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Abstract— The DEscriptor Multi-input Eigen-
structure Assignment problem using State Feed-
back (DEMESAS) is considered. It is pointed
out, by referring to the literature, that in many
situations the final step of the DEMESAS is (or
can be) the solution of the matrix equation

(A-BF)X = EXL +> BFX = AX - EXL (1)

with respect to F. We show why a “straight-
forward” algorithm that has been often used for
the solution of (1) is Numerically Unstable, and we
present a new algorithimn for the solution of (1).
We show why the new algorithm overcomes the
numerical problems of the “straightforward” al-
gorithm, and we present a numerical example
which supports our results.
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I. NOMENCLATURE

R = Real numbers

C = Complex numbers

Greek letters = Scalars

Upper Roman = Matrices

Lower Roman = Vectors and indices

Superscript 7 = Transposition

x(A) = [JA]| ”A"l ” the condition number
of A with respect to inversion

R(A) = The column space of A

A(A) = The eigenvalues of A

1, 0 = The identity and zero matrices

0 = The zero vector

€; = The ith column of

II. INTRODUCTION

Consider the continuous time-invariant descriptor
system
Ez(t) = Az(t) + Bu(t) (2)

where £ € R"*" A € R™*" is the open-loop system
matrix, B € R"*™ is the control influence matrix,
z(t) € R™ is the state of the system at time ¢, and
u(t) € R™ is the input or control of the system.
System (2) is said to be completely controllable if
and only if

{¥A € C = rank(B, A — AE) = n}A{rank(B, E) = n}

For definitions on the controllability of descriptor
systems see for example [4]. An important prob-
lem in control theory is to guarantee the stabil-
ity of (2) by choosing u(t). This may be accom-
plished by using the state feedback u(t) = —Fz(t),
with ' € R™>*" which gives the closed-loop system

E#(t) = (A - BF)z(t). (3)
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It can be proven that when F is not singular,
(3) is stable if all the eigenvalues of the pencil
[(A — BFY), E] have negative real parts. The above
discussion also applies to discrete time systems. The
only difference is that all the eigenvalues of the cor-
responding pencil should be less than 1 in absolute
value. A method that is concerned only with the
placement of the eigenvalues at the right points is
that of Eigenvalue Assignment. According to this
method, we are given a completely controllable sys-
tem (E, A, B) and a self conjugate set A of at most
n scalars; an F may then be computed such that
A[(A—=BF),FE] — {—00,00} € A. This definition
takes into consideration the possibility of a singu-
lar £ and it guarantees that the resulting pencil
[(A— BF),E]is regular (A\[(A— BF),E]|# C). It
may be shown that when m > 1 (multi-input case)
there is no unique F that accomplishes eigenvalue
assignment. It appears that the extra freedom in F
was first identified, for the case £ = [ in {16], and it
was associated with freedom in the selection of the
eigenvectors that are assigned along with the given
eigenvalues (closed-loop eigenvectors). More elab-
orate discussions on the subject may be found in
[10], and in [11] for the case E # I. Given now that
normally the plant is known with some uncertainty,
the question of how to use the extra freedom in or-
der to design a control system that satisfies various
stability and performance specifications in the face
of plant uncertainty emerges. This gives rise to the
Eigenstructure Assignment problem. Actually the
computation of a feedback that will satisfy various
robustness criteria (stability and/or performance) is
the central subject of Robust Control, where along
with eigenstructure assignment, other methods have
also been evolved like Linear Quadratic Regulator
(LQR) and Linear Quadratic Gaussian (LQG) op-
timal control, H,, optimal control, Adaptive Con-
trol etc. Among these, eigenstructure assignment is
probably the simplest, and since it also appears to
be quite successful, it has naturally become the sub-
ject of extensive research, as well as the method of
choice for a fair number of applications.

