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I Introduction

When it is desired to design robot manipulators that
will operate in uncertain and unknown environments,
it is necessary to provide them with appropriate de-
vices and algorithms that are capable of estimating
and learning unknown surfaces and objects that are
in contact with the robots’ end-effectors. In many
robotic applications, e.g. grasping, assembly, grid-
ing, deburring, cutting, inspection tasks, etc, the end-
effector of the robot performs constraint motions on
unknown surfaces; in order to be capable to success-
fully control such constraint motions it is necessary
to know the characteristics of the unknown surfaces.

One solution to the surface estimation problem,
is to use computer vision systems that are capable
of estimating the unknown surface characteristics via
appropriate techniques. However, the usage of vision
systems increases considerably the cost and the com-
plexity of the application; on the other hand, the cur-
rent vision systems do not perform efficiently when
either the environment where they operate is very
noisy or the unknown surfaces are complex enough.
Another possible solution is to use force or tactile
sensors to estimate the contact force that is applied
between the end-effector and the constraint surface.
In fact, it can be easily shown - see [11, 12]; see also
section III of this paper - that the contact force F is
given by

F = A(0,6,7,9)

where 6, 6 are the vectors of robot joint angular po-
sitions and accelerations, respectively, 7 is the vector
of joint torques, ¥ is the vector of the unknown sur-
face characteristics, and A(-) is a nonlinear function.
Therefore, if 6,0, 7 and F are available for measure-
ment, we can apply an extended Kalman filter or any
other nonlinear parameter estimation method to esti-
mate the unknown surface parameters J. In the sim-

plest case, the parameter vector ¥ can be estimated
through the following gradient estimation algorithm

0A

= _H% 9=9

(F-a6,6,7,9)

where 9 denotes the estimated value of ¥ and II is
a positive definite - possibly time-varying - matrix.
The above methodology, slightly modified, has been
followed by Bay and Hemami [1] in order to solve the
unknown surface estimation problem. However, it is
a well-known fact, that nonlinear parameter estima-
tion algorithms do not guarantee the convergence of
J to the actual parameter vector ¥; this is since, due
to the nonlinear dependence of the function A(-) on
the parameter vector 9, there are many local minima
of the error functional that the parameter estimation
algorithm minimizes. Therefore the nonlinear param-
eter estimation algorithm might get trapped into a
local minimum, and thus, the estimation procedure
will fail. Even worse, nonlinear parameter estimation
algorithms may become unstable, which means that
the estimated values J will reach unacceptable large
values (theoretically infinite).

In this paper, we show that the unknown surface
estimation problem can be formulated as a linear
parameter estimation problem, and therefore a lin-
ear parameter estimation algorithm can be applied.
The linear parameter estimation algorithms, contrary
to nonlinear ones, ensure stability and convergence.
Furthermore, we propose a new learning architecture
that is capable of estimating the unknown surface
characteristics even in the case where the contact
force F is not available for measurement. This learn-
ing architecture consists of a linear parameter esti-
mation algorithm as in the case where the contact
force is available for measurement, and an appropri-
ate approximator, that approximates (estimates) the
unmeasured force. As we show, the whole scheme is




globally stable and convergent. In both the unknown
surface estimation and the force approximation prob-
lems, we make use of high order neural network ap-
proximators, which are nonlinear functions but they
are linear with respect to their adjustable parameters.
However, any other (either neural or not) linear-with-
respect-to-parameters approximator can be applied
as well.

The key idea used in this paper, is to use the fact
that during the constrained motion, the second time-
derivative of the constraint equation is zero. In other
words, if ¢(x) = const is the mathematical descrip-
tion of the constraint surface, then during the con-
strained motion the following relation must be valid

d(z)=0

If we linearly parameterize - using, e.g. a neural net-
work approximator - the constraint surface ¢(z), and
if we assume that the constraint forces are available
for measurement, then the above differential equa-
tion, reduces to an algebraic equation which is lin-
ear with respect to the (unknown) parameters of the
surface. Therefore, a linear parameter estimation
algorithm can be directly applied. When the con-
tact forces are not available for measurement, the
robot dynamics (which are assumed to be completely
known) are utilized in order to obtain - via another
neural network approximator - a reliable estimation
of the constraint forces, which in turn is used in the

" linear parameter estimation algorithm.

