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Abstract

Some unknown linear stochastic distributed param-
eter systems are considered that can be described
by analytic semigroups. A stochastic adaptive con-
trol problem is formulated and solved for these sys-
tems where the performance measure is an ergodic
quadratic cost functional and the control occurs on
the boundary. The “highest order” operator is as-
sumed to be known but the “lower order” operators
contain unknown parameters as well as the linear op-
erators of the state and the control on the bound-
ary. The noise in the system is a standard cylindrical
white Gaussian noise. A diminishing excitation is
used for the identification of the unknown parame-
ters to ensure sufficient excitation but it has no effect
on the ergodic cost. A family of least squares esti-
mates is shown to be strongly consistent. The adap-
tive control using the certainty equivalence control
with random switchings to the zero control is shown
to be self-optimizing.

1 Introduction

An important class of models for linear distributed
parameter systems is the family that is described by
analytic semigroups. To model some perturbations
or inaccuracies in these models, it is often r=asonable
to consider stochastic, linear distributed systems. In
many applications of controlled linear distributed pa-
rameter systems it is natural to consider that the
control occurs on the boundary or at discrete points
because it is often unreasonable to expect that the
control can be applied throughout the domain.
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If there is an ergodic, quadratic cost functional,
then under suitable assumptions the optimal control
can be obtained from the solution of an algebraic or
stationary Riccati equation. Typically the stochas-
tic differential equation model for the stochastic, lin-
ear distributed parameter system contains some un-
known parameters so there is the problem of stochas-
tic adaptive control. It is assumed that the “highest
order” operator is known but that “lower order” op-
erators contain unknown parameters. The unknown
operators include linear operators on the state on the
boundary and on the control on the boundary or at
discrete points in the domain.

For the identification of the unknown parameters
that occur in the linear operator acting on the control,
it is necessary to ensure that there is sufficient exci-
tation. This is accomplished by a diminishing excita-
tion for strong consistency. This strong consistency
is obtained for a family of least squares estimates.
It is assumed that the analytic semigroup is stable.
The control at time t is required to be measurable
with respect to the past (of the state process) until
time ¢t — A where A > 0 is arbitrary but fixed. This
assumption accounts for some natural delay in pro-
cessing the information for the construction of the
control. No boundedness assumptions are made on
the range of the unknown parameters.

The adaptive control is the certainty equivalence
control for the ergodic, quadratic cost functional with
switchings to the zero control. These random switch-
ings are determined to ensure stability of the esti-
mated infinitesimal generator and to satisfy a suitable
boundedness for the control. This adaptive control is
shown to be self-optimizing.

The proofs of the results given here are contained
in [6]. Some other results for adaptive control of
stochastic linear distributed parameter systems are
given in [4] and [5].




2 Preliminaries and Main Re-
sults

The stochastic system is described by the stochastic
evolution equation

dX(t,a) = [Ao+ Ai(a)+ AoBC(a)]X(t, a)dt
+A0BD(a)U(t)dt + GAW(t) (2.1)
X(0,0) = =z

in a separable Hilbert space H with inner product
(-,-) where Ay is the infinitesimal generator of an ex-
ponentially stable analytic semigroup (So(t),t > 0)
on H, Ap = A;, a € K C RP. Let D} for
Y € R be the domain of the fractional power (—Ap)”
with the (—Ap)” graph norm. Let B € L(Hy, DY)
for some € € (0,1), Aj(a) € L(D%, H) for some
n € [0,1), C(a) € L(H,H,) and D(a) € L(H2, Hy)
for each value of & € K where H; and H, are sep-
arable Hilbert spaces. General information about
analytic semigroups can be found in [12]. The for-
mal process (W(t),t > 0) is a cylindrical Wiener
process with the incremental covariance the identity,
I € L(H), that is defined on a probability space
(Q, F, P) with a filtration (F;,t > 0). For p > 2
let My, (Hz) = s My (0.T, Hz) where
ME(0,T,Hy) = {U|U:[0,T]x Q— Ha,
(U@),t20)
is (¥;) adapted and

T
E/O U ()P dt < o0}

(2.2)

The control process (U(t),t > 0) in (2.1) is assumed
to belong to the space M, (H>) for some fixed p >
max(2, &= ) and p> 2.

For the control problem, the following ergodic,
quadratic cost functional is used

J(a,U) = limsup%](t,z,a,U) (2.3)
t—oc0

where

J(t’ z,a, U) = /0 [<Q1X(s, a),X(s, a))+

(Q2U(s), U(s))]ds

and Qi = Q1 € L(H), @ > 0,Q, = Q3 € L(H))
and Q3 > cl, c> 0.

A solution of (2.1) is understood as a mild solu-
tion, that s, an H-valued process (X(t), > 0) that
satisfies (almost surely)

X@t) = Solt)z+ /o t So(t — r)A1 X (r)dr (2.4)

t
+ / AoSo(t — r)BDU(r)dr +
0

/t ApSo(t — r)BCX(r)dr + Z(t)2.5)

t
Z(t) = / Solt—rGAW().  (26)
0
The operator Sy(t — r)A; is identified with its
(unique) extension as an element of £(H) which ex-
ists because

1So(t — r)As1z| < o——|2|

(t- )”
for £ € D(Ap), 0 < r <t < T and some ¢ > 0 where
Aj(a) € L(D}, H) and the analyticity of So(-) are
used. To ensure that the stochastic integral (2.6) is
a "nice” process it is assumed that the following con-
dition is satisfied

(C1)
6< 3.

(—A0)~%G is Hilbert-Schmidt for some 0 <

The following result verifies that there is a unique
mild solution of (2.1) with continuous sample paths.

Proposition 2.1 If (C1) is satisfied and U €
MY, (H,) then the equation (2.1) has a unique mild
solution with H-valued continuous sample paths.

In a similar way we can obtain the existence
and the uniqueness for the solution of (2.1) with a
feedback control U(t) = K(t)X(t) where K(t) =
Kt X(u),u<t — A),A > 0 is fixed, K(-) is deter-
ministic on [O A] and K(-) : Ry x Q — L(H, Hj)
is uniformly bounded, measurable and adapted to
(Fi-=a,t € Ry). The equation

X@t) = So(t)z+ /:So(t—r)AlX(r)dr @.7)




+/Ot AoSo(t i T)BCX(T)dT +
/t ApSo(t — r)BDK(r)X(r)dr + Z(t)

can be treated similarly to (2.4). The feedback con-
trol is an element of M}, (H2) because from (2.7) we
have that

EIX@®)P < 61[1+E[/0 (t=r)77|X(r)|dr]P+E[|Z(2)[P]

(2.8)
for some ¢; > 0 and ¥ = max(n, 1 —¢). Applying the
Holder inequality to the integral on the right hand
side of (2.8) and then the Gronwall inequality, it fol-
lows that X(-) € M}, (H). HU(t) = K@®)X( — A)
then the mild solution of (2.1) is well defined and
X(-) € M}, (H).

The Riccati equation that is used to solve the er-
godic, quadratic control problem for the system (2.1)
is the one associated with the infinite time horizon
deterministic control problem

Dit,0) = (do+Ar(e)+4BC(@)ult, )
+AoBD(a)u(t) (2.9)
y(0;a) = =z

with the quadratic cost functional

f(:r, a,u) = /ooo(Qly(t, a), y(t, a))+(Q2u(t), u(t))dt

(2.10)
where @1 = QF € L(H),Q1 2 0 and Q2 = Q3 €
L(H3), Qa2 > c¢I, ¢ > 0. This deterministic control
problem has been investigated in [3], [7], [8], [9], [10].
The following conditions are used:

(C2) (Compactness of the resolvent) A5 is com-
pact.

(C3) (Continuous dependence
on parameters) Ai(-),C(-), D(:) are continuous
functions from the parameter set K C R? into
L(D",H),L(H, H,) and L(H, H;) respectively.

(C4) (Uniform detectability and stabilizability)
There are linear operators F € L(H, H;) and
K € L(H) and constants ¢ > 0 and r > 0 such
that

i) lexp[t(Ao + Aj(a) + C*(a)¥ + Q1 K)]|c(ary

< cem Pt :

ii) ]ezpt[t(Ao+A‘{(a)+C‘(a)‘II+F‘D"(a)\Il]|C(H)
<ce ”

for allt > 0 and a € K where ¥ € L(D}"¢, Hy)
is the extension of B* Ay.

For each a € K define C(a) € L(H,D)”) as
C(a) = Ai(a) + [C*(a)¥]* where ¥ = max(l —¢,7)
and B(a) € L(H,, DY) as B(a) = [D*(a)¥]*. The
solution of the equation (2.9) is defined as the mild
solution

2(t,a) = S(t, a)z +/0 S(t — s, a)B(a)u(s)ds

for t > 0 where (S(¢,a),t > 0) is the analytic semi-
group generated by A(a) =-Ap + C(a). This semi-
group is analytic because C*(a) is (—Ag)” bounded.

The following result [3], [7], [9] gives the solution
of the deterministic control problem (2.9, 2.10).

Proposition 2.2 If (C4) is satisfied then there is a
unique, nonnegative, self-adjoint linear operatorV on
H such that V € L(H, D}) for all vy € (0,1) and

(Ao + C(a))z, Vy) + (Ao + C(a))y, Vz) +
(Qiz,y) — (Q7'B*(a)Vz,B*(a)Vy) = 0 (2.11)
Jor all z,y € D(Ag). The optimal control for the
control problem (2.9, 2.10) has the feedback form

u(t,z,0) = —Q5 'B*(a)V(a)y(t,a) and the optimal
cost 1s

J(z,a)= rrain J(z,a,u) = (V(a)z, z). (2.12)

The following result describes a continuity property

of V.
Proposition 2.3 If (C2 - C4) are satisfied then
o}i{go [V(a) - V(QO)IL(H,D;“) =0 (2;13)
where V(.) is the solution of (2.11).
To estimate the parameters of the unknown system
(2.1) a family of least squares estimates is given that

is shown to be strongly consistent. Some additional
conditions are introduced.
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(C5) The semigroup generated by Ao+C(«) is stable
for each a where C(a) = Ai(a) + [C*(a)¥]" and
¥e C(D;"‘, H) is the extension of B* Aq.

(C6) The linear operators Ai(a),C(a) and D(a)
have the following form:

91
Aj(a) = Ao+ z a'Ay;

i=1

q1
C(a)=Co+)_o'C:

=1

q

D(a) =Dy + Z aiD;

i=1+1

where A}; € L(D%,H),C; € L(H,H,) for i =
0,...,q1and D; € L(Hy, Hy)fori=0,q1+1,...,¢.
Define the linear operators C; and B; as fol-
lows: C; = Ay + [C7¥]* for i = 0,...,q1 and
B; = [D}¥]* for i = 0,q1 + 1,...,q. Clearly
C; € L(H,D}") for i = 0,...,q1, where v =
max(1 — ¢,n) and B; € L(H>, D;‘l).

(CT7) There is a finite dimensional projection P :
D' - P(D;')C Hand PBii=q1+1,...,9)
are linearly independent and for each nonzero

ﬂERh

(4] . A
tr> " Bi(B(C) / S(r, a0)GG" S" (r, ao)dr-
i=1 0

['31
.Zﬂ.-(ﬁ(c.-))' >0

where (S(t, a),t > 0) is the Co-semigroup with
the infinitesimal generator A + C(ao).

Let (Q,F, P) denote a probability space for (2.1)
where P includes a measure induced from the cylin-
drical Wiener process and a family of independent
random variables for a diminishingly excited control
introduced subsequently. F is the P-completion of
an appropriate o-algebra on € and (F,t > 0) is
a filtration so that the cylindrical Wiener process
(W(t),t > 0), the solution (X(t),t > 0) of (2.1)
and the diminishingly excited control are adapted to
(Fe, 2 0).

