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661 6* Abstract
tg ofl We present different kinds of neural networks for image processing purposes. Multilayer

i perceptron and Hopfield dynamic network are applied for filtering of images degraded by
and M deterministic kinds of distortions (different types of blurs) and also by stochastic noises of
different distributions. Spectral methods as well as spatial algorithms are implemented. A
powerful integrated soltware package as a practical implementation for IBM PC/486 com-
patibles has been written and tested on several examples.

g
nt
1 Static Networks—Multilayer Perceptron
~temgl Static networks are widely used for pattern recognition/classification and also for image processing

3. Another area is approximation theory, where the problem may be stated as follows: given two
: signals (¢) and y(¢) find a ‘suitable’ approximation of the functional relation between the two.

1.1 Static Networks Description

Let us take into considerations a network composed of neurons described by:
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A common choice of o(+) is a sigmoid function
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| which is usually smooth, but a hardlimiter is also in use. Notice that all signals are denoted as y;
mm ened and numbered from top to bottom. Formula (1) uses z; as inputs to emphasize that the signals
fed into static neurons are not feedback ones, so not equal to outputs. The reason for introducing
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! the homogeneous notation 1,4, ..., yv will become clear when deriving learning algorithms.
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A usual way of arranging the architecture of static networks is to group neurons into layers or
to design connections in such a way that each of them sends its signal directly only to a certain
group of other neurons. The input layer composed of p distribution nodes (not neurons) feeds
the first hidden layer, containing n, neurons with outputs y,41,...,Yptn;. This layer, in turn is
connected through weights to the second hidden layer of n; units and so on until the last layer of
g neurons, called the output layer. Notice that each layer ! has a direct connection only to the
subsequent one, i.e. [ + 1, making the total of L layers. This results in the description

y=o(s)+u, s=Wy, (3)
where the matrix W is sparse
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Wi are matrices of interlayer connection \\eiuhts The vectors y and w in (3) have the form
y =y yt...yHT and u = [u® wl...u"]T, where ¥

u is the constant bias (offset) vector.

1* are vectors corresponding to the ¢th layer;

1.2 Backpropagation for Multilayer Perceptron

Backpropagation (BP) was described elsewhere in detail [6], [7]. The reason why it is briefly
recalled here is to present it in the rarely used Werbos form [8] Moreover, the essence of the
algorithm gives an immense insight into the differences between static and dynamic networks.
Last, but not least, useful notation will be introduced.

Define the ordered system of equations
% =Bl iyt T=hiiasd 4 L (5)
Then a systematic and formally proper way of calculating the partial derivatives of yy.,q is as

follows:
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which is a recursive definition of the ordered derivative d%yn41/9y:, valid only for the systems
(5).

The network (3) is given a reference signal d only for the output layer, i.e. d; # 0 for ¢ =
N —gq,..., N, and it is required to minimize
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which is the nonlinear least-squares fitting problem for ¢ patterns. The gradient algorithm for
adjusting weights yields
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For the output layer F/dy; = y; — d;, but it is not straightforward to find this expression for the
hidden layers. The backpropagation hypothesis assumes linear propagation of the error derivative
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where y; belongs to the layer [, and y; to [ + 1. Starting from the output layer this can be
recursively solved. This formulation requires care with neuron indexing and raises doubts about
the conformation with the partial derivative definition.

On the other hand, the network structure is ordered (compare (3)—(4) and (5)). Thus, the
hypothesis (10) can be expressed as
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with E treated as yn41 in (6). Then the BP algorithm for static networks is
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where z; = 0+ E/dy; and ¢; = OE/Jy;, or in vector-matrix form:
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This is inherently an off-line technique as the forward pass must be computed for all ¢ before (13)
is applied (backward pass).

2 Hopfield Network and Problem Statement for Asso-
ciative Memory

There are three processes involved in an associative memory for memorization and retrieval of
mformation :

e storing

® matching

¢ decision—making



We consider Hopfield network that was suggested by Hopfield in [4] described here by using
simple discrete-time autonomous model:

V(k+l) = .Sgﬂ.(TVk), k= 0317"' (14)

where v = [v;...vn]T,v; = -1 or +1, i=1,...,N
is the input vector,
T is symmetric n X n connection matrix,
k denotes instant of time.
The energy function of such network model (neurons with zero threshold) is:

1
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The learning process forms the connection matrix T. The next state of the Hopfield network,
l.e., v(k + 1) is computed from the current state by performing the evaluation (14) at a set §
of the nodes of the neural network. The modes of operation are determined by the method by
which the set S is selected in each time step. If the computation is performed at a single node
in any time interval, i.e., |S| = 1, then we say that the network is operating in serial mode; if
S| = N, then we say that the network is operating in a fully parallel mode. All the other cases,
ie, 1 < |S] < N, will be called parallel modes.