The complete proofs of the theoretical results of
this paper can be found in [10].

I.1 Notations & Preliminaries

Our notations are quite standard. I denotes the iden-
tity matrix; tr{A} denotes the trace of the matrix A;
AT denotes the transpose of the matrix (vector) A.
If z is a vector then [z| denotes the usual Euclidean
norm of z. In the case where z is a scalar |z| denotes
its absolute value. If A is a matrix, then |A| denotes
the Frobenious norm of this matrix. Let now f(t) be
a vector function of time. Then

2 ([ If(T)I’dT)%

11flleo £ sup |£(2)]
t>0

and

We will say that f € L3 when [|f]|; is finite; similarly
we will say that f € Lo when ||f|| is finite. If
f:R® — R™ is an at least twice differentiable vector
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function, then V f(z) and V2 f(z) denote the gradient
and the Hessian of f(-), respectively.

Let f(t) and g(¢) be two vector functions of time.
We will say that f € S(g) if there are two positive
constants a3 and a3 such that

t 4
[ 1o <o+ [la)as, vezo
0 ¢

Similarly, if f(t), g1(t), 92(t),...,9n(t) are vec-
tor functions of time, we will say that f €
S(g1,92,---,9n) if there are positive constants
a;, i=0,1,...,n such that

t t
/ |£(s)[*ds < ao + o / l91(s)[2ds
0 4]

t
+...+a,,/ lgn(s)|?ds Vt >0
0

Note that if f € S(g1,92) and g; € S(g2) then f €
S(g2). Also, we will say that the function f(-) is
persistently exciting (symbolically f € PFE) if there
are positive constants 8y, 32, 6 such that

t4+46
Bl < / f(8)fT(s)ds < el <00, V>0
t

IT High Order Neural Network
Approximators

In this section, we briefly describe the mathematical
representation and the approximation properties of
the high order neural network (HONN) approxima-
tors. For more details and for applications of HONNs
to various engineering problems the reader is referred
to [6, 7, 8, 9].

In general the HONN approximator is described by
a nonlinear function of the from

L
Y = Zw;k H S(Zj)di(k) (2.1)
k=1

J€lx

where y; is the i-th output of the HONN; y 2

W1, ---,Ym]T, zj is the j-th input; = 2 [z1,...,24]T,
w; denote the synaptic weights of the HONN,
{I1,...,1IL} is a collection of not-ordered subsets of
{1,...,n} and d;(k) are nonnegative integers. The
function S(-) is either a linear function of the form
S(z) = az or a sigmoidal function of the form!

1
T+ exp(—B7)

! Although, it looks simpler to use linear functions in
place of S(-), simulation results indicate us that the usage
of a sigmoid-type S(-) improves considerably the HONN
approximation capabilities.

S(z) Lq Y (2:2)




It is not dif-
ficult someone to see that if we define (x(z) S

) A
[ien, SE)%®, ((z) £ [G1(2), ..., ¢(2)]T, and W
the m x L matrix whose ik-th entry equals w;j, then
the HONN operations can be described by

y = W((z)

where «, 3,y are positive constants.

(2.3)

Although it is not explicitly written in (2.3), the
HONN input/output function depends on the partic-
ular selection of the integer L; in the sequel we will
call this integer the number of the high order terms.

The next proposition (see e.g. [3]) demonstrates
the approximation capabilities of the HONN.

