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Abstract

A simple, yet general, bursting scenario is developed
for a wide class of parameter estimation and system
identification algorithms in the absence of sufficient
excitation. This allows for an analytical derivation of
a lower bound on the worst-case performance of such
algorithms in the presence of perturbations. Simple
examples are constructed, illustrating the implications
of these results in adaptive control.
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Adaptive identification algorithms are a fundamental
component of most adaptive control schemes where the
basic idea is to use input-output (1/0) data to identify
on-line an appropriate 1/O operator (either of the plant
or the desired controller). This is typically performed
by deriving (or assuming) a parametric model of the
plant and then employing an algorithm to estimate
the unknown parameters. The parameter estimation
algorithm is designed by using fairly standard opti-
mization tools, e.g. gradient or Newton search, least
squares etc. The properties of such algorithms in the
context of system identification have been extensively
studied, establishing their applicability to a variety of
practical problems [1, 2].

In the context of adaptive control the same ideas
have also proven successful in achieving the control
objective despite the presence of pure parametric un-
certainty in the plant model [3, 4, 5, 6]. However,
a fundamental and serious problem arises when, non-
parametric forms of uncertainty appear in the plant de-
scription, e.g., unmodeled dynamics and bounded dis-
turbances. In such cases, analytical examples and sim-
ulation studies have shown that the original adaptive
control algorithms may fail to guarantee boundedness
of the parameter estimates and the other closed-loop
signals 7, 11, 12, 13]. These phenomena are caused
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by the lack of ‘sufficient’ excitation which allows the
perturbations to dominate the error signal and cause
the failure of the identification algorithm to obtain a
‘good’ model of the plant. The fundamental obstacle
and difference from open-loop system identification in
overcoming such problems is that the designer has lim-
ited or no control over the external inputs and, conse-
quently, the level of excitation. Nevertheless, a variety
of recent studies has established that with some mod-
ifications, the basic identification algorithms can yield
‘robust’ adaptive controllers without requiring any ex-
citation conditions (e.g., see [7, 4, 5, 14] and references
therein). A similar result has also been established
in the practically interesting case where the plant is
slowly time-varying [8, 9, 10].

However, the performance of these adaptive control
schemes is typically characterized by fairly weak mea-
sures such as root-mean-square (RMS) criteria. The
implication of this observation is that the closed-loop
performance may be poor in terms of stronger but
practically important measures such as peak steady-
state error. (Such a performance measure can be
conveniently characterized by the lim sup absolute
value of the error and, hence, is referred to as
“lim sup performance;” note that, like RMS, this is
an asymptotic performance measure and does not ac-
count for transient behavior.) This was found to be the
case in situations where a disturbance together with

" the lack of sufficient excitation causes the identifica-
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tion process to fail, at least temporarily. Although
signal boundedness is maintained with the modified
algorithms the identification failure is now manifested
by short but persistent time intervals where the vari-
ous error signals attain large values. The term ‘large’
is used here to signify a magnitude that does not van-
ish as the magnitude of the perturbation approaches
zero. Such a behavior is typically referred to as burst
phenomena [15]. Bursting has been studied with a va-
riety of analytical tools relying primarily on geometri-
cal nonlinear systems theory and averaging techniques,
e.g., see [16, 17, 18, 19, 20]. Partial remedies include



the use of dead-zones with linear time-invariant (LTI)
plants e.g., {7, 3, 21, 22, 14, 23]. On the other hand,
employing a form of high-gain feedback, an improve-
ment of the tracking error lim sup performance has re-
cently been obtained in model reference adaptive con-
trol, but at the expense of the closed-loop robustness
properties [24, 25]. Despite the (partial) success of
these remedies, however, bursting still remains as one
of the major obstacles in designing practically useful
and reliable adaptive algorithms.

In view of these results, one may pose the natu-
ral question of whether an adaptive controller can be
found to provide practical lim sup performance guar-
antees in the absence of any excitation conditions. At
this point, the possibility that an aflirmative answer
to this question exists is, at best, remote. For ex-
ample, [19, 20] studied bursting phenomena involving
adaptation in two different environments, albeit with
the same conclusion. That is, in the presence of dis-
turbances, basic gradient laws with small adaptation
gains can result in a bursting behavior.

