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1 Introduction =y .

Searching for new effective methods in image processing, the attention has been
directed to recursive estimators, leading naturally to the subject of 2-D Kalman
filter. Kalman filter it is a very well known and useful algorithm in one-dimensional
digital signal processing, so there arises an interesting and important goal of
generalization of this algorithm into two-dimensions taking advantage of the recently
introduced 2-D systems models. The main questions posed while extending the standard
1-D recursive filtering techniques to the 2-D case are:
1) how to establish a suitable 2-D recursive model by defining
a proper state vector ?
2) how to reduce the dimensionality of the resulting state
vectors by reasonable approximation ?
3) how to speed up the obtained Kalman filtering procedure by
processing signals in parallel 7
The early papers devoted to image modelling by state-space techniques were given by
Nasi and Assefi [16], Habibi [10], and by Aboutalib, Murphy and Silverman [1]. In the
following years there were several attempts to generalize a Kalman filter algorithm to
two dimensions. The first one, so called Reduced Update Kalman Filter (RUKF) was due to
Woods and Radewan [21] and was continued in several subsequent papers [20, 12, 6]. This
approach has been based on autoregressive (AR) two-dimensional models with general or
nonsymmetric half-plane (NSHP) coefficient support. Other approach to Kalman filtering
in two dimensions with applications to image processing has been proposed by Chen [7]
and this was rather straightforward application of 1-D Kalman filter to a line-by-line
scanned image. Next important contribution to the subject has been by Porter and
Aravenna [17]. They considered a Roesser Model converted to wave advance process model.
The solution has been restricted to a local state realization. This idea has been
utilized by Marszatek [15] to present a state estimation algorithm for 2Z-D systems
based on well-known Bayes theorem. Recently Angwin and Kauffman [2] proposed the
Reduced Order Model Kalman Filter (ROMKF) which is based on a lower order state space
model of an image and is similar to the approach of Wecods and Radewan. The low

dimension of this system results in decreased computation time. Several other authors

have proposed different 2-D Kalman filtering schemes for restoration of images degraded
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by beth blur and noise. Suresh and Shenoi [19] proposed the Kalman strip filtering with
modelling the blur by 2-D state-space structure. Wu [22] employed three-dimensional
state space models to develop another strip filtering model for the degraded image with
NSHP support. Late; on, Azimi - Sadjadi and Wong [3, 4] presented the two-dimensional
block Kalman filtering scheme. The 2-D block state space model considered in this
scheme takes into account the correlations of the image data in successive neighbouring
blocks and reduces the edge effects. However, the optimal Kalman filters for strip
observations as well as for the block observations are characterized by complexities
and large computational requirements. Most recent results in the field are by Zhang and
Steenart [23]. They presented a simple 2-D Kalman filtering scheme for two 2-D state
space structures cascaded to form a composite state space dynamic model. At last, quite
different approach to the problew has ®€en proposed by Sebek [18]. He formulated and
solved the Kalman filtering problem via 2-D polynomial methods. In this paper we
introduce a new Kalman filter algorithm for a general model of 2-D systems given by
Kurek [14]. The reduction technique due to Klamka [13] and Kaczorek [11] is essential

in this approach and resulted in an interesting recursive estimator’s algorithm.

2 Problem Statement

Let us consider the linear, discrete 2-D system general state space model in the form

[14]:

x(i+1, j+1) = on(i,j)+A1x(i+1,j)+A2x(i,j+1)+BOu(i,jJ+
Blu(1+1,j)+B2u(i,j+1)+w(i,j)+w(i+1,j)+w(i,j+1)
(1)
w1, 9] = €xli,5) # wli;J)
where: 1,J - integer valued horizontal and vertical coordinates respectively and 0=is),
0=j=M

x(1,j) € R" - local state vector at the point (i, j)
ul(i, j) e R™ - input vector
y(i,j) € R’ - output vector
w(i,j) &€ R° - ‘"white" Gaussian noise with covariance matrix W (state
disturbance)
v(i,j) € R® - "white" Gaussian noise with covariance matrix V (output or
observation disturbance)
Ak, Bk for k=0,1,2 and C -real valued matrices of appropriate dimensions. At this stage
of the consideraticns let us assume that state and observation noises are uncorrelated

"white" noises i.e:
Elw(k,1), wim,n)]

waka 0 for k#m or 1=#n

where & =

Vs klmn 1 for k=m and 1l=n
klmn

and Elv(k,1), w»lm.m)]
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Forr any' K 1, m and m.
Boundary conditions for (1) are given by:

