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On implicit linear n-D systems
1

Jiri Gregor

The [/0O relation of a linear n-D discrete svstem can be given as follows

X’ agla)y(ee + d) = a(a), acDC ' az# 0. (1)

eGCD+ B
o,
Here, 1 < |B| < +a¢, the sequence » 1 D — C is supposed to be given; any

ylo) = ela), o

sequence y : D+ 8 — C satisfying the equation (1] is called its solution. The set
(. called the initial set, is supposed Lo guarantee the existence and uniqueness of
he solution of equation (1), with a given mapping ¢ : ¢ — C which defines the

L
initial values.

It has been shown earlier [1]. that to any finite set B there always exists an
initial set €. These conclusions hold true also in the more gt!m-:l‘}L] cage when the
cocfficients as in equation (1) are square matrices and the input @ and output y are
vectors of corresponding dimensions. The proof of the corresponding statement
constructs the solution recursively from a “leading’ term. provided its coefficient
is invertible. Le. either nonzero in the case of a single equation. or regular in the
case of a matrix equation. It has to be noted that this Tleading” term may, but
need not be fixed for all values o € D depending on the mask B.

The single equation or the system of equations (1) is commonly called singular,
|| ['.hrg qjuu.'_[i:_.iu[[._u. |_;1' -(_t;nli::h‘:ﬂ:"q‘ nnf|_|-'r<'1|_" I:T|if§1j+‘]|{':-;:-€ Ul. 1.11[_* "‘_H.]I.IITiI.-]:'l are nol sal Il.‘i“l‘.‘l.'l.
Sinee in this selting for n > | the common way of establishing EU conditions is the
recursive construction of the solution, although in special cases indirect methods
are also possible. we are concerned with this leading coellicient 1n equation (1),
e, with the coelficient of the term recursively computed from the values ol the
solntion which are already known, A feasible method to obtain EU conditions
for singular equations is Lo find an equivalent recursively computable equation.

A single equation (1) would be called singular if its leading coeilicient, say
anlog) = 0 for some ap € . Since recursion implies a certain ordering < of the
set T+ B, the solution isunique for all o < oy, As for Lhe remaining values ol o a
I[]-;—-wt {::]L]HI E:_,'u i:; :_',['q‘,';‘_[,-‘.i"r,l Ei[::' i].ri |-||I -!"(:I]rlili.-if.'llﬁ st ])l' -it.'|)élt'éiif‘|:,-' i?l'v'&-!HTigilU_"l.l.

For systems ol equations a similar situation arises il det ag.fe) = D for some
or all & & D, or. in a simpler case, if equation (1) has constant coeflicients and
det g, = .

The laiter case seems to be important. Fouation (1} is, in fact, an equea-

tion containing partial backward or forward dilferences of arbitrary finite order,
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Equations coutainipg lirst order differences only, can be considered canonical and,
similarly as in the 1-D case, an algorithm can be given such that the equation
(1) with |B| = 3 can be reduced 1o such lirst order partial diflerence equation by
'tlli-l'-;lrilii.iillfi, additional unknown BOGUENCEE, The r.'uJ'l't'.'H!}lJlll.lili,ﬂ,' t.l_ﬂiul‘ii.hl]'t is the
n-D generalization of the well-known Horner's scheme. To describe this proce-
dure shorily, let n = 2 be considered. In the ngth-hand side if the equation (1)
introduce shift operators p, g denoting forward shifts in the directions of both
axes. Then (1) can be rewritten as a two-variable polynomial #. Now, in

P(p,q) = p Pilp, ¢) + ¢Palp, ¢) + doo

we may continue this process with £y, £ obtaining Py, Pra. Pay, P until all the
polvnomials so obtained will be constants. Put now y = =y and replace py by

zy and gy by z,,. Similarly, pzi = zi. 42 = 2k [ w1 15 the least number of

ApZ 4+ BgZ+C =X,

where A, B, O will be matrices of order m+1, 2 will be a column vector of arder
m=+1, Z = {z4. 21. S22 00y 2 )" and the vector X has only one nonzero element.
Moreover, it can easily be seen that, except for trivial cases. both matrices A, B
have at least one row consisting of zeros only, hence, they are singular.

It can be shown, that the number m of unknown sequences must satisfy the
inequality 3 = 2(ne = 1) 2 |&| for n = 2, where m is closely connected to the
minimal number of multiplications needed to evaluate a two-variable polyvnomial.
The correspondence between initial conditions for a single equation and those for
the first order system becomes nontrivial, Since details must be omitted here, a
simple example could show the way of reasoning.

Lel the mask B consist of 8 points as follows:

B = (0,00 (0,1), (1,00 (1,13, (0,2),(1,2), (2.0}, (2,1)

=0

-

with constant coelicienls gy, and D = {2, &) ;¢ = 0.8 = 0} Introduciug new
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Z 7= {Zpos 205 2103 ~||_'T by zoo = y and
2ol k) = 2oalt + Lok ) 2ali k) = 2onlt, B4 T2 (i k) = Zli. e+ 1)
wer obtain for the ]1-;:|]‘-.u_~;f:~.114*.rm.~a case the following matrix equation
AZL+ LB+ B2 b+ N+ C 2 k) =0, (2)

where the square matrices A B, (' of order 4 are successively.

