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Abstract

This paper is concerned with the problem of modelling flexible structures in which the
effects of distributed elasticity and of both distributed and lumped masses are to be taken
into account. The eigenvalue-eigenfunction problem, which constitutes the exact model of
the free vibrations of the structure, is given for the general case of a flexible beam having
lumped masses and rotational inertiae placed along its length. The proposed method is
applied to a simple case study: a clamped beam with a rigid body attached to its free end.

1 Introduction

The interest in obtaining accurate dynamic models of system including distributed elasticity
has grown up in the past years, due to the great variety of related practical problems, which
arise in robotics, space applications and control of large structures.

Todays industrial robots are characterized by an elevate stiffness of the mechanical structure.
Such a feature is necessary to achieve the required precision in positioning the end effector of
the robots when payloads vary and/or when dynamic loads, due to speed and acceleration, act
on the robotic mechanical structure. As a consequence, the ratio of payload to weight of an
industrial robot amounts from 1:10 to 1:30 and less. In a number of robotic applications, such
as high-speed manipulators and space applications, a demand for lighter robots which operate
with the same precisions and speeds can be thoroughly recognized.

These requirements suggest to take into account the dynamic effects of the distributed elas-
ticity in the design of the controller. As a matter of fact, the rigidity assumption, which is
∗This research was supported by ASI and MURST.
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the basis of the classical modelling approach for mechanical systems, is valid as long as the
control bandwidth remains well below the first elastic frequencies of the system under consid-
eration. In most cases, such an assumption leads to heavy limitations on the maximum speeds
and accelerations supported by the systems themselves.

For these reasons, in the last decade, a significant number of works has been developed
about modelling and control of structures having flexible parts, i.e., of mechanical structures
constituted by deformable bodies.

In this paper, the influence of lumped masses on the models that can be developed for such
systems is investigated, with reference to the case in which the deformable body is a flexible
beam, characterized by distributed mass and elasticity.

In Section 2 a general approach, based on Lagrangian techniques, for deriving the exact
dynamic model of such structures, in the form of a boundary eigenvalue-eigenfunction problem,
is presented, whereas, in Section 3, the possibility of obtaining approximate, finite dimensional,
models is illustrated. It is stressed that the advantage of the models derived in this framework
is that they are constituted by closed form equations, parametric in the order of approximation.
This is a great advantage when the purpose of the modelling effort is to design control laws
for the system modelled, as a matter of fact, closed-form equations can be useful when proving
theoretically the validity of control algorithms. In Section 4, such a general approach is applied
to a significant case study in order to compare two different approximate models which can be
derived by following the approach described in Section 3.

2 Equations of motion

The purpose of this section is to write an exact model of a mechanical system constituted
by a heavy flexible beam, whose mass per unit length and elastic constant are denoted by ρ and
k, respectively, along which H heavy rigid bodies are fit, with H ∈ 6Z+. The mass of the i-th
rigid body is denoted by Mi, i = 1, 2, . . . , H. It is assumed that the beam is constrained to
move on an horizontal plane, so that the effects of gravity can be neglected. Furthermore, it is
assumed that a sufficient number of constraints avoid rigid motions of the beam, so that, when
undeformed, the beam lies on the x-axis of a suitable inertial, right-handed and orthonormal,
reference frame (x, y, z) whose (x, y) plane coincides with the plane of motion.

Under the assumption of small deformations, the Cartesian coordinates of an infinitesimal
element of the beam at time t ∈ IR, t ≥ 0, expressed in the reference frame (x, y, z), are
(`, α(t, `), 0), with ` ∈ [0, L], and L being the length of the undeformed beam.

In the following, in order to simplify the notation, the derivative with respect to t will be
denoted by ˙ , and the derivative with respect to ` will be denoted by the superscript ′.

In the case considered here, the beam is subject to some physical constraints, which are
restricted to be of the following kind:

α(t, 0) = 0, ∀t ≥ 0, (1a)
α′(t, 0) = 0, ∀t ≥ 0, (1b)
α(t, L) = 0, ∀t ≥ 0, (1c)
α′(t, L) = 0, ∀t ≥ 0; (1d)

it is easy to see that any set constituted by two or more of the constraints (1), including at least
one of the pairs (1a)-(1b), (1a)-(1c), (1c)-(1d), avoids rigid motions of the beam, and, therefore,
can be considered in the present setting. An example is a beam subject to constraints (1a)
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Figure 1: The mechanical system.

and(1b), with the end-point of abscissa ` = L being free (i.e., (1c) and (1d) do not hold, being
α(t, L) and α̇(t, L) not constrained). Such a case is considered in detail in Section 4.

The H rigid bodies are fixed along the beam in correspondence of the abscissae `i ∈ IR,
which are ordered with respect to the subscript so that 0 ≤ `1 < `2 < . . . < `H ≤ L. The
Cartesian coordinates of the center of mass of the i-th rigid body, at time t ≥ 0, are given by
(`i, α(t, `i), 0), i = 1, 2, . . . , H.

For each i = 1, 2, . . . ,H, a suitable, right-handed and orthonormal, reference frame (xi, yi, zi)
is defined, rigidly connected with the i-th body. Such a reference frame is defined so that, at
each time t ≥ 0 the (xi, yi) plane coincides with the plane of motion, the xi axis coincides with
the line tangent to the axis of the deformed beam passing through the point (`i, α(t, `i), 0),
and the zi-axis is parallel to the z-axis. Let Ii be the moment of inertia about the zi-axis of the
i-th rigid body, i = 1, 2, . . . , H. If Ii > 0, it is assumed that the i-th rigid body is at rest with
respect to the reference frame (xi, yi, zi).

