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Abstract

A new algorithm for automatic tuning of
Decentralized PID Control for multi input - multi output
(MIMO) plants is presented. The algorithm consists of two
stages. In the first, the desired critical point, which consists
of the critical gains of all the loops and a critical frequency,
is identified. The auto-tuner identifies the desired critical
point with almost no a priori information of the process.
During the identification phase all controllers are replaced by
relays, thus generating limit cycles with the same period in
all loops. It is shown that each limit cycle corresponds to a
single critical point of the process. By varying the relays
parameters different points can be determined. The auto-tuner
contains a procedure which converges rapidly to the desired
critical point while maintaining the amplitudes of the
process variables as well as of the manipulated variables
within prespecified ranges. In the second stage, the data of
the desired critical point is used to tune the PID controllers
by the Ziegler-Nichols rules or its modifications. This paper
focuses on the first stage. The steady-state process gains,
which are required for the appropriate choice of the desired
critical point, are determined by the auto-tuner in closed-
loop fashion simultaneously with the identification of the
critical points. The identification of the process gains is

achieved at no extra plant time. Based upon a large number
of simulated cases, the proposed auto-tuner seems to be
efficient and robust. The paper discusses the underlying
principles of the auto-tuner and its properties and
capabilities demonstrated via an example.

1. INTRODUCTION

Decentralized PID control is one of the most common
control schemes for interacting multiple-input multiple-
output (MIMO) plants in the chemical and process
industries. The main reason for this is its relatively simple
structure which is easy to understand and to implement. The
number of tuning parameters is 3n, where n is the number
of inputs and outputs, while in full matrix PID control there
are 3n2 parameters. In case of actuator or sensor failure, it is
relatively easy to stabilize manually because only one loop
is directly affected by the failure. Despite its simple
structure, decentralized PID control has a long record of
satisfactory performance.

It is quite surprising that despite the wide popularity of the
decentralized PID control, even the number of applicable
manual tuning methods is extremely limited. It is assumed
throughout this paper that an analytic model of the process
is not available and that the tuning procedure is based on
experimental data. Even for single-input single-output
(SISO) systems the tuning of a PID controller is not an
easy task. the most common design procedure is the Ziegler-
Nichols (ZN) method [14]. The fundamental step in that
method is the identification of the critical gain and critical
frequency of the plant, which together are commonly called

the critical point. Based on these values, the controller gain
and the intcgral and dcrivative coefficients are calculated. In
MIMO systems the tuning problem is many times more
complicated due to interactions between loops. A change of
a single parameter affects, in general, all other loops as well
in a way which is hard to predict. Only a limited number of
works addressed the tuning of decentralized PID controllers.
The method of Niederlinski [7] is a natural extension of the
ZN tuning procedurc to the MIMO case. It is based on
replacing the controllers by gains and identifying a critical
point consisting of n scalar critical gains and the critical
frequency. The main departure from the SISO case is that
MIMO systems have infinitely many critical points. The
collection of these points defines a hypersurface in the gains
space which is called the stability limit. Conscquently one
has to prespecify the desired critical point, ¢.g. equal loop
gains. The choicc of the desired critical point depends on the
relative importance of the various loops, which commonly
is expressed through weighting factors [7]. Once the
paramcters of the critical point are dctermined, the
controllers are tuned in a fashion similar to the classical ZN
rules, with possibly some modifications.

The direct application of the ZN method in the SISO case
has some practical shortcomings. The procedure involves
trial and crror experiments to identify the critical point.
During these experiments the system might be unstable for
a period of time, which 1s risky. When the closed loop plant
1s brought to the verge of instability, there is no control
over the amplitude of oscillations of the process variable. In
addition the procedure requires an experienced operator and is
time consuming. Clcarly, the above problems arc more
scvere in the MIMO case. Astrdm and Hagglund {1, 2]
suggested the use of a relay in the identification phase for a
SISO system. Instcad of a system on the verge of
instability, the critical point is identified from a stable limit
cycle. This is also very convenient for auto-tuning where by
sctting a tuning mode the PID controller is replaced by a
rclay, the critical point is identified and the parameters are
updated. duc to its simplicity and efficiency, the relay based
auto-tuner for single loop PID control can be found in many
commercial process control products.

