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1. INTRODUCTION

1.1. The modelling problem of discrete production
processes

The formal description of the real world by means of
a mathematical language, what is usuvally meant as con-
struction of a mathematical model, is the indispensable
premise to the design of any management and control
system of the real world itself,

At this date, a formal language having been devel-
oped ad hoc or, in any case, looking fully appropriate to
describe discrete manufacturing precesses, does not ex-
ist. Two approaches are usually adopted: Queueing The-
ory and Petri Nets. Besides them, other approaches ex-
ist, employing typical models of continuous dynamical
systems, like differential equations. None of such meth-
odologies, which have been developed for other fields of
science, is suitable for providing an accurate description,
as far as needed, of a discrete production process. They
impose instead on process description approximations,
which are neither desired by the modelling engineer nor
yield always accepatable results, but are inherent to the
specific mathematical formalism, owing to its lack of
descriptive capabilities, adequate to the kind of physical
phenomena under description.

In summary, by using such tools, investigators are
prevented from establishing the right degree of approxi-
mation they retain necessary in the process modelling;
the tool instead imposes on its own some simplifying as-
sumptions independently of the experimenter desires. To
overcome such limits of the available methodologies, in-
vestigators are brought to select the most appropriate ap-
proach, according to the specific case and problem to be
solved. Very often they are forced to introduce heuristic
variants as a result of the effort for overcoming the in-
herent limitations of the adopted methodology. The
natural consequence is a great variety of methods, as a

438

boundless bibliography evidences, but highly custom-
ized, and hence difficult to be transferred from case to
case.

For the same reasons, a success can hardly be
claimed by all the actions that have been undertaken,
during the last ten years, by suppliers, universities and
customers, either autonomously or promoted by the
European Community, and mainly directed to develop
open hardware and software architectures in the field of
CIM. The reference architecture CIMOSA is one of the
best known examples: notwithstanding the validity of
the concepts and the strong effort made, its potentialities
are very far from being recognized and used.

Several people think that the aforementioned prob-
lems could remarkably benefit by the availability of a
descriptive methodology for discrete production proc-
esses which is at the same time mathematically rigorous
and capable of treating the whole set of possible cases,
either working at very detailed levels or with very
sinthetic aggregations. The authors are working since a
few years to provide a mathematical methodology, hav-

" ing the precise objective of becoming a suitable tool for

solving the management problems of discrete production
processes, from production planning to real-time pro-
duction control [1,2]. This work is under development
within the project HIMAC, a Basic Research Project,
part of the ESPRIT project of the Europecan Community.
The project is at the end of its first year and the first re-
sults, presented in this paper, look quite promising.

The presentation is subdivided into two papers: the
first one is concemed with the Manufacturing Algebra,
the second one [3] with the Factory Dynamics. The pa-
pers are strictly interconnected, since Dynamics is
founded on Algebra.

1.2. Aim of the Algebra
The Algebra aims at describing the production proc-




ess as an ordered sequence of manufacturing operations,
which starting from raw materials, through the produc-
tion of semifinished objects, provides at the end few fin-
ished products.

The Algebra approach is axiom-based; i.e. although
one is keeping an eye on the manufacturing process
technology, the authors mean to formulate a self-
consistent mathematics, were all the results can be de-
rived from few axioms through a logical sequence of
theorems and corollaries. The eye which is kept open on
the physical reality should guarantee that the developing
Algebra be a sound instrument for modelling production
processes in a form whhich is particularly suitable for
solving management, planning and control problems. An
important remark, however, is that the Algebra is not
meant to be a discipline of Physics, devoted to studying
and analysing the reality of the production processes, but
instead, as the name itself suggests, a mathematical dis-
cipline. Specifically it is meant to be a discipline in the
hands of investigators for modelling, in other words for
describing production processes at any detail level as
imposed by the study goals.

Algebra will use as far as possible the same terms
currently used for describing manufacturing processes
(f.i. raw materials, reusable objects, semifinished and
finished products, manufacturing operations, operation
_time, production cycles,...) to denote those mathematical
elements which have been conceived to describe physi-
cal entities of the same name. Let us however point out
that it is not allowed to confuse a mathematical element,
rigorously defined on an axiomatic base, with the physi-
cal reality, which behind the same name hides some-
thing complex and changing from case to case. It shall
be the investigator’s responsibility to ascertain whether a
specific algebraic element is suitable or not for describ-
ing reality according to his study objectives.

