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When a system is stabilized by a feedback,
it is of interest whether the stability is de-
stroyed when small delays are introduced into
the feedback loop. There are many examples
in the partial differential equation literature of
systems which are stabilized by feedback but
destabilized by arbitrarily small delays - see
Datko [3] for several such examples. There
are also examples of systems with delays in the
feedback loop for which there are no unstable
modes as long as the delay is small enough (see
Datko/Lagnese/Polis [2]). A mode is a solution
of the form e*!¢, where ¢ is a function of the
space variable. The mode is called unstable if
Re sg > 0, and stable otherwise. We say that
a system is modally stable if it has no unsta-
ble modes, and we say that the modal stability
of a feedback system is robust with respect to
delays if the system is modally stable for all
small enough delays in the feedback loop. In
this paper we show that for a class of diffu-
sion equations in R"™ with boundary control, if
a feedback modally stabilizes the system, then
the modal stability is robust with respect to
delays.

There are two types of results in the liter-
ature on robustness with respect to delays for
distributed parameter systems. There are re-
sults about robustness of modal stability for
specific partial differential equations with spe-
cific feedbacks - see [2], [3] for some of the ear-
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liest results of this type. More general systems
can be studied with a frequency domain ap-
proach, where robustness of input-output sta-
bility is studied - see Barman/Callier/Desoer
[1], Logemann/Rebarber/Weiss [8], Loge-
mann/Rebarber [9], and Georgiou/Smith [4]
for such results. The results in these papers
are external in the sense that they are about
boundedness (or analyticity) of transfer func-
tions in the right half plane. In [9] these ex-
ternal results are used to obtain results about
robustness of modal stability for a class of par-
tial differential equations.

Most of the examples in both types of lit-
erature are for systems with one space vari-
able in the partial differential equation. While
systems-theoretic results for distributed pa-
rameter systems are rarely explicitly restricted
to one space variable, most of the systems
which have been shown to fit into an appro-
priate systems-theoretic framework are for one
space variable. One of the purposes of this pa-
per is to use systems-theoretic methods to ob-
tain results about systems with space variable
in R".

Let  be a bounded open domain in R™ with
boundary I', assumed to be C* (or a parel-
lelpiped). Let m,p € Z%, (-,-) denote the real
inner product in L?(Q), v denote differentia-
tion with respect to time ¢ > 0, and 0 denote
differentiation with respect to the spatial vari-
able z € R™. Unless otherwise stated, assume
that z denotes a variable in 2, { denotes a vari-
able in T', 7 ranges over the integer set 1,...p,
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and k ranges over the integer set 1,...m. Let

A(z,0) = Z a.{z)0%,

|| <2p

with a, € C*®(Q), and assume that A(z,d)
is strongly elliptic. Let p; < 2p be positive
integers, and define the boundary operators

B;(¢,0)= Y bi(C)0",

Inl<p;

with bZ, € C®(T'). We will assume that the
elliptic system

A(z,0)w(z,t) =0,
ij(f,t) =90

is of Agmon type. The technical conditions for a
system to be of Agmon type are given in Gold-
stein [5], page 137. We note here that if A
is the Laplacian and the boundary operators
define Dirichlet, Neumann, or mixed Dirichlet-
Neumann conditions, then the system is of Ag-
mon type. We now state the properties of this
system which are important in this paper.

Define the operator A : D(A) — L%*Q)
by Aw(-) A(-,0)w(-), where D(A) is the
H?*(Q) completion of {u € C?**(Q) | Bju(¢) =
Ofor{ € T, 5 = 1,...p}. Then —A gener-
ates an analytic semigroup on L%(Q) (see [5],
p. 138). In particular, there exists 8 € (0,7/2],
M > 1 and a € R such that

M

s —al’

(T + A)7H < (1)

larg (s —a)| < 0+ /2, s#0.

If fis defined on I, define B;f = R if R is
the (distributional) solution to

—A(z,0)R(z) =0,

B;i((,0)R(() =0, j#l1,
Bi(¢,9)R(¢) = f,

where the boundary values are to be un-
derstood in the sense of trace. Then
(Lion/Magenes [7], p. 188-189)

B; € c(H**P-(/2(T), H*(Q)), s € R. (2)
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Consider now the following class of open loop
systems:

w(z,t) = —A(z, d)w(z, 1), (3)

B O = YO, @)

() = (), w(-,1)). (5)

We first wish to identify conditions on gj and
ni which guarantee that the transfer function
for (3) - (5) is regular, as defined in Weiss [11].
A transfer function H(s) is regular if H(s) is
bounded in {Re s > a} for some a € R, and
has a strong limit D (called the feedthrough) as
s — oo along the real axis.

