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ABSTRACT studied in [5]. Robust “quadratically stable” filters for

linear systems with norm-bounded parameter uncer-
tainty which provide an optimal bound for the error
variance, in the stationary regime, have been devel-
oped in [6] and [7]. We note that the filter design in [7]
allows for uncertainty in the state matrix only, and
can be viewed as a particular case of [6], which treated
the design of robust, reduced-order, filters in the pres-
ence of parameter uncertainty in both the state and
the output matrices. An alternative technique of de-
signing robust filters for systems with norm-bounded
uncertainty has been developed in [8]. However, the
proposed filter is sub-optimal, in the sense of the error
variance upper-bound. Very recently a general treat-
ment of the robust £, estimation problem has been
presented in [9] for both the time-varying and the sta-
tionary cases.

This paper deals with the robust minimum variance
filtering problem for time-varying systems subject to a
measurable input and to norm-bounded time-varying
parameter uncertainty, in both the state and the out-
put matrices of the state-space model. The problem
addressed is the design of linear filters having an er-
ror variance with a guaranteed upper bound for any
allowed uncertainty and any input of bounded energy.
Three types of input signals are considered: a signal
that is a priori known for the whole time interval, an
unknown signal of very large bandwidth that is per-
fectly measured on-line, and a large bandwidth signal
that is measured ahead of time in a fixed preview time
interval.

Keywords: Robust filtering; £o filtering; uncertain

systems. One of the main handicaps of the above methods
is that they are confined to cases where the exogenous

1. INTRODUCTION signals are all white noises of zero mean, and that they

cannot easily treat cases where a part of these signals is

One of the reasons for the recent development of Hoo either a priori known, or is measured on-line or with
filtering is the fact that these filters are less sensitive a preview. While such a part imposes no difficulty
than the £, estimators to the exact knowledge of the in the nominal filter design, where no uncertainty is
dynamic model of the system under consideration, see, present, it causes a problem in the uncertain case. In
e.g. [1]. It has, in fact, been noticed that Kalman fil- the nominal design case, the known signal is added to

ters may fail to provide a guaranteed error variance the estimator in order to perfectly cancel its effect on
in presence of parameters uncertainties [2]-[4]. This is the estimation error [10]. Unfortunately, this cancella-
the reason why a considerable interest has been paid tion is no longer possible to achieve in the case where
to the design of robust estimators that achieve a pre- the dynamic model of the process to be estimated is

scribed upper-bound to the estimation error variance, not perfectly known.
for any admissible modelling uncertainty [6]-[9]. The present paper addresses the robust £, estima-
The design of robust filters, on finite horizon, for tion problem for signal processes with both parameter
systems with an ellipsoidal-type parameter uncertainty uncertainties and a known input signal. Since the esti-
in the state and the input noise matrices has been mation error will be affected by both the process and
measurement noise signals and the known input, one

This work was supported by the Australian Research Coun- : ) ’ i
cil and the C. & M. Maus Chair at Tel-Aviv University. of the main issues of this paper is how to incorporate
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the information on the input to optimally reduce a
measure of the estimation error variance.

In this paper we generalize the robust £, estima-
tion approach of [9] to cope with norm bounded un-
certainty in the case where the process is driven by a
partially known input signal. An estimator is looked
for that provides the smallest possible upper-bound to
the estimation error for all the admissible process pa-
rameters. We treat the problem in the finite-horizon
setting. Our estimation is based on both the measure-
ment of the process output and the known signal. We
constrain our filter to be linear, and show in Section 3
that the part of the filter that is based on the process
Ineasurement is identical to the one used in [9]. The
other part of the filter, the one that is driven by the
known input, is calculated in Section 4. It is obtained
by applying the recent results of [11] that have been
obtained for robust tracking control.

Three types of the ‘known’ input signal are consid-
ered. The first type is a signal that is known a priors
for the whole filtering horizon. The other two types
relate to an output of a large bandwidth linear system
driven by a white noise. The second type assumes that
this signal is measured on-line, while the third type as-
sumes that the signal is measured with a fixed preview.
Three different filters are obtained in Section 4 for the
three types of inputs.

