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ined by 1 Introduction

At present, CADCS ((Llomputer Aided Design of Consrol System) systems are indispensable in
applyicg contrad Ihmw o practical problems and varions systems have been released. Almost
all the gyssems have been implemented by using numerical computational language such as
Fortran and €. However recently the symbaolic or the formuls manipulation is pointed out to
he nocessary in CADCS and some systems in which symbolic manipulation can be carried
oitt, have been developed. To begin with, the formula manipulation was studied in the field of
artificial intellizence and many general formula manipulation systems, for examnple, MACSYMA,
Mathematicn, Maple. and REDUCE have been expleited, Now the formuls manipulation |
generally speaking, s called as Computer Algebra or Computing Algebra, because its main
results are based on the algebra, specially polynomial ring. On the other hand the control
theory is constructed on the linear algebra. So there exists deep relationship between the
compuser algebra aud control theory, specially polynomial approaci.

The polynomial approach to the design of linear muliivariable control systems, has been
widely digeussed and is attractive in both the theories and applications. As the approach
requires the complex manipulation of polynomial and rational function matricaes, we crcounher
diffienltios in implementing, in a computational way, the algebraic design procedure. Therctor
o by the many numerical algorithms for the computational problems have been developed and may be
; nsefil for the implementation of numerical CADCS system, But the authors consider that the
fornmila manipulazion, in other words, computing algebra is better way for the CADCS system
of polynomial approach.

Thiz paper presents two results in applying the con iputer algebra to control theory. First it
is shown that the general formula manipulation system iz very useful for CAC DCE system of
polynomial approach and a prototype system based on REDUCE Is demonstrated. Secondly the
new computbing algebra systemn — parallel formula manipulagion system — which the authors
1straints. are developing, is introduced and it is clarified o be usuful for the n-D control system theory.
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2 Polynomial approach and Computing Algebra

This section presents a software package based on REDUCE for the polynomial approach, The
package allows ug to perform successfully the polynomial design proce: lure.

Before mention of the package, here the polynomial appreach is reviewed briefly. Consider
the control system configuration in Fig.1, where v, w, wp and » are the coramand input, eontrol
input, disturbance input and controlled output vectors, respectively. The plant is modeled by
the [ = 1) transfer function matrix P(s). each entry of which is a rational function of variable
. In fact, 5. The plant i assumed to be free of hidden modes and strictly proper. Let the 2 degree
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not to be fully taken into account, however, different control problems require different particular
solution choice (e.g, minimum row degrees for LQ oplimization in contrast to minimum column

dﬁ_‘gfi‘i‘.ﬁ [or I]EEL(HH_‘.FI.-T-} and fair compggriﬁ{m can be made l.ji'l]j,’ for a HPCEIHL‘ task.

EOM is of a genuine polynomial nature and the only one to provide a general solution in one
shot. In addition, no initial settings are required. Last but not least, built directly on fundamen-
tal theorems, it is of pedagogical value. On the other hand, the method is rather computationally
invalved and nsually the slowest one within the competition. Tn addition. after each polynomial op-
eration, it demands to determine the degree of the product. This critical step must be accomplished
by a specific program module.

PIM is based exclusively on constant matrix operations, which are well-understood and already
implemented in MATLAB. It provides one particular solution from the prespecilied class ol solutions
having degree less than the chosen parameter.

SSM is based both on matrix and polynomial operations. It is very flexi regarded particular
solutions choice. The solution can be oblained either from the prespecified family or the extra
degrees of freedom may be removed by different constraints.

The last two methods, provided they are run also for homogeneous equation, may be used to

oot a general solution or any other particular solution using (3).
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al op- Fig.1. Configuration of feedback control system
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freedom cantroller be described as
ready w=Cils)v — Cals)y (1)
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The controller must be such that its transfer funetion is proper and the obtained control system
is internally stable. Define the polynomial matrix fraction description of the plant Pls).
icular ] k0 _
) Pis) = D {51 Np{s) = Npals)Dq (5) (2]
exira f
where {Dy(s). Nai(s)) s sy left and (Na(s], D.(g)) is any right coprime pair of polynomial
zed to matrices. Then there exist polynomial matrices Xg, Yo, Xy and Y7 such that
-DJ'II X+ i""..rﬂ Yi=1, Xn D:JE + Y ;"‘"_ri'.‘. =] {'51
Let the controller
C=[0) —-Chl=D;*[N: - Ny i4)
be a left coprime matrix-fraction description. The system will be internally stable il and only
ry and if D, and N satisfy the unilateral matrix equation
Dame, I « =
D.Dys+ NpNps =1 (5)
4 Thus, the set of all stabilizing controllers C' is represented by (6)
mamic

