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Abstract
In this paper we study the balancing and model-
reduction of linear systems with discrete jumps at pe-
riodic time instants. These systems arise in the study
of linear systems with sampled data control and filtering
problems. We study the balancing for the case of fixed
and infinite intervals. We show that the system balanc-
ing can be used to obtain a reduced order-model of the
system with the properties of the original system. An
example is provided to illustrate the procedure.
1. Intreduction

In the recent past considerable interest has been shown
in the design of controllers for continuous systems with
sampled data measurements. This is largely due to the
ease of implementation of the controller with the use of
a digital computer. The emphasis has been on direct
design of the digital controllers without resorting to dis-
cretization of the plant or the controller to take into con-
sideration the intersample behavior of the system [1, 5].
The study of these problems has given rise to linear sys-
tems with finite discrete jumps at periodic instants [5].
The systems with jumps arise naturally in Hy and He
optimization problems. These systems have the proper-
ties of both continuous and discrete systems and in fact
both the continuous time and discrete time systems can
be derived as special cases [5].

On the other hand the notion of balanced realizations
of systems was introduced by Moore in [2] and studied
extensively in [2, 6]. The concept was extended to time
varying systems in [3] and [7]. In fact [7] explores the
possibility of input-output balancing for various grami-
ans and gives necessary and sufficient conditions for the
balancing transformations to exist in terms of the param-
eters of the system. While [3] explored the balanced real-
izations for uniform realizations, [7] considered balancing
over a general class of intervals. These include the Fixed
Interval Balancing (FIB) and Infinite Interval Balancing
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(IIB). The main idea of balancing is that the “degree”
of reachability (or controllability) and observability (or
constructability) of states of the system is quantified in
some manner. Thus the effect of the individual states on
the mput-output map i1s quantified. By eliminating the
least effective states a “good” approximation of a lower
order 1s obtained. Therefore, this leads to a method of
model reduction based on truncating the least reachable
and observable states of the system which describe the
dynamics. The balanced co-ordinates are chosen to make
the reachability and observability gramians equal and di-
agonal. When the system 1s time varying these transfor-
mations are also time varying [3].

In this paper we extend the notion of balancing to lin-
ear continuous systems with periodic discrete jumps and
study the notion of model reduction for these systems. In
Section 2 we present some preliminary results on linear
systems with periodic finite discrete jumps. In Section
3 we present the conditions under which the balancing
co-ordinates for the system exist and study their prop-
erties. In Section 4 we provide an example to illustrate
the procedure. Finally, Section 5 concludes the paper.

2. Preliminaries and Background

In this section we introduce the linear system with dis-
crete jumps and present some preliminary results related
to these systems. The linear system with discrete jumps,

represented by 3, is described by the following equa-
tions:

() A@)z(t) + B(t)u(t), t+#kh (2.1a)
z(kh) Aglkle(kh™) + Balk]u(kh),  (2.1b)
y(t) = C()z(t), t#kh (2.1¢)
y(kh) = Calklz(kh™) (2.1d)

where the matrices A(.), B(.), C(.) are of compatible di-
mensions with the state and the input vectors are piece-
wise continuous and bounded. The matrices Aq4[.], By[.],
Cy[.] are assumed to be bounded. The discrete jumps oc-
cur at periodic intervals of period k. The solution z(t) is
unique and piecewise right continuous. That is, the solu-
tion is such that lim,_ .+ 2(¢) = z(kh) and z(¢) may be
left discontinuous. The unique solution z(t) to the un-
forced system, i.e., when the input u(t) =0, Vt is given




by

z(t) = ®(t,s)x(s), t>s (2.2)
where ®(¢, s) is the state-transition matrix which is piece-
wise continuous with possible discontinuities at ¢t = kh.

