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Abstract

It is rather obwvious that the connections between control theory and linear algebra are very
strong . Several formulas and notions , as well as , known techniques from matrix theory and theory of
operators are used efficiently in control theery . The important treatise of [4] gives a nice example of how
malrix theory can be applied to the analysis and solution—{inding of several difficult problems in contral
theory . On the other hand Gohberg and other researchers [5] presented their work on operator
polynomial and general operator—valued functions , and pointed out the strixing similarities among them
and formulas and notions in control theory making the observation that "... from the systems theory
point of view , we study here systems for which the transfer funclion matrix is the inverse of a
polynomial matrix " [5, page 7] . In this paper we present a simple method which uses the notiens of
finite and infinite Jordan pairs from the operator theory in such a way to find & minimal realization of
the inverse of a polynomial matrix . The notions of finite ard infinite Jordan pairs were found originally
in [3] and are based on the notions of finite and infinite Jordan chains [4],[5] . Our analysis is based on
the theory presented in recent papers [3],[8],[10] , where simple and efficient methods of finding finite and
infinite Jordan chains —and as a consequence Jordan pairs— using the notions of finite and infinile
clementary divisors | are given . Specifically we prove the following :
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Proposition 1 . Let A(s) € R - [s] be a polynomial matrix . Let also the finite Jordan pair Cpe R e
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HﬁF'T':S:I is the strictly proper part of A(s)™l . Then the triple (CpJ;B;) is a minimal realization for
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Proposition 2 Let A(s) € B [s] be a polynomial matrix . Let also the infinite Jordan pair {C_,J_) of
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: i= 1,..k and g j = k+1,...,r denote the orders of the poles and zeros at s = 00 of A(s) respectively and
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B € B . Let alo Als)7L = IIEPI[S} + Hpul':s} . Then (i) the triple of matrices (C_J B ] is a
realisation for the polynomial part Hpm':-‘":' of A(s)7L (ii) From (C_J_,B,) we can find a triple of
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matrices (€3, B,) , with €, R, T, e R B_e ¥ where his given by f= (=%} + 3¢
:
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Clearly [ € g and the triple (C_,J_.B_) constitutes a minimal realization of the polynomial part Hnul:ﬂ]

L, -1
of Als)! e HI]L‘III:H':I = Cm[ﬁ.]m—-'[;ll B, and = ﬁM[ljw A(Lfw] O

The proposed method can be applied to the so—called realization theory of transfer function
matrices of Linear Multivariable Systems [6] , L.e. physical systems of the form (X) : A{p)0(t) = B{g)u(t)
v{t} = C(p)d(t) ;where p:= d/dt is the differential operator , A(p) , B(p) , C(p) are polynomial matrices
and B(t} , ¥{t) , ult) are respectively the pseudostate , the output and the input vectors of the system
(¥) . The transfer function matrix of () is {in frequency—domain) : G(s) = C(s}A(s)"'B{s) which is a
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rational matrix(not necessarily proper) in general , It would be interesting to find certain singular systems
in peneralized state—space form [1],i.e. physical systems of the form (X,) : Ex(t) = Ax(t) + Bu(t),

v{t) = Cx(t) —where E,A,B,C are constant matrices with appropriate dimensions and x(t),y(1),u{t) are
respectively the generalized state,the output and the input vectors of the system (&) — which give rise to

the transfer function matrix G{s) . In other words the transfer function matrix of system [El} which is
given by : G (s} = C[sE—A]"'B satisfies the following condition : G (s} = C[sE—A]"B = C(s)A(s) "1B(s}
—_— 'Gl:.':.mI T
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Definition 1 [2] Assume that G (s) € R™ (s) is a rational matrix . If there exists a quadruple of matrices
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(E,A,B,C) such that : Gs) = C[sE—A]"IB —where EA ¢ R B eR LR *" are constant

matrices with 1 € N — {0} — , then the generalized state—space system described by (L) will be called a

singular system rcalization of G(s) , or simply a realization of G(s) . Furthermore Lhe system ':Eij i

called a minimal realization of G (s] iff any other realization of G (s) has order greater than m , or

equivalently iff the gencralized state—space system {51] has the least number of generalized states (x(t)) .

