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Abstract This paper considers the problem of the de-
sign of asymptotic observers for continuous-time linear
periodic systems. First, under a simplifying assumption,
necessary and sufficient conditions, involving the concept
of right eigenvector, are derived for the observability of
continuous-time linear periodic systems. Then, under
the same simplifying assumption and under such neces-
sary and sufficient conditions, a procedure is proposed
for the observer design.

1. Introduction

The interest in considering periodic linear systems is mo-
tivated by the large variety of processes that can be mod-
elled by (difference or differential) linear equations with
periodic coefficients (see, e.g., [1]-[7] for the continuous-
time ones and [8]-[18] for the discrete-time ones). A
control theory is developing for periodic linear systems,
and contributions on several control problems have been
given, including state and output dead-beat control, dis-
turbance localization, model matching, robust tracking
and regulation, block decoupling, and adaptive control
[19]-[31].

A nontrivial problem is the design of asymptotic ob-
servers for continuous-time linear periodic systems, and
the aim of this paper is to give a partial answer to this
problem.

The outline of the paper is as follows. Section 2 briefly re-
calls some preliminary results about the eigenvalues and
the eigenvectors of continuous-time linear periodic sys-
tems, while Section 3 reports the necessary and sufficient
conditions for the existence of an asymptotic observer for
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a class of continuous-time linear periodic systems, and a
procedure is proposed for the observer design, which is
effective for the same class of continuous-time linear pe-
riodic systems. Section 4 completes the paper with an
illustrative example.

2. Problem definition and preliminary results

The continuous-time linear periodic systems of period w
(briefly, w-periodic) that are considered in this paper,
are described by:

()
y(t) =

where w € R,w > 0, t € R,t > 0, z(t) € R" is the
state, u(t) € IR? is the control input, y(¢) € RY is the
measured output, and A(-), B(:), C(-), D(-), are real
matrices that are w-periodic continuous functions of ¢ €

R.

A(t)z(t) + B(t)u(t),
C(8)=(t) + D(t)u(t),

(1a)
(1b)

A dynamic system that is able to give an asymptotic esti-
mate of z(t), with an arbitrary fixed rate of convergence,
on the basis of the available measurements of y(t) and
u(t), is referred to as asymptotic observer for system
(1). If any, an asymptotic observer for system (1) can be
taken as described by the following equation:

#(t) = A()E(t)+ H(t) (C()E(t) — y(t))
+ (Bt)+H®)D®)u(t), VteRR,¢t>0, (2)

where Z(t) € IR" is the estimate of z(t), and H(t) is
a suitable w-periodic real matrix; it is easy to see that
the corresponding estimation error Z(t) := £(t) — z(t)
satisfies the following error dynamics:

I(t) = (A(t) + HR)C(t)) Z(t), VteRR,t>0. (3)




The aim of this paper is to propose a simple algorithm
for the choice of matrix H(t), so that the error dynamics
(3) are exponentially stable, with an arbitrary assigned
rate of convergence of the free motions.

In order to formally state this problem, a basic definition
and a preliminary result are given with reference to an
w-periodic homogeneous linear system, such as the one
that is obtained from (la) by setting u(t) = 0,Vt € R,
which is described by the following equation:

#(t) = A(t)z(t), VteIR,t>0. (4)

Definition 1 (See [32]). A complex A is an eigenvalue
of the w-periodic matriz A(t) if and only if there exists
an w-periodic differentiable vector function v(-) €C" of
t € IR, v(t) # 0 for all t € IR, which is referred to as a
right eigenvector of A(t), such that the vector function
£(-) of t € IR, defined as follows

£(t) :=v(t)e™, VteR,t>0, (5)

is solution of (4) from the initial time t = 0; such a
vector function £(-) is called an eigensolution of (4)
with eigenvalue A.

The following lemma is reported from [32] without proof.

Lemma 1 System (4) is exponentially stable if and only
if all the eigenvalues of matriz A(t) have negative real
part.