In this note having only the scope of an introductory
presentation, all demonstrations have been omitted and
the mathematical formalism has been reduced as well to
not burden the reading of people willing to get only a
preliminary idea of the work under development.

2. THE ELEMENTS OF THE ALGEBRA

2.1. The set of the objects

A manufacturing process has to do with material
parts of different kinds, like raw materials, tools, fix-
tures, components, semifinished and finished products,
etc. A common property is that all of them, independ-
ently of their use, can be moved all around the factory.
They will be denoted generically as manufacturing ob-
Jjects or simply objects. A basic assumption is that they

form a countable and finite set O, whose cardinality is
n,. Thus the elements of @ can be ordered and related
one-to-one with the subset Z{1,n,} of the integer num-
bers; i.e. any object can be identified by its index k.

2.2. The space of the object quantities

A generic quantity of objects belonging to O, is de-
scribed by an n,-dimensional vector g, whose compo-
nent g, gives the quantity of the object £. Only integer
quantities are considered, then g, belongs to the set of
integer numbers Z. The quantity g, can be either positive
or negative: a positive component of the object & will
mean availability of that object. Instead, a negative
quantity will mean need of that object.

The set @ of the quantity vectors ¢, equipped with
the following elements and operations, will be the space
of the object quantities or simply the quantity space.

Null vector 0. It is defined as o, = O fork € Z{1, n,}.

Vector addition:

x=y+z (M)
The vector addition is defined by x, =y, +2z, fork
€ Z{1,n}).
Negative quantity vector. z is the negative quantity
of x iff z + x = 0; since z, = - x, holds, the following
notation will be used:

=-x @
Integer scalar multiplication. A vector z is the scalar

multiplication of the integer o times the vector x, iff z, =
o, for k € Z{1, n,}; it will be denoted by

Z=0x 3)

Logic union. A vector z is the union of two vectors x

and y iff z, = max (x,, y,) forke Z{1, n}; it will be
denoted by

Z=x0Yy 4
Logic intersection. A vector z is the intersection of

two vectors X and y iff z, = min (x,, y,) forke Z{1,
n,}; it will be denoted by

z=xNy )
2.3. The space of the manufacturing operations

Definition

Using the quantity space @, a very generic definition
of manufacturing operation is now possible; the defini-
tion allows to encompass all the operations being stage
of any discrete manufacturing process, like assembling,
disassembling, part machining and transformation,




setting-up, fixturing, transporting, quality control, re-
pairing, ...

A manufacturing operation A is defined as an ele-
ment of the Cartesian productA =@ x Q; i.e.

A=(u,y.,ue Q,ye @ (6)

where u and y denote respectively the input quantity
vector and the output quantity vector of the manufactur-
ing operation A.

Graphical symbol of an operation

In Figure 1 an operation A is represented by a box
and by arrows connecting it to circles, representing input
and output objects. Arrow direction goes from input cir-
cles to operation and from operation to output circles;
the object quantity is written on the side of the corre-
sponding arrow.
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Figure 1. Symbol of an operation.

As an example consider the operation A in Figure 1.
It has three kinds of input objects; two of them, the ob-
jects 1 and 2, are assembled into the product 4; the third
one, the object 3, is used to perform the operation, but a
quantity y, appears among the output objects. Several
kinds of manufacturing objects behave like the object 3;
think for example to fixtures, tools,... Note that depend-
ing on the quantity ratio u,/y, different uses of the fix-
ture can be described:
o if uy/y,=1, all the fixtures used by the operation A are
reusable at its end;
o if uy/y;>1, part of the fixtures, u;-y; are assembled in
the product 4;
o if u,/y,<1, one or both the input objects 7 and 2 are
assemblies including y,-u, fixtures.
Hence the operation A describes an assembling opera-
tion which includes the disassembling of a fixture-like
object.

Graphical interaction of operations

Manufacturing operations interact each other as far
as they operate on the same objects. Using the above
symbols, interactions can be put in evidence graphically.
An important type of interaction, shown in Figure 2,
happens when the same objects that are requested as in-
put by an operation are provided as output by another
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operation. As an example, a pair of interacting opera-
tions, describing a two-stage assembling, is illustrated in
Figure 2: the operation B=(p,q) has an input object, the
object 4, which is also the output object of the operation
A=(u.y); it means that the quantity vectors y and p have
the same component 4 which is different from zero; this
fact can be generically formulated using the logic inter-
section, i.e. ynp#o.
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0 0 0 0 0 0 0 0
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Figure 2.  Graphical interconnection of two assembling

operations.

