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Abstract

We consider the problem of identification of linear systems in the presence of measurement naise
which is unknown but beunded in imagnitude by some § > 0. We focus on the case of Lnear
svstemis with a Anite impulse response. It is known that the oprimal identification error is related
(within a factor of 2] to the diameter of a so-called uncertainty set and that the latter diameter
is upper-bounded by 24. if a sufficiently lang identification experiment is nerformed. We establish
thal, for anv & = 1. the minimal length of an identification experiment that is guaranteed to lead
io a diameter bounded by 2108 behaves like 2NLVE] when N iz large, where [V is the length of
the impulse response and f iz a positive function known in closed form. While the frammework is
entirely deterministic, our results are proved using probabilistic toals.
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I. INTRODUCTION

Recently, there has been increasing interest in the problem of worst-case identification in the
presence of bounded neise. In such a formuiation, a plant is known to belong to a model set M,
101 and its measured output is subject to an unknown but bounded disturbance. The objective is to
use input /output information to derive a plant eatimate that approximates the true plant as closely
as possible, in some induced norin. For frequency domain experiments, algorithms that guarantee
accurate identification in the H_ setting were furnished in [4,5,6,7]. For general experiments,
algorithms that cuarantee accurate identification in the £, sense were suggested in [17,18]. These
algorithms are based on the Oceam’s Razor principle by which the simplest model is always used
to explain the given data. The optimal asymptotic worst-case error is characterized in terms of the
tliameter of the “uncertainty set™: the set of all plants consistent with all the data and the noise
model. Other related work on the worst-case identification problem can be found in [8,10,11,19.
[ particular, [10] presents a specific experiment that uses a Galois sequence as an input, and
shows that the standard Chebyshev algorithin results in an asymptotic errer bounded by the
worst-case diameter of the uncertainty set. A Galois sequence is constructed by concatenating a
countable number of finite sequences, such that the £** sequence contains all possible combinations
of {1, +1} of length &, and =o it is rich enough to accurately identifv exactly k paraineters of the
impulse response, The length of each sequence iz clearly exponential in k. Finally, identification
probleins with bounded but unknown noise were studied in the context of prediction (not worst-

case) in [12,13]. Other related work, for nenlinear systems, can be found in [3].

Tl An important result from the waork of [17,18] states that for the model set of all stable plants,
near accurate identification in the {, sense is possible if and only if the input excites all possible fre-
ated quencies on the unit circle. This is due to two reasons: the first is that bounded noise is quite rich
::E]f:; and the second is that minimizing an induced norin such as the £, norm implies that the estimate
Ilead has a very good predictive power. Inputs with such properties tend to be quite long, and this
th of suggests that the sample complexity of this kind of identification problems tends to he quite high,
Tk is as a function of the numbers of estinated parameters of the impulse response.

In this paper, we will study the sample commplexity (required length) of the inputs for worat-cese
identification of F.I.K. plants, under the ¢, norm, in the presence of arbitrary bounded measurement
noise. [t will be shown that in order to guarantee that the diameter of the uncertainty set is bounded
by 2/ ¢, where # is the hound on the noise and K is a constant {larger than 1), the length of the

ance. input must increase like 29415 where & is the length of the impuise response and f is a positive
function. Since the worst-case error is at least half of the diameter, these results show that the
sample complexity is exponential in N even if the allowable accuracy is far from optimal, and
rants capture the limitations of accurate identification in the worst-case set-up. We also show that our
: sample complexity estimate is tight. in the sense that there exist inputs of length approximately
Cam- equal to 2¥/0%) that lead to a 208 bound on the diameter. An interesting technical aspect of

this paper is that the existence of such inputs is established by means of a probabilistic argument
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reminiscent of the methods comimonly employed in information theory. -
ther researchers have also recently addressed the sample complexity of worst-case identi-
fication. In a personal discussion with Poolla {Jan 1992), he pointed out to us {specifically to
Dalileh) that the optimal identification case had exponential complexity, as in the lower bound of
our Theorem 2.1. We have recently received a preprint by Poolla and Tikku [14] which, amoeng
other results, contains exponential lower bounds for the sample complexity of suboptimal identi-
ficalion of FIR systems. These lower bounds are similar to, although somewhat weaker than, the b
lower bound in our Theorem 2.2. Chronologically, the results of [14] precede curs, although we

didn't have knowledge of their results when writing our paper. Finally, [14] contains some upper

