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Abstract

A new design method is presented for the design of PLL loop filters for carrier recovery,
bit timing or other synchronization loops given phase noise spectrum and noise level. Unlike
the conventional designs, our design incorporates a possible large decision delay and S-curve
slope uncertainty. Large decision delays frequently exists in modern receivers due to, for
example, a convolutional decoder or an equalizer. The new design also applies to coherent
optical communications where delay in the loop limits the laser line width. We provide an
easy to use complete design procedure for second order loops. We also introduce a design
procedure for higher order loops for near-optimal performance. We show that using the
traditional second order loop is suboptimal when there is a delay in the loop, and also show
large improvements, either in the amount of allowed delay, or the phase error variance in the
presence of delay.

1 Introduction

The phase locked loop (PLL) principle is being successfully used for decades for tracking the
carrier phase and the bit timing. First or second order loops are sufficient in most cases. Optimal
design of PLL without delay in the presence of oscillator phase noise is well known (Holmes, 1982;
Lindsey, 1972). Most modern communication receivers incorporate coding and/or equalization
and/or partial response detectors, and it is advantageous or sometimes necessary to use the
output of the decoder or equalizer for data detection before phase or timing error information
is produced for the synchronization loop (Chang and Srinivasagopalan, 1980; Macdonald and
Anderson, 1991; Premjiand Taylor, 1987; Sari Hikmet et al. 1987). The decoder and/or equalizer
creates delay into the operation of the PLL used for the synchronization, and for the case
when such delay becomes problematic, several authors proposed combined detection and phase
tracking, for example (Macdonald and Anderson, 1991; Simmonsand McLane, 1995), or use less
reliable tentative decisions (Ungerboeck, 1982). Between the two loops, the major problem is
in the carrier tracking loop since it needs to be wide enough to track the oscillator phase noise.
The timing loop works at the symbol rate rather than carrier frequency, therefore its phase
noise is normally lower and the loop is allowed to be narrow. However, sufficient delay which
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can be caused by the decoder (for example turbo decoder) can be problematic even for timing
loops. The problem of loop design becomes complicated when there is a large uncertainty in the
phase detector S-curve slope, which translates to uncertainty in the loop gain. Causes for such
uncertainty are numerous, such as residual errors after AGC (or no AGC) in mobile receivers or
in burst mode receivers, error rate change in decision feedback loops, timing errors, and ISI.

When significant delay is incorporated into the PLL, the second order loop which is tra-
ditionally used is far from being optimal and a new loop filter design is desired. The design
presented in this paper is very close to optimal with respect to the mean square error of the
phase in the presence of a known delay, phase noise spectrum, requirements for specific gain
and phase margins and given loop gain uncertainty. These margins should be kept for any gain
(within the range of uncertainty) of the PLL open loop. These combined design constrains are
known in the feedback control community as mixed H2/H∞ synthesis with output feedback and
plant uncertainty.

We use the notation upper gain margin for the maximum amount of loop gain which the
PLL can loose without loosing stability, and lower gain margin for maximum increase in loop
gain without loosing stability. Both gain and phase margins ensure fast settling step response
and eliminate closed loop resonances. For third and higher order PLLs, lower as well as upper
gain margins are mandatory in order to guarantee the stability of the PLL.

A general treatment of optimal controller design for loop having only rational transfer func-
tions in the loop is given in (Shaked, 1976). Design of optimal PLL with pure delay can be
executed to an arbitrary accuracy using a Padé approximation of high enough order (Friedland,
1996). The outcome of course will be a complex loop filter, but second order approximation
leads to satisfactory results. Unfortunately, for a large delay the optimal design will not satisfy
the margins constrains. The approach taken here to solve the optimization is a design process
composed of two steps. The first step is the solution of the optimal controller for PLL with
delay when a Padé approximation replaces the delay. The second step is based on the feedback
synthesis theory known as QFT (Borghesani et al. 1994; Horowitz, 1992; Horowitz, 1991). The
QFT technique is applied to modify the loop filter designed in the first step to satisfy the mar-
gins constrains. Finally it was shown how to design an optimal PI loop filter, and it was shown
that the optimal loop filter of the PI form is not satisfactory in case of significant delay and/or
reasonable gain uncertainty.

The proposed design methodology suits also other fields such as optical communication using
coherent detection and RF synthesizers. Although the theory developed here takes place in the
continuous time, the same approach can be used for a discrete time PLL.