The time-varying results are extended in Section 5
to the stationary infinite horizon case. Conditions are
given there that guarantee the convergence of the re-
sults of Sections 3 and 4, in the time-invariant case, in
the limit where the horizon extends to infinity.

The results of this paper are demonstrated by an
example in Section 6. This example demonstrates the
Signiﬁcant improvement that can be achieved in signal
estimation with the new technique. It also shows the
advantage of preview in reducing the estimation error.

2. PROBLEM STATEMENT
We consider the following system:

(B): 2(t) = [A(t) + AA(t)]z(t) + B(t)w(t)

+B.(t)r(t), z(0)=zq (1)
y(t) = [C(t) + AC(t)]z(t) + D(t)w(t)  (2)
z(t) = L{t)z(t) (3)

where z € R” is the state, 7, is a zero-mean random
vector, y € R™ is the measurement, w € R? is a zero-
mean, white noise signal with identity power spectrum
density matrix which is uncorrelated with zg for all
t >0, 7 € R is either a known input signal, or a
stochastic signal that is uncorrelated with w and zo,
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z € R is a linear combination of the state yamoag

be estimated over the time-horizon o, T), 4 (t; o hto
B, (t), C(t) and L(t) are known bounded tipe, “Bft)’
matrices that describe the nominal system of (1)~(3)
and AA(t) and AC(t) are unknown matric '
senting parameter uncertainties. The admissible yp.
certainties are assumed to be of the form:

€S repre-

AAd=H\()F()E(), AC= Hay(t)F(t)E(t) (4)
where F(t) € R is an unknown matrix satisfying
IF@) <1, Ve (5)

and H;(t), Ha(t) and E(t) are known bounded time-
varying matrices of appropriate dimensions that spec-
ify how the uncertain parameters in F(t) enter the
nominal matrices A(t) and C(t). Throughout this pa-
per, || X ||, for X € R™*"  denotes its largest singular
value. For the sake of notation simplification, we shall
omit in the sequel the dependence on ¢ in the matrices
when there is no possibility of confusion.

We observe that the case where the input and mea-
surement noise signals are uncorrelated zero-mean white
signals, say v1(t) and vy(t), respectively, with identity
power spectrum density matrices, is a particular case
of (1)-(3) where w = [vT v7 )7 and where the matrices
B and D are replaced by [B 0] and [0 DJ, respectively.

It is assumed that the the covariance matrix of the
initial state, z¢, is unknown but is such that

E {xoxg} S Xo

where Xo > 0 is a known symmetric matrix, E{-}
denotes the expectation operator, and the notations
X >0and X >0, for a symmetric matrix X, means
that X is positive definite and positive semidefinite,
respectively.

Three types of information patterns for the input
signal 7 will be considered: (i) r is a priori known over
the entire time horizon [0, T; (i) 7 is an unknown sig-
nal of very large bandwidth that is perfectly measured
on-line; (iii) r is a large bandwidth signal that is mea-
sured ahead of time in a fixed preview time interval.

Since in this paper we consider cases where is not
necessarily known a priori, the optimization criterion
should be based on an average over the statistics of
the unknown part of . We thus assume, throughout
the paper, that this part of r is an output of a linear,
strictly proper, system that is driven by a standard
white noise. the parameters of the latter system are
unknown, and its bandwidth is assumed to be very
large.

We define the history of r(-) at time ! by

Ri={r(r),0<7 <1}



]
H
i
i
£
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g
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and we denote by R, the future information on r(-) at
time {, namely

R ={r(r), l<7<T}.