Theorem 1 If

gl € H»~U(T), o e L¥(Q), (6)
then the transfer function H(s) for the system
(3) - (5) is regular with feedthrough D = 0.

Furthermore,

lim sup
|sh~axs€Cb\FH

IH(s)l| = 0, (7)

where Py is the pole set of H.

Proof: Assume that there exists p € R such
that .
e "ul € L*0,00).

(8)
Upon formal Laplace transformation with re-
spect to ¢t (which will be justified once we show
that w(z,s) is inverse transformable for s in
some right half plane),

sw(z,s) = —A(z,0)i(z, s), (9)

B;(¢,0)i((,s) = g:gz'(oa{(s), (10)

G(s) = (nl(), (-, 5)). (11)
Let
v(z,5) = (z,5) = Y B (Y g2 (Q)il(s)).
7=1 =1



Then, using the definition of B; we see that
w(z, s) satisfies (9) - (10) if and only if v satis-
fies

(s + A(z,0))v(z,s) =

- siBj(igf(C)ﬁf(s)). (12)
=1 =1

Bjv((,s) = 0. (13)

In particular, equation (13) implies that
v(s) := v(-,5) € D(—A), so for s € p(—A)

v(s) = —s(sI + A)71 Y B; (3 glai(s)).
J=1 =1
Therefore (s) := (-, s) satisfies
w(s) = (I -s(s+ A1) B;(Y glil(s))
7=1 =1

= A(s+ )10 B,(Y glad(s)).

1=1 =1

We see from (2, (6), (8) that w(z,s) € Li(Q)
is inverse transformable for s € {Re s > p}.
Hence forl = 1,...p,

Gk(s) = (nf, w(s)) =

(s A(s+ A)7'B;g)ad.  (14)

14
=1:=1

7

Denote (7, w) by n*w and define
B'g = [Bigi, Bigs, ..., Bigh),

Bg = [B'g,B%,...B"g],

ut = [u’i,ug,...,uin],

u=[ul,u? .. w?T,
R U Ay
= It T
U7 AN
y=["9%.. .70
Then (14) becomes

b

y=n"A(sI + A)"'Bg .

Therefore, the transfer function for (3) - (5) is
H(s) = n"A(sI + A)~'By. (15)

To analyze H(s), note that it is a matrix with
entries of the form

a(s) = (nk, A(sI + A)"'B;g?)

Since gf € HPi=(/2(T) by (2) we see that
ngf € L*(Q), so a(s) is defined for any s €
p(—A). Furthermore, using (1), for |arg (s -
a)| <O+7/2,s#0,

I(T = s(sT + A)™")B;g]]| <

1Big?ll2(@)(1 + |s/(s = a)| M), .
Hence a(s) is bounded in {|arg (s - b)| < 6 +
m/2}, for every b > a. Since

i I—s(sI =
s—»o]iglel-‘ﬁ( s(sI+A)" ) =0
as a uniform limit (see Pazy [10], p. 9), we see

that a(s) is regular with feedthrough 0.
Let

W(9) = {re? | r € (0,00),6 € (-, v)}.

The following property of regular transfer func-
tions, which follows from [11], section 5, will be
useful here: If H(s) is regular with feedthrough
D, then for any ¢ € (0,7/2),

lim H(s) = D. 16
[sl—o0,5e W(y) ( ) ( )
Let ¢ € [0,6),b > a and Hy(s) = H(e'*(s—b)).
Then Hy(s) is holomorphic and bounded in
{Re (s~b) > 0}, with feedthrough 0. Applying
(16) to Hy(s) we can see that
lim  H(is) = 0.
3—o00,s€R+
Similarly, applying (16) to H_,(s) =
H(e (s — b)) we get
lim H(-is) = 0.
s—o0,s€R+

This verifies (7), finishing the proof of Theorem
1. a
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Let e{ € [0, 00),

& =[el,ed,...,eh],
£=[el,e?,...€,
and
E(s) := diag €.
Let

Gs=H(s)(I + E«s)H(s))™",  (17)

the closed loop transfer function for (3) - (5)
under the feedback ul(t) = —y}(t — ).

The delayed closed-loop system without con-
trol or observation is given by (3) and

B;((, 0)w((,t) =

- igf(C)(nf(-),w(-,t —e) =0

=1

(18)

Proposition 2 If s € p(—A), then e**¢ is a
mode of (3), (18) if and only if

det[I + E#(s)H(s)] = 0. (19)
Proof: Suppose s € p(—A). Let
v(s) = &(s) + Ei ng;i(ng,qS)e_“’. (20)
7=11=1

Then e**¢ is a solution of (3), (18) if and only
if
(s + A(- 9))v(s) =
P m o
+52 2 Bigi(m, dle™,
Jj=1:i=1
B;v(¢) = 0.
Note that v € D(—A). Therefore

(21)

(22)

P m o
0= s(sT 4 4)7 Y3 Bl g

j=1:=1

and

~A(sI+ Ay ingf(n{,d))e'e"

Jj=11=1

¢

—A(sI + A)"'BgE«s)n* 9.

Hence, we see that e**¢ is a mode of (3), (18)
if and only if

I+ A(s+ A)'BgEs)n*}¢ = 0.  (23)

Suppose now that (19) holds. Then there
exists v € R™*P such that

[ + Ex(s)H(s)]v = 0. (24)

Let
¢ = A(s + A)"'Bgv.

Then
(I + A(s 4 A)"'BgEAs)n*|¢ =

A(sI + AY'Bg[lI + E#(s)H(s)lv = 0,

so (23) holds and e*¢ is a mode of (3), (18).

Conversely, assume s € p(—A) and e*¢ is a
mode of (3), (18). Then (23) holds, so (taking
n* of both sides),

7"+ n"A(s + A)~'BgEn"¢ = 0,
which implies that
[I + H(s)Ez(s)]n"¢ =

[I + Ec(s)H(s)]n"¢ = 0. (25)

If n°¢ = 0, then e**¢ is a mode of (3) and
(4) with v = 0. This would imply that s €
a(—A), which is a contradiction. Hence (19)
holds, finishing the proof. a

Proposition 3 Fiz £. Suppose Re s > 0, "¢
is a mode of (3), (18), and there are no unsta-
ble modes of (3), (18) with € = 0. Then there
exists v # 0 such that (24) holds.

Proof: If s € p(—A), then this follows
from Proposition (2). Therefore assume that
s € o(—A), which consists only of eigenvalues,
since A has compact resolvent. If s = 0, then
it is easy to see that if e**¢ is a solution of (3),
(18) for some choice of £, then it is a solution
for every choice of €. In particular, this would
be true for £ = 0, contradicting the hypothe-
ses. Therefore assume that s # 0. Let v be asin
(20), so e*t¢ is a solution of (3), (18) if and only
if (21), (22) holds. Let ® be the eigenspace of
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—A associated with s. Then this implies that
a:= 372 YT, Bigl(n],¢)e~* is in &L, the
orthogonal complement of ® in L?(Q). Hence
we can define a partial inverse of (sI+ A) on a,
which we denote by (sI+ A)~a. Furthermore,
since we can define (sI + A)~'a, we can use
an analogous argument to define H(s) by (15).
By the same argument as in Proposition 2 we
see that (25) holds. If n*¢ = 0, then e*¢ is
a solution of (3), (18) for every choice of &, in
particular for £ = 0. This contradicts the hy-
pothesis that (3), (18) has no solutions of the
form e*'¢ with Re s > 0 when & = 0. Hence
(24) holds with v = n"¢ # 0. _ a

We now assume that the g] and 7] are such
that the closed loop, undelayed system (3), (18)
with € = 0, is modally stable. For instance,
in Lasiecka/Triggiani [6], theorem 1.2, the case
where A is the the Laplacian and the boundary
conditions are Dirichlet is considered, and con-
ditions are given on these functions which guar-
antee that the feedback u;(¢) = ~y;(t) expo-
nentially stabilizes (hence modally stabilizes)
the system. The following theorem shows that
the modal stability of (3), (18) is robust with
respect to delays for the class of parabolic equa-
tions considered in this paper.

Theorem 4 Suppose (3), (18) is modally sta-
ble withe; =0, i=1,...,m. Then there ezists
€” such that (3), (18) is modally stable when
el €[0,¢%).

Proof: In theorem 3.11 in [9] it is shown
that when the open loop transfer function H
is regular, condition (7) is sufficient to guaran-
tee that there exists €* > 0 such that if Gy is
holomorphic in {Re s > 0}, then Gy is holo-
morphic in {Re s > 0} if 0 < &; < ¢*. This is
called robustness of spectral stability. However,
the lack of right half plane poles of G does not
immediately imply the lack of unstable modes
of (3), (18), since there may be some pole zero
cancellation.

Suppose that 0 < ¢; < ¢*, e*¢ is a solution
of (3), (18) with this choice of (¢/), and Re s >
0. By Proposition 3, there exists v # 0 such
that (24) holds. Then

H(s)v # 0. (26)

By (17), for every z € p(—A)

H(z)v = GA2)(I + H(2)Es(2))v.
Since G is holomorphic at s,
H(s)o = GH(s)(I + E{s)H(s)),

contradicting (24) and (26) and finishing the
proof of Theorem 4. a
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