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Abstract

The identification of nonlinear state-space systems from input-output measurements is consid-
ered. The system is separated into a linear state-space system with a static nonlinearity, driven by the
state and input, in feedback. Initially, the contribution from the nonlinearity is treated as an unknown
system input driving an otherwise linear plant. A neural network is then used to model the feedback
nonlinearity. A realistic simulation of a nonlinear automobile suspension is used to demonstrate the
application of the identification algorithm.

1 Introduction

Fatigue and vibration testing of automobiles is often performed using a 4-post “test-rig” (De Cuyper
et al., 1998), where the test vehicle sits on 4 hydraulic actuators which are used to replicate motions
recorded during a previous test-drive. Typically, recordings are made of the axle and chassis accelerations
and suspension displacement at each of the 4 corners of the vehicle. The hydraulic actuators are then
driven such that the suspension displacements, and axle and chassis accelerations track those measured
in the field. Thus, realistic body motions can be reproduced under controlled conditions, and, for fatigue
testing, over extended periods of time.

The current solution to this “mission reproduction” involves an iterative, off-line procedure. First, an
identification experiment is performed by exciting the system with a relatively broad-band noise input. A
linear Frequency Response Function (FRF, essentially a non-parametric transfer function), is estimated
from the test data. The target outputs are then filtered using the (frequency by frequency) inverse of the
FRF, producing an initial input sequence.

If, as is often the case, the initial input sequence does not cause the system to track the target outputs
adequately, the inputs are refined. The inverse FRF is applied to the tracking error, and the result is added
to the test input. This off-line refinement process iterates until sufficient tracking accuracy is obtained.

The overall goal is to replace this off-line iterative tuning process with an online controller. The
currently envisioned controller will include a feedback component, for disturbance rejection, and a feed-
forward (i.e. system inversion) element. Clearly, the design of the feed-forward element will require
an accurate model of the car/test-rig system, which includes any significant nonlinearities present in the
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system. Since this model will depend on the characteristics of the particular car attached to the test rig,
it will have to be identified from experimental data.

In this paper, we will consider the identification of such a car/test-rig model. Since the model will be
incorporated into an online controller, a relatively small, parametric form is desirable. However, since it
will be incorporated into a feed-forward controller, it must be capable of performing “free run” simula-
tions, rather than simply generating one-step-ahead predictions, as is the case with input-output models
such as the NARMAX model class (Chen and Billings, 1989). Thus, we will consider the identification
of a class of nonlinear state-space systems.

1.1 Nonlinear State Space Models

Consider the following nonlinear state-space model,

xk+1 = F (xk, uk) (1)

yk = Cxk +Duk + vk (2)

wherexk ∈ IRn is the state,yk ∈ IRp is the output, and the input,uk ∈ IRm. The measurement noise,
vk ∈ IRp, is assumed to be a white-noise sequence that is independent of the input,uk, and the initial
state,x0. With the exception of the (linear) direct transmission term, this is exactly the nonlinear state-
space model considered by Haykin (1999), albeit in a neural-network setting. While a model with the
structure Eq. (1 – 2) can be trained using a suitably designed iterative optimization, such as the back
propagation through time algorithm, the resulting error surface may be very complex, including many
suboptimal local minima. Our goal is to develop a non-iterative procedure for the identification of non-
linear state-space models, or at least to limit identification to well defined optimizations with relatively
simple cost-functions. Ideally, the model should be sufficiently accurate to be used without further re-
finement. However, the results may also be used to initialize an iterative optimization procedures with a
nearly optimal model, thus minimizing the possibility of converging to a sub-optimal local minimum.

In its general form, the nonlinear state-space model can be used to represent a wide variety of non-
linear systems ranging from the voltages and currents in a nerve cell (Hodgkin and Huxley, 1952), to
stiction and friction forces in a robot arm (Kimet al., 1997). In this paper, we will develop an algorithm
for identifying the dynamics of a subset of this class of models, the restrictions on the sub-class being
determined by several of the procedures used in the identification. We note that similar approaches have
been used in the design of nonlinear observers (Kimet al., 1997; Zhanget al., 1998) for a restricted class
of SISO nonlinear systems.

2 Identification of a Class of Nonlinear State Space Systems

In this section, we describe the identification approach, and present the theoretical foundations for the
procedures that are employed.

