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1 Introduction
The game of polynomial control design is played with linear polynomial equations’
ar + by = e, (1}

with a,b, ¢ given and r,y unknown polynomials in one indeterminate. When facing multi-input

multi-ontput systems, one has to put to use a matrix version of (1) such as
AX +BY = C, (2)

which is the subject of our paper. Here 4, B,C are given while X.Y are unknown polynomial
matrices at compatible sizes.

During every design procedure for multivariable systems, & number of equations (2) and alike
is to be nsually solved. Hence, to have an effective tool to crack (2) Is a must.

Various numerical algorithms for (2) have appearsd in last two decades. Due to the lack of
numerical mathematics for palynomial equations, unfortunately, we are almost unable to compare
them theoretically. Thersfore, we have started the project of an cxperimental comparison which

consists in computing a crowd of numerical examples by means of our saltware package [6] which

is made up of MATLARB and C programs for basic polynemial operations.

YEar its similarity bo the equation over integers 1t is oftea called the Dicphianting.



[ our experimental work we have exercised EOM, the method using elementary operations [3],
PIM, the polynomial interpolations method [1], §5M, the method based on the stale-space realizalion
191, and finally the the indeterminate coefficients approach [6]. The first three procedures will be
hriefly described and illustrated on simple examples.

Some preliminary conclusions drawn from the first group of experiments will be described in
this extended abstract. However, more details and, perhaps, the final judgment is to be presented
at the conference.

Before focusing on the algorithms, let us recall a little of theory. Equation (1) has a solution if
and only il the greatest common left divisor Gy ol A, B is a laft divisor of '. Further, when given

a particular solution Xg, ¥y, the general solution of (2] is

X =Xo—- BT

31
Y =%+ 4471, (3)

where Ay, B are righl coprime matrices of compatible dimensions satislying A8, = BA; and T'is

an arbitrary matrix of an appropriate dimension. For more details, see [5].

2 The Elementary Operations Method

The first approach chosen to solve (2} is taken from [3]. The solution is calenlated via elementary

(unimodular) operations in the following steps:
1. By elementary column operations (unimodular matrix [7), bring the composite matrix of 4,
[ into the quasi-iriangular form; Le.,
A B it-':[{:l ::JJ,

with &7 a triangular matrix. {7 may be partitioned into the form of

] Py

U= .

1": |L.||_ t

such that
AP ++ BV =
AR+ B85 =10,

Py, Vy and Ry, §; are couples ol right coprime matrices.

e

Extract 7, the left divisor of € so that ¢ = &0,

3. Assemble the general solution according to (2], namely

-
il

PG+ W T
V.= iy + 85T
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3 The Polynomial Interpolation Method

For full detail. the reader is referred to the authors-of-the-method paper presented within the same
section and to [1].

Here, A is considered to be a square row reduced (i x [} matrix.

The solution degree ¢ depends on the reachability index v of the system represented by A™1D,
where A, f are left coprime matrices with A row reduced. Solution of r-th degree exists if » satisfies
deg, [C] < di+ 7 and r = v =1 for i = 1,2,... Hence, for a sufficiently high r, the equation is

solved as [ollows:

. Compute the number of interpolation couples (z;,«;), where z; are distinct scalars and o,
! i I FEROHT i J

are honzeros constant -vectors.

9. Choose interpolation couples. To ensure X Is of the r-th degree, assume X, the matrix

coefficient at z" of X, to be identity.

3. Tor all interpolation couples, consider (1) in z;-s and multiply it from the left by ). Solve

linear equation in constant matrices.

1. Recover X, ¥ from the partitioned matrix [ X YZXTY/ .. XY}, where X;. ¥; are matrix

coofficients at ¢ of matrix polynomials X, V', respectively.

4 The State-space Realization Method

The basic idea of this approach was given in [2]. The algorithm was worked out by [3].

Here, A is considered square nonsingular.
1. Split the matrix fractions A=' B, A7'C into the polynomial and strictly proper parts.

9 Pind state-space realisations of the above strictly proper matrix fractions. Construct C, the
I 2 ]

reachability matrix of the realisation originating frem . gl -

3. Solve CY = G, the constant matrices equation®, where (7. stands for the input matrix of
the realisation originating from A~'C. The i-th entry of the column vector ¥ is the matriz

coefficient at z* of ¥. Hence, polynomial matrix ¥ is recovered through its matrix polyaomial.

4. Multiply the strictly proper part of A™18 by ¥ and split the product into polynomial and

strictly proper parts.

5. Mulliply the polyvnomial part of A=Y B by ¥ and add the product to the polynomial obtained

in 4. To get X, subtract this sum from the polynomial part of A™1C,

“It's solvable whenever (17 s solvable,
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5 Numerical examples

It is perhaps of interest at this point to demonstrate the application results of the above solution

methods, We consider

Ty

A= B=|

l+2428 1-z (242 2442 C,_"l 0 r
2422 0 142 2442 l

In one run, nnlike TOM, PIM and 58M yield enly particular solution. O course, general solution
may be recovered via (2) after solving the homogeneous equation. Solution to (3), as obtained by

particular meihods, follow:

EOM 2 5 = g
L |.+Q.: —4 ; —1 —2’+232 2| LR |':'[1 i-'“_g
- __ - I : l 4z = 2% =2z | |ty tan |
" - 1+ 2z g 23 —‘2—2.‘:—2.‘:3-l -311 iqu
£ kg 0 O 1 ||t taz |
PIM ] X ) ¥
—i z &
X = ¥ Y = ;
@ | —0.5z 0.5-0.52 |
SSM
[0 —4 ] [ 1 1422
X = Y = *
L 4] 2 | i =05 0

(hn grounds of (2) with B, and A; computed by EOM, the particular solutions, as obtained by the
first two methods, may be converted into the cne with the least row degrees of ¥, as achieved by
aaM, using

0 0 W N ] 4

PIM —

—0.3 0 | 0.5 +0.82 —-0.5+0.5z

Tpon =

In one run, the last two methods can compute particular solutions that meet different constraints.
This is possible under certain circumstances, namely when enough constant coeflicients equations

are picked up to accommodate additional degrees of freedom spent on the constraints,

6 Preliminary conclusions

Unfortunately, both by the method nature, each method results in a different particular solution.
Namely, the degrees of EOM result are a priori unknown, while PIM produces a solution up to the
chosen degree. As implemented, 55M produces a solution with minimum row degrees in Y. In fact,

anv particular solution may be converted into ether one by (3). These additional operations are



