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Abstract

In contrast to the case of serial chain manipulators, closed-
form solutions for the direct kinematics of parallel manip-
ulators are generally not available. Although algorithms
erist in order to find closed-form solutions for particular
manipulator structures, only iterative methods can be used
wn general. The computation times involved with numerical
methods can be unacceptable in real time applications such
as control. The capability of multilayer neural networks to
approzimate functions with any desired accuracy suggests
their application to this problem. Since exact knowledge of
the inverse kinematics is available in this case, it is pos-
sible to efficiently train the network by generating a suffi-
ctently rich set of training points. This approach has been
applied to the Hughes SmartEE, a 6D parallel manipula-
tor with all rotary joints. Siz of them are actuated, while
the other ones are passive and assume the unique position
which complies with the closed chain structure of the mech-
anism. The network generates these unknown values which
are used to produce the desired unique solution to the di-
rect kinematics problem. A novel optimization-based train-
ing algorithm is introduced, that overcomes the problem of
local minima through the use of a reqularization procedure.
Numerical results are reported in order to evaluate the per-
formance of the obtained neural network in the manipulator
workspace. Special care is taken in handling passive joints
values generated by the neural network, so to comply with
mechanical feasibility.

1 Introduction

Neural Networks (NN) are being used in robotics and
in control systems for many applications where tradi-
tional approaches are not satisfactory. In particular,
NN have found large use in dynamic system identifica-
tion [1,2] and in solving robot motion through learn-
ing [3-5]. As concerns robot kinematics, neural net-
works have been applied for solving the standard in-
verse kinematic problem [6]. A more interesting use is
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whenever a closed-form solution is not available. From
this point of view, it is paradigmatic the inverse kine-
matics problem for serial redundant robots [7]. On the
other hand, there is an increasing interest in parallel
manipulators due to fast and accurate motion capa-
bilities. Parallel manipulators typically consist of a
moving platform held up by ‘legs’ connected to a fixed
base. Each leg can be viewed as an open kinematic
chain with rotative or prismatic joints, but the overall
mechanism obviously contains closed loops. In general,
only some of the joints are active, i.e. arbitrary values
can be imposed though an actuator device, while the
rest are passive ones in order to guarantee the needed
mobility of the structure. When deriving the direct
kinematics of such manipulators, the geometric closure
constraints yield nonlinear equations which in general
cannot be solved in closed form in terms of passive
joints values.

Some methods have been proposed to find a closed
form solution for the direct kinematics of special par-
allel manipulator structure. For example, Innocenti
and Parenti-Castelli [8] found the solution for a typi-
cal Stewart platform, in terms of the roots of a 16th
order polynomial. This method, that could be ex-
tended also to other classes of parallel manipulators,
seems to be computationally intensive for real time
control applications, where the moving platform pose
has to be known, at every sampling time, based on
joint measures. An alternative interesting method has
been proposed in [9,10]: if possible, a solution in tri-
angular form for the dependent joint variables of any
independent loop of the mechanism, is found through
the application of projection operators to the closure
equations.

In the general case only iterative methods are avail-
able for solving the geometric closure equations. A
short description of some iterative methods and of
their application to this problem can be found in [11].
The solution is typically based on gradient and New-
ton schemes, suitably reduced and modified on the




basis of the problem peculiarities, so to significantly
reduce computation time. The main disadvantage is
that these schemes need to start from a good estima-
tion of the real pose.

" The idea of using neural networks in this context
arises from the necessity of having a direct, computa-
tionally cheap solution, even when a closed form is not
available and an approximating scheme becomes nec-
essary. Several theoretical results are available, [12-16]
showing that NN of different form and complexity can
arbitrarily approximate a continuous vector function.
The opportunity of using a NN as an approximator of
the direct kinematic mapping of parallel manipulators,
is justified also by the availability of their inverse kine-
matic solution. This allows to train the network gen-
erating an arbitrary number of admissible sets of joint
variables. In every admissible set two subsets of inde-
pendent and dependent variables can be individuated,
which are respectively the ‘active’ and ‘passive’ joints
of the structure. The network has been trained with
the error between the computed passive joints and the
actual values as obtained from the inverse kinemat-
ics: as a result a NN will have as input and output
respectively the active and passive joints values.

