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Abstract

The choice of dynamic cost-function weightings in H_, design is considered. Simple
design examples are presented which illustrate pitfalls which can arise in the selection
of weightings. The lessons which can be learned are discussed and design rules are
formulated. The design of industrial control systems using H_, methods depends upon the
selection of the weightings to satisfy the given specifications. The aforementioned design
rules provide a first step to the development of a formalized design procedures for industrial
applic&iens such as gas turbine control.
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1. Introduction

A number of problems are considered in the choice of H,, cost functions weightings.
The results of simple examples are presented and discussed highlighting difficulties and
resulting design guidelines. The selection of cost function weights involves a range of
requirements and design guidelines and only a few particular properties will be considered.

It is easy to select examples which seem to demonstrate poor robustness properties for
H., designs. However, in most cases when the related physical problem description is
considered it is found to be impractical and unrealistic. There are some very obvious rules
which should be followed and simple methods of detecting when unrealistic problem
descriptions are defined. The examples presented seem at first sight to be based on
reasonable problem descriptions but they lead to unrealistic results. On closer inspection the
problems are found to be physically unrealistic and the method of detecting this situation is
described.

There are a number of misconceptions in the literature. In two recent published papers
some of the above features are included. Woodgate (1991 [ 1 i|) has noted that the
generalised H,, problem first proposed by Grimble (1987 [ 2 |) has robustness problems.
GH_, problem is in fact related to the one block designs of Glover and MacFarlane in that it
provides a one shot simple H_, calculating procedure. Although robustness properties are
not so well defined as in the usual mixed-sensitivity H_, problem by following simple
guidelines robustness problems of the type discussed can normally easily be avoided. In fact
the examples reveal that the same robustess problems apply for the example given to the
mixed sensitivity problem which is that most ofien considered in the literature. A very similar
property also applies in LOG design. It is therefore important to emphasise that robustness is
not automatically provided by any le the H,, solution methods and some effort of the choice
of cost weights and system models is necessary to obtain a good result,

It has also been noted in the literature that the mixed-sensitivity problem solution (Foley
and Harris 1992 [ 4 ]) also has very particular robustness difficulties. In this particular
case the authors use constant cost function weightings. This appears to be the worst possible
choice of weighting which is a second issue discussed.

It is not the contention in the following H,, deign automatically provides good robust
solutions. The main point is that some of the criticisms are ill-founded since they are based
on using very poor choices of cost-functions and system models. The design guidelines
which are proposed here will avoid most of the very obvious robusiness problems but there
will of course be a need to build up weighting selection rules to address many other design

. requirements.
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Structure of the Paper

The usual cost function minimisation problem is first considered in Section 2. An example
is presented illustrating that for a simple system description and an apparently reasonable
choice of weightings very poor robusiness properties are obtained. The reasons for the poor
results are considered and explained. In section 3 the GH_, control problem is discussed
and a similar example presented with the same poor robustness results. Again the lessons to
be learned and the obvious errors in system definition are explained. In Section 4 the use of
constant cost weightings in H__ design is briefly discussed and shown to be almost the worst
possible weighting choice. In Section 5 some simple design rules which would have avoided
the difficuldes are recorded. Finally Conclusions are drawn in Section 6.

2. The H_, Control Problem

There are basically two types of cost-function commonly employed in H design.
Examples might be written as:

Mixed Sensitivity Cost : .= 8 *QS + M"RM) I,
GH_, Cost ; Too = (PSS + FM) (PS + FoM))ll o
where PC{z'i} and Fc{z'l], and Q[z'l} and R{z‘1} are dynamic cost-function weightings.

The cost function minimised in the usual H_, control problem (2 or 4 block) leads to
relatively complicated algorithms, whether using state-space or polynomial system models.
This is particularly important in multivariable design problems where calculations are always
more complex. Computational complexity is also important when an adaptive controller is to be
developed. A so called Generalized H, (denoted GH_,) controller was therefore developed
(Grimble, 1987 [2 1) with a special cost function which leads to much simpler controllers.

The GH._, cost function leads to a problem solution involving a straightforward linear
eigenproblem. The usual mixed sensitivity cost function results in a nonlinear eigenproblem
and this is the main reason that H,, control calculations are often complicated. The
eeneralized problem is a one block problem, however, it has properties similar to the
two block or mixed sensitivity problems usually considered.

2.1 Examples of Poor Robustness due to Unrealistic Weightings

There follows an example which demonstrates that poor Tobustness can result for the
usual mixed sensitivity criterion and the simplest systems unless care 13 taken with the cost
weighting definition.

