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Abstract

Given a discrete uncertain system with multiple inputs and
multiple outputs (MIMO), matched uncertainties, and a
measured output, a necessary and sufficient condition is
given for the existence of a min-max output feedback
stabilizing controller. The min-max controller, defined in
[1]-[2], is in general state dependent. It is shown that the
condition for realizing the min-max contol-law via output
feedback is that the transfer matrix of an avuxiliary system,
precisely defined in the paper, can be made a discrete
strictly positive real transfer matrix by premultiplication
by a constant matrix F. The existence problem of an
output stabilizing controller for uncertain systems was
treated extensively and solved for the continuous case.
Only recently, the problem was solved for single input
single output (SISO) discrete systems, [20]. In this paper
the results of [20] are generalized to MIMO sysiems.
Using the results developed in the paper, the complete
min-max control may be designed entirely in the
frequency domain.

The paper contains also some new results on discrete
positive real matrices which are essential for deriving the
existence conditions,

L Introduction

In recent years a considerable amount of work has been
devoted to the problem of stabilizing discrete uncertain
dynamic systems with bounded uncertainties (e.g.
[3]+[10]). All the mentioned works dealt with controllers
which are state dependent.

Consider an uncertain discrete system:

X(k+D=[A+AAK)Ix(K)+[B+AB(K)Ju(k)+v(k) (1.1)

n m
where xeR , ue®  and A, B are of appropriate

n
dimensions. v(k)e R represents the external disturbances.
Under the assumption that the uncertainties satisfy the
matching conditions, system (1.1) can be represented as:

x(k+1)=Ax(k)+B {u(k)+n(x(k), k)} (1.1a)
where 1(x, k) represents the matched uncertainties of the

system, and is unknown but is assumed to be cone
bounded, i.e.:

n(x(k).k) < p, +py[x(k)f (1.2)

In (1.2), Pi is a function of AA(k) and AB(k) and Po isa

function of v(k).
In [1], [2] the following state feedback control law for
system (1.1a) was derived:

u(k) = —(BTPB)_IBTPAx(k) (1.3)

where P solves the discrete Lyapunov equation:
ATPA-P=-LLT (1.4)

for a positive definite (p.d.) LLT. In 1], [2] it is shown
that for AB=0, (1.3) is a min-max controller for (1.1a)
since it minimizes the Lyapunov function's difference,
AV, for the worst case of the uncertainties (minimum on u
of the bound on max;, {AV}). The properties of the
discrete min-max controller are as follows:
Define:
2]
== (1.5)
x(BTPB)

where P, LLT>0 satisfy the Lyapunov equation (1.4) and
AQ), AMQ) denote the smallest and largest eigenvalue of
a square matrix Q, respectively. If

Pl<\/g (1.6)

In the absence of external disturbances (i.e. v(k)=0),
(1.3) guarantees asymptotic stability of system (1.1a)
even when AB=0.

In the presence of external disturbances (v(k)#0) and
for AB=0, (1.3) assures uniform boundedness.

The min-max controller (1.3) requires, for its realization,
all the states of the system. In practice, however, usually
not all state variables are available- i.e. either some of
them are not accessible or it is very costly to measure
them all. The question therefore arises: When can the
discrete min-max state control-law be realized via output
feedback?




In continuous systems [11]+[17] a stabilizing controller
for an uncertain system is also based on state feedback.
Steinberg and Corless [18] have shown that for continuous
systems, a sufficient condition for realizing an output
feedback stabilizing controller for an uncertain system
with matched uncertainty is that the open loop is Strictly
Positive Real (s.p.r.). Following Steinberg and Corless,
Magaiia and Zak [19] tried to define conditions for
realizing an output min-max controller for a discrete
system with the following output:

y(k)=Cx(k) (1.7)

They pointed out that realization of such a controller
requires a Positive Definite (p.d) matrix P which solves

the discrete Lyapunov equation (1.4) for a p.d. LLT, and
satisfies:

BTPA=C (1.8)

Since searching for such a P requires the use of numerical
decision methods, it is noted in [19] that "one would be
tempted to extend Steinberg and Corless’s resulls
[regarding continuous systems] to the discrete-time case”.
However, as it is clear from corollary 2.3 of section II, a
system with the output (1.7) can never be Discrete Strictly
Positive Real (d.s.p.r.) even if there exists P that solves the
Lyapunov equation (1.4) and satisfies (1.8). Magaiia and
Zak's final conclusion was that the question of a system
theoretic interpretation of the existence of the matrices P
and L that satisfy (1.4), (1.8) has not yet been resolved,
and remains an open problem.

