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Abstract

Input-state-output analysis of systems with external variables on equal footing is pursued through a
numerical algorithm for processing a set of linear differential equations in the form of an autoregres-
sive representation. Instead of resorting to the computation of elementary polynomial operations,
numerically robust routines from numerical linear algebra are used to compute an implicit state-space
realization in the form of a minimal driving variable representation. The representation is used to
detect candidate inputs among the external variables. The algorithm is based on polynomial matrix
to state space conversions leading to application of well-proven methods of numerical linear algebra
such as Gram-Schmidt orthonormalization, Householder transformations, and the singular value de-
composition.
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1 Introduction

Analysis of dynamic systems relies on our ability to capture that signals describing a system at one time
are interrelated, not only with other signals at that time, but in a special way with signals at other times.
In continuous time, p dynamic relations among p+m scalar signals are often formulated in a set of p
scalar differential equations with p+m scalar variables. The set of equations may be described in the
form of a single equation

P

�
d

dt

�
w(t) = 0 (1)

where P 2 Rp�(p+m) [s] is a polynomial matrix with full normal rank p. The vector w accommodates the
p+m scalar variables. A polynomial matrix equation of the form (1) is called the AR (autoregressive
representation) and the entries of w are referred to as the external variables of the underlying system.
The external variables w are said to be on equal footing; we draw no distinction between the input and
output nature of the scalar entries in the vector w.

The main thrust of the paper is to present a reliable algorithm for minimal externally equivalent
state-space realization of ARs, and to use the algorithm to determine all input-state-output relations
defined on a given AR by considering w as a collection of input variables u and output variables y.
External equivalence of ARs is studied in Blomberg and Ylinen (1983). For a complete list of externally
equivalent operations on a general system of differential equations, see Schumacher (1988).
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Of course, not every entry in w may act as an input to a causal system. Candidate input-state-
output relations are determined by (p+m)-dimensioned permutation matrices but not every such matrix
imposes an input-state-output relation. The ith input-state-output relation may be specified in the form

�i =

8>>><
>>>:

�
yi(t)

ui(t)

�
= �iw(t)

d
dt
xi(t) = Aixi(t) +Biui(t)

yi(t) = Cix(t) +Diui(t)

(2)

where �i is the relevant permutation matrix. The situation is depicted in Figure 1.

�1 �2 �3 �k

P
�
d
dt

�
w(t) = 0
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Figure 1: input-state-output relations

The main results are outlined in Section 2. Section 3 covers some standard material to be used in the
sequel. Section 4 describes an algorithm for minimal externally equivalent state-space realization of (1).
The algorithm is a prerequisite for the detection of the input-state-output relations whose specification is
subject to the algorithm in Section 5. Last before conclusions, in Section 6 we discuss the observability
properties of the minimal externally equivalent realization and realizations in the form (2).

2 Main results

The main results are Algorithm 4.1 — a numerically reliable algorithm for state-space realization of ARs
(autoregressive representations) associated with full normal row rank polynomial matrices — and the
observation that, related to the AR in the form (1), all input-state-output relations �i of the form (2) may
be described by observable but not necessarily controllable state-space realizations with a common set
of observability indices.

Algorithm 4.1 does not require the computation of elementary polynomial operations. The algorithm
is based on invariant subspace methods with orthonormal bases. Computationally, the algorithm relies on
Gram-Schmidt orthonormalization, Householder transformations, and the singular value decomposition.

3 Preliminaries

The invariant subspace methods in Algorithm 4.1 rely on the maximal controlled invariant subspace
contained in a given subspace. A state-space realization

d
dt
x(t) = Ax(t) +Bu(t)

y(t) = Cx(t)
(3)

is used as a conceptual tool to perform externally equivalent transformations on (1). The maximal
controlled invariant subspace with respect to the pair (A;B) such that this subspace is contained in kerC
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is denoted by V�(A, B, kerC). The interest is in V�(A, B, kerC) and its orthogonal complement.
Extensive details about invariant subspace methods are omitted and may be found in Wonham (1979),
Hautus (1983), and the monograph by Basile and Marro (1992).

According to Rosenbrock (1970), the set of observability indices of a state-space realization (A;B;C;D)

may be read off following a similarity transformation into a staircase form

�
A B

C D

�
T
�!

2
4 A11 0 B1

A21 A22 B2

C1 0 D

3
5 (4)

where (A11;B1;C1;D) is an observable realization of the transfer function realized by (A;B;C;D).
The similarity transformation T may rely on a product of orthogonal matrices in the form of Householder
matrices whose successive right-hand side application transforms (A;B;C;D) into the form

2
6666666664

A11 A12 0 � � � 0 B1

A21 A22 A23 � � � 0 B2

...
...