2.1 Linear/Nonlinear Decomposition

First, we extract a linear subsystem from the nonlinear state-space model. LetA andB be constant
matrices of appropriate dimensions. Then, we may write Eq. (1 – 2) as,

xk+1 = Axk +Buk + F̃ (xk, uk, A, B) (3)

yk = Cxk +Duk + vk
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Figure 1: Linear/Nonlinear decomposition of a nonlinear state-space model

Clearly,F (xk, uk) = Axk + Buk + F̃ (xk, uk, A, B), so that the choice ofA andB is in some sense
arbitrary. In the sequel, we will focus on one particular choice forA andB.

Compute theRQ factorization of a matrix whosek’th column is a stack consisting of the inputuk,
state,xk, and subsequent state,xk+1,

Zk =

 u1 u2 . . . uN−1

x1 x2 . . . xN−1

x2 x3 . . . xN

 =

 r11 0 0
r21 r22 0
r31 r32 r33

 q1

q2

q3

 (4)

By construction, we have

xk+1 = r32r
−1
22 xk +

(
r31 − r32r

−1
22 r21

)
r−1

11 uk + r33q3

whereq3 is orthogonal to the current input and state sequences.
Hence by choosing

A = r32r
−1
22

B =
(
r31 − r32r

−1
22 r21

)
r−1

11

in (3) we see that the contribution of the term̃F (xk, uk, A, B) = r33q3 will be uncorrelated (but clearly
not independent of) the input and state. Thus, we can re-express the nonlinear state-space model (1 – 2)
as a linear system with an auxiliary input,

xk+1 = Axk + Buk + B̃f(xk, uk) (5)

yk = Cxk +Duk + vk

whereB̃fk is thek′th column ofr33q3.

2.2 overview of identification approach

Equation (5) can be viewed as a multiple-input linear system, between[uTk f
T
k ]T andyk. The firstm

inputs,uk, are the measured system inputs. The second group of inputs, the “auxiliary” inputs,fk, are
generated by the nonlinearities in the system. In section 2.3, subspace methods will be used to identify
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the linear dynamics, treating the “auxiliary” inputs as if they were process noise. This will be shown to
lead to a bias in the identified linear dynamics.

In section 2.4, the conditions necessary forfk to andB̃ to be estimated from the linear residuals will
be investigated, as well as a procedure for estimatingB̃. Of critical importance is the requirement that
the auxiliary input be a static nonlinear function of the current system state, and input. Section 2.5 will
present a robust method for system inversion, which will be used to reconstruct the auxiliary input,fk.
Finally, in section 2.6, a neural network will be used to fit a static nonlinearity between the system state
and the auxiliary input. The overall algorithm will be summarized in section 2.7.

2.3 Identification of the Linearized Model

Given records ofuk andyk, one might attempt to estimated the quadruple(A,B, C,D) using linear
system identification techniques. Direct, non-iterative estimation of the system matrices can be accom-
plished using subspace methods (Verhaegen and DeWilde, 1992; Verhaegen, 1993, 1994; Viberg, 1995).

The basic subspace schemes are unable to cope with either measurement noise or process noise, and
are hence not suitable to this identification. Verhaegen (Verhaegen, 1993, 1994) has proposed schemes
that use instrumental variables to remove the bias caused by measurement and process noise. However,
even these schemes may be biased by the presence of the state nonlinearity.

Consider theMOESPfamily of subspace methods for identification (Verhaegen and DeWilde, 1992;
Verhaegen, 1993, 1994). First, the input and output are placed in Hankel matrices,

U1,s,N =


u1 u2 . . . uN−s+1

u2 u3 . . . uN−s+2
...

...
...

us us+1 . . . uN

 (6)

where the subscripts refer to the index of the first data sample, the number of rows in the matrix, and
the index of the final data sample in the matrix. The number of rows,s, in the matrix is user-specified
over-dimensionparameter which is chosen to be greater than the system order,n. The output Hankel
matrix,Y1,s,N is defined analogously. Then we observe that for alinear system, we could write,

Y = ΓX +HU + V (7)

whereV is a Hankel matrix constructed from the output noise sequence,vk, Γ is the extended observ-
ability matrix, defined as

Γ =


C
CA

...
CAs−1

 (8)

the matrixX =
[
x1 x2 . . . xN−s+1

]
, andH is a lower triangular matrix containing the system’s

Markov parameters,

H =


D 0 0 . . . 0
CB D 0 . . . 0
CAB CB D 0

...
... .. .

...
CAs−2B . . . . . . CB D

 (9)
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For the nonlinear system (5), the input, output and auxiliary input may be related by a similar equa-
tion,

Y = ΓX +HU + H̃F + V (10)

whereF is a Hankel matrix constructed from samples of the auxiliary input,fk, andH̃ is defined analo-
gously to (9), replacingB with B̃, andD with 0.

