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Abstract

Although the `1 or peak-to-peak norm can be used to capture a number of desirable
closed-loop specifications, few practical applications of the criterion have been reported to
date. Arguably, the single main reason for this is that, unlike the situation with the close H2

and H∞ relatives, efficient numerical algorithms for `1 are still not available. The purpose of
the present paper is to present an algorithm for computing sub-optimal `1 controllers using
sequential H2 projections. As opposed to previous approaches, the algorithm does not use
interpolations constraints nor attempts to solve an infinite optimization problem via finite
approximation. Instead, sequential projections onto convex sets are performed to decide
whether a given sub-optimal `1-norm level can be achieved or not. The present algorithm
has several key advantages over previous methods:

1. At each stage, a finite optimization problem must be solved. This finite dimensionality
is not due to truncation but results from the exact application of the algorithm.

2. The finite optimization problems are H2 projections and can be solved efficiently.

3. The approach does not rely on interpolation constraints. The same algorithm that
works for the simplest version of the `1 problem (e.g., 1-block, SISO), can be modified
in a straightforward manner to yield a solution to the general linear time-invariant case
(e.g., 4-block, MIMO).

1 Introduction

The nominal `1 performance problem consists of minimizing the maximum amplitude of the
regulated output of a closed-loop system, under the assumption that the exogenous input is
bounded in amplitude by 1 but otherwise unknown. More specifically, Fig. 1 shows the inter-
connection of a plant P , assumed to be linear, time-invariant and discrete time, with a controller
K. The ni dimensional vector signal w entering into the system verifies the condition |wj(t)| ≤ 1
for j = 1, · · · , ni and every positive t, but is otherwise unknown. A controller K is said to
have an `1 performance level of γ if the no dimensional controlled signal z verifies |zj(t)| ≤ γ
for j = 1, · · · , no and every positive t. Optimality is obtained when γ is the smallest possible
number achievable by a controller.

The `1 criterion was first proposed by Vidyasagar (1986) and solved for the SISO and MIMO
one-block case in (Dahleh and Pearson, 1986, 1987) respectively. The criterion can be used to
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Figure 1: Plant-controller interconnection

impose a natural performance specification on numerous practical systems (Elia and Dahleh,
1994). For instance, `1 can be applied in a natural manner for designing active vision control
systems (Rivlin et al., 1997; Rivlin and Rotstein, 1995). Motivated by its practical and theoret-
ical interest, several researchers have investigated `1 optimization and produced a considerable
body of relevant results (Dahleh and Pearson, 1987; Mendlovitz, 1989; Diaz-Bobillo and Dahleh,
1993; Staffans, 1993)). The book (Dahleh and Diaz-Bobillo, 1994) contains a good introduction
to the subject, and a description of the main results until 1995. In spite of this activity, to
the best of the authors’ knowledge, few applications of `1 control have been reported to date.
Arguably, the single main reason for this lack is that the algorithms proposed for solving `1
are not as attractive as the ones developed, e.g., for the close H2 and H∞ relatives. Original
methods for solving `1 optimization (Dahleh and Pearson, 1987; Diaz-Bobillo and Dahleh, 1993;
Staffans, 1993) were based on using the interpolation constraints for characterizing the set of all
closed-loop transfer matrices resulting from stable controllers. Since this characterization results
on a system of linear equality constraints, and the `1 norm can be formulated as a set of linear
inequalities, the problem can be transformed into an infinite dimensional linear programming
optimization. In a remarkable work, Dahleh and Pearson (1986, 1987) showed that for the sim-
plest so-called “one-block” instance, the problem can be exactly reduced to finite dimensional.
Unfortunately this property does not hold true for the general “four-block” case; consequently,
the problems needs to be truncated for computing a numerical solution. The resulting algo-
rithms use truncation for computing upper bounds on the optimal performance, and invoque
duality arguments to generate lower bounds. The difference between the two bounds can be
used as a stopping criterion. Alternatively, delay-augmentation can be employed (Dahleh and
Diaz-Bobillo, 1994).

The combination of interpolation constraints and converging optimization problems proves
to be rather cumbersome to implement and prone to numerical difficulties. This has motivated
researches to look for alternative solutions. Two new approaches (Khammash, 1996; Elia and
Dahleh, 1994), have been recently introduced which eliminate the interpolation constraints so
as to partially remedy the drawbacks mentioned above. In (Khammash, 1996), a solution is
computed considering the linear programming problem resulting from the direct truncation of
the “Q” parameter of a Youla parameterization. In (Elia and Dahleh, 1996) this parameter is
also truncated, but a quadratic programming problem is solved.

The purpose of the present paper is to present an algorithm for computing sub-optimal `1
controllers based on a significantly different idea. As opposed to the methods mentioned above,
the algorithm is not based on interpolations constraints or increasing truncation for convergence.
Rather, the solution is found by sequentially computing the `2 projections onto convex sets, as
described in the sequel. The main features of this approach are:

1. At each stage, a finite optimization problem must be solved. This finite dimensionality is
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not due to truncation but results from the exact application of the algorithm.

2. The finite optimization problems are H2 projections and can be solved efficiently.

3. The approach does not rely on interpolation constraints. The same algorithm that works
for the simplest version of the `1 problem (e.g., 1-block, SISO), can be modified in a
straightforward manner to yield a solution to the general linear time-invariant case (e.g.,
4-block, MIMO).

