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Abstract - In this work the problem of designing a
secure communication system is addressed. Discrete
time chaotic signals are used to mask information sam-
ples. Dead-beat synchronizing systems permit exact
synchronization in finite time. This property can be
used in secure communication schemes. An alternative
approach uses a combination of chaotic signals to mod-
ulate the information to be masked. The sensitivity of
the schemes to the key variation is analyzed. Some
communication issues are also discussed.

1 Introduction

Synchronizing chaotic systems [1] have been applied as
cypher generator in the context of secure communica-
tions [2]-[6]. In chaotic masking a low power informa-
tion signal is added to a chaotic signal without prevent-
ing locking of the authorized receiver to occur. If the
information is binary, then chaotic switching permits
to encode data by means of two different attractors. In
chaotic modulation the information is modulated on a
chaotic carrier through an invertible nonlinear transfor-
mation. For more details, see [7] and references therein.

Up to now, apart from a few examples [&]—[11], most
of research has dealt with analog systems. As a draw-
back, such systems present a weak robustness with re-
spect to circuit component variability as well as to
channel noise: these disturbances can affect the syn-
chronization process. In this work discrete time se-
cure communication schemes are described. A discrete-
time nonlinear map is used as a chaotic generator.
The output signal is used to modulate the informa-
tion signal. Two schermes are presented: in the first
the self-synchronizing property of such systems [12] is
exploited, while in the second scheme the map 1s used
as a pseudo-random generator. The selectivity of the
signal with respect to the variation of the keys is ana-
lyzed.

Some communication topics are also discussed and
further study will be devoted to them.

2 Discrete time chaos synchro-
nization

This section describes the synchronizing discrete-time
systems that will be used in the proposed applications;
for further details see [12]-[13].

We will consider the Hénon map, a second order well-
known map, represented by the following equations

zi(k+1) = 1—azi(k)+ za2(k) (1)
xz(k‘—{—l) = ﬂ:cl(k)

This map presents a chaotic behaviour in a large
neighborhood of the parameter valuesa = 1.4 and 8 =
0.3. Let y(k) be the output of the chaotic system:

y(k) =1 axi(k) (2)

The receiver can reconstruct the state of the chaotic
system using the equations

E1(k+1) = y(k)+ z2(k)
ok +1) = pi(k)

From (1)—(3) it can be seen that the synchronization
error Az;(k) = (k) — z;(k) tends asymptotically to
zero for |8] < 1.

Moreover, if the output of the chaotic system 1s cho-
sen as

(3)

y(k) = z1(k) (4)

then the synchronization error at the receiver side will
satisfy

Azy(k)
o (5)




That is the errors, independently of their initial val-
ues, will reach exactly zero in two steps, that is the
system is dead-beat synchronizing.

In [12] some more general considerations are devel-
oped.

3 Some secure communication
schemes

One of the main appealing features of a dead-beat syn-
chronizing system is that the same chaotic signal can
be generated, in a deterministic way, by both the trans-
mitter and the receiver. This chaotic signal can be used
for masking an information signal in a secure commu-
nication system.

Indeed, let y(k) be a chaotic signal produced at the
transmitter side and let s(k) be the information signal
to be sent: y(k) is used to mask s(k) so that an unau-
thorized receiver can not detect s(k). A way to achieve
this purpose is to choose a coding function ¢(s, y), con-
tinuous and invertible, so that ¢(s,y) is transmitted
instead of s. At the receiver side y(k) must be exactly
reconstructed only by the authorized user: this is pos-
sible if he or she knows the keys o and § as well as
either the initial state of the Hénon map or two initial
samples of y. We will assume in the following that the
keys of the secure communication are a and 3.

In this work, two different approaches will be de-
scribed. In both schemes the information is supposed
organized in packets of fixed length, say M, i.e. let
[s(M),s(IM + 1),...,s(IM + M — 1)] be the | — th
packet.

Scheme A

A.1: Generate a chaotic sequence having N samples,
N>>M;

A.2: Split the sequence in blocks of M+2 samples;

A.3: Transmit the l-th block of the signal, M samples
long, masking it with the 1-th block of the chaotic
signal, M+2 samples long, i.e. send the following

data:

[yU(M +2)),y((M +2) + 1), c(s(IM), y({(M +
29)42)), ..., c(sUM+M=1), yI(M+2)+M+1))]

At the receiver side the first two samples of each
block are used to synchronize the map, so that
the masking signal y is achieved; then, the samples
[y(I(M +2)+2),...,y({(M + 2) + M + 1)] are used
to decode the information signal s through the inverse
function ¢ (e(s, y), y).

