; and
Q2 are strongly stabilizing. Substituting ¢ = 0 and
noting that (.4) is dense in Z shows that Q; = Q.
|

As we already remarked, the above results have
been well known for decades, see Balakrishnan [2].
Strangely enough, the nexi result does not seem to
be known.

Theorem 2.4 Under the assumptions A1-A6, the
algebraic Riccati equation has a unique strongly stabi-
lizing solution.

Proof a. Consider the following control problem
that is associated with (2.1) and the quadratic cost
functional

I(u) = /Om((IRI’2U(i)II2+IIS‘”zB*Z(t)ll"’) dt (2.4)

subject to the dynamics
2(t) = Az(t) + Bu(t), 2(0) = z. (2.5)

Note that with i(t) = —B*z(t), we obtain () =
(A — BB*)z(t) and thus

2(t) = Ta(t) 2,
whence
J@) = / " IRY2B* T(t) ol +
ITS'I/"’B‘TB(t)zo“Z dt
5 [R212 41572727 ol

IA

by (2.2).
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In other words, £(A, B, S~1/2B*) is optimizable and
from Curtain and Zwart [6, Theorem 6.2.4] we con-
clude that (2.1) has a solution Qo = Q > 0 which
satisfies

(@oro,z0) = / (IR-Y/2B* QoTa, (t)zoll? +

572 8" T, (t)zo||?) dt,  (2.6)

where A — BR™!B*Q, generates Tg,(t).

b. We show that Tg, () is uniformly bounded in norm.
Now for £ € Z, there holds

t
TQo(t):B = TB(t).’c+/ TB(t—s)B [B‘—
0
R™1B*Qq] Tg,(s)x ds
and so for all z,y € Z we have that

(v, To (t)2)]
< sliTe(@)zl +

M(B’ 5(t = s)y, [B*—R™'B* Qo] Tg,(s)z)ds

IA

bl + [ [ 18T ¢~ o e .

t 1/2
[ [ 15" - B8 Qo Ty o)el ds]

since Tp(t) is a contraction

1 [} . 1/2
Iollell+ s [[( | 18" T epel? ds]

IA

) 1/2
# [ 187 QT o 4 ]

0
by (2.3) and the Minkowski inequality

1 1/2 1/2 1/2

I [zl + =103 %21 122 + 57
by (2.6)

i 1/2 1/2 1/2
[+ @30 [0+ 15724 | e,

c. It remains to show that Tq,(t) is weakly stable.
Substituting £ = Tq,(t)z in (2.6) we obtain

(QoTQo(t)z»TQo(t)z>
= / ((QuBR™'B*Q + BS™!B*)Tq,(s)z,

TqQ.(s)z) ds
— 0Qast— oo.

FAN

IA

d. Next we show that ker @y = 0. Suppose that there

exists a nonzero r such that Qoz = 0. Then from
(2.6) we deduce

0 = / (IR-2B QoTgy (s)=2 +
0
1S~1/2B* Ty, (s)e|?) ds



and so

B*QoTg,(s)z = B*Tg,(s)z = 0 for s > 0.
But
Tg,(t)x = T()x -

/t T(t - s)BR™ ' B*QoTg,(s)z ds
0
= Tz

and this implics that B*T(t)z = 0 for ¢t > 0, violating
the approximate observability. So Q¢ > 0.

e. ;From part c¢. we have that

(Too )z, Qo) < 1Q57INQY *Tau 1)z (llly]

— (Qast— o0

for all z,y € Z. Since @y is self-adjoint and positive
we have that the range of Qo is dense in Z. Hence for
every z € Z and every € > 0 there exists an oy such
that ||z — Qoy|| < €. Since ||Tg,(t)|| < M fort > 0,
we may conclude that

(TQo(t)z,z)| < [(To(t)z, (z — Qoy)) +
[{Tq. (t)z, Qoy)l
< Me + [(Tg,(t)z, Qoy)l

and so Tg,(t) is weakly stable.
f. Lemmas 2.1 and 2.3 complete the proof. ]

We remark that we do not need to assume that
Tq,(t) is a contraction semigroup, as was done in Bal-
akrishan [2, p. 339]. Indeed, we do not believe this to
be the case in general. Recall that, even if two ma-
trices M and N are nonnegative definite, MN + NM
need not be; for example, choose

1 1 10
M“(l 2)’ Mz‘(o o)‘

As a corollary of this theorem we have an existence
result for the control problem defined by (2.4), (2.5).

