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Extended Abstract

Except for a narrow class of systems admitting a product form solution, see Kelly [1], little is known
concerning the performance of queueing networks and scheduling policies. Yet, it is important in
many applications to choose a control or scheduling policy that optimizes a performance measure,
such as the mean number in the system. However, if the priority of a part under a scheduling
policy depends on its buffer location (i.e., its class), as it most certainly should, then little is known
concerning performance, see [2].

In this paper we propose a technique for obtaining upper and lower bounds on performance.
It is applicable to a broad, even non—classical, class of queueing networks and scheduling policies.
Briefly, assuming stability, we study the consequences of a steady—state for general quadratic forms.
This yields a set of linear equalities satisfied by the means of the pairwise products of certain random
variables. Additionally, from the conservation of time and material, one can obtain a supplementing
set of linear inequalities. Together, these constraints allows one to bound performance measures,
either above or below, by solving a linear program.

This technique can be regarded as an extension of the idea of Meyn and Down (3] and Meyn,
see [2], where the square of the workload is studied.

The following Theorem illustrates the type of results that can be obtained. Consider an open
re-entrant line where parts enter the system according to a Poisson process of rate A. They first
visit machine o(1) € {1,2,...,5}, where they are stored in a buffer labeled b;. Then they visit
machine o(2), where they are stored in buffer by, etc. Let buffer by at machine o(L) be the last
buffer visited. Suppose that the service times for parts in buffer b; are exponentially distributed
with mean i We assume that a machine can work on only one part at a time, but that service:
can be preempted. We also assume that the service and interarrival times are independent. Let
I() := {7 : b; and b; share the same machine}.
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Theorem 1 1. Consider any stationary, non-idling policy with a steady-state distribulion
which has a bounded second moment for the total number of parts in the system. Then
the mean total number of parts in the system is bounded below by the solution of the following
linear program:
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2. Under the same conditions, an upper bound is obtained by replacing the “min” above by a
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maz.

3. Consider a buffer priority policy which provides pre-emptive resume priority according to a
rank ordering of the buffers at each machine. Then one obtains upper and lower bounds,
under the same conditions as in (i) and (ii) above, by appending the equality constraints:

zi; = 0 if buffers b; and b; share the same machine, and b; receives priority over b; . (1)

The method leading to the results above can be generalized considerably. We will illustrate the
application of this method on several typical situations of interest in manufacturing systems. For
an open re—entrant line modeling a semiconductor manufacturing plant, we plot a lower bound on
the so called “actual-to-theoretical” ratio of delay to mean total processing time. We show that the
Last Buffer First Serve (LBFS) policy of [4] is almost optimal in light traffic. In another example,
we show that the upper bound on delay under the LBFS policy is less than the lower bound on delay
under the First Buffer First Serve (FBFS) policy, thus showing that LBFS dominates FBFS. For a
closed re—entrant line modeling the so called “closed loop” release policy of Glassey and Resende
[5], we bracket the performance of all the buffer priority scheduling policies [4], as well as the one

2



conjectured to be optimal in heavy traffic. For another closed queueing network, we show that the
workload balancing policy suggested by the Brownian network analysis of Harrison and Wein {6] is
almost optimal. Our bounds on throughput compare favorably with the simulation results reported
there. For a manufacturing system with machine failures, we show how the performance changes
with the mean time between failures. For a finite buffer system, we outline how one may bound the
throughput. Finally for 2 GI/GI/1 queue, we obtain a better bound than Kingman’s for a large
range of utilization factors.
The full details may be found in 7).

Note: The method of Section 2.1 in [7] is the same as the “non-parametric method” of Section 4.2
of Bertsimas, Paschalidis and Tstisiklis [8]. Both were obtained simultaneously and independently.
The idea of using a general “potential” function, i.e., several Lyapunov functions, see [9], was
recognized by them in February 1992. We urge readers of our work to also read theirs, and future
authors citing our work to also cite theirs.
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