Example 1 : Mixved Sensitivity Problem

Consider the continuous-time single DOF systemn shown in Figs 1 and 2, with the following
models:

W=AlB=1=>A=B=1
e 1 i e £ =
Wd -Ad Cd— l => Cd— l,‘\-VI—D
Let the cost-weightings Q. = P:PC and R, = F:FC be defined so that P = 1/s has a high gain

at low frequency and F, = Bzf[1+e25} has a gain which is higher at high frequencies
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(16/e! > 1). Thence, let the weighting terms:
Ay, As(1+e%s), QA (1-e%2) and R, A-s26%
The H,, controller may now be computed from the results of Grimble (1986 [7 ]).
DD, =Q, +R, =1- (e*+6%s2 = 1- m?s?
where m A {24 + 64}:“’&, so that D, = (1 + ms). Also,
AGAL =DiDALA A% -RQ

Woow Il

= (12202 - 61ALA, = Ag Ag AGA,y,

Ifdeg(D.)=1and degF =0 and F =F = 1 then the equations to be solved, noting A5 = A-:rl'd"w

(1-m22)G + A s(1+e2s) = (1-eZs)(1+e%s)

(1-m?s2)H - Ag : s(1+€25) = -526%
Thence G and H can be written as:
G=(1+g%) and H=sH)

and the above equation for Ag then gives:

2

A =rnzs-5 and A:;

4
Gy AGIZ (—m45*+§34}

1
hence A% = 6% + 5‘1 = mz, and H; = —52.

The controller follows as C, = ulg= -(1 +Ezsjf{st32}. Thence, the sensitivity and
control sensitivity functions become:

S=-e%s and M=(l+e2s)

and
P.S=-¢2 and FM=62

The minimum cost-function spectrum is equalizing:
$*Q.S + MR M =4 + 94 =32

The return-difference 1 + WC, = -U{Ezs} and the only zero is for s — . The controller
Cols) =-(1+1 J(e2s)) is therefore of PI form and stabilizes the closed-loop system.

The controller obtained is not physically realistic since a pure PI controller has too high
a gain at high frequencies. The problem arises because the slope of both weightings is the
same at high frequencies. The control weighting term should really have more lead terms to
ensure the controller rolls off at high frequencies. Howewver, PI controllers are found in real
applications and hence the solution is acceptable, if not desirable.
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The main problem arises due to robustness. Let W = k where k > 0 is a scalar gain then
the retum-difference becomes:

1 +WC, = (e2s -k(1+e25))/(%s) = -k(1+(1- 1/K)e?s)/(e?s)

Clearly the system remains stable for all k > 1 but is unstable for an arbitrarily small fall in
the gain below the nominal plant gain of unity.

Thus, the mixed sensitivity H,, problem can provide non-robust solutions when care is
not taken over the weighting choice. Note that the system model is also important. Even
though this problem appeared realistic the disturbance model W3 was assumed to be a unity
gain. In stochastic terms this corresponds to-designing a regulator for a system with a white
n::sisgﬁ disturbance input. Such disturbances cannot be countered effectively and the problem
is unrealistic and hence it is not surprising that the design is impractical.

3. Cost Weighting Selection for Generalized Cost Functions

The GH._ cost-function is very attractive computationally. The criterion has some
special performance and robustness properties which require particular care to be taken
when choosing cost-function weightings P, and F,.

Example 2 : GH_, Control Problem

Consider the continuous-time single DOF system, similar to that above, with the constant
plant and disturbance models:

W=AlB=1=>A=B=Il
Wy=A"lC =1=>Cy4=1
Let the GH_, cost-function weightings:
Pe(s) = p(s+1)/(s+B?)
F(s) = 0%(s+1)/(e2s+1)
where 0 <£2 < 1. Identify P = p(s+1)(e2s+1), F, = 02(s+1)(s+B2) and Pg = (s+B2)(e2s+1).

The equations to be solved which determine the GH,, controller, from Grimble (1987
[2]) become:

L =P,B - FyA = (s+1)(s(pe* -6%) + (p-82p2))
which is minimum-phase if {ﬂz—pez},"{ﬁzﬂz—p} > () and hence the solution becomes A = 0,
Fs =0, Gy = P, and Hy = -F,. Thence, the controller is obtained as:

o)
e e L
D(Sj n n(:“]| BE(SHSZ}

Now let the plant gain W(s) = k then the characteristic polynomial:

Pels) = 02(s+B2)-pkies+1) = s(8%-pkeZ)+(8°B=-pk)
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Clearly if the plant has the nominal gain k = 1 and the above assumption thaiL is
minimum-phase is satisfied the system is stable. Now consider the case where €< is very

small and (8202-p) = 52 which is arbitrarily small. An arbitrarily small change in k will
then result in the constraint:

2 y)

(82-pke2)/(82p2-pk) > 0
being violated.

