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Abstract
In this paper, we demonstrate a reliable and robust al-

gorithm to localize a mobile robot in a relatively consis-

tent with an apriori map indoors environment. This algo-
rithm uses an Extended Kalman Filter that combines dead-
reckoning, ultrasonic, and infrared sensor data to estimate
current position and orientation. Through a thresholding
approach, unexpected obstacles can be detected. Experi-
mental results from implementation on our mobile robot,
Nomad-200, are also presented.

1 Introduction

Consider a typical indoors structured environment as shown
in figure 1. Given ultrasonic, infrared, odometry data and
a representation of the environment, a robust method for
localizing a moving mobile robot is desired. This localiza-
tion method should not alter the environment by uses of
beacons or markers or be influenced by unexpected objects
not depicted in the apriori environment.
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Figure 1: Typical Indoor Environment

Obtaining accurate position and orientation information
of a mobile robot is not new. Various sensors have been
used in the localization procedure, i.e. Vision [KK92], Op-
tical Range finders [Cox91], Ultrasonic Beacons [Kle92], and
Ultrasonic sensors [Cro89, AMS1, HMB92]. The three main
objectives in the design of a localization system is speed,
cost and accuracy.

Vision guided localization by Kak and Kosaka, [KK92]
resulted in superior accuracy but only with the reduction
of speed and increased cost. Ultrasonic beacon estimaticn
dramatically improves speed with an expected decrease in
accuracy but also requires that the environment be redefined
by the addition of ultrasonic beacons. Research in pure ul-
trasonic ranging has been directed towards statistical map
matching, wall matching, and individual sensor matching
techniques. A static ultrasonic localization method by sta-
tistical map matching, [HMB92], requires a large amount
of computational time. A wall matching techniques pro-
posed by Cox,[Cox91] performs well using optical rangefind-
ers but its performance would likely decrease with the large
beamwidth of ultrasonic sensors as compared to optical sen-
sors since it requires a sensor with a small beamwidth. A
similar wall matching technique by Crowley, [Cro8%] uses
ultrasonic sensors with nice results. Crowley’s method re-
quires finding at least 3 consecutive sensors which form a
line, thereby indicating the existence of a wall in the envi-
ronment. Therefore, many sensors containing relevant data
may be ignored. Preciado et.al. implemented a recursive
method which only incorporates sensor information which
improves the estimate. [AMS91]. Preciado et.al., does not
attempt to accurately determine the expected sensor val-
ues by examining the entire sensor beamwidth but places
a variance encompassing the entire beamwidth. In addi-
tion, using the recursive formula stated, angle orientation is
initially updated. Subsequently, position is updated. This
was not proven to be optimal as is a Kalman filter, which
updates orientation and position simultaneously.

We want to design a system which can combine all rel-
evant sensor information while the robot is navigating and
use said information to accurately localize the robot. In ad-
dition this system should identify areas possibly containing
obstacles not indicated in the apriori map. By defining these
areas, an avoidance algorithm can be designed tc optimally
avoid detected obstacles [K592b].

A system that uses Kalman filters and thresholding that
successfully localizes 2 mobile robot with or without the ad-
dition of unknown obstacles in the environment is presented
hCIC.

As shown in figure 2 we are determining a rough estima-
tion of postion through changes in the incremental encoders
values, X, Y. and 4.. If we filter the sensor information, Z,
to obtain only relevant information and combine this with




the rough estimation of position by the encoders, we can
determine a better estimate of the postion using a Kalman
filter. With this localized postion, we can better estimate
postion future position by indicating changes between the
encoder pestion and real world postion. Finally, we use
a nonholonomic motion controller which uses the Kalman
estimated postion to conveys translation and rotation in-
formation to the mobile robot to Navigate the vehicle and
complete the system loop
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Figure 2: Program Layout
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2 Problem Statement

In order to be able to mathematically state the problem,
a descriptive analysis of the vehicle and sensor model is
necessary.

