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Abstract

Every appropriate filtering procedure of a noisy signal should reduce the noise
present in the original recording while affecting the actual shape of the signal as little
as possible. The main restrictions of classical methods (e.g. frequential filters), is the
impossibility of reconciling the foregoing filtering requirements that are contradictory
owing to noise superimposed on the signal band. Therefore a criterion for optimal
filtering is needed.

Methods based on Kalman filtering theory have been widely investigated in the
literature (see e.g. the special issue [1]) because of their appealing characteristics like
the possibility of recursive implementation,

The main drawback related to Kalman filtering methods is that they require a lot of
a-priori information. The signal model must be expressed in a suitable state-space
form where all parameters as well as the statistics of both state and measurement
noises have to be known. In many situations of practical interest it is not realistic to
assume that such a-priori information is available or that it can be reliably obtained
from noisy data.

For this reason we propose a signal model based on a very low a-priori statistical
information about the signal generating process. The basic hypotheses are:

1) Smoothness assumption: the signal and its first derivatives up to a suitably
chosen order m are nontinuously differentiable;

ii) Stochastic assumption: the derivative of order m+1 is modelled by means of a
zero-mean white gaussian process.

Under the above hypotheses we are able to obtain a suitable state-space form of the
signal and to define an adaptive procedure for a reliable identification of state and
measurement noise covariances. This can be done as follows:

By the smoothness assumption it is possible to define a state vector X(t) composed
of the signal x(t) and its first derivatives x()(t) up to m-th order:

X(0:=[dix(t)/dt, i=0,...,m]T

By the stochastic assumption, the derivative x(™*1)(t) can be modelled by a white
paussian noise . N(0, cr?-w} and according to [2], the following state-space form of the
sampled signal is obtained:

X{tiﬂ}! =A Xl:t-J + wa{ti-l-l} (1)
y(t; ) = CX() +v(t) i=12...n (2)




where:

0 I
- A=exp(GA), G :(dgl_l 3:1-: ) A=ty C=[1+'DT|::-1L

being 0,,;and I ; the m-1 column vector of zeros and the (m-1)x(m-1)
identity matrix respectively

- w(t;) is an m-vector, white noise sequence ~ A{0,Q), with
A
Q= [an(9a(5)Tds,
)

being a,,(s) the m-th column of exp(Gs);

= v(t;) is a scalar, white noise sequence ~ N0, Uz,;]l.

State-space model (1), (2) is amenable to Kalman smoothing or filtering

implementation once estimates of 6Z,, and 62, have been obtained.

The proposed optimal estimation method of these variances is based on the
matching between the theoretical and the observed autocorrelation function of
Kalman filter innovation process.

The algorithm can be briefly summarized by the three following points:

a) It is shown that, for systemn (1),(2), the optimal Kalman filter gain K; (i=1,2,...), i3
a function of the ratio ¢,/o,,. and not of G,, and &, separately.This allows us to save
much of the computation time involved in the numerical minimization of the

functional giving the £2normdistance between the theoretical and observed
autocorrelation function of the innovation process;

b) the steady-state filter gain K, is computed for different values of the parameter

6,/G,, belonging to a predetermined range. In the light of point a), the value of the
filter gain is obtained by implementing the Kalman filter equations for a system
equivalent to the original system (1),(2). Such equivalent system is obtained dividing

equations (1) and (2) by o, ;

¢) the value of K., is used to compute the innovation process. Then, the pair
producing the minimum £?norm distance between the theoretical and the
experimentally observed autocorrelation function of the innovation process is chosen

as optimal estimate of 0, and ©,,.

Remark: The necessity of using Koo ( and not K;) is justified by the fact that the
equivalent system produces a dynamical sequence of filter gains K'; (i=1,2,...)
exactly equal to the sequence K; produced by the actual system (1),(2), only if such
equivalent system is properly initialized. On the other hand, proper initialization

requires the knowledge of o, ( and &,). Thus the steady state value K., is used
because it is independent of initial conditions.

The proposed signal model has been applied in a simulation context to the optimal
smoothing and differentiation of the following band-limited test function:
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5
g = i_ElAi sin (1ogt + 0)

where @g=2n/T, T is the signal period, and A; and ¢; are reported in [2]. A
sequence of 91 data points was generated with a sampling frequency f. = 91 Hz, and a
signal period T = 1s was assumed. Two noisy versions of the signal were obtained

superimposing white gaussian noise sequences with standard deviation ¢, =0.5 and
1.0 respectively.
The following performance index was defined

n
o(k) = [(Un},zlr?ik]”? k=0,1,2
1=

where n is the number of samples, and where rik are the residuals computed as the
difference between the true signal and the filtered one. Index k refers to the derivative
order, i.e. k=0 relates to the original data, k=1 to its first derivative, and k=2 to its
second derivative.

The present appreach has been compared to results abtained with cubic spline
smoothing [3] using the generalized cross validation method [4]. A fixed lag Kalman
smoother [5] was adopted chatacterized by a value of the signal model order m=3 and }
of the lag equal to 15.

The following table shows the comparison of the results

KALMAN SMOOTHER CUBIC SPLINES:
(6y=0.5) (ov=1.0}) (0,=0.5) (Gv=L10)
o(0) 0.27 0.51 0.28 0.54
(1) 9.34 14.99 0.62 15.46
o(2) 491.3 643.2 502.4 620.1

As a final comment we remark that the proposed signal model cannot be
implemented on-line because it requires off-line identification of noise covariances.
Nevertheless, in the light of point a) the method results to be very fast and the signal
can be processed shortly after it is acquired.
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