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Nomenclature

R, stator resistance
R, rotor resistance
ig stator current
L stator flux linkage
1 rotor current
v, rotor flux linkage
Yy magnitude of rotor flux linkage
u voltage input
® angular speed
P angle between the flux linkages in the rotor
n, number of pole pairs
o angle of rotation
L, stator inductance
L rotor inductance
M mutual inductance
c 1- M%(L,L,)
J rotor inertia
Ty load torque
T electric motor torque
(9)a> (*)g (*) in the (d,q) frame
(*)ar (X (*) in the (a,b) frame
Ol reference trajectory
Q) estimate of (¢)
Gy, O3 sliding variables
*)n nominal values of (¢)
o RJ/L,
p M/((oL,L;)
Y MZR/(oL,L >+ RJ/(OL)
1) n,M/(JL,)

Abstract

In this paper, we present a new robust control
technique for induction motors using neural networks
(NN). New tuning schemes are proposed which can
guarantee the boundedness of tracking error and weight
updates. A main advantage of our method is that we do
not require the regression matrix, so that no preliminary
dynamical analysis is needed. Another salient feature of
our NN approach is that no off-line learning phase is
needed. Full state feedback is needed for implementation.
Load torque and rotor resistance can be unknown but
bounded.
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1. Introduction

The induction motor is quite popular for fixed-speed
applications. Since rotor currents are induced, no brushes
and slip rings are needed. It is maintenance free, simple
in operation, rugged and generally less expensive than
either DC or synchronous motors [2]. On the other hand
its model is much more complicated than other machines
and because of this, it is considered as "the benchmark
problem in nonlinear systems" by the Editorial
Board of IEEE Transactions on Automatic Control in
comments on a recent paper [16].

There are many approaches to induction motor control
such as [1] [16] [21] and references therein.

Neural networks (NN) have been applied to system
identification {4] or identification-based control [3] [18],
little about the use of NN -in direct closed-loop
controllers that yield guaranteed performance. Some
results on the application of NN to robot are presented in
[9] [12] [14] [15]. Recently many NN controllers have
been proposed for various control applications [19] [20].

Problems that remain to be addressed in NN research
include ad hoc controller structures and the inability to
guarantee satisfactory performance of the system in terms
of small tracking errors and bounded NN weights.
Uncertainty on how to initialize the NN weights leads to
the necessity for "preliminary off-line tuning" [3] [5].

In the recent adaptive and robust control literature
there has been a tremendous amount of activity on a
special control scheme known as "backstepping” [10]
[11]. When used under some mild assumptions, many
existing robust and adaptive control techniques can be
extended to wide classes of applications. Dawson et al.
[7] have applied such techniques to various kind of
robotic control schemes with the inclusion of motor
dynamics. A major problem with backstepping
approaches is that certain functions must be "linear in the
unknown parameters”, and some very tedious analysis is
needed to determine a "regression matrix".

In this paper, we will use neural nets at each stage of
the backstepping procedure to estimate certain nonlinear
functions. This means that linearity in the parameters is
not needed, and no regression matrix need be found.
Thus, a major problem with backstepping is cured.
Compared with other NN approaches, the NN weights
here are tuned on-line, with no learning phase required.
Most importantly, we can guarantee the boundedness of
tracking error and weight updates. When compared with




adaptive controllers, we do not require persistent
excitation conditions.

The paper is organized as follows. We will first
describe a fifth-order model in Marino's paper [16] and
then an equivalent field oriented model in Section 2. In
Section 3 we will develop a robust NN control scheme
without the PE requirement. We first treat certain signals
in the system as fictitious control signals to a simpler
subsystem. Two-layer NN is used in this stage to design
the fictitious controllers. Then we apply a second two-
layer NN to robustly realize the fictitious NN signals.
Our method is modular in nature and hence can be applied
to other nonlinear systems with similar structures. Load
torque and rotor resistance can be unknown but bounded.
Full state is needed for implementation. Theory as well
as simulations in Section 3.2 and 3.3 show that our NN
control scheme works very well.

