mic
the

IS

for
ted

CI.

ing
50T
29-

ide
Cco,

|
st.

er.

ENTROPIC FUNCTIONALS AND APPLICATIONS
IN IMAGE RESTORATION

Michael E. Zervakis® and Anastasios N. Venetsanopoulos
* Department of Computer Engineering
University of Minnesota, Duluth
Duluth, MN 55812, USA
" Department of Electrical and Computer Engineering

University of Toronto
Toronto, ON M55 1Ad4, CANADA

1. INTRODUCTION

Some of the most prominent linear restoration techniques are based on the concept of regulari-
zation of ill-posed problems. Typical regularized approaches, such as the constrained least-squares
(CLS) and the Tikhonov-Miller formulations, attempt o compensate for the ill-posedness of the
pseudo-inverse solution by utilizing smoothness information in the restoration process [1-3]. These
approaches employ quadratic objective functions that reflect the Gaussian assumption for both the
prior and the posterior signal statistics. Quadratic functions are attractive, because they enable the
analytic derivation of the corresponding estimators and provide cost-efficient implementation. The
Gaussian model, however, does not cover most realistic noise sources, which are characterized by
Poison, Laplacian, or impulsive noise distributions [4]. Moreover, the Gaussian distribution cannot
characterize the vast majority of images. Recent efforts in image restoration acknowledgze the pres-
ence of different types of noise [4] and address the need for accurate models characterizing the prior
signal statistics [5].

In this paper, we address the aspects of robust estimation in regularized image restoration, with
the utilization of non-quadratic objective functions. The approaches introduced aim to achieve accu-
raic representation of both the signal and the noise distributions through the concept of robust M-
estimation [4]. We exploit the structural flexibility of generalized maximum likelihood functions in
order 1o provide accurate representation of a wide class of posterior (noise) distribution functions.
Moreover, we present a different view to the stochastic representation of edges and we address the
utilization of non-quadratic smoothing functionals in the regularization process. In this consideration,
the existence of sharp edges manifests some uncertainty regarding the assumed {Gaussian) distribu-
tion of the signal. Expressing our intention to tolerate such uncentainty in the signal distribution, we
modify the stabilizing functional in the regularized approach as to reflect the structure of M-
estimation schemes. Thus, an influence function is utilized to restrain the contribution of large signal
deviations in the stabilizing term,

The overall robust approach introduced in this paper can be interpreted as a gencralized MAP
formulation of image restoration. In the context of robust estimation, we introduce novel entropic
functionals which operate on a high-pass version of the original image and can accurately character-
ize a wide ensemble of images. The entropy functionals proposed describe the distribution of only
the high-frequency content of the original signal. The corresponding prior distributions penmit large
signal deviations and enable the reconstruction of sharp edges.
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2. ROBUST OBJECTIVE FUNCTIONALS

Consider the linear space-invariant image formation model with additdve noise, which is
expressed as:
g=H f+n , (1

where f, g, and n denote the original image, the degraded data, and the noise process, respectively,
whereas the block-Toeplitz matrix H represents the point-spread function of the system.

The so called robust constrained least-squares (RCLS) approach requires the satisfaction of the
following constraints:
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where € denotes a measure of the noise statistics and £ is a prescribed constant determining the
smoothing influence of the robust regulanzing functional on the estimate. Moreover C is a linear
highpass operator employed in the stabilizing functional. The signal kemel function re(x) and the
noise kemel function r,(x) are defined in terms of their derivatives, which in a robust estimation
environment are referred to as the influence functions.

Through the robust functional K, (g—H/f ), the posterior distribution can represent the statistics
of a wide wvariety of medium and long-tailed noise processes. With an absolute-value metric this
functional represents the Laplacian distribution, while it can still reflect the Gaussian distribution with
& quadratic metric. Altematively, the robust metric Re(Cf ) on the signal space can be sclected as to

reflect long tails in the signal distribution and allow the accurate representation of the detailed struc-
ture,

According to the Tikhonov-Miller formulation [2], the constraints in (2) can be combined into a
single cnterion that incorporates the regularzation parameter ¢, The minimization of this criterion
can be performed through an iterative gradient technique. The overall implementation will be
presented In the main body of this paper. It is proved that the convergence of the robust algorithm is
guaranteed, provided that the influence functions employed are non-decreasing.

2.1 Robust Absolute-Entropy Measure

Entropic functionals have been successfully utilized in the overall representation of smooth
images with sharp impulsive detail [(6]. In order to expand this structural feature to a wide ensemble
of images, we define an entropic measure on the detailed structure of the image rather than on the
image itself. Thus, the new entropic functional is applied on a high-pass version of the original
image. The domain of its kernel function must cover the entire real space, so that negative values
resulting from the high-pass operator are appropriately treated. In order to satisfy this requirement
while preserving the structure of the conventional entropy measure, we introduce a completely new
entropy function. For a variable x, the so-called absolute entropy function is expressed as:

r)=Clxl +elymn(lxl +e1) . (3

The design of the absolute entropy function involves a displacement of the negated entropy function
[ x In(x) } shifting the minimum to the origin, and a subsequent mirror expansion of the section
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[ x>0 ] over the origin. By taking the left and right limits at the origin, it is verified that this func-
tion is twice continuously differentiable. Due to its continuity, its robust characteristics, and its rela-
tionship to entropy issues, the absolute entropy function forms a good kernel for the definition of the
stabilizing functional Ry (Cf).

2.2 Robust Absolute-Information Measure

The performance of regularized algorithms can be improved through the use of a priori infor-
mation regarding the original image [6, 7). In order to exploit prior information in robust regularized
formulations along with the absolute entropy criterion, we introduce the robust absolute-information
measure, which is motivated by the minimum information principle. Within an information theoretic
framework, this principle minimizes the distance between the prior distribution state and the posterior
distribution assignment within the space consistent with the problem’s constraints, or the space that
embodies no more than the available information. The absolute information measure preserves the

advantages of the robust formulation and incorporates prior structural information in the restoration
dlgorithm,

23 Examples

The properties of robust algorithm are demonstrated through restoration examples in different
mise environments. In conclusion, the robust approach yields impressive improvement over the qua-
dratic regularized scheme in the case of noise processes mixed with outliers. Considering single noise
processes, either Gaussian or Laplacian, the robust approach improves significantly on the resolution
of the estimate in moderate to low signal-to-noise ratios.
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