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Abstract

In this paper we present a very simple, yet effective
approach to the construction of piecewise constant
feedback stabilization strategies for a class of non-
linear systems without drift in which the difference
between the number of state and control variables is
equal to one or two. The approach exploits a set
of guiding functions whose number is equal to the
number of the controls in the system. The guiding
functions are chosen in such a way as to permit
a sequence of controls which result in a monotonic
decrease in one of the guiding functions while the
remaining ones are varying in an oscillatory way.
The strategy is formulated in such a way that no
chattering occurs; the oscillations in the values of
the guiding functions can be big. It is shown that in
the case of the class of system considered, the choice
of such guiding functions is particularly straightfor-
ward. The proposed feedback control is global in that
the origin is globally attractive, and the trajectories
of the controlled system converge to the origin ez-
ponentially.
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1 Introduction

We consider systems of the type

m

Zfi(f)viv

=1

£= (1)
where fy,..., f, are linearly independent, smooth
vector fields in IR", m = n—1, orelse m = n—2, and
v; are Lebesgue integrable control functions on the
interval [0,00). A trajectory of system (1) is an ab-
solutely continuous function ¢t — z(t) € IR™ which
satisfies (1) almost everywhere and corresponds to

an admissible control v “&/ (V15 eey Upn)-

Further, we will assume that the vector fields
fist = 1,...,m are real analytic and that the sys-
tem is completely controllable, i.e. that for every
pair of points & and & there exists an admissible
control which steers the system from &; to &,.

For real analytic systems, complete controllabil-
ity is equivalent to the well known LARC (Lie al-
gebraic rank condition): if L(fy,..., f,,) denotes the
Lie algebra of vector fields generated by fi, ..., fon,

and L{fi, . fu)(€) Z {1(6) 1 J € L1, oo ),
then L(fi,..., fm)(€) must span IR™ for all £ € IR".

Although the LARC guarantees the existence of
an admissible control which steers the system from
any point & to any point &;, it is not obvious how
to construct such a control explicitly.

Our interest in this paper is to propose a feedback
strategy which steers system (1) from any given in-
tial point & to the origin with uniformly hounded,
piecewise constant controls w(§) € [~1.1], £ € ™.
As will become clear later, the discontinuitios of




the feedback control u(¢) will only occur at isolated
points, hence no problems will arize in the context
of existence of solutions to (1).

The problem of nonlinear stabilization is typically
approached by imposing a suitable ’control’ Lya-
punov function V (£) and deriving a control function
u(&) which renders %V(ﬁ) < 0 along the trajecto-
ries of the system , see [1, 2, 3]. For systems of type
(1) where there is no drift vector field on the right
hand side of the system equation, this approach is
not possible. An alternative is to find a time vary-
ing Lyapunov function V' (£,t), and a corresponding
time varying feedback control w(€,t) which satisfy
%V(é’,t) < 0 in some sense. Several papers have
been devoted to this approach, 7, 5, 6, 8]. Although
there are many advantages of this approach (such
as the fact that it leads to continuous feeback con-
trols), there is one disadvantage: finding a suitable
Lyapunov function is sometimes difficult.

In this paper we take a different route. We at-
tempt to find m functions V;(&) 7« € {1,...,m},
henceforth called ‘guiding functions’ for system (1),
whose behaviour along the trajectories of the con-
trolled system will not be limited to d—dt‘/}(ﬁ) < 0.
We will therefore allow some guiding functions to
increase and aim at designing the control laws v;(§)
t € m in such a way that the sum V(¢) =
Yo, Vi(€) decreases on average.

It is shown that such a design is particularly sim-
ple if we allow discontinuous controls v;, ¢ € m. The
principal idea of the guiding function strategy is the
following.

Suppose that we can find functions V;(§), i € m
such that:

(a) each V;, i € m is semi-positive definite on IR™
while their sum V is stricly positive definite, decres-
cent and proper on IR"™,

(b) the value of each of the functions V;, i € m — 1
can be manipulated independently of the value of
Vin in that: at any point p, if Vi(p) # 0 for some
t € m — 1 then there exist controls v;,7 € m such
that V; ¢ € m — 1 are ‘steered’ to zero in finite time
while V,,, maintains its value at p.

