Adaptive Estimation of a Flexible Beam via Piezoceramic Actuation
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ABSTRACT

In this presentation we present and discuss a modification of the adaptive identifica-
tion theory for second order infinite dimensional systems that we develaped in [2] which
allows for the ldentification of an unknown inpur operator in the madel. This extension
of our earlier treatinent was mativated by a lahoratary experimen: that «e are in the
process of designing and carrving out. This experiment. which invalves a cantileverad
aluminum beam, is being built and performed in collaboration with stafl member: at
the Phillips Laboratory at Edwards Air Force Base in California. The beam will be set
to vibrating via moments generated by plezoceramic patclies attached to the test article
at the root.

In mathematically modeling our flexible heam. we assume that it is of length L
{which, without loss of generality, we assume to be unity) with uniform rectangular
cross section of height h and width b. We let u(¢, r) denote the transverse displacement
of the beam at position z along its span at each time ¢. This is measured relative to the
z-axis in the coordirate frame determined by the longitudinal axis of the beam in its
undeformed state with origin located at the beam’s fixed end. We assume a cantilevered
Euler Bernoulli beam with Kelvin-Voigt damping for the modeling of the dynamics and
dissipation, see [1]. It is assumed that the beam undergoes only small deformations
(Le. |u(t,z)] << L, and |{u/dz)(t.z)] << 1). The Euler-Bernoulli theory including
Kelvin-Voigt viscoelastic damping yields the partial differential equation

pDiu+ DIM{t, )= f(t z), 0<ez<l, t >0, (1)



with the cantilevered boundary conditions
u(t,0) = Dou(t,0) = Diuft,1) = D3u(t,1)=0, >0, (2)

where g is the linear mass density, M(¢, z) is the internal moment and f is the external
applied force. For an uncontrolled beam with Kelvin-Voigt damping. the moment M in
(1) is given by (see [1])
M(t,z) = EID%u + ¢pID:D;u,
where E is Young's modulus, T is the cross sectional moment of inertia, and cp is the
damping modulus. For actuation, a piezoceramic patch is attached to the beam. This
patch is excited in such a way so as to produce a pure bending moment, see [1]. If Hy is
used to denote the Heavyside function with unit step at = = 0, the model for the beam
is given by
: KBd.
pD}u+ D} {EID}u+ cplDlu,} = D? {Erfﬂgu][ﬂu(z — i o i = ag}]} ;
T
(3)

where g{t] is the voltage applied to the patch. A'F is a paramers: which depends on
the geometry and piezoceramic materal properties, T is the patch thickness. a; and a;
denote the length and position of the patch and da; is the piezoceramic strain constant
(sea [1]).

We let H he L30.1),V = H3{0,1) = {: € L£:{(0.1): D,z ahsolutely continuous
with D2z € La(0. 1}, 2(0) = Doz(0) = 0}, and @ = R>. We then rewrite (3} together
with the boundary conditions (2) in weak form as

{DFu(t). ) = blg: Dult)oc ) +alq u{t). =)= elg fit).2). 2eVit>0 (4
ulb] = wp, Dewll) = ig. (3)

where g E Q, ug € V. g€ H.and fe Lof0.T:H). farall T > 0. The forms al-;-. -],
-l - ’

b(-;-,-)and ¢(-;-.-}in (4] are given by
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where q; = %, g2 = 5;—‘—I and g3 = —E%ll [t is our intention to use the modified

on-line identification scheme to be outlined below to estimate the parameters gy, gz, and
g3 in (4).

Following [2].forg e Q. let A{g) : V — V', B{q) : V — V', and C{q) : H — V" be the
linear operators defined by the bilinear forms a(g; -, -}, bq:-,-), and elq: -, -}, respectively,
where V' denotes the algebraic dual of V. That is, for g € Q. {Alg)z, &) = a(g: 2, @) for
ww €V, (Blale v) = blgie, @) for ¢, € V, and (Clg)o,¥) = e(q; e, w) for g € H
and ¥ € V. We also identify f via f{t) = g{t){Hol(- — 1) — Hol- — a3)}.



