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Noninvertibility and its Role in the Dynamics of Adaptivelv-Controlled Systems

hannis G. Kevrekidis, Raymond A. Adomaitis®, Christos E. Frouzakis and Ramiro Rico-Martinez

Deparument of Chewical Engineering, Princeton University
*Systems Research Center. University of Maryland

Abstract

When we try to adaptively control a systemn, an interesting interplay develops between
the dynamics of the system itzelf, and the dynamies “imposed” by the aduptation provess,
The overall process is inherently nonlinear, and. for the case of discrete-time conirol, we
hud that it is also neninvertible. This property, which urises naturally i acuptive <y-tews,
miakes them very different from “typical” systems {e.w., those described solely by ODEs in
tiuie): given the present state, the state of the system at the previous time step iy not
benguely deteriuined.

he nonlinesar natures of the process gives rise o phenouens ke uultistabnline the
locally-stable set poier can coexist with other. undesirable rRttracrors  Quantifvicg e
stability of the set point therefore involves construeting its basiz of attraction. Beeause
ansin boundaries often consist of stable manifolds of snddle-type solutions {computed by
following states buckward in time), nonrinvertivility cun have o profiund effect cn the
shibpe and 1teractions of basins of attraction. They may now consist of disconnected pivees
(possibly infiuitely uany ), distorted by being repentedly stretched out to infnity and back.
ete. In this paper we coucentrute on the complicated dyvnamies exhibited by noninvertible
systemns, using various adaptive control cenfigurations as illustratve examples.

The analysis of global stability characteristics begins with local stability and Lifue-
ciation analysis of the system attractors, starting with the set peint and its inscabilitios
Tae bifurcation parameters represent the mismatch between the system and its wodel
(following Golelen and Ydstie, 1988}, as well as design purameters of ths controller. Basin
boundaries are computed using local approximations of stable manifolds of saddle poinrs
und their contiunation in phase space (iteration backward in time). The preimages of a
eirrent state are the {possibly several or none) initial conditions this ssate can be coming
from. Sinee the preimage behavior will vary depending on where we ase loented in prhagse
spice, our main tocl is underszanding the inverse (buckward in thne) map, and its “hifur
etions”, delineating regions of phase space with qualitatively different prezruage behavior
As saddle invariant manifolds cross the boundacies between these regions. new geotmetric
“fentures emerge on the manifolds (Gumowski and Mira, 1980).
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The other model reductivu approach we follow here is the method of empirical elgen-
functions (Karhunen-Loeve expansion or proper orthogonal decomposition). Consides the
instantancous spatial sclution profiles of a PDE (“snapshots” as they are referred to hy
Sirovich). The basic premise of the POD (the orthogonal decompasition of the spatial
covariance of these snapshots) is part of classical pattern recognition wethodologies. It
consists of Anding » linear, low-dimensional subspace of the phase space in which the data
appraximately lie, saud a set of coordinates for this sushpace (& hicrarchy of modes, re-
sulting from the diagonalization of the two-point carrelation metrix of the cnsemble of
snapshots}). A combination of this hierarchy of structurcs with a Galerkin weighted resid-
ual diseretization of the fundamental model equations (e.g. the Navier- Stokes) will then
provide a spatially and temporally accurate model of the PDE dynamics, provided that a
sufficient number of modes has been retained.

Almeost by definition of the empirical eigenfunctions, it is indeed difficult to rigorously
associate the behavier of the reduced models with that of the original PDEs. There
is increasing cvidenee, however, through the study of several mode] problems, thar this
methodology could be a crucial engineering algorithinic tool for thie reduction, ana.ysis,
cesign and control of distributed systems. bevond the context of Auid How,

The POD itself is an ¢ posterior: technique for extracting i portant structures from
i known (computational or experimental) data set. The theory of approximate inertial
manifolds, on the other hand. gives an a priovt estimate of where the dynuarmics are voeur.
ring. This estimare is generaly not sharp. However, POD analysis of the trajectories of
poiuts on this manifold can be used ro sharpen the estimate of the importan: structures for
the dymanies, ‘This procedure leads to a reduced maode! for all of e dviiisies of o given
systerzt, not just for the dynamics from the evolution of oue initizl concition, as deserihed
L'LI‘J'U'}'E.

We discuss the application of these techuiques to o number cf examples, includiag:

a. The Kuramotoe-Sivashinsky equation, a model for incerfecial instabilities of thin
filins and of Hatne front propazation;

b. Experimental data showing patterns formed during the oxidation of carbor monox-
ide on & single erystal of platinum (these data conie from a collsboration with the group
of Prof. G. Ertl in Berlin).

¢. A reaction-diffusion model of a chemical system cantaining an actocatelytic species
anc an inhibitor of the autocatalvtic reaction.
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Stable inanifolds may break off to several segments, giving rise to “polka-dats” in
CLEeLl- the busin of attraction. This results from a stable manifold cressing & “turning-point
lex the hifurcation” of the inverse map. They also can streteh off to infinity and back .ﬂ.gﬂ-"-n: this
| to by tesultts from o stable manifold crossing a “bifurcation from infinity" of the inverse map.
spatial Unstable manifolds may start crossing themselves, or also break off to several disconnected
e, It or wultiply conuected pieces: this again involves their interaction with a “turning-point
1e dath bifurcation” of the inverse map. A wealth of complicated sceraria can be built from
des, re-

the interaction of o few such elementary transitions, some of which can lead to chaotic
nble of dynamics.

d resid- The dynamics of noninvertible systems (except for the 1-dimensional maps like the

ill then lugistic nap) have not been extensively studied, and their generic behavior is thersfore

1 that a largely unknown. The picture we describe is incomplete, and mainly guided by the dy-

unnics of the particular examoles we study. However, cven the simplest edaptive control

orously schemes (low-order, or even scalar linear plant) will exhibit these phenomena, and we have
There

obtnined partinl experimental verification of theoretical predictions in # stirred uixing
bt this bk experiment.

1LY R1E, The phenomenon of noninvertibility also appears as an artifact 1. discrete-tine ap

proximations of coatinuous-tizue systems. Typical examples incliude explicit mumericsl
mtegrators as well as time-T maps identifed frows experimental time series using arsifcial
- inertial neurul netwoks, We diseuss the effects of noninvertibility on the validity of the atorw:tons
(long-term dynamics) predicted by such discrete-time models,
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