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Abstract

A direct nonlinear adaptive controller, to solve the regu-
lation problem for unknown dynamical systems that are
modeled by recurrent neural networks is discussed. The
behaviour of the closed loop system is analyzed for the
case in which the true system differs from the recurrent
neural network due to the presence of a modeling error
term. Convergence of the state to zero plus boundedness
of all signals in the closed loop is guaranteed provided
that a complete matching at zero property is satisfied.
However, if the above assumption is no longer valid, our
adaptive regulator can still guarantee uniform bouned-
ness with the addition of appropriately modified update
laws. Furthermore, the magnitude of the growth of the
modeling error is considered unknown.

1 Introduction

The application of artificial neural networks to control a
variety of systems, has already gained considerable atten-
tion within the control systems community, mainly due
to their massive parallelism, very fast adaptability and
inherent approximation capabilities. In the past four-five
years the field has experienced a great amount of research
activity, which lead to numerous applications and further-
more, to the development of certain control architectures,
based on neural network models.

The most significant problem in generalizing the appli-
cation of neural networks in control, is the fact that the
very interesting simulation results that are provided, lack
theoretical verification. Crucial properties like stability,
convergence and robustness of the overall system must
be developed and/or verified. The main reason for the
existence of the above mentioned problem, is the mathe-
matical difficulties associated with nonlinear systems con-
trolled by highly nonlinear neural network controllers. In
view of the mathematical difficulties encountered in the

past in the adaptive control of linear systems, (which re-
mained as an active problem until the early 1980’s [5],
[17], [18], [6], it is hardly surprising that the analytical
study of nonlinear adaptive control using neural networks,
is a difficult problem indeed. However, progress has been
made in this area and certain important results have be-
gun to emerge, aiming to bridging the gap between theory
and applications.

The problem of controlling an unknown nonlinear dy-

namical system, has been attacked from various angles
using both direct and indirect adaptive control structures
and employing different neural network models. A beau-
tiful survey of the above mentioned techniques, can be
found in a paper by Hunt et. al. [9] in which links be-
tween the field of control science and neural networks were
explored and key areas for future research were proposed.
However, all works share the following key idea:
Since neural networks can approximate arbitrarily well
static and dynamic highly nonlinear systems, substitute
the unknown system by a neural network model, which is
of known structure but contains a number of unknown pa-
rameters, (synaptic weights), plus a modeling error term.
The unknown parameters may appear both linearly or
nonlinearly with respect to the network nonlinearities,
thus transforming the .original problem into a nonlinear
robust adaptive control problem.

Recent advances in nonlinear control theory and in par-
ticular feedback linearization techniques, [11], [21] created
a new and challenging problem, which came to be known
as adaptive nonlinear control. It was formulated to deal
with the control of systems containing both unknown pa-
rameters and known nonlinearities. Several answers to
this problem have been proposed in the literature with
typical examples {3], [12], [13], [15], [25], {29], [30]. A
common assumption made in the above works is that of
linear parameterization. Although sometimes it is quite
realistic, it constraints considerably the application field.
An attempt to relax this assumption and provide global
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adaptive output feedback control for a class of nonlinear
systems, determined by specific geometric conditions, is
given by Marino and Tomei in their recent paper [16].

The above discussion makes apparent that adaptive
control research, thus far has been directed towards sys-
tems with special class of parametric uncertainties. The
need to deal with increasingly complex systems, to accom-
plish increasingly demanding design requirements and the
need to attain these requirements with less precise ad-
vanced knowledge of the plant and its environment, in-
spired many works that came mostly from the area of
neural networks but with obvious and strong relation to
the adaptive control field.

The use of dynamical neural networks for identifica-
tion and more recently for control, was first introduced
by Narendra and Parthasarathy [19]. They proposed dy-
namic backpropagation schemes, which are static back-
propagation neural networks, connected either in series
or in parallel with linear dynamical systems.