=i, 0) = X0 for =0, 1, s N (2a)
and

x(0,J) e Form 320, 1, s oM (2b)
j

where: X and X, are known vectors.
j

1

The problem to be solved may be stated as follows:

Given the values of observed signal y(i,j) and system input u(i, j)
over a certain subset of the points forming the neighbourhood
(defined differently in different approaches and applications) of
given point (k,1), our task is to find a linear estimate ;(i,j} of
the system’s state vector in the point (k,1) so as to minimize the
expected value of the square of estimation error i.e.:

TSR TREEIE = wi, 95> (3)

3 Solution to the Kalman Filter Problem for General 2-D Model

For the sake of simplicity and taking into account that the model (1) represents an
image, we can set BO=O, B1=O and Bz=0. For the considerations to follow we assume the
region of the solution of equations (1) in the form Z x Z = [O,N] x [O,N] and the

boundary conditions for (1) to be deterministic and given on all sides by:

x(i,0) = 0 and =(i,N) =0 for i=0,1,...,N
and (4)
%(0,j) =0 and x=(N,j) =0 for J=0;15.9 . +M
If these boundary conditions were nonzero the assumptions of B1 = 82 = Bo = 0 would

hold no more and by appropriate choice of these matrices the deterministic inputs

u(i, j) would account for these non-zero boundary values. For the sake of later

consideration we assume that the whole image model in the area Z x Z is composed of two

submodels: one corresponding exactly to the equations (1) for i+j=N and the second of

the form as follows:

%(N-i-1,N-j-1) = ROX(N—i,N-j)+Elx(N—1—1,N—j}+£2x(N—i,N—j—1)+
+Bou(N—i,N—jJ+B1u(N—i—1,N—j)+B2u(N—i,N—j—1)+

+w(N-1,N-j)+w(N-i-1, N-j)+w(N-i, N-j-1)
(5]

y(N-1,N-j) = Cx(i,]j) + v(i,J)

for i+j = N with the same assumptions concerning the matrices éo’ B1 and Be' This way

we obtain 2-D system representation in two subareas of the region Z x Z: lower left

triangle described by equation (1) feor i+ = N and upper right triangle described by
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the equation (5) for i+j > N. First submodel 1is causal (quarter plane causal) with
respect to the variables i=z0 and j=0. Second one can be assumed also to be causal but
with respect to the variables i=N- i, 3 = N - j. It has been shown by Kaczorek [11]
following the idea of Klamka [13] that it is possible to rewrite the equations (1) in
the form of reduced 1-D variable structure and variable dimensionality of state vector

system in the following way:

e %(k¥t] + P (k) + G ulk+1) +
1,k+1 2,k 1, k+1 .
+ G u(k) + H %(0,k+1) + H %(0,k) +
25k T2 2,k
+ Tg’k wik) + Tl,k+1 wik+1) (8)
y(k) = C_x(k) + v(k) + P x(0,k)
where: k - nonnegative integer values
i3 s - & = L
x(k-1,1) u(k,0) ylk-1,1)
x(k-2,2) ulk-1,1) yv(k-2,2)
R)=]. e Ry DA [ e o v s 5 R e e e s er'*P,
x(2,k-2) u(l,k-1) y(2,k-2)
20T, k=17 | [l E)EL b bfor k0 [yl k=1)| Tor k»l
3 x(k,0) .
%(0,0) = x(0,0); [0, 8 =4 eR“" for k>0
x(0,, 1k
F =0
G |
A2 0. . c 0 B0 D..:.0 ©
A A . 0 O A 0 O 0 O
1~ 0
0 Al...O 0 v e £ § O A 0...0 O W
F - eR n x n F _ 0] Eﬂ?(k_l}mdkﬂ)n
LT 1 v ow s wcans & 05 s mi 2l e s omeew w3 % wEe e
58 >
Q- By Ay Len k20 0 0 0...A 0 | for k0
0004 1 G 800 0
BB 00 [ B 0 0 O
1 2 )
0 AP § R ) v Bio B Qg O
1 2 0
N I IR ErR(k+2)mx(l<+].)n G R EIR(k+1)m)a:(l-c+1)n
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sl A e K i R SN SENSRIP eR*™* "
1,k+1 2k
2 For-kz0 d 2 for k>0
0 A 0 A
2 | ) L i 0] y i
FO e e g wik-1,1) vik-1,1)
R MRl 1 w(k-2,2) I v(ik-2,2)
£ = Em(k—l)px(k+1)n i - vik)=| ........
L w(2,k-2) v(2,k-2)
0O 0 C w(l,k-1) v(1l,k-1)
E T B i1 |
: 'Dﬂﬂw_OO GR(}HZ)n X (k+1)n, T =1 EER(1<+1)n x(k+1)n
1,k+1 2,k
000...00
| 000...0 1 |
I - identity matrix of appropriate dimensions

