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ABSTRACT

To this paper we present several tesults concerning, the construction of low-otder tobust feedback
comtrol laws {or certain claszes of nonlinear distnibuied parameter svalems, As a first slep we use a
linearization of the nonlinear system to define various optimal regulator problems leading to oplimal
feedback contral laws. In particular, the standard weighted LOR problem and the robust control
problem based on the differential same formnlation of H> control will be considered. Although the
resulting control laws are optimal and robust for the linearized model, there are a number of issues
that should be considered before selecting and applyving a edback law 1o the nonlinear system.
It is important to analvze and compare the resulting closed loop sysrems. We shall carry out this
program for a general nonlinear system. apply the results 1o a nonlinear shock wave problem and
use finite elements/reduction of erder to construct feedback conrrol law: of low order. These laws
will be tested on specific examples to illustrate the hasic idea,

Let Z,0 1% and ¥ be real Hilbert sprces. We conalider the svstem
(1) i) = Az(t) + F(z(t}) + Buit) - Gruwit)

with initial data

(2) 2(0) =20 2

and output

{3) y(t} = Cz(t).

Here we assume that A is self-adjoint and generates a stable analytic semigroup 5(t) on H,
B:UV—2,G:W — Zand ' : Z — V¥ are continuous linear operators. The nonlinear operator
F:D(F)CT Z — Z is assumed to be locally Lipschitzian on the space Z, defined for 0 < p < 1 by

Z, = D((—A)*) with ||2]],. = |zl + [[{=4)*z]|. Also, we assume that F(0} = 0.




—

Consider the “linearized system”

(.
(4) (1) = Az(t) + Bu(t) = Gu(t) i
2
(5) y(z) = C=(t)
2
and the "disturbance-augmented” cost functional ;
I
, L 5 e Gy . T i
(6) J=3 [T e Qe 2(0)) = (Ru(t)w(t)) = 5 (Muwlt),w(t)}dt
o i i

where v > 0,a 20,0 =C"C,R: U — U and M : W — ¥ are bounded and self-adjoint. Note
that f @ = 0 and &G = M = 0, then {4) - (6} define the standard LOR problem. If & = 0 and
G # 0, then (4) - (6) define the so called soft-constrained differential game that (under certain
conditions) is equivalent to the % control problem for {21 - (3].

In the second case, if the operators i and M are positive definite and BR1B-—42G M -1G" = 0,
then there exists a unique pair of funetions «*(-). w®F" -} that provide a saddle point for the
differential game. AMoreover,

(7} wt) = =R™BTI=Ft) = =K 2°P(t)
':(3,} w2 == '!_1-1"_1-1’:‘]_'1:':':'.-:!! = [2%F )

where [l solves the alzebiraic Riccati equation

(9) {Mz, Ay} + {Az. Iy} = (Qz.y) = (D= 00Tz = 0

Q=[BR™'B" —~*CM-IGHE >0

In any case, the feedback control law has the form

(10) w(t) = = =(1) |

where A’ can be computed by solving a Riccato equation. Consequently, numerical methods de-
veloped over the past ten years can be applied to construct approximations K to K. These
approximations are finite dimensional and hence can be implemented. In particular, it is important
e eto know that if the control law . . ; ; - ‘F
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(11) vV (t) = =KV z(1)

is applied to the full nonlinear system, then the resulting closed-loop distributed parameter system
achieves performance and robustness.

We shall formulate a shock wave contrel problem as a system of the form (1) - (3) and use
approximation theory to compute the corresponding sub-optimal robust gain operators. This appli-
cation is used to illustrate the convergence of the computational alzorithm, to study the robustness
properties of various control laws obtained by this method and to motivate a few open problems.



