Abstract

The notion of passivity has played an important
role in extending stability results to systems based on
the input-output properties of the system. This
approach was also utilized to study the stability
properties of interconnected passive systems. In the
conttol of unknown nonlinear dynamical systems,
however, passivity properties were studied only as an
off-shoot of the resulting controller. In this paper, it is
shown that a stronger form of passivity, namely state-
tric ivity, is required to prove guaranteed
tracking performance and internal stability for a class
of nonlinear systems without standard observability
(i.e. "persistence of excitation") conditions. It is shown
that this property can be made a design objective in the
design of adaptive controllers for the control of
unknown nonlinear systems that satisfy certain
assumptions on the system structure. This yields
"robust” adaptive controllers thet do not require
persistency of excitation.

1. Introduction

Real-time control of nonlinear plants with
unknown dynamics remains a very challenging area
of research. Traditionally, the plant dynamics were
first modeled and verified through off-line
experimentation. The control was then designed using
linear system design techniques or geometric
techniques with linear analogues. Thus, feedback
linearization is a first step in controls design for
nonlinear systems. The disadvantage, however, is
that the method is suitable only for systems described
by an accurate model. The results for systems with
unknown dynamics were at first limited by-and-large
to ad hoc techniques and simulations involving
assumptions such as certainty equivalence. These
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approaches are limited by the complexity of the
model and cannot accommodate the variation of
system parameters. This has resulted in the
development of controllers that can learn the process
dynamics, as well as, adapt to parametric changes in
the system.

Adaptive feedback linearization plays a very
important role in the control of unknown nonlinear
systems that are feedback linearizable [1,2]. Since the
plant inputs and outputs are used to tune the
adaptation parameters, a lot of research was directed
towards the study of the convergence of adaptive
algorithms based on the input-output properties of the
system [1-4]. In this context, Passivity properties of
the resulting controller were used to show the
convergence of the adaptation algorithm [5-7]. In this
paper, it is shown that if the system and the adaptive
network satisfy a stronger condition than passivity,
namely state-strict passivity, then this guarantees the
internal stability of the overall system. This is the first
work to our knowledge that brings out this important
relationship between the input-out properties and the
internal stability of the interconnected system. This
result is shown to be of fundamental importance in
the development of a new methodology for designing
adaptive feedback-linearizing controllers for a class of
nonlinear systems. In fact, it allows the design of
controllers that do not require persistence of
excitation (eg. "observability”) conditions.

The remainder of the paper is organized as
follows. A brief background on nonlinear dynamical
systems is given in Section 2. In Section 3, results
from literature on passivity are presented and
sufficient conditions derived to prove the stability of
the closed-loop system. In Section 4, the formulation
of Section 2 is shown to satisfy the "state-strict




passivity” property, and examples presented on
designing adaptive controllers and controllers based
on neural networks.

2. Background on Nonlinear Dynamical Systems
Consider the multi-input maulti-output system

whose state-space represemation is given in the
Brunowskii canonical form as
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with the output equation given as
X
y= o1 . @

Xn,+n,+._+v5_,+l
It is assumed that d=[d,.d;,....da]  is an
unknown disturbance with known upper bound so that
ldi<b,, x=[x;, 25,0, 17 €R", and
f=lfi freifm]’ :R* 5R™ is a smooth
vector function.

Definition 1 : The solution of the system (1) and (2)
is said to be uniformly ultimately bounded (UUB) if

for any compact subset U — R ", there exists a domain
of attraction U, c U, a constant € >0 and a number

T(g,x 4 ) such that for all x(ty )€U, x(DEU V1,
and |x(t)f <€ forall 121 +T. O

2.1 Output Tracking Problem

Given the system (1) and (2), it is required to
manufacture a bounded control input
u(t)=[ul WUy e, U, ]T such that the output y(t) of
the system tracks a specified desired output

T
ya®O=[ys, Oy, Oy, @) while
ensuring that the states x(¢) are bounded. It is
assumed that the desired output is smooth so that
derivatives of all orders exist and the desired output
and all its derivatives are bounded by a known
constant v, that is
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where y, denotes the (n-1)-st derivative of y ,.