(¢) the value of V,, can always be decreased over a
finite interval of time if the remaining V;, i € m — 1
are allowed to vary freely.

Under the above assumptions, it is clear that a
feedback strategy based on the guiding functions V;,
t € m can be focused on the decrease on V,,, alone.

To start with, the strategy attempts to employ con-
trols which provide for

d "l
(Y — T(€
(”‘ (&) ;:1 (H‘z(s) <0

(2)

If this becomes impossible, due to the fact

d

T (3)

Vilp) =0 foralliem
regardless to the values of the controls v;,7 € m,
then the controls are changed to achieve a decrease
of V,, while the remaining V; are permitted to in-
crease (see assumption (c)). After achieving a de-
crease in V,,, another set of controls is employed
which maintains the previous value of V,, and re-
stores the previous values of V;, i € m.

Eventually, when V,, is sufficiently small, the con-
trols guaranteed by assumption (b) are employed to
decrease V; to zero.

Repeating the above procedure results in asymp-
totic convergence of V to zero.

It is shown here that the above strategy is indeed
feasible, in that the guiding functions are easy to
define and satisfy the desired properties (a)-(c), in
the case when the vector fields fi,..., fn_o or else
the vector fields fi, ..., fo_3 are simultaneously rec-
tifiable.

Without the loss of generality, the strategy em-
ploys uniformly bounded, piecewise constant con-
trols v;. This makes it attractive for applications to
problems with control constraints imposed a priori
on the system.

The strategy is first tested on the model of Reeds
Shepp car where, it is shown to achieve what is the
‘intuitively best’ type of control. In the absence of
disturbances, the control is dead-beat and is accom-
plished in three steps. At the end of the first step
the car assumes a position which is regarded as bad
: namely the position when it is sideways to its goal
- the origin. This position of the car 'requires’ the
car to displace sideways, (in the direction of the Lie
bracket of the vector fields corresponding to the ro-
tation and rolling movements of the car), in order to
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decrease its distance from zero. In its second stage
the strategy makes the car to rotate 90 degrees and
drives it straight to the origin.

2 Notation and assumptions

We use the symbol &(t; &, to) (or shortly £(¢)) to
denote the trajectory of the controlled system (1)
passing through the point (&, to).

Discontinuous stabilization problem

DSP:

terms of uniformly bounded, piecewise con-

Find a feedback control strategy in

stant controls

ci(§) e [-11] 1em (-H)

such that:

for any initial point £(0) =& € IR" .

as t —» oo.
We need the following assumptions:
Controllability :

Al.

For systems for which m = n — 1:

span{ f;(€), [fi, [;1(€), ij € n=1} = IR" (6)
for all & € IR™ ;

For systems for which m = n — 2:

span{ fi(&), [ ;1) [fi. U fil)(©).
i jken—2)=R" (7)

for all £ € IR™ .

Rectifiability :

A2,
transformations & = T,,_1(2), v = U1 (&, u),
and & = T, _o(2), v = U,_2(&, u) such that in
the new coordinates @ and in terms of the new

There exist diffeomorphic state feedback

control v :

the system with m = n — 1 > 2 assumes the
form :

“n—2'+ 0
hy(z)
ha ()

Un—1

de
=4 gi(x)ur + ga(z)uz + ...
“'*’gn—Q(x)un—Z*‘gn—l(x)un—l(8)

the syvstem with m = n — 2 > 3 assumes the
form :

de
:f Ggruy + gotg + ...
u-4‘gn—3(3)un-3ﬁ‘gn—Q(V)un—Q(9)

where hj. ho, are some smooth functions of the
new state variable .

Sufficient conditions for A2 to hold at least in
sonie neighbourhood of the origin are known, see

e.g. [4]:

A necessary and sufficient condition for system
(1) to be feedback equivalent with (8) is that
L(f1,-.., fn_2) has constant dimension equal to n—2
in a neighbourhood of the origin.