]

bounds but, unlike our Theorem 2.2, they are far from being tight. Also, while writing our paper,
we learned that Milanese (97 had arrived to results similar to the exponential lower bound in our
Theorem 2.1. His report does not contain any discussion of the case where the error is within a

factor of the optimal.
I1I. PROBLEM DEFINITION

Let My be the set of all linear systems with a finite impulse response of length N. Any
clement A of My will he identified with a finite sequence (hy,....hx] £ RY . Let [/, be the set
of all infinite real sequences {u, }7, such that ju;| < 1 for all i, and u; = 0 for ¢ > n. Any element
of [, will be called an input of length n. Finally, for any positive number §, let Dy, called the
disturbance set. he the set of all infinite sequences d = {d;}?2, such that |d;| < & for all 1.

We are interested in experiments of the following type: an input u £ U, is applied to an

[unknown) system i £ My, and we observe the noisy measurement
y=h=utd, (2.1]

where = denotes convelution. and where d £ D, plays the role of an output disturbance or mea
surewtent noise. It is clear that, for § > N +n, we have y; = ;, and y; carries no useful information
on the unknown systemn A

The set that contains all plants in the inodel set that are consistent with the input/output

data and the noise model is called the uncertainty set and is given by:

'S'N.nl;brll T-"'] - {'-I:I’ e -'ll""l,.-"l' .: ”.‘.1" - @ “‘l-m E ‘5}

The diameter diam{5) of a subset § of £, is defined by

diam(5) = sup |iz = yil;.
ER)

We then define the worst case diameter for a given input u € [7, by:

Dy lu) = sup sup diam({Sy.(u=g + 48, u)).
die Oy o Mg



Any identification algorithim that lets its plant estimate be an element of the uncertainty set has
lenti- an error upper-bounded by the diameter of the uncertainty set. Besides, it is shown in [15, 16,
ly to 17| that the error of any identification algerithm is lower-bounded by half the diameter of the
nd of uncertainty set. Define
TLOTE u = inf Dgpaln)
lenti- s e
. the = is shown in [17] that
1 “!ln:}ﬂ DY . = 28, {2.2)
ipper Thus, as the length of the experiments increases, and with a suitable identification algorithm, the
aper, o worst-case error can he made as small as twice the disturbance bound 4, but no smaller than 4. A
G - question that immediately arises is how long should n be for the error to approach 24, We address
hin a this question by focusing on the hehavior of the diameter of the uncertainty set, as the inputs are
allowed to become longer.
Let us define
(V) = lliill{ri. Dya = 'luf}, (2.3)
Ang It is far from a priori clear whether n* (V) is finite. This is answered by the following theorem
e £&t which also serves as motivation for the main theorem { Theorein 2.2) of this paper.
el Theorem 2.1:* For any § > 0 and ¥V, we have 2V~ £ ¥ — 1 < n* (V) <2V 4+ W — 1.
L Proof: We start by proving the lower bound on n*(N)}. Fix N and let us denote n*{¥) by m.
Suppose that m < =o, and let A, v € [/,,, be such that Dy n(u) = 2§ and so Ey . (u, A) < 24,
vl Let v e {—1,1}™ be defined by ; = 1ifu; > 0, and v; = —1 if w; < 0. For notational convenience,
we define w; = 0 for ¢ < 0. We distinguish two cases:
{a] Suppose that for every @ £ {—1,1}¥, there exists some i[¢) £ {1,...,m— ¥ = 1} such that
(2.1) gither @ or —¢ is equal to (@) + o =L Vit N =2y +- =1 Uity }- 1t i3 clear that i(¢) can be the same
e for at most two different values of &. Since the numnber of different choices for ¢ is 2, it follows
i that m — ¥ +1 2 2¥=! which proves that m > 2¥-' + ¥ — 1.
I () Suppose now that the assumption of case (a) fails to hold. Let ¢ € {-1,1}" he such that hoth
utpt ¢ and —o are different from (v w1 Wamoge. ., vi),forallic {1,...,m— N + 1}. Suppose that
h=da/({N —1). Then.
N A
[(h = u| =, E-'IHL’{_J. =¥ liz¢hu:'—h|- (2.4)
k=1 =1
Since [¢4] = L and |u;_x| < 1, we see that [ T ¢sui_o| € V. Let i be such that N < i < m. By