Next we give a brief account of a small sample
of the respective literature, including various ro-
bustness criteria that researchers have attempted to
satisfy via eigenstructure assignment. In [16] the
closed-loop eigenvectors are chosen so that a desir-
able distribution of the modes among the compo-
nents of the output y(t) = Cz(t) (with C € RP*™),
is achieved. To see this, let ();, z;) be a closed-loop

172

eigenpair and z; the corresponding left closed-loop
eigenvector, then the output vector may be given by

y(t) = ZC’zi (zFz(0)) Xt

If now we choose z; such that for example, Cz; =
(2,1,0,.. .,O)T the ith mode will appear in the first
two components of y(t) and it will be twice as large
in the first component than in the second. In [12]
the assignment of principal closed loop eigenvectors
is considered. [16], [12] are mathematical treatments
of the subject and along with [21] include a consid-
erable number of interesting results that were actu-
ally rediscovered later. In some occasions (for ex-
ample, [6], [7], [8]), the eigenvalue assignment prob-
lem is solved via the eigenstructure assignment prob-
lem. This however is not numerically advisable since
eigenvalue assignability may be accomplished with-
out the computation of the closed-loop eigenvectors,
(see [2], [13], [14], [17], [18] and for a counterexample
see [13]). In [5] a parametric approach to the eigen-
structure assignment problem is proposed and good
numerical properties are claimed for the algorithms
within, however no evidence of the latter is given.
In [19] a set of desired closed-loop eigenvectors are
given along with the closed-loop eigenvalues. Since
however the given eigenvectors may not be feasible,
a number of least squares problems is solved so that
the “closest” feasible eigenvectors to the correspond-
ing given eigenvectors may be found. In [20] the ad-
ditional freedom beyond eigenvalue assignability is
used to minimize the index

J =) willFeil;
i=1

with w; being desired “weights”. It is interest-
ing to observe that the weights may be chosen so
that the state feedback will effectively result into
a specific output feedback. To see this consider
for example the case (see [20]) n = 19 and choose
wi =1fori e S ={1,2712,14} and w; = 100
for i ¢ S so that only the 1,2,7,12,14 columns of
F are significant. Then with y(t) = Cz(t), where
C = (e1, ez,e7,elz,el4)T and K = FCT we have

u=—Fz~—-Ky.

In [1] the following optimization problem is solved
with the additional freedom

mil} / (z"Qz + uT Ru) dt
u=—r to
Subject to A(A-=BF)=A
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where @ is symmetric positive semidefinite and R
symmetric positive definite. By far however, the
most extensively studied robustness criterion, is that
of optimizing the condition number of the eigenprob-
Jem of the pencil [(A — BF'), E] (see for example (3],
(10}, (1], [22], [23)).

In general, when the freedom in the choice of the

eigenvectors is to be used in order to solve a prob-
lem beyond eigenvalue assignment, first an optimum
set of eigenvectors is computed so that the addi-
tional problem is solved, and then the optimum set
of eigenvectors along with the corresponding given
eigenvalues are assigned. Although at first glance
it may not be obvious that this two step procedure
may be used in some of the above references, often
the corresponding methods in these references may
be tailored to suit the two step procedure. In this
paper we will only be interested in the second step
of the two step procedure and the reason is twofold.
Initially the second step may be common to a large
number of applications despite what the first step
attempts to accomplish. Therefore a numerically
sound solution of this step would be welcome. The
lack of such a numerical solution provides the sec-
ond reason. Next we formally define the problem
that we will address in this paper.
Problem: Given E € R"*" A ¢ R**" B € R"*™,
with rank(B) = m; a desirable self conjugate set
of eigenvalues A = {\1,..., A.}, with multiplicities
not exceeding m; and a corresponding set of feasible
eigenvectors X = (z1,...,z,), with r < rank(E);
compute F' € R™*"” so that

(A— BF)X = EXL (4)
with L = diag(X1, ..., ), and [(A — BF), E] being
regular (that is, A{(A — BF), E] # C). u

