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1 Introduction

Lately, there has kieen an interest in the possible uses of recurrant nsural networks for nonlinear system
idantification and comtrcl, For instance, Matthews and Moschyts [4] suggest that just as multilayer
perceptrons have heen shown to be good approximatcors for nenlinenr fecdforward systems, 1o can racur-
rent neuzal networks for nonlinear feedback systems. In partienlar, they first suggested the use of the
Ertended Kalman Filter (EKF) algorithm for training neural netwerks [4]. Later Livatone, Farrell, and
Buker showsd how to localize the EKF algorthm to make the learning more cam putationally =Mcient
[3.. The Spatially Localized Extended Kalman (SLEK) algorithm of [3] forms the basis of this paper.

We will first diseuss the SLEK algsrithm for training a neural network to approximate 4 nenlinear
ferdback systarn, We next give a dynamic programming-based method af deriving near optimal contral
inputs fotr the real slant based on this approximation and a measure of its error {covariance), Combining
thes= methods leads to 3 hisrarchieal algorithm for identification and contrel of n class of uncertain,
unknown systems,

1 2 Identification of Uncertain Nonlinear Systems

T're algorithm in shis paper handles the case whers

fl=(k], u[b]) + &[]
z[k| + v[k]

ik + 1
ylk]
whete z,&,v,9 € R*, v € R™ and f £ CIR*™™, R} f is unknown. Further, £ik] and wik] are
pncorrelated white Gaussian noise sequences with covanances
E{kET ]} = Qlkdrn
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E{RTn]} = O
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and £[k], v[k] are uncorrelated with the initial state z(0], We have the parameter vector
iF = [,‘lt]_t Azt Ants Aga e lnge e Arw, Aasr Hl..,\-‘]T

whers N is the number of neurons per dimension, For simplicity the of presentation, we will mssunge this
aumber to be the same both in state and input space.
The nonlintar state eguation will be approximated by the network

2k + 1] = fa(qlkh8[R])

where 8(k] are to be learned and gk = (2T (%], w7, Wae will refer to this %7 vector space as the
state-input space. In this paper we consider Gaussian radial basis functions {R3Fs) of the form

g;(q[k]) = exp {—(q[k] = ¢;)" 57 alk] — ;) } :
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where the covariance matrix 5 = diag(sf #3,.. ., ,‘_._,,,] and ¢; 18 the jth mean or center.

Implicitly, we bave assumed that the state-spaze is really § C B™ and the inpu$ space is £ C B™,
wlhers § and C are compact sets surrounding ths regicn of interest in state and input space, respeclively.
Fur many applicationa—e.g., moter control or robotics—the state space is inherently compact (e,
angles, velocity saturation, kinematic constraines), In praciice, ons would use a safety net controlla
fususlly based on that portion of dynamics that is knewn & pricri) to insuze that the state remains
within 5.

One could now use the EXF algorithm to simultaneously approximate the atate and learn the pa-
rameters {here, weights) [4]. However, this reguirss O(n® + (nN}*) operations per step (assuming no
¢rasa-eorrelation hetwean the state and the parameters). Instead, we will use a localized wersion of the
EXTF to update aft each step only these parameters which are significant to the model at that point,
Tihe so-callad Spatially Losalized Extended Kalman Filter (SLEK] algotithm of [3] implements suck &
strategy and een lead to an algorithm which is more computationelly tractable,

In particular, we will consider the two closest centers in each dimension:

Etnul{‘?} ~ {Ai;i el < c'.‘}

where k= 1,...,n, J=1,..., N, i=1,...,n+m, di i5 the spacing of the csnters of the RBFs in
dimension ¢ of the state-input space, and ¢; i3 the center vecter of the jth REF,
With this notation, we have

Faer i (glk]: 8R]) = S Augla)) (1)
Fida, Ep].:.u_-n',{'f['i}}

Muxt, we construes an avgmented state veetor with tae local paramelers of §:
&+ 1]
zk+1 = =l g }
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where
E{nlkln"[n]} = ©klén
E{lk)Til) = o

Now, we linearize the above, augmented dynamics and proceed with the usual EKF algorithm {1]. The
successive npdates sstimate the augmented seate vector, part of which are the local parameters ﬂftht
neural netwark. The covatriance marrix T{.|.] = blockdiag{T,[-1], T+ }]), where E;[-|:] are symmetrie
and have dimensions n x nand 2% » 20 respectively.

