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Abstract

The problem of moving a rigid robot arm along a
sequence of equilibrium points, with the last point co-
incident with the first one, is investigated. Such a
sequence of equilibrium points, referred to as a cycle,
is to be repeated over and over in time, and a con-
troller is sought which improves system performance
by using positioning errors. Differently from learning
control, no system initialization is required at the end
of trial. After high gain feedback linearization of the
robot dynamics, it is shown that linear, robust, finite
dimensional algorithms can be set up to accomplish
this task for unconstrained robots and robots subject
to smooth bilateral constraints for which hybrid force
control is of interest. An experiment on a two-link
robot arm illustrates algorithm applicability.

1 Introduction

The problem of operating robots on repetitive or
periodic tasks has been largely addressed in the litera-
ture. Typically, the task considered consists in track-
ing a trajectory: in repetitive control [1}, the periodic
and continuous trajectory to be tracked is defined over
the entire time axis; while in learning control [2] the
trajectory to be tracked is defined over a finite time
interval, at the and of which system re-initialization
is allowed and the same task repeated. In the first
case, one is faced with a classic control problem, in
the sense that asymptotic output tracking is scught
as the time goes to infinity. In the second case, one
searches convergence as the number of task repetitions
(trials) tends to infinity. The learning dynamics are
then defined over the countable set of trials and as
such are of the discrete type. In both cases, and as
long as continuous time systems are considered, one
has to deal with a state space which is infinite dimen-
sional. In repetitive control, this is linked with the
assumption that the periodic trajectory to be tracked
may not be generated by a finite dimensional exosys-
tem. In learning control, since the space of interest is
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the set of all output trajectories on the time interval
considered [3]. Even if the available solutions to the
repetitive [1] and learning control [2,9] problems are
in principle exact, proposed implementations of these
algorithms are only approximate owing to the infinite
dimension of their state spaces. In some instances,
however, instead of trajectory tracking, repositioning
is required. Moving rigid robots between equilibrium
points is apparently a sub-task of trajectory tracking.
One may argue that by tracking a trajectory connect-
ing the equilibrium points repositioning is obtained.
But this control strategy is indirect and then intrinsi-
cally not robust. For instance, it may happen that dur-
ing a trial the robot reaches one of the desired equilib-
rium point even if the selected trajectory is not exactly
tracked. This would cause the update of the control
for the next trial and the robot could no longer reach
that desired equilibrium point during this new trial. In
general, output tracking and state steering are quite
different control problems which require different algo-
rithms. On this basis, the problem of steering the state
of a control system by learning has been investigated
and some algorithms proposed [10,15]. As opposed to
algorithms for trajectory tracking, learning algorithms
for state steering are finite dimensional. However sys-
tem re-initialization is still needed at the end of a trial
and this prevents the possibility of continuously oper-
ating the system on a task defined by a finite sequence
of equilibrium points, with the first and the last one
coincident. For this reason, in this paper a new type
of servo-system for robot arms is introduced to specif-
ically address this control problem, named cyclic con-
trol. A linear algorithm is presented, which asymp-
totically forces the robot to execute a given cycle to
be repeated over and over in time. System re- initial-
ization is not required, thus avoiding any time delay
associated to this operation. Both the cases of uncon-
strained robots and robots subject to smooth bilateral
constraints, for which hybrid force control is of inter-
est, are considered. For the sake of illustration, the
numerical simulation of a one link executing a simple




cycle on a vertical plane is included.

2 Cyclic control of unconstrained robots

Let an open chain robot arm, with n rigid links
connected by lower kinematic pairs, be given. If un-
constrained, its equations of motion are of the type

B(1(1))4(t) + (4(t), q(t)) + d(q(t), q(t). t) = f{t) (1)
9(0) =¢°, 4(0) =¢°,

where ¢(t) € IR™ is the vector of joint variables, B(.)
is the positive definite inertia matrix, ¢(-) is the vector
of centripetal, Coriolis and gravitational terms, d(-)
takes into account unknown disturbances and f(t) is
the vector of joint forces delivered by the actuators,
one for each joint. All functions are assumed smooth
and d(-) is periodic with respect to the time.