3 The feedback strategy and its
properties

For a system in a rectified form (8) we introduce the
following semi-positive definite guiding functions:

i€n—2 (10)

def 1

; (11)

‘/n—l(:l‘) [ "n—1 + 771]

Clearly,

n—1

TdCfZ‘L _

(1/2)aT2 (12)

and hence V is positive definite, proper and de-
crescent, as required. The first stage of the control
strategy employs the standard feedback control in
order to decrease V' :

de f

u;(x) = —sign(algi(2)), forz € R"\'S (13)

1 €n— 1. Since

aTgi(x)u;, ie€n—1 (14)

this yields

n—1

=2 Iy

)| <0 (15)

along the controlled trajectory until, at some time

. d
instant t, x(t) lef
points at which all the terms in (15) are identically

p € 5, where the set S consist of

Zero

dff{ 6”?”"‘

gi(x) =0,i€n—1}  (16)
Clearly p € S implies Vi(p) = 0,7 € n — 2, so that
V(p) = Vaoi1(p) on 5. Also, 0 € S, so the trajectory
of the system which satisfies (15) must approach S
in finite or infinite time. In fact we can easily show:
Proposition 1 The controls defined in (13) steer
the system (8) to a point x # 0, @ € .S in finite time,
or else the controlled trajeclory converges asymplot-
teally to the origin.

Once z(t) = p € S, the above strategy fails in
that %Vip) =_0 regardless of the controls.

At this point, the proposed strategy enters its
second phase . Since the first derivative of V can
no longer be influenced by the choice of controls u;,
we calculate the second derivative of V with respect
to time. The second derivatives of its component
functions V;,7 € n — 1, (while assuming that the
controls can only take constant values ) take the
form:

LVi(2) = (g7 (x) + 2TV gi(2)) s

= (g; (1) +$Tv9i( z)) Z; 1 !]J( T)uju;
= llgi(@)I*uf + 2727 27 Vgi(2)g;(2)wju; (17)
for i € n — 1, since gz-ng = 0 for ¢ # j. Next, since
llgill>=1, Vgi(z) =0 forien—2 (18)

we get

LVai(2) =
—(”gn 1( ||2+1Tvgn (2 ) Gn-1 (@ ))“?z—l

+ 30020 ATV g1 (@)gj (@) wjunmy (20)

Due to (18) we also have

Vgn-1(2)g;(2), for all 2 € R

(21)

[9): gn—1](2) =

for all j # n — 1, so that (20) becomes

;p‘n 1( ):
= ([lgn-1(z )||2+”LTVgn 1(2)gn-1(2))ui_;

(
+ 30 2T gg gn1] (%) wjtn—y (22)

From (19) and (22) it also follows that

d
—2lgi(2) = us,

; ren—2
dt I

%TTgn 1( ) =
||Z+17TJ71—— ( )Jn 1( ))an 1
‘*‘Z’; 123 (955 gn—1](2);

”’/n 1
(24)




By virtue of the controllability assumption, we can
always choose an index i € n — 2 such that

J,j€n—=2}>0
(25)

|$Tf/z( Ol = ”ml{h [gJ?Jn 1)(z)

Setting,

w;(x)y=1 and

uj(x) =0 forall j #1

results in the increase of V; along the controlled tra-
for j # ¢ stays constant. Most
importantly, in the process of the above. the ‘coet-
ficient’ 3:Tg,l_1(lv) in V5,1 changes from zero to a

21) and (26).

nonzero value since, by virtue of (:

(26)

jectory, while V;

d
tTg_i(x) =al

[giegn—l](l' (27)

along the controlled trajectory with controls as in
(26).

It is logical to assume that controls (26} are em-
ploved until @%g,_ (&) reaches its maximal value,
and hence until the projection of the current value
Mg ga-1)(2)
changes sign, or else until the value of Vi(x) be-
comes comparable with the value of V/(p) at a point
p at which S was last traversed, i.e. until

of the state onto the Lie bracket |

vTlgi g1 (x) =0 or
Vi(x) > aV(p)

where & > 0 is a given constant. At this point, the
fact that T g,_;(xr) # 0 can be taken advantage of
by resetting the controls to:

Un-1(x) = —sign(xl g,y (2))
wj(2)=0 forall j#n-1

and

(30)

This causes a decrease in the guiding function V,,_;
while the values of the other guiding functions stay
unchanged. After 21, _;(x) reaches zero again, V;
is restored to its previous value (zero) by

u;(¢y=—1  and

w;j(x) =0 forall j#1 (31)
and the next cycle is started by choosing a possibly
new index value 7 which satisfies (25).

