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Abstract

We report on our efforts to model nonlinear dynam-
ics in elastomers. Qur efforts include the development
of computational techniques for simulation studies and
for use in inverse or system identification problems.

1 Introduction

A problem of fundamental interest and great impor-
tance in modern material sciences is the development
of both passive and active (“smart”) vibration de-
vices constructed from polymer (long molecular chains
of covalently bonded atoms often having cross-linking
chains) composites such as elastomers filled with car-
bon black and/or silica or with active elements (i.e.,
piezoelectric, magnetic or conductive particles). These
rubber based products (even without active elements)
involve very complex viscoelastic materials that are
not at all like metals (where large deformations lead
to permanent material changes) and do not satisfy
the usual, well-developed linear theory of (infinites-
imal) elasticity for deformable bodies. They typi-
cally exhibit mechanical properties that combine elas-
tic (purely reversible) and hysteretic (irreversible) phe-
nomena. In considering macroscopic behavior, one
finds that the usual constitutive relationships (e.g.,
Hooke’s law) or rheological equations of state for pure
elastics are not applicable. Indeed, one finds a num-
ber of factors that contribute to difficulty in modeling
mechanical behavior: (i) deformations are sensitive to
environmental temperatures as well as the strain level,
strain history and rate of loading; (ii) one observes
nonlinearities in both material and geometric behavior
- in general, there is a nonlinear relationship between
stress and strain even for small strains; (iii) deforma-
tions in the range of practical interest are large and
infinitesimal based theories break down; (iv) deforma-
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tions are not reversible; (v) the anisotropic nature of
polymers can be important in certain types of defor-
mations - for example, the amount and type of filler
affects mechanical response in a nontrivial manner.

In spite of all these difficulties, there is a substantial
literature on modeling of rubber-like elastomers (see
[F, T, W] for basic texts), predominantly based on
one of the two rather distinct approaches: (i) molec-
ular (polymer chain) statistical thermodynamic for-
mulations (ii) phenomenological (usually continuum)
formulations involving stored energy or strain energy
functions(SEF) and/or finite strain (FS) theories. In
the phenomenological approach (which will be the ba-
sis of our efforts) most investigators begin with an
isotropic material under homogeneous strain.

Strain energy function theories typically embody
only elastic properties of elastomers or rubbers and
hence are mostly used in static (equilibrium) finite
element analysis (e.g. see [CYT]) of materials (e.g.
natural gum rubbers) that exhibit little or no hys-
teretic behavior. SEF material models, such as those
of Mooney-Rivlin, Ogden, Treloar and numerous oth-
ers, are based on strain invariants I;, where I; =
A24A2403, I = A2A3+ 02024+ 2202 and I3 = A2A2)2
and the A; are the principal extension ratios (de-
formed length of unit vectors along directions paral-
lel to the principal axes i.e. the axes of zero shear
strain). For example, the Mooney SEF is given by
U = Cy(I, — 3) + C3(I2 — 3), or more generally, the
modified expression U = C,(I; —3)+ f(I2 —3), where f
has certain qualitative properties, and is most appro-
priate for components where the rubber is not tightly
confined and where the assumption of absolute incom-
pressibility (implying A;A2A3 = 1 or I3 = 1) is a rea-
sonable approx1ma.t10n The more general Rivlin SEF
U= 2'+J>] Ci;j(I1 -3)!(I;—3)’ and its generalization
for near incompressibility (see [CYT]) allow higher or-
der dependence of the SEF on the invariants.