The kinetic energy of the beam is
ρ

2

∫ L

0
α̇2(t, `)d`, the kinetic energy due to the translational

motion of the i-th rigid body is
Mi

2
α̇2(t, `i), and (taking into account that, under the assumption

of small deformations, α′(t, `i) coincides with the angle from the x-axis to the xi-axis) the kinetic

energy due to the rotation of the i-th rigid body is
Ii
2

(α̇′)2(t, `i). Then, the total kinetic energy
of the system under consideration can be expressed by the following functional depending on
the derivatives of function α:

T :=
ρ

2

∫ L

0
α̇2(t, `)d`+

H∑
i=1

Mi

2
α̇2(t, `i) +

H∑
i=1

Ii
2

(α̇′)2(t, `i),

whereas the potential energy is expressed by

U :=
k

2

∫ L

0

(
α′′(t, `)

)2 d`.

The dynamic model of the mechanical system under consideration will be obtained by means
of the Hamilton principle: the actual path of motion, from time t1 to time t2, with initial
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configuration α(t1, `) = α1(`), for all ` ∈ [0, `], and final configuration α(t2, `) = α2(`), for all
` ∈ [0, `], with α1(·) and α2(·) being fixed, is such that the action integral A, defined by:

A :=
∫ t2

t1
Ldt,

with L := T − U being the lagrangian function, has a stationary value. A sufficiently rich
set of admissible functions α(·, ·), is the set of continuous functions of both arguments, having
continuous second order derivative with respect to the first argument, the time t, continuous first
order derivative with respect to the second argument, the abscissa `, and piece-wise continuous
(and bounded) second, third and fourth order derivatives with respect to `, with α′′(t, `), α′′′(t, `)
and α′ν(t, `) continuous for each t ∈ [t1, t2], for each ` ∈ [0, L], ` 6= `i, i = 1, 2, . . . , H.

In the remainder of the paper, when confusion cannot arise, if a function is dependent on
(t, `), then its arguments are omitted (i.e., symbol α is used instead of α(t, `)).

Let the lagrangian density function L(α̇, α′′) be defined as follows:

L(α̇, α′′) :=
1
2
ρ α̇2 − 1

2
k
(
α′′
)2
. (2)

As L(α̇, α′′) does not depend on α, if δα(t, `) denotes the variation of α(t, `), the first
variation of A can be written as follows:

δA =
∫ t2

t1

∫ L

0

(
∂L (α̇, α′′)

∂α̇
δα̇+

∂L (α̇, α′′)
∂α′′

δα′′
)

d`dt+

∫ t2

t1

H∑
i=1

(
Miα̇(t, `i)δα̇(t, `i) + Iiα̇

′(t, `i)δα̇′(t, `i)
)
dt. (3)

By taking into account the continuity assumptions made about function α(·, ·), and the fact
that (as α(t1, ·) and α(t2, ·) are fixed) the admissible variations δα(·, ·) satisfy the following
relationships for all ` ∈ [0, L], whence also for ` = `i, i = 1, 2, . . . , H:

δα(t1, `) = 0,
δα(t2, `) = 0,
δα′(t1, `) = 0,
δα′(t2, `) = 0,

the following relationships can be obtained by means of integration by parts:∫ t2

t1
α̇(t, `i)δα̇(t, `i)dt = −

∫ t2

t1
α̈(t, `i)δα(t, `i)dt, (4a)∫ t2

t1
α̇′(t, `i)δα̇′(t, , `i)dt = −

∫ t2

t1
α̈′(t, `i)δα′(t, `i)dt, (4b)∫ t2

t1

∫ L

0

∂L (α̇, α′′)
∂α̇

δα̇ d`dt = −
∫ t2

t1

∫ L

0

d
dt
∂L (α̇, α′′)

∂α̇
δα d`dt, (4c)

∫ L

0

∂L (α̇, α′′)
∂α′′

δα′′ d` =
H∑
i=0

[
∂L (α̇, α′′)

∂α′′
δα′
]`=`−i+1

`=`+i

−

H∑
i=0

[
d
d`
∂L (α̇, α′′)

∂α′′
δα

]`=`−i+1

`=`+i

+
∫ L

0

d2

d`2
∂L (α̇, α′′()

∂α′′
δαd`, (4d)
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where `0 := 0, `H+1 := L, and the following notation has been used for an arbitrary function
f(·):

f(T+) := lim
τ→T+

f(τ),

f(T−) := lim
τ→T−

f(τ).

By means of (2), (4a), (4b), (4c) and (4d), the first variation (3) can be rewritten as follows:

δA = −
∫ t2

t1

∫ L

0
(ρα̈+ kα′ν)δα d`dt+

∫ t2

t1

(
− kα′′(t, L)δα′(t, L) +

H∑
i=1

δα′(t, `i)
(
k α′′(t, `+i )− Ii α̈′(t, `i)− k α′′(t, `−i )

)
+ kα′′(t, 0)δα′(t, 0) +

kα′′′(t, L)δα(t, L) +
H∑
i=1

δα(t, `i)
(
−k α′′′(t, `+i )−Mi α̈(t, `i) + k α′′′(t, `−i )

)
−

kα′′′(t, 0)δα(t, 0)
)
dt,

where, for convenience, the following notation has been used: α′′(t, 0−) := α′′(t, 0+), α′′(t, L+)
:= α′′(t, L−), α′′′(t, 0−) := α′′′(t, 0+) and α′′′(t, L+) := α′′′(t, L−), for all t ∈ [t1, t2].