Most of the work on PLL with delay was done in the framework of optical communications.
In (Bary, 1992) the loop filter complexity was bypassed, for the usual laser phase noise spectrum,
≈ 1/f2, assuming the loop filter is of the PI form, 2ξωn+ω2

n, and a design technique to calculate
the optimal ωn was presented. In (Norimatsu and Katsushi, 1991), first and second Padé
approximations were used to estimate the degradation of the phase noise variance compared
to zero delay, the loop filter again is of the PI form. Treatment of the effect of time delay
on the over-all phase error variance was also discussed in (Grany 1987). Here again the same
simplified PI loop filter was used and the optimal criterion was the parameter ωn which was
calculated numerically. The significance of the loop delay on the stability of discrete time PLL
was discussed quantitatively in (Bergmans, 1995). Finally we would like to mention that loop
delay also degrades the PLL loop pull-in rage. For a quantitative discussion based on a simple
loop filter see (Morideand Sari, 1987). The structure of this paper is as follows. After the
problem statement, an algorithm for high order loop will be developed. Next, an independent
design procedure is given for loops having the PI form (second order loops).
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2 Statement of the Problem

There are various forms for PLLs, however, without loss of generality we can treat the basic
PLL form used for tracking a sinusoid of frequency ω0. The PLL model used here is depicted
schematically in Fig. 1a. It consists of a phase detector, loop filter F (s), VCO and an optional
pure delay which represents the undesired effect, for example, of a decision delay in a decision
feedback loop. The inputs to the phase detector are two signals: The sum of the carrier with
phase modulation or phase noise θ(t) and noise n(t)

y(t) =
√

2A sin(ω0t+ θ(t)) + n(t),

and the VCO output

v(t) =
√

2 cos(ω0t+ θ̂(t)).

The output of the phase detector, assuming it includes an appropriate low-pass filter, is

e(t) = A sin(θ − θ̂(t)) + n(t).

In other forms of PLL the function sin(x) may be replaced with other appropriate functions
which are frequently called S-curve. When tracking, the PLL can be approximated for small
phase errors by the linear model as depicted schematically in Fig. 1b, and its open loop transfer
function is

L(s) = A
1
s
F (s)e−sT . (1)

Our problem is to design a loop filter, F (s), which minimizes the phase error variance σ2
e ,

subject to the following data and constrains:

• The power spectral density of the noise, n, is Φn(ω).

• The power spectral density of the phase modulation or phase noise, θ, is Φθ(ω). We assume
that θ and n are uncorrelated.

• The open loop delay is T .

• The phase detector gain, A, is fixed but only known to belong to an interval A ∈ [A1, A2]
where A1 and A2 are known (it reflects for example AGC inaccuracies). Note that if A
changes slowly within its allowed interval, the closed loop response in the time range,
where A is about A0, will be approximately as if A = A0.

• The open loop response should have some gain and phase margins in order to guarantee
a well damped closed loop response. These margins are defined here by a constant γ or
alternatively by a constant δ such that∣∣∣∣ L(jω)

1 + L(jω)

∣∣∣∣ ≤ γ or
∣∣∣∣ 1
1 + L(jω)

∣∣∣∣ ≤ δ (2)

for all real ω and A ∈ [A1, A2].
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Figure 1: (a) PLL schematic model, (b) its linear approximation

The parameter γ determines the gain and phase margins by

20 log
γ + 1
γ

[dB]; 2 sin−1 1
2γ

[deg]

and the parameter δ determines the gain and phase margins by

20 log
δ

δ − 1
[dB]; 2 sin−1 1

2δ
[deg] (3)

For example if δ = 1.4 and there is no gain uncertainty, the guaranteed phase and gain margin
are 45◦ and 10dB and the guaranteed damping factor (assuming 2nd order model) is 0.4; if
one adds 8dB gain uncertainty, (that is 20 log A2

A1
= 8) the guaranteed phase margin will not

change but the gain margin will be 18dB for the low A1 and 10dB for A2. For the correlation
between the margins, damping ratio and closed-loop time response such as step, overshoot, etc.;
see (D’Azzo and Houpis,1988). Due to the phase detector gain uncertainty, σ2

e is not fixed but
depends on the phase detector gain. The filter F (s) we search for, minimizes the maximum of
σ2
e for some A0 ∈ [A1, A2] subjected to the constrains listed above. Note that σe as a function

of A0 is expected to achieve its minimum value over all A0 ∈ [A1, A2] for A0 = A1.

3 The Proposed Algorithm

The Laplace transform of e(t) is given by

e(s) =
L(s)

1 + L(s)
n(s) +

1
1 + L(s)

θ(s),
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and its variance (assuming zero mean) is

σ2
e =

1
2π

∫ ∞
∞

∣∣∣∣ L(jω)
1 + L(jω)

∣∣∣∣2 Φn(ω)dω +
1

2π

∫ ∞
∞

∣∣∣∣ 1
1 + L(jω)

∣∣∣∣2 Φθ(ω)dω. (4)

From now on the factor 1/2/π will be ignored in this section. The solution for F (s) which
minimizes (4) where the margin conditions are ignored and the pure delay is approximated
by a rational transfer function, is a standard stationary filtering problem. For a review and
extensions see (Shaked, 1976). The algorithm which is based on coprime factorization and
controller parameterization is now described (Doyle et al. 1992), then modified to cope with our
purpose. But first a notation: since σ2

e depends only on L(s) we shall incorporate, for simplicity
of the representation, the free integrator into F (s). The open loop will then be

L(s) = AF̃ (s)e−sT , where F̃ (s) =
F (s)
s

.