Woodgate (1952 [1]) noted that the GH,, controller is not robust for this simple form of
plant uncertainty, namely a variation in the lucp gain, and that there was nothing particularly

special about the above problem. Closer inspection reveals this is not the case.

The example reveals how an unrealistic system and weighting definition leads to
unrealistic results. The following points should be noted:

i I E”Bz p= 82 then Elz[.’:2 > p and the DC gain of the controller C,(0) = EEEE
Thus, in this example of poor robustness the loop gain has a nominal value of less

then unity. Such a system is clearly impractical resulting in steady-state
step-response errors of greater than 50%.

(ii) The sign of the we:ight’mg elements in the GH,, criterion is crucial. The signal
¢ = Pee + Fou =-Pey + Fou and if for example P and F,, are constants it
is th:ElI‘ that{bmh Hq and Iglm problems are ill-posed in this case. Clearly the
swndls y and u are not limited when either the variance of ¢, or the H__ norm of
is small. When P, and F_, are dynamical and have frequency responses
af-:%(fwmusly recommended ( ICP | dominates at low frequency and | Fg | dominates at
high frequency) this situation d{}ES not arise. However, if at low frcquanc}f Pisto
be small and the feedback is to be negative then P, and F,. should have opposite signs.

(iii) For the above exampr;. if the gain of Pe(s) : p = -p1 <0 then the DC gain nf the
commilﬁr Co(0) = 0 and the characteristic pﬂlynmmﬂl pc(S} = S(E +;}1!~.£: )
+ (92p2 +p1k). The system is clearly stable for all positive variations of the
plant Eam k. Moreover, this is true for the more realistic situation where
p1/(62p2) >> 1 and hence the controller and nominal loop gains are much
greater than unity.

(iv) When the sign of the weighting elements is chosen correctly the controller provides
a negative feedback solution and good robustness which was not the case in the
impractical design where p > 0.

{v) The GLQG controller for this problem which minimizes the variance of the signal @, is
the same as given above and suffers the same robustness problem if weights are not
chosen reasonably.

(vi) The disturbance model in stochastic terms represents white noise and it 1s by
definition impossible to reject such a disturbance. To make the above example a
physically realistic problem W 4(s) should be a filter specifying the frequency
response characteristics of the disturbance.




GH__ Design

The last example suggested several problems with GH_, design but gave a rather
misleading impression since:

(a)

(b)

(c)
(d)

The example presented was for an incorrect choice of weighting sign. Robustness
was totally recovered when the sign was corrected and negative feedback at low
frequencies was obtained.

The other optimal cost-functions have similar poor robustness properties in very
similar situations when weights are unrealistic.

There are in fact robustness results for the GH,,,, solution considered in Chapter 3.
The example was for a very special case. The disturbance model was a constant,

the weights led to positive feedback at low frequency and did not ensure the
controller rolled off at high frequencies.

There is certainly a need to be cautious about the robustness properties of the GH_,
design approach. However, experience has revealed that for many real design studies
the results for GH,__ design are almost identical to those obtained from the mixed sensitivity
problem. Since the GH_, algorithm is much simpler to implement than the mixed sensitivity
algorithm, it remains a strong candidate for use in, for example, adaptive control systems.

Robustness is not a right!

An early paper by Doyle (1978 [5]) demonstrated that robustness is not guaranteed
with LQG design and the Examples have shown the same result, that robustness cannot be
taken for granted. If weights and system models are unrealistic it is not unreasonable that
controllers should also be undesirable. However, it was very obvious that the designs
obtained were unrealistic and the remedy was straightforward. The above situation therefore
falls under the old maxim that ask a silly question and you get a silly answer. It also
emphasises that simple analysis methods can detect obvious flaws in a design which can often
easily be corrected by reappraising the choice of disturbance models and cost weightings.

