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Abstract— A training procedure for a elass of neural net-
works that are asymptotically stable s presented. The training
procedure is a gradient method which adapts the interconnec-
tion weights as well as the relaxation constants and the slopes of
{he activation functions used 5o as the error between the expect-
ed and obtained responses is minimized. A method lor assuring
that stability |s maintained throughout the training procedure
s akso given. Such a network was used to identify the dynamlc
behavior of several nonlinear dynamical systems which includ-
ed a PUMA 560 robot and a boat based on collected rudder/
neading data.

1. INTRODUCTION

This paper is a summary of some recent work done in the
area of 1dentification of nonlinear systems using neural net-
works. The main purpose of this work is to provide a way of
establishing models of complex nonlinear systems that can
bz used in controllers. Newral nevworks are selected as a po-
ntdally effective way of modeling these sysiems, since a
trained noural network is fast and casy w implemeant, proper-
tes that are destrable in real controllers.

One problem with using a system as complex as a nonlin-
sar neural network in a control or identiflication seling is that
they arz often too complex to analyze fully: in paricular,
Lheir stability can nol be assured. When dealing with real sys-
ems, stability is the single most important property of acon-
troller or model. Fortunastely, a class of neural networks
exists which is known to be asymptotically stable. This class
of neural networks is used here, and the work dong on iden-
lification pertains o this class of dynamic neural nevworks,

Il. BACKGROUND

It has beon shown [1] that asymptotic stbality 15 ensured
for neural networks described by the differential equation
D= -TO+ W) +b 1)

In (1), there are & neurons divided into k classes, and
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is the network connectivity matrix, T = diag (1) is the di-
azonal matrix of neural relaxation constants, & 15 the input o
the neury] network, and F{00 belongs w the class of so-
called neuromime functions, which are essentially positive
and monotonically non-decrzasing, The condition an W that

TR -
guaraniees asymptotic behavior is that it must contain all of
its positive entries on one side of the main diagonal [1]. This
gives an easy way Lo check whether a neural network is sta-
ble. For instance, the neural network shown in Figure 1 is sta-

ble provided that the connection weights in submatrices W,

and W,, are non-positive (i.e., inhibitory). This result is ex-
tremely useful in the arca of identification and contrel. The
most important feature of a controller or model is that it must
be stable. By starting with a model as defined by (1), stability
i5 ensured.

Fig. 1. Sample Neural Metwork

[1I, PARAMETER ADJUSTMENT IV STABLE NEURAL
NETWORKS

This scction discusses a method for adjustng the weights
and other parameters of neural networks that are stable in the
sense described in Section 2. The general approach that is
psed here is to define some a criterion and then adjust the pa-
rameters in a direction that will decrease this cost In this
sense the technique is similar 1o linear recursive adaptive
methods [4] and to classical back propagation [51. However,
since the stable neural networks described in section 2. have
certain restrictions on the polarity of the connection of class-
25, a straightforward gradient adjustment is not possible. A
solution for this is also presented here.
AL Gradient af Cost Function

The general equation for calculating the behavior of the
class of neural networks of interest hera 15

0 =—-TO+WFO)+h ()

One possible criterion for measuring the performance is the
quadratic cost function
&

Jie) = 1/2{0-0,)TA(0-0,) =1/2¢ Ae (5

where 0, is the desired state of the neural neowork. Als a
diagonal matrix with ones corresponding to outpul neUrcns
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and zero's elsewhere. As in other recursive adaptive methods
2,41, parameters © in the newral network are adjusted along
the negative gradient of this cost, e,
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The chain rule for differentdation is used te allow for the cal-
culaton of this gradient for parameters associated with ney-
ron
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The netaton Y, is used to denole the derivative of the cost
with respect o the activation of neuron /. If neuron § is an out-
put neuron, this derivative is simply given by

Y =00 ®)