Let us assume for simplicity that P (s) is a rational transfer function approximation of e−sT

and P (s) = N(s)/M(s) is a coprime factorization over the family of all stable, rational and
proper transfer functions (for example if a first order Padé approximation is used, that is P (s) =
1−sT/2
1+sT/2 then N = 1−sT/2

1+sT/2 and M = 1 are appropriate). Then there exists two transfer functions,
X(s) and Y (s) belonging to the same family satisfying

N(s)X(s) +M(s)Y (s) = 1,

(for the example above, X(s) = 1, Y (s) = sT
1+sT/2) and F̃ (s) stabilizes the PLL if and only if

F̃ (s) =
X +MQ

Y −NQ
(5)

where Q is any stable proper and rational function (Doyle et al. 1992).
Let us denote the spectral factorization of Φn and Φθ by

Φn = φn(s)φn(−s), Φθ = φθ(s)φθ(−s) (6)

where φn(s) and φθ(s) are proper minimum-phase stable transfer functions. Substituting equa-
tions (5,6) in equation (4) gives

σ2
e =

∫ ∞
∞
|M(Y −NQ)φn|2 dω +

∫ ∞
∞
|N(X +MQ)φθ|2 dω. (7)

Using the notation NM = UapUmp where Uap is all-pass and Ump a stable minimum-phase, the
integrand of equation (7) at s = jω reduces to

|MY φn − UapUmpφnQ|2 + |NXφθ + UapUmpφθQ|2 =∣∣∣U−1
ap MY φn − UmpφnQ

∣∣∣2 +
∣∣∣U−1
ap NXφθ + UmpφθQ

∣∣∣2 =∣∣∣(U−1
ap MY φn

)
un

+
(
U−1
ap MY φn

)
st
− UmpφnQ

∣∣∣2 +∣∣∣(U−1
ap NXφθ

)
un

+
(
U−1
ap NXφθ

)
st

+ UmpφθQ
∣∣∣2 , (8)
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where the subscript un stamps for the unstable part of the transfer function and st for its stable
part. Since our design parameter Q must be stable, the Parseval theorem gives

σ2
e =

∫ ∞
∞

(∣∣∣(U−1
ap MY φn

)
un

∣∣∣2 +
∣∣∣(U−1

ap MY φn
)
st
− UmpφnQ

∣∣∣2)
+

∫ ∞
∞

(∣∣∣(U−1
ap NXφθ

)
un

∣∣∣2 +
∣∣∣(U−1

ap NXφθ
)
st

+ UmpφθQ
∣∣∣2) dω. (9)

From equation (9) it is clear that Q minimizes σ2
e if and only if it minimizes

σ2
e1 =

∫ ∞
∞

(∣∣∣(U−1
ap MY φn

)
st
− UmpφnQ

∣∣∣2 +
∣∣∣(U−1

ap NXφθ
)
st

+ UmpφθQ
∣∣∣2) dω

def=
∫ ∞
∞

(
|a(s) + b(s)Q|2 + |c(s) + d(s)Q|2

)
s=jω

dω, (10)

where the last equality is used to define the transfer functions a(s), b(s) c(s) and d(s), re-
spectively. By simple complex arithmetic and using the notation ∗ to denote the operation
W ∗(s) = W (−s), it can be shown that

σ2
e1 =

∫ ∞
∞

(
|α+ βQ|2 + aa∗ + bb∗ − αα∗

)
s=jω

dω (11)

where β(s) and α(s) satisfy the following equations

ββ∗ = bb∗ + dd∗, (12)
α∗β = ba∗ + dc∗. (13)

Equation (12) has power spectral density form, hence β is minimum phase and stable. Therefore
the stable Q which minimizes σ2

e and σ2
e1 denoted here by Qopt is the one that minimizes

σ2
e2 =

∫ ∞
∞

(
|αun|2 + |αst + βQ|2

)
dω, (14)

therefore

Qopt = −αst(s)
β(s)

, (15)

and the optimal filter, F̃opt(s), is given by equation (5)

F̃opt(s) =
X +MQopt
Y −NQopt

. (16)

Clearly F̃opt(s) is the solution we seek for only if the closed loop satisfies the gain and phase
margin specification for all possible loop gains. However if the open loop gain interval is large
and/or the desired margins are large and/or the delay is too large compared to the PLL open
loop bandwidth, F̃opt(s) will not be a satisfactory solution. It might even destabilize the system
for some of the possible open loop gains (most likely for high gains). Our next step is devoted
to show how to synthesize an appropriate F (s) by modifying Qopt.

