LMITOOL: a Package for LMI Optimization

Ramine NIKOUKHAH*

Abstract

Many problems in systems and control can be for-
mulated as “Linear Matrix Inequalities” (LMI) prob-
lems. Recently, efficient algorithms have been de-
veloped for solving LMI’s of reasonable size. Using
these programs for solving control problems however
requires a reformulation of the problem which implies
a great deal of tedious algebraic manipulations. In
this paper, we present a complete package (toolbox)
for Scilab! that allows the user to solve his control
problem using LMI methods with very little effort.

Applications of LMI in systems and control, and
the use of LMITOOL are illustrated by a number of
examples.

1 Introduction

Many problems in systems and control can be formu-
lated as the following optimization problem (see 2
referred to as a ¥ problem:

minimizef (X1, ..., Xa)

subject to:

Gi(X1... .. X)) =
Hj("Ylv"'v‘XAI) Z

0,
0,

where

° Xl,..

to as the unknown matrices,

., X are unknown real matrices. referred

e fis a real linear scalar function of the entries of
the unknown matrices X1, ..., Xar; it is referred

to as the objective function,

G;’s are real matrices with entries which are
affine functions of the entries of the unknown
matrices, Xi,...,Xar; they are referred to as
“Linear Matrix Equality” (LME) functions,

*INRIA, Rocquencourt, 78153 Le Chesnay Cedex, France
tENSTA, 32, Bvd. Victor, 75739 Paris, France.
1A free matlab-like scientific software package.

Francois DELEBECQUE*

Laurent EL GHAOUI!

e H;’s are real symmetric matrixces with entries
which are affine functions of the entries of the un-
known matrices X1, ..., Xar; they are referred to
as “Linear Matrix Inequality” (LMI) functions.
(In this paper, the V > 0 stands for V positive
semi-definite unless stated otherwise).

The purpose of LMITOOL is to facilitate formulation
of LMI problems encountered in systems and con-
trol applcations as ¥ problems and to solve them 1n
a user-friendly manner in Scilab using the function
semidef, an interface to the program Semidefinite
Programming SP (Copyright ©1994 by Lieven Van-
denberghe and Stephen Boyd) distributed with Scilab
[1]. This code is intended for small and moderate-
sized problems (up to a few hundred variables).

2 Function lmisolver

LMITOOL is built around the Scilab function
imisolver. This function computes the solution
X4, ..., X of problem X, given functions f, G; and
H;. Tosolve X, user must provide an evaluation func-
tion which “evaluates” f, G; and H; as a function the
unknown matrices, as well as an initial guess on the
values of the unknown matrices. User can either in-
voke 1misolver directly, by providing the necessary
information in a special format or he can use the in-
teractive function lmitool described in Section 3.

2.1 How lmisolver works

The function lmisolver works essentially in four
steps:

1. Initial guess. The sizes and structure of the ini-
tial guess are used set up the problem, and m
particular the size of the unknown vector.

9. Elimination of equality constraints. Making re-
peated calls to the evaluation function, a canon-

ical representation of the form

minimize ¢z
FO + ZlFl + -+ 3771}"777 Z 01
Az 4+b=0,

subject to

where z contains the coefficients of all matrix
variables, is constructed. This step uses exten-
sively sparse matrices to speed up the computa-
tion and reduce memory requirement.

. Elimination of variables. Then, Imisolver elim-
inates the redundant variables. The equality
constraints are eliminated by computing the null
space N of A and a solution zo (if any) of
Az + b = 0. At this stage, all solutions of the
equality constraints are parametrized by

z= Nz + 2z,

where z is a vector containing the independent
variables. The computation of N, zg is done us-
ing sparse LU functions of Scilab.

Once the equality constraints are eliminated, the
problem is reformulated as

minimize ¢z

subject to Fo+ &1 F1+ - 4+ xmFn 2 0,

(1)
where ¢ is a vector, and Fy, ..., F,, are symmet-
ric matrices, and z contains the independent el-
ements in the matrix variables Xi,..., Xp. (If
the F;’s are dependent, a column compression is
preformed.)