For ease of reference sometimes we will refer to the
problem defined above as the DEMESAS (see ab-
stract). Note that in (4) L can be diagonal only
when possible multiplicities in A do not exceed m.
This is actually the case that is interesting in prac-
tice, since a closed-loop eigenvalue with multiplicity
greater than m will appear as a defective eigenvalue
of the pencil [(A — BF), E], (see [10], [21] for the
case £ = I and [11] for the E # I case). Defective
eigenvalues however are sensitive to perturbations
in the data. This implies that unless it is abso-
lutely necessary, we should avoid assigning eigen-
values of multiplicity greater than m, and this will
be the case we will consider in this paper. In sec-
tion III we present a new algorithm for the solution

of (4), whereas in section IV we point out why the
algorithm in III is superior to a straightforward al-
gorithm that is commonly used for the solution of
(4). As a result of this discussion some heuristics
are also suggested that improve the numerical prop-
erties of the algorithm in III. Finally in section IV
we also present a numerical example that demon-
strates the superiority of the algorithm in III over
the straightforward algorithm, and we finish with
our conclusion in section V.

II1. A STEPWISE ALGORITHM FOR THE
DEMESAS

The algorithm begins by separating the uncontrol-
lable part of the system from the completely con-
trollable part. It then assigns an appropriate set of
eigenpairs to the resulting completely controllable
system. The separation is accomplished by an algo-
rithm presented in [14] where orthogonal matrices
U,V, and W are computed such that

A | A r E: | E
UTAV = JUTEV =
(844 vev - (515

and
T _( B
U BW_< 0

where all the uncontrollable eigenvalues have been
accumulated in (A, E). It is rather straightforward

to show that
vTx = X1 X
0 )

with M(A,E) NA = 0 & X = O. If we take now

~ L, |0
_ wT _ :
(Fl,F) =W"FV and L = ( o7 ), equation

(4) is equivalent to

( (A4 - BiR) X, | (A - BiR) X+ (A- BiF) X
0 | AX

(5)

| ExXiL | EJ XL + EXL
- o | EXL ‘
From (5) we see that if X = O then we need to solve
(A1 —BlFl)X1 :E1X1L1 (6)

for F), and since the desired set of eigenvectors is
feasible, we are guaranteed that the rest of (5) will
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hold. If however X # O, meaning that A, E‘)OA #
) (some of the uncontrollable eigenvalues are also
desired), then once (6) is solved we also need to solve

(A1 - BlFl))?+ (;{— Blﬁ’) 55 = E'I)?f+ E)?Z
. (7)
with respect to F', and since the desired eigenvec-
tors are feasible, the rest of (5) should also hold.
It is worth noticing that we may change (assign)
the eigenvector of an uncontrollable eigenvalue so
long as the desired eigenvector is feasible. This is
of course a well known result (see for example [16],
[21]) the difference being that here it is apparent in
an algorithmic way and thus how to proceed in order
to accomplish it is straightforward . However due to
lack of space, in this paper we will only consider the
case A(A, E)NA = 0 and thus show how to solve (6)
efficiently. The general case will be treated in a full
paper ([15]).

It is also worth noting that if the pencil (Z, E)
is singular, so will [(A — BFY), E] for every F;. If
however (A;, £) is singular, (5) suggests that there
may be a way to change this in [(4; — B1 F}), E{]
by choosing the right F;. In the subsequent devel-
opment we will see that this is possible, and we will
show how it can be accomplished.

We are now ready to present an algorithm for the
solution of (6) with (Ey, A;, B;) being completely
controllable. For simplicity we will assume that the
size of By is n x m. The matrix F; will be allowed
to be singular. The algorithm assigns real eigen-
pairs one at a time in a single step, whereas complex
eigenpairs are assigned two at a time as conjugate
pairs in a double step. In this way complex arith-
metic is completely avoided.

To facilitate this we will assume that complex con-
Jugate eigenpairs appear successively in L; and X;.
Furthermore we will assume that if y; 4+ iv; are two
desired complex conjugate eigenvalues, they will ap-
pear in L; as a 2 x 2 diagonal block, say L; of the

form
1 W
Ly = .
11 ( —nom )

If in addition, #; +ix, are the corresponding desired
eigenvectors, then the two vectors z;, z, should ap-
pear as columns of X instead. This is clearly justi-
fiable since R (z1,22) = R (z1 + iz2, 21 — iz2).