our assumption on @, the signs of &;_, cannot be the same as the signs of of ¢; for all &, neither

the same as the signs of —o, for all &, and this leads to the stronger inequality

i
EZG}}H‘.&E <N - L {2.5)
=1

3. We acknowledge Professor Poolla for pointing out an error in the previous version of this

theorem.
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We finally note that for i ¢ {IV, m], at least one of the summands @, u( .. 18 egual to zero, whica

implies that Eq. [2.5) is valid for all i.. Combining (2.4) and (2.5), we conclude that |[(f*u),| <4

for all i. Therefore. there exists a choice for the disturbance sequence d under which the observed h;
output it u + d is equal to zero at all times. Using the same argument, We see that if h = ?c
_dd/(N = 1), there also exists another choice of the disturbance sequence for which the observed L
outpnt is zero at all times. p
We have thus shown that it is possible to observe an output sequence which is identically '
equal to zero while the true system can be either dd/(N — 1) or —6#/(N —1). This unplies that 4
the worst case diameter satisfies
Dy.m(u) = 268/ (N - 1)||; > 28 {2.6)
Dut this contradicts the definition of m = n'(N) and shows that case {b) is not possible. Thus, [
case (a) is the only possible one, and the lower hound has already been established for that case
The upper hound follows easily by using the input sequence proposed in [10,17]. Let u be a finite
sequence whose entries belong to {—1, 1} and such that for every ¢ £ {—1,1}" there exists some ]
il @) such that @ = (g Uirsye11-+ -+ Lijayan -1 }- Such a sequence, called a Galoiz sequence, can I
lve chosen so Lhat its length is equal to 2% + & — 1 [10]. With this input. the worst case dipmeter 1

is equal to 24§, Q.E.D.

Theorem 2.1 has the disappeinting conclusion that the worst—case error is guaranteed to
hecome at mest 2§ only if a verv long experiment is performed. In practice, values of N of the
order of 20 or 30 often arise. For such cases, the required length of an identification experiment
is prohihitively long if an error guarantee as small as 26 is desired. This motivates the problem
studied in this paper: if the objective is to obtain an identification error within a factor K of
the optimal value, can this be accomplished with substantially smaller experiments? Thecrem 2.1
below is equally disappointing with Theorem 2.1: it shows that experiments of length exponential
in IV are required to obtain such an error guarantee. The exponent depends of courze on A and
we are able to compute its asymptotic value (as IV increases) exactly.

Theorem 2.2: Fix some K > 1| and let
n*(N, ) = min{n | Dy, < 2Ké}. {2.7)
Then.
{ﬁ]’ ?Ell:“"'llr| I'I.“:' :.__ E.V_F':.'fff—l = r"." it 9 :';;_r] S
(b liny |L'r logn' (N .K)= f{1/H).
Here, f:(0,1) — R is the function defined hy*

fla) = 1+ (252 10g (—52) + (55) tog (—52). (28]

“3 4

4. In the definition of f, and throughout the rest of the paper, all logarithms are taken with

liaze 2.
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Notice that the function f defined by (2.8) satisfies fla) =1 — H({(1—-a)/2), where H is the
hinary entropy function. In particular, f is positive and continuous for a € (0,1). Before going
ahead with the main part of the proof, we need to develop some lemmas that will be our main

tools.

Lemma 2.1: Let X'y, X3,..., Xy be independent hinomial random variables with Pr(X; = 1) =
Be(X; = —-1)=1/2 for Bvery i,

la) Let u; € [-1.1],i = L..... N. Then, for every a € {0, 1), we have e -
1% :
Pr(= X wXi2a) g2V, (2.9)
(b)
] ], :
Jim — log Pr[_:-fg X 2 a) = —fla). (2.10)

Proof: Part (b} is obtained from the classical Chernoff bound (1] or from counting arguments [2]
Part |a) also follows from the Chernoff bound. if u; = 1 for all 7. It remains to prove part (a) for
the general case of u, = [~1.1].

We first note that hecause of the symmetry in the distribution of X,, we can assume, without

any loss of generality that u, 2 [0, 1] for all i. We then have

T

n

Y a

| =Y HP ' . e, X, —a't bl i T _'-.-'\'-l,lll:'cl|

Pr( S‘I i 2a) < inf [[ Blert®-el} < :EEI__[I Ele ] =2 _
= i=1 i

The first inequality is obtained by following the steps in the standard proof of the Chernoff bound:
the second inequality is obtained by verifying that e*® +e~'" < ' + ¢~ forall u € (0, 1]; finally,
the final equality is a simple calculation which is also part of the classical proof of the Chernoff
hound. Q.E.D.