In {20] the conditions for realizing the min-max control
via output feedback, (i.e. the condition for the existence of
P that solves (1.4) and satisfies (1.8)) were derived for
SISO systems. It was also shown that those conditions are
not analogous to the conditions for the continuous case. In
this paper the results of {20] are generalized to the MIMO
case.

The rest of the paper is organized as follows. In section [I-

some new results concerning Discrete Positive Real (d.p.r)
and Discrete Strictly Positive Real (d.s.p.r.) systems,
needed for the development in the paper, are presented.
Section III presents the conditions for realizing the min-
max controller via output feedback in multiple outputs and
multiple inputs systems. Conclusions are presented in
section I'V.

I Preliminaries
The purpose of this section is to present some well known
definitions and results as well as new ones, on discrete
positive realness (d.p.r.), discrete strictly positive realness

(d.s.p.r.) and on projection matrices. These results will be
utilized in the subsequent development.

Definition 2.1 (Discrete Positive Real-d.p.r.) [21]:
A square matrix G(z) of real-rational functions is discrete
positive real (d.p.r.) if it has the following properties:

G(2) has elements analytic in |z/>1 and

G'(z)+G(z)20 in |z >1

where G*(z) denotes the transpose conjugate of G(Z).

Lemma 2.2 (Discrete Positive Real (d.p.r.) Lemma)

[21). [22]:
Let G(z) be a square (mxm) transfer function matrix with

all poles inside the unit disc (u.d.) (or simple poles only
nxy
on the v.d.) then G(z) is d.p.r. iff there exist LeR ,
vXm nxn
WeR ,PeR |, P>0and symnetric, such that:

ATpa-p=-LLT Q.1
BTPA=C-WTLT .2)
BIpB=D+DT -wTw (2.3)

where {A, B, C, D} is a minimal realization of G(z).

A necessary condition fTor d.p.r. is that the system is non
strictly proper and D+D >0.

Proof: The proof is readily obtained using equation (2.3).

In the results to follow, projection matrices will be used.
Hence, in the following, we present a basic definition and
a lemma of such matrices.

Definition 2.4 [23]:
A projection matrix  is a matrix that satisfies:

Q°=Q (2.4)

If a projection matrix € is symmetric, then it is called an
orthogonal projection matrix.

Lemma 2.5[23];
a symmetric matrix 2 is an orthogonal projection matrix
iff all its eigenvalues are either 1 or 0.

The next lemma is the key for proving theorem 2.7.




Lemma 2.6:

2% ) .
Given XeR ,and the following equation:

wiw=wTx (2.5)
all solutions (for W) of (2.5) are given by:
W=QX (2.6)

where  is any orthogonal projection matrix.

Proof: the proof is given in the appendix.

the next theorem is crucial for proving the main result of

the paper.

Theorem 2.7 :

Let {A, B, C, D} be a minimal rcalization of a stable and
a square transfer matrix G(z), where A is nonsingular.
The system is d.p.r. and D is symmetric and equal (o:

p=Lca'B 2.7)
iff there exists P>0 which solves the discrete Lyapunov
equation (2.1) and satisfies:

ATPA-P=-[LT (2.10)
B'PA=C (2.24)
B'BB=2D (2.3)

(i.e. the d.p.r. equations hold for W=0 and a symmetric )

Proof:

Sufficiency: Suppose there exists P>0 such (hat
equations (2.1a), (2.2a), (2.3a) hold, then according to
lemma 2.2, the system is d.p.r. with W=0. Multiplying

-1
(2.2a) by A B, yiclds:

B'PB=CA"'B (2.8)
which together with (2.3a) implics (2.7). And since P is
symmetric then (2.8) implies that D in (2.7) is also
symmetric. )

Necessity: Suppose that D is given as in (2.7) and it is
symmetric. Suppose also that G(z) is d.p.r. Then,
according to lemma 2.2, there exist matrices L, W, and
P>0 such that equations (2.1+2.3) hold. Substitution of C
from (2.2) into (2.7) and then substitution of D (which is
symmetric) into (2.3) yields:

T T, T -1
W w=W1LAB (2.9)
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According to lemma 2.6, all the solutions of (2.9), for W,
are given by:
T,-1
W=QL A B 2.10)

where €2 is any orthogonal projection matrix. Substitution
of W from (2.10) into (2.2), yields:

Cc=BTPA+BTA TLQLT =

2.11)
= BT(P + A‘TL,QLTA“)A
or.
Cc=B"PA (2.12)
where
P=P+A TLQLTAL (2.13)

Since € is symmetric so does P. It is left to show that if P
satisfies the Lyapunov equation (2.1) then there exists L
such that P in (2.13) solves (2.1a). Substitution of P from
(2.13) into the Lyapunov equation (2.1) yields:

AT(13- A’TLQLTA")A—
-(13— A‘TLQLTA“) =-LLT @19

or:
ATPA-P=-L(1-QL"-ATLQLTA™! (215)

Since all eigenvalues of €2 are equal to 1 or 0, then I-Q2>0,
and hence, the right hand side of (2.15) is nonpositive
definite, which implies that there exists L such that P
and L satisfy (2.1a).

Remark: It is worthwhile noting that (2.7) is equivalent to
the property that the products of all poles and zeros of
G(z), are identical except for a sign. This can be shown
using the fact that if (2.7) holds, then G(0) = —G(ee).

In the subsequent development use is made of the strictly
positive real property of discrete-time systems. Hence, the
following definition and lemma are in order.

Definition 2.8 (Discrete Strict g -d.s.p.
A transfer matrix G(z) is d.s.p.r. iff there exists £>0 such
that G(Z . e_s) isd.pr.




Lemma 2.9;

-1
Consider the transfer function G(z)=C(zI-A) B+D where
D is symmetric and given by (2.7). If G(z) is d.s.p.r., then
equations (2.2a), (2.3a) hold with P that solves th%
Lyapunov equation (2.1) for a positive definite matrix LL
(LLT > 0).

Proof:

The proof for the SISO case is given in [20]. The proof for
the MIMO case follows along the same lines using
theorem 2.7 instead of the counterpart theorem for SISO
systems.

II1. Output min-max control-law

In this section we treat MIMO systems with given outputs
and seek conditions which guarantee that the min-max
control-law can be applied via the given outputs.
Furthermore, when the conditions are satisfied, an explicit
expression for the output control law is given both in
terms of the state space representation and the transfer
matrix of the system.

Consider the following nominal system:

x(k+1)=Ax(k)+Bu(k)
y(k)=Cx(k)

n m P
where xeR , ueR , yeR

Consider the following assumptions:.

(1 C and B are of full ranks.

(ii) The number of outputs is greater or equal to the
number of inputs, p2m

(iii) {A, B, C} is minimal, i.e. the system is controllable
and observable.

(iv) A is nonsingular,

(v) The nominal system is asymptotically stable, or it
can be stabilized via output feedback. (Without loss
of generality, we shall assume that the system is
asymptotically stable).

The next theorem presents the conditions under which the

min-max controller (1.3) can be applied to system (3.1)

which satisfies (i)+(v) via the given output. The theorem

deals with strictly proper systems. Later it will be
extended also to proper systems.

Theorem 3.1:

Consider the system {A, B, C} defined in (3.1) with the
assumptions (i)+(v). Let the corresponding transfer matrix
of (3.1) be G(z)=C(z1- A)™'B.

Define an auxiliary system:

G,(z) =G(z)+ D,

The min-max control law can be applied to the original
system (3.1) via the output iff there exists a matrix

mxp
FeR such that:

1) Dp AFD,

2) Gr(2)AFG,(z) is d.s.p.r.
The output controller is then given by:

is symmetric

u(k) = -(2Dg) ' Fy(k) = {FG(0)} 'Fy(k)  (3.4)

l IOO!:
The realization of Gg(z) is given by {A,B,Cg, Dg}

where Cg AFC and Dg A%CFA_IB. Hence, according

to theorem 2.7 and lemma 2.9, there exists P that solves
the Lyapunov equation (2.1) for LLT>0 and satisfies:

B'PA=Cp=FC (3.5)
T
B'PB=2D=2FD, (3.6)

Iff D is symmetric and Gg(z) is d.s.p.r.
According to corollary 2.3, the positive realness of Gg(z)
guarantees that DF is nonsingular. Now substitute (3.5)

and (3.6) into the control law (3.4) and use y=Cx to obtain
the equivalency of the output control law (3.4) and the
min-max control law (1.3). Using (3.3), the right hand
side of (3.4) follows immediately

Necessary conditions for the existence of an output min-

max controller for system (3.1) with the assumptions

(iy+(v) are:

(a) CA'B is of full column rank.