It should be stressed that the approximation of the
solution to the closure equations is a critical issue.
Even small errors lead in fact to non-admissible set
of passive joint angles and thus to undefined physical
poses for the mechanism. On the other hand, in order
to evaluate the practical performance of the trained
network, a ‘computed pose’ must be defined even for
those set of joint angles which do not exactly sat-
isfy the closed-loop constraints. These problems are
not encountered in solving inverse kinematics of serial
robots: actually, in this case, a set of joint angles, even
if only approximating the desired solution, is anyway
admissible.

We present here a neural network solution to the
direct kinematics of the SmartEE [17], a 6-d.o.f. par-
allel platform. This robot is available in our Robotic
Laboratory at DIS and used in a cell for experiments
on robot cooperation.

The paper is organized as follows. The SmartEE ar-
chitecture and kinematics are described first. The neu-
ral network structure and its training strategy are then
illustrated. In particular, we present a novel weight
updating algorithm and the choice of the training set.
Numerical results are shown.

2 The parallel manipulator SmartEE

SmartEE is a 6-dof parallel manipulator originally de-
veloped at Hughes with three equivalent and symmet-
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ric legs used for the arbitrary positioning and orienting
of a top plate. Each leg consists of two links and three
joints. A 2-dof joint with orthogonal axes located at
the leg base allows a pitch and roll motion of the first
link. These two degrees of freedom are actuated by
two DC motors mounted on the fixed base through a
differential drive mechanism. A second l-dof joint (el-
bow joint) results in a pitch motion for the second link.
This joint is not actuated, and assumes the unique ad-
missible angular position corresponding to a given set
of values for the active joints. Finally, a passive spher-
ical joint connects the leg and the top plate. There is
a total of 6 active single dof joints in the robot, while
the remaining passive joints are used to accommodate
for the position and orientation closure constraints. In
Fig. 1 a a CAD image of SmartEE is shown, created by
RobLan, a programming language for graphic simula-
tion of robotic systems [18]. Fig. 2 gives a schematic
representation of the mechanism for its kinematic de-
scription.

Fig. 1 - A CAD image of SmartEE
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Fig. 2 — Schematic representation of SmartEE

The inverse kinematics problem of this parallel ma-
nipulator can be stated as follows: given the pose (po-
sition of the center of the plate and orientation of a
frame attached to it) of the top plate, compute the
joint angle values for each leg. The closed-form solu-
tion can be found in two steps: first, compute the tip
position of each leg in a local frame; then, solve for the
joint angles of each leg using the standard inverse kine-
matics of a 3-dof serial manipulator. The solution of
inverse kinematics is unique for the SmartEE, taking
into account its joint range limitation.
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Fig. 3 — Logical scheme of training and validation

The direct kinematics problem consists in comput-
ing the top plate pose starting only from the knowledge
of the two active joint angles of each leg. The solution
proceeds through the evaluation of the passive elbow
joint angle for each leg. Actually, if these angles were
known, then we could compute directly the tip po-
sition of each leg and from these the position of the
center plate and its absolute orientation: we call this
the complete direct kinematics of the parallel manip-
ulator, which is parameterized in terms of the passive
joint angles. The actual values of the elbow angles
can be found by imposing the following three closure
equations (see also Fig. 2):

fi=1psa —ps2l® — |[AB||* =0,
fo= “ps2 - P33“2 - “-‘B_C”2 =0, (1)
f3=1lpss — ps1ll® — |CA|%> = 0,

where py; = pg;(015,625,03;) is the position vector
of the jth leg tip. These are three nonlinear scalar
equations in the three unknowns of vector 6p,s =
(031,032, 033), representing the passive joints of the
structure, and cannot be solved in a closed form (see
the Appendix for a complete expression of py;). Let
0act = (011, 012, 013, 021, 022, 023) be the actuated dof of
the structure. It follows that the analytical expression
for function G defined by

apas = G(aact) (2)

is not known. Function G is what we would like to
approximate, at least in a region of interest, by a neu-
ral network, having available an arbitrary number of
admissible couples (64ct,0pqes). The logical NN-based
computation scheme is shown in Fig. 3.

