Approximation of Stochastic Evolution Equations in Hilbert Spaces *

Kazufumi Ito!

Abstract In this paper we consider the Ito’s stochas-
tic differential equation in Hilbert spaces. We dis-
cuss and analyze several difference approximations
in time. Applications to the the Zakai equation and
the Kushner equation in nonlinear filtering theory are
presented.

1 Introduction

Consider an abstract Ito’s stochastic differentiable
equation

(1.1) dz(t)+ Az(t) dt = Bz(t)dw(t), z(0) =z € H,

where H is a Hilbert space and A is a single-valued
maximal monotone operator on H and w(t) is a
Wiener process in a separable Hilbert space E with
nuclear covariance operator Q. Let (2, F, P) be the
probability space with an increasing family of sub o
algebra {F;} of F that is right continuous and com-
plete with respect to the probability P. Assume that
w(t) is Fi-adapted and the initial condition an H-
valued, Fy measurable random variable. Assume for
z €dom(A) Bz € L(E, H). In Section 2 we consider
the time discretization schemes of (1.1)

(1.2) zp—zp_+At Azy = Bry_, (w(tk)—w(tk_l)),

where At > 0, t; = 0 and ¢ = kAt and summa-
rize the results in {It1] concerning the convergence of
the discrete-time solution {«;} to a unique strong so-
lutions to (1.1) under appropriate conditions on the
operators A and B.

The stochastic partial differential equation (1.1)
arises in the nonlinear filtering problem as the so-
called Zakai equation and Kushner equation. The
Zakai equation is linear and the abstract formulation
of Section 2 is applied to the Zakai equation. How-
ever, the Kushner equation can not be treated un-
der the abstract formulation because of its indefinite
cubic nonlinearity. We will sketch a construction of
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nonnegative solutions to the Kushner equation by a
difference approximation.

The other objective is to develop the higher order
difference approximation for (1.1) based on the oper-
ator splitting methods when A, B are linear. In order
to develop higher order (3rd and 4th order) methods
1t is necessary to use the following Winner integral

2%
Az = / (s— tk_l—-*-tk)dw(s)
th—1 2

besides the increment Aw; = w(t) — w(ty—,) of the
Winner process w. Note that 1, (s — 1"—“‘2#"—) are
the first two Taylor elements at the midpoint te_ 1=

te_1+t - - - . .
"++". A brief discussion of such constructions is

given in Section 4.

2 Stochastic Evolution Equa-
tions

In this section we summarize the results in [It1] for the
stochastic evolution equation (1.1) and the difference
approximation (1.2). Let S = ((0,7) x Q, B x F, dt x
dP). For the initial condition £ €dom(A) we define
the solution of (1.1) as follows.

Definition A continuous F;-adapted H-valued pro-
cess z(t) such that Az(t) € L%(S; H) is a solution of
(1.1) if

(2.1) :c(t):x—/o Az(s) ds-i—/0 Bz(s) dw(s)

for t € [0,T], where the stochastic integral is defined
in the Ito’s sense (e.g., see [KR]).

This definition corresponds to the strong solution
for the deterministic case. Compare it with the weak
or variational solution of [KR] (also, see Section 2.1).

Assume the monotonicity condition: for

z, T2 €dom(A)

1
(A:Cl - A.’L‘z, T — 22) - § IB:L‘l - Btzlzq
(C1)

+plzi — 22|y > 0 for some p > 0.




Theorem 2.1 Assume C; holds. Then, the strong
solution to (1.1) is unique.

Next, we assume the boundedness condition: for
z €dom(A)

(C2) 2(Az, z) - [Bz[y + plal}y +a > 0
for some p, a > 0.

Then, the discrete-time solution {z:} to (1.2) is
defined and satisfies

E (|zi|* + At|Bzild) + Y 2At (Azy, 7 )
(2.2) k=1
< €T (E (|zo* + At|Bzo[3) + a)

for 1 < k < m, independent of At > 0, where At =
%. But, it is not sufficient to prove the convergence
of {zr}. We need a priori estimate for the sequence
{z+} generated by (1.2); given z €dom(A) there exist
a constant é > 0 such that

(Cs3) E Y At|Azi|* <6 uniformly in At > 0.
k=1
Define a function z,(t) by
zA(t) =z ift € [k (k+1)A), k> 0.

where A = At. The following theorem is proved in
[1t1].