... � � �

...
...

A��1;1 A��1;2 A��1;3 � � � 0 B��1

A�;1 A�;2 A�;3 � � � 0 B�

A�+1;1 A�+1;2 A�+1;3 � � � A�+1;�+1 B�+1

C1 0 0 � � � 0 D

3
7777777775

(5)

with Aij 2 R
ni�nj for i; j = 1;2; � � � ; �. The integers ni are defined such that

n1 = rank C
n2 = rank Ai;i+1

...
n� = rank A��1;�

(6)

C1 and Ai;i+1, i = 1;2; � � � ; �� 1, are in the lower echelon form. In particular, if (3) is observable, then
A�+1;�+1 is void.

4 State-space realization of ARs

A polynomial matrix P 2 R
p�(p+m) [s] may be defined in terms of a matrix polynomial

P (s) = P0 +P1s+ P2s
2 + � � �+ Pls

l

and manipulated as an array of coefficient matrices Pi 2 R
p�(p+m) , i = 0; 1, : : : , l. The following

algorithm is based on external equivalence of linear systems in the form (1). The result is a minimal
externally equivalent state-space realization of (1). The concept of external equivalence implies that
minimal realizations of ARs are in the form of observable but not necessarily controllable state-space
realizations. If (A;B;C;D) and (A0;B0;C 0;D0) are externally equivalent minimal realizations, then
there exist nonsingular matrices S and R along with a matrix K such that

�
A0 B0

C 0 D0

�
=

�
S�1(A+BK)S S�1BR

(C +DK)S DR

�
: (7)
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Algorithm 4.1 (State-space realization of ARs) Let P 2 R
p�(p+m) [s] be a full-row-rank polynomial

matrix without zero columns.

1. Define A, B, C , H , J 2 R
��� such that

2
4 A B

C 0

H J

3
5 :=

2
666666666666664

0 � � � � � � � � � � � � 0 I

I
. . .

... 0

0
. . . . . .

...
...

...
. . . . . . . . .

...
...

0 � � � 0 I
. . .

... 0

Pl�1 � � � � � � P1 P0 0 Pl

0 � � � � � � � � � 0 I 0

0 � � � � � � 0 I 0 0

3
777777777777775

:

2. Apply Algorithm 4.2 to A, B, C , H , J specified by Step 1. The result is described by A11, B12,
H1, J2 2 R

��� . Define new A, B, C , H , J 2 R
��� such that

2
4 A B

C 0

H J

3
5 :=

2
4 AT

11 HT
1

BT
12 0

0 �I

3
5 : (8)

3. Apply Algorithm 4.2 to A, B, C , H , J specified by (8). The result is described by A11, B12, H1,
J2 2 R

��� . Define A, B, C , D, J 2 R
��� such that

2
4 A B

C D

0 J

3
5 :=

2
4 AT

11 HT
1

BT
12 JT

2

0 I

3
5 : (9)

4. Apply the orthogonal matrix Tv =
�
T1 T2

�
—specified by (15) in Algorithm 4.2 — to obtain

2
4 A B1 B2

C 0 �I

0 T1 T2

3
5 :=

2
4 AT

11 HT
1

BT
12 JT

2

0 I

3
5� I 0 0

0 T1 T2

�
:

Then P
�
d
dt

�
w(t) = 0 admits an externally equivalent state-space realization

d
dt
x(t) = (A+B2C)x(t) +B1v(t)

w(t) = T2Cx(t) + T1v(t)
(10)

where w are the external variables, x are the state variables, and v are the driving variables. In addition,
(10) has the minimal dimx and the minimal dimv amongst all externally equivalent realizations of
P
�
d
dt

�
w(t) = 0 .

Because of the necessity to introduce v, the state-space realization (10) is called the DVR (driving
variable representation) of the system representation (1).
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Throughout Algorithm 4.1 the dimensions of the externally equivalent realizations are successively
deflated on the grounds that if a state-space realization (A;B;C;D) is a strongly observable1 , then

rank

�
sI �A �B

C D

�
= dimA+ rank

�
�B

D

�
:

The latter result is a part of a useful theorem in Hautus (1983). In the context of Algorithm 4.1, the
full-column rank system matrix

�
sI �A �B

C D

�
(11)

guarantees existence of a certain unimodular transformation which validates the deflation. In particular,
the deflation is subject to Algorithm 4.2, where (A;B;C;D) of (11) is defined by (A22;B21;C2;0) of
Step 3 and Step 4.