2. Models of Induction Motor
2.1 Induction Motor Model
A fifth-order model, which includes rotor dynamics,

under the assumptions of equal mutual inductance and
linear magnetic circuit, is given by Marino ez al. [16]
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i, ¥, u, denote current, flux linkage and stator voltage
input to the machine. The meaning of other symbols in
(2.1) are listed in the Nomenclature.

2.2 Field Oriented Model

This technique was introduced by Blaschke [1]. It
involves a transformation from the stator fixed frame
(a,b) to a frame (d.q). which rotates along the flux vector
(W, ¥y). The transformations between currents and flux
magnitudes in different frames are given by

]rid} =[ cosp  sinp ][i;.} 2.2)
lig] L-sinp cos plin) ‘
W4 :’ cos p sin P ][W.l}
I:WqJ L-sin p cos p W (2.3)
where
p= ran"(yi).
A state transfon;mtion was suggested by Blaschke [1] as
o =, Yy = VW?W%
p= tim‘](}y‘l)’ 1y = W,M‘M
) \Uil. Yy
i, = Yalb-Wela (2.4
Wy
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Substituting (2.2), (2.3) and (2.4) into (2.1) yields the
field oriented model .

do - TL :
E=- 4 Uy, (2.5a)
d 1 |
9% = -oyy + oM i, (2.5b)

-2
dig _ -yid+ozB\yd+npmiq+aM\:’i+—]~um(2.5c)
t d

S

dﬁ: -yiq—npmﬁWd—npmid—(xMﬂ+ l ug,(2.5d)
dt Yd oL,

P o+ amle (2.5¢)
dt WYd

with
o =R/L,, ¥ = M’RJ/(OL,LI)+RJ/(oLy),
B=M/((oLL,), W=nM/JL,).
Since R, is unknown, o, y are also unknown. However,
B and pu are known. Blaschke [1] also developed a
feedback linearization plus PI controller to control (2.5).
Marino et al. [16] went a step further to use adaptive
input-output decoupling technique to tackle the control
problem. In the next section, we will make use of a
special structure of the above model to perform our NN
controller design.

3. Robust Control of Induction Motor Using
Neural Networks

By looking at (2.5), one will notice that there exists
a very special structure in it. (2.5a) to (2.5d) can be
considered as two nonlinear systems in cascade. i, iy can
be treated as the outputs of subsystem (2.5¢)-(2.5d). At
the same time, they can also be treated as fictitious
inputs to the subsystem (2.5a)-(2.5b). It is this special
structure that we will exploit in our NN controller
design. Before we go into the details, two general
assumptions and some mathematical preliminaries are
needed:

Assumption I: The reference trajectories " and Yy
are differentiable and bounded.

Assumption 2: The load torque T, and rotor
resistance R, are unknown but bounded.

3.1 Preliminaries
Neural Networks

Given an input vector x in RNI, a three-layer neural

net (NN) has an output given by
N> N 3

=2

=1

Ny 1

i i i . R
WUG}Z \’_]ka+9\i§+9\ué 1=1. ... N;

k=1 3 i

(3.1
with o(*) the activation function. v;, the first-to-second
layer interconnection weights. and “lij the second-to-third
layer interconnection weights. 8,,,. 6, .. m = 1.2, are
called the threshold offsets and the number of neurons in
layer [ is N;. with N, the number of hidden-laver neurons.
A three layer neural network is shown in Fig. 3.1.
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Fig. 3.1 Three layer Neural Network

The NN equation may be conveniently expressed in
matrix format by defining x = [xo X1 ... xN,]T, y=1y; y2
yN3]T, and weight matrices WT = [wy], VT = [vy].
Including xp = 1 in x allows one to include the threshold
vector [By1 Bv2 ... ByN,] as the first column of VT.
Hence the NN outputs can be compactly written as

y = WTg(VTx) (3.2)
where, if z = [z; z, ...]JT is a vector we define 6(z) =
[6(z)) 6(zy)... I%. Including 1 as a first term in the vector
o(VTx) allows one to incorporate the thresholds 8, as
the first column of WT. Any tuning of W and V then
includes tuning of the thresholds as well. Basically the
functional approximation property of NN is used in this

paper [6] [8].
Stability of Systems

Consider the following nonlinear system

x = f(x,u.t), y = h(x,t). (3.3)
with state x(t) € R". We say the solution is uniformly
ultimately bounded (UUB) if there exists a compact set
U < R" such that for all x(to) = xo € U, there exists an
€ > 0 and a number T(g,xo) such that lIx(t)ll < ¢ for all
t>2t+ T.