It should be noted that the "oscillations™
z; , i # n—1 components of the state (as caused by

in the

controls (26) and (31)) can be big. No chattering
or excessive switching takes place. The evolution
of of V,,_; consists of intervals in which V,,_; stays
constant, alternated by intervals in which V,_; is
strictly decreasing. In the meantime, the remain-
ing guiding functions are oscillating freely. Quan-
titativelv, the decrease in V,_| can be assessed as
follows

Proposition 2 For every bounded region G C IR™
€ (0,1) such that if x(to) =
p € (GO S then the control sequence given by (26)
and (30) results in the following decrease in the

there exists a constant 5

guiding function V,_

V- 1( ( ))_‘n lp :—ftllr
S_'|T )[sz./n 1] |S

—gV (P) (32)
over the time interval [to,ty]. Here, ty corresponds

to the time instant at which &7 (t,)gn_1(z(t;)) =0
under the action of controls given by (30) .

The above can be formalized into the following
algorithmic feedback strategy:

Stabilization feedback strategy for systems
with m =n -1

Data: a > 0.
el If x € IR™\ S, apply the controls

ui(r) = —sign(zTgi(z)), ien—1 (33

o2 If x €5,

e2a Select index ! € n — 2 satisfying

2T gi(2)] = maz{le7[g;, gar)(2)],

jen—2} (34)

o2b Employ the controls

w(¢)=1 and

u;(x) =0 forall j#: (35)

until

TT[givgn—l](‘T) =0 or

Vi(z) 2 oV (p) (36)

where p is the value of the state of the
controlled system for which the set S is
last traversed.




o2¢c Limploy the controls

Up—1{(x) = —sign(xTg,_1(x)) and
u;j(x) =0 forall j#n—-1 (37)
until 27¢,_, (x) = 0.
o2d Employ the controls
w(x)y=—-1  and
wi(x) =0 forall j#£1 (38)

until 27g;(x) = 0 and reapeat Steps 2a-
2d.

Propositions 1-2 provide a basis for proving the fol-
lowing

Theorem 1 The stabilization feedback strateqy is
well defined. Ivery trajectory of the controlled sys-
tem converges to the origin cxponentially. The ori-

gin s globally attractive.

For a system in a rectified form (9) we introduce
the guiding functions similarly as before:

i€n—3 (39)

. def 1. . : :
Vo () ok f[;ri_z + .zriA] + 1,21]

, (10)

A similar control procedure, as outlined above can
be applied here until the control system traverses a
set. .S; C Y, where

s v e R aTgi(e) = 0.

Tlgg)) =0.ijen—2) (1)
As 0 € 5y, Proposition 1 holds with the set S re-
placed by 5.

However, the controls ;,iwn in (26) Can no longer
influence the “coefficient” a7 ¢,,_ 1{2) of Vi (x) at
a point x = p € 57 (for the reason that (27) is no
longer true).

At this point it is necessary to calculate third
derivatives of V¢ € n — 2 in order to see the way
in which to change V,,_,.

l'or brevity of exposition, let us discuss here only
the case of a system with state dimension v = 1 i.c.
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a system whose ‘rectified’ form is:

| 0

. 0 1

T = 0 iy + hy (2) iUy
0 ho(2)

de f

= Jl( Jur + ga () uy (42)

de

= (1/2)2f and Vy(z) =)

In this case Vi(x) =

(1/2)[23 4+ 2% 4+ x3]. After some calculation, it is
possible to show that
Va(@) = si(@)ga0)ud + 51 (2)g1 (2)udus
ts2(2)g2(v)udur + sp(2)gy(x)ugui  (43)
where
f
si(x) = 205 Vg2 + 9f V{Vgla}
+aT Vg, () (44)
de -
2 Z (g1 0" + 2 Vg1 g2 ()  (45)
It can further be seen that
:111 Vo() = ky () + kg (2)uduy
+(ka(2) + 2T g2, [91, g2))(2)) udy
+(ky(0) + 2T [g, o1 g2]](0)) ugud (46)

where k;(r), 1 = 1.2.3, 4 are some smooth functions
of » which vanish for @+ € Sy. Since, for = € 5,
either

tT{g2. [91. g2))(x) # 0. or (47)