Let us assume that the gain and phase margin specifications are of the following form (the
other margin form, equation (2), is treated similarly)∣∣∣∣ L

1 + L

∣∣∣∣ =
∣∣∣∣ APF

1 +APF

∣∣∣∣
s=jω

≤ γ, ∀ A ∈ [A1, A2]. (17)
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Using the notation

Q = Qopt −
λ(s)
β(s)

, (18)

and assuming that L can be approximation by PF∣∣∣∣ L

1 + L

∣∣∣∣ =
∣∣∣∣ AN(X +MQ)
M(Y −NQ) +AN(X +MQ)

∣∣∣∣
=

∣∣∣∣∣ AN(X +MQopt)− ANM
β λ(s)

M(Y −NQopt) +AN(X +MQopt) + MN−ANM
β λ(s)

∣∣∣∣∣ . (19)

Hence inequality (17) reduces to the following binary inequality on the transfer function λ(s)∣∣∣∣∣ AN(X +MQopt)− ANM
β λ(s)

M(Y −NQopt) +AN(X +MQopt) + MN−ANM
β λ(s)

∣∣∣∣∣
s=jω

≤ γ, ∀ A ∈ [A1, A2]. (20)

Moreover, since

σ2
e

(
Qopt −

λ(jω)
β(jω)

)
− σ2

e(Qopt) = |λ(jω)|2 , (21)

the 2-norm of σ2
e(Qopt) is less than the 2-norm of σ2

e(Q) by the 2-norm of λ(s). Inequality (20)
and equation (21) translate our problem into the following problem: Find a stable transfer
function, λ(s), whose 2-norm is as small as possible such that inequality (20) is true for all ω.
The solution we seek will be F̃ of equation (5), whereQ is defined in equation (18). This problem,
with some modification, can be solved within the framework of the feedback synthesis theory
known as QFT (Borghesani et al. 1994; Horowitz, 1992; Horowitz, 1991). The QFT technique
modified to our problem, as stated above, is now described with the help of an example.

3.1 Example 1

The example parameters are (units are radians and seconds): Φθ = 502/ω4, Φn = 0.01, open
loop delay T = 0.01 which is approximated by a second order Padé approximation (Friedland,
1996)

e−sT =
(1− sT/4)2

(1 + sT/4)2
,

and AGC gain, A, which can be any value in the interval A ∈ [1, 2]. The margins constraint is of
the form

∣∣∣ L
1+L

∣∣∣ < 3dB, which guarantee 45◦ phase margin and 5dB gain margin for A = 2 and
11dB for A = 1. These margins are about the lowest one can choose for proper PLL operation
(Martin, 1997).

For the AGC gain A = 1, the optimal filter, F (s), calculated by the algorithm described
above is

F (s) =
150(s+ 33.3)(s+ 400)2

s(s2 + 750s+ 6002)
.

Using Bode plot of the open loop, L(s), of equation (1), is shown in Fig. 2. It also includes
the open loop where the Padé approximation replaces the pure delay. Clearly the phase margin
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Figure 2: Bode plot of the optimal open loop without AGC uncertainty and margin constraints,
the phase plot is for the delayed open loop (upper) and Padé approximation (lower)

constraint is not satisfied, one can show that the gain and phase margins are approximately 35◦

and 7.5dB, respectively, which is 10◦ and 3.5dB less than required by the phase margin specified
γ = 3dB. The other transfer function involved in calculating F (s) where:

X = 1, Y =
sT

s2T 2/16 + sT/2 + 1
,

M = 1, N =
s2T 2/16− sT/2 + 1
s2T 2/16 + sT/2 + 1

,

Q =
s(50− s)

s2 + 100s+ 5000
, β =

0.01s2

s2 + 100s+ 5000
.

The expression for L(s), Q(s) and β(s) are reduced order models of the original transfer func-
tions. The 2-norm of the cost function, σ2

e , see equation (4) is 0.162. The next step is to design
λ(s), which is a two step procedure. First we calculate inequality (20). This inequality on
λ(jω), for each frequency ω and fixed A is a circle in the complex plane using real-imaginary
coordinates (Chait and Yaniv, 1993). The intersection of all these circles over all A’s in the
specified interval [A1, A2] is the region in the complex plane in which λ(jω) is allowed to take
values. These regions are shown in Fig. 3 using amplitude and phase coordinates instead of real
imaginary coordinates. For example at ω = 70, λ(j70) should be inside the closed curve marked
70; at ω = 100, λ(j100) should be inside the closed curve marked 100; and at ω = 30 λ(j30)
should be below the curve marked 30, which is in-fact a closed curve in the real imaginary plane.