The finite strain elastic theory of Rivlin [R, W]
is developed with a generalized Hooke’s law in an
analogy to infinitesimal strain elasticity but makes no
“small deformation” assumption and includes higher
order exact terms in its formulation. Moreover, fi-
nite stresses are defined relative to the deformed body
and hence are the “true stresses” as opposed to the
“nominal” or “engineering” stresses (relative to the



undeformed body) one usually encounters in the in-
finitesimal linear elasticity used with metals. This
Eulerian measure of strain (relative to a coordinate
system convected with the deformations) - as opposed
to the usual Lagrangian measure (relative to a fixed
coordinate system for the undeformed body) - is an
important feature of any development of models for
use in analytical/computation/experimental investi-
gations of rubber-like material bodies. The finite
strain elasticity of Rivlin can be directly related to
the strain energy function formulations through equa-
tions relating the finite strains é;z, €yy, €;, to the ex-
tension ratios Aj, Az, A3 used to define the SEF. For
example, in homogeneous pure tensile strain we have
M o= 14 2,23 = 1+ 26,,A3 = 1+ 2¢,, and
€y: = €3z = €5y = 0.

Whether one begins with a choice of the SEF or
with Rivlin’s finite strain formulation, one can use
these along with standard material independent force
and moment balance derivations (the Timoshenko the-
ory [TYW, CP]) as the basis of dynamical models.
To illustrate this we take the simplest example: an
isotropic, incompressible (A; AzA3 = 1) rubber-like rod
under simple elongation with a finite applied stress in
the principal axis direction ;. The finite stress the-
ory (or the Mooney theory with SEF U = C,(I; — 3))
leads to a true stress o = £ (A} — 5-) or an engineer-
ing or nominal stress for what are termed neo-Hookean

materials
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Here E is a generalized modulus of elasticity.

(2)

This can be used in the Timoshenko theory for lon-
gitudinal vibrations of a rubber bar to obtain (p =
mass density, F = applied external force)
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where S, the internal (engineering) stress resultant, is
given by
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with g(€) = 1+&—(14+€)%and A is the cross sectional
area. This leads to the nonlinear partial differential

equation
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for dynamic longitudinal displacements of a neo-
Hookean material rod in extension. Since a series ex-
pansion of g yields g(£) = 36 — 362 + 4€3 — .., this
is readily seen, in the case of small displacements, to

reduce to the usual longitudinal deformation equation
for Hookean materials.

The neo-Hookean or simple Mooney expression for
the SEF yielding the form of g in (4) has only limited
practical application since it is inadequate in describ-
ing most filled elastomers. In general, one would em-
ploy equations such as (5) with a more general nonlin-
earity g which should be estimated from dynamical ex-
periments. Moreover, one must also include hysteresis

in the nonlinear integropartial differential equations
(see [F, SC, RHN, C, P)).

In this lecture we report on our efforts to develop
such a class of finite strain dynamic models to be used
in design of rubber based elastomers. We develop a
mathematical framework for well-posedness and ap-
proximation in the context of identification or inverse
problems. Computational results as well as our use of
these techniques with experiments will be discussed.

2 Variational Formulation

Our immediate interest is in the design of dynamic
experiments to use in determining the strain function
¢ in models such as (5). In one type of dynamic ex-
periments a slender rod is suspended vertically with
the top end (z = 0) fixed, as shown in Figure 1. Let
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Figure 1: Experimental setup

u(t,z) denote the deformation at time ¢ of the cross
section that was located at a distance z from the top
when the rod was free hanging (with no applied load).
Thus u(t,0) = 0 for all t. The end £ = [ of the rod
is attached to a motor which supplies a force F(t)
to produce some prescribed movement or deformation
u(t,l) = A(t), t > 0. Hence the applied force F in
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3 Numerical Approximations

The ultimate goal of solving an inverse problem to de-
termine the nonlinearity ¢ must be considered when
developing a numerical scheme to solve the forward
problem (6). The presence of the prescribed deforma-
tion u(t,!) = A + d(t) indicates that a Tau-Galerkin
method would be a convenient method for solving the
weak formulation (6). The theory developed in [BW]
shows further that a Tau-Galerkin method is an ap-
propriate choice in the context of solving least-squares
parameter estimation problems:

For a given g we use a Tau-Galerkin method with
linear splines for the spatial discretization, and a
Fehlberg fourth-fifth order Runge-Kutta method in
time. We therefore seek an approximate solution to
(6) of the form

N
WNtz) =Y wit)L(2)

i=1
where the L; are linear splines (given below), and w;
are unknown functions of time. In the Tau method,
we impose the boundary condition u(t,!) = A + d(?)
on the trial solutions u”, not on the individual ba-
sis elements. The boundary condition u(¢,0) = 0 is
treated as an essential boundary condition and is im-
posed directly on each of the basis elements L;.

