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Abstract
We provide sufficient conditions for global stabilization of planar
nonlinear systems by means of feedback law which is continuous on the

whole state space.

1. Introducticn

We consider planar system of the form

[X] - l?{xﬂf]], {xjj":lEEE, U=R, l:l-l-l}
g u

where the map f:R°— R 1s continuous {ic] with f(0,0)=0 and further 15
analytic in a neighborhood of CeR".

We now give our malin cufficient conditions for global
stabilization of (1.1).
Assumption 1.1. Suppose that there exist a connected closed subset
McR® which contains zero 0er’ such that

(1) xF(x,y)<0, ¥ {x,y)eM, x=0; L2

(ii) the projection 1 of M on the x-axis along the y-axis is the whole
real line:
[ =R 3
(iii) for each compact set Q<R the set

M ={(x,y)elxR}rM is compact.
g

; " 7 -
(iv) there exist a pair of disjoint opens sets UT,UeR” such that

MU'l =R
and Y the intersection of the y-axls

and Further 1F we denote by Y
with R™\{0) and R \{0} respectively, then

Yell™s el




2. Hain result
Before state and prove our main theorem we need the following

lemma which is a special case of Artstein’s theorem [1].
Lemma 2.1. Consider the affine in the control system

% = F(x}+uG(x), xeR", ueR, (2.1)

- . e .
where F and G are C” and F(0)=0. Suppose that there exist:

(i) a control Lyapunov function (clf) ® of zero 0er", namely @ is
positive definite (i.e. ®(0)=0; ®(x)>0 otherwise}  is uniformly
unbounded on B (i.e. ®(x)+e as [x]|-24=) is C' and satisfies

(DBG) (%)=0, x=0 » (DOF)(x)<0, (2.2)
(ii) a ¢’ map u :R™R such that u (0)=0 and
(DOF+u DOG) (x) <0 (2.3)

for all x#0 near zero.

Then there exists a feedback law u=u(x) that is c® on the whale
state space R" with u{x)=u (x) for x near zero and which globally
asymptotically stabilizes (2.1) at O=R .

Theorem 2.2. If Assumption 1.1 is satisfied, then the planar system
(1.1) is G.A.S. by means of a feedback law which is continuous on the
whole state space R® vanishing at zero OeR’.

Proof. Since f is analytic near 0=R® there exist integers Kow L
i=0,1,2,... and real constants ¢, such that

~m L. k.
f{x,¥)= Tcx 'y, {xX,y near zero}.
f=0 ~

Let 1=min({l O=j=+w}. Then f 1s written

Fx,y)=x'a(x,¥); -

+m 1.—~1 k-
i ;

A(x,y)= Erch_ Yy

Then either a(0,0)=0 or there exists an integer k such that



k=

20 0 e "-'1_;3{5._-n:.=::1, whereas (2.5)
Y

©2(0,0)=0. (2.6)
ay

Hence by (2.4),(2.7),(2.8) and the Weierstrass preparation theorem g
is written

e

f{x,y)=xa(x,y) 0 (y-9,(x)), (2.7)
i1=1

for %, near zero with q(0,0)=0 and the factors p  are in general
complex valued ¢’ functions having the form

1

:I| wl

p.(x)=b, x"i{l+c, . 00 e (2.8)
L 2
5
for suitable integers n, and s with El}% and constants bi and c, -
Since f is real the factors ¢, should occur in complex conjurate palrs
in the factorization (2.7). Without any loss of generality we may
assume that k=1 and g is positive definite near zero. From (1.2) and
(2.7) we get
w1 B

xbl:U,{y-g;{x]}<ﬂ, (x,y)eM, x=0 near zero. (2.9}
By (2.9) and condition (iv) it follows that there exist a positive
constant & and a C*([-5,8]) real function p with 9{0)=0 such that

((x,y)eR?, xe[-8,5], y=p(x))cM
and tharefore

s I
i

n= =

{o(x)-¢ (x))<0, x=0 near zero,

Consequently there exist functiens SIS L N of the form (2.8)
; T R
taking real values such that
p, (xd<plx)<e, (x}, x>0
1 1
muiﬁ}<w{¥}¢¢i(x}, #<0, near zZero;

i

s
x M (y-9,(x))<0,




v (x,y)e{(x,y)eR 00, 9 (x)<y<og (x))
L "1
u{[x,yheﬂgrx<0, 9 {x){y<wﬁ (x)}, [(x,y) near zero). (2.10)
2 2

Since the functions 90 i=1,2 have the form (2.8) it follows that
fil 1
there exist real constants o and a, and a pair of positive real

numbers p_ and P, with P aP,= é such that

- _-

Py bl 11]
o (x)<ox = < g, (x), x<0 near zero.

Then we can cnzstruct a €% function o:[-b,b]sR; o{0)=0, b being a
suitably small pesitive constant with b=d, and a ¢® function A:RR
with A(s)=0 for se[-b/2,b/2], A(s)=1 for se[-b,-3b/4]v[3b/4,b] and
O=i(s5)=1 otherwise, such that

=S

[h{x)@LK}+[l-h{xjjU:x ', b=x=0

gix)= . (2.12)
h[x)m{x]+(1-h{x}jusr : , —b=x=0;

and further conditiens (i)-(iii) of Assumption 1.1 are satisfied with
H=Mu{{x,y}eﬂ2:xe[—b,h], y=0{x)} 1instead of M. In particular from
(2.10)-(2.12) we have

xfix,0(x})<0, v xe[-b,b]}{0}. (2.13)

We consider now the mappings

“.{XJ}':{L} -a*(x)y+ = 0“7 (x); xe[-b,b], yeR

(2.14a)
0 , otherewise

1  mi
O (¥)= ey W 06 y) 5




u (x,y)=| ExI00 (X)X (/) (I) | yef-b, 17(0),y=0(x) (2.14b)

ke* " {x)
y-0(x) e flay)-fixao(x))
—k""-'_r—fDD = [_Y'-EF :J‘?-' T ,Xﬁlqp:b]\\{ﬂ}-,
y o-a (%) X -0 {x)

y#o{x)
m being any suitably large odd integer. Then similar to [2] it can he

shown that the map ¢ 1is ¢', and positive definite on the region
’ o

{(-b,b)x®. Furthermore by (2.12) it follows that o{x)=a.x ' for x>0 and

{l

g{x)= =0.% for x<0 near zero. From Lemma 1 in [2] it follows that the
function u is continuous for (x,y)=0, x=(-b,b} vanishing at zero and
also locally asymptotically stabilizes (1.1) at 0sR®. In particular

GfT]_‘ l:.”b]
fH +UIZI W (X,_T}(ﬂ, I{H,_}’}IDT Xﬂl{—thb} I:EIE?:I

and the following condition holds:

"‘111 AW af
SOV =g (0,) =0, (x,9)20, xe(-b,b) » (f] (xy)<0 (2.16)

dy
Notice also that
Al
5F1[x1F}=D, xe(-b,b) = y=0(x); (2.17)
aw AW

a’-‘.',r;{x‘:'rj:u! XE{'b?b) T H[{x:}r:j:-f‘

-

xi[x,y}=0, {2.18)

Next we proceed to the construction of a global clf guaranteeing
global stabilization. Invoking Assumption 1.1 and following exactly
the same procedure with that of [3, Theorem 1] we can establish the
existence of a nonnegative ¢! mapping H R aﬁ such that W, (x,y)=0 for
all (x,y) belonging to the reglon Rs{(x, y em xe{-b/2, +bf2}}, whereas

(Y [x ¥+ FlTxﬂ”+w (x,y)>0, ¥ {x.y}eﬁ “\R.

