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Abstract

For linear systems with delays we consider the prob-
lem of the observability with unknown input and ini-
tial function. Abstract condition is given using output
nulling subspace described using frequency domain ap-
proach. In the state space framework one gives geo-
metric conditions for perfect observability, in particu-
lar, for a finite time intervalle. We use the description
of the delay systems by systems without delay which
represent the system in a finite time interval. One
notes also the connection with other control problems
(invertibility, disturbance decoupling).

Keywords: Delay systems, Observability, Invertibil-
ity, Decoupling.

1 Preliminaries

The present paper is concerned with linear delay sys-
tems, i.e. systems described by equations

{ #(t) = Aox(t)+ Arz(t — h) + Bou(t) ()
y(t) = Cox(1)
The state space X is R™, the input space U i1s RP

and the output space Y is R™, h stands for the delay.
In this paper we assume that matrices By and Cy are
of full rank. The control function is assumed to be
Laplace-transformable, i.e. the integral

/ e~ *tu(t)dt
0
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converge absolutely for Res > «.
One can also consider more general systems with sev-
eral commensurate delays, with delays in input and
output. The approach developped in this paper may
be extended for those cases.

The initial conditions are given by

z(0) =zo, 2(t) = (1) (2)

The purpose of this study is to determine conditions
when from the observation of the output y(t) on a fi-
nite interval of time, one may determine the state of
the system, the input u(t) and the initial conditions
being, in general unknown. This notion, called perfect
observability, for a system without delay (Ay = 0),
was considered first by Basile and Marro [1]. The well
known criteria of observability for the case A =0
is that the supremal (Ag, Bo)-invariant subspace con-
tained in Ker Cp, noted V*, is the trivial subspace {0}.
There is other equivalent conditions, for example the
rank condition:

sl — AO
Co

Miniuk [5] shows that an analogous condition holds for
delay systems like (1): the perfect observability of the
delay system is equivalent to the condition

sl — Ag — Ale_hs —By
Co 0

for all s € C. In this paper geometric conditions are
given for perfect observability. We introduce and con-
sider also the notion of the perfect observability in fi-
nite time which is, for delay systems, different from
perfect observability. The subspaces introduced for
observability are used for other control problems.

for t € [=h, 0]

—By

rank [ 0

]:n—}-m, Vs € C.

rank [ ] =n+m, (3)



1.1 System description

We use a step-by-step description of the delay sys-

tem. This description was introduced by Olbrot [7]

and Zmood [14]. This approach is based on the idea

that the system (1) may be described by the equations
Frzp(t) + Groe(t)

{ Z'k(t) =
wi(t) = Hrzi(t)

where the matrices Fi, Gy and H; are given by

(4)

rdg 0 0 07
A A 0 ... 0
Fk: 0 Al Ao 0 ,
L0 0 0 Ag
rBo 0 0 0 7
0 By 0 0
Go=|0 0 B 0|,
L0 0 0 ... Byl
Co 0 0 0 17
0 Cy O 0
Hk:. 0 0 Co 0
L0 0 0 Co J

Let Z; be the matrices:

I
Zo=1, Z= [eF“-l"Zk_l] :

It is well known that the solution of the system (1)
with the input u(¢) = 0 and the initial function ¢ = 0
may be written as

z(t) = ®(t)xo

= [0,...,0, e = M7 00 t e[k k+1].

For arbitrary initial function and control function one
has

h
2(t) = B(t)zo+ /O ®(t - 7)Arp(7)dr

+ /t ®(t — 7)Bu(r)dr.

Another expression of the fundamental solution may
be given using the so called ”determining equations”
introduced by Gabasov and Kirillova (see for instance
[3]). Let the matrices Q;(j) be defined by

Q:(J) = AoQ-1(5) + A1Qi1 (G - 1),
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Q(0)=1, Qi(j)=0 if

Then the funda‘mental solution ®(t) may be written as
follows

S (= )
() =YY Qi)

i!
i=0 j=0

ij < 0.

for t € [kh,(k+ 1)h).

The relation between the two different expressions for
the fundamental solution ®(t) may be explained by
the equality

Qi(0) 0 .0
; Qi(1) @) ... o0
Fk = . . . .

