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Abstract

Fault detection, diagnosis and accommodation play a
key role in the operation of autonomous and intelli-
gent control systems. System faults, which typically
result in changes in critical system parameters or even
system dynamics, may lead to degradation in perfor-
mance and unsafe operating conditions. This paper
investigates the problem of fault diagnosis and ac-
commodation (FDA) in rigid-link electrically driven
(RLED) robotic manipulators. Neural networks are
used as on-line approximators for monitoring the sys-
tem for faults. A learning algorithm is described so
that the neural network provides a way, not only for
detecting a fault, but also for constructing a model of
the fault characteristics that can be used for accommo-
dation purposes. Simulation examples are presented
to illustrate the ability of the neural network based
FDA methodology described in this paper, to detect
and accommodate faults in a RLED robotic system.

1 Introduction

Robotic systems are widely used in many engineer-
ing applications. Usually, robotic manipulators are
used in environments which are remote, hazardous and
which demand very high performance, productivity
and, above-all, safe operation. Application environ-
nients include manufacturing processes [4], hazardous
waste management and clean-up, and space-based op-
erations [18]. In such operations, system faults (which
are typically characterized by critical changes in the
system parameters, or even, by changes in the inher-
ent dynamics of the system) can potentially result not
only in the loss of productivity but also in unsafe oper-
ation of robotic systems. Moreover, difficult and often
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dangerous environments limit the ability of humans
to perform any supervisory and/or corrective tasks.
Hence automated monitoring of the robotic manipula-
tor for any faults and, if possible, effective accommo-
dation of such faults plays a crucial role in the use of
robotic manipulators.

The process of system fault characterization can be
broken up into three steps: (i) detection deals with de-
termining if a malfunction has occurred in the system;
(i1) diagnosis considers the problem of isolating and for
identifying a fault; and (iii) eccommodation attempts
to self-correct a particular fault through reconfigura-
tion of the control system.

A number of researchers have worked on the prob-
lem of automated fault diagnosis and accommodation
(FDA) in robotic systems using analytical redundancy
based methods. A state estimation based technique
is used in [22] for detecting faults in robotic systems
wherein it is concluded that the fault detection abili-
ties of nonlinear observer based FDA approach is sig-
nificantly better than the linear Luenberger observer
based FDA approach. Parameter estimation based
methods are used in [4], {13] to monitor and identify
changes in critical parameters due to faults in robotic
systems. Expert system based methodologies have also
been considered for FDA purposes in [18], [19] among
others. In [1] time series analysis of the data is used
for detecting faults in a robotic system. The issue
of faulty behavior in robotic systems due to actuator
saturation is addressed in [16] and accommodation of
such faults using the time regulation and the torque
distribution method is proposed. In [9] a special force-
torque-sensor is applied for automatic fault detection
by analysis of its signal in the frequency domain.

Most of the above FDA studies in robotic systems
has dealt almost exclusively with linear modeling tech-




Although the need for nonlinear modeling

niques.
methods in FDA has long been rccognized [5], diffi-
culties in formulating, analyzing, and implementing
such techniques have prevented their wider use. In

this paper, we employ a neural network based method-
ology, developed in [12], for detecting and accommo-
dating faults in rigid link electrically driven {RLED)
robotic systems. The emergence of the neural net-
work paradigm as a powerful tool for learning complex
mappings from a set of examples has triggered inter-
est in using neural network models, and, more gen-
erally, nonlinear modeling techniques, for fault diag-
nosis and accommodation. The feasibility of applying
neural networks to FDA has been demonstrated via
simulations in several studies, including the diagnosis
of chemical processes [20], fault detection in aircraft
[10], and fault accommodation in underwater vehicle
systems [3].

The organization of the paper is as follows. In Sec-
tion 2, the dynamic model of the RLED robotic ma-
nipulator is described. In Section 3. the FDA method-
ology is described briefly. Simulation results show-
ing the application of the neural network based FDA
methodology on a two-link RLED robotic system are
presented in Section 4. Section 5 has some concluding
remarks.

2 RLED Robotic Manipulator

In this section, a model of RLED robot manipulator
and its control is described. The manipulator is mod-
eled as a set of moving rigid bodies which are joined
together with revolute joints, each joint being driven
by a DC motor. The equation of motion of the ith link
of an n-link robot manipulator is described by [15]

n 1 n
Z Dijds + Jidgi + Z Z Dijrqjqr + Di =7, (1)

j=1 j=1k=1

where ¢;, ¢; and ¢; are the position, velocity and ac-
celeration of joint ¢ respectively, Di; and Dij (j # i)
are the the effective and coupling inertias respectively,
J; is the reflected actuator inertia of joint ¢, D;;; and
Dijr (i # k) are the coefficients of centripetal and
Coriolis forces respectively, D; represents torques due
to gravity, and 7; is the torque acting at joint <.