Addition and multiplication of operations

The set A of the manufacturing operations is
equipped with the following elements and operations.

The Null operation O is defined as O = (o, 0); i.e.,
input and output quantity vectors are zero.

The Identity operation I is defined as I = (q, gq) for
any ¢ € @, ie., the identity does not alter the input
quantities. The identity operation is not unique, but there
exist as many identities as the number of quantity vec-
tors in the space Q. Such an operation will be mainly
used to describe transport operations. _

Addition (or parallel composition) . Given a pair of
manufacturing operations B = (¢, p)and C = (r, s), their
sum A is defined as the quantity pair A = (&, y),
where u =g+ r and y = p + 5. The sum is indicated as

A=B+C 0]

The addition models the aggregation of two or more
manufacturing operations when the output objects of the
component operations are not used as input to either op-
eration. Then the addition is suitable to model manufac-
turing operations which are performed simultaneously or
in parallel.

Negative operation. Given an operation B, its nega-
tive A is the operation such that their parallel composi-
tion equals the null operation O; ie. A + B = 0. We




shall use the formalism

A=-B ®)

Integer scalar multiplication (or parallel repetition).
Given any operation A = (u, y), the product of A times
the scalar integer 0. is the a-fold parallel composition
of A; ie.

A=0B =B +B + ... + B (o times) )

where A = (o, ay).

Multiplication (or series composition). Given a pair
of manufacturing operations B = (p, ¢), and C = (r,s),
the left multiplication of B times C, denoted either with
CB or C - B, isdefined by

A=(uy)=CB, u=p+r-gr, y=q+s-qr  (10)

which means that the output of the operation B is made
available as input to the operation C. The right multipli-
cation of B times C, denoted either with BC or B - C, is
defined similarly by

D=(w,z)=BC, w=p+r-snp, z=q+s-snp  (11)

The multiplication models the aggregation of manufac-
turing operations when the output objects of the first op-
eration are used as input to the second operation. Then
the multiplication is suitable to model manufacturing op-
erations which are performed sequentially so that the in-
put objects of the second operation can include output
objects of the first one.

The inverse with respect to multiplication. Given any
operation A=(u.y), there exists a unique inverse opera-
tion denoted by A and such that

Al =(yu) (12)

Power (or series repetition) The B-th power A =
(u, y) of an operation B = (p, g) is defined as the o-fold
series composition of B, i.e.,

A=B*=B-B. .. - B (Btimes) (13)

where it is easy to show that
u=Pp-B-1)(pnq), y=Ppqg-B-1)(pnq) (14)

Example

As an example of the different ways addition and
multiplication work, consider the pair of the assembling
operations A and B illustrated in Figure 2. The operation
D=(r.s) will be the composition result, which is illus-
trated in Figure 3. One of the objectives driving the alge-
braic composition is to balance the quantity of objects
produced by some operations and used by other opera-
tions. Objects to be balanced are usually called
semifinished objects; here there is only one semifinished

object, the object 4, whose balance requires the opera-
tion A to be repeated twice. The same operation can be
repeated either in series or parallel; here since the input
and output quantity vectors of A do not share compo-
nents, i.e. uNy=o, the parallel and series repetition pro-
vide the same result, which means C=24=A>. This will
be not the case if C and B are composed: by applying the
multiplication BA*=B(2A), the semifinished object 4 dis-
appears from the input and output quantities of the re-
sulting operation D.
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Figure 3.  Addition and multiplication results.

2.4. Properties of the manufacturing operation Algebra

In this section the properties of addition and multi-
plication are shortly introduced.

The addition is commutative and associative. Let
A,=(u,y,), A;=(u,y,) and A;=(uy,y;) be manufacturing
operations.

o The commutative property, ie. A, + A, = A, + A},
follows immediately from the commutative property

of the vector addition in the quantity space Q.

The associative property,ie. (A; + A;) +A; = A, +

(A, + A,;) follows immediately from the associative

property of the vector addition in the quantity space

0.

The multiplication is associative, but not commuta-
tive. Let A,=(u,.y,). A,=(u,,y,) and A;=(u;,y;) be manu-
facturing operations.

e The associative property, ie. (A, A,)) A; =A; (A,




A;), is proven by verifying the equality between the
common quantities that are subtracted from the input
and output vectors.
The commutative property does not hold in general,
ie. A, -A,#A, A hence it is of interest to find out
the conditions for the commutative property holds.
Lemma. Given a pair of operations A,=(u,y,) and
A,=(u,,y,), a sufficient condition for the commutative
property holds is that;

U, Ny, =U,Ny=0 (15)

i.e. if no output object of one operation can be used as
input to the other one.