Motivated by these studies, in this paper we adopt a
different point of view, namely, that bursting is a con-
sequence of the optimization objective in the parame-
ter estimation process rather than the form of the esti-
mator itself. More specifically, we address the problem
of fundamental performance limitations of the parame-
ter estimation/identification process occurring in envi-
ronments where perturbations are present but there is
lack of ‘sufficient’ excitation. We begin by considering
the standard linear-model parameter estimation prob-
lem where we provide an analytical method to con-
struct bursting scenaria. This construction relies on
general properties of the estimator and, as such, is ap-
plicable to a wide class of adaptive algorithms. Based
on this simple bursting mechaniszn we derive a lower
bound on the worst-case lim sup performance of adap-
tive algorithms in various situations arising in param-
eter estimation and system identification problems. In
all cases, our results show that in the absence of any in-
put constraints, arbitrarily small perturbations, such
as bounded disturbances, unmodeled dynamics, and
slow time variations of the system parameters, impose
a fundamental performance hmitation. This imita-
tion is rather severe in the sense that the worst-case
lim sup performance deteriorates proportionally with
the size of the parametric uncertainty set. Finally,
guided by the results of our analysis, we present some
simple examples illustrating the construction of burst-
ing phenomena in adaptive control and briefly discuss
the possibility of designing adaptive laws that offer
‘reasonable’ lim sup performance guarantees, albeit a
rigorous analysis is left as a topic of future studies.

2 Bursting in Parameter Estimation

2.1 LTI Models
Let us consider the linear process model with output
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disturbance . 3
y=w'6,+d (1
where y : Ry +— R is the output of the process, w
R, +— R" is a vector of signals (regressor) availak
for measurement, , € R" is an unknown consta
parameter vector and d is an unknown disturbane
For such a process the standard parameter estimatiom
problem is to design an algerithm to estimate 6, givem!
the measurements y and w. :

Denoting by # the current estimate of 8, the ‘qual-
ity’ of this estimate is simply its distance from @,
However, since the latter is unknown, a typical mea-
sure of the quality of the estimate 8 is given in terms
of the estimation error

clzg—yszQ—y:quS—d (2)
where ¢ is the parameter error 6 — 6,.

This problem is fairly standard and is encountered
in several applications ranging from modeling and sys-
tem identification problems to echo cancellation/noise
attenuation and adaptive control problems. In the case
of system identification, the input vector w is largely
at the disposal of the designer and several studies can
be found addressing the problem of selecting the in-
put in order to minimize (in some sense) the effect of
the disturbance in the identification/estimation pro-
cess [1, 2]. _

On the other hand, there are several important ap-
plications where the designer has little or no access to
the process inputs, e.g., when the parameter estimator
is part of a closed-loop control system. In such cases,
estimation algorithms may produce periodic bursting
of the estimation error or, even, an unbounded pa-
rameter drift [15, 19]. This phenomenon has a simple
interpretation from an optimization point of view: the
argument of the minimization of, say, €? over 0 for ar-
bitrary w is not a continuous functional of d at d = 0.
The above simple example can be generalized to yield
a constructive proof of estimation error bursting for
a class of estimation algorithms. For this purpose, let
us consider the following class of parameter estimation
algorithms A.

1 Assumption:] A is a parameler estimation
algorithm for the linear model y = w'4,, generating
parameler estimates 6 such that:

1. 0(t) = Al(y)e, (w)e,(0):], where (-); denotes trun-
calion at t.

2. Given any bounded, piecewise conlinuous y,w
for which there exist positive constants ty,T,6, and a
constant vector 6. such that for allt > t,,

t4T
/: w(r)w" (1) dr > 6,1 (3)

y(t) = w' ()0, (4)

the parameter estimates § converge to 0., for any 6(0).




5. Whenever [[0illeo < b Jl@illo < cu,
[(0)ilc < co where cy,cy,cs are (finile) constants,
there exists a (finite) constant I’ such that |8()] < T

4. Suppose that a convez, closed and bounded set
M C R” such that 6, € M is known a priori. Then,
tn addition to the above properties, the parameter es-
timates  generated by A remain in M for allt > 0.

Loosely speaking, this class of algorithms is charac-
terized by the property that, whenever the 1/0 data
are generated by an ideal linear model and satisfy
an excitation condition, the resulting parameter er-
ror converges to zero, irrespective of the initial con-
ditions. A basic bursting mechanism and the worst-
case lim sup performance of an algorithm satisfying
Assumption 1 are quantified below.