2.1 Description of Robot

The robot is a 3-wheeled, cylindrical, zero-gyro radius robot.
Sensor information is obtained from ultrasonic, tactile, and
In each ring, there are 16 individ-
ual sensors located at 22.5 degree increments around the
robot. Odometry measurements are obtained from encoders
located on a synchronous drive system. The robot can be
seen in figure 3.

infrared sensor rings.
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Figure 3: Mobile Robot Sensor Configuration

2.2  Vehicle Model

Assuming a two dimensional world, we can define the robot
configuration w.r.t a world coordinate frame W by vector

Xuw = [Zw Yw 8u]T containing its position and orientation
We consider another coordinate frame B which is the wall
coordinate frame that defines the motion of the robot based
on odometry. W and R are not the same, in general, becaus
R includes the uncertainty accumulated by the integration
of the error during rolling. Let’s denote the configuratian
of the robot w.r.t R by X, = [z, y- 6-]7. The motin
equations w.r.t to R can be given by the unicycle modd

[PK93] $

%= £(X) 0
where ‘
cos(8,) O o
f(X.)=| sin(8,) 0| u= [ u; ] @
0 1

and uy, uy are the translational and rotational velocities
respectively. The motion equations w.r.t W can be easly
obtained if the cdometry error (wheel slippage, etc.) isin
cluded as noise n = [ny n3 n3]7 and an approximate discrett
time model is used then

Xo=f(X.) u+n (3)

It is obvious that the addition of noise creates the relative
motion between frames R and W, depicted in figure 4.
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Figure 4: World and Robot Frames

2.3 Description of Sensors

Any type of sensor inherently has disadvantages which need
to be considered when using it. The three main sensing
instruments used for this system, Infrared, Ultrasonic, and
positional encoders have distinct disadvantages which need
to be addressed. In the following paragraphs, an overview
of the problems associated with each sensor are covered.

2.3.1 Ultrasonic Sensors

Each ultrasonic sensor has a beamwidth of approximately
23.6° [BK91] By examining all 16 sensars, we can cbtain a
360° panoramic view fairly rapidly. Unfortunately, ultra-
sonic sensors work upon a send/receive echo type format,
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Therefore, no two sensors can be simultaneously activated
unless specific software and/or hardware is included to dis-
tinguish the different sonar signals [BK88]. In order to de-
crease crosstalk, (the transmit pulse of sensor 7 being re-
ceived and causing an erronecus value on another semsor),
we must fire each sensor individually. In addition, since the
Polaroid sensor modules combine a transmit and receive sys-
tem into one compact package, we must blank the receive
system such that the residual transmitied pulse on the sen-
sors in not detected as a received pulse. Therefore, with the
sonar system we can detect objects from a minimum range
of 17 inches to a maximum range of 22 fect with a 30 degree
tesolution.

2.3.2 Infrared Sensors

Similar to the sonic sensors, infrared sensors work upon a .

send/receive format. These sensors emit an infrared light
from one source, and measure the amount of reflected light
with two light detectors. Since these devices measure light
differences, they are highly biased by the environment. Ob-
ject color, object orientation, and ambient light all can con-
tribute to erroneous readings but since the transmission sig-
nal is light instead of sound, we may expect a dramatically
shorter cycle time for obtaining all infrared sensor measure-
ments. Considering all these problems as noise factors, we
can assume and prove if necessary that for this type of in-
frared detector, infrared measurement are only acceptable
for short distances. In our system, infrared sensors were
used to provide information for the shorter to 17 in. area,
where the ultrasonic sensors are not used.

2.3.3 Odometry Measurements

A low-level integration routine calculates cdometric loca-
tion using the current and previous translation (d.(k)), and
rotation (re(k)) sampled encoder values, of the mobile robot
according to the following equations [Tec12].

(k) * Te(k - 1)

z(k) = z.(E-1)+ Ad.-cos(" : ) (4)
) = 3l —1) + A, sin(TD) Frelb— )y
o)) = ru(k) (6)

where Ad, = d.(k) — de(k — 1). Odometry, unfortunately,
is very sensitive to errors. Unless we assume perfect rolling
conditions, we should expect to obtain some odometry mea-
suring errors in the form of drift, bias, and slippage. When
dead-reckoning is solely used errors accumulate over time
as integration error, due to the nonholonomic ntature of the
rolling motion. Over short travel distances we can expect in-
significant errors but over long paths these errors will grow.