Consider the followingRQ factorization, Us+1,s,N

U1,s,N−s
Ys+1,s,N

 =

 R11 0 0
R21 R22 0
R31 R32 R33

 Q1

Q2

Q3

 (11)

and note that the factorR32 = Ys+1,s,NQ
T
2 is given by

R32 = ΓXQT2 + H̃FQT2 + VQT2

and note thatVQT2 will vanish asN → ∞, since the measurement noise is assumed to be independent
of the input. However, the term̃HFQT2 cannot, in general, be expected to vanish. For alinear system,F
would be zero, andR32 would contain an unbiased estimate of the column space ofΓ. Although using
past inputs as instrumental variables removes the bias caused by measurement noise (and process noise,
since it is independent of the input), they do not remove the bias due to the nonlinearity.

The usual subspace procedure (Verhaegen, 1993) is then followed. ThusΓ is extracted fromR32

using a SVD, and then used to construct estimates ofA andC. The remaining matrices,B andD can be
obtained from a least-squares regression (Westwick and Verhaegen, 1996).

Remark 1 To minimize the bias due to the nonlinearity, we must ensure thatfk is a zero-mean sequence.
This can easily be accomplished by adding a constant row to the top of the data matrix (11).

Remark 2 Once an estimate,̂fk, of the auxiliary signal,fk, is available, the linear identification may be
repeated using the extended input[uTk f̂

T
k ]T , to reduce the bias.

2.4 Tracking the Contribution due to the Nonlinearity

Once an estimate of the linear system,A,B, C,D, is available, the next task is to estimate the “auxiliary”
signal generated by the nonlinearity,fk, which so far has been treated as a process disturbance. Consider
the output of the identified linear model

xl,k+1 = Axl,k + Buk (12)

ŷl,k = Cxl,k +Duk

where the subscriptl indicates the state and output of thelinearizedmodel. The linear residual sequence
is

zf,k = yk − ŷl,k (13)

= yf,k + vk (14)

Our task is to generate an input sequence,f̂k, and input matrix,B̃, such that̂yf,k, given by

x̂f,k+1 = Ax̂f,k + B̃f̂k (15)

ŷf,k = Cx̂f,k

tracks the nonlinear output component,yf,k. First, we must determine the conditions under which the
system (15) can track the ideal residual sequence,yf,k, given noise corrupted measurementszf,k.
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Definition 1 A sequence{ϑi}Ni=0 in IRp is said to be output trackable if there exists an input sequence
{f̂k}Ni=0 such that the output sequence{ŷf,k}Ni=0 of the system (15) satisfies‖ϑ− Y ‖2 = 0 where

ϑ
∆=

(
ϑ′0 ϑ′1 · · · ϑ′N

)′
Y

∆=
(
y′f,0 y′f,1 · · ·y′f,N

)′
For the system (15) let

H̃
∆=


0 0 0 · · · 0
CB̃ 0 0 · · · 0
CAB̃ CB̃ 0 · · · 0

...
...

...
. ..

...
CAN−1B̃ CAN−2B̃ CAN−3B̃ · · · 0

 (16)

Lemma 3 An arbitrary sequence{ϑi}Ni=0 in IRp is output trackable if, and only if,ϑ ∈ Im H̃ .

The proof of this result readily follows from the definitions of output trackability andH̃.
In particular, consider a square plant (B̃ in IRn×p). If ci denotes theith row ofC, then the system is

said to have a well-defined relative degreer
∆=
(
r1 r2 · · · rp

)′
if

ciA
lB̃ = 0 ∀ l < ri − 1, 1 ≤ i ≤ p

and the matrix 
c1A

r1−1B̃

c2A
r2−1B̃
...

cpA
rp−1B̃


is nonsingular.

