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ABSTRACT

Interest in the stability criterion for fuzzy control systems has grown in recent years. One of the most important
difficulties with the creation of new stability criteria for any fuzzy control system has been the analytical interpretation of
the linguistic part of the fuzzy controllers’ IF-THEN rules. Often fuzzy control systems are being designed with very
modest or no prior knowledge of a solid mathematical model which, in turn, makes it difficult to tap on relatively many
tools for the stability of conventional control systems. In this paper with the help of Takagi-Sugeno fuzzy IF-THEN rules
in which their consequents are analytical, a sufficiency condition is proposed to check the stability of fuzzy control
systems. The scheme is based on the stability theory of interval matrices and is independent, but comparable to the

Lyapunov approach. The scheme is numerically easy to check.

1. Introduction

One of the most fundamental issues in any control
system-fuzzy or others is the stability. Briefly, a system
is said to be stable if it would come to its equilibrium
state after any external inputs, initial conditions and/or
disturbances have impressed the system. The issue of
stability is of even greater relevance when questions of
safety, lives, and environment are at state like in such
systems as nuclear reactors, traffic systems and airplanes
autopilots, etc. The stability test of fuzzy control systems
or lack of it has been a subject of criticism by many
control engineers in some control engineering literature
(IEEE, 1993).

Almost any linear or nonlinear system under the influence
of a closed-loop conventional controller has one type of
stability test or other. For example, the stability of a
linear time-invariant system can be tested by a wide
variety of methods such as Routh-Hurwitz, Root Locus,
Bode Plots, Nyquist Criterion, and even through
traditionally nonlinear systems methods of Lyapunov,
Popov and Circle Criterion. The common requirement in
all these tests is the availability of a mathematical model-
be it in time or frequency domain. A reliable mathematical
model for a very complex system, for example, may, in
practice, be unavailable or unfeasible. In such cases, a
fuzzy controller may be designed based on expert
knowledge or experimental practice. However, the issue of
the stability of a fuzzy control system still remains and
must be addressed. The aim of this paper is to present a
sufficiency condition to test for fuzzy control systems

stability. Fuzzy controllers represent static nonlinearities
(Jamshidi, 1996) and as such the stability problems
belongs to nonlinear control systems. Next section, a
brief survey of fuzzy control systems stability will be
given. For a comprehensive survey consult the upcoming
book by Jamshidi (1996).

2. Fuzzy control systems stability classes

From the viewpoint of stability, a fuzzy controller can be
either acting as a conventional (low-level) controller or as
a supervisory (high-level) controller (Jamshidi, 1996).
Depending on the existence and nature of a system's
mathematical model and the level in which fuzzy rules are
being utilized for control and robustness, four classes or
fuzzy control suitability problems can be distinguished.
These four classes are (See Figure 2.1):

Class 1: Process model is crisp and linear and fuzzy
controller is low level.

Class 2: Process model is crisp and nonlinear and the
fuzzy controller is low level.

Class 3: Process model (linear or nonlinear) is crisp and a
fuzzy tuner or an adaptive fuzzy controller is present at
high level.

Class 4: Process model is fuzzy and fuzzy controller is
low level.
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Figure 2.1 Stability Classes of Fuzzy Control Systems
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In this paper we are concerned mainly with the first three
classes. For the last class, traditional nonlinear control
theory would fail and is beyond the scope of this paper.
The techniques for testing the stability of the first two
classes of systems are shown in Table 1. As shown, the
methods are divided into two main groups-time and

frequency.

Time Domain Methods

The time-domain methods are primarily based on the state-
space approach. The basic approach here is to subdivide
the state space into a finite number of cells based on the
definitions of the membership functions. Now, if a
separate rule is defined for every cell, a cell-to-cell
trajectory can be constructed from the system's output
induced by the new outputs of the fuzzy controller. If
every cell of the modified state space is checked, one can
identify all the equilibrium points including the system's
stable region. This method should be used with some care
since the inaccuracies in the modified description could
cause oscillatory phenomenon around the equilibrium
points.

Stability Analysis Methods

Time Domain Frequency Domain

State-space Harmonic Balance
Lyapunov Theory

Hyperstability Theory Circle Criterion
Bifurcation Theory

Graph Theory Popov Criterion

TABLE 1 Stability Analysis Methods for Fuzzy Control
Systems with Known Model

The second class of methods is based on the Lyapunov's
method (Tanaka and Sugeno, 1992, Jamshidi, 1996). The
approach is along the same lines as in classical approach
of Lyapunov Stability, i.e. show that the time derivative
of the Lyapunov function at the equilibrium point is
negative semi definite. Many approaches have been
proposed. One approach is to define a Lyapunov function
and then derive the fuzzy controller's architecture out of
the stability conditions. Another approach uses
Aiserman's method (Jamshidi, 1996) to find an adopted
Lyapunov function, while representing the fuzzy
controller by a nonlinear algebraic function u = f(y), when
y is the system's output. A third method calls for the use
of so-called facet functions, where the fuzzy controller is
realized by boxwise multilinear facet functions with the
system being described by a staie space model. To test
stability, a numerical parameter optimization scheme is
needed.