The next step is to design λ(s) such that λ(jω) is within the allowed region and its 2-norm
is as small as possible. This process is a trial and error process known as loop shaping. One
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Figure 3: Complex plane regions for λ(jω) at some frequencies. The plot of λ(jω) vs. ω is
shown and the appropriate λ(ω) is marked by ×

can start with a second order transfer function and iterate on its parameters, then add more
elements such as lead, lags etc. until a satisfactory result is obtained. For our example the
shaped λ(s) is

λ(s) =
440(s+ 7)

(s+ 600)(s2 + 53s+ 372)
.

This designed λ(jω) appears in each sub-plot in Fig. 3 and the relative frequencies are marked
by ×, clearly at each frequency it is within its allowed region. The reduced order loop filter is

Fr(s) = 140
(s+ 205)(s+ 20)

s(s+ 700)
.

The PLL was simulated for a phase step for A = 1 and A = 2, the simulation is shown in Fig. 4.

Fig. 5 compares between the loop filter F (s) which was calculated for a fixed A and Fr(s)
which also satisfies the margin constrains. The comparison uses the Nichols chart of the open
loop L(s), equation (1), instead of the Bode plot because the phase and gain margins are easily
compared. Also depicted in Fig. 5 is a closed region. This region means that L(jω) must be,
in all frequencies, outside it in order to satisfy the margin conditions

∣∣∣ L
1+L

∣∣∣ < 3dB. Clearly the
solution Fr satisfies the margin constrains while F does not. The jitter result using Fr for A = 1
is σe = 0.224 which is 2.8dB more than the result using F (σe = 0.161), the solution which
ignores the margin specs and uncertainty. We like to compare our result to the performance
of a PI controller (second order loop), which was numerically optimized under the margins and
uncertainty limits. The PI loop filter is (31 + 450/s), with σe = 0.334 which is 3.5dB more than
0.224.
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Figure 4: Time domain simulation for a phase step, faster response for A = 2, slower for A = 1

3.2 Example 2

This is a practical design example for coded-modulation system employed by the company
HeliOss Communication Inc., Waltham MA, USA, who build a very high speed, 155Mbps,
microwave link at around 30GHz for transmission of SDH/SONET. They use convolutionally
coded QAM modulation 40GHz. The relevant parameters are as follows: The required minimum
Eb/N0 of the coded bits is 11dB, and the decoder delay is 77 bits. Assuming correct symbols
fed back, The normalized noise spectral density is φn = −93dB/Hz. The measured phase noise
spectrum is shown in Fig. 6. In the relevant frequency range in can be approximated by the
function transfer function 756/w4 also shown in Fig. 6. The noise assumed white, and the system
delay is 0.5 · 10−6sec. It is required to design the PLL filter, F (s), such that phase margin of
40◦ will be guaranteed when the AGC uncertainty can be any value in the interval [1, 2] (6dB
range). We have computed the optimal loop (with no margin constrains). The optimal solution
has gain margin 9dB and phase margin 38◦, which does not satisfy the closed loop requirements.
The phase error result using this loop is σ = 2.3. The result of the PI loop design using Fig. 11
for 40◦ and 6dB is a = −32.3dB and b = 7 which gives

0.0243
7Ts+ 1
T 2s2

,

and the phase error result is σ = 9.5. The result of the optimal design subject to the margins
and uncertainty constrains using the technique presented here is (s in krad/sec.),

F (s) = 1550
(s+ 7100)(s+ 4350)(s+ 1600)(s+ 420)
s2(s+ 1100)(s2 + 23000s+ 123000)

,

and the phase error result is σ = 4.9, which is 5.75dB improvment. A comparison between the
open loop of the PI solution and optimal one is shown in Fig. 7
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Figure 5: Comparison between the design Fr(s) which satisfies the margin constrains and the
optimal one, F (s), which does not satisfy these constrains.

3.3 The Solution for Φθ(ω) ∝ ω−4 and white noise

Since the near-optimal design method described above is quite complex, we have chosen a very
common case of parameters and solved it fully. The result is a cook-book for PLL design with
delay, which can be used if the phase noise spectrum can be approximated as Φθ(ω) ∝ ω−4 and
if the margins assumed here are appropriate. Let

Φθ(ω) =
B2

0

ω4
and Φn(ω) = N0 (22)

where B0 is constant and N0 is the usual white noise density. Using the partition

L(s) = e−sTL0(s),

equation (4)

σ2
e =

1
2π

∫ ∞
∞

∣∣∣∣ L0(jω)
1 + e−jωTL0(jω)

∣∣∣∣2N0dω +
1

2π

∫ ∞
∞

∣∣∣∣ 1
1 + e−jωTL0(jω)

∣∣∣∣2 B2
0

ω4
dω

=
N0

2πT

(∫ ∞
∞

∣∣∣∣ L0(jΩ/T )
1 + e−jΩL0(jΩ/T )