For the adaptive control problem it _is conve-
nient to enlarge the class of controls to My, (Ha) =
MNrso My (0,7, Hz) where

M5, (0, T, Hy) = {U|U : [0,T] x @ — H

(U(t),t 2 0)is (F)
adapted and

T
/; |[U(s)Pds < 00 as.}

It is elementary to verify that the regularity proper-
ties of the sample paths of the solution of (2.1) with
U € M}, (H,) carry over to U € My, (H2).

Define the (P(D3'))?-valued process (p(t),t > 0)
by the equation

‘P(t) = [ﬁ(cl)X(t)v ey P(CH)X(t)w

PB,, 1U(2),..., PB,U(t)]. (2.14)

for B € R? and ¢(t) = [pi(t), ..., pq(t)] as above,
define ¢ - 3 by the equation

o(t) 8= ei(t)Bi

If ¢ = (ay,...,az) is an £-tuple of R* vectors and
b= (by, ..., bm) is an m-tuple of RF vectors then define
axbe L(RF,R™) as

axb= ((a,-,bj))
IfFe L:(}.’D;l) then define Fp by the equation
Fo = (Fg;)

The stochastic differential equation for (P X (t),t >
0) can be expressed as

dPX(t) = [P(Ao + Co)l X (t)dt +

PByU(t)dt + ¢(t) - adt + PGdW ().  (2.15)

Fix a > 0 and define the £(PD3!)-valued process
(T(t),t 2 0) as

I(t) = ( /o o(s) x p(s)ds + a~1I)~! (2.16)




A family of least squares estimates (&(t),t > 0) of
the true parameter vector ayg is defined as the solution
of the following affine stochastic differential equation

da(t) = T(t)[p(t) x (dP)X(t)

—  P(Ao +Co)X(t)dt — PByU(t)dt

— o) - a(t)dt] (2.17)
a(0) = a(0)

where U € M%, (H,).

Let a(t) = ag — a(t) for ¢ > 0. The process
(a(t),t > 0) satisfies the following stochastic differ-
ential equation

da(t) = -T()[p(t) x ¢(t) - &(t)dt
+ PGdW(t)] (2.18)
&(0) = ag— a(0).

Since % = =T (t)[e(t) x p(¢)]T(t), [(0) = al we have
that the solution of (2.18) is

&(t) = -T()T~1(0)a(0) - I'(t) /0 @(s) x PGdAW (s)).

(2.19)
The control is a sum of a desired (adaptive) control
and a diminishing excitation control. Let (Z,,n € N)
be a sequence of Hj-valued, independent, identically
distributed, random variables that is independent of
the cylindrical Wiener process (W(t),t > 0). It is
assumed that £Z, = 0 and the covariance of Z,, is A
for all n where A is positive and nuclear and there is
a o > 0 such that |Z,|? < o a.s. Choose ¢ € (0,1/2)
and fix it. Define the Hj-valued process (V(t),t > 0)
as

(%] Z
V(t) =3 S lnamins(t)- (2:20)
n=0
Clearly we have that
lim [V(t)] =0 a.s. (2.21)
t—o0
and for each ¢;,4, € H} = H,
t
tlim pro (€1, V(s)){€2,V(s))ds =
—_00 0
(4]
. 1 (81, Zi) (L2, Z;)
Jlim —— > ’Z_E A+o(l) (229

i=1

= A1 -8 YAl b)) as.

It 1s assumed that Z, € F,5 and Z, is independent

of F, for s < nA for all n € N. A finite dimensional

version of this diminishing excitation is given in [2].
The diminishingly excited control is

U(t) = U4(t) + V(t) (2.23)

for all ¢t > 0.

The following result verifies the strong consistency
and provides a rate of convergence for the family of
least squares estimates given by (2.17).

Theorem 2.4 Let € € (0,1/2) be determined from
the definition of (V(t),t > 0) in (2.20). If (C1-C7)
are satisfied and the control process (U(t),t > 0) for
(2.1) is given by (2.23) where U(t) € F((t— A)V0)
fort >0,U% € Mk, (H3) and

t
Iimsup,_.ootl%/ |U%(s)|?ds < 00 a.s. (2.24)
0

for some 6 € [0,1 — 2¢), then

logt

oo = &) = O(=%

) a.s. (2.25)
ast — oo for each 8 € (%,L&,l— €) and (a(t),t > 0)

satisfy (2.17).