3.2 Robust Backstepping Controller Design

In the remainder of the paper we consider the NN for
the case of fixed first-layer weights V. The use of two-
layer NN with no backstepping has been applied to
several occasions [15] [20]. Here, we consider general
basis tunctions ¢(x) and propose various weight tuning
algorithms with and without the requirement of persistent
excitation (PE) on certain signals in the system. The
tuning algorithms generally need persistent excitation for
suitable performance. A modified tuning algorithm is
then proposed to make the NN controller robust so that
PE is not needed.

Define 0(x) = o(VTx) so that the net output is

v = W), 3.4)

Then, for suitable NN approximation properties, ¢(x)
must satisfy some conditions. Take Ny =n, Ny =m.
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Definition 3.1 [20]

Let S be a compact simply connected set of R, and
0(x): S — RN be integrable and bounded. Then ¢ is said
to provide a basis for C"(s) if
1. A constant function on S can be expressed as (3.4) for
finite N,.

2. The functional range of NN (3.4) is dense in C"(s) for
countable N,.

The issue of selecting ¢ and V so that ¢ provides a
basis, as well as the further issue of selecting N, for a
given S < R" and en, are topics of current research. One
possibility is to use the radial basis functions.

3.2.1 Controller Structure

We first treat iy, iq as the ideal fictitious control
signals for a subsystem consisting of (2.5a) - (2.5b).
Then we use a second 2-layer NN to realize these
fictitious signals.

Step 1: Selection of desired ig and iy to control
subsystem (2.5a) and (2.5b)

Our control objective is to regulate the rotor speed
and the magnetic flux magnitude. Denote ®" and y4" as
the desired reference levels of ® and y,4 respectively.
First, we rewrite (2.5a-b) as

der - To g pyia, (3.52)

d 7

de2 = gy + Mg (3.5b)
where

e1=0m- o, €2 = W4 - Vi

Since o in (3.5b) is unknown, this will cause some
difficulties of using the results of backstepping NN [13].
The difficulty is due to that fact that the stability analysis
will be much more complicated if o is unknown. To
alleviate this difficulty, we apply the following trick.
Dividing both sides of (3.5b) by oM yields
&: _1_wd + 14.
cMd M
Now the coefficient of iy 1s unity and known. Then we
can express (3.5) as

(3.6)
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Fig. 3.2 Overall control scheme.

De = F; + Gii 3.7
where
_Te .l ~_[1 0 ]
e_[eﬂ’ l—[id:', D_[O /(oM) |’
_ -Tx/J] _[ Ly 0]
Fi —[ o b G = 0 1k

It should be noted that G; is exactly known and
invertible. By treating i as a fictitious input, we design a
controller for the ideal i as

i=G[Fi-E-Kie), K;>0 (3.8)

with K, a design parameter, E=[0 yoM]", F; the
estimate of F,. Substituting (3.8) into (3.7) gives

De =F; - F; - Kie + Gin) 39

where 1} =i - i. The form of Fy will be discussed in the
next section. The usual approach is by assuming F; to
be linear parametrizable (LP) so that standard adaptive
control can be used in this stage [10] [11]. As we will
see in a moment, we will use a two-layer NN method to
approximate F;. The advantage is that no linearity in the

unknown parameters is needed and no regression matrix
need be found.

Step 2: Realization of the desired signals in (3.8).