Proposition 1 For any continuous functlion f
R* — R™, for any compact subset X of R, and for
every € > 0, there is a number of high order terms
L and a vector W* such that the HONN with L high
order terms and W = W* salisfies

sup | f(z) — W™((z)| <€
reX

Remark 1 The proof of the above proposition is
based on the well-known Stone-Weierstrass theorem
[13]). In fact, it can be easily shown that the family
of all the HONN approximators of the form (2.3) is
dense in the space of continuous functions f(-) with
compact domain, which practically means that for
every such function f(-) there is a HONN of the
form (2.3) that is very “close” to it. The mea-
sure of “closeness in proposition 1 is the metric
sup,cx |f(z) — g(z)|. However, other distortion mea-
sures can be applied as well. For instance, proposi-
tion 1 is also valid if we replace the distortion mea-
sure sup,cy |f(z) — g(z)| by the following “Sobolev
distance”

max{sup 1£(2) - (2)], sup [V £(z) — Va(2),
reX reX

sup |V2f(z) — Vig(z)|
TEX

The reader is referred to [4] and the references therein
for further details. °

IITI Manipulator Dynamics in
Constraint Motion

Consider a robot manipulator consisting of n+1 links
connected serially by n joints (either translational
or rotational), and suppose that there are no exter-
nal forces that are applied on the end-effector of the

manipulator. In this case, the closed-form dynamic
model of the manipulator is described by the follow-
ing nonlinear differential equation [14]

(t) = M(8(t), p)b(t)+C(6(2), é(t),p)é(t)+G(9(t(),p;
3.1
where

e 7(t)is an n X 1 vector of joint torques,

e O(t) is an n x 1 vector containing the joint an-
gular positions,

f is an n x 1 vector containing the joint angular
velocities,

f is an n x 1 vector containing the joint angular
accelerations,

M(6(t),p) is an n x n positive definite ma-
trix representing the contribution of the iner-
tial forces to the dynamical equation, hence the

matrix M represents the inertia matrix of the
manipulator (M = M7 )

C(8(t),6(t), p) is an n x n matrix representing
the Coriolis , centripetal, and frictional forces

G(6(t),p) is an n x 1 matrix representing the
gravitational forces

p is a parameter vector whose elements are func-
tions of the geometric and inertial characteris-
tics of the manipulator links and the payload,
i.e., p depends on the lengths and moments of
inertia of each individual link and the payload.

An introduction on the derivation of the dynamical
model of a robotic manipulator can be found in [14].

In the case where external forces are applied to the
end-effector of the robot, the closed-form dynamic
model of the manipulator becomes [14, 12]

7(t)+ JT(8,p)F = M(6(t), p)é(t)
+C(0(2),6(1), p)6(t) + G(O(1),p)  (32)

where, J(-) is the 3 x n manipulator Jacobian and F
is the 3 x 1 vector of external forces. In this paper
we will treat the case where the robot’s end-effector
is constrained to be in contact with a surface. We as-
sume that contact occurs at a point. Let x denote the
3-dimensional position vector from a fixed reference
frame to the constraint frame. The constraint surface
is assumed to satisfy the following scalar relation

¢(z) = const (3.3)

where ¢(-) is a smooth function. In this case the con-
tact force, or workless force, is given by the following
(McClamroch [11])

F =DT(z)x (3.4)




where

D(z) = (3.5)

0¢(x)

Oz
and A is the Lagrange multiplier and its value is given
by the solution of the following equation (see Mills
and Goldenberg [12])

DIM~Y(=C-G+71)+DIM Y JTF+T =0 (3.6)

where

r'(6) = d%(DJ)é

The algebraic equation (3.6) is obtained by differenti-
ating twice the constraint (3.3), i.e. (3.6) is obtained
from .
¢(z) =0

We mention here that the term DJM~1JT DT js al-
ways invertible [5]. Thus the parameter \ is given
by

DIM-YC+G~1)-T

DJIM-1JT pT

and therefore the external forces vector is given by

F o prDIMHC6+ G~ 1)~
DIM-1JT DT

A=

(3.7)

L2 a0,6,7

(38)
Although it is not explicitly written, the function A
depends on the particular contact surface.

