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ABSTRACT

Advances in the theory and technology of artificial neural networks provide the potential for new
approaches to the problems of control, identification, and diagnosis for large, complex systems.
However, these approaches must be validated for specific applications before they can be exploited
effectively. Because of the unique capabilities they offer, neural networks should play an
important role in space exploration systems operations. After a brief introduction to neural
networks is presented, some applications of neural networks to identification and control of space
systems are described and discussed. They span the spectrum of relatively straightforward to
rather complex applications. An explanation of how neural networks can be applied to such
important tasks as fault diagnosis and accommodation is presented. Neural networks are shown to
be part of the hierarchy of intelligent control where a higher order decision element monitors and

supervises lower order elements for sensing and actuation.
INTRODUCTION

The Report of the United States National Commission on Space has projected a series of manned
missions to be pursued well into the Twenty-First Century. In order to complete these missions, it
is necessary to develop a life support system capable of assuring human extraterrestrial existence
over long mission duration. In anticipation of this need NASA is supporting the development of a
Controlled Ecological Life Support System (CELSS). The goal of the CELSS program is to
develop a regenerative life support system that relies on the abilities of organisms which use
photosynthesis to produce food and oxygen from carbon dioxide and water. One phase of the
CELSS program constitutes planned space flight experiments, involving free-flyers, and
technology test facilities associated with the Space Station .
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The planned CELSS flight experiments will require control systems that are capable of meeting

stringent requirements over long periods of time, while operating autonomously and under a great
deal of uncertainty. After the establishment of a system operating regime, the management of the
overall control system will perform tasks such as monitoring system performance, monitoring the
health condition of the system, coordination of operational subsystems, diagnosis of faults, and
coordination of maintenance and repair. As much as possible, the operation should be
autonomous, with the capability of human override if necessary.

Meanwhile, controllers for the operational subsystems continue to assure performance, thereby
maintaining stability and tracking specifications. For example, large-scale space antennas must be
able to operate successfully under a variety of unforeseen conditions. Large segmented mirrors
must maintain a high geometric precision in the presence of thermal, gravitational, and dynamic
" loads. Light-weight, segmented, robot manipulators must move quickly and accurately while
experiencing variable loading demands and trajectory requirements. The operational subsystems
will also require control systems that are capable of meeting stringent and flexible performance
requirements for identification, control, and diagnosis.

- Neural networks have received widespread attention recently, particularly in the fields of pattern
recognition, signal processing, and optimization. Only recently has attention been focused on
applications of neural networks to real-time identification and control. Work is progressing on
applying neural networks to fault detection, isolation, and control reconfiguration (FDIR). Neural
network approaches for autonomous operation in space flight experiments can be evaluated in a
step-by-step program designed to explore the most straightforward applications first, followed by
more complex and demanding applications. In this way, knowledge and experience can be gained
in an orderly manner while enabling early demonstrations of the new technology in simpler
applications. Neural network applications for complex space systems might be envisioned in the
following categories:

1) Identification -- Indicate specific parameters associated with observed system operation, and
adjust learned representation of system characteristics in response to new measurements.

2) Adaptive Control -- Issue actuator commands in response to observed or estimated system
states, and adapt responses to improve performance of the controlled system.
3) Monitoring and Classification -- Determine normal or abnormal system performance based on
learned characteristics.
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- 4) Reconfigurable Control -- Reconfigure input-output topology to recover acceptable system
| performance in the presence of failures of actuators or structural members.

NEURAL NETWORK BACKGROUND

b The artificial neural network can be treated as a special purpose computer which is configured to
. represent a nonlinear mapping implied by empirical data. The mapping is implemented using a
large number of individual processing elements (sometimes called neurons)with a dense network
of interconnections. By defining proper processing fuctions for each element and proper weights
for each interconnection, it is possible to solve difficult problems quite rapidly. Examples of such
| problems include function optimization and realization of nonlinear point-to-point mapping. Most
iv importantly, neural networks have the capability to learn, so that performance can improve with
time and adapt to changing stimuli.