Initial conditions for the system given by (8) are x(0) = 0 and x(1)=0.
The system described by equations (B) can be rewritten 1in more convenient way as 1-D

first order, linear, variable structure discrete system as follows:

%(k+1) = F x(k) + Gu(k) + T w(k) + H %(0,k)
k k k k
vik) = Ek (k) + v(k) + ka{o,k) 0
[ %(k) w(k) v(k)
where: x(k)= Y(k+1) | wik)= e TIe e vik)= )]
%(0,k) u(k)
RUORI= 2rs ey |1 1L BEEIEE Sy
- I T om s 0 O
L B B H
25k 1,k+1 2,k 1,k+1
_ 0 D i i c, 0
LN g e T rese
Bik 1K k
B 0 0 ) P )
G = P = k
k G G k D P
2.k 1,k+1 k+1

Now for the system given by equations (7) we may assume that w(k) is the state "white"

noise with known covariance matrix ﬁk and v(k) is the output noise with known

covariance matrix Vk. The properness of this assumptions is easy to check. We note that

Elw(k),w(1)] = W& ,E[v(k),v(1)] = V& , where & = {O k¥*1 These note is =a direct
k kil k ki Kkl

1 k=1
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result of the assumptions posed on the noise of original 2-D system (1). So, for the!

system described by the equations (7) we can derive Kalman filter equations. As the

reduction process (transforming the system (1) to (7)) demonstrates the original systenf Sir
(1) has a natural half-plane causality, so the estimator obtained without oﬂmr; det
conditions would be half-plane causal. To obtain a quarter-plane causality we have to | 8J
impose some additional constraints on the form of Kalman filter gain matrix. For the 8J

system described by the equations (7) we define the estimator system as follows:

x(k+1) = FOOX(K) + G u(k) + K(K) (7(k) - ClIX(K)) (8)
subtracting (8) from (7) we get the error equation: . K-
s(k+1) = (F(k) - K(KOE(K))E(K) + T(k)wlk) + s
_ _ ' " (9) A
+ (H{k) - K(k)P(k))x(0,k) + K{k)v(k)
where: e(k) = x(k) - Q. ! Pu
In the sequel we shall calculate the covariance of e(k) assuming that e(0), w(k) and ex
v(k) are all statistically independent. Denoting M(k) = F(k) - K(k)C(k) and Q (k%3
covlie(k)], the covariance equation associated with (39) is as follows: g
Q, (k+1) = M(K)Q ()M (k) + TOWT (k) + KKV(KIK (k) (10)
The Kalman filter gain is to be chosen by minimizing the appropriate optimality}
criterion. In this case this criterion has the form:
EC e(k)®) = tr Q (k) (11)
This way minimization of tr Qe(k) with respect to K(k) yields the optimal filter gain. 4
We shall now perform the minimization of performance index in the form: : i
JK)) = tr Q (k1) (12) ZZ
using variational techniques. Thus we obtain (only first order terms to be considered): 1
8J = J(K(k)+sK(k)) - J(K(k)) : 4
= tr[(F(k) - ((K(k)+8K(k)IC(k)IQ (F(k) - (K(k)+8K(K)C(k))™ + 3
+ TOOWIOT (k) + (K(k)+8K(x))VIK) (K(k)+3K(k)) ) + .
F1
- tr (MKQM(K) + TUOW)T (k) + K(KV(KK (k)] = (13) ac
= tr[(F(k) - K(k)C(k) - 8K(k)C(k))Q (k) (F(k) - K(k)C(k) B
- SK(K)C(k))T + T(K)WK)T + K(K)V(K)K(k) + SK(K)V(K)K (k) + 2
+ KO0 V(K)SK (k) = M(K)Q_(K)M(k) - TOOWHKIT (k) - KO0 V(KIK(K) s

= trl-8K(K)C(K)Q_(K)M(k) - M(K)Q (k) (8K(K)C(k))" +
+ SK(K)V(KK (k) + K(K)V(k)SK (k)]
= -2 tr[M(K)Q_(K)T (K)8K (X) = K(K)V(K)SK (k)]
It is well known from optimization theory that such a variation is to be nonnegative
for all &8K(k). The minimum wvalue it achieves at 8J = 0, so there exists a unique K(k)

such that:
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8] = tr{[ﬁ(k)Qe(k)ET(k) - K(k)?(k)]axﬁik)} =0 (14)
Since the second order terms in (13) are also nonnegative, that unique K(k) will
determine the optimal state estimation. Replacing the values for M(k) the expansion for
3J becomes:
53 = te{[(F(x) - K(K)E(K)Q_ (KT (K) - K(k)V(k) 18K (k)
tr{[F(k)Q_ (K)CT (k) - K(k]C(k)Q ()T (k) - K(k)V(K) (15)
= tr [K(k)(V(k) + C(k)Q (k)C (k)) = F[K)Q (k}C (k}]SKT(k]}