For each given p € IR,p < 0, if system (4) is exponen-
tially stable with all its eigenvalues having real part less

then p, then the free motions of (4) go to zero faster than
eft.

Now, the problem that will be studied in this paper,
under the subsequent Assumption 1, is formally stated.

Problem 1 Find, if any, an w-periodic continuous ma-
triz function H(-) € R™™9, such that all the eigenvalues
of the dynamic matriz A(t) + H(t)C(t) of the error dy-
namics (3) are arbitrarily placed, with negative real part.

The remainder of this section is devoted to give some
preliminary results (which are reported without proof),
stating properties of the eigenvalues and eigenvectors of
an w-periodic homogeneous system. These properties
will be useful for giving a simple solution of Problem 1.

Lemma 2 (See [32]). Letv(-) €C™ be an w-periodic dif-
ferentiable vector function of t € R, different from the
zero vector for all t € R. Then, v(t) is a Tight eigen-
vector of A(t) with eigenvalue A € € if and only if the
following relation holds:

o(t) = [A(t) = MJu(t), VteR,t>0.  (6)

Remark 1 By Lemma 2, for some A €C, a solution v(t)
of (6) is a right eigenvector of A(t) with eigenvalue X if
and only if it is an w-periodic function of t € R different
from the zero vector for all £ € R. m]

Let ®(t,7), t,7 € IR, be the state transition matrix of
(4). Then, the following lemma gives conditions, based
on ®(t,7), for a complex A to be an eigenvalue of A(t).

Lemma 3 The complex )\ is an eigenvalue of A(t) if
and only if the following relation holds:

det[®(w, 0) — 7] =0, (M

where 7 := .

Definition 2 (See [32]). The following polynomial
p(n) := det[®(w,0) — nl]

is referred to as the characteristic polynomial of the
w-periodic matriz A(t), and the n roots of p(n) = 0 are
referred to as the characteristic multipliers of A(t).

If n is a characteristic multiplier of A(t), then a number
X such that 7 = e is referred to as eigenvalue of A(t).

Let A be a matrix in Jordan form. Matrix A is referred
to as the Jordan form of matrix A(t) if and only if
there exists a differentiable w-periodic matrix function
V(-) € €™*" of time ¢t € R that is nonsingular for all
telR,ie.

V() e C{RE™™), V(t+w)=V(t),
det(V(t)) £0, VteR, (8)

such that

V(t) = A)V(t) - V()A, VteR,t>0. (9)

If A is diagonal with diagonal entries A;, i = 1,2,...,n,
equation (9) can be rewritten as follows:
u(t) = (A@) - AD)ui(t),
VtelR,t>0,i=1,2,...,n, (10)
where the i-th column v;(¢) of V (¢) is just the right eigen-
vector of matrix A(t) with eigenvalue );.

Since V'(t) is nonsingular, w-periodic, and differentiable
for all t € IR, then z(t) = V(t)z(t) qualifies as a Floquet-
Lyapunov w-periodic state space transformation, and A
qualifies as the dynamic matrix of the w-periodic system
(4) expressed in the 2-coordinates:

2(t) = Az(t), teR,t>0.

(11)
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The following lemma is given in order to introduce the
concept of left eigenvector, with the aim of extending the
similar concept that is well known in the case of time-
invariant linear systems.

Lemma 4 Let V(t) be a differentiable nonsingular w-
periodic matriz satisfying (9), and let W (t) be the inverse
of V(t). Then, W(t) s time differentiable, nonsingular,
w-periodic and satisfies the following relation

W(t) = -W(t)A®) + AW(t), VielR,t>0. (12)

If A is a diagonal matrix with diagonal entries \;, i =
1,2,...,n, equation (12) can be rewritten as follows:

w;(t)(Ad — A(t)),
VieR,t>0, i=1,2,...,n,

wi(t) =
(13)

where w;(t) is the i-th row of matrix W(t) and is re-
ferred to as the left eigenvector of matrix A(t) with
eigenvalue ;.