3 Feedforward multilayer neural network

A Feedforward Multilayer Neural Network (FMNN)
is a neural network with neurons arranged in adja-
cent layers connected through weighted unidirectional
links. It is known [12-14] that a FMNN with at
least one hidden layer, whose outputs are bounded and
monotone increasing functions, is capable of approxi-
mating any continuous mapping between finite dimen-
sional spaces up to any desired degree of accuracy. In
our case we have approximated the unknown function

G:R®*—- R® (3)
using a FMNN with just one hidden layer with M

neurons and hyperbolic tangent as sigmoidal output
function of the neurons.




3.1 An optimization-based training algo-
rithm

The problem of training a FMNN of a given topology is
equivalent to minimizing an objective function E(w),
where w € R is the vector of unknown weights [19].
In our case, N = (6+1)x M+ (M +1)x 3. Two
Back Propagation (BP) methods are used to solve this
problem: batch and online. BP-batch is a gradient-
type method, but is not based on a sound theoretical
basis, is very inefficient and unreliable. BP-online is
not related to any standard optimization method,but
has proven convergence properties [20]. Moreover it
seems to be suitable for problems with training sets
characterized by redundant information. Although
BP-online is the most widely used technique in ap-
plications, there are no theoretical results about its
convergence rate. From this point of view, classical
optimization methods, such as Conjugate Gradient or
Quasi-Newton methods, have better performance even
for very large dimensional problems [21,22]. Training
convergence problems are given by the presence of lo-
cal minima in the objective function E(w). BP-online
introduces some sort of randomness that may help es-
caping from local minima. In order to handle the local
minima phenomenon in an optimization scheme, it is
convenient to take advantage of the particular struc-
ture of the objective function EF(w) which is a com-
posed function of sigmoidal terms. Points sufficiently
far from the origin of the weight space, belong to the
so-called saturation zone, and are likely to provide sta-
tionary points of E(w). This suggests the choice of the
initial guess of weights in a neighborhood of the origin
[23].

We propose an alternative approach based on the
minimization of a function E(w), called current objec-
tive function

E(w) = E(w) + pljw||3 (4)

obtained summing to E(w) a perturbation term ||w||3
that penalizes the convergence towards points in the
saturation zone. The parameter p assesses the influ-
ence of the perturbation term. If the global minimum
point of E(w) belongs to the above zone, then the in-
fluence of the perturbation term must be diminished
in an iterative fashion. Consequently, after a sufficient
number of iterations, E(w) will practically coincide
with the true objective function E(w). The choice of
the initial point is not anymore constrained, and con-
vergence towards stationary points does not preclude
the possibility of continuing the search of a global mini-
mum point of E(w). Based on these considerations, we
have defined an algorithm whose conceptual scheme is
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the following, where ¢ is the estimated minimum value
of E(w):
Data. wy, p> 0,7 € (0,1),£>0,6>0,0>0.

Step 1. Starting with initial point wg, minimize
E(w) = E(w) + pllwll3

and let w* be the obtained point
Step 2. If E(w*) < g, then “successful training”
and stop
Step 3. If ||lwe — w*|| < § and
then “failed training” and stop
Step 4. If E(w*) < E(wp) then wg := w*
Step 5. p:= 7p and go to Step 1.

E(wo)-E(w")

o) <o,

Note that Step 3 is a normal stopping criterion,
while Step 4 allows us to restart with the point corre-
sponding to the smallest obtained value of E(w). In
this conceptual scheme, the choice of the minimizing
method in Step 1 is irrelevant. Since realistic NN ap-
plications often involve adjustment of several thousand
of weights and one should adopt only optimization
methods suitable for large-scale problems. In partic-
ular, we have used here a pre-conditioned Conjugated
Gradient Method [24].

3.2 Training Set Generation

An admissible set of joint angles for the SmartEE plat-
form can be obtained from any pose in the workspace
by means of the inverse kinematic mapping. In build-
ing the training set, we have started by choosing
uniformly distributed poses in the region of interest.
In order to induce in the training set the triangular
symmetry which is proper of the mechanism, from
each of the obtained sets of admissible joint angles,
five other were generated by all values permutations
with respect to the three legs. Furthermore, only
a subset is explored in the joint space, correspond-
ing to a proper 6-dimensional‘hypercube’ centered in
the cartesian workspace. The linear dimensions are
2.7 cm, 2 cm and 1.5 cm respectively in the z—, y—
and z—direction; the angular dimensions are +10°
of the ZY Z—Euler angles. This dextrous workspace
is the one of interest in motion control applications,
since it can be assumed that the top plate is kept
away from workspace borders where kinematic sin-
gularities exist. As a result, a training set of car-
dinality 10 has been generated and a FMNN with
M = 40 neurons in the hidden layer has been used.
This network size, i.e. the number of hidden neurons
has been chosen experimentally so to avoid overfitting
or underfitting of the training set, in dependence of



the chosen parameter ¢ of the training algorithm.