The main problem with the recurrent neural networks
that are based on the static multilayer networks is that the
synaptic weights appear nonlinearly in the mathematical
representation that governs their evolution. This leads
to a number of significant drawbacks. First, the learn-
ing laws that are used, require a high amount of com-
putational time. Second, since the synaptic weights are
adjusted to minimize a functional of the approximation
error and the weights appear nonlinearly, the functional
possesses many local minima. Therefore, there is no way
to ensure the convergence of the weights to the global
minimum. Moreover, due to the highly nonlinear nature
of the neural network architecture, basic properties like
stability, convergence and robustness, are very difficult
to be verified. The fact that even for linear systems such
adaptation methods can lead to instability was also shown
in [1], [22]. On the other hand, the recurrent networks
possess a linear in the weights property, thus making the
issues of proving stability and convergence feasible and
their incorporation into a control loop promising.

Sanner and Slotine [28], incorporate Gaussian radial-
basis-function neural networks with sliding mode control
and linear feedback to formulate a direct adaptive track-
ing control architecture, for a class of continuous time
nonlinear dynamic systems. However, the use of sliding
mode, which is a discontinuous control law, generally cre-
ates various problems, such as existence and uniqueness of
solutions (23], introduction of chattering phenomena [31],
and possibly excitation of high frequency unmodeled dy-
namics [32].

Polycarpou and Ioannou [24], employed Lyapunov sta-
bility theory to develop stable adaptive laws for identi-
fication and control of dynamical systems with unknown
nonlinearities, using various neural network architectures.
Their control results were restricted to SISO feedback lin-
earizable systems. Moreover, they also use a sliding mode
control.

More recently, Rovithakis [26] and Rovithakis and

Christodoulou [27], considered affine in the control non-
linear dynamical systems. Since they assumed that no a
priori information is available for the nonlinearities, they
proposed a two step algorithm. In step one “black box”
identification is performed around a known operational
point, using a recurrent neural network identifier. Stable
learning laws were developed with the aid of Lyapunov
stability theory. In step two, an indirect adaptive control
architecture is developed, employing all information ob-
tained previously, to guarantee stability of the closed loop
system and convergence of the control error to zero, pro-
vided that certain assumptions on the nonlinearities are
satisfled. However, although not all the plant states were
assumed to be available for measurement, the restrictions
imposed on the system need to be relaxed, in order to be
more widely applied.

From the above discussion becomes obvious that all
theoretical works in control using neural networks have
up to now restrictive applicability, even though they em-
ploy Lyapunov theory to establish stability results. The
use of sliding mode control can, (as already mentioned),
introduce significant theoretical and practical problems.
Furthermore, the two step, indirect adaptive control ar-
chitecture first proposed in [26], [27], introduces the extra
complexity of having a recurrent neural network identifier
working in parallel and in real time with the unknown sys-
tem. Moreover, the way the modeling error was treated,
leaves interesting theoretical problems open for further
research.

Thus the present paper aims first of all to relax the
restrictive assumptions made in [27], and simultaneously
to avoid the use of sliding mode control. In this way we
broaden the applications field. Second, the implementa-
tion of the proposed control scheme becomes less complex,
since there is no need of using a neural network identifier
to work in parallel with the actual system. Furthermore,
the issues of stability and robustness are carefully exam-
ined and rigorously analyzed. However, in this paper we
investigate the state regulation problem only, which is
known to be as the basic control problem, where the state
of a given plant is to be reduced to zero, from an arbitrary
initial value, by applying feedback control to the plant in-
put. This problem arises, for example, when a plant is to
be operated at a desired, constant set point and hence
deviations from this set point are to be regulated to zero.
It is possible though, the unknown system not to possess
any equilibrium points. Thus generally, the design objec-
tive will be defined as the approximate regulation of the
state as follows:

For any given ¢ > 0, design a control law which renders
the system globally uniformly ultimately bounded with
respect to an arbitrary small set 4 C R" satisfying

A={z: s <)
In other words we want the state to enter A after a finite
time and never leave it, for all time thereafter.

Thus generally, the proposed regulator guarantee the
uniform ultimate boundedness of the state and the bound-
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edness of all other signals in the closed loop, even in the
presence of modeling errors which are not assumed to be
a priori bounded. Moreover, the magnitude of the growth
of the modeling error is assumed unknown.

