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Abstract— Optimum Block Modified Covariance
Algorithms are developed for the computation of
time-varying autoregressive (AR) parameters. The
proposed algorithms are gradient-based and min-
imize simultaneously the forward and backward
linear prediction error in the block least squares
sense. The methods presented here differ from
those presented previously [1] in that they use op-
timally selected time-varying convergence factors
such that the block mean square error is minimized
from one iteration to the next. In particular, one
of the algorithms developed, which is called the
Block Modified Covariance Algorithm with individ-
ual adaptation of parameters (BMCAI), uses indi-
vidual time-varying convergence factors computed
using modified covariance matrix approximations
along with the Gauss-Seidel method. It is shown
that the BMCAI can be used efficiently for time-
varying spectral estimation and performs as well
as any of the fixed-window least squares modified
covariance algorithms [2].

I. Introduction

This paper is concerned with the development of ef-
ficient algorithms for least-squares forward-backward
prediction (FBP). The unconstrained minimization of
the FBP error was originally proposed by Ulrych and
Clayton [3] and Nuttall [4] and is known as the mod-
ified covariance (MC) method. The name modified
covariance stems from the fact that the range over
which the prediction errors are minimized is the same
as that of the non-windowed method of linear predic-
tion. Algorithms minimizing the unconstrained FBP
error, as opposed to those using the Levinson recur-
sion (e.g., Burg [5], etc), do not suffer from spec-
tral line splitting and became very popular in the
early 1980s. Unconstrained FBP requires matrix in-
version and most of the originally proposed algorithms
compute AR parameters based on a fixed-window ap-
proach. Marple developed a fast Cholesky algorithm
(FCA) [2] which requires O(p®) operations and more
recently a fast QR algorithm (FQRA) [6] which was
shown to have improved numerical behavior relative
to the FCA. The fast inversion (2], [6] algorithms are
order recursive and operate on a fixed N-point record,
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i.e., they are non-adaptive. A fixed-order sliding win-
dow QR method for the linear prediction problem was
proposed in [7]. Other fast recursive algorithms for
FBP were proposed for the prewindowed and non-
windowed cases by Kalouptsidis and Theodoridis [8]
and Berberidis and Theodoridis [9] respectively. A
family of fixed-order sliding-window block gradient al-
gorithms for FBP, namely the block modified covari-
ance algorithms (BMCAs), were proposed recently by
Spanias [1]. In particular, the BMCA worked rea-
sonably well in a series of "benchmark” simulations,
however its performance deteriorated considerably in
scenaria requiring estimation of the spectral content
of multiple closely-spaced sinusoids. This is mainly
because all the block modified covariance algorithms
(BMCAs) use a single convergence factor (or step size
pp) which does not allow for fast adaptation in cases
where the modified covariance matrix has high eigen-
value disparity. In this paper, we concentrate on the
development of multiple convergence factors for adapt-
ing the AR parameters. The use multiple convergence
factors in adaptive FBP was motivated by work done
in adaptive FIR system identification by Mikhael et al
[10]. The difference between the algorithms presented
in this paper and those presented by Mikhael are: a)
the algorithms presented here are intended for mod-
ified covariance linear prediction in which the struc-
ture of the equations to be solved is distinctly differ-
ent than that encountered in FIR system identifica-
tion, b) the algorithms presented are studied in the
context of spectral estimation applications and deal
with the idiosyncrasies of some of complex spectral
estimation examples such as multiple closely spaced
sinusoids, and c) the proposed methods go a step be-
yond Mikhael’s work in the sense that the computation
of the individual pp is done efficiently using fast and
stable Gauss-Seidel numerical methods tailored specif-
ically to deal with the structure of the modified covari-
ance equations. The latter is the most important con-
tribution of the paper in that it provides opportunities
for reducing the complexity of the algorithms by using




approximates of the modified covariance matrix while
maintaining the attractive performance characteristics
of least squares MC spectral estimators.

The rest of the paper is organized as follows. In
section II, the BMCA is formulated and time-varying
convergence factors are developed for: a) scaling the
combined forward-backward gradient (BMCA-2) and
b) scaling separately the forward and backward gra-
dients (BMCA-3). Section III describes an algorithm
that uses individual step sizes for adapting the AR
parameters (BMCAI). An efficient Gauss-Seidel iter-
ative procedure for computing the optimum conver-
gence factors is also presented in this section. Section
IV, presents several simulations using the BMCAI and
Section V gives the conclusions.

