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ABSTRACT

I this paper the refation of generalized model based predictive control (GMEFPC) and pole-placement
contral Is investigated through the solution of the inverse GMEPC design problem, i.e. through the establishment
cf the conditions under which a design exists that results in a given pole-placement state feedback gain mairix K.
The rasult is that the set of achievable K is determined solely by tha inherent structure of the system, In particular,
if the systemn is observable with no eigenvalue at zero any K is achievable.

INTRODUCTION
The problem posed by GMBPC can be stated as follows: Given a linear dynamic
discrete time system in state space form

x(t+1) = Ax(t) + Bu{ty , y(t) = Cx(t) (1)

and a reference trajectory r(t) , determine the input-vector w(t) so as to minimize a
performance criterion of the form

.
J o= Y [ylf) -r(t=DT AU [y(ef) - r(t+f)] + uT(tej-1) A, () u(t=j-1) 2)
=1

+ AuT(t 1) Ag()) Bu(t+j-1) }

The length of the prediction-horizon T and the weight-matricas A_(j), A, ([}, A.() are assumed
to be design parameters. One can verify that aimost all of the established Predictive Control
algerithms, such as GPC, DMC, etc. (ref. [6],[7]) can be reduced to the form of GMBFC, and
so the resulls presented here are valid for all of these algorithms.

Since cur attention is focused to the case of unconstrained regulator (i.e. r{t}=0), it
is sufficient 1o set A4())=0. Under these assumptions the solution is given by the conslant
state feedback law:

u=-Kx(t) (3)
where the feedback gain matrix K is given by:
K=E{GAG+ A 'GAF (4)
with
A, = diag{Ad (1),.,A(T)) , Ay = diagld (1),..4,(T)) (5)
F = G| YR (6)
Fr :
Gry Grs G |
F,=CA' , G;=-CA'B ()
Ei=[l, 0, =~ 0, ] (8)
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Mare details on the GMBPC algerithm can be found in [1]. |
The fact that in the unconstrained case an MBPC algorithm results in a constant state
teedback law indicates that it cannot permarm better than a direct pole-placement technique.
Then the question "whether MBPC is inferior to pole-placement control, in the sense thal
it cannot produce any feedback-gain matrix K, that direct pole-placement can do, and
hence under certain circumstances a direct pole-placement technigue leads fo control of
better guality" arises. This question can obviously be answered if the inverse design problem |
is solved: “Under which conditions does a design exist, that results in a given feedback-
gain maitrix K , and which are the corresponding design parameters 7, A, , A, " A
byproduct of the solution of this problem is that a pole-placement design can be interpreted ]
in terms of a finite horizon optimal control.
The relation of GPC and pole-placement control is also treated in other works such
as [2-3], but their results concern only certain limiling cases through the achievemnent of '
dead-beat control of a reference system. In this paper we develop conditions and an .
algorithm that solves the problem of selecting the horizon T and the weights in a straitforward
manner.

2_SOLUTION FOR A SISO SYSTEM AND DESIGN WITH WEIGHTS A_(j) , A, (i) ONLY
In the present work we treat only the useful and revealing special case of SISO
systems. Let us write the control law in transpose form:

K™ =FTAG(G"A.G + A) T E] () |

As long as the matrices E; and (ETACG+AU} are certainly of full rank, sufficient conditions
for {(9) to be valid are

rank(A) = T = A,0) =0 (j=1,..T) (10)
rankG =T = Gy=CB»0 (11)
rank[FT|K 7] = rankFT (12)

The occurence of delay is a common reason for conditien (11) not to be fulfilled. If this
is the case, i.e. a delay r>1 exists, lthen the minimization horizon can be structured as
{t+7,...,t+71+ T}, and the condition (11} falls into the assumption G, ,#0, and all the indices
are shifted forward by 7-1. More generaly, the same trick can be applied to any system that
really couples the input to the output. From now on, we shall assume that the minimization
horizon is structured such that condition {11) holds.

It must be mentioned that in general scme special condition, that preserves the
symmetric structure of GTACG+AU . must be added. But in the single input case, this
condition is covered by the above conditions (10)-(12). This fact can be validated if one
observe that the multiplication by E, " of (8) just keeps the leftmost column of G'AG+A,

If the previcus conditions are fulfiled, then matrix equation (8) can be inverted
according to the following scheme:

@K™ + Veglp = AG{GTAG + A E, (13)
G A (9K + VegLp) = (BTAG + N7 'E, (14)
(K® + LEVE)AL I'(G"AG + A) = E| (15)

The columns of Vg, constitute a basis for the null-space of F" . The vector L consists of
fres parameters that produce the space of multiple solutions of (9). [f rankF=T , then the term
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Vel does not exist at all, i.e we have a unique solution. That is, if both F and G are of full
rank then the solution is unique.