In this paper we are concerned with the design of
robust linear filters for estimating z over the time-
horizon [0, T] with a guaranteed estimation error vari-
ance, irrespective of the uncertainty. More specifically,
we look for a linear estimate of the signal z over the
time-horizon [0, T] of the form

2=Gyy+Gr (6)

where G, and G, are linear operators. The operator Gy
is assumed to be causal and independent of r, whereas
Gr can be either causal or noncausal depending on
whether the exogenous signal 7(-) is, respectively, mea-
sured on-line or known a priori. The operator G, and
G, are to be determined in order to ensure that the
worst-case quadratic performance cost

J=1 & / "B {TWe®d (1)
T Tyrier o T

will satisfy a certain upper bound for all admissible
uncertainties and for all r of energy less than 1, where
e is the estimation error defined by

A A
e=2z—-2z

and where the operator E,, ;, »{-} denotes the expec-
tation over the exogenous signal w, over the initial
condition zo, and over R;,, where h is determined by
the information structure on r. Moreover, this upper
bound is required to be as small as possible.

We conclude this section by introducing the follow-
ing assumption for the system (1)-(3):

Assumption 2.1

[D(t) Ha(t)] is of full row rank for all t € [0, T).

The above assumption means that the robust fil-
tering problem is non-singular. Observe that if the pa-
rameter uncertainty in the output matrix disappears,
ie. Hy = 0, Assumption 2.1 reduces to DDT > 0,
which is a standard assumption in the Kalman filter-
ing problem for the nominal system of (1)-(3).

3. THE ROBUST FILTER

Due to the linearity of the system (1)-(3) and the fil-
ter (6), it can be easily found that the estimation error
is given by

€= geww + ge:z:()-TO + Gerr (8)
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where Gey, Ger, and G, are linear operators defined
by:

gew = gzw - gygyw (9)
gez(, = gzz() - gygyz(. (10)
ger = gzr - gygyr - gr (11)

where G,,, and G,,, are the operators from w to y and
z, respectively, Gz, and G,,, are the operators from
Zo to y and z, respectively, and G,, and G, are the
operators from r to y and z, respectively. State space
realizations of these operators can be easily obtained
from the state space model of (1)-(3). We also denote

€ =e€yz, +6r (12)
where

Cw,zo = Geww + GezoTo, € 2 Gerr. (13)

We note that that in view of (10), the part of the
estimation error that stems from w and zy, namely
€w,z,, depends only on the operator G, and thus, it is
not affected by the choice of the operator G,. This fact
will be of importance in the derivation of the robust
filter in the sequel.

Since r is independent of w and x4 and the operator
Gy is independent of r, we find that

T T
/ Eo 2o o {7 (£)e(t) }dt = / Euzo{€T .. (t)ew,ao ()} dt
0 0

+ / ! Ep, {el(t)e (t)} dt (14)
0

where E,, 5, {-} is the expectation over the unmeasur-
able signals w and o, and Eg, {-} is the expectation
over Ryyp. Note that the first term in the right-hand
side of (14) is independent of r.

Without loss of generality, we consider the follow-
ing state space realization for the operator G, of the
estimator of (6)

2y(t) = Ay()2,() + By(t)y(t), 2,(0)=0 (15)
2y(t) = Ly(t)2y(t) (16)

where A,, B, and L, are bounded time-varying ma-
trices. Note that in view of (1)-(3) and (15)-(16), the
operator from (w, Zo) to €y, can be described by the
following state space model:

§ = [A+ HFEt + Bw, £(0)=[zT 0] (17)
L (18)

I

ewze = L




ey

] A 0 _ B
A:[ByC Ay]’ B:[ByD}’

_ H, -
H= [ByHQ], E=[E 0

L=[L - L,].

Since the first term in the right side of (14) does
not depend on the operator G,, the results of [9] can
be applied to find the optimal Gy, in the sense that for
for all t € [0, T), it minimizes an upper bound on the
worst-case error variance

T
Sup Ew,z“ {ew,zo(t)ew,lu(t)} .
IFI<1

More specifically, it has been established in [9] that,
if for some scalar € > 0, there exists a bounded solu-
tion P(t) over [0, T to the Riccati differential equation
(RDE)

P= AP+ PAT + ePETEP + BBT + ¢ 'HAT;
P(0) = diag { Xo, 0} (19)

then the variance of the estimation error, €w,zqo, Satis-
fies the bound
E { el

w,To

(t)ewzo(t)} < tr {LP{)LT}, ¥t € [0,T] (20)

for all admissible uncertainties, where tr{-} stands for
the matrix trace and diag{-- -} denotes a block diago-
nal matrix. The robust filter of [9] minimizes the upper
bound on the error variance in (20).