3 Near Optimal Conirol with an Approximate Model

Now we procesd with the control problem. At every discrete point in time we have an estimate of where
the system will go if we were to apply & specific input. This sstirmate is provided to us by the SLEK
algorithm alony; with a measure of its uncertainty, the covariance (E,{kk]). Let

G RV — R
be a {non-negativel cost function. For a discount factor & £ (0, 1} we define

J(z[0))= E {Zn‘ﬂ{:[i}. u{in}

=0

ta be the penalty funetion for the infinite horizon preblem. Se we want te
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where |4] is the determinant of mairix A and K(», §) is a constant that nermalizes the truncated
Gaussian pdf to integrate to unity and & comes frem diseretizing the state space. In particular, if
5 © R™ was the state space before, we now consider the S-lattice that spans 5, called i

We will use dynamic programming te selve the sbove control problem. In particular, we will choose:

"

wlh + 1] = argmin ¢ G2k, v} + « S Priylz[R], v) Jiy)
wil ;;; i
¥

wheze J(y) is the estimated cost-to-go.

The above prollem has two components: the estimation of the eost-to-go function and the solution
of the corzesponding minimization problem. The former is accomplished using the contraction mapping
develaped in (2], (Given an sstimete of the cost-to-go funetion, we use logalized gradient searches to
approximate the desired input, Computationally, the estimate of the cost-te-go is caleulated at an
upper D. P, leval; the noalinear search is done in parallel at a number of lowsr-leve] units,

There aze ™ lower level units, ene for sach neupon in the input space. The ouiput of each lower
level unit is &n input vector 42(3) corresponding to the point 2 = argmin . q [y — 2[k = 1|k = Nilae:
We keep track of these input vectors from the most recent time ws visited every point in S, In other
words, for every 2 = S we have a set of N™ vectors &2(z) that were the outputs of the N™ lower level
units the lnat time our updated stete estimate was closest to 2.

The upper I, P. lavel updates the cost-te-go estimate for the peint 2 = argming 50 |ly =~ 2k =11k -
1}[|ae. We also kesp track of the piost recent estimates of the cost-no-go fot every point =z & 5%,

in particular, the algorithm procssds as follows:

4 The Hierarchical Algorithm

We now describe the overall algonthm:

0. Initiafize the algorithm (at & = 0) with some zost-to-go 2stumate ab some Jolz) for every point
= of
] S %

1, Given ylk — 1], ufk =1, run SLEK at the top leval, updating the network model, foer, 2nd Tifk -
1|k = 1]. Send them to the lower level units.

[T

Find = = arg ming s (39— 2[Rk = 1|k = 1]]|-

3. Run {for a prespecified length of time or number of steps, or until convergence} sach lower-level
unit for z, searching locally for the minimum input, initiating the rth urit ar 42(2], which is in
memoty, and) using the existing estimates of the cost-to-go fer every point in 5%

4. Send the new loeal solutions to the upper D. P, level which caleulates:
wmin{z) = arg min ¢ Glz, B8(2)) +a 3 Priyle, (=)l (y)
LY
pes!
5. Update the eost-toego estimate for z:

J{z) — Gz, uminlz)) + & P Priyla, umialz)) /(1)
yES?

o

. Set u[k] = wnia(z) and send it to the plant.

Increase & and Go back to Step 1,
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5 Resulis

The simulations wre have run with the above hierazchical algoritho: have shown that:

» The Neural Network state converges fast to the true plant state (in the order of one thonsand
itezations),

* The cost-to-go estimate is difficult to converge. This is due to the fact that, for computationsl
efficiency, we only npdate the cost-to-go estimate one point at a tims.

® Lmin Se2I0s Lo sean the whole input space for over ten thousand iterations, apparently attempting
=0 _"learn” the cost-to-po.

s Comparison of the convergence of the neural network to the true plant using random, persistently
exeiting inputs and the inputs chosen by our hierarchical algorithm doesn't shew any significant
differances.

6 Conclusions

T conclude, we have prisented a hierarchical algerithm based on training recurzent networks for nop
Ligear contzel, The Extended Kalman Filter (EKF) algozithm and its localized variant {SLEEK) playa
central role, both in the training of the neursl netwerk and in the dynamie programming iterations to
find the near opiimal input at any time: The SLEK algorithm is used for training a neural network
to approximate a nonlinear feedback system; we use a dynamie programming-baded methed of deriving
near optimal control inputs for the real plant based on this approximation and a measure of its error
(covarianes). Finally, we combine these methods in & hierarchical algorithm for identifieation znd zantzsl
of & class of unceriain, unknown systems.
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