IV Estimating the Unknown
Surface: Case 1 — The
Contact Forces are Avail-
able for Measurement

Suppose now that the robot manipulator is moving on
a unknown surface ¢(z) = const. In this section, we
will assume that the manipulator is provided with ap-
propriate devices (encoders, tachometers, force sen-
sors) that measure the joint angular positions and
velocities § and @, the joint torques = and the con-
tact forces F. Also, in order to have a well-posed
parameter estimation problem, we will assume that
all the above quantities are bounded. In other words,
we assume that

(A1) 6,0,7,F € Loo, 7 € Log

From assumption (A1) we readily obtain that there
exists a compact subset © of R3"+3 such that
9,6,r, F) € Q. Note now that since the cartesian
vector z is related with the joint angular positions 8
via a nonlinear kinematic transformation z = T/(9),
we can write the constraint surface as

¥(8) = const (4.1)

where ¥(0) = ¢(T(6)). Although the surface is un-
known, we can approximate it by a HONN approxi-
mator. To be more precise let us select a HONN with
Ly high order terms of the form

y = W5 ()

where y € R!, W,, € RL+.
weight vector Wy as follows

(4.2)

Define now the optimal

v {i‘ég |48 - WwTCw(ﬁ)I} (4.3)

A .
Wg =arg min
[Weyl<M

where O is a compact subset of " where § belongs?,
and My, is a sufficiently large positive constant; the

role that My, plays will become clear later. Let also
define the modeling error vy, as follows

MOE W5 ¢u ()

We now return to relation (3.6); using the identity
Y =W, (./, + vy and, after some algebraic manipu-
latlons, relation (3.6) becomes

¥(0) — (4.4)

0

(WiTv¢y + Vi) x
(M“(-Cé —G+r1)+ M“JTF)
wyT— d = (V60 6+ 6TV%0,6 (4.5)

1/; ¢¢(0,0, T, F) + p.p(o,a, T, F) (4.6)

where py £ V¢, (M~Y(~Cé -G+ 1)+ M~1JTF) +
- A _ .
#(V6)6, py = Voy(M~Y(-C8 — G + 7) +
M~YJTF) + 6TV%v,0. Subtracting from both sides
of (4.6) the term W‘f ¥y and denoting W,,, =Wy -
Wy, we obtain that
-—W,fw.j,(ﬂ, 6,7, F)= W$<p¢(0, 4, F)+py(9,6, (7"1, i’))
Since 0,4, 7, F are available for measurement and the
robot dynamlcs are assumed to be exactly known,
the function oy (6,6, 7, F) can be computed on-line
during the a.ppllcatlon Also, since Wy denotes the
current estimate of W, we can also compute the LHS
of (4.7). Note now that the smaller is the term vy,
the smaller is the term p,. Moreover, since from
proposition 1 we have that vy, can be made arbitrarily
small, we have the following result.

ZNote that the implementation of the proposed
method does not require the knowledge of the subsets
Q and O.
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Result 1 For any €1 > 0 there is a number Ly of
high order terms such that

sup |“¢(0!éa T, F)l <&

(8,6,7r,F)eq

The main problem therefore is to find the appro-
priate synaptic weights W, the collections I and
the powers d;(k) such that sup |py| < €1, where ¢;
denotes the desired degree of accuracy. If this is
achieved then obviously the problem of unknown sur-
face estimation has been solved. In this paper, we will
concentrate our attention in the optimal selection of
the synaptic weights W,. The selection of the opti-
mal collections I; and the powers d;(k) will not be
treated in this paper since, in general, the more col-
lections I; we have the better the approximation is.
Hence we assume that the number of collections I; is
sufficiently large in order to make the neural network
able to approximate the unknown surface sufficiently
close.