Any tational matrix G(s) (not necessarily proper) may be represented as the sum of its strictly
proper part Hg, [(s) and its polynomial part Hpul':ﬁ} , Le. G(s} = Hspr{sjl + Hpﬂl{s'jl We know that the
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inverse of a polynomial matrix F(s) € R~ [s] is a rational matrix in general . If we now consider the case
where F(s) L= G(s) then the proposed method finds 2 minimal eealization — as this defined in definition
1— of a transfer function matrix (G{s)) of a system (¥) which has the property its inverse to be a
polynomial matrix . In other words we can find a quadruple of matrices [E,A B,C] which have the
following properties : (i) give rise the the peneralized slate—space system [Ei} , and (i) Gis) =
C15E:—11]_!B :

To be more precize let a system (¥) which give rise to a transfer function matrix G(s] =
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C(s)A(s)"1B(s) e R "8}, and assume that G(s) has the following property Gis)"k=F(s) ¢ R "~ [s] . Now
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proposition 1 states that we can find a triple of matrices Cre R , dg€ R , Bye R with n =

-1
deg|F(s)| , such that : Hz-;pr':“‘j = Cylsl,—J¢ By, where Hspr{ﬁ} is the strictly proper part of Gis) =

F(s)™! and the triple {C¢J,By) is 2 minimal realization of Hﬁprl[s:l . Also proposition 2 states that we can
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find a triple of matrices I:{jx,jm,ﬁm:l , with Cm £ [R”rL1 j:x. £ [R'ull'u ; Ewi .R,I'J.H with = [r—%) + . %
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4 such thal H-,ml[ﬂ:' = élm[six—I;] éw , Where iil,ml[s} is the polynomial part of G(s) = F(s)™! and the

L, 0 3 a
n
triple (C_,J_,B_) is a minimal realization of ﬂpnlfs'} . Let now define E = [ }, A ::{ d ‘|
a0
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By |
B:=| 4 J gDl @ 4727 . We cau now define the generalized state—space system ( ) with
ol =

E,A,B,C as above . It is easy to verily that : G(s) = Hspr[s} + Hpﬂl[:s} = C[sE—A|'B
Hence the system (Y,) determined by the matrices [E,A,B,C] is a realization of G(s) . Furthermore we

can prove easily that the above realization is also a minimal one .
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Definition 2 The order n of the minimal realization of the transfer function matrix G(s) of (¥) is called

the minimum generalized order of @fs] . Furthermore n is the dimension of the generalized state—space
;

FI:E}| + (==k) + & aj , where E;j i =k,
1=k«

system (Et} and is equal to : n=n + [ = deg

denote the orders of the szeros at s = m of the pui}rﬂcmial matrix F{EI]I which can be found using the
Smith—McMillan form at s = m [B] . ¥We can now state the fc:licuwing :
Theoreme,l  Let a linear multivariable system (X) which give rise to a rational transfer function matrix

Ixl IxT ;
Gs) ¢ R 3 (s) and has the property to have a polynomial inverse F(s) € R~ [s] . Then we can find a

generalized state—space system of the form (¥,) and minimum generalized order n , such that the

systern (X,) to be a_minimal realization of the rational matrix Gs) (according te definition 1) .

Furthermore since the two systems (X) and () give rise to the same transfer function matrix G(s) they

have the same sets of finite and infinite transmission poles and zeros ([6],[7])] . o
We remark here that the problem of transforming a linear multivariable system (L) to a
generalized astate space system {Elj is called linearization and has been considered by many researchers .

In our paper we study a aspecial case of linearization ; that is linearization for the class of transfer
function matrices G{s) of systems {E:I with the property of having a polynomial inverse , i.e.:

Y={G(s) e R “(s) / G} R < 5] }
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