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i Abstract

We consider a classical Markovian decision problem where for each node of a graph, we must choose a
probability distribution over the set of successor nodes so as to reach a certain destination node with minimum
expected cost. The costs of transition between successive nodes can be positive as well as negative. We prove
natural generalizations of the standard results for the deterministic shortest path problem, and we extend
the corresponding theory for undiscounted finite state Markovian decision problems by removing the usual
restriction that costs are either all nonnegative or all nonpositive. We also discuss various implementations of

the successive approximation algorithm in a serial and a parallel asynchronous computational environment.
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Summary

Given a directed graph with nodes 1,2,...,n and with a length (or cost) assigned to each arc,
the (deterministic) shortest path problem is to select at each node j # 1, a successor node u(j) so
that (7, 2(7)) is an arc, and the path formed by a sequence of successor nodes starting at any node
i terminates at node 1 and has minimum length (i.e. minimum sum of arc lengths), over all paths

that start at i and terminate at 1.

The stochastic shortest path problem is a generalization whereby at each node, we must select a
probability distribution over all possible successor nodes, out of a given set of probability distribu-
tions. For a given selection of distributions and for a given origin node, the path traversed as well as
its length are now random. but we wish that the path leads to node 1 with probability one and has
minimum expected length. Note that if every feasible probability distribution assigns probability

one to a single successor node. we obtain the deterministic shortest path problem.

It is possible to analyze the stochastic shortest path problem by using the general theory of
Markovian decision problems [2], [3], [6], [8], [¢]. [12]. This theory, however, applies only when the
arc costs are either all nonnegative or all nonpositive (corresponding to the classical positive and
negative dynamic programming models [5], [10]). On the other hand, the existing theory of the
(deterministic) shortest path problem allows arc lengths that can be negative as well as positive. As
a result, an analysis of the stochastic shortest path problem that generalizes the known results of its
deterministic counterpart cannot be inferred from Markovian decision theory, and is not available
at present. The purpose of this paper is to provide such an analysis. In particular, we allow arc

lengths that are negative as well as positive.

In our analysis, we require a condition that generalizes the positive cycle condition for the de-
terministic shortest path problem (every cycle must have positive length). We also require that the
available probability distributions at each state satisfy a connectivity condition analogous to the one
for the deterministic shortest path problem (every node is connected to the destination node 1 with
a path). These conditions are formulated using the notion of a proper stationary policy, that is, a
policy that leads to node 1 with probability one, regardless of the initial node. The results that we
prove are as strong as those for discounted Markovian decision problems. In particular, we show

that:
(a) The optimal cost vector is the unique solution of Bellman’s equation.

(b) The successive approximation method converges to the optimal cost vector for an arbitrary

starting vector.
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(¢) The policy iteration algorithm yields an optimal stationary policy starting from an arbitrary
proper policy.

Despite the strength of our results, our assumptions do not imply that the corresponding dynamic

programming mapping is a contraction {unlike the situation in discounted problems), unless all

policies are proper.

To put the contribution of the present paper in perspective, we provide a survey of earlier work.
Our problem was first formulated by Eaton and Zadeh [7] who called it a problem of pursu.
They were motivated by a problem of intercepting in minimum expected time a target}hth.at moves
randomly among a finite number of states. They showed how to formulate such a pr;B—lJem as one
with a stationary target (i.e., a destination in a shortest path context) by viewing as state the pair
of pursuer and target positions. Eaton and Zadeh [7] introduced the notion of a proper policy and
assumed that at each state except the destination, the one-stage expected cost is positive, and the
set of controls is finite. Within this context. they showed the results (a), (b), and (c) outlined above.
The analysis of Eaton and Zadeh was replicated and streamlined in the text by Pallu de la Barriere
[9], and in the text by Derman [6], who refers to the problem as the first passage problem. Derman
remarks that the finite—horizon, finite—state Markovian decision problem is a special case. Veinots
[11] shows that the dynamic programming mapping Is a contraction if all stationary policies are
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improves on the results of Eaton and Zadeh by allowing the set of controls
at each state to be infinite while imposing a compactness assumption, essentially our Assumption
2 of the next section. Kushner [8] also analyzes problems in which the state space is countable
and illustrates some of the associated pathologies. Whittle [12] considers related problems under
the name transient programming. Whittle investigates cases involving infinite state and control
spaces under uniform boundedness conditions on the expected termination time; his results have
the same flavor as the contraction result of Veinott [11]. The text by the first author [2] strengthens
the earlier finite—state, finite—control results by weakening the positive cost assumption; costs are
instead assumed nonnegative, and existence of an optimal proper policy is assumed, rather than
implied by the positivity of the costs. l

One main result of the present paper dispenses with the cost nonnegativity assumption, assuming
instead that all improper policies yield a cost of +co for some initial state, and establishing a stronger
connection with the theory of deterministic shortest path problems. Furthermore, we allow the set

of controls at each state to be infinite; this introduces substantial technical complications.

A second result relates to the computation of optimal policies in a parallel asynchronous setting.

We show that such policies can be computed by parallel asynchronous Dynamic Programming start-

ing from arbitrary initial conditions. We relate this results to the theory of real-time learning and
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control as recently discussed by Barto et. al. [1]
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