2 Proposition: Consider the case where an algo-
rithm A is used to estimate the parameter vector 8, of
the perturbed linear model (1).

1. Suppose that A satisfies Assumption 1.1-2. Then
for any 6 > 0 and any 6y € R™, there exist bounded,
piecewise continuous w, d with ||d||.. < & and such that
8 — 0y ast — oo.

2. Suppose that A satisfies Assumption 1 and 8, €
M. Then for any 6 > 0, there exist bounded, piecewise
continuous w,d with ||d]|c < 6 and such that
lim sup ,_, l€e1] = Jjw||co maxgers |0 — 0.] + 6 \VAv/

Proof: (1.) Let w be such that (3) is satisfied and
[wT (8. — 60)| < 6. Note that such an w can always be
found, e.g.,, w = web/|0. — 89| where w. is PE (satisfies
(3)) and |we| < 1. Further, define d = w' (6o — 6.); clearly
l!d"oo < 6. With this choice, (1) becomes y = w " 8 which,

y the properties of A, implies that 8§ — 8y as t — oo.

(2.) Let 8o = arg maxgea |0—04| and define co = ||w}]oo-
In view of Part 1 of the proposition, given € > 0 there exist
w,d : ||d||eo < §and atime T such that |8(T1)}—0o] < €/cw.
Next, let w(T1) = cw(fo — 64)/|60 — 6. and d(T1) = 6.
Since 8 is bounded, it follows that €1 (7}) > ¢w|80—8.|+6—
€. The same principle can be invoked to establish, using an
induction argument, the existence of a sequence T; where €;
satisfies the above inequality. Further, by letting ¢ = 1/2‘,
we obtain the desired right hand-side while equality follows
from the fact that the latter is also an upper bound of ¢;.

[w]

This result provides a constructive proof that arbi-
trarily small bounded disturbances can cause a class of
adaptive algorithms to exhibit burst phenomena in the
absence of any excitation (or other) conditions on the
input. Moreover, as the magnitude of the disturbance
approaches zero, the worst-case lim sup performance
of the estimation error approaches a constant which
depends only on the parametric uncertainty set and
the magnitude of the input signal but is independent
of the disturbance bound.

2.2 LTV Models

One of the most important justifications behind the
study of adaptive algorithms has traditionally relied on
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their intuitive applicability in slowly time-varying en-
vironments. In this case, the analysis of several adap-
tive laws has produced results analogous to those for
LTI models with disturbances, with the notable excep-
tion that dead-zone-like remedies are now unable to
provide the corresponding lim sup performance guar-
antees for the estimation error. This is, in fact, a fun-
damental problem in the absence of any excitation con-
ditions, regardless of the existence of any other pertur-
bation terms. Its explanation is indeed quite simple.
During a period of insufficient excitation, there is a
nontrivial manifold where the contribution of the pa-
rameter error to the estimation error is zero. Since all
standard algorithms rely on such an error signal to as-
sess the quality of the parameter estimates, the actual
parameters may drift in a way that does not contribute
any information to the estimation process. Thus, the
estimator 1s ‘blind’ to such parameter drifts and an er-
ror burst will occur as soon as the excitation changes
direction/magnitude revealing the current value of the
actual parameters.

To quantify this simple argument, let us consider the
linear time-varying (LTV) process model

y=wb. (5)
where y : Ry — R is the output of the process, w:
R4 — R" is the regressor vector and 4, : Ry — R"
is the unknown time-varying parameter vector. The
speed of variation of the unknown parameters can be
characterized in a simple way by the magnitude of their
derivative. For example, assuming that u is a positive
constant such that ||0,]lcc < g, smaller values of p
indicate slower varying parameters. Next, we consider
algorithms that satisfy the following:

3 Assumption:] A is a parameter estimation
algorithm satisfying Assumption 1 with the following
modifications:

(i.) In 1.2, and whenever 8, is constant fort > t,,
0 s only required to converge lo a residual set

B:{ezw—mgd,\/m}

for any 0(0), where d; > 0 is a constant.

(ii.) In 1.3, there also exists a (finite) constant T’
such that |0(t)] < T|y(t) — w7 (t)6(¢)|.

