Stability for time-variant differential equations
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For autonomous differential equations there exists a well developed Liapunov function
approach for the examination of stability problems. In particular Lasalle’s principle has
proved to be an impertant tool in cases where the derivative of the Liapunov function along
solutions is negative semi definite. Unfortunately, a complete extension of this principle to
nonautonomous differential equations seems unlikely te become available. Basically this
comes about by the particular properties exhibited by the limit sets of autonomous differential
equations as opposed to nonautonomous equations. In fact, a crucial step in the proof of
Lasalle’s principle (or closely related formulations like Barbashin's theorem) is based on the
fact that limit sets are invariant under the flow. For periodic differential equations this
property heolds truc (with an appropriate definition of ithe notion of invariance) and so does
Lasalle's principle. Extensions to asymptotically constant or asymptotically periodic systems,
as well as to almost periodic systems have been developed in the literature, leading to weaker
statements in general. For differential equations with more general types of time-variance no

definite statements can be made; however, there are theorems capturing some features of

the invariance principle.
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Time-varying equations arise quite naturally in different applications. We will concentrate I

on the following equation ;

L
i

x{e)=—m{t)m(t) Tx(t)

with x(t) and m(t) n-dimensional.

This equation or related versions arise in adaptive identification and control problems and

have been studied extensively (Kreisselmeier, Anderson, Narendra,...).
The equation arises also in other contexts such as pattern recognition, associative memory,
and in many questions of numerical methematics where e.g. algorithms are to be constructed

converging to solutions of linear algebraic equations, or in computing pseudo inverses.

The differential equation above has also been studied in the context of the so-called novelty

detector, introduced by Kohonen, where x(t) represents the "weights" or the "memory". The
change of weights is then brought about by the product of the output m'x with the so-called
input m(t), (this is a particular case of the adaptive laws encountered in (linear) neural
networks). Notice that in this framework one is not in general interested in x(t) tending to
zero for large t, since x(e) is the "novelty" of the to be recognized x* with respect to its
initial value x(o). On the other hand, in adaptive identification x(t) should tend to zero for
large t. Indeed x(t) then represents the parameter error that is driven to zero ,based on an

observation of the error m (t)x(1).

It 15 perhaps worthwhile to netice that the differential equation is linear and has (n-1)
eigenvalues equal to zero, with the last eigenvalue -m™(t) m(t).

The stability study when m(t) is constant, is based on the Liapunov fuction V(x) = x"x and
is quite trivial but not interesting from the point of view of applications. With m(t) periodic,
(asymptotic) stability can be investigated quite directly with the help of the Liapunov function
V(x) = x"x and Lasalle’s invariance principle. These results are well known. One should

.also add that for any m(t) a Liapunov study quickly leads to stability of the origin.
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A set of new results is related to the notion of persistency of excitation of m{t). Let m(t) be

aregulated function. It is called persistently exciting if there exists T > o such that for all s

Br = fsqm[t}mr{t] dbze I
with e = oand 8 = o.

It has been shown (Kreisselmeier, Anderson,...) that this is a necessary and sufficient
condition for exponential stability, and not faster than exponential stability. The importance
of this result is that it accomodates for a wide class of signals, beyond the (almost)
periodicity constraint. Several remarks are in order. One notices that « and 8 are taken
independent of s. With Anderson one notices that if the lower bound fails, there may or may
not be convergence, and if there is convergence, it will not be exponential. If the upper
bound fails, one should expect converzence at least as fast as exponential, Of course V(x(t))
would then be unbounded. Also notice that T is independent of s. Can this not be relaxed

while still guaranteeing (a weaker form of) asymptotic stability ?

When examining the proofs of exponential stability as they appear in the literature, it is not
entirely clear how they could be altered so as to accomodate for the remarks raised above.

We are currently investigating these questions, trying to come up with weaker conditions that

would still ensure asymptotic stability,