Remark 2 By Lemma 4, for some A € @, a solution
w;(t) of (13) is a left eigenvector of A(t) with eigenvalue
A; if and only if it is an w-periodic differentiable function
of t € R different from the zero vector forallt c IR. O

3. The proposed procedure

The procedure proposed in this paper for the design of
matrix H(t) is based on the notion of right eigenvector
v(t) of matrix A(t) with eigenvalue \, as defined in (6),
and on the following Lemma 5, which is implied by a
similar result given in [33] with reference to time-varying
systems. For the sake of simplicity, this lemma will be
stated under the following simplifying assumption.

Assumption 1 The Jordan form A of matriz A(t) is
diagonal, with its diagonal entries X\;, i = 1,2,...,n,
being real and distinct.

It is stressed that, the subsequent results should be prop-
erly modified if Assumption 1 is removed, thus allowing
matrix A to be block diagonal, with diagonal entries pos-
sibly complex and coincident.

Lemma 5 Under Assumption 1, the w-periodic system
(1) is observable if and only if there is no eigenvalue \;
of A(t), i € {1,2,...,n}, such that:

C(t)vi(t) =0, Vtel0, v, (14)
where v;(t) is the right eigenvector of A(t) with eigen-
value A;, 1 =1,2,...,n.
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Proof. By virtue of Theorem 5-9 of [33], the w-periodic
system (1) is observable if and only if all the columns of
matrix M (t) = C(t)®(t,0) are linearly independent func-
tions of ¢ over the field of complex numbers, where ®(-,-)
is the state transition matrix of system (1). By virtue of
Assumption 1, matrix M (t) can be rewritten as M(t) =
C(t)V(t)eMW(0), where A is the diagonal Jordan form
of A(t), the rows of W(t) are the left eigenvectors of A(t)
and the columns of V(t) are the right eigenvectors of
A(t), with eigenvalues being the real and distinct diago-
nal entries of A, respectively. Since det W(0) # 0, and A
is diagonal with distinct diagonal entries by Assumption
1, the columns of M (t) are linearly independent over the
field of complex numbers if and only if all the columns
eMtO(t)vi(t), i € {1,2,...,n}, of C(t)V(t)eM are not

identically zero in [0, w]; since eMt, i € {1,2,...,n}, is
non zero for all ¢ € IR, this condition implies that (14)
must not hold, as was to be proved. m|

It is stressed that if there is no eigenvalue \; of A(t),
1 =1,2,...,n, such that (14) holds, then for each i =
1,2,...,n, there exists a time t; € {0, w] such that

C(ti)vi(ts) #0;

then, the continuity of functions v;(-), and C(-) implies
that if system (1) is observable, then the following rela-
tion holds for each right eigenvector v;(t) of A(t) with
eigenvalue A;:

(15)

/OTC(T)Ui(T)]T[C(T)vi(T)]d7' #0,i=1,2,...,n (16)

Under Assumption 1, consider the following procedure
(which can be completed if system (1) satisfies con-
dition (16) with ¢ = 1), for the computation of an
w-periodic matrix H;(t), such that the eigenvalues of
A(t) + H1(t)C(t) are exactly the ones of A(t), except
the rea] eigenvalue A; that is shifted into the new real
location 1, 71 < 0, as stated and proved in the subse-
quent Proposition 1.

Procedure 1 (Step 1). Compute a real eigenvalue \;
of A(t) to be shifted, and compute the corresponding real
right eigenvector v;(t) (it is noted that v;(¢) can always
be computed real, by the assumptions). Let v;, 71 <
0, be the real eigenvalue desired for A(t) + Hy(t)C(t),
instead of A1, 71 # A, 1=2,3,...,n.

