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Abstract: The purpose of this paper is to derive a sim-
ple necessary and sufficient condition of stabilization at the
origin for a homogeneous vector field by means of homo-
geneous feedbacks of the same degree, which are explicity

given.
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1 Introduction

The stabilization of nonlinear control systems by
means of smooth feedbacks on R"™ or R™ \ {0}, is one
of the most important problem in control theory. It
has attracted the interest of increasing number of au-
thors in the last decay, see e.g. [2, 3,6, 7, 8,9]. In
this paper, we address such a problem for systems of

the form: .
z = f(z) + Bu (1)
zcR", ueR™

where f is a homogeneous vector field (i.e, a vector
field whose components f;,i = 1, ..., n are all homoge-
neous functions of the same degree) and B is an x m
matrix. We shall give a necessary and sufficient con-
dition for the existence of a feedback u mapping R"
into IR™ which is also a homogeneous function with
the same homogeneity degree as f, and which makes
the origin globally asymptotically stable equilibrium
point for the system (1) in closed-loop. Furthermore,
we construct explicitly the stabilizing feedback wu.

For the system considered in this work, the matrix B
has not necessarily rank n — 1 as assumed in [5], and

the Lyapunov function used for giving the stabilizing
feedback is not necessarily a homogeneous quadratic
one as supposed in [1] where, in addition, the given
condition is sufficient but not necessary. So, our result
appears as a generalization of [1, 5]. An example which
does satisfies neither the conditions of [1] nor those
of [5], and which can be stabilized by our propesed
feedback, is given.

2 Main result

Throughout this paper, ||z|| will denote the usual Eu-
clidean norm of a point z € IR™ and ' A will denote the
transposed matrix of A. Let f(z) = *(fi(z),..., fa(2))
be a vector field of IR™ such that all its components
fi(z) (i = 1, ...,n) are homogeneous functions of the
same odd degree k > 1. In the sequel, we will say that
f is a homogeneous vector field and that k is its degree
of homogeneity. Let B be an n x m matrix; we will
say that the system

¢ = f(z) + Bu (2)

admits a homogeneous stabilizing feedback if there ex-
ists a function u(z) = *(ui(z), ..., um(z)) such that
each component u;(z) ( = 1,...,m) is a homogeneous
function of degree k and the origin is a globally asymp-
totically stable equilibrium point for the closed-loop
system

¢ = f(z) + Bu(x) 3)

We remark that the right hand side of (3) is still a ho-
mogeneous vector field. We recall that for ordinary dif-
ferential equations with homogeneous right-hand side
local and global asymptotic stability are equivalent [4].




The following theorem provides a necessary and suf-
ficient, condition for the existence of a homogeneous
stabilizing feedback. Its proof is based on an applica-
tion of the so-called Lyapunov second method. Indeed,
we shall make use of a Lyapunov function for testing
the stability of the closed-loop system.

In a suitable basis of IR™, the system (2) can be writ-
ten:

= g1(y)

yq = gq(y) _
Ygr1 = Gg+1(y) + Ugy1

Yn = gn(y) + Un

where n — ¢ is the rank of B and ¢ = *(g1,...,9n)
is such that ¢;(y)(i = 1, ...,n) are homogeneous func-
tions of the same odd degree k > 1. Notice that such a
change of coordinates does not affect the properties of
stabilizability, hence the stabilizability of system (2) is
equivalent to those of system (4), so throughout this
section, we consider the system as in the form (4).

Let us introduce:

Assumption (H) . There exists a smooth, proper,
definite positive and homogeneous function
V :R" — R such that:

q

oV

a i ) E‘
; 5y, W) <0, Vy €

(y)=...= g; (y) = 0}

Theorem The control system (4), where g is as
stated above, is globally asymptotically stable by a ho-
mogeneous feedback of the same odd degree as g, if and
only if, the assumpiton (H) holds.

Proof: First, since V is supposed to be definite, posi-
tive and homogeneous, then its degree of homogeneity
is even noted d. The condition (H) is sufficient, to
prove this we cstabishe the following result

Proposition If (H) holds, then it implies the ez-
istence of A € IR, A > 0, such that, the control
&= '(Ugt1,..., Un) defined by

( () = Mul=* L) o y#0
o (5)

i 0 otherwise

is a homogeneous stabilizing feedback for the system

(4)

Remark 1 Since V is smooth on IR, it is easy to
see that @ is at least C*~! function on IR™ and smooth
on R™\ {0}

Proof of the proposition : Let, CT be the closed
cone:

CT={yeR": VV(y)g(y) >0}
and C~ be its complementary cone:
C™={yeR": VV(y)g(y) <0}
and let S be the unit sphere of R"
S={yeR":|loll =1}
Now, the derivative of V along trajectories of (4-5) is

(W) = TV @) - Ml Y ()’

i=g+1 Oyi

V is a homogeneous function of even degree d+ k — 1;
hence, its sign doesn’t change along any ray issuing
from the origin. This sign can be evaluated on the
sphere S. According to the Lyapunov theorem [4], in
order to complete the proof, we have to show that V
is negative on the whole sphere S.

