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Abstract. This paper presents the
generalization of the Bode plot construction
rules in the case where s (s=jw) does not lie
on the imaginary axis but in general on a
smooth curve Y of the complex s-plane.

Some rules for generalized Bode plot
construction are investigated. Some
examples are also included.

L. INTRODUCTION.

Bode plots construction rules have been
developed for rational transfer function H(s)
having the form

where z, p. € C. Since z, p € C,
the numerator and denominator of F(s) are
factored into products of first-degree factors.

Z, p, are called zeros and poles respectively.
In real systems, z, aswellasp  are
appeared as complex conjugate pairs if

Z, p. € C-R. It is well known that the
amplitude (in dB) and the phase (in degrees)
are defined as follows
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The functions ‘H(S)‘dh and arg H(s) have

the important property to convert a product
form into a summation form. This property is
used in the construction of a Bode diagram by
adding Bode diagrams of the elementary

terms (s—zl.) and (S—p,.).
Classical Bode plots refer in the case that

s=j @ and they are the plots of ‘H(S)‘db and

arg(H(s)) versus log,, ®. However, in
practice, there exists some interesting cases
where s lies on a smooth curve Y of the s-
plane.

A first interesting case is: Suppose that a
linear (time invariant) system is described by
the transfer function //(s) or equivalently by




the impulse response A(f). If we desire to
modify some properties of the system, we

define the system / (S+a) or equivalently

e ™ -h(t). In a sinus steady state S = j0 and
therefore we obtain (a+ ja)). So starting

from the original transfer function /7 (S) a

substitution § — O+ j seems to take place

(where 0 = @). If some relation exists between
O and @, then, for the Bode plot, s lieson a
curve of the s-plane

A second very interesting case arises from
the discrete time linear systems analysis. In

these systems, the transfer function / (Z) 1s
used (z is the complex variable of the utilised
z-transform). In a sinus steady state z = e’
Therefore z lies on the unit circle.

Other special cases can be obtained in
multidimensional systems theory. See for
example the excellent books [1--3].

In a recent paper, [4], C.S.Lindguist
examined the Bode plots in the case that
s=0€ R. This very interesting case is applied
in several cases in networks, electronics,
control, communications and distributed
systems. In [4], some important remarks are
made and several examples are given.

In this paper, the Bode plots are
investigated in the case that s lies on a smooth

curve Y of the complex plane.

2010g101H(s)! and arg(H(s)) are plotted

versus /og,, 0 where O is the parameter of
the smooth curve ¥ on which s lies. These

Bode plots are a generalization of the classical
Bode plots as well as of the plots of [4].
We focus our analysis on the study of the

factor (s - p,.). It is not difficult to modify it
for the factors (S—zi). In reality, the
amplitude or the phase Bode diagram of a
factor (s-a) is the mirror diagram of the
diagram of 1/ (s —a).

Suppose that p, =a+ jb and the
complex variable s lies on the smooth curve ¥

having the parameter equations: G, = 0'1(9)

and @, :a),(e) where 0'1(9) and w,(@)

are differentiable functions and
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Since

(s—p,)=
c,(6)+jw,(0)—a- jb=o{6)+ jed ) -k - ji

where

d6)=0,(6)-0/0), wl6)=0w,(6)-u,(0)

k+jl=a+ jb—c,(0)- jo,(0)

we can say that the curve starts from the
origin of the axes, i.e.

o(0)=0 and w(0)=0 .

after this displacement in the complex plane,

is k+jl. So, s=0o(0)+jw(6) where

The new pole.