One consequence of Lemma 2.1 is that for any ¢ > 0, there exists some No{er, €) such that
&

L e
Pr[ gt o a) TR AL YN > No(a,e). (2.11)

The following lemina strengthens Eq. (2.11) and will be needed later in the proof.

Lemma 2.2: Let X,,..., Xy be asin Lemuma 2.1. Let O ={{f1,...,0x) € RY | :i 6= N}
Then, for any €, > 0, there exists some Nitey) such that
ot \
Fr(-—_-f l 8,X; > a] >2=Nz}ta) YN = Ni(e), V8 € Op. (2.12)

=1

Proof: Note that the random variables E;ﬂ;l 8, X; and E:’zl 8;|X; have the same probability

i
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distribution. Therefore, without loss of generality, we can and will assume that 8; > 0 for all &

We have

B N N N
Pr{. z X = ol r:' = P."{ Z A = al¥ | Z Xz r:!f'l'-) . PI( E X = aﬂ')
i=1 i=1 i=1 { i=1 {2_1:“
N n
> Q_N[”:”*'“"E]PI( E 86X, >aN | E X =z ﬂJ"'-rJ,
i=1 i=1
where the last inequality holds for all N large enough, as a consequence of (2.11).
Given any sequence ¥ = (X;,...,Xx), let X" be its cyclic shift by k positions; that is, g
X% = [ Xawrs Xnwzeeeosbns X1yeeoy i) Let XF be the ith component of X*, By symmetry, § b

the conditional distribution of X and X*, conditioned on the event E:\;l X 2 alN, is the same,
Therefore,

» b LN w N _
(Y oXizaN | XizaN)=—3 Pr{ ) 0Xt2aN |} X >aN)
imy i=1 T oa=1 i=1 i=1
]- .‘f- |\r
> FPE[Ek such that ; 0. XF>alN | ; g r.‘r."'t']
e
TN

(2.14]
The last equality follows because if T ¥ X: > aN, then

=1

NN N N
g ‘__\H {?'1.};':‘ = Z #; Z X; > aN?,
k=1 i=1 =1 1=1

which immiediately implies that there exists some k for which =, 6, X > aN.

e gz b

We conclude that [2.13) becomes

" Pr_ 3
Pr( S 0% 2 o) 2 Lo-Misterrain) 5 g N @)ba)
1=l j."r
whera the last inequality follows if 2V is large enough so that 1)V > 2-¥«/2 Q.E.D.

Having finished with the probabilistic preliminaries, we can now continue with the main part
of the proof of Theorem 2.2. We will start with the proof of part (a).
Lemma 2.3: Suppose that the length n of an input sequence u € U7, is smaller than 2¥/(1/E)-1
N4+2 f}.“i] — 1. Then. there exists some h € {—K4/N,K§/N}¥ such that ||u=hl < 4.
Proof: Let n be as in the statement of the lemuna. We will show the existence of such an A by
showing that a random element of { - K&/ N, K&/ N}V satisfies |juxh||o < § with positive probabil-

itv. Indeed, let h be such a random element, under the uniform distribution on {—K§/N, Ké/N}¥.

T
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[N

Then,

Wen Nen-[H]s1
Pr(fluxhllm 281 < 3. Pr(l[(ush)zd)= >, Pr(l{ush)] 2 4)
= s= 2] +1 (2.15)
. [N
< (N -i-n—Ei—: +1) max Pr{|(n=*h);] = §).
K 1<f< ¥ n

where the equality on the first line holds because for j < [£], we have:

N j=1 - -
; | . K& I Ké
:[u-h,l;! = E_:L .llll-t-'.:.,.i| = ; 'ri-iu_f—i = [:_j o7 1]’71}- < 1|E-'—‘ = II'JJ".._'{‘S
and for j = M =~ n — [2] + 2. we have:
kY h'
[ s | K& N K6 i
[{u=ft);| = i‘_‘ hou; i, = E .i'a,-uf_,-l LN =+ l:li— = {!——-Fl - 1]1—- < 4
1=l i=j=m : ot
Furthermore,
| N
Pe(l{uxh)| 2 §) = Pr(| 2 n.-u;._,.| > ¢
(2.16)

