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ABSTRACT

A new method is proposed which al-
lows the evaluation of the impulsive
behavior of a linear multivariable sys-
tem of arbitrary order. The proposed
method 1s 1n closed matrix form, that
is only constant (real) matrix arith-
metic(i.e. multiplication and addition)
1s involved among the polynomial ma-
trices and therefore the algorithm can
be easily programmed in a digital com-
puter.

1 INTRODUCTION

Let us consider a linear multivariable
system (3°) whose dynamics are de-
scribed by a polynomial matrix model

(PMD) 5~ [Callier and Desoer (1982)]:

y(t) = C(p)B(L) + D(p)u(t)  (2)
where p = % the differential operator

CA() = Y A € R n

1, with rankgAd, < r ,B(p) =

iMooy

B; € RpI"™*™, d > 0,C(p) =
=0

Ci € R, & > 0, Dip)

d 2
Z D; € R[p]F*™, dy > 0 and
=0
Bty - [0~ ) — R" the pseudo state
u(t) : [ — R™ the input vec-
tor and y(t [0 ,o0) — RP the output
vector of (37).

The purpose of the present paper is
to find analytical expressions of the im-
pulsive part of the pseudostate A(¢).
. The impulsive behavior in the pseu-
dostate 3(t) arise naturally in many
control systems of the form (1)-(2) ei-
ther due to the operation of inconsistent
initial conditions or due to the struc-
ture at infinity of the coefficient ma-
trices of the PMD (X). In order to
understand better the impulsive behav-
ior and analyze ways to eliminate it
we have to develop certain methods to
describe these impulsive terms. Our
method evaluates the impulsive terms
of the PMD (1)-(2) computationally di-
rectly in terms of the coefficient matri-
ces of A(p), B(p) using a division algo-
rithm. In the literature, the impulsive
behavior of generalized state space sys-
tems (which represent a special case of
PMDs of the form (1)-(2)) have been ex-
amined extensively in the last few years
[see Verghese (1978), Campell (1982),
Cobb {1984). Ozcaldiran (1985) Lewis
(1986)]. Here we propose a method
which gives the most general solution
to the problem of computation the im-
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pulsive terms of multivariable systems
of arbitrary order as these described by

(1)-(2).

2 MAIN RESULTS
Consider the PMD (X) as in (1)-(2).
The complete solution (evaluation of
the pseudostate (#(¢)) has generally the
form:

ﬁc(t) = ,ﬂ/}hom([) + dn(,) ('3)

where 3.(t) is the complete (whole) so-
lution, whereas Bhom(t) describes the
part of the solution which corresponds
to the homogeneous part of the differen-
tial equation (1) (zero input response):

A(p)3(1) =0 (4)

and 3, (t) corresponds to the non homeo-
geneous part of the differential equation
(1):

Alp)3(t) = B(p)u(t) ()

assuming zero initial conditions of the
pseudostate 3(¢) and of the input wu(t)
(zero state response).

To determine the impulsive terms we
make use of a recently developed al-
gorithm [Fragulis et al. (1991)] which
finds the inverse of an arbitrary poly-
nomial matrix using only multiplication
and addition of constant matrices. The
recursive formulas which are obtained
from that algorithm can be used also for
the evaluation of the Laurent expansion
of the inverse of a polynomial matrix.
Specifically that algorithm computes
H; where j = q.. qvoy ... 1.0, =1, ...

ATHs) = Hpat(s) + H o)

= [H:I\ S‘Tr + qu_ls‘/"—l + ...+ His+ HO]

[+H_s7! +..]