Quk) Quk—1) ... Qi(0)

In [6, 10, 11] the expression given here was used to
describe structure at infinity and to solve some control
problems as disturbance and row-by-row decoupling.

1.2 Geometrics tools

As in [6] we consider the ouput nulling subspace in fre-
quency domain. First we define strictly proper func-
tion.

Definition 1.1 A function f(s) defined and and ana-
lytical for Res > sq is said strictly proper ifsf(s) — fo
as s — 400, s betng real and fy a constant.

Note that if f(s) is strictly proper then f(s) — 0 as
s — 0o. According to this definition the transfer func-
tion matrix T(s) = Co(sI — Ap — A1e™*)"'By is a
strictly proper function matrix.

Definition 1.2 The subspace Vg which elements are
z € R™ such that

z = (sl — Ag — A1e™*)é(s) — Bw(s), s> sq,
where sy is a real number and €, w are strictly proper

functions, such that Cof(s) = 0,is called the output
nulling subspace in frequency domain.

Note that the subspace Vg is in R”. In [15], in a infi-
nite dimensional setting, was considered the supremal
frequency invariant subspace. If we consider the in-
finite dimensional representation of the delay system
(1) in the subspace R™ x Ly(—h,0;R™) then the sub-
space Vg is the projection on R"™ of the intersection
of the supremal frequency invariant subspace and the
subspaces Xy C R™ x Ly(—h,0;R") which elements
are (z,0),z € R™. In a similar way one can define the
ouput nulling subspace in the time domain.




Definition 1.3 The output nulling subspace in the
time domain, noted V,;, is the subspace of those ¢ €
R™ such that there exist an initial function ¢ and a
control u(t) such that the corresponding output y(t)
vanishes for all t > 0. In the particular case when
the initial function is 0, the corresponding subspace is
noted VY.

Let us remark that if A; = 0 then the subspaces Vs
and V,; concide with the subspace V* which is given
by the algorithm:

Vo = R7,
V; = Ker CoN Ay} (Vi—1 + Im B),

V* = N;enVi. And there exists a matrix Ly such that
V* is invariant under the transformation Ag + ByLg
(see [1, 13]).

2 Observability

Let us give the precise definition of perfect observabil-
ity.

Definition 2.1 The system (1) is said perfectly ob-
servable if Vo = {0}.

The perfect observability means that given an output
y(t) = 0 the corresponding initial conditions which
generate this output is (29, ¢) = (0,0) for all possible
control u(t). Oneé can also consider a weaker notion
when the initial function is known to be 0. In this case
we say that the system is weakly perfectly observable,
this notion correspond to the condition V9, = 0.

In the sequel we say ”observability” instead of ”perfect
observability” if no confusion occurs.

First let us show the following Lemma.

Lemma 2.2 Vg, C Vo CVs.

Proof. The first inclusion is obvious. Suppose that
Zg € Vo then there exists an initial condition ¢ and a
control u(t) such that the corresponding solution z(t)
verifies

z(t) = Aoz(t)+Ajz(l—h)+Bou(t), Coz(t)=0, t>0.

The Laplace transform gives
zo = (sI — Ag — Are™")i(s) — Bu(s)

with £ and 4 strictly proper functions and #(s) €
Ker Cy for all s. This means that zg is in Vy. B

The main result is given by the following theorem.

14

Theorem 2.3 The system (1) is observable if and
only if the following equivalent conditions holds

. sl — Ag — Ale_’” —By _
i) rank [ Co 0o |=ntm
i1) Vs = {0}.
In the sequel the matrix
sl — Ag — Ale"" —-By _
[ Co 0 =n+4m

will be noted by K(s).

Proof. The condition 7) was in fact proved in
[5]. One gives here another proof following the scheme
i) =,1i) = V, = {0} = rank K(s) = n + m.