2 Problem Formulation & the
Recurrent Neural Network

We consider affine in the control, nonlinear dynamical
systems of the form

t = f(z) + G(z)u (2.1)
where the state z, living in a n-dimensional smooth man-
ifold M, is assumed to be completely measured, the con-
trol u is in R", f is an unknown smooth vector field called
the drift term and G is a matrix with columns the un-
known smooth controlled vector fields ¢; , 1=1,2,...,n
G:[gl g2 ... gn]

The state regulation problem is known as to reduce the
state to zero from an arbitrary initial value, by applying
feedbe. .k control to the plant input. However, the prob-
lem, as it is stated above for the system (2.1), is very
difticult or even impossible to be solved since the vector
fields f, gi i=1,2,...,n are assumed to be completely
unknown. Therefore, it is obvious that in order to provide
a solution to our problem, it is necessary to have a more
accurate model for the unknown plant. For that purpose
we apply recurrent neural networks.

Recurrent neural networks are fully interconnected
nets, containing dynamical elements in their neurons.
Therefore, they are described by the following set of dif-
ferential equations

t=—At+WS(z) + Wnp1 5 (z)u (2.2)
where £ € M, the inputs u € R”, W is a n X L matrix of
adjustable synaptic weights, W,41 is a n X n upper tri-
angular matrix of adjustable synaptic weights and A is a
n X n matrix with positive eigenvalues which for simplic-
ity can be taken diagonal. S(z)is a L-dimensional vector
with elements S;(z), 1 =1,2,..., L of the form

Si(z) = [ ls(z )% (2.3)
JEI,
where I;, 1 =1,2,..., L are collections of L not ordered

subsets of {1,2,...,n} and d;(i) are non-negative inte-
gers. Similarly, S'(z) is a »n X = upper triangular matrix
with elements s;,(z) of the form

sin(z) = [] ls(e15"»

J€Ik

(2.4)

forall Lk =1,2,...,n and | < k where [} are a collec-
tions of n? not-ordered subsets of {1,2,...,n} and d,(, k)
are non-negative integers. In both (2.3) and (2.4), s(z;)
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is a monotone increasing, smooth, continuous, function,
which is usually represented by sigmoidals of the form

u

Tretos t A

s(z;) = (2.5)
for all § =1,2,...,n, with the parameters u, lo to repre-
sent the bound and slope of sigmoid’s curvature and X a
bias constant.

Clearly the recurrent neural network model described
above, can be viewed as an extension to the Hopfield [8],
and Cohen [2] models, that permit higher order connec-
tions between neurons. For the above neural network
model, there exists the following approximation theorem
(14]

Theorem 2.1 Suppose that the system (2.1) and the
model (2.2) are initially at the same state z(0) = £(0).
Then for any € > 0 and any finite T > 0, there exists an
integer L and matrices W*, Wy, , such that the state (1)
of the recurrent neural network model (2.2) with weight
values W = W* W;,, = W, satisfies

sup |£(2) —z(t)| <
0<t<T
a

Stability of higher order neural networks in the case of
fixed weight values, has been investigated in [4].

Due to the approximation capabilities of the recurrent
neural networks, we can assume, with no loss of gener-
ality, that the unknown system (2.1) can be completely
described by a recurrent neural network plus a modeling
error term w(z,u). In other words, there exists weight
values W* and W, such that the system (2.1) can be
written as

t=—-Az+W*S(z)+ W}, 5 (z)u + w(z,u) (2.6)
Where for the modeling error term, we make the following
assumption:

Assumption (A.1) We assume that there exists pos-
itive constants k!, 1 = 0, 1,2 such that the following rela-
tion is satisfied by the modeling error term

lw(z, u)l < ko + kilz| + k3 u|
with k{ considered unknown.

(w]

Therefore, the state regulation problem is analyzed for
the system (2.2) instead of (2.1). Since W* and W},
are unknown, our solution consists of designing a control
law «(W,Wn41,z) and appropriate update laws for the
weight estimates W and Wy,4; to guarantee at least uni-
form ultimate boundedness of ¢ and boundedness of all
signals in the closed loop.