In order to solve a practical optimization problem using a neural network, it is necessary (1) to
choose an architecture, including the interconnections between individual processing elements, and
(2) to choose the associated weights for the interconnections. The architecture is often chosen from
experience or from some standard architecture. Under certain conditions the weights can be chosen
based on the problem to be solved. However, in most cases it is necessary for the neural network
to learn appropriate weights in a training procedure based on many iterations.

Narendra and Parthasarathy [1] give an excellent explanation of how neural networks can be used
in identification and control of dynamic systems with nonlinearities. Their examples involve
discrete time models of single-input single-output systems with memory, i.e., the model includes
historical values of input and output. For identification, the input and output values of the system
are fed into a multi-layer neural network. For control, measured output values and the desired

output values are fed into a neural network. Back propagation is used to train the network to
improve performance. '

The most popular neural network architecture is the multi-layer feed-forward topology where the
weights are adjusted by back-propagation [2]. Back-propagation can be used when there is some
error function which is to be minimized, such as the error invcorrect]y identifying characteristics of
a system. Back-propagation is used during each step of training to calculate the gradient of the
error with respect to the weights, and to adjust the weights slightly to reduce the error. Each
gradient step is small, so versions of the same input-output data from the system might be
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presented to the network many times. After a large number of steps (perhaps thousands) the back
propagation algorithm should approach a satisfactory set of weights. As new information is
presented to the neural network, the weights can be updated so there is the possibility for
improvement through continuous learning.

However, a disadvantage of back propagation is that it can take a large number of iterations to
converge to the desired solution. An alternative to back-propagation that has been used in
classification is the Probabilistic Neural Network (PNN) developed by Specht [3,4] which
involves instant, one-pass learning and can be implemented directly in neural network architecture.
A similar one-pass neural network learning algorithm also developed by Specht is called the
General Regression Neural Network (GRNN) [5]. The GRNN shows promise for identification
and control functions because it eliminates the extensive training period characteristic of most back
propagation schemes by providing instant, one-pass 1earning in a growing network. In fact, the
‘GRNN learns by allocating new network elements, rather than by adjusting a fixed number of
internal parameters over several iterations, as in back-propagation networks.

The most difficult example investigated by Narendra and Parthasarathy [1] (with five inputs and
one output) required over 100,000 iterations using back propagation to represent the nonlinear
-system function adequately. The same example required only 1000 input-output pairs using the
General Regression Neural Network [5] to represent the nonlinear system function to the same
degree of accuracy, and required only 100 input-output pairs to give an adequate, but slightly less
accurate, representation. Given the potential for rapid training and retraining, the GRNN not only
offers potential improvements in control synthesis and design time, it also increases the feasibility
for using neural networks for real-time control and reconfigurable control.

A major benefit of neural networks derives from the tremendous computational speed that can be
achieved by the massively parallel architecture of simple processors. An example of analog neural
hardware used to control a deformable mirror in real-time is the Programmable Analog Neural
Processor (PANP) developed by Lockheed [6]. The processor hardware contains 256 neurons
(multipliers) and 2048 programmable synoptic weights (5 bits) operating in parallel. The
bandwidth of the analog hardware is 90K Hz, and it can process analog inputs and outputs at that
rate. The control loop for the deformable mirror has 42 sensors and 21 actuators. The closed loop
system with the analog hardware controller can operate at a bandwidth (sample rate) of 173 Hz.
The setding time of the closed loop system is 5 milliseconds, and the accuracy of the mirror control
1s 0.067 waves. Breadboard hardware has been tested successfully for a second generation analog




processor based on commercially available chips which is more accurate (8 bits) and has a wider
voltage range.

For an introduction to computing with neural networks, see the September-October 1990 Special
Issues of the IEEE Proceedings [7,8]. For further explanation of control using neural networks,
see the April 1990 Special Issue of the IEEE Control Systems Magazine [9] which contains 11
papers showing how to apply neural networks to identification and control. The April 1992
Special Issue on Neural Networks in Control Systems [10] contains 7 more recent papers on
identification and control including applicationslto fault detection . The book Artificial Neural
Networks [11], presents paradigms, applications, and hardware implementations.

