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Abstract— This paper describes the application
of several neuro-fuzzy paradigms, such as a mul-
tilayer perceptron, a polynomial neural network,
and a fuzzy decision model to the problem of check
approval from incomplete data. A simple bench-
mark case is established as a performance metric
to compare the various non-linear strategies. An
overall improvement of at least 10% was obtained
in each of these cases.

I. 1VTRODUCTION

By the turn of the century, almost half of all consumer
payments are expected to be made by checks [1]. This
trend is forcing more and more merchants to rely on
check-guarantee and check-authorization services pro-
vided by specialized companies that assist them to
manage the associated increased risk. These compa-
nies maintain large databases with information such as
customers’ names, fraudulent driver’s licenses, and So-
cial Security numbers. Stores with connections to an
on-line system, can have checks approved or rejected

in a matter of seconds.

Despite the steady increase in the availability of
these services, the number of check-writing individu-
als represented in current databases is still a very small
fraction of the whole population. In many cases, a new
customer shows up for whom there is no information
available. Is there any decision scheme, other than
pure random guessing, that can reduce the odds for
the merchant of accepting a bad check? This problem
calls for systems that can generalize from incomplete
information, and thus predict the credit worthiness of
the new customer. Nonlinear learning networks are
Prime candidates for this task. We describe the appli-
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cation of a multilayer perceptron, polynomial neural
network, and a fuzzy decision model to address the
problem of check approval from incomplete data.

II. PROBLEM DESCRIPTION

Consider two sets of data, for training and testing pur-
poses, respectively, typical of those available from a
check authorization company. The data set consists of
four input variables and an output variable:

z1 : Day of the week (1=Monday, ..
x9 : Age of the person

x3 : Check Number

4 : Amount of the data

y : 1 = Accept check, 0 = Reject check

., 7=Sunday)

Each set consists of 1950 data points. Qut of the
3900 data points only 74 data points have the com-
plete vector of information. Any missing information
is coded as zeros. The output of the network is denoted
as B for a bounced check and G for a good check, while
the predicted output will be represented by B and G
respectively.

III. METHODS AND RESULTS

A.  Minimum Distance Classifier

With two equiprobable classes, the classification ac-
curacy of the nonlinear learning networks outlined in
this paper can be neither worse than 50%! nor better
than 100%. But how can we tell if the added com-
plexity of these networks is justified? How “good” is

!Less than 50% is actually “better” by contradicting the out-
put decision.
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Fig. 1. Thresholded linear discriminant.

their performance relative to simpler, well-established
classification methods?

We will establish a benchmark measure of per-
formance defined by a minimum distance classifier
(MDC). The decision rule adopted by any such system
is simply: “assign x to the class whose mean feature
vector is closest (in the case of a Euclidean distance)
to x.” Thus a dichotomous decision is given by

{ ||X-—_)E1|I<“X—_)'(-2”:>X€C1 (1)

else xe€(Cy.

The rule reduces to a bank of linear discriminants
followed by a maximum selector [2]. In fact, for a
two-class problem in particular, the decision bound-
ary needs only one hyperplanar separatrix. Thus, the
classifier further reduces to a single thresholded linear
discriminant as shown in Fig. 1. The weight vector

[wo--- w4]T is given by

e [ 3 (Il = %01 ] , @

X — X2

This decision model trains virtually instantaneously
as its parameters are determined from estimates of
the mean feature vectors. It is a reasonable start-
ing point in most cases, and under independent equal-
variance gaussianity of the features, it is the optimal
(maximum-likelihood) model.