Scheme A presents a high sensitivity [12] with re-
spect to the choice of the keys of the system: a lit-
tle difference in the choice of the parameters « and 3
makes the coded message indecipherable, even if the
correct information for synchronization, i.e. the first
two samples of each block, is achieved. Some draw-
backs of this scheme are now discussed. First, the
information for the synchronization of the map must
pass through the channel, which in most cases must be
modeled as noisy, i.e. it introduces errors in the syn-
chronizing samples: therefore, these samples must be
carefully protected with suitable channel codes. Sec-
ond, the synchronizing samples carry no information,
that is the bandwidth needed to transmit the masked
signal is greater than that to transmit s.

To avoid such problems another scheme is here pro-
posed.

Scheme B

B.1: Use a Hénon map with parameters ag and gy and
a given initial state to generate a chaotic sequence
vo(k) having 2L samples, where L is the number
of signal packets to be transmitted;

: Use the samples yo(20 — 1,20),1 = 1,..., L to ini-
tialize a Hénon map with parameters a and S.
Each time a sequence y;(k), M samples long, is
generated;

. Transmit the 1-th block of the signal, masking it
with the sequence y;{k), i.e. transmit the following
data:

[e(s(IM), ui (1)),

s e(s(IM + M = 1), y(M))]

Here, the values ag and [y are part of the key to be
known at the receiver side. In Scheme B, the Hénon
map is used as a pseudo-random generator to modulate
the information signal. In the following some exam-
ples to show the sensitivity of the secure communica-
tion system versus the variation of the keys are shown.
Consider, for example, Scheme B. Let the transmitter
be described by a Hénon map, say H, with parametric
configuration & = 1.4 and § = 0.3. A second Hénon
map Hg, with parameters ag and g, is used to initial-
ize the state of #. We have still assumed ap = 1.4 and
Bo = 0.3. The coding function c(s,y) = y/s has been
chosen. The information has been divided in packets
each containing 128 samples. The square wave shown
in Figure 1 has been used as information signal; the
masked signal, that is the signal actually transmitted,
is shown in Figure 2. The authorized receiver recon-
structs the signal perfectly. In Figure 3 the signals
decoded by an unauthorized receiver is shown: only




the parameter 8 has been changed, with a mismatch
with respect to the correct one of 0.0001. As can be
seen, a little difference in the parameters yields a very
noise-like signal; little changes in the other keys leads
to similar results.

4 Communication issues

Some communication issues deserve a more detailed
discussion and are analyzed in this section. The tests

presented here have been performed using the scheme
B.

4.1 Choice of the modulating function

In a digital transmission system the information signal
is binary encoded. Suppose the input signal is PCM
coded with b bit/sample. Depending on the choice of
the modulating function ¢(s, y), the masked signal to
be sent through the communication channel may as-
sume real values and, therefore, needs a further quan-
tization. The quantization process introduces an irre-
versible mapping, so that also the authorized receiver
will be affected by an error in the recontruction of the
signal. The examples of ¢(s,y) proposed in [12] belongs
to this class of masking functions.

We present here some results obtained using also
invertible functions c(s,y) operating on discrete val-
ues. For example, suppose c(s,y) = XOR(s,y), where
XOR is computed on the binary representations of the
operands. This choice implies that the masking sig-
nal y is represented with the same number of bits as
s: this is accomplished by quantizing y with 2% lev-
els, computed between its minimum and maximum val-
ues. The authorized receiver, which is able to perfectly
reconstruct the masking sequence, performs the same
quantization process. In this case the inverse function
is ¢c71(s,y) = XOR(s,y)

Another example of invertible function is c(s,y) =
XOR(RR(s),y), where RR(a) performs the Raigth-
Rotation of a, i.e. shifts the bits of a 1 bit right, with
the LSB becoming the MSB (the RR() function has
been used also in [10]); ¢c~!(z,y) = LR(XOR(z,y))
performs the inverse operation, where LR() is thF Left-
Rotation operator.

To evaluate the effectiveness of the proposed cod-
ing functions some tests have been performed using a
speech signal sampled at f. = 11025 kHz, 8 bit/sample.
The results obtained by masking the signal with dif-
ferent coding functions and transmitting it with 8
bit/sample are shown in Table 1.

The SN R, and SN R, are quantitative measures of
the quality of the signal decoded by an authorized and

cts, z) SNR,

* -3.40

/ -3.37
XOR -5.59
XOR—- RR -5.80

Table 1: Results with PCM speech signal, 8 bit/sample

an unauthorized receiver, respectively (we have sup-
posed that the latter receiver knew all the keys except
3, with AfBy = 0.001). These measures are computed
using:

2

SN R = 20log10~—2

MSE (6)

where o, is the standard deviation of the input signal
(in out tests o, = 43.10) and MSE = Ef(s — sa)?
is the mean square error between the original and the
decoded signal. For a comparison, if the decoded signal
were a discrete variable uniformly distributed in the
interval (—2"'1,2b“1 —1),b = 8, uncorrelated with the
input signal then SN R = —5.96. The coding functions
are the multiplication, the division (to prevent from
too large output values the amplitudes far from zero
less than a given threshold are multiplied instead of
divided), the XOR and the XOR-RR. In this table the
degradation of the quality measured by SN R, is due
to the quantization process of the masked signal.

