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Abstract

In this work a new technique for the determination
of the optimal re-entry trajectory of a space vehicle
is proposed. In the proposed approach both conven-
tional optimization techniques and modern “artificial
intelligence” techniques are used in order to meet a
satisfactory compromise between optimality of the so-
lution and moderateness of the computational burden.
Such a technique can then be used for on-line guidance
algorithms.

Simulation results showing the performances of the
proposed approach are presented with reference to the
optimal reentry guidance problem of a space vehicle
with aerodynamic capabilities.

1 Introduction

In the recent past, different powerful guidance and
control techniques for moderate lift /drag vehicles have
been investigated in order to perform aeroassisted or-
bit transfer or re-entry manoeuvres.

For both tasks, the problem can be set up in the
following general form: to find the best way to drive
the vehicle from the current position to a the desired
one, minimizing or not exceeding the structural and
thermal loads. Manoeuvre limitations are additional
constraints.

To solve this problem, the first is to find an “opti-
mal” guidance law, i.e. the commanded angle af attack
and bank angle which drive the vehicle along the “op-
timal” trajectory.

Due to the atmosphere perturbations and to the
high aerodynamic non-linearities, both the guidance
and control laws have to provide a high degree of adap-
tiveness, i.e. an on-line computation of the guidance
and control commands is required.

As far as the guidance problem is concerned, the
most common approach used to solve this kind of prob-
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lem 1s the so called Calculus of Variation (COV). The
main difficulties arising in trying to solve the optimal
guidance problem with the COV techniques are essen-
tially:

- flight path constraints are not easy to implement;

- the computational load for the numeric treatment
of the analytic necessary conditions is very heavy.

There are alternative approaches that partially alle-
viate some of these problems. Some of them (like Non
Linear Programming (NLP) and Predictor Corrector)
are based on a crude numerical approach and make
assumptions on the structure of the state and of the
control in order to relieve the computational burden.
Some others (like Asymptotic Expansion and Singular
Perturbation Techniques) are based on a mixed ana-
lytical numerical approach. They take advantage from
the peculiarities of the problems (the presence of two
time scale variables) and allow an analytical or greatly
reduced numeric computation in obtaining the solu-
tions.

In this work, the authors propose a new method for
the solution of the adaptive guidance problem based
both on classical optimization techniques and on arti-
ficial intelligence techniques, the latter utilising the so
called “neural networks”. The proposed approach is
based on the Bellmann’s principle and on “learning”
capabilities of a neural network in approximating non
linear functions. A well compromise between the op-
timality of the solution and the computational burden
is reached.

In §2, the proposed method with reference to a
generic optimal control problem is described; in §3
basic concepts on neural networks are quoted. In §4
the problem of the determination of optimal re-entry
trajectory of a space vehicle is formulated as an opti-
mal control problem. Finally, in §5, simulation results
showing the performances of the proposed approach
are presented.
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2 Mathematical formulation of
the problem and proposed so-
lution technique

Many guidance problems, such as optimal re-entry tra-
jectory determination or optimal orbit transfer, can
be expressed in terms of an optimal control problem,
stated as follows:

minJ (2o, 0, u(")) m(z(ts) ty) + (1a)

+ /t/ L(z(t), u(t),t)dt
s.t.: ’
2(t) = fla(t),u()t)
z(t,) =z, (1b)
glz(t),u(t),t) < 0 VteEtety] (1c)
hz(t),u(t),t) = 0 Vte[to,ty] (1d)

where
x 1s the vector of state variables,
u is the vector of control variables.

By using the Bellmann’s Principle of Optimality,
one can state that both the optimal control segment
u”(-)it,,t;) and the optimal value of the performance
index J depend only on initial conditions (z(¢,),,).
Then we can write:

Vie)= I 0) = St Opey)  (2)

with V(z,t) solution of Hamilton-Jacobi equation for
the problem (1) [11].

If we indicate with ¢(¢,¢,, z(¢,), u(-)) the state tran-
sition function for the system (1 b), the Bellmann’s
principle yields:

V(l‘,t) = minu(~)[¢‘¢+At) {‘](l.)t) u(‘)[t,t+At))+
V(p(t + At 1, 2, u(p.eqan) ¢ + At)

| g(z(7), u(r),7) <0,

h(x(r),u(r),7) = 0,Y7 € [t,t + At)} (3)

Equation (3) points out that it is possible to deter-
mine the optimal control in the time interval [¢, ¢+ At)
once the function V(z,t) 1s known for each value of
z and ¢. Under this hypothesis it is possible to find
the solution of the problem (1) in a closed loop form.
In such a case, in fact, by approximating the control
fpnction u(-) in the time interval [t, ¢+ At) with a func-
tion belonging to a predefined family ua(p, )it 1+41),
completely characterized by a parameter vector p, a
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output

Figure 1: A schematic neural network

sub-optimal control segment u*(-)[,+4+4¢) could be ob-
tained by solving the following parametric optimiza-
tion problem:

{J(:I,‘, t, UA(p, ')[t,t+At))+
V((p(t + Ata ta z, UA(p, ')[t,t-f—At)))t + At)

l g(a:(r),uA(p, T)aT) S 0,
h(z(7),ua(p,7),7) = 0,Y7 € [t,t + At)} (4)

min
P

Unfortunately, the determination of V(z,t) as a so-
lution of the Hamilton-Jacobi equation is almost im-
possible. To overcome this drawback, we propose to
properly train a neural net in such a manner to obtain
a well approximated description of the function V (z,t)
needed to solve problem (4).