In order to present the method for determining the
operator G,, we begin by introducing the Riccati dif-
ferential equations:

Y =AY + YAT + eYETEY + BBT + ¢ 'H,HT,
Y(0) = Xo (21)
and
X = (A - BETV“IC) X+X (A - BDTV—lc)T
+X (5ETE - CTV-lc) X

+B (1 - DTV—ID) BT, X(0)=X, (22)

- 1 - 1 - o
B=|B —H|, D=|D -—=H,|, V=DD
2 o) o= [p e
and where € is a positive scalar to be chosen.

The next theorem presents the optimal filter Gy, in
the sense of minimizing the upper bound on the error
variance in (20).
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Theorem 3.1 ([9]) Consider the system (1)-(3) sat-
isfying Assumption 2.1. Then, there ezists a filter Gy
of the form of (15)-(16) that minimizes the bound on
the error variance of (20) over [0, T] if and only if the
RDE (21) has a bounded solution over [0,T). Under
this condition, the RDE (22) has a solution X (t) over
[0, T] and the optimal filter G, is described by the state
space realization

&y = Ayky + Byy, #,(0) =0 (23)
z, = Li, (24)

where
Ay = A+eXETE - B,C (25)

By = (XCT + BDT + ¢~ 'H,HY)
- (DDT + e ' HyH) ™' (26)
Moreover, this filter guarantees that for all t € [0, T)

sup Ey z, {65,10 (t)ew,zo(t)} <tr {L(t)X(t)LT(t)}-
IIF<1 (27)

Remark 3.1 It should be noted that although the
filter of (23)-(24) does not depend on the solution of
(21), in order for this filter to provide a bound on the
error variance it does not suffice to find a solution to
(22) over [0, T for a suitable £ > 0. Observe that it is
also required to verify if for this ¢ the RDE (21) has a
bounded solution over [0, T]. It may happen that there
exist values of ¢ for which (22) has a bounded solution
over [0, 7] while (21) has an escape-point in [0, T]. For
such values of €, the resulting filter cannot guarantee
the bound on the error variance in (27). a

Once G, is obtained, the problem remains one of
finding G, that minimizes the bound on

T
7| Bade e o) (28)

The latter problem will be solved in the next section.

4. THE OPTIMAL Gj
First, in view of (11) and (13), we denote
er = zp — 2r (29)
2 = Gorty, 526 (30)

where G, , is the operator defined by

gz,r = gzr - gygyr~ (31)



Given the filter G, of (23)-(24), it can be easily
derived that a state space realization of the operator
G..r: T — z is as follows

n = [Ay + HyFE,Jn+ B,r, 7(0)=0 (32)
zr = Lyn (33)
where
oo lde Bc[5]
H, = [ Hi ] E,=[E 0], L,=[L -] (35)
7 ByHy |’ =7 n

and where A, and B, are given by (25) and (26), re-
spectively.

Hence, it follows from the above that the problem
of finding the filter G, coincides with the problem of
finding an estimate 2, = G,.r for the signal z, of (32)-
(33) which provides a guaranteed bound for

>

T
52 % [ Ba {ler®) - 20 lar(e) — 20(0)} de (36)
for all r of energy less than one, and for all || F ||< 1.

Note that the problem of finding such an G, is simi-
lar to a special case of the robust H, tracking problem
that has been treated in [11]. Since the system of (32)-
(33) involves no measurement noise, a modification of
the results of {11] should be used which allows for zero
measurement noise.

