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Abstract

In this paper, a constrained discrete-time nonlinear
state space model is proposed for modeling the dy-
namics of general manufacturing system. The model
is an extension/modification of the one proposed by
Rovithakis and Christodoulou [RC94]. The proposed
system possesses certain advantages over the existing
ones, such as generallity and ability to solve optimal
policy tasks using optimal control methods as well
as ability to model both deterministic and stochastic
processing times; moreover its stability and robust-
ness properties can be easily identified. The optimal
control of such a system is shown to be equivalent
to the solution of a system of static nonlinear equa-
tions. Despite the fact that no close form solution is
obtained, it is believed that the resulted control pol-
icy obtained from the solution of the aforementioned
system of equations is locally optimal. Simulations
performed on a very simple manufacturing process

are also presented.

I Introduction

In this paper! we are dealing with the problem
of modeling and control of manufacturing pro-
cesses. The manufacturing processes that we are
dealing with are composed of production ma-
chines and stroing units (buffers); several types
of objects are processed by the nachines and are
stored - temporarily - to the buffers. Once the
processing of an object has been finished, the ob-
Ject is transfered to the buffer and the machine
recieves the next object. Despite the fact that
there exist many methods for dealing with such
manufacturing systems (e.g. Discrete Event Sys-
tems, Petri Nets, Queueing Systems, etc), the
fact is that there exists no general and effective
method for dealing with such systems. One of
the most important problems is that there exists
no general mathematical model for modeling the

dynamics taking place in arbitrary manufactur-
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ing systems; for instance discrete event systems
fail when the system processing times are mod-
eled as random variables, etc. A second system
that arises is the system stability and robust-
ness: the optimal control policies computed may
fail when the system dynamics are modified a
little bit, or when the system configuration is
slightly modified. On the other hand, state space
models (used mainly to describe continuous state
dynamics) are known to overcome the two afore-
mentioned problems since they can model both
deterministic and stochastic processes and more-
over their stability and robustness can be iden-

tified usign e.g. Lyapunov stability methods.

In this paper, a constrained discrete-time non-
linear state space model is proposed for modeling
the dynamics of general manufacturing system.
The model is an extension/modification of the
one proposed by Rovithakis and Christodoulou
[RC94]. The proposed system possesses certain
advantages over the existing ones, such as gener-
allity and ability to solve optimal policy tasks us-
ing optimal control methods as well as ability to
model both deterministic and stochastic process-
ing times; moreover its stability and robustness
properties can be easily identified. The optimal
control of such a system is shown to be equiva-
lent to the solution of a system of static nonlinear
equations. Despite the fact that no close form so-
lution is obtained, it is believed that the resulted

control policy obtained from the solution of the

aforementioned system of equations is locally op-
timal. Simulations performed on a very simple

manufacturing process are also presented.

II The Mathematical Model

Let us consider a manufacturing system com-
posed of N machines and M buffers; there are
K different types of objects that are processed
by the machines and stored - temporarily - to
the buffers. Every machine is connected to one
input buffer and to one or more output buffers.
The input buffer feeds feeds the objects to to
the machine, and the machine feeds the - pro-
cessed - objects to the output buffers. It is no
loss of generallity to assume that a machine is not
capable of processing more than one objects in
parallel. Also, since a machine(say the i-th one)
is capable of processing more than one different
types of objects, we decompose such a machine
into K; distinct sub-machines each of whom is
responsible of processing one and only one type
of objects; here K; < K denotes the total num-
ber of different objects that can be processed
by the i-th machine. Of course, if one of these
sub=machines is processing an object the rest
K; — 1 must be idle. Thus, we have transformed
the manufacturing system into an equivalent one
with Q = YN, K; machines. In this equiva-
lent system each submachine has one and only
one output buffer, although there maybe buffers

that are output buffers for more than one sub-
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machines. Let us consider the i-th actual ma-
chine and suppose that O; denote the subset of
{1,2,..., K} satisfying the following condition:
the integer j belongs to O, if and only if the i-th
machine is permitted to process the j-th type of
object. Obviously the cardinality of O; is equal
to K.

