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Abstract

Intelligent control, inspired by biological and Al
(artificial intelligence) principles, has increased the
understanding of controlling complex processes without
precise mathematical model of the controlled process.
Through customized applications, intelligent control has
demonstrated that it is a step in the right direction.
However, intelligent control has yet to provide a
complete solution to the problem of integrated
manufacturing systems via intelligent reconfiguration of
the robotics systems. The aim of this paper is to present
an intelligent control architecture and design
methodology based on biological principles that govern
self-organization of autonomous agents. Two key
structural elements of the proposed control architecture
have been tested individually on key pilot applications
and shown promising results. The proposed intelligent
control design is inspired by observed individual and
collective biological behavior in colonies of living
organisms that are capable of self-organization into
groups of specialized individuals capable of collectively
achieving a set of prescribed or emerging objectives.
The nervous and brain system in the proposed control
architecture is based on reinforcement learning principles
and conditioning and modeled wusing adaptive
neurocontrollers.  Mathematical control theory (e.g.
optimal control, adaptive control, and neurocontrol) is
used to coordinate the interactions of multiple robotics
agents.

L. Introduction

An expectation gap has developed between envisioned
robotics systems and the currently realizable robotics
systems. This expectation gap has arisen as a result of
robotics falling short on their promise to provide
inexpensive, efficient, and adaptable solutions to
manufacturing problems. To use an eloquent analogy,
robotics  state-of-the-art today is what mainframe
computers were to personal computers twenty years ago:
bulky, centralized, inflexible, and above all, expensive,

requiring specialized and costly personnel to install,
operate, and maintain.

Given the analogy, the question arises: Is it possible with
foday's technology to span the expectation gap and
accelerate the widespread use of robotics? Steps towards
this direction are being taken by various research groups
and partial results appear promising [1, 2, 3, 4]. Yet, no
proposed architecture [5] seems to address all the issues
involved in the development of a truly intelligent robotics
system. The main obstacles that prevent the widespread
use of robotics still remain; robots:

» cannot generalize to a variety of tasks (e.g.,
reprogrammability remains a challenging task that
requires specialized expertise);

» cannot adapt to their environment or operate in the real
world in an unfamiliar situation for which they have not
explicitly programmed,;

» exhibit poor error recovery and handling of new and
unexpected environmental conditions;

* have difficulty with world models and frame grounding
problem (See "clephants don't play chess," in [6]).

A recent report of the IEEE CSS Task Force on
Intelligent Control has emphasized the complexity of the
problem of intelligent control and enumerated its
multiple facets [5]. However, it left the meaning and
structure of intelligent control undetermined. In the
same report, Albus, On Intelligence and its Dimensions,
[5], provides a lengthy list of fragments of intelligence
in different control processes. However, piecing these
fragments together to design an intelligent control may
prove to be a rather formidable task. By adopting a
bottom-up approach for intelligent control allows the
design to follow naturally in a dynamically evolving
hierarchy.

Despite recent progress in adaptive control [Refs. 44-
49], the stringent requirements of a precise modelization
of the process dynamics (at least of the nominal plant) in
terms of differential or partial differential equations,




imposes a severe restriction in the ability of these
extended conventional methods to address complex
control systems, frequently encountered in manufacturing
and robotics systems. Such complex systems may not
even be describable by total or partial differential
equations, making the use of model reference adaptive
control applicable only in low level controllers. To
address the design shortcomings and lack of adaptivity of
conventional control in complex manufacturing and
robotics systems, intelligent control has been used
whereby intelligent implies a control capable of handling
complex processes exhibiting some degree of
intelligence.

Intelligent control, inspired by biological and Al
(artificial intelligence) principles, has increased the
understanding of controlling complex processes without
precise mathematical model of the controlled process [12,
13, 14]. Through customized applications, intelligent
control has demonstrated that it is a step in the right
direction. However, intelligent control has yet to provide
a complete solution to the problem of integrated
manufacturing systems via intelligent reconfiguration of
the robotics systems {5].

