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ABSTRACT

A recently developed algorithm for ob-
taining an "equivalent” state-space rep-
resentation of a linear multivariable
system whose dynamics are expressed
by internally proper Polynomial Matrix
Descriptions (PMDs) 1s used to analyze
and examine certain pseudo-state and
output controllability properties of the
associated PMD .

1 INTRODUCTION

Let us consider a linear multivariable
system (3") described by a polynomial
matrix model (PMD) 5 :

Ap)3(t) = B(p)u(t) (1)

u(t) = C(p)3(L) + Dipu(t)  (2)

where p = di the differential operator
'

Z rxerlZ

[
1, with rankypAd,, < r ,B(p) = Z
i=0

B € R, o 20.0() = Y
1=0
> 0, Dlp) =

C; € R[p}F*r, o
Z D; € R[plF*™, o2 > 0 and

i=0

B(t) : [07,0¢) — R the pseudo state
, u(t) : [07,5¢) — R™ the input vec-
tor and y(¢) : [07,0c) — R* the output
vector of (}7).

The main objective of the pa-
per is the analysis of the reacha-
bility /controllability properties of the
Fuhrmann equivalent state space sys-

tem >,
px(t) = Az(t) + Bu(t) (3)

y(t) = Cx() + Du(t) ()

where z(t) € R™ is the state vec-

tor of (37,) , n = deg|A(s)], and
A,B,C,D are constant matrices of ap-
propriate dimensions. Equivalency be-
tween the PMD 3 and State Space
System ) ,means preservation of sig-
nificant information such as several
structural properties as transfer func-
tion matrix, system poles & zeros,
input/output decoupling zeros. We
study the reachability properties in
the case when the PMD } is In-
ternally Proper [Kucera(1983), Cal-
lier and Desoer(1982)].The internal
properness of a PMD is associated
with the Behavior of the pseudo
state ((t) and the output y(t)
at t = 0 and is characterized by
the absence from the rational matri-

1(s), A=Y (s)B(s), C(s)A™1(s) ,

ces 4-

C(s)A~1 (s)B(s) + D(s) = H(s) of
poles at s = oo :
Theorem 1 [Callier and  Desoer

(1982)]

The PMD [A(p), B(p), C(p), D(p)] in
(1)-(2) is internally proper iff the fol-
lowing four conditions are all satisfied
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A~Ys) e Roxr(s) ie.

A~1(s) has no polea ats = oo
A~Y(s)B(s) € Ry X™(s) (5)
C(s)A™1(s) € WX (5)

C(s)A™1(s)B(s) + D(s) =
His) € Rp:™(s)

There are several advantages of us-
ing Internally Proper PMDs. First of
all the system has no infinite zeros and
that means many application to areas
as composite system studies , system
invertibility and minimality of system
descriptions. Secondly the system has
no infinite input/output decoupling ze-
ros and infinite system zeros, hence the
transformation has to preserve the basic
properties of the PMD only in the finite
frequencies .Finally we have to remark
that using internally proper PMDs we
have a ”natural” transformation from
systems of the form } to systems of the
form )", , whose the input-output and
reachability /controllability properties |
as well as , the feedback theory are well
known over many years .

2 BACKGROUND
Theorem 2 [Vardulakis et al. (1982)]

Let A(s) = Ao+ Ars + ...+ A, 5%
€ R™*"[s] , rankpA(s) =r ., g >1.
We can write

“U(s) = H,,(s) + H,, (s) (6)

where Hyo(s) € R7*"[s] and Hypp(s) €
ROX"(s) s strictly proper , n =
deg [A(s)] = Sn(Hpe(s))  p =
Soicks1 (i + 1), where q; 1+ = k+1 ...,r
are the orders of the zeros at infin-
iy of A(s). Let ¢y € R™*" J; €
Rrxn By € R be a minimal realiza-
tion of Hypr(s) and Cop € R™%# J, €
REXH B, € REXT be a minimal realiza-
tion of Hpo(s) . Then Cf, J; is a Fi-
nite Jordan pair of A(s) and C,, J~,
ts an Infinite Jordan Pair of A(s).
Furthermore A=Y(s) can be wrilten :

s)=[C; Cu ]

