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Abstract

The object of this paper is to achieve tracking control
of a class of unknown nonlinear dynamical systems using a
fuzzy logic controller. We present a repeatable design
algorithm and a stability proof for an adaptive fuzzy logic
controller that uses basis vectors based on the fuzzy
system, unlike most adaptive approaches which use basis
vectors depending on the unknown plant {(e.g. a tediously
computed ‘"regression matrix"). We select an e-
modification sort of approach to adapt the fuzzy system
parameters.  With mild assumptions on the class of
nonlinear systems, using this adaptive fuzzy logic
controller we prove uniform ultimate boundedness of the
closed-loop signals and that the controller achieves
tracking. In fact, the fuzzy system designed is a model-
free universal fuzzy controller that works for any system in
the given class of systems.

1 Introduction

In recent years, fuzzy logic control has become
popular in both the literary community and industry. The
challenge of controlling complex ill-defined processes
without model-based knowledge of their underlying
dynamics has motivated many researchers to the
application of fuzzy set theory [18]. However, problems
with high dimensionality occur due to our intuitive
limitations and to mathematical complications associated
with higher-dimensional fuzzy systems. More systematic
and guaranteed methods for controller design and
synthesis are required, such as the subsequently proposed
adaptive fuzzy-logic controller (FLC). In order to
conceive this novel adaptive FLC, two areas of recent
work in fuzzy systems are used: (1) an »-dimensional
mathematical framework, and (2) the theory of function
approximation using FLC.

Considerable work has been done in setting , a
mathematical framework for n-dimensional fuzzy systems.
Buckley [1], and Ying [16, 17] have laid mathematical
foundations for FLCs, the latter constructing a FAM
function that consists of a proportional-plus-integral part
plus a nonlinear offset part. To remedy the problem of
extending FLC design techniques to dimensions higher
than two, [7] proposes a repeatable FLC design algorithm
using n-D membership vectors.  There, a rigorous
mathematical expression was given for the reasoning
surface manufactured by a fuzzy associative memory
(FAM), and it was shown that the rulebase must satisfy
some important restrictions in any closed-loop control
application.

Recently, many researchers have explored the
approximation properties of fuzzy systems [9, 13, 16, 19],
often using the Stone-Weierstrass theorem. The

techniques in [16] show that FAM functions are universal
approximators for certain classes of functions. While [19]
gives fuzzy system approximation results that do not
depend on the Stone Weierstrass theorem, the results are
only given for scalar (single-input/single-output) systems.
Some rigorous stability analysis has been done for
FLCs. Langari and Tomizuka [5] provided a Lyapunov
stability analysis for a general sort of membership function.
Chiu and Chand [3] offered a cell-by-cell Lyapunov
stability analysis for an aircraft FLC. Chen and Ying [2]
have related FLCs to classical PID controllers showing
stability using the small gain theorem. Otherwise, most
fuzzy logic applications in control have been ad hoc, with
no stability proofs or repeatable design algorithms given.
In adaptive control, one must perform tedious
preliminary analysis for each prescribed systein to
determine a so-called "regression matrix” that ic neec xd
for the controller design. This regression mauw.a is
effectively a "set of basis vectors" for that specific system
under a "linear-in-the-parameters" assumption. By
contrast, in the sequel, we use the work of [7, 9] to design
an adaptive FLC that uses basis vectors based on the fuzzy
system. We propose a design algorithm and derive the
fuzzy controller structure. With mild assumptions on a
general class of nonlinear systems, using this adaptive FLC
we prove that the closed-loop signals are uniformly
ultimately bounded and that the controller achieves
tracking. The result is a model-free universal fuzzy logic
controller that works for any system in a general class of
nonlinear systems. The universal controller property of
FL.C accounts for their success in the literature despite the
lack of formal design algorithms or formal stability proofs.

2 Background and Problem statement

For a general class of nonlinear systems defined below,
we wish to design a fuzzy logic (FL) controller so that the
output follows a prescribed trajectory with bounded error.
Some system theory notions are given in this section.

2.1 A Class of State-Feedback Linearizable Nonlinear
Systems
We investigate the class of single-input single-output
(SISO) state-feedback linearizable systems having a state-
space representation in the controllability canonical form
X =x"

. 3
X =X

"= f(x)+u+d

y=x
with state x = [x! x2 ... x"]] € R", output y(1) € R, and
control #(f) € ‘R. We shall assume that the unknown

(2.1)




disturbance d(#) has a constant known upper bound so that

la’(t) | < by, and that f:R" > R is a smooth unknown
function.  This is sufficient for the existence and
uniqueness of solutions for (2.1).  The upcoming
development can be directly extended to "square” multi-
input/multi-output systems where x' € RY.

Note that while adaptive control needs an additional
linear-in-the-parameters assumption on fx) for the
controller design problem, this assumption is not required
for the method used here. That is, it is not necessary to
find a "regression matrix" by preliminary analysis of the
system.

2.2 Tracking Preblem
The primary goal of this note is to track a desired
. output y,X¢) while keeping the states and control bounded.

That is, the output error 3(f)—y ) should be small. A
feedback linearization approach will be used to achieve
acceptable tracking accuracy. Thus, an adaptive FL
controller will be designed that effectively feedback
lineanzes (2.1).

To this end we will make some mild assumptions that
are widely used and hold in any practical design. First
define a vector

x,(=ly, e (2.2)
where the superscript in parenthesis indicates the order of

d
the operator —.
dt

Assumption 2.1: The desired trajectory vector X is
assumed to be continuous, known, and Hx L,(I)I[ < with Q

a known bound. n
Define a state error vector as
e=X—X, (2.3)
and a filtered error, in standard use in robotics, as
r=Ae, (2.4)

where A=[A 1=[A, 4, .. A1)
chosen coefficient vector so that e(r) —» O exponentially
asr(f) > 0 (e s" '+, 5" "+ +A4, is Hurwitz). Then

the dynamics (2.1) can be written in terms of the filiered
eITOor as

is an appropriately

F=f(x)+u+d+7, (2.5)

where

n 1l
Y, = — i +Z;n"«z (2.6)
i1
is a known signal. Note that ¢, , =y"'(1)- ] (1) for
i=12, .. .n-1. Tt is assumed that all states are
available as measurements.

We will design a controller #(f) using a subsequently
defined fuzzy system with adaptive law to keep (/)
bounded and small. If we can show that (2.5) is a stable
system, then (2.4) implies that e(/) remains bounded so
that the tracking objective is achieved.

Fact 2.1: For each time 7, x(7) is bounded by
1 ! . —_ v o
< QA =0+l

(2.
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2.3 Stable Systems
In order to study the stability of the forthcoming FLC
we use some basic mathematical concepts and results; in
addition, an important stability notion is defined. For
instance, the next concept of a Lipschitz continuous
function is essential for closed-loop control applications.
Definition 2.1- Lipschitz Continuous. Let f{0) be

defined such that Ax): £2 >R where £2is a compact

subset of R". We say f{) is Lipschitz if there exists an
I > 0 such that
|f(x:)-‘f(x1) < [A|x: —x1|, foreveryx;,x, e 2 B
Let v - (i(x) be a feedback controller in (2.1). If Ax)
and ((x) are both Lipschitz, then there exist unique
solutions x(f) in closed-loop. Therefore, any proposed
controller (;(x) must be at least Lipschitz (of course 1t
must also guarantee stability.)
Definition 2.2. We say the solution of (2.1} is uniformly
ultimately bounded (UUB) if there exists a compact set

{/ < R"such that for all x(7)) = xg€ [/ there exists an
£>0 and a number 7(g,x,) such that “x(l)”«‘ ¢ for all
tzt,+T. [ ]
As we shall see in the proof of Theorem 4 |, the compact
set {/ is related to the compact set on which the fuzzy
system approximation property (3.23) holds.

3 N-Dimensional Fuzzy Associative Memories

This section introduces the tuzzy system structure that
will be used in our controller We plan to show that there
are important restrictions on the rules allowed in any fuzzy
system used for closed-loop control purposes (Theorem
3.1). Moreover, a major role in controls design is played
by the universal approximation result in Theorem 3.2
Using the results in [7], the following provides a
streamlined mathematical framework for a-dimensional
fuzzy associative memories It is necessary to discuss the
five main components of a FAM: The state membership
functions (MFs), the control representative values, the
rulebase, the inferencing for the rule antecedents, and the
defuzzification method used to determine a single crisp
control action from multiple fuzzy numbers corresponding
to active rules.

3.1 Vector Fuzzy Numbers and Membership Vectors

This subsection provides some basic definitions
connected primarily with extending standard fuzzy notions
to the case of a vector x. The following {7] formalizes and
extends some ideas in [1, 16, 17], etc. Let / denote the
interval [0,1] and /7= [ x [x---xI (» times).

Definition 3.1: Vector Fuzzy Number. Given an
integer n 0, define m={12-n} Given
x=[x' _ x"]" e R" and integers N, k en, define
fuzzy numbers

X =(x* 4 (x*), ieN,., keir (31

where the i-th membership function (MF) of the A-th state
is 4*:R — I . Define the Cartesian products

X ={x P x e,

(3.2)




which is termed the library of fuzzy numbers, and
w00 = {ul O Pl el (xn)}. 33)

Given a set of natural numbers i, ,i,,---i, with i, e N, a

fuzzy number on ‘R” is defined as
X =X XL X)eX,

HER

(3.4)

with #-dimensional membership function R" — /" defined
by

My )=t

In the sequel, considerable profit is obtained by
selecting MFs based on the triangle function. This,
together with the choice of product inferencing [6], allows
one to obtain rigorous uniform approximation and
convergence results very simply [7. 9]. It is important to
note that the triangular MFs include the trapezoid MFs
and the pseudotrapezoid-shaped (PTS) functions in [19],
since, by selecting the control representative values «, in
Library of w2y Numbers
A SRR

! ; ¥ ¥
{;1,‘(,{‘ o {piix )} x {,u,"(x‘)} = u(x)
Membershyp Function for X,
A i AN
iy L i
: 1 N 2 K i
X X R X X RY
(L (x'y : TN ulien = u (%)

Degree of Membership for a Fixed x:

For the specifie x shown. g, (x)=(0.3.09.08)
Figure 1. Sample triangle membership functions forn = 3,
N = §

the rules (3.14) the same for two adjacent triangular MFs
for the same component x*, one has in fact equivalently
used a single trapezoid MF.

Given, therefore, y ¢R and fixed real parameters

a b c define the (nonsymmetric) triangle function as

yd a<yesh (=1lifa=-x)
-a
A@b.cXy) = -‘—-% b<vsce (=lifc=x)
C—
0, otherwise.
(3 6)
Definition 3.2:  7Triangular Membership Functions.
Given x=[x'..x"] eR", select compact sets

N

[ Xhn T € R, [, x

fmax Tmun 7T max

lew,
x*, and integers N,, k €7

for each component
Respectively select strictly

. . .. SR R R .
increasing partitions {x} . 1x;} ,..., that is

Xpp = X| < XL SL<XL =X (3.7)
and so on. The Cartesian product of the compact sets

[am- X

through defines

(X0 X ] a compact
hypercube (2 that will be useful in demonstrating the

approximation properties of fuzzy systems. Select. for
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each component of x, triangular membership functions of
the form
pY () = A=, xfxg )(x")
/’lf(xk):A(xlkl’xlk’xlkvl)(xk) il

o, (1) = A(xy, L x%, o)(x")

The leftmost and rightmost MFs are selected so that all
values of x* € R correspond to at least one MF. n

Note that these MFs are normal, complete, and
consistent in the sense of [19] The partitions
corresponding to the components x* of x are generally
nonuniform. In addition, the MFs defined in this fashion
satisfy the important property

1<i<N, .(3.8)

Ny
Suxy=1, alix* eR, ken. (3.9
-]

Sample N-D triangular MFs are shown in Figure 1.

Definition 3.3: Degree of Membership }ector.
Given a fixed x=[x'--x"]" €R", define the n-
dimensional inembership vector for x as g(x) in (3.3)
evaluated at x. For a specified set of natural numbers
iyy.ei, i, €N, the valuey, , ., (x) is the degree of
Note that for fixed x,
]

Note that we define the ‘degree of membership' of this
logical expression as a member of /", so that we have not
yet addressed the problem of ‘fuzzy inferencing', i.e.
combining the ,uf' into a single element of /.

membership of x in X, .
pux)c "and y, -, (x)el”.

Remark: It is common in the literature to denote
x=X . ., by

(x'isX)) and (x"is X;) and. .. and (x"is X))

4 (3.10)

The fuzzy numbers X/, are generally described in
linguistic terms such as 'positive big', negative small', etc.

Definition 3.4 Control Representative Values.

Given a scalar output or control variable u € R, select an

integer M and a finite set of M representative values u, of

u. The representative values may be viewed as the
centroids of 'control MFs' having the form of impulse
functions centered at the values # (i.e. 'singleton' MFs). B

This definition avoids the usual quandary in FAM
design where control MFs, generally triangular, are
defined and one is then faced with the fact that the actual
MFs are irrelevant; only their representative values are
important.  The representative values are generally
assigned linguistic descriptors such as 'positive big', ‘near
zero', and so on.

3.2 FAM Rulebase

The upcoming development is associated with
providing a rigorous expression for the function u = g(x)
manufactured by a FAM in terms of the selected MFs,
rulebase, inferencing method, control representative
values, and defuzzification scheme.

First define a class of rules relating the mnput fuzzy
numbers .X and the control representative values u .




Definition 3.5: Fuzzy Associative Memory (FAM)
Rulebase. Given input fuzzy numbers X and control
representative values {#;}, define the rulebase @ as a set of
L rules where, foreachrule R, € 2, [ I

1. The left-hand side associates a member of X to the
antecedent. ‘

2. The right-hand side associates a value of uj with the
consequent. n
The rules are thus of the form

If(x=X,, ., )then (u,), 3.11)
which is usually expressed in the literature as
If[(x'is X)) .and. (x*is X)) .and. ...
' ) . (312)
.and. (x"is X, )] then (u is u,)
We denote this rule by
Kl.lz. dpd” (313)

It is clear that the rulebase can be considered as a relation
on ]V1 X ]sz_,xﬁnxﬁ.

It is convenient to denote the value «; of u associated
by the rulebase to X, , by w , , so that the rule

Ja. oy

becomes
If[(x"is X)) .and. (¥ is X)) .and .

and. (x"is X)) then (uisu, , )

A more general class of rules is defined if the
antecedent can be a logical function defined on X
However, this complicates things, and our framework can
be extended to this more general case in a straightforward
manner. Moreover, the definition suffices for a large class
of control systems, namely, almost all FLC contained to
date in the literature. It also suffices for the class of
stabilizing FLC in this paper.

3.3 Inferencing and Defuzzification

The final components of the FAM are defined in this
subsection. The inferencing function determines the
method of inferencing (i.e. computing truth values of
composite and/or expressions) when the antecedent side of
the rules contains several fuzzy numbers X' .  The
defuzzification function is used to determine crisp values
of the control u(1) when several rules dictate using
different values of control.

With regard to the rule antecedents, let there be
prescribed an element X, of X with MF x4, . (x).

For fixed xe R" the degree of fulfillment of the statement
x=JX, ., (ie the truth value of (X, ), see (3.10))
must be specified as a member of /. Computing this value
as a function of the degree of membership
M, . (x)el”, as per Definition 33, is termed
inferencing, and is accomplished by defining a function
from /" — /. In the rules (3.11), (3.14) the components
X ,t of the antecedent are combined using the binary

logical 'and' operator. To turn the map X, —> u/(x") for
a fixed x* into a semigroup homomorphism, a binary
operator ® must be defined on the x! We define this
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operation to be Larsen's product inferencing which uses
the product
H, @ u @ @ui = p, py . p
Definition 3.6: Degree of Participation. For the rule
(3.14) and a fixed x ¢ R", the degree of participation of
the consequent is taken as

7 o= Ta 9
k-1

(assuming all rule= have certainty factor of 1.0).
Definiti-,n 3.7: 1 efuzzification and FAM Function
Select thy centroic defuzzification function, so that the
FAM function \iarsaactured by the fuzzy system is given

by
Z ﬂ-il a0y ”11 daody,

Zﬂ’x»’2~ n
where the sum is over all active rules given a specific
x e R". ]
The FAM function is also often called the "reasoning
surface.”

(3.15)

w=g(x)= (3.16)

3.4 System Theory Properties of the FAM Function
Given the machinery of sections 3.1-3.3, it is very easy
Btktbrove a string of theorems including the foliowing.
Recall that for existence and unmiqueness of solutions to
nonlinear differential equations, a Lipschitz requirement
on the system functions suffices {7, 12}. This restricts the
rules allowed for any FL system used for closed-loop
control applications. In fact, the next result states that
there should be 2" active rules in each cell of the
hypercube (Definition 3.2) for closed-loop control
applications.

Theorem 3.1 (Lipschitz Requirement and Restriction
on FL Rulebase): Let x=[x x .. xn]Te R" and the state
MFs for x* be triangular of the form given in Definition
3.2 with respective cardinalities N;, and let the control
representative values have cardinality M. Suppose that
product inferencing and centroid defuzzification are used.
Suppose that the rulebase provides a mapping from
N, x N,x..xN, to M, so that every fuzzy number

(X,.X.....X)is mapped to asingle w, , . Then:
1. The denominator of (3.16) evaluates to 1. That is,

S, . (x)=1 (.17)
Then, the FAM function may be written as
gx)=>u,, .m, (%) (3.18)

2. For every compact set Q, the FAM function
g(x)Q2cR" >R is a Lipschitz continuous function
such that

(3.19)

Proof: 1. Use induction and proceed as in [9].
2. Use the fact that (3.18) is a polynomial of
order n and proceed as in [9). u
It is easy to demonstrate that if the rulebase does not
provide the required mapping, but only a relation, then the
FAM function g(x) may not pass through the points in
(3.19) and may not be Lipschitz.  Since the feedback




controller to be proposed in section 4 relies on g(x), this
could have negative ramifications on the closed-loop
system properties. Unfortunately, in many FLC designs in
the literature, attempts are made to simplify computations
by ‘skipping rules’; that is, by omitting rules for some of
the state MFs. This violates the conditions of the theorem
since the rulebase is not then a mapping but only a
relation. Therefore, even the existence and uniqueness of
closed-loop solutions cannot be guaranteed if rules are
omitted. This problem relates closely to some detailed
discussions in [7].

3.5 Approximation Properties of the FAM Function
Under the hypotheses of Theorem 3.1 the FAM
function defined by (3.18) is a convex combination due to
property (3.17). As shown in [9], one may use the convex
combination property of (3.18) to prove rigorously the
following approximation abilities of fuzzy systems.
Theorem 3.2 (Universal Approximation): Let (2 be

a bounded hypercube in R”. For any given continuous
function A.):£2 —R,and any positive number &, there is a
fuzzy system with FAM function g(.) defined in (3.18)
such that

lf(x)-gx)|<¢, Vxen. (3.20)m
To design the approximating fuzzy system given the
compact hypercube £2 of R” mentioned in the theorem,
and x = [x! x2 . x*"]T e R, select integers N,, k <7 and
uniform partitions {xfk li, € ;Vk} along x* such that Qis
covered and partitioned into smaller hypercube cells.
Define &* =x, , —x as the partition interval in x*, and