The proposed intelligent control design is inspired by
observed individual and collective biological behavior in
colonies of living organisms that are capable of self-
organization into groups of specialized individuals
capable of collectively achieving a set of prescribed or
emerging objectives [15, 16, 17]. The nervous and brain
system in the proposed control architecture is based on
reinforcement learning principles and conditioning and
modeled using adaptive neurocontrollers.

Mathematical control theory (e.g. optimal control,
adaptive control, and neurocontrol) is used to coordinate
the interactions of multiple robotics agents.

Coordination and cooperation of multiple agents towards
set objectives and specified tasks is accomplished through
distributed control via inhibition and facilitation of
actions and behaviors according to the fulfillment of set
objectives. In this way, even conflicting tasks can be
resolved and a robot colony can be self-organized to
execute them and learn to resolve conflicts [20, 21]. The
distributed control can be either an optimal controller, a
neurocontroller, or a classical adaptive controller,
depending on the knowledge of the process dynamics.

The proposed intelligent control design borrows
principles from observed biological behaviors and blends
them with mathematical control theory to achieve true
adaptation and flexible coordination and cooperation. In
the proposed research we will attempt to model the
proposed intelligent control mathematically, analyses it,
and experimentally validate its ability to control
individual mobile robots and to coordinate multiple
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mobile robots cooperatively based on sets of prescribed
objectives .

The proposed architecture is inspired by biological
control concepts observed in the human and less complex
vertebrate nervous systems [18]. Autonomous robots in
the proposed architecture wuse distributed control
algorithms to learn to coordinate their actions and
cooperate in order to achieve prescribed tasks
(objectives), which may very well be conflicting. Each
autonomous mobile robot possesses its own nervous
system and brain capable of learning and adapting to new
environments through experience. The nervous and
brain system of each autonomous unit is structured
according to biological nervous systems observed in
vertebrates, and in humans in particular as detailed
below [18, 19].

The proposed intelligent control architecture (ICA)
relates directly to flexible and intelligent manufacturing.
Central element of the proposed control design is the
robotics agent (defined in section C below). Robotics
agents are assumed to be capable of performing a number
of rudimentary tasks. Coordination of these rudimentary
tasks through motivations leads to new and complex
behaviors that can accomplish complex manufacturing
objectives in a flexible manner. So long as any
manufacturing objective is decomposable in behaviors
attainable by the robotics agents in the colony (ies), no
matter how complicated the objectives may be, they can,
in principle, be executed by robotics agents through self-
organization and behavioral coordination without the
need of a central coordinator (programmer).
Furthermore, due to self-organization and adaptation of
behaviors according to the current availability of robotics
agents in the colony(ies), the architecture provides an
immediate solution to the error recovery problem and
control reconfiguration.

IL  Description of the proposed intelligent control
architecture

The central element of the proposed control design is the
robotics agent controlled by a self-organizing behavioral
system inspired by biological and neurophysiological
evidence and knowledge. Robotics agents are
coordinated and cooperate through a distributed multi-
agent controller, whose functions are described below.

An (robotics) agent is defined as a collection of effectors,
sensors, and low level controllers, capable of producing
action primitives.

An action primitive is defined as a simple action
produced by coordination of reflexive actions by low level
controllers in response to a simple command.




Reflexive action is a fixed, stereotyped, independent
action executed by a low level controller.

A low level controller (LLC) is responsible of executing
reflexive actions. It can be tuned adaptively to
coordination (to other low level controllers) so as to
execute action primitives in response to a simple
command. An example of a LLC is a tunable (or
adaptive) PID controller or a neurocontroller [22, 23].

The macro organization of the control structure of a
robotics agent (its nervous system) is based upon the
human nervous system, as shown in Fig. 1.

Fig. 1 Biology Inspired Architecture for Machine
(robot) Perception and Intelligent Control

The nervous system in the proposed intelligent control
architecture consists of the following four levels.