The state-transition matrix satisfies the following condi-
tions [5]:

—a%(b(t,s) = A(t)®(t,s), t>s, t#kh(23a)
®(kh,s) = Aglk]®(kh™,s), kh>s (2.3b)
®(s,s) = 1. (2.3¢)

The internal stability of the system is expressed in terms
of the exponential stability of the state-transition matrix
and is defined as follows:

Definition 2.1 The sysiem ¥ described by equations
(2.1a)-(2.1d) is said to be exponentially uniformly sta-
ble if there are positive constants c1,cy such that

1B(t, s)|| < cre™2=9)) ¢ > (2.4)

The notions of reachability and observability for these
systems are standard. That is, the reachable subspace in
the time interval [t,¢s] is the subspace of all reachable
states with a finite energy input u(t),t € [to, ;] and a fi-
nite energy sequence u(kh), kh € [to,ts]. In other words,
the reachability subspace at time t;, denoted by X, (ts)
is given by

Xr(ty) = {=(ty) : 2(to) = 0,u() € Lato, t5], u(kh) € 2}

(2.5)
where £, denotes the space of all square integrable func-
tions and I, denotes the space of all square summable
sequences. The unobservable subspace at time ¢y for an
observation in the time interval [to, ;] is the subspace of
all states such that the output is identically zero in [to, tf]
when the initial state belongs to the unobservable sub-
space with u(t) = 0. Let X,(¢o) denote the unobservable
subspace. Then,

Xo(to) = {z(to) 1 y(t) = 0,u(t) =0,t € [to, 5] }. (2.6)
We now define the reachability and observability grami-
ans which characterize the reachable and observable sub-
spaces for these systems. The reachability gramian in
the interval [tp,?] is given by the positive-semidefinite
matrix (Q(tg,t) which satisfies the following differential
Lyapunov equation with jumps.

2o, = ADQU01 + QU 0AT()
+B(t)BT(t), t#kh (2.7)
Qlto, kh) = Aalk]Q(to, kh™)AT[k] + Balk]BI[k].
(2.8)
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The observability gramian in the interval [t,tf] is a
positive-semidefinite matrix P(¢, ;) satisfying the follow-
ing equations

_%P(t,tf) = AT(O)P(t,t5) + P(t,t5)A(t)
+CT(t)C(t), t+#kh (2.9)
P(kh=,t;) = AT[k]P(kh,t;)Aqlk] + CT[k]Calk).
(2.10)

The “balancing” co-ordinates of the realization are the
co-ordinates for which the reachability and observability
gramians are equal and diagonal over some time interval.
We will elaborate on the nature of the time interval later
in the paper.
The balancing of a system is achieved by a transforma-
tion of the state vector. In the case of time-varying sys-
tems, the transformation is also time-varying. Now, con-
sider the transformation of the state vector. Let T'(¢) be
a non-singular, piecewise right continuous matrix with
bounded jumps at periodic instants. Then, under the
transformation

z(t) = T(1)&(t), (2.11)
the state equations of (2.1a)-(2.1d) are transformed as
follows: We will represent the transformed system by

3.

2(t) = A@)E(t)+ B(t)u(t), t+# kh(2.12a)
#(kh) = Aglk]a(kh™) + Balklu(kh), (2.12b)
y(t) = C(t)e(t), t#kh (2.12¢)
y(kh) = Calk]i(kh™), (2.12d)
where the transformed system matrices are given as
Ay = TH) |AWT@) -T@)|, (2.13a)
B(t) = T (t)B(t), (2.13b)
C(t) CT(t), t#kh (2.13¢)
Aqlk] T~ (kh)Ag[k]T(kh™), (2.13d)
Balk] = T (kh)Bylk], (2.13¢)
Calk] = Calk]T(kR™). (2.13f)

Note that the transformation in the continuous part of
the system is identical to the transformation for continu-
ous systems and the discrete part to the discrete systems.
The state-transition matrix is transformed to

®(t,s) = T~H(t) ®(t, s)T(s), Vi, s. (2.14)

Transformations that preserve internal stability of the
systems are called Lyapunov transformations. Clearly,
the requirements on the transformations are that the in-
verse and the derivative at all times except kh be well
defined, continuous and bounded. This leads to the def-
inition of equivalence of systems given below.