Definition. A pair of operations A,=(u,y,) and
A,=(u,,y,) satisfying equation (14) will be called musu-
ally not interacting. Mutually not interacting operations
can be composed both by multiplication and by addition,
since it holds

B-C=C-B=C+B (16)

Example. The operation A in Figure 2 is not interact-
ing with itself as already pointed out; insiead, the opera-
tions A and B in the same Figure are mutually interact-
ing and their addition and multiplication are different.

For what concemns distributive properties the follow-
ing results can be easily proved:

o The distributive property of the addition, with re-
spect to the multiplication, does not hold in general,
iLe. A, + (AA,) # (A+A,) (A +A,).

The distributive property of the multiplication, with

respect to addition, does not hold in general, i.e.

AA+A;) £ (AA,)+(AA,)

2.5. Stochastic manufacturing operations

A manufacturing operation is said to be stochastic
when some or all of its variables are stochastic. In par-
ticular the following variables can be stochastic:

e The quantities of objects required as inputs of
manufacturing operations. An example is given by
the repair operations. Whenever the kind of failure
to be repaired is not identified a priori, it is impossi-
ble to ascertain which parts will have to be replaced,
therefore the input of the operation turns out t0 be
stochastic.

The quantities of objects produced as outputs of
manufacturing operations. An example is given by
the quality control operations: the input, consisting
of an object still 10 be qualified, is deterministic, but
the output can be - with probability p - an object
qualified as good or - with probability (I - p) - an
object qualified as damaged. Note that, from the

viewpoint of the- algebra, the fact that an object has

not yet been qualified, or that it has been qualified as

good or as damaged, will define its belonging to one
out of three different types of objects.

A functional, associated with the manufacturing op-

eration. An example is the manufacturing time,

which could be defined as a stochastic variable,
whose mean value and variance are given.

The composition of stochastic manufacturing opera-
tions is a stochastic operation. Usually either the hy-
pothesis is made that all operations be deterministic, or
the whole process is treated as a stochastic one. It is a
choice of modelling, to be made in connection with the
objects of the study.

3. INDEPENDENT OPERATIONS AND
PRODUCTION CYCLES.

3.1. The balance vector of a manufacturing operation

Given any set S={A,....A,,...,A,} of operations, new
operations can be obtained by applying addition and
multiplication. Denote a generic algebraic composition
with the following equation:

A=flA,. . A, AL 0,0, 0) a7n

where each operation A, is repeated a total of 0,20
times, either in series or in parallel. If the operations are
mutually interacting, the input and output vectors of A
will be different and depending on the kind of the com-
positions employed and on their order. There exists
however a quantity vector which is independent of the
kind and order of the compositions and only dependent
on the set § and the repetition factors o,.

Definition. The balance of a manufacturing opera-
tion is defined as the difference between the vector of
the object quantities produced (output) and the vector of
the object quantities required (input). Considering the
operation A = (u,y), the balance vector is defined as

b=y-u (18)

In the balance vector, the quantity of objects required
by the operation appears with the negative sign, whereas
the quantity of objects generated by the operation ap-
pears with the positive sign.

The following results can be easily proved.

Theorem. Given a set A={A,,...,A,.....A,] of opera-
tions, the balance vector b of any algebraic composition
A=flA,.. Ay A0, 0,...,0,) equals the linear com-
bination of the balance vectors b, of the component op-
erations

b=%,_, by, (19)




Corollary. Given a set of manufacturing operations,
independently of their composition in parallel or in se-
ries and of the order of the series operations, the result-
ing equivalent operation has always the same balance
vector.,

3.2. Set of independent operations.

In this section the problem of defining a set of inde-
pendent manufacturing operations is afforded. The goal
is to separate between operations which are not techno-
logically replaceable even if arbitrarily composed using
addition and multiplication. A very generic definition is
possible using algebraic compositions; here we shall
limit to define independency on the base of the balance
vector.

Definition. A finite set of n operations
$={A,....A,....A,} defined on an object set O is said to
be independent, whenever none of their balance vectors
b, can be expressed as a linear combination of the other
ones. Hence a sufficient condition for independency is
that the balance vectors form a vector basis or the bal-
ance matrix B=[5,...b,...b,] be of full rank.