Let h = # denote the grid spacing. Let z; = jh,
j = 1,...,N be the grid points. The usual linear
splines are defined for 1 <j < N —1 by
0, 0<z< (-1
z/h-(i-1), ((-Dh<z<jh
—e/htj+1, jh<z<(i+Dh
0, L z>2(G+ DA

Lj(z) =

with
_ {0, 0<z<(N-1)h
LN(”)—{ z/h=N+1, z>(N-1)h

In order to use the Runge-Kutta method, (6) must
be rewritten as a first order system in time. To ac-

complish this, let
Ui _ u
U2 - U )
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Restate the weak formulation (6) as

'l:ll = U2 (10)
and for each ¢ € Hj(0,1) G V = H}(0,1)
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The approximate solutions of (10) and (11) are given
by

N-1
W' (t,2) = ) w;()L;(2) + (A +dt)Lw() ,
j=1

and

N-1
u(t,2) = Y i(t)L;(2) + d(t)Ln () .
ji=1

Substituting the approximate solutions into (10) we
obtain equations

wit)=v;¢t),j=1,... , N-1.

Substituting the approximate solutions into (11), and
choosing ¢ = Lj, we find

N-1

i
/ (z ¥;L; + dLN) pALydz =
0

ji=1

1 AE N-1
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j=1

For fixed t the discrete system is achieved by allow-
ing k to vary between 1 and N — 1. The following
notation is necessary to write down the discrete sys-
tem. Define the (symmetric) tridiagonal mass matrix
M with entries

i
= [ pALids,
0
and
]
[Miit1] = [Mig1:] = / pAL;L;;1dz .
0

Define the vector G with entries

2 ' LAE [RH
Gi=- [ L5 > wili+(A+d)Ly | dz
0 .
j=1
i=1,...,N-2,

and
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The first order discrete system is then given by
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4 Numerical Studies

We have used the numerical scheme outlined above in
numerical simulation studies to aid in design of exper-
iments. We describe briefly here some of our findings.

The first question to be addressed in using the ap-
proximation schemes is related to their accuracy. One
can prove convergence results: as N — oo, the ap-
proximate solutions u™ converge to the solution u
of (6). However, this does not answer the question
of the value of N that we fix to use in our calcula-
tions. To aid in this matter, we performed a series
of eigenvalue calculations with the approximate sys-
tem in the case of a Hookean material (g(£) = 3¢ in
(5)). For a rod of length { = 15 c¢m, and constant
cross section, one finds that the eigenvalues are given
by A\, = nn/l\/E/p. Choosing material parameters
E =2.1x 107 dyn/em?, p = .92 g/cm®, we obtain the
corresponding natural frequencies f, = A, /(27) given
by f. = 159.25n. Eigenvalue calculations with the
approximate systems demonstrated good approxima-
tion of the first eight natural frequencies at N = 64.
For example, at N = 48 and 64 we obtained fi® =
159.28 , f?* = 159.27 to approximate f; = 159.25
while f4#8 = 112455 , f% = 1120.28 approximate
f7 = 1114.75. Similar approximates are found for the
other frequencies. Based on these eigenvalue studies
for the linear systems (of course, the ideas of eigen-
values and modes are not useful for the neo-Hookean
system) we used N = 48 in our calculations, including
those reported on here.