Define the tracking error as e=y—-y,, that

el =Xl —yd'

€2 TXp 41 ~ Y4,

L =Xn,+n,+-+n__,+l —yd. . 4)
Then using (1), the error dynamics in (4) can be
expressed as

(n) (n,)
ey =f1(X)+d +u; -y
(n3) (ny)
€y =fy(X)+d; +u; — y 4,
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Define the fil ckin r r(¢) with components
('."l) (n; -2)
r"= C" +)\.,-_1 e" +...+A.;'..__,e,-, lSiSm.
(6)
Selecting now the control inputs as
u; == f; (-K, r;
(n,-1) (n;)
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for 1Si<m @)




the filtered error system can be expressed in the form
i :-Kvl_ r; +]_"’.(£)+d,-, 1<i<m.
®)

In (7), f; (x) denotes an gstimate of f; (x), to
be subsequently provided by a Adaptive network. The
functional estimation error is

f—; x)=f; ({)“}A‘,- (x). The coefficients A, ; in (7)
are selected such that
(n;-1)
)\«i‘ni_lei +ki.ni—2éi+“‘+ki,l e,' =0
®

is Hurwitz, that is all the roots of (9) have pegative
real parts. Then, the controller designed in (6), (7)
ensures that the filtered tracking error system (8) is
stable. This then implies that the tracking error e(f)
remains bounded for all time.

In the implementation of the controller (6), (7) it

is assumed that an estimate f£(.) of the function f{.) is
available. This estimate is manufactured by an
Adaptive Network that can approximate the nonlinear
function to any desired degree of accuracy. However,
for such a network to ensure small tracking error in
closed-loop control, it is necessary to learn the

nonlinear function on-line. The proposed control
scheme (7) is shown in Fig. 1. Note that the structure

has a noanlinear adaptive inner loop plus a linear outer
tracking loop.

3.  Passivity Properties and Implications for
Stability

There are a number of approaches determining
the stability of the adaptive control scheme (7),(8). A
widely used approach would involve breaking down
the system into a number of subsystems and finding a
Lyapunov function for each. The gains in (7) and the
adaptation scheme can then be selected to ensure
stability. This approach has been utilized to control
unknown systems of the form (1) and (2) using
adaptive, peural, and fuzzy logic controllers. The
procedure, however, is cumbersome and depends on
finding a suitable Lyapunov function that results in
tractable adaptation laws. While these results enable
exact calculation of the ultimate bounds on the states
of the system, it is illuminating to study the passivity
properties of the closed-loop system and its relation to
the overall intemal stability. Given the controller
structure (7), it is natural to view the closed-loop
system as an interconnection of the filtered tracking
error system and the Adaptive network as shown in
Fig. 2.
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Fig. 1 Control of an Unknown Nonlinear System Using Adaptive Network
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Fig. 2 Interconnected Feedback Structure of the Adaptive Controller
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In the following section, we show the relationship
between the passivity properties of the interconnected
system and the overall internal stability, using this to
define a suitable adaptive network. To our knowledge,
this is the first time that controller design has been
attempted using passivity properties exclusively.

3.1 Background on Passivity

The relationship between the input-output
properties of a system and its stability has been
extensively studied using the theory of dissipative
systems. Here a few results from literature [8-13] are
first presented, and the results extended to derive
conditions for nonlinear systems subjected to bounded
disturbances. The relevance is that the Adaptive
network used for control purposes herein will be
constructed to have an important dissipativity property
that makes them robust to disturbances and unmodeled
dynamics.

Assumption | [8,11] : Let the system in (1), (2) satisfy
@ f(O)=y0)=0,
(ii) The system is completely reachable, that is,
for a given x . and ¢, there exists a 1, <t , and
a locally square integrable u(f) such that the state
can be driven from x(¢o )=0to x(r ; )=x (,
(iii) O(¢) is an energy supply rate associated with
this system such that
o()=yTOy+2yT Su+uT
(10)
where @, R, S are constant matrices with Q and R
symmetric. O

Definitign 2 [8,11] : The system (1), (2) with supply
rate (10) is said to be dissipative if for all locally square
integrable inputs u(¢) and for all ¢ s >to
fy
jo(tydt =0
with x(¢, ) = 0 and o(¢) evaluated along the trajectory
of (1),(2). O

(11)

Lemma 1 [8,11] : The system (1), (2) is dissipative
with respect to the supply function (10) if and only if
there exist real functions ‘¥(.), /(.) and W(.) satisfying
Y(x)>0V x#0, ¥(0)=0, and
W(x) = o(1)-[1x)+ W(u] T [lx)+W(x)u].

