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Dianote by (60, F, P) an usual probability space and by wooostandard IB™-valued

Wiener process delined on this space,
Clonsider the multi-inputs partially linear stochastic diflerential system in [R" x
IRF,

*alao @ INHIA Lorraine, Projet Conge, CESCOM, Technopole de Metz 2000, 4 Rue Mar-
cowi. 57070 MIETZ, France,
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where

1. [ and g are €7 functionals mapping IR" into IR" and [R"*" respec
tively with bounded derivativ® and such thal f{0} = g(0) = 0.

2. (3 is a functional mapping IR™ % IRF into IR¥ such that there exists a
non deereasing sealar function 4(]|£11 = 0 bounded for all bounded
£ such that

NGz, &)1 < v gl Wie.§) € R x IR

3. A and 3 are matrices in Mpua(IR) and My (IR} respectively such
that Lhe pair (A, 13} 15 stabilizable.

4. uis a JR'—valued contrel,

Then, we can prove the following stabilizing result,

Theorem If the equilibrium solution &, = 0 of the stachastic differential equa-
tion
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is exponentially stable in mean square then, the equilibeium solution (o,
(01,0} of the eontrol stochastic differential system (1) 1s exponentially stable 1n
mean square for every linear foedback law u defined by w{f) = K'§ where K 13

£y

a makbrice in M .p (IR} such that the matrice A + B is asvmplotically stable
{i.e. all the eigenvalues of the matrice A + BR have negative real paris).

The prool of this result relies on the stochastic Lyapunov machinery developped
by Khasminski [1].

To conclude note that a detecminstic version of Lhis result s due to Saberi,
Kokotovic and Sussmann [2].
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