(b) Gga(z) which is defined in (3.2), (3.3), is minimum-
phase.

According to theorem 3.1, a necessary (and a sufficient)
condition for the existence of an output min-max
controller, is that Gg(z) is d.s.p.r. According to corollary

2.3, the positive realness of Gg(z) implies the




nonsingularity of Dg, which implics the necessity of (a),
and also that F is of full row rank. The strictly posilive
realness of Gg(z) implies also that Gg(z) is minimum-
phase. Since F is of full row rank, then the zeros of Gg(z)
are also zeros of Gg(z). This implies the necessity of (b).
Note that (a) is the reason for assumption (ii).

Remark 1: It is clear from (3.4), that when the conditions
of the theorem are satisfied, the design of the output min-
max controller is based upon either the transfer matrix or
the state space representation of the system, and there is
no need to compute the matrices P and L.

Remark 2: Note that unlike in the continuous case, the
conditions are applied to the auxiliary system.
Consequently, FG(z) need not be d.s.p.r. and may be even
nonminimum phase and still may satisty the conditions of
the theorem. This has been demonstrated in the SISO case
[20].

Remark 3: It should be emphasized that if the conditions
of the above theorem are satisfied, then every control law
of the form u(k)‘-—-—K(BTPA)x(k), where K is a mxp
gain matrix, can be realized via the given output. However
the specific gain in (3.4) leads to the min-max control

defined in [2]. This remark applies to the next corollary as
well.

The following corollary extends theorem 3.1 to proper
systems.

Corollary 3.3:

Consider now the case where a proper system is given by:

x(k +1) = Ax(k) + Bu(k)
y(k) = Cx(k)+ Du(k)

(3.7

Let G(z)=C(zI-A)'B+D be the corresponding
transfer function.
Similar to the strictly proper case, define the auxiliary

system {A, B,C, D, é%CA‘lB}, with the corresponding

transfer function:

G, (2) = G(z) - 1 {G(0) + G(e)} (3.8)

if there exists F such that:

) FD, =4 F[G(e0) - G(0)] is symmetric
2) FGa(z) isd.s.p.r.
3) F(2D, — D) =-FG(0) is nonsingular
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then the min-max control-law (1.3) can be applied to the
proper system (3.7) via the given output, using the
following output control-law:

u(k) = —{F(2D, - D)} "' Fy(k) (39)
or in terms of the transfer function:
u(k) = {FG(0)} ' Fy(k) (3.10)

Proof:

The control law (3.9) can be written as follows:

{F(2D, - D)}u(k) = ~Fy(k) = ~FCx(k)- FDu(k) (3.11)
or

u(k) = -1 (FD, )™ FCx(k) (3.12)

note that according to corollary 2.3, FD, is nonsingular.
It is clear from the proof of theorem 3.1, that if Gg(z) is

T
d.s.p.r., then there exists P that solves (2.1) for LL. >0 and
satisfies:

FC=B'PA (3.13)
Using the definition of D, (3.13) implies that:
FD, =1BTPB
a=1 (3.14)

Substituting (3.13) and (3.14) into (3.12) leads
immediately to the equivalence of the output control (3.9)
and the min-max control law. Noting that D = G(e) and

that D, = —3[G(0) - G(e)] the equivalency of (3.9) and
(3.10) follows immediately.

Remark 4: If D of the original system (3.7) already
satisfies D=%CA"1B, then G,(z)=G(z) . In such a

circumstance, the theorem is applied directly to the
system.

The question of the existence of F that satisfies the
conditions of theorem 3.1 or corollary 3.3, remains an
open question. In the case where there exists such a matrix
F, then it is not unique. It was mentioned in the
introduction that the bound on the allowable uncertainties
is a function of the matrices P and L (equation (1.5)), and
according to (3.5), P depends on F. The question of how
to select F among all the matrices F that satisfy the




conditions of the theorem, in order to achicve the best
robustness properties is currently under investigation,
In the case where the number of inputs is equal to the
number of outputs (p=m), F if a square nonsingular
matrix. In this case, the control laws (3.4) and (3.10) awe
reduce to:

uK)=(G(0)} 'y(k) (3.15)
and the matrix F, which is essential for checking the
existence condition, does not appear in the control law and
consequently does not affect the robustness properties of
the controller, though, it affects the allowable bounds on
the uncertainties.

