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Abstract

One of the advantages of predictive control is its abil-
ity to take optimal account of information about fu-
ture set point changes in the specification of the con-
trol law. However, it is demonstrated in this paper
that often use of this information can lead to a deteri-
oration rather than an improvement in the accuracy
of tracking. A simple modification to GPC (General-
ized predictive control) is proposed to overcome this
problem.

1 Introduction

Model based predictive control (MBPC) has been a
very popular research area in recent years [1]. Many
variants of MBPC have been developed (e.g. [2-
5]) which share similar properties. In this paper
for convenience, only one of the most popular vari-
ants of MBPC, that is Generalized Predictive control
(GPC), will be considered explicitly, but many of the
ideas developed in this paper are also applicable to
many of the other MBPC approaches.

Traditionally one of the strengths of MBPC is its
ability to make systematic use of advance knowledge
of set-point changes for optimum tracking. An abil-
ity to give optimum tracking should give predictive
controllers a marked advantage in such areas as elec-
trical power generation where fairly accuarate knowl-
edge of future set-points is often available. However,
rather suprisingly no detailed analysis of this claim
appears in the literature and in fact the claim seems
to rest solely on the presence of the set-point trajec-
tory in the performance index used to define a predic-
tive controller. It will be demonstrated in this paper
that while predictive control should give good track-
ing (because it uses advance knowledge of set-point

changes), this is often not the case. In fact, better
tracking is often achieved when only some (110t all)
of the future information is given to the controller;
this raises two important issues. Firstly it begs the
question ‘how can one systematically make a sen-
sible choice of the amount of future inforination a
predictive controller will use effectively’ 7 Secondly
it suggests that MBPC is incorrectly formulated to
make the best use of the set-point, information avail-
able. In this paper it is the latter of these two issues
which is tackled.

The reason why a predictive controller can give poor
tracking is because of the formulation of the perfor-
mance index from which the control law is derived.
In GPC the aim is to minimise the sum of squares
of predicted output errors over a ‘large’ output hori-
zon (ny), but the degrees of freedom and the con-
trol changes are over a ‘small’ input horizon (n,).
Typically n, > n,, and hence the control law is try-
ing to minimise both predicted ‘transient’ and pre-
dicted ‘steady-state’ errors with only a few control
moves that occur during the ‘transient’ stage of the
prediction horizon. (Here ‘steady-state’ is used to
refer to predicted values well beyond the input hori-
zon but still within the output horizon.) As a result
there is only indirect control of steady-state errors,
i.e. through the degrees of freedom available dw-
ing ‘transients’; use of these degrees of freedom to
reduce predicted ‘steady-state’ errors alinost invari-
ably causes severe degradation of ‘transient errors’,
This problem is particularly noticeable when the set-
point trajectory has markedly different values i the
‘transient’ and ‘steady-state’ parts of the prediction
horizon. In summary the performance index of a pre-
dictive controller is slightly lop sided as in the control
changes are at one end of the horizon whereas we are
interested in the outputs tracking accurately over the
whole length of the horizon.

One apparent solution to this problemn may be to in-
crease the mumber of control changes available to the
control law, however this is generally not advisable
as choosing the input horizon and output, horizou to
be of a similar size allows the predictive controller to
effectively invert the plant, (this is one of the weak-




nesses of minimimum variance controllers [6]); if the
plant has any unstable zeros the resulting control
law will be destabilising and even if this were not
the case the controller would be too highly tuned for
many industrial applications. Hence in practice the
condition n, > n, is an acccepted rule of thumb
in predictive control!. However, the important idea
remains, that is to to try and extend the direct in-
fluence of the control changes over a wider range of
the output horizon. This can be achieved by an-
other means, that is to select the predicted control
as changing only every n-samples (n=1 in most pre-
dictive controllers). Thus the effective control (in-
put) horizon is expanded approximately n times but
while retaining the same numbers of degrees of free-
dom and therefore being no more computationally
burdensome nor more highly tuned than GPC. A
similar idea to this has been used before [7] on a
boiler-turbine model, though it was used specifically
to cater for a multivariable system containing both
fast and slow modes. Here that idea is developed to
deal explicitly with the issue of advance knowledge
of the set-point and for clarity of exposition now will
be restricted to single-input-single-output systems.