. Optimization. Finally, lmisolver makes a call
to the function semidef, an interface to SP
designed for solving problem (1). This phase
is itself divided into a feasibility phase and a
minimization phase (only if the linear objective
function is not empty). The feasibility phase is
avoided if the initial guess is found to be feasible.

For details about the optimization phase see [1].

2.2 Syntax
[XLISTF] = lmisolver (XLISTO,EVALFUNC[,opt])

where

e XLISTO: a list structure including matrices
and/or list of matrices. It contains initial guess
on the values of the unknown matrices. In gen-
eral, the ith element of XLISTO is the initial guess
on the value of the unknown matrix X;. In some
cases however it is more convenient to define one
or more elements of XLISTO to be lists (of un-
known matrices) themselves. This is a useful
feature when the number of unknown matrices is
not fixed a priori (see Example of Section 2.3.2).

The values of the matrices in XLISTO, if compat-
ible with the LME functions, are used as intial
condition for the optimization algorithm; they
are ignored otherwise. The size and structure
of XLISTO are used to set up the problem and
determine the size and structure of the output
XLISTF.

EVALFUNC: a Scilab function called evaluation
function (supplied by the user) which evaluates
the LME, LMI and objective functions, given the
values of the unknown matrices. The syntax is:

[LME,LMI,0BJ]=EVALFUNC(XLIST)

where

— XLIST: a list, identical in size and structure
to XLISTO.

— LME: a list of matrices containing values
of the LME functions G;’s for X values in
XLIST. LME can be a matrix in case there
is only one LME function to be evaluated
(instead of a list containing this matrix as
unique element). It can also be a list of a
mixture of matrices and lists which in turn
contain values of LME’s, and so on.

— LMI: a list of matrices containing the val-
ues of the LMI functions H;’s for X values
in XLIST. LMI can also be a matrix (in case
there is only one LMI function to be eval-
uated). It can also be a list of a mixture
of matrices and lists which in turn contain
values of of LMI’s, and so on.

— DBJ: a scalar equal to the value of the ob-
jective function f for X values in XLIST.

If the ¥ problem has no equality constraints then
LME should be []. Similarly for LMI and OBJ.

opt: a 5 x 1 vector containing optimization pa-
rameters Mbound, abstol, nu, maxiters, and
reltol, see 1] for details. This argument is op-
tional, if omitted, default parameters are used.

XLISTF: a list, identical 1n size and structure to
XLISTO containing the solution of the problem
(optimal values of the unknown matrices).

2.3 Examples

2.3.1 State-feedback with control saturation

constraint

Consider the linear system

z = Az + Bu {2)

where A is an n x n and B, an n x n,, matrix. There
exisis a stabilizing state feedback K for (2) such that
for every initial condition z(0) with ||z(0)|] < 1, the
resulting control satisfies {Ju(t)]] for all ¢ > 0, if and
only if there exist an n x n matrix ¢ and an ny X n
matrix Y satisfying the equality constraint

Q-Q" =0
and the inequality constraints
Q =
—AQ - QAT - BY —YTBT >
(4 5) =
in which case one such I can be constructed as K =

YQ-t.
To solve this problem using lmisolver, we first
need to construct the evaluation function.

function [LME,LMI,OBJ]=sf_sat_eval(XLIST)
[Q,Y]=XLIST(:) LME=Q-Q’
LMI1=-A*Q-Q*A’-B*Y-Y’*B’
LMI2=[umax~2*eye(Y*Y’),Y;Y’,Q]
LMI3=Q-eye

LMI=1ist(LMI1,LMI2,LMI3)

0BJ=[1

Note that 0BJ=[] indicates that the problem consid-
ered is a feasibility problem, i.e., we are only inter-
ested in finding a set of .Xs that satisfy LME and
LMI functions.

Assuming A, B and umax already exist in the envi-
ronment, we can call lmisolver, and reconstruct the
solution in Scilab, as follows:

--> Q_init=zeros(A);

--> Y_init=zeros(B’);

——> XLISTO=1ist(Q_init,Y_init);

--> XLIST=1misolver(XLISTO,sf_sat_eval);
--> [Q,Y]=XLIST(:)

These Scilab commands can of course be encapsu-
lated in a Scilab function, say sf_sat. Then, To solve
this problem, all we need to do is type:

--> [Q,Y)=sf_sat(A,B,umax)

We call sf_sat the solver function for this problem.