Definition 2.2 The systems ¥ and Y defined by equa-
tions (2.1a)-(2.1d) and (2.12a)-(2.12d) respectively are
topologically equivalent if they can be transformed into
the other by the transformation T'(t), where T(t) is Lya-
punov. That is, T(t), T~1(t) and T(t), when it exists,
are bounded.

We note that the derivative of T'(t) is not defined at
t = kh. However, it is well defined in the neighborhood
of kh. This ensures that the matrices A(t), B(t), C(t)
are well defined in the neighborhood of kh. Further, the
boundedness of the transformed matrices follows from
the boundedness of T(kh™) and T(kh'). It is easy to
see that the exponential stability remains invariant un-
der Lyapunov transformations. Further, it is easy to ver-
ify that the reachability and observability gramians are
transformed to (see Appendix A.1)

T (ty) Qto,t)) T T(ty),  (2.15)
Plto,ty) = T"(to) Plto,ts) T(to)- (2.16)

Clearly, the input-output gramian P(t,t;)Q(to,t) with
t € {to,ts], undergoes a similarity transformation given
by

P, 1))Q(to, t) = TT(t)P(t, 1:)Q(to, )T T(t). (2.17)

We now proceed to study the conditions under which
the reachability and observability gramians can be di-
agonalized by Lyapunov transformations. We say that
the system X is in balanced co-ordinates if Q(to,t) and
P(t,t;) are diagonal and equal.

3. Balancing and Model Reduction
In this section we establish the conditions for the exis-
tence of a balancing Lyapunov transformation. Further,
we show how the system can be reduced to obtain a lower
order model for the input-output description of the sys-
tem. In particular, we will explore the stability proper-
ties of the reduced order model.
3.1. Finite Interval Balancing
We will consider the input-output balancing with respect
to the reachability and observability gramians defined
over specific time intervals. We first consider the fixed
interval balancing (FIB) [7]. Here, no assumptions need
to be made with regard to the internally stability of the
system. Consider the time intervals for the reachability
and observability gramians with fixed initial and final
time periods i.e., ty and t; are fixed and given. We
want to find a Lyapunov transformation so that Q(to,1)
and P(t,ts) are equal and diagonal for t € [to,t;]. To
simplify the notation we will denote Q(to,t) and P(t,1y)
as Q(t), P(t) respectively. We assume that the system is
“totally” reachable and observable in the time intervals
of definition [4]. Therefore, Q(t) and P(t) are positive-
definite in t € [to,t;]. We now characterize the nature of
balancing in terms of the gramians.

Q(io, tf) =
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Theorem 3.1 The realization of the system ¥ described
by equations (2.1a)-(2.1d) is FIB over [to,t;] iff the fol-

lowing equalions are satisfied:

Q) = P)=A(Q), (3.1)

Ato) = A(ty)=0. (3.2)
Further, the matriz A(t) is diagonal and satisfies
At) = A@AE) + AWAT(1) + BB (1),

t# kh (3.3a)

A(kh) = Aalk]A(kh™)AT k] + Ba[k] BT[], (3.3b)
—A(t) AT()A(t) + A1) A(t) + CT()C(1),

t £ kh (3.3¢)

A(kh™) = AT[kJA(kh)A4k]) + CTK]C4[k]. (3.3d)

Proof: Necessity: Let the system ¥ be FIB over

[to,ty]. Then, Q(t) and P(t) are diagonal and equal.
Furthermore, Q(ty) = 0 and P(t;) = 0.