*The Task Level (central nervous system) where a given
task is specified in a high level language or via symbolic
representation.

*The Motivational Level (the motivational system and
associated cortexes) where the task specification is
compiled into a set of motivational rules which govern
what the robot "wants." It includes building of
appropriate associations for sensory input.

*The Behavioral Level (the peripheral nervous system
and autonomous functions) provides the fundamental
behaviors that can be combined in various ways to
accomplish tasks; and

*The Action Primitive Level (the primary and higher
order sensory and motor cortexes) combines the reflexes
provided by the robotics agent to action primitives.

The control structure in the proposed intelligent control
architecture is inspired by the decomposition of the
required steps from a description of a task (objective) to
its successful execution into Tasks, Motivations,

Behaviors, and Coordination of actions and sensory
inputs. The decomposition and the assumed interactions
loops in the proposed architecture are included at a very
high level in Fig. 1.

The proposed intelligent control structure is based on
biologically supported evidence of unconditioned and
conditioned stimuli and responses for sensory fusion and
coordination of low level control actions [26, 27].
Translation of a set objective (task) into control actions is
done through motivations and behaviors. It is assumed
that conditioning may occur even at the behavior level, to
allow the translation of high level behaviors into control
commands in order to perform a given task.

A behavior is understood as the coordination of action
primitives and sensory feedback by inhibition or
facilitation of action primitives through conditioning [26,
27]. We distinguish two levels of behavior. A low level
behavior that corresponds to direct coordination of action
primitives and sensory feedback through conditioning. A
high level behavior that corresponds to direct
coordination of low level behaviors and sensory feedback
through inhibition or facilitation. Both low level and
high level behaviors use inhibition and facilitation. And
both use some type of conditioned learning.

Motivations are understood as emerging desires that
control behaviors through inhibition or facilitation

[26,27]. Motivations may occur spontaneously and
simultaneously, may be conflicting, or even non-causal.
Interactions among motivations are, in general, weak and
indirect (i.e. through sensory feedback).

Behaviors, on the other hand, occur deterministically and
are always causal. Behaviors inhibit or facilitate other
behaviors to interact with each other directly [26, 27).

In the generation and elimination of motivations and
behaviors, and their interplay, it is necessary to define the
motivational and behavioral levels.

Motivational level is the degree of influence each
motivation has on each associated behavior(s).

Behavioral level is the degree of influence a behavior has
on other behaviors and on action primitives.

Once a motivational level exceeds a threshold, a behavior
is released. Thus, by adaptively controlling the
motivational and behavioral level, allows the mapping
between the motivation/sensory stimulus space and the
released behavior to be modified by experience. Through
this control mechanism, complex behaviors and actions
may be produced from simple action primitives and low
level behaviors in response to a stimulus or stimuli. A
useful mathematical paradigm to describe the evolution




and development of complex behaviors from simple
primitive actions, is that of a c-algebra. If the primitive
behaviors are identified with structural atomic elements
of the c-algebra, the adaptive control generates complex
behaviors that are members of this algebra. We can, then
talk of the creation of a “behavioral” algebra. In this
way, the evolution of behaviors under the chosen
adaptive mechanism can be analyzed mathematically.

A major problem in designing intelligent control systems
is the data fusion [28, 29]. Data fusion in the proposed
architecture is a built-in function and is done
automatically by associating unconditional stimuli
(sensory input) to conditional stimuli (fused input
signals) or directly to conditional responses. The
collective sensory input creates a pattern of activity in the
sensors, the Sensor Activity Pattern which is referred to
as the conditioned stimuli. This conditioned stimuli then
can be associated with an unconditioned stimulus
response pair that is always active at the time this sensory
pattern is perceived. Another possibility is the
conditioned stimuli can be associated with a conditioned
response that has shown positive results when executed
in the presence of the current sensor activity pattern.