An cxtremely limited number of attempts to extend the
single loop relay bascd auto-tuncer to the MIMO cases were
reeently reported. However, these extensions arc only partial
cxtensions as they remain within the framework of the
single relay conceptl. Zgorzelski et al. [13] proposcd
replacing onc controller by a rclay and the rest of the
controllers by proportional controllers whose values are
adjusted in cach of the experiments in an itcrative fashion
until the desired critical point is found. To initiate this auto-
tuncr, a knowledge of the process steady state gains, as well
as of the independent critical gains of the various loops, is
required. Hence a large number (2n where n is the number
of loops) of experiments needs to be carried out before the
scarch for the desired critical point can be initiated. Half of
the initial experiments involve open loop step responscs




which are difficult to automate, are time-consuming and arc
known to be highly sensitive to disturbances. In certain
cases the overall system can go unstable during the tuning
session [11, 12].

Another partial extension of the single loop relay auto-tuner
to the MIMO case is proposed in [6], and is a combination
of sequential loop closing and single loop relay tuning. The
method will be referred to as "sequential tuning” (ST). In the
ST method, the decentralized PID's are tuned sequentially,
loop by loop, closing each loop once it is tuned, until all
loops are tuned. To tune each loop, a single relay is used to
determine the corresponding critical point and the ZN
settings are then employed. n sequential limit cycle
experiments are required in the ST method to tune the
decentralized PID controllers for n X n plant. While the ST
method is a simple method, it has several shortcomings
[12]. First, roughly speaking, the ST method identifies an
arbitrary critical point. In that case only a single experiment
is required in the method developed in this paper in order to
obtain similar tunings in the MIMO case. Second, in the
ST method a large number of loops are open during the
tuning session. Such uncontrolled situations are likely to
introduce disturbances.

Recently the authors, {11, 12] have presented an auto-tuner
for a couple of PIDs in two-inputs two-outputs (TITO)
plants. In this paper that algorithm is generalized 1o any
number of loops. It fully extends the single loop auto-tuner
to the MIMO case by simultaneous replacement of all
controllers by relays. Under relatively mild condition on the
process, each such experiment identifies a critical point. By
varying the magnitudes of the relays, the identified critical
point moves along the stability limits. The algorithm
changes the magnitudes of the relays such that convergence
to the desired critical point is obtained within a small
number of experiments. Another novel component of the
algorithm is the identification of the process steady state
gains which are required for the proper definition of the
desired critical point. The steady state gains are identified in
a robust fashion in closed loop simultanecously with the
identification of the critical points at no extra plant time and
without any separate experiments. The data of the desired
critical point is then used to calculate the settings for the
various controllers.

The paper is organized as follows: Preliminaries,
terminology and assumptions are given in section 2. Some
results form the theory of decentralized relay control systcms
which are utilized in the auto-tuner are discussed in section
3. Section 4 describes the suggested auto-tuning algorithm.
An example demonstrating various properties and the
performance of the auto-tuner is presented in scction 5. The
results are summarized and discussed in section 6.

2. PRELIMINARIES AND ASSUMPTIONS.

In Fig. 1 a block diagram of decentralized control system for

a MIMO process is depicted. y(1)€R™ is the vector of
process outputs, u(t)€R™ is the vector of manipulated

variables (or control signals) and r(t) e R™ is the vector

of the reference signals. Similarly e(t)€R™ and d(t) €R"
are the vectors of loop errors and input disturbances
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respectively. In decentralized control the control matrix C(s)
is a diagonal matrix given by:

Cl (S) 0
C(s) :{ }

0 Cp(s) o)

and in the case considered here each of the Ci(s) is a PID
controller. It is clcarly scen that the control signal u; in
loop i (i = 1..n) dcpends just on the error, ¢;, in the same
loop which is the characteristic of decentralized control. The
process transfer matrix P(s) is:

Pii(s) -+ Pia(s)
P(s) = : : 2.2)

Pnl(s) : Pnn(s)

