AN ADAPTIVE FILTER USING A MOVING SENSOR FOR A CLASS
OF DISTRIBUTED PARAMETER SYSTEMS
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Abstract. An adaptive filter for a class of distributed parameter systems is presented, based on
the use of a moving sensor, in order to obtain better reconstruction of the state and to reduce the
number of convergence failures. The results, based up to now on numerical experiments, show good
properties of convergence of the filter and a good reconstruction of the state.

Key words. Distributed parameter systems, adaptive filtering, on-line estimation.

1. Introduction. A relevant problem, when dealing with Distributed Parameter
Systems (DPS), is the estimation of the state of the system when the exact values of
some parameters are not known. The estimation process is based on output measure-
ments taken by sensors located along the spatial domain of the system.

When the positions of the sensors can be chosen, naturally arises the problem of
optimise their locations, according to some optimality criterion; this problem has
been widely investigated in the past years. Most authors look for the optimal location
of a set of fixed sensors; more recent approaches ([1], [2]) suggest the use of moving
sensors, especially in those cases in which the system is time-varying.

In our work we propose to use a finite-dimensional Extended Kalman Filter (EKF) as
an adaptive filter to estimate a finite-dimensional approximation of the state and the
parameter of the DPS.

Such an approach is especially suited in case of on-line estimation, but it suffers from
some problems, such as the divergence of the filter and the biasedness of the estimate
[3]. In order to improve the performances of the filter, we use a moving sensor,
whose position is chosen at any time so as to maximise the influence of the current
observation on the variance of the extended state. This criterion has a plain stochastic
interpretation in the case in which the parameters are known exactly, and only the
state has to be estimated [4]. In our case the meaning of this approach is not obvious,
but the algorithm which results shows good properties of convergence.

In all cases we have tested, the numerical experiences show that the proposed filter
reconstructs the state of the system much better than an EKF with fixed sensor, for
all the tested fixed location of the sensor; moreover it converges in all cases, whereas
the EKF using a fixed sensor very often fails to converge.

2. Problem formulation. The class of systems we consider is described by the
parabolic diffusion equation

du(x.t) d ( du(z,1)
ot T da % s

(x) e > + flz)yw(t),

x € Q=[0;1],t € [0: T¥]. initial condition u(z,0) = ug(a),ug € HY(Q), boundary con-
ditions u(0,t) = u{1.t) = 0.t € [0;T%); a(z) € C(Q), flz) € L3 (Q),w(t) € L2(O;Tf).
In order to ensure the stability of the DPS, the parameter a(2) is assumed positive
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for all 2. In our approach the system is firstly reduced to a Lumped Parameter Sys-
tem by a Galerkin-type approximation procedure using the Finite Elements method
[5] with piecewise linear basis function ¢;(-); then we take as approximate solution
Un(z,t) = 27 &i(2)u;(t); from the Galerkin method, functions u;(t) are solutions of

(1) { Eu(t) = Ale)u(t) +bw(t)
)

Eu(0) =ug

where u(t) = [ug({)...u,(t)]'. Matrix F is nonsingular and depends only on the basis
functions &;(-); vector 0 depends both on @;(-) and on the input distribution function
f(-); ug depends hoth on ¢;(-) and on the initial condition ug(2); A{e) is symmetric,
tridiagonal, negative definite if a(2) > 0; its nonzero entries are given by

1) laggitage) i j=t o 1 /'x,' |
Ay = { R i g %= o iy a(z)dz
i=1,...,n+ 1; h is the length of each subinterval [¢;_1;2;], ¢ = 0,...,n, in which

is partitioned. Matrix A depends explicitly on the parameter vector e € R™!, which
retains the information about the parameter function a(z).

Assume that noisy measurements are taken, at discrete time instants ¢, by a sensor
which may be located in a set of admissible observation points N; we take ¥ as the
set of the internal nodes of the partition on . Hence the observations are described
by y(ti) = u(a™(tg),tx) + v{tg), 2™(tx) being the abscissa of the observation point
at time ¢, and v(-) a Gaussian, discrete-time. zero-mean white noise with variance
ot. By defining C'(k) = [Ci(k)...Cu(k)], Ci(k) = 1if 2™(ty) is the i-th node of the

partition, C;(&) = 0 otherwise, we write the observation equation as
(2) y(te) = Clk)ulte) + v(ig).

3. Filtering algorithm. By augmenting the state of the Lumped System with
the unknown constant parameter «, we obtain the extended system

{ Fu(t) = Ala)u(t) + b w(t)
&(t) =0

(3)

Let us assume the sampling time to be constant: ty — t;,_1 = Ty, and, moreover, that
the input is applied through a zero-order holder: under these assumptions, we can use
a discrete-time EKF [6] to estimate the state of system (3).

