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Abstract

We present algorithms for robot motion planning on
gray-level bitmaps. In this kind of maps, a number
is associated to each cell, characterizing the possibil-
ity that it belongs to an obstacle. Such a representa-
tion is often used to deal with uncertainty when an un-
known environment is reconstructed from sensor read-
ings. Our approach proceeds from the well-known work
of Barraquand and Latombe on navigation functions
for deterministic maps. In particular, two methods are
devised: both are based on a proper modification of the
wavefront expansion algorithm. The first is relatively
simple, but produces paths passing close to the danger-
ous areas. Instead, the second method makes use of a
properly defined skeleton of the map, that lies as far as
possible from such areas. The performance of the two
methods is illustrated by application to both simulated
and experimental maps.

1 Introduction

Research activity on mobile robots has built up mo-
mentum in the last decade, as witnessed by a con-
stantly growing literature, see e.g. [1-5]. The central
topic of this investigation is autonomy, the capability
of planning and executing motion tasks without hu-
man guidance. In order to achieve a reasonable degree
of autonomy, it is necessary to properly integrate sens-
ing and intelligence. On-board sensory systems allow
to gather information about the environment in the
absence of exogenous knowledge. Machine intelligence
is then needed for building a convenient representation
of the environment based on sensor data, as well as for
planning robot actions in accordance.

In principle, the most favorable situation is realized
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when the robot is endowed with sophisticated sensors
and high computing power. On the other hand, to
make the use of robots appealing in real-life applica-
tions, it is necessary to reach a trade-off between costs
and benefits. In many cases, this prevents the use
of expensive sensors (e.g., video cameras) in favor of
cheaper sensing devices. Smart algorithms are then
needed to extract significant information from data
that may be insufficient or conflicting.

Often, rather than trying to reconstruct a deter-
ministic model of the environment, one may adopt
an intrinsically uncertain representation. In partic-
ular, gray-level bitmaps are a convenient choice. The
workspace is discretized into a cell grid, and a num-
ber (risk) is associated to each cell, characterizing the
possibility that it belongs to an obstacle.

In the literature, there are basically two approaches
for building this kind of maps from sensor readings.
The first makes use of stochastic techniques from prob-
ability theory [6-8], while the second is based on fuzzy
logic [9, 10]. In both approaches, it is assumed that
the robot is equipped with ultrasonic rangefinders.
These sensors are relatively low-cost and easy to use,
but their performance is affected by various phenom-
ena [11]. First, the wide radiation angle of the ul-
trasonic beam makes it difficult to determine the ex-
act position of the obstacle that originated the echo.
Second, the occurrence of specular reflections for large
angles of incidence may even prevent the detection of
some obstacles.

In this paper, we shall present algorithms for plan-
ning safe robot paths on gray-level maps, indepen-
dently from the chosen map building method. Our ap-
proach proceeds from the classical work of Barraquand
and Latombe [12] on navigation functions for deter-




ministic maps. However, being the representation of
the environment uncertain in nature, it is not possible
to directly apply their algorithms, as these rely on a
sharp distinction between the free space and the ob-
stacles.

To overcome the above limitation, we shall intro-
duce a proper modification of the wavefront expansion
algorithm. Based on this, two methods are devised:
the first is quite simple, and produces minimum-length
paths inside constant-risk regions. However, the ob-
tained paths typically pass close to the dangerous ar-
eas of the map. Instead, the second method makes use
of a skeleton of the map, with the property of lying as
far as possible from such areas. As a consequence, it
provides paths that maximize the obstacle clearance.
The satisfactory performance of the two methods will
be illustrated by application to a simulated map as
well as to a map built from experimental data using
fuzzy logic.

2 A navigation function for gray-level
maps

Assume that a gray-level bitmap M is given. For sim-
plicity, we shall refer to the two-dimensional case, in
which M is a grid of p x ¢ square cells of side §. Each
cell C of M is labeled by a real number u(C) € [0,1],
that represents the risk associated with the cell and
has been computed on the basis of sensor measures.

A particular instance of the path planning problem
is specified by a start cell S and a goal cell G, that
identify respectively the initial and the desired final
position of the robot. Our analysis will be limited to
the case of a ‘point’ robot, but it is easy to build an
augmented gray-level map M, to keep into account
the actual robot dimensions [10].