We considered a number of questions in support of
our experimental design questions and we list several
of these. (i)What shape (I, A = A(z), etc.) should be
used that will provide ample information about the
material and yet be easily constructed? (ii) If addi-
tional observations (say of displacement) are possible,
where should these be taken to maximize the differ-
ences between Hookean and neo-Hookean material re-
sponses? ( We know, for example, that displacement
sensors near nodal points for a linear system is not an
intelligent choice!) (iii) What type of input signals will
sufficiently distinguish the Hookean and neo-Hookean
responses so as to enhance our possibilities for identi-
fying g from vibration response data? (iv) How should
we test damping? The linear version of equation (6)
is undamped (does the nonlinearity g itself provide
some type of damping of input energy?), while the ex-
perimental responses will definitely exhibit significant
damping.

We discuss briefly some of our findings related to
two of these questions. First the question of damping
is a difficult one that we are still pursuing. However,
as the graphs in Figure 2 reveal, the Hookean model,

M

as expected, has no inherent damping. Each graph in
Figure 2 corresponds to a simulation with zero initial
displacement but with the same nonzero initial veloc-
ity (this simulates a structure that has been excited
with the same energy input at ¢t = 0 and afterwards
allowed to freely oscillate). The neo-Hookean response
suggests that there is some inherent energy reduction
in the nonlinear system but it clearly is not damping
in the traditional sense we understand. It also does
not correspond to the rapid dissipation we see in os-
cillating rubber samples.

Hookean model, displacement at 1/4

B —

0 005 01 015 02 025 03 035 04 045 05
time (sec)
Neo-Hookean model, displacement at /4

. 1 1

0 005 o0t 015 02 026 03 035 04 045 05
time (sec)

Figure 2: Damping experiment for both a Hook-
ean and a neo-Hookean model

The question of type of input signal to use has
yielded quite nicely to our numerical investigations.
We have considered persistent sinusoidal inputs d(t) =
asinwt with the driving frequency of f = w/(2x) near
and far from resonance for the linear system. We also
considered periodic triangular inputs (a “sawtoothed”
sinusoidal that is between a square wave and a smooth
sinusoidal). In many numerical experiments, it was
observed that the driving frequency dominated the
responses with varying levels of energy exciting the
natural structural modes of the Hookean system. In
FFT’s of the neo-Hookean responses, one sees energy
concentrations but not so sharply as in systems with
modes. One important constraint on the periodic in-
put signals is the frequency range for f possible in
the experimental test equipment. While a frequency
sweep (say between 0 and 500 Hz) would reveal signif-
icant information, we are physically restricted to exci-
tations in the 0 — 25 Hz range. These (in the range of
displacements allowed) do not yield really substantial
excitation in frequencies much beyond the first natural
frequency of the Hookean model. Our most promising
results to date suggest that a simulated “impulse” for
the system might sufficiently distinguish the Hookean
and neo-Hookean responses when working in the fre-
quency/displacement ranges dictated by our experi-
mental equipment. In Figures 3 and 4 we plot the in-




put signal (a triangular displacement approximating
an impulse input) and the FFT of the corresponding
displacement at £ = !/4 in the rod for an input possi-
ble with frequency set at 15 Hz. Figure 3 contains the
Hookean response while Figure 4 is the neo-Hookean.
In Figures 5 and 6 we give similar plots for an input
signal corresponding to f = 25 Hz.
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Figure 3: Hookean response at 15 Hz.
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Figure 4: Neo-Hookean response at 15 Hz.

Position at [, f = 25

6
55
E s
3]
45
13
35 o1 o2 03 0s 05 06 07
time (sec)
FFT of response at /4
100 : y
8ot
80
40-
2 I
AlTT——— N " "
‘o 50 100 150 200 250 300 350 400
k Hertz
Figure 5: Hookean response at 25 Hz.
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Figure 6: Neo-Hookean response at 25 Hz.

5 Concluding Remarks

In the discussions above we have outlined some of our
initial efforts on the intellectually stimulating but diffi-
cult problems related to the understanding of the dy-
namics of filled elastomers. We are currently begin-
ning experiments and developing computational tech-
niques for the estimation of g in (6) from vibration
response data. Moreover, in related studies [BMZ] we
are developing models and computational schemes to
treat hysteresis as well as damping in composite ma-
terial structures containing viscoelastic components.
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