Corollary 2.5 Under the assumplions AI-A6 the
control problem with the quadratic cost functional
(2.4) and subject to the dynamics (2.5) has the unique
minimizing feedback control given by

i(t) = fR‘lB*Qz(t),

where Q is the unique, strongly stabilizing solution to
(2.1). The minimum cost equals (Qz0,20) and the
closed loop system operator A — BR™!B*Q generates
a strongly stable semigroup.
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In a similar manner, it is possible to obtain exis-
tence results for the more general algebraic Riccati
equation for z € D(A)

(A—- BR,'D*S™Y?B*y* Q2+

Q(A - BRp!D*S-/%B*); —
QBRL'B*Qz +
BS~Y*(1 4+ DR™'D*)"'8-Y2B*; = (2.7)

where Rp = R+ D*D.
Theorem 2.6 Under assumptions A1-A6, the alge-
braic Riccati equation (2.7) has a unique, strongly

stabilizing solution, i.e, A — BRp'D*S~1/2B* —
BRBIB‘Q generates a strongly stable semigroup.

Proof a. As before, we consider the associated con-
trol problem with the quadratic cost functional

nw = [ Ao + (R uo) &t @8)
subject to the dynamics

0 Az(t) + Bu(t), (2.9)
y(t) = S7Y2B*:(t) + Du(t).  (2.10)

Notice that

o= (0 (£)-(£3)) o

where

BS-1pB* —1/2D
o = (e BSD)

D*S-'/?B* R4 D*D
I -F*\ (BS{'B* 0 I 0
0 I 0 Rp -F 1)

S, = SY*(I + DR-'D*)S'?2 Rp = R+ D*D,F =
~Rp'D*S~'/2B*. Thus

I

Ji(w) = J(u)
/0 IST2B ()| + | RY wy(t)H8t1 1)

where

ui(t) = u(t) — Fz(t) = u(t) + Rp'D*S~/2B"2(t).
So, minimizing (2.8) is equivalent to minimizing J(u;)
given by (2.11) subject to the dynamics

#(t) = (A-BRp'D*S™Y?B*)z(t)+Bu(t),
z(0) = 2.

(2.12)
This is similar to the control problem considered in
the proof of Theorem 2.4, except that A= A-
BRL'D*S~'/2B* need not be dissipative. On exam-
ining the proof of Theorem 2.4 we see that all of the



|
|

arguments extend to this new situation.

a. With
@1(t) = —B*z(t)+ Rp'/*D*S™'/?B"2(t)
= —B*z(t) - FB*z(t),
we obtain

=[S Taml +
RY(I + F)B*Tg(t)z||?) dt < oo

and (A, B, ST '/?B*) is optimizable.
b. ,From Curtain and Zwart [6, Theorem 6.2.4], we

conclude that (2.7) has a solution Q¢ = @ > 0 which
satisfies

(Qoz,z) = / IR5Y?B* QoTou ()2 +

0
ST B* Tqu(s)zl1? ds,  (2.13)

where A — BRj},! B*Qq generates f‘qo ).

c. Writing
A-BR;'B*Qy = A-BRp'D*'S™'/?B* -
BRp'B* Qo
= (A-BB%)+

BKB* + BK,B*Qq,

we see that using the perturbation formula for the
semigroup Tg, () in terms of T(t) and the estimates
from (2.13). we can prove that Tg,(t) is uniformly
bounded in norm for ¢ > 0. The final steps follow
Jjust as in the proof of Theorem 2.4 using the approx-
imate observability of ¥(A, —, B*) and the fact that
A—BRp'D"S~Y/2B* — BR! B*Qo has compact re-
solvent (as a bounded perturbation of A). ]

Again, this theorem has implications for an optimal
control problem.

Corollary 2.7 Under the assumptions AI1-A6, the
control problem with the quadratic cost functional
(2.8) subject to the dynamic constraints (2.9), (2.10)
has the unique minimizing control given by

i(t) = —(Rp!D*S~Y?B* + Rp'B*Q)=(t),

where Q is the unique, strongly stabilizing solution of
(2.7). Moreover, the minimum cost equals {Qzo, 20)
and the closed loop system has a strongly stable semi-
group.