By requiring that δA = 0 for each admissible variation δα(·, ·) consistent with the subset of
the constraints (1a)-(1d) that function α(·, ·) is assumed to satisfy, the following equations are
obtained:

ρ α̈(t, `) + k α′ν(t, `) = 0, ∀t ∈ [t1, t2], ∀` ∈ [0, L], ` 6= `i, i = 1, 2, . . . , H, (5a)

α′′′(t, 0) = 0, ∀t ∈ [t1, t2], if (1a) does not hold and `1 6= 0, (5b)

k α′′′(t, 0) +M1 α̈(t, 0) = 0, ∀t ∈ [t1, t2], if (1a) does not hold and `1 = 0, (5c)

α′′(t, 0) = 0, ∀t ∈ [t1, t2], if (1b) does not hold and `1 6= 0, (5d)

k α′′(t, 0)− I1 α̈
′(t, 0) = 0, ∀t ∈ [t1, t2], if (1b) does not hold and `1 = 0, (5e)

α′′′(t, L) = 0, ∀t ∈ [t1, t2], if (1c) does not hold and `H 6= L, (5f)

k α′′′(t, L)−MH α̈(t, L) = 0, ∀t ∈ [t1, t2], if (1c) does not hold and `H = L, (5g)

α′′(t, L) = 0, ∀t ∈ [t1, t2], if (1d) does not hold and `H 6= L, (5h)

k α′′(t, L) + IH α̈
′(t, L) = 0, ∀t ∈ [t1, t2], if (1d) does not hold and `H = L, (5i)

k α′′′(t, `+i ) = k α′′′(t, `−i )−Mi α̈(t, `i), ∀t ∈ [t1, t2],
∀i = 1, 2, . . . , H : `i 6= 0 and `i 6= L, (5j)

k α′′(t, `+i ) = k α′′(t, `−i ) + Ii α̈
′(t, `i), ∀t ∈ [t1, t2],

∀i = 1, 2, . . . , H : `i 6= 0 and `i 6= L. (5k)
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Equations (5a)-(5k), together with the specified set of constraints chosen among (1a)-(1d) and
the initial and final configurations α(t1, ·) and α(t2, ·), at times t = t1, and t = t2, respectively,
constitute the exact dynamical behaviour of the mechanical system under consideration. Such
a behaviour has been derived under the assumption that α(t1, ·) = α1(·) and α(t2, ·) = α2(·),
with α1(·) and α2(·) being fixed; now, it will be shown that the same dynamic behaviour can
be obtained by means of equations (5), together with the specified set of constraints chosen
among (1a)-(1d) and the initial conditions α(t1, ·) and α̇(t1, ·) at time t1. This can be done by
virtue of the fact that the differential equation (5a), admits an unique solution α(·, ·) for each
t ∈ [t1, t2], for each ` ∈ [0, L], from the initial conditions α(t1, ·) = α(t1, ·) and α̇(t1, ·) = α̇1(·),
whence such a function is certainly a solution of the same equation (5a) with α(t1, ·) = α1(·)
and α(t2, ·) = α(t2, ·). However, the two problems are not equivalent, since, in general, more
than one solution of equation (5a) with α(t1, ·) = α1(·) and α(t2, ·) = α(t2, ·) may exist. This
means that the solution considered here, is only one of the possibly multiple stationarity points
of A with fixed initial and final positions.

Now, solutions of equations (5) satisfying the specified set of constraints chosen among (1a)-
(1d) will be sought of the form:

α(t, `) = γ(t)σ(`), ∀t ∈ [t1, t2], ∀` ∈ [0, L], (6)

where γ(·) : [t1, t2]→ IR has continuous second order derivative, whereas σ(·) : [0, L]→ IR has
continuous first order derivative, with σ′′(·), σ′′′(·) and σ′ν(·) being continuous for each ` 6= `i,
i = 1, 2, . . . , H. With this choice, the partial differential equation (5a) can be recast as follows:

ρ
γ̈(t)
γ(t)

= −k σ
′ν(`)
σ(`)

, ∀t ∈ [t1, t2], ∀` ∈ [0, L], ` 6= `i, i = 1, 2, . . . , H.

Hence, a solution is found if two functions γ(·) and σ(·), satisfying the above mentioned
continuity requirements, are determined so that the following two relationships are satisfied for
some real constant c:

ρ γ̈(t)− c γ(t) = 0, ∀t ∈ [t1, t2], (7a)
k σ′ν(`) + c σ(`) = 0, ∀` ∈ [0, L], ` 6= `i, i = 1, 2, . . . , H, (7b)

and the corresponding function α(·, ·) given by (6) satisfies relationships (5b)-(5k) and the
specified set of constraints chosen among (1a)-(1d).

Notice that, for each ω > 0, the function

σ(`) = as sin(ω `) + ash sinh(ω `) + ac cos(ω `) + ach sin(ω `), ` ∈ [0, L],

where as, ash, ac, ach ∈ IR, is solution of (7b) on any of the intervals (`i, `i+1), i = 0, 1, . . . , H,
for c = −k ω4; for such a value of c, the solution of (7a) is

γ(t) = bs sin(Ω(t− t1)) + bc cos(Ω(t− t1)), ∀t ∈ [t1, t2], (8)

with Ω :=

√
k

ρ
ω2 and bs, bc ∈ IR.