If the predicted control changes are to be spread over
the output horizon in an efficient way, it is not clear
what is the best way to do this. In this paper a sim-
ple technique is presented, but it is noted that fur-
ther improvements may be possible in general. How-
ever, it is argued that the technique proposed has the
virtue of being very simple and the improvements to
be gained by a more advanced technique would prob-
ably be marginal, especially if one restricts oneself to
the fairly small control horizons typically used.

This paper will be divided into 3 sections. In sec-
tion 2 an overview of GPC and the new proposed
algorithm will be given. Then, using examples, in
section 3 both algorithms will be compared for their
tracking performance and robustness.

2 Background to GPC

2.0.1 Notation

The system model will be taken to be

27 th(2
oo = T2 =) ()

where b(2) = b, + b1z 71+ ..+ by12" 7l a(z) =14
a1z + ...+ apz~™. The system output predictions
can be dertved by solving row by row the equation
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1t is noted that this is not the case in predictive controllers
with guaranteed stability but they tend tc be highly tunad as
a result

where A =1 — 271 A = a(2)A(2), Auy = up —ug_y,
ny the output horizon and
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The matrices C,, is defined as having its 4, j eleinent
equal to m;_; and H,, as having its 4, j element equal
to m;y ;1 where m(z) = m, +miz7  +mnyz"% 4 L

General definition of predictions in GPC

In equ. (2) the output predictions depend upon all
the future control increments which are to be chiosen
by the user and therefore are degrees of freedom. It
is not desireable to have n,, degrees of freedom in Awu
due to dangers of the controller incverting the 1)lnnf:
SO Az_:.’ is artificially shortened. In order to have a
general format define the shortened vector as

o T
Aﬂ, = [A“t+“1 ’ A“’H-Uz s A“’t+113> ey Dttg g, " ] (4)

where it is assumed that for any 4 > 0 where Aw;q; is
not in A then Awu,y; = 0. n, the control horizon.
“

(Note: For standard GPC [2] v = [oy,0y,...,v,,] =
0,1,2,...,n, —1].) Including Au and rearranging,
the GPC prediction equation {2) can be written as

Y =HAu+Pay + PAu ()

with P, = C;'Hy, Py = Ci'Hy and H as the

1

[01, ...y vy, ] coluinns of C;l .

Definition - Advance knowledge
Taking r¢ to be the set point at time 2, it will be
convenient to have a parameter ng; which will be used
to denote the number of 7,1, which are available at
sample period t. Define advance knowledge as ny if
Tt4i 1 < n .
Teys = { Pitns i > "Lg' (6)

and therefore the n, vector

e — [y . T
r = [7z+1, o Ttng —1 Te4ng, Tttng ]

2.1 GPC

The GPC control law is defined through the minimi-
sation of the performance index

Jepc = |1 ~ }L”g +A[Aal (7)

In the previous section the system predictions y (5)
were given for Au containing n,, terins, the teris
—




being defined by the choice of v;,¢ = 1,...,n,. In
GPC [2] Aw is selected to have »; = i — 1, and as a
result the H matrix of eqn. (5) is truncated to only
contain the first n, columns of CZICb.

Theorem 2.1 The GPC control law defined through

the minimisation with respect to Ayl of the perfor-
mance indezx (7) is

Aup = P,r — DpAu — Ny (8)
where with ey the first standard basis vector
P = eF(HTH + A\I)"'HT
Dy = PP (9)
N, = PPy

Proof: Minimising the performance index (7) with
respect to the vector of predicted future control in-
crements Awu gives

Ad = (HTH+ M) 'H"(r — Pay — P,Au) (10)

Of the optimal Au only the first element (that is
Au,) is implemented and the optimisation is re-
peated at the next sample. This gives rise to the
contro] law of equation (8). 0

2.2 Extended input horizon GPC

GPC places all of the degrees of freedom available
for minimising Jope in the first n, predicted con-
trol increments, i.e. v = [0,1,...,n, — 1]. The per-
formance index however includes tracking errors over
an output horizon n,. It has been argued in the in-
troduction that typically speaking ny, > n, and this
leads to an unbalanced performance index. A better
algorithm would distribute the control changes more
equally over the output horizon and therefore widen
the regions of influence. This is particularly impor-
tant when the set-point is changing within the ont-
put horizon and the output is therefore being driven
to different positions at the beginning and end of
the output horizon. However, due to the dyanmic
behaviour of most systems, it is also true that one
would not expect, for example, control increment
Ausyq, 1 to influence greatly the output predictions
Y. Therefore while it is desireable to have control
increments spread evenly over most of the output
horizon, they are not as influential over the very last
part of the output horizon. Accordingly an extended
input horizon GPC (EIHGPC) algorithm can be de-
fined to spread the control increments over more of
the output horizon.