This assumption is weaker than the one used in the
previous section in that, under persistent excitation,
asymptotic convergence of the parameter error to zero
is not required. Instead the parameters are allowed
to converge to a residual set of nonzero radius, thus
including dead-zone-like algorithms. (Note that the
expression used above is inspired by the typical dead-
zone estimator with threshold d, where the radius of
the residual set is d;/7/6y.) On the other hand, a
stronger condition is used in part 3 of the assumption
which essentially reflects the fact that the quality of
the parameter estimates is inferred by the instanta-
neous estimation error. This part of the assumption



can be relaxed to include algorithms minimizing an ex-
ponentially weighted L, norm of the error [28] or an
error functional over a finite moving window.

4 Proposition: Consider the case where an algo-
rithm A is used to estimate the TV parameter vector
8. of the linear model (5).

Suppose that A satisfies Assumption 3. Then for
any p > 0, there exist bounded, piecewise continuous
w and 6, : Ry — M with ||0.}|leo < u, such that
lim sup ,_, Jle1| > ||w|loo diamM — d,\/n vV

Proof: Let 8,0, € M such that |8, — 8;| = diamM.
Also let w; be such that (3) is satisfied and |wi(#)] <
cw, Vt. Then, for any ¢ > 0, there exists 77 such that
when A is applied to the model (5) with 8§, = 8, and
wy, |8(T1) — 61| < d./T/6u + e. Next, define
wy, 6.(t) = 6; in the interval {0,T}) and w = 0,
6.(t) = 61 + p(92 — 61)(t — T1)/diamM in the inter-
val [T1,Tz2), where T = T + diamM/u. Then at time
Tz, 8.(12) = 02 and 6(Tz) = 6(T1). Hence, choosing
w(T2) = cw(b)y — 62)/|61 — 82|, we have that & (T2) >
cwdiamM —cy(dz/T[/6u+¢). Clearly, the sequence can be
repeated ad infinitum with 8, oscillating between 8, and
8,. Hence, lim sup ,_ le1] > cw(diamM — d.\/T/bw).
Finally, for the special case where during the excitation in-
tervals w attains its maximum magnitude in the direction
of each unit vector for a subinterval of length T/n, it fol-
lows that 8, = c2T/n yielding the desired expression. O

w
w

For adaptive algorithms satisfying Assumption 1
(d: = 0) this lower bound on the worst case per-
formance is sharp. On the other hand, for dead-
zone-like algorithms (d, > 0) the bound given in
the proposition is conservative and makes sense only
when d, is small relative to diamAAM. Less conserva-
tive bounds or bounds independent of d, can be de-
rived for specific cases, e.g., for the standard dead-zone
algorithm lim sup ,_ |e1] > 3||w]|odiamM. Nev-
ertheless, Proposition 4 conveys an important qual-
itative message, that is, the size of the paramet-
ric uncertainty set imposes a fundamental worst-case
lim sup performance limitation for a general class of
adaptive algorithms operating in TV environments.!

3 Bursting in System Identification

In this section we briefly discuss the implications of
the above observations and results in the identifica-
tion of linear systems. In particular, we consider the
case where the I/O map of a linear system is identified
via adaptive linear-model parameter estimation. This
approach amounts to expressing the I/O relationship
in terms of a standard linear model and using a pa-
rameter estimator to estimate the partially unknown
parameters. For example, given a uniformly observ-
able linear system [A,}, ] (possibly time-varying) we

INote that Proposition 4 also provides a rigorous proof of
the conjecture that dead-zone techniques do not provide any
lim sup performance guarantees in the TV case.
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can always express the I/O relationship u + y in the
form ‘

t=Fr+0utbuy; y=q'z (6)

where F is a Hurwitz matrix and (g, F') is a completely
observable pair at the disposal of the designer (e.g. see
(10)). Further, using the definitions

w = [G(s){Tu], G(s)[IY]]" ,
1= G(s) { @I + G () Iale. |

where G(s) = ¢"(sI — F)™!, G'(s) = (sI — F)~!
the above relationship assumes the convenient linear-
model form

y=w'l0.-n+e (7)

Here, €; denotes exponentially decaying terms due to
initial conditions and % is a perturbation due to the
swapping of the possibly time-varying parameters.