For any y € S we have:

V) = V@i -2 Y (5o0)

iz=g+1

Let &; and &, be the numbers defined as follow:

6 = rglea.SxVV(y)g( ), 62 =

Since S and S N C* are compact, §; and 8, exist.
Furthermore, under assumption (H), we remark that
E C C~ u{0}, hence ENC* = {0}, which implies




2
(y)) >0, Wyesnct

80, 65 > 0. Now, we choose A > gl fye SNnC-
2

then obviously V(y) < 0, and if y € SN C* then
. 6
V(y) < 61 — Ad2 < 0 because of the choice A > 51—
2
Thus, the proposition is proved.

Let us prove that (H) is a necessary condition for the
existence of a stabilizing continuous and homogeneous
feedback of the same degree as g.

Suppose that such a feedback exists, which makes sys-
tem (4) globally asymptotically stable, then, since the
right-hand side of (4) is an autonomous and homoge-
neous vector field, there exists a smooth, proper, defi-
nite positive and homogeneous function V' [4, 10} such
that for all y in IR™ \ {0}, we have,

n

V() = V) + Y g <0
i=g4+1

hence, if y € E* we have:

the proof of our theorem is now completed.

Remark 2 Notice that (H), without the homogene-
ity assumption on Lyapunov function V| is still a nec-
essary condition of stabilizability of system (2) by a
continuous feedback in closed-loop, see [10].

Example Let us consider the following system on
R3:

z; = —Qx:f — 5:1:%302 + 41:1;12% - x‘;‘
2 _
+z1235 = fi(z1, 22, 23)
y =23 +4zzy + Hri2d — 223
(6)

+zo7d = folzr, 22, 3)

= Jf%fg + 2x 2023 + 51:?2’

+u = f3(x17$27r3) +u

We remark that this system does not satisfy the hy-
pothesies of [5]; indeed, rank of Bis 1 #3~1 = 2.

We remark also that we can not find a 3 x 3 symet-
ric and definite positive matrix P which satisfies the
hypothesies of [1]:

Ker'BP C {x e R®:' zPf(z) < 0} U {0}

Indeed; suppose that such a matrix exists,

b
P = d
e

it follows
Ker'BP = {z € R® : cx; + exy + hzs = 0}

then for x € Ker! BP, we have:

2

(a - %)l'lfl(il?) + (b - g)~””1f2(“”)

‘zPf(x) :

(o= ) aeha(o) + (4= Joatata)

ene0a (43))

which i1s a 2 x 2 symetric and definite positive matrix
as P. hence,

'zPf(x) <0, Yz € Ker'BP\ {0} C R®

1s equivalent to

91(3!1;3/2)
wl,yﬂA( g2(y1,y2) ) <0

(y1,¥2) € R*\ {0}

91(y1,92) = =27 — dyiye + 4nivs — vs

a9

+y <—%y1 - %y2>~

g2(y1,y2) = ¥y + Ayiye + Snys — 245

+ ( c e )2
Yo hyl hyz




this last inequality is not possible, because for all 2 x 2
symetric and definite positive matrix D,

a
D=
( B )
and for any y = *(31,y2) € R* we have

yD ( Z;gg ) = x(y1,92) + &1, ¥2) (8)

where
2 9 2 c e 2
X(y1,92) = (owi + 204192 +7yz)(‘;y1 - gyz)

and

E,y2) = (=20 + By}
+(=5a + 28+ 7)3y2 + (4a + 47)yiy}

+H(—a+28+57)ny3 + (=8 — 27)vi

we remark that:
x(¥1,%2) > 0, Vy€eR?

so, in order to have (8)< 0, Y(y1,y2) € R?\ {0}, we

must have,

f(yb y2) <0 (9)

Now, if we take in the one hand y; = y, and in the
other hand y; = —y3, and taking in to account (9), we
obtain: '

—4a+43+8y <0 and 8a—-43—-4y< 0
which implies, 4o + 4y < 0. Since D is a symetric

and definite positive matrix, this last inequality is not
possible. Thus, condition of [1] is not met.

Now, we can take, for the above system, the following
definite positive, proper and homogeneous function de-
fined for any y = *(y1,v2,¥3) in R? by

V(y1,y2,¥3) = 19793 + 25192(y% + 20192 — v3)

+(u? + 2y192 — ¥3)° + vk = Vv, ye) + o2

which satisfies assumption (H). Indeed, in this case

. ov .
E* = {y € IRS\{O} : a—ys(y) =0;ie,y3 = 0}

so, we can casily verify that for all (y;,y». y3) in £*
we have

i+ Wa(y) = =208 +43)V ) <0
By (W) fi(y 7 Why) = =21 +y)V (¥, v2

According to our theorem,

w(y1.ys, y3) = —4Ay3

is a stabilizing feedback for a suitable value of A. In

order to give an estimation for A, one has to compute
(51 and 53.
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