A self-optimizing adaptive control is constructed
for the unknown linear stochastic system (2.1) with
the ergodic quadratic cost functional (2.3) using the
family of least squares estimates (&(t),t > 0) that
satisfies (2.17).

The family of admissible controls 4(A) for the min-
imization of (2.3) is

U) =
{(U:U@)=Ut) + U (t), U%t) € F((t - A)V0)
and U'(t) € o(V(s), (t—A)VO<s<t) (2.26)
for allt > 0,U € M5, (H,),
IX@F

lim sup
t—oo

=0 as., and

ntrisogp%/o (X +|U®)?)ds < o a.s5.}.

Since Ao 4 C(ag) is the infinitesimal generator of
a stable analytic semigroup it is known that for the
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deterministic infinite time boundary control problem Clearly fort > A
with G = 0 there is a solution P of the algebraic

Riccati equation that is formally expressed as X(t) = X(t) + /t S(t — s; a0)B(g)U (s)ds+
- . t—-A
A*P+PA—-PBQ;'B*P+Q, =0 (2.27)

t
where A = Ag + C(ag) and B = B(ap). This formal _/;_A S(t — st a0)B(ao)GdW (s)
Riccati equation can be expressed as a precise inner

product equation where (X(t).t > 0) satisfies (2.1) and the input or

control in (2.1) is asum of V and U € U(A).
(Az, Py) + (Pz, Ay)— For any U € U(A) it follows that

(QEIB'PZ, B‘Py) +(Qiz,y) =0 (2.28) limsup-i—](.’t, U,ag.t) = Tr(—Ao)éPGG"(—Ao)_‘S
t—oc

where z,y € A. This solution P is the strong limit

of the family of solutions of the differential Riccati . 1/

equations as the final time tends to infinity. This +11:r_1.s°1°1p;/A

solution is called the minimal solution of (2.27) or N s

(2.28). +Q;113'P(/ S(s — r;ag) BU(r)dr+
We can apply Ité formula to ((PX(t), X(t)),t > 0) s-a

and use (2.28) to obtain

(U(s) + Q3'B"PX(s)

/S S(s — r;a0)GdW (r)),
s—A

t Q2(U(s) + Q5 ' B*PX(s)+
/0[2(U(S)»B‘PX(t)>+(QEIB‘PX(S)vB'PX(S» Q;IB-P(/_AS(s—r;ao)BU(r)dr (2.32)

— (Q1X(s), X(s))]ds (2.29)

(PX(t), X(t)) — (Pz,z) =

t +/’ S(s — r;a0)GdW (r)))ds
+HTr(—Ao) PGG™(—Ag) %42 / (PX(s), GdW (s)). s-a
0 > Tr(—Ao)  PGG*(-Ao)*+TrB*PR(A)PBQ;' as.

Rewriting (2.29) we have L .
where J is given by (2.3) and R(A) satisfies

- t s s a
P, X0 (Pa:,;r)+/0 (QuX(s). X(e))d R(A) =/0 S(r; a0)GG™§* (r; ag)dr
= /t(U(s) + Q5 'B*PX(s),Q2(U(s)+ It is clear that
0

Q3B PX(s)))ds (2.30) U(s) = —Q5'B*PX(s)—

+tTr(—Ao)’ PGG*(—Ao) ™"+ / Q5 'B*PS(s — r;a0) BU%(r)dr + V(s) € U(A)
t s—A
2/ (PX(s), GdW (s)). and it minimizes the ergodic cost functional (2.3) for
0 the family of controls U (A).

