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Abstract

This paper considers the problem of assigning the
closed loop invariant polynomials of a unity feed-
back control system, where the plant is a linear,
discrete-time, periodic system. By a matrix alge-
braic approach, the solution is provided in terms of
a linear, discrete-time periodic controller whose as-
sociate transfer matrix originates from the solution
of a suitable diophantine matrix equation. The par-
ticular form chosen for this solution guarantees the
causality of the periodic realization of the associate
transfer matrix.

1 Introduction

Various classes of processes, such as periodically
time-varying networks and filters (for example
switched-capacitors circuits and multirate digital fil-
ters), chemical processes, multirate sampled-data
systems, can be modeled through 2 linear periodic
system (see, e.g., [1], [2] and references therein).
Moreover, the study of linear periodic systems can
be helpful even for the stabilization and control
of time-invariant linear systems through a periodic
controller, that has been recently investigated [3],
(4], [5], [6], [7], [8], and for the stabilization and
control of a class of bilinear systems [9], [10], [11].

In the discrete-time case, a control theory is devel-
oping with the help of algebraic and geometric tech-
niques and contributions on several control problem
have been given, including eigenvalues assignment,
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state and output dead-beat control, disturbance de-
coupling, model matching, adaptive control, robust -
control and optimal H,/H,, control (see, e.g., [2],
(12], [13], [14], [15], [16], [17], [18], [19], [20], [21],
(22], (23], [24]).

The aim of this paper is to analyze the invari-
ant polynomial assignment problem for the class of
discrete-time linear periodic systems. This prob-
lem generalizes the characteristic polynomial assign-
ment, which, for the same class of systems, was
solved by a geometric approach in [17], [21], [23].
For time-invariant plants, the invariant polynomial
assignment was considered in [4], [7], [25], [26].

The paper is organized in the following way. In
Section 2 preliminary definitions and results are
given. The problem considered in this paper is for-
mally stated in Subsection 3.1, and conditions for
its solvability are constructively established in Sub-
section 3.2.

2 Preliminary results

Consider the w-periodic discrete-time system ¥ de-
scribed by

z(k +1) A(k)x(k) + B(k)u(k)  (2.1)
y(k) C(k)x(t) + D(k)u(t) (2.2)

where k € Z, z(k) € IR" is the state, u(k) €
IR? is the input, y(k) € IR? is the output and
A(4), B(:),C(-), D(-) are periodic matrices of period
w (briefly, w-periodic). Denote also by ®(k, k),
k > ko, the transition matrix associated with A(-).

It is well-known that, for any initial time ky € Z,
the output response of system X for k£ > kg, to given
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initial state z(kg) and control function u(-), can be
obtained through the time-invariant associated sys-
tem of ¥ at time kg, denoted by ¥%(kg) [27]. Z4(k)
is represented by

Zk(h + 1) = E'kl‘k(h) + J;,uk(h) (23)
ye(h) = Lizi(h) + Mrug(h) (2.4)
where Ep := ®(w + k, k), Jp == [(Je)1 -+ (Ji)w),

(Jr)i =®(w+k,i+k)B(i—-1+k),i=1,. -, w,
Lk = [(Lk)ll ce (Lk){”]l, (Lk),' = C(l -1 +
k)q)(l -1+ k,k), i=1 - 0w, My = [(Mk),'j €
R¥*P, 4,5 = 1,---,w], with (ML); = C(i -
14+ k)G —-1+kj+h)B(G—-14+k),ifi> j,
(MkL),'j = D(i— 1 +h), if i = j and (MkL),'j =0, 1f
1< ].

In fact, if 2(0) = z(k) and ux(h) = [v/(hw +
k) v(hw+k+1) - v'(hw+k+w— 1)) for
all h € Z%, then zx(h) = z(k + hw) and yi(h) =
[ (hw+k) Y(hw+k+1) - Y(hw+ k4w -1)
for all h € Z*. The notion of associated system at
time k allows one to analyze structural and stability
properties and pole-zero-structures of periodic sys-
tems [1], [28], [29], [30], [31]. For example, the sub-
space of reachable (unobservable) states of system £
at time k is readily seen to coincide with that of sys-
tem X°(k) if it is expressed in terms of matrices Ej,
Ji, Ly and M [29]. Obviously, L%k + w) = X(k)
for all integer k.

The notions of invariant zero, transmission zero
and pole of the w-periodic system ¥ at time k are
defined with reference to the following wq x wp ma-
trix

Wi(d) = Lyd(I, — dEy) " J, + My, (2.5)

where I, denotes the identity matrix of dimension
n and d := z~! is the backward shift operator. The
rational matrix Wi (d) is the transfer matrix of the
associated system of ¥ at time k and is called the
assoctated transfer matriz of ¥ at time k. A com-
plete analysis of pole-zero structure of system X is
reported in [29] and [32] making use of the associ-
ated transfer matrix characterized with the forward
shift operator 2. The following result, that follows
from Lemma 2.1 in [29], shows the dependence of
Wi(d) with respect to the initial time k.