1
sh-dp 0a B,
O;L,n I;L — st B

(7)

The PMD [A(p), B(p), C'(p), D(p)]
is internally proper iff the matri-

ces A_ (s) , A=Ys)B(s), C(s)A~1(s),
C(s 1(s)B(s ) + D(s) = H(s) are all
proper

The condition A~1(s) € REX(s) s
satisfied iff g, = 0, where g, is the zero
at infinity of A(s) with maximum or-
der. In that case Jo, = 0 and the matrix

A~1(s) can be written as:

~H(s) = C, [sI, — J;] ' Bj+CoBu
(8)

Proposition 3
Let A(s). B(s),C(s), D(s) be polyno-

mzial matrices as in the definttion of the
Internally Proper PMD in (1)-(2), with
A~Y(s) as in (8). Then the TRANS-
FER FUNCTION MATRIX of the
PMD (1) - (2) has in general the form

H(s) =C[sL,—J]'Q+E  (9)
where :

C=|CoCr + C1Crdy + ..+ Co, Cp I € RO
(10)

j: J: e jprxn 11)
f

Q= J7B;B,+J7"'B;B,_1+...+ ByBoc ®"*"
(12)
-_—[ Go,Cl,...,(ng ] X
CooBosBo +CyByBi + ...+ C;J] "' B; B,
(ijBfB()‘F‘..-{—CfJ”BfB
] f 7 +D0€ %pxm

.+CfJJ’Zl+”‘leB,,
(13)

CyJ7 7 By By + ..

3 MAIN RESULTS

Counsider again the linear multivariable
system Y whose dynamical behavior is
described by the PMD :

A(p)B(t) = B(p)u(t)  (14)

y(t) = C(p)3(t) + D(p)u(t) (15)

If we denote by 3°(¢: 07, 3°(07), u(t))
the Complete Solution of the non-
homogeneous matrix d.e. (14) for u(t) :
(07, 0c) — R™ | then :
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37(t) =
eTrte (07)
t —
+.[0;_J{” IQu(r)dr N
+ 3 Piprul(t)

L i=0

qr ) .
=S T e g(07)
i=1
. Lo
= + 5 T Qutrt(
=0
g—1
+3 Ziati()
L 1=0 .
(16)
where (i) means distributional deriva-
tive of i-th order and

Q=73 JB;B;. @ =
oy (17)
. J}BfBH_J' for j =1.2... a

i=

Jy =

Q=3 J B Bloeiy Zio—;
=0

a
SSJIBB,_jy—iforj= 1200

i=0

(18)
with By = 0 for k< . We assume that
the PMID 5 is Internally Proper.
Then the transfer function matrix is
given by H(s) =C[sI,—J] 'Q+E the
complete solution 3(t) can be writ-
ten:

3(t) = C,elr'x,(07 )+
C; [, e’ Qu(r)dr + Eu(tgm
9)

where:

E = [}, Co] x
J{='B; J{7 By -, By 0,1,,.J‘

0[1,’_7 BCC
B,
Ba—l
X ' E ?RTX7)1
By
By
(20)
We define:
_ th —
r(t)y=e"7"x, (07 )+ (21)

fot el (t=Tu(r)dr € R**!

Then 3(t) can be written :
B(t) = C;x(t) + Eu(t) (22)

Denoting with p = Ed? the differential
operator :

pr(t) = Jpelite (07) + elrU=0Qu(t)+

jg p [le“_T’Qn(T)dr] =

= Jp [t (07) + ff 1 Qu(r)dr | + Qu(t)

= Jrx(t) + Qu(t)
(23)
Substituting J; = Jand Q = Q we
obtain :

px(t) :JNx(t)—Fﬁu(t) = px(t)——jx(t) :Qu(t)

RS [p[n, — ]N] x(t) :Qu(t)