Theorem 2.2 Assume that the conditions (C,)-(C3)
hold. Then the equation (1.1) has the unique solu-
tion z(t). Moreover, the sequence generated by (1.2)
converges to z(t) in the sense that

Az, (t) — Az(t) weakly in L2(S; H)
z(t) — z(t) weakly star in L (0, T; L%(Q; H)),
as A = At — 0 and we have
El|z(t)? - E |z
(2.3)

+E/0 (2 (Az(s), z(s)) — |B:c(s)|2Q)ds =0.

We refer to [It1] for examples for which Theorem
2.2 are applied.

2.1 Stochastic Evolution Equations
under Gelfand Triple

In order to prove the convergence of the sequence
{zx} generated by (1.2) without condition C3 we can

use the Gelfand triple formulation as in [KR]. Assume
that A = A; + A; where A; is hemicontinuous, mono-
tone, bounded operator on Banach space V; for each
it = 1, 2, where V;, 1 =,2 are real, separable, re-
flexive Banach spaces and densely and continuously
embedded into H. Let V = Vi NV,. Then V is a Ba-
nach space with norm |z|v = |z|v, + |z|v,- Assume
A satisfies

(A1) Hemicontinuity of A:

the function (A(z1 + Az3), z) is

continuous in A on R,

Monotonicity of (A, B):

(Az) — Azs, 21 — 22) — § |Bz1 — B[}
+plzi — 220} >0,

Coercivity of (A, B):

(Az. z) = 3 [Bzlg + p(1 + |zI})
> a (|l +1=2),

Boundedness of A:

|[Aizlve <M (5 + ]zl{,‘l—l) foe each i.

Then, the following theorem is proved in [It1].

Theorem 2.3 Assume that A = A; + A, with 4;
hemicontinous, monotone, bounded operator on V;
for i = 1. 2 and that (A;) — (A4) hold. Then equa-
tion (1.1) has the unique solution z(t) € LP*(S;V;)N
LP3(S:Va) N L>(0.T; L%(Q; H)). Moreover the se-
quence generated by (1.2) converges to z(t) in the
sense that

Azy(t) — Az(t) weakly in L?(S;V*) and
zA(t) — z(t) weakly in LP(S; V)

and weakly star in L=(0, T; L¥(Q; H)),
as A = At — 0 and we have (2.3).

Theorem 2.3 can be applied to the following exam-
ple. Let A; = —A € L(HY{(D), H~1(D)) and A3¢ =
|o[?P~?¢ on LP(D) where D is a bounded open set in
R4 with sufficiently smooth boundary and A denotes
the Laplacian. The operator B is, for example, de-
fined by Bo = o (V¢, |6|""'¢) € R¥*! where r = p/2
and o is an appropriately chosen constant . Setting
Vi = H{(D), Vo = L?(D), H = L*(D), E = R4+!
and p; = 2, p, = p one can show that the conditions




in Theorem 2.3 are satisfied. Compare this result
with Theorem 2.2 that defines the strong solution.

3 Nonlinear Filtering Equa-
tions

Applications of the stochastic dynamics (1.1) include
the Zakai equation and the Kushner equation in the
nonlinear filtering problem [Ro] as follows. A signal
process z(t) € R? satisfies the Ito stochastic differen-
tial equation

(3.1) dz(t) = g(z(t)) dt + a(z(t)) dw1(t), z(0) = z,
and the observation process y(¢) € RP is given by
(3.2) dy(t) = h(z(t)) dt + dwa(t), y(0) = 0.

