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1 Introduction

We are interested in problems wherein flows are contralled in order to achieve
some desired objective. Our approach is unique in that it is a concerted, eom-
prehensive, and innovative program of research into Bow control problems. Qur
program is characterized by its broad coverage of a variety of cbjectives and
control mechanisms. including the ficst rigorous analvsis of boundary control
problems. We are alsa engaged in a developmental process to design numeri-
cal algorithms for the computational approximation of flow contral prohlems.
[n summary, we study these constrained optimal control problems through a
systematic approach that contains the following components:

L. build mathematical models of the physical problems, invoking a minimum
of assumptions about the physical phenomena;

2. rigorously analyze the mathematical models to answer questions on exis
tence and regularity of solutions, to verify the existence of Lagrange mul-
tipliers to enforce constraints, and, mest important, to derive necessary
conditions that optimal controls must satisfy;

3. construct and analyze discretization methods for determining approximate
solutions of the optimal control problems, including a rigorous derivation
of error estimates; and
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4. develop computer codes implementing our discretization algorithms, first
for the purpose of showing the efficacy of these methods, and ultimately,
to solve problems of practical interest.

Our recent successes have demonstrated the validity of our strong belief that our
approach, which combines mathematical riger, algorithmic development, and
computer implementation, is the best way to attack these difficult problems.

Here we briefly describe the various problems that we have formulated and
which have been, or are about to be, subjected to our systematic attack. We
first give some of the objectives that we are interesting in achieving through the
contral of fows; then we describe the constraints placed on the optimization
problem. Subsequently, we deseribe methods of control.

2 Objectives

In this section we describe some of the objectives tha: we want to achisve by
controlling flows, In each case, we will briefly discuss the physzical situation,
and then give a mathematical cost functional whose minimization will achieve
the desired physical objective. For the sake of simplicity, we give. in each case,
a stationary version of the problem; time dependent versions can also be casily
defined. We also use the context of incompressible flows; similar objectives and
mathematical realizations can be devised for compressible flows, Note that the
obhjectives listed here are but a sample of those we have, or hope to, treat, and
that, furthermore, the machinery that we are building will allow us 10 treat
many other objestives as they are presented ta us,

2.1 Flow tracking

Let u denate the velocity field. We want to control the low so cthat the velocicy
field is close to a given flow field vy, In this case. it is natural to minimize the
functional

Ji{u) = JJu— ||,

where the choice of norm and exponent is governed by both mathermatical and
physical considerations, For example, one choice that we have considered is

1
Ji{u) = 7 f [ — uy[? 402
o

where {1 denotes the low domain. Included in this class of problems (but with
different types of functionals) are maneuvering problems wherein the objective
is to steer a submerged body along a desired path.




2.2 Viscous drag minimization

An important objective in many applications is the minimization of drag. It is
well known that the drag on a body can be computed from the integral of the
dissipation function, i.e.,

Jafu) = % '[_ll[g,ra,du} + (grad u)'|” 402,

where u denotes the viscosity coefficient. Thus, if one wishes to minimize the
drag on a submerged body, one merely minimizes the functional Ja{u).

2.3 Avoiding hot spots

In many applications it is desirable that temperatures and/or temperatuee gra-
dients along Aow boundaries, e.g., structural components, not be allowed to ex-
ceed certain specified values. In particular, one would like to avoid “hot spots”
along bounding surfaces, t.o., places where temperature peaks oceur, sinee aften
such phenomena lzad to meltdown ar to Bexural Failures. A candidate Tunctional
whose minimization would aveid such problems is

- . - ! -
T = /’ |grad, T7 40",
where 1" denctes the temperature, grad, the surface gradient, and Iy the por-
tion of the flow boundary along which one wauld like to avaid the ahove prob-
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3 Constraints