~1-1 .
& x(t) = [p]n - J] Qu(t)
(24)
The output of the PMD 5~ becomes

y(t) = C(p)B(t) + D(p)u(t) =

[Clp)A~H(p)B(p) + D(p)] ult) = H(p)u(t)

~ ~1-1 o~ ~
= [C’ [p[n - .]] Q4+ E] uft) =
~, S ™ ~ (24)
C [p]n - J] Sut) + Eu(t) 'S
y(t) = Cx(t) + Eu(t)

(25)

Therefore in the case the PMD (14)

- (15) is internally proper through
the quadruple of constant matrices

C,J,Q,E] We can form a state space
C.J, p
system > ;:

pr(t) = Je(t) + Qu(t)  (26)

y(t) = Cx(t) + Eu(t)  (27)

where r(t) € ®°*! defined in (21) plays
the role of the state vector of 3, .

Definition 4 The vector x(1) € "
defined in (21) is called the state vec-
tor of the internally proper PMD (14)-
(15).

In distinction 3(¢) 1s termed as the

pseudostate of the PMD (14)-(15) .
Define the polynomial matrix M (s)
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i —[(i+1)—j5
Mi = = Yo 4;Cp gy HHD]

: (29)
fori=0,1,...,q: — 1
and the matrix X(s) € RP*"[s] :
X(S) = — [Cl,Cg, ...,CUI] X
Cy 0 e 0
Cel Cy e 0
Cffal—l :'fjal-‘l L. (Nf
I,
s,
X .
301_1]71
(30)

Theorem 5 Consider a linear multi-
variable system . described by an IN-
TERNALLY PROPER polynomial
matriz model PMD (14)-(15) with X,
the solution set for some input u(t).
Its transfer function matrix can be
written:

H(s) =C[sL,—J]'O+E  (31)
with n = deg|A(s)| and C,J,Q, E as
in (10)-(12) ,(13). From the quadruple
of matrices [f,ﬁ,&, E’} we can form a
(regular) state space system >, as
in (26)-(27) with X! as solution set
and z(t) € R" as state vector .

Then
t) There always erists a bijective
mapping g : X} — X, having the form

A(t) = C,x(t) + Eu(t) (32)

for some constant matrices Ctoand E
of appropriate dimensions . Ils inverse
mapping g~ : X, — X! exists and has

the form :

2(1) = QUP)B() + Lip)u(t)  (33)
for  some polynomial  matrices
Q(p), L(p).

Furthermore the mapping g in (32) is
such that the following diagram :
M(s) = Mg+Mis + ...+ My, 159"l R7*"[s]

(28)
where the coeflicient matrices are given
by the formula :

(27)
R
(32 |/ (15
Xy

Diagram §

commules , with Yy, equal to the set of
outputs .

it) The two systems Y and >, are
Fuhrmann system equivalent and
are related by

[ M(p) Orp ] pla =T Q| _

X(p) 1, -C  E |

[ Alp)  B(p) ” Cy —E]
—C{p) D(p) Omn  Im

M(p), A(p) le ft coprime  (35)

(pl, — f),Cf right coprime

(36)

We denote by 3(¢;0™, 3(07), u(t)) the
corresponding solution of (14) with ini-
tial time constant 0, initial condition
B(0~) and input function u(t) . From
(32) we have (in light of z,(0-) =
z(07) = xp) :

B = 807,407, u(t)) =
Crel'z(07) + ¢ fot eI E=NQu(r)dr +
(37)
We also denote by z(t;0~, 2(07), u(t))
the corresponding solution of (26) with
initial time constant 0~ initial condi-
tion z(0~7) and input function wu(t) .
From (21) we have :

t) = .L’(I‘;O_,{(O—)y u(t)) =
2(07) + [3 e/t Qu(r)dr (

z(
6“”

38)
According to Theorem 5 there exists
a bijective mapping between the pseu-
dostate /3(1) of 3~ and the state z(t) of
>, such that :

At) = Cra(t) + Eu(t)  (39)
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For + = 0~ the above relation becomes