EXAMPLE OF A NEURAL CONTROLLER

The example described here is based on a recent paper [12] which illustrates some control
applications using the General Regression Neural Network. GRNN is a memory-based neural
network with a straightforward implementation and a one-pass rapid learning algorithm that uses
a highly parallel architecture. The algorithm provides smooth transitions between observed values
even with sparse data in a multidimensional measurement space. Three significant advantages of
GRNN are: 1) the network learns in one pass through the data and can generalize from examples as
soon as they are received, 2) the network converges to the conditional mean as additional samples
are received, and 3) the network has a clustering version which limits the number of nodes and

provides an optional mechanism for ignoring old data.

| For initial analysis, it is sometimes more convenient to implement neural network algorithms in

, software rather than hardware. Consequently, the GRNN has been implemented in software (in
the C language) and integrated with the MATRIXx commercial software package for computer
 aided control system design. The software implementation of the GRNN algorithm is completely
L general so that the user can select the number of inputs, the number of outputs, and the number of
’ training samples. The software has three operational modes: (a) learning, where training data is
incorporated into the neural network; (b) standard operation, where the neural network recalls the
I training data for modeling, estimation, or control; and (c) adaptive operation, where new
measurements are incorporated to update the training data while the training data is recalled for
operation.

. The neural network can perform modeling, estimation, or control. In particular, the neural
. network can emulate the dynamic system (modeling), can determine the state of the dynamic
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system (estimation), or can control the dynamic system (based on selected control strategies). The
state of a nonlinear dynamic system can be considered the set of internal variables which
completely describe the future output of the system when given the subsequent control inputs.
Modern linear control involves these same three functions: (1) modeling, sometimes called
identification, which develops a linear model based on control inputs and system outputs; (2)
estimation, which determines the state of the system; and (3) control, which develops a linear

control law to minimize loss.

The neural network performs a nonlinear mapping from measured input values to output values.
As such, it is ideal for identification of the input-output transfer function of an arbitrary system.
Training data consists of a set of typical inputs and corresponding outputs. In operation, the neural
network receives input, and produces outputs that are consistent with previously learned data.
Training may continue during operation, providing a system identification which adapts

continuously.

Successful implementation of the learning mode requires samples which span the space of control
inputs and outputs. If the number of training samples is limited, a carefully planned training phase
is essential. When the training samples are based on random inputs and outputs, a large number of
random samples may be required to span the space. In this case, clustering techniques can be

applied to limit memory requirements.

A straightforward example which demonstrates control of a plant represented by a second order
linear system is presented here. An important advantage of GRNN is that it can treat nonlinear
systems as well as linear systems, but for illustrative purposes a linear system will be used here.
The plant has a natural period of six seconds and damping ratio of 0.5. The sample rate of the
system is 2 Hz, so the outputs from the plant are available twelve times per cycle. For the first
example, the desired output from the plant is a sine wave of unit amplitude and period six seconds.

The leaming mode requires samples which span the space of anticipated control inputs and system
outputs. One way to implement the learning mode with limited samples is to start with an initial
control strategy that does reasonably well (perhaps linear control), and then have GRNN improve
on that strategy. For this example, a 3-by-3 grid of points in the position-velocity phase space was
selected to guarantee that the training space adequately represents the space over which the system
operates.




The learning grid involves the origin (zero position and zero velocity) , and eight other points one
unit away from the origin in position and/or velocity. Off-line calculations were performed to
obtain the value of the control input which would cause the system to move (in two time steps)
from each one of these nine points in the phase space to any of the same set of nine points. The
nine-by-nine combination produces a set of 81 quintuples of numbers. Each set of numbers
consists of the current state (position and velocity), the state desired in two time steps (position and
velocity), and the value of the current control that gives the first step when the system transits from
the current state to the desired state. Such a set can be used for the initial training set, and for
learning in real time as the system evolves with time.