These matrices can be calculated easily with the use of singular value
decomposition (in partitioned form) of F" (ref. [4]):

F' = Uz Ve =[Up Uyl

ZrR ﬂ} Ven (18}
I Ve

0 0

F £ - ey 2 Tu{T-Fg)
whee Uslp =1, VeV = |, UppeR™ % U eR™ 7V eR™F, VgeR ™ and

Zpg = diag(ogy, . 0g,) With Ogz..20g >0 and  7g = rank(F) < T

Hence
07 = VepZrplrg (")
With the definiticns
¢ :
M=K LE]| . |=][M - M] (18)
F
equation (15) is eguivalent to
MAT = (E] - MGIA, G" (19)

which after some algebraic manipulations can be written in partitioned form

]
{ Ae (1) I T T b 1) {20)
GIEQ(M-I ""’MT} | i I = Gdiag({1- E MJ'GJ'_-IJ r...,}z MIGI_,J.,...,H-‘ITes} |
fa] = “
Wul AS(D |

Equation (20) can be solved for either AC'I[jr} or Jlu_r (i. We choose the first way, which with
the definition

-
=1 .
Py = 2 (j=1,..T) (21)
B -(3_- MG )G, o AETEE g
=
gives the solution

Ao(1) = Mpy Ay (1)

)
MY paiti) . If M0 (22)
any positive value , if M=0

In order to be valid such a solution, the following constraints must be salisfied:

Mp, 20 , M »G (23)




I
Mj; pautl) 20, if M0

J , incia il (24)
ypay(i)=0 i M=0
=1
€3 1 R = O ¢
Introducing a criterion, such as
T
max Y (1) (25)
=1
in order to force A, (i) to the minimum possible values, and the exira constraints
Aul) = Aanw (26)

in arder to prevent the criterion from taking an infinite value, an always well posed and
solvable Linear Programming problem is formulated, from which one can determine A (j)
(For details on the solution of LP solving refer to standard textbooks such as [5]).

The constraints (23) seem to constrain the feedback-gain vector K. But one can
chserve that these constraints are fulfiled if the following sufficient conditions hold
| el
1G>0 , [K L]

; ; < 1 (27)
Fa J FO GT

Ll

These two relations can be fulfiled simultanscusly for any K , if L consists of two or maore
free parameters. That is, if the length of the minimization horizon is

Ta2rp+2 (28)

Hence, the set of achievable K is determined only by the inherent structure of the system
through condition (12). It is worthwile of mention thai for an observable system with no
eiganvalue at zero, the matrix F is of full-rank, and hence any Kis achievable. It is also clear
that there is no way to remave any zero eigenvalue by means of MBPC.
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The efiect of inferconnections on the BAS regulaior of large scale systems and
the BAS regulator of N identical subsystems.
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Keywords: Large Scale Systems, Decentralized control, Structural control, Overlapping
subsystems.

Summary.
Decomposition methodologies play the central role in solving problems in large scale

systems. This role has been considerably strengthened by the recent trend of contrel and
estimation technigques toward decentralized computation and control technology. Local
estimators are built to provide information about the subsystems, which is used by the
decentralized contrallers to drive the subsystems to achieve the objective of the overall
system.

In this paper we consider the requlation of a decentralized large scale system which consists

of N linear subsystems &,, S,, S, interconnected with a common linear subsystem

S, as shown in figure 1.
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Since in the state space description, as will be shown, the matrix describing the dynamics
of this system consists of block elements depicting an arrow structure, this system is called
a Block Arrow Structure (BAS) decentralized large scale system. This class of large scals
systems may appear in many cases of multilevel hierarchical systems (MHS). The regulation
of the above system can be obtained by using large scale techniques proposed by many
authors (Singh, Siljak, Sundareshan, Ozguner, Jamshidi). An approach that uses the structure
of the system and has the advantages of parallel implementation and structural flexibility has
been proposed by Groumpos and Loparo [3], Leres and Groumpos [4].

in this paper we study the effect of interconnections between the N subsystems &, andthe

coordinator &

a

The cbjective is to find the controliers u; in a time interval [t;, = ] in order to minimize an

associated quadratic cost functional. Following the formulation of referance [4], which
extensively deals with this problem, we have the following mathematical model:

S0 X (t)=Ax(t)y+Buy(t)+A,x, (1), X(%)=2Xp (1a). |
nit)y=Cx(t) (1b).

N
s, : ﬁﬁr;:Auxa{rwBﬂuD{fhg Ay x (1), Xfh) = X (1€)

J’o{f}=cﬂxa(r] (1d).

where Xx(t)eR™ x,(t)eR™ , u(t) e AR wu,(t) ¢ R* and
yi(t)e A", y,(t) e A% are the state, control and autput vectors for subsystems §,

and S respectively.
The assosiated guadratic cost functional is

(X tpo ) = [ (X0 QXY+ (0 Rupy) at (2).
&

|
where @ ¢ R™ and R & R™ are constant, symmetric, block diagonal positive

semidefinite and positive definite weighting matrices respectively.
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Then the matrices A, € A™, A, € R™™, , B, ¢ A™ B e R™ and

a

€, e R¥™ ¢, e A"™ describe the dynamics, control and output distribution for §; and

S, respectively. The interconnections (or information transfer) from S to S; and S;to S, are

represented by the matrices A, € R™ and A, € R™" respectively.

It can be shown that there are cases where the interconnections play no role in system’s
performance (so they can be omitted), while in other cases they play significant role not only
in system's performance but also in system’s stability.

Another special case of the BAS regulator worth investigating is the case where all the

subsystems 8,, S,, S, are identical. In that case, using the BAS algorithm we have a
very fast solution of the problem, compared with other methods which use the overall systemn.

Additionally we have the ability to say a priori how many subsystems &; can be connected
to the coordinator &, in order for the overall system to be stable. In other words we can
find a critical integer N_, so the N_ identical subsystems S, interconnected with the

coordinator S, constitute a stable system. By adding another subsystem S, to the

previous system, the overall system becomes unstable.

In the conference, the BAS algorithm and the above theoretical developments will be
presented, together with some numerical examples.
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