The MDC was trained on the raw training set, and
the overall classification accuracy was 56.4% on the
test set. This performance is only slightly better than
the “constant-output classifier” or the “coin-flip classi-
fier,” whose expected accuracy is 50% assuming equal
a priori probabilities for each class. An obvious factor
that cannot be directly handled by this classifier is the
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B G

B[ 532(53.8%) 245 (25.5%)
G| 456 (46.2%) 717 (74.5%)
Overall correct = 64.1%
(a)
B G
B [ $61,468 (29.5%) | $31,416 (14.0%)
G | $147,195 (70.5%) | $192,849 (86.0%)

Overall correct = 58.7%
(b)
Table 1. (a) Performance of MDC (b) Performance of
MDC in dollars

use of zeros in places of missing data. The linear deci-
sion boundary implemented by the dichotomous MDC
cannot “interpret” zeros as special cases, but rather
takes them as customers of zero age writing checks
numbered 000 — clearly an artifact.

A simple preprocessing of the raw database can help
alleviate the anomaly caused by missing data. One
approach is to replace each zero with the mode or the
mean of the corresponding input variable. The latter
can be easily estimated from presumably representa-
tive nonzero data in an unbiased and consistent man-
ner using the arithmetic average. In this case, the un-
known values are replaced with guesses that produce
near-minimal mean squared errors. Once these guesses
are computed from the training set, they become part
of the classifier and are applied, without any change,
to the test set.

The above scheme was employed on the MDC and
the results are summarized in the confusion matrix on
Table 1(a). The columns represent the true output
classes whereas the rows represent the model assess-
ments based on input information. Each entry con-
tains the number of cases and the percentage relative
to its column. The overall classifier accuracy (trace of
the matrix over sum of its entries) increased by almost
8%, and we take this new figure as a worst case bound
for the more involved methods described next. It is in-
teresting to note that the exact same performance was
obtained upon deletion of the first input variable), in-
dicating that the day of the week is irrelevant at least
in an MDC sense.

In the context of check authorization systems, it is
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Fig. 2. Two-layer perception.
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Fig. 3. Training with cross validation.

also significant to monitor the confusion matrix ex-
pressed in dollar terms as shown in Table 1(b). This
performance measure gives more weight to larger check
amounts, recognizing the proportionately larger im-
pact of fraud in such transactions.

B. Multilayer Perceptron

The results obtained using the MDC served to guide in
the design of a (3,100,1) two-layer perceptron trained
with backpropagation. The choice of two layers, with
at least the hidden layer being nonlinear, is adequate in
many problems and gives the network the capability
of generating arbitrary decision boundaries [3]. The
three inputs to the network are the ones previously
found most essential. The number of neurons follows
the rough rule-of-thumb of being one tenth the number
of training exemplars, which is roughly 1000 because
half of the “training” set was actually used for cross-
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B G

B[ 704 (71.3%) 274 (28.5%)
G| 284 (28.1%) 688 (71.5%)
Overall correct = 71.4%
(a)
B G
B [ $136,296 (65.3%) | $45,185 (20.1%)
G | $72,367 (34.7%) | $179,080 (79.9%)

Overall correct = 72.8%
(b)
Table 2. (a) Performance of MLP (b) Performance of
MLP in dollars

validation. The single output is a “soft” decision in
the interval {0,1] during training, but is hard-limited
in its final implementation, returning only values in
{0,1}. The network architecture is shown in Fig. 2 in
vector/matrix notation. The activation functions are
logistic sigmoids and the hard-limiter has a threshold
of 0.5.

Each input variable has different meanings and in-
commensurate ranges of values. A standardization of
the inputs in terms of z-scores does not change the fi-
nal performance of a trained network, but does tend
to make the learning procedure faster. The mean and
standard deviations are estimated from the nonzero
values in the training set.

The network was trained until the mean squared
error on the validation set started its upward trend —
the point at which generalization performance starts
to degrade. The optimal stopping point occurred after
67 passes of the training data as shown in Fig. 3.

The performance of this neural network on the test
set is summarized in Tables 2(a) and (b) in terms of

number of cases and dollar amount.

C. PNN Algorithm

The inherent property of the Polynomial Neural Net-
work (PNN) or the Group Method of Data Handling
(GMDH) is to model complex systems using simple
building blocks [4]. This led us to implement the PNN
strategy on the check validation problem.