3(07) = Crx(07) + Eu(07)  (40)

We state :

Definition 6 Given a point 3y =
B3(07) € R as in (40) ,we say that an-
other point 37 € R" s pseudostale -
reachable from 3y if there erists an in-
put u(t) . T > 0 such that the com-
plete solution of (14)-(see also (37))
HNT) = B(T 0", 3. u(t)) = o . If
Jo=30")Y£0 and H(T)=p8r =0¢€
R a.e. if the origin 0 € R” is pseu-
dostate - reachable from 3y . then we
say that the point 3y 1s pseudostate -
controllable .

Given a point xg = x(07) € R"
we say that another point xp € R" s
state - reachable from xy if there er-
ists an input u(t) . T > 0 such that
the complete solution of (26)-(see also
(38)) 2(T) = (1307, 3o, u(t)) = x1 .
Ifrg = 2(07) # 0 and (1) = &7 =
) E R i.e. if the origin 0 € R™ is state
- reachable from xo , then we say that
the point xy is state - controllable .

Due to the Definition 6 x(t) is termed
also as the state of the PMD Y. To con-
nect the definition of state - reachabil-
ity /controllability to the complete solu-
tion 3(t) of (14) we consider the follow-
ing relationship between z(t) and ()
(see (33) in Theorem 5) :

(t) = Q(p)3(t) + L{p)u(t)

In light of the above an alterna-
tive definition of state - reachabil-
ity/controllability is the following:

(41)

Definition 7 Given a point
r(07) € R™ ,we say that another point
rT € R" is state - reachable from rg
if there exists an nput u(t) , T > 0
such that the (omplfff solution 3(t) of
(14)is su(h that (r(T)) = Q(p); 3(T) +
Lipu(T)=xr (uhfrf .l( =), 8(07) are
related fhrough (40)). If vo = 2(07) #
0 and 2(T) = r7 = 0 € R" re. if the
origin ) € R™ is state - reachable from
ro . then we say thal the pomnt ro s
state - controllable .

L0 =

Definition 8 a) The state space sys-
tem ", s said to be :

i) state - reachable off for every parr
of poinis (wy, ws) € N X RN wo is state
- reachable from wy. i1) state - control-
lable off every point w € K" , w £ 0, 1s
state - controllable .

b) The PMD 5" 1s said to be :

i) pseudostate - reachable off for cuv-
ery pair of points (3,20} € R X R, zq
is pseudostate - reachable from z. u)
pseudostate - controllable off cvery point
€N, 2 £0, is pscudostale - control-
lable . 111) state - reachable iff for every
patr of points (wy, ws) € R* x R w15
statc-reachable from wy. w) state - con-
trollable iff every point w € R" , w #£ 0,
ts state - controllable .

It is well known:

Theorem 9 Let R(xy) be the set of all
points xp € R" that are state - reach-
able from xg = 2(07) € R*. Then for
the state space system of the form of 3,
we can describe R(xg) directly in ferms

off,(l:

R(xg) =< ]/lmQ >=
Im$ + ]ImQ 4o T I
(42)

Definition 10 The set R(zg) C R" as
in (42) is called the state - reachable
subspace of 51 . R(xy) can be termed
also as state-reachable subspace of the

PMD Y.

The state-reachable subspace R(xg) 1s

spanned by the linearly independent

columns of the matrix :

Ql = Q‘7§ ...... 771—16] c ;Rn‘x(nm)
(43)

which is called the state -reachability

matrir of Y, (and of Y also ).