3 Robust Adaptive Regulation

Let us assume that the true plant is of known order n and
can be modeled exactly by the dynamic neural network
(2.1) plus a modeling error term w(z, u).

i=—~Az+W*S(z) + W15 (z)u + w(z,u) (3.1)

with the modeling error term satisfying Assumption
{A.1). Observe that the modeling error is not restricted
to be a priori bounded. The above together with the fact
the actual parameter k; is considered unknown, makes as-
sumption (A.1) quite general and therefore valid in many
applications.

Let us take a function h(z) of class C? from M to R*
whose derivative with respect to time is

h= % [—Aa: + W*S(z) + Wi S'(2)u + w(z, u)]

(3.2)
Equation (3.2) can also be written
1 8h 8h_ ..
h+ EAI - b—zw(z,u) = -('EW S(z)
oh
+a- :“ S'(z)u
(3.3)
Define
A Ok dh , .
14 = az WS(:B) -|- az Wn.“S (z)u —-h
oh oh N
—gAz - gsgn(e)klz

where W, W, 4, and ki are the estimates of the unknown
parameters W* Wx,, and k) respectively, obtained by
update laws which are to be designed later. Moreover,
the function sgn(e) is defined as follows:

sgn(e) = 1 fe>0

g ~ ] =1 otherwise
Furthermore, observe that the signal » can not be mea-
sured since k is unknown. To round this problem we use
the following filtered version of v.

é+re = v
. Jh
= —h+o- [-Az + WS(z) + Way1 5 (2)u]
oh s
~% [sgn(e)kl 1:] (3.4)

with r a strictly positive constant. To implement (3.4)
we take

e29-h (3.5)
Employing (3.5), equation (3.4) can be written as
. © oh ]
9+ = rh+ 3 [—Az + WS(z) + Wnpr S (z)u]
ok -
—a—z [sgn(e)kl I] (3.6)

with the state n € R. This method is referred to as error
filtering. Furthermore, we choose h(z) to be

1, 2
h(z) ==
() = 3l
Hence (3.6) becomes
7 = —-rp+ %r|:|:|2 —zTAz + 2TWS(z)
+2TWns18'(z)u — sgn(e)ky |z (3.7)
To continue, consider the Lyapunov like function

1 1 P, 1 = = 1
L= 562 + Etr{WTW} + Etr{W,,T.H Wn+1 } + Ek? (3.8)

where
W = w-w*
Wn+l = Wn+l - W:+1
k= h-hk

If we take the derivative of (3.8) with respect to time we
obtain

L= eé+tr{WTW} +tr (Wi Wopi} + ik, (3.9)
Employing (3.4), equation (3.9) becomes
L = —-re+e [—h —zTAz + zTWS(:r)]
+e [z Wai1 S’ (z)u — sgn(e)ki |z]?]
Ftr{WTW) 4 tr (W Wap ) + By
_ (3.10)
which together with (3.3) gives
L = —r®+e [—zTW*S(z)]
te [-zTWi S (z)u + 2T WS(z))
+e [zTW,.+1 S'(z)u — 2T w(z, u)]
—e sgn(e)ki|z|* + tr {(WT W)
Ftr{WT W ) + B by
or equivalently
L = —r®+ex"WS(z)+ez™ Wy S'(z)u
—zTw(z, u) — |e|ky|z]?
HEWTW) 4 60 (W Wt} + Eiky

Hence, if we choose

tr{WTW)} = —ez"WS(z) (3.11)
tr{W,T.H Wn+1 } = —CZTW,H.I S'(z)u (3.12)

£ becomes
L=-re® — ez w(z,u) - ]e!l?dzlz + kK, (3.13)

It can be easily verified that (3.11), (3.12) can be written
element wise as

i

wi; —ezs(z;) (3.14)

Wing1 = —ezis'(zi)u; (3.15)
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foralls,;=1,2,...,n
and in matrix form as

w —exST(z) (3.16)
W,,.H —ez'S'(z)U (3.17)
where
¢ = diag[z,,z2,...,2n)
U = diag[ur,uz,...,u,)

To continue observe that
L < —re?+ leliz||w(z, )] - |e|icl|.1:|2 + ko
< —re’ +|ellzl|ko + kilz| + k3 lul| — lelki|z]® + ki ks

To proceed we make the following claim:
Claim (C.1): The control law is such that the follow-
ing inequality holds for all z € M.