The position response in Figure 1 shows how the system evolves in time. The system starts at rest
(the origin) and the control from the initial training data causes the trajectory to overshoot the
desired sine wave slightly for the first two cycles. As the system evolves, it continues to pick up
additional information, and quickly the system approaches the desired trajectory

In the second example, the plant and the initial training data are the same as previously, but the
desired output is changed from a sinusoid of unit amplitude to a square wave of amplitude 0.5.

and period 30 seconds. In this case, a different portion of the initial training space is reinforced
(specifically, the portion devoted to maintaining a given value for some length of time). Figure 2
shows the control input required to produce a square wave is learned after the first few cycles.
Furthermore, the neural network develops the capability to damp the oscillations that occur as a
result of the step changes in position. These straightforward examples illustrate that with
reasonable initial training, the neural network can adapt to varying system requirements.

ADAPTIVE NEURAL CONTROL AND FAULT TOLERANCE

Advances in the theory and technology of artificial neural networks provide the potential for new
approaches to the problems of control, identification, and diagnosis for large complex space
systems. The resulting control systexﬁ can be augmented though use of various aspects of rule-
based expert systems and fuzzy logic. The following describes an approach for an autonomous
adaptive neural controller that can be used for performance improvement, health monitoring, and

fault tolerance. To lend verisimilitude to the explanation, it will be assumed that a structural sub- -

system, such as a segmented mirror, is being controlled.

An important advantage of neural networks is the tremendous computational speed advantage
achieved by massively parallel analog hardware. Therefore, it is proposed that the control system
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will use a high speed computational engine that is similar to the Lockheed Programmable Analog
Neural Processor [6] (with the acronym PANP). The analog processor will be directed by a high
level neural decision element (with the acronym HILENDEL). The General Regression Neural
Network [5,12] (with the acronym GRNN) will aid in decision making.

The hierarchical architecture of the controller is shown in Figure 3 where the high level neural
decision element (HILNDEL) directs the flexible, high speed Programmable Analog Neural
Processor (PANP). The decision element continually monitors the system response and makes
decisions about performance improvement, health monitoring, and fault tolerance. The decision
element implements the required changes in the controller by down loading information to the
PANP hardware. The PANP uses this information for high speed computation equivalent to the
Kalman filter state estimation and feedback gain calculations, typical of most multi-input, multi-
output control systems. The update is accomplished is such a way that the control loop is not
'interrupted‘ and as a result, the control algorithm adapts over time.

Since the physical parameters of space-based structures are likely to change over time, the decision
element autonomously monitors the health of the system. If, while monitoring the system, there is
a potential fault indication, the decision element identifies the particular fault condition. After the
neural decision element recognizes the fault condition, it determines a specific response, based on
stored responses for each known fault condition.

Specific responses for each fault condition consist of reconfiguring the PANP control system
matrices. The method of reconfiguration is for the decision element to down-load an appropriate
system description for an identified fault. After the PANP has been reconfigured, the decision
element returns to the mode of evaluating performance and periodically updates both the system
state estimation parameters and the feedback gain coefficients, as needed.

A distinguishing feature of the architecture is the Programmable Analog Neural Processor which is
used as a high speed, flexible computation engine. The PANP receives inputs from the sensors,
performs computations, and delivers outputs to the actuators. The block diagram in Figure 4
shows how the Programmable Analog Neural Processor could implement the Kalman Filter and
the control law calculations. The structural system model is represented in the figure by three
matrices (sometimes called A, B, and C in control terminology). The three matrices are termed the
transition matrix, the control matrix, and the sensor matrix, respectively. Two additional matrices,
which are determined by calculations from the decision element are the Kalman gain and the
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feedback control gain. The delay elements are implemented as analog délays, and are used to store

past values of the state.

