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We consider the linear equation
AX+BY =C (1)

where A, 1 and  are given polvnomials lrom
-'r"-:":].- the ring of polynoemials in the indetermi-
nate s over a field &, and A and ¥oare unknown
polynamials in K[s].

MOTIVATION

Equation (1) has found application in several de-
:;iqn prr}hiirrnﬁ for linear control Svalellls, il‘.cit]ding
the pole placement design. This preblem consists
in the following: given a plant with real-rational
proper transfer function

B

where A and £ are coprime polyvoomials, one
secks a dynamic output feedback contraller with
a real-rational proper transfer Tunetion, say

V()
X(s)

Qle) = —

such that the closed-loop svstem has prespecified
poles.

Provided A is the characteristic polynomial of the
plant and X iz that of the controller, then the
charaeteristic polynomial of the closed-loap sys-
tem, say C(s), which specifies the poles desired,
15 given by C = AX + BY,

Thus the pole placement desizn is based on equa-
tion (1), However not all solution pairs X Y are
of interest: one must take the one in which ¥ has
least degres. This leads to a proper controller

whenever one exists.

REVIEW OF THEOQRY

It is well known [1] that Kis] is a principal ideal
domain. Thus (1) is solvable if and only if any
greatest common divisor of A and B divides C.
Writing O for a greatest common divisor of A and
8 and denoting

(.-':i
I

one concludes that (1) has a solution if and only
if € is a polynomial, Therefore il A and B are
coprime then (1] is solvable for any €.

Suppose that X, ¥ is a particular sclution pair
of {1). Sines the equation is linear, any and all
solution pairs of (1) are given by

X=X-BT, Y=Y+AT

where T varies over K [s]. Thus the solution class
of {1} is paremetrized through T in a simple man-
ner.

It is well known [1] that K[s] is a euclidean do-
main. Therefore if (1) is solvable and B £ 0 there
iz a unique solution pair Xy pn, ¥ of (1) such that
either X|pan = 0 or deg Xy iy < deg B. Further
if {1} 1s solvable and A £ 0 then there 15 a u-
nique solution pair s, Yene of (1) such that el
ther Yamin = 0 oF deg Yomin < deg A. These two
leasi-degree selution pairs coincide [4] whenever
deg A + deg B > deg C.

As a result, equation (1) with A £ 0 and 8 # 0
can possess solution pairs X, Y of arbitrarily high
degree, limited only from below by deg Xt min and
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FIXED DEGREE SOLUTIONS

e shall study the class of solutions whose de-
grees are limited from above, We suppose that
A O and Cin (1) are non-zere polynomials from
K[s] with A and B coprime. Hence (1) is solvable.
Let

p=degd, g=degB, r=degC.

If
A=dg+a154...+ :zll,.lrp

then, for any integer & = p, we denole

veep A = [ag ay...a,0 ... 0],
k (2 dy...0p

E-p

Here is the existence result [3]. Let m, n be non-
negative integers and o = max{m +p, n+q, r).
Then a solution pair X, Y of (1) exists such that

X=bordeg X <m, Y=0,ordegY <n
(2)

if and only if veey 7 is o Fl-linear eombination of

verg s, vecgsA, L vecgs™el, vece B, L, vecys™ B

A special case of particular interest concerns Lhe
constant solutions of (1), Putting m = » = [} we
deduce [6] that a selution pair X, Y of [ 1) exists in
Faf and only if veca is & K-linear combinaiion
of vecgA and vecg 5.

The sot of solutions whose degrees are linnuted
from above can be parametrized as follows [3].
letm = gand n > p n = r—q then the set of
sclutions X, Y of |:i'| that satisly (2] 1s glveu as

A=Xipin— BN, Y=Y +4AT) (3)
where T varies over H[SJ el
deg Ty < min(m — g, n—p);

if /> r — p then the zet of solutions X, Y of (1)

that satisfv [2) is given as

X=Xa—8Ty Y= }-'":I:I;H + ATa ['T'

where T3 varies over fi'[s] and

deg Ty < min{m — g, n—p).

We note that at least one of the two conditions,
m > r—pand n > r—gq, is always satisfied. OF
course (3) can be used to parametrize the solution
set (2) even if n < r—g. Then, however, T) has a
higher degree than shown and is not completely
free in K [s]. An analogous statement is Lrue for
(4) when m < r—p. To illustrate, we parametrize
the solulion elass of

X +s¥=35°

such that deg X <1 and deg¥ < 1. Using {3},
X = —5'31, ¥ =5+ I‘l 'T'l conshanl
while using (4},

XN=gte T3, Y =15, 5 =5+ 7, 7 conslant.

EXAMPLES

Can the double integrator

e -

T —du Ba =W, U=

re converted into an harmonic oscillater using 2
proporiional output feedback?

The double integrator gives rise to the transfe
function

and any harmonic oscillator has Lhe characterisie
polynomial
3 5
t'ﬁ'{‘?\j =& 4w

for some real constant w > 0. Thus the answer
depends an the polynomial equation
i r » 5
XY =20

having a constant solution pair X,V

Since
veos sl = [[] [} ]]

[0 o
veeslo = Jw® 0 1]

vads

the answer is an afficmalive: the cucput feedback
u = —wy will do the job. The resulling system
equations read

: 1 .,
L =Tz, EIg=U—wm, y=aIy.