The dynamics of a permanent magnet brush DC mo-
tor used for actuating the ith link are described by [2]

di; .
Rii; + ng;l + I\rieNi(Ii = Uy,

where R; and L; are the resistance and inductance of
the armature circuit respectively, K? is the back EMF

(2)
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constant, N; is the gear ratio, ¢; is the armature cur-
rent, and u; is the input voltage. Using equations (1)
and (2) and the fact that ; = N; K}i;, where K is the
torque constant of the ith link motor, we can obtain
the combined dynamics of an RLED robot manipula-
tor in the compact form as [15]

D(q) 1 +P(q,4,9) = v, (3)
where ¢ = [g1 ¢2 ... ¢n)T and u = [u; us ... un])T. The
n x n-dimensional matrix, D, and the n-dimensional
vector, P, describe the combined dynamics of the
robot manipulator and the DC motor. It is known
that the matrix D is invertible [15].

Based on (3), a state-space representation of the
RLED robotic system is described by

151 = X9
Iy = I3
i3 = D '(u-P), (4)

where £, = q, 3 = ¢, z3 = ¢ denote vectors of posi-
tion, velocity and acceleration respectively.

Control laws for RLED robot manipulators can be
obtained using nonlinear feedback linearization tech-
niques [7], [14]. If the control objective for the RLED
robot manipulator (3) is to track a desired trajectory,
g4, a control law based on the feedback linearization
technique is given by

u= D(q4 +K3¢ + Koé + K1e) + P, (5)
where e := g4 — q 1s the tracking error and K, Ky and
K3 are positive definite diagonal matrices of dimension
n x n. If the robot dynamics are known exactly, then
these matrices can be chosen so that the control law
leads to an exponentially convergent tracking error [7],
[14].

3 Fault Detection and Accom-
modation

The robotic manipulator (1), driven by a DC motor de-
scribed by (2) and the control law (5), is guaranteed to
track desired trajectories provided the system param-
eters are known. However, in the case of a fault, sys-
tem parameters or even system dynamics may change
leading to tracking errors and/or instabilities. In this
section we describe a learning methodology for con-
structing automated FDA architectures. The main
idea behind this approach is to monitor the physical
system for any off-nominal behavior using nonlinear
modeling techniques. Our principal design tool is a




generic function approximator with adjustable param-
cters; we refer to this “structure” as on-line approaxi-
mator [12]. Although on-line approximators are quite
general models, the original inspiration for using such
methods in FDA is based on recent developments in
neural network technology.

A general framework for modeling various fault sit-
uations in the RLED robotic manipulator model de-
scribed by (4) is provided by

£ = z2+ Bt =T)f1(x, )

£y = z3+ ot —T)f2(z,u)

g5 = D 'u— P)+ Ba(t—T)fa(z,u), (6)
T T

where ¢ = [T ¥ 217, fi :R" xR™ — R" is a
smooth map representing changes in the system pa-
rameters or dynamics due to a fault, and 5; : R — R,
is a function representing the time profiles of faults for
1=1.2,3.

An accurate description of fault situations, most of-
ten, requires nonlinear modeling of faults, which is
what is described by (6). The nonlinear modeling ca-
pability is reflected in allowing the deviations f; due
to faults to be nonlinear functions of the state z and
the input u.

Assuming that all the states of the system are mea-
surable, we use the following estimation model of (6)
to generate the error measure required in the learning
scheme [12]:

2y o= Gi() — )+ 22+ fi(z, ui6y),
Zr = Ga@s — 22) + 23+ falz, u;02),
.1.?3 = G’g(.i?g — .l’;) + D‘l(u — P) + fg(l’, U, 93)(7)

where for each i = 1,2, 3, (G; 1s a constant square ma-
trix of dimension n x n, whose eigenvalues lie in the
left-half complex plane, fi : R*xR™ xRP* — R" repre-
sents an on-line approximator structure and ; € R
represents the weights or the parameters of the ap-
proximator.