2 Iterative Solutions for Induced-norm Problems

The starting point of the present work is the interesting work by Sideris (1990) and Kavranoglu
and Sideris (1989), concerning the computation of a solution to H∞ optimal control problem
by considering a sequence of H2 optimizations. The idea presented in these papers is to solve
a sequence of weighted H2 problems, where the weights are also sequentially adjusted, until
convergence to a solution of the original H∞ problem is achieved. The success of the approach
hinges upon the following two facts: (a) the H2 problem can be efficiently solved; and (b)
calculations are performed by manipulating finite dimensional systems.

The following example shows that a similar approach can, in principle, be used for solving
`1 optimization. Suppose that the interconnection transfer matrix G(z) in Fig. 1 has two inputs
and two outputs so that K(z) is single input-single output. As discussed in (Francis, 1987),
introducing the parameterization of all stabilizing controllers, the resulting `1 problem can be
formulated as

min
q stable

‖t1 − t2q‖1

where t1, t2 are stable transfer functions constructed from the problem data. As mentioned
above, (Dahleh and Pearson, 1987) proved that this instance of the problem can be solved
elegantly by using linear programming, but unfortunately the extension to the general four-
block case has proved elusive. Instead, an algorithm inspired in (Kavranoglu and Sideris, 1989)
would proceed as follows:

1. Set k=0, and pick an initial (stable, with stable inverse) weight wk(z).

2. Solve the optimization
min

q stable
‖wk ? (t1 − t2q)‖2.

Let qk(z) denote the solution to this problem.

3. Select wk+1 based on the transfer function wk ? (t1 − t2qk).

4. Increase k and repeat until convergence.

Notice that the precise meaning of the multiplication “?” has not been given yet. In the H∞
problem considered in (Kavranoglu and Sideris, 1989), this product is the standard transfer
function multiplication, and the weighted function wk+1 is computed by solving a spectral
factorization problem. A proper choice of initial solution coupled with an analytical model
simplification step, leads to a state-space representation of the relevant transfer functions with a
fixed number of states. The iterations can then be performed efficiently without state inflation.
Unfortunately, no such nice structure has been found for the problem at hand. Indeed, if

sk = t1 − t2qk
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and
sk(z) =

∑
i≥0

sk(i)z−i,

then the weight wk+1(z) =
∑
i≥0w

k+1(i)z−i, can be computed using (Sideris and Rotstein,
1996):

wk+1(i) =

{
wk(i)/|sk(i)| sk(i) 6= 0

0 sk(i) = 0

In this case, the weight should be applied in the time domain, i.e., “?” takes the form of point-
wise multiplication in the time domain. By working out a simple example, it is easy to see that
after the first iteration, the weight may easily become infinite dimensional! A different approach
may be followed by formulating the problem as a linear programming optimization (Dahleh and
Pearson, 1987), and then solving this problem iteratively by using an interior-point method. For
instance, on each iteration one could solve a quadratic programming problem connected with
H2 optimization. Unfortunately, this also gives rise to infinite dimensional systems after the
first iteration. Moreover, the two methods outlined do not have a straightforward generalization
to the four-block case.

2.1 Solution via Projections onto Convex Sets

Alternatively, the `1 suboptimal control problem can be formulated as one of finding an inter-
section point of two convex sets or showing that the intersection is empty. Indeed, consider the
following two convex sets: S2, consisting of all closed-loop transfer matrices resulting from sta-
bilizing controllers, and S1(γ) consisting of all stable transfer matrices with `1 norm less than or
equal to the performance level γ. Finding whether there exists a stabilizing controller achieving
the performance level γ is equivalent to verifying whether S1∩S2 6= ∅. By including an Euclidean
structure into the space considered, this problem can in turn be solved by using a procedure
called Alternative Projections (Bauschke and Borwein, 1993) or Projection Onto Convex Sets
(POCS) (Bauschke and Borwein, 1996) which basically consists on projecting an original point
recursively onto S1 and S2. Under suitable assumptions, the sequence of points generated by
the algorithm will either converge to points in S1 and S2 lying at minimum distance or will have
no accumulation point. Whenever a suboptimal controller achieving the desired performance
exists, convergence is to a point in the intersection of S1 and S2, i.e., to a solution of the problem.
The tutorial (Bauschke and Borwein, 1996) contains a detailed exposition of known and new
results, including algorithms and convergence proofs for a much general instance of the problem.
AP algorithms have been applied successfully to solve problems in numerous fields, including
statistics, image reconstruction and processing, electron microscopy and image processing.

AP methods have also been exploited for solving the H2/H∞ control problem in (Frazho
et al., 1995; Halikias et al., 1997), in a formulation closely connected with the approach in the
present work (compare their convex sets). However, there is an essential difference between their
approach to H2/H∞ and the current to `1. Namely, Frazho et al. (1995); Halikias et al. (1997)
seek an approximate solution by considering a finite dimensional approximation to H2/H∞
which allows for a numerical implementation. In contrast, the present work concentrates in
solving the original infinite-dimensional `1 problem.

The AP or POCS algorithm can be used in principle to solve a large class of optimization
problems. However, in order for the algorithm to be useful in practice, the projections onto
the convex sets must be easy and inexpensive to compute. Also, finite-dimensionality should be
maintained through the iterations, to guarantee that computations can be performed without
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having to resort to approximations. The main contribution of this work is to show that, in the
case under consideration, