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We consider the concept of Reachability for Polynomial Matrix Descriptions (PMDs) i.e. systems

of the form T : A(p)A(t) = B{gu(t) , y(t)=C(p)0(t) where p:= d/dt the differential operator , A(p)
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, is the pseudostate of (X) , ( : [0, Q) = R the control input to (%) and y(t) the output of the
systern (%) . Polynomial Matrix ]_}cscqpt.igns are poverned by singular differential equations which endow
the systermns with many special features that are not found in regular state space systems . Among thess
are impulse berms and input derivatives in the free and forced pseudo—state responce , nonproperness of
the transfer function matrix, noncausality between input and pscudo—state [or input and output],
inconsistent and admissible initial conditions and many others which make the study of PMD’s more
complicated than the study of the classical regular systems . Starting from the fact that generalized state

; Iyl
space sysbemns le. systems of the form El : Bx(t) = Ax{t) + Bu{t) , y{t) = Cx(t) , where E € R r !
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rankmE <r,AelR ® ,BeR L eR U represent a particular case of PMD'. , we generalize

various koown results reparding the smooth and impulsive solutions of the homogenecus and the
non—homogeneons syshem [EL} to the more general case of PMD's () .In recent papers (see [10],[9],[6])

various known resulis regarding the smooth and impulsive solutions of homogeneous generalized state
space systermns have been translated to the more general case of PMD's . Also relying heavily on the
theory regarding the Smith—MeMillan form of a rational matrix at infinity and applying it to the
polynomial matrix A{s) = L_ [A(p]] the theory of Weierstrass canonical form of a regular matrix pencil

Es—A under strict equivalence tu !,}u- more general case of polynomial matrix A(s) was generalized [9] .

Theorem ! [9] Let Als) ¢ |R [s] with Smith—McMillan form at 8 = 00, given by S:{s)l:s:l =
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¢ RFEH B € R**" be a minimal realization of Hpal{Sj . Then C,J ia a finite Jordan pair of Als)
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and C_, J_ is an infinite Jordan pair of A(s) . Furthermore A{s)"!can be written : A(s)"! = C[sL, —J]"!

-+ E‘I[llu. —sl |71, The solution of the homogeneous matrix differential equation Alp)At) =0 is :
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where x,(07) is the "slow state at t = 07" and xr(uj is the "fast state at t = 07) . The solution of 2

non—homogeneous matrix differential equation A(p)3(t) = B(ghu(t) is :
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where the superscript (i) means distributional derivative and §1 , 0, $. and Z; are constant matrices

with appropriate dimensions (see [7]) . Cobb in his research papers ([2]—{5]) using time—domain analysis
considers the distributional solution of a singular system of the form (X) . We extend his theory and
show how to cover the more general case evaluating the complete solution of a PMD using distributional
derivatives The complete solution of (X} is given by :
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We extend the notions of Admissible Initial Conditions (A.L.C.) proposed by [11],[8] in a way to cover

the more general case of PMIVs The sel of ALC. is:
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We treat the differential eguations which give rige to a PMD I:E:} using ordinary(regular) derivarives and
we generalize the results of [1],[11] , evalualing the eomplete solutions of PMD's :
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where [i] means ordinary(repular) derivative . We remark here that the complete solution (5) of a PMD
lacks of impulsive components since we assume that the set of the initial conditions of our system belong
to the set of Admissible Initial Conditions (4) . We generalize the notions of Reachability given in [11] ,
[8] in such a way to cover the case of PMDs |
o o
Definition 1 Given & peint .S.} = .ﬁ'{ﬂ.:' £ H

r
[ ¢ We say that another point 'ST £ R is Reachable from
u

= i o (+]
{3, if there exists an input u(t) and T > 0 such that § (t) = § (¢ ; 07, F, , u(t)) is impulse—free on [0,T]

c
and holds ; ﬂ (T) = ﬁT ; 0
We irtroduce also the notion of Reachable subspace for PMDs :
<l/Im 1> 1
(6) R:=[CC, o -1 |
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and we provide a precise form for all the ful.,'.l[l;l:]’t:ﬂ.l,‘.}i-‘-l.h]l.".:l states of our svstem for £ 2> 07, Furthermore
we show how the fulure states of cur aystein may be reached in any short ]_JL'{‘:HJI:]. with a suitabl:,' chosen
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input u(t) . In [11] the auther has provided an open loop control which eliminate the impulsive
components of the solution of generalized state—space systems {Et} . We extend this latter method in 2

way to obtain an open—loop control uit) such that the complete solutions of a PMD have no impulsive
terms without using linear feedback . We also give some useful Heachability tests for PMDs which are
natural extensions of the corresponding tests for generalized state space systems .

1
Definition 2 The subspace : R, := <J/Im 1> C R is called the slow—state reachable subspace of (¥) .

n-i
R, is spanned by the linearly independent columns of the matrix : Q, = [(2,J02,...,0  §1] which is called

= o1
slow—stabe reachabilily matrix . The subspace 1 R = {]xflln 1> + E Im &; C ;R'u' 15 called the
120

fast—state reachable subspace of [E} . Ry i3 spanned by the linearly independent columns of the matrix :

e q =
Qp = [ﬂ,.]__nﬁ_. ,,,,J:x__rﬂ,ED,Ej,...,EH_g] which is called fast—state reachability matrix . From the form of R

in (6) it follows that Reachable subspace R is spanned by the linearly independent columns of the matrix
Q 0

:Q=[CCJ 0 Q which is called pseudo—state Reachability matrix of (¥) , The system () is
f

called : slow state reachable if rank[Q.] = n ; fast state reachable if rank[Q:] = .

T r
Theoremn 2 Every 'S'T' €R is Reachable iff : (i) R =R or equivalently , (i) rank[Q] = ¢
Proposition 1 The following statements are equivalent : (i) The system (L) is slow state reachable ; (ii)
n-i
rank[Q] = rank[{2,J0),.... 0 2] = n ,(iii} A(s) and B(s) are coprime in € i.e. rank[A(s),B(s)] = Vs e

Proposition 2 The systemn (Y) is fast state reachable if at least one of the following eonditions hold : (1)

s = a -
rank[Q ] = [,J_ 8, ... T T00) = jo 5 (i) rank[Qr] = [Z4,21 25 = & rank[Qg,] + rank[Qq] = 4, +
fio # L ywhere fi, = rank[Q,] and i, := rank[Q.,]

Finally we have to point out that our definitien of Reachability is equivalent and mnatural

generalization of the notions of Controllability ([2]) , C—Controllability ([11]) and Reachability ([8]) .
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