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Abstract

This paper presents an equivalence relation be-
tween chaotic dynamical systems and stochastic
systems under an invariant measure. Built on
this relationship, an equivalent stochastic system
model for certain chaotic dynamics can be con-
structed. State prediction and control of chaotic
systems can be achieved by learning using time
series, based on the concept of the equivalent
stochastic system model.
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1 Introduction

Study of chaotic dynamics has been of interest
to many physicists, chemists and mathematicians
and it has received attention from researchers
working in other fields of science and engineering.
Besides exploring the precise nature of chaotic
behavior of many dynamical systems, researchers
desire to control chaos. Chaotic dynamics are al-
ways found in many engineering systems, where
there exist complex, hierarchical and distributed
structures, incomplete system information, un-
certainties and immeasurable states. For exam-
ple, in a weakly interconnected transmission net-

work of an electric power system, a gas supply

system, large-scale integrated electronic circuits,
aerodynamics, industrial robots and nonlinear op-
tics, chaotic behavior has been observed for a
long time. However, there is an obvious lack of
methodologies to analyze and control the chaos
in such chaotic systems. In recent years, Ott,
Grebogi and York (OGY) [1] have suggested a
method of controlling a chaotic dynamical sys-
tem by stabilizing one of the many unstable peri-
odic orbits embedded in a chaotic attractor, using
small time-dependent perturbations in the form
of feedback to an accessible system parameter.
OGY stressed that all values needed to achieve
control can be obtained from an experimental sig-
nal starting with the well-known embedding tech-
nique. Recently the OGY method has been suc-
cessfully applied to some experimental systems
[2, 3, 4. OGY’s idea has broadened view of
many researchers working on problems of control-
ling chaos. Based on this idea, Pyragas [5] has
proposed two methods of permanent control in
the form of feedback. Both the methods are con-
cerned with construction of a special form of a
time-continuous perturbation to stabilize unsta-
ble periodic orbits.

However, existing work on controlling chaos
has only been achieved based on some specific dy-
namical systems and it is restricted within low- -

dimensional chaotic systems. Control of chaos has




only been treated in a simple manner as a con-
ventional dynamic process control problem. As
a natural extension of nonlinear system analysis
and control theory, research on control of chaotic
dynamical systems has received great attention in
recent years. Most existing work concerns known
dynamical systems with complete system infor-
mation or artificial systems. Theoretical stud-
ies of controlling chaos in unknown dynamical
systems with local information and measurable
states have so far not been attempted.

Chaotically behaved deterministic dynamical
systems appear to behave in a pseudo-random
manner. This apparently random behavior of
chaotic systems stems from their inherent prop-
erties determined by sensitivity of system initial
states to system nonlinearities. It has been noted
that chaotic systems behave as similar as that of
a certain class of stochastic systems whose ran-
domness is caused by stochastic properties of sys-
tem parameters, states and external disturbances.
Therefore, the theory of statistical properties of
dynamical systems and some concepts and tech-
niques used in stochastic systems have been em-
ployed to study chaotic dynamics [6, 7]. Neverthe-
less the relationship between chaotic and stochas-
tic systems has not been identified due to a lack
of understanding exact similarities of behavior of
the two systems and due to a failure to establish
a relevant methodology for the study.

This paper investigates an equivalence rela-
tion between chaotic and stochastic systems un-
der an invariant measure. Based on this rela-
tionship, system reconstruction and control can
be achieved using learning techniques. Since mo-
tions of chaotic dynamical systems, after some
transients, settle down to strange attractors and

sustain for a long time, this provides a great op-
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portunity in terms of time period for a computer
to learn the properties of the chaotic systems
through space-time patterns. As long as learning
proceeds, prediction and control of future states
of the chaotic systems can be achieved in theory.
In this paper, a feedback control strategy using
the concept of the stochastic system model is pro-
posed to control chaos in dynamical systems. Two
typical chaotic systems are employed to evaluate
the effectiveness of the proposed strategy.

2 Relation between chaotic and
stochastic systems

Consider the following nonlinear dynamical sys-

tem:
(2.1)

The system is chaotic, if the w-limit set of system

Tep1 = f(xe).