Sufficiency: Since the solution to (2.1a)-(2.1b) is unique,
the gramians are unique and hence, the system is FIB in

[to, ts]. =

We now give the balancing transformation that can be
constructed from the system. The existential conditions
of the transformation are derived from the construction
of the balancing transformation. This approach is on the
lines of [3]. The drawback of this approach is that the
conditions are obtained in terms of the gramians and not
in terms of the system parameters. While [7] gives condi-
tions in terms of the system parameters, the assumptions
on the system matrices are also very strong. However, we
do not assume analyticity of the system matrices here.
We first note the following.

Lemma 3.1 Let ¥ described by (2.1a)-(2.1d) be totally
reachable and observable in t € [tg,t;]. Then, Q(t) and
P(t) are Lyapunov.

Proof: We prove that Q(t) is Lyapunov in t € [tg,t5].
The proof for P(t) follows similarly. Consider the equa-
tions (2.7) and (2.8) with jumps. A closed form solution
for Q(t) 1s given by

Q) = &(t,kh)Q(kh) DT (t, kh)
+ /@(t,T)B(T)BT(rm(t,T)dr, (3.4)
kh
Q(kh) = Aqlk]Q(kh™)AT[K] + BaB{[k],  (3.5)

with Q(to) = 0. Clearly, the matrix Q(t) is bounded
in the finite interval with finite jumps at time periods
t = kh. Further, since the system is assumed to be to-
tally reachable in [tg,t;], the inverse exists and is also




bounded. The derivative of Q(t) for t # kh is given by
(2.7) and 1s bounded whenever Q(t) is bounded. There-
fore, Q(¢) is Lyapunov. =

Now, consider the transformation T'(t) = Q7(t). Then,

Q) = 1, (3.6a)
P(t) = S(t) (3.6b)

where S(t) is given by
S@t) = QF (1) P()Q* (t). (3.7)

This transformation is referred to as the “preinput nor-
malizing transformation” [7]. Note that S(¢) is symmet-
ric and positive definite on the interval [tq,t].

Clearly, S(t) is Lyapunov. It is well known that there
may not be a eigenvalue decomposition of S(t) with the
unitary matrix being Lyapunov [3]. Moreover, if there
are no conditions on the system matrices (Analyticity),
then the conditions for the existence of such decomposi-
tion are obtained in terms of the gramians of the system
and not in terms of the parameters of the system [7, 3].
We therefore, provide the conditions for the existence of
a decomposition with Lyapunov factors. Let S(t) satisfy
the following properties:

Property It The eigenvalues of S(t), oZ(t), oit), i#j
cross only at isolated points on the interval. Further-
more, the set of points, denoted by S, does notl contain
the points kh € [ty ty].

Property Il: The eigenvalues a?(t),af(t), i % j donot
have common derivatives on the sel 2.
Property III: S(t) has continuous second derivatives

on the neighborhood of allt € Q2.

Remark 3.1 The conditions on S(t) are sufficient only.
We note that the continuily of U(t) and U(t) is essential
only fort # kh and discontinuities are allowed at t = kh.
Therefore, the set Q0 is modified to accommodate for the
discontinuities at t = kh.

If S(t) satisfies the above conditions, then by Lemma
A.2.2, there is a unitary and U(¢) and a A(?) so that,

Sty = U@ A2 ) UT (1) (3.8)

where U(¢) and A(t) are Lyapunov. Then, we use the
transformation T'(t) = U(t)A~2. Clearly, T(t) is Lya-
punov as it is the product of two Lyapunov matrices by

Lemma A .2.1. Therefore,

Q) = AFQUT()TUR)A* (), (3.9)
P@t) = AU U@A QUT () U-AT3 (1),
(3.10)
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which gives

Q(t) = P(t) = A(t). (3.11)

The overall transformation to transform the system ¥ to
balanced co-ordinates is given by

T(t) = U(t) A (1) Q3 (). (3.12)
We now study some of the properties of the FIB real-
izations. We shall henceforth assume that the system is
in balanced co-ordinates. Since the system 1s essentially
a continuous system with discrete behavior at periodic
times, we expect the balanced realization to exhibit prop-
erties of both continuous and discrete systems. This is
indeed the case as we show in our next result. It 1s well
known that in the case of continuous systems, the matrix
A(t) is negative-definite in the interval [to, 5] [7]. We see
that this property extends to the continuous part of the
system. Furthermore, the discrete part of the system also
satisfies the contractive property [6].