On the other hand, the double integerator cannot
be: stabilized via proportional cutput feedback:
the polynomial s*X 4+ Y is not Hurwitz for any
real numbers X oand ¥,

As the second example, we consider the plant
fy=u—z, Yy==x

and find all sutput feedback contrallers that will
alter its characteristic polvnomial s 4 1 ta 2 +
Ja2 42

These controllers possess the transfer functions

Qs) = —f{i

P

&

P
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where VY 18 the solution set of the equation

(s+ DX +Y =" 43542
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such that deg X = 1 and deg¥ < 1.

The condition m = r—p = 1is verified. Therefore
the solution sel is given by

X=s+2-Tu, ¥Y=(s+1T3

where T4 15 any real polynomial of degres at most
min(rm — g, n = p}= 0, hence any real constant.

A realization of the parametrized controller set is

o= (Th—2w+(T2— 1)y
C—u = Thw4 Ty,

The case Ty = leads to an unobservable realiza-
tion while Ty = 1 leads to an uncontrollable real-
ization. A Pl controller is obrained when 75 = 2

If dezired, the parameter T can be chosen so that
a specific goal is achieved. For example, if the
Hoo-norm of the sensitivity function

&
g} =——=
[ ] & 2 — TE
iz not to exceed 1, we should avoid the values
0 <0<,

METHODS OF SOLUTION

Equation (1) can be salved in several ways [4].
Cne can distinguish peramefrie mathods (where
the palynomials are represented by their coefhi-
cients) and non-parameiric ones (where the poly-
nomials are represented by their functional val-
wes. ) We shall describe three major parametric
methods.

Ve suppose that 4, B and £ in {1) are non-zera
real polynomials with 4 and O coprime. Hence
(1} i solvable. For the sake of simplicity let

degAd=deg B=N, degC=2N-1.
The Method of Indeterminate Coefficients [4] con-
verts equation (1) into a system of 2 linear e-

gquations over the feld of real numbers. Suppose
wir seck the least-degree solution pair A, Y

deg X SN —1, deg¥ = N—1

The 2N coefficients of X, Y satisfy the svstem of
eouations

. ViECan_q A
[vecw—1X vecy—1Y] [

i Mo
| vecanog s tA

The system matrix is 2 Sylvester matrix and it has
full rank since A and & are coprime,

vecay_y 8

vecav_ 150 1B

The Method ._?J" f’ofﬂnum;r:f Reductions l::] rediices
equation (1] to a polynomial equation thal is
much easier to solve. [t consists of the substi-
tutions

oL gy | %_:r_" sdegc—deg.-l

- | Sdage $|:".|:g F=deg i

b '
Sgeg

[l

B =B-A Yaegfi odeg B—deg A
Ty A

AM=A-F Sdeg A 3¢_~u[.;_-'.—rjr:g )

E bicg B
each reducing the degree of one of the polyne-
mials A, B, €. The substitutions are repeated for
the new polynomials A, B/, € and will ultimately
reduce all A, B, € but one to zero. The resulling
equation has a solution X' =0, ¥’ = 0 and the
solution pair X, Y of (1) is obtained through the
backward subatitutions

f— Wby Bdag D deg C—deg A
.f"i. = _-1{ 3 TR g
Y =¥ g“l‘.{ﬂ-ﬁ. _[;"'E"“E C—deg B
deg I
X=X'-Y ey B gdez H=degz i

Aieg A
Y= ¥ X Edeg A Sdr_'l.:_ A—dag U-_
biagm
The process involves the euclidean algorithm tar
A B and leads to the least-degree solution pair
XY
The Method of Stele-space Realization [2] com-
bines mairix and polvnomial operations.  We
write (1} as )

< S

AT T A
and determine a reachable state-space realization
{F,7 H, ) of the rationzal function 8/4. The ¥
coefficinets of ¥ satizsfy the system of equaticns

veon 1 Y| H = vecy_1{C mod A)
Hi
H Y=

and the corresponding X is recovered [rom (1);
it is the least-degree solulion pair. The system
matrix is an obzervability matrix and it lias full
rank since A and I are coprime.

= wvecay_10.
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NUMERICAL EXPERIENCE

The method of indeterminate coefficients s
straightforward and leads direetly to a svstem
of linear equations for the coefficients of the un-
known polynomials.  The method of polynomi-
al reductions solves the polynomial equation by
poiynomial means and is not suitable for pencil-
and-paper caleulations, for it requires a large
number of logical operations.,  The method of
state-space realization combines the two above:
one unknown polynomial is obtained by solving a
svstemn of linear equations while the other results
from polynomial manipulations.

e’ comparison of the methods with respect to
the arithmetic complexity 15 quite clear. The
{istest 15 Lhe method of |:t‘r]}'1lﬂr‘|‘|5FL| reductions,
where Lhe operations count is proporfional to
NZ For the other two methods the arithmetic
complexity s propoclional to N¥ The slowest
I!’]F‘1I‘]E)L|_ hf'l“'r_':"-'f':]'l Iih' lltl:"l.lu U[‘ .ill‘ﬁll':jul':!'r'l]-llli'lluﬂ f.“lf':{n—
clents because it leads Lo a larger sysiem of hinear
equations than the method of state-space realiza-
tlon,

The comparison of the methods from the precision
point of view is not that aimple, however. Pro-
vided the polynomials A and 2 have no (especial-
Iy multiple) rools close to each olher, the procison
of all three methods (s alike, The ill-conditioned
data, however, make the method of polynoemial
reductions fail more often than that of indeter
minate coefiicients. The methad of state-space
realization shows no clear-cut tendency, it stays
between the two preceding rnethods.

To conchade, polynomial reductions are fast bt
sensitive to data, indeterminate coefficients are
robust but slow, and the method of state-space
realization is universal but second best in each
single aspect,
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