Algorithm 4.2 (Tool in Algorithm 4.1) Let A, B, C , H , J 2 R
��� specify

d
dt
x(t) = Ax(t) +Bv(t)

0 = Cx(t)

w(t) = Hx(t) + Jv(t)

(12)

— a state-space realization with external variables w, state variables x, and driving variables v.

1. Find an orthonormal basis (�1, : : : , �k) for V�(A;B;kerC) defined as the largest subspace V
such that

(i) V is controlled invariant for (A;B),
(ii) V � kerC .

2. Wrap a feedback v �! v+Kx around (12) such that a state-space realization

d
dt
x(t) = (A+BK)x(t) +Bv(t)

0 = Cx(t)

w(t) = (H + JK)x(t) + Jv(t)

(13)

is obtained such that

V�(A+BK) = V�(A;B;kerC)

is a simple invariant subspace.

3. Find (�k+1, : : : , �n) — the orthonormal complement to the basis of V� — and apply the orthogonal
matrix

T =
�
�1 : : : �k �k+1 : : : �n

�
1An observable state-space realization is strongly observable if the realization remains observable under arbitrary regular

state feedback, see (7).
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as a similarity transformation matrix in (13). In the new coordinates, (13) is described in the
Kalman form

d
dt

�
x1(t)

x2(t)

�
=

�
A11 A12

0 A22

��
x1(t)

x2(t)

�
+

�
B1

B2

�
v(t)

0 =
�

0 C2

�� x1(t)
x2(t)

�

w(t) =
�
H1 H2

�� x1(t)
x2(t)

�
+ Jv(t)

(14)

where A11 2 R
k�k .

4. Orthogonally transform v in (14) such that — in the new coordinates — B2 is in a column-
compressed form. If Tv is the relevant orthogonal transformation matrix, then�

B11 B12

B21 0

�
:=

�
B1

B2

�
Tv (15)

such that B21 has full column rank.

Then (12) is externally equivalent to the state-space realization

d
dt
x(t) = A11x(t) +B12v(t)

w(t) = H1x(t) + J2v(t):
(16)

In (12)–(16), x and v denote different quantities. For example, although the interpretation of x and v
remains intact, the dimension of v in (16) is less than the dimension of the quantity denoted by v in (14).
On the other hand, throughout the algorithm, w denotes one and the same quantity.

In (16), dimx and dimv need not be the minimal dimensions amongst all externally equivalent
state-space realizations of (12); dimx is minimal following the second application of Algorithm 4.2 in
Algorithm 4.1.

4.1 Example

This example illustrates Algorithm 4.1 on the problem of minimal externally equivalent realization of
the system described in (1). The relevant polynomial matrix,

P (s) =
�
P1(s) P2(s)

�

P1(s) =

2
4 �0:33s2 +7:35s+4:39 1:74s2 +1:89s+1:7 �0:78s2 +3:82s� 1

0:19s2 +0:674s+ 1:99 0:037s2 +0:524s+0:833 0:84s� 0:78

�0:19s2 � 0:934s� 5:29 �0:037s2 + 0:326s� 1:29 �0:45s+ 1:57

3
5

P2(s) =

2
4 2:61s2 � 15:4s� 8:4 2:02s2 +12:2s� 10:4

�0:19s2 � 2:4s� 3 0:44s2 +1:58s� 4:5

0:19s2 + s� 1:5 �0:44s2 � 0:79s+ 9:9

3
5 ;

is depicted in Figure 2.
After the first application of Algorithm 4.2, the externally equivalent — yet non-minimal — state-space
realization of (1) is in the form

d
dt
x(t) = A11x(t) +B12v(t)

w(t) = H1x(t) + J2v(t)
(17)
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Figure 2: a “Lego” diagram of P
�
d
dt