2.1 is a strange attractor. This is equivalent to
that the Lyapunov exponent o of system 2.1 is
larger than 0, described as:

+t=1

1
o= thJ&Z,Zol"g |f'(x:)| >0
1 =

(2.2)

If the w-limit set of system 2.1 is a strange attrac-
tor with a certain probability measure, from the
view of probability, there exists a stochastic sys-
tem with noise perturbation which is equivalent
to the chaotic dynamical system.

Definition 1. If the w-limit set of system
2.1, w(z), has a probability measure u(z), © € M,

M is a Borel set, and

pu(z) = tll_glo m(a,t), reM (2.3)

where 7(x,t) is the probability distribution func-
tion of a stochastic process 2(t), then system 2.1

is said to be equivalent to the stochastic process.




Theorem 1. If the chaotic system 2.1 is
equivalent to the It6 stochastic differential equa-

tion:

% = g(z) + N(x, 1), xreM (2.4)

where N (z,t) is the Gaussian noise with a zero
mean value and a covariance function Q(x) given
as:

Qz) = | f(@)] (2.5)

then:

1

=5 (2.6)

9(z) = s fe+ 2 @I}

where p(zx) is the probability density function, ¢
is an arbitrary constant.

Proof: Suppose p(x, t) is the probability den-
sity function of stochastic differential equation
2.4, then it satisfies the Fokker-Planck equations:

Op(z,t) _

2 1a@n(@ ] + 22 @i, 1)
5t — 55 9@z, 5 552 @@, 1))

(2.7)
As the steady state probability density function

is independent of time, it can be seen that:

tlirg p(z,t) = plx),
. Op(x,t) .

—_— . 2.
LT 0 (28)

Noting the conditions for AN (z,t), with a few

mathematical operations, we have:

S 2g@p@)] - SI@@I =0, (29)

This leads to:

20(@p(a) — o (@@ = (210)
and
1 0 :
o@) = s (et M@)o
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The above theorem shows that the behav-
ior of chaotic system 2.1 can be described as
a stochastic process. Thus its dynamics is
characterized by the initial distribution p(zo)
and the transition probability density function
P(Zep1lze), k = 1,2,..,n. p(zk) and p(@k4q|zk)
can be obtained using the time series of the
chaotic dynamics conveniently. In other words, if
the probability density function of a chaotic sys-
tem has been obtained, the chaotic dynamics can
be represented by an equivalent stochastic system
model which is constructed based on the probabil-
ity density function. An example is presented as
follows to show the equivalence relation between
the chaotic and stochastic systems. Let us con-
sider a typical chaotic system, the Logistic map,
241 = 4.02¢(1 — 2¢). Its probability density func-
tion is [G]:

1

NG =)

According to equation 2.6, the function in the

x € (0,1).

equivalent stochastic system is:

cry/e(l —a
g(z) = (1 —22) + %

where ¢ is an arbitrary constant, chosen to be
0. Considering Q(x) = o?%(z) and N(x,t) =
a(x)N,(t), where N,(t) is the standard Gaussian
random process, the equivalent stochastic differ-

ential equation can be obtained as follows:

dx R W AT
o (1 —22) + 2¢/2(1 — 2)N, (1)

The power spectra of the chaotic map and

(2.11)

the equivalent stochastic system 2.11 have been
obtained based on the time series of the two sys-
tems. The comparison is given in Figure 1 which
shows that the two systems have the similar power

spectra.
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a. Power spectrum of the equivalent stochastic
system

b. Power spectrum of the chaotic map

Figure 1: Comparison of power spectra of the

chaotic and stochastic systems

Inversely, an equivalent chaotic system can
be constructed if a steady state probability den-
sity function of a stochastic system is given. This
is discussed as follows.

Definition 2. If there exists a probability
measure function u(A), for arbitrary subset A in
the Borel set M, it satisfies:

wlfH(A)]
{x e M|f(z) € A},

u(A)

f~1(A) (2.12)

then p is a f-invariant measure of the mapping f:
[M,p) — M.