In order to achieve the desirable result in Step 1, i.e.
the ideal fictitious control signal in (3.8), we need to find
the error dynamics of 1 which is defined as

n=i-i (3.10)
Differentiating (3.10) and using the dynamics in (2.5)
yields

N =F + B 4 Gu (3.11)
where
F%HOW" = l:“Yiq ) n.p(oBWd _. npmid} + G-lli:.\ly
“Yld + npmlq
-aMﬁ
Fy= Yo |46l F + Ko+ GIKDYF-Fy - Kier Gim,
aPyy + aMﬁi—J
Ya
1 0
Gy = —1—{ ]
oL.l0 1

To make 7 as small as possible, the following control u
is chosen as
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2-layer
Neural
Network 2

u=GJ[F"™" - F,-Km-Glel.  (3.12)

Note that F is the estimate of the unknown function F,.
Similar to Step 1, the usual way of design is to assume
F; to be LP. However, in our controller design here, we
will use another two-layer NN to approximate F, which
means no regression matrix requirement is needed. Also
note that a term -Gle is added in (3.12) which is
necessary to cancel the effect of G1 in (3.9) so that we
will be able to prove the closed-loop stabiiity.

Step 3: Closed-loop Stability Analysis and Weight
Tuning Algorithms

We will perform a detailed treatment of stability and
performance analysis of two weight tuning algorithms in
the next few sections. The overall control scheme is
shown in Fig. 3.2.

Finally u = [u; u4]" is related to the actual control
Uy, Uy in (2.1) through the following relation

IR A b

3.2.2 Bounding Assumptions

(3.13)

Assume that the nonlinear functions F;, F, in (3.7)
and (3.11) can be represented as two-layer neural nets for
some constant "ideal” weights W, i.e.

Fi=Wi¢1 +&,  llel <& = constant

F2=Wio2+€2,  lledl <en = constant  (3.14)
where ¢,(x), ¢,(x), provide suitable basis functions. The
net reconstruction error g;x) is bounded by a known
constant gy, i =1, 2.

Define the NN functional estimate of F; in (3.7) by
T

~

F1 =Wi¢,, 3.15)
Then the error dynamics (3.9) becomes
. ~T
De = Wi¢; - Kie + Gin+¢;. (3.16)

Similarly, define the NN functional estimate of F, in

(3.11) by
~ ~T
F2 = W2¢a. 3.17)

The error dynamics of 1 in (3.11) is then given by
. o~T
N=W202-Km-Gle+ep. - (3.18)




Note that there is a term Gn in (3.16) and a term - Gle
in (3.18). This means there are couplings between the
error dynamics (3.16) and (3.18). The closed-loop
stability analysis and the weight tuning algorithms will
be discussed in next section.

An additional standard assumption, which is quite
common in the neural networks literature [14] [15], is
stated next.

Assumption 3: The ideal weights are bounded by
known positive values so that

W g € Wiy, EWollE < Woy, or IFZHg < Zy
where Z = diag{ W1, W,}.

3.2.3 Weight Updates

The result is summarized in the following theorem.
Theorem 3.1: Let the desired trajectories be bounded.
Take the control input (3.12) with NN weight tuning be
provided by

=Tire’ - kI NGIW,

W =TT - kJIlIW, (3.19b)
with any constant matrices I'y = IN>0T=0I;>0,
and scalar positive constant ky. Then the errors e(t), n(t)
are UUB. NN weight estimates are bounded. The errors
e(t), N(t) can be kept as small as desired by increasing
gains K in (3.12).
Proof. Define

C=[e" T] =Wi- Wi,

Z dlag{W| Wz} I =diag{T, I}
Let the NN approximation property (i.e. equations (3.14)
holds with given accuracy gin's for all { in the compact
set Ug= (Ll ICIN< by} with b a positive constant. Let
{(0)e Ug. Now consider the following Lyapunov
function candidate for error systems (3.9) and (3.11)

LpT L7 17
V= EC D + Luz r'z) (3.20)

where D > 0 is defined in (3.7). Differentiating (3.20) and
using (3.12), (3.16), (3. 18) (3 19) we have

v=L" K + klIgl tr{Z (Z- Z) b+ e (3.21)
~ 7
Since Z(Z-Z)} = <Z.Z>F - WZlip < IZIFIZIE - WZe,
there results
V € KuminllO* +klIINIZNE(Z - 1Z1E) + entih
= N [KnninllEll + kMZNEZIE - Zo) - €n]
(3.22)

which is negative as long as the term in square bracket is
positive. Completing the square yields

KminllCll + kMZI(1ZHg-ZM) - eN

~ 2
= ky(1Zllg - Z/2)” - kuZiw/4 + KminllCll - £
which is guaranteed positive as long as