Lemma 3.2 Let the system X be FIB in [to,t;]. Then,
A(t) is non-positive definite in the interval {to, 1], t #
kh. Furthermore, A4[k] 1s contractive, t.e.,

[l Aa[k]]] < 1. (3.13)

Proof: Consider equations (3.3a)-(3.3b). Adding
(3.3a) and (3.3b) we have
A (DAR) + A(t)A,(t) = —(CTC + BBT)(t) (3.14)

where A (1) = A(1) + AT(t) with A(t) > 0 for all t €
[to, t;]. Therefore,

As(t) = —/ e_A(t)T(C'TC_I_ BBT)e—A(t)T dT,
0
t# kh. (3.15)

Hence, A,(t) 1s negative semi-definite. Now, substituting
(3.3d) in (3.3¢) we have,

A(kh) = AgATA(kh)A4AT + A4,CT CyAT + B4BY.
(3.16)
Following the argument in [6] (Theorem 3.1), we have

Amaz (AgAT[K]) < 1 (3.17)

and therefore, ||A4{k]|| < 1. n

Note that the system with jumps possesses the proper-
ties of the continuous and discrete time systems. That
is, the continuous part satisfies the property of the con-
tinuous system and the discrete part, that of the discrete
system. As a consequence of the above Lemma we have
the following result:

[

=]

Mo by

nArr

hom

n
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Lemma 3.3 Let the system ¥ be FIB in [to,t5]. Then,
the system is dissipalive in the time interval. That us,
lz(?)|| s non-increasing for t # kh and ||z(kh)|| <
|lz(khT)|f for u=0.

Proof: Let f(t) = ||z(t)}|*>. From (2.2) we have
z(t) = ®(t,to) z(to). (3.18)
Therefore,
f(t) = 27 (t0) ®T (¢, t0)®(t, t0) (o), t € [to,ts]. (3.19)
Now,
fty = 2T(t) @7, t0)®(t, 20) (to)
+.’L‘T(t0) (I)T(t to) (t to) ( ) t# kh
= ST (AT @)(t) + T (DAWDa(),
< 0. (3.20)

Therefore, for t # kh, ||z(t)|| is non-increasing. Now,
consider f(kh).

f(kh) = zT(to) ®T (kh,to)®(kh,to) z(to),
= zT(kh™) AT [k)Aglk] z(kh7),
< f(ERT). (3.21)
n

Therefore, when the system is in balanced co-ordinates
the state is dissipative in the interval [to,t;] as it is the
case with both the continuous and discrete systems.

We now explore the notion of model reduction for the
jump systems over the finite interval. It is well known
that the reduced order model is dissipative in both the
continuous and discrete time systems. We show that
these properties carry over. However, it is to be noted
that the lower order model may not be balanced as the
discrete part of the system does not result in a balanced
reduced order system.

Lemma 3.4 Let the system ¥ be FIB in [to,t]. Let the

system be partitioned as z = [zT :vg]T and the sysiem

matrices be partitioned conformably. Then, the reduced
order model described by

81(t) = Apz(t)+ Bi(Ou(t), t+# kh(3.22a)
zi(kh) = Apg[klei(kh™) + Bralklu(kh), (3.22b)
y(t) = Ci()ai(t), t# kh (3.22¢)
y(kh) = Cialk]e:(kh) (3.224)

satisfies the equations

A(t) = An(DA,
+ Bi(t)B] (1),

() + A (1) AT, (1)

t # kh (3.23a)