1. Assume that rank K(s) = n+m and zo € V5. Then
zo = (sI — Ag — A1e™"*)¢(s) — Bw(s), with £(s) and
w(s) strictly proper functions and Co€(s) = 0. This
may be written as

Zo| _ p £(s)
3] =x@[55]
Let K !(s) be the left inverse of the matrix K(s).
Then we have
1 |zo| _ [&(s)
s [3]=[55)

Let us note by Kj; the blocks of the matrix K,'lz
Kin K| [sI—Ao—Ase™® —By] _[I o
Koy Koo Co o |~ {o 1|

We have then — K93 By = I which means that — Ko

is a constant matrix. In the other hands, w(s) =

—K3129. Then w cannot be a strictly proper function
if zo # 0. This implies that Vg = {0}.

2. If Vx = {0} then the Lemma 2 gives V,; = {0}.

3. Suppose now that V,; = {0} but rank K(s) < n+m,
i.e. for some s; Ker K(s1) # {0}:

(511 — Ag — A1e™ ™)) — Buwy =0
and Coé; = 0. Let F be the matrix defined such that
F& = wy. If 2(t) = e2?¢; and u(t) = —Fesrhig,,
then a simple calculation gives

I(t) = Ao.’L’(t) + Al.’l:(t — h) -+ Bou(t)
and Coz(t) = 0. this means that & € V,. But
(&1,w1) # (0,0), and & = 0 implies w; = 0, because

of the assumption: By of full rank. Finally V,; # {0}.
This ends the proof. [ |



Remark 2.4 The assumption of By being of full rank
1s not essential: in the general case one replaces in the
proof By by B which is composed by the m indepen-
dent columns of By and m by m. On the other hand,
the Theorem 2.3 yields a necessary condition of perfect
observability: rank Cy > rank By.

The conditions given by the Theorem 2.3 is not easy
to verify. In the following section one obtains a more
simple but only sufficient condition of perfect observ-
ability as a consequence of a condition of perfect ob-
servability in finite time.

3 Observability in finite time

For time invariant systems without delay perfect ob-
servability does not depend on the time of observation.
If a system is observable on [0, 7], then it is observ-
able in [0,71] for all 7. For delay systems, it is not
the case. The following example may illustrate this
situation.

Example. Let consider the system (1) with

1
A0=0,A1:[8 0],30:[(1)],0():[1 1]

A simple computation shows that the initial state

(1) is not observable on [0, h] but
all states are observable on [0, 2h].

In the other hand the condition of perfect observability
does not insure the existence of a finite time interval
on which the system may be observable. As in many
applications one considers a systems in a finite time
interval, it is interesting to know conditions of observ-
ability in a finite time interval. This section is devoted
to this problem.

The approach developped here make use of tools in-
troduced in [7] for controllabilty and extended in [8]
for delay systems of neutral type. Consider the sys-
tems (4). Let V} be the supremal (Fy, G})-invariant
contained in Ker Hy. It is well known that this sub-
space contains the elements z,? such that there exists
a function v; such that the output wy corresponding
to the initial condition z? and the control vy is equal
to zero. In the other hand, there exists a feedbak Ry
such that V} is (F},+GyRg)-invariant. Let now K}
be the (F%, G )-controllability subspace in Ker Hy, i.e.
the subpace of all reachable states from the origin with
a trajectory lying in V;. Note that if R} is as defined
here, the subspace K3 is also (Fy,+Gy Ry )-invariant.
Just in order to simplify, we consider the delay system
with a zero initial functicn ¢ Later will be considered
the more general case.

(20,0) with zo =
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Lemma 3.1 An initial condition zo is such that the
corresponding ‘output of the system (1) verifies

y(t,20,0,u(t)) =0, for te0,(k+ 1)h]

for some control u(t) if and only if

[’3’] € (I - JeePronROn) 2 4 ik,

where I is the identity in R™*(*+D) and J, is given by

0 00 ... 0

I 00 ... 0
Je=|0 I 0 0,

0 60 ... 0

and I is the identity in R™.

Proof. Suppose that z¢ is such that there exists a
control u(t) and

y(t,20,0,u(t)) =0, for te0,k].