Setting now ey, 2_ 530.4,(0, 6, F) and omitting
the arguments for simplicity, we rewrite (4.7) as fol-
lows

ep(t) = Wypy(t) + py(t) (4.8)
Consider now the following learning law for adjusting
the Wy’s

Wy = —Hey (t)py () — oy ()IWy (4.9)
where
0 if Wyl <M,y
oy = (%\1—1 - 1) g0 if My < |[Wy| < 2My
o i Wy > 2My

The following Result summarizes the properties of
the proposed scheme.

Result 2 Consider the error equation (4.8) and the
parameter estimation algorithm (4.9). Then the fol-
lowing statements hold:

(a) ey, Wy, Wy € Loo.

(b) ey € S(uy). Moreover, in the case where py =
0, we have that

lim ey(t) =0
t—o00
(¢) IfIWy| < My and py € PE, then parameter es-

timation error Wy, converges exponentially fast
to the residual set

A ~ 4 _
Dy = {Wy : [Wy| < cypiy}

. . Py
where ¢y is a posilive constant and fy =
supy |uy (4)]*.

V Estimating the Unknown
Surface: Case 2 — The
Contact Forces are not

Available for Measurement

Suppose now that all the assumptions of the previous
section hold, with the difference that the constraint
forces vector F' is not available for measurement any-
more. However, since F = A(6,8, 7) where A(-) is an
unknown function - which depends on the constraint
surface ¢(-) - we may approximate A(-) with a HONN
approximator. More precisely, we consider a HONN
with Lp high order terms of the form

F=WgCr(0,6,7) (5.1)
where F' denotes the estimation of F, the 3 x Lp
matrix Wr denotes the set of adjustable parameters
(synaptic weights) and (r is an Lp-dimensional vec-
tor function. Similar to the previous section, we de-
fine Wi and vp, respectively, as follows

W;‘ é arg min { ]A(aa é) T) - WFCF(ar 0., T)I}

sup
|[We|<MF (9’9"565
(5.2)
and
vr(0,6,7) 2 A(0,6,7) — Wiir(6,0,7)  (5.3)

—

where Z is a compact subset of R3" where (0,6, 7)
belongs and M is a sufficiently large positive design
constant which is defined similarly to M.

Let us now define x as the solution of the following
differential equation

x(t) = A%(t) + M~(8(t), p)x

(C6@), ), bt) - GO@), ) + 7(t) + IT (6, P)F)
(5.4)
where A is an n x n constant negative definite matrix,

and ¥ 2 X — 6. Note now that from (5.2) and (5.3)
the constraint forces vector F' can be written as

F=Wglr+vr (5.5)

By substituting the above identity into (III), we can
easily see that the following relation holds

X = A —MYTWecp — M JTup

= AX+Wrlr + ur (5.6)

where Cp 2 (pJM™! and pp 2 —M-YTye,
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Consider now that the Wy is adjusted according
to the following learning law.

Wr = —I(1)CF (1) — op(t)TWr (5.7)
where
0 if |[Wp|<Mrp
op = (Lz_il—l)”o if Mp<|Wr|<2MF
oo if |Wr|>2Mp

We have the following result.

Result 3 Consider the error equation (5.6) and the
parameler estimation algorithm (5.7). Then the fol-
lowing statements hold:

(a) i: WI"'; WF € [:oo

(b) x € S(ur). Moreover, in the case where up = 0,
we have that

M x(t) =0
(c) If|W§| < MF and (F € PE, then parameter es-
timation error Wr converges ezponentially fast

to the residual set

Dr S {Wr : |WF| < eriir}

>

where cp is a nonnegative constant and fp
sup, [ur(t)[>.