In a manner analogous to traditional back propagatien of
the error [3], this gradient may be calculated for units that are
not output neurons by using the values of the gradient in all
the neurcns k that have neuron § as inputs:
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Here, the notation A, has been introdoced to represent the

partial derivativeds  /do. . Tocalculaie A, it s necessary

use the differenual equation which defines the behavior of
the newral netwerk, Rewriting (4) specifically for newron &,
and wsing the operator £ o represent differentiation results
in

(1,+D)o, = Zwkjf[ﬁj] +b, (10)
I
Dilterenuating (107 with respect 1o ¥ resulls in

Ay = (=T A+ w f (o). (11}

All the derivadves reguired in {7) to adjust a parameter 6
have now been obtained, except for the derivatve 30}/5‘9.
B. Input Weight Adjusiment

Let 8 represent a connecting weight w, which connects
neuron ¢ {input} to neuron j. Use the notation E_,_”. = Ejlaj.f Fjwﬁ.
Differenuating (10) with respect 1o Wi the differential equa-
tion for E,ﬂ is obtained:

g = —18,+f(2) (12)
Using this equation and the resulis of the previous section,
equation {7) may now be writlen as
W,
113
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with v calculated using (8) ar (9) as appropriate.

C. Adfustment of Structural Parameters

The same analysis that was used o determing how to ad-
just the connection weights can also be used to obtain a for-

mula for adjusung any of the other wvariobles that
parameterize the neural network [6].
0D Weight Clamping

Secticn 2 describes a class of neural networks that are as-
ymptotically stable, This condition is guaranieed provided
that the connectivity matrix W has all of its positive entries
on one side of the diagonal [1]. However, (13) gives a formo-
la for adjusting the connection weights that may violate this
condition. To combat this, it is necessary to check the polar
ity of certain crucial weights after each weight adjustment,
For instance, as discussed in section 2, if the weights labeled
W,, in Figure 1 are guaranteed o be non-positive, then the
neural network will be stable. Thus after any weight in W,
is adjusted wsing (13}, the weight shoold be checked o en-
sure that it is not positive. If it is, then it should be clamped
at 0. This technigue ensures that inhibitory weights stav in-
hibitory throughout the training procedure.

IV, IDENTIFICATION

The term identification is used in this section to refer to the
process of developing a model of an unknown sysiem by ob-
serving s input/output behaviour [2,4].

In this section, we propose 4 suitable nearal network archi-
tecture and wse it w klentfy the dynamic behavior of a
PUMA-360 two-link robot and that of a boat.

A, fdentification Architecture
Consider the nonlinear system described by the relation

¥
r)
L +4y”
Il y remains relatvely constant near some value ¥, then
this system can be approximated by a first order linear sys-
tem withapoleat (1-4y7) . If ¥ varies from this value,
then the pole can be thought of as “roving" in some sense. Al-
though this is not an exact descripuon of the behavior of the
system, it does illustrate one of the more common Lypes of
nonlimearity which is encountersd in real sysiems such as
valve flows and airplanes cruising at various velocities,
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Fig. 2. An Architectore far Syvstemn [dentfication

To take advantage of this type of nonlingarity, the archi-
tecture of Figure 2 15 proposed for general system identifica-
tion.Labels | and O refer to the input and output of the

system, and N1 and N2 refer 1o two classes of neural net-
works. The block marked § 15 2 special connection of classes
called the “schedoler class™ and it controls or scheduoles
which neurons will be active and when, thereby emulating
the movement of the pole.

Mewrons in the scheduler class have a peaked response as
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shown in Figure 4. (This class of neurons is not a single class
as governed by (4). However, the response shown 1n Figure
+ wis generated using a combination of 4 standard classes in
a configuration shown in Figure 3. For clarity, the scheduler
neurons are discussed as a single class),
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Fig. 4. Response of Scheduler Newrons

Each neuron in the class has a peak p that ccours at a dif-
ferent value, Figure 2 shows that the scheduler class receives
input from I and O. Thus, depending on the value of the input
and output, different neurons in AT and A2 will be active.
8 ldentification of a Two-Link Robot Arm