Theorem 2. If a steady state probability
density function of a stochastic process is p(z),
z € M C R, and the stochastic process is yielded

from the following self mapping;:
f . [A4)/l] - M;

then

p(a;)

p(y) = ;m (2.13)

where y € {f(z:)]i =1,2,...,n}.
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Proof: For an arbitrary subset A = [ao, Bol,

we have: .
F7HA) = Ulas, b
i=1
where ap = min f(a;),00 = max f(b),i =

1,2,...,n. As f(x) has a f-invariant measure pu,
then

Bo
/ p(y)dy = (2.14)

[e2i]

n bi
Z / p(x;)dx;.
i=17%

By integral transformation, z = f~1(y), the so-
lution of the above equation can be obtained as

follows: n o)
ytrs

py) =) :

1 ()]

O

If p(x) is an unimodal and symmetric function,
then the map f(x) is also unimodal and symmet-

ric. In this case, equation 2.13 becomes:

2p(@1) bo + ao
I)(y) |fl(.’l;1)l 7'1'1 E [a'(); 2 ]
(2.15)
bo + ac
flas) = flb—m1);20 € [——t 5 L ]
(2.16)

where b = by + aqg.

An example is given to interpret the above
theorem. Suppose that a stochastic process has
6x(l —

x), ¢ € [0, 1], then based on equations 2.15 and

a probability density function, p(x)

2.16, the self mapping of the stochastic system

can be formed as follows:

6(1 —y)ydy = 122(1 —x),  y= f(z). (2.17)

Integrating the above equation gives:
2 4
2 3 2 3
- = = 2a° — a7 .

Uy I 24 x € [0,0.5)

2_2 3 2 4, 3
o3y o= 2(1 —x)* — §(l —x)% 2 € [0.5,1]

(2.18)




The chaotic map is constructed based on the
above self mapping, f : £ — y, formulated as
Zk+1 = f(zk). The chaotic map is shown in Fig-
ure 2. Its probability density function obtained
from a large number of samples (simulated for
10, 000 iterations) and the given probability den-
sity function are plotted in Figure 3 which shows

the similarity of the two functions.
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Figure 2: A chaotic map constructed from a

stochastic process
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Figure 3: Probability density obtained from the
chaotic mapping
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3 Construction of an equivalent

stochastic model

An equivalent stochastic model can be used to re-
construct a unknown chaotic system as mentioned
in the previous section. The reconstruction can be
achieved based on the probability density function
which may be obtained using learning approaches
to the time series of the chaotic system. A simple
learning process of the chaotic system is intro-
duced as follows.

Suppose that the chaotic system 2.1 is equiv-
alent to the stochastic system 2.4 under the def-
initions 1 and 2. First, the invariant interval

of the chaotic dynamics is divided into n subin-

Al 1 [t oyt P
tervals, I* = [2},.,, Zhact = 1,2,..n and
.1 — p . an . pd .
Tiin = Tminy Typay LToaz, Trar = ‘min)

(4 = 1,2,..n — 1), where xy,;, and Ty, corre-
spond to the minimum and maximum of z re-
spectively. The points which are allocated in the
subinterval I* are assigned a same value denoted
as x*. Secondly, using the time average to replace
the set average, the equivalent stochastic model
for the chaotic system can be obtained through a

learning process as:

Pe(z') = Ne(2)/k; 2t e, i=1,2,.,n
(3.1)
where P, N and k are the probability, frequency
and number of samples respectively. As a matter
of fact, the above model can be realized using the

following recurrence formula:

k et 1 .
Pe1(a?) = mPk(‘ﬂ_) T FE 517"
ﬁTPk(a:’), x ¢

| ) (3.2)

where 0 < P(z') < 1,7 =
Ty Pe(a') = 1.
The transition probability P(xk41|zk) can

1,2,...,n, and




) . R W v A |

be obtained analogously. Based on these statis-
tic quantities, if an analytical representation of
the probability density function can be approx-
imated, an explicit equivalent stochastic model
will be constructed. Otherwise, the statistic prop-
erties, obtained through the learning and related
to the nature of the chaotic system, can be used
for prediction and control of future states of the
chaotic system, which is discussed in the following

section.