In SISO systems there is only a finite number of critical
gains which bring the system to the verge of instability. In
most cascs there is only one such gain. In the nxn MIMO
system in Fig. 1, on the other hand, there is an infinite
numbcr of scts of gains (K., Kog, ... Kyepr) that, when
replacing (C,, C,, ...C,) lead to ncutral stability, i.c.
poles on the imaginary axis. The collection of all these
gains is called the stability limits of the system. Three
typical cases of the stability limits for 2 x2 systems arc
shown in Fig. 2. Since the significant pcrformance
parameter is the loop gain, the axes are K;P;(0). Each point
on the stability limit corrcsponds to a pair of gains (K,
K,.,) and a critical frequency .. In the sequel we refer to
it as a critical point. The points on the axes represent the
situation where one loop is open (K; = 0) hence the other
gain is the SISO critical gain of the other loop. If the
systcm does not have full interaction, i.e. in the 2x2 case,
cither Py,(s) or Py(s) or both are zero, the stability limits
take the rectangular form (curve 1 in Fig. 2). In that case the
two critical gains arc indcpendent of cach other and the
system becomes unstable when either onc of the gains
exceeds its SISO critical value. The other two curves (2 and
3 in Fig. 2) represent two typical cases of systems with
intcractions. In the nxn MIMO case the stability limit is a
hypersurface of order n-1 and each point on the stability
limit consists of n normalized gains, K, P.i(0) (i=1,..n)
and on a critical frequency, ®,,. On the basis of a (for the
time being arbitrary) critical point, one can tunc the PID
controllers cither via the ZN method or its modifications
[7].

Clearly, different critical points lead to different settings,
hence different performance. Therefore, one needs to specily
on which critical point the tuning should be based. The
latter will be referred to as the desired critical point (DCP).
The choice of the DCP depends on the relative importance
of the various loops, which is commonly expressed through
the weighting factors [7]. The relative importance of the
loops corresponding to a particular point can be
convenicntly described by the ratios:

E‘.g.].:_.P”ﬂ:W1 i:2,---1n
K1erP11(0)

(2.3)




where w; is the weighting factor of loop i relative to loop
1. w; istaken to be 1. For ~~ample, if wyw;>1 (i # j)
it means that loop i is required to be under tighter control
relative to loop j. We denote the vector of the weighting

factorsby W eR", that is:
WT =(1, wy, ..., W) 24)

and the vector from the origin of the normalized gain space
to a critical point on the stability limit by K e R™:

KT = (K1erP11(0),++» KpgrPan (0)) @.5)

The intersection of W with the stability limit defines the
DCP. Thus, the angle ¢ defined by:

1] KW
¢=cos {IKHWI} 26)

is a measure of how close is a critical point to the desired
one. The vectors W, K and the angle ¢ are depicted in
Fig. 2 for the 2 x 2 case. Given W and assuming that the
steady state gains P;(0) (i = 1,...,n) are known, Niederlinski
(7] proposed a manual method for identifying the DCP. In
this method, which extends the ZN method to the MIMO
cases, one increases all gains simultaneously, while keeping
the ratios in (2.3), until ail loops in the MIMO system
oscillate at a constant amplitude each. This procedure clearly
suffers from even more severe shortcomings than its SISO
counterpart. The motivation for using relays is therefore
clear.

As mentioned previously, it is assumed throughout the
paper that no analytical model of the process is available. In
fact the only process information required by the auto-tuner
of this paper is the signs of the steady-state process gains of
P;i(s) (i = 1,...,n). That is, sgn(P;;(0))(i = 1,...,n). This
information is usually available.

For the results to follow, the following assumptions about
the process are made:

(i)  Process is open loop stable.

(ii) Interactions are significant. If the process is decoupled
or weakly coupled, then the multi-loop tuner is not needed.
However, the auto-tuner is capable of handling such
situations as will be discussed later.

(iii) Process has low pass characteristics. Fortunately,
most processes in the chemical and process industries satisfy
this assumption.

In addition we will naturally assume that the decentralized
PID control can stabilize and provide adequate control for the
plant.

3. DECENTRALIZED CONTROL SYSTEMS

During he tuning session, all controllers are replaced by
relays. The situation in the MIMO case is shown in Fig. 3.
The magnitude of the relay in the ith loop is denoted m;(i =
1,...,n). The relays may contain hystereses which are
convenient in coping with noisy signals as will be discussed
later. The hysteresis in the ith relay is denoted b;(i =

1.....,n). Under the assumptions stated in the previous
section, it is most likely that stable limit cycles in all loops
will be reached. Unfortunately, no closed theory to
characterize the exact conditions for the development of
limit cycles in decentralized relay control system exist.
Available are necessary conditions and conditions for
checking the stability of such limit cycles which only
recently have been formulated in closed form [9, 10].
However, numerous simulated examples have indicated that
this is indeed the case if the above assumptions are satisfied.
The limit cycles that are generated have the following
properties: (i) A common time period T. (ii) Different
amplitudes, which are denoted by a; (i = 1,...,n). (iii) Time
shifts between the cycles in the various loops.