lu| < klz] + ko

Using claim (C.Vl), L becomes
L < —re? + |ellz||ko + kilz|| — lelkr || + k1 ky  (3.18)

where ko = kokj + k¢ and k; = kjk + k{. Furthermore,

(3.18) becomes
L < —re® +kole||z] + kile||z|?

el |z|? + Fr by

—re? + kole|lz] — lelFu|zf? + Frky (3.19)

Therefore, if we choose

ki = e||<|? (3.20)
(3.19) becomes
L < —rle]® + kolel|z| (3.21)
To continue we need the following Lemma
Lemma 3.1 The control law
u = —[WonS'(2)] ' [WS(z)+v) (3.22)
v = -;-rz — Az — sgn(e)hz (3.23)

where the synaptic weight estimates W and Wy are afi—
Justed according to (3.14) and (3.15) respectively and k;
according to (3.20), guarantees the following

o n(t) <0 Vt>0
o limi.oon(t) =0 ezponentially fast

provided that 7(0) < 0, where 7(0) the initial value of n(t).

w]
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However in order to apply the control law (3.22), (3.23)
we have to assure the existence of [W,.415'(z)]". Since,
Wy41 and S’(z) are upper triangular matrices, all we need
to establish is that their diagonal entries be different from
zero V¢ > 0. The diagonal entries of S’'(z) can be different
from zero by an appropriate selection of the bias term .
Let winy1 $ = 1,2,...,n denote the diagonal entries of
Wni1. Hence, wing1(t) £ =1,2,...,n should be confined
through the use of a projection algorithm [20], [7], [10],
to the set W = {win41 : 0 < € < Winy1 < w™} where
€, w™ are appropriately chosen positive constants'. In
particular, the standard update law defined by (3.15) is
modified to

( —exzis'(zi)ui  if Wingr €W’
or Winj13gn(wl,)=¢
and ez;s'(zi)uisgn(w},;,) <0
0 if win418gn(wh4,) =< and
=4 e (m)uisgn(wh) >0
—ezis'(zi)ui if wpg €W
or Wing13gn(wiy,) = w™
and ezis'(zi)uisgn(wl,y,) >0
0 if Winy18gn(wl, ;) = w™ and
( exis'(z:)uisgn(wy,) <0

(3.24)
forall i,;=1,2,...,n.
where the update law is written element wise for easier
understanding. It can be easily verified that the update
law (3.15) with the projection modification (3.24), can
only make £ more negative and in addition guarantee
that win41 € W' for all 1 = 1,2,...,n, provided that
Wint1(0) € W' and w},,, € W'. In principal, the pro-
Jjection modification does not alter tin41 given by (3.15)
if Win41 is in the interior W), of W' or if win41 is at
the boundary §(W’) of W’ and has the tendency to move
inward. Otherwise, it subtracts a vector normal to the
boundary so that we get a smooth transformation from
the original vector field, to an inward or tangent to the
boundary, vector field.

Remark 3.1 Observe that in order to apply the projec-
tion algorithm (3.24) we need to know the sign of the
unknown parameter w], 4.

[w]
Moreover, it is true that
h=n-e¢
Hence, since h(z) > 0, we have that
n{t) > e(t), Vi >0 (3.25)

However
n(t) <0, vVt >0

!Observe that win4: can be also confined to be neg-
ative. However, the above choice does not harm the
generality.




which implies that

ln(t)] < le(t)], Ve >0 (3.26)
Furthermore,
(z)] < In(?) = e(®)]
< In@)+le()
< 2e(t)]
Therefore
|z]*> < 4le], Yt >0 (3.27)
or
|z} < 24/]el, V>0 (3.28)

Remark 3.2 Observe that the proposed control law
(3.22), (3.23) is in first sight discontinuous since it in-
cludes the function sgn(e). However, from Lemma 3.1
and inequality (3.25) we conclude that e(t) <0, Vi > 0.
Therefore sgn(e) does not switch from —1 to +1 as time
passes and admits the constant value of —1 V¢ > 0. In
this way problems concerning the existence and unique-
ness of solutions, chattering phenomena and/or excitation
of possibly present unmodeled dynamics, are avoided.