With the aforementioned definition of the constant c, by means of (6) and (7a), it is possible
to recast (7b) and (5b)-(5k) as the following eigenvalue problem:

σ′ν(`) = ω4σ(`), ∀` ∈ [0, L], ` 6= `i, i = 1, 2, . . . , H, (9a)
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σ(0) = 0, if (1a) holds, (9b)
σ′′′(0) = 0, if (1a) does not hold and `1 6= 0, (9c)

σ′′′(0) =
M1

ρ
ω4σ(0), if (1a) does not hold and `1 = 0, (9d)

σ′(0) = 0, if (1b) holds, (9e)
σ′′(0) = 0, if (1b) does not hold and `1 6= 0, (9f)

σ′′(0) = −I1

ρ
ω4σ′(0), if (1b) does not hold and `1 = 0, (9g)

σ(L) = 0, if (1c) holds, (9h)
σ′′′(L) = 0, if (1c) does not hold and `H 6= L, (9i)

σ′′′(L) = −MH

ρ
ω4σ(L), if (1c) does not hold and `H = L, (9j)

σ′(L) = 0, if (1d) holds, (9k)
σ′′(L) = 0, if (1d) does not hold and `H 6= L, (9l)

σ′′(L) =
IH
ρ
ω4σ′(L), if (1d) does not hold and `H = L, (9m)

σ′′′(`+i ) = σ′′′(`−i ) +
Mi

ρ
ω4σ(`i), ∀i = 1, 2, . . . , H : `i 6= 0 and `i 6= L, (9n)

σ′′(`+i ) = σ′′(`−i )− Ii
ρ
ω4σ′(`i), ∀i = 1, 2, . . . , H : `i 6= 0 and `i 6= L. (9o)

Let the integers δ1, δH be defined as follows:

δ1 =
{

1 if `1 = 0,
0 if `1 > 0,

δH =
{

1 if `H = L,
0 if `H < L.

Now, the function σ(·) can be chosen of the following form:

σ(`) =
H−δH∑
i=δ1

(ai, s sin(ω `) + ai, sh sinh(ω `) + ai, c cos(ω `) + ai, ch cosh(ω `))χ`i, `i+1(`),

∀` ∈ (0, L], (10a)
σ(0) = σ(0+), (10b)

where, ai, s, ai, sh, ai, c and ai, ch, i = δ1, δ1 + 1, . . . , H − δH , are suitable real constants, to be
determined, and, for any a, b ∈ IR, a < b, χa, b(·) : IR → IR is the characteristic function of the
interval (a, b], which is defined as follows:

χa, b(`) :=

{
1 if a < ` ≤ b,
0 if ` ≤ a or ` > b.

Continuity of σ(·) and σ′(·), on the interval [0, L], yields the following constraints:

σ(`−i ) = σ(`+i ), ∀i = 1, 2, . . . , H : `i 6= 0, `i 6= L, (11a)
σ′(`−i ) = σ′(`+i ), ∀i = 1, 2, . . . , H : `i 6= 0, `i 6= L. (11b)
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The derivatives of function σ(·) in (10) with respect to ` satisfy the following relationships:

σ′(`) = ω
H−δH∑
i=δ1

(ai, s cos(ω `) + ai, sh cosh(ω `)− ai, c sin(ω `) + ai, ch sinh(ω `))χ`i, `i+1(`),

∀` ∈ (0, L],
σ′(0) = σ′(0+),

σ′′(`) = ω2
H∑
i=0

(−ai, s sin(ω `) + ai, sh sinh(ω `)− ai, c cos(ω `) + ai, ch cosh(ω `))χ`i, `i+1(`),

∀` ∈ (0, L],
σ′′(0) := σ′′(0+),

σ′′′(`) = ω3
H∑
i=0

(−ai, s cos(ω `) + ai, sh cosh(ω `) + ai, c sin(ω `) + ai, ch sinh(ω `))χ`i, `i+1(`),

∀` ∈ (0, L],
σ′′′(0) := σ′′′(0+),

which allow to rewrite relationships (9b)-(9o) as follows:

aδ1, c + aδ1, ch = 0, if (1a) holds, (12a)
−a0, s + a0, sh = 0, if (1a) does not hold and `1 6= 0, (12b)

−a1, s + a1, sh =
M1

ρ
ω (a1, c + a1, ch) , if (1a) does not hold and `1 = 0, (12c)

aδ1, s + aδ1, sh = 0, if (1b) holds, (12d)
−a0, c + a0, ch = 0, if (1b) does not hold and `1 6= 0, (12e)

−a1, c + a1, ch = −I1

ρ
ω3 (a1, s + a1, sh) , if (1b) does not hold and `1 = 0, (12f)

aH−δH , s sin(ω L) + aH−δH , sh sinh(ω L) + aH−δH , c cos(ω L) + aH−δH , ch cosh(ω L) = 0,
if (1c) holds, (12g)

−aH, s cos(ω L) + aH, sh cosh(ω L) + aH, c sin(ω L) + aH, ch sinh(ω L) = 0,
if (1c) does not hold and `H 6= L, (12h)

−aH−1, s cos(ω L) + aH−1, sh cosh(ω L) + aH−1, c sin(ω L) + aH−1, ch sinh(ω L) =

−MHω

ρ
(aH−1, s sin(ω L) + aH−1, sh sinh(ω L) + aH−1, c cos(ω L) + aH−1, ch cosh(ω L)) ,

if (1c) does not hold and `H = L, (12i)
aH−δH , s cos(ω L) + aH−δH , sh cosh(ω L)− aH−δH , c sin(ω L) + aH−δH , ch sinh(ω L) = 0,

if (1d) holds, (12j)
−aH, s sin(ω L) + aH, sh sinh(ω L)− aH, c cos(ω L) + aH, ch cosh(ω L) = 0,

if (1d) does not hold and `H 6= L, (12k)
−aH−1, s sin(ω L) + aH−1, sh sinh(ω L)− aH−1, c cos(ω L) + aH−1, ch cosh(ω L) =