5= |l6' 6> &7V, Based on this partition of 2

define a fuzzy system as above,
membership functions (Definition 3 2.)
The next result goes beyond results currently available
in the literature by showing specifically how to select the
partition norm ¢ (and hence the numbers of membership
functions in each component x*) to achieve a prescribed
approximation accuracy.
Theorem 3.3 (Uniform Error Bound of Fuzzy
System Approximation):
Let the conditions of Theorem 3.1 on the fuzzy system
hold. Consider a class ¢; of continuous functions
J(x):£2—- R, whose Jacobians are uniformly bounded by

using triangular

a positive real number B, that is | /"(x)| < B for all x € £
and f(x)e ¢; Define M =N,-N,- ... - N, Select the

control representative values as the samples of f{.) at the
vertices of the hypercube cells,

T :f(xfl xr”) (3.21)
Then, for any fx) € ¢, x€€2 we have
lf(x)~ g(x)| < BS (3.22

with g(x) the reasoning surface (3 18) of the fuzzy system
and 9 the size of the partition interval for (2 defined by the
selected membership functions. u
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Therefore, given a desired approximation accuracy ¢ and
bound B that describes the maximum variation of the class
of functions to be approximated, the required partition

norm of the fuzzy system is & = & B This, and the

extent of (2, define the number of MF's required in each
component of x.
Hence, on any bounded hypercube (2, a general
continuous function f{x) can be written as
f(x)=U"P(x)+¢& (3.23)

where
UTP(x) = Z Uy Ty, (X)
and U/ is the control representative value vector P(x) is a
vector of degrees of participation. The fuzzy system
functional reconstruction error is &.
The definition of U/ and P(x) is not unique. Let the

elements of {/ be denoted «, and the elements of P(x) be

denoted as p,(x). Algorithm 3.1 gives one technique for

defining (/ and P(x) in terms of »,, , and 7,

By

respectively.

Algorithm 3.1
Using left-hand odometer ordering, each member of

the set of indices {il,i: ..... i}. i, e N, can be assigned a
That is,
there exists an isometry from {i,i.,...,i,} -, Let

Px)=[p, Py -

unique integer jeM, M=N_-N,- . -N

ne

p!\l]7

T
ﬂxk\':; .N,,] >
(3.24)
where the indices increase in left-hand odometer order.
Then, j is given by
n k-1
J=i+ 2 G -D]TN
k.2 11
Now use this association to define p (x)=r,

(3.25)

o (X) as
given by (3.15). It should be noted that the components
of [/ are also ordered according to this algorithm (see
(3.18) and (3 21)). |
Note that, for approximation, u, are the samples of f{.)
at the vertices of the hypercube cell partition as shown in
(3.21)  In controls applications, the function f.), and
therefore the required samples for approximation are
unknown. However, as shown in the next section, it is
only necessary to know that an approximating fuzzy
system exists. Then, the adaptation rule given there
identifies the unknown samples of f.). Since fx) is
continuous there exists a number of quantized points (i.e.
M) in the compact set £2 such that the approximation error
& can be made arbitrarily small. Note moreover, that ¢ is
bounded on any compact set by a known bound. That is,
lé < €. with &, known and depending on £2, B, and &.

Corollary 3.1 (Known bound on U). If fix) € ¢,
on the compact set £2, then it is bounded on £2 Therefore,
though the control representative value vector U/ is




unknown in applications, [/|<U,, for some known
bound Uy n

4 Universal Adaptive Fuzzy Lagic Controller (AFLC)

The structure and design methodology for the AFLC
are now given. The final form of the fuzzy controller to be
defined is shown in Figure 2. The FLC has two control
loops, an outer proportional-plus-derivative (PD) tracking
loop plus an extra term generated by a fuzzy logic system
in an inner control loop.

The unknown system (2.1) is now approximately
feedback linearized by choosing the control action

u=-fx)+v (4.1
where the estimate of £{.) is given by a fuzzy system as

F(x)=U7P(x) (4.2)
and the auxiliary control signal is

ve-Kr-Y, 4.3)

Here f (x) will be constructed by using the fuzzy system
to form an appropriate set of basis functions, namely, the
participation vector P(x) which is constructed from the
selected membership functions using Algorithm 3.1. Then,
U, the current estimate of the control representative values
U/, is provided by the adaptive tuning law to be
subsequently given.

