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In this paper, we consider o multn nput nenlinear systern of the form

Ao b= fla)+ 5 wi(gi(e)
hir)

with r(f) € R®, p(t) € R, u(t) € R™. () is supposed to be dissipative, that is to say there exists a (*
function ¥ : IR® — R verifying the following properties ;

(P.1) T lim Vg = 4ee; VD) =10,

.I"':”" ]

(#2) Li(Vie) <0, ¥r e R

In the case where L0V = O the system is said to be conservative,

The aim is to show that il Ahis elass of gystems are stabilizable by same feedback control afr) then it ey
be performed by some feedback w(#) where & is an estimate af x corning from an observer,

For some particular classes of ponlinear systems, this problem has been treated in [T5], [1TA, i.“'rj-

[lere we present an extension of the bilinear dissipative separation principle proposed in [GA, KUJ.

Firat we recall the stabilization resull for ().

This result has been already proved for eonservative nonlinear systems i [GA, B, and for bilines
{Ji:i::i]‘.l:lr'[w* syslems in ['i'r.-'k: 1 The resuli is the fallowing .
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Theorem 1 :
Assume that () satisfies
a + there exists a real valued function ¥V with V(0) = 0 satisfying (P.1) and (P.2)
bl =0 = 2=1
cr fly =10
i the vector spacey spanned l:j.-'[_,lr-:J:]:arui"}(g;,;][:j,.{~ elN,i=1,-,m} is n-dimensional. [or any r such
that L (V){a) =0, L, (V)ie)=0and = # 1.
Ifl(-":l'
Then the Feedhack w{s) = where u(r) = —ri(x)L,, (V)(x) stabilizes (Z), and that for any
()
'™ function ri(r), rifa) > 0 Yo 2 R™Y {0,

The prool of this thearem uses the same steps as in [GA BOL
Hetare stating the main theorem, we nead the following assumplions

(P4 There exists an observer 0 for (X -

. P = fle)+ }::;I Tcﬂ,rli:ﬁjl + Kit)ihiz) —w)
Kty = P{E(t], ult), piy, =ty with & £ A",

( converges exponentially for any input w € L(R), lullp= < r and the gain K () is uniformly bounded
(Note that the boundedness of the gain /(L) is always salisfed 1o the lEeterature).

(P4) The system (L) satislies the conditions of theorem | and the ri(x)’s are chosen such that ()] <

Clonsider the following system

i = fle)+ D0y wa@)gi(x) with wi(E) = —ri(#) Ly, V(F)(1)
() &= fE) 4+ DL wimld) + K((h(2) — h(=)) (2)
K(t) = P{K(t), ult), y(t), #(1)) (3)

YWe chtain the main result

Theorern 2 (separabion principhe)

With the hypotheses (P23 and (P4} f, moreover
(P.5) For any compact [ of IR" | there exists a compact KNK © K'Y sueh that for any trajectory of () which
are issued from K x K = 7, its components z{¢) and #(1) lie in K » K7

Then the set 10} = {1} % IR® is an attractor of any trajectory of [CF) issued from K ox o x ™. Moreover

bl subsvatem Formed by (1) and {2} is globally asymplotically atable.

In what follows, we give a suflicient condition for which the system (€7) satisfies (P.5). For this, recall that
a Lyapunoy funetion for an antonomoeus system # = Fe) at the equilibrinm point 115 a Y function

W IR — BT such that

Wizl =0 = ==10

i) iy, W) = 420
e A
i) (o) Fa) < 0, Yo # 0.
Pre )
dW )y e T ) . i
[ =gz Car} s v one-Tine veotar amd £e) 15 a2 one-column vector, )




Remarks :

1} The above function ¥{2) is not, in general, a Lyapunov function,

2] By 1.L. Massera’s theorem [MA], any < globally asymptotically stable system admits a Lyapus
function

Using the same notations as above, and denoting by (Zo) the closed loop system & = _If'[;.-::l-i-z:.'l_l ;2 mlal
with w;(e) = —ri{a )L {Vie)] we have |

Proposition 3 @
The condition {P.5) of theorem 2 holds if one of the following assumption is satisfied :

i 10 T :
A The above function Via) verifies [|lT,| < M{1 4 | Vi), ¥aeIl™, Ay =10
i

i) There exists a Lyapunov function W{z) for o which satisfics
(Aa) ¢ 22| < Aal1+ [W{x)]), ¥ €R", Ay >0
i) The outpot funciion ffe) s globally Lipschitzian.
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