Hyperstability approach has been used to check stability
of first class of systems. The basic approach her is to
restrict the

input-output behavior of the nonlinear fuzzy controller by
inequality and to derive conditions for the linear part of the
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closed-loop system to be satisfied for stability.

Bifurcation theory (Jamshidi, 1996) can be used to check
stability of fuzzy control systems of second class of
systems This approach represents a tool in deriving
stability conditions and robustness indices for stability
from small gain theory. The fuzzy controller, in this case,
is described by a nonlinear vector function. The stability,
in this scheme, could only be lost if one of the following
conditions become true: (i) the origin becomes unstable if
a pole crosses the imaginary axis into the right-half plane-
static bifurcation, (ii) the origin becomes unstable if a
pain of poles would cross over the imaginary axis and
assumes positive real parts-Hopf bifurcation, or (iii) new
additional equilibrium points are produced.

Frequency Domain Methods

There are three primary groups of methods which have
been considered her (see Table 1). The Harmonic Balance
approach (Jamshidi, 1996) has been used to check the
stability of the first two classes of fuzzy control systems.
The main idea is to check if permanent oscillations occur
in the system and whether these oscillations with known
amplitude or frequency are stable. The nonlinearity (fuzzy
controller) is described by a complex-valued describing
function and the condition of Harmonic balance is tested.
If this condition is satisfied, then a permanent oscillation
exists. This approach is equally applicable to MIMO
systems.

Circle criterion has been used to check stability of the
first class of systems. In both criterion, certain conditions
on the linear process model and static nonlinearity
(controller) must be satisfied. It is assumed that the
characteristic value of the nonlinearity remains within
certain bounds, and the linear process model must be
open-loop stable with proper transfer function. Both
criteria can be graphically evaluated in simple manners.

The stability of adaptive fuzzy control systems has been
treated by Jamshidi (1996) and is best used when it is
augmented with the design process.

3. Fuzzy System Stability via Interval Matrix
Method

Recent results on the stability of time-varying discrete
interval matrices by Han and Lee (1994) can lead us to
some more conservative, but computationally more
convenient, stability criteria for fuzzy systems of the
Takagi-Sugeno type shown below

Pi: IF x(k)is Aland .. .and x(k - n + 1) is An THEN
x'(k+)=alix(k)+ . . . +anix(k-n+I) 3.1

withi =1, ... ,p. Before we can state the new criteria
some preliminary discussions will be necessary.

Consider a linear discrete-time system described by a
difference equation in state form:

x(k + ) = (A + G(k)) x(k) , x(0) = x0 3.2)




where A is n x n constant asymptotically stable matrix, x
is the n x 1 state vector, and G(k) is an unknown n x n
time-varying on the perturbation matrix's maximum
modulus, i.e.

IG(k)l < Gm for all k (3.3)

where and the inequality holds elementwise. Now,
consider the following theorem:

Theorem 3.1 The time-varying discrete-time sysiem
(3.2) is asymptotically stable if

p(1Al+Gm) < 1 (3.4)

where p ( » ) stands for maximum of the eigenvalues. The
proof of this theorem is straight forward, based on the
evaluation of the spectral norm lIx(k)ll of x(k) and
showing the if condition (3.4) holds, then lim lix(k)Il = 0.
The entire Proof can be found in Han and Lee (1994).

Definition 3.1 An interval matrix AI(k) is an n x n
matrix whose elements consist of intervals [bij, cij] for i,
j=1,...n,le.

Al(k) = { [bij, cij] }. G5

Definition 3.2 The center matrix, Ac and the maximum
difference matrix, Am of AI(k) in (3.5) are defined by

Ac=B+C)Y/2 Am=(C-B)2 (3.6)

where B = { bij} and C = { cij } . Thus, the interval
matrix AI(k) in (3.5) can also be rewritten as

AI(K)= [Ac - Am, Ac + Am ] = Ac + AAK) (3.7)
with IAA(K)l < = Am .

Lemma 3.1 The interval matrix AI(k) is asymptotically
stable if matrix Ac is stable and

p(lAcl + Am) <1 3.8)
or in canonical form,
p(IT-11AcITI+IT-11AmITI ) <1 (3.9)

The proof of this Lemma can also be found in Han and
Lee (1994). The above Lemma can be used to check the
sufficient condition for the stability of fuzzy systems of
Takagi-Sugeno type given by

IF x(k) is Aland . . . and x(k - n + 1) is An THEN
x'(k +1)=Aix(k)
(3.10)

Consider a set of m fuzzy rules like (3.10), i.e.