4. Use of Constant Cost Weighting in H__ Design

Although constant weightings are often used in LQ and LQG controller designs very
successfully they are almost the worst possible choice for H, design. Itis crucial that
frequency shaped weightings are used in H_, design and the basic form needed is suggested
by the problems which arise in the constant weighting case. These may now be considered.
Recall that in the scalar case the mixed-sensitivity equalizing solution has the form:

o= YF(S"Q8 + M'R M) Yy = Y7S™(Q, + C5R.C,)S Y =42

If the disturbance weighting Y is low pass which is normally the case, then the controller
frequency response [C ) mu::t increase with frequency. The result is a very wide
bandwidth and large ﬂ]E:dMlIul'ﬂE[lt noise amplification (th remedy is to ensure R, increases
with frequency at the appropriate rate).

At low frequencies the controller gain will become constant and depend upon the rado of

Q/Re.

Hence the controller will not include integral action which is nnnnnlly desirable

f{::r h}rmmb containing low-frequency disturbances. If of course Q./R.. is very large the

low frequency gain may be reasonable but the problem is then almost the limiting case of
only sensitivity minimization. The controller will therefore normally attempt to pmvidv: high
gain at high frequencies again resulting in an unacceptable performance.
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Asymplotic properties:

The limiting cases of Q. — 0 and R, — 0 graphically illustrate the problems which are
bound to arise when constant weightings are employed.

O.=10:

In this case | C,S| = | WRET/ Yel or IM! =1/ Y¢!| . Thus, the control sensitivity
function M=C.5 his a magnimﬁa which is inversely proportional to the disturbance
spectral factor ?f. If the plant W is open-loop stable the trivial solution is obtained that
the optimal control is zero and A = 0. If W is unstable such a design would not be acceptable
since it would imply huge measurement noise amplification at high frequencies.

R¢=ﬂ:

Inthiscase | S| = | ?I.J’Q,?l /1 Ygl or | SI =1/1 Ygl . Thus, the sensitivity-function has a
magnitude spectrum which is increasing with frequency. If, for example, the disturbance
spectral-factor denotes an integrator the sensitivity function will have a frequency-response
which increases uniformly with frequency. If the plant W is minimum-phase the optimal
control will ensure A is zero in the continuous-time case (small in discrete-time), by
introducing infinite loop-gain. If W is non-minimum phase the sensitivity-function will have
increasing gain with frequency. The designs are clearly impractical in either case.

Foley and Harris (1992 [ 4]) recently showed that H_, design gives an inferior
performance to LQ solutions in some problems. However, they employed constant cost
weightings for the comparison and the poor performance of the H,, solution was therefore
predictable.

5. Cost Function Weighting Selection for Scalar Systems

The selection of cost weighting functions does not involve precise rules but general
guidelines. It is difficult to give rules which ensure a given behaviour is obtained, since in
most cases a number of criteria must be satisfied at the same time and trade-offs must be
made. The following guidelines will however provide a basis for selecting and changing cost
function weightings for both LQG and H,, problems.

1. Integral error weighting
An integrator on the error weighting function will often result in integral action in
the controller. There are a few cases where integral action is not introduced automatically
when integral error weightings are used. For example, when two degrees of freedom designs ar
considered, inferential control is used or when noise models cause a change in the controller
response so that pure integral action is not included. The general affect of introducing integral
error weighting is, however, to introduce high gain into the controller at low frequencies.

2. Integral sensifivity weighting
When integral weighting is used on the sensitivity function, this has a similar effect
to Case 1. However, sensitivity costing normally arises in mixed sensitivity
problems where measurement noise is not present in the system description and hence
integral action in the controller normally occurs (again not necessarily for 2 DOF or
inferential control problems).




Lead terms on the control weighting

By introducing a high gain at high frequencies on the control weighting term, the
controller is normally made to roll off in the frequency range where the gain is high
(relative to error weighting terms). The use of a weighting function with high gain

at high frequency is more important in H_, design than in Hy minimization problems.
This weighting provides one mechanism of ensuring the controller will roll off at high
frequencies. 1t ensures the usual wide bandwidth property of H_, designs does not lead
to unacceptable measurement noise ampliﬁt:atiun problems. Controller roll-off at high
frequencies occurs naturally in LQG or Hy designs due to the use of a measurement
noise model. If a measurement noise model is not included, LQG designs can give too high
a gain at high frequencies.

Lead terms on the control sensitivity costing

The control sensitivity function plays a similar role to the control weighting term referred to
in Case 3. In mixed sensitivity problems where a control sensitivity term is

present, high weighting gain at high frequency is normally advisable for H,, designs.