The minimization of any of the functionals listed in §2 is subject to constraints,
most notably, that the flow variables describe realizable flows, ne., that the
flow variables satisfy the governing equations of fluid mechanics, We invoke ne
simplification of these equations, retaining the full nonlinearities. For example,
for problems invalving incompressible flows of a single fluid, with no temperature
coupling, we require the velocity v and the pressure p to satisfy the continuity
equation
divau=0 inQ

and the Navier-Stokes equation

aﬂ_‘: — vdiv ((gradu) + (gradu)”) + u-gradu + gradp=f in Q,

where v denotes the kinematie viscosity, £ a body force, and { the fow do-
main. [n addition, initial conditions on the velocity must be specified, as well




as some boundary conditions. For example, one could specify the velocity u, or
the stress vector [—pn + v(grad u + grad u') - n], or some components of each,
along the boundary of the flow domain; indeed, In most applications different
types of boundary conditions would be imposed along different portions of the
boundary of ©2. (Here, n denotes the unit normal to the boundary of the flow
domain.) For problems involving the temperature and/for fluid mixtures, addi-
tional constraints are provided by the energy equation and/or conservation of
species equations, respectively, as well as some additional boundary and initial
conditions.

4 Control mechanisms

The chjectives listed in §2 are to be achieved by controlling the flow. Here, we
discuss some of the contro! mechanisms that we use to achieve these goals. We
note that if the size of the control {measured in an appropriate norm) is not a
prioet constrained to be bounded. then the functionals of §2 must be penalized
with some norm of the cantrol: otherwise, optimal controls would usually be
unbounded, and therefore not physically realizable. We alse note that many
other control mechanisms are possible. and here we provide only a sampling of
these possibilities.

4.1 Velocity along portions of the boundary

A very mueh used mechanism of control 15 to inject or suck fluid through orifices
along bounding surfaces. (Such contral mechanisms have long been used in
experimental studies of boundary layer control and drag minimization.) Thus,
if Iz denotes the portion of the boundary covered by the orifices, we would seek
a control g such that one of the functionals of §2 is minimized, subject to the
constraints of §3, and also

on [\,
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4.2 Temperature and heating controls

Another commoen control mechamsm is to adjust the temperature, or even more
often, the heat Aux, along portions of the boundary of the flow domain in order
to achieve one of the desired objectives. Within this class of controls we find
“heating” and “cooling” controls. For example, one could seek a contral ¢ such
that one of the functionals of §2 15 minimized, subject to the constraints of §3,
and also

E:q on 'y,

where [y denotes the portion of the boundary along which one allows the control
to act and 8/8n denotes the normal derivative at the boundary.




4.3 Distributed controls

One could try to effect control through the body force in the Navier-Stokes
equation of §3. Thus, one would seek a contral £, defined on the low domain
{1 or on a portion of ©2, such that one of the functionals of §2 is minimized and
subject to the constraints of §3. Physically, one way to effect such control is
through a magnetic field acting on an ionized fluid or on a liquid metal.

Another possible distributed control is a heat source in the energy equation.
In this case, we would seek a control €2, defined on the flow demain 7 or on
& portion of €2, such that such that one of the funectionals of §2 is minimized,
subject to the constraints of §3, and also such that

%—T—.E.J.T+|1-grzLdT=Q in 2.

Physically, one way to effect such a control is through radiation mechanizms, or
through a targeted laser beam.

4.4 5Shape control

The control mechanisms discussed so far are known as valuve controls: this refers
to the fact that we try to effect contrel through the adjustment of the values
of the data of the problem. Another class of contrals are known collectively as
shape controls, in this case control is effected by adjusting the shape of the flow
domain. The shape of the flow domain may be changed in many ways. For
example, one could use leading and/or trailing edge faps, or movahle walls, or
rudders. or propeller pitcli. A related problem is the oplimal desipn problem.
Here, we want te chocse a flow domain, e.g., the exterior of an airfoil, so that
some objective is achieved. OFf course, choosing the flow domain is tantamount
to choosing its boundary, e, in this case, the aicfoil iLsell,
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