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Abstract

We consider the design of controllers in the context of
the ¢! sampled-data problem. Given a continuous-time
plant, with continuous-time performance objectives, ex-
pressed in terms of the L°-induced norm, we consider
two possible controller configurations. The first is a
controller with sampled measurements and continuous-
time control signals, and the second is a controller with
continuous-time measurements but with fixed hold func-
tions for the controls. There is a further restriction
on the structure of the controller that leads to opti-
mal “hold functions”, and optimal sampling operations
respectively. We show that these two problems are in
some sense dual problems. These problems differs from
standard discrete-time methods in that it takes into con-
sideration the inter-sample behavior of the closed loop
system. The resulting closed loop system dynamics con-
sist of both continuous-time and discrete-time dynam-
ics and thus such systems are known as hybrid systems.
These problems further differ from standard so-called
sampled-data problems in that the sampler and hold op-
erations are not both fixed, but are allowed to be part
of the design process. We show that optimal controllers
(in the sense of induced norms) have an appropriately
defined shift invariance property. We also present a an
approximation procedure for designing almost optimal
controllers in the case of the ¢! problem.

1 Introduction

This paper is concerned with designing certain types of
sampled-data controllers for continuous-time systems to
optimaly achieve certain performance specifications in
the presence of uncertainty. Contrary to discrete time
designs, such controllers are designed taking into con-
sideration the inter-sample behavior of the system. Such
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Figure 1: The two types of controllers

hybrid systems are generally known as sampled-data sys-
tems, and have recently received renewed interest by the
control community.

Much work has been devoted recently to these
sampled-data problems with fixed hold and sampler op-
erations. Relatively much less work has concentrated
on the extra design freedom possible in the design
of the sampler and hold operations (the notable ex-
ceptions being {1,2], in the context of the H* prob-
lem). In this paper we will explicitly address the de-
sign of optimal hold functions and optimal sampler
by posing the problems of design of controllers which
are discrete-input/continuous-output and continuous-
output/discrete-input systems respectively. The result-
ing controllers will have incorporated in them the op-
timal hold functions and optimal sampling operations
respectively.

The difficulty in considering the continuous-time be-
havior of sampled-data systems, is that it i1s time vary-
ing, even when the plant and the controller are both
time-invariant. We consider in this paper two versions
of the so-called standard problem shown in figure 1. The
continuous time controller C is constrained to be of ei-
ther of the two forms Cy.S,; or H,;Cy., where S; is an
ideal sampler, H, is a zero-order hold (both of period 7),
and Cg4,, C.q4 are discrete-input/continuous-output and




continuous-input/discrete-output systems respectively.
All the developments in this paper apply equaly to the
case when S; and H, are generalized sample and hold
operations, as long as they are fixed apriori. The prob-
lems thus become those of optimizing over the controllers
C.q and Cy. respectively. Because of the assumed struc-
ture, the optimal C.q will essentially have an optimal
sampler imbedded in it, and the optimal Cg4, will have
an optimal hold function imbedded in it.

Since the closed loop mapping from exogenous input
w to regulated output z could be time-varying or peri-
odically time-varying, we will use the L*°-induced norm
as measure of performance of the closed loop system.
In this paper we will use the framework developed in
[5,6,7] to study these ¢! sampled-data problem. Specif-
icaly, our objective is to design stabilizing controllers
Cecq and Cy4, that minimize (or bound) the closed loop
L*°-induced norm. This minimization results from pos-
ing time domain specifications and design constraints,
which is quite natural for control system design. To em-
phasize the point made earlier, the inputs are continuous
time inputs, the errors are continuous time errors (see
figure 1), however the system is a hybrid system with a
continuous-time plant and a hybrid controller. The dis-
crete time methods for ¢! designs (e.g. [8,10,9]), cannot
handle this problem directly, and is only concerned with
the performance at the sampling instants. Furthermore,
the setup in [7,11] is not immediately applicable since
there, a fixed sampler and hold devices are assumed. In
contrast, here we do not assume any previous structure
on the sampling or hold devices.

We will begin without any assumptions on the struc-
ture of the systems C.4 and Cy., beyond that they be
linear (not necessarly stable) operators between signals
over the appropriate time axes. We will then show that
optimal C.4 and Cy4, exist that have a certain shift-
invariant structure if the original plant G is time invari-
ant. These result is elucidated by appropriately lifting
the systems and considering them as purely discrete-
time systems with infinite-dimensional input and out-
put spaces as in [5,6,7]. We then use arguments about
the performance of time-varying versus time-invariant
controllers when the plant in question is time-invariant
(similar to the averaging arguments in [3,4]), in order
to show that the optimal controllers C.q4 and Cy4. can
be chosen to be shift-invariant (in the sense that their
liftings are shift invariant).