2.1 Convergence problems

One of the most important problem of the neural network is its convergence. The convergence
properties of the model can be summarized as follows:

1. If the Hopfield Network (HN) is operating in a serial mode and the connection matrix T is
symmetric with zero diagonal. then the network will always converge to a stable state

2. If HN is operating in a serial mode and the connection matrix T is symmetric with

nonnegative elements on the diagonal, then the network will always converge to a stable
state

3. If HN is operating in a fully parallel mode, then for arbitrary symmetric connection
matrix T the network will always converge to a stable state or a cycle of length 2; that is
the cycles in the state space are of length < 2

4. IfIIN is operating in a fully parallel mode,then for arbitrary antisymmetric connection
matrix T the network will always converge to a stable state or a cycle of length 4

The second important issue is the number of stable states in the Hopfield network. A state v(k)
is called stable (fixed or equilibrium point) iff v(k) = sgn(T -v(k)) = v(k 4+ 1). We want to store
only desirable memory (library) vectors in the network but automatically during the learning
process (while forming the connection matrix T) we obtain undesirable stable states (spurious
states) which 1s a serious threat during retrieval stage making associative recall more difficult.
The number of spurious states is difficult to compute or evaluate and only small part of them can
be eliminated [2]. In addition to learning (as defined above), another desirable feature of a neural
network 1s forgetting (i.e. the ability of deleting specified equilibrium points from a given set of
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stored equilibria without affecting the rest of the equilibria in a given network). This process
called also unlearning is examined mathematically to gain some insight into. The information
contained in the neural network is stored in the matrix values which represent the connection
strength between neurons. It is found that the size of the matrix eigenvalues is very important in
determining the frequency of occurrence of a given output state. Unlearning has the property of
reducing the eigenvalues of the matrix. Since accessibility is related to the size of the eigenvalues,
the states associated with the higher eigenvalues will be reduced more quickly than those with
smaller eigenvalues. Thus eigenvalues of stored states will converge to each other, thus making
those states more equally accessible. The many spurious states, which each occur infrequently,
have eigenvalues which are smaller then those of the desired states. Reducing these eigenvalues
further in the unlearning process reduces them to values under unity so that these states decay
in the iterative process of recall. The net effect is that the learned states even if they grow more
slowly in the iterative process will be more accessible. The unlearning process, since it reduces all
eigenvalues will eventually reduce those of the desired states to less than unity so that they will no
longer be accessible. This explains why the unlearning process is eventually unstable - too much
unlearning destroys the desired memory. But if the unlearning process is controlled carefully it
could be a good method of reducing the number of spurious states and could have a stabilizing
effect in associative memories [4].

2.2 Energy function learning rules and the connection matrix T

Aiyer et al. [1] have found the relationship between the fixed points of the network, energy function
and the eigenvalues of the connection matrix T. The learning algorithms we use form symmetric
T matrix (in order for the Lyapunov energy function to be valid) and because of that T can be
characterized by its eigenvalues and corresponding orthogonal eigenvectors denoted as A;... Ay
and €' ...eM. The eigenvalus may be degenerated in which case instead of a corresponding eigen-
vector there is a corresponding subspace. Also T may have a degenerate eigenvalue of zero with
a corresponding subspace termed the null subspace. The vector v can be written in terms of its
component v¢ in the direction of the eigenvector e* plus its component q in the null subspace as
follows:

M
V= Z vi+q (16)
=1
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Similarly, the connection matrix, Lyapunov function and dynamic update equation are:
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where u is input vector.
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It is obvious that in order to minimize E the network must move v so as to:

1. Reduce to zero magnitude all v¥’s where \; < 0

2. Increase the magnitude of all v7’s where A; > 0

If no bounds were placed on the magnitude of v, the network would indefinitely increase v's
magnitude in the direction of the positive A;’s gradually favoring the larger positive A;’s. However,
as in the Hopfield model, v is usually limited to the unit hypercube. In this case E is minimized
when v = 5,,.,.€™** where €™ is the eigenvector corresponding to the largest positive eigenvalue
Amaz. There is only one positive eigenvalue which is multiply degenerate, then E is minimized
when v lies wholly in the corresponding subspace. Hence, the whole subspace must be considered
as the location of the minimum of E.

The way we decide to teach the neural network determines the connection matrix, which stores
the memory vectors. The crucial thing in learning algorithm is that the original stored memory
vectors must be stable states (or equilibria points) of the network. These stable states should also
have some basins of attraction in order that initial states of the network (for example degraded

version of memory vector) which lie within this basin may be corrected to the corresponding ideal
memory vector.

If v is stored vector it must be a stable state and the following condition is true

M
vk = sgn(uk) = 5911(2 /\z"U;i)' (21)
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So from (16) we have
M M
> vi+ g = sgn() | i) (22)
i=1 i=1

This can be achieved for any set of memory vectors iff
g=lAd=% for 2=1... 8 A>0

In other words:

1. In order to ensure q = 0 the null subspace must be orthogonal to all memory vectors.

2. So that \; = A for 2 =1... M, the connection matrix T must have a single positive degen-

erate eigenvalue corresponding to the memory vector subspace.

3 Conclusions

Two types of neural networks models for image processing and recognition have been applied. A
Hopfield network was found to be useful as an associative memory for storing 64 x 64 pixels images
in 16 grey levels. The stored 1mages were degraded both by stochastic noises and by deterministic
(camera-motion, out-of-focus, atmospheric) blurs. The network showed to be very robust while
testing with different types of degradation. The network was able to recognize images even when a
human being was not able to do it (up to 49% noised and seriously blurred images were correctly
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recognized). However this kind of network could not recognize transformed objects. In order
to solve the invariance problems Multilayer Perceptron with BP learning algorithm and FFT
algorithm for preprocessing were utilized. A four layers fully connected networks with classical
backpropagation algorithm were used. Two types of experiments were performed. In the first
an image of size 32 x 32 pixels itsell was presented to the network. In the second the FFT
of a picture was calculated and only a part of its absolute value (low frequency) was taught and
recognized. Thus larger images could be classified (up to 128 x 128 pixels) without lose of accuracy.
Although in this network the learning phase takes a long time (48 hours on an i486-based PC)
the recognition of shifted pictures was perfect. All simulations were performed on a sequential
computer although all neursgs_can perform in parallel. A hardware realization could significantly
improve the performance of presented architectures.
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