II. The Block Time-Domain MC Algorithm

A. Problem formulation

In this section, a general technique for formulating the
BMCAI is presented. We begin by defining the follow-
ing parameters: let 1 be the block index, p the order
of the AR model, N the number of samples for predic-
tion, 2L the length of the processed block, n the time
index, ax(i) the k-th adjustable parameter in the i-th
block (k =1,2,3,...,p), z(n) the input signal for linear
prediction (adaptive filter), e,(¢) the £-th error signal
in the ¢-th block (£ = 1,2,...,2L), and S the number
of samples per block shift.

At the i-th iteration, the objective is to minimize the
cost function J(i + 1) = —efb(z + 1)esy(i + 1) where
the 2L x 1 error vector ey(2) is given by

ers(i) = [ef(iS+p+1)...ef(iS+ N)
&GS +p+1)..essS+ N)T (1)

and ef(n) and ey(n) are the forward and backward
prediction errors

es(n) = x(n) =) ax(i)z(n — k), (2)

k=1

o(n —p) — Y _ax(i)a(n —p+k). (3)

k=1

eb(n)

Equations (1), (2) and (3) can be written block-wise
as

es(i) = 2(i) — X sp(é)a(i) (4)

where the 2L x 1 vector (i) is given by

z(1) = [:z:f(i.5'+p+ 1)..... a:f(iS+N)
z(iS +1)..z(iS+ N —=p)T  (5)

and the 2L x p matrix X s4() and p x 1 vector a(z)

are defined by

[ z(iS + p) z(1S +1)
z(iS+p+1) z(iS + 2)
| s6s+N-1) .. siS+N-p)
Xgo(t) = z(iS + 2) m(iS+p+ﬁ
z(zS + 3) . z(iS+p+2)
2GS+ N—-p+1) .. z(iS+N)
a(i) = [a1(4), az(3), ..., ap(3)] 7. (6)

The BMCA uses the method of steepest descent and
the parameter update formula can be written in a
vector form as a(i + 1) = a(i) — uVyp(s), with

V(i) = -3¢ xT X 4(i)ess(i). A necessary condition for
the non- smgularlty of the covariance matrix R(i) =
be( )X £u(2) is that the block size 2L be greater than
the order of linear prediction p. The condition for con-
vergence of the algorithm is 0 < p < 2L/)\mn, where
Amaz 18 the largest eigenvalue of E(X » (D)X £(2)).

B.  Optimum convergence factor

The optimum convergence factor for the BMCA-2 is
derived in [1] by minimizing J(i4+1) w.r.t. pss(2). This
is done in [1] by expressing the error at the (i + 1)-st
iteration as a function of the error at the i-th iteration
using a truncated Taylor series approximation, i.e.,

3 (¥)
daf(i)

es (i) — X pp(i)(a(i + 1) — a(s))

ess(i) + () X (1) V(i) (7)

Efb(i + 1)

et Aaf(i)

I

and solving the quadratic minimization problem
min,;) J(i +1). Its solution is

V1)V 5(3)
v?b(i)X:;‘b(i)be(i)vfb(i) '

(8)

ryb(t) =

This optimal value may be multiplied by a damping
factor 8 < 1 in order to improve the misadjustment of
the BMCA-2. The convergence speed of the algorithm
improves when the time varying pgp(i) is used in a
non-stationary environment because it adapts to the
local statistics of the processed block [1].

C. Separate convergence factors for
forward-backward prediction

Let the L x p matrices Xy and X, contain the input
data for forward and backward linear predictions, re-

spectively. Since X (i) = [ }Y(i((:)) ] and eg(i) =

s




[es(i)e~(i)]T we obtain

Vss(3) = V£(3) + Vi(i), (9)

i.e., the forward-backward gradient V(i) is decom-

posed into a forward gradient V (7) = —%X?(i)ef(i)
\

and a backward gradient V(i) = —%X{(i)eb(i).

Thus we now consider two different convergence fac-

tors pg and pp in the update

ali +1) = a(i) - us()V5(0) — (i) V().