�

where

A11 =

2
6666666666664

�3:9343 �1:8439 �1:2948 0:9519 8:4347 5:4079 �6:0072 1:5706 �1:9460

0:1048 �0:0221 0:3310 �0:2001 �3:3537 �0:6842 0:8980 �0:6633 0:4515

�0:0091 0:0961 0:0600 �0:0516 �0:3322 �0:2577 0:0831 �1:0669 0:0512

�0:0062 �0:0737 �0:0902 0:0668 0:6952 0:2930 �0:1815 0:1384 0:9012

0:0255 0:4602 0:5197 �0:3902 �3:9045 �1:7354 0:0164 �0:7782 0:5577

0:9799 �0:5963 �0:6297 0:4788 4:6254 2:1545 �1:2011 0:9225 �0:6640

0:1392 �0:7998 �0:2117 0:3647 �0:6396 1:3914 0:6141 �0:3160 0:1093

2:5244 �0:0403 �0:3952 0:3317 3:4177 0:8074 1:5872 0:7549 �0:0210

0:2460 0:0227 0:1579 �0:0629 �1:6933 �0:4160 0:7625 �0:3845 0:2869

3
7777777777775

B12 =

2
6666666666664

0:0548 �0:3051

0:1640 �0:2455

0:0229 �0:0342

�0:0393 0:0588

0:2236 �0:3348

�0:2684 0:4018

0:1667 0:2266

0:2559 �0:5904

�0:8676 �0:4104

3
7777777777775

H1 =

2
66664

0:0391 0:8369 �0:0227 0:0391 �0:2225 0:2670 0:0692 �0:0420 0:0193

0:0054 �0:0227 0:9968 0:0054 �0:0310 0:0372 0:0096 �0:0059 0:0027

�0:0093 0:0391 0:0054 0:9907 0:0533 �0:0639 �0:0166 0:0101 �0:0046

0:0533 �0:2225 �0:0310 0:0533 0:6966 0:3640 0:0944 �0:0573 0:0263

�0:0639 0:2670 0:0372 �0:0639 0:3640 0:5632 �0:1133 0:0688 �0:0315

3
77775

and J2 is a zero matrix.
After the second application of Algorithm 4.2, the externally equivalent — now minimal — state-

space realization of (1) is in the form

d
dt
x(t) = Ax(t) +Bv(t)

w(t) = Hx(t) + Jv(t)
(18)
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where A, B, H , and J are specified by

�
A B

H J

�
=

2
666666666666664

�3:0501 3:3934 �2:4642 1:1425 �0:2319 �2:3112 6:1252

1:1593 �1:1881 1:1629 1:0333 �0:7791 1:3914 �1:1079

0:7715 3:8256 �0:0321 1:0318 �0:4277 �2:2707 4:5775

�1:1503 5:0813 �4:6348 �0:2695 1:7085 �4:6585 5:5119

1:6010 �4:6996 0:9751 �1:2808 0:6162 2:7191 �6:9995

0:1461 0:1084 �0:2155 �0:2791 �0:5389 0:0678 �0:7397

�0:1432 0:3390 0:1717 0:3784 0:5432 0:1655 �0:5442

�0:2067 �0:1553 0:0193 0:0599 0:0246 �0:9358 �0:1919

0:6455 0:3574 0:0843 �0:0610 0:2635 �0:2607 �0:0535

0:0730 0:7425 �0:1687 0:0227 �0:2461 �0:1558 0:3421

3
777777777777775

:

In (17) and (18) we use the same abuse of notation as in (12)–(16).

5 Input-state-output relations in ARs

In this section, we present an algorithm for the computation of the state-space realizations related to the
input-state-output relations within a given AR of the form (1).

Algorithm 5.1 (Input-state-output relations in a minimal DVR) Consider a minimal DVR (F;G;H;J),
and the following sequence of operations:

1. Permute the rows of J to obtain a nonsingular matrix J2 such that

�w(t) =

�
H1

H2

�
x(t) +

�
J1
J2

�
v(t):

2. Apply a state-feedback transformationF �! F +GK whereK is constructed such that (F;G;H;J)
is transformed to

d
dt
x(t) = (F +GK)x(t) +Gv(t)

�w(t) =

�
H1 + J1K

0

�
x(t) +

�
J1
J2

�
v(t):

(19)

3. Transform the present driving variables v in accordance with u := J2v to bring (19) into

d
dt
x(t) = (F +GK)x(t) +GJ�1

2 u(t)

�w(t) =

�
H1 + J1K

0

�
x(t) +

�
J1J

�1
2

I

�
u(t):

Then (F +GK;GJ�1
2 ;H1 + J1K;J1J

�1
2 ) is a “minimal” state-space realization driven by external

variables. This realization is related to the given minimal DVR (F;G;H;J) through�
y(t)

u(t)

�
= �w(t)

where � is a non-unique but fixed permutation matrix obtained in Step 1.