(3.19a)

WG > [kZ/4 + en)/Kumin (3.23)
or
WZlle > Zw/2 + VZ34 + entke. (3.24)

Thus, V is negative outside a compact set. The form of
the right-hand side of (3.23) shows that the control gain
K can be selected large enough so that
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[kvZ2/4 + en)/Komin < be.
Therefore, any trajectory {(t) beginning in Ug evolves
completely within Ur. According to a standard Lyapunov
theorem exiension [17], this demonstrates the UUB of

both { and Z.
Q.E.D.
Note also that the problem of neural net weight
initialization occurring in other approaches in the
literature does not arise, since if is taken as zero the
terms -K;e, -K,1 stabilizes the plant on an interim basis.
A formal proof reveals that K or K;, K, should be large
enough and the initial error {(0) small enough [15].
A comparison with the results of Narendra et al. [17]
shows that the NN reconstruction error €N increases the

bounds on lI{jl and lIZIlr in a very interesting way. Note,
however, that arbitrarily small tracking error bounds may
be achieved by selecting large control gains K. On the
other hand, the NN weight error is fundamentally
bounded by Zy;, the known bound on the ideal weights Z.
The parameter ky offers a design tradeoff between the

relative eventual magnitudes of II{]l and 11Zllr; a smaller

k, yields a smaller II{ll and a larger |IEIIF, and vice versa.
Note that PE is not needed to establish the bounds

on Z with the modified weight tuning algorithm (3.31).
3.3 Simulation Results

Using the controller described in Section 3.2, we
performed some simulation studies. In these simulations,
we assume states are available. Using the data in [16], we
simulate our robust NN controller without PE in Section
3.2. Fig. 3.3 shows the performance of PD control. The
system goes unstable when there is a change in reference.
There also exists steady-state error when the load
disturbance is on. Fig. 3.4 shows the performance of PD
+ NN 1. The load disturbance is removed. However, due
to the lack of compensation for the nonlinear dynamics
by NN 2, the system becomes unstable when there is
sudden change in speed reference. Fig. 3.5 shows the
performance of PD + NN 2. Althought the system is
stable now, the load disturbance effects still exists. Fig.
3.6 shows the performance of the complete controller.
Now the system is both stable and clear of load
disturbance. We used 4 and 10 units in the two NN's
which approximate F|, F,, respectively. The reference
trajectories are the same as those in Marino's paper [16].
o' is zero from 0 to 0.3 s., 220 r/s from 0.3 to 5 s., and
350 r/s from 5 sec. onwards. Y4 is 1.3 Wb from O to 5
s. and 0.8 Wb after 5 s. The discontinuities are smoothed
by linear interpolations. A load disturbance of 40 Nm is
added at t = 2 5. We set Ry = 0.15, T y=0, Ky =
diag{35,25}, K, = diag{25,25}, k, =1, I;=10Li=1,
2. The applied voltage u, has the same magnitude as that
of Marino's paper [16] and is well within inverter limits.

It should be noted that the plots of u, u,are not due
to switching in sliding mode control as it appears to be.
Similar waveforms have also been observed in Marino's
adaptive input-output feedback method [16].
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4. Conclusion
control scheme to a "monlinear benchmark

There are four important contributions in this paper. problem” known as induction motors. The scheme
The first one is that we have derived a novel robust NN involves the backstepping technique. Our method has
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achieved the same performance as that of Marino's
adaptive input-output feedback method [16]. The design
is modular and systematic and hence can be easily applied
to nonlinear systems with similar structures. The second
contribution is that our method does not require the linear
parametrizability of the unknown parameters (LP). No
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regression matrix is needed, so that no preliminary
dynamical analysis is needed. We believe this advantage
is very useful for some systems where the LP property
does not hold. The third one is that new tuning schemes,
which do not require any persistent excitation conditions,
are proposed which can guarantee the boundedness of




tracking error and weight updates. The fourth one is that
we do not need motor accelerations and the derivative of
flux magnitude, as compared to some conventional
sliding control schemes such as the works of Soto and
Yeung [21].
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