An important result which is utilized in the design procedure
in the next section is as follows:

Theorem 3.2. [9,10]: Consider the system in fig. 3.
If the system reaches a limit cycle then the cycle period, T,
the time shifts between the cycles in the various loops, and
the ratios between the amplitudes: a;: a,, ...: a,, are
invariant for all m; (i =1, .., n) and b;(i = 1,... n)
satisfying:

mp: Myl ...l My = 0y Oyl .l Oy 3.1
and
mi/bi = Bi i=1,.,n (3.2)

where o, B; are nonnegative constants.

Remark: The Theorem has significant practical
implications. In practice, the manipulated variables are
always constrained. The Theorem makes it possible for the
auto-tuner to handle such constraints, in almost a trivial
manner.

Using the multi-variable describing function (DF), [3], it is
possible to relate the parameters of a limit cycle developed
in the decentralized relay control system and a critical point
as indicated by the following result:

Theorem 3.2 [4]: Consider the MIMO decentralized
relay system in Fig. 3. If the system reaches a stable limit
cycle with a single period T and the usual DF assumptions
are met, then the parameters of the critical point are given
by:

4mi

Kjo, = 20 33)

34)

Relations (3.3) - (3.4) arc seen to extend the well known
corresponding relations in the SISO [1, 2] and the TITO
[11, 12] cases. As in the SISO case, the accuracy of these
relations depends on how well the assumptions of the DF
are satisfied. In addition to the process low pass
characteristics, it is required in the multi-variable case to
have a low pass transfer function between any two non-
linearities. Assumptions (ii) and (iii) and the decentralized




relay structure guarantee the satisfaction of the DF
assumptions. An extensive number of various simulated
examples was carried out to test the accuracy of relations
(3.3) - (3.4). For all practical purposes, the results obtained
were accurate. Note that the DF is not used here to predict
possible limit cycles and to estimate their characteristics,
but rather to estimate the critical point from experimentally
found frequency and amplitudes of the limit cycles.

The preceding discussion indicates that: 1) by using n
relays a critical point is identified. 2) All m; (i = 1,... ,n)
satisfying (3.2) correspond to one critical point. 3) It is
possible to "move" along the stability boundary by varying
the ratios between the amplitudes of the relays.

4. THE AUTO-TUNER

The main objective of the auto-tuner is to identify the DCP.
Based upon the DCP the setting for the PID controllers can
be determined. For a proper definition of the DCP, the
steady state gains of the process need to be identified, as the
important factor, as was mentioned earlier, is the relative
magnitude of the loop gains and not that of the controller
gains as such. Only the gains of the diagonal elements of
the process transfer matrix, i.e. P;(0)}i = 1,... n) are
actually sought. These three items, which together with the
results of the previous section constitute the core of the
auto-tuning algorithm, are discussed next.

4.1 Determination of Steady State Gains,

The traditional methods for identifying steady state gains
usually involve open loop step or pulse response tests.
Such methods, however, are quite difficult to automate, are
highly sensitive to disturbances and are time-consuming.
When incorporated in auto-tuners it requires separate and
dedicated experiments [13] extending substantially the
overall tuning time. The novel method developed here
identifies steady state gains in closed loop fashion.
However, the identification is done with no extra
experiments and therefore at no additional plant time. It uses
the relays setup utilizing the existing limit cycles such that
the steady state gains are identified simultaneously with the
critical points.