A natural approach, suggested by the nature itself
of the map M, would be to consider u(C) as a repul-
sive potential. By superposing to u(C) an attractive
field centered at G, we obtain an artificial potential
field that could be used for planning. A simple way to
build an attractive field on a cell grid is given by the
wavefront expansion algorithm [12], that sets to zero
the value of the potential at G, to 1 at all 1-neighbors?
of G, to 2 at all 1-neighbors of these cells that have
not been visited yet, and so on. The resulting algo-
rithm [13] is very simple, but it displays the typical
drawback of potential field methods, namely the pres-
ence of local minima in the total field.

In general, the m-neighbors of a cell C are defined as those
cells having at most m coordinates differing from those of C,
with the amount of difference exactly equal to +§, being é the
cell side. In JR?, each cell has four 1-neighbors.
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Instead, if the wavefront expansion algorithm is ap-
plied to a deterministic map (i.e., a map in which cells
are labeled with either 0 —empty— or 1 —occupied),
the resulting field has no local minima. A grid po-
tential with this property is called a numerical nav-
tgation function, and provides a powerful planning
method [12]. The absence of local minima is guar-
anteed by the fact that the wavefront expansion takes
place in the free space only—namely, cells labeled with
0. Such a partition does not hold in our case, because
of the uncertain nature of the environment map.

However, it is possible to obtain a behavior similar
to that of the original method, by slowing down the
wavefront expansion in correspondence of unsafe cells,
characterized by high values of u. Below, we give an
algorithm that implements this idea of ‘propagating’
the risk in order to compute a navigation function U;.

Algorithm NF1

begin
for every cell C € M do
U (C) « oc;
U (G) 0
insert G in L;
while L is not empty do
begin
C « FIRST(L);
for every 1-neighbor C’ of C do
if U1(C") > 1+ wq - p(C’) + Uy (C) then
begin
Ur(C") «— 1+ w; - p(C') + Uy (C);
insert C' in L;
end
end
end

In this algorithm, L is a list sorted by increasing values
of Uy and it is initially empty; FIRST(L) returns the
first element of L. Besides, w; > 0 acts like a weighting
factor.

Once the navigation function U; has been com-
puted, a graph search algorithm implementing a steep-
est descent method can be used to produce a path from
any cell to G. In particular, one may adopt the BEST-
FIRST procedure described in [3]. Of course, U; must
be recomputed whenever the goal cell G is changed.

Some remarks are in order with reference to the
above algorithm.

e As already mentioned, the fundamental difference
between the original version of the algorithm and
NF1 is that in the former the wavefront expan-
sion takes place in the free space only, while in
the latter a potential value is assigned to each cell




of M. This fact might have undesirable conse-
quences, both in terms of efficiency and safety of
the planned paths. Thus, it is advisable to con-
sider an a-cut of M, i.e., to ignore cells with a
risk value p larger or equal to a threshold a when
expanding the waves. Equivalently, one could per-
form a pre-processing step, in which a partially
determiuistic representation of the environment is
obtained by labeling all cells with u > a as occu-
pied. Still, NF1 will produce a navigation function
U, that takes into account gray areas of M, while
the application of the original method would not.
As for the value of o, it should be selected on
the basis of the particular representation of the
uncertainty. For example, when gray-level maps
are built using fuzzy logic, values of 0.7+0.8 are
appropriate [10].

o If the wavefront expansion takes place over an a-
cut of M, it may happen that the start cell S and
the goal cell G fall into two disjoint components
of M, with M, = {C € M : pu(C) < a}. This
indicates that there exists no path leading from S
to G with maximum risk lower than a. In such
cases, one could choose to increase « in order to
find a solution path.

o As for the original algorithm of Barraquand and
Latombe, the complexity of the algorithm NF1
is linear in p - ¢, i.e., the number of cells of the
bitmap, and does not depend on other parame-
ters.

To illustrate the performance of the planning algo-
rithm, we have built the simple gray-level map M
shown in Fig. 1. Here, an a-cut was performed with
a = 0.9; cells with 4 > o are shown in black.
Mo consists of white cells (¢ = 0) and gray cells
{0 < u < 0.9). The isopotential contours of the nav-
igation function U; obtained for w; = 10 are shown
in Fig. 2. Note how the contours are deformed in the
vicinity of gray areas. The path from S to G produced
by the BEST-FIRST procedure on U; is also shown.
Since the cells of the traversed area have constant risk
i, the contours are not deformed and the solution path
has minimum L!-length, i.e., minimizes the Manhat-
tan distance computed along the path.