As there was a lot of uncertainty associated with
the data available, both for training and validation
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Fig. 4. PNN model.

purposes, two different strategies were implemented.
In the first case, to establish a benchmark measure of
performance, the PNN methodology was implemented
on the testing and validation data sets [5]. In the sec-
ond case, the data was preprocessed. Preprocessing of
the data was considered a necessary step because of
the uncertainty (lack of information) associated with
the data. Preprocessing was further necessitated by
the fact that more than 98% of the training and vali-
dation data had at least one input variable missing.

It must be noted here that the computational com-
plexity of the simulation is the same in both cases, as
the PNN methodology was implemented on the same
number of data points.

In a PNN technique, a simple function is combined
at each node of a neural network to obtain a more com-
plex function. This function represents the model for
the given set of input-output data. A simple function
of the following form is used to combine two inputs at
each node of the neural network.

y= A+ Bz; + Cx; + Dx} + Ez? + Fziz;, (3)

where y is the output and z; and z; are the two in-
puts. As shown in Fig. 4, the outputs obtained from
each of these nodes are then combined to obtain a
higher degree polynomial so that the best model may
be achieved which represents the input-output data.
The degree of the polynomial increases by two at
each layer of the neural network. The neural network
was restricted to two layers as it had to be trained
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B G
B[ 659 (66.7%) 456 (47.4%)
G| 329 (333%) 506 (52.6%)
Overall correct = 59.7%
(a)
B G
B [ $96,803 (46.4%) | $63,922 (28.5%)
G | $111,770 (53.6%) | $160,343 (71.5%)

Overall correct = 59.4%
(b)
Table 3. (a) Performance of PNN (b) Performance of
PNN in dollars

for a dichotomous decision only. The best models at
each layer were obtained by using a thresholding (T;)
error value. The output of these best models were
then combined at the next layer to obtain a higher
degree polynomial. The best output model, in terms
of, the minimum predicted squared error, was used as
the model for the system.

e Case I: PNN Implementation

A straightforward implementation of the PNN on the
training data was carried out to obtain a model for the
data. Zeros were used in place of missing information.
This was done to obtain a worst case measure for the
neural net model. Some other methods, like averaging,
etc. could have been adopted to fill the missing infor-
mation, but that would have skewed the results and
would not have allowed us to use it as a benchmark.

A model is constructed based on the training data.
This model is then tested using the validation data.
The results obtained by the implementation of the
PNN strategy are summarized in the confusion matrix
in Table 3(a).

The overall predictability measure was 59.7% and
this is taken to be the worst case bound for the PNN
methodology. In dollar terms the confusion matrix
obtained was as shown in Table 3(b). Thus 59.4%
signifies the dollar amount that was correctly predicted
in the first case.

e CASE II: PNN Implementation after pre- processing

In this case, the data was pre-processed. The entire
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Model Input No. of
Number missing Data points
MI None 37
MII Age 736
M IIT Check # 918
MIV | Age & Check # 278

Table 4. Model Clusters

Model } Overall Correct | Overall correct
Number Data (%) Amount (%)
MI 75.68 82.48
MII 72.87 75.79
M III 73.37 73.29
MIV 70.50 65.10

Table 5. Performance of PNN with preprocessing (in
clusters)

training and validation set was divided into clusters
based on the information available. If all the input
variable values were available then all such data was
put in a cluster, if variable 2 was not available then the
entire such data was put in a separate cluster. In the
check validation example four models were obtained.
The break up for the training data was as shown in
Table 4.

The PNN methodology was then implemented on
each cluster separately. The results were then tested
on the preprocessed tested data. If the test data con-
tains elements in a cluster which was not present in
the training set, then no prediction can be made. The
implication is that there is a lack of training data for
such a set to predict the output.

The confusion matrix, both for the data points and
amount of dollars, were obtained for all four clusters.
The Overall correct percentages for the data and dollar
amount for each model cluster are given in Table 5.