Definition 1 A plantis a thpte (1.7, £y don which there Wi & cansiatd ({ ? ﬂ mﬁl

Thal

|(B(p)Deu(t)+ A(R)E()~C(p) F(1). )] < Mplalizllw.  forallt>0,p€Q and ¢ €V,
and @ satisfies the initial value prablem (4), (3) with ¢ = 7.
Given a plant (7, T, f) we define our estimator for § and T in the form of the initial
value problem
(D3u(t), ¢} + b("s Deu(t), ) + alq u(t). #) + b(q(t); De(t), ) |
+al(g(t); w(t), ) = clalt): f1). ) (6)
= 0(q"; Dya(t), o) +alg i 8(t). 2}, ¢ €V 120,

(Dualt). plg = b{p: Da(t). w(t) — ult)) + a(p: W) W) — ult))
—e{p: flt), wlt) — uft)) + v {b(p: Deult). D.wit) — D.ult)) {7
+alpiult), Deu(t) — Daulth) = elp: Fit). DTt — Dou(t))} = 0. pe @, t > 0,

) 17 D.ulllz H. gl £ 0,

-
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where v is an appropriately chosen gain.
setting e(!) = uft) — ¥t and rt) = gi¢) = F we use ¢4} - (%) ta ohtain the error
equations

{Die(t) )+ ble" Dee(th, 71— elg™ieit). 20+ bl r(t): DyE(L),42) {9

e V> 0.

Lalr{t)mit)e)—=elrity fit). o= 10,

(Derlt),plo = b(p D), e(t)) — e(pR(t). it — e mth, fit). elt

J 1) (10}
—5{b{p: D), Dhelt)) = alpawit), Deeitiy —cirt fit. Diweitii}=0. pe@.t>0.

e0pe V. DielDjes H. rl0)e Q. (11}

We establish convergence of the state estimate (fe. lim,—a l[e(t)||v = 0 and
limi—se [D:e(t)] = 0) and, with the additional assumption of Persistence af Ercitation,
parameter convergence. That is, lim_oe |[r(t)lg = lmy—s jg(t) — Flg = 0. We assume
throughout that (7, %, f) is a plant.

The convergence of the state estimator is established via a Lvapunav-like estimate
for the system (9) - (11).

Lemma 2 [f5 > max {Kv. Ky /aolq™), Kip/3alo™ ). then there crist constants p, o >
0 such that for all t = 0

lle(e)lli + | Deelt)

Pl e | {iets)t +Dsels)lli ) ds < €,

where £ = fr{

e(ONF + 1Dee(0) + (013 }-



The next theorem establishes the convergence of the state estimate. The proof is in the
spirit of the arguments used to verify an analogous result in [2] and [3]. We define what
we shall refer to as an energy functional, E : [0, ) — R%, for the system (9), (10) by

E(t)= v {a(q" e(t). e(t)) + | Dee(1)]?} + 2(e(t), Deelt)) = bg™ e(t). (1)) + (D)3 (12)

Theorem 3 If v > max{Rv, Kv/ao(g™), A% /J0(07)}, then the energy functional E
given by (12) is nonincreasing, lim;_., ||e(t)lv = 0 and lim,_., |D.e(t)] = 0.

In order to establish parameter convergence we require the notion of Persistence of
Erecitation.

Definition 4 A plant (§,T, f) is said to be persistently ezcited, or the input f is called
persistently erciting for the plant (g, 7, f), if there exists Ta. 8o, €5 > 0 such that for each
p € Q with |plg = 1 and each #; > 0 sufficiently large. thers exists a f € [t;,1, + Ty] such
that
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Theorem 5 [If the plant |7, 7. f) is persistently ercited then

im iritijg =0
[ )
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