IHω
3

ρ
(aH−1, s cos(ω L) + aH−1, sh cosh(ω L)− aH−1, c sin(ω L) + aH−1, ch sinh(ω L)) ,

if (1d) does not hold and `H = L, (12l)
−ai, s cos(ω `i) + ai, sh cosh(ω `i) + ai, c sin(ω `i) + ai, ch sinh(ω `i) =
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−ai−1, s cos(ω `i) + ai−1, sh cosh(ω `i) + ai−1, c sin(ω `i) + ai−1, ch sinh(ω `i) +
Miω

ρ
(ai, s sin(ω `i) + ai, sh sinh(ω `i) + ai, c cos(ω `i) + ai, ch cosh(ω `i)) ,

∀i = 1, 2, . . . , H : `i 6= 0, `i 6= L, (12m)
−ai, s sin(ω `i) + ai, sh sinh(ω `i)− ai, c cos(ω `i) + ai, ch cosh(ω `i) =

−ai−1, s sin(ω `i) + ai−1, sh sinh(ω `i)− ai−1, c cos(ω `i) + ai−1, ch cosh(ω `i)−
Iiω

3

ρ
(ai, s cos(ω `i) + ai, sh cosh(ω `i)− ai, c sin(ω `i) + ai, ch sinh(ω `i)) ,

∀i = 1, 2, . . . , H : `i 6= 0, `i 6= L, (12n)

and relationships (11) as follows:

ai−1, s sin(ω `i) + ai−1, sh sinh(ω `i) + ai−1, c cos(ω `i) + ai−1, ch cosh(ω `i) =
ai, s sin(ω `i) + ai, sh sinh(ω `i) + ai, c cos(ω `i) + ai, ch cosh(ω `i),

∀i = 1, 2, . . . , H : `i 6= 0, `i 6= L, (13a)
ai−1, s cos(ω `i) + ai−1, sh cosh(ω `i)− ai−1, c sin(ω `i) + ai−1, ch sinh(ω `i) =

ai, s cos(ω `i) + ai, sh cosh(ω `i)− ai, c sin(ω `i) + ai, ch sinh(ω `i),
∀i = 1, 2, . . . , H : `i 6= 0, `i 6= L. (13b)

Equations (12) and (13) constitute a set of 4(H + 1− δ1− δH) homogeneous linear algebraic
equations in the 4(H + 1 − δ1 − δH) unknowns ai, s, ai, sh, ai, c, ai, ch, i = δ1, 1, . . . , H − δH ,
whose coefficients are functions of ω; such equations can obviously be recast as a single matrix
equation

A(ω) a = 0, (14)

where a ∈ IR4(H+1−δ1−δH)is given by

a := [aδ1, s aδ1, sh aδ1, c aδ1, ch . . . aH−δH , s aH−δH , sh aH−δH , c aH−δH , ch]T ,

and A(ω) is a square 4(H + 1) dimensional matrix whose expression is omitted for the sake of
brevity. Non null solutions, of the form (10) exist only in correspondence of the values of ω
such that matrix A(ω) is singular; for each ω ∈ IR+ such that A(ω) is singular the number ω4 is
called eigenvalue and the corresponding function σ(·) given by (10) is called eigenfunction.

The explicit computation of the eigenvalues and eigenfunctions will be carried out with
reference to a significant case in Section 4.

Let σ1(·), σ2(·): [0, L] → IR be any two functions satisfying relationships (9b)-(9o). The
following relationship can be easily proven by means of integration by parts:

∫ L

0
σ1(`)σ′ν2 (`) d`+

H∑
i=1

σ1(`i)
(
σ′′′2 (`+i )− σ′′′2 (`−i )

)
−

H∑
i=1

σ′1(`i)
(
σ′′2(`+i )− σ′′2(`−i )

)
=

∫ L

0
σ2(`)σ′ν1 (`) d`+

H∑
i=1

σ2(`i)
(
σ′′′1 (`+i )− σ′′′1 (`−i )

)
−

H∑
i=1

σ′2(`i)
(
σ′′1(`+i )− σ′′1(`−i )

)
, (15)

with σ′′i (0−) := 0, σ′′i (L+) := 0, σ′′′i (0−) := 0, σ′′′i (L+) := 0, for i = 1, 2.
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Now, let ω4
1 and ω4

2 be two distinct eigenvalues for the eigenvalue problem ((9), (13)) and let
σ1(·) and σ2(·) be the corresponding eigenfunctions. Equation (9a) yields:

σ′ν1 (`) = ω4
1 σ1(`), ∀` ∈ [0, L], ` 6= `i, i = 1, 2, . . . , H, (16)

σ′ν2 (`) = ω4
2 σ2(`), ∀` ∈ [0, L], ` 6= `i, i = 1, 2, . . . , H; (17)

if both sides of equation (16) are multiplied by σ2(`) and both sides of equation (17) are mul-
tiplied by σ1(`), then, by subtracting on both sides and integrating over the interval [0, L], the
following relationship is obtained:∫ L

0

(
σ2(`)σ′ν1 (`)− σ1(`)σ′ν2 (`)

)
d` =

(
ω4

1 − ω4
2

) ∫ L

0
σ1(`)σ2(`) d`. (18)

From (18) and (15), by taking into account (9b)-(9o), the following generalized orthogonality
property is obtained, regardless of the set of constraints chosen among (1a)-(1d):

∫ L

0
σ1(`)σ2(`) d`+

H∑
i=1

Mi

ρ
σ1(`i)σ2(`i) +

H∑
i=1

Ii
ρ
σ′1(`i)σ′2(`i) = 0, (19)

which holds for any pair of eigenfunctions σ1(·) and σ2(·) relative to different eigenvalues. Such
a relationship is of fundamental importance in the following computations, which will result
further simplified if the following normalization condition is imposed:∫ L

0
σ2(`)d`+

H∑
i=1

Mi

ρ
σ2(`i) +

H∑
i=1

Ii
ρ

(
σ′(`i)

)2 = 1. (20)

The possibility of satisfying (20) follows from the properties of the linear system (14); from
now on, it will be assumed that, for each eigenvalue ω4, the choice of the vector a, solution of
system (14), is made in order to satisfy (20).