The idea is again to optimize both time varying con-
vergence factors ps(i) and pp(i) in the present block
such that the total combined forward-backward error
in the next block (i.e., J(i + 1)) is minimized. Follow-
ing the same procedure as before we get

(10)

eﬂ,(i + 1) = eﬂ,(i) + [Lfobe + lLbXﬂ,Vb. (11)

The conditions
aJ(i+1) _ aJ(i+1)

Bur () Oms(D)
lead to the 2 x 2 linear symmetric system of equations

[ @ ()dsti) ()il ] [ 156) ]

d; (i)ds(i)  dy (i)ds(2) (%)
[ VEL6)506)
‘[V,'f,(i)vb(z')} (12)

where df(z) = be(i)Vf(’i) and db(z) = Xf(,(’l,)vb(’l,)
This algorithm is designated as BMCA-3.

III. BMCA With Individual Adaptation Of

Parameters

The concept of using individual constant or time-
varying convergence factors has been examined in [10].
The regular gradient type adaptive algorithms use one
constant or time-varying step size which is chosen to
be the same for all the filter parameters. We propose
here to use individual convergence factors which are
optimally chosen to adapt individual filter parameters.
The values of the step sizes are, as before, updated at
each block iteration.

A. Problem formulation
We now consider the relation

a(i +1) =a(i) — M)V (1) (13)
to update the parameters, where M(1) is a p x p diag-

onal matrix containing the p convergence factors, i.e.,

pa (1)
M(i) = (14)

Hp(1)
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Because it is difficult to compute an ensemble aver-
age the block gradient vector V(%) is replaced by an
estimated block gradient vector which is given by

_1aJ(G) _ 1
~ L da(i) L
From (13), (14), (15) one obtains the general form of

the parameter updating formula in matrix vector form
as:

V o) = —=Xh(esp).  (15)

ai+1) = a(i) + *MEXT,(enl).  (16)

L
In the parameter update (16), there are p individ-
ual time-varying convergence factors, pi(z) (k
1,2,...,p). These factors are chosen at each iteration 4
so as to minimize the functional J(i +1). To this end,
the forward and backward errors are expanded using
the truncated Taylor series

de (1)
———Aa(i

daf(i) @)

e (i) — X (i) (a(i + 1) — a(1))

. 1 . . . .
esp(1) — Ebe("')M(Z)X?b(Z)efb(”')
ers(i) — X s(i) M (i)q(7) (17)
with (i) = 1 X7,(4)ess(i) = —V 5, (i). Here the par-

. ... Oegp(i)
tial derivative Ba(i)
to —Xﬂ,(i).

The next step is to choose M () such that J(i + 1)
is minimized. This is done by setting

esp(i +1) esp(i) +

is obtained from {4) and reduces

aJ(i+1)
Oux(2)
for £k = 1,...,p. This leads to the system of equations

(18)

T OMORO G Fa(i) = a7 ()5 Ja) (19
fork=1,..,p, or
R()M(i)a(i) = a(i). (20)
Equivalently,
M(i)a(i) = B™(5)a(o), (21)

so that the updating formula (13) becomes
a(i+1) = a(i) + M(i)q(s) = a(i) + R (i)q(i). (22)

The last equation is the weight update equation for the
BMCALI with individual adaptation of parameters. Its
main drawback is the requirement of computing the
solution of a system of equations of order p. The asso-
ciated cost can become intolerable especially for high-
order adaptive system. The following sections contain
various approaches which can be used to approximate
the quantity R™'(i)q(¢) in an efficient manner.




B. Implementation via the Matriz Inversion Lemma

As in the OBAI algorithm [10] and the GOBA algo-
rithm described in [11], the BMCAI with individual
adaptation of parameters requires the determination of
the solution of a p X p symmetric and generally positive
definite system R(¢)z(i) = q(i). A common approach
to reduce the cost of the solution process consists in
updating R™'(3) as well by taking advantage of the
maftrix inversion lemma. Although overlaps of L — S
signals in consecutive blocks can be handled this way
for any value of S, considering S = 1 both simplifies
the exposition and the computational cost as well, for
X (i + 1) then “resembles” more to X (¢). In the re-
mainder of the paper we thus suppose that S = 1.