(Step 2). Taking into account that (16) holds withi = 1
(by the assumptions), compute the following real contin-
uous w-periodic function of t:

_ (11— A)w
/0 [C(r Yo ()]TIC(r)v (r))dr
YVt € IR,t > 0.

a1 (t) [CEv ()T,

(17)




(Step 3). Define the following w-periodic matrix:

Hi(t) :=v1(t)as(t), VteIR,t>0. (18)
Proposition 1 Under Assumption 1, and under the as-
sumption that condition (16) holds with i = 1, denote by
A(t) the w-periodic matriz A(t)+ Hy(t)C(t), where Hy (t)
is given in (18). Then,

(i) the pair (C(t), A(t)) is observable if system (1) is ob-
servable,

(i) the characteristic polynomial p(n) of matriz A(t) +
H,(t)C(t) is obtained from the characteristic polynomial
p(n) = [Tz, (n — eX) of A(t) by replacing the factor
(n — €1%) with the factor (n — en*).

(ii) Assumption 1 holds with matriz A(t) replaced by
A(t) + Hi(H)C(¢).

Proof. The first part of the proposition can be trivially
proved by taking into account that an w-periodic output
injection, such as the one represented by H;(t), does not
alter the observability property of an w-periodic system.

In order to show the second part of the proposition,
first it will be shown that +; is an eigenvalue of A(t) +
H,(t)C(t) with right eigenvector

01(t) == d(t)ui(2), (19)

where the w-periodic differentiable function d(t),d(t) # 0
for all t € R, is given by:

vt e R, t >0,

d(t) := exp </Ot At =7+ a(D)[C(r)vi ()] dT) .

This is easily proved by showing that the following re-
lation (which is obtained from (10) by replacing v;(t),
Xi, and A(t) by 01(t), 71, and A(t) + H;(t)C(t), respec-
tively), holds:

01(t) = (A(t) + Hi()O(t) — ) n(t), VteR,t>0.
(20)
Since the following relations hold:

01(t) = d(t)ui(t) +dt)in ()
= d(t)vi(t) (A — 1 + a(B)[C(t)vi(t)])
b A AR (E) — dE)Ay(E)
= —d(t)mvi(t) + d(t)vi(t)ea () [C(t)va ()]
+  d(t)A(t)vi(?), (21)
and

(A@®) + Hy(t)C(t) — mI) 01(t) = d(t) A(t)vi(t)
+ d(t)o () (O[C(E)vr(t)] — d(t)nvi(t), (22)

one can easily see, by comparing the right hand sides of
(21) and (22), that (20) holds.

For the other eigenvalues, denote by w;(t) the left eigen-
vector of A(t) with eigenvalue A;, i = 2,3,. .., n; for each
time t € IR,t > 0, the vectors w;(t), i = 2,3,...,n, are
linearly independent over the field of complex numbers
and satisfy:
w;(t)vi(t) = 0,

VteR,t>0, i=23,...,n. (23)

In order to show that the real numbers \;, i = 2,3,...,n,
are still eigenvalues of matrix A(t)+ H;(t)C(t), it is suffi-
cient to show that the following relations (which are ob-
tained from (13) by replacing A(t) by A(t) + H1(t)C(t))
hold:

= wi(t)(Ad — A(t) — Hi(t)C(t)),
VteR,t>0, i =2,3,...,n (24)

w;(t)

Relations (24) are yielded by the following equalities (i =

2,3,...,n), which are obtained by taking (18) and (23)
into account:
wi(t) = wi(t) (AT ~ A(t)),  (25a)
wi(t)(M] — A(t) — Hi(t)C(t)) =
wi(t) (A — A(t)) + wi(t)vi (B)ay (£)C(t) =
wi(t) (Al — A(L)). (25b)

Therefore, relations (24) show that the real numbers );,
t=2,3,...,n, are still eigenvalues of the matrix A(t) +
H,(t)C(t), with left eigenvectors w;(t), i = 2,3,...,n.
The proof is completed taking into account taht y; has
been chosen as 71 # A;, i = 2,3,...,n, and \; # A; if
i # j, by Assumption 1. @]