If ω4
1 and ω4

2 are two eigenvalues for the eigenvalue problem (9), (11) and σ1(·) and σ2(·) are
the corresponding eigenfunctions, by virtue of equations (19) and (20), by means of integration
by parts it is possible to prove that∫ L

0
σ′′i (`)σ′′j (`) d` =

{
ω4
i if i = j,

0 if i 6= j.
(21)

Now, assume that the positive real numbers ωh, h ∈ IN, ordered with respect to the subscript,
such that A(ωh) is singular (i.e., such that a corresponding eigenfunction σh(·) of the form (10)
exists) constitute a countable subset of IR+, with lim

h→+∞
ωh = +∞, and that the corresponding

set of eigenfunctions σh(·) is complete in the set of functions σ(·) : [0, L]→ IR with continuous
first order derivatives, piece-wise and bounded second, third and fourth order derivatives, and
such that σ′′(·), σ′′′(·) and σ′ν(·) are continuous for each ` 6= `i, i = 1, 2, . . . , H. Then, for each
t ∈ [t1, t2], each admissible function α(t, `) can be expanded into the following absolutely and
uniformly convergent series of eigenfunctions:

α(t, `) =
+∞∑
h=1

γh(t)σh(`), ∀` ∈ [0, L], ` 6= `i, i = 1, 2, . . . , H, (22)

so that the infinite dimensional vector γ(t) := [γ1(t) γ2(t) . . . ]T can be seen as the vector of the
components of function α(t, `) with respect to the basis of eigenfunctions σh(·), h ∈ IN.
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With these positions, by virtue of (19), (20) and (21), for each t ∈ [t1, t2], the kinetic energy
T and the potential energy U of the system under consideration can be rewritten as

T =
ρ

2

+∞∑
h=1

γ̇2
h(t),

U =
k

2

+∞∑
h=1

ω4
hγ

2
h(t).

Therefore, the exact dynamical model of the system under consideration can be easily rewrit-
ten in terms of vector γ(·) by means of the usual Euler-Lagrange equations

d
dt
∂L
∂γ̇h
− ∂L
∂γh

= 0, h ∈ IN,

obtaining the following set of equations

ρ γ̈h(t) + k ω4
h γh(t) = 0, h ∈ IN, ∀t ∈ [t1, t2], (23)

which obviously coincide with (7a) rewritten with the values of the constant c corresponding to
the eigenvalues ω4

h, h ∈ IN.

3 Approximate models

The use of reduced order models is a common practice in the design of control laws for high
order systems; this approach is much more motivated when dealing with infinite dimensional
systems, which do not benefit of the large variety of control design techniques that are available
for finite dimensional ones. This motivates the study of finite dimensional models in order to
approximate the exact behaviour of infinite dimensional systems, as are the ones considered in
this paper.

In order to derive an N -th order, approximate, finite dimensional model of the system under
consideration, with N being an arbitrary positive integer, consider the N -th order approximation
αN (t, `) of the function α(t, `), obtained by truncating the series in (22):

αN (t, `) =
N∑
h=1

γh(t)σh(`), ∀` ∈ [0, L], ` 6= `i, i = 1, 2, . . . , H. (24)

By virtue of the fact that equations (23) are decoupled (i.e., the time behaviour of each
coefficient γh(·) is not influenced by the one of the other coefficients γi(·), i 6= h), it is clear
that the model derived by truncating the series (22) to the first N terms consists of the first N
equations in (23):

ρ γ̈h(t) + k ω4
h γh(t) = 0, h = 1, 2, . . . , N,∀t ∈ [t1, t2], (25)

and the coefficients of the truncated series (24) are solutions of the approximate model (25).
Then, it follows that the error arising from considering the series (24) instead of (22) can be
estimated if the initial conditions α(t1, `) and α̇(t1, `) are known. As a matter of fact, such
functions can be expanded in series as follows:

α(t1, `) =:
+∞∑
h=1

γp, hσh(`), ∀` ∈ [0, L], (26)

α̇(t1, `) =:
+∞∑
h=1

γv, hσh(`), ∀` ∈ [0, L], (27)
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and, for each h ∈ IN, the time behaviour of each coefficient γh(t) depends only on the values of

γp, h and γv, h. Moreover, letting Ωh :=

√
k

ρ
ω2
h, it can be easily seen that, for each h ∈ IN, the

quantity γ̇2
h(t) + Ω2

hγ
2
h(t) is constant when t ∈ [t1, t2], whence it follows that

|γh(t)| ≤ 1
Ωh

√
γ2
v, h + Ω2

hγ
2
p, h, ∀t ∈ [t1, t2].

Now, define the following norm for functions f(·) : [0, L]→ IR having continuous first order
derivatives:

‖f(·)‖ :=

√√√√∫ L

0
f2(`)d`+

H∑
i=1

Mi

ρ
f2(`i) +

H∑
i=1

Ii
ρ

(f ′(`i))
2.