Let now V, and U be the orthogonal matrices of
the QR decompositions of X, and £,V respectively,

and consider the partitioning

- Xu | X
=VTX, = (—;FH s )
S (S Ey | E
0T (BV) = ( 2 El;)
" . Al‘)
vtav = | An
As
31 = ﬁTBl = ( B;u >
3
_ L11 O
L= ( 0 | I3 )

with A, and B; being n X 2 and 2 x m 1espectively,
and

11 &2 ) ( €11 €12 )
X1 = , Ei1 = .
" ( 0 &2 1 0 ¢ao
The algorithm then attempts to assign the eigen-
pairs (p1 £ ivy, 21 £ iz2) by computing the m x 2
matrix Fiy in 1V = (F131, F3) as follows:
(A -BiF) X, =
UT (A — By VVTX,

i XL <—
ﬁTEl 1717TX1 L1 <

X

(A1 — BiFu) X

(A3 — BaFg)X;;

_{ EuXuLuy | X (8)
- 0] I E3X3L3 ’

C
By observing the first two columns of (8) we may I
consider the equation |
1
H ]

BiFi1 X111 = A X — (T) , (9)

where if, E;; is nonsingular, we take H =

E11X11L11 and by solving (9) with respect to Fy,;
we assign (p; % vy, z1 +iz2). If however Ei; is
singular we cannot assign (y1 +ivy,2; & iz2). In
this case our aim will be to make certain that
the computed Fi; will result in a regular pencil
[(A1 — B1Fy), F1]. This may be accomplished by
taking H in (9) to be any nonmsingular 2 x 2 ma-
trix with ||H|| being comparable to the magnitude
of our data (the latter is essential in order to avoid
unnecessary numerical problems). The reason for
this choice of H becomes apparent later when we
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continue with the next eigenpair assignment. In the
assignment we just described we considered a com-
plex conjugate eigenpair; if alternatively we consid-
eted the assignment of a real eigenpair (A1, z1) then
mstead of (9) we would need to solve

(4]

Bif11é1 = annén — ( " ) (10)

where fi11,a1; are m x 1 and n x 1 respectively. If
mow £1; # 0 we may take n = £11£11A; in (10) and

solve \
Bifii=an - ( 1Lt ) (11)

(o]

with respect fi;. If however £1; = 0, then A; obvi-
ously cannot be assigned. In this case take n # 0
with || comparable to the magnitude of our data
and instead solve

Bifii=an — ( Z ) (12)

in order to ascertain that [(4; — By F1), E1] is reg-
ular. Once (9) or (10) is solved, equation (8) takes
the form

( o ; )
O | (As = BsF3) X5
_( EuXiuln | X
- O

g s ) (13)

It is now clear why a nonsingular H (or a nonzero
n) will have the desired effect regarding the regu-
larity of the closed-loop pencil. From (13) we may
' continue in a similar manner with the next assign-
ment by considering the equation (A3 — B3 F3) X3 =
- E3X3Ls. Note that the system (E3, A3, B3) can be
| proven to be completely controllable (see [14] for a
proof).

We may observe from the above process that af-
ter every step the number of the states of the next
system (for example (Es, A3, Bs) above) becomes
one or two less than in the previous step (for ex-
ample (F,, Ay, B} above) depending on whether a
real eigenpair or a complex conjugate eigenpair was
assigned, respectively. The above process may con-
tinue until the number of inputs of the current sys-
tem becomes greater than or equal to the number
of states. At this point the equation that corre-
sponds to (9) will be underdetermined and cannot
uniquely determine the remaining columns of F),
and henceforth some modifications must be made.
In order to simplify the presentation we will assume

we are at the beginning of the process, allocating
(#1 £ v1, 71 L iz3), and that n = m. Let us now
consider the partitioning we used in the n > m case,
along with the following partitioning of a QR-like
decomposition of UT By,

~p . = _( Bn| B
7TBW = (——O ),

. Raty
WTERV = Fu

F3

where this time Bj; is a 2 x 2 upper triangular ma-
trix, and Fiy is 2 x (n — 2). Once Fj; is computed
by solving (9) the following equation may be formed

