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The problem of the asymptotic tracking and disturbance rejection of a linear multivariable
system subject to unmeasurable disturbances was studied by many authors — see, e.g., [1,2,3]),
and the references therein —. In most of these contributions it is required the compensator
to maintain stability, asymptotic tracking and output regulation in spite of small - or, possi-
bly, large — independent perturbations of all the elements of matrices describing the system.
Recently, the problem of the asymptotic tracking and output regulation under uncertainties
or perturbations of “physical” parameters affecting the description of the system was solved
[4,5,6]. It was shown that robust solutions may exist even when no solution exists for wholly
independent variations of the entries of matrices describing the system, i.e. when the Davison
condition [1] is not satisfied.

If the problem of the asymptotic tracking is faced for a continuous-time plant making use of
a multirate digital control system, the undesiderable ripple which may arise between sampling
instants may become unacceptable if the sampling rate are small, and should be avoided. It
is known that this can be robustly obtained if a continuous-time internal model of reference
signals is included in the forward path of the feedback control system.

Here a method for obtaining such a continuous-time internal model of reference signals and
disturbance functions is proposed follwing the same approach as in [4,5,6], for the case when
the only uncertainties about the description of the plant concern the values of some “physical”
parameters. Such a method allows the control requirements to be robustly satisfied, at least
in a neighbourhood of the nominal “physical” parameters of the plant to be controlled, and, in
particular, a continuous-time null steady-state error response to be guaranteed for all the values
of the physical parameters in such a neighbourhood of the nominal ones.

Consider the linear time-invariant plant P described by

i(6) = AB)e(®) + BAW(E) + 3 M(B)d(e)

W) = CB)()+3 NiB)(t),

=1
where t € IR is time, z(¢) € IR" is the state, u(t) € IR? is the control input, d;(t) € R™,: =
1,2, ..., s, are the unmeasurable and unknown disturbance inputs, y(t) € IR? is the output to

—




be controlled — which is assumed to be measurable — and A(3), B(8), C(8), Mi(8), Ni(8),
: = 1,2,...u, are matrices with real entries depending on a vector B of parameters, which
are subject to variations and/or uncertain, § € Q C IR*, and play the role of the “physical’
parameters of the plant. The nominal value fy of 8 is assumed to be an interior point of the
set  which is assumed to be bounded. It is assumed that each of the first § components
y1(t), ..., yz{t) of y(t) must track the corresponding component of the reference vector r(t) € R,
7 < q. Therefore, the error signal e(t) € IR? for P is defined by

e(t) :=Vr(t) — y(t),

where

V= [I 0.

It is also assumed that the classes R of reference signals r(-) to be asymptotically tracked
and D; of disturbance functions d;(-),7 = 1,2, ..., &, to be asymptotically rejected are defined as
follows:

R = V(?'-'al!kl)@v(qla'bk?)EB"'@V(—Q-,GE,kF),
D,‘ = V(m;,a.;,h,-), i=1,2,...,;1.,

forsome FE L0, o €Ci =12, ki€ ZT,i =12 5 h e Z*,i =121
with
£ t . ‘
V(e,a, k) = 'U(‘) % U(f) = Z (‘—_]-)7(5-76& + 63-60 ),Vt _>_ 0,6_? e(]: 3
=1\J :
where o €C,¢ € ZT, and * means complex conjugate.

When for plant P a multirate digital control system is used, it seems reasonable to require
for the error e(t) not only its convergence to zero at sampling times but the stronger ripple-free
requirement, 1.e.

lim e(t) =0.
t—+4o00

Such a requirement, as well as asymptotic stability, should be satisfied, in principle, not only
at the nominal parameters of the plant P — ie. at 8 = f; — but also for some variations
and/or uncertainties of them: at least for all the values of 8 belonging to some neighbourhood
¥ C Q of By. In order to satisfy the above requirements, the control scheme depicted in
fig. 1is proposed here, where Kp is a periodic discrete-time subcompensator, H and S are a
zero-order multirate holder and a multirate sampler, respectively, and K¢ is a time-invariant
continuous-time subcompensator, such that the series connection Sg of K¢ and P provides a
continuous-time internal model of reference signals and disturbance functions.

The following problem is solved here.

Problem 1 (Robust continuous-time tracking and requlation problem). Find, if any, the linear
dynamic compensators Kp and K¢ such that the following requirements are satisfied by the
overall hybrid multirate control system ¥ represented in Figure 1:

(a) T is ezponentially stable at the nominal parameters of the plant P, i.e. for 8 = By,

(b) relation () is satisfied for each disturbance function di(-) € D;,i = 1,2, ..., 4, and for each
reference signal r(-) € R, for B = Po; :

(c) properties (a) and (b} are preserved for all B in some neighbourhood ¥ C Q of By (or,
possibly, in some “large” subset ¥ of Q@ containing By ¢s an interior point).
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Such a problem is solved under the following technical assumptions.
Assumption 1 There ezists a closed neighbourhood ¥, C Q of 3y such that all the entries of
A(B), B(B), C(B) are continuous functions of B in ¥,, and, in addition,
s A(By) —a;I B(j ) ;

, | rank (”3002‘30)01 (O o) =n+gq (i.e.,full row —rank), 1=1,2,...,p4.
Assumption 2 None of the values 12xi/w, i #£0, 1 € Z, 1s an element of T(Fo) := o (A(fo)) U
{a1,a], 02,03, ..., a,, a5}, where a(A(3o)) is the set of the eigenvalues of A(B); and, for each

o element v of T'(By), none of the values v + j2wijw, 1 # 0, ¢ € Z, is an element of I'(By), where

;u;e 7 1s the imaginary unit, and w is the least common multiple of the sampling periods and hold

. intervals.

Theorem 1 There ezist a periodic discrete-time compensator Kp and a time-invariant continuous-
nly W time compensator K¢ which constitute a solution of Problem 1, under Assumptions 1 and 2, if
e and only if the triplet (A(Bo), B(5o),C(8o)) is stabilizable and detectable.
ood
1 ol The solution of Problem 1 proposed by the sufficiency proof of Theorem 1 is based on the
- \ construction of a suitable internal model of reference signals and disturbance functions to be
o connected in series with the plant to be controlled, whose physical parameters are uncertain, as
s the design method proposed in [4,5,6] is.

Statements similar to Theorem 1 hold for the case when requirement (a) of Problem 1 is

strengthened by prescribing the degree of exponential stability of & at § = f;, or the dead-

. beat convergence of the free responses of & at 3 = f, and, correspondingly, requirement (c)

near is properly amended, as in [4]. Specifically, if (a) is strenghthened in the latter way, and
; the stabilizability and detectability are substituted by reachability and observability in Theorem 1,

it is easy to see that Theorem 1 still holds, in order to obtain a ripple-free dead-beat convergence
to zero of both the error response and the state free response of the hybrid control system %
each at 3 = B, and to maintain a convergence to zero with an arbitrary degree of exponential

decay provided that the parameter perturbations are constrained within a sufficiently small
(o, neighbourhood of f;.
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