Using the partitioning of X f4(¢) introduced in Sec-
tion II C., we obtain

RG) = X%,60)Xz=XT0)X, + XT()X,
R4 (i) + Ri(2). (23)

where Ry is the covariance matrix based on the for-
ward prediction and Ry is the covariance matrix based
on the backward prediction. If x,(¢) denotes the £-th
row of X,(i) (£ =1,...,2L = 2(N —p)), the following
recurrence relation for X, (¢) then holds:

Xp(i+1) =UXp(i) +uzar(i +1). (24)
Here
0 1 0
U= and u = 5
1 0
0 1

Because X ¢(i + 1) = X () P with

1

1

X #(i+ 1) also satisfies a recurrence relation similar to
(24). We obtain
Ry(i +1) XTGE+1)X(i+1)

(XTGHUT + 2,6+ 1)u”)

(UXb(i) +umyp(i + 1)) . (25)

Noting that UTU differs from the identity matrix by
only one coefficient in the first position, (25) becomes,
after some algebraic manipulations:

Ry(i +1) Ry(3) —xT (6 + Dapa (i +1)

a1 (i + Vaap (6 + 1). (26)
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Similarly,

Re(i+1) = Rs(1)—2FG+ Dz (i +1)

+2T(i 4+ (i +1).

(27)

Consequently, the covariance matrix for the forward-
backward prediction satisfies the recursion

R(i+1)=RE)+VIGE+1)W(3E+1) (28)
with
—1(i) 21 (i)
Vi | S | e we= |
x21(7) w21 (i)
(29)

The above recursion for R(%) enables the use of a ma-
trix inversion lemma. The exact update for the inverse
becomes

R'(i+1)

R'G) - R'&VT(i+1).
ZTWE+ )WE+ )R (30)

where

Zi+1) =L+ VE+1)ROWTE+1)  (31)
is a 4 X 4 matrix to be inverted at each iteration.
Once R™'(i + 1) is determined from (30), the vector
R7!(i+1)q(i) is computed using a matrix-vector mul-
tiplication. The recurrence (30) is typically started by
taking R™'(1) = 671 I, as an approximation of the in-
verse of the first covariance matrix, where 8 is a small
positive number. One can also use the inverse of the
diagonal of R(1) as an estimate of the inverse. These
initialization schemes eliminate the matrix inversion
at the first block iteration and guarantee good con-
vergence performance. The simulations show faster
adaptation when the diagonal approximation is used.
An alternate update of R(7) can be obtained by con-
sidering the 2 X p matrices
. - :I:L(’L)
V(iE)=W((i) = [ 2a1(i) ]
in place of (29), that is, we suppose that the shifting
property does not eliminate the first row of the matri-
ces X f(i) and X,(i). This is equivalent to “keeping”
the older information x,(z) and ©111(?) and using ma-
trices X f4(%) of size increasing with i. Note however
that this does not affect the size of the covariance ma-
trices R(i). The resulting update for R7'(i + 1) is
similar to (30) with the difference that Z (i + 1) is now
the 2 x 2 (symmetric) matrix

(32)

Z(i+1)=I,+V(GE+1D)R ') VTGE+1). (33)




C. Implementation via a Gauss-Seidel Iteration

The matrix inversion for computing the vector
R7'(i)q(i) in (22) can be avoided altogether by solv-
ing the system

R(2)z(i) = q(v)

for z(i) via an iterative method (which only Tequires
matrix-vector products), then updating

(34)

a(i+1) =a(z) + z(z). (35)
More precisely, z(i) is replaced by 2(F)(3) obtained by
applying k iterations

2M() = 2506) + Q71 (4) (gli) - R()=*V(3))

(36)
starting with a given vector z(%)(:). Here Q(i) is a
matrix approximating R(Z). Since the system (34) is
symmetric and generally positive definite, and for ef-
ficiency reasons, we only consider Gauss-Seidel itera-
tions, i.e.,

Q) = D() + L(s), (37)

where D(i) and L(i) are the diagonal and (strictly)
lower triangular parts of R(z), respectively. Note that
the matrix R(7) is not always diagonally dominant (at
least for the input data used), which explains why the
Jacobi method (corresponding to Q(¢) = D(:)) did
not converge when applied to (34). In our experiments
only 2 or 3 iterations were sufficient to obtain a good
approximation of z(i) when starting with z(%)(i) = 0.
For two iterations, this is equivalent to approximating
z(4) by