Hence, through conditioning, multisensory inputs can be
fused together into a coherent stimulus (or stimuli), or be
associated with a conditional response directly. The
biology-based function of conditioning is, hence, used to
climinate the need for separate multisensory data fusion
interface in the proposed architecture.

IIL Supporting experimental evidence for the
proposed architecture

a. Testing of the nervous system architecture

The behavior and action primitive levels of the proposed
architecture have been tested in the autonomous
locomotion of a six-legged mobile robot shown below,
[22, 23]. See Braught and Thomopoulous in these
proceedings for more details on the nervous system
architecture.

Each leg of the robot is modeled as a rigid body with a
single two degree of freedom joint where contact is made
with the torso. Each leg of the robot contains two action
primitives; move the leg to a specified horizontal
position; and move the leg to a specified vertical position.

The action primitives are implemented as modern
controllers for DC servo motors with appropriate load
torques. The reciprocal inhibition network responsible
for the horizontal motion control of the legs is shown in
Figure 2. The inhibition network responsible for the
vertical motion control of the legs is shown in Fig. 3.
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Fig. 2 Reciprocal Inhibition Network for Control of
Horizontal Leg Motion.

A low level behavior is implemented for each leg which
manipulates its action primitives to produce patterns of
leg movement required for walking. The low level
behavior is implemented as a neural circuit and is
strongly based upon insect neruophysiology [55, 56, 57,
58]. A high level behavior is implemented to provide
coordination of the legs into stable stepping patterns.
The high level behavior is also implemented based upon
information about the neural organization of insect
nervous systems. [59, 60] The motivational level has not
been implemented in the hexapod because of the single
mindedess of its goal, namely learning stable stepping
patterns for walking.

Fig. 3 Inhibition Network for Control of
Vertical Leg Motion.




Conditioning methods of adaptation have been shown to
be effective in both the low level and high level behaviors
of the hexapod robot. Within the low level behavior
conditioning is used to modify the duration of the
retraction and protraction phases of a leg. [30, 31, 32]
Effectively the low level behavior adjusts its internal
dynamics thus learning to emulate leg motions dictated
by a set of biologically consistent reflexes (compare
Figures 4 and 5). The adaptation in the low level
behavior is sufficient to allow a static organization for the
coordinating behavior.
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after Conditioning

b. Multi-agent coordination achieved via mathematical
control theory

The use of motivations to accomplish distributed
multi-agent coordination has been successfully tested in a
robot colony executing two conflicting objectives
simultaneously. Successful coordination of autonomous
robotics agents around set objectives has been
demonstrated in a difficult control problem [24, 25].
The control problem involves a colony of robots which
reside on a 2-D platform that is free to rotate about a
pivot point at its center of mass. The control task is two
fold: first, the robots must balance the platform; and
second, the robots attempt to reduce the area spanned by
the colony.

The specified task is decomposed by hand into the
following behaviors. Each robot is assumed to have the
necessary low-level behaviors and action primitives
required for walking in any direction. Each robot is then
given two high-level behaviors, a leader behavior and a
follower behavior, which manipulate the low-level
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walking behaviors to produce the desired action. A
leader behavior causes the robot to move so that the
center of mass of the robot colony moves in the direction
necessary to balance the platform. A follower behavior
causes a robot to search out and track the nearest leader
robot. Both the leader and follower behaviors have been
designed using optimal control theory and can be
considered equivalent to fixing motivations, behaviors
and interconnections that are required across wide ranges
of applications and environments (see below).

Within the defined system the purpose of the
motivational system becomes the sclection of either the
leader or follower behaviors such that both facets of the
task are accomplished. Because the two behaviors are
mutually exclusive one motivational state, a leader
motivation, is sufficient to accomplish the task. The
leader motivation level is proportional to a measure of
the stability of the platform (i.e. how well it is balanced).
Each robot contains and updates via its sensors its own
leader motivation. The probability that an individual
robot releases its leader behavior is directly proportional
to the leader motivational level. Therefore, the more
unstable the platform the more likely that a robot will
express its leader behavior and conversely for the
follower behavior.