Then the corresponding solution of the system (4), say
zk(t) is in Vg for all t € [0,h]. The corresponding
initial condition 2;(0) is given by

Lo

- .
Zk(O) = [Zk—l(h)] = [ 0 ] +szk(h).
The value z;(h) is in V; and may be written as
zg(h) = elFFExROR 1 (0) 4 ¢4,

where (; € K;. This gives

(5] = (e = detmrormony o) - g

As 2;(0) € Vi, one obtains the desired result.
Conversely, suppose that

[IO] — (Ik _ Jke(Fk-l-GkRk)h) v; +JkK::

0
Then
[%0] = (Ik - Jke(F“+G*R")") 2k + Ik,
with

h
Ck:/ e(F"+G"R")(h'r)Gkvk(T)dT.
0




This yields to

[160] = zk + Jrzi (h),

where

h
z(h) = e(Fk'f'GkRk)hzk_i_/ FAGRRI=T) G (Vdr

0

It is easy to see that, by construction, z;(t) € V; and

2(0) = [%"] + Jxz(h) = [ijzlo(h)] '

This means that Hyzx(t) = 0 for t € [0, h]. The cor-
responding solution of the system (1) with the initial
condition 2(0) = xo and ¢ = 0 verifies: Coz(t) = 0 for
t € [0,(k+ 1)h], i.e. y(t,20,0,u(t)) = 0 in the same
interval for some control u(t). ]

Now we can formulate a condition of perfect observ-
ability one a finite time interval. By this we mean that
the initial condition o may be determinated using the
observation of y(t) on [0, T], the control u(t) being un-
known. As it was assumed, the initial function is here
p=0.

Theorem 3.2 The system (1) is perfectly observable
on [0,T], for 0 < T < (k + 1)h, if and only if

[1;)0] € (Ik — Jke(F"+G*R’°)h) Vi + JkK; (B)

implies g = 0.

Proof.  Suppose that the system is observable on
[0, 7] with 0 < T' < (k + 1)k and z, verifies (5). Then
there , by the Lemma, we can find a control u(t) such
that y(t,zo0,0,u(t) = 0 = y(¢,0,0,0) on [0, (k + 1)h.
Our assumption gives o = 0. The converse result
may be obtained in a similar way. [ |

In order to consider the same results for the ob-
servability with unknown initial function ¢ we have to
replace the matrix Gy by the matrix

AL Bp 0 0 ... 0
0 0 B 0 ... 0
Te=|0 0 0 By ... 0
0 0 0 0 .. B

Then all the results of this section hold with an initial
function ¢ and T'x instead of Gi . In fact the initial
function has the same role as a control function.

16

Remark 3.3 The Lemmaallows in fact to descrine all
the initial conditions xo which are not observable when
the control (and the initial functions) may be choosen.
It is easy to see that for each k the initial conditions
such that y(t,z0,0,u(t)) = 0 on [0, (k + 1)A] define a
linear subspace. We denote this subspace by . The
Lemma gives

N):‘ — {.’t] [g] c (Ik — Jke(Fk+GkRk)h) V; + Jk’C;};

for all £ and N} does not depend on Rj.

4 Other applications

The subspaces Vo, Vz, was used to charecterize ob-
servability. For systems without delays V,;, and Vg
are invariant under feedback. They coincide with
the supremal (Ag, By)-invariant subspace contained in
Ker Cp. Then in other control problems those sub-
spaces may be used: disturbance decoupling, row-by-
row decoupling, model matching ...etc (see for exam-
ple [1], [2]). For delay systems the situation is quite
different because of the lack of feedback invariance.
In [6] and [9] the subpace Vs, was used to formulate
conditions of invertibility, disturbance rejection, model
matching and row-by-row decoupling essentially in fre-
quency domain. The compensators used there in order
to solve the given problems are not, in general, real-
izable by static state feedback without prediction. In
the other hand it is still unknown how to calculate
the subspace Vz. However the considerations used for
observability in finite time may be extended for other
control problems. The subspace stands for a geomet-
ric tool to describe control problems on a finite time
interval. Let us give one particular application. For
other appilcation the approach is similar.

Consider the system
{ z(t) Aoz(t) + Ay2(t — h) + Bou(t) + Dq(t)
y(t) Coz(t)’

(6)
where ¢(t) is unknown disturbance. The problem of
disturbance rejection consists on finding a compen-
sator such that the closed loop system is such that
the output does not depend on ¢(¢). In the frequency

domain it means that there exists a compensator C(s)
such that

T(s)C(s) +Tp(s) =0,
where the matrix C(s) is strictly proper. The neces-
sary and sufficient condition is

ImD C Vs.