Assume that w;(t), wo(t) are F;-adapted indepen-
dent Wiener process with covariance I and R, re-
spectively. The initial condition z is a R%-valued, Fy
measurable random variable with probability density
mo(z). Assume that the functions g, ¢ and h are
bounded and that g, ¢ are Lipschitz. Then the un-
normalized conditional probability density function

p(t) = p(t, z):

Elg(z(t) y(s), 0< s <) = %

satisfies the Zakai equation
(3.3) dp(t) + Ap(t)dt = Bp(t)dy(t), p(0) = mo,

where

d a 5]
(34) —A¢ = 6—(ai,j 5z_j¢)

'y - a—xi(aﬂﬁ)

and

(3.5) B¢ =hR™'¢

with
D SO I
a_2 o* and a; = g; arja,,_,.

The Zakai theory is based on the change of probability
measure [Ro]. Let n(t) be a stochastic process defined
by

n(t) = exp (— /Ot h*(z)R™dwy(s)

t
_l/ h'(z)R”h(r)ds).
2 Jo

Define the probability measure P on (2, F) by

dP
Pl = n(t)-

Fq

Then the observation process y(t) becomes an
Fi— adapted Wiener process with covariance R on
(Q2,F, P).

The normalized probability density

wt2)=p(t,2) [ plt,2)ds

satisfies the Kushner equation
(3.6)
dx(t) + Aw(t) dt

= (hn(t) — 7r(t)/Rd hxdz) (dy(t) — /Rd hxdz),

with 7(0) = .

In [It2] we analyze the convergence of numerical
approximations of the Zakai equation (3.3) by choos-
ing

H =L*R% and V = H'(R%).

Assume that there exist positive constants p, 8 such
that

1 1
(A6, 8) =5 |Bélatrlely > 58181 forallgeV.
Let Api, 1 € k < m be the approximation error
Apk = pr — p(tk) at ty = kAt

with At = L. In [It2] we obtain the following con-
vergence rate of the Euler scheme (1.2) of the Zakai
equation:

(3.7 Pk — Pk—1 + At Apr = BAy;.

Theorem 3.1 Assume that the solution p(t) of the
Zakai equation (3.3) satisfies the following regularity:

T
E Bp(t)[2 < M, and / EAp(t)[3 dt < M,
0

for some M, > 0, independent of t € [0,7]. Then the
Euler scheme (3.7) is of first order in the sense that

k
g E Z Ate?(tx=t) | Ap. |2

i=1

E|Apl} +

20T _
<M ag,
2p

for 1 <k < m and some My > 0.




In [It2] we also consider the time discretization of
the Zakai equation (3.3) based on the Milshtein ap-
proximation of the Ito stochastic integral:

Pk — Pr—1 + At Apg
(3.8) .
= (BAp + 5 BB(Ayi — At)) pi_1.

and obtain the convergence rate estimate:

Theorem 3.2 Assume that the solution p(t) of the
Zakai equation (3.3) satisfies the regularity

E|Bp(t)l} < M3 and £ |Ap(t)|}; < Ms.

Then, the Milshtein scheme (3.8) is of second order
in the sense that

ElAply + 8 E 5, At |Ap, |}

20T _
e___lAtz
2p

for 1 < k < m and some M4 > 0.

< M,y

Remark: The regularity assumptions on solutions to
the Zakai (3.3) can be verified under certain smooth-
ness assumptions on the function g, ¢, h and b and
the initial condition my (e.g., see [Ro]). In [It1] the
case when w; (), ws(t) are correlated and spatial ap-
proximations of the Zakai equation are also investi-
gated.

3.1 Operator Splitting Methods

Consider the approximation scheme based on the
Trotter product formula (e.g., [BGR],[FL],[Pi]):

(3.9) pr—pr-1+At Apr = (e(B Ay»-—A,-‘BB)__I) Pot,
where
P(t) = TB(At)pp_y = e BA-4BB) p,

is the semigroup generated by the Winner process y(-)
and satisfies

t
Bp(s)dy(s), t2te-1.

th—1

P(t) — pe-1=

Thus, (3.9) is equivalently written as
pr = (I + AtA)'TB(At)pe—,

where (I + AtA)~! is the Hile approximation of the
semigroup S(t), t > 0 generated by —A on H. The
Milshtein scheme is closely related to (3.9) in the
sense that

[o0]
TE(At) =Y %B"\/Atk Ha(
k=1

ﬂ.)
VAt

where Hp(-) is the k-th Hermite polynomial on R,
and that the term

1
pe-1+ (BAyx + 3 BB(Ay} — At)) pe-1

appears in the Milshtein scheme (3.8) is the second
order approximation of TB(At)pi_;. In fact, it can
be proved that the splitting scheme (3.9) is of second
order and Theorem 3.2 also holds for the sequence
generated by (3.9).