∣∣∣∣2 +
∫ ∞
∞

∣∣∣∣ 1
1 + e−jΩL0(jΩ/T )

∣∣∣∣2 B2
n

Ω4

)
dΩ (23)

where

B2
n =

B2
0T

4

N0
.
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Figure 6: Phase noise spectral density (rigid) and ∝ 1/ω4 (dashed)

Clearly L0(jΩ/T ) which minimizes σ2
e of equation (23), depends only on Bn, in the sense that

if L0(s) minimizes σ2
e for T = 1 then L0(sT0) minimizes σ2

e for T = T0, moreover for given B2
n

σ2
e(T,N0) =

N0

T
σ2
e(T = 1, N0 = 1). (24)

We therefore use the design technique developed here to present a PLL designer L0(s)’s which
suits different B2

n’s. We limit ourselves to L0(s)’s which have only two free integrators in the
origin, phase margin 40◦ and uncertainty 6dB (it is equivalent to phase margin 40◦ and gain
margin 16dB which is in the reasonable PLL operation range).

By trial and error it was found that for Bn ≤ 0.02 the optimal solution satisfies the margin
specs, therefore the case where Bn ≤ 0.02 is not an interesting case here. From the other hand,
as Bn increases, L0(s) converges to a single solution. We found that L0(s) approximately stays
constant for Bn ≥ 0.15. Our designs are summarized below:

L0(Bn = 0.02) =
0.22(s+ 4)2(s+ 0.091)
s2(s2 + 8.0s+ 19.4)

,

L0(Bn = 0.03) =
0.29(s+ 1.0)(s+ 0.46)(s+ 0.1094)

(s+ 1.8)(s+ 0.36)s2
,

L0(Bn = 0.04) =
0.34(s+ 1.36)(s+ 0.43)(s+ 0.11)

(s+ 2.5)(s+ 0.36)s2
,

L0(Bn = 0.05) =
1.09(s+ 3.48)(s+ 2.6)(s+ 0.43)(s+ 0.106)

(s+ 13.7)(s+ 3.7)(s+ 0.30)s2
,

L0(Bn = 0.06) =
0.78(s+ 5.08)(s+ 0.46)(s+ 0.087)(s2 + 5.8s+ 8.7)

s2(s+ 7.6)(s+ 0.28)(s2 + 7.8s+ 22.0)

L0(Bn = 0.08) =
0.68(s+ 0.078)(s2 + 1.57s+ 0.84)

(s+ 4.6)(s+ 0.34)s2
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Figure 7: Bode plot comparison between the PI structured F (s) and “optimal” F (s) (dashed)

L0(Bn = 0.1) =
0.79(s+ 0.17)(s+ 0.035)(s2 + 1.77s+ 1.63)

(s+ 4.81)(s+ 1.0)(s+ 0.055)s2
,

L0(Bn = 0.15) =
0.79(s+ 0.17)(s+ 0.035)(s2 + 1.77s+ 1.63)

(s+ 4.8)(s+ 1.0)(s+ 0.055)s2
.

The σ2
e values for T = 1 as a function of Bn are given in Fig. 8 below. Note that σ2

n converges
as Bn →∞, because L0(s) converges as Bn →∞. Based on the above results, a cook book for
delayed PLL design is

1. Calculate Bn.

2. If Bn ≤ 0.02 use PI or any optimal existing technique.

3. If Bn ≥ 0.15 your open loop is L0(sT ) using L0(Bn = 0.15).

4. If 0.02 < Bn < 0.15 pick the closest L0(s) from the table above, and your open loop is
L0(sT ).

5. Calculate σ2
e via Fig. 8 and equation (24).

4 Loop Filters Having a PI Form

A reduced order loop filter is a loop filter which has less poles and zeros than the optimal loop
filter. There are three reasons for using a reduced order loop filter, these are: (i) reduction of
computation effort in real time; (ii) the design of a reduced order loop filter may be simpler and
faster; and (iii) the reduced order loop filter can be close enough to the optimal loop filter. The
drawback of using a reduced order loop filter is when (iii) is not satisfied, that is, produce too
much error compared to a non-reduced order design.
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The PLL open loop when the loop filter is PI can be written as follows

L(s) =
e−sT

sT

a(1 + bsT )
sT

(25)

and the two parameters to design are a and b. Since L(jω) can be written as a function of ωT ,
the range of L(jω) for all real ω does not depend on T . Therefore if margin specification of the
form ∣∣∣∣ 1

1 + L(jω)

∣∣∣∣ ≤ δ, ∀ω (26)

is satisfied for some T it is satisfied for any T . This normalize the problem for the margin
specification for all T , and T = 1 will be picked in the following. Let us now denote by ω0 a
frequency for which (26) is satisfied with equality. Explicitly there exists ω0 such that∣∣∣∣∣1 +

e−sT

sT

a(1 + bsT )
sT

∣∣∣∣∣
s=jω0

=
1
δ
,

and ω0 is an extremum point of, |1 + L(jω)|. Hence

a2 1 + b2ω2
0

ω4
0

− 2a
cos(ω0) + bω0 sin(ω0)

