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Hepetitive, or multipass, proeesses are
class of 2D systems characterised by a
recursive aetion over a finite fixed
duration - the pass length a. On each
sweep, or pass, through the dynamies an
output - the pass profile - is produced
which aets as a foreing funeticn on, and
henee contributes to, the next pass

profile. Formally, the pass profile Y(t),
0=t=aqa, produced on the kth pass

contributes explieitly to the new pass
profile Y, (6], 0=t=a, k=0.

Industrial examples include ceoal mining
operations and metal rolling and the
inherent 2D structure is elear since two
parameters are required to speeily a
variable, i.e. pass number and 'position'
along a pass.

The essential unigue eontrol problem for
these propesses is the possible presence
in the output sequence {Yplp=1 of
oseillations whieh inerease in amplitude
from pass to pass. Further, it is known
that attempting to eontrol this behaviour
using, in effect, standard, or
conventional, lechnigues will almost
always end in failure [1]. This, in turn,
has led Lo the development of a rigorous
stahility theory for linear constant pass
length processes based on an abstiraet
mode! formulated in a Banach space
setting [1].

Differential linear processes are a sub-
class which are of particular interest in
the modelling, al least for preliminary
simulation and control related studies, of
industrial examples such as bench mining

systems. The state space model in this
case is
[
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Here Ygp-ii¢) is the m = 1 ecurrent pass
profile vector, Xj:i(¢) is the n = 1
current pass state veetor, and Ug. () is
the £ » 1 eurrent pass input veector.

The abstraet stability theory in this case
translates to a set of necessary and
sufficient conditions whienh can be tested
using, in effect, standard linear systems
tests. Suppose also that these eonditions
hold. Then the output sequence [Yilp=;
econverges to a 'steady', or so-ecalled
limit, profile Y. whieh is a stable
standard linear system. This, in turn,
suggests the following general control
objective:

Drive {¥:bp=; to a limit profile Y. with
'aceeptable' dynamies in a2 'reasonable’
number of passes and, simultaneously,
maintain a "tolerable' error Yi-Yo.

Here the guotation marks denote
features whose precise interpretation is
to be determined by knowledge of the
particular application wunder
consideration. A complete treatment of
this control objeective, inecluding
refinements, can be found in [2].

A major advantage of 'Bode and Nyquist
like' tests for standard systems is that
useful performance indicators, such as
gain and phase marging in the 5150 case,
are immediately available. In the
repetitive systems case, useful
performance indicators, again see [2] for
a complete treatment, clearly would be
appropriately defined gain and phase
margins plus computable information on
(i) the rate of approach of {Ygji=1 to Y3
and '

(ii) the error ¥,-Y. on any pass k.

The difficulty here is that the eurrently
available tests are of little use in terms
of (i) and (ii) and the only option is to
undertake detailed simulation studies
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which eould, of ecourse, be
compulationally very expensive. )

This paper shows how this difficulty ean
be removed by the use ol so-called
simulation based stability 1tlests,
Essentially, these tests are based on the
use of operator norms that can be
evaiuated from step response data using
relatively simple computations. The
underlying space here is L.0,T), with T
finite or infinite, and the ecaleculations
involved are the evaluation of the 1,
norm of the impulse response of a linear
time invariant system in the form of the
total wvariation of the step response.
Examples will be given which illustrate
the software, see [2] and [3], which has
been written to implement these tests.

The basie result used here is the
following (proved, for example, in [1]).

Lemma 1: Suppose that [ is a sealar
continuous funetion defined on [0, + w]
and of bounded variation on any finite
interval [0, T]. Then the norm of f on
[0, T, denoted Nif), is given by

|L.
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where 0 =ty << f; <t == ... are the logal
maxima and minima of 7 on [, —=] and
=T <tps1. Inthe case of T = +m=,
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boon
whenever the limit exists.

Some on-going research in this general
area will also be briefly discussed.
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