The above arguments settle the issue of which class
of controllers one should look for in these problems. We
then address the issue of design in the context of the ¢!
problem. The resulting problems are ¢! problems but
with a controller of either infinite-dimensional input or
output space. We use an approximation procedure to
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tackle this problem and show that in the limit, it is very
intuitively related to the problem of designing multirate
controllers in which the measurements are sampled much
faster than the control or visa versa.

The remainder of this paper is organized as follows;
in the next section we collect some facts about the lift-
ing technique in continuous time that will be used in
this paper. Section 3 then applies this to the problem
at hand to elucidate the structure of the controllers in
terms of their liftings. We then outline the averaging
argument that shows that one can always find optimal
controllers whose liftings are shift invariant. The last
section illustrates an approximation procedure for re-
ducing these two problems to standard discrete-time £
problems. The relations of these approximations to cer-
tain multirate configurations in the limit are outlined,
and the convergence of the approximation procedure is
investigated.

2 The Lifting Technique in Con-
tinuous Time

In this section we briefly summarize the lifting tech-
nique for continuous-time periodic systems and apply it
to the two problems at hand (for the details, see [5,6]).
The idea of the lifting technique is to put a periodic
continuous-time system in a strong correspondence with
a shift-invariant (i.e. discrete-time time-invariant) sys-
tem, which amounts to rearranging the original system
so that its periodicity can be viewed as shift invariance.
To accomplish this, we first define the lifting for signals,
for which the appropriate signal spaces need to be es-
tablished.

For continuous time signals, we consider the usual
L[0,00] space of essentially bounded functions [12], and
it’s extended version L°[0,00]. We will also need to con-
sider discrete time signals that take values in a func-
tion space, for this, we define £x to be the space of
all X-valued sequences, where X is some Banach space.
We define £ as the subspace of {x with bounded
norm sequences, i.e. where for {f;} € £x, the norm
1/} le = sup; |[fillx < co. Given any f € L[o.0),
we define it’s liftingf € froop,,y, as follows: f is an
L°°[0,7]-valued sequence, we denote it by {f,}, and for
each 1, )

filt) = f(e+ i)
The lifting can be visualized as taking a continuous time
signal and breaking it up into a sequence of ‘pieces’
each corresponding to the function over an interval of
length 7 (see figure 2). Let us denote this lifting by
W, W, is a linear isomor-
phism, furthermore, if restricted to L*[0,00], then W, :

0<t<r

LEO[O,OO] —_ £L°°[0,r]'
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igure 2: W, L?[0, o0) ———>"pr[0,1]

L*®[0,00] — €7, , 1S an isometry, l.e. it preserves
norms.

Using the lifting of signals, one can define a lifting on
systems. Let G be a linear continuous time system on
L10,0), then it’s lifting G is the discrete time system
G := W,GW 1 this is illustrated in the commutative

diagram below:

G

€L°°[0,r] £L°'°[0,r]
w1 W,
L2°[0,00) G L2°[0,00)

Thus G 1s a system that operates on Banach space
(L°[0,7]) valued signals, we will call such systems in-
finite dimensional. Note that since W, is an isometry,
if G is stable, i.e. a bounded linear map on L® then G
is also stable, and furthermore, their respective induced
norms are equal, ||é|| = ||Gl]. The correspondence be-
tween a system and it’s lifting also preserves algebraic
system properties such as addition, cascade decomposi-
tion and feedback (see [5] for the details).

The usefulness of the lifting in the sampled-data prob-
lem is the fact that if G is a r-periodic system, then G
commutes with the shift on £p e, ., that is, G is shift-
invariant. This basic fact allows us to treat continuous
time periodic systems as discrete-time time-invariant, al-
beit infinite dimensional systems.

State space models can be found for the lifted systems.
For the details, see [5].

Note that the state space of G is finite dimensional
(the n, in R™= refers to the dimension of the state space
of GG), while it’s input and output spaces are infinite
dimensional. This fact is significant in that, although
lifted systems have infinite dimensional input and out-
put spaces, they can be realized with a state space of
dimension no larger than the dimension of the original
continuous-time state space model.

3 Lifting the

Problems

Sampled-Data

To apply the lifting to the two sampled-data problems
in figure 1, note that what we are ultimately after is a

closed loop mapping between w and 2, the liftings of
the signals w and z. Let us denote the closed loop map-
ping formed between a generalized plant G and feedback
element K by F(G, K) (i.e. the linear fractional trans-
formation of G with K'). For the two systems in figure 1
we can write the lifting of the closed loop mapping in
the first system as:

W, F(G, H,Coq)W,!