ω2
0

+ 1− 1
δ2

= 0, (27)

∂

∂ω

(
a2 1 + b2ω2

ω4
− 2a

cos(ω) + bω sin(ω)
ω2

+ 1

)
ω=ω0

= 0. (28)

1883

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



From equation (28)

a =
sin(ω0)− b sin(ω0)− bω0 cos(ω0) + 2(cos(ω0) + bω0 sin(ω0))/ω0

2/ω3
0 + b2/ω0

. (29)

The solution of equation (27) and (29), for given δ, as a function of ω0 is a curve (a(ω0), b(ω0)) in
R2. These curves are a function of the parameter δ which dictates phase margin φ according to
equation (3), we shall therefore call them the δ-curves or φ-curves. These curves are depicted in
Fig. 9. Clearly, the curves cannot intersect. Moreover, if we denote by Dφ the region inside the
curve of phase margin φ then Dφ1 ⊂ Dφ2 if φ1 < φ2 (equivalently if δ(φ1) > δ(φ2)). Therefore
any (a, b) curve splits R2 into two regions, Dφ in which inequality (26) is satisfied and its
complement in which inequality (26) is not satisfied. For example, if a phase margin of 40◦ is
required (which is equivalent to δ = 3.3dB and 10dB gain margin), then for b = 15 the allowed
values for a are −50.5 ≤ a ≤ −31.8, and for b = 10, −42.5 ≤ a ≤ −28.5.

The extension to gain uncertainty is now strait forward: If it is known that the gain can
increase by rdB then the allowed region, Dr

φ, is the intersection of Dφ and the region Dφ shifted
down by rdB (to protect against possible gain increase of rdB). For example, if phase margin
of 40◦ is required, b = 15, and r = 14dB, then −56.5dB ≤ a ≤ −45.8dB, and if b = 10 then
−42.5dB ≤ a ≤ −42.5dB, that is, no tolerance in a. Therefore if r > 14dB, b ≤ 10 cannot be
used. The maximum gain range a PI loop filter can tolerate as a function of the phase margin
for different values of b can easily be retrieved from Fig. 9. For example at 40◦ and b = 15, the
gain uncertainty range can be 19dB, that is, in order to handle 19dB uncertainty with b = 15
the chosen gain must be a = (−28.5− 19)dB and the gain margin of L(s) is between 10dB for
the maximum gain and 29dB for the minimum gain. If for example the phase margin is 42◦

and the gain range is 10dB, then b ≥ 9 must be picked in order to satisfy inequality (26) by all
possible L(s) which suffers from 10dB gain uncertainty.

Now let us suppose that σ2
e where a PI loop filter is used, has a unique minimum, which

does not satisfy given margin constrains, φ. Then the a, b pair which minimize σ2
e subjected to

the margin constraint, φ, must lie on the surface of Dφ, that is, on the φ-curve. In that case the
design process reduces into an extremum problem with a single parameter and single minimum
as follows:

1. Pick the curve (a, b) from Fig. 9 for the chosen phase margin specification, and modify it
to the appropriate gain uncertainty as described above.

2. Find the extremum of σ2
e(a, b)

σ2
e(a, b) =

1
2π

∫ ∞
∞

∣∣∣∣∣ e−sTa(1 + bsT )
(sT )2 + e−sTa(1 + bsT )

∣∣∣∣∣
2

s=jω

Φn(ω)dω

+
1

2π

∫ ∞
∞

∣∣∣∣∣ (sT )2

(sT )2 + e−sTa(1 + bsT )

∣∣∣∣∣
2

s=jω

Φθ(ω)dω

=
1

2πT

∫ ∞
∞

∣∣∣∣ a(1 + bs)
s2 + e−sa(1 + bs)

∣∣∣∣2
s=jω

Φn(ω/T )dω

+
1

2πT

∫ ∞
∞

∣∣∣∣∣ s2

s2 + e−sa(1 + bs)

∣∣∣∣∣
2

s=jω

Φθ(ω/T )dω, (30)

along the (a, b) curve picked in 1.
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3. The PI optimal loop filter will then be

F (s) =
a(1 + bTs)
A1T 2s

where AP = Ae−sT /s and A ∈ [A1, A2].