Iv. Conclusions

The problem of realizing the discrete min-max controller
for discrete uncertain MIMO systems with matched and
bounded uncertainties via a given oulput was considered.
Necessary and sufficient conditions were derived for the
existence of an output min-max control-law. Using the
results of this paper, the checking of the existence
conditions, as well as the complete design of the output
controller, may be performed entirely in the frequency
domain.

Appendix: proof of lemma 2.6

It is clear from (2.5) that Rank(W)<Rank(X) and that a
linear combination of the rows of W is equal 10 a linear
combination of the rows of X. Hence all solutions of (2.5)
are given by:

w=QX (A1)

where Q is square but otherwise a completely general
matrix. Substitution of (A.1) into (2.5) yields:

xToTox =xTaTx (A2)
If X has full row rank then (A.2) implies QTQ = QT,
which implies that Q is symmetric and therefore is an
orthogonal projection matrix.

If Rank(X)=r<v then there exists an orthogonal matrix U

(U Tu= IV) such that:

UX = [3&}‘

A3)
0 |v—r (A-3)

where X; € R™™™ has a full row rank. Rewriting
equation (2.5) in the following form:
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wTuTuw =wTuTux (A4)

yields:
WTw = WT[%‘.J (A.5)

where:
wWAUW (A.6)

According to (A.1), the solutions of (A.5) are given by:

. N
W:QF.?} 2 [3‘.‘}: 2% | A
0] [Qu 1@ 0} [QX
From (A.7) it follows:
WIW = x{(Qf Q) + 0310 )X (A8)
and
- X -
WT[-dl-] =x7alx, (A9)

Equating the right hand sides of (A.8) and (A.9)
(according to (A.5)) and using the fact that X has a full

row rank, yields:

QIO +QlQ, = aQf (A.10)

which implies that fz, is symmetric, hence (A.10) can be
rewritten as:
- 22 AT
Q- Qf =Q5,Qy; (A.1D)

From (A.7) it is seen that W depends upon Q; and Q,,
only. Therefore, all solutions for W which is given in

(A.7) can be expressed by a symmetric Q of the
following form:

(A.12)

with fzz being any symmetric matrix.




Using (A.6) it can easily be shown that:

w=UTouxaox (A.13)
and since Q is symmetric so does £2. Now it remains to
show that Q, can be chosen such that Q in (A.12) is an

projection matrix (which immediately implies that Q is
also an projection matrix), and since it is symmetric, it is
an orthogonal projection.

Suppose le has p eigenvalues that are equal to 1 (note

that p may be also equal to zero). In the following it is
shown that those p eigenvalues are also the eigenvalues of

Q. Since €, is a symmelric matrix, then there exists an
orthogonal matrix T such that:

- 1,10
T T! = [_EJ:__} (A.14)

01!A

where A is a diagonal matrix which contains all
eigenvalues of le which are different from 1.
Premultiplying and postmultiplying both sides of (A.11)
by T and T" respectively, yields:

=TQ5, 0T

(A.15)

hence, the first p rows of sz;,_Tl must vanish, and it can be
1.0

written as: Tle =[6T' . Define now the following
21

orthogonal matrix:

(A.16)

16T 1Tl ] [Py

o Pl Dt
T—[a_%T'%“’gl}: 0: A ol aa

—==ex--g-z=-

e 0 :9y | Q2

that yields to a block diagonal matrix, which means that

the eigenvalues of Q are p times 1 and the eigenvalues
of:
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- A QT
Qs é[-A---:L-.-z-} (A.18)
Q1
Note that flz is any symmetric matrix. Choosing:
- N -lap
Oy =1y, ~Qu(lp—A) Q3 (A.19)

and using the equality A-A? =ﬁglﬁ21 ,which is
derived from (A.15), and the definition of fz},, some
algebra will show that ﬁ%z = Q,,. Hence, it is shown that

all eigenvalues of Q , which is symmetric, are either 1 or
0 and therefore it is an orthogonal projection mairix.
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