(12)

along the trajectories of (1),(2).
O
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The function -W¥(.) is known as the storage
function for the system (1),(2).

3.2 Stability Properties of Interconnected
Systems based on Passivity

While dissipativity property is a convenient tool
for generating Lyapunov functions for autonomous
systems, it is not possible to study the internal stability
of feedback systems subject to exogenous inputs
without stronger conditions on the system like
complete state observability. It has been observed only
recently [16,17] that using a stronger version of
passivity namely, state-strict passivity can overcome
this limitation. In this sub-section, this novel concept
is first defined and its use in analyzing internal
stability of interconnected systems demonstrated.

Definition 3 : The system (1), (2) is passive if it is
dissipative with respect to the supply rate (10) with R =
0 and Q = 0. A passive system is state-strict passive if
it is dissipative with respect to the supply function
c(t)=yru—e£7£, >0 (13)
where x is the state of the system. From Lemma I, it
is clear that any system verifying (13) with o(¢)=y 'u
is passive. Under these conditions, that is o(t)=y ‘u,

(13) is said to be in power form. O
Theorem 2 : Consider the system of the form shown in

Fig. 3. Suppose the subsystems 4, and H , are state-
wwuh respect to the supply rates
o, ()= )’1“1 Ell*‘xl

02(‘)=yz uy —eznézlz

and
|y,"$a"£,“,a>0. (14)

Then the feedback system is UUB for all bounded
inputs &(¢).

Remark : No observability or persistence of excitation
conditions are required on subsystem H,.

Proof : Since H, and H , are state-strict passive, there
exist storage functions¥,(x,) and ¥,(x,)
satisfying Lemma 1. Taking the Lyapunov function
W(x,,x,)=Y,(x;)+¥,(x;),
we have
Y(x,,x,)<0, ())+0, (1)

Syjuy '51"!_‘1"2 +ysu, —€2l£2"2~




H,

H,

Y2

Fig. 3 Interconnection of two subsystems in feedback configuration

Substituting (14) and using (12),(13)

¥(x, ’Xz)Salliﬂﬂill-ellL{nlz 'ellizlz'
Thus, for all bounded inputs the states x, and x , are

bounded for all time or the states of the system are
UUB. |

4. Design of Adaptive Controllers

In Section 2 it was shown that the proposed
controller (7) could be interpreted as having two parts -
a nonlinear adaptive inner Joop and a linear outer
tracking loop. The results of Section 3 suggest that the
stability of the system (1),(2) under the controller (7)
. can be concluded if the system is state-strict passive
and the adaptive network is designed to be state-strict
passive. The design of the controller is therefore
carried out in two stages. First the dynamics of the
filtered error system (8) are shown to be state-strict
passive and satisfy condition (14). Then, the
adaptation laws for the adaptive network are chosen to
make it state-strict passive. The stability of the
interconnected system can then be concluded using
Theorem 1.

Define E(t)= f(f)+d. Then the filtered error
system (8) can be expressed in vector notation as
\ Fty=—-K, r(t) +E(p). 15

Lemma 3 : The dynamics (15) from E(¢) to r(¢) are a
State-strict passive system.
Proof : Consider the Lyapunov function

V= —l—r T,.

2

. Differentiating both sides, and substituting (15) results
in

V=—rTer+rT§. (16)
- (16) is in power-form (13) with the supply function
rTE—rTK,r. From Lemma 1 and Definition 3, it

follows that the dynamics (15) from §(1) to r(f) are a
state-strict passive system. O

In the implementation ot: the controller (7), the
estimate of the noanlinearity f(.) was assumed to be

manufactured by an adaptive petwork to a specified
degree of accuracy. Several techniques are now given
for selecting the state-strict passive adaptive network.