Suppose that an estimate of the state and the parameter is available at time tgz_1,
based on the observations {y;...y5_1}: let us refer to such estimates as x_q 41 and
Qj-1,5-1- By letting ®,(t.7) = exp{ E~'A(a)(t—7)}, the expression of the predictors
at time {; are (the argument ¢, will be replaced by the index & for ease of notation)

i

Hp g = (bd;._lik_][tl\--tk—])ﬁk—l.k—l -+ (I)C;.k‘l.kﬁl(_tg..._O’)b'u,‘((f)d(f
ti—1

Qp ], = O it

As observation y; is available, we compute the filtered estimates iz 1 and &y i by

g k gy y Uy k-1
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where C; = [C) 0], and the Kalman gain K}, is computed by linearising system (3)
about the predictors iy r—1. &g k—1; its expression is given recursively by

(5) Sy = ApPror A,
. S C.
Ky = 35—
U(/+L;¢bkck
S CL.CL Sy,
g8, | 2 kCpCrog

7t + CrSiCy
matrix Ay is computed according to
SE-1A(a)u SE-l1A(ax)u

Ap = exp (Ts [ aou ng ]) 3

evaluated at u = G 4—; and a = &y k—1; bold zeros are null matrices of appropriate
dimensions. Matrix P may be regarded as an approximation of the covariance matrix
of the estimation error for the extended state: in a standard filtering problem the
trace of Py is an index of the “goodness™ of the estimate at time ¢;; by using a moving
sensor, it can be minimised, given Pr_q, with respect to Cj, which depends only on the
sensor position at time ¢;. Such a criterion, in a standard filtering problem, has been
fruitfully applied [4]; in the present context the meaning of the minimisation of the
trace of P; is dubious. because Py is not properly a covariance matrix. Nevertheless,
we can look at this criterion as a heuristic method to improve the properties of the
EKF: we propose to choose 2™(1;) by the rule

(6) 2™ (ty) = arg min {tr(Pr— Sk) }.

rme N

The filter we propose is then nothing but an EKF including the step-by-step choice
of the sensor position based on the above criterion. We have no proof of convergence
or boundedness for that filter but, as we will see in next section, the numerical results
are surprisingly good.

In its implementation. a well known device is used: a fictitious input noise covariance
matrix W is added to & in equation (5), so &k will given by S = AkPk_l./il;\_ + Wi
this is a classical method to improve the convergence of the filter [7]. Moreover in
those cases in which. at some step k, any entry of &, ; would result negative, we will
take the absolute value.

4. Numerical Results. The results of four numerical experiments are reported:
in all of them the true value of the parameter is a(z) = 10 exp(z); the approximated
initial guess &g is assumed to be constant and equal to 10. We consider an approxi-
mate model of order n = 24, to which a vector parameter a having 25 entries there
corresponds; Py is 5-10°7 and W is 1072, The output data { y } are obtained from a
model of order n = 49, in order to simulate the continuous-in-space model. The final
time for all the simulations is Ty = 5 sec. and the sampling time is Ty = 0.01 sec.; we
define the steady-state state estimation error, in percent, as

[2:(Ty) — v (Ty)|
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In Table 1, the results of four experiments with three different filters are reported.
The first filter, called “Moving”, is that described in the previous section. The second,
denoted by “Fixed”, is a standard EKF obtained by fixing the sensor on a node of
the partition: we repeat four times that experiment, by fixing the sensor at abscissa
2™ € {0.2, 0.4, 0.6, 0.8 }: the results are relative to the node where “Fixed” works
better. The last one (“Filter” ) is a standard Kalman Filter, in which the parameter is
fixed at the wrong value &g, and which incorporates the same step-by-step choice of
the output matrix as “Moving”.

Each entry of the table is a pair of numbers; the first of which represents the percentage
of successful runs of the corresponding algorithm over a set of twenty realisation of
the output noise, and the second is the mean of ¢; over the set of runs in which that
filter converges.

In Experiment 1 and Experiment 2 the input distribution functionis f(z) = é(z—0.20);
in Experiment 3 and Experiment 4 we take f(a) = step(z — 0.60) — step(z — 0.30).
Moreover in Experiment 1 and Experiment 3 we assume an output noise with variance
o = 1072, in Experiment 2 and Experiment 4 we assume ol = 1~

5. Conclusions. The nuinerical experiments show that, by using the proposed
. filter (“Moving”), the reconstruction of the state is excellent; convergence is obtained
in all cases we have tested: this is paid by a greater computational burden with respect
to a standard Kalman Filter (“Filter™). Compared with Fixed, the proposed filter seems
to work much better. with practically the same computational effort.
In conclusion, the filter we propose is suitable for on-line implementation in those
cases in which at least a rough reconstruction of the spatial parameter is essential for
a good reconstruction of the state. \

Experiment 1  Experiment 2 Experiment 3 Experiment 4

Moving  100% - 4.77%  100% - 0.52% 100% - 0.94% 100% - 0.28%

Fixed  10%- 98.3%  30% - 59.3% 0-— 0-—
| 2" 0.80 0.60

Filter 100% - 8.59% 100% - 5.61% 100% - 23.8% 100% - 14.9%

Table 1. Results of the numerical experiments.
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