2.4 Mathematical Statement of Problem

If dead-reckoning was used to obtain the configuration X,
from integration (i.e if integration of eq. 1 was only used)
then over large distances, this position would contain large
integration errors. Therefore, the knowledge provided by

the system equations should be complemented by this ob-
tained by the ultrasonic and infrared sensors. Since those
sensor measurements are not overlapping (ie. only one
range value is considered valid for each sector), we can com-
bine these measurements thereby creating a sensor vector Z,
which contains 16 elements signifying the distance for each
sector.

Therefore, we are looking for some function F, that se-
quentially provides optimal estimates

Rolk) = F(Xulk-1),2(F)) k=12.. ()

of the configuration of the robot by combining the system
equations knowledge and the sensor readings. Optimality
is in the sense that the estimates should minimize an error

7= E{(Xu(k) = Xu(k))T - (Xulk) - Xu(k)}  (8)

where E {-} denotes the expected value of a random vari-
able.

3 Approach of Solution

The above stated problem can be attacked through the use
of the Extended Continuous-Discrete Kalman filter [Gel80].
In the following subsections, the adaptation of the Kalman
filter to handle this problem is presented.

3.1 Model Equations

The system and measurement models are :

f(Xu(t))+n (9)
Ru(X(te))+ve k=1,..,16 (10)

where n ~ N(0,Q), va ~ N(0, R), are the odometry and
sensor noises, while z; are the sensor ‘measurements for sec-
tor k. Finally, ha, the k-th measurement function, is defined
as the function which relates current configuration with the
measurement that is expected to be received from the k-th
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3.2 Measurement Functions

Given the current configuration Xy of the robot, we need to
calculate the expected sensor values for each sector. This
is actually the minimum distance ray intersecting a wall
contained in the k'* sensor’s beamwidth. Denoting zj and
vl as the coordinates of the minimum distance intersection
for sensor k, and z§_ and y‘;h as the coordinates of the k**
sensor, at time instant t;, (see figure 5), we formulate the
distance equation as :

ra(Xu(t) =de = V(=i — =L + (i -3 (1)

where z§ , yi,, z),, and ¥, are all functions of X,.
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Figure 5: Derivation of Sensor Measurement

3.3 State Propagation
The state estimation propagation equation is :
Xu = f(Xu(t)) (12)

In the implementation of the integration of the above equa-
tion we encounter timing problems due to the timing delay
between decision of 2 new control and low level implemen-
tation. If we assume that over short distances odometry is
accurate, a fairly accurate odometry value based upon incre-
mental encoder changes can be obtained. By reformulating
the propagation equation we have:

cos(faiss) —sin(Baifs) O Az,
Xubt= sin(Baisy) cos(Baigy) O Ayr (13)
0 0 1 Ab.

The rotation of the incremental odometry changes is nec-
essary to realign the robot and fixed frames. fuify is the
difference between the estimated and odometric angle of
the wheels, which is equivalent to the difference between
the world and mobile robot frames.

3.4 Covariance Matrix Propagation

The error covariance matrix is defined as P =
E{(Xu,(k)—Xu,(k))-(Xw(k}——Xw(k))""} and its time
propagation is governed by the following matrix Ricatil
equation

P(t) = F(Xu(1))P(t) + POFT(XL(t)+Q  (14)

In order to improve the accuracy of the error covariance
propagation, we decided to use a Taylor series second order
approximation to the propagation equation by using the gn
order time derivative of the error covariance matrix

L (15)
X

where F is defined as

F(Xu (1), 1) = LX)

3X(2) (16)

x()= % (e)

3.5 Filter Equations

The nonholonomic model of the mobile robot and the mes
surement function hkthat is of trigonometric form, are both
inherently nonlinear. Therefore, an extended version of the
Kalman filter is necessary. Listed below are the Filter Equa
tions :

Xa(+) = Zu(=) + Kalzn = u(Xa(-))]
Pu(+) =1 = KB {(XA(=))]Pa(=) (1)
K= P;.(-!—)HE‘R;]'

with Hp defined as

3}1;.(X(h.)