Consider the system in fig. 3 with r;(t)..., r,(t) which are
not all zero mean. Then the error signals e; and the controls
uj are also nonzero mean. A DC balance, or in
mathematical terms comparing the constant terms in the
Fourier series, yields,

y=P(0)u (.1)
where

1 ¢T
— t)dt
TJO y1(t)

1 ¢T
?jo ug (t)dt
s u=|:

1 ¢T 1 ¢T
= jo Yn (Dt —T—jo up (D)dt

and T is the time period of one cycle. Repeating the
experiment n times, with different reference signals leads
to:
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Y2[7,...7"]|=PO[a...3"| = PO)T @3)

where the superscripts denote the experiment number. If the
reference signals are selected appropriately, e.g.:

B1 - 1(V)

Bn 'l(t)

then the matrix U in (4.3) is diagonally dominant and the
n x n matrix of the steady state gains, P(0), can be easily
solved for. Hence, after n limit cycle experiments, all
steady state gains are identified and n critical points found.
It is worthy of noting that even the computational effort
involved in the determination of the steady state gains is
very small as the algorithm follows the signals used in the
summations in equation (4.2) anyway. Based on many
simulations, it appears that the method is robust and yields
accurate results as demonstrated in the example in section 5.

4.2 A method for convergence to the DCP.

In order to identify the DCP, which is defined by (2.3) the
corresponding relay ratios need to be known. If the
approximate relations for the critical gains in equation (3.3)
are substituted into equation (2.3), the desired relay ratios,
that is, the ones that correspond to the DCP, are obtained:

ﬂ__l_a_lL(O)_' i=2.....n 4.5)

m;  w; a; |Py1(0)

Using the following quantities:

S é- IPii(O)I .5 (n-1)x(n-1)
P(O)-dxag{—wdpu(o)d . P(0O)eR

(4.6)

MTQ[EI_,E‘_L...,ﬂ} M e R(1-D
mz M3 M @.7)

and

of2la &, Qer(®D
az an

equation (4.5) may be put in a matrix form:
M= }_)(O)Q (4.8)
Eq. (4.8) cannot be used to determine the desired M (which

leads to the DCP) a priori because of two reasons. First, M
and Q are not independent, this will be discussed in the

sequel. Furthermore, P(0) is unknown at the initial time.




We therefore, perform n initial experiments that are needed
to define the stability limit which is a hypersurface of order
n-1. In each of the first n experiments, say experiment i,
the relays amplitudes are chosen such that mj/m;>>1 (i, j
= 1,2..,n; i # j). Such a choice corresponds to the
identification of a critical point located close to the axis
K;P;j(0) in the normalized gain space. That is to say, a
critical point which is close to the SISO critical point of
loop i. As will be elaborated upon in the next section, the
selection of the relay amplitude ratios in the first n
experiments is usually determined by operational
considerations. Thus after the initial experiments, n critical
points on the stability limit situated close to axes of the
normalized gain space, and all the steady-state gains are
identified by the auto-tuner. Having identified n critical
points, the question now is how to determine M, the vector
of the relay ratios, for the next experiments in a systematic
fashion which will lead to a rapid convergence 10 the DCP,
Recalling from Theorem (3.1) that on the stability limit:

M = F(Q) 4.9

via some unknown implicit function F, the problem
becomes that of finding M such that (4.5) or (4.8) hold.
In other words, M which leads to the DCP. To this end the
function F in (4.9) is approximated by the linear relation:

M=AQ+B 4.10)
Equating (4.8) and (4.10) and solving for M yields:
My 41 = P(O)P(0) - AT'B . @.11)

where My is the vector of relay amplitudes to be used in

experiment n + 1. P(0) is known from the first n
experiments as discussed in section 4.1. A € RM-1)(n-1)
and B € R™! are also determined from the data of the first
n experiments as follows: In each of the first n
experiments we have M; and Q;, where the subscripts
denote the experiment number. Define the vectors

MeR™! ang Qer™! as follows:

A

.~ A
M;=M;-Mij;1: ©=Q-Q;41 i=1...,n-1
4.12)

then it is easy to verify that A and B in (4.11) are given
by:

A=LT! ;B=M;-LI"'lQ (4.13)

where L € RM-1x(n-1) apq re RM-1x(n-1) gre:

Ae o - A= =
L=(M;i,My,.. M, _1); T=(Q1,...Q1-1) (4.14)

substituting (4.13) into (4.11) gives:

Mpy1 = PO)PO) - LT I(My -LI7'Q)) - 4.15)

If the approximation (4.10) is perfectly accurate then My
leads exactly to the desired critical point. Since it is not,
there will be some error. A tolerance ¢ is defined and the
algorithm is stopped if:

Ipl<e 4.16)

where ¢ is defined in (2.6). Otherwise we continue in the
same fashion as in experiment n+1 where the best n
experiments, i.e. those with the smallest ¢;'s play the role
of the n experiments in equations (4.13) and (4.15). This
simple algorithm shows excellent convergence properties as
is demonstrated in the example in section 5.

