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Ahstract We consider the design of approximate opiimal controllers for quadratic systems. We
propose a nonlinear controller designed with a nonlinear transformation followed by a standard

linear-guadratic conteoller. This is compared with the exact optimal controller in an example.

Introduction We consider nonlinear systems of the form % = Ax 4+ xMx + Bu and
the problem of finding ar optimal control u* which drives the system from from an initial

value to a desired equilibrium point (assumed 0), subject fo a cost
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If we were to use a linear model for the system. i.e. only x = Ax + Bu, the optimal
contral would be caleulated as u™ = —R-'BTKx, with K a solution of the appropriate
Riccati equation. This could then be applied to the original system. but the resulting
svstem may not be able to meet the design criteria. The presence of a guadratic term in
the system leads us to try a second order expansion for the controller {i.e. a quadratic
faedback law, as in [1].[3]), which improves the results, but is costly to calculate. We
propose to apply a nonlinear transformation first and then design a controller that only

requires the calculation of a standard linear-quadratic optimal control.
The Controller We use the transformation suggested by Krener in [2], namely

z = x4+ xbx

v = v+ xax+xdu
siving a new approximate system, % = Fx+Bu+ ¢, . where ¢, is a term of third order
in x. The truncation of the new system to a first order is now an order of accuracy better

than the earlier suggested truncation. The optimal controller based on this linear system,

transforms readily back to the quadratic feedback law

u* = —1{‘IBT£{|:x+xfﬁx']—xax+xﬁﬁ_lHTKx (1)
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This controller is both easy to implement and potentially more accurate than the cne

based on the linearization of the original svstem. We next apply this to an example.

Example We consider the following nonlinear maodel for an electrical motor
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where x; is the armature current, xz is the angular velocity. x3 is the magnetic flux,
and u; and us are the armature and field voltages, respectively. In addition, we choose
a criterion with B and () diagonal, positive definite matrices.

For this svstem, we compute €. «, and @, as required for the transformation in
the previous section. We then apply three different controllers: the controller based on
direct linearization. the nonlinear controlier (1), and a more accurate approximation of the
exact optimal control (based on a full power series expansion. as in [1{}. After extensive
simulations. we observed that our nonlinear controller matches the “exact™ one noticeably

hetter than the one hazed on the linear model.

Conclusions We have presented a method for nonlinear controller design that results in
a good approximation of the exact optimal coniroller for a class of nonlinear systems. It
is superior to the approximation which uses the linearization in the original x variables,
without the computational costs involved in solving nonlinear optimal control problems.
The approach can be easily generalized to systems including bilinear terms of the form
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