C = (Xg=TNp) (Ve = (Yo + T D) (G)

_— where N, and T are arbitrary polynomial matrices. By a straightforward analysis of Fig.1, it
G follows that the transfer function H,, from v to y is

oy = NN, (7)
s 1705,
and the trapsfer function from uy to ¥ is

E;—I:..y = I - -'n"‘r.lﬂa"""‘f I:S

i

These equatiors show that H,, and H,,, can be independently designed through the choice
of two free matrix parameters Ny and 7. These matrix parameters will be then redefined
by considering additional constraints on H., and Hu,y - For example. consider the tracking
constraint. Let cominand input » be described as

Zation.,

ith any .
w=D07"Nywg (4
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Fig.3. Salution X and Y of 1-D bilateral equation.

Hereupon the parailel formula manipulation system for 2-D system theory is being developed
for avoiding above problems. The parallel system should be studied from two view points. One
is the parallel computer architecture and the other is the parallel algorithm, Here the Single
Instruction stream Mulcl Data stream (SIMD) archisecture 18 adopted. The practical parallel
computer system. named as SM-1, iz implemented by Yuasa’'s group. SM-1 has the Front End
(FE} computer (sparc EWS) and 1024 Proceszing Elements (PE} which have their own 32bit
processor and 1Mbyte memory, illustrased in Fig.4. The parallel formula manipulation system
iz itnplemented with parallel Kyoto Corunen LISE on SM-1. As SIMD architecture is adopted,
the parallel alzorithm has to be constructed with same instruction, broadeasted to each PE.

For example, a function is calculating, at a stretch, all the maximal minor determinants of
the composite matrix [A{v,w)B{v, w)]. which iz nscessary for solving Equasion {13) by the
procedure given in [8][9). The function has a facility of broadcasting a instruction of caleulat-
ing the determinant with each data from FE to PE. Each PE calculates minor determinant
simultaneously with Laplace algorithm and feedbacks the result to FE. Fig.d shows the result
of calculating 6 deteminants a1, .., a5 with our function for the (2 » 4) compaosite matrix, given
as

i I 3(2v = 1){2v — 5)/16 0 15}

= [ — 3w (2w — 3){2 — 5)1/2 2%+ 6w —15) | e

v _3(20 — D){w — 3u)/16 (2v — 5)2/16 | (16)
| (6wt = 18wty = 9w + 27wy + v — 4)/2  —w*{({2w—3)(2r — 5) — 8w)/2 JI d

cre



Another function is caleulating the inverse ma-
triz on 2 variable polynomial ring. Convvention-
ally the inverse matrix 12 obhtained with Ganss
Jordan method. Buot it s nol appropriate he-
cause 2 variable polynomial s net Foclidean.
Mere )
= {E.-fi":l;l A

T detd
is applied. It consists of calewlating (nxn) +1
determinants, The conventional sysbem can not
ise this algorithm because the computation of
these determinants needs much cpu fime. Bt
the deferminants ean be gotten simultaneously
oh each PE with same instruction, In addition,
the denominalor, det A4 and the nominator poly-
nomial adjd of each entry is reduced at once by
calculating greatest common divisor. Fig.6 is
the result for A
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This study is just began and only few parallel functions are implemented, At prasent, VArTOLES
functions for 2-D system theory . for example, solution algorithms of 2-D unilateral equation

(13) based on Gribner bases approach for polynomial modules are under implementing. The
Ciribuer hases approach is one of Lhe most important results in the field of computing algebra,

and has been shown very peuful for n-D system theory.

4 Conclusion

Applications of computer or computing algebra to system theory is being studied from the

viewpoints of both theory and implementation. The resnlts are considerad to be inte
only for CADCS but also far control theory itself. This paper showed the utilities of formula

resbinm ok

SO

manipulation for the control theory and introduced our parallel formula system for 2-D {or n-D}
theory, At present the parallel systen is very srnall, Herealter the system will be extended in

company with investigating 2-D control theory.
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