From (7) it becomes apparent that linear-model pa-
rameter estimation algorithms can be employed in per-
forming a (parametric) identification of the system (6).
In such a case we distinguish two types of error sig-
nals measuring the quality of the parameter estima-
tion and identification processes. One is the usual
estimation error €; = w' @ — y driving the param-
eter estimator. The other is the identification error
e1 = G(s)[ub; + yb2) — y arising when the estimates
0 are interpreted as an I/O operator and serves as an
approximation error (in the graph topology) of (6).
The relationship between these two errors is given by
e1 = €, —1 where j = G(s){G'(s)[ul]f1+G'(s)[yI)02}).

In this framework, we are interested in assessing the
performance limitations of system identification algo-
rithms applied to a perturbed version of (6). For sim-
plicity, throughout the rest of our discussion we as-
sume that the system (6) is exponentially stable. For
the same reason, we need to further restrict the class
of algorithms under consideration by introducing the
following technical condition.

5 Assumption: In Assumptions 1 and 3 equa-
tion (4) is replaced by y(t) = w" (t)8. + & where ¢, is
any exponentially decaying term. Furthermore, there
exists a constant ¥ > 0 such that the quantity T in
Assumptions 1 and 3 satisfies I' < 4|6(t) — 0.(t)], uni-
formly in ||u]|co -

Under this condition, it is possible to extend the
bursting scenaria of the previous section to the sys-
tem 1dentification process. Note, however, that some
technical modifications are required to account for the
specific way that the perturbations enter the system as
well as the fact that the regressor vector w can only be
manipulated through the input uw. In particular, the
latter constraint takes the form of a minimum time re-
quired for w to be steered from the origin to any point
on a ball in R” whose radius depends on the bound
of ||ullee. (Notice that w is controllable from u [5, 4].)
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With this observation, conservative but intuitively ap-
pealing statements on the performance limitations of
a class of adaptive identification algorithms are given

below.

3.1 LTI Systems

6 Proposition: Consider the case where the system
(6), perturbed by setting y = q' z + d, is identified by
means of a parameter estimation algorithm A, which is
designed based on the linear model y = w'8,. Further,
suppose that 0, € M and A satisfies Assumptions 1
and 5. Then for anyv § > 0, there exist bounded, piece-
wise continuous u,d with ||d|lec < & and such that

Iim sup ;o1

00 6 —8.Cu[2~€"
lulloo max 16 — 81Cu 2 = €]

lim sup _ el

oo 6 —8,|[Cu(2—e"
ullee max[6 = 8.[[Cu(2 = ™)

—O(v/(a+ )™ — ™)

Lim sup ,_ . |e:] O(M-/(1+ 7)) llulle

where Cy, T, a are positive constants depending on
the bound of u, the system (6) and the regressor filters;
M, =maxrst. {#:10-0.|<r} C M. \VAV]

The proof of the proposition follows the same ba-
sic idea outlined in Proposition 2, except that during
the bursting phase the regressor vector must be driven
to the desired value by u; since this process consumes
time 7, the maximum possible adjustment of the es-
timated parameters must also be taken into account,
e.g., using the Bellman-Gronwall Lemma.

Thus, as in the case of linear-model parameter esti-
mation, the presence of arbitrarily small disturbances
combined with lack of sufficient excitation, can induce
persistent estimation and identification error bursts
whose magnitude is proportional to the size of the
parametric uncertainty set. For the estimation error,
this is immediately apparent from the respective lower
bound, given in the proposition, by letting 7, become
sufficiently small. On the other hand, the first lower
bound for the identification error is meaningful only
when the ‘adaptation gain’ v is sufficiently small but
becomes too conservative for large adaptation gains.
(Note that C, — 0 as 7, — 0.) In the latter case,
the second lower bound? offers a qualitatively similar
conclusion at the expense of a reduction in the size of
the parametric uncertainty.

It is worthwhile to point out that the qualitative
characteristics of this behavior are not limited to a
specific model (or structure) of perturbations. Indeed,
the same effect can be obtained by output disturbances
or unmodeled dynamics. For the latter, in particular,
the perturbation d takes the form

d = Agfu]+ Aqfy) (8)

2This is derived by estimating the first and second derivatives
of e1 from the corresponding state-space representation.

where A, A are stable operators. In order for this
problem to be practically meaningful, the class of ad-
missible perturbations should be restricted to those
for which the perturbed system is ‘close’ to the orig-
inal one e.g., by specifying an upper bound for the
induced gains of A;. Under these conditions, the re-
sults of Proposition 6 remain valid when § is such that
A1, Ag have induced L (or Loo) gains less than 6 and
8 € (0,68), for some 6 > 0.