The overall correct percentage for the entire data
was also obtained by combining the values calculated
from each model cluster, and is shown in Table 6(a)
and the dollar values are shown in Table 6(b).

A marked improvement in the performance of the
Polynomial Neural Network strategy was observed,
when it was combined with a preprocessing stage. The
overall correct percentage for the prediction of the out-
put was increased by 13.1% while the overall correct
percentage in dollar terms was increased by 14.3%.
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B G
B[ 663 (67.1%) 205 (21.3%)
G| 325(32.9%) 757 (78.7%)
Overall correct = 72.8%
(a)
B G
B [ $129,533 (62.1%) | $34,617 (15.4%)
G | $79,130 (37.9%) | $189,648 (84.6%)

Overall correct = 73.7%
(b)
Table 6. (a) Performance of PNN with preprocessing
(b) Performance of PNN with preprocessing in dollars

Thus, the preprocessing improves the performance
significantly without increasing the computational ef-
fort. The only drawback of the second case is that it
will not be able to predict an output if that particular
model is not available in the training data set.

D. Puzzy Decision Model

An important concern for decision-making problems
is how to devise a method that would aid judgments
from a strategic point of view by means of summarized
information. In this section, a fuzzy model is used to
assist the human decision process.

Fuzzy model identification based on fuzzy implica-
tions and fuzzy reasoning [6] is one of the most im-
portant aspects of fuzzy system theory [7]. In this
paper the membership function of a fuzzy set A is rep-
resented by p4(z), € A and the fuzzy sets are asso-
ciated with triangular shaped membership functions.
The structure of a fuzzy decision model based upon
input-output information is defined as a finite set of
linguistic relations or rules, {R*; i = 1,...,m}, which
together form an algorithm

R': I z(k)is A} and --- and z,(k) is A%,

Then y(k) is B , (4)

where z1,...,z, are inputs, A},..., A} are the fuzzy
sets in X;,..., X, and B! is the fuzzy set in Y with
appropriate membership functions. X; (7 =1,...,n)
and Y are the universes of discourse of z; and y, re-
spectively. After constructing the fuzzy model using
linguistic rules, the compositional rule of inference [8]
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Fig. 5. (a) Convergence of the centers of the 10 clusters
in Check amount variable. (b) The final result of the
FCM (¢=10, m=2).

is called upon to infer the output fuzzy variable from
given input ififormation. The output fuzzy set is cal-
culated from the expression:

15:4 (y) = Imax min[{#/{} (z(l))’ T ( )
KA (Z?l)}, pei(y), yevy,

where 29, j =1,---,n, is a given input singleton. The
centroid defuzzification method is used to arrive at a
crisp output value , y° [9]:

R0 T (©)
J KB (y)
We construct membership functions from the col-
lected data set using a fuzzy c-means (FCM) cluster-
ing method [10]. A fuzzy clustering of X (crisp data
set) into n clusters is a process of assigning a grade
of membership for each element to every cluster. The
fuzzy clustering problem is formulated as:

minimize J,,(U,V) = Z Z (ui)® (dix)®  (7)
k=1 i=1
subject to

C
douk=1 uk20,1<i<c, 1<k<n, (§)

=1

Membership functions of the output (decision)
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Membership functions of the check amount (x4)

T
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Fig. 6. Membership functions of the decision (two fuzzy
sets) and check amount (ten fuzzy sets).