(6)
where ¢, is the zero at infinity of 4(s)
with maximum degree (¢, = 0 if A(s)

has no infinite zeros). Hp.(s). Hopris)
are the polynomial and the strictly
proper part of A71(s) respectively.
First we consider the computation of
Bn(t) which corresponds to the non ho-
mogeneous part of the differential equa-

tion (1). Using the Laplace transforma-
tion in (1) we obtain:

Easily we can see that we have to
find a more convenient expression for
A~Ys)B(s). The previous product can
be considered also as a left division :

B(s) = A(s)Q(s) + R(s)  (8)

where Q(s), R(s) are the quotient and
the remainder respectively of the di-
vision (8). The above division (i.e.
the computation of Q(s), R(s) in (8))
i1s a problem arising in various fields
of control systems' analysis and synthe-
sis. Numerous methods have been de-
veloped which are based on the manip-
ulations of constant matrices only [see
e.g. Zhang (1986)]. From (8) we obtain

ATH$)B(s) = Q(s) + A™Y(s)R(s) (9)

with A=1(s)R(s) strictly proper. Since
our aim is to find the impulsive terms
of the PMD (¥), from (7) and (9) we
need only the quotient Q(s) which is a
polynomial matrix. Hence using equa-
tion (6) we obtain:

A~Ys)B(s) =
HPOI(S)B(S) + Hspr(S)B(S) =

A Ys)B(s) =
Hpol(S)B(S) + Gpol(s) + (;spr(s)
(10)
where Gpoi(s), Gepr(s) are the polyno-
mial and the strictly proper part of the
product H,,,(s)B(s) respectively(take
in mind that B(s) is a polynomial ma-
trix and is multiplied by the strictly
proper matrix H,,,(s)).

Now combining (9).(10) it is clear
that the quotient Q(s) (which is a poly-

nomial matrix) is equal to :

Q(S) = HpoI(S)B(S) + (7‘;)01(5) (11)

Now we shall find a closed matrix for-
mula tor the evaluation of Q(s) in terns
of the coefficient matrices of B(s), A(s)
such that only constant matrix multipli-
cation and addition is involved. From
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the form of B(s) in(1) and equation (6) Q(s) of the division (9) is :

we obtain :
Q(s) = [H_d,H_(d_l),...,H_g,H_l | Ho, Hy, ... Hz |
Hput(8)B(s) = [HO + Hys+ ..+ H sqr] " Bs 0 - 0 0 0
x [Bo + Bis+ ...+ Bgs?] By Ba - 0 0 0
Bg_2 Bg_i :
which after some matrix manipulations . By 0 0
takes the following form: B By -~+ By_1 By 0
: _ . By By - Bs1 By
Hyo(5)B(s) = [Ho, Hy,y oo Ha | % A B
By B, --- By 0 . : .
0 By -+ Bg- By
0 0 s . : . 0 0 L. Bd N
L —4r
: S 0 0 - 0 7
o 0 --- Bd_qAT Bd_qAr+1 By 0 0o -~ 0
RS . .
sl,
: 0 0 0
se1, - - —=
X __ 0 0 --- 0
sd+L ] By o - 0
L 5a+d1r i
(12) Bd_;r"'l ) ‘». Bd -
X
In the same manner we obtain that S -
the form of Gpo(s) = polynomial part g;
of [Hpr(s)B(s)] i
d.I
_ [H_ls‘1 +H-25“2+.‘,H_ds_d] 50
Gpoi(s) = pol. part{ X [BO+B15+...+Bdsd] T
ser.
which after some matrix manipulations - -Ld
can be written as: RESAN B

Goot(s) = [H_g H(a_yy, .. Ho, H_ -
pot(s) = [H-4 (a-1) 2, H_1] x = Qo+ Qust -+ Qs st (14)

By 0 . 0 0 0
Bi-r  Ba - 0 00 where Q;i=0,1,...,¢,+d are the
Bg—s Bg_i matrices which are obtained after the
. multiplication of the involved coefficient
: : - B 0 0 matrices.

By By -+ Basr Bg 0 To evaluate the impulsive solutions
I 3n(t) due to the non homogeneous part
y sl of the PMD (57) (see(5)) we take the
: inverse Laplace transformation of (14)

sd‘Ir and we obtain:

(13) BAa(t) = LZ? [pol. part. of{A“l(s)B(s)u(s)}]
Combining (12)-(13) the quotient = L7 [Q(s)) =
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= s Lt S

| Qouls)+ QLSU(S)—F
-l Q;r+(isqr+du(s)
= Qou(t) +Quu (1) + -+
_}_Q;_qufqﬁd)(t)