Suppose that the robot has to be operated along a
finite sequence of 7 equilibrium points {¢¢,...,¢%}, to
be attained at the end of the consecutive time intervals
{61,...,6,}. From the last assigned equilibrium point,
the robot has to move to the first one and re-start the
“cycle”. For synchronization purposes, it is also re-
quired that at the instants AT, with h = 0,1,2,.. .,
the robot equilibrium point is the one corresponding
to g = ¢ , that at the instants b1 + hT the one corre-
sponding to ¢ = ¢¢ and so on, with T the cycle period
given by

oy

The period of d(-) is assumed to be equal to T
Apply the following high gain control

1) = =20 ~ (1), € >0

where the new control n(¢) has a continuous deriva-
tive. By letting ¢ — 0, the robot system is singularly
perturbed (see e.g. [16]) and splits in a fast system
given by
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where 7 is the fast time, p() is the fast transient of the
velocity and D(-) is the inverse of the inertia matrix,
and in the slow system

q(t) = n(t), q(0) =¢°,

whose smooth solution is denoted by ¢*(t).
Since D(-) is positive definite, the fast system is
€xponentially stable and Tikhonov’s theorem applies.
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Tikhonov’s theorem states that for small € the follow-
ing approximation holds

Q(t) = q*(t) + 0(5)7 te [07 OO) (2)

Moreover, since 7(t) is differentiable and the robot dy-
namics are smooth, for a sufficiently large ¢’ > 0 one
has that

q(t) = ¢°(t) + o(e), §(t) = ¢"(t) + o(e) (3)
t € [t',00).

In order to guarantee the differentiability of n(t), a
double integrator is added, that is we set

ii(t) = u(t).
Define
tiy = &
thik+1 = thix +0kr1, hEN, kG{l,...,r}
thr+1 = thy11 h €N,

with &k the number identifying the equilibrium points
and h the number of cycle repetitions. Set

u(t) = At —thi + 6k)Whik, tE [thik — Sk, thk]

where wy, ; € R¥*™ and Ay, : [0,6x] — R" x R**™ is a
pbiece-wise continuous function such that the mapping
Pyt R?*™ x IR**™ defined by

[
P, = / A=Y AL ()dt,
0

where

01 0
A=10 0 I|,V=
000

~ o O

is invertible. Note that by changing the functions A (:)
the trajectories that the state of the system follows
change.

Refer as robot position at time ¢

q(thk)
Zhke = | §(thk)
G(thk)

Defining

2
Ly = e =1 4 A6, +A2%’°,

one has
Zht11 = Lizpe + Prwnga, (42)
Zhirk = Lkznyrk-1+ Powngre, 2 <k <r, (4b)



This system is periodic and controllable since each Py
is invertible. This implies that there exist controls wp,_ x
which guarantee the convergence of each 25 ; on

d
z,‘i: 0
0

as h — oo at the slow level.

Under the stated assumption on the unknown dis-
turbance function d(-), exact tracking controls are con-
stants. Hence, according to the new formulation of the
Internal Model Principle proposed in [17], the inclu-
sion in the closed loop of a discrete integrator for each
control channel guarantees robustness with respect to
T-periodic disturbances, provided that the closed loop
is asymptotically stable. An example of this type of
robust control law is the following

Whi1,1 P (ant1,1 — Lizay)

hr11 = ang+ E1(z{ - 2p1) (5a)
Whitke = Pol(aherk — Lizhe1k-1)
antik = ong + Ex(2f — znk) (5b)

I -Ex| <1, 1<k<r

Other geometrically stable control laws, incorporat-
ing an integrator for each control, can be derived by
using a time invariant reformulation of the system. Set

—Zh,l —wh,l
$h = yVh = :
L <h,r L Wh,r
Py 07 0 L
€ = lo 0= :
L 0 P, ] 0 0
r I 0 0 0 0
—Ly I 0 0 0
r = 0 -Ls 0 0 0|,
L O 0 0 -L, I
¢,I/ c ‘RBXHXT‘7 Q,@,FEB(S)("XT)X(:}X”XT)
one has

Loni1 = @on + Qupgr.