Fuzay Logis Rul Rasa

Figure 2: Adaptive Fuzzy Logic Universal Control
Structure.

Note that with most adaptive control approaches, one
must find a regression matrix by tedious preliminary
analysis by analysis of the system (2.1) using a linear-in-
the-parameters assumption. That is, the regression matrix
provides a set of basis vectors that depends on the
unknown plant. By contrast, in FL control, the
participation vector F(x) depends on the fuzzy system
design, and is good for any plant in the class (2.1),
regardless of the specific form of f.) as long as it is
smooth. That is, no regression matrix, as needed in
adaptive control, need be found. This has the effect of
making Figure 2 a universal fuzzy controller for any
system in class (2.1). The universal controller property of
FLC accounts for their success in the literature despite the
lack of formal design algorithms or formal stability proofs.

By our discussion in the previous section we know that
the ideal value for {/ exists so that (3.23) holds and it is
bounded so that

1< U e (4.4)
for some known (/. Moreover, ¢ <&, a known

approximation error bound. Define the control
representative value estimation error as
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U=U-17. (4.5)
Combining (4.1)-(4.3), we have the control input
u=-f(x)-Kr-7%,
=-U'P(x)-Kr-7,
where P(x) is given by (3.24), and (3.16), under the

ordering (3.25). Then, substituting (4.6) into (2.5) the
closed-loop filtered error dynamics become

F=U"Px)+e-U"Px)-Kr-Y, +d+¥, “7)

=—Kr+U'Px)+(d+e)=-Kr+c,. '

In adaptive control, though it is often straightforward
to show that the tracking error is small, it is usually
difficult to demonstrate that the adapted parameter vector
remains bounded without a stringent persistence of
excitation (PE) condition. This is known as the problem
of ‘parameter drift’. Alternatives that avoid the need for
PE include o-modification [11], e-modification [10], or a
dead-zone approach. In this chapter, this issue manifests
itself in proving that the estimate {/ for the control
representative  value vector U/ is bounded despite
disturbances. We resolve the problem by selecting an e-
modification sort of approach to adapt the fuzzy system
parameters.

Theorem 4.1: Let the desired trajectory x (/) be
bounded as in Assumption 2.1. Take the control input for
(2.1) as (46), and let the fuzzy system control
representative values be tuned on-line by

U=FPxyr —wdfr|U, (4.8)
with /' = 7 > 0 a constant matrix, normally chosen

(4.6)

diagonal, and x > 0 a design parameter. Then, for high
enough gains K, the filtered tracking error »(f) and the
control representative value estimates /() are UUB, with
practical bounds given specifically by the right-hand sides
of (4.9) and (4.10). Moreover, |(1)| can be made as small
as desired by increasing the control gain K.

Proof: The practical bounds on the filtered tracking
error r(f) and control representative value estimation
error [7(1) respectively are simply stated as

> kU., 4+(g, +b,)
K

vmin

=b, (4.9)

and

||17’[| SUL[2+ UL J4+(&y +b)[x =B, (4.10)
while the entire proof can be found in [13]. Since any
values above these bounds cause the Lyapunov function to
decrease, thereby decreasing r(7) and/or {/(r). It can be
seen from (4.9) that the tracking error bound can be made

arbitrarily small by increasing the outer-tracking-loop gain
K ]

The adaptation law (4.8) for the fuzzy system
parameters is worth discussing. The first term is a
gradient-descent-type term for adjusting the parameters.
According to the theorem, this term by itself cannot be
shown to yield closed-loop stability. Indeed, the second
term is required; this is a term well-known in adaptive




control known as the e-modification term [10]. 1t is
required to guarantee robustness of the controller,
including bounded control signals, despite unknown
disturbances.