4.1 Functional Estimation Using Neural Networks

Consider a one layer neural network with
input () and output f(). The output of the neural
network can be expressed as

fo=w" o(x) amn
where @(.) is a vector of activation functions and w is
a matrix of the weights associated with each node. The
activation functions ¢(.) form a basis set for a class of
functions. That is, there exists a set of ideal weights w
such that any function belonging to this class can be
expressed as w’ @(.)+€, where € is the function
reconstruction error. The error in the function estimate
is then given by

F(x)=wp(x)+e, (18)
where w=w-w [5-7].

Let the weight update for the Neural Network be
given by
ll;l=—dr'F);’+FrQT(£). (19)
where F is a2 symmetric positive definite matrix.

Lemma 4 : The weight update law (19) guarantees the
peural network to be state-strict passive from input

r(t)o w’ @(x).

Proof : Take the nonnegative function
V=aWF'w).




Differentiating both the sides, and substituting (19)
V=T ox)rT)+ooowv T |rjw)
=rTwT (p(g))+x|r|tr(w w)

<rT o7 o)~ lirdd]” - w e 1)
where max(w)=w__
Since the derivative of V is in the power form, from
Lemma 9 and Definition 7 it follows that the neural
network is state-strict passive from input r(f) to
wTox). O

Lemma 3 and Lemma 4 satisfy the conditions of
Theorem 2, and hence the closed-loop system is
Uniformly Ultimately Bounded.

The structure of the neural network (19) is
obtained using a filtered error/passivity approach. This
method has several advantages over conventional
neural networks based on gradient laws and
backpropagation algorithms. Standard
backpropagation tuning can result in unbounded
weights in the neural netwok if (a) the network cannot
exactly reconstruct a certain required nonlinear
function, or (b) there are bounded unknown
disturbances in the system dynamics. The novel
weight update laws (19) do not require a learning
phase. The stability of the closed-loop system can be
established without requiring strong observability
conditions or persistence of excitation. The algorithm
includes correction terms to the bacpropagation, plus
an additional robustifying signal that guarantees
tracking as well as bounded weights.

4.2 Functional Estimation Using Adaptive Networks

The peural petwork can estimate the unknown
function as the activation functions ¢(.) form a basis
set and it is assumed that the nonlinear function can be
expressed as a weighted linear sum of the elements of
the basis set to the specified degree of accuracy. For
the adaptive estimation of the function however, it is
required to compute a regression matrix [15]. Let the
regression matrix be W(x) and the parameter vector be
given by =. If E is known then the function can be
constructed exactly as

f()=ETW(x). (20)
Singe E is unknown, let the estimate of = be denoted
by Z. Then the functional estimate error is given by

f)=2TwW(x), 1)
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where Z is the error in the parameter estimates.

Lemma 5 : The adaptive update law given by

'_:7, = é:—-rrwr (x)+x|rll'é, (22)
where I is a positive definite matrix makes the map
fromrto =T W(x) state-strict passive.

Proof : Take the nonnegative function
V=uw(ETr'3).
Differentiating both the sides, and subsfituting (22)
V=trETWx)rT)+o(ET IrE)
=rTETW)+r|rETE)
<rTE W(x)) xM(H —E o
where max(ZE)=E ..

From Lemma 9 and Definition 7 it follows that the
adaptive petwork is state-strict passive from input r(t)

to éTW(E). d

It is seen that state-strict passivity is needed to
ensure boundedness of all states when the closed-loop
system is subjected to bounded disturbances. The
choice of the adaptation laws for the petwork is crucial
as this guarantees boundedness of the signals without
the requirement of the persistency of excitation (PE)
[14] condition required in most adaptive control
techniques.

4. Condusions

A pew methodology for the design of stabilizing
controllers for a class of unknown nonlinear systems is
presented. It is shown that designing the controller in
two stages sigpificantly simplifies the overall
implementation. The resultant controller has two
components : an outer tracking-loop and an inner-loop
consisting of an adaptive network for manufacturing
the nonlinear elements in the dynamics. It is shown
that choosing an adaptation law that makes the
network state-strict passive is sufficient to guarantee
the closed-loop stability of the overall system. The
result is a "robust” adaptive controller that does not
require persistence of excitation and leams the
nonlinear function on-line.
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