Lemma 2.1 For any integer k it holds that:
— 0 Ig(w-1) 0
Wisi(d) = [d_llq 0 ] Wi(d) [Ip(w—l) 0
(2.6

As a consequence of this result the rank r of

dl, }

Wi(d) is independent of time k (see, e.g., [29] for
a similar result with the forward shift operator z).
The transfer matrix W (d) can be factored as

Wi(d) = A;'(d) Be(d) = Be(d) A1 (d),  (2.7)

where A (d) and By (d) are relatively left prime (rip)
polynomial matrices and Ax(d) andBy(d) are rela-
tively right prime (rrp) polynomial matrices. More-
over, denoting with 7} (d) the Smith-McMillan form
of Wi(d) the following relation holds

We(d) = U@ T ) U (@), (28)
with
Tk(d) =
[dlag{ef(d)/d;f(()d), T Cf(d)/¢f(d)} Or,wp—r
wqg—r,r qu—r,wp—r

where €f(d) and ¢¥(d) (i = 1,...,r) are co-
prime polynomials such that ff(d) (¢f+1(d)) di-
vides €, ,(d) (¥}(d)), and U} E(d) and UYF(q)
are unimodular matrices. The €f(d)’s and ¥¥(d)’s
(i = 1,...,r) are uniquely determined by W;(d)
up to arbitrary real scalars. Analogously to the
time-invariant case [25], the polynomials ¢*(d) (i =
1,...,r) are called the invariant polynomials of ¥ at
time k. As shown in [29], [32], under the hypothesis
of reachability and observability of ¥ at all times,
the product of these polynomials characterizes the
stability properties of .

By (2.8), the rlp polynomial matrices Ar(d) and
By(d)) and the rrp polynomial matrices Ax(d) and
By(d) satisfying (2.7) are given by

Ag(d) =
[diag{¥}(d), - -, ¥f(d)}
Bi(d) =
[diag{c}(d), -, ¥ (d)} Ogerpr] UPR,
Ax(d) =
(U™)7 [diag{9}(d), -, wE(d)}
Bi(d) =

W.L 3. k k
Uk [dla‘g{fl (d)) AT (d)} 09—";}’—" ] .

The above definition of invariant polynomials of
¥ at time k and equations (2.7), (2.8), (2.9), (2.10),
(2.11) and (2.12) yield the following result. (Note

that, two polynomials are called associate if their
ratio is a scalar [25].)

I, 1 (P,

I'I—T] ’

Lemma 2.2 For any integer k, the invariant
polynomials of £ at time k are associate of the in-
variant polynomials of the Smith forms of A (d) and
Ar(d).
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Denote by x(p, g, w) the class of wq x wp rational
matrices

Wi(d) Wia(d) Wio(d)
W) = Wzt(d) sz(d) W2u:1(d) ’
Wor(d) Waa(d) Wi (d)

W:J(d) eq:qxp l)] = 1: T, W, (213)

with W;;(0) = 0,7 < j, i,j = 1,...,w. The class
x(q,p,w) characterizes the transfer matrices of w-
periodic systems. In fact, the causality of w-periodic
system X implies that the associated transfer matrix
of ¥ at time k belongs to the class x(p, ¢,w) for all
k € Z [33]. Then, the causality of ¥ implies that
the roots of invariant polynomials of ¥ at time &
are different to zero for all integer k. This in turn
implies that matrices Az (0) and Ax(0) are nonsingu-
lar. Foregoing considerations and Lemma 2.1 allow
us to prove the following result.

Lemma 2.3 The invariant polynomials of ¥ al
time k are independent of k.

Moreover, x(p,q,w) characterizes also the class
of rational matrices that can be realized by an w-
periodic system of the form (2.1), (2.2). The solu-
tion of the minimal realization problem for the pe-
riodic case is described by a system reachable and
observable at any time whose matrices have gener-
ally time-varying dimensions. In general, the sub-
spaces of reachable states and/or observable states
may have time-varying dimensions. Therefore, it is
natural, in order to consistently solve the problem
of minimal realization, to allow for state-space de-
scription having time-varying dimensions. The pos-
sibility of computing a “quasi” minimal (reachable
and observable at lest in one time) uniform (fixed-
dimension) realization is also available. Efficient al-
gorithms for the computation of minimal or quasi
minimal realization of a given transfer matrix are
introduced in [33] and [34].

Moreover, the associated system at a given time
k of a composite system obtained connecting w-
periodic subsystems coincides with the same con-
nection of the associated systems at time k of the
composing subsystems [32].

3 Main result

3.1 Problem statement

Consider an w-periodic controller g for system X
acting in an unity feedback error actuated servo sys-
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tem and described by

ze(k+1) = Ac(k)za(k)+ Ba(k)e(k),(3.1)
u(k) Co(k)zg(t) + Da(k)e(t), (3.2)

where e(k) := r(k) — y(k), r(-) being the external
reference to be tracked, and zg(k) € IR™C is the
state.

The problem considered in this paper is formally
stated as follows.

