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sSummary

The recent advances in the robust stability analysis of time-invariant uncer-
tain system evidenced that a dramatic reduction of computational complexity
15 achievable when dealing with family of polynomials having the structure
of a polytope [1].

In real world situations the family of polynomials which represent an
uncertain system has seldorn a polytopic structure because of the complex
relationship between physical parameters and coeflicient of the caracteristic
polynomial.

[t is possible, howewver, generate polytopic approximations to this family,
paying the price of an increased conservatism of the analysis (see for istance
31, (6], {71, [4], I5].

In this paper we present an algorithm which enables the covering of the
image of a given function by a polytope of know vertices. This algorithm
works under quite general assumptions on the nature of the function. Suc-
cessively a “domain splitting” algorithm is discussed in order to refine the
immersien. Finally applications of this procedure to robust stability via
Kharitonov's Theorem and “zero-exclusion”™ are discussed.




Decsription of the Algorithm

We consider a function @ : P — R?, where P € R is a bounded polytope.
As mentioned before, the problem we deal with is to find a polytope A
including the set a{P) or, equivalently, to “immerse” the set a(P) into a
polytope A.

Assumption. There exist known affine functions a.@ s.t., for all p € P,

a(p) < a(p) < w(p). (1)

The following algorithm constructs 27y points in R?. Theorem 1 states
that the convex hull of these points includes a(P).

Algorithm. The algorithm is composed of three steps.

Step 1 Define the hyperrectangle D = {6 R |6 [0,1],i=1,...,q}, and

the polytope 11 2P x D; compute the vertices wyy, 1 = 1,2,...,2%,

of 0

Step 2 Canstruct the funclion

an{p,6) = (I, — diag(8))a(p) + diag(é)a(p); (2)
Step 3 Determine the points B (1) 2 gl )it =352 00, B
Theorem 1 «(P) C Conv{amy, 1=1,2,...,2%}.

Proof. A proof can be found in (Garofalo ef el).

If the function a is continuous, then the affine functions a and @ can
be chosen to be constant, e.g. a;(p) = minyer a;(p), Ti(p) = max,er a:(p),
t = 1.2,....g. On the other hand it should be clear that the better the
functions a,@ fit a, the less conservative the immersion will be.

Generally speaking, the determination of “good” funections a, @ is not
straightforward and could require an optimization alzorithm by itself. It can
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be greatly eased if the mapping a is conver and differentiable on P (for a
discussion on this point [3]).

Remark. In many situations the function @ can be written as sum of func-

tions, 1.€.,
alp) = 3 (),

, =1
where the immersion of each @;(P) in a polytope .A; 15 relatively simple.
Then one defines a function

T

s(v) = ZL‘,‘. with v; € A;, fori=1,...,r

It 15 readily seen that a(P) is enclosed into the polytope s{4d; x -+ x A4,).

As said, the goodness of the fitting of the set a(P) by the constructed
polytope largely depends on the choice of the funections a, @. However, this
fitting can be improved at will by immersing the given set in the union of a
mmber of polylopes.

Let 7 be a f‘u‘.l‘rl.]u of the polytope P into k(T ) polylopes, i.e. T =
[Pi,Pay..., T f;r:“_. L_l 1?3’ P. For the sake of brevity we will call T a
polytopic covering, and i]Eirli:IE T as the set of all polyvtopic coverings of P.
For each polyvtope P, € 7, one can apply the algorithm, i.e, first determine
affine functions a'( - ),@"( - ) s.t.

a")(p) < a(p) < @7(p), Vp € Pr

then construct the multilinear functions u{ ’ , * ) according to (2). In view
of Theorem 1, one has

E(T)

U 2. x D)

=1

k(T)

E U Conv a'” ]_T" x D), (3)

r=1

a{P) = a(U,Pr)

I

where the terms in the last union are polytopes computable as illustrated in
the Algorithm.



It is possible to prove that the RHS of (3) approaches 1ts LHS as the
covering gets finer and finer, provided the functions a'™,@") are suitably
chosen.

Summary of The Applications to the Robust Stability
Problem

The proposed algorithm can be used to test the Hurwitz stability of a family
of polynomials

m{s,a) = 8" fays" i ha,, seC, (4)

where @ = {ay,...,a,)7 : P — R" is a confinvous function of parameter p.

Suppose that a{’P) is a polytope. Correspondingly, the family of polyno-
mials F, £ m(+,a(P)) will be a polytope as well in the space of n-th degree
polynomials, We recall here that, under the above hypothesis, the so-called
“edge theorem” assures that a necessary and sufficient condition for the Hur-
witz stability of the family (4) is the stability of all the polynomials on the
edges of F..