4.3 Initialization issues.

In the first n experiments one needs to determine the
relays’ amplitudes beforehand. In the previous section it
was recommended to set those amplitudes in experiment i
(i=1, .. n)suchthat my/m;>>1 (i,j=1,...n; i# j).
This point is elaborated on next.

From Theorem 3.1 it follows that in the relay set-up, the
critical points depend only on the ratios of the relays
amplitude, that is, on M. Though theoretically the results
are independent of the absolute magnitudes of mj, those
values do have practical significance. To reduce the effect of
noise one needs a certain amount of hysteresis and to keep
the identified points close to their real values the hysteresis
should be small with respect to m;. In addition m; must be
large enough to cause noticeable changes in y;. Hence there

is a lower bound on m; which is denoted by m;. On the
other hand too large m;s cannot be used either as a result
of saturation or because the allowed change in vyj is
restricted. Hence there is an upper bound on m; which is

denoted by m;.

Thus it is seen that M; and M; are usually dictated by
operational considerations. Since no information about the
process is assumed to be available, it is recommended to use

in the first experiment M) /mj (j=2,...,n), in the second

one: My /mj (J=1,3,...n) and so on. These relay ratios

will lead to n critical points, each close to one of the loop
gain axes in the normalized gain plane. Those n first
critical points provide good starting points for the next step
in which the convergence algorithm is active and are also
close to the n independent single loop critical points.
Under certain circumstances, the latter information may be
helpful in determining the settings, as will be discussed
later. Upon the completion of the n first automatic
experiments, the relays' ratios are determined automatically
viarelation (4.15). The actual relays' amplitudes are set such
that at least one amplitude is at its upper or lower bound. In
this fashion the relay set-up fully utilizes the allowed
ranges. This is possible due to theorem 3.1.

4.4 Tuning considerations

Once the DCP is found, the settings of the PID controllers
can be determined in a straight forward manner. A simple




choice is to use the ZN rules. This gives reasonable settings
which provide a good starting point for further tuning. As in
the SISO case, no claim is made that such settings are
optimal. Another possibility is to use Niederlinski's [7]
"improved” settings which are the ZN rules with one
modification. That is, gains are increased or decreased
relative to the ZN gains depending upon the ratios between
the frequency of the DCP and those of the individual loops.
Note that frequencies relatively close to the individual
critical frequencies are available to the auto-tuner from the
data of the first n experiments as explained above.

In both the ZN tuning rules and the "improved” ones, the
frequency of he DCP, which directly reflects the interactions
in the system, is used to set all integral and all derivative (if
derivative is used) times. This means that the same integral
and derivative times are used for each loop. No claim is
made that this is an optimal or a general result. In some
cases it might be preferable to use the individual loop
frequencies or some combinations of the latter and the
frequency of the DCP to set the integral and the derivative
times. This problem is treated in [S], and is beyond the
scope of this paper.

5. EXAMPLE

A multi-product pilot plant distillation column was
modelled experimentally in {8]. The transfer matrix of the
3 x 3 binary ethanol-water system is given by:

-0.005¢”1s

9.1s+1
-0.012¢"128

7.09s+1
0.87(11.6s + 1)e™1s

(3.9s+ 1)(18.8s + 1)_
(5.1)

The three outputs and the three inputs and physical details of
the column can be found in [8]. The autotuning algorithm
was applied to the column model in (5.1). The complete
time history of the simulated tuning session is shown in
Fig. 4 and the data collected are summarized in Table 1. Fig.
4 depicts both the reference and the error signals in the three
loops during the autotuning session. Note the rapid
development of steady limit cycles in all loops in the four
experiments.

As can be seen from Table 1 the autotuner converged to
within 2 spacial degrees of the desired critical point in just
four experiments . Note that the rapid convergence and
the excelient accuracy of the results is achieved despite the
fact that in this case assumption (iii) is not satisfied as the
model in this example provides limited filtering as it
consists of just first order filters plus dead times. This is
clearly reflected in the wave form of the limit cycles in Fig.
4. The steady state gains identificd by the auto-tuner during
the tuning session simultaneously with the 3 first critical
points are given in table 2. The identified s.s. gains are
remarkably close to their true values.