3.ty =1L

(15)
where u(®)(t) i = 0,1,...,¢,+d denotes
the i-th derivative of u(t) in the distri-
butional sense [Kailath (1980}, Campell
(1982), Cobb (1984)]. Let us now de-
note ulil(t) the i — th (ordinary) deriva-
tive of u(t) . The two types of deriva-
tives are related by the formula (see
Campell (1982) p.52):

u (1) = uld(t) + 8(t)uli=1(0)+
T () i=1,2, ..
(16)
where 6(00(t) i = 0,1,..., denotes the
unit impulse and its derivatives. From
(15) and (16) we obtain :

In the sequel we shall consider the im-

= pulsive terms which are obtained from

the homogeneous part of the PMD (X)
(see equation (4)) . Taking the Laplace
transformed equation (4) we obtain :

3(s) = A7 Y(s)a(s) € ™! (20)

where a(s) € R7*1[s] is the initial con-
dition vector associated with the initial
values of (1) and its (n — 1)-derivatives
at t = 07 fe. A07). 307). L,
3r=1(07) given by [Callier and Desoer

(1982)] -

a(s) = [s"" VI 5" 2 s L) x F

Ba(t) = Qou(t) + @1 [ull(2) + 6(1)u(07)] + (21)
Lt
0- [ l,[3r+d](f)+5(1)U[Zr+d—l](o—)+
o+d (e rd—1) (Yo ((1—
0 = [ Qo0+ @ur P e |
Pull) = ot Qa+d'u[‘1f+d](t) : : : ( 1
Quu(07) + Qaull(07)+ A Az e LA 0T
+QZ]\ +du[;\r+d“1](0_) 6(t)+ (22)

et [Q;ﬁdu(o-)] 5(E;+d—1)(t)

which
after some rearrangements among the
matrices we obtain:

Bult) = B+ BT (1T)
where 3/(t) :

rt+d

gl =" Qullw)  (18)
i=0

denotes the part of G,(t) that is
impulse-free and 3177 (t)
) i -
R 800 [0 Q= (07)
(19)
denotes the impulsive part of 3, (f).

Applying the same method as before
(evaluation of the quotient Q;(s) of the
division between the A~1(s) and a(s))
after some matrix manipulations we fi-
nally arrive at the following special form
for 3(s) which appeared originally in
[Fragulis (1993)] :

ﬂhom(t) =1L A(t)F (23)

where :
L= [HE,—l’ . Hy Ho
oo |Hev H-2, ..., H ]e’R"X["(‘IT‘*”‘l)]

~{n—-1)

(24)
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stV s(t) =B,
S(t)n-DI. sy I, ..

s() VI ()1, ...
| DI 0...

0 sy(@ 91, ]
sy, sy,

Sty I,

§(t)1, 0
0 0
0 0

Thus we have found :

Prom(t) = L A(t)F = R
Bod(t) + o (t) + ..+ B _ 8 7D(1)
(26)
where 8 i = 0,1,...,4,—1 are r x 1
vectors obtained after some manipula-
tions in the terms of (26) . From equa-
tion (26) and the definition of F in (22)
it follows that if the initial conditions
B(07) .., 37V (0~) are appropriate
then $(t) has an “impulsive behavior”
at t = 0~ which consists of a Dirac im-
pulse &(¢) and its (¢- — 1) distributional
derivatives . In other words when the
initial conditions are imposed on 3(t)
and its (¢,_1) derivatives at ¢ = 07 ,
A(t) may exhibit an impulsive behav-
jor at t = 0~ which is a consequence of
the fact that (4) forces 3(t) and BONE)
,i=1,2, ..., ¢, -1 to satisfy certain con-
straints at ¢t = 0~ . The exact deriva-
tion of these constraints and their rela-
tion to the structure at s = oo of A(s)
are examined in [Vardulakis and Frag-
ulis (1989)] explicitly.
Now taking in mind that the impul-
sive part of the complete solution (pseu-
dostate) B(t) of (1) has the form:

/3imp(t) == /3hom(t,) + ﬁ;mp(t)

and from the forms of Fnom(t) in (26)
and 3P (t) in (19) we finally obtain:

B = i e+
A a0 [T Qi (07
(27)
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