4.1 The PI Solution for Φθ(ω) ∝ ω−4 and white noise

We treat here the case

Φθ(ω) =
B2

0

ω4
and Φn(ω) = N0 (31)

where B0 is constant and N0 is the usual white noise density. Substituting in equation (30) gives

σ2
e =

1
2πT

∫ ∞
∞

∣∣∣∣∣ a(1 + bs)
√
N0

s2 + e−sa(1 + bs)

∣∣∣∣∣
2

s=jω

dω +
1

2πT

∫ ∞
∞

∣∣∣∣∣ s2B0T
2/ω2

s2 + e−sa(1 + bs)

∣∣∣∣∣
2

s=jω

dω. (32)

Clearly

σ2
e(T,N0, B0) = B2

0T
3σ2
e(1, n, 1), n =

N0

B2
0T

4
, (33)

thus the a, b pairs which minimize σ2
e depend only on the single parameter n. Note that n = B−2

n

defined in equation (24) but we use n for clarity. Let {a0(n), b0(n)} be the point that minimizes
σ2
e as a function of n. The curve {a0(n), b0(n)} is plotted on top of the φ-curves in Fig. 9. Let us

further denote the intersection point of the curve {a0(n), b0(n)} with a φ-curve by a0(φ), b0(φ)
and n0(φ). For example, if phase margin of 40◦ is required assuming no gain uncertainty, then√
n0 = 13.8, a0 = −26.3dB and b0 = 7.8. a0(n), b0(n) were calculated as follows: first σ2

e in
equation (32) is written as

σ2
e = nBL + σ2

θ .

Hence, a0(n), b0(n) minimizes σ2
e for some n if

n = − ∂σ
2
θ/∂a

∂BL/∂a
and n = − ∂σ

2
θ/∂b

∂BL/∂b
. (34)

The two partial derivative ratios in expressions (34) where calculated along each of the φ-curves
in Fig. 9 and it was found that they have a unique intersection, whose n value is written on its
φ-curve in Fig. 9. This proves, numerically, that σ2

e(n) has a unique minimum. Moreover, we
observe that n(φ) is a monotonicaly increasing function of φ. The same results are depicted in
Fig. 10 which includes a graph of n0 as a function of b0 and a graph of b0(φ).

Fig. 10II also shows b which minimizes σ2
e(1, n = 0, 1) on the φ-curve. Since the two curves

in Fig. 10II almost coincide, and the solution for constrained minimization of σ2
e for n = 0 must

lie on the φ-curve, the a0(φ), b0(φ) pair, for a very good approximation, minimize σe(1, n1, 1)
for any n1 ≤ n0(φ). But this will not be the case if uncertainty is introduced. Fig. 11 depicts
modified φ-curves for phase margin of 40◦ and uncertainties between 0dB and 18dB every 2dB.√
n0 at the intersection of a0(n), b0(n) with the modified φ-curve is marked on each curve. For

n1 < n0 the a, b pairs which minimize σe(1, n1, 1) on the modified φ-curve move along that curve
toward the point marked ◦ which is the minimum point for n1 = 0. Finally, Fig. 12 depicts√
nσn, σθ, σe and

√
n on the point a0(φ), b0(φ) as a function of φ.
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Figure 9: (a, b) curves for different phase margins, marked on its right side. Also Location of
a, b’s which minimize σ2

e on the φ-curves and their
√
n values

4.1.1 Tradeoff amongst reduced-order, delay time and phase noise

The first tradeoff is based on equation (32) which states that when N0 is small enough then the
thermal noise contribution in equation (33) is neglected and therefore σ2

e ∝ B2
0T

3.
The next tradeoff we are interested in is by how much σ2

e can be reduced by an loop filter
designed by the method of section 3 compared to a PI loop filter. The answer provided here
is based on an example whose parameters are: Φθ = 502/ω4, Φn can be neglected, open loop
delay T = 0.01 and gain uncertainty, A, in the interval A ∈ [1, 2.5], that is, 8dB uncertainty.
The margins specification is of the form |1 + L|−1 < 3.3dB, which guarantee 40◦ phase margin
and 10dB gain margin for A = 2.5 and 18dB for A = 1.

Using Fig. 11 for 8dB uncertainty, a = −34.3dB and b = 7. For that PI loop filter σ2
e = 0.57.

Using the suboptimal methodology described herein the loop filter is

Fr(s) = 32.7
(s+ 120)(s+ 570)(s2 + 11.4s+ 38)

s2(s+ 300)(s+ 28)

for which σ2
e = 0.28. This figure is half of that figure when an optimal PI loop filter is used. By

equation (33), it is equivalent to 3dB reduction of the phase noise spectral density or 25% in
the delay time.

5 Conclusions

We have presented a design method for near optimal PLL taking into consideration the phase
noise, the thermal noise, the undesired but unavoidable loop delay caused by delayed decisions
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and margins for protection from gain uncertainty and insuring good step response. The method
is general and can be used with any PLL. We find its main application in carrier tracking since
a wide loop bandwidth is required to track the phase noise. We do not limit the loop order to
be second order, and we demonstrate a large performance gain with respect to a well designed
second order loop.
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