In Section 3 we shall need results for dual Riccati

equations. Of course, these are easily deduced from
Theorem 2.6
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Theorem 2.8 Under the assumplions AI-A{, A6
and A7, the following algebraic Riccati equation has
a untique, strongly stabilizing solution, (i.e., A —
(PBS-Y/2 4 BD*)Sp'S~1/2B* generates a strongly
stable semigroup):

(A- BRp'D*S™'/2B*)Pz+
(A— BRy'D*S™'/?B*)* Pz -
PBS~'/25;15-12B* P; + BR;' B* 2 =(9,14)

for z € D(A*), where Rp = I + D*D,Sp = (I +
DR-1D*)-1.

3. Normalized Coprime Factors

In this section, we give formulas for normalized
doubly coprime factorizations of a transfer matrix
G(s) = D+ S Y2B*(sI — A)~'B, where A, B, and S
satisfy the assumptions A1-A3, A5-A7,U = C™ R =
I and D € L(U). First we recall some definitions of
coprime factorizations over MH,, the set of matri-
ces of any size with all components in Hy, the Hardy
space of complex-valued functions that are holomor-

phic and bounded on C§ = {s € C : Re(s) > 0}.

Definition 3.1 Suppose that there exist mairices M,
N, X, Y € MH,, with M square and det(M) £ 0
on C'aL such that

G(s) = N(s)M(s)~! for s € CF; (3.1)
X(s)M(s)=Y(s)N(s)=1 onC}. (3.2)

We say that G = NM ™! is a right-coprime factoriza-
tion of G over MH,

Suppose that there ezist matrices M,N, XY €
MHq, with M square and det(M) # 0 on C§ such
that:

G(s)= M(s)"'N(s)  forseC} (3.3)

M(s)X(s) = N(s)Y(s) =1 onC}. (3.4)

We say that G = M~N is a left-coprime factoriza-
tion of G over MHo,. If, in addition, the following
identity holds, we say that G=M~'N=NM-'isa
doubly coprime factorization over MH

(_55 —A};)(}MV §)=<é ?) on Cy .(3.5)

If (M, N) satisfy conditions (3.1), (3.1) and also
N(jw)*

we say that G = NM ™! is a normalized right-coprime’

factorization. If (M N) satisfy condztzons (3.3) and
(3.4) and also

N(jw)N (jw)* + M(jw)M(jw)* = I forw € R,(3.7)

N(jw) + M(jw)*M(jw) =1 forw € R,(3.6)




we say that G = M~1N is a normalized left-coprime
factorization. If (3.1)-(3.7) all hold, we say that
G =M~IN = NM~' is a normalized doubly coprime
factorization.

If £(A, B, (". D) is an exponentially stabilizable and
exponentially detectable state linear system, then for-
mulas for normalized doubly coprime factorizations of
G(s) = D + C'(sI — A)"!B can be given in terms of
solutions to two algebraic Riccati equations (see The-
orem 7.3.11 and Exercise 7.2.9 in Curtain and Zwart
[6]). However, our class of systems is neither exponen-
tially stabilizable nor detectable and so this result is
not applicable to our situation. Although it is easy to
show that for (i(s) = D + S~1/2B*(sI — A)~!B, un-
der our assumptions Al - A7, the same formulas still
yield the sought factorizations satisfying (3.1)-(3.7), it
is not easy to show that M,N,M,N,X,Y,X',f’ are
in MH,. In fact, we do not believe that this is al-
ways the case. We have only been able to show this
for the following special case.

Definition 3.2 Let G(s) be an m x n matriz-valued
compler function. G is positive real if it satisfies the
following conditions:

1. G(s) has real coefficients;
2. G(s) is holomorphic on Re(s) > 0;
3. G(s)* + G(s) >0 on Re(s) > 0.

An example of a positive real system is G(s) =
D + B*(sI — A)~! B under our assumptions and D +
D* > 0. In Curtain and van Keulen [5], it is proven
that a positive real system has the following coprime
factorizations:

G=M"!N= NM™1,
where

N=N=G(I+G) 'and M=M=(I+G)".
(3.8)
So if our system G(s) = D+ S~Y/2B*(sI — A)"'B is
positive real, it has the coprime factorization;
Mo = MQ (39)
= (I+D)y'-{I+D)t.
S=Y2B*(sI - Ag)~'B(I + D)"'(3.10)
No = N (3.11)
= D(I+D)y"'+(I+D)t.
S=12B*(sI — Ao)~'B(I + D)"(3.12)

where

Ao=A- B(I+D)"'s-'/2p*, (3.13)
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We shall also use the following lemma from van
Keulen [8]. '

Lemma 3.3 Suppose that U = C™Y = C". If
f € L(0,00;£(U,Y)), and its Fourier transform

f € Leo((—jo0, joos L(U,Y)), then f € MHo,.

Now if f(t) = 0 for ¢ < 0 the Laplace and Fourier
transforms of f are isomorphic and so Lemma 3.3 also
holds for the Laplace transform of functions which are
zero for t < 0.

Theorem 3.4 Consider G(s) = D+ S~Y/2B*(sI —
A)~!'B under the assumptions AI-A7 with U =
C™, R=1Iand D € L(U).

a. G has the factorizations G = NM~! = M-IN,
satisfying (3.1)-(3.7), where

N(s) = DRp"*+(S;'S'/?B" - DR;'B*Q)-
(sI— Ag)"'BRp'/?,

M(s) = Rp'*-Rp'(D'S™'2B" + B*Q).
(sI — Ag)~'BRp'/?,
X(s) = I+

(Sp'S™'2B*—~ DRy B*Q)(sI-Ag)~" -
(PBS~'? 4+ BD*)Sp?,

Y(s) = -RpY(D"S'2B* +B*Q)(sI — Ag)~'.
(PBS~? 4+ BD*)S;!,

N(s) = Sp’D+5p2s-12B*(sI — Ap)~t.
(BRp! — PBS~Y/25;1 D),

M(s) = Sp!?— 525 12p"(s] — pAp)?
(PBS~/? 4+ BD*)S3!,

X(s) = I-RpND*S_1j2B" + B*Q)(sI-Ap)~".
(BRp' — PBS~Y25;1 D),

Y(s) = -Rp(D*S™Y?B* 4+ B*Q)(sI — Ap)~".
(PBS~'/? + BD*)S;?,

where Q and P are the unigque strongly stabilizing so-
lutions to (2.7) and (2.14), respectively, with

Rp = I+D‘D,SD=I+DD*,R=I,
Ap = A-(PBS Y24 BD")S;'s-!/2p*,
Aq = A-BRp(D'S™V?B* 4+ B*Q).

N, M,N,M are in MH,, but, in general, X, Y,X,}.’
will only be in MH,.

b. If G(s) is positive real, and (I + D)~'S-1/2
strictly positive, then G = NM~' = M~IN forms
a normalized doubly coprime factorization of G over
MH.




Proof a.l. That M,N,M,N, .etc. satisfy (3.1)-
(3.7) follows exactly as in Curtain and Zwart [6, The-
orem 7.3.11 and Exercise 7.29]; it is just linear algebra
and it makes use of the two Riccati equations (2.7)
and (2.14).

a.2. We show that N, M are elements of MH,,. (3.6)
shows that A/ and N are in MLy (—jw, jw). Now
from (2.6) we deduce that

o0 00
/ |B*To(t):]|? dt < oo,/ 1B*QTo(t)z||? dt < oo
0 0

and so the inverse Laplace transforms of N, M, X and
Y without the constant term are
in Ly(0,00; L(U')),U = C™. Lemma 3.3 shows that
N,M e MH.

a.3. (3.7) shows that N and N € ML (—jw, jw). A
dual argument shows that

/ 1B*T3(t):||? dt < oo,/ |B* PT(t)z||? dt < o0
0 0

and thus the inverse Laplace transform of N and
M are in Ly(0,20; £(U)),U = C™. Lemma 3.3 now
shows that N, M € MH

b.1. We show that G = NM~! is a coprime factor-
ization by establishing that it is related to the known
coprime factorization G = No My ! by a factor which
is invertible over MH,,. We define

K=M;'"M=(I+G)M =M+ N € MH,,.
We find an explicit expression for

(I+D+8Y2B*(sI - A)"'B) -

(I - R;}(D*S™/?B" + B*Q) -

(sI -—AQ)_IB)

= (I+D)-(I+ D)Rp!