= F([ % S]e[v o] mcw
= A[ % w6 ]
= .7:(G~1,C~'cd,

where the last equality are the definitions of the sys-
tems G’l and C.q. Note that él is a system with three
infinite-dimensional input and output spaces, and one fi-
nite dimensional input space, namely that of the control.
This occurs because the original plant is a continuous-
time system, and él 1s its lifting with the hold device
“absorbed” in it. The system C.y := CgW. ! has an
infinite-dimensional input space and finite dimensional
output space, reflecting the fact that the original sys-
tem C.q has continuous-time inputs and discrete-time
outputs. The advantage of this reformulation is that
the feedback system f(él, C.q) operates completely in
discrete-time, and has the same closed loop norm as the
original hybrid system.

Similarly for the second system in figure 1, we can
write:

W, F(G,Cq.S. )W}
— w, 0 .
= A" 5 el
= F(G' Cu).

We similarly note that C:'z has one finite dimensional
output space, namely that of the measurement. This
occurs because G- is its lifting of G with the sam-
pler “absorbed” in it. The system Cy. has an infinite-
dimensional ouput space and finite dimensional input
space, reflecting the fact that the original system Cg,
has continuous-time outputs and discrete-time input.
With the above transformations, the two problems
now seems very similar, the only difference being that in
the first problem the control space is finite-dimensional,
while in the second problem the measurement space 1s.
Since the lifting W is an isometry, we have then char-
acterized the L™ induced norm of the hybrid systems as

the (7w, induced norm of the lifted system }'(Gl , écd)

or f(éz,(:'dc). The conclusion is that the problem of
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minimizing the L induced norm of the sampled-data
system, is equivalent to that of minimizing the closed
loop induced norm for the standard problem with the

partly infinite dimensional generalized plants él or éz.
The previous discussion together with a slight general-
ization of the internal stability results for hybrid systems
in [13] (conditions for non-pathological sampling) yield
the following theorem:

Theorem 1 Consider the feedback systems in figure 1,
and let G’l, éz, C.q, and Cy. be defined as above, then

(i) F(G,H,C.a) is internally stable if and only if
F(G', Cuq) is.
F(G,Cq.8;) is internally stable if and only if
F(G,Cu.) is.

.. ~1 ~
(i) IIF(G, 1o Cea)ll = IF(G Cual]
IF(G, CaeSIl = (G, Cacll

The following remarks about this reformulation of the
problem follow easily from the properties of the lifting:

o If the original continuous-time generalized plant G

L . . . ~1 ~2
is time invariant, then the lifted plants G and G
will be shift invariant.

e Since both C.4 and Cy. are linear, then G.q and Gdc
are also linear. If C.4, Cy4. are arbitrary, then C’cd,
(;'dc are arbitrary shift-varying operators. If C.4,
Cy4. are shift invariant, then the original systems
are time-invariant in the following sense:

CeaDr = SCey s D;Cy. = Cy.S,
where S is the right shift operator on sequences, and
D; is the “delay by 7” operator on continuous-time
signals.

e The lifted controllers have no “structural con-
straints” as the original controllers C (figure 1) do.

The advantage of the lifting technique is that one can
essentialy view the original sampled-data problems as
the so-called standard problem, albeit with the added
complication of the infinite dimensionality of some of the
input and output spaces. One rather immediate advan-
tage of looking at the lifted problem is that it allows us
to naturaly conjecture that since the plants G' are shift-
invariant, then one cannot do better with shift-varying
controllers versus shift-invariant ones. This result fol-
lows by arguments very similar to the averaging argu-
ments in [3,4]. To state the result, let us denote by the
classes LSV and LSI, the Linear Shift Varying and Lin-
ear Shift Invariant operators respectively, corresponding
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to Ceq or Cg, (i.e. operators from £pe(,, — €gn oOr
Lpn — L=, )

To capture the idea that systems with mixed dis-
crete/continuous inputs and outputs have a shift invari-
ance property, we make the following two definitions:

Definition 1 A continuous-time input, discrete-lime
output (discrete-time input, continuous-time output)
system such as C.q (Cq.) is called time invariant if

CeaDr = S5 Ceq } (D'rcdc = Cdcs)y

Or in other words, if the liftings of these systems are
shift invariant.

Since the controllers C.q4,Cy. are of a somewhat un-
usual type, it is not apriori clear to what class optimal
controllers should belong to. The next theorem states
the intuitive results that for time-invariant plants, one
need not look any further than for time-invariant con-
trollers in the above sense.