Under the assumption that condition (16) holds with
i = 1, and under Assumption 1, the algorithm given in
Procedure 1 allows the real eigenvalue X; to be shifted in
another arbitrary location given by the real vy, v; # A;,
t = 2,3,...,n, preserving the positions of the other
eigenvalues and the observability property of the closed-
loop system, as well as Assumption 1 properly re-written.
With an iterative application of a properly modified ver-
sion of Procedure 1, it seems that all the eigenvalues \;,
i € {1,2,...,n}, of A(t) could be shifted in arbitrary
(real and distinct) new locations =;, i € {1,2,...,n},
provided that system (1) is observable. Actually, under
the assumption that system (1) is observable and under
Assumption 1, the output injection, represented by H (1),
that shifts the eigenvalues A1, Aq, ..., A, in the new loca-
tions 1, 2, - -, Yn, respectively, can be designed by an
iterative computation of the following w-periodic func-
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tions:
= _ (1s = Aw
[ enmrieeneie
VEeR,t>0,i=1,2,...,7m,

ai(t) [C(myw()],

(26)
and by defining

H,(t) = ’l-),'(t)ai(t), i= 1, 2, RS (27)
where 7;(t) denotes, with an abuse of notation, the right
eigenvector of the matrix A(t) + E;;ll H;(t)C(t) with
eigenvalue );, i = 1,2,...,n; it is stressed that, matrix
A(t)+X2%7] H;(t)C(t) is obtained from A(t) after having
shifted tfle eigenvalues A1, Mg, ..., Ai—1 of A(t) into the
new locations v1, 72, . - ., Yi—1 by means of Hi(t), Ha(t),

.., H;_1(t), respectively.

It is recalled that the overall iterative procedure repre-
sented by (26), (27) is based on the assumption that, at
each step of the procedure involving the computation of
(26), (27), both \; and +; are real and distinct from the
other \; and v;, respectively, with j € {1,2,...,n},i #
j. If such an assumption does not hold, then the pro-
cedure should be properly modified, with an increase of
the complexity.

The main result of the paper is summarized by the fol-
lowing theorem, whose proof can be easily derived from
the above discussion.

Theorem 1 If Assumpiton 1 holds, then

(a) Problem 1 can be solved if and only if there is no
eigenvalue \; of A(t), i € {1,2,...,n}, such that
(14) holds;

(b) if the necessary and sufficient condition of item (a)
holds, then a solution of Problem 1 is

(28)

H(t):=) Hi(t), VteR,t>0,
i=1

1=

with the H;(t)’s given by (26), (27).

4. Tlustrative example

In order to illustrate the procedure proposed for the de-
sign of asymptotic observers for continuous-time linear
w-periodic systems, a simple example is illustrated.

Consider the periodic system (1), characterized by the
following A(-) and C(-) matrices of period w = 2m:

0

9 ], Ct)y=[1 cos(t) ], (29)

A(t)=[(1)
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whereas the expression of matrices B(-) and D(-) may
be omitted, because they have not influence on the error
dynamics (3).

It is easy to see that Assumption 1 holds, since matrix
A(t) is already in diagonal Jordan form, and its diagonal
entries (A; = 1, A2 = 2) are real and distinct; the right
eigenvectors vy (t) and vq(t) of A(t) with eigenvalues A,
and Ag, respectively, are given by:

Ul(t):[(l)], v2(t)=[(l)].

The necessary and sufficient condition for the solvability
of Problem 1, which is reported in item (a) of Theorem
1, holds because both of the following scalar functions
are not identically zero in [0, 27]:

(30)

C(t)ni(t) =1, C(t)va(t) = cos(t), Vte R, t > 0. (31)

Then, by item (b) of Theorem 1, a solution H(t) of Prob-
lem 1 is given by (28). In order to compute such a solu-
tion H(t), the eigenvalues to be obtained for the closed-
loop system are chosen as y; = —1, 72 = —2; they are
real, negative, distinct, and distinct from the eigenvalues
A1 and X of matrix A(t).