In the above formulation, the objective to detect
faults translates into the problem of adjusting 0;(t) at
each time ¢ so that fi(z,u; 0;) approximates the fault
function, F;(t — T') fi(z, u), as closely as possible (note
that in the case of normal operation each f; should
be close to zero). Hence the output of the approxima-
tor could be used to indicate the occurrence of a fault.
Furthermore, the function f; provides the fault charac-
teristics and, therefore, it can be used for identification
and possibly, accommodation of system faults. The
price that one has to pay for the potential to model a
much larger class of faults is the need to approximate
the unknown nonlinear functions f;, on-line. However,
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recent advances in both hardware implementation and
software simulation tools have rendered possible the
use of on-line approximation methods (such as mult-
layer sigmoidal neural networks) for constructing and
analyzing nonlinear models [21].

Based on the estimated model (7) and using the Lya-
punov synthesis approach [11] along with the projection
algorithm [8], we obtain the following adaptive law for
the adjustment of the parameter estimates {12]:

T
o=7p r[_——af(r‘y;g)} (x—2)]. (8
00

where § = [0T 607 6%)7 and f = [fT 1 7.
In (8), I' = I'7 > 0 is the learning rate matrix and P
denotes the projection algorithm. The projection algo-
rithm, which restricts the parameters to a bounded re-
gion, 1s used in order to avoid parameter drift. The re-
striction 1s achieved by projecting the standard adap-
tive law (obtained via the Lyapunov synthesis ap-
proach) onto the tangent hyperplane if the current
value of 4 is at the boundary and is directed outwards.
We note that in the case of a multi-layer neural net-
work, the back-propagation algorithm along with the
projection algorithm provides a convenient, structured
method for computing the parameter trajectories. The
stability properties of the learning scheme described
by (7), (8) as applied to the FDA problem, has been
analyzed in [12].

Failure accommodation (also referred to as self cor-
rection or control reconfiguration) is one of the major
challenges in designing intelligent control systems. In
such situations, learning methodologies are required to
perform simultaneous on-line identification and con-
trol of the post-fault system. This procedure cor-
responds to indirect adaptive control, which is well
known in the adaptive linear control literature [11]. In
the nonlinear case, however, the problem becomes con-
siderably more complex because the control is required
to reject {or, at least, dampen) the effect of the fault
by cancelling the nonlinear function representing the
deviation in the dynamics due to a fault.

One of the nonlinear control tools available for such
problems is feedback linearization [6]. The main idea
behind feedback linearization is to transform the non-
linear system into a linear one through a change of
coordinates and nonlinear feedback. If feedback lin-
earization is achievable (see [6] for conditions under
which a system is feedback linearizable), then it is
possible to achieve, first, cancellation of the nonlin-
ear functions and, second, desired closed-loop perfor-
mance through the application of powerful linear con-
trol methodologies.




Figure 1: Two-link planar robot.

j=12 Link 1 Link 2
R; (2) 1.5 1.5

L; (H) 8x107° | 8 x 107
K:(V —s) | 25.05 21.71

K (V —s) | 25.05 21.71

; (m) 0.45 0.20

l; (m) -0.15 -0.10
m; (Kg) | 100.0 5.0

I; (Kg.m?) | 6.25 0.61

J;i (Kg.m?) | 4.77 3.58

Table 1: Manipulator and Motor parameters

4 Simulation Results

Example simulations are carried out on a benchmark
robotic system proposed in [17]. The benchmark
robotic system is a two-link planar RLED robot ma-
nipulator, as shown in Figure 1, with DC motor actu-
ators. The link and the motor parameters are given
in Table 1. The controller gains in the control law (5)
are chosen as follows: K; = 10001543, K9 = 30053,
K3 = 301242, where I, represents an identity ma-
trix of dimension n x n.

Defining the state-vector of the two-link RLED
model as &y := [q; ¢2]7, ry = [¢1 ¢2)T, x5 =[Gy §a)T
and based on the methodology described in the previ-
ous section, we use the estimation model

z o= —plag — zi)+ 2z
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Zy = —p(&g—2)+ 3

t3 = —p(&—23)+ D" N(u—P)+ f(=;0),

where —p is the location of the eigenvalues of the sta-
bility matrices G;; in our simulations, we set p = 10.
Note that the above estimation model requires all state
measurements. However, the state measurements co-
incide with the measurements required for the the con-
trol law (5). Hence for the implementation of the FDA
methodology, no additional hardware, in the form of
SENnsOors, are necessary.

We use a three-layer sigmoidal neural network whose
ith output has the form [21]

N
fi(z;0) = Z éjl(l + e:z:p(:cTéjg + éja))‘l,
j=1

where éjl, éjg, éj;; are adjustable parameters and N
1s the number of neurons in the hidden layer; in our
simulations, we use 35 hidden neurons.

Three simulation experiments are performed. In the
first experiment we simulate the robotic system with-
out any fault. In the second experiment, we investi-
gate the detection of system faults while in the third
experiment we consider the problem of reconfiguring
the control law in order to accommodate the system
faults.