Comparing Figures 6 and 7 show that the proposed
distributed control is capable of accomplishing the goal
of stabilizing the platform even in the presence of severe
(90%) atrophy of the robot colony. The bumps in figures
6 and 7 are caused by individuals changing from leaders
to followers and thus destabilizing the system.
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Fig. 6 Typical Platform Angle Trajectories using
Optimal Control and Full Colony Strength

Figure 8 illustrates that the control also reduces the area
of the colony to its minimum size by enabling the
platform to be balanced with only one robot exhibiting
the leader behavior. Hence, the use of the motivational
level of the proposed architecture appears to be capable of
producing self-organizing distributed multi-agent control
systems capable of achieving even conflicting goals
simultaneously.
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IV. Advantages of proposed intelligent control
architecture

The main advantages of the proposed architecture are:

1. allows self-organization of the autonomous units and
learning according to biological evidence;

2. allows multi-agent coordination through distributed
control via inhibition and facilitation even when set
objectives are conflicting. Conflict-resolution is thus
achieved automatically.

3. creates specializations among robotics agents in a
colony. Specialization facilitates the execution of
complicated tasks.

4. accomplishes multi-sensor data fusion in a straight-
forward manner through conditioning. It does not require
then the development of separate and complex data
fusion algorithms.

5. has built-in failure recovery functions that allow the
robotics agents to adapt to unknown operational
environments or recover from errors without external
intervention. Hence, from this point of view, the
proposed control architecture is robust as well.

The difference between the proposed intelligent control
design and other intelligent control design approaches
lies in the:

* definition of the structural robotics elements;
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« use of biologically inspired adaptive neurocontrollers
that are used to produce elementary responses (actions)
from action primitives (reflexive actions);

+ motivation/behavior high level organization;

» use of mathematical distributed control for the
coordination of the robotics agents and their actions; and
+ built-in ability to fuse multisensory signals without the
need for an explicit algorithms to achieve fusion, an
advantage of the proposed architecture not present in
other intelligent control designs (more details are
elaborated in the description of the legged locomotion
paradigm).

V. Issues related to the proposed architecture

The nervous system approach to behaviors and the
motivational approach to distributed multi-agent
coordination have been shown to be effective. In this
proposal we intend to merge more completely the
nervous system and motivational system approaches.

The largest part of the proposal involves the acquisition
and refinement of new behaviors via the use of GA and
NN techniques. The resulting compound architecture
will be tested with respect to its ability to generate
effective emergent behaviors and to coordinate multiple
robotics agents in the accomplishment of set objectives.

The issues that need to be addressed in the proposal
architecture include:

. Self-organization

. Distributed Control

. Stability

. Efficiency

. Fault tolerance

. Error recovery - Malfunctioning

addressing these issues requires the:
« Investigation of acquisition of new behaviors
and new motivations in the proposed control architecture
* Tuning of motivations and behaviors to execute a
prescribed task. Investigate emergent behavior and the
segregation into specialist robots which due to their
proficiency in a give task become predisposed to
executing that task as opposed to others with which it
has less experience.
» Derivation of existence conditions that will guarantee
that given a (manufacturing or otherwise) task and a set
of robotics agents supplied by the described nervous
system, the task can be decomposed into motivations and
behaviors that will allow the robotics colony to execute it.
The conditions must be rcadily obtainable without
requiring that the control problem be solved first. This is
functionally equivalent to the controllability and
observability issues of modern control theory. And
shown in the robot colony coordination paradigm via
optimal control, perhaps some of the same reasoning that
led to the modern controllability and observability




theorems can be used to develop these conditions for the
case of distributed control.

¢ Derivation of reachability conditions that will
determine, given a task and a set of robotics agents that
are capable of carrying out cooperatively once properly
coordinated, whether the proposed controller-coordinator
is capable of inducing the necessary coordination in the
colony that will allow the required cooperation  among
agents in order to execute the task successfully.