Since both I" and Q are invertible, this is a well defined
time-invariant controllable linear system. For another
time-invariant reformulation, which makes use of the
state transition matrix of the discrete-time periodic
system, the interested reader may refer to (18] and to
the references therein quoted.
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For what concerns asymptotic stability for € # 0
but small, from Tikhonov’s theorem, (eqs. (2.2) and
(2.3)), one has that, for sufficiently large ¢/, the differ-
ences between slow position, velocity and acceleration
solutions and the actual ones are smooth functions of
¢, vanishing at ¢ = 0. The perturbation due to the
fast dynamics is then small. In addition, under the
hypothesis that a control

wq
e Ez3xn7

w,

solving the cyclic control problem exists, this perturba-
tion is not persistent, since if the robot exactly execute
the cycle the control is no longer updated. Now, the
geometric convergence to zero of the error sequences
(z% — 2.%), for ¢ = 0 and h — oo, implies that suffi-
ciently small nonpersistent perturbations are rejected
[19]. Hence, provided that a control v exists, the algo-
rithm is also convergent for sufficiently small ¢.

A proof of the existence of such a control can be
given by using the implicit function theorem. Suppose
that the robot is exactly initialized at time ¢ = 0, that
is that q(0) = ¢f and that velocity and acceleration
are zero at ¢ = 0. Then condition (2.3) holds with
t" = 0. Chosen the functions )y, the mapping A :
R x R3*™ 7 — R3¥*™ T which assigns to a pair (e, v)
the position, velocity and acceleration of the robot at
the instants tj, is well defined and smooth. Now, by
construction the derivative of A with respect to v is
full rank for € = 0. Hence there exists a neighborhood
of € = 0 such that A is one to one for each given . In
particular this is true for a vector v of components wg
satisfying the equations

2 = L1284+ Pd,
22 = Lzl +Pawd, 2<k<r

But for this value of v, repositioning is accomplished
for € = 0. Hence, for sufficiently small £ the required
control exists.

As the selection of the small parameter ¢ and of
the mappings Ag, which affect system performance, is
concerned, it is suggested to select mappings Ax such
that a given performance index, smoothly dependent
on system trajectories, is satisfactory, eventually opti-
mal, with respect to the slow motion. The smallest is
€, compatibly with hardware limitations, the closest is
the actual value of the performance index to the one
computed using the slow solution. Indices which take
into account the torque can also be considered. For,
the applied torque and the one computed by substi-
tuting the slow solution in the equation of motion are



within an e-approximation, owing to the fact that the
e—approximation holds for the acceleration too. This
in particular allows to check control torque feasibility
by means of the slow solution.

Given mappings A and €, it could be of interest to
compute the region of convergence, that is the neigh-
borhood of the zero in the error space such that con-
vergence takes place for all initial errors in it. Since for
small e the error dynamics are of the perturbed linear
type, the region of convergence can be estimated [19]
by using the Lyapunov function associated to the lin-
ear system. Among other calculations, this approach
requires the computation of the map A. This map can
be developed in a power series of £ and, in addition
to the term of (2.4), only the linear term retained for
estimating the region of convergence.

3 Constrained robots

Suppose now that the robot interacts with the envi-
ronment and let the model of this interaction be given
by the geometric bilateral constraint

v(g(t)) =0, (6)

with v : R" — IR™, m < n, smooth and dv/dq full
rank, Vg(t) € IR". Under these hypothesis, the im-
plicit function theorem guarantees the existence of a
smooth function s : R ™ — IR", such that s(0) =
and v(s(¢)) =0,v¢ € R*™™.

In addition to ¢, we also wish to control the reaction
force component which does not make work on 4q, i.e.
the force normal to the surface S defined by (6). In the
sequel, the formulation for hybrid force control given in
[20] is used. When no confusion is possible, functional
dependency is omitted for notational simplicity.

Let x € IR™ denote the normal force at a point
g of S, the corresponding joint force is given by (the
apostrophe denotes transposition)

o v’

aq
The control objective is the control of the pair (x, ¢)
and is a well posed problem. Indeed, decomposes the
total reaction force as r = r™ + rt, with r! the joint

force component due to the reaction force tangent to
S, one has

te R,

=f+r+r,

= s(¢(1)),

B(g)g + (4, q)

and, by substitution of ¢(t)

s -
B 4y=f+rm+rt,

5 ()
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with

Y = ¢ + 8i,jkC5Cks
where a subscript denotes a vector component, the in-
dexes after a comma denote partial derivatives with

respect to components of ¢, and the Einstein summa-
tion convention has been adopted. Pre-multiply (7) by

[@s/3z]’ to obtain
&) =[5+ ] =[5 o+ [ o
& o[5] -

where the matrix
is positive definite and hence invertible, and by [0v/dq]

T el
e

v-[2]2(2) =[] (5] <[]

and combine (8) and (9) to get

[% g] [i] +Gly—7) = Gf.

