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Abstract

Estimators that achieve bounded H -error norm are useful in cases where no statistical knowl-
edee of the disturbances is available. An H_ -optimal estimator guarantees that [T ||, the induced
£, norm of the operator T, which relates the disturbances to the estimation errors, will assume its

lowest possible value v,. The requirement of [T,

le =7g leads, however, to fiiters with unaccept-
able H, performance [1]. This is the reason why so much work has been devoted lately to the design
of mixed H_ /H, estimators, which achieve acceptable performance both in the H, and the H,
anses [2][3](¢]. The basic idea behind mixed H,, /FH, filtering is that for any ¥ > 7yg, there exist
many filters that achieve the performance level of +y, namely ITq lle <. The set of all filters that
achieve a given H, performance level was parameterized in the continuous-time case by a single
bounded causal operator %, ¥4, <+, in [3]. A similar parameterization is given in the present
paper for the discrete-time case. One may select & to optimize an H, performance measure. The
mixed H_, [ H, filtering problem is trivially sclved by the H,-optimal (Kalman) estimator for y >va,

where v, denotes the H performance level that is achieved by the Kalman filter.

No exact solution for the mixed H_ /H, filtering problem has yet been found. Most of the exist-
ing works on the topic are devoted 1o the optimization of the Berenstein and Haddad bound on the H,
pecfarmance of the filter [2],[3], subject to [T, e < y. This optimization of full order filters leads
to the so called ‘central filter’. This filter is obtained by selecting the parameter % to be identically
zeto. The central filter is also obtained as a result of minimizing the expected value of the exponent
of the power seminorm of the estimation error, when the disturbances are standard white [4]. The
central filter is, however, not H_ /H, optimal. This is easily seen by nating that it differs from the
Kalman filter for ¥ > v,. In this paper we propose, for the first time, a method for selecting a non-
zero %2 that brings the estimate as close as possible to the H, optimal estimate while complying with

the required H, performance of |[T,, o < ¥-

A different meaning has bzen asé[gned to the mixed H, /H, filtering problem in [6], where two
different sets of disturbances have been considered. The first set has to be rejected optimally in the
H, sensg, while the rejection of the second set must achieve a prescribed H , performance level. The
approach there is different from the one we usz here by the fact that in [6] the response of the esti-
mation filter is optimized separately (in different senses) for each of the system disturbance inputs.
It cannot, therefore, guarantee a minimum performance level for the combined effect of the two types

of disturbancas.

In the present paper we consider the following H, aposteriori discrete-time filtering problem:

Given the linear, discrate time-varying system
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X =AX FBW 3 =X Ty, (1)
where we omit the explicit time dzpendence of the system matrices for the sake of simplicity. We are
looking for the estimator z, that will use the measursments {y;, i <k}, to guarantee the performance

level of 4 > +,, with a given initial conditions weighting matrix R, > 0, in the sense that

Cixp 12k B = 72xg Rolxg+ e B+1me 1B) v (v Live} € 5(0,N] (2)
where |4, |[E=Z0"'d/d, .

The requirement of (2) can be put in a dynamic game context where the estimator E g} can be
considered playing against nature that can choose any x, , {w, } and {r, } in £ [0, N] s0 as to maximizz
gt (- | T g
J o =-%" IIrII}:F +”Ct1.-'c+1_‘-5:+l Iz -72CMe 18- Ik -CoXiea |2) (3)
a
The estimator wishes to minimize J_ for the worst possible selection of naturz. It is well known [7]
that there exists 4 saddle-point to the above game iff there exists a solution £, > 0 for the following
racursion on [0, MV].
M, AL AT+ BB" , LLi+v2CIC =ML+ GG, Ey=Ry

In the latter case, one filter that achieves (2) is the following central filter:
iﬂ_c X2 T =AY K o Qe -GAXT) | K =M G T+GM 0 G (3)

The central filter is not the only one that satisfies (2). Based on the treatment of the general

4-block probiem in [8], we obtain that all the aposteciori filters that satisfy (2) have the following

structure
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Fig. 1. Purameterization of all the aposteriori filters that satisfy (2)
where

W=U+CM, G 12, Wymy2AM, , (I +CCM, ) ' CL WG,
W =[l-y2C, M, . (T+C CM, ) IV2
and where % is an arbitrary linear causal operator that satisfies
). =7. (3)
The objective of our paper is to find the operator & of (5) that minimizes ||zk+[~{f X4 JE It is
easily verified that there exists no linear causal % which minimizes the above, This is the reason why

we consider the following alternative objective

f=] a I'.| a |:
J, =-& |‘ZE:+%I "—5:4]-1 (s |r-x ] ZJ:'l (6)
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where zi™ is the above central aposteriori H,, estimate, z{*' is the corresponding aposteriori Kalman
estimate, and z, is the estimate obtained for & 0 in Fig. 1. Note that in the case where {w, }is a
standard white sequence, the second term in the right side of (6) denotes the increase in the estima-
tion error variance of our filter in comparison with the one obtained by the corresponding Kalmaa
filter. We want to find % that, for the smallest possible &, will assure J, =0 for all y,. If sucha &
is found for say &, it impiies that the & -norm of the difference between the H, and the H, esti-
matz2s is minimized and that the ratio between the error variance increase of the estimator and the
error variance increase of the H_ central filter is bounded by &;. It can be shown that for
Ty <Y < 7¥a, the optimal % satisfies (5) with equality. We can thus incorporate the norm restriction

(5) on % into J, by avgmenting the objective function as follows:
J=J, +«liby |5 - Ine I (7)

where 7, is the signal at the input to %, and v, is its output, as in Fig. 1. The minimizing strategy for
v, is obtained by writing the state space equations for the system whose state vector is
. =0 x =" x, ). We write these equations so that g, plays the role of the external distur-

bance, and v, stands for the control input.  The optimization of (7), subject to the latter state equa-
tions, is a standard conflicting objectives H_ state-feedback problem which can be solved by modify-

ing the techniques of [8].

We start the search for &, with 5=1, since the value of 6=1 can be trivially achieved by #=0. We
then search for a value of « for which |, |3=|i. [E. We repeat this search of « for with monoto-
nously decreasing values of &, and stop at the lowest value of 6 for which there still exists such x. The
obtained optimal strategy for v, is then substituted in the cenfiguration of Fig. 1 to obtain z,. Note
that if ¥ > v,, the optimization problem of (6) can be solved for 6=0. In this case no & will achiave

b 16 = |me IE and the resulting estimator will be identical to the Kalman filter.

Numerical example : Consider the following steady state mixed A, /H, filtering problem. Given

the systam

1 0.01 0.0092 < S
“ert = | 001 0.906 1"t T | 00184 W 0 Y =[0 543ix; +u
It is required to estimate [0.3 -0.3]x, with a unity A, performance level, and with as good as possi-
ble H, performance. We obtained a mixed-norm filter according to the above theory with
8, = 0.4372 and « = 0.3405. A comparison of the singular value Bode plots of T, for the proposed

filter and for the corresponding A, -optimal and M, -central filters is depicted in Fig. 2.
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Fig, 2: Maximal singular value of T, for: (a}proposed, (5)H,-optimal, (¢)H . -central, y=1, filters.

Both the proposed and the H_, -central filters achieve |[T; [l. = 1, but in the case where {w, } isa
standard, unit intensity, white noise sequence, the power-seminorm of the estimation error of the pro-
posed filter is 5.59x10°2, only slightly more then the value of 5.55%107% that is achieved by the
Kalman filter. This result is significantly lower than the value of 5.86x107? that is achieved by the

H_ central filter tar y=1.
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