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Abstract The objective of this paper is to de-
velop a stochastic spectral approach to solve hidden
Markov problems based on a Wiener Chaos expan-
sion. We prove that the set of Fourier coefficients in
the Cameron-Martin development of the unnormalized
posterior probability is a solution of a simple recursive
system of infinite order deterministic equations. This
decomposition separates observations and parameters
which suggests a natural numerical algorithm for solv-
ing this problem.

1 Introduction

The objective of this paper is to develop a stochas-
tic spectral approach to solve hidden Markov prob-
lems. Specifically we estimate the distribution of a
continuous time Markov chain given noisy observa-
tions of its path. Similar approach was developed by
Mikulevicius-Rozovskii [4] for nonlinear filtering of dif-
fusion Markov processes (see also (3], [5]).

We consider the filtering scheme where the signal
process z(t) is a homogeneous jump Markov process.
The observation process y(t) is of the form

y(t) = yo +/0 h(z(s))ds + W(t),

where W(t) is a Brownian motion. A fundamental
objective of the filtering theory is to compute the con-
ditional distribution of the signal process z(t) given
the observations y(s),s < t. This problem reduces
to solving an infinite system of stochastic differential
equations (Rozovskii-Shiryaev [5])

dgi(t) = ) Ajigj(t)dt + higi(t)dy(t) (1.1)
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where {p},i=1,2,.. } is the law of z(0) and h; = h(i).
A solution to this equation is usually referred to as
unnormalized posterior probability.

In this paper we present a spectral decomposition
of a solution of (1.1}, (1.2) based on the Cameron-
Martin orthogonal development of L,-functionals of
a Gaussian process (Cameron-Martin [1], Hida [2)).
Specifically we prove that this solution can be written
in the form (see Theorem 2.1)

a)=3 71—; o) €aly) as.
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(1.3)

where J is the set of multi-indices, &,(y) are prod-

ucts of Hermite polynomials of Wiener integrals
t .

J, mj(s)dy(s), where {m;} is a complete orthonormal

system in Ly(0,t). We also prove that the Fourier

coefficients {¢f,(t),i = 1,2,...,a € J} satisfy the re-

cursive systemn of infinite order deterministic equations

fﬁdy Z Ajieh(s) + zkjakmk(s)h.-soi,(k,(s)
2a(0) = phl{jaj=0-

It is important that decomposition (1.3) separates ob-
servations and parameters which allows the time con-
suming computation of deterministic Fourier coeffi-
cients ¢! (t) to be performed off-line and leaves only
the computationally simple stochastic part to be per-
formed on-line. Expansion (1.3) is a double infinite
sum. We study the error results from truncating the
expansion (see Theorem 2.2). Many well known time
discretization schemes can be derived from (1.3), for
example the splitting-up approximation.

2 Main Results

Let (2, F, P) be a probability space and {z(t),0 <t <
T} be a homogeneous continuous time Markov process




with transition probability density [Ai;; 7,7 = 1,2,.. ).
Let the observation process be of the form

v =+ | ha)ds+ W) (21)

where sup; |h;] < oo and W(t) is a one dimensional
Brownian motion independent of z(t). It is known
that the posterior probability P(z(t) = i|F}) can be
written as g¢;(¢)/ >, gi(t), where {qi(t), 0 <t < T}is
the unique solution of the infinite system of stochastic
differential equations (Rozovskii-Shiryaev [5])

dg:i(t) = D Njigi(t)dt + higi(t)dy(t) (22)
j
%:(0) = ph (2.3)

where {p},i=1,2,...} is the law of z(0).

Let
T T
oT) = expl= [ hiz(edu(e)— [ (z(s))Pds)

It is a standard fact that the measure P defined by
dP = p(T)dP is a probability measure on (Q, F) with
respect to which y is a Brownian motion. Let J be
the set of multi-indices. For a € J, define the fol-
lowing notations: |a| = Y ;a;, a! = [],ax! and
a(j) = (ai,...,max(a; —1,0),a;j41,...). Let {my(s)}
be a complete orthonormal system (CONS) in L2(0,¢)
and & = fot my(s)dy,. Further, for a € J, let

H ak £k)

where .

i
(-1 e e
is the jth Hermite polynomial. Then {{.(y),a € J}
is a CONS in L2(Q, F¥, P) ( Cameron Martin [1], Hida
[2]). Let i3 = {(a1,a2,...): ¥_;a? < c0}. Denote |- |,

the norm in [,.