2@ = (D) + L)
(a6) - Z7G)(DG) + L6) q(0)) - (38)

In order to reduce the computational complexity of
the algorithm the sum D(:) + L(i) can be directly
updated without forming R(i + 1), by considering the
lower triangular part (including the diagonal) of the
matrices in (28), namely

DiE+1)+L(E+1)=D@E)+LE)+Y(E+1) (39)

where Y (i + 1) is the lower triangular part of VI (i +
L)W (i +1). If V(i) and W (i) are given by (29) then
Y (i + 1) can be computed cheaply.

D. Computational Complezity

The computational complexity of the proposed algo-
rithms compares favorably with several of the recently
proposed algorithms. The BMCAI has two different
implementation schemes. The first one is based on the
matrix inversion lemma and the second one uses the
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Algorithm Multiplies Additions
BMCA 4Lp+p 4Lp

BMCA-2 8Lp + 2N 8Lp+p— 2L —2

BMCA-3 8Lp+4p+6L+9 | 8L{p-1)+8L+5p -2

BMCAI-1 | 4Lp + 6p® + 10p + 2 4Lp + 6p% + 2p

BMCAI-2 | p(4N —3p/2+3/2) | p(4N —3p/2 —1/2) + 1

Table 1: Computational Complexity of BMCA algorithms.
BMCAI-1 utilizes the matrix inversion lemma and BM-
CAI-2 uses the Gauss-Seidel iteration. L = N — p.

Gauss-Seidel method. The results in Table 1 show that
the Gauss-Seidel scheme outperforms the algorithms
based on updates of the inverse of the covariance ma-
trix.

IV. Simulation Results

A. Spectral estimates

The performance of the proposed algorithms is exam-
ined in (AR) spectral estimation using some “bench-
mark” examples. The BMCAI was used to examine
the ability to resolve closely-spaced peaks. The PSD
obtained using the regular fixed 4 BMCA is compared
with the PSD obtained from the BMCAI The results
show that the optimum algorithms give improved per-
formance relative to resolution, bias, spectral variance
and line splitting without being affected from the addi-
tive noise (robustness). The processes employed were
closely spaced peaks from multiple sinusoids in white
noise or non-sinusoidal sequences in additive exponen-
tial decays.

B. Two Closely-Spaced Cosines in additive exponen-
tial decay.

Nikias and Scott [12] examined the ability of the en-
ergy weighted covariance method to resolve sinusoids
corrupted by additive exponentials. Such type of pro-
cesses appear in the field of geophysics and biomedi-
cal applications. Most of these processes are modeled
by sinusoids corrupted by additive exponentials, or by
sinusoids of fixed frequency whose amplitude is mod-
ulated by an envelope function. Therefore, the abil-
ity of the BMCAI with individual adaptation of pa-
rameters to tolerate additive exponential decay-type
non-stationarity in sinusoidal data was tested. By
using a sequence consisting of two closely-spaced co-
sine waves in additive exponential decay of the form
z(n) = cos(2m(n — 1)0.25 + 370.25) + cos(27(n —
1)0.234375) + ¢~V where ¢ = 0.1, 0.5, 0.9 and we
performed a series of experiments using a short record
of samples for the three different exponentials (Figure
1). The AR model order employed was p = 5. The re-
sults revealed that the BMCALI is robust in the sense
that its ability to resolve closely spaced sinusoids was




not affected by the additive exponential. Note also
that the resolution is very high and the frequency bias
is small.