S Simulations
As an example consider the nonlinear system
X =x,
202 (5.1)
X, =(1-2e" ")y, +x, +2+u
which is in the controllability canonical form (2.1) and
unstable (i.e. the linearization of the system at the origin is
unstable). For the fuzzy system membership functions, the
states are partitioned uniformly in both x, and x, and
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Figure 3. Actual (dotted) and desired (solid) states with
K, = 10, x,(0)=1, and x,(0) = 0.

since the signed magnitude of the desired trajectory
Yy, () = sin(?) is symmetric about the origin, we construct
the partitions symmetric about and including zero. For
this example the partition refinement was chosen as
N, =N, =11 although performance did not degrade
appreciably for values of N, > 7. For the first simulation,
design parameters are set to
K, =10, 4, =2, k=05, F=20-1,. Initial conditions
are U7(0)=0, x,(0)=1, and x,(0)=0. The desired tra-
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Figure 4. Actual (dotted) and desired (solid) states with
K, = 50, x,(0)=1, and x,(0) = 0.

jectory is selected as y,(f) =sin(r). Using the FLC in
Figure 2, the actual and desired states are plotted in
Figure 3. Note that good tracking is obtained considering
that the nonlinear plant is unknown (i.e. coefficients inside
f(x)).

To show the effects of increasing the outer-loop
control gains, a second simulation was done with design
parameters K, =50, 4, =2, k=05, /'=20-7, while
keeping all initial conditions the same. That is, the outer-
loop control gain is increased. The FLC results are given
in Figure 4, where the actual states (dotted) almost
perfectly track desired states (solid) in less than 2 seconds.
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Figure 5: Response of Adaptive Controller with full
regression matrix (dotted) where the desired states are
(solid). K, =6, K,=10.
For comparison, a robust adaptive controller [4] is
given by
u=¢+Keé+Ke+W(x, x,,%)p (5.2)
p=IW'(OB" Ple ¢  (53)
with I =I>0, K,
W(x,,x,,x,) regression matrix of functions that must be
explicitly derived from the specific system dynamics, and ¢
a vector of unknown parameters. In this case ¢ is simply
the constant coefficients of all terms besides # in the
second equation of (5.1), and the regression matrix is

and K, design parameters,

W= {x exp(-x, —x)x, x, 1]. 5.4
Transforming system (6.1) as in [4] yields

y 0 1 B 0
|-k, K |71
In (53) P satisfies the Lyapunov equation

A" P+ P4 = -0 where Q is chosen as the identity matrix.
The system parameters are @' =[1 -2 1 2], and we

2

sclected the same desired trajectory as above,
I =diag(02,02,02,02), K, =10, K, =6. The response

using this controller with $(0)=[05 -19 5 19],
x(0)=1, and x,(0)=0 appears (dotted) in Figure 5.
Note the good behavior which results with four unknown
parameters since the regression matrix is complete. To




demonstrate the deleterious effects of the unmodeled
dynamics in adaptive control, the (1, 4) entry of the matrix

Actual and Desired States
15 T
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Figure 6. Response of Adaptive Controller without full
regression matrix (dotted) where the desired states are
(solid). K, =6, K,=10.

W was replaced with zero in the controller. Figure 6
shows moderate tracking of x, and poor tracking of x,
(both dot-dashed). It is emphasized that all the dynamics
are unmodeled in the universal adaptive FLC in Figures 3
and 4.

6 Conclusions

A universal adaptive fuzzy logic controller is proposed
that guarantees prescribed performance for the general
class of feedback linearizable nonlinear systems (2.1) with
mild assumptions.  This controller has a multi-loop
structure with a fuzzy logic approximate linearization
loop, a robustifying loop, and a unity gain outer tracking
loop. The structure of the fuzzy logic controller and
adaptation law are chosen such that a Lyapunov-based
proof of uniform ultimate boundedness is obtained. The
main benefit of this adaptive controller is that it is model-
free and requires no regression matrix, unlike adaptive
control, because the fuzzy system forms a set of universal
basis functions. That is, P(x), the participation vector
constructed algorithmically herein, depends on the
membership functions chosen for the fuzzy system. This
method for controller synthesis is systematic and the
proposed adaptive fuzzy-logic controller performs
remarkably well as indicated by the simulation results.
Furthermore, with the tools presented in the third section,
it is evident that problems with high dimensionality, while
more mathematically and computationally intensive, are
nonetheless manageable.
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