Hj(z) =

Theorem 2.1 If {qi(t),i=1,2,..
(2.2), (2.3), then

.} 1s the solution of

6t)= 3 =06 Poas  (4)

agd

where pa(s) = {¥4(s),i = 1,2,...} satisfies the fol-
lowing recursive system of delerministic equations

dgh(s)/ds
Y Xiih(s) + ) aume(s)high,, (5)(2.5)
j k

06 (0) = ph1{ja=0}, (2.6)

for s < t.

L2(Q, P).

Moreover, the series (2.4) converges in

For a € J, denote d(a) = maz{k > 1 : ax > 0} and
set J = {a € J : |a|] < N,d(a) < n}. Expansion
(2.4) is a double infinite sum, denote by qn ,(t) the
truncated expansion which includes only terms corre-
sponding to a in J}.

Theorem 2.2 The error bound of qn o is given by

- N+1
Blavsn(t) - g < M REDE o)

If my(s) = 71;,m1,(s) = \/g cos(’T’”), then

(RN
(N +1)!

For a diffusion type state process z(t), similar result
was proved in [3]. It is clear that for N > 2 the error
is of order O(t3). First we will demonstrate how the
splitting-up approximation can be derived from (2.4)
- (2.6). Let us take N = co,n = 1 and for |a| = k,
write i (s) for pa(s). Solution of (2.5), (2.6) can be
approximated by

- 2 3
Elgnna(t) — qul} < el [ +c;] . (2.8)

oh(s) = (s\;{)kp,-(s), (2.9)

where p;(s) = P(z(s) = i). This can be shown by
induction. If k = 0, this is the exact solution by Kol-
mogorov forward equation. Suppose (2.9) holds up to
k — 1(> 0). From Lemma 3.1 (below), (2.5), (2.6)
follows that for s < t,

#i(s)

Ef -

— higl_ (r)pji(s — r)dr
7L, Ehtaiom

() g

where p;; is the transition probability for z. Approxi-
mate p;(r)pji(s — r) by p;j(s)p;i(0), then the summa-
tion gives hf p;(s), and we arrive at (2.9). When s = t,

g (t) ~ Z%(\/{h.‘)k}{k(fl)pi(t)
k=0’

1
= exp{hal®) - M), (210)
the last equality holds by the fact that exp{ﬂz -

22/2} = Y i ,z*Hi(8)/k!. Formula (2.10) is the
splitting-up approximation.




Corollary 2.1 The error of splitting-up method 1s

sup E|q°° 1(t) — q,l2 < celhlaT T3,
o<t

3 Proofs

Proof of Theorem 2.1 The theorem is proved if so-
lution of (2.5), (2.6) exists and is unique (see [4]). This
follows by induction and Lemma 3.1 below.

Lemma 3.1 Let l; = {(a1,az,...) 1 Y, |ai| < oo}

If uo € Ly end g(t) = (g1(t),92(2),...) satisfying
SUPg<r<T O 19i(t)| < oo, then there exists a unique
solution to

) + i) (3.1)

du, Z AJ,u]

ui(0) = ul. (3.2)

The solution satisfies supoc,cr 2 ; [ui(t)] < oo and
can be written as

w(t) = Y uhpui(t) + / 3" gk(O)pus(t - s)ds. (3.3)
k 0

In addition, if uy € 11012 and S“p0<t<TZ 9.
0o, then supogicr ) ; 4 Ht) < o0.

This lemma is well understood and we ommit the
proof.

