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An inherent problem in the control of robotic manipulators is the existence of singular
positions inside the workspace of the manipulator. The singular positions of ideal robot geometries
are always known a priori. Since the presence of singularities complicates robot control, singularity-
. robust algorithms that avoid the neighborhood of singularities have been developed. In this paper, a

resolved-motion rate kinematic control strategy for decoupled robot geometries that guarantees

1 smooth motion of the manipulator even at the neighborhood of singular points, is presented. For
i expository convenience, the examples in this paper deal with ideal dual-elbow robots.
18 Dual-elbow manipulators are articulated robots consisting of six rotational joints. It has been
e demonstrated that the dual-elbow configuration is a non-anthropomorphic geometry, alternative to the
elbow geometry, that shares the basic properties of the elbow configuration and that the Kinematic
el characteristics of the ideal dual-elbow geometry mirror those of the ideal elbow geometry [1].
/ The dual-elbow manipulator has a decoupled robot geometry and thus guarantees singularity

decoupling: that is, the singularities of the entire manipulator consist of exactly the positional and the
orientational singularities. As a result, near singular positions singularity-robust algorithms need to be
employed only for the distinct subsystem that produces the singularity [2].

Since the presence of singularities complicates robot control, kinematic control strategies have
traditionally focused on singularity avoidance. Yoshikawa developed the manipulability measure as a
criterion to avoid singularities at the rask-planning level for redundant manipulators. The
manipulability measure prevailed among other criteria proposed to measure the distance of a robot
configuration from a singularity, because it is not frame-dependent and because it uses the minimum
number of kinematic parameters [3,4]. Typically, the manipulability measure w(q), is defined as a
continuous positive function obtaining values between zero and one, that depend solely on the joint

displacements:

w(q'):\/detlJ(q)J(q)Ti (1)

where J{q) is the configuration dependent 6xV Jacobian matrix of the manipulator and q is the Nx1
joint coordinate vector. For a six-axis maﬁipulator. w(q) reduces to |det| J(q)]l. A zero manipulability
measure thus indicates a singular configuration, while a unit value indicates a configuration for which
the robot's ability to move is maximized [5.6].

The differential motion equation for a manipulator with NV degrees of freedom is:

0x=J(q)dq (2)
where x is the 6x1 pose vector. The inverse of the mapping in (2) gives rise to the following equation:
dg=[J(q)]" dx (3)

which exists as long as configuration points for which det|J(q)|=0 are avoided. The zeros of this

equation correspond to the singular configurations of a robotic manipulator.

‘..



Equation (3) is at the core of resolved motion rate kinematic control algorithms for industrial
robots since it provides the necessary joint displacements needed to produce a desired differential k,
motion of the end-effector. In the context of Equation (3), resolved motion rate control means that the
motions of the various joint motors are combined and resolved simultaneously at different rates in res
order to achieve desired end-effector motions along any coordinate axis.
For the dual-elbow manipulator, which has a decoupled geometry, Equation (2) can be ii
decomposed into the following equations:
; 0x,=J,0q, (4) 8
oxy=J 05+ Coa, (5) 3
where the subscripts A and S denote the arm and shoulder subsystems, respectively, and Cisa :
coupling matrix. o
Nakamura extended Yoshikawa's method and utilized the manipulability measure to solve
inverse kinematics while simultaneously evaluating the feasibility of joint motion; the resulting B
singularity-robust control scheme offers a feasible motion close to the desired trajectory of the end- ;e
effector even in the neighborhood of singularities. In his implementation, Nakamura introduced the B
singularitv-robust inverse Jacobian matrix as an alternative to the inverse Jacobian matrix in s
Equation (3) for use in the neighborhood of singularities, and clarified its properties by comparing it "
with the actual inverse and the pseudoinverse. h
The singularity-robust inverse Jacobian J” of an 7 x n Jacobian matrix J is an n X n matrix 5.
defined as: ‘
J =@+ = 3 4D (6) 3
where JT is the transpose of the Jacobian matrix, I is the # x n identity matrix and £ is a variable B
positive scale factor which determines the relative weight between the exactness and the feasibility of
the end-effector motion. As k decreases in value, the exactness of the end-effector motion prevails over g
the feasibility of the joint motion; as a result, the magnitude of the joint displacement vector logl is
decreasing in value while the magnitude of the posing error vector lor| is decreasing as the singularity 1\
is approached. The matrices (JVJ+4D) and (JJ'+4T) are always positive definite and thus nonsingular.
In Nakamura's implementation, & is a function of the robot's manipulability measure w(g), in order o 5_‘
ensure the continuous transition from J' to J* in the neighborhood of singularities; the point of
transition is defined by the scale factor £. It should be pointed out that the determinant det(J") is L
independent of the coordinate frame it is expressed in. , 1
An efficient way to guarantee singularity avoidance for the dual-elbow geometry at the control- | l
level is to utilize Nakamura's singularity-robustness approach along with the singularity decoupling ‘ ]
principle; the singularity-robust inverse Jacobian matrix of the arm or shoulder subsystem needs to |
replace the corresponding inverse Jacobian matrix in the control hierarchy whenever an arm or I

shoulder singularity, respectively, is approached. The singularity-robust inverse Jacobian matrices of
the arm or shoulder subsystems are:
4=, Jada +haD (7
Js = Js (T +hely! (8)
where k, and kg are variable scale factors equal to:
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. respectively. In Equation (9), w, and wy are thresholds that define the neighborhood of singular

points and also the transition point at which the singularity-robust Jacobian replaces the inverse
Jacobian in the control hierarchy.

The decoupled control strategy for the dual-elbow geometry using the singularity-robust
inverse Jacobian matrices of the shoulder and the arm subsystems, offers a considerable
computational advantage as compared to the singularity-robust control scheme for the entire
manipulator. Furthermore, the use of the singularity-robust inverses increases the computational load
compared to the simple inverses, but guarantees the stability of each distinct subsystem.

A resolved-motion rate kinematic control strategy for decoupled robot geometries, that
guarantees smooth motion of the manipulator even at the neighborhood of singular positions, has been
developed. This approach has then be customized fro dual-elbow manipulators to perform singularity
avoidance and to provide feasible solutions for the end-effector motion at the neighborhood of
singularities. To accomplish this objective, the singularity-robust Jacobian matrices of the shoulder
and arm subsystems have been utilized. It has been shown that the computational cost associated with
this control scheme is considerably lower than that of existing control algorithms. Finally, a set of
examples has been used to illustrate the smooth behavior of the control strategy in terms of the

accuracy of the end--effector motion and of the feasibility of the joint motion.
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