Algorithm 2.1 EIHGPC is defined exactly as GPC
(Theorem 2.1) but with

=[0L,14+8,1+26,.., 14 (n, ~2)p] (11)
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where 3 is chosen to be any positive integer such that

14 (n, —2)8 < ny.

Remark: The change in v entails only a change in
the H matrix which comprises the v columnmns fromn
CXICI,. Thus the difference in v between EIHGPC
and GPC is that for GPC 8 =1 and for EIHGPC
B > 1. The two algorithms are identical with the
definition of eqn.(11) if n,, < 2, but of course it is
possible to define v = [1, ] for n,, = 2 in which case
the two algorithms would be different. GPC and
EIHGPC are always identical for n, = 1.

3 Comparison of GPC with EI-
HGPC

3.1 Prediction comparisons

The benefits of EIHGPC over GPC are best illus-
trated by considering the optimal open-loop predic-
tions arising from the miniinisation of Je;pe:. Let the

optimal An given ineqn. (10) be Aw ,- To find the
nd _’(II‘

optitnal ontput prediction (¥) the optitmun Aw
— —apt

is substitnted into equ. (5).

v, =HAG (12)

“apt

+ Pﬂ:‘i + Pg,A;li

Therefore the minimum value of the perforinance in-
dex at tine ¢ as

=|r-y

—opt

Jopt () 13 + Al Aw ,”5 (13)
In this section a system will be taken from a given
initial condition (i.e ¥, Awu given) and the vector of
futnre set-points 7 will be taken to contaiu a nuit
step at ny sdmples into the future from the start of
the sitnulations. To compare the efficacy of GPC and

EIHGPC the plots of Y, ” and u - will be plotted

and compared with r. Furtllermole Jopt(t) will be
evaluated for each a,lg,orltlnn

3.1.1 Example 1

For this example

a(z2)=1-092"1 bz) =05 (14)

and ny = 12,n, = 3, =
mal predictions ¥  and w
—opt —op

0.25,8 = 4. The opti-
. for both GPC and

EIHGPC are computed for three cases (i) ny = ny,
(i) ny = ny — 3, ny = ny — 9 and plotted in Fig-

ures la,b,c and Figures 2a,b,c respectively. y , and
~sopt

u  are plotted in dotted lines for GPC and and

—opt

solid lines for EIHGPC. r is plotted in a solid line.
5

It eacli case it is assumed that the step i 7 is oy




steps in the future and that ¥ = 0 and Au = 0.
Furthermore J,,¢(t) is computed for each case above
and also for nj = n, — 6 and tabulated below.
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Figure 1b. Output predictions Example 1, ny =9
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Figure 2a. Input predictions Example 1, ny = 12
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Figure 2b. Input predictions Exaniple 1, ny =9
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Figure 2c¢. Input predictions Example 1, ng = 3

Values of J,,+(t)
ng=12 | ng=9|ng=6[n; =3
GPC 0.7629 1.1078 | 0.6844 | 0.7534
EIHGPC | 0.6707 | 0.6029 | 0.7197 { 0.4021
Table 1

Figures lab,c illustrate that the GPC algorithin
gives optimal output predictions ¥ . which have
—apt

e

poor predicted tracking, especially if ny

magnitude to n,. This is because in the prediction
stage u (Figures 2a,b,c¢) stops changing after ouly 3
samples. ETHGPC on the other hand gives markedly
better tracking because the predicted changes of «
are more evenly spread over the output horizon. The
improvement in tracking given by EIHGPC is further
confirmmed by the comparison of the values for J,,.. ()
in table 1.

is similar in

3.1.2 Example 2

Let

a(z) =
b(z) =

1—185271 4111272 - 0.221273
1-052"1 —0.14272

(15)
with n, = 10,n, = 3,8 = 3,A = 2. A representa-
tive set of optimal output and input predictions are
plotted in Figure 3a,b respectively for n; = 8 and
¢ =0,Au = 0 with the 7 containing a unit step ny
satnples into the future.
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Figure 3a. Output predictions Example 2, ny = 8
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Figure 3b. Input predictions Example 2, ny = 8

It is seen that the optimal predictions from ETHGPC
have far better predicted tracking than those fromn
GPC. The values of Jyp(t) for a selection of ny are
given in in table 2. The corresponding plots for n; =
10, 6, 4 are very similar to those already in the paper
and hence are not included for reasons of space.