We can state the obvious :

Theorem 11 The PMD 5 (the state
space system Y ) is state - reachable
of

R(rg) = R" & rankg [Q] =n (44)
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Let now Rp,.(3y) be the set of all
points 37 € R" that are pseudostate
- reachable from gy, = B(0~) € % .
Following the procedure in the proof
of Theorem 4.6 in [Fragulis (1994)] we
have:

Theorem 12

Rpse(Bo) = C; < J/ImQ > +ImkE =
C'flmﬁ + (."f.’]vlmﬁ + ...
+Cf.]~""11m§~2 +ImE

(45)

Definition 13 The set Rpse(30) C BT
as in ({5) is called the pseudostate
- reachable subspace of the PMD >
-The pseudostate - reachable subspace
Rpse(Bo) ts spanned by the linearly in-
dependent columns of the matrir :

Q> = [C48.¢4 T8, .., Cp =10, E]
€ mrx(n{-l)m
(46)
which 1s called the pseudostate - reach-
ability matriz of 5~ .

We can state the obvious :

Theorem 14 The PMD > s pseu-
dostate - reachable iff

Rpse(B0) =R & ranky [Q2] = r (47)

From Theorems 11 and 14 we have
that state - reachability of >~ implies
pseudostate - reachability of > in the
case the matrix ('; € R"*" has full row
rank i.e. rank [('s] = r. Hence :

Corollary 15 The PMD > is pseu-
dostate - reachable if :

a) > is state - reachable and b)
rank [('f] = r.

It is well known (Kailath (1980)) that
for continuous-time state-space systems
such as Zl , since the transition ma-

trix e/ is always nonsingular | the con-

cepts of state-reachability and state-
controllability are identical . Hence -

Corollary 16 The state space system
Y1 is state-reachable iff 3, is state-

controllable.

We can prove the following :

Theorem 17 The nternally proper
PMD 3~ is state-reachable iff > s
state-controllable .

Let now Chpse(30) denotes the set of
all points 3y € R” that are pseudostate-
controllable . It is found (Fragulis
(1990)) that C'hsc(3y) can be written :

(»wpse(/j()) = [('f~('ow]x
~ - 7—1
<J/ImQ >+ 5 Imd;
i=0

g1
< Jas /I > + ST ImZ; + Kerdo,

i=0
(48)
The internal properness of the PMD
>~ implies that J., = 0. Hence we
obtain that for an internally proper
PMD its pseudostate-controllable sub-
space Chpse(p) can be written:

Cose(P0) = C < J/ImQ > +ImE =

CrImQ + (ﬂ'ff[mf) + ..+ ('fj"“llmﬁ + ImFE

= Rpse(o)

(49)

le. the subspaces (',.(3) and
Rpse{3y) are identical . Hence :

Corollary 18 The internally proper
PMD Y is pscudostate-reachable if >
is pseudostate-controllable .

The relation between left coprimeness
of the polynomial matrices A(s), B(s)
and state (pseudostate) controllabil-
ity of the associated internally proper
PMD 5" become clear in the se-
quel.  First of all because of the
Fuhrmann equivalence between
and 3~ the following relations hold

true: (s]n—j) A A(s), [(sln - f), fl} ~

[A(s). B(s)], [ (“"]"(; /) J 13

A(s) ‘ . - o
[(,(5)} where the superscript s

means Smith equivalence or in other
words preservation of the non unity in-
variant polynomials (see e.g. Kailath
(1980), Theorem 8.2.3) . The above rela-
tionships will be used to study the con-
trollability properties of the PMD >
via those of the state-space >
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Corollary 19 «)The internally proper
PMDY" s state-controllable if and only
if at least one of the following cquiva-
lent conditions hold : 1) A(s), B(s) are
left coprime i.e. rankyg[A(s). B(s)] =
r.o Vs € R i) (shy — J).Q are left
coprime i.e. ranks [(s]n ~J~),§~2} =
n o, ¥s € R i) rankpl{th] =
ranky [§~2]~§~2 .. .,J~”'1£~2] =n.

b)The internally proper PMD 5
is state-controllable if and only if
the stale-space system S 15 state-
controllable .

¢)The internally proper PMD 3 as
in (14)-(15) is state-controllable if
and only if the polynomial matrices
A(s). B(s) are left coprime .

d)The internally proper PMD S as
mn (14)-(13) is
pseudostate-controllable if the poly-
nomial matrices A(s), B(s) are left co-
prime and ranky [('f] =7
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