3 The neural networks

Multilayer feedforward neural networks (MFNN) are
tipically used to approximate complex non linear func-
tions; to this aim the neural net must be “trained”
by means of an adeguate number of samples of the
functions to be learned [12]. The approximation is ob-
tained by superposition of suitable non linear multi
input-single output functions, organized in a multi-
layer, multielement structure (see fig. 1).

Recently, it has been proved that, under wide hy-
potheses, such nets are “universal approximators” [13].
There are two kinds of problems to deal with in using
neural net:

1) representation problem, consisting in the choice of
the kind of non linear function to be implemented
in elementary units of the net, of the number of




layers and of the number of units per layer. As
far as the elementary non linear functions are con-
cerned, they can be global (sigmoid, hyperbolic
tangent, etc.) or local (i.e. y = exp(—{lz — [|).

training problem, consisting in the choice of the
training algorithm for the calibration of the
weights of the net. The algorithm used in our
work is the classic back propagation algorithm
[14]. This technique implement the so called delta
rule, in which the weights are determined so as to
minimize the error function:

E=Lty—yvy (5)

2

where y is the desired value or function value and

y™VV is the neural net output.

4 Aeroassisted re-entry prob-
lem as an optimal control
problem

From a mathematical point of view, a guidance prob-
lem of a vehicle is completely defined when the model
of the vehicle is specified together with the constraints
on the path and the cost function.

In this work we examine the re-entry problem of an
aerodynamic manoeuvrable space vehicle, which for-
mulation is stated below.

The vehicle model

The equations of motion are described with refer-
ence to the point mass hypothesis in terms of the fol-
lowing state variables (see fig.2):

- distance r to the center of the Earth
- longitude 6

- latitude ¢

- velocity V relative to the airspeed

- flight path angle v

- heading angle .

The point mass motion is then described by the
equations:
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In the model we explicity take into account the aero-
dynamic forces of lift (L) and drag (D), expressed as:

L =

1
'Q'p‘/"ZSCL (78.)

1 ‘
D = 5pVESCD (7b)
where Cr e Cp are nondimensional aerodynamic co-
efficients, assumed known.

The gravitational field is hypothesized to be a new-

tonian field with:
(8)

Finally, for the computation of air density p the
US76 Atmosphere model has been utilized.

=t
g_'f'2




The control variable assumed in our example is the
bank angle o.

The constraints

Two constraints has been considered in solving our
optimal guidance problem: a first one on the structural
limit of the vehicle and expressed as:

VT D?
g

A second one defines the height to which the re-entry
phase finishes and is expressed as:

r(ty) ~ Re = hy

- V. 9)

< Nag,

(10)

The cost function

A typical objective of a re-entry problem is the max-
imization of the cross-range, defined in our work as
the distance of the final position from the initial great
circle, centered in the origin of the inertial axes and
tangent to the initial heading of the vehicle. With
reference to fig.3, in mathematical terms we can write:

CR = r(ty)arcsin(sin LF sin ) (11)
where
& = (-0, (12a)
_ sin(¢(ty) — ¢o) cosd(ty) cos ¢,

¢ = arctan ( sin ¢(ts) —sin g, cos LF )

(12b)
LF = arccos(sin¢(ts)sin¢, +

cos ¢(ty) cos ¢, cos(8(ty) — 6,)) (12¢)

5 Case study

The proposed approach has been applied to the prob-
lem of the computation of optimal re-entry trajectoriy
of a space vehicle as formulated in §4.

The geometric and aerodynamic characteristics of
the vehicle utilized in our study, identified as “non
winged return vehicle”, are described in table 1. Ta-
ble 2 details the initial conditions of the vehicle at the
start of the re-entry manoeuvre.

The first step of the proposed approach consists in
training a neural net about the function V(z,t) defined

by eqn.(2).

Figure 3: Cross-range definition

mass 8000 Kg
reference area 16.296 m?
CL 0.51594 (o = 20°)
Cp 0.4733 (o = 20°)
L/D max 1.09 (e = 20°)

Table 1: Vehicle data

6.453628E+06 m
0.3415080515E+02 deg
26.38522726+00 deg
6.7691442¢-+03 m/s
5.3452177e-01 deg
~2.3085529e+01 deg

R | <o =

Table 2: Initial conditions of the re-entry
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cross-range

time computation

off-line optimization

~ 1524 Km

127 sec.

on-line optimization

~ 1495 Km

5 sec.