» Development of a behavioral algebra that will allow
the description and the analysis of the proposed
intelligent control architecture in a rigorous and precise
mathematical fashion. The field of complexity theory
and chaos along with cellular automata and decision
theory (Bayesian and non-Bayesian) are expected to have
a significant role in the development of this algebra.

» Demonstration of the validity of the proposed
intelligent control architecture experimentally through an
experimental application/demonstration that involves a
number of mobile robotics manipulators and walking
robots attempting to perform a coordinated task while
stabilizing themsclves on a pivoting platform in space.
The distinction between mobile and walking robots is
done purposely, to indicate possibly different locomotion
modes in the colony.

VL Summary and Conclusion

A working model for a biology-inspired control
architecture has been developed. Biological /
Psychological information [12, 18, 19, 26, 27]; Neural
Networks and associated learning techniques such as
Heuristic Adaptive Critic [33, 34, 35]; Genetic
Algorithms and other evolutionary strategies [36, 37, 38,
39, 40]; and methods derived from mathematical control
theory [25] have been used to develop the architecture

Biological and psychological information supplies a solid
basis for our belief in the proposed approach. Analysis of
biological and psychological data provides a means of
significantly reducing the space that must be searched for
the final solution. The reduction in search space is
accomplished by fixing motivations, behaviors and
interconnections that are required across wide ranges of
applications and environments. This technique was
shown to be highly effective in increasing the learning
rate in the hexapod nervous system architecture discussed
above [22, 23]). It is the structure dictated by this
biological and psychological information that dictates the
base configuration from which autonomous agents can be
develop.

Biological and psychological information is also suitable
for providing guidance in developing methods of
acquisition for new behavior and motivational
connections within the architecture.  Populations of
differing connections between sensory input, motivations,

behaviors and action primitives can be generated using
genetic algorithms. ~ Effectively the genetic algorithm
performs the creation of a neural network. It is then the
ability of the neural network to adapt to its environment
and to accomplish the prescribed tasks which determines
the genetic fitness of the individual. [50, 51]. = The
adaptation of the neural network will be implemented via
reinforcement and conditioned learning techniques which
may either strengthen or weaken the connections
originally specified by the GA.

Because the neural network generated by the genetic
algorithm is subject to learning over time its overall
fitness and thus the fitness of the individual may not be
determined in a conventional manner using simple
fitness functions. Rather, the function used to rate the
genetic fitness of each individual must be a time
discounted function of the degree to which that
individuals motivations are satisfied [34, 35, 36]. This
method of determining fitness contains an interesting
effect related to multi-agent cooperation.  Because
individual motivations are tied to sensory information, an
individual may perform an action that may not directly
lead to the satisfaction of the individual motivation alone,
but may satisfy the of combined individuals motivation.
Thus the genetic fitness of both individuals is perceived
as greater than it would have been in the presence of only
one of the individuals, thereby inherently promoting
multi-agent cooperation.

The development of a mathematical theory for the
analysis and prediction of the behavior of the proposed
intelligent control architecture, or some constrained form
of it under assumptions, is envisioned to emerge from
mathematical concepts related to complexity theory and
chaos, decision theory (Bayesian and Evidential Theory
[43]) and finite state machine approximations (Cellular
Automata).

Complexity theory and chaos and cellular automata (CA)
can provide strong guidance in the development of
mathematical formailzations of the proposed architecture
and its operation. A particularly interesting direction
being explored is the description of the system in terms
of a CA where our action primitives describe the actions
the automaton may make and the specified tasks to be
accomplished are the gross behaviors of the automaton.
The task then becomes determining the set of rules for
the automaton using the action primitives that will
provide the desired gross behavior. In the light of this
description it is hoped that complexity theory, chaos, and
cellular automata research will first lead to the discovery
of existence conditions for the automaton's rules [52, 53].
These conditions are thought to be similar to
controllability and observabiliy of mathematical control
systems theory.
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