But it is not clear how to design the feedback control
law. For the case of a static state feedback without
prediction [6] contains a result on partial disturbance
rejection, i.e. rejection in a finite time interval. Let
P; be the matrix

D0 0 ... 0
0 D 0 ... 0
p=|0 0 D 0
0 0 0 ... D

Proposition 4.1 [6] There ezists a non anticipative
Jeedback law u(t) = Loz (t)+ Liz(t—h)+.. .+ Lyz(t —
kh) such that the oulput y(t) of the compensed system
15 not affected by the disturbance q(t) over the interval
[0, (k + 1)R] if and only if

Im P, C V;.

This simple result was not extended for other control
problems like row-by-row decoupling. Our purpose is
to give an approach wich may be used for other control
problems. The following result shows as the problem
of disturbance rejection may be formulated in terms of
the subspaces N}, wich is in R™. This subspace is, as
we think, the good geometric tool for control problems
of delay systems in a finite time interval.

Proposition 4.2 There ezisis a non antictpative
Jeedback law u(t) = Loz(t)+ Liz(t—h)+.. .+ Lyz(t —
kh) such that the output y(t) of the compensed sysiem
15 not affected by the disturbance q(t) over the interval
[0, (k + 1)h] if and only if

ImD C N.

Proof. Suppose that there exists a control law as
indicated such that the output does not depend on the
disturbance on the interval [0, (k+1)h]. Let ®(¢) be the
fundamental matrix of the closed loop system. Then
it is easy to see that for all ¢ we have Co®(t)g = 0 for
t € [0, (k + 1)k]. This gives

t
Co®(t)Dq + CO/ &(t — 7)Bou(r)dr = 0.
0

This means that y(¢, Dg,0,u(t)) = 0 on [0, (k + 1)h].
By the Lemma one obtains Dd € N}.
Conversely, if Dg € N} for all ¢, one has

[%"] € (Ik - J;,-e(F"JfG"R")h) Vi + JiKL.

This gives

7] -

h
+ Jk/ eFitCrRh=1) Gy (r)dT
0

Iki'k - Jke(p"+GkRk)hzk
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for some control vg(t). As

h
zg(h) = e(F"+G“R*)"zk+/ T+ GeROA-T) G oy (7)d T
0

is in V}, it may be written as zx(h) = e(Fe+GrRu)b 5
for some matrix R. Moreover, Rr can be choosen in
the following form:

Ly O 0 ... 0
L, Lo 0 ... 0
-Rk = L2 Ll Lo . 0 .
Ly Li-y Li-2 Lo
Then
[%q] = Lizi — JyelFe+GxRa)h o
and
D y3 D
w0 === [ oq] + JpelPhtauitohy, = [z,,_ih)

isin V;. Hence zx(t) = e(Fe+GxRr)h 4, (0) is in Ker H}
and the fundamental matrix ®(t) corresponding to the
closed loop system (i.e. defined as in the Section 1 with
Fi + G Ry instead of Fy)is such that

Co®(t)Dg =0, t€[0,(k+ 1)h].

for all ¢. This means that the disturbance does not
affect the output in the interval [0, (k + 1)A]. n

This Proposition shows that the approach developped
here may be extended for other control problem, for
example for the problem of row-by-row decoupling (see
[10] for an approach based on the structure at infinity
of the transfer matrix function). It is also interesting
to find some simple algorithm for the computation of
the subspaces N} .

5 Conclusion

The conditions of perfect observability given here, in
particular condition in the Section 3, are more efficient
and may be verified. The criterion using the subspace
Vs shows that this subspace plays an essential role
in several control problems. It may be interesting to
further investigate the properties if this susbspace in
order to precise when 1t is of feedback type. The intro-
duction of observability in finite time allows to give a
good tool in order to investigate control problems for
delay systems in finite time interval. The interesting
problem of row-by-row decoupling may be studied via
the approach developped here.
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