Theorem 2 Consider the systems in figure 1, with G a
linear time-invariant finite-dimensional plant, then one
cannol improve the closed loop norm by using time-
varying controllers C.q4, Cq., over lime-invariani ones.
In other words, in terms of the lifted systems, we have

. ~1 = . ~1 ~
inf ||F(G,C)ll = inf  ||F(G,Ca)ll-
&.q Stabl C.q Stabl.
C.4€ LSV C.a€ LSI
. ~2 - . ~2 =~
inf  ||F(G,Cq )]l = inf  ||F(G, Ca)ll,
¢4 Stabl. Cqee Stabl
Cyc.€ LSV Cqc€ LSI

where “stabl.” stands for “stablizing” in the above the-
orem.

The above theorem then implies that one can always
find optimal or almost optimal controllers whose liftings
have shift invariant structure. An interesting implication
of the above result is that the optimal hold and sampling
operations which are imbedded in the the controllers Ccq
and Cy. are actualy time-invariant, 1.e. that they do not
change from one sampling interval to the next. This
fact is certainly intuitively appealing, but by no means
immediate from the setup of the problem. We note that
a similar observation was made in the work of [2] for
the case of infinite-horizon sampled-data filtering and
control in the H* norm. It should also be clear from
the general nature of the results in [4], that the above
theorem applies to all LP-induced norms as well, and to
the X problem in particular.

o

-, o~ e -



Figure 3: The operators S,, and M,

4 Reduction to a Standard ¢!
Problem

The infinite-dimensional problem obtained so far will
now be solved by an approximation procedure through
solving a standard MIMO ¢! problem. The idea we use
is similar to that in [11,14] where multirate sampling
is used to obtain discrete-time systems that approxi-
mate the continuous time behavior of hybrid systems.
We adopt a slightly different (but essentialy equivalent)
point of view, and treat the approximation as that of the
infinite-dimensional input and output spaces L*[0, 7] by
finite dimensional spaces. These ideas were used in (7]
to obtain bounds on the approximation procedure that
are in terms of the inter-sample dynamics of the plant.
The difference in the problem at hand is that there is
one more infinite-dimensional input or output space, and
it involves the continuous-time dynamics of the partly
continuous-time controller C.4 (or Cy.). This latter fact
makes the convergence analysis even more delicate than
that in [11,7].

We now describe the approximation procedure. Let
H, and S, be the following operators defined between
LP{0, 7} and £3°(n) (£°(n) is R™*? with the maximum
norm),

(Sau)(i) = u(Zi); ueLy[o,]
() = (L)) 5 {u()} € £2(n),

(strictly speaking, &, is not an operator on L but on
the subspace of left and right continuous functions, this

distinction is irrelevant here since in our setting, assump-
tions are made to guarantee that &, operates only on
continuous signals), the above operators can be thought
of as ‘fast’ sample and hold operators (see figure 3). For
simplicity of notation we will suppress the dimension ¢
in the sequel. -

Now to approximate the infinite dimensional prob-
lems, we define the finite-dimensional plants G} and G2
by:

a =[5 2] 1]
=[5 2@ 2]

Note that both G, and G2 have finite-dimensional input
and output spaces (whose dimension is proportional to
n, though the state space dimension is constant) and are
shift invariant. The idea behind using this approxima-
tion is first to put M, and S, at the exogenous input
and regulated output of the lifted plant, and second to
put the operator H,S, in the infinite-dimensional signal
path between the plant and the controller. The operator
‘H,. S, in some sense approximates the identity operator
as n is large. In fact, one can show that the foliowing
limits are obtained:

. = = ~1 =~
Jim | 7@, Cattn)|, = IIF(E Ceal

. = ~ ~2 ~
Jim 762,85 Cn)||. = IFE Caol

Note that since G, and CoiHn are both finite dimen-
sional, then the quantity ||F(GL, CcaHn)|| is the £ norm
of a standard system (similar remarks hold for the case
of éz)

The above convergence statment can be used to com-
pute the norm of the hybrid system by choosing n large
enough. It also suggests a synthesis procedure, since the
system C.4M,, is finite dimensional. We illustrate this

~1 .
for the case of G only, a very similar procedure works
for the other case. For a fixed n, we define the following
standard ¢! problem:
= _ inf
C stabilizing

fn 7@,

where C has compatible dimensions with G. One would
expect that as n is large, p, approaches the optimal
performance limit for the real hybrid problem. Further-
more, for any given n, and the resulting controller Cort
that solves the above problem, we can construct a con-

troller écdn with “comparable” performance. Namely
we can construct

. opt
C'cd,l = Czp jn)
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where the operator 7, (the normalized integration op-
erator, see [7]) Jn : L°[0,r] — £°(n) is defined by
. n i+1)r/n
(Tn(w)) (7)) = 7fi(:/n) / u(t) dt.
One can show that for the sequence of controllers thus
constructed C.q4, , the limit

. =1 -
tim ) F(GCua )

does actualy converge to the limit of performance for the
real hybrid problem. The details of these convergence
arguments will be presented in the final version of this
paper.
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