Next the performance of the algorithm in the presence of
measurement noise was checked. The three outputs were

-0.61e738
8.6s+1

[ 0‘ 666—2.65

6.7s +1
111763 2 36735

3.2s+1 5.0s+1
-34.7¢7 925 46.2¢7 9%

8.1s+1 10.9s+1

¢ 43.59

131 0 0 0

1] 0 0.01 0 0

13 0 0 -0.5 0

mj 0.088 0.01 0.02 0.0342

m) 0.01 0.0465 0.02 0.0465

m3 0.01 0.01 1.0 1.1564

Kicr 6.467 1.264 3.06 2.751

kocr 0.192 | -1.16 | -0.638 | -0.745

k3cr 0.015 0.021 3.59 2.03

Ocr 0.686 0.603 0.498 0.499

Table 1: Data and results of the DCP identification.

contaminated with uniformally distributed Gaussian noises
with zero average and the following variances:

Var(v)T = (0.001, 0.004, 0.5) (5.2)

where v e R3 is the vector of measurement noises. Note
that the above noises are quite significant relative to
amplitudes of the error signals shown in Fig. 4. Due to the
noisy measurements the relays operate with hystereses, each
with amplitude, bj, larger than the corresponding noise
variance. In order to keep the identified critical points close
to their values in the noise free situation, the relays
amplitudes, m;s, are forced by the algorithm not to go

below lower bounds, m;s, which are set to four times the
corresponding hysteresis size, bj, each. Such restrictions are
easily handled by the algorithm as discussed previously. The
time history of the complete auto-tuning session in this
case is shown in Fig. 5. The algorithm converged in four
experiments to within ¢ = 4° and to ¢ = 1.5° in the fifth
one. The critical point and the s.s. gains identified are
summarized in table 2. Despite the noisy measurements, all
identified values are within several percents of the
corresponding values identified in the noise-free case. This
clearly demonstrates the robustness of the algorithm,

No noise With noise
Kier 2.751 2.55
Koer -0.745 -0.7
K3 2.03 2.0
Oor 0.499 0.489

o |0 | on

P22(0)
0.84 0.83
P33(0)

Table 2. Identified parameters with and without noise.

6. SUMMARY AND DISCUSSION

It is surprising that although decentralized PID control is the
most common multi-variable control in industry, very little
effort has been devoted by researchers to the development of
simple, practical and reliable tuning methods which require
limited process information for such control schemes. In




this paper, a new algorithm for autotuning of decentralized
PID controllers, which fully generalizes the single-loop
SISO relay auto-tuner to MIMO systems, was presented. In
the tning mode, all controllers are replaced by relays and a
critical point is identified from the limit cycles reached in all
the loops via relations derived form the theory of
decentralized relay control systems. An algorithm for
changing the relays amplitudes in order to obtain the desired
critical point was presented and was shown to be very
efficient with excellent convergence properties. Except for
the signs of the n principal steady state gains, the auto-
tuner does not require any information about the process.
The auto-tuner was tested on a large number of cases and
was found to be highly efficient and robust.

Another novelty of he proposed algorithm is the steady state
gains identifier. These gains are identified from the same
experiments used to find the critical points. Hence, the gains
identification is achieved without any dedicated experiments
and at no extra plant time.

Throughout the entire tuning sessions, the process is under
tight closed loop control. Furthermore, it was shown via
Theorem 3.1 that the use of multiple relays provides
convenient control over the limit cycle amplitudes and copes
easily with practical constraints on manipulated variables.
Due to lack of space only one example which highlighted
various properties of the algorithm, was shown. Among
other things, the example demonstrated that the algorithm
performs well in cases where the plants do not provide
sufficient filtering and that it has low sensitivity to noisy
measurements.

The paper focused on the identification of the desired critical
point which is the crucial part of the tuning process. Having
the data of the desired critical point, the PID settings via the
ZN rules can be performed. It was pointed out, however,
that additional information becomes available to the
proposed auto-tuner during the identification stage.
Consequently a variety of modifications on the ZN rules can
be easily incorporated in the auto-tuner.
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