By using such a norm, the following relationships are easily proven

‖α(t, `)− αN (t, `)‖ =

√√√√ +∞∑
h=N+1

γ2
h(t)

≤

√√√√ +∞∑
h=N+1

(
γ2
v, h

Ω2
h

+ γ2
p, h(t)

)
, ∀t ∈ [t1, t2], (28)

where the convergence of the series under square root is implied by the absolute convergence of
the series (26) and (27) and the fact that lim

h→+∞
Ωh = +∞. The absolute and uniform convergence

of the series (26) and (27), and the fact that lim
h→+∞

Ωh = +∞, imply that, for each ε > 0, it is

possible to determine an integer N such that the following inequalities hold:

‖α(t1, `)− αN (t1, `)‖ =

√√√√√ +∞∑
h=N+1

γ2
p, h

<
ε√
2
,

‖α̇(t1, `)− α̇N (t1, `)‖ =

√√√√√ +∞∑
h=N+1

γ2
v, h

<
ε√
2
,

ΩN > 1,

thus implying, by virtue of (28), that

‖α(t, `)− αN (t, `)‖ < ε, ∀N ≥ N.

This means that, for fixed α(t1, `) and α̇(t1, `), by properly choosing the approximation
order N , it is possible to reduce arbitrarily the approximation error, regardless of the length
t2 − t1 of the considered time interval [t1, t2].

It is easy to see that the above considerations highly depend on the fact that the equations of
motion (23) are decoupled; this property has been obtained by considering the series expansion
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of function α(t, `) with respect of the set of eigenfunctions σh(·) for the problem of interest.
Since the computation of the eigenvalues and eigenfunctions is not an easy task, in general,
one may think about using a different set of functions σ̃h(·), h ∈ IN, in the series expansion
(22) instead of functions σh(·). Provided that the set σ̃h(·), h ∈ IN is complete in the space of
admissible functions, for each t ∈ [t1, t2], the series defined by

α(t, `) =:
+∞∑
h=1

γ̃h(t) σ̃h(`), ∀` ∈ [0, L], ` 6= `i, i = 1, 2, . . . , H, (29)

is absolutely and uniformly convergent in the interval [0, L]. For example, the eigenfunctions
σh(·) of the mechanical system obtained from the given one by neglecting the lumped masses
and inertias, i.e. considering Mi = 0 and Ii = 0, for each i = 1, 2, . . . , H, can be used for
this purpose, since in such cases it is well known that the set of the eigenvalues ω4

h is countable
and such that lim

h→+∞
ωh = +∞, and that the set of the corresponding eigenfunctions σh(·) is

complete. Equations (19), (20) and (21), when rewritten for such a set of eigenfunctions, result
in the following relationships:∫ L

0
σi(`)σj(`) d` =

{
1 if i = j,
0 if i 6= j,∫ L

0
σ′′i (`)σ

′′
j (`) d` =

{
ω4
i if i = j,

0 if i 6= j.

Hence, the kinetic and potential energies of the system under consideration can be rewritten
as

T =
ρ

2

+∞∑
h=1

γ̇
2
h(t) +

H∑
i=1

Mi

2

(+∞∑
h=1

γ̇h(t)σh(`i)

)2

+
H∑
i=1

Ii
2

(+∞∑
h=1

γ̇h(t)σ′h(`i)

)2

U =
k

2

+∞∑
h=1

ω4
hγ

2
h(t).

By means of the usual Euler-Lagrange equations

d
dt

∂L
∂γ̇h
− ∂L
∂γh

= 0,

the exact model of the mechanical system under consideration, rewritten in terms of the coeffi-
cients γh(·), is given by the following countable set of equations:

ρ γ̈h(t) +
H∑
i=1

Mi σh(`i)
+∞∑
j=1

γ̈j(t)σj(`i) +
H∑
i=1

Ii σ
′
h(`i)

+∞∑
j=1

γ̈j(t)σ
′
j(`i) + kω4

hγh(t) = 0,

h ∈ IN, ∀t ∈ [t1, t2]. (30)

Such a model is analogous to (23), but is constituted by coupled equations, so that it is not
easy to compute the time behaviour of the coefficients γh(·) from fixed initial conditions γp, h,
γv, h, h ∈ IN, which are defined on the basis of the initial conditions α(t1, `), α̇(t1, `), as follows:

α(t1, `) =:
+∞∑
h=1

γp, hσh(`), ∀` ∈ [0, L], ` 6= `i, i = 1, 2, . . . , H, (31)

α̇(t1, `) =:
+∞∑
h=1

γv, hσh(`), ∀` ∈ [0, L], ` 6= `i, i = 1, 2, . . . , H. (32)
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Now, in order to derive a N -order approximate finite dimensional model of the system under
consideration, based on the set of functions σh(·), consider the function αN (t, `) defined as
follows:

αN (t, `) =
N∑
h=1

γNh (t)σ(`), ∀t ∈ [t1, t2], ∀` ∈ [0, L], ` 6= `i, i = 1, 2, . . . , H, (33)

where the coefficients γNh (t) constitute the unique solution of the following set of equations:

ρ γ̈
N
h (t) +

H∑
i=1

Mi σh(`i)
N∑
j=1

γ̈
N
j (t)σj(`i) +

H∑
i=1

Ii σ
′
h(`i)

N∑
j=1

γ̈
N
j (t)σ′j(`i) + kω4

hγ
N
h (t) = 0,

h = 1, 2, . . . , N, ∀t ∈ [t1, t2], (34)

from the initial conditions γNh (t1) = γp, h, γ̇Nh (t1) = γv, h, h = 1, 2, . . . , N .
Equations (34) can be derived by means of the Euler-Lagrange equations

d
dt
∂LN
∂γ̇

N
h

− ∂LN
∂γNh

= 0,

if the approximate lagrangian function LN is defined as LN := TN −UN , where:

TN :=
ρ

2

N∑
h=1

(
γ̇
N
h (t)

)2
+

H∑
i=1

Mi

2

(
N∑
h=1

γ̇
N
h (t)σh(`i)

)2

+
H∑
i=1

Ii
2

(
N∑
h=1

γ̇
N
h (t)σ′h(`i)

)2

,

UN :=
k

2

N∑
h=1

ω4
h

(
γNh (t)

)2
.