Notice that G is invertible as well as the matrix
M 0
N R
since the matrix R is positive definite. This proves that

the control problem addressed is well posed. Consider
the application of the following high gain feedback

(9)

fy= - 1 as“(”) (E(t) — ue(t))
[%{f))] (xt) — ux(®)], = >0 (10)
By letting £ — 0, one obtains the fast system
4€(r)

= —M7H1))QC

@ - [&] 7]

- ")),




where (*(t) is the solution of the slow system. Since
both M and @ are positive definite, the fast system is
globally exponentially stable and Tikhonov’s theorem
applies. The slow system is given by

%ﬁ”(é(t) u(t) + [?%] (x(t) — ux () = 0,

which is equivalent to

C(t) =Ug (t)a

since the matrix
s [ov]’
- N —
¢ = [84 [aq] }
is full rank.

The problem to be solved consists of finding a con-
trol law such that the robot executes a cycle charac-
terized by given value of ¢ and x:

{ )

As for the unconstrained case, a control scheme
working at the slow level is developed. In order to
guarantee that the slow solutions are within an &-
approximation of the actual ones, set

ti¢(t) = a¢(t),  Uy(t) = on(t).

Next, set

x(t) = ux(t),

oc(t) = Ae(t — thk + 6k )Whik, tE€ [thk — Oksthkls

where A; : [0,8¢] — R™™ x R3®*™ ™™ is a piece-wise
continuous function such that for each mapping P; :
R>™™ — R¥™™™ defined by

Sk
Pk=/ e =Y N (t)dt,
0

is invertible. Here A and V', given the appropriate di-
mensions, are defined as in the previous section. Sim-
ilarly, set

ox(t) = pi(t —thx + 6k)wnk, t€ [thx — ks thils

where wp, , € R¥>™™ e [0,6:] € R™ x R3>™ is
piece-wise continuous and such that each mapping Il :
R¥*™ — R3*™ defined by

bk
Iy = / e (t)dt,
0

is invertible. Set

Ck . ¢t Xk X4
Pk = C_-_k y P = 0 7¢k= Xk 7¢g: 0
Ck 0 Xk 0
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At the slow level, once more we obtain a periodic
and controllable, discrete time, linear system:

Ph+1,1 Lipnr + Prwpy1
Pht1,k Lkppt1k—1+ Pewpyre 2<k<r,
bh+1,1 éh,r + Miwpy11
Shtik = Pnirk-1+FIrwpiie 2<k<r
with
52
Ly = e =TI+ A8 + A2—2’—‘~.

Hence, there exist controls wh, k and wh, k such that
convergence is achieved at the slow level.

Under the stated hypothesis of smoothness of the
constraining function v(-), convergence of an algorithm
defined by a robust control law of the type given in the
previous section can be proven, for sufficiently small ¢,
by using the same arguments of the previous section.
If the constraining surface is not exactly known, the
high gain control (10) looks like

f=—2get—u+ |3 - ul e>0,

where the tilde denotes an approximation of the true
function. Even if these functions approximate true
ones, for consistency they must satisfy the requirement
that the matrix

- [5 [3]]

is full rank. The fast system is now given by

L0 _ e e,

o = 9s]’ 05
- la¢] lag)?
and, as long as @° is positive definite, it is exponen-
tially stable and Tikhonov's theorem applies. Stabil-

ity then depends on a sufficient good knowledge of the
constraining surface. At the slow level one has

(11)

03

and, since the matrix G is full rank, the same algo-
rithm is still convergent.

4 Experimental results on a two-link
arm

A scheme of the experimental robot used is shown
in fig. 1.



Figure 1: the two-link robot arm

It is an open chain planar arm with two links and
two revolute joints. The lengths of the links are equal
to 0.3 m and 0.7 m, respectively for the first and the
second one. The moments of inertia of the links are
equal to J, = 0.447Kgm? and J, = 0.303Kgm?, the
static moments to 0.1114 Kg m and 0.5369 Kg m, re-
spectively for the first and the second link. The mass
of the second link is equal to 1.8 Kg.