B Xu(-) = 330)

| (en)=%u0-) (18)

where X.(—) is the expected state just before the arrival of
the k-th measurement (it is obtained by state equation inte.
gration, as described in section 3.3), Xi(+) is the expected
state just after the arrival of the k-th measurement, Pi(-)
is the error covariance matrix just before the arrival of the
k-th measurement (it is obtained by error covariance matrix
equation integration, as described in section 3.4) and Pi(+)
is the error covariance matrix just after the arrival of the
k-th measurement. ;

There are two different methods in order to calculate the
Kalman gain matrix Ki. [Gel80] We chose the form shown
above in order that the largest matrix inversion would be of
a 3x3 matrix.

3.6 Unexpected Obstacles

During robot operation, various unexpected obstacles may
interfere with robot localization. Suppose, an unexpected
obstacle detected by sensor j is located in the environment
as shown in figure 6. In addition, suppose that sensor 4
was predicted to catch the corner at A as its distance mea-
surement, missed corner A.

Expected Reading
M

! Sensor #]
Sensor #

Actual Reading
Expected Reading

A

Figure 6: Sensing Discrepancies

Consider now the profile of the difference value (i.e actu-
ally received range signals - predicted range signals) from
the 16 sensors as presented in figure 7. If we examine the
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difference between predicted and actual sermsor information
for this example, we would notice a large discrepancy be-
tween valid and incorrect data for those two cases.
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Figure 7: Sensor Comparison

Therefore, an alteration is introduced so that the Kalman
filter will not be incorrectly biased by sensor readings i and
j. In normal operation, each sensor has a variance assocl-
ated with it, indicating the uncertainty that we have about
the incoming data from the sensor. If we decrease this un-
certainty factor for a given sensor, we decrease the bias that
the robot has from that sensor. By significantly increasing
this uncartainty factor we essentially removeits contribution
to the Kalman filter. If a threshold is created, as shown in
7, then all values outside the threshold are considered in-
correct and ignored.

In addition to unbiasing the filter due to incorrect mea-
suremenis, this method also indicates possible unexpected
obstacles which a collision avoidance scheme could avoid.
In the event that an unmodelled object is in the robot’s
sensors field of view, the sensors detecting sald object will
return values considerably lower than the predicted values.
When comparing the actual to predicted sensors value, we
will obtain a lazge negative discrepancy. Now if consider
the problem of missed edges, we will obtain the inverse. In
the missed edge case, we will obtain actual values dramat-
ically larger than the predicted. Therefore, through this
thresholding method we can identify the type of sensor dis-
crepancy, missed edge or unmodelled feature.

4 Implementation

Implementation of the localization system required compro-
mises based on numerous experiments. In the following
paragraphs, problems and solutions associated with each
area are highlighted.

4.1 Definition of the Apriori Map

In order to make the system stable, we nesded to minimize
the number of calculations per Kalman Filter cycle. We
decided to simplify the apriori map definition so that the
calculations involved in A(X,) are minimized. Ia ignoring
any fine detail of the hallway (i.e. The 49 doors which are
depressed from the hallway by approximately 5 inches) and
selecting motion control gains accordingly, we decrease the
robot’s sensitivity to a2 non-ideal map. By ignoring these
doors, we unfortunately increase the uncertainty in position
and orientation.

4.2 Sensor Variances

The accuracy of ultrasonic sensors is highly dependent on
the texture of the reflecting surface. Rough surfaces will
return the wavefront produced by the semsor at any ind-
dent angle as opposed to smooth surfaces which will return
only wavefronts which are incident on the surface at near to
perpendicular angles. Through experimentation, the vari-
ance dependency on distance was found. Generic ultrasonic
sensors do not contain any orientation information of the
reflecting surface, though it may be possible to obtain fea-
ture information as proposed by [BK91]. If we assume we -
can accurately predict robet location and orientation, we
may place a orientation variation to improve the system
response. Through additional experimentation with the en-
tire system an orientational variance was determined. The

resulting variance equation for sensor “I” is :

Rii = d} - (0.04 4 0.5 |sin(finc)]) (19)

where d} is defined in eq. 11 and 8in. is the angle from
perpendicular that the predicted semsor ray encounters the
wall. Both parameters are depicted in figure 5.

4.3 (Odometric Variances

Odometric variances are dependent on the type of floor sur-
face. In our experiments, we have a carpeted floor. Through
experimentation we obtained the variances diag(Q) =
[0.001 0.001 0.0001]T, where @ was defined in section 3.1.