This modification can be simply carried out by us-
ing the method of [12]. This method replaces the stan-
dard Ho, observer RDE, which is also used in [11],
with a similar equation whose solution guarantees the
required performance of the observer for a zero mea-
surement noise. Hence, applying the modified results
of [11] to determine the operator G,, we obtain the
following results.

Theorem 4.1 Consider the following Riccati differ-
ential equation:

—-P=ATP+PA,+PH,HIP+ElE,; P(T) (=3$)

Then if there erists a bounded solution P(t) to (37)
over [0,T], the following filters yield the minimizing
G for the three different information patterns on r:

Filtering with r @ priori known over [0, T

Z, = Ardr + Byr + Bg8  £.(0) =0

2, = LpZ,

where
Ar= Ay, +H,HIP, By=H,HT
_a;zd 8 zs given by
6 =—-AT6 - PB,r; 6(T)=0.
Filtering with r measured on-line

Iy = Apdr + Byr; @.(0)=0

2y = LypZ,.
Filtering with r measured with a preview h

-%r = Ar:ir + B,,T + Boep ) :i‘r(O) =0

i = Loy
where 8, = Eg, {6} for the given h.

Remark 4.1 It can be easily shown using the strict
bounded real lemma for time-varying-systems (see, e.g.
[14]) that the existence of a bounded solution Y (t) to
the RDE (21) over [0, T'] guarantees that the RDE (37)
possesses a bounded solution P(t) over [0,7T] as well.
In view of this fact, the existence of a bourded solution
Y (t) to (21) over [0, T] suffices to ensure the existence
of the optimal filters G, and G, of Theorems 3.1 and
4.1. O

5. THE STATIONARY CASE

This section addresses the robust filter design in the
stationary case. To this end we assume that T tends to
infinity, the noise w in system ¥ is stationary and the
matrices A, B, B,, C, L, E, Hy, and H, are constant.
The uncertainty matrix F is still allowed to be time-
varying. Attention is focused on guaranteeing that the
asymptotic value of (7) is within a certain bound for
all r of average power less than one, irrespective of the
uncertainties. Note that now the filter is also required
to be asymptotically stable.

We make the following assumption for the system

(1)-(3):
Assumption 5.1

(i) The system (1) is quadratically stable.
(ii) [D H,) is of full row rank.

Remark 5.1 The quadratic stability assumption im-
‘plies that the system (1) is exponentially stable for all
admissible uncertainties. It should be noted that due
to the presence of time-varying parameter uncertainty,
Assumption 5.1 (i) is required in order to guarantee the
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uniform asymptotic stability of the estimation error
dynamics. The reason is that the estimation error dy-
namics is driven by the state of the system ¥ and thus
the quadratic stability of the latter system ensures the
boundedness of the estimation error. Note that the
asymptotic stability of the nominal state matrix A4 is
a necessary condition for Assumption 5.1 to hold.
Similarly to Assumption 2.1, Assumption 5.1 (ii)
means that the robust filtering problem is nonsingular.

a

We observe, from results in [13], that if there exist
bounded solutions Y'(t), X(t), and P(t), V¢ € [0, 00),
to (22), (21) and (37), respectively, these solutions will
converge, as ¢ — 00, to the stabilizing solutions of the
associated algebraic Riccati equations (AREs), namely

AY +YAT + eYETEY + BBT + e H HT = 0 (38)

(4-BD"V10) X 4 X (a- Bb’-"f/—lc)T
+ X (EETE _ CTV-lc) X

+B (I - DTV—ID) BT =0 (39)

and

ATP+PA, + PH,HTP+ ETE, = 0. (40)

In view of the above, it can be easily shown that the
results of Sections 3 and 4 remain valid asymptotically,
when the solutions Y (t), X(t) and P(t) of the RDEs
(21), (22) and (37) are replaced by the stabilizing so-
lutions Y = YT >0, X = XT >0and P = PT >0
of the AREs (38), (39) and (40), respectively.