A two-link robot arm is known to have its dynamic re-
spanse governad by the differenual equaton
Hgg+hig g g+Fg+giq =dv (13}

where the siate gcontains the angle 8, that the [first link
makes with the vertical and the angle 8, that is formed be-

tween the (wo links; /i (g) is the 2x2 inertial matrix; & (q, §}
models the Coriolis and centripetnl forces; F is the friction
malrix; ¢ (¢) represents the gravitational torque; and @ is
the vollage-lo-torque conversion matriz [8]. All of these
variables rely on many machine-specific factors, such as di-
mensions, weights, inertia, and joint friction, To obtain an
secerite model, one measures directly s many variables as
possible. This was done for a PUMA-560 robot. Lengths,
musses, and inertias were obtained through direct measure-
ment [9]. Variables which could not be easily directly mea-
sured were the matrices & and <. This represented four
enknown scalars in total. Classical RLS parameter estima-
tioa was used to ide atify these four variables, and the final re-
sponse lo the input vector shown in Figure 7 is shown in
Figure §. Although Figure 8 shows that there was some pre-
diction errar, 1t was found [8] that this model was accurate
enough (o allow for an extremely accurate controller design
when this model was used for closed loop contral, The fact
that the model deviates from the actual response underlies

the difficulty in identifying complex systems using tradition-
al model based metheds. Ny -
A neural nerwork was trained to identily the dynamic re-

sponse for 8, the angle that the first link makes with the ver-
tical. Both v, (r) and v,(r) were used as inpuls to the
system. The nm:ml network had an architecture similar to
that shown in Figure 2, except that N2 was not included.

Class A1 contained 5 neurons as did the scheduler class.
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Fig. 6. Claszical Model (Equation 15) and Measured Response to Input
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Convergence of the response was rather slow; several mil-

lion training iterations were required, Good results were ob-
wmined after two days of maining on a Sparcstation. Afler
training was completed, the neural newwork followed the
maodel closely The response is shown in Figure 7,
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This reveals that the neural network tracks this particular
input betier than the classical model obtained uwsing least
squares parameter estimation and empirical measursment,
The advantage of the neural network is that due to its small
size and simple calculation procedure, it is ideally suited to
use in real hardware controllers driven by chips such as the
HC-11, Furthermore, the labornious process of physical pa-
rameter measurement is avoided
., Tdentfication of a Boat

A boat may be treated as a SISO system, with the rudder
angle as the input and the heading as the output Extensive
work has been done to produce accurate models for marine
craft[3].

Figure % shows the data which was used to rain the neural
network, This is equivalent (o approximately 2 minutes of
data collected from the boat and shows both the rudder angle
and the response which the onboard syroscope viclded,

The training method consisted of applying the input to the
neuril network, calculating its response, and using the mea-
sured heading 1o generate an error signal for weight adjust-
ment. Figure 9 shows the response of the trained network to
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the training data The neural network follows the measured
response well. The difference between the measured and
newral net response is due o the fact tat the measurement
noise in the heading s a stochastic process which cannot be
predicted by the deterministic newral net model,

To estif the newral network had completely identified the
boat at this particular speed through the water, a longer run
of data was used. This consisted of approximately 12 minutes
of collected data. The weights which had been developed on
the shorter raming run were used. Figure 10 shows that the
neural network had indeed developed 2 good model of the
boat since good tracking was obtained throughout the longer
test run,

V., CONCLUSIONS

In this paper, a class of recurrent neural networks that was
known 1o be stable was investigated. A training procedure for
the neural networks was obtained Formulae for adjusting the
network parameters along the gradient of a cost functon
were derived. A method for dealing with stability restrictions
on the connecton polanty of certain classes within the neural
network was discussed. This wraining procedure was used o
train very small neural networks o identify several nonlinear
systems that imcluded an actual two-link robot and a boat, Al-
though the rraining ume for the neural network was seen to
be rather long, the advantages of this type of identification
model were seen to be that it allowed accurate identification
and produced an easy to calculate, a guaranteed stable mod-

els of very complex sysiems,
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Fig- 9. Measered and Trained Neural Net Response
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