The design procedure can be detailed as follows. The
eigenvalue \; is initially shifted in v; and the eigenvalue
)2 is left unchanged, with the 27-periodic matrix H;(t)
carried out through the following Steps 1.1-3.1.

(Step 1.1). Let Ay =1, 5,(¢) = [ 1 0]7, and
-1.

(Step 2.1). On the basis of equation (26), since
C(t)u.(t)

27
/0 Cr)on(r)T(Cr)a(r)ldr

= 1, (32a)

2w, (32b)

it follows:

a(t) = —-2. (33)

(Step 3.1). On the basis of (27) with i = 1, the 27-
periodic matrix H;(t) is given by:

o

After having shifted the eigenvalue A; into -, the matrix
A(t) + H1(t)C(t) takes the form:

) = | (34)

-1
0

—2cos(t)

A(t) + Hi(t)C(t) = [ A

| e




Now, the second eigenvalue A, is shifted in 2 and the
eigenvalue ~; is left unchanged, with the 27-periodic ma-
trix Ho(t) carried out through the following Steps 1.2-3.2.

(Step 1.2). Let A2 = 2 and let y2 = —-2. As for
the right eigenvector ¥2(t) of matrix A(t) + Hy(t)C(t)
with eigenvalue Az, a simple computation gives va(t) =

[ (sin(t) — 3cos(t)) 5"

(Step 2.2). On the basis of equation (26), since

C(t)v2(t) = sin(t) + 2 cos(t),

27
/0 [C(T)EQ(T)]T[C(T)ﬁg(T)]dT = b5,

(36a)

(36b)

it follows:

as(t) —g (sin(t) + 2cos(t)).

(Step 3.2). On the basis of (27) with i = 2, the 2#-
periodic matrix H»(t) is given by:

56
Ha(t) = —g + gsin(t) cos(t) + = cos(t)?

./(38)
—8 (sin(t) + 2 cos(t))

Now, by equation (28) of item (b) of Theorem 1, the
overall compensator H(t) is given by:
18

8 56
-——+ : sin(t) cos(t) + 3 cos(t)?

Hi)=| 5 (39)

—8(sin(t) + 2 cos(t))
and the matrix A(t) + H(¢t)C(t) takes the form:
Aty + H(t)C(t) =
% (—13 + 8sin(t) cos(t) + 56 cos?(t))
—8 (sin(t) + 2cos(t))
(—18cos(t) + 8sin(t) cos(t) + 56 cos®(t)) (“0)
2 (1 — 4sin(¢) cos(t) — 8 cos?(t))

the corresponding state transition matrix ®(2#,0), nu-
merically computed over [0, 27], is given by:

(2m,0) = 10~ 5.4231 3.2517
m, V)= : ;
—-5.9259 —3.5520

(41)

the characteristic polynomial of A(t) + H(¢)C(¢) is given
by p(n) = n? —1.8710 x 10731+ 6.3978 x 10~? and the re-
sulting characteristic multipliers are n;, = 1.8676 x 10™3,
72 = 3.4839 x 10~%; the corresponding real eigenvalues

1 . 107%) log(3.4839x10"°
are °g(18627fx = —1 and =E==2F 0 ) = 9 as

desired.

5. Conclusions

This paper has considered the problem of the design
of asymptotic observers for continuous-time linear pe-
riodic systems. Under the assumption that the Jordan
form of the dynamic matrix of the w-periodic system is
diagonal, with real and distinct eigenvalues, necessary
and sufficient conditions (involving the concept of right
eigenvector) have been given for the observability of w-
periodic systems; in addition, under such an assumption,
a procedure has been given for the design of asymptotic
observers for continuous-time linear w-periodic systems,
provided that they are observable.

Future work will face the same problem, allowing the Jor-
dan form of the dynamic matrix of the w-periodic system
to be block-diagonal, with diagonal entries possibly be-
ing complex and coincident.
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