2.3.2 Control of jump linear systems

We are given a linear system

&= A(r(t))e + B(r(t)n,

125

where A is n x n and B is n X ny. The scalar param-
eter r(t) is a continuous-time Markov process taking
values in a finite set {1,...,N}.

The transition probabilities of the process r are
defined by a “transition matrix” I = (m;;), where
m;j’s are the transition probability rates from the i-
th mode to the j-th. Such systems, referred to as
“jump linear systems”, can be used to niodel linear
systems subject to failures.

We seek a state-feedback control law such that
the resulting closed-loop system is mean-square sta-
ble. That is, for every initial condition z(0), the re-
sulting trajectory of the closed-loop system satisfies
lime— o0 Eljz(8)]|? = 0.

The control law we look for is a mode-dependent
linear state-feedback, i.e. it has the form wu(t)
K(r(t))z(t); K(i)'s are n, x n matrices (the un-
knowns of our control problem).

It can be shown that this problem has a solution if

and only if there exist n x n matrices Q(1), .. L, Q(N),
and n, x n matrices Y (1),...,Y (), such that
QL) = QMT,
TrQ() + ...+ TrQ(N)—-1 = 0.
and
QL) Y(@)T
[Y() I > 0
~[4(HQU) + QUYAMT + BEY (i)+
N
Y()TBHT + Y m:Q)] > 0,
j=1
for i = 1....,N. If such matrices exist, a stabilizing -

state-feedback is given by K (i) = Y (1)Q(:)™*,

In the above problem, the data matrices are
A(1),...,A(N), B(1),...,B(N) and the transition
matrix II. The unknown matrices are Q(¢)’s (which
are symmetric n x n matrices) and Y (i)’s (which are
n, x n matrices). In this case, both the number of
the data matrices and that of the unknown matrices
are a-priori unknown.

The above problem is obviously a £ problem. In
this case, we can let XLIST be a list of two lists: one
representing the @’s and the other, the Y'’s.

The evaluation function required for invoking
imisolver can be constructed as follows:

function [LME,LMI,0BJ]=jump_sf_eval(XLIST)
[Q,Y)=XLIST(:) N=size(A);
[n,nul=size(B(1)) LME=1ist();

LMI1=1list(); LMI2=1list()

tr=0

for i=1:N

tr=tr+trace(Q(i))
LME(1)=Q(i)-Q(i)’
LMI1(i)=[Q(i),Y(i)’;¥(i),eye(nu,nu)]
SUM=zeros(n,n)
for j=1:N
SUM=SUM+PI(j,1)*Q(j)
end
LMI2(i)= A(L)*Q(i)+Q(i)*A (i) +B(i)*Y(i)...
+Y(1)’#B(i)’+SUM
end
LMI=1ist(LMI1,LMI2)
LME(N+1)=tr-1
0BJ={]

Note that LMI is also a list of lists containing the
values of the LMI matrices. This is just a matter of
convenience.

Now, we can solve the problem in Scilab as follows
(assuming lists A and B, and matrix PI have already
been defined).

First we should initialize Q and Y.

—-=> N=size(A); [n,nul=size(B(1));
-=> Q_init=list(); Y_init=list();
--> for i=1:N,...

--> Q_init(i)=zeros(n,n)...

-=> Y_init(i)=zeros(nu,n)...

--> end

Then, we can use lmisolver as follows:

—--> XLISTO=1list(Q_init,Y_init)
-=> XLISTF=1lmisolver (XLISTO, jump_sf_eval)
-=> [Q,Y]=XLISTF(:);

The above commands can be encapsulated in a
solver function, say jump_sf, in which case we simply
need to type:

--> [Q,Y]=jump_sf(A,B,PI)

to obtain the solution.

