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Abstraect

The application of 2 backpropagation neural network con-
troller for compensating the effects induced by the static fric-
tign in a D-metor system 1s considered in this paper. The
inpit vectoer ta the neural network contreller consists of the
time history of the motor angular shaft velocity within a
neespecified time window., The network weights are adapted
thrargh 2 learning process which minimizes 2 quadratic fune-
tton of the motor system output error. The proposed neural
zetwork controller is demonstrated and contrasted with a PI
conteclier throuelh simulation studies on an example system,

I. Introdyction

This study 15 mativated by the increasing interest in de-
signing controllers for high-acewracy applications such as
force contral (1] and micrepositioning of rabot manipula-
tes [210 The DU-motor static friction possesses its greatest
crallenge when the motor is commanded to pesform a tiny
metion at a corresponding lew welocity in which the min-
imium achievable displacement and sustained velocity arise
fram the stick-slip mation phenomenon
o reduce the eff

[4]. The classical way
t5 of friction on the svstem response 15 to
ipply elther putecing (high (requency excitation signal) and
tdeadbiand in an integral contral technique. Hoth methods
munter to the demands of high-Adeiity control and adaprive
algorithms have recently appeared [4.3] in the literatuze,

Im this paper, an adaptive schemes based on the hackprop-
agation newcal network algorithm [8. 7] 15 proposed 1o com-
peosate the effects of {riction in a typical DC-motor microp-
pitioning prablem.

I1. Problem Statement

A DO-Matar Modeling
A representative block diagram of the DC-motor example
g¥stem appears 1o Figure 1. [f the motor and lead inertia
arg reflected to the motor axis, the dynamic equations can
bewritien as
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where w s the motar shalt angular velocity. J and b arc the
effective moment of inerta and viscous friction coeflicients.
fathe torgue constant, f,; the armature winding resistance.
By the back-em( constant, A7y the tachometer constant, A
the mp]lﬁt\r Faimn, andd Trr the friction lorgue. The effects of
Coulomiby friction 7. and static friction 7, are incinded within
T (Ty = w4+ 7). The friction model [3] adopted in this
ol e o . E 7 13 I|
stody for the Coulomb and static fiction is
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B. Ruckpropagation Neural Nelworks

The elementary Backpropagation NN (BNN) consists of ar-
tificial meurons clustered in a hisraschical three layer config-
aration. Information signals How in a feedforward direction
from the input layer nearons to the output layver through
the hidden layer neurans [T]. The backpropagation encoding
algorithm performs the input to output mapping by mini-
mizing 2 cost function. This results in interlayer connection
welght adjustments accarding to the erzor between the com-
];n:::ed and desired system response. A gradient algorithm is
ermploved for welght adjustment by computing the effect on
the cost function with respect to the weight variation.

At tirme k. the input vector (3 k) to the BNN mnput layer
newrons consists of the past system output values k) =
fwlk— 1y, wik=2), .. w(k=T=1)] as illustrated in Figure 1.
The BN output is derived in such o way that the guadratic

Figure 1- Backproparation Neural Netwerk Centroller
cost function E(k) = ﬁ..;'f[k] = w(k]]® betwesn the desired
w*ik] and the actual system response wik)] at every time
instani is minimized. In this error minimization peaceduze
the BXN autput w{k} does not emerge directly, since the
desired BN outpot is unknown.

{. Encoding 8NN Algorithmn
The backpropagation alporithm performs the input &) to
output ow(k)} mapping al every lime iostant & according tao
the follawing set of relationships.

Assume a BNN with [ [ H) neurons in the input{hidden)
layer. The input layer npeuron activations ace filtered and
propagated to the hidden layer neurons as ¢

palk] = F1D_wlk—fmalt)) h=1.. K (3]

Similarly, the hidden layer neurcn activations are filtered and
propagated to the BNN sutput as:




H
w(k) = > _ malklpa(k)) .

h=1

Learning 8NN Algorithm
During the learning pracess, the output error £k} 15 mini-
mized through a.da.pta.tmu of the niddea laysr neuron connec-
tiom weights using the “sign gradient descent™ algorithm [8]
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where & is the learning coefficient (step size) aleng the learn-
ing surface. Although the I

roximated by its sign. From Lqu.:.‘mn (1), the pha:,-:
:--apunae of the linear DC-motor transfer function is 0°

w = [, and the aforementioned sizn term can therefore be
wpproximated as owne, Moreover, if the hyperbolic tangent
function {f{z] = tanhiz)) is utilized for the nonlinsar acti-
vating functien, equation {5) can be weitten as

term 2% s unknowsn, it can be

Emgle=1)= &[willk:-

This process i= repeated for modifyving the input layer
weights, and using the chain rule twice in succession the
welght adjnstment relationship is:

~w(k)pall + ()1 - u(k)] . (6]

!
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The propo=ed scheme was applied in simulation studies
on the E330-5G DO-Motor and E350-0 amplifier manufac-
Lur-:{l |.:-}' Electro~Craft Co

ANN Lenrning Ability
[.--. his case, the referepce input excn...q the DO-motar cor-
rf*:ipnnrlz—: to a low frequency sinusoidal SLEM al [0.66 ."Iz:l. and
the network's interlayer connection weights were nitialized
with random walues. The BNN's ability te generate the
control input for the motor te track the n,[L::nm signal is
demonstrated 1o Figure 2, in which the vpper {lower) seg-

Simulation Case Study
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Figure 2: Systemn Hesponse with BNN Controller
ment aof the iigure carresponds to the system ontput duzning
the initial O0-to-3 [6-to-3) sccond pesiad. During the ini-
tizl learning perind, the BN N's weights are adapted to the
nonlimear characteristics of the friction model, Having these
welghts converged to thelr “nominal™ values, the DC-motor
autput is llmost indistinguishabie from the reference. The
BN weights' speed of convergence depends on the number
of nedrons in the input and hidden layers.

H. BNN-PI controller comporative studics
To emphasize furthsrmore the robustness and the frd
ing abifity aof the BNN-controller we compared the BYE
compensated sysiem's zesponse shown in Figure 3 with ik
one when a Proportional Integral (PI) controller is utiling
The Pl-controller gains were ae.—ilect::d such that the perde
mance index J = ..fr {r — } - {""”-“'i was minimise
based an the ;'L'?.'i.1:||'|."._.'.;|‘.:il'.l|'| that there was no stiction in the
DC-motor system. As anticipated, the system response s
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Figure 3: PI/BNN System Compensated Response
fered from oscillations (limit cvele), which the PI contralle
could not compensate. On the contzary, the BNN adjusted
its weiphts 10 account far the stiction and averall manifestel
a rematkabls SVitel response,;
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