4.4 Motion Controller
The selected motion control algorithm was of the form
u; = —k{z,c05 0w + yesinfu) + £acos fuw + Ya sin 8, (20)

uz = = [—k(yecos By — z.sinfu) — zasin fu + Facosfu] (21)

m |

where z.(2) = zu(t)—za(t), ve(t) = yu(t)—ya(t) are the po-
sition errors and za(t), ya(t) are the reference trajectories.
It was implemented in order to track a desired trajectory
and designed by Pappas and Kyriakopoulos [PK93]. This
algorithm was chosen because of it is highly robust in cor-
recting any type of error in robot position.




5 Experiemental Results

The proposed Extended Kalman Filter localization alge-
rithm was tested using a Nomadic Technologies’ Nomad 200
mobile robot. The Nomad 200 is comprised of a 436 33Mhz
Computer, with a radio link of 19200 baud rate to a Unix
Sparc2 Computer. Low level motion control is achieved
through a Gahlil moticn controller. Currently, we are con-
trolling motion through a rotational and translational veloc-
ity command. The Sensing capabilities of the Nomad 200
are 16 ultrasonic, infrared and tactile sensors. Currently,
the localization algorithm is running on a Sparc2 computer.
This was done only to facilitate corrections to the localiza-
tion code. The total cycle time for localization and Motion
control, including modem commurication to the robot, is
approximately 150-200 milliseconds.

In order to test the localization method, we selected to |

localize and control the robot in our floor hallways. In these
experiments, some of the laboratory doors were left open to
test if erroneous reading are rejected. Seventy Percent of
the walls in our lab are smooth plasterboard which results
in poor ultrasonic measurement for sensors not parallel to
the wall. The remaining thirty percent of the walls are 9
inch square bricks. The depressions in the brick usually give
a fairly accurate reading up to 50 degrees from perpendicu-
lar. The entire path is a carpeted floor. A rectangular path
was selected with a total distance of 360 feet. Robot Veloc-
ity was set at 5 inches/second because of the slow time to
update all sonic sensors.

We can see in figure 8 that we can successfully localize
the mobile robot, even though odometry has dramatically
failed. The slight deviations we see from a path directly
down the center of the hallway is due to room and elevator
doors that we did not model.

Y (inches)
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Figure 8: Mobile Robot Navigation

If we compare the difference between odometry and the
Kalman Filter based estimated position against the desired
trajectory (see fig. 9) we can see that the localization algo-
rithm presented successfully removes the integration error
existent in the odometry.
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Figure 9: Distance from Desired Trajectory
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Finally, if we compare odometry and the estimated ork |
entation against the desired orientation we also see an im-
provement (see fig. 10). The 10 degree oscillations in the
routine are due to the oscillatory converging behavior of the
contzal algorithm and unmodelled doors.
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Figure 10: Angle from Desired Rotation

In tabular form we obtained the following results from 10
successive runs.

Maximum X error (Navigation) 18.1" Maximum Y error
(Navigation) 12.5" Maximum 6 (Navigation) 25.8° Max.
mum Normed Error (Navigation) 18.17

Final X error 30.0” Final Y error 3.0” Final 8 error 10°

The errors in Y and # during navigation can mostly be
attributed to the unmodelled door jams. The X error is
attibuted to the featureless in X information obtained from
the long hallways. The larger errors at the final position are
partly due to the nonholonomic contreller.
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6 Discussion - Future Work

Using this method, we have shown that we can successfully
localize a mobile robot in a partially known environment.
Currently, the entire system is controlled from a Sparc2
computer. Initially, we plan to transfer the algorithm to the
mobile robot’s 486 computer to improve speed and auton-
omy. Since sensor information is obtained while the robot is
in motion, we have essentially reduced the accuracy of the
localization system (i.e. semscrs are not all localized to one
point in space). By possibly translating sensor information,
we can effectively bring all sensor information to one point
in space. We have shown that we can detect unexpected ob-
jects in the environment (see figure 7). By correlating the
unexpected objects detected between successive samples, we
can obtain & rough zpproximation of object location and

speed. Using this information, we are going to implement a .

collision prediction and avoidance scheme designed by Kyz-
iakopoulos and Saridis [KS92a].
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