TT[QL (91, g2]](x) # 0 (48)
(49)

s}

then it is possible to make dtﬂ (z) < 0 by choosing
a suitable sequence of controls u; (), ua(z). As a
consequence, it is possible to show that

Proposition 3 For cvery bounded region G C IR™
there exists a constant 5 € (0. 1) such that if 2 (to) =
p € G NSy then there crists a sequence of controls
wi () and uy(x) with values in [—1, 1] which yield

-~

Vale(t)) = Valp) < —i"’(l)) (50)

Jor some ty > tg.

The detailed control strategy relevant to this case
will be presented elsewhere.




4 Conclusion

A simple piecewise constant feedback strategy was
proposed for stabilization of a class of systems with-
out drift. The approach is not really limited to sys-
tems with m = n — 1 or m = m — 2. Systems
for which the controllability algebra is spanned by
higher order Lie brackets can , in principle, be con-
sidered. However, the calculation of the higher or-
der derivatives of the last guiding function V,,, re-
quired in this case, are more complex.

Furthermore, the guiding function approach is
not limited to systems which are feedback equiva-
lent with their corresponding ‘rectified’ form. Find-
ing a suitable set of guiding functions can often be
easy even if the system does not comply with any
of the rectified forms. To see this, consider for ex-
ample the well known example

T=1u
y=v

Z=uav—yu (51)

the two guiding functions needed in this case can,

for example, be introduced as follows:

. d
‘/1 éf —;-1/2

.

V, lef %1’2 + %(z — zy)? (52)
An easy calculation shows that S = {z € IR*: 2 =
y =0} as

Dy g o) = (e — st g+ 2o (53)

dt

and the controls v = —sign(z — zy) and v =
—sign(y + zz) can be applied until the system tra-
jectory traverses S.

For constant controls u, v:

42 -
£V (2,5 =0

%Vg(w, y,z) = (14 2yH)u? — (z — zy)ur (54)

It follows that, whenever p € S then setting, for
example, © = 0 and v = 1 produces a change in V)
while V5 stays unchanged. Also, the time derivative
of the ‘coefficient’ associated with u is

d

T (55)

(x—2y) = 1+ y*)u — (= — zy)v

and hence |z — zy| grows away from zero, as re-
quired. The guiding functions, as introduced by
(52), satisfy our assumptions (a)-(b) and the con-
trol strategy can be applied as specified above.

5 Example

The above feedback strategy was applied to the
Reeds-Shepp car model :

() = filz(t))uy + falz(t))us (56)
where

e () [e1(t), 22(t), 23()]T € R"

fi(z) =1[1,0,0)7

fox) = [0, sin(xy), cos(x1)]” (57)

The initial condition is [z}, 22, 3](0) = [1.,3.,3.]
and the constant « is 10. Figure 2. shows the state
variables versus time. It is visible that the surface
S={zeR":xz, =0}Nn{z € R : zzstn(z1) +
z3cos(zy) = 0} = {z € IR™ : 2, = 0} is reached at
about t = 3.2 . The strategy then enters its second
phase . The desired (but inaccessible) direction of
motion is [f1, f2] at any point (0, z2,0), zz > 0. (or
else —[f1, f2] when 2z, < 0).

Figure 1 shows the actual trajectory of the car’s
centre of mass. At the end of the first phase of
the control strategy the car finds itself in a posi-
tion sideways to its goal - the origin. Any further
decrease of the global guiding function V is impos-
sible at this point since an instantaneous sideways
motion of the car is impossible. In Step 2b of the
strategy the car is rotated in place by (7/2) which
is the point at which zT[f1, f2](2) = 0, and at which
2T f,(2) achieves its maximum. The application of
Step 2¢ now results in a straight line motion of the
car to the origin. In this case the controller achieves
its goal in a finite number of steps, which demon-
strates its effectiveness.
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