A(kh) = Ana[k]Ai(kh™)AT (k]
+  Auzalk]A2(kh™)ATy4[k] + Bualk] BIy[k],

(3.23b)
A1) = ATOA() + A0 An()
+ CTW)Ci(t), t#kh (3.23¢)
A(khT) = Alld[] 1(kh)A114(k]
+  A7ia[k]A1(kh) Azyalk] + CT[k]C1alk]
(3.23d)
where A 0
A) = [ 10(‘) Az(t)] . (3.24)
Proof: Follows directly from substitution and simph-

fication. ]

Clearly, the system is not balanced as the discrete portion
of the system is not balanced. However, the continuous
part of the system is balanced and it is clear that the
subsystem has the non-positive property for A;(¢). The
system is “approximately” balanced if A; > A,. Fur-
thermore, it is easy to verify that the contractive prop-
erty extends to the discrete part of the system. We show
this in the following Lemma.

Lemma 3.5 For the reduced order system described by
equations (2.12a)-(2.12d), Ai1a4 is contractive in [to,ts].

Proof: Consider the partitioned equations (3.3b) and
(3.3d). We have

Ar(kh) = Apalk]Ai(kh™)AT, k]
+A12a[k]A2(kh™) ATa4[k) + BraBiylk),
(3.25a)
M(kh™) = AT 4lk]Ai(kh)Arrak]
+AT, 4[k]Az(kh) Agralk] + CTyChalk],
(3.25b)
Ay(kh™) = AT, [k]A1(kh)Arzalk]
+ AT, g[kJA2(kh) Agzalk] + C5,Caalk],
(3.25¢)

Substituting (3.25b) and (3.25¢) in (3.25a), we have

Ar(kh) = ApaAT) k] Av(kh) Ap1aAT) lk)
+ A12a AT, (k] AL (kh) Agpa AT, 4(k)
+A11a AT (k) Aalkh) Az g AT, 4lk)
+ A2 ATy 4 [k] As(kh) Agzq AT, k]
+ACTCLAT (k] + A12CT Cy AT,
+B, BT [k]. (3.26)

By noting that the second and subsequent terms on the
right hand side constitute a positive semi-definite matrix,




the result follows by an argument similar to the one in
Lemma 3.2. ]

A direct consequence of the above result is that the re-
duced order system is once again dissipative. Therefore,
in FIB co-ordinates, the system and all sub-systems are
dissipative. We formalize this by the following Lemma.

Lemma 3.6 The reduced system described by equations
(3.23a)-(3.23d) is dissipative in the time interval [to,ts].

In this section we have studied the properties of finite
interval balancing. We have provide the conditions for
the existence of the balancing transformation and shown
that the dissipative property extends to the lower order
system.

3.2. Infinite Interval Balancing

In this section we explore the case of infinite interval
balancing (IIB). In this case, we let {p — —oco and t; —
+00. We will denote the gramians by Poo(t) and Quo(?).
We do not provide a rigorous solution to the problem
but provide an outline of the procedure highlighting the
differences from the case of FIB.

The first question that needs to be resolved is the exis-
tence of the gramians in the asymptotic case when tg and
ty tend to infinity. In this case, a sufficient condition for
the existence of the gramians is the square integrability of
1®(r,t)C(7)]| and ||®(t, 7)B(7)|| and square summabil-
ity of [|®(kh,t)Cylk]]| and ||®(¢, kh)Bg[k]||. This may be
obtained by considering the closed form of the gramians
(3.4)-(3.5). This in turn is guaranteed by the asymptotic
stability of ®(t, s) and the continuity and boundedness of
the system matrices. Therefore, the next question that
needs to be answered is the time period over which the
balancing is done. If ¢ varies in finite intervals, then the
results of the previous section follow with minor modifi-
cations [7]. In the case that ¢ — oo we need additional
conditions which guarantee that the transformation in
the limiting case is well defined and Lyapunév. How-
ever, we note that in the limit when ¢ — oo, the gramian
converges to that of the continuous time gramian. And
therefore, it is reasonable to expect that the conditions
of the continuous time case carry over to these systems
too.