Complementary sensitivity costing

In Hy or LQG problems complementary sensitivity terms are not normally present. In earlyl
designs these terms were introduced commonly, but the disadvantages have recently been
recognised Complementary sensitivity weighting has an identical effect to combining a Wel
function together with the plant transfer-function acting on a control sensitivity term.
Multiplying the control sensitivity function by the plant ransfer function does of course givelf
complementary sensitivity function. Since there are generally disadvantages in using a
complementary sensitivity weighting, this term is normally neglected.

Effects of the weighting functions on the cross-over frequency

When large or small error weightings are discussed, this is of course relative to the size of the
control weighting terms. In this context large is only in the relationship to the other
weighting functions. Although the weighting functions do have an affect which depends
upon the scaling of the system model, it is also true that the point at which the frequency
response plots of the error weighting (sensitivity weighting) and the control weighting
(control sensitivity weighting) cross often determines the bandwidth point for the

system. Indeed a starting point in H_, design, for choosing the relative gain sizes, is

to choose the cross-over point to coincide with the desired bandwidth. In LQG design
the crossover frequency between the plots of W Q.W and R, may give a better indication
of the bandwidth which will be achieved.

Angle between the weightings

In general the angle between the frequency responses of the weighting should be limited
at the crossover point. Recall that this point is often close to the unity-gain crossover
frequency for the system, and the weightings should not therefore introduce rapid
unnecessary phase changes unless this is important for stability.

Lead terms on the error weighting

A lead term can be introduced on the error weighting function or sensitivity weighting functios
an attempt to improve transient responses. If integral action is used on the error term

and a lead term is used on the control weighting, the crossover of the magnitude diagrams
will involve a difference in slope of 40 dB per decade. This can result in the system being
particularly sensitivity in the mid frequency range. By adding a lead term on the error
weighting function, the change in slope can be made 20 dB’s per decade and the resulting
more gradual phase shifts I:Jl‘tf:.:ﬂ lead to a design with better step response

characteristics. Similar remarks apply to sansizivit}' waighﬁng functions where a lead
term on the cost weighting may be necessary to reduce the rate of change of gain and
phase in the mid frequency region,
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9. Robustness weighting function
Instead of penalising each of the cost terms independently, it is sometimes more beneficial
to multiply each term by the same weighting function W. This is particularly true when
trying to reduce the peak level on sensitivity functions which occur in the mid-frequency
range. Atlow frequencies a high penalty on the sensitivity function will cause a high
controller gain which results in a small sensitivity function magnitude. In the frequency
range where the loop gain has a magnitude of approximately unity, this rule (that heavy
penalities will force down the sensitivity function magnitude) no longer holds. A more
effective way of reducing the peak on the sensitivity function, in this case, is to reduce
the loop gain so that a frequency response peak of greater than unity does not oceur,

6. Conclusions

The importance of selecting the d}:{ﬁmic cost-function weighting terms in H,_, desizn has
been illustrated through examples. The use of constant cost welghtings is the worst possible
design strategy. However, it is also important that the frequency responses of the weighting
are appropriate, Some design guidelines have been presented which provide a starting point
for a more formalized design procedure.

7. References

1. Woodgate, K., 1992, On the generalized H__ control problem, American Control
Conference, Chicago, Lllinois, pp. 2261-2265.

2. Grimble, M.J., 1987, H_, robust controller for self-tuning applications, Int. .

Control, Part I, Vol. 46, No. 3, pp. 1429-1444 ; Pant 11, Vol. 46, No. 5, pp. 1819-1840.

3. Glover, K., and McFarlane, D., 1989, Robust stabilization of normalized coprime factor
plant descriptions with H, bounded uncerrainty, IEEE Trans. on Autom. Control,

34, &, pp. 821-830.

4. Foley, M.W. and Harris, T.J., 1992, Structure and performance of discrete H
optimal contrel, Optimal Control Application and Methods, Vol. 13, 1-27.

3. Doyle, 1.C., 1978, Guaranteed margins for LOG regulators, IEEE Trans. on Auto.
Control, AC-23, 4, pp. 756-757.

6. Grimble, M.J. and Fragopolous, D., 1991, Relationship between H_, and H > opitimal
control robust design advantages and limitations, Proc. of Symposium "Robust Control
System Design Using H_, and Related Methods" Ed. P.H. Hammond, Published Inst. M.
and Control, pp. 105-37.

7. Grimble, M.J., 1986, Optimal H_, robusmess and the relationship to LOG design
problems, UC, Vol. 43, No. 2, pp. 351-372.