Corollary 3.1 For a square system with a well-defined relative degreer, any arbitrary sequence{ϑi}Ni=0

in IRp is output trackable if, and only if,

ϑj,i = 0, 0 ≤ i ≤ rj − 1, 1 ≤ j ≤ p

Note, however, that̃B has not yet been estimated. For an arbitraryB̃ ∈ IRn×p, (provided that results
in system with well defined relative degreer = 1), there will exist ap-dimensional sequencêfk that
results in perfect tracking ofzf,k. Hence, since both̃B andfk are unknown, tracking ability alone is not
sufficient to guarantee their correct identification. Thus, given a system withp outputs, we can uniquely
identify the contributions due to at mostp − 1 nonlinearities in the state. For such a system,B̃ can be
determined by by minimizing the tracking error

B̂ = min
B
‖ (I −H†T )YT ‖2 (17)

where the subscriptT indicates that matrix has been truncated by removing its top row. While the
computations are burdensome, we note that fast orthogonalization techniques (Korenberg, 1988) can be
used to reduce the computational and storage requirements dramatically. Furthermore, this is a separable
least squares optimization (Golub and Pereyra, 1973; Ruhe and Wedin, 1980).
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2.5 Stable Dynamic Inversion (SDI)

Given an estimate of̃B, we now describe an approach that inverts the model of the plant whilst over-
coming the main drawbacks of existing techniques, namely, that of handling either non-minimum phase
zeros, or zeros on the unit circle, and noise in the desired signal. Since the desired signal is the linear
residual, its SNR will be much lower than that of the raw measurements. Thus, noise performance is of
utmost importance in this application.

Recall that the linear residuals,yf,k, are assumed to originate from the system (15), and that we have
measurements,zf,k that also contain an additive white noise process,vk, with covarianceRv, that is
independent of the input and initial condition.

Problem 4 Given the above state space model of a plant, a target time history{zf,k}Nk=1, determine{
f̂k

}N
k=1

such that

ŷf,k = yf,k k = 1, . . . , N

whereŷf,k is the response of the system (15) to the inputf̂k.

This is illustrated in Fig. 2. In this figure, the ‘System’ is represented by eqn. (15). Our objective
is to generate a desired input sequencef̂k by obtaining a suitable ‘inverse system’ that relates this input
sequence to the given measurement sequencezf,k. With the input sequencêfk thus generated, the output
ŷf,k of the given system (15) should reasonably represent the desired output sequenceyf,k.

-

?

�
��

- - -

Inverse

System
System

zf,k f̂k
ŷf,kyf,k

vk

Figure 2: Stable dynamic model inversion.

The SDI technique is based on augmenting the given state space model (15) by a reasonable model for
the input sequence and then designing a Kalman filter to provide an estimate of the input sequence from
the measurementszf,k. From intuitive and physical reasoning, it seems realistic to model the input signal
f̂k as follows

f̂k+1 = f̂k + ηk (18)

for someηk. For simplicity, we assume thatηk is white noise with covarianceQη, and uncorrelated with
vk. The resulting augmented system is as follows:(

xk+1

fk+1

)
=

(
A B̃
0 I

)(
xk
fk

)
+
(

0 0
0 I

)(
vk
ηk

)
(19)

zk =
(
C 0

)( xk
fk

)
+
(
I 0

)( vk
ηk

)
(20)
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In compact form, we have,

xa,k+1 = Aaxa,k +Gawa,k

zk = Caxa,k +Hawa,k

where the definition ofeach of the individual matrices and vectors is rather obvious. The following result
shows that if the original system is observable, then the augmented system is observable for almost all
points in the complex plane; the proof of the result readily follows from the definitions of observability
and the zeros of a system.

Lemma 5 Suppose the pair(C,A) is observable. The pair

((
C 0

)
,

(
A B
0 I

))
is observable if,

and only if,z = 1 is not a zero of the system(A,B, C, 0).

Therefore, under the conditions for observability of the augmented system given in Lemma 5 we can set
up a Kalman filter to estimate the input signal:

x̂a,k+1|k = Aax̂a,k|k−1 −K
(
Cax̂a,k|k−1 − zk

)
whereK

∆=
(
K1

K2

)
∆= AaPC

′
a (CaPC′a + Rv)

−1 andP satisfies the following Riccati equation:

P = AaPA
′
a −AaPC′a

(
CaPC

′
a +Rv

)−1
CaPA

′
a +

(
00 0
0 Qη

)
Here the Kalman gainsK1 andK2 respectively correspond to the statexk and the inputfk. We can
easily see that̂uk+1|k =

(
0 I

)
x̂a,k+1|k, and hence the transfer function from the measurementszk to

the estimate of the input̂fk|k−1 (i.e., the inverse system) has the following realization:

Inverse System=
(

0 I
)(

zI −
(
A−K1C B
−K2C I

))−1

K (21)

We note that the poles of this inverse system (i.e., the eigenvalues ofAa − KCa) are the relocated
eigenvalues of the system matrixAa. Moreover, we have the following result on the zeros of the inverse
system; its proof is rather straightforward from the definition of zeros:

Lemma 6 Every eigenvalue of the system matrixA is a zero of the inverse system (21).

