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Abstract

The primary motivation for the use of feedback control is to achieve stabilization,
disturbance attenuation and sensitivity reduction in the phase of variations in the
plant parameters. The design of the feedback controller is based on a mathematical
model of the process which attempts to mimic the dynamic behavior of the physical
system. Unfortunately, no matter how sophisticated the model might be there will
always be uncertainty associated with the modeling effort.

This suggests that the model of the process should be accompanied by an ap-
propriate uncertainty description in order to address a realistic feedback synthesis
problem. Then, the feedback controller should be designed to satisfy stability and
performance requirements for the nominal plant, as well as for the family of plants
that is generated by the accompanied uncertainty description. The mathematical
description of the uncertainty has a profound effect in this task. Two different kinds

of perturbations have been considered in the literature:

o Real parameter uncertainty, expressed as bounds on the real parameters of the

model.

e Norm bounded complex uncertainty in the inputs and outputs of the process

(sensor or actuator uncertainty).

Real parameter uncertainty assumes that the order of the plant is known. This
means that the differential equations that describe the dynamics of the system are
known, but some of their coefficients can vary. It is a very appealing to practicing
engineers because the bounds on the real uncertain parameters can be interpreted
intuitively. Complex uncertainty treats effectively unmodeled dynamics. However,
the intuition on the selection of the complex bounds can be very limited in certain
applications.

For this class of uncertainties the stability and performance analysis of the feed-
back loop is then carried out with the cencepts of the multivariable stability margin,

or the structured singular value (SSV, or u function). These quantities made pos-

sible the derivation of necessary and sufficient conditions for robust stability for the




uncertainty description considered. These conditions are usually checked in terms of

an upper bound on the g function, which is computed from the solution of a convex
optimization problem. For purely complex uncertainty numerical evidence suggests
that this bound is tight (ezact for three blocks or less). This means that the upper
bound provides tight sufficient conditions for robust stability in the presence of com-
plex uncertainty. Unfortunately, in problems involving real parameter uncertainty,
the upper bound on g can be arbitrarily conservative because the real nature of the
parameters is ignored.

For nonlinear systems there exist some results on robust stability in the presence
of unmodeled dynamics. However, nonlinear systems with parametric uncertainty
has been studied much less.

The first part of this paper focuses on linear systems and presents a nonlinear
programming approach for the exact computation of the stability margin (or equiv-
alently the SSV) for real parameter uncertainty. The problem is formulated with
the aid of the zero ezclusion condition as this is interpreted in the Hurwitz domain.
Since the resulting nonlinear program is nonconvex, it admits several local minima.
A decomposition approach is proposed for its efficient solution. The approach derives
an upper and a lower bound on the stability margin from the solution of a primal and
a dual problem. These problems are derived from an appropriate partitioning of the
variable set and nonlinear duality theory. The algorithm iterates between the primal
and the dual problems and tightens the bounds at each iteration. It is guaranteed
to converge to the global minimum in a finite number of iterations. An advantage of
the method over existing domain splitting algorithms is that it explores the structure
of the nonconvexities of the problem. As a result computational complexity does
not explode with the number of the uncertain parameters of the system, but rather
with the parameters responsible for the nonconvexities of the related optimization
problem. An example is presented to illustrate the approach.

Aside from possible computational advantages this method provides an attractive
framework for the extension of the analysis to a class of nonlinear systems with
parametric uncertainty. This is a very difficult task because in nonlinear systems

the parameter variations affect not only the stability of a steady state, but also the




number of steady states of the system. We assume that the nominal system operates
at a single stable steady state. Then, a parametric local stability analysis is performed
with Liapunov’s indirect method. The basic idea is to treat the linearization point
(the system’s steady state) as a variable which depends implicitly on the uncertain
parameters of the system through the steady state equations. This allows for the
definition of a®ienlinear stability margin. With the aid of this quantity we prove a
theorex{u of necessary and sufficient conditions for both robust stability and uniqueness
of the steady state of the system. The nonlinear stability margin is computed from
the solution of a nonlinear programming problem with similar structure to the one of
the linear case. This provides unity with the corresponding linear theory. Although
the results can not cover the whole phase plane of uncertain parameters, they are
quite useful for the region of the phase plane that there is no multiplicity in the

steady states. A case study of a nonisothermal stirred tank reactor is presented to

illustrate the analysis.