0
Substituting (3.28) into (3.21), £ becomes

£ < —rlef +2kolel/Jel
~ [V =2k lelVil (329)

From (3.29) we have that £ < 0 as long as

Viel > 2

or equivalently when

4k2
lel > =

with r > 0. The above ana.lysxs together with (3.28)
demonstrate that the trajectories of e(t) and z(t) are uni-
formly ultimately bounded with respect to the arbitrary
small, (since r can be chosen sufficiently large), sets £, X

shown below.
4k2
{e(t) le(t)] < 222 }

X = {z(t) |z(t)[<4k°}

Thus we have the following theorem.

and

Theorem 3.1 Consider the system

T = —Az+W*S(z)+ W}, S (z)u+ w(z,u)
7 = -1y

u = —[WapS'(2)] 7 [WS(z) + 9]

v = %rz — Az — sgn(e)k z

e = n—h

ho= gl

r > 0

together with the update laws

kvo= lellef?
’LZ),'J' = —CI,'S(Z‘]‘)
[ —ez;s'(zi)u; if wingg €W
OF Winp18gm(Why ) = €
and
ez;s'(zi)uisgn(wi, 4,) <0
0 if winp1sgn(wl, ;) =¢
and
bimp1 = 4 ez;s'(z;)uisgn(wj, ;1) > 0

—ex;s'(zi)u; i wpyp €W
Or Win418gn(wl, ) = w™
and
ex;s'(zi)uisgn(wi, ;) > 0

0 if winy159n(wl, ) = w™
and

| ex;s'(zi)uisgn(wl, ;) < 0

foralli,j =1,2,...,n and the modeling error term to
satisfy (A.1), guarantee the uniform ultimate boundedness
of e(t), () with respect to the sets

o £={e: 1ol < %}
o X={z(t):|z(t)| < o}

(8]

Boundedness of Wy, is achieved through the use of the
projection modification. However, theorem 3.1 does not
tell us anything about the boundedness of W and &;. To
achieve such a goal W (t) and k;(t) are confined through
the use of a projection algorithm to the sets W and K
respectively, where

W={W(t): W) < wm}

and
K= {ki(t):0 < ki(t) < ku}

In particular, the standard update laws (3.14) and (3.20)
are modified to

—ezST (z) ifWwWew
or |W]| = wm
W = and tr{ezST (z)W} >0
—ezST(z)+ P if ||W] = wn,
and tr{ezST(z)W} < 0
(3.30)

i-lo if By =k,
Y71 lellz]* otherwise

where P = tT{CIST(I)W}(——‘IL—u)ZW Therefore, if the
initial weights are chosen such that [[W(0)|| < wm, then

(3.31)
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we have ||W|| < wr, for all ¢ > 0. This can be readily
established by noting that whenever ||W|| = wm then

d 2

£wi <o (3.32)
which implies that the weights W, are directed towards
the inside of the ball {W : ||W|| < wm}. Furthermore,
based on the adaptive law (3.30), the additional terms in-
troduced in the expression for £, can only make £ more
negative, provided that W(0), W* € W. Similarly, we
have that the update law (3.20) with the projection mod-
ification (3.31) can only make £ more negative and in
addition guarantee that k1 € K, Vt > 0, provided that
ki1(0),k € K.

4 Conclusions

In this paper we investigate the possibilities of exploiting
the approximation capabilities of recurrent neural net-
works, in order to develop a direct adaptive state regula-
tor for unknown nonlinear dynamical systems.

The key idea in our analysis is the following:

Since the system under consideration is assumed un-
known, use a recurrent neural network, which is of known
structure but contains a number of unknown parameters,
to model its behavior and then develop a control architec-
ture based on the recurrent neural network model. Thus
the problem is actually transformed into a nonlinear ro-
bust adaptive control problem.

The problems arising from the presence of a modeling
error term, which is unavoidable when we employ models
to develop control algorithms, are rigorously analyzed.
One important aspect of our analysis is that the modeling
error is not assumed to be a priori bounded and moreover,
the gain of the growth term is considered unknown. In
this way many more interesting cases are included, leading
to a natural extension of the application field.
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