3 Computing skeletons of gray-level
maps

The planning method for gray-level maps of the pre-
vious section is simple and efficient, but suffers from
a drawback similar to that of the original methods for

deterministic maps, that is, it induces paths grazing
zones with high values of u (see Fig. 2 for an exam-
ple). To solve this problem, Barraquand and Latombe
proposed an improved navigation function computed
in three steps [12], that produces paths lying as far as
possible from the obstacles. The fundamental element
of their method is a one-dimensional skeleton of the
free space, that is built by expanding the wavefronts
from the boundary of the obstacle region. This skele-
ton can be considered as a sort of numerical Voronos
diagram [14]. Below, we shall modify the original algo-
rithm, in order to obtain a skeleton suitable for gray-
level maps.

In the following, we assume that an a-cut of M has
been performed in advance, and define the ‘obstacle’
region M, = {C € M : u(C) > a}. The algorithm
below builds a modified skeleton ¥ for M,,.

Algorithm MOD-SKELETON

begin
for every cell C € M, do
d(C) « oo;
for every C in M, do
if there exists a 1-neighbor of C in M, then
begin
d(C) + ©;
P(C) « C;
insert C' in L;
end;
while L is not empty do
begin
C « FIRST(L);
for every 1-neighbor C’ of C in M, do
if d(C’) > 14+ d(C) — wgz - u(C’) then
begin
d(C") — 1+ d(C) — wa - u(C"Y;
P(C") «— P(C);
insert C' in L;
end
else if n(P(C"), P(C)) > B then
if C ¢ % then insert C’ in &
end
end

To understand how this algorithm works, note the fol-
lowing points:

e L and ¥ are initially empty lists. L is sorted by
increasing values of d.

e P(C) is the parent of cell C, defined as the cell on
the boundary of M, from which the wavefront
has reached C.

o wy € (0,1] acts like a weighting factor.
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e The quantity d(C), as determined by the algo-
rithm MOD-SKELETON, can be considered as
a sort of clearance for the cell C. In particu-
lar, it is computed as the L!-distance between C
and the boundary of M,, diminished by a term
that amounts to the (weighted) sum of the risks
of the cells traversed by the corresponding wave-
front. Equivalently, we may say that the wave-
front is accelerated at cells with high values of p.
Hence, the skeleton ¥ is farther from dangerous
areas than the skeleton that would be obtained by
considering M, as the free space and applying the
original algorithm of {12].

o A cell C where two waves meet is inserted in
S only if (i) the L!-distance n(P(C), P(C")) be-
tween P(C) and P(C") is larger than a threshold
B, typically set to an integer value between 2 and
6, and (i) the cell C does not belong to ¥ al-
ready (this guarantees that the generated skeleton
is one-dimensional).

To illustrate the outcome of the algorithm MOD-
SKELETON, we have computed X for the same a-cut
of the gray-level map M; of the previous section, with
wg = 1. The resulting ¥ is shown in Fig. 3 together
with the skeleton produced by the original algorithm
of [12]. Note that ¥ is ‘deformed’ by the presence of
gray areas. As a result, the skeleton built by MOD-
SKELETON is safer. For example, in the corridor-like
zone on the right of the map, the skeleton ¥ is trans-
lated downwards, due to the presence of a large gray
area close to the upper wall.

Once ¥ has been obtained, the planning problem
from any start cell S to any goal cell G can be easily
solved as indicated in [12]. In particular, G is first con-
nected to ¥ by a path that follows the steepest ascent
of d on M, and the cells of this path are included in
3. Then, a potential function U; is computed on the
cells of ¥ by a standard wavefront expansion restricted
to ¥ and starting from G. The previously computed
field d is used to guide the expansion, as higher values
of d identify areas with larger clearance. At the end
of this step, all the cells of ¥ that are connected to
S have been given a potential value Us; denote this
subset of the skeleton as £.. Finally, Us is computed
in the rest of M, by a standard wavefront expansion
starting from Y.

It can be readily verified that also Uy is a navigation
function. Hence, one can use the BEST-FIRST algo-
rithm in order to produce a solution path, that will
be composed by three parts: a subpath connecting S
to the skeleton ¥, a subpath on ¥, and a subpath
connecting ¥ to G. While the path will stay as far
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as possible from dangerous areas, it will no longer be
optimal in the L! sense.