Evidently, the augmented system will be observable at almost all points on the complex plane pro-
videdB̃ is chosen such that the LTI quadruple(A, B̃, C, 0) has no zeros atz = 1. Thus, this technique
is more general than the earlier schemes in that it does not restrict the presence of zeros to the stable and
unstable regions in the strict sense (Devasiaet al., 1996; Georgeet al., 1999), or to the stable region (Hou
and Patton, 1998). Moreover, by suitably designing the Kalman filter, we can easily take into account
the presence of noise in target time histories. We recall that the method provided in (Devasiaet al.,
1996) does not handle noise in target time histories, and the states corresponding to the zero dynamics
are poorly re-constructed in the technique presented in (Hou and Patton, 1998).
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2.6 Identification of the Nonlinearity

Thus far, the the linear dynamics of the separated model (3) have been identified, and the excitation
provided by the remaining nonlinearity,̃F (xk, uk, A, B) = B̃fk, has been estimated. In order to use this
model in “free run”, we need to be able to estimate the nonlinearity contribution,fk, given the current
state,xk, and input,uk.

First, the state of the system must be reconstructed, by simulating the system, using the extended in-
put,[uTk f̂

T
k ]T . Then, a traditional feed-forward sigmoidal neural network can be fitted from the input and

estimated state tôfk. This can be accomplished efficiently using the Levenberg Marquardt optimization
procedure in a separable least squares framework (Sj¨oberg and Viberg, 1997).

Note, however, that in a free run simulation, the sequencef̂k will be generated by the neural network,
which will, in turn, influence the state. Thus, re-estimatingB̃, and the neural network, using the state
sequence, and auxiliary input resulting from a free run simulation may be beneficial.

2.7 Algorithmic Summary

Given lengthN records of input-output data from a system withm inputs andp outputs, and an upper
bound,s, on the system order,n, we require the following additional assumptions,
Assumptions:

1. The input,uk is persistently exciting of order at least2s, wheres is theover-dimensionparameter
used in the subspace identification. Note thats must be chosen to be larger than the system order.

2. The system contains at mostp− 1 nonlinearities, wherep is the number of outputs. Thus, it must
be possible to find a representation of the state,x, such that at mostp− 1 components of the state
have non-constant derivatives with respect tox andu. Note that this limit can be increase top, if
the system can be placed in a canonical form whereB̃ is knowna priori.

3. The measurement noise is independent of the input and state.

Algorithm

1. Fit a linear system betweenuk andyk using subspace methods, where the past inputs are used as
instrumental variables (Verhaegen, 1993; Haverkamp and Verhaegen, 1997)

2. EstimateB̃, by solving the separable least squares minimization (17).

3. Use SDI, as described in Sec 2.5, to produce an auxiliary input,fk, which causes the system
(A, B̃, CD) to track the linear residuals,yf,k.

4. Fit a feed-forward NN which generates the auxiliary input,fk, from the current state and input
[xkuk].

5. If the model is satisfactory, stop. Otherwise, re-estimate the linear subsystem using[uTk f̂(x̂k, uk)T ]T

as the input. Note that becausef̂k is included in the extended input, this will also provide an up-
dated estimate of̃B. Continue from step 3.

3 Simulations

3.1 Benchmark Example: A Quarter Car

The quarter-car model is the simplest model that includes a proper representation of the problem of con-
trolling wheel load variations. It contains no representation of geometric effects of having four wheels
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and offers no possibility of studying longitudinal interactions or the use of front suspension state infor-
mation to improve the performance at the rear. Moreover, it cannot describe problems related to handling.
However, it does appear to contain the most basic features of the real problem and gives rise to design
thinking which accords with experience. Thus, to demonstrate the application of our identification algo-
rithm on a manageable, but nonetheless realistic, example, we will use a continuous-time simulation of
a quarter-car model.

mc

mw

cc dc

cw

Figure 3: The quarter car model. Note that the suspension spring,cc is nonlinear since it stiffens as it is
removed from its equilibrium position.