Let us now return to relation (4.5), i.e. to relation

(WsT9¢y + Vi) (M~ (~Co-G+7)+ M~1JTF)

d
W*T il
e H
Using now relations (5.5), (5.6), we can easily see that
(4.5) can be rewritten as

(V¢p)+6TV206 =0

0

(W.ZTVCap + VV‘(;) X

(M"l(—Cé - G+7)+Wplr + #F)
«T d

where Wg 2 Wi — Wr denotes the parameter esti-
mation error, and ¢, £;,£2 are given by

90(0)0.)1-7 WF)C_F) é VC‘/J (M_l(_cé - G+ T) + WFC—F)
d
5 (Véy)
60,W3) 2 WiTVey + Vg 2 5

&(W3,0,0,m,F) 2 Vi x
(M“(—Cé - G+1)+Wplr+ pp)
AW TVCur + 6T Viryé

Subtracting from both sides of (5.10) the quantity
Wy, we obtain that

— Wyp(8,6,7,Wr,Cr) = Wie(8,6,7,Wr,(F)

+ WFC—FEI(aa W$)+€2(W';,9,0.,T, F) (511)

Note now that since 6, é, T are available for measure-
ment and Wp,{r are known quantities (in fact, Wp
is computed from the adaptive law (5.7) and (F is a
known function of the measurable quantities 8,6, 1),
the function (8,6, T, We,(r) can be computed on
line during the application. Also, we can easily see
that the following result holds.

Result 4 For any €2 > 0 there are numbers Ly and
Lp of high order terms such that

sup  |€&2(W;,0,0,7,F)| < ez
(0.6,7,F)en

sup |ur(8,0,7) < &2

(0,6,7)EY
where YT is a compact subset of R3® where (0,0',1)
belongs.

Setting now e 2 —W,,,cp(e,é,‘r, Wp,(F) relation
(V) takes the form

+WiT — (V¢y) + 67 VP06 5.8
Patve ’ . e(t) = Wy o(t) + WrCr()ea(t) + &2(t)  (5.12)
= (W7 Vey + Vi) x
(M “H(=CO - G+ 1)+ Wrlr + Wrlr + pp) e(t) = WTp(t) + w(t) (5.13)

d : :
W = (VGy) + 67 V76

WaT (8,6, 7, Wr,Cr) + Wrréar(8, W)
+&2(W;,0,0,7,F)

(5.10)

(5.9) where w(-) 2 Welr(-)€1(-) + €2(-)- Consider now the

following learning law for adjusting the W,.

Wy = —Te(t)p(t) — oy (H)TIW, (5.14)
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0 if Wyl < My
oy = (%—1) oo if My < |Wy| < 2My
0o if |W¢| > 2M¢

The following result demonstrates the stability and
convergence capabilities of the whole scheme.

Result 5 Consider the error equations (5.6), (5.12)
and the parameler estimation algorithms (5.7),
(5.14). Then the following statements hold:

(a) e,W¢,W¢ € L.

(b) e € S(ur,&). Moreover, in the case where iy =
0,6, = 0, we have that

lim e(t) =0

(¢) If IW)| < My and ¢ € PE, then parameler
estimation error Wy converges to the residual
set

A ~ ~ —
D= {Wy 1 [Wyl < aafir + asés + as0g}

L. _ A
where ayg, as, ag are positive constants and ip =
z A
sup, |ur(t)|?, &1 = sup, |£1(t)|2'

VI Simulations

In order to test our theoretical results, we performed
simulations of a robot manipulator moving on a con-
straint surface. The simulation programs were writ-
ten in C, and they run in a SUN SPARC 1+ machine.
For simplicity we considered a manipulator that
consists of n = 2 degrees of freedom and more espe-
cially of two revolute joints whose axes are parallel.
The system matrices M and C can be written as:

M(6(t), p) ( (1,0,2cos62)p

(0,1, cosf3)p )

(0,1,2¢co0s62)p (0,0,0)p
5 = (0,0, =62sin82)p (0,0, —(6y + 62)sinb2)p
c(6(e), 6Ce), ) = ( (0,0, —6) sinf)p (0,0,0)p

The above mathematical model and the particular

numerical values of the robot parameters has been’

taken from [2]. Note that no gravitational forces af-
fect the robot dynamics.