4 Numerical Results

Neural network performance must be evaluated in
terms of its generalization capability. For this pur-
pose, we have generated a validation set whose points
correspond to 288 cartesian poses in the dextrous
workspace. Fig.4 shows the 2-norm of the error on
the elbow angles

3
®)

(035 — 035c)?
=1

where the peak value is about 3 -10~3 rads and C is
for ‘computed’.

On the other hand, the practical validity of the ap-
proach has to be evaluated in terms of the resulting
errors on the cartesian pose. To this purpose we de-
fine first the computed position and computed orien-
tation of the top plate. From the network outputs
(the elbow angles), together with the network inputs
(the active joints angles) we compute the tip position
pjc of the three legs. Even if errors are small, result-
ing tip positions will not satisfy the closure equations
(1). Being the 9-ple (f4ct,Opasc) not admissible, the
top plate pose could not be defined. Nevertheless, as
|| £5] is ‘small’ for every j, the computed position Pc of
the top plate center can be defined as the geometrical
barycentre of the three pjc. The ‘computed orienta-
tion’ of the top plate can be defined by the unit vectors

Pic —Pc
nc=q4——
lpic — Pell
so = P2c — P3¢ ’ (6)
lp2c — Pacll

ac = ag X s¢.

Because of the non-homogeneity of the pose vector,
one should handle position and orientation errors sep-
arately. The position error is evaluated as

(7)

where p is the positional part of the pose used to gen-
erate a validation point. The orientation error is eval-
uated as

ep = ||p — Pcll;

(5)

where a and n are the Z and X axes of the top plat-
form frame. We have avoided in this way problems in

__ | arccos(a - a¢g)
- [arccos(n-nc)]

the error definition due to non-uniqueness of the Euler
representation.

x10-3
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Fig. 4 — Norm of error on elbow joint angles

Fig 5 shows the position errors on the validation
set, with a peak value less than 0.2 millimeters. Fig. 6
shows the cartesian orientation error, with a maximum
value of 5 102 rads.
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Fig. 5 — Norm of error on cartesian position
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Fig. 6 — Norm of error on cartesian orientation

5 Conclusions
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We have proposed a neural-network based method to
solve the direct kinematics of a parallel manipulator,
a problem which has no closed-form solution. The
use of neural networks in this context appears well-
founded from a theoretical point of view. We have
considered the direct kinematic problem for a parallel
manipulator as an approximation scheme of a multi-
variate function. Our NN solution avoids problems of
redundant information by defining the passive joints of
the structure as correct network outputs. The unfea-
sibility of generated elbow angles with respect to the
kinematic closure equations has been handled by the
proper definition of manipulator pose errors. A novel
optimization-based algorithm has been used for train-
ing the network, with the aim of achieving a global
minimum for the error training criterion. The numer-
ical results are encouraging for the application of this
NN solution within a real time motion control law. In
order to obtain an approximating scheme highly reli-
able in a wider workspace, we are currently exploring
the use of neural networks derived from regularization
theory including Radial Basis Functions [15,16].
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Appendix

Let '°&i P; be the position vector pg; of the jth leg tip
expressed in the local leg frame. It follows

__ bas leg ..
P; = eRflegj ' gjpja

where baseRlegj is the rotation matrix transforming vectors
from the local leg frame to the base frame. Following the
notation in Fig. 2, we have

bRy, = Rot{z, (j - 1)§w}  Rot{x, —1}.

Finally, through direct computation

leg.

€B; Pj. = (Ll -+ L2C3)Slj + L2C1jC2ngj
leg.

€83 Pj, = —(L1 + L2C3j)C1j + L2$1jC2]‘S3J‘
leg.

®ipj, = Laosy;saj,

where c;; are respectively sin(6;;) and cos(6;;), while L;
is the length of the th link of each leg and s;;. The actual
numerical values are L1 = 6.6 cm and Ly = 11.4 cm.
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