where n is the number of data points to be clustered, ¢
is the number of clusters, m is a scalar (m > 1), d;x =
|lxx — v;||, the Euclidean distance between each data
point xx in X, X = {x;,--,X,}, and the center of the
cluster, v;; u;; is the membership grade of the kth data
in the cluster 7. If m = 1, it becomes a hard clustering
problem, whereas if m > 1, the clusters become fuzzy.
More fuzziness can be obtained by increasing the value

of m. The center v; of the fuzzy cluster is calculated
by

v; = Z(uik)mxk/z:(uik)m, 1<i<c. (9
k=1 k=1
Four inputs (z;,---,z4 : day of week, age, check

number and check amount) and one output (y: deci-
sion) variable are defined in the data set. The day of
week (z1) is a crisp value that can not be fuzzified.
An FCM clustering algorithm is applied to the train-
ing data, except x;, resulting in ten clusters. Fig. 5(a)
shows the convergence of the centers v;, i =1,---, 10,
in the check amount (z4) variable, and Fig. 5(b)
shows the membership grades from the training data,
z4. Thus, ten linguistic terms for the input variables
(x2,z3, and z4) are derived as shown in Fig. 6. Pos-
sible values for the output are either 1, (the check is
approved) or 0 (the check is turned down) and we as-
sign two linguistic terms for the decision (Fig. 6). If
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Ny N N3 Ny Ns N¢ Ny Ng Ng Ny
A 1 1 1 1 0 1 0 0 0 1
Az 0 0 0 0 1 1 0 1 1 1
As 0 0 1 0 1 0 0 1 0 1
Ag 1 0 1 1 1 0 1 0 1 0
As 0 0 0 1 1 0 0 1 0 1
Ag 1 1 1 0 0 1 0 0 0 1
Ay 0 0 0 0 0 1 1 0 1 0
Ag 0 1 0 0 0 0 0 0 1 1
Ag 0 0 0 1 1 1 1 0 1 1
Ao 1 0 0 1 0 1 1 0 0 1

Table 7. Rule base between check amount and check
number with fixed day and age (N;: Check number,
A;: Check amount)

B G
B[ 741 (77.0%) 273 (27.6%)
G| 221 (23.0%) 715 (72.4%)
Overall correct = 74.7%
(a)
B G
B [ $174,576 (77.8%) | $57,932 (27.8%)
G | $49,689 (22.2%) | $150,731 (72.2%)

Overall correct = 75.1%
(b)
Table 8. (a) Performance of FDM (b) Performance of
FDM in dollars

the output of the fuzzy decision is greater than 0.5,
the final decision is ‘approved’, and if less than 0.5,
the action is ‘turned down’ with unbiased threshold.

The rule base for the fuzzy decision model contains
rules of the form as in (4). Table 7 shows 100 rules
for the check amount and check number in the case of
fixed day (crisp variable) and age (fuzzy variable). The
training data set includes a lot of missing information
that is represented as 0, but it can be easily handled
after assigning membership functions to it. In the case
of an incomplete rule base, the empty rule cells are
filled by observing the underlying pattern [11]. The
complete rule set consists of 7,000 rules (7 x 10%) and
includes the day of the week.

Fig. 7 shows the final result on the testing data set
(1950). The shaded region represents incorrect deci-
sions. The final analysis based upon the testing data
set is shown in Table 8. The overall correct decision in
terms of number of cases is 74.7% and in dollar amount
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Fig. 7. Correct and incorrect decision result from fuzzy
decision model (FDM).

75.1%.

IV. DiscussioN AND CONCLUSIONS

Based on the overall classification accuracy, we may
conclude that linear minimum distance classifiers are
not capable of directly handling missing data, thus
yielding only slightly better performance than pure
random guessing. However, preprocessing of the
database by replacing the zeros with their estimated
mean values improves the overall performance by al-
most 8%.

The two-layer perceptron is able to bring the overall
classification accuracy to a little more than 70% and
has much better balance (diagonal elements of the con-
fusion tables are closer to each other) than the bench-
mark method.

The polynomial neural network with preprocessing
of the data was able to improve the model accuracy
by nearly 14% over the benchmark problem. This was
obtained without any additional computational effort.
This is a reasonably fast process, as it only requires a
regression of a quadratic equation at each node.

In the fuzzy decision model case, the result in terms
of the number of cases and dollar amount, is slightly
better than other methods presented in this paper. We
can conclude from these results, that a fuzzy system,
as a universal approximator, is efficient in handling
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