6eR, and 6(0) =0, w(0)=0.
In the next section, we refer to the
behaviour of the Bode plot a) when 8<</,

b) when 6 oo c-d) when |s—p,| is
minimum or maximum,

2. RESULTS.

Suppose that 8= 70". Therefore u-

=log,, 0 .
It is repeated that the Bode plot of the factor

(S - pi) is examined. It should be noted that

our analysis has the advantage to be restricted
only on first order factors.

a). Obviouslyy, 650 & u—> —oo.
However

8->0 = o{(6)—>0 and w(6)—0

For this reason one can write

~20log, |s— p| =—20log,|-p|=-20log |p|
as well as

—argds—p)=-arg-p) =180 ~argp)
The conclusion is that the amplitude plot for
60— 0 is approximated by the asymptote




(straight line) 'H(s)‘d, =-20 logw’pj‘
having 0 db/dec slope and the phase plot for

0 — 0 is approximated by the asymptote
(straight line)

arg(H(s)) = —arg(—-pi) =180° —arg(p,.)

having 0 degrees/dec slope.

b).If 0 > o0 <& u—>oo. We distinguish
two cases:

bl). Our curve on which s lies is a closed
curve. In this case

not

850 = 0(6)— 5 and (6)—"" o

i o(6) and w(6) are  considered

periodical functions, then the amplitude and
the phase plot appeared to be periodical plots

too. If o(6) and @(6) are considered

bounded functions, then the amplitude and the
phase plot appeared to be bounded plots too.
The proof is trivial.

b2). Our curve on which s lies is such that

o(8) —22 500 or ) —22 500, In
this case, one can write

=20 logm‘s —pi[ =-20 logm|s’ and

—-arg(s - pi) = —arg( ) Various cases

can be obtained if ’SI =,c (9) + w’( 9) is
approximated, for example, by a polynomial of
0 or by an exponential function of 6 or by a
logarithmic function of € in big 8. So if

G( 9) behaves as a d ;-th degree polynomial,
and ‘a)( 6) behaves as a d,-th degree
polynomial, then ls‘ = 0'2(9) + w2(9)
behaves as a d-th degree polynomial where
d= max(d d, ) Therefore the asymptote is
the straight line (6) =

20log,, %‘d =-20-d-log,, 6—20log,,c

where ¢ is a positive constant. More
analytically

la| if d, >d,
lcy| if d, <d,
Jel+¢) if d, =d, and |d | +]d,| = 0
where ¢, is the coefficient of the maximum
power of the polynomial that approximates
o(6) n big 6 and c, is the coefficient of the
maximum power of the polynomial that

approximates w(@) in big 6@ too. So an

asymptote with a slope -204 db/decade is
obtained. The phase plot asymptote is

W(6) = ~arg(s)

if d,>d,
if d,<d,
if d=d,and|d|+|d,)|=0

—arg(e,)
={ —90°— arg(cz)

- arg( ¢+ je, )

It is reminded that arg(c) =0 if ¢>0 and
arg(c)=180 if c<0.

Remark: If
o(6) is bounded (for 6 — o)

or o(6)isbounded (for 68 — ) (or is
exclusive or), we define
d, =0 when o{6)is bounded (for 6 — )

as well as we define

d, =0 when w( 6) is bounded(for 60— oo)

If a more sensible approximation in big 6
is
o(6) =c Ex[(.s, -6) oral6) =c,- Ex;(é:z -6)

where €, and £, are positive constants ,
then we have the asymptote (no-straight line)

1
y( 6) =20log,, —
ce

=-20-¢-0-log,,e—20log,,c

=-20-¢-log,, e-10"1° — 20log,, ¢
where




|c1| ifg >¢,
c= |Czl if g <&,

Jel+e) if £, = ¢, and|g,|+|&,|# 0

and 8=max(£,,82). Therefore  the

amplitude plot asymptote is an exponential
curve (no-straight line). Furthermore, the
phase plot asymptote is

—arg(c) if £>¢,
8)=-arg(s)={ -90'-arg(c,) if €<¢,
—a)g(c,+jcz) if &= ¢, and e +]e,| %0
Therefore, the phase plot asymptote is a
straight line.
Remark: If

o(6) is bounded (for 6 — o)

or w(6)is bounded (for 6 — =) (or is
exclusive or), we define

g, =0 when o{6)is bounded (for 8 — o)

as well as we define

g,=0 when () is bounded (for § — o)

If the approximation in big 0, is
o(6) = ¢ 'logm(ll -6)
and w(6) = c, -logm(lz -0) where