Each joint is actuated by a direct drive dc motor
and is equipped with an encoder and a tachometer.
The encoders resolution is equal to 7/10000 rad.

The robot is digitally controlled by means of a per-
sonal computer using a sampling frequency of 200 Hz
for each signal. Analog feedbacks from the tachome-
ters signals are closed at the joints. Denoting by f(t)
the motor torques, by 8;(t) and 8,(t) the components
of vector ¢(t) (see fig. 1), and with 5(t) the control
input generated by the computer, one has

kan O

b1 (t)]
== 2 [50] +ae. a2
with kg; = 2 Nm sec/rad and k4> = 0.8 Nm sec/rad.
In addition, a proportional loop has been implemented
using the computer to stabilize the robot around a
desired reference signal

n(t) = —Kp1(61(t) — m(t)),
n2(t) = —Kp2(02(¢) — r2(t)),

with Kp; = 20 Nm sec/rad and Kp2 = 2 Nm sec/rad.
An integrator for each channel has been added to smooth
the control r(t).

Since the robot is moving on an horizontal plane,
instead of requiring that the velocities and the acceler-
ations are null, it was required that the velocities and
the control torques be null. This implies a change of
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t=1sec t=2sec t=3sec
HOME 1 2 3=HOME

Figure 2: the test cycle

coordinates and then a straightforward modification of
the algorithm presented.
The algorithm was tested on the following cycle

EARSITIRN

@ =
61 = IS, 62:18, (53:15.
depicted in fig. (2).

The control law (5) has been used with E, = 0.5 Vk,
and by setting L; = 0 in (5a) to simplify calculations.
This approximation has not destroyed the stability of
the algorithm. The mappings Py = P, = P3 and Ly =
L3 have been calculated by using a simple linear model
of the robot in which the coupling terms between the
two links have been neglected:

[J1+J2 0] [91] _ l:fl(t)}

0 S| [02] T (O]

For each equilibrium point six state variables are
to be steered. Denoting with z the state vector and
with z{, 24, 2 the three desired equilibrium points, the
defined cycle implies

6, /4 /4 0
61 0 0 0
_In d /4 a_ | /4 i_ |0
Ele 1T | —aa 02T L 0 0BT o
0 0 0 0
T2 ——71'/4 0 0

Then, as functions Ak (t), the following six polynomials
have been chosen

t 2 3 0 0 0

[’\l(t) ’\S(t)]: 0 0 0 ¢t 2 ¢3




The joint velocities have been estimated by a high
gain differentiation of the encoders signals, which at
steady state leads to a negligible error.

In figs. (3) and (4) positions and velocities of the
two joints during 47-th iteration are reported. Note
that the trajectory followed are quite smooth as a con-
sequence of the polynomial class of functions chosen
for the control input. In fig. (5), the torques applied
during the same cycle are shown. These are zero in
correspondence of the time instants 1,2 and 3 seconds
that, together with the zero values of velocities at the
same instants, imply the equilibrium of the robot at
the three points of the cycle.

Finally in figs. (6,7) and (8) the sum of square of
the positions, velocities and torques errors during the
iterations is reported for the three equilibrium points.

5 Conclusion

A new type of servo system has been introduced
to deal with cyclic control of robot arms. A finite di-
mensional linear algorithm has been developed which
asymptotically forces the robot to execute a cycle de-
fined by a sequence of equilibrium points to be attained
at assigned time instants. As opposed to learning al-
gorithms, no system initialization is needed at the end
of a cycle, and continuous system operation is allowed.
No prior knowledge of robot’s parameters is required
for controller design. Complete rejection of periodic
plant disturbance of period equal to the cycle period
has been proven and illustrated by means of an exam-
ple. Robustness with respect to other type of distur-
bances is the one typical of high gain feedback.
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Figure 6: sum of sqare of position errors at the three

equilibrium points: *=1, x=2, 0=3

Figure 3: link positions during 47-th cycle
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Figure 4: link velocities during 47-th cycle

Figure 7: sum of square velocity errors at the three
equilibrium points: *=1, x=2, 0=3
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Figure 8: sum of square torque errors at the three

Figure 5: motor torques during 47-th cycle equilibrium points: *=1, x=2, 0=3
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