In general. a{P) is nol a polytope (unless mapping e is affine) nor is F.
Application of the Algorithm vields a polytope including F,, to which one
can apply the edge theorem.

Another application of the preeceding results can be obtained recalling
the “zero exclusion”™ principle.

Let us consider again the polynomial family described by (4). Let #(w, a) =
m(juw, a). The following result holds {[2]).

Fact 1 The polynomial fanily F, is Hurwitz iff (a) for some p* € P the
pelynomial m( -, alp™)) is Hurwitz; and (b) 0 € #{R x P)).

Application of Iact 1 can be eased by a suitable use of our Algorithm.
Indeed, good algorithms exist to establish whether the origin belongs to a
given polygon in the complex plane ([9]). Thus, even if a{P) is not a polytope,
using the Algorithm it 1s possible to determine a polytope A 2 a(P). Since
#(w,.A) is a polygon, after a suitable gridding of the imaginary axis, one can
apply the above-mentioned algorithm to check the condition stated in Fact 1.




This procedure can be improved using a result in (Sideris, 1889). We
first assume to have constructed, if necessary, a polytope A 2 a(P), whose
g vertices are denoted by a;). Thus, we can consider the vertex polynomials

5 ot : . . LT i
(restricted on the imaginary axis) #:(w) = #(w, ), i = 1,..., p. In turn, for
each couple of vertices a(i), a(;) we can consider the edge polynomials {again
restricted on the imaginary axis)

#ii(w0, A) = (1 = Afi(w) + Afjlw)  for € [0,1).

Let £, be the (finite) set of finite positive real solutions of the p(p —1)/2
edge equations:

R(w)Tnj(w) — R (w)Sm(w) =0, fori,j=1,...,4. (5)

where we have indicated with R(e) and (o) are the real and imaginary part
of the complex number o, respectively.
The following holds, (3]

Fact 2 The family F. = m(+, A) is Hurwilz iff (a) for some a* € A, the
polynomial w( -, a®) is Hurwitz; and (b; 0 & #(0. x A).

We will use the following corollary.

Corollary. The family F. = (-, .4) is Hurwitz iff {a) for some a~ € A,
the polynomial w(-,a") is Hurwitz; and () 0 ¢ #(f1 x A), where 2 is any
interval containing 1.

By estimating the maximum modulus of the roots of each polynomial
equation in (5], e.g. by Lehmer method, and taking the maximum, say Cuax.
of all these estimates, we obtain a suitable set £ = [0, ©yay). Our Algorithm
can then be used to immerse the set #(01 x A) into a polytope (aciually a
polygon in the complex plane) and verify the satisfaction of condition (b) in
the Corollary.

References

[1] Barmish, B. R. (1988). New Tools for Robustness Analysis, Proceedings
af the IEEL on Decision and Control, Austin, Texas. Also in Dorato, P.,
and R. K. Yedavalli (Eds.) (1990). Recent Advances in Robust Conirol,
IEEE Press, New York.




[2] Callier, F. M., and C. A. Desoer (1991). Linear System Theory, Springer-
Verlag, New York.

[3] de Gaston, R. R. E., and M. G. Safonov (1988). Exact Calculation of
Multiloop Stability Margins, IEEE Transaction on Automatic Control,
AC-33. no.2, pp. 156-171.

[4] Garofalo, F., G. Celentano and L. Glielmo (to appear). Stability Robust-
ness of Interval Matrices via Quadratic Lyapunov Forms. IEEE Transac-
tion on Automatic Control

[5] Garofalo, F., L. Glielmo, and L. Verde. Positive definiteness of quadratic
forms over polytopes: applications to the robust stability problem. Sub-
mitted for publication.

6] Sideris, A. and R.R.E. de Gaston (1986). Multivariable Stability Mar-
gin Caleulation with Uncertain Correlated Parameters, Proceedings of the
IEEL on Decision and Control. Athens.

[7] Sideris, A. R. 5. Pena (1988). Fast Compulation of the Multivariable
Stability Margin for Real Interrelated Uncertain Parameters, Proceedings
of the American Control Conference, Allanta.

[8] Sideris, A. (198%). A polynomial time algorithm for checking the robust
stability of a polytope of polynomials. 1989 American Control Conference,
631-656. Also in Dorato, P., and R. K. Yedavalli (Eds.) (1990). Recent
Advances in Robust Control, IEEE Press. New York.

[9] Wolfe, P. (1976). Finding the nearest point in a polvtope. Mathematical
Programming, 11, 128-149,