Therefore, we give the results without proofs. The suffi-
cient condition for the existence of a well defined trans-
formation in the limit as £ — 00 is the eigenvalues of
the gramians be disjoint [7]. Before we present the re-
sults, we recall the notion of disjoint eigenvalues [7]. A
matrix M (t) is said to be disjoint iff for any two eigen-
values 0;(t) and o;(t), i # j of the matrix, there is a 7;
and ¢;; so that

|0','(t) — O'j(t)l > €5 Vi > Tij - (3.27)
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Lemma 3.7 Let thé system X be such that Qo (t) and
P (t) are well defined. Then, the pre-inpul normalizing
transformation is well defined and Lyapunov ast — too

if Quo(t) is disjoint.

Now, a similar characterization is necessary for the rest
of the transformation to be well defined and Lyapunov
in the limit as ¢ tends to infinity.

Lemma 3.8 If the system ¥ is asymplotically stable
and Quo(t), QooPoo(t) are disjoint, then the system 1is
topologically equivalent to a balanced realization for t €
(=00, 00).

Now we characterize the balanced system in terms of the
Lyapunov equations. We assume that the system is II1B.
Therefore, we have

Theorem 3.2 Let the system X be IIB. Then, gramians
Qoo (t) and Py (t) satisfy the following conditions:

Qoo(t) = Poo(t) = A1),

Further, the matriz A(t) ts diagonal and satisfies

(3.28)

A(t) = AQ@)A()+ A@)AT(t) + B(t)BT (1),

t# kh (3.29a)
A(kh) = Aqlk]A(kRh™)AT[k] + Ba[k)BY k],

(3.29b)

—At) = AT@)A@) + A()A(t) + CT(1)C (1),
1 # kh (3.29¢)

A(kh™) = AT[k]A(kR)Aglk] + CTK]C4[K).

(3.29d)

Note that the conditions are only necessary since for the
balancing at infinity, additional conditions on the eigen-
values of the gramians are needed. When the system is
in balanced co-ordinates, the notion of model reduction
can be explored. In the case of infinite interval balancing,
the properties of interest are the asymptotic stability of
the reduced system. These results are currently under
investigation.
4. Illustrative Example

In this section we consider an example to illustrate the
balancing of the system with jumps. The system is a
double integrator with discrete jumps and is defined by
equations {2.1a)-(2.1d) where:

0 1 0 -

A = [0 0], B_[l]’ C=[1 0](4.1a)
cos) —sinf 1

Ad = [sin() cosf }’ Ba = [1] ’

Cy = [1 l] {*1b)




The system has periodic jumps which occur at t = k,
where k is an integer. The discrete jumps are character-
ized as rotations effected by A4 and translations effected
by Bi. The balancing of this system is considered over
the time interval [0,1]. Here & = £ when k = 1. The
computations were performed by using the symbolic tool-
bor of MATLAB. The solution to the reachability and
observability gramians are given by the following equa-
tions

- o~
uwlu

Wiy o~ M]

3 _92¢t4 A4
2 2

P(1) 7 o0
3~ 3t+ 2t — T

(4.3a)

P(t) 0, (4.3b)

Clearly, the ‘pre-input normalizing’ transformation is
given by

13/2¥3 0
3
Viva Vi
2 2
[ 1.0801 0

0.6172 1.3363

. te0,1) (4.4a)
], t=1. (4.4b)

The observability gramian is transformed to S(t) and is
given by equation (3.7) as

) s2(t)
, te|0,1 4.5a
[ | SB(t)] €[0,1) (4.5a)
0,

=1 (4.5b)
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The singular value decomposition of S(t) is given by
equation (3.8) Where A2(t) is given by

, o+ 16'[1 0
(1) , , t€[0.1) (4.9a)
0 o — —g

0, t=1 (4.9b)