1 o [ 1
- Pr{T] STNR/ES)uy_ 2 )
z i=1
< 9. 9-NIK]
The last inequality follows from Lemma 2.1 [Eq. (2.9)], because the random variables NA;/Kd are
independent, take values in {—1,1}, and each value is equally likely. Combining Egs. (2.15) and
(2.16], we conclude that

N :
Prillu=hlle 28) £ 2(N +n-2 [ﬂ S bl AL (2.17)

2N +n—2[2] +1} < 2¥/0/K) then the right-hand side of Eq. (2.17) is smaller than 1. This
implies that there exists some h € {8/, K&/N}Y for which ||h » ui|. < 4. Q.E.D.

Suppose now that the length n of the input sequence u is as in Lemma 2.3, and let the
unknown system A have the properties described in that lemma. Since |(h*u)| < § for all ¢, there
is a choice of the disturbance sequence d that leads to zero output, Consider next the case where
the unknown system is actually equal ta —h. We also have [(—h * u)| < &, for all £, and a zero
output sequence is still possible. Thus, if the output sequence is equal to zero, both hand —h could
he the true system. For any identification algorithm, the worst—case error will he at least equal
to one half of the distance of these two systems, which is ||A!|; = K4&. In fact, the same argument

can be carried out if i is replaced by (1 + €)h, where € > 0 is small enough so that the property

8
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(1 4+ €)|{h=u);| =« & holds. We can then conclude that the worst-case diameter will be at least
2(1 + e} &, We have therefore shown that if n < 2¥/11/KI)=1 N +3 [%1| — 1, then Dy . > 2Ké

Equivalently, n* (¥, &) > 2¥ K =1 _ L2 [%] — 1, which completes the proof of part (a).

We now turn to the proof of part (h) of the theorem. Part (a) implies that
liminfy— . (L/Nlogn" (N, K) > f(1/K). The proof will be completed by showing that

lim sup(1/) logn® (N, K} < f(1/K)
N— oo
To show this, we have to show tie existence of an input sequence u of length close to 2V/1/ X1 that
results in an uncertainty set of diameter bounded by 2K 8. Although we are not able to provide
an explicit construction of such an input sequence, we will prove its existence using a probabilistic
argument.
We now provide the details of the construction of the input sequence u. Let us fix some ¢ > 0.

Let ATiN) he the smallest integer larger than
MUV & gt Krde), {2.18)

For every k & {1...., M {N)}, we choose a vector u* = (u},....u}) € {-1, 1}V, The input uis
tlien defined hy

w=(ut,u?, ... M), (2.19]

and has l-zngth N }f-”‘-r].
Lemma 2.4: Let the input © be constructed as in the preceding paragraph. Furthermore suppose
that the entries of the vectors u* are independent random variables, with each value in the se

{=1.1} heing equally likely. Then, there exists some N3(¢) such that

F‘rl:JE-"t £ My such that ||R]l, > IF, |u«hle < E:l A YN = Nale). (2.20]

Proof: Let Qy be the left-hand side of Eg. (2.20). Notice that if 1 is an integer multiple of ¥,
with 1 = mMN, we have
(u=h)= 3 ulhy_j, i=m. (2.21)
l =1

We then have

Qn =Pr(3h € My such that ||A]|, > K&, |u*h]|s < §)
=Pr(3h € My such that ||A]; = K&, |us hl.. < &)
=Pr(3h € My such that |||, = N, |z ke < N/K) (2.23)

<Pr{3h € My such that k]|, = N, | E uMhy_;| < N/K, m=1,..., M(N),

i=1

where the last inequality follows from Eq. {2.21}.