IF x(k) is All and . . . and x(k - n + 1) is Anl THEN
x (k+1)=Alx(Kk)

@3.11)

IF x(k) is Alm and . . . and x(k - n + 1) is Anm THEN
x"(k+1)=Am x(k)

where Ai matrices fori=1,. .., m are defined by
ali a2i ... ani

Ai =1 0 .. O
o 1 .. 0 3.12)
0o 0 ..10

One can now formulate all the m matrices Ai ,i=1,..,
m as an interval matrix of the form (3.5) by simply
finding the minimum and maximum of all the elements at
the top row of all the Ai matrices. In other words, we
have

fal al] .. [an an]
1 o .. 0
Alk) = 0 1 .. 0 (3.13)

0 0 .10

where aiand ai fori =1, ..., m are the minimum and
maximum of the respective elements of the first rows of
Ai in (3.12). Using the above definitions and
observations, the fuzzy system (3.11) can be rewritten in
compact form as

IF x(k) is A THEN x(k + 1) = Al(k) x(k) (3.14)
where the antecedent of the above rule corresponds to all
the m rules of (3.11), i.e. x(k) corresponds to all m x(k)'s

and A corresponds to all the m "and"- ed antecedents.
Now, we consider the following lemma:

b g0

Figure 3.1 Fuzzy sets for the antecedents of Example 3.1
Lemma 3.2 The fuzzy system (3.14) is asymptotically
stable if the interval matrix Al(k) in (3.13) 18
asymptotically stable, i.e., the conditions of Lemma 3.1
are satisfied.

Example 3.1 Consider the fuzzy system

pl: IF x(k - I) is A1 THEN x'(k + 1) = - x(k) - 0.2x(k - 1)
p2: IF x(k - 1 ) is A2 THEN x*(k + 1) = x(k) - 0.2x(k - 1)

where the fuzzy sets Ai,i= 1,2 are shown in Figure 3.1
. It is desired to check the stability of this system.




5 N: The system's two canonical matrices,
sotlt-‘ellffﬂl(“)‘e form of an interval matrix (3.13) is given
wril
by

[-1,1] -0.2

Alk) = 0

The center and maximum difference matrices (see Equation
(3.6) arc

0 -0.2
Ac =
1 0
and 1 0
Am =
0 0

Then, condition (3.8) would become,

p(lAcl+ Am) = 117 >1  (3.8)

Thus, the stability of fuzzy system under consideration is
inconclusive. In fact, it can be shown that while the
individual rules do represent stable discrete-time systems,
the combined two-rule fuzzy system is unstable (Jamshidi,
1996).

o Y

4

0. 0.6 0

Figure 3.2 Fuzzy sets for the antecedents of Example 3.2

Example 3.2 Consider a two-rule fuzzy system

PL: IF x(k) is A1 THEN x'(k + 1) = 0.3x(k) + 0.5x(k - 1)
P2: IF x(k) is A2 THEN Xk + 1) = 0.2x(k) + 0.2x(k - 1)

where Ai,i=1,2,

4 are piecewise continuous fuzzy sets in
Figure 3.2,

Itis desired to check if this system is stable by interval
matrix method.,

SOLUTION: The Ai matrices are

0.3 05
Al = A2 < 02 02
1 0 1 0
Consider the center and the maximum difference matrices

for this System

115

0.25 0.35

Ac =

and

0.05 0.15

Am =

0 0
and matrix

03 0.5

IAcl + Am =
,V 1 0

and p(lAcl + Am ) =0.873 < 1. Hence, in view of the
above inequality and the fact that Ac is stable, by Lemma
3.2 the interval matrix
[0.2,0.3] [0.2,0.5]
Alk) =
1 0

is asymptotically stable and the fuzzy system is stable.
4. Conclusions

In this brief paper a sufficiency condition has been
presented to check for the asymptotic stability of fuzzy
control systems with Takagi-Sugeno type rules, i.e.
Equation (3.1). This criterion presented here is somewhat
conservative. It is noted that if condition (3.8) or (3.9) is
not satisfied it does not mean that the system is
necessarily unstable. On the other hand, if the condition is
true, then the system is, in fact, stable. This paper hopes
to serve as a starting point for many new results to come
toward a solid stability theory for fuzzy control systems.
This challenge still exists for both control engineers and
mathematicians.

References

1. IEEE, 1993, Letter to the Editor, IEEE Control
Systems Magazine, Vol. 14.

2. Jamshidi, M., 1996, Large-Scale Systems - Modeling,
Control and Fuzzy Logic, Englewood Cliffs, NJ : Prentice
Hall Publishing Co., (to appear).

3. Tanaka, K. and M. Sugeno, 1992, Stability Analysis
and Design of Fuzzy Control Systems, Fuzzy Sets and
Systems , Elsevier Publishing Co., Vol. 45, pp. 135-
156.

4. Han, H.-S. and J.-G. Lee, 1994, Necessary and
Sufficient Conditions for Stability of Time-Varying
Discrete Interval Matrices, Int. Journal of Control , Taylor
and Francis Co., Vol. 59, pp. 1021-1029.




	111.pdf
	112.pdf
	113.pdf
	114.pdf
	115.pdf