A, and A, are positive constants, then we
have the asymptote

y(6) =

=20/og,, = —2010g10[c(10g10 6)+clog, /1]

1
clog,,(16)

where

| ifA, > 4,
c={ |o ifA, < 4,

Jel+e) if A, = A, and|A,|+]4,|# 0

and A = max(ﬂ, ,,3,2). Thus the asymptote

is also a "logarithmic" curve. Furthermore the
phase plot asymptote is

- argle,) ifA,>4,
WO)=-arg(s)=] -90'-arg(c,) if 4, <A,
~arg(e, + je,) if A, =24, and |A|+]2,]|20

thus this asymptote is a straight line.

Remark:
If

o(6) is bounded (for 6 — )

or (6)isbounded (for @ — ) (or is
exclusive or), we define

A, =0 when o{6)is bounded (for  — )

as well as we define

A, =0 when o(6)is bounded (for 6 — )

¢). Suppose that a local minimum of the
distance |o(6)+ja)(6)—k —jl’ is obtained

at the point 6. This can be obtained simply
by a geometric inspection on our work chart.
In order to avoid problems with respect to
differentiability of the quantity

Io(@)+jcu(9)—k—-jl , the square of this

quantity, i.e. |0'(6)+ja)(9)—k—jl‘2, is

considered . Henceforth, we denote

7(6)=|o(6)+ j(6) ~k — ji 50 6" isa
(local) minimum of f (9) A Taylor expa-

nsion of f ( 6) yields

(@)= s(e)+r(6)o-0) /2
C)]

since f '(9*)20 . It can been shown that

after simple algebraic manipulation

-2 )42

where




B rr(e)e’ 2
~r(e)e” s 2+ £(9)

¢

Obviously

2010g,,|0(6)+ j(6) - k- ji| = 101og,, 1(6)

Thus

10log,, f(#)=10log,, a +10log, 1—2§(£)+;( ﬁ] ]
g 2 |

therefore a standardisation can be made, since
the usual second-order Bode plot factor is
locally obtained. See Example 3. The same is
also true for the Bode phase plot.

d). In the case which a local maximum of the
distance 10‘(9)+ja)(9) -k —jl’ is obtained

at the 6 point, a similar analysis can be
followed . This maximum is also obtained
simply by a geometric inspection on our work
chart. The square of this distance is also
considered:

£(6)=[0(6) + jo(6) — k — ji . The same

Taylor expansion of f (6) is also true, since

f '(9*):0 too. The analysis follows the

same steps as in the case of the local
minimum. As a conclusion one can also say
that in both (amplitude and phase) plots, a

standardisation can be made based on { and

6.

3. EXAMPLES

Some numerical examples are now
presented. Here, the exact plots were derived
by using the Mathematica 2.2 software
package in a Windows 3.0 environment.
However one can see that an important part of

the information of these plots can also be
extracted by using the rules discussed above.

Example 1. Plot the amplitude and phase
Bode plot for the transfer function

when s =0+ ;6.

Amplitude Bode Plot (dB versus log,, 0):

log,, 0

2

Phase Bode Plot (degrees versus log,, )
log,, 0

2




Example 2. Plot the amplitode and phase
Bode plot for the transfer famction

1
H =
(s) s+3

s = Exp(30) + jExp(56).

Amplitude Bode Plot (dB versus log,, O):
log,, 0

2

Phase Bode Plot (degrees versus log,, 0):

degrees(o)
—-89.65
-89.7
-89.75
-89.8
-89.85
-§59.9
-89.95

Example 3. Plot the amplitude and phase
Bode plot for the transfer function

H(s):;—;;fz.j when s = 9+_]6

Amplitude Bode Plot (dB versus log,, 0):
FAN
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Phase Bode Plot (degrees versus log,, 0.

125
100
75
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25
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4. CONCLUSION:

In this paper, an attempt is made to develop
Bode plot construction rules in cases in which
s lies on a smooth curve of the s-plane. The
necessity for this generalization is presented.
Some examples are also included.
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