2.3.3 Descriptor Lyapunov inequalities

In the study of descriptor systems, it is sometimes
necessary to find (or find out that it does not exist)
an n x n matrix X satisfying

ETx = XTE
ATX + XTA+ 1

0
0

IN 1V

where £ and A are n x n matrices such that E, A is
a regular pencil. In this problem, which clearly is a
¥ problem, the LME functions play important role.
The evaluation function can be written as follows

function [LME,LMI,0BJ]=dscr_lyap_eval(XLIST)
[XI=XLIST(:)
LME=E’ *X-X’*E
LMI=1ist(-A’*X-X’*A-eye,E’*X)
0BJ=[]
and the problem can be solved by (assuming E and
A are already defined)

-=> XLISTO=1list(zeros(4))
—=> XLISTF=lmisolver(XLISTO,dscr_lyap_eval)
~-> [X]=XLISTF(:)

2.3.4 Mixed H,/H, Control
Consider the linear system

r = Ar+ Biw+ Byu
Cix + Dyyw + Disu

Cox + Doou

<1

<2

The mixed Ha/H . control problem consists in find-
ing a stabilizing feedback which yields ||T%, 4|0 < ¥
and minimizes ||T:,||» where ||T%,4]|o and 1T pwl|2
denote respectively the closed-loop transfer functions
from w to z; and z. In [3]. it is shown that the solu-
tion to this problem can be expressed as K = LX !
where X and L are obtained from the problem of
minimizing Trace(Y") subject to:

X-XT=0 Y-YT =0y,
and
Jin Jia
(JE Jns) > 0
Y CoX + DooL S 0
(CoX + DanL)T X
where
Jn = —(AX 4+ BL+ (AX + B2L)T + B, BT)
Jio = —(XCT +LTDl, + B,D)
Jaw = 71— Dy D]

To slove this problem with lmisolver, we define
the evaluation function:

function [LME,LMI,0BJ]=h2hinf_eval(XLIST)
[X,Y,LI=XLIST(:)
LME=1list(X-X’,Y-Y’);

LMI=1ist(-[A*X+B2+L+(A*X+B2*L)*+B1*B1’, ...

X*C1’+L’*D12°+B1*D117; ...

(X*C1’+L’*D12’+B1*D11’)’,...

-gama~2*eye+D11%D11°], ...

[Y,C2%X+D22+L; (C2*X+D22%L) " ,X])
OBJ=trace(Y);

126

and use it as follows:

X_init=zeros(A); Y_init=zeros(C2%C2’);
L_init=zeros(B2’)
XLISTO=1list(X_init,Y_init,L_init);
XLISTF=lmisolver (XLISTO,h2hinh_eval);
[X,Y,L1=XLISTF(:)

2.3.5 Descriptor Riccati equations
In Kalman filtering for descriptor system

Ez(k+1) = Az(k)+ u(k)
yk+1) = Cz(k+1)+r(k)
where u and r are zeros-mean, white Gaussian noise
sequences with covariance @ and R respectively, one

needs to obtain the positive solution to the descriptor
Riccati equation (see [4])

-1

APAT+Q 0 E 0
P=(0 0 I) 0 R C 0
ET cT o I

It can be shown that this problem can be formu-
lated as a ¥ problem as follows: maximize Trace(P)
under constraints

P—P =0
and
APAT + Q 0 EP
0 R CP |>0.
PTET PTCT P

The evaluation function is:

function [LME,LMI,0BJ]=ric_dscr_eval(XLIST)
LME=P-P’
LMI=[A*P*A’+Q,zeros(A*C’) ,E*P; ...
zeros(C*A’) ,R,C*P;P*E’ ,P*C’,P]
0BJ=-trace(P)

which can be used as follows (asuming £, 4. (', Q and
R are defined and have compatible sizes-note that E
and A need not be square).

-~> P_init=zeros(A’#*A)
--> P=Ilmisolver(XLISTO,ric_dscr_eval)
2.3.6 Linear programming with equality con-

straints

Consider the following classical optimization problem

minimize el
subject to Az +b >0,
Cr+d=0.

where A and C -are matrices and ¢, b and d are vectors
with appropriate dimensions. Here the sign > is to
be understood elementwise.