7 Let us choose a finite subset A% of My duch that for every h € My with |[h|l; = N, there
é= exists some h' € MY, satisfving ||R']l, = ¥ and ||h = '] < €. In particular, M} can be chosen
as a subset of the set of all elemments of My for which sach component is bounded by N and is an
3 integer multiple of ¢/¥. It is then clear that M4, can be assumed to have cardinality bounded by
({ZN + 1)/€)¥. We then have
Pr(3h € My such that ||&]l, = N, | D_ ulhy_;| < N/K, m=1,..., M(N))
=1
<Pr(dh' € M5 such that |E ulhly | < Nle4+ 1/K), m=1...., M{N]) (2.23)
at e - .23
de fon L1y —_
i < (L) max Pei T wp b ) < Nt 1K), m=1,..., M(N)).
1T \ £ hrEM®, L - J
. =t
0. We provide an upper bound to the probability in the right-hand side of Eqg. (2.23) by applying
Lemma 2.2. {Here, u™ and iy correspond to X; and #; in the notation of that lemma.) Indeed,
Lemma 2.2 is applicable because ||A'l|; = N and the components of the input are i.i.d random
L8] variables, with the same distribution as the variables X; of Lemma 2.1. A minor difference is that
the components of &' could he negative, while in Lemma 2,2 we assumed that the coinponents of
i3 # are nonnegative. MNevertheless, if we replace each component of ' with its absolute value, the
distribution of the random variable ZF:;-. ulh'y . remains the same. We therefore conclude that
19) there exists somie N.{<] such that
N
Pr{| Y ulhly_ | < N{e+ 1K) € 1 -2~ NUletEMQ  ym, YN 2" Vy(e). (2.24)
nse iy :
et ) s in .
By combining Eqs. (2.22), (2.23), (2.24), and using the statistical independence of the vectors u™,
we ohtain
- - i r i o =N e+l K 1+4) M)
20) Qs ({20 1) el [ p-Mirteely ]
i Ve (2.25
f_i-'L{E_""rr—l_'I,rrE:lN 'E".‘-'.p{ —_.'1!|::|:"'fr]2_?“"ul+1'ﬁ} d.l} ,'2 J
N,
< ({28 4+ 1}/e)” exp{-2'¥},
21) where the second inequality follows from the fact (1 - 1/z)* < e~!, for every z > 0, and the
last inequality follows from the definition of M{N) [cf. Eq. (2.18)]. It is then easily seen that Qx
converges to zera as N increases, which establishes the desired result. Q.E.D.
Lemma 2.4 establishes that, if the input u is constructed randomly as in the discussion pre-
ceding the lemuma, then, with positive probability, u will have property P below:
22) P: ifhe My and |ushle <4, then [|h], < K6, (2.26)
In particular, there exists at least one u, of length n = M{/N).V that has property P.?
5. In fact, it is easily seen that y converges to zero very rapidly, which implies that most
u's will have property P.
10
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Lemma 2.5: If an input v has property P of Eq. (2.26), then D, x(u) < 2K4.

Proof: We apply the input u and measure the output y = hA+u+d, where A is the unknown plan:
and d is the disturbance sequence. Given the observed output y, we can infer that h belongs to
the set of uncertainty

Swlyp,u)={pe My ||y—¢=ule <6}

Let x and v be two elements of Sy(y,u). Then, |y — x *ulec < & and ||y — ¥ * uf| < §. Using
the triangle inequality, we obtain ||u+{y —v)/2||< < &. Since u has property P, we conclude that
l{x=¥)/2ll\ € K& or|x—w|l; £ 2/¢. Since this is true for all elements of §x(y, ), the diameter
of Sx(y,u}is at most 2K4. Q.E.D. [

As discussed earlier, if V is large enough, there exists an input of length n = M{N)}N that
has property P and, by Lemma 2.5, leads to uncertainty sets whose diameter is bounded above by
24, It follows that n*(N.K) < M{N)N. Using the definition of M|N} [ef. Eq. (2.18}], we see
Ehat

limsup{1/N ) logn"{ N, K) < linsup(1/V)log M{N )N < _H:f: iy

N — oo N o= iy

Y i
J o= 26 (2.27)
Since Eq. (2.27) 15 valid for all € > 0, and since f is continuous. we conclude that

limanp{1/N}logn* (N, K) < f(1/K),

No— 2z

which coneludes the proof of Theorem 2.2, Q.E.D.

III. CONCLUSIONS

This paper addresses issues in the sample complexity of worst-case identification in the pres-
ence of unknown but bounded noise. Two main results are furnished: the first is a lower bound
on the length of inputs necessary to approximate ¥ steps of an impulse response to an accuracy
within a factor it of the best possible achievable error. This bound has the form 2¥/(1/&) and
hence is exponential in &, The second result shows that this lower bound in asymptotically tight,
i.e. for large enough [V, there exists an input of length close to the lower hound that allows the
identification of V steps of the iinpulse response.
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