The past state values in combination with the actuator commands and sensor measurements are
used to estimate the current state description of the structure. The actuator commands are
calculated as the weighted sum of the estimated states. These feedback control gains (weights) are
updated by the decision element to improve the measured system performance. The simulation of
the PANP for purposes of the conceptual design is similar to what is shown in the figure. To
minimize hardware requirements, the actual hardware design may be somewhat different, because
many of the matrices will be sparse and terms will be combined to reduce the extent and complexity

of the hardware.
Performance Improvement

Improving performance without interrupting the high speed control loop is an important goal. The
high level neural decision element (HILNDEL) continually determines performance by evaluating
line-of-sight (LOS) and structural vibrations. It calculates the desired control system matrices
based on the system response, and periodically down-loads the updated matrices to the
Programmable Analog Neural Processor (PANP).

The decision element evaluates all the sensors to determine the existence of spurious structural
vibrations. If the vibrations are smaller than some threshold, the control system matrices are left
unchanged. If the vibrations are moderately large, the decision element determines which actuators
are most effective at suppressing the residual vibrations. The GRNN neural network is used to
determine which control law coefficients or combination of coefficients should be changed to
eliminate the vibrations. After the desired changes to the control law are determined, the matrices
in the PANP are updated appropriately, and the decision element continues to evaluate the system

response.

For illustrative purposes, simulation results are presented for a single segment of a six segment
mirror. The Advanced Structures/Control Integrated Experiment (ASCIE) is a six segment mirror
(developed under Lockheed Independent Research) used as a hardware test bed to evaluate
significant control structure interaction. The goal is to implement alignment control (in piston, tilt,
and petal) of a six segment mirror using 24 edge sensor measurements and 18 actuators. The two
time domain plots in Figure 5 show step responses from a computer simulation of a single
segment. The single segment model contains six sensor ,three actuator, four global system modes
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(eight states), non-proportional damping, and a strong coupling between the control hardware and
structural support members (all of which are characteristic of large, flexible, space structures).

The left graph in Figure 5 shows how a step command in piston causes structural vibrations which
are slow to damp if the controller is not tuned exactly to the structural model. In particular, there
is a 10% discrepancy in modal frequency and a 50% discrepancy in modal damping of the
fundamental mode. Howe\?er, when the proper system model and control parameters are
identified, the much improved response shown in the right graph is achieved. This example
illustrates one technique to implement performance' enhancement .

The Least-Mean-Square (LMS) algorithm can be used to adjust control system matrices to reduce
structural vibrations. This algorithm continually modifies the control coefficients stored in the
decision element using a gradient descent procedure to minimize a cost functional made up of line-
of-sight (LOS) and structural vibration measures. Alternative tuning algorithms which can be
evaluated include accelerated gradient and Newton methods (second order), and scalar descent
methods (varying coefficients one at a time). Partition of the control gain matrices is a possible
method to speed up convergence.

When the calculated control coefficients have reached a value sufficiently different than the current
values, the decision element down loads the new coefficients to the PANP. Thus, the decision
element continually recalculates the coefficients, but does not down-lfoad them until the changes
have reached some significantly different value. If there is not sufficient change, the control
matrices are not updated. This procedure prevents spurious recycling.

Health Monitoring

Another important goal is to implement health monitoring which allows the system to recognize
long term degradation and immediate faults. The high level neural decision element autonomously
monitors the health of the systcrri by evaluating line-of-sight and structural vibration
measurements. If there is an indication that a potential fault exists, the decision element identifies

the particular fault condition, and determines a specific response, based on stored data.

Health monitoring must discriminate between long term degradation and immediate failures, and
must respond rapidly in the case of a failure. One method of validating fault tolerance with an
experiment is to remove various critical structural members and/or actuators to observe the time of
re-convergence and the resulting level of performance. The neural network GRNN can be used to
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discriminate between failure candidates. The following explanation describes how a typical health
monitoring algorithm deals differently with structural member removal and sensor or actuator

failure.

Typical spacecraft have direct redundancy of sensors. Therefore, the most straightforward
example of health monitoring considers sensor failure. The redundancy allows estimation of the
measurements at each sensor based on other sensor measurements. If the difference between the
actual and the estimated measurements increases slowly over time, it may mean gradual
degradation. If there is rapid short term increase in the difference for a single sensor, it can mean

there is a sensor failure.