Proof of Theorem 2.2 (¢f. Theorem 2.2 in [3])
Since {£,} is a CONS in Ly(R, P),

Elgneo® —a)3 = > Y I</>
k>N |a|=k
where (see [4])
Z |¢a(t)|2 55)

lel=k

L[ e

where T,_, f(7) Z f()pji(r — s) and ds* =
ds, - - - dsg. Dlrect computatlon yields

ITt—uhTsk-Sk—xh

02—'81hTS1p0'2 dS

: 'hTupOl% S 'hlgg

Now we substitute the latter into (3.5), integrate and
sum over k in (3.4). To prove (2.8) it is sufficient to
determine EIqN,,(t) — gN,oo ()3 which is given by

N
DS l%ﬁ)lg' (3.6)

>n k=1|a|=k,d(a)=l

For |a| = k, let if <i§ < ---
is known that (see [3])

]/ / Fit; 8*) Ea(s*) ds*
]
where

F.-(t;s") (Tt-:kh "le—nhTupo)l"
E.(s¥) Z mis(So(1)) - -

gEPx

< if where aie #0. It

i (86(1))

and P is the permutation group of {if,...

,i¢}. De-
note s}‘ = (s1,...

,8j—1,8j+1,-..,8k) and note that

k
Eo(s*) = Y mu(s;) E
i=1

Changing the order of integration we arrive at

L .
"./o (/":l Fi(t;s )mI(SJ)dsj) Ea(l)(s;)ds;‘—l

2

a(I)(s;)'

where so = 0,5¢41 =t. For mg(s) =

71; and my(s) =
\/; cos( =% ”’”) integration by parts gives

S5+1
/ F,-(t;sk) m;(Sj)de

i-1
= Fi(tisy,.. ., 8521, 8541, 841, - - -, St ) Mi(841)
—F-(t'sl,.. y 85— 1,8j_1,5j+1,...,sk)M((Sj_l)
4 OF(t
- / ﬁM,(s,)ds, (3.8)
s as]

j=-1

where Mi(s) = {—?sin%. The summation over
j of the first two terms of (3.8) cancels out all
the terms except —F;(t; s2,.. . .,sk)MI(O)Ea(l)(s’f) and
Fi(t; sy, ..., sk_l)M,(t)Ea(,)(s’,g), which are both zero.

So, we have
i/i/ak /01+1 /3,‘_1
j=1 0 Jo 0 0

82
fialt; sf) Eaqry(s}) dst,
0

where

fialtish) = / % Mi(s;) dsj. (3.9)
s 7

=l}C{a:|a|=k-1},

=1

Since {a(l) : |a| = k,d(a




lea(t)3

<
al =

lel=k,d(a)=l

lal=k-1 3
2 Ey gk ?
.- -/0 f;’l(t;s;) E.(s5) dsj) .

Note that the summation over a in the RHS of the
latter inequality gives

t Sk 8541 -1 83
[ mnen
o Jo 0 0 0 '

(see [3]). So

kot pan
> ey [

|al=k,d(a)=1

/0+ /0"" /0’ | a(t: s)|2dst (3.10)

Applying Holder’s inequality in (3.9) we see that
lfi,l(t;s;?)]2 is bounded by

Si+1 6F,'(t; s")
(222 Iy,
631' J

c
I—zt(8j+1 - Sj-x)/

Note that 9F;(t; s*)/ds; =

3=-1

(Teessh - hLTy s, RTs, s, 5
- (Tt—,,,h .« hLT,

'THPO)I'
h---Tupo), (3.11)

I+13;

where L is the operator (Lu); = Zj Ajiu;. It is read-
ily checked that L is a bounded linear map from I to
I N\I2. Let |Luly, [Lulz < Elul;. Applying the inequal-
ity |T,v|1 < |v|1 repeatedly in (3.11), we obtain
(4. FY |2
> l———aF’“’s )| < sz,
3 6SJ'

Therefore
c
Ifa(t; 55 < 7 [h|25 £ (sj41 — 55-1)-
Substituting into (3.10) and integrate, we arrive at

s Lo o HIRROS

| 2 - {
lal=k,d(a)=l @ { (k l)

This together with (3.6) and (2.7) gives the error
bound in (2.8). a
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