By properly choosing the data structures, the com-
plexity of MOD-SKELETON (the core of the algo-
rithm for computing U;) reduces to O(p - ¢ + slogs),
where p- ¢ is the number of cells of the bitmap and s is
the number of cells of . As a result, the complexity
of the algorithm for computing U can be shown to be
linear in p - q.

4 Results for an experimental map

The described algorithms for path planning have been
applied to the case of a gray-level map built from ultra-
sonic readings in our laboratory. The experiment area
is a rectangle of 18x12 m, discretized into a grid of
180x 120 square cells of side § = 0.1 m. The measures
have been collected by a Nomad 200 mobile robot,
that is equipped with a ring of 16 ultrasonic rangefind-
ers. The open space is delimited by smooth surfaces
(walls and closed glass cabinets) with poor diffraction
properties, which respresent an adverse condition for
ultrasonic sensing.

A detail of the gray-level bitmap M3 obtained with
the map building method proposed in [10] is shown in
Figs. 5-6. Here, an a-cut has been performed with
a=0.8.

Figure 5 shows the path P; generated by the BEST-
FIRST algorithm on the navigation function U; over
Maj 4. Instead, the path P, generated by BEST-
FIRST on the navigation function U; is displayed in
Fig. 6. For the latter method, the skeleton of M3 , has
been computed by the algorithm MOD-SKELETON.

As expected, P, stays in the middle of the open
space. On the other hand, its L!-length is increased
with respect to Py, since the skeleton of My , is fol-
lowed. Note that ¥ is rather erratic in the corridor,
due to small variations of p in M». A smoother skele-
ton can be easily obtained by performing a preliminary
quantization procedure on the map.

Finally, the total time needed on a 486 PC at 66
Mhz for computing the navigation function and gener-
ating the solution path was of 0.87 s for U; and 1.50 s
for Us, respectively.

5 Conclusions

We have presented two algorithms for building robot
numerical navigation functions on gray-level bitmaps,
where darker cells are more likely to be occupied by
obstacles. The interest in this kind of representation
comes from the large amount of uncertainty typically
introduced by the sensing process.




Our approach to the planning problem extends the
original work of Barraquand and Latombe for deter-
ministic maps. In particular, two methods have been
introduced, both based on a proper modification of the
wavefront expansion algorithm. The first is very sim-
- ple, but produces paths that graze the dangerous areas
of the map. The second method, which is slightly more
complicated, makes use of a properly defined skeleton
of the map, that lies as far as possible from such ar-
eas. The performance of the two methods has been
illustrated by application to both simulated and ex-
perimental maps.

In this paper, we have considered for simplicity
the case of two-dimensional maps. The extension to
higher-dimensional spaces is straightforward, but the
complexity of the bitmap representation—and thus, of
the algorithms for building the navigation functions—
makes the proposed approach practical only for two-
or three-dimensional spaces. Indeed, the use of these
navigation functions in configuration spaces with di-
mension larger than 3 is not convenient. Nevertheless,
one can use these algorithms for planning the motion of
robots with many degrees of freedom by defining con-
trol points on the robot body, and building the naviga-
tion functions directly in the workspace, as discussed
in [3].

We are currently working to extend the applicabil-
ity of this approach to the case of sensor-based motion
planning. In this situation, the gray-level map is not
known a priori, and is incrementally built from sensor
readings as the robot moves toward the goal. As in-
dicated in [15], a proper sequencing of perception and
planning phases is necessary to obtain an effective nav-
igation method.
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Figure 1. A simple gray-level map M;. The a-cut was performed with o = 0.9. Cells with u > « are shown in
black.

5 10 15 20 25 30 35 40 45 50

Figure 2. Isopotential contours of U; on the map Mj, corresponding to the goal configuration G. The solution
path shown is generated by a BEST-FIRST procedure.
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Figure 3. The skeleton ¥ of M; , produced by the algorithm MOD-SKELETON (circles) and the one obtained
with the original algorithm of Barraquand and Latombe (dots).
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Figure 4. The path induced by the navigation function Us on My 4.

313




10 20 30 40 50

Figure 5. Experimental map Mj: the path induced by the navigation function U; on Mz 4.
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Figure 6. Experimental map Mj: the path induced by the navigation function Uz on My 4. The skeleton ¥ of
Ma o (not shown) was produced by the algorithm MOD-SKELETON.
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