The quarter car can be expressed by a two-mass model as shown in Fig. 3. It contains two vertical
degrees of freedom: the displacement of the unsprung mass (or, axle),xw, and displacement of the
sprung mass (or, body),xc. The road displacement input is denoted byxb. The differential equations for
a two degrees of freedom model of a quarter car are

mcẍc = −Fc(xc − xw)− dc (ẋc − ẋw)
mwẍw = −cw(xw − xb) + Fc(xc − xw) + dc (ẋc − ẋw)
Fc(x) = cc

(
x+ αx3 + β tan(πx/2xmax)

)
where the subscriptsc andw respectively denote the body and the wheel of the car. Thus,mc andmw

respectively represent the sprung mass and the unsprung mass of the car;cc andcw the suspension and tire
stiffness. The only nonlinearity in this system is provided by the suspension spring, whose characteristic
is given byFc. Note that the tangent term inFc causes the suspension travel to be limited toxmax. The
system outputs are the acceleration of the masses,ẍc andẍw, and the suspension length,xc − xw.

The quarter-car model was driven by a band-limited (10 Hz) input, presented through a zero-order
hold at 1000 Hz. Integration was performed using the fourth-order Runge-Kutta algorithm. The data was
then re-sampled to 200 Hz for analysis.

The algorithm outlined in Sec. 2.7 was then used to fit a nonlinear state-space model to the input-
output data. The accuracy of the nonlinear state-space model, as well as that of the initial linear model,
was validated by comparing the system and model responses to a separate input signal. Model accuracy
was expressed as the “Percent Variance Accounted For” (% VAF), defined as

VAF =

(
1−

∑N
k=1(yk − ŷk)2∑N

k=1 y
2
k

)
× 100
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Signal Linear Nonlinear
Model Model

Suspension Displacement75.0 95.4
Chassis Acceleration 74.2 97.6
Axle Acceleration 72.6 98.8

Table 1: Accuracy of the linear and non-linear state-space models obtained from free-run simulations on
cross-validation data. Accuracies are expressed as % VAF
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Cross−Validation Results: Output 1
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Figure 4: One second segment of the suspension displacement from the cross-validation data set (solid
line). The output of the linear model (dashed line) and nonlinear state-space model (dash-dotted line) are
superimposed.

whereŷk is an estimate of the sequenceŷ. The results of these free run simulations are summarized in
Table 1.

Figure 4, shows a 1 second segment of the suspension displacement (due to the validation input),
superimposed on the outputs of the linear and nonlinear models. Figures 5 and 6 show the chassis and
axle accelerations, respectively, for the same 1 second segment of the validation trial. Note that the model
outputs (both linear and nonlinear models) are “free run” simulations,not one-step-ahead predictions.
It is interesting to note that there are segments in the data (t between 4.7 and 5.0 seconds in Figs 4 – 6
for example), where the linear model performs extremely well. However, there are other instances, (t
between 4.0 and 4.4 seconds) where the linear model fails completely. Thus, it is clear that the system is
being occasionally driven out of its linear range.

4 Conclusions

We have developed a technique for identifying a restricted class of nonlinear state-space systems, a struc-
ture which can be used to model a wide variety of systems. The application considered in this research

734

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



4 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5
−20

−15

−10

−5

0

5

10

15

20
Cross−Validation Results: Output 2

C
ha

ss
is

 A
cc

el
er

at
io

n 
(m

/s
2 )

time (sec.)

System
Linear Model
Nonlinear Model

Figure 5: One second segment of the chassis acceleration from the cross-validation data set (solid line).
The output of the linear model (dashed line) and nonlinear state-space model (dash-dotted line) are also
shown.
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Figure 6: One second segment of the axle acceleration from the cross-validation data set (solid line).
The output of the linear model (dashed line) and nonlinear state-space model (dash-dotted line) are
superimposed.
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was the identification of the dynamics of a car attached to a vibration test-rig. Here, the suspension
springs, which are designed to stiffen as they approach the limits of the the suspension travel, are thought
to provide the most significant nonlinearity in the system. In particular, it is a nonlinearity which affects
the state directly, making the nonlinear state-space model an obvious model structure to employ.

The applicability of the identification algorithm was demonstrated using data from a continuous-time
simulation model. The identified model was able to reproduce validation data sets with much greater
accuracy than is possible with a linear model. We must emphasize that these were free run simulations,
and not simply one-step-ahead predictions.

At present, the key restriction on the model class is that the “number” of nonlinearities must be
less than the number of outputs,p. This constraint can be expressed more precisely in a variety of
ways: the rank of the matrixr33 in (4) must be strictly less thanp, for example. This restriction is
due to the necessity to simultaneously estimateboth the input matrix for the nonlinearities,̃B, and the
corresponding auxiliary input sequence,fk. Methods for determining̃B, when it is inIRn×p are under
development.
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