Example. The set of five operations A,B,C.D.E
graphically illustrated in Figure 4 are independent, as it
can be easily verified on the balance matrix B. The op-
erations are shown interconnected through the common
objects.
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Figure 4. A set of independent operations.

The algebraic compositions of the manufacturing op-
erations belonging to an independent set S define a nu-
merable and infinite set A(S) of manufacturing opera-
tions, which is called the set spanned by the operations
of the independent set S.

3.3. The manufacturing operation time

Let us consider the set A(S) spanned by a setS
of n independent operations A,, h=1,...,m. A positive
real number t(A,), called manufacturing operation time,
and representing the time required to execute the opera-
tion, is associated to each operation A€ S.

By applying the following rules, the manufacturing
operation time is defined for any manufacturing opera-
tion belonging to the set A(S).

Let us consider the addition A = B+C: the time T(A)
is defined by

YA) = max {T(B), U(C)} (20)

Let us consider the multiplication A= BC: the time
T(A) is defined by

YA) =1B) +1(C) 2n

3.4. The manufacturing operation cost

Let us consider the set A(S) spanned by a
setS of n independent operations A,, h=1,...m. A
positive real number p(A,), called manufacturing opera-
tion cost, and representing the cost required to carry out
the operation, is associated with each operation be-
longing to the independent set S.

By applying the following rules, the manufacturing
operation cost is defined for any manufacturing opera-
tion belonging to the set A(S).

Let us consider the addition A = B+C: the cost p(A)
is defined by

P(A) = p(B) + p(C) (22)

Let us consider the multiplication A = BC: the cost
p(A) is defined by

P(A) = p(B) + p(C)

3.5. Object classification

The objects concerned in a production process are
subdivided, with respect to their technological character-
istics, into raw materials, semifinished products, fin-
ished products, reusable tools. A similar subdivision of
the mathematical objects making up the set O can be
obtained, with respect to their algebraic properties, as it
follows.

Definition. The following subsets of objecis are de-




fined.

® Non-used objects are the objects whose quantity is
always zero both in the input and in the output quan-
tity vectors of all the manufacturing operations be-

longing to A(S).

As raw materials we define those objects - different

from the non-used objects - whose quantity is always

zero in the output quantity vectors of all the manu-

facturing operations belonging to A(S).

As finished products we define those objects - differ-

ent from the non-used objects - whose quantity is al-

ways zero in the input quantity vectors of all manu-

facturing operations belonging to A(S).

All the other objects having the property to be at the

same time input and output objects of operations in

A(S ), are either semifinished or reusable.

Although on the technological level the distinction
between semifinished and reusable be clear and never
ambiguous, on the algebraic level it is not immediate. In
the following, it will be apparent that it is casy to find
out whether or not a production cycle (whose precise
definition will soon be given) requires to employ a re-
usable object, whereas instead it is difficult to find out
which objects have to be considered reusable and which
have to be considered semifinished. In fact, it can occur
that a semifinished (in the technological significance of
the word) be assembled together with a reusable tool
(again in the technological significance of the word). In
such a situation, while the two objects are distinct on the
technological level, on the algebraic level, being assem-
bled together, they make up one object. The separation
of the two, if required, can take place through an opera-
tion devoted to this purpose, which has therefore the hy-
brid object as input and, as output, the semifinished (or
finished product) and the reusable tool.

Consequently one forgets about giving a precise dis-
tinction between semifinished and reusable objects,
since it was established the possible existence of objects
which include semifinished products and reusable tools.
For convenience, all objects which are present without
distinction both in the input and in the output veciors of
the operations will be called semifinished. Later on the
condition will be given, stating that reusable tools exist
among the semifinished products included in a produc-
tion cycle.

The following lemma which can be immediately
verified, gives necessary and sufficient conditions to as-
sign any object ke O to the four subsets defined by an
independent operation set S.

Lemma. The following conditions hold:
¢ Any k object is a non used object iff its quantity is

always zero in the input and output quantity vectors

of all the manufacturing operations belonging to S.

Any k object is a raw material iff its quantity is al-

ways zero in the output quantity vectors of all the

manufacturing operations belonging to S.

Any k object is a finished product iff its quantity is

always zero in the input quantity vectors of all manu-

facturing operations belonging to S.

Example. Consider the set S illustrated in Figure 4
and built over an object set O including n,=11 elements
denoted by the indices k=1,...,11. No non-used object
exists. The objects {7,2,3,7} are raw materials. Object
10 is the only finished product. All the other objects are
semifinished objects.