3.2 Approximation of the Kushner
equation

In this section we give a difference method that over-
comes the difficulty of the indefinite cubic nonlinear-
ity of the Kushner equation. Consider the difference
scheme:
(3.10)

e + At (A + 7l'k_1[h] (h- Wk_l[h])) mr = €k

Ex(z) = eP@=meo1B)Ava— 3 (h(@)-mu-slB])’
where At = %, Ayr = Y1, — Y1, and

/h(z)n_l dz

/71'1:-1 dz

The scheme (3.10) is again splitting the deterministic
part and the stochastic part.

7l'k._1[h] =

It can be shown that the sequence {7} generated
by (3.10) satisfies

7t >0ae inS

and uniformly integrable on S. Based on this fact,
it can be proved that the sequence {mx} converges
to the unique nonnegative solution to the Kushner
equation in the sense of Theorem 2.3.

4 Higher Order Difference

Methods

In this section we discuss higher order approximations
to the Zakai equation. Both the Milshtein scheme
(3.8) and operator splitting scheme (3.9) are based
on the increment Ay = Y, — y,_, of the Winner
process y(t) and of second order. In order to develop
a higher order scheme we need to use the additional
Winner integral

tk
t1 +1
Azk:/ (s — =ttty 4.
tx-1 2




This point is clearly seen from the following discus-
sion. Given f € L%(0, T) (deterministic), consider the
Winner integral

T
X = /o £(5) dy(s).

If we approximate this just by the increment of the
Winner process y, i.e.,

Xy = Z fte_3)Aue
k=1

then we have the estimate
” v. |2 T 2 g
ElX - X1° < 5(A0)°|f o
On the other hand, if approximate X by
. m
X,=) fte_1)Aye + f/(te_y ) Az
k=1

then we have the estimate

EIX = Xal? € (AU |

- 80

Note that X is the Wiener integral on [0, T] when the
function f is replaced by the first Taylor polynomial
Of f at tk—%

fleo) + f(teoy) (s —tey)
on each subinterval (tx_;,ts).

Now, we extend this idea to the Zakai equation.
First, note that

E |Ay|? = O(At) and E Az |? = O(At)2.

We construct the third order method by substituting
the Milshtein approximation into the Picard iterate,
ie.,

Py ¢ = S(At)pi

at

+ S(t — s)BS(s)(I + B(y(s + tg-1) —

0

y(te-1))

+5BB((Y(s +te1) = ste-1)? = 5))pe-s dy(s + te-1)

where S(t) = S~4(t), t > 0 is the semigroup gener-
ated by —A on H. Then, if we approximate Winner
integral in the order \/At3 we obtain the formula
(4.1)

pe = S(At>Z HBHVAT H( S

JAL Y+ CAz| pr-1

where we use the fact that
d

C = = (S(t ~ 5)BS(s)) (t5-3)

(4.2)
At At At At
= AS(T)BS(T) - S(T)BS(—?)A.
We can repeat this procedure again to obtain the
forth order method, i.e.,
th = S(At)pe_,

At

+ | S(t-s)BS(s)

1) — y(te- 1))
VG

x(z k'Bk\/_ Hy (y(s+tk

k=0

+[45()BS(3) - S(3)BS(5)4]

d At
< [ (0= 5 U0 + tem)pecs) (o + ta),

Then, if we approximate Winner integral in the order
At we obtain the formula

(4.3)

4
P = [S(At)z %B"\/AtkH (Bue
E=0

Vi

)+ CAzk] Pk—1

1
+5 (CB+ BC)AyrAzg pr—y

where we used the fact that

/ Y-8 [ duto) duts

- /OA' /0‘(a— %)dw(a) dw(s)

1 At

= —w(t) (s - é—) dw(s).
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