Since equations (30) are coupled, for h < N , the coefficients γh(t) and γNh (t) do not coincide,
in general, whence it is of interest to investigate if some property does exist which guarantees
that, for N → +∞, the function αN (t, `) defined in (33) is a “good” approximation of function
α(t, `).

4 A case study

In this section the general approach developed in Section 3 is detailed with reference to the
problem of modelling a clamped beam with a lumped mass at the end point. Such a problem
has been chosen because in this case the solution of the related eigenvalue-eigenfunction problem
can be found easily, it is therefore possible to compare the approximated N -th order solutions
with the true one.

The eigenvalue problem for such a case can be easily derived from the general case dealt
with in Section 2, by considering constraints (1a) and (1b) only, and by letting H = 1, `1 = L,
M1 = M and I1 = 0. The physical parameters of the system are taken as L = 0.5, ρ = 0.775,
k = 0.0018 and M = ρL/12.

If a solution of the kind (10) is assumed, relationships (9b)-(9o) result in the following linear
system in the unknown coefficients a0, s, a0, sh, a0, c and a0, ch:

a0, c + a0, ch = 0, (35a)
a0, s + a0, sh = 0, (35b)
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−a0, s cos(ωL) + a0, sh cosh(ωL) + a0, c sin(ωL) + a0, ch sinh(ωL) =

−M ω

ρ
(a0, s sin(ωL) + a0, sh sinh(ωL) + a0, c cos(ωL) + a0, ch cosh(ωL)) , (35c)

−a0, s sin(ωL) + a0, sh sinh(ωL)− a0, c cos(ωL) + a0, ch cosh(ωL) = 0. (35d)

By simple algebraic manipulations, it is easy to see that system (35) admits non-trivial
solutions if and only if the following algebraic equation is satisfied:

M ω

ρ

(
cos(ω L) sinh(ω L)− sin(ω L) cosh(ω L)

)
+

cos(ω L) cosh(ω L) + 1 = 0. (36)

The values of ω ∈ IR+ such that equation (36) is satisfied, allow to compute the corresponding
eigenvalues ω4; it is easy to see that they constitute a countable set {ωi, i ∈ IN} and, moreover,
if the numbers ωi are ordered with respect to the subscript, one has lim

i→+∞
= +∞. As a matter

of fact, by taking into account that, for ω � 1 one has cosh(ω L) ≈ sinh(ω L), it follows that

ωh →
1
L

(
π

4
+ hπ

)
for h→ +∞.

The first six values ωi (real and positive fourth roots of the first six eigenvalues ω4
i ), i = 1,

2, . . . , 6, are reported in Figure 2, whereas the graphs of the corresponding eigenfunctions are
reported, with a continuous line, in Figure 3.

ωi ωi ωi
3.4883 3.4883 3.4897
8.8643 8.8650 8.9936
14.9756 14.9822 15.2701
21.1156 21.1420 21.4543
27.2963 27.3701 29.1003
33.5024 33.6832 43.1148

Figure 2: True and approximated fourth roots of the first six eigenvalues.

The method described at the end of Section 3 has been applied twice in order to approximate
the eigenvalues and the eigenfunctions of this case study, in both cases the order of approximation
has been chosen as N = 6. The first attempt has been performed by choosing as functions σ̃i(·)
the eigenfunctions σi(·) of the similar eigenvalue problem obtained by neglecting the presence of
the lumped mass at the free end. The estimates ωi of the fourth roots of the first six eigenvalues
are reported in Figure 2, whereas the graphs of the corresponding estimates of the eigenfunctions
are reported in Figure 3, with a dashed line. It is worth noticing that the first 4 estimates are so
close to the true eigenfunctions that their graphs practically coincide with the continuous line
representing the true eigenfunctions.

The second attempt has been made by using as functions σ̃i(·) suitable independent polyno-
mials, chosen so to satisfy the boundary conditions of the clamped beam, in which the presence
of the lumped mass at the free end is neglected. The estimates ωi of the fourth roots of the first
six eigenvalues are reported in Figure 2, whereas the graphs of the corresponding estimates of
the eigenfunctions are reported in Figure 3, with a dotted line.
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Figure 3: True and approximated eigenfunctions.

5 Concluding remarks

In this paper the problem of modelling flexible structures containing lumped masses and ro-
tational inertiae has been dealt with by means of Lagrangian techniques. It has been shown
that, if the eigenvalues and the eigenfunctions of the problem are known, it is possible to ap-
proximate the infinite dimensional original system by means of a finite dimensional one, with
prescribed degree of accuracy. The approach used in Section 3 to approximate the eigenval-
ues and the eigenfunctions, leads to the same results as the well known Rayleigh-Ritz method
(see (Meirovitch, 1967)). Notice that the convergence of the estimates ω̃i to the values ωi (the
fourth root of the true eigenvalues) can be proven, whereas the convergence of the corresponding
estimates of the eigenfunctions is not guaranteed (see (Courant and Hilbert, 1937)).
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