1

we note that K(k) must satlsfy.
B, = tr{[ka}(v(k)+6{k)qe(k)6T(k))mﬁ(k)aetk)ET(k)]aKT(k)} =0 (16)
A direct solution of (18) yields the desired optimal filter gain:
K(k) = F(0Q (€ () (€100 GIT (k) + Vi)™ (17)
Putting together (8), (10) and (15) we obtain a complete Kalman filter algorithm

expressed in terms of system given by (7

S(k+1) = F)R(K) + KK (F(K) - COIx(K)) (18a)
k() = F(x)Q_ (0T (k) (EGaIQ (KT (o) + T ™ (18b)
Qe[k) = (F(k 1) - K(k- 1)C(k 1))Q (k- l)(F(k 1) = Klk= 1)C(k 1))
+ T(k)Wfk}T (k) + K(k- 1] (k- 1}K,'k 1) (18c)
%(0) = 0 Q_(0) = H(0) (18d)

By means of the above-presented a]gorithm we may obtain the estimated value ;(k) of the
vector x(k) what means that this way we may obtain the values of %(k) and x(k+1) as
well. Having estimated the whole vectors %(k) and x(k+1) it is immediate to extract the
desired estimated values of the vector x(i,j) for every spatial point (i,J) such that
i+j=k or i+j=k+1, for both models (1) and (5). Up to now this estimator presented only
the property of half-plane causality but it is not quarter-plane causal in general.
Examining the equations (6) we may notice that the specific structure of matrices
Fhk+1 and 1-"2’k (and conseguently ?k) is essential for quarter-plane causality. In
addition C has also a specific structure. If the state estimator is to be quarter-plane
causal (and this is our goal), the structure of matrices M(k) and K(k)C(k) must have
the same structure as F(k). Therefore the matrix K(k) must have also the same specific

structure:

Bk} = i
2,k 1,k+1



[K“o 0 0 0 0 0 0
. E _...D 0 ’ 0 0 0
21 22 21

0 E. sl 0 0] K el 0
_ = EHE R TS = 22 (k-1) nx (k)
K = (I Ly €R k=l e e awes @ & @ eR AR
1,k+1 2,k

0 0 .i.K K for k>0 @ 55 By gl K’ for k0

Ryt R g K ey Kol K K

0 0 .0 K 0 8 sl K’

't o ke #0045 kA L k+1,k-
D e R(kl o - is a matrix composed of zero elements
T e Rhlx R identity matrix

It could be easily checked that every matrix K(k) of full column rank can be reduced to

the specific form K(k) by appropriate elementary matrix operations performed both on |

rows and columns of the matrix K(k). This is equivalent to finding the pair of
nonsingular matrices:
S(k) e R(2k+1)n x (2k+1)n s Z(k) € R

such that left multiplication by S(k) and right multiplication by Z(k) of K(k) results

(2k-1)n x (2k-1)n

in matrix K(k). Thus we can write down:
K(k) = S(k)XK(k)Z(k) (19)
So the process of optimization has to be changed, since there exists a constraint posed
on the form of the matrix K(k). Under such assumptions the equation (16) has the form:
8J = tr{[S(K)K(K)Z(k) (V(k) + C(k)Q_(K)ET(k)) +
- F{k)Qe(k)(_ZT(k)JBZT(k)KT(k)ST(k)} =g (20)
Then the desired optimal filter gain in quarter-plane causal form can be obtained as
follows:
K(k) = T (KFK)Q (KT (k) (E(k)Q (T (k) + V(x)) 727! (k) (21)
So in the optimal estimation algorithm for quarter-plane causality case we have to

substitute (21) for (18b). The rest of the algorithm remains unchanged.

4 Conclusions

The 2-D Kalman filter algorithm derived in this section is a result of effective
transport of 1-D optimal state estimation theory to the discrete two-dimensional
setting. It could be observed, however, that such an important feature as quarter-plane
causality will not be naturally preserved when conventional 1-D theory is applied. If
quarter-plane causality is essential (what is not always the case in image processing)
the way of accommodation of it through constraints on the optimization process has been
shown. In the very end we obtain an algorithm which could be directly applied for image

processing purposes.
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