It is not surprising that the construction of a burst-
ing scenario for this case involves high-frequency in-
puts u and perturbations that are ‘large’ at high fre-
quencies. For example, to emulate the effect of the
previous burst-inducing disturbance, we may choose

A; = giq" (sI — F)™ (0 ~ 6:. )G (s)

where g; is a scalar, time-varying gain (|g¢| < 1) and
Gu(s) is a stable, high-pass transfer function with
‘cut-off’ frequency v,. Observe that, by choosing v,
to be sufficiently large, the induced gains of the A;’s
can be made arbitrarily small. Next, during each PE
interval, select g, = 1 and u as a sum of high-frequency
(> v,) sinusoids with enough spectral lines to ensure
that w is PE. Moreover, we can further require that at
the same frequencies Gy (jw) = 1. Thus, inside each
PE interval the effective perturbation entering the lin-
ear model is the same as in the bounded disturbance
case, except that now this is true for a specific input
u and modulo an exponentially decaying term.

On the other hand, some modification of the results
is necessary when the admissible perturbations are fur-
ther restricted to enter the system in a multiplicative
or additive form. For such a case, it can be shown that
the error lower bounds in Proposition 6 remain valid
if the term maxgeaq |@ — 04| is replaced by M,.

3.2 LTV Systems

Here we consider the adaptive identification problem
of an LTV plant of the form (6) where (g, F) is an ob-
servable pair and 6, : Ry — M. To ensure that this
identification problem makés sense, we need to impose
some restrictions on the set of admissible parameter
vectors f,. For example, in a typical identification
problem such a condition may be expressed as
0. Ry s M C M5 [l < o

for some pg > 0, where M’ denotes the largest (in di-
ameter) connected part of M such that any 8 € M’
corresponds to a system that is pointwise strongly con-
trollable and observable and exponentially stable, uni-
formly in § € M'.

Under these conditions and as in the case of linear-
model parameter estimation, the time-variation of the
system parameters alone is sufficient to induce burst-
ing behavior in both the estimation and the identifica-
tion error.

7 Proposition: Consider the case where the system




(6) is identified by means of a parameter estimation al-
gorithm A, which is designed based on the linear model
y = w' 0,. Suppose that A satisfies Assumptions 3 and
5 and 9, € M’'. Then there exists ug > 0 such that
for any p € (0, po), there exist 6, : Ry +— M’ with
[l0«]loc < g, and a bounded, piecewise continuous u
such that

limsup ,_ laal 2> |JluflooM'Cuf[2 ~e"™]

limsup ,_oleal > |JulloM'{Cu(2 - €"™) -
Ofy/(a+ 7))(e"™ —e™™)}

limsup ,_ooles] > |ullewO{[M; — d.\/T/80 — O(I")]

/(1 +7)}
where C,,7y,a are as in Proposition 6, M’
[diamM'~d,\/T/6,—O(I")] and M! = 2maxy, e m:[r]
st. {0:10-6,|<r}C M3 \VAV]

The proof follows along the lines of the previous
results, with the addition of a regulating input dur-
ing the parameter drift phase; this input ensures that
when the system parameters drift, the regressor and
estimation error maintain small magnitudes which, in
turn, limits the maximum possible adjustment of the
estimated parameters to an arbitrarily small value.

An interesting by-product of our bursting scenario is
that, without imposing any excitation conditions, the
problem of ensuring ‘good’ lim sup performance in the
presence of arbitrarily slow plant parameter variations
is as hard as the problem of ensuring good L, perfor-
mance (i.e., including adaptation transients) for LTI
plants with arbitrary initial conditions in the parame-
ter estimates but with restricted initial conditions on
the plant/filter states.

4 Examples

Although not formally treated in the present study,
similar scenaria can be extended, at least in princi-
ple, to the adaptive control case where the parame-
ter drift can cause a temporary destabilization of the
closed-loop and, thus, induce even more severe burst-
ing. In the following we illustrate the construction of
such bursting scenaria by means of two simple exam-
ples from model reference adaptive control.

8 Example: (LTI Plant with disturbance) Con-
sider the plant with input disturbance d ;

b
sta [up +d]
with nominal parameters a = 0,b = 1 and suppose
that the control input u, is designed so that the nom-
inal plant output tracks the output of the reference
model 1

iy

31If, in addition, A satisfies |6(t)| < ~'dist(6(t), B) for some
constant 4’ and for all § € {8 : 0 < B8 < dist(6(t), B)}, then the
terms O(I'’) drop out of the performance lower bounds.