In Figure 4 the normalized cross-covariance v; be-
tween the input signal and the masked signal trans-
mitted through the channel is shown, while Figure 5
shows the normalized cross-covariance 7, between the
input signal and the signal decoded by the unautho-
rized receiver. As can be seen, even if the latter cross-
covariance is low for every modulation function used,
this does not hold for ;. This corresponds also to a
certain intelligibility (measured with subjective tests)
of the masked signal when the multiplication and divi-
sion functions are used as c(s, ¥).

The sensibility to the key variation is shown in Fig-
ure 6, where the SNR experienced by an unauthorized
receiver versus the variations of the parameters o and
8 from the correct keys is shown (the keys ag and Bp
are supposed known): the SNRs obtained suggest a
complete unintelligibility even when the keys variation
is kept small. Similar results are found when o« and £
are assumed known and ag and 3g are changed.




c(s, z) SNR, | SNR,

* 9.38 -4.94

/ 7.59 -5.33
XOR 13.84 -4.90
XOR—-RR | 13.84 -5.12

Table 2: Results with zero-th order DPCM compressed
signal, 4 bit/sample

4.2 Application to compressed signals

The PCM is the most simple example of binary cod-
ing system. However, more efficient methods of rep-
resenting a signal (speech, audio or images} have been
designed and standardized [14]. To test the secure com-
munication scheme when applied to a compressed sig-
nal, the very simple zero-th order DPCM scheme has
been used. Table 2 refers to a 4 bit/sample DPCM
scheme: the same parameters defined in the previous
subsection for the PCM case are shown. The degra-
dation of the signal experienced when XOR or the
XOR-RR are used as modulating function is due to
the DPCM compression: as it can be seen, the use
of multiplication or division further deteriorates this
value.

Figure 7 and Figure 8 show the normalized cross-
covariance between the input signal and either the
masked signal or the signal decoded by the non-
authorized receiver, respectively. As in the PCM case,
intelligibility subjective tests favour for the use of the
XOR and the XOR-RR functions. The sensibility to
the key variation is shown in Figure 9. The results are
similar to those obtained for the PCM case.

4.3 Channel coding

The robustness of the scheme in a noisy channel envi-
ronment must be evaluated. Different channel models
can be considered, from the simple Binary Symmet-
ric Channel (BSC) model to more complex ones, with
memory, elaborated for a transmission environment af-
fected by multipath and fading. An advantage of the
schemes here considered is that they are memoryless,
that is the effect of an error occurring on an informa-
tion sample does not propagate to neighbouring sam-
ples. The influence of channel errors on the masked
information must be estimated and compared with the
unprotected transmission modality. This topic is left
to further study.

168

5 Conclusions

In this work some schemes for secure communica-
tions using the Hénon map are discussed. In the
two approaches presented, the first exploits the self-
synchronizing property of this map, while the second
avoids the transmission of synchronizing samples.
Some communication issues regarding the quantiza-
tion of the masked signal as well as the application of
the scheme to a DPCM compressed signal have been
discussed; further research will be devoted to the anal-
ysis of the effects of channel noise on the masked signal.
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Figure 1: Square wave information signal
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Figure 2: Transmitted signal
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Figure 3: Decoded signal with AF = 0.0001 and the
other keys unchanged
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Figure 4: Normalized cross-covariance between the
PCM 8 bit/sample speech input and the masked sig-
nal, varying with c(s,y): moltiplication (solid), divi-
sion (dots), XOR (dashes), XOR-RR (dashes and dots)
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Figure 5: Normalized cross-covariance between the
PCM 8 bit/sample speech input and the signal de-
coded by an unauthorized receiver (Afy = 0.001),
varying with c(s,y): moltiplication (sold), division
(dots), XOR (dashes), XOR-RR (dashes and dots)

aipha variation

Figure 6: SNR experienced by an unauthorized receiver
versus Aa and A3 (PCM, 8 bit/sample, XOR-RR have

been used)
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Figure 7: Normalized cross-covariance between the
speech input and the uncompressed (zero-th order
DPCM, 4 bit/sample) masked signal varying with
¢(s,y): moltiplication (solid), division (dots), XOR
(dashes), XOR-RR (dashes and dots)




Normalized cross-covariance

Figure 8: Normalized cross-covariance between the
speech input (transmitted with zero-th order DPCM, 4
bit/sample) and the signal decoded by an unauthorized
receiver (ABy = 0.001), varying with ¢(s,y): moltipli-
cation (solid), division (dots), XOR (dashes), XOR-RR
(dashes and dots)

beta variation alpha variation

Figure 9: SNR experienced by an unauthorized receiver
versus Aa and AB (DPCM, 4 bit/sample, XOR-RR
have been used)