Table 3: Comparison between off-line and on-line op-
timization

In order to obtain the samples of this function
needed for training of the net, the optimization prob-
lem defined by eqn.(1) must be solved for various ini-
tial events (z,t). To determine the set of the initial
events, we assumed that, because of variations of en-
vironmental conditions with respect to their nominal
values, the vehicle trajectory will have a small devia-
tion with respect to the nominal one (i.e. the one ob-
tained in the presence of nominal environment condi-
tions). With this assumption, we selected 1000 initial
events (z,t) uniformly distributed in a range of £10%
around the nominal state trajectory. These values are
shown in fig. 4.

For each initial event, the sample value V(z,t) was
obtained by solving the optimization problem defined
in §4. The solution was obtained by using numerical
algorithm described in [15] and assuming u(t) stepwise
constant.

For what concerns the so called “representation”
problem, a rough analisys lefts to the following net
topology:

- 6 nodes in input layer, one of these are a bias unit;
- 11 nodes in a first hidden layer;

- 44 nodes in a second hidden layer;

only one unit (depending on the problem) for the
output layer.

In fig. 5 the normalized output error of the net vs
number of cycles of learning (epochs) is shown.

This neural net has been utilized for the adaptive
computation of the optimal trajectory appliyng the
approach proposed in §2. With reference to the prob-
lem (4), we assumed u(t) constant in the time interval
[t,t + At), with At = 100sec. The optimal trajectory
was the updated every 10sec.

Fig.6 and fig.7 show the time histories of control in-
put and of the state variables obtained assuming the
initial conditions given in table 2, and then solving
the optimization problem first with the algorithm pro-
posed in [15], and then with the proposed technique
using the neural network. It is evident that, against
little worsening of the cross-range there is a remarcable
reduction of time computation (see table 3).
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List of simbols

Crp = lift coefficient

Cp = drag coefficient

CR = crossrange

D = aerodynamic drag

DR = downrange

h = height

J = performance index

L = aerodynamic lift

m = mass

nr = load factor

T = distance from the center of the Earth

Rg = radius of the Earth

S = reference area

14 = relative speed

¥ = flight path angle

6 = longitude

g = gravitational constant of the Earth

P = atmospheric density

o = bank angle

¢ = latitude

Y = heading angle

wg = rotational velocity of the Earth
References

[1]

M. C. Bartholomew-Biggs, L. C. Dixon, S. E.
Hersem, Z. A. Maany, W. Flury, M. He chler,
From High Thrust to Low Thrust; Application
of Advanced Optimization Methods to Mission
Analysis, ESA Journal, Vol.11, 1987.

C. D. Baker, W. E. Causey, H. L. Ingram, Math-
ematical Concepts and Historic al Development
of the MASCOT Guidance Technique for Space
Vehicles, NASA Techni cal Memorandum, NASA
TM X-44408, 1971.

(3] J. C. Harpold, C. A. Jr. Graves, Shuttle Entry

(4]

[5]

Guidance, The Journal of th e Astronautical Sci-
ences, Vol. 27, No. 3, 1979.

D. G. Hull, J. L. Speyer, Optimal Reentry and
Plane Change Trajectories, The Journal of the
Astronautical Sciences, Vol. 30, No. 2, 1982.

J. A. Calise, H. B. Gyoung, A Near Optimal Guid-
ance Algorithm for Aero-Assi sted Orbit Transfer,
AIAA Paper 88-4175-CP

126

[6]

[13]

[14]

(15]

J. L. Speyer, E. Z. Crues, Approximate Opti-
mal Atmospheric Guidance Law for Aeroassisted
Plane-Change Maneuvers, J. of G.C.D., Vol. 13,
No.5,1990.

J. E. Bradt, M. V. Jessick, J. W. Hardtla, Op-
timal Guidance for Future Spac e Application,
ATAA Paper 87-2401.

C. R. Hardgraves, S. W. PAris Direct Trajectory
Optimization Using Non-Line ar Programming
and Collocation, J. of G.C.D., Vol.10,pp 338-342,
1986

D. P. Bertsekas, Dynamic Programming and
Stochastic Control, Academic Press, N. Y. 1976.

S. Jallade, T. Duhamel, C. Champetier, Trajec-
tory Optimization and Guidance Strategies for
Reentry, AIAA Paper N92-24451.

M. Athans, P. L. Falb, Optimal Control, McGraw-
Hill, 1966.

J. C. Mason, P. C. Parks, Selection of Neural
Networks Structure: Some Approximations The-
ory Guidelines, Neural Networks for Control and
Systems, by K. Warwick and others (eds.), P.
Pereguinus, 1992.

E. K. Blum, L. K. Li, Approximation Theory and
Feedforward Networks, Neural Networks, Vol.4,
N. 4, 1991.

J. M. Zurada, Introduction to Artificial Neural
Systems, West Publ. Co., 1992.

A. Marzano, F. Ferrara, A. Capuano, G. Bor-
riello, Trajectory optimization and guidance
strategies for reentry, Atti del Congresso AIDAA
93



	120.pdf
	121.pdf
	122.pdf
	123.pdf
	124.pdf
	125.pdf
	126.pdf