We denote the asymptotic values of the error e, 4,
in (13) and of the cost function J, in (36) by e, and
Jr., respectively. Also, observe that now tr {LX LT}
is a guaranteed bound on the variance of e, where
X is the positive semidefinite stabilizing solution of
the ARE corresponding to (19). Hence, we have the
following result, which is the stationary counterpart of
Theorems 3.1 and 4.1.

Theorem 5.1 Consider the system (1)-(3) satisfying
Assumption 5.1. Then there exists a time-invariant,
asymptotically stable filter of the form (6) that mini-
mizes the bound tr{l_/)_(iT} on the variance of e,, and
provides an optimized guaranteed bounded for Jr, if
and only if the AREs (38) and ({0) have stabilizing
solutions Y = YT > 0 and P = PT > 0, respec-
tively. Under this condition, the optimal filter is given
by (23)-(24) and the estimators of Theorem 5.1, where
X = XT >0 is the stabilizing solution of the ARE
(39), which is guaranteed to exist.
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Remark 5.2

In parallel with ¢
be easily shown using the strict

he Remark 4.1, it can

bounded
(see, e.g. [14]) that the existence of 5 Stal;al lemma

lution Y = Y7 > 0 to the ARE (38) guaranltl::gtlfo;
there exists a stabilizing solution P — PT > 0 ¢ t;e

ARE (40) as well. Furthermore, in vj
2.3 of [15], it can be also established that the existence
of a symmetric positive semidefinite stabilizing solu-
tion to (38) is equivalent to the quadratic stability of
the system (1). This implies that Assumption' 5.1 (i)
ensures the existence of the optimal filters Gy and G,
of Theorem 5.1. 0

Remark 5.3 Similarly to the finite-horizon case, al-
though the stabilizing solution of the ARE (38) plays
no role in the calculation of the filter Gy of (23)-(24),
in order for this filter to provide a bound on the error
variance of e,, it does not suffice to find a positive
semidefinite stabilizing solution to (39) for a suitable
€ > 0. Observe that it is also required to verify if for
this ¢ the ARE (38) has a positive semidefinite stabi-
lizing solution. It may happen that there exist values
of £ for which (38) has a positive semidefinite stabi-
lizing solution but not (38). For such values of €, the
resulting filter G, cannot guarantee that tr{LX LT} is
a bound on the error variance of e, for all admissible
uncertainties. O

Remark 5.4 The filter Gy of Theorem 5.1 minimizes
the bound on the variance of e,, for a fixed €. However,
since different values of ¢ give rise to different values for
the bound on the variance of e,,, we can still minimize
this bound with respect to the parameter ¢.

It can be shown, using monotonicity results on al-
gebraic Riccati equations, that if the ARE (38) has a
positive semidefinite stabilizing solution for € = £ > 0,
then (38) also has a positive semidefinite stabilizing
solution for any € € (0,£]. Therefore, it follows that
if the robust filter of Theorem 5.1 can be found for a
given € > 0, then there exists an €* > 0 such that for
any € € (0,€*] the robust filter is guaranteed to exists.
Observe that €* is the largest positive £ such that the
ARE (38) admits a stabilizing solution Y = Y7 > 0.
This allows us to carry out the minimization of the
upper bound on the estimation error variance with re-
spect to €, namely

| {tr [LX(e)LT]; X(e) = XT(e) > 0}.

ew of Theorem

min
e€(0,e*

where X is the stabilizing solution of (39).

6. EXAMPLE

In this section we treat the simple example of [9] with
an additional known input. We consider the system



whose state-space description is given by:

= [(1) __10_?-56 ]x+[ ‘—12 ]w+[ _;1 ]r (41)
[~100 100]z + v (42)
=1 Oz (43)

8-
I

y
z

where w and v are uncorrelated, zero-mean, white noise
signals with unit power spectrum density, and é is an
unknown parameter satisfying || < 0.3.

Note that the above system is of the form of ¥ with

Hi=1 o, H,=0, E=[0 03].