Values of J,:(t)
ny, =10 | ny =8 1ny=61n, =4
GPC 0.7290 | 0.9600 [ 0.5684 | 0.5171
EIHGPC | 0.6313 | 0.5599 | 0.4737 | 0.4591
Table 2

3.2 Closed-loop simulation compar-
isons

It is clear from the example of section (3.1) that EI-
HGPC affords better optimal predictions than GPC
and therefore one would expect that the closed-
tracking arising from an EIHGPC control law would
also be better than that arising from GPC. In this
section using the same two examples and also using
the same initial conditions as in the earlier section,
the full closed-loop simulations are presented. For
convenience the simulations results for GPC and EI-
HGPC are presented on the same graph; the output
and input simulations for GPC are plotted in a dot-
ted line and for EIHGPC in a solid line. The set
point is plotted with a solid line. As another means
of comparipg the accuracy of tracking the following
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measure of achieved perforinance is computed over
the runtime

runtime
J,."" = Z (Tt+i —_ yt+i)2 + /\A’“‘z-{—i—l (16)
i=1

3.2.1 Example 1

The closed-loop simulations for example 1 are plotted
in Figures 4a,b,c for ny = 12,9, 3 respectively and
the values of Jy..,, {eqn. 16) are tabulated in table 3
bhelow.
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Figure 4a. Closed-loop Simulations with ny = 12
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Figure 4b. Closed-loop Simulations with 7 = 9
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Fipgure 4¢. Closed-loop Simulations with »nd = 3
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Values of J,.,,,

a __ @ a __ a
ny—12 ny—g ny—ﬁ ny—3

GPC 0.5784 0.5151 | 0.4023 | 0.3688
EIHGPC 0.3026 0.3026 | 0.3019 | 0.3008
Table 3

It is clear that in Figs. 4a,b GPC has significant
transient errors and in particular a very large non-
minimum phase characteristicc. EIHGPC on the
other hand gives good tracking with minimal non-
minimum phase behaviour. This is confirmed by the
values of J,,,, (Table 3) which show that EIHGPC
has done significantly better than GPC. What is also
significant however is that the performance of GPC
actually improves as ny gets smaller which suggests
that in this case it would be better not to use all the
advance knowledge of the set point even when it is
available. In fact for this case with GPC the small-
est value of J.,, = 0.3404 and occurs for ny = 2.
EIHGPC on the other hand is relatively unaffected
by the choice of ny and achieves its smallest value
for ny = 3. However, for all choices of ny EIHGPC’s
largest value of J,.,, is over 10% better than GPC’s
smallest value. It is noted in passing that the change
in control activity as n; changes is minimal.

3.2.2 Example 2

The full closed-loop simulations with example 2 show
a similar pattern to that of example 1, i.e. GPC
has an undesireable non-minimum phase behaviour
caused by ny being too high whereas EIHGPC does
not. The closed-loop simulation for ny = 8 is given
in Figure 5, and the values of J,.,,, are in table 4.
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Figure 5. Closed-loop Simulations with ny = 8

Values of J,.,,,
ny=10 | ny=8|ny=6|n; =4

Yy
GPC 0.4532 0.4233 | 0.3543 | 0.3436
EIHGPC 0.3066 0.3066 | 0.3061 | 0.3106
Table 4

Once again it is noted that the performance of GPC
has improved if ny < ny and for this example it
achieves its minimum at J,,, = 0.3408 for Ty

Again EIHGPC is relatively insensitive to nj and

reaches its minimun for n; = 6 with all its values
for ng > 1 being lower than the mininnun afforded

by GPC.

3.3 Simulations with no advance

knowledge

For completeness we also present simulations where
there is no advance knowledge (ng = 1). In this case
GPC does not experience any difficulties associated
to poor predictions at each sample instant as the
set point is taken to be constant over the prediction
horizon. The simulations with no advance knowledge
are given in Fig. 6a,b for examples 1,2 respectively
and the values of J,.,,, are given in Table 5.