C. Ten Closely-Spaced Spectral Peaks of Sinusoidal
Process

In order to verify the performance of the BMCAI based
on Gauss-Seidel iterations, an input time series was
generated. In particular, we investigate the resolution
of closely-spaced spectral peaks of a process consisting
of ten sinusoids in additive white noise. The process
is defined as follows:

10
z(n) = Z A; cos(win) + W(n) (40)

i=1
forn = 1,...,32, with A; = 0.1, w; = w

and @ = 10~* (noise variance). Here f, = 64
is the sampling frequency (in Hertz) and W(n) a
pseudo-random white-noise sequence. The same time
series was used to demonstrate the superiority of
the combined forward-backward prediction method as
compared to the unidirectional method (that is the
method that estimates the AR parameters using for-
ward (backward) prediction samples only). The pre-
dictors order was taken equal to 32. The plot in Figure
2 are formed by overlapping the spectra obtained using
the BMCAI with individual adaptation of parameters
based on Gauss-Seidel iterations, for 10 independent
realizations. Each realization is a 100-sample record
of the above input time series. The relative phases
change randomly from realization to realization. The
algorithm clearly identifies the unknown sinusoids, al-
though they are close enough to one another and the
available data records have relatively short length.

D. Absence of Line Splitting

Marple [13] has reported that the LS generated spec-
tra does not suffer from line splitting. According to
Fougere et al. [14], the worst line splitting effects occur
in Burg’s algorithm [5] for long portions of sinusoidal
data an odd number of quarter cycles with initial phase
45°. In order to show that the AR spectra formed us-
ing the BMCAI do not suffer from line splitting we
have reconstructed an example provided by Fougere
in which a unit amplitude sine wave in additive white
noise (f = 26.25, f, = 100, ¢ = 45°, N = 101, p = 25,
Q = 107* (noise variance)) was employed. The total
number of samples used for the BMCA was 101. Fig-
ure 3 shows that the BMCALI generated spectra do not
suffer from line splitting and locate the sinusoid at the
correct frequency. Running a considerable amount of
simulations, line splitting tendency of the new BMCAI
has not been observed.

E. Two Closely-Spaced Spectral Peaks from an AR(4)

Process

This simulation is concerned with the performance of
the BMCAI with individual adaptation of parameters
using a harmonic fourth-order AR process with pa-
rameters a; = —2.7607, a; = 3.8106, a3 = 2.6535,
as = 0.9238 driven by white Gaussian process. Figure
4(a) shows an ensemble of 20 PSD’s estimated from
20 independent runs of the BMCAI Figure 4(b) shows
the average PSD obtained from the 20 realizations of
optimum BMCAI. The total number of samples used
for each run was 40. The white Gaussian has variance
Q@ = 1.0. The model order was set at the correct value
p = 4. Note that the original and average estimated
PSD are very close.

V. CONCLUSIONS

In this paper, the formulation of the block mod-
ified covariance algorithms which incorporates opti-
mum convergence factors, one for all parameters, two
for all parameters but different for forward and back-
ward prediction and the most general case where each
parameter has an individual convergence factor have
been presented. The convergence factors are optimally
selected to minimize the combined forward-backward
squared error in each block. Two algorithms for es-
timating the factors were proposed and investigated.
One of them uses two time-varying convergence factors
for the forward and backward linear prediction parts;
the other one is the individual adaptation algorithm
and uses one factor for each parameter.

Two different methods for implementing the BM-
CAI have been investigated in this paper, that elimi-
nate the matrix inversion and reduce considerably the
computational complexity. The proposed algorithms
have been applied in AR spectral estimation and the
simulations support the conclusion that the estimates
have high resolution, low variance and do not suffer
from line splitting or frequency bias.
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Figure 1: PSD of two closely spaced sinusoids in additive .
exponential transients computed using the BMCAI based
on Gauss-Seidel iterations. The parameters are N = 20,
p=5r=255=1, with g =01 (a), 0.5 (b) and 0.9
(c). The total number of iterations was 20 and the total
number of samples used was 40.
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Figure 2: PSD estimation using the BMCAI based on
Gauss-Seidel iterations with 10 realizations of 100-sample
records, predictors order equal to 32 and SNR=42dB (a)
and its average (b), and using the fixed g = 0.001 (c).
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Figure 3: PSD of a sinusoid plus white noise AR(25) with
parameters used N = 50, p = 25, S =1, r = 1 and 101

samples. Note the absence of line splitting.
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Figure 4: PSD of Two Closely-Spaced Spectral Peaks of
Non-Sinusoidal Process using an AR estimate obtained
from the BMCAI algorithm with individual adaptation of
parameters based on Gauss-Seidel iterations. Ensemble of
20 realizations of 40 sample records (a) and its average (b).