Define the H-valued process (X(t),t > A) by the  Define the H-valued (control) process (U°(t),t >
equation A) by the equation

X(t) = S(A;a0) X (t — A)+ Uty = —Q3 B (t—A)P(t—A)(S(A;t-A)X(t-A)

/tA S(t — s; a0)B(ao)V(s)ds. (2.31) + /t S(t —s;t — A)B(t — A)U%s)ds) (2.33)
t— t-A




where B*(t) = (B*(a(t))", S(r;t) = e™A(®) and A(t)
is defined as

{ Ao+ C(a(t)) if Ag+ C(a(t)) is stable
A(t) = ~ .
A otherwise
_ (2.34)

and A is a fixed stable infinitesimal generator (that
is, the associated semigroup is stable) such that A =
Ao + C(ay) for some parameter vector ai, P(t) is the
minimal solution of (2.28) using A(t) and B*(t). It
will be clear by the construction of U% that U° €
Ua).

Define two sequences of stopping times (o,,n =
0,1,...) and (1, n = 1,2,...) as follows:

(TQEO

On =

sup{t > 7',,;/ |US(r)Pdr < T,fs for all s € [1,, 1)}
0
(2.35)
t
T =inf{t > on_1 +1; / |U%(r)|Pdr < t'*%/2 and
0

1X(t— ) < t+9/2),

where 6 > 0 is fixed and 1—*2'—6 < 1—cand U°is
given by (2.33). It is clear that (r, —on—1) > 1 on
{6n-1 < oo} foralln>1.
Define the adaptive control (U*(¢),¢ > 0) by the
equation
U*@t) =

U(t) + v(t) (2.36)

for t > 0 where
Uit = { 0 ift € [on, Thy1) for somen > 0
U%(t) ifte[r,,0,) for somen > 1
_ (2.37)
and U°(t), V(¢) satisfy (2.33),(2.23) respectively. It
is clear that U? € M5, (Hs).

The adaptive control U* that is the the sum of the
certainty equivalence control with random switchings
to the zero control and the diminishing excitation is
self-optimizing.

Theorem 2.5 If (CI1-C7) are satisfied then the
adaptive control (U*(t),t > 0) for (2.1) given by
(2.36) is an element of U(A) and is self-optimizing,
that is,

1
inf limsup-J(z,U, ag,t) =
UeU(a) t_.oopt ( 0t)

limsup%](r, U™, ag,t)

t—o0

= Tr(—Ao)’ PGG*(—Ao)~*+TrB* PR(A)PBQ;
(2.38)

where J is given by (2.3).

An example of a differential operator that can be
used in (2.1) is briefly described.

Let A,(z, D) be a 2m-order differential operator of
the form

Aqu(z, D)y = Z (—1)"’|D”(apq(a, )Diy),z €O
Ipl.lglgm

(2.39)
where O a bounded domain in R” whose boundary
00 is infinitely smooth with z € O locally on one
side of the boundary. The coefficients ayy(a,-) are
in C*(0) for « € K C R* and all values of the
multi-indices p, ¢ with the lengths |p| < m, |¢] < m.
Assume that a,,(a,z) = ape(z) does not depend on
a for |p| = |g| = m and set

Z (=1)" DF(ape(z)D?y), 2z € O.

lpl=lgl=m

Az, D)y =

Assume that A(z, D) is uniformly elliptic, i.e.,

| S (C1)™ap (@)W > GAP™, 2 € 0,0 € R™,
lpi=lgl=m

for

some 4 > 0, where A\?*¢ = /\“1"~+‘1‘/\“2”"'q2 co e APntn
Furthermore, let B = (Bg, -, Bm—_1) be a system of

boundary operators

Bo= Y bju(z)Dtp,z €00

[hlSm;

where j = 0,1,.,.m—-1,0 < mg < m < .. <
Mmm_1 < 2m — Lbjh,p € C®(00). Assume
that ap, = a4 for |p| = |g| = m, the system
(A(z, D) E’j,j = 0,1,...,m — 1) is formally self-
adjoint and the system {I;'J} is normal and covers
A(z, D) and there exists a Green function for the
problem y = A(z, D)y, By = 0 (cf. [1},[11]). For in-
stance, we can consider the Dirichlet boundary prob-
lem in which case

< lid

B = Fni’
is the j-th normal derivative, n = (n', ..., n") is the
outward normal.

i=0,m-1

a.s.
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