(D*S~'2B" + B*Q)(sI — AQ)™'B +
S~UYiB*(sI — A)!-

KRY® =

sl — Ag — BRp}(D*S~'1?B* + B‘Q)] :

(sI - Ag)~'B

(I+D)-

(I+ D)RpY(D*S~'/?2B* + B*Q) -

(s — AQ) B+ 57 /2B*(sI — Ag)™'B

Now we invert (I + D)~ K R}/? to obtain

Rp'*K~Y(I+ D)
= I+ [R;,I(D*s-WB* +B°Q)-
I+ D)‘IS“/ZB‘] (sI — A)'B,
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where

h N}
i

Aq + BRpY(D*S~Y?B* + B*Q) —
B(I + D)"'s~/2p*
= A-B(I+D)"'s"'?p*,

To prove that K~! € MH,, we note that, under
our assumptions, B(I + D)"'S-1/2B* = BFF*B*
for an invertible /. By Lemma 2.2 (applied to BF),
fooo [|F*B*Thp(t)z])? dt < co and since F* is invert-
ible, this shows that the inverse Laplace transform
of K~! is in L2(0,00; £(C™)). Next we show that
K~' € MLy (—jw, jw; L(C™)) and apply Lemma 3.3
to deduce that K~! € MH,,. Now (N, M) are nor-

malized and so
N{w)*N(jw) + M(jw)*M(jw) =1 forw € R
and
K(jw)™" N(jw)" N(jw)K (jw) ™' +
K(jw)™" M (jw)* M (jw) K (jw) ™!
= K(w) ™K ()™
Thus
No(jw)* No(jw)+
Mo(jw)" Mo(jw) = K(jw) ™ K (jw)™*,
and since Ng, My € MH,,, we see that K~1 € ML,,.
So by Lemma 3.3 K and K~! € MHq. The proof
for (M, N) follows using a similar argument. Define

L=M+ N € MH,, and show that L-! € MHL,,.
Thus with

Xi=-Yi=K'and X; =-Y; = L}

we obtain a normalized doubly coprime factorization.

In fact we have proven some interesting properties
of positive real systems.

Corollary 3.5 Suppose that G(s) = B*(sI — A)"'B
1s positive real and that assumptions A1-A7 are sat-
tsfied with U = C™,S = I and D = 0. Then the
following transfer matrices are in MH :

B*(sI — Ag)™'B, B*Q(sI — Ag)™'B,
B*(sI — Ag)™'PB, B*(sI — Ag)™'B,
B*Q(sI — AQ)~'B, B*(sI — Ap)"'PB, and
B*(sI — Ap)~'B,

where Q and P are the solutions of the Riccati equa-
tions (2.7) and (2.14), respectively and Ap = A —
BB*,Aq=A-BB*Q,Ap = A- PBB*.




We remark that the extra conditions in b. of The-
orem 3.4 hold in the following special cases:

1. D=0,
S_l/zB'(s[—A)_IB«{-B*(EI—A*)_IBS—I/Z >
0 in Re(s) > 0;

2. D=6,
S~12B*(sI - A)"'B+B*(51~ A*)"'BS-1/2 >
0 in Re(s) > 0;

3. S=421,I+D>0.

It is interesting to conclude with the remark that
we have also found a spectral factorization without
assuming the above extra conditions.

Corollary 3.6 Consider the state linear system
X(Ap,B,S™Y2B* 0) under the assumptions AI-A6
with R=1 and Ag = A — BB*. Then

; P(Gw) = I-B"(jwl+ Ap)~'BS!.
B*(jwI — Ag)™'B (3.14)
; has the spectral factorization
. P(jw) = W(jw)*'W(jw) forw € R, (3.15)
where
W(s) =1+ B*Q(sI — Ag)~'B (3.16)

with W and W= holomorphic in CF, and Q is the
i unique stabilizing solution of (2.1).

Proof It is easily verified that (3.15) holds using the
Riccati equation (2.1). Note that

W(s)™' =I-B"Q(sI - A+ BB* + BB"Q)"'B

and that W(s)™! € He (L(U)) follows ;from Theo-
rem 3.4 with D = 0,Rp = I, for then W(s)~! =
M(s). a
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