Yp =

Ym =

262

theta2

15 2

05 1

1000 1500 )

0 500

. time . . thetal
Figure 1: Burst phenomena in adaptive control: LTI
plant with a bounded disturbance

for any bounded reference input r. To achieve this
objective when the plant parameters are partially un-
known we use the following adaptive law with projec-
tion:

6 = Ppa(—20€, /m)
61y + 6202 —w

up, = [r,yl0
€1 =
where ¢ = [y, s, w = Syl m= 14+ +
w?. The projection set M is selected to contain the
nominal controller parameter vector (6. = [1,-1]7);
in our simulations we take M = [0.3,3] x [—4,4].
Guided by the previously presented construction of
bursting scenaria, we let

Ry [sin(4t) + sin(t)] + R;
sat0,5[—Kyp]

r =

where saty s denotes a saturation nonlinearity with lin-
ear region [—0.5,0.5] (clearly, ||d]lcc < 0.5). It now
follows that whenever Ry, R, are sufficiently small so
that Ky, is in the linear region of the saturation, and
r is PE, the adaptation algorithm drives the param-
eter estimates towards the point [1, K — 1]. Thus, if
K —1> 0, the nominal unperturbed closed-loop is un-
stable, something that becomes evident in the form of
a burst as soon as the disturbance is removed and/or
the magnitude of the reference input is increased. This
behavior is illustrated in Fig. 1 where we alternate be-
tween the following to phases:

1. Drift phase: K = 5,R; = 0.1, Ry = 0 (400 time
units).

2. Burst phase: K = 0,R; = 0, Ry = 1 (20 time
units).

It should be emphasized that the burst magnitude is
essentially independent of the disturbance bound; if
the latter is decreased, the same qualitative behavior
will be obtained by decreasing R and increasing the
length of the drift phase. v

9 Example: (LTV Plant) In the framework of
Example 8, let us now consider the case where the
input disturbance is absent but the plant parameters
change with time. Again, guided by our construction
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bursting scenaria for LTV plants, we define the ref-
pence input and plant parameter variation as:?

Ry [sin(4t) + sin(t)] + Ro(—02 + a — 2)y,/01
K(—a+ P)

bursting behavior is thus obtained by repeating the
owing phases, in sequence:

1. Drift phase: K = 0.25, Ry = 0, R, =1 (100 time
units).

2. Burst/Excitation phase: K =0,R; = 1,Ry =0
(30 time units).

3. Regulation phase: K = 0,R; = 0,R2 = 1 (10
time units).

he value of P is switched between 5 and —3 at the
beginning of every Drift phase and remains constant
during the other two phases. The simulation results for
this example are shown in Fig. 2 where the first Drift
phase is omitted as unnecessary (a(0) = 5). Notice
that although error bursts appear in every Burst phase,
the ones corresponding to a locally stable closed-loop
are “small” (approx. one) while those corresponding
to a locally unstable closed-loop are significantly larger
(in the thousands).

5 Burst Suppression

In this section we briefly discuss the implication of the
above results on the design of adaptive laws that pro-
vide practically meaningful lim sup performance guar-
antees in the absence of excitation. (Note that the dis-
cussion is of a speculative, albeit intuitive, nature by
necessity since few ‘hard’ results are currently avail-
able.) For this purpose, we observe that the violation
of at least one of the assumptions can be interpreted as
a necessary condition for burst suppression. Based on
the available options, the possible avenues with the po-
tential to provide an affirmative result are to introduce
appropriate input constraints or use algorithms violat-
ing Assumption 5 (i.e., with ‘infinite’ adaptation gain).
Yet another possibility is to use a standard adaptive

4Here it is convenient to define the reference signal in a feed-
back form so as to ensure closed-loop boundedness; this defini-
tion does not invalidate the results.

263

scheme, conforming to the previous bounds, but em-
ploying some form of reduction of the effective para-
metric uncertainty set.