1 0 0 0 g 6 0 0 () | 0 07
I (| T i_1 0 00 AR RS 0 !
1] o o0 o\° -= i ] [ ' i B il { 1 I i
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The single equation has a unique solution if the values {0, k). pl1, k) y(e. 0] are
given. For the system of equations. which has to be equivalent 1o the single
equalion, the ‘leading” matrix A is singular. Therefore the “selievident” recursion
with the tmitizal values Z(0, L) given cannol be applied.

Fxistenee and uniqueness conditions for some of these and similar systems
have recently been published [2], According to these results EU conditions de-
penc. in case of equation (2], on the behaviour of the matrix pair (A, B).

Taking two matrix pairs equivalent, (&, H) ~ (i, L) iff there exists two
regilar matrices P, Q) such that & = PGQ. L = PHQ, the following Theorem
i5 known:

Theorem 1. Anv ordered pair (€, ) of nonzero n x n matrices uniquely de
termines thiree nonnegative integers r, p, ¢ v+ p+ ¢ = n such that there exists
a pair (Gy, Hy) ~ [G. ) of the following form

. 0 0 W Fun 0 Hp
(G Hy) = VIR R | 0 WY N (O | ) (3)
1? (?I'I::,"_P “ 4 I.I L:I li-'}rll
Here, il any of the integers v, p. g = (. the corresponding blocks are considered
tar b empty.

In this theorem we denoted by £, N, Oy successively the unit, nilpotent and
zero matrix of order & and therefore the dimensions of the blocks are delined.
T'hes .‘-:jf«'n'.im] 0 stands for zero blocks., We shall also use the notation e/, H) =
{r, p. q).

Our first result considers the case T = {(i. k) : ¢ = 0,k = 0}. For equation
(2] the following Theorem holds [2]:

Theorem 2. Suppose that in the equation (2) A, B are zquare matrices of order
m such that eh(A, B) = {m — p.p.0). Then there exist two linear subspaces
Ly by © L of dimension p and m — p, respectively. suel that for any vectors
vowt Zo — R™ with v(0) = w{0) such that v € Ky, w € K, there exists a
nnigue sofution g 1 {{(i, k)4 = 0,k = 0} — RB? of the equation (2) satisfying the
initial conditions y{(t.0) = vii). ¢{0. &Y = k) . Here K, denoles a coset of the
linear subspace L,

Consider again the equation (2], but now with D = {{¢#. k) 1+ = 0.k £ Z}.
The previons result cannol be directly applied, but its method remains effective.
Assuming that Lhe two pairs if matrices (A, B) and (A, (7) have canonical forms
ol equal tvpe then the following result can be proved.

Theorem 3. Suppose that in the equation (2} A, B, C are square niatrices of
order m such that ch({A, B = eh( A, C) = (m — p.p. ) Then there exist two
linear subspaces L. L., © Ly, of dimension p and m—p, respectively, such that
for any vectors v 1 £ — A", w: Z

Koy W E

L — B with e(0) = wil) such that v €
I, there exists a unigue solution ¢ @ (g, k) 10 = 0. ke £y — b° of

the equation (2] satisfying for an arbitrarily fixed integer by the initial conditions
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g2, ko) = wid), y{ k)= v(s) . Here K, denotes a coset of the linear .'«'.'ni}.-:pm:f‘

f:s-

These results llustrate how the canonical forms of matriy pairs can be used
to establish recursive forms of singular 2-D systems. It has been shown [2], that
in this way also some stability results can be obtained. On the other hand,
their use heavily depends on an algorithm of finding the transforming matrices
denoted P, ¢} above. A closely related algorithm has been published [3]. where
its computational complexity is reduced to O{m?}. Here also extensive references
to this problem are given.

To make the above resulls more transparent the part of their proof could be
given here, in which the introduction of linear subspaces and their cosets becomes
necessary. 1his should explain, why and how the "usual® initial conditions must
e restricted s0 as a unigue solution exists.

The transformation of the matnx pair (A, B] by matrices P, @ in Theorem 1.
means a multiplication of the equation by the matrix P and an introduction of a
new sequence, sav @ = gy [t turns out that gL &), y(2. 0) cannot be arbitrarily
given. The conditions. which they have to satisfy, can best be lormulated in terms
of the matrix =1, Let this matrix be partitioned in blocs e, ¢, bk = 1,2 so that
the diagonal bloes are of dimension m — p and p, respectively, Then it must be

.:I':;[”, A] = I_!rl-'||'||.|'r?}::] ."."l:.[-:l: .;a'

ol dl) = [f{n

HggJ i IL ] I

where &, ro denoles the m — p, p components of the veclor sequence x. The first
of these equations Linposes m — p conditions to be satisfied by the vector y{U, k)
and similarly the second one. These conditions are expressed in Theorems 1. and
2. using the concept ol cosets, e, by the use of sels of shilted’ elements of a
linear subspace,

To use the results as they are formulated here some additional caleulations
wiitld be necessary, but an effective method of solution ol singular systems be-
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