The stationary robust filtering method of Section 5
is applied to system (41)-(43). First, we determined
the optimal G, in the sense of minimizing the bound
tr{LXLT} on the asymptotic variance of the part of
estimation error that stems from w. In view of Re-
mark 5.4 it was found that the optimal G, is obtained
for ¢ = 0.3286 and that the optimal bound is 2.312.
The corresponding optimal filter is given by (23)-(24)
with

A = —161.48 160.55 B, = —1.6148

v 186.35 -—185.79 |’ v 1.8536 |-

The optimal G, is obtained by solving (40) first.
We obtained P = diag{P;, 0}, where

0.1027

—0.0053
h= [ —0.0053 ]

0.1006

The results of Theorem 5.1 are then derived for the
case of the case of r measured on-line and for the case
where it is measured with a preview.

We summarize our results in two tables. Table 1
describes the performance of the filter G, by simulating
it with the system of (41)-(43) for various values of the
uncertain parameter 6. We compare our results with
those achieved for the Kalman filter that is designed
for the nominal system of (41)-(43), namely for § = 0.

Actual Error Variance

Filter (r(t)=0)

6=0 [6=03[6=-03

Kalman Filter | 0.0266 | 12.990 3.321
Gy 0.618 | 1.288 0.670

Table 1. Comparison between G, and the Kalman
Filter.

The results for the filter G, of Section 5 are de-
scribed in Table 2. This table shows simulation results
for r(t) = 10sin(0.4t) for the same values of § that were
used in Table 1. In this table we bring the asymptotic
values achieved for the cost function of (28). We com-
pare our results with those that are obtained by the
intuitive approach for choosing G,, namely taking A,
instead of A, in the dynamics of the filter for r that
is measured on-line. We also compare our results with
those achieved for the Kalman filter with the input r
that is designed for the nominal system of (41)-(43).

Cost Function
Filter
6=0] 6=0316=-03
Kalman Filter 0 11.32 2.803
G,: on-line 2.02 10.24 10.36
G,: preview, h=8 [ 0.70 9.95 7.91
Intuitive Design 0 15.76 3.90

Table 2. Comparison between G,, Kalman Filter and
the Intuitive Design.

Table 2 shows that the two new designs of G, re-
duces the error that is obtained in the worst case,
é§ = 0.3, for the intuitive design by more than 35%.
It also shows the improvement gained by a preview
of h = 8 secs. in relation to the case where r is mea-
sured on-line. This improvement is bigger for § = —0.3
than for § = 0.3. It should be noted that, although
the worst case performance of the the Kalman filter is
only slightly inferior to that of our filters G,, the for-
mer filter is very sluggish. Indeed, the dominant time
constant of the Kalman filter is 303 secs., whereas the
dominant time constant of the filter G, for both the
cases of r measured on-line and with a preview is only
4.17 secs. '

7. CONCLUSIONS

In the present paper we have introduced a robust es-
timation method that copes with both unmeasurable
stochastic noise inputs and measurable inputs (or dis-
turbances) that are either measured or known a pri-
ori. We have treated the time-varying finite-horizon
case and discussed the convergence of the results in the
stationary infinite-horizon case.

In the case where the process considered has no
measured or known input, the vector 8 will be identi-
cally zero. In this case it is easy to see that our filter
recovers the robust Hj filter of [9] and provides, in the
stationary case, the upper bound of tr{LX LT} for our




performance index. We also observe that in the case
where there is no parameter uncertainty the matrix P
is identically zero which leads to an identically zero
8. Our filter recovers then the standard Kalman filter
with a known input signal.

In our problem we have not assumed any a prior:
knowledge of a model that produces the input signal
r. We observe that when the latter is known, it may
be incorporated into the filter design by augmenting
the system ¥ to include this model. However, this
a priori knowledge is in many cases inaccurate and
hardly available.

One ad hoc way of treating the known signal is to
cancel its effect for the nominal system, namely to take
F(t) =0 in (32). The results of Theorems 4.1 and 5.1
show that this intuitive method is not optimal, and
instead of trying to minimize the effect of r on the
system (Ay, By, Cy) one should aim at canceling it for
the system (A, By, Cy).
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