For example, the relation between the speed of vari-
ation of the regressor vector and the parameter adap-
tation plays a critical role in all of our constructions
of bursting scenaria. If we restrict the speed of varia-
tion of the regressor vector to be small, relative to the
speed of adaptation, the zero-error manifold changes
slowly, giving the adaptive law sufficient time to drive
the parameters near the manifold and, thus, maintain
a small value of the estimation error. It is, in fact,
straightforward to demonstrate the validity of this ar-
gument. Consider, for example, a standard gradient-
based adaptive law with projection applied to any of
the previous parameter estimation/system identifica-
tion problems. That is,

¢ =Pu(-raw) ; a=w'¢+d 9)
where Paq is a (vector field) projection operator [4]
4 > 0 is the adaptation gain and d denotes the ef-
fective perturbation in the estimation error (for adap-
tive laws using normalization, €;,w,d are the normal-
ized versions of the respective signals). Further, let
us suppose that |0,],|w],|d| are all less than g and
that #, € M is at most vg-close to the boundary
of M, ie., dist(f.,,0M) > vo. Under these condi-
tions, and after some simple geometry, it follows that
whenever |¢Tw| > ce > p, ¢ ww Py(—vaw) <
—Ay¢Twe;wTw where A = v&((vg +M?)and M =
diamM. Next, letting V = (¢ w)?/2, it follows that
whenever V > ¢2/2, V < 0 provided that

Ce 2 maX{?M\/@,M : 4#_<¢;;M_>}

implying that, as ¢ — co, €; converges to a residual set
where |e;| < ¢ + p.

This simple example demonstrates the principle that
the lim sup performance guarantees of adaptive esti-
mators can be improved by adjusting the ratio of the
speed of adaptation versus the variation of the regres-
sor vector. This can be achieved by restricting their
environment of operation with respect to the maxi-
mum derivative (or frequency content) of the regressor
vector, for example, via low-pass filtering the input
u.5 The obvious drawback of this approach is that it
limits the excitation to a low-frequency range. Con-
sequently, the identified system can only capture the
low-frequency characteristics of the actual one, even if
persistent excitation becomes available. Furthermore,
the extension of this result to the adaptive control case
is not straightforward (if at all possible) since the input
is now a closed-loop signal.

5Notice that fast adaptation may also serve to reduce the size
of the steady-state estimation error; its usefulness is, however,
limited since it has an adverse effect on the tracking error and
closed-loop robustness by increasing the size of the perturbation
term 1j.




A different approach to burst suppression would be
to decrease the size of the effective parametric uncer-
tainty (diamM). This, with some directionality con-
siderations, is the basic idea explored by [27]. In that
study, set-membership estimation principles were used
to reduce the parametric uncertainty set on-line and
establish lim sup performance guarantees. The re-
sults, however, are applicable to the LTI case only,
while the LTV generalization seems to be susceptible
to bursting in manner analogous to dead-zone algo-
rithms. In the same vein, another promising idea is to
employ multiple estimators operating on a partition
of the original parametric uncertainty set e.g. along
the lines of {22, 30]. Roughly, under this approach,
the best estimator is selected at each time instant (or
short interval) according to a cost objective. Effec-
tively, the switching of estimators implements an adap-
tive law with infinite adaptation gain and, as such, is
able to compensate for fast variations of the zero error
manifold. This strategy violates the previously derived
sufficient conditions for bursting and may potentially
lead to practical lim sup performance guarantees. On
the other hand, the analytical verification of this idea
must overcome the problems caused by the swapping
of the fast-varying parameters in the identification er-
ror. (Results are available for LTI plants only, where
these terms vanish asymptotically.)

Finally, we should emphasize that even if adapta-
tion bursting turns out to be unavoidable in the gen-
eral case, there is still a potentially viable adaptive
control strategy in the injection of PE signals in the
closed-loop. Under this approach, the injected signal
should be of sufficiently high strength to provide a
‘good’ signal-to-noise ratio and ensure parameter con-
vergence to a small residual set {5, 4, 29]. On the other
hand, such a signal should be small enough in order to
have a minimal interference with the control objective.
This basic trade-off between the parameter error resid-
ual set and the perturbation due to the injected sig-
nal suggests that the achievable lim sup performance
should be of the order of the worst-case disturbance
magnitude. Although conceptually simple, the quan-
titative aspects of this approach require some further
work. For example, the available estimates of the exci-
tation level produced by an external signal depend on
the unknown plant in a rather complicated manner.
Furthermore, the design of the injected signal should
take into account the existence of reference signals so
that the excitation properties of the former are not
destroyed by the latter (e.g., via some frequency sepa-
ration conditions).
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