0.8

(X 3

0.4

0.2|

o 2 4 [ 8 1w 12 14 16
Samphey ntarts

Figure 6a. Closed-loop Simulations with ny = 1
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Figure 6b. Closed-loop Simulations with 7y = 1
Values of J,.,,
Example 1 | Example 2
GPC 0.7744 0.5800
EIHGPC 0.7730 0.5733
Table 5

In Figure 6a it is seen that the GPC repsonse is
marginally faster than the EIHGPC respouse, bt
the difference is insignificant. In Figure 6b the re-
sponses are so similar that is not possible to distin-
guish them on the graph. This is further illustrated
by a comparison of the respective values of .J,.,, i
Table 5. It is noted that the values of J,.,,, are higher
than those in Tables 3,4 which is as expected with no
anticipation at all. The similarity seen in examples




1,2 i1s not generic and for different examples and dif-
ferent horizons the simulation resposnes of EIHGPC
and GPC can vary considerably, as in Fig 4a-c. How-
ever, it has been observed that neither algorithm is
generally better than the other when ny = 1.

3.4 Robustness

It is important to consider the robustness of control
strategies so here we present a simple comparison of
the robustness of the closed-loops arising from GPC
and EIHGPC on examples 1 and 2. Intuititively
one might expect EIHGPC to be more robust than
GPC as it uses smoother input predictions, however
conversely one might argue that this is tantamount
to employing a slower control sample period which
would reduce stability margins. Analytical work on
the expected robustness of the nominal GPC con-
troller or indeed the achievable robustness through
the use of a T-filter [11-12] or a @ polynomial [13]
is non-simple. Hence it is difficult to judge in prac-
tice whether any robustness improvements might be
gained through the use of EIHGPC. So here we sat-
isfy ourselves with a simple numerical comparison of
the nominal robustnesses, that is without Q or T
filters.

The robustness of a closed-loop with a predictive con-
troller K(2) = Ni(z)/Dr(2)A(z) to additive model
uncertainty is measured by

_ a(z)Nk(2)

5= a{z)A(2)Di(z) + 27 1b(z) Ni(2) (17)

The smaller |S| is, the more robust the closed-loop
is. Bode gain plots of | S| are ploted for 0 < wT <«
where z = ¢77“T in Figures 7a,b for examples 1,2
respectively. (It is noted that n; has no affect on the
loop robustness properties. )
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Figure 7a. Robustness of example 1
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Figure 7b. Robustness of example 2

It is observed that EIHGPC is more robust than
GPC for example 1 and the reverse is true for exain-
ple 2 though in each case the differences are small.
This illustrates that the robustness of the two con-
trollers is often very similar and for any particular
example which control strategy is more robust de-
pends upon the selection of control parameters.

3.5 Conclusions

GPC is expected to take optimal account of fu-
ture set-point changes and heuce give good tracking.
However it has been illustrated that this expecta-
tion is often not borne out in practice and in fact
including advance knowledge of the set point can of-
ten lead to worse tracking than if much of that in-
formation was ignored altogether, e.g. comnpare fig-
ures 4a,b,c and Table 3. Reducing the amount of
advance knowledge available has actually iinproved
the tracking achieved by the GPC algorithm. It is
noted however that using no advance knowledge at
all gives poorer performance, (compare Table 5 with
Tables 3,4). Hence it is observed that for GPC per-
formance is optimised by choosing 1 < ny < oy,
(ny =~ 3 for the examples in this a paper) but it is
not clear in general, except by trial and error, what
value ny for advance knowledge will give the best
perforinance for any particular example. A reinedy
to the poor use of advance knowledge of set-point
changes by GPC is proposed in the forin of a new
algorithm, EIHGPC. Here the degrees of freedom in
the GPC algorithm, that is the vector of predicted
future control increments is altered to spread the pre-
dicted control changes over a wider part of thie ontput
horizon without increasing the munbers of degrees of
freedoin. EITHGPC is seen to have nmch improved
tracking performance without increasing input ac-
tivity and to be relatively insensitive to n?. The El-
HGPC controller appears to have similar robustness
to GPC and similar nominal performance if nt =

Y
$0 that no penalty is paid for this iinproveiment.

This paper has therefore illustrated a weakness of




GPC with regard to its use of advance knowledge of
the set point and proposed a simple solution. How-
ever, a more analytical approach is now required to
find an algorithm which makes ‘best’ use of advance
knowledge. Moreover it is necessary to look more
closely at the implications of the presence of hard
input constraints on this issue.
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