The simulation policy was as follows: At first the
unknown surface was selected. More precisely, we
selected the unknown surface to be represented by a
constraint equation of the form

Y(0) =
+ Wy 4S(62)* + Wy 55(61)S(62) + €sin(6,62) (6.1)

Wy 15(61) + Wy, ,5(82) + W,}j,aS(«ﬁh)2

where W ; are the optimal values for Wy, ; - see e.g.
(4.3) - and esin(@,, 07) represents the modeling error
term vy. The function S(-) is defined in (2.2); the
values for a, 3,7 were chosen to be equal to 2,1 and 1
respectively. The particular values of W ; are shown
in the first column of table 1. The constant € was set
equal to 0.01.

Once the constraint surface was selected, we cre-
ated several constraint robot trajectories
(6(t),6(t),6(t)); this was done as follows: the joint
position 0;(t) was selected to be equal to a smooth
function of time f(t); substituting 6,(¢) = f(¢) into
¥(8(t)) = 0 we solved this algebraic equation with re-
spect to 62(t). Then by differentiating twice 6(t), we
obtain a complete trajectory (6(t), 6(t),6(t)), which
satisfies ¥(t) = 0,4(t) = 0,9(t) = 0. Several such
trajectories were created.

For each of the these trajectories, we computed
the input torques and constraint forces as follows:
by substituting (3.4) into (III) and (3.6) we obtain a
system of three equations with three unknown vari-
ables, which are the input torques 71(1) and 73(t) and
the Lagrange multiplier A. By solving this system
of equations for each time-instant we obtained the
trajectories 7(¢) and A(t); using now (3.4) we were
capable of computing F(t).

Thus using the above procedure, we were capable
to compute all the simulated quantities for each of the
constraint trajectories. The HONN (4.2) was selected
as follows

y= W¢,1S(91) + W¢,25(32) + W¢,3S(01)2

+W¢_4S(02)2 + W¢,5S(01)S(92) =0.03

where Wy, ; denotes the estimate of Wy ;. The vec-
tor {p of the HONN (5.1) used for estlmatxon of the
forces, was as follows

Cr = [S(601), S(82),5(61), ..., S(m2), S(61)%,

5(6,)S(62), . .., S(m)?*|T

For each constraint trajectory we used the pro-
posed learning laws for estimating W ;. Two differ-
ent cases arise: in the first case the constraint forces
were assumed to be known by the HONN estimator
(see section IV) while in the second case they were
assumed unknown (see section V). We employed the
learning procedure for ten different constraint trajec-
tories in both cases. In table 1, the reader can see the
values for Wy ; after the end of the learning procedure
for both cases.

Table 1
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i 1 2 | 3 4 5
W, 0.1 0.1 0.01 0.01 0.01
Wy.i (0) 0.0 0.0 0.0 0.0 0.0
Wy i - Case 1 || 0.944 | 1.04 | 0.0096 | 0.0098 [ 0.012
Wy - Case 2 || 0.938 [ 0.98 | 0.014 | 0.0096 | 0.0098

As we can see from the table 1, W, ; converged
very close to the actual Wy ,, even in the case 2,
where no force measurements were available. Of
course, in the case where the forces were available
for measurement, the convergence was better than
the case where the forces were not available for mea-
surement.

VII Conclusions

In this paper, we have designed appropriate neural
network architectures which, when implemented in a
robotic manipulator, make it capable of learning the
characteristics of unknown constraint surfaces, even
if the robot manipulator is not provided with any
force sensor. The proposed architecture was shown
to be stable and convergent; in fact, as Results 1-6
state, we can always find appropriate HONN archi-
tectures that are capable of making the parameter
estimation error as small as desired. We mention
here that the parameter estimation error converges
to - or very close to - zero, if some persistently of
excitation conditions hold; however, it is well-known
in parameter estimation and adaptive systems litera-
ture that such conditions are necessary and sufficient
for the convergence of the parameter error. On the
other hand, the practical meaning of such conditions,
is that the neural architecture must be provided with
sufficient information about the unknown surface in
order to be capable to estimate it.
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