Normal operation of the Manipulator: We first
simulate the robot manipulator under normal operat-
ing conditions. The weights of the neural network are
initialized so that the neural network outputs are zero.
The learning rate is chosen as I' = 0.751545. Figure 2
shows the plot of the desired and the actual trajec-
tories of the joint angles. It is clear that the joint
angles follow the required trajectories. The figure also
shows the plot of the neural network outputs. From
the figure it is clear that the neural network outputs
remains close to zero, which corresponds to a no-fault
situation.

Detection of Faults: In this experiment, the manip-
ulator is simulated in the presence of faults and with
no reconfiguration of the control law. The weights of
the neural network are initialized such that the out-
puts of the neural network are zero and the learning
rate is chosen as I' = 0.75], 5. We first simulate the
system with one fault which occurs occurs at ¢ = 6s
and is due to a 5% change in the time constant of the
DC motor armature circuit of joint 1. Figure 3 shows
the plot of the joint angles and the norm of the neural
network output. The figure shows that the fault causes
a large tracking error in Link 1. It is also clear from
Figure 3 that when the fault occurs, the neural net-
work output 1 jumps to a non-zero value very quickly,
indicating a fault in Link 1.
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Figure 2: Normal operation: Joint angles and Neural
Network outputs.
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Figure 3: Operation with one fault: Joint angles and
the Neural Network outputs.
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Figure 4: Operation with two faults: Joint angles and
the Neural Network outputs.

Next, we simulate the system with two faults; one
fault occurs at ¢t = 6s and is due to a 5% change in
the time constant of the DC motor armature circuit
of joint 1 while the second fault occurs at t = 12s and
1s due to a similar change in the time constant of the
armature circuit of the DC motor of joint 2. Figure 4
shows the joint angles and the neural network outputs.
The figure shows that the error between the desired
and the actual trajectories of the joint angles increases
considerably after the occurrence of each fault. It is
also clear from Figure 4 that when the second fault
occurs at ¢ = 12s, the neural network output 2 jumps
to a non-zero value very quickly. Thus the neural net-
work outputs can be used not only to indicate the oc-
currence of a fault in the robotic manipulator but can
also be used to identify the location of the fault.
Accommodation of faults: In the final experiment,
we consider the accommodation of faults by reconfig-
uring the control law. Based on the state-space rep-
resentation of the RLED robotic system and the feed-
back linearization technique, we obtain the reconfig-
ured control law

ur:u—f)f,

where u, represents the reconfigured control used to
accommodate the fault in the manipulator. The
weights of the neural network were again initialized so
that the outputs of the neural network are zero and the
learning rate is chosen as I' = 0.7515 5. We first sim-
ulate the manipulator with one fault which occurs at
t = 6s and is due to a 5% change in the time constant
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Figure 5: Accommodation under one fault: Joint an-
gles and the Voltage inputs to the DC motors.

of the DC motor armature circuit of jont 1. Figure 5
shows that the reconfiguration of the control law re-
sults in the tracking of the desired trajectories by the
joint angles. The figure also shows the voltage input
to the motors as a result of the reconfiguration of the
control law remains within reasonable bounds.

We next simulate the manipulator with two faults;
one fault occurs at ¢ = 6s and is due to a 5% change
in the time constant of the DC motor armature circuit
of joint 1 while the second fault occurs at ¢ = 12s
and is due to a change in the time constant of the
armature circuit of the DC motor of joint 2. Figure 6
shows that the reconfiguration of the control law in
the presence of two faults results in the tracking of the
desired trajectories. The figure also shows the voltage
input to the motors as a result of the reconfiguration

of the control law.

5 Conclusions

A neural network based methodology is used for fanlt
detection and accommodation. Simulations show that
abrupt jumps in the armature circuit time constant of
the DC motors can be effectively detected, diagnosed
and accommodated. Thereby, the performance of the
robotic control system is maintained. These prelimi-
nary results of using nonlinear modeling techniques for
FDA purposes are very encouraging.

In this paper, neural network outputs are used for
FDA purposes in the robotic mauipulator. Using this
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Figure 6: Accommodation under two faults: Joint an-

gles and the Voltage inputs to the DC motors.

method to detect faults could lead to false alarms when
there are modeling uncertainties. Hence a more ro-
bust mechanism for fault detection needs to be inves-
tigated. The effects of modeling uncertainties on the
detection and accommodation of the fault needs a rig-
orous mathematical treatment vis-a-vis the stability
and the overall performance of the methodology and
is left for future work.
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