As shown in Step 1, the total number k of input-state-output relations in a given minimal DVR, and
thence in (1), depends on the number of combinations to choose a nonsingular J2 from J , that is,

1 � k �

�
p+m

m

�
: (20)

664

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



5.1 Example

Let us illustrate Algorithm 5.1 on the problem of detection and specification of every input-state-output
relation (2) in the system representation (1). The polynomial matrix P is displayed in Example 4.1.

We start off at the minimal DVR (18) and apply Algorithm 5.1 to all admissible permutation matrices
�i. In agreement with (20), the true number of relations is k = 9. That is, one of the 10 relations is
nonexistent since the relevant � yields a singular J2.

Table 1: DVR and input-state-output relations: the eigenvalues

DVR �4:8912 �1:9901 �0:0190 1:4883+ 2:0620i 1:4883� 2:0620i

345 �6:5255 3:7205+ 4:6790i 3:7205� 4:6790i �0:5080 1:0894

245 �5:4749 �0:3803+ 0:8238i �0:3803� 0:8238i 0:2919 4:5899

235 �5:2878 4:2668 �1:0133 �0:1743 0:8414

234 1:6786+ 4:4807i 1:6786� 4:4807i �0:2076 0:5884+ 1:2782i 0:5884� 1:2782i

145 �6:8694 �3:4594 1:1632+ 3:1445i 1:1632� 3:1445i 0:0041

135 �6:7409 �0:0524+ 3:6321i �0:0524� 3:6321i 0:1841+ 0:2442i 0:1841� 0:2442i

134 �8:0647 2:1589+ 6:9930i 2:1589� 6:9930i �0:1704 2:7106

124 �2:8104+ 5:4283i �2:8104� 5:4283i �1:1650 �0:1369 1:0167

123 �2:2040+ 6:7448i �2:2040� 6:7448i 1:5163 �0:2379+ 0:0401i �0:2379� 0:0401i

In Table 1, the first row specifies the eigenvalues of a minimal externally equivalent state-space
realization of (1) while the remaining nine rows list the eigenvalues of the nine state-space realizations
representing the nine input-state-output relations in (1). For example “345” denotes the relation where
y, the vector of outputs, occupies the positions f3;4;5g of the external variables vector w.

The application of Algorithm 5.1 revealed the nonexistence of an input-state-output relation between
entries at the positions f1;2;5g of w as outputs and f3;4g as inputs.

6 Observability properties

The minimal externally equivalent realization of (1) —in the form of a DVR — generalizes the realization
of a left polynomial MFD (matrix fraction description). Recall that state-space realization of left MFDs
may be organized to yield minimal (externally equivalent) state-space representations in the form of
observable but not necessarily controllable realizations (Wolovich, 1971).

The DVR is not only observable but also strongly observable, that is, the DVR remains observable
under arbitrary regular state feedback transformations. Similarly to minimal realizations of left MFDs,
minimal DVRs need not be controllable. The set of observability indices related to a DVR (and the
relevant input-state-output relations) may be studied as described in Section 3. Construction of the
Hessenberg form (5) is useful to show that, given a fixed (1), the set of observability indices of either
input-state-output relation equals the set of observability indices of the minimal DVR.

By Algorithm 5.1, the input-state-output relations are described in terms of observable but not
necessarily controllable state-space realizations whose dimension equals the dimension of the minimal
DVR. The dimension is the McMillan degree of the underlying system.
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7 Conclusions

A reliable algorithm for minimal externally equivalent state-space realization of systems described by ARs
(autoregressive representations) was presented. For uncontrollable systems the realizations are observable
non-minimal state-space realizations because external equivalence of ARs covers both the controllable
and uncontrollable dynamics. The algorithm can be useful in CAD of control systems (CADCS) based
on polynomial matrices; it replaces the computation of elementary polynomial operations by reliable
numerical methods such as Gram-Schmidt orthonormalization, Householder transformations, and the
singular value decomposition.

The elementary polynomial operations are avoided by applying an innovative technique for state-
space realization. The technique does not require polynomial matrices in a (row) reduced form. Minimal
externally equivalent realizations are obtained in a successive conversion based on invariant subspace
methods with orthonormal bases. A Matlab implementation of the algorithm is partly based on Grace
et al. (1990) and the software appendix to Basile and Marro (1992). For comparison, the conventional
algorithm (Wolovich, 1971) would require transformation to a row reduced form, modulo polynomial
matrix division, and constant matrix inversion for specification of every single input-state-output relation,
cf. Kraffer (1993).

Finally, observability properties of the minimal externally equivalent realizations were studied along
with the observability properties of the underlying input-state-output relations. The resulting connections
are useful in better understanding the applicability of polynomial matrices in control system design.
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