7t 32 3 ¢4

6 s T3 T
VA9 — 63t + 4112 — 1813 + 414, (4.11)

(4.10)

The singulaf vectors are given by

Uy = [°°S¢ ‘Si“¢], 1€[0,1) (4.12a)

sing  cos¢

U(t) 0, t=1. (4.12b)

where
¢ =sin! 3—_t—+% (4.13)
Therefore, the overall balancing transformation is given
by equation (3.12) as
T(t) [cosqb —singb] »

sing  cos¢

134 /2 0
V3 3i/v-258

Y133/ V31

VZit2s V2 ify+2p

. te(0,1)  (4.14)

where

v=—144+9t—-4t*+ 1> (4.15)

It can be verified easily that the transformation T'(t) is
Lyapunov in the interval (0,1). And the system is in
balanced co-ordinates with the reachability and observ-
ability gramians given by A(t) in the interval {0, 1].
5. Conclusions

In this paper we have studied balancing for continuous
systems with finite jumps at periodic time instants. We
provide sufficient conditions for the existence of balanc-
ing transformations over a finite interval and showed that
the properties of both the continuous and discrete time
systems extend to these systems. We have considered
the case of infinite interval balancing and provided the
conditions under which balancing transformations exist
by heuristic arguments. Formal proofs of these results
are under investigation. The notion of model reduction
and the properties of the reduced model are under inves-
tigation.

Appendix A.1




In this appendix we carry out the calculations for the
transformation of the reachability gramian. The calcula-
tions for the observability gramian are similar. We will
denote Q(to,t) by Q(¢) to simplify the notation.

For the system ¥ described by equations (2.12a)-(2.12d)
we have,

QM) = A®O() + QAT (1) + B()BT (1),
t # kh (A1.1)
Q(kh) = Ad[k]Q(kh™)AT[K]) + Ba[k] BT [k](A.1.2)

simplifying (A.1.1),

Qv = 1 [aT-7] QW)
+Q(t) [TTAT ~ 17| 7T
+T-'BBTTT,
TOWTT = (AT - 7] @wyr”
+TO(1) [TTAT - TT} + BBT,
TOWIT = 4 (TQrT) + (TQT™) AT + BB,
(A.1.3)
we have,
Q(t) = TQW)TT, t+# kh. (A.1.4)

Similarly (A.1.2) is

Q(kh) = Aalk]Q(kh™)AT k] + Balk) BT [k],

= T N (kh)AdT(kh™)Q(kh™)TT (kh™)AT T~ T (kh)

+ T '(kh)Ba[k)BY[k] T~ (kh), (A.1.5)
T(kh)Q(kR)TT (kh) = AgT(kh™)Q(kh™)TT (kh™)AT
+  Ba[k)BT[k]. (A.1.6)

Therefore,
QU)=T"')QW)T T(t), Vvt (A.1.7)

Appendix A.2

In this appendix we present some ancillary results on
Lyapunov transformations. The proofs are straightfor-
ward and are modifications of the continuous time case.

Lemma A.2.1 Let P(t) and Q(t) be two Lyapunov ma-
trices with periodic finite jumps. Then P(t)Q(t) is Lya-
punov.
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Lemma A.2.2 Let S(t) be a symmetric positive-definite
and Lyapunov over a finite time interval with periodic
finite jumps. Furthermore, let S(t) satisfy the Properties
L-HI:. Then, there is a eigenvalue decomposition

S@) = U@)A ) UT () (A.2.8)
where U(t) is unitary and A(t) is positive-definite with
U(t) piecewise continuous with bounded discontinuities
at periodic time instants. Furthermore, U(t) and A(t)
are Lyapunov.

Proof: It is clear that the argument is exactly identical
to the continuous time case when t # kh. For t = kh,
we have that the jump in S(¢) is finite and hence U(kh)
and A(kh) are Lyapunov. ™
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