Furthermore the following properties are satisfled:
an_ EHE ?
5y (%Y= g7 (%.)=0, (X,y}eRAR, |x1>b/2




T — —" S T T v T R S =

nE0, ;
5 (%,y)eM 3 Lgiif]{x,ylcu; (2.19)

in particular

41.] .
57 (X:¥)=0, (x,y}eR\R, xel+[-b,-b/2)u(b/2,b]
e y=o(x), xel; {2.20)
AW E‘NZ
41'(N ¥)=0, x[-b,b] = HE{K,H}=§§—(K1F}=U- {2.21)

Consider finally a C' map k:R-R™ such that k(x)=1 for O=ixlgh/2,
k(x)=0 for Ix1=z3b/4 and O<k{x)<l otherwise. We are now in-a pﬂSiEiDﬂ
to prove that the map

@ (x,y)= —lT R(OW, Ly )W, (6, )

is a clf with respect to (1.1). Obviously, wa is ¢ and positive
definite on R°. MNext we establish the implication
ah_ O

)20, (%,9)20 » [552F] (x,9)<0 (2.22)

L% ]

i

Indeed, for each nonzero (x,y} with x=[-b/2,b/2] and {ﬁmzfﬁy}{x?y]=ﬂ
we have k{x)=1, W, (x,y)=0, (&W fﬁy}{x yi=0, o { ,y)=0 {x,y) and so by
(2.16) we obtain ({ad say)f ]I{x v)<0. For {x ¥} with |x|>3b/4 and
(80 /ay) (x,¥)=0 it fﬂliﬂWf K(x)=0, (8W /3y}(x,y)=0, @ {x,¥)=0 (X,¥)
and so by (2.19) we get xeM and ((a® f)(x,y)<0. Finally, for each

(x,¥) with xeif+[- b ib]u[éh E] and

74 et
C":h‘i :'}li'-lll 5'#]'?
5y (6 ¥) =g (X ¥ k(x)+ g7=(x,5) =0

it follows from (2.17), (2.20) and the fact that k is strictly
positive on the region I that (aW fay}{x}}} (8W jdy][xTyJ=U and
y=a(x) (x=0). Therefore by (2.13), {E 18) and {2 21) we obtain
wltx,u[x}} {aW f }{x,ﬁ{x]}={sw2fax}{x,u{x}}=ﬂ, therefore

3, 1L dk,

[552F) (X9 g ) XF X, 0000+ GoCOW, (x,0(x))

" k(x}[iiif]Lx,ﬂ{x))+[zj? ]{x,u{x)]=x“f{x,u(x};<n,




hence condition (2.22) is fulfilled and b is a clf with respect to
(1.1). Moreover @ {x Y, )s+a for any sequence {rx Y jemE\ with
l% |++m, however m Falls in general to be uniformly unhounded on R
In order to CDmDLEtE the proof we can construct similar to [3] a e
nonnegative map W_{x,y) which vanishes in a closed neighborhood S of
the set ﬁ and Satfsfies

fET-iH—E{x ¥)#0, ¥ (x,¥)eR\S ; (2.23)
whereas for any sequence {(x ,¥ }eﬁz}. with X being bounded and
vaL++m,it holds that Waix¥,yv}l+mi Then we can easily establish that
the map

(%, ¥) =0 [,y )W (X, )= Wllx HROOM (%, y) (%, ¥ )06 )

is also a clf with respect to (1.1} {namely (2.22) hulds with o
instead of ® } and further it is uniformly unbounded on R°. Notice
finallly that o (x,y)=0 {x,¥)=(- 11} 11+h' (x,y) near 0eR® and using
(2.15) and the facts that ¥ is a unif nrmly unbounded clf with respect
to [1.1) -and ug ic continuous near zero we conclude that the
assumptions of Lemma 2.1 are satisfied for the system (1.1} -In
particular {2.2) and (2.3) hold with #=¢ and u, as defined in (2.14).
Hence (1.1) is G.A.S. by means of a Fee&back law u=u(x,y) which is o
on the whole state space R>. In particulariu(x,y}=uﬂ{x,yj for (x,¥)
near Zero. n
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