3.6. Minimal manufacturing operations

Definition. A manufacturing operation A=(u.y) be-
longing to the set A(S), spanned by the set of independ-
ent manufacturing operations S, is said to be minimal,
when no manufacturing operation B=(r.,s) exists in the
set A(S), whose balance vector g=s-r is an integer
submultiple of the balance vector of A; i.e. no operation
Be A(S) and no integer a>7 exist such that b=0gq.

The following theorem can be easily proved.

Theorem. If A=(wy) is @ minimal operation in
A(S), the equation

A=oB + B+ +o,B"+... + 0, B" (23)

does not admit solution for any positive integers o,
h=1,...,m, any positive integer m and any B=(rs)e A(S),
with the constraint o>/,

3.7. Production cycles

Definitions

Definition. A production cycle is any operation
A=(u,y) belonging to the set A(S), whose balance vector
b=y-u contains only raw materials (in negative quanti-
ties) and finished products (in positive quantities).

The production cycle of an object £ is a production
cycle whose balance vector does not contain other fin-
ished products different from k.

A mix of objects is a nonnegative quantity vector m
such that no other nonnegative quantity vector n and
positive integer o>1 exist satisfying the equality m=oun;
i.e. the unique gretest common divisor of the vector m
is the unity. The production cycle of a given mix m of
objects is the production cycle which has, in its balance
vector, the finished products of the mix in the same
quantity ratio defined by the mix.

Definition. The Bill-of-Materials of a production cy-
cle is defined as its balance vector b. It lists with the




negative sign the quantities of raw materials required to

produce the quantities of finished products, listed with

the positive sign.

Definition. A minimal production cycle is a produc-
tion cycle which is a minimal manufacturing operation
in the set A(S).

Minimal production cycles have the following prop-
erties:

o For a given object or mix m of objects, more then
one minimal production cycles exist, all character-
ized by the same balance vector, but with input and
output vectors including nonzero quantities of
semifinished products.

Each non-minimal production cycle has a balance

vector which is an integer multiple of the balance

vector of the corresponding minimal production cy-
cle.

Definition. A production cycle will be said to not re-
quire reusable objects, whenever at least one out of the
different implementing solutions (all with the same bal-
ance vector) has input and output quantity vectors which
do not include any object other than raw materials and
finished products.

A production cycle is said to require reusable ob-
jects, when they can not be eliminated by any reordering
of the manufacturing operations from the input and out-
put quantity vectors of the production cycle, even if they
can turn out to be included in a semifinished product,
hence forming a single object.

Example

Let us consider again the set S illustrated in Figure
4. Several minimal production cycles can be imple-
mented, for instance:

W, = (A+2B+C+D+E) = W, = (ECDAB®) =
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The cycle described by the operation W, assumes
the performance in parallel of all the operations required
to produce object 10, starting from the raw materials
{1,2,3,7}. In order to perform the operations in parallel,
it is necessary that a given quantity of semifinished
products be available, whereas an equal quantity will
be produced.

The cycle described by operation W, assumes the
performance of the operations necessary to produce ob-
ject 10 in an ordered sequence, such that no initial avail-

ability of semifinished products will have to be required.

Note that the object 11 is a reusable object. The bal-
ance vector turns out to be the same for all minimal cy-
cles:

b=1-1,-2,-4,0,0,-2,0,0,1,0"  (25)

The time required by the two operations is different. It
results:

YW,) = max (1(A), °(B), ©(C), UD), (E))
Y(W,) =1(A) + 21(B) + (C) + YD) + (E) (26)
It is possible to see immediately advantages and dis-
advantages of both production cycles, which represent
two extreme cases. By composing in parallel all the
manufacturing operations, the production cycle time is
minimized, but some semifinished products must be
stored and, of course, all the machines needed for carry-
ing out at the same time all manufacturing operations
have to be made available. By composing in an ordered
series the operations, the maximum economy is obtained
(when all the operations can be performed by a single
machine) to the detriment of the cycle time which will
become greater.

It is a task of the production control to set up the op-
timal production cycle, with reference to specific opti-
mization criteria and with regard to specific constraints
imposed by the production plant. A simple example of
optimization is given by another production cycle hav-
ing the same input and output vectors as the operation
W,, but with a smaller manufacturing time:

W,=E(C+D)(A+B) 03)

It results:
YW)=1(E)+max{t1(C) (D)} +max{t(A)+27(B)} (28)
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