Consider now the :-th actual machine and its
input buffer and let I; be a subset of {1,2,...,N}
such that the integer j belongs to I; if and only if
the input buffer to the i-th actual machine is an
output buffer for the j-th actual machine. It is
not difficult for someone to see that the subsets
O; and I; describe completely the topology of the
manufacturing process. Let now u;;(t) be equal
to 1 if the object of j-th type is processed by the
i-th actual machine at the ¢-th time-instant and
be zero, otherwise. Let also x;;(¢) be equal to
1 if, at the ¢-th time-instant, the i-th machine
outputs an object of the j-th type and be zero,
otherwise. It is not difficult to see that the fol-

lowing conditions must be satisfied

Z Xij(t) € {0, 1} Vit

JEO;

(1)

Z u,']'(t) € {0, 1} vt

JEO;

(2)

Let now y;;(t) denote the total number of ob-
Jects of the j-th type that are stored in the in-
put buffer of the i-th actual machine. Then, we

can easily see that y;;(t) satisfies the following

difference equation

yii(t+1) = 3i; (1) + D xk; () — wij(t)  (3)

kel;

Note that a machine requires a time-interval
in order to process an object. Following the
methodology of Rovithakis and Christodoulou
[RC94] we model the process taking place in a
machine by the following linear difference equa-

tion

zi;(t+1) = (1 - aij)zij(t) + aijui(t)  (4)

where a;; is a positive scalar. Since u;; belongs to
{0, 1}, it can be easily verified that z;; converges
to {0,1}. Following the methodology of [RC94]
the state z;; models the state of the j-th sub-
machinbe of the i-th actual machine; when z;; is
equal (or very close) to zero then the submachine
is idle, while when it is equal (or very close) to
one, the submachine has completed the process-
ing of an object. Note that since (4) is a linear
difference equation z;; requires infinite time in
order to converge to {0,1}. However, if we de-
fine the function H(-) to be such that H(z) =0
iff < 1-—¢and H(z) = 1 otherwise, we can eas-
ily see that H(xz;;) converges to {0,1} in finite
time. The scalar a;; controls the time required
for a submachine to process an object, which is
assumed to be constant; however, if the process-
ing time is modeled as a stochastic process then
a;; may represent the statistical average of the

actual @;;. Letting now x,; = H(z;;) we may
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rewrite (3) as follows:
yii (¢ +1) = 95 (D) + D H(zki(1) — uij(H) (3)
kel;
If 2 denotes the vector whose entries are the
states z;; and y;; and u denotes the vector whose
entries are the u;; then the difference equations
(3) and (4) can be rewritten into the following

compact form

At +1) = Az(t) + FH(2(t)) + Bu(t)  (5)

where A, F, B are matrices of appropriate dimen-
sions; the entries of the matrix A are 0, 1, or
1+ a;j, the entries of F' are 0 or 1, and the en-
tries of the matrix B are 0, 1 or a;;; the i-th
entry of the (@ + M )-dimensional vector H(z) is
equal to H(z;).

Although system (5) describes completely the
evolution of the state vector z of the manufactur-
ing process, there are physical constraints that
are not involved in the state space equations (5).
A first family of constraints have to do with the
fact that u; must be either zero or one and the
fact that at most one of the sub-machines that
correspond to an actual machine must be in op-

eration. These constraints can be written as

u;; € {0,1} (6)

together with the constraints (1) and (2). A sec-
ond family of constraints arises by the fact that
in most practical cases, the buffers have limited

capacity; if C; denotes the maximum capacity of

the input buffer of the i-th actual machine, then

we have that

0< Y i <Ci
JEL

(7)

A third family of constraints arises due to the
fact that the control input cannot be equal to
one if there is no object of the j-th type in the
input buffer. Such a constraint can be described

as follows
(8)

At last, we have to introduce a constraint that

ui;(t) < yi5(t)

restricts the control u;;(t) to be zero whenever
the ¢-th machine is processing an object. Such a
constraint is described by

ui; (1) < T (1= G(zi5(1))

J€O0;

(9)

where G(z) = 1 if z is greater than a small pos-
itive €*, and G(z) = 0 otherwise.
We close this section, by mentioning that the

constraints (1), (2) and (6) can be rewritten as

follows
> xi(Y xi()-1) =0 (10)
JEO; J€0;
3w ()] wi(ty—1)=0  (11)
J€0; JEO;
u()(1 - uiz(t)) =0 (12)
II Control of the Manufactur-

ing Process

Once the manufacturing system has been de-

signed, it is of primary interest to construct a
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control policy that optimizes the manufacturing
system’s performance. Usually the purpose of
the control policy is to produce a certain number
of objects in the minimum time. Let v; denote
the total number of objects of the j-th type we
wish the system to produce. Also, let W; denote
a subset of {1,..., N} which satisfies i € W; if
the i-th machine is an output machine for the j-
th type of object, i.e. after an object of the j-th
type is processed by the i-th machine its produc-
tion is supposed to be complete and the object
leaves the system.