To identify a potential actuator failure, the predicted sensor measurements are compared with the
actual system measurements. If there are significant differences, these differences are input to the
GRNN neural decision element. GRNN is used to discriminate which actuator has failed. If the
probability exceeds some threshold, then fault accommodation is initiated.

Because the structural sensitivity matrix is not readily available when a structural member is
removed or damaged, the discrimination situation is more difficult. One approach is to develop a

* separate structural model and sensitivity matrix for each structural member which can be removed
or damaged. Complexity can be reduced somewhat because the structural members are typically
geometrically similar and because there are symmetries in the typical space structure. As before,
the GRNN neural network is used to determine which structural element has been removed.
Alternatively, GRNN might determine the modified system response without actually identifying
the specific structural member that has been removed.

An example of the capability of neural-based health monitoring is presented in Figure 6. Data
shown in these two time domain plots were generated by performing a computer simulation with a
single segment of the ASCIE six segment mirror described previously. The left graph illustrates >
the step response with the optimized control law. The right graph shows the degraded
performance resulting from a simulated structural fault. For this example, the signature of the fault
is an oscillatory response to the step input along with a small steady state error. GRNN determines
which particular fault has occurred. Once the fault is identified and the associated reconfiguration
is determined, fault tolerance is initiated.

Fault Tolerance :
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Fault tolerance is another goal for a neural controller which will allow the system 10 recover
autonomously from assorted hardware faults. Specific responses are stored in the decision element
for each specific fault condition. After the fault condition has been determined, the decision
element immediately reconfigures the PANP by down loading a new set of control system
matrices. The GRNN neural network is used both to determine the probability of various
candidate faults and to determine the appropriate corresponding reconfi guration.

Fault tolerance is implemented by down-loading the appropriate stored reconfiguration to the
PANP. After the new configuration is implemented in the PANP, the decision element returns to
monitoring performance and periodically updating the PANP coefficients. Since the performance
with the reconfigured system may be worse than the nominal performance, the threshold for down-
loading control law modifications may require adjustment.

" An example of the capability to implement fault tolerance is illustrated in Fi gure 7 by the computer
simulation results on a model of a single segment of the ASCIE six segment mirror. The left graph
shows the degraded system response to a step input due to a structural fault. The health
monitoring system recognizes that a fault has occurred and identifies the failed component. The
GRNN algorithm then determines the appropriate reconfiguration based on stored responses for
specific failures. In the example, the system controller is reconfigured based on the assumed
structural faults. The return to a nearly optimal system is shown in the right graph with less high
frequency vibration and no steady state error. This illustrates one approach to fault
accommodation.

CONCLUSION

This paper has presented some illustrations of the use of neural networks for control,
identification, and diagnosis. Neural networks are shown to be part of a hierarchy of intelligent
control where a high order decision element monitors and supervises lower order elements for
sensing and actuation. An important advantage of neural networks is the tremendous
computational speed advantage achieved by massively parallel analog hardware. A first generation
example is the Programmable Analog Neural Processor (PANP) which can be used as a flexible
high speed computation engine. The coefficients for the control law can be adjusted on the fly in
PANP without interrupting the control loop. The General Regression Neural Network (GRNN) or
the Probabilistic Neural Network (PNN) are candidates to aid in high level decision making.
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The challenges inherent in any control application include modeling, simulation, control design,
health monitoring, fault tolerance, hardware implementation and experimental verification. In
order to validate these approaches for space-based missions, it is necessary to have ground-based
experimental demonstrations which integrate neural control and modemn control and which integrate
analog neural hardware with conventional hardware. There is still a long way to go, but the
challenge is there, and the pay-off is promising.
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Fig. 5. Simulation of step response for one segment of six segment mirror for the

Advanced Structures/Control Integrated Experiment (ASCIE) illustrates performance
enhancement. Step response on left shows structural vibrations which are slow to die out
because controller is not tuned exactly to structural model. Improved Step response on

right shows results from tuning controller gains.
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