Problem 3.1 Given an w-periodic system X
reachable and observable at all times, and m causal
polynomials s;(d), s2(d), ..., sm(d) such that
siy1(d) divides s;(d), find an w-periodic controller
Y described by (3.1), (3.2), such that the closed
loop system be minimally realized and its invariant
polynomials be associated of s;(d), i =1,2,...,m.

Note that, by Lemma 2.3, Problem 3.1 has been
stated independently of the time instant k.

The wp x wq associated transfer matrix of g at
time k is expressed by

Gi(d) = LEd(I., —dEF)~'IE + ME, (3.3)

where matrices LkG € IRwP*ns, EkG € IR"s*"G,
JZ € R™*“? and ME € IR“P*“? are defined as
matrices Lg, Ei, Jr and M with matrices A(.),
B(-), C(-) and D(-) substituted respectively by ma-
trices Ag(-), Bg(-), Cg(-) and Dg(-).

The causality of system ¥s implies that Gi(d)
belongs to the class x(p, ¢,w).

Let Gi(d)be factored as

Ge(d) = Py (d) Q(d)

where Pi(d) and Qi(d)) are rip polynomial matri-
ces.

(3.4)

3.2 Problem solution

The solvability condition of the problem considered
is stated in the following theorem.

Theorem 3.1 Problem 3.1 has a solution if and
only if m < min(wq,wp).

Proof (Necessity) Let W (d) be the wg x wq as-
sociated transfer matrix at time k of the w-periodic
closed loop system I described by (2.1), (2.2),

(3-1), (3.2), and let it be factored as
WE(d) = Gy (d) De(d) = De(d) G5 (d).  (3.5)

where Ci(d) and Dy (d) are rlp polynomial matrices
and Dy(d) and Ci(d) are rrp polynomial matrices.




By Lemma 2.2 applied to the closed loop system,
the invariant polynomials of ¥ at time k are as-
sociated to the invariant polynomials of the Smith
forms of Cy(d) and Ci(d). Moreover, taking into ac-
count that the closed loop system X¢ is required to
be free of hidden modes, it follows that the invariant
polynomials of ¥ are also associate to the invari-
ant polynomials of the wp x wp polynomial matrix
X1 (d) such that [25]

Pe(d)Ax(d) + Qu(d)Be(d) = Xx(d).  (3.6)

As the invariant polynomials of the wp x wp poly-
nomial matrix Xi(d) are associate to the invari-
ant polynomials of the w¢ x wq polynomial matrices
Ci(d) and Ci(d), it follows that the number m of
invariant polynomials that can be assigned can not
be larger than min(wp,wq).

(Sufficiency) By the primeness of the pair (Bi(d),
Ag(d)), equation (3.6), can be solved with respect to
Pi(d), Qx(d), for any choice of Xg(d). The matrix
Qx(d) will be sought of the form Qi (d) = dQ§ be-
cause, as it will be shown later, this guarantees the
causality of the w-periodic controller ¢ . With this
choice of Qi(d), equation (3.6), can be rewritten as

Pe(d) Ax(d) + dQi(d) By(d) = Xi(d).

By the causality of ¥, one has that det A (0) # 0,
so that right primeness of A;(d) and By(d) implies
right primeness of Ay(d) and dBi(d); this in turn
implies that also equation (3.7) can be solved with

(3.7)

respect to Pr(d) and Qj(d) for each Xi(d). The
general solution of (3.7) is of the form
A@ Q@) =[x @] [ 0 S

(3.8)
where T'(d) is an arbitrary polynomial matrix and
where the matrix

v = 0

My(d) Sa(d)

is a unimodular matrix whose elements are polyno-
mial matrices such that

Lo(d) A (d) + Ma(d)dBx(d) = I,
Rz(d)Ak(d)-{—Sz(d)dBk(d) = 0.

Unimodularity of U(d) implies that the matrix
[Pe(d) Q%(d)] is full row rank for all d €T, if and
only if the same property holds for [X,(d) T(d)].
As T(d) is arbitrary, this last requirement can al-
ways be satisfied, so that Pr(d) and Q§(d) solution
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of (3.7) are rlp polynomial matrices. Nonsingularity
of X;(0) and A;(0) implies nonsingularity of P(0),
so that also P;(d) and Q¢ (d) = dQ%(d), solutions of
(3.6), are rlp polynomial matrices.

The transfer matrix Gg(k) = Pu(d)~'Qx(d) =
Pi(d)~'Q%(d)d belongs to the class x(p,q,w), so
that it can be realized in terms of w-periodic state-
space realization of the kind (3.1), (3.2). This last
step can be accomplished using the minimal realiza-
tion procedures given in [33]. A

4 Concluding remarks

The invariant polynomial assignment problem has
been introduced and solved for linear periodic
discrete-time systems. A matrix algebraic approach
has been considered and the solution has been pro-
vided in terms of a linear periodic discrete-time con-
troller whose associate transfer matrix originates
from the solution of a suitable diophantine matrix
equation. The synthesis procedure of the controller
solving the problem is given in the sufficiency proof
of the main theorem.
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