4 State prediction and feedback

control

Based on the equivalence relation hetween the
chaotic and stochastic systems which is charac-
terized by P(z) and P(xry|2k), it is possible to
predict the future state xx4; from state 2. The
prediction can be achieved according to the min-

imum variance method:
#ry1 = {2*| min Var(a)}, (4.1)
zl

where % is the estimate error and &' = 2 — &y, 1.
This method is based on the following perfor-

mance index:
minE{(z* — &x41)%}. (4.2)
z‘l

According to the index 4.2, x4, can be obtained

as a conditional mean:

n

Breg1 = Z e P(atxy). (4.3)

i=1
The equation 4.3 may be regarded as a weighted
mean of states. In its special case, 2¢y; can be
predicted using the maximum transition proba-

bility, which is given as:

Tepr = {2'] max P(a*|xe))} (4.4)
Il

To control a chaotic system, a control input

1, can he applied to system 2.1 as follows:
Tep1 = f(e) + k. (4.5)
The feedback control is designed as:
U = O(wk). (4.6)
The closed loop system becomes:

e = flo) + dlor),  (47)

where ¢ is the control law to be designed.
To control a unknown chaotic system, the

estimated model or the predicted state:
Era1 = flan) (4.8)

can be used to obtain the control signal. From .

equation 4.5, it has been noted that:
e = gy — f(ee). (4.9)

If the state 2241 is expected to follow a desired’
trajectory a4, the feedback control using the pre-

dicted state can be obtained as:

Up = By — Blp1 = By — f(Jk) (4.10)
The controlled system becomes:
i1 = f(2g) +axs — f'(a:k)
= @+ [H{ax) — flaw)]
= g+ Tpy. (4.11)

If the prediction is accurate, then &y — 9, and

Try1 — 2. Otherwise, a track error defined as: -

€kl = Ts = Tkl (4.12)

is always found. In order to compensate this error,
an appropriate integration is introduced, which is
given as follows:

., k :
. | .
Ul = Ly — Df1 + Tj_;(lj (413)




where T is the integration time constant. Equa-
tion 4.11 is modified as:

k
. 1
Thi1 = Ts + Ert1 + 5D €5 (4.14)

=1
and the track error can be then expressed as:

k k
- 1 . .
€k+1 = —($k+1 + _Eej) ~ —Z:L‘j — ZLi41-
T T4

7=1 j=1

(4.15)

where Z; = z; — ;. It can be seen that if

%Zleij approximately equals to @41, then

ex+1 — 0 and g1 — Ts.

5 Examples

In order to evaluate the proposed control strat-
egy, the Logistic map and the Henon map are em-
ployed in the simulation study. For the Logistic
map Z¢y1 = 4.0x¢(1.0 — ), its invariant inter-
val is [0, 1] which is divided into 20 subintervals.
The system state is eXpected to be controlled to
two desired values, x, = 0.5 and 2, = 0.75, re-
spectively. The system responses are presented
in Figure 4 (a) and (b) respectively. From the
figures it can be seen that after the control is ap-
plied at iteration 20, the chaotic system can be
controlled to the desired point immediately. How-
ever, the trajectory has a slow convergence rate
during the time evolution when the setpoint is
close to the fixed point of the map, which is shown
in the Figure 4 (b).

For the Henon map, 2441 = | — ax? + by,
Ye41 = Ty, its invariant interval is approximately
[—1.3,1.3] which is divided into 20 subintervals.
Two desired values, 2, = 0.5 and z, = —0.1,
are expected. Figure 5 (a) and (b) illustrate
the system responses to the two setpoints respec-
tively. The simulation results show that the pre-

diction and control perform satisfactorily, based
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on the concept of the equivalent stochastic sys-

tem model.
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Figure 4: Dynamic response of the chaotic system

6 Conclusion

An equivalence relation between chaotic and
stochastic systems has been investigated. Based
on the relationship, an equivalent stochastic sys-
tem model of the chaotic system can be con-
structed by learning using time series. The equiv-
alent model can be used to predict states of the
chaotic system and to develop a feedback con-

troller.
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Figure 5: Dynamic response of the chaotic system
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