( H l HX ' X192+ (A12 — Bi1Fiz — Bi12F3) X3 )
O ' (Ag— B;;F3)X3

_f EnXulLu | (BnXiz+ Ei1aXs) Ls (14)
- 0 | E3Xals )

We may observe from (14) that we first need to com-
pute F3, and subsequently Fj; may be computed
from the equation

Bi1Fiy = [HXﬁlez —(EnXiz2 + E12X3) L3] X3!
+A12 — Bi2F3. (15)

The computation of F3 will also involve steps like the
above. Thus when m > n the algorithm has in fact
two parts. The forward part, where all the elements
of F;; are computed by solving equations of the kind
(9) or (10) and the backward part, where the ele-
ments of F; ;11, are computed by solving equations
of the kind (15) (F2 in our presentation). Note that
no inverses need be computed in (15) (for example
Y = HX1_11 < Y X171 = H and Y may be computed
by solving Y X; = H).

Once all the equations of the kind (9), (10) and
(15) are solved, we need to apply the history of or-
thogonal transformations back, in order to eventu-
ally compute F. To see how we may accomplish this,
assume for the sake of presentation, that we begin
the process with n > m, and after a specific num-
ber of steps we reach F, for some r, with F, being
square. Assume also that throughout the process
we applied double steps only. We may now com-
pute Fr = W(Fyr,...,Fa_1,-1) and finally I is
obtained by

F=w[(Fu, Pas,. L Fesse, B VTR VT




where, as we may recall, F comes from the sep-
aration of the uncontrollable part of the system
during the initial transformation, and in the case

A (Z , E) MNA = Q it can assume any convenient value

(for example F = O which minimizes the Frobenius
norm of F' with respect to F).

IV. DISCUSSION OF THE ALGORITHM,
HEURISTICS AND A NUMERICAL EXAMPLE

If equation (1) appears to be too simple and thus
unworthy of special attention, it certainly has not
received much. Thus far the methods employed for
its solution are variations of the following general
scheme.

(i) Compute G = AX — EXL.
(ii) Solve the system BY = (G with respect to Y.

(iii) Solve FX =Y with respect to F.

Clearly, the above process makes the accuracy of F
depend on the condition numbers x(B), x(X) (see
for example [9] pp. 79-81). Another point about the
above approach is that, if E is singular the approach
works in such a way that the closed loop pencil
[(A — BF), E] is always singular, even if the system
is completely controllable. To overcome this, the fol-
lowing two-step method has been recommended in

(8]-

(1) Compute an orthonormal matrix N that spans
the null space of £. Then compute a matrix D
such that £+ ANNT + BDNT is nonsingular.

(ii) Solve BF (X,N) = (EXL — AX, D) with re-
spect to F.

The advantage of the algorithm presented in sec-
tion III, over the above three-step approach along
with the two-step fix, is twofold. First, the stepwise
manner which the new algorithm employs, makes
the task of producing a regular closed loop pencil
[(A— BFY), E] (when this is mathematically possi-
ble) rather straightforward (see equations (9), (12) ).
Second, the accuracy of the computed F', by the new
algorithm, does not depend on the condition number
of the entire X. Instead, it may be apparent from
equations (9), (11), (14), (15) that the computed F
depends on the condition numbers of some 2 x 2 di-
agonal blocks of X, as well as the condition number
of the m x m south-east block of X;. For example if

n=9,m=3and A = {¢,¢,r,7,¢,¢ X, X, X}, where
(c, €) represents a complex conjugate pair of eigen-
values, r a real eigenvalue and x any eigenvalue,
then with

[ 4
X X X
X X X X
® X X X X

Xy

® & X X X X
®¢ X X X X X X
® @ X X X X X X

e & ¢ X X X X X X

\

the computed F' will depend on the condition num-
bers of only those blocks with e elements. In view
of this, computing a QR decomposition of X so that
the relevant blocks of X; are as well-conditioned as
possible even if X is ill-conditioned, seems quite at-
tractive. We will therefore aim to hide any possible
closeness of X to rank deficiency, or if this is im-
possible, we will attempt to associate any relatively
small diagonal elements of X; with real eigenpairs,
so that they are cancelled (see equation (11) ). To
this end, we may compute the desired QR decom-
position of X in the following two-stage process:

In the first stage we compute the QR decompo-
sition of X with minimum norm column pivoting.
Unlike the maximum norm column pivoting which is
quite successful in revealing the rank of a matrix (see
for example [9] p. 233), the minimum norm column
pivoting should have the opposite effect. Consider
for example the well known n x n matrix

1 —r —v -
(o4 —;y -y

X = ot e =7 ], (16)
o.n.—l

where 72 + 02 = 1. If we take n = 10 and v = 0.7
then x (X) =~ 10”. QR with minimum norm piv-
oting however, does not change X and since, for
the given case, the smallest diagonal element of X
is o"~1 ~ 0.048, it appears to be fine for our in-
tent. Note that maximum norm column pivoting
produces a triangular matrix with smallest diago-
nal element &~ 10~7. It is worth pointing out at
this point, that since some column pairs of X span
2-dimensional eigenspaces corresponding to com-
plex conjugate eigenvectors, it is desirable for these
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columns to remain in consecutive positions if com-
plex arithmetic is to be avoided. Column pivoting
however may destroy this structure. Therefore if
such a column is to be relocated, its companion col-
umn should follow as well. This can be accomplished
(from a data structure point of view), if instead of
pivoting, the columns in-between are shifted one po-
sition eastward.

In the second stage we check the magnitudes of
the diagonal elements of X, looking for an element
smaller than a specific tolerance. If such an element
is found outside the m x m south-east diagonal block
and it is associated with a real eigenvalue, we do
nothing. If however it is associated with a complex
eigenvalue, we find the columns which the current
column is linearly dependent with, within the given
tolerance. If one of these columns is associated with
a real eigenvalue then we make an exchange simi-
lar to the one in the first stage, and we update the
slightly distorted upper triangular form of X;. As a
result the small diagonal element is now associated
with a real eigenvalue, and thus it will be cancelled
out. If a small diagonal element is found within
the m x m south-east diagonal block we proceed as
above, in an attempt to bring it outside the m x m
block and to associate it with a real eigenvalue.

Next we give a numerical example to demonstrate
the performance of the new algorithm, equipped
with the “heuristics” we just described. The ac-
curacy of the computed solution will be compared
with that of the three-step approach given at the
beginning of this section. Consider the case n = 10,
m = 2 and take X as in (16) with ¥y = 0.7. Com-
pute random B, E and L of appropriate forms, and
compute A so that it satisfies the equation AX =
EXL. Then from (A~ BF)X = EXL obviously
F = 0. The choice of X suggests that the three-
step approach should demonstrate a loss of accuracy,
up to seven significant decimal digits (recall that
X(X) = 107 ). Using MATLAB (uses an accuracy
of approximately 16 significant decimal digits) on a
Zenith Notebook (Z-NOTE 325L) which has a 387-
math coprocessor equipped with the IEEE floating
point standard of arithmetic, the new algorithm pro-
duced an F with ||F||, 2 1075, whereas the three-
step approach produced an F with ||F||, ~ 10~1°,
The new algorithm performed as well as possible
within MATLARB’s accuracy, whereas the three-step
approach demonstrated an unnecessary loss of five
significant digits of accuracy, which clearly indicates
numerical instability. The MATLAB programs im-

plementing the new algorithm are part of the MAT-
LAB package PolePack developed by the author.
PolePack may be obtained via anonymous fip (see
footnote in front page).

V. CoNcLUSION AND FUTURE WORK

We have pointed out, through reference to the lit-
erature, that the solution of the matrix equation
(A= BF)X = EXL with respect to F, is (or
can be) a key point in eigenstructure assignment.
We presented an algorithm for its solution and we
demonstrated theoretically as well as experimen-
tally that the new algorithm is superior to a widely
used three-step approach. A rigorous rounding er-
ror analysis of the new algorithm is under investi-
gation. This will be presented in our future work
along with the application of the algorithm to the
Partial Eigenstructure Assignment problem as well
as to a selection of other Robust Control problems.
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