This problem can be formulated in LMITOOL as

follows:

function [LME,LMI,0BJ]=linprog_eval(XLIST)
[x]=XLIST(:)

[m,n]=size(A)

LME=C#*x+d

LMI=1list()

tmp=A*x+b

for i=1:m

LMI(i)=tmp(i)
end
OBJ=e’*x

and solved in Scilab by (assuming A, C, e, b and d
and an initial guess x0 exist in the environment):

--> x=lmisolver(x0,linprog_eval)

2.3.7 Robust Estimation

Consider the following estimation problem
y=Hz+Vw

where r is unknown to be estimated, y is known, w
is a unit-variance zero-mean Gaussian vector, and

H e Co{H(1)....H(N)}. V€Co{V(l)....V(N)}

where Co denotes the convex hull and H (¢) and V' (¢},
i=1....,N, are given matrices.
The objective is to find L such that the estimate

r=1Ly

is unbiased and the worst case estimation error vari-
ance E(||z — £||?) is minimized.

It can be shown that this problem can be formu-
lated as a © problem as follows: minimize v subject
to

I-LH(1) = 0, 1=1,..,N,
XH-xX@»T =0, i=1,..,N,
and
I (L@H)V ()T _
(v “¥@") 20 =i
v - Trace(X(i)) > 0, i=1,..,N.

This problem can be formulated as ¥ problem as fol-
lows:

127

function [LME,LMI,0BJ]=Restim_eval(XLIST)
(L,X,gamma]=XLIST(:)

[n,ml=size(H(1))
LME1=1ist () ;LME2=1list();
LMI1=1list();LMI2=1list();

for i=1:size(H)

LME1(i)=eye-L*H(i)

LME2(i)=X(i)-X(i)’
LMI1(i)=[eye(n,n), V(i) ’*L’;L*V(i),X(i)]
LMI2(i)=gamma-trace(X(i))

end
LME=1ist (LME1,LME2)

LMI=1ist (LMI1,LMI2)

OBJ=gamma

Assuming H and V are already defined, we can do:

L_init=zeros(H(1))’

X_init=1list()

for i=1:size(H)...
X_init=zeros(H(1)’*H(1))...

end

gamma_init=0
XLISTO=1ist(L_init,X_init,gamma_init)
XLIST=1lmisolver (XLISTO,Restim_eval)
[L,X,gamma]l=XLIST(:)

2.3.8 Sylvester Equation
The problem of finding matrix X satisfying

AX+XB=C

or

AXB=C

where A and B are square matrices (of possibly dif-
ferent sizes) is a well-known problem. We refer to
the first equation as the continuous Sylvester equa-
tion and the second, the discrete Sylvester equation.

These two problems can easily be formulated as ©
problems as follows:

function [LME,LMI,0BJ]=sylvester_eval(XLIST)
[X]=XLIST(:)
if flag==’c’ then
LME=A*X+X*B-C
else
LME=A*X*B-C
end
LMI=(]
0BJ=(]

with a solver function such as:

128

function [X]=sy1vester(A,B,C,flag)

[na,mal=size(A); [nb,mbl=size(B);

[nc,mcl=size(C);

if ma<>nal|mb<>nb|nc<>na|mc<>nb then
error("invalid dimensions");

end

X_init=zeros(nc,mc);

XLISTF=1misolver(X_init,sylvester_eval)

X=XLISTF(:)

Then, to solve the problem, all we need to do is to
(assuming A, B and C are defined)

~--> X=sylvester(A,B,C,’c’)
for the continuous problem and
--> X=sylvester(A,B,C,’d’)

for the discrete problem.

3 Function LMITOOL

The purpose of LMITOOL is to automate most of the
steps required before invoking lmisolver. In par-
ticular, it generates a *.sci file including the solver
function and the evaluation function or at least their
skeleton. The solver function is used to define the
nitial guess and to modify optimization parameters
(if needed).

lmitool can be invoked with zero, one or three
arguments.

3.1 Non-interactive mode

Imitool can be invoked with three input arguments
as follows:

3.1.1 Syntax

txt=lmitool(probname,varlist,datalist)

where

e probname: a string containing the name of the
problem,

e xlist: a string containing the names of the un-
known matrices (separated by commas if there
are more than one).

e dlist: a string containing the names of data
matrices (separated by commas if there are more
than one).

e txt: a string providing information on what the
user should do next.

In this mode, lmitool generates a file in the cur-
rent directory. The name of this file is obtained by
adding “.sci” to the end of probname. This file is the
skeleton of a solver function and the corresponding
evaluation function.

3.1.2 Example

Suppose we want to use lmitool to solve the problem
presented in Section 2.3.1. Invoking

-—>txt=1lmitool(’sf_sat’,’Q,Y’,’A,B,umax’)

ylelds the output

-=> txt

! To solve your problem, you need to !
1 1
11- edit file /usr/DrScilab/sf_sat.sci !
! !
12- load (and compile) your functions: !
! !
! getf(’/usr/DrScilab/sf_sat.sci’,’c’) !
] 1
13~ Define A,B,umax and call sf_sat: !
1 1
é {Q,Y]=sf_sat(A,B,umax) |
! !

and results
the creation of the file /usr/DrScilab/sf _sat.sci
(assuming the current directory is /usr/DrScilab)
with the following content:

function [Q,Yl=sf_sat(A,B,umax)
// Generated by lmitool on Tue Feb 07

Mbound
abstol
nu = 10;

maxiters 100;

reltol = 1e-10;
options=[Mbound,abstol,nu,maxiters,reltol]

1e3;
1ie-10;

///////////DEFINE INITIAL GUESS BELOW
Q_init=...
Y_init=...

11711717177

XLISTO=1ist(Q_init,Y_init)
XLIST=1misolver (XLISTO,sf_sat_eval,options)
[Q,Y]1=XLIST(:)

////////////EVALUATION FUNCTION

function [LME,LMI,OBJ]=sf_sat_eval(XLIST)
[Q,Y]=XLIST(:)

/////7///////DEFINE LME, LMI and OBJ BELOW
LME=. ..
LMI=...
OBJ=...

It is easy to see how a small amount of editing can
do the rest!

3.2 Interactive mode

lmitool can be invoked with zero or one input argu-
ment as follows:

3.2.1 Syntax

txt=1mitool()
txt=1lmitool(file)

where

e file: is a string giving the name of an existing
“.sci” file generated by 1mitool.

In this mode, 1mitool is fully interactive. Using a
succession of dialogue boxes, user can completely de-
fine his problem. This mode is very easy to use and
its operation completely self explanatory. Invoking
lmitool with one argument allows the user to start
off with an existing file. This mode is useful for modi-
fying the existing file or when the new problem is not
too much different from a problem already treated by
Imitool.

A How to obtain LMITOOL

Scilab is a free scientific software package devel-
oped at INRIA. LMITOOL is a built in Scilab tool-
box (Scilab 2.1 or higher). Scilab can be ob-
*tained by anonymous ftp from ftp.inria.fr under
INRIA/Projects/Meta2/Scilab.

LMITOOL is also available on Matlab. The Mat-
lab version can be obtained by anonymous ftp from
ftp.ensta.fr under /pub/elghaoui/lmitool.

References

[1] Vandenberghe, L., and S. Boyd, “Semidefinite
Programming,” Internal Report, Stanford Uni-
versity, 1994 (submitted to SIAM Review).

129

[2] Boyd, S., L. El Ghaoui, E. Feron, and V. Bal-
akrishnan, Linear Matrir Inequalities in Systems
and Control Theory, SIAM books, 1994.

(3] Khargonekar, P. P., and M. A. Rotea, “Mixed
Hy/Ho Control: a Convex Optimization Ap-
proach,” IEEE Trans Aut. Contr., 39 (1991), pp.
824-837.

[4] Nikoukhah, R., Willsky, A. S., and B. C. Levy,
“Kalman Filtering and Riccati Equations for De-
scriptor Systems,” IEEE Trans Aut. Contr., 37
(1992), pp. 1325-1342.

[5] Scilab Group, “Scilab 2.1, user’s guide,” Inria
Technical Report, to appear.

130