Using the above definition it can be easily seen

that a control policy is optimal if it minimizes the

|

where T denotes the final time, i.e., the time-

following criterion

> (Z yi; (T) — vi)®
i3 \jews

1e{l,...,K

T

+>1
t=1

J =

instant at which the purpose has been achieved.
By taking into account the dynamics (5) and
the constraints described in the previous section,
we see that the optimization problem is a con-
straint optimal control problem. Thus, optimal
control strategies such a dynamic control, or op-
timal control using the Pontryagin’s maximum
principle may be used in order to construct the
optimal control policy. Since, the dynamic pro-
gramming suffers from the curse of dimensional-
ity drawback, we prefer to use the Pontryagin’s
maximum principle (PMP). Before we proceed to

the application of such a principle, we transform
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the constraint optimization problem into an un-
constraint one. This can be done by modifying
J as follows

T
+>1

t=1

JI

2

ef{l,...K
T

( > yi(T) - vi)z)
} \Uew.
> xS xi(t) - 1)

j€0i JEO;

+
)

e

]
Y wi(t)(Y wis(t) - 1)

€0 J€0;

T [ui;(8)(1 — wij(2))]

]

- yij(t)}
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where R(-) is a positive smooth function satis-

2

i€{1,...K}

T
+ F(z(t), u(t))

( Z vi;(T) - 'U,
JEW,;

fying R(z) = 0 iff z < 0 and R(z) is a rapidly
increasing function for z > 0, and I'(-) is a posi-
tive smooth function that satisfies I'(0) = 0 and
I'(z) rapidly grows to +0c whenever z goes far
from zero.

We are now ready to apply PMP. According
to PMP, we define the Hamiltonian

H(t) = t + F(2(t), u(t) + AT (t + 1) f(2(1), u(t))




where A is a vector denoting the cestate of the
system and f(-) states for the RHS of (5). Then
the optimal solution is obtained from the solu-

tion of the following system of equations
oH
—(t) =20
5u ()

SOt

0¢
= 5D

(13)
N(T)

where o(T) =
Zie{l,...,[\"} (Ejew.' yi;(T) - ”i)z)-

mainly two problems when one tries to solve

There are

(13). The first of them is that the function H(-)
is not differentiable everywhere, and thus discon-
tinuities will appear in the RHS of the first part
of (13). However, such a problem can be easily
overcame by replacing H(-) by a smooth func-
tion A(-) which approximates H(-). In a similar
manner we may replace the discontinuous func-
tion G(-) by a smooth one. The second problem
is that z;; is a fictitius state and it does not cor-
respond to a physical state; there z;;(t) is not
observable to the system coordinator. Such a
problem can be overcame by selecting appropri-
ately z;;(0) and by estimating z;;(t) from the
difference equation (4).

Despite the simplicity of the manufacturing
system dynamics, it is very difficult to obtain the
exact solution of the above optimization prob-
lem. In fact, if one tires to solve (13), he will ob-

serve that at each time step, a system of static

nonlincar equations has to be solved; thus nu-
merical methods have to be applied in order to

solve such a system of equations.

IV Simulations

In order to test the applicability of our model,
we performed simulations of a very simple man-
ufacturing system. Such a manufacturing system
consists of two machines connected in series, and
three buffers, the first of whom is an input buffer
to first machine, the second is an output buffer
of the first machine and an input buffer for the
second one, and the third is an output buffer for
the second machine. The first and third buffers
are assumed to have infinite capacity and the
capacity of the second buffer was set equal to
2. There are three objects that are processed by
the system. The times needed for the machines
to process the objects were as follows: the first
machine requires 5, 3 and 5 time units in order
to process objects of type 1, 2, and 3 respec-
tively, while the second machine requires 4, 5
and 7 time units in order to process objects of
type 1, 2, and 3 respectively. The purpose of the
system is to produce 10 parts of each type of ob-
Ject in minimum time. We have simulated the
algorithm proposed in the previous section. The
resulted policy is shown in figure 1; the first row
corresponds to 1st machine, while the second row

corresponds to the second one. The filled rectan-

gles correspond to the objects that are processed




by the machines and their length is proportional

to the processing time required. Note that, al-
though the proposed policy is not optimal, it is
quite satisfactory and no constraint is violated.

We believe that such a policy is locally optimal.

V Conclusions

In this paper, we have proposed a constrained
nonlinear state space model for modeling the
dynamics of a manufacturing system. The ap-
proach makes use of the idea proposed in [RC94],
to model the machines as stable LTI filters. We
have shown that the problem of optimal con-
trol of the manufacturing system is equivalent to
an optimal control problem of a nonlinear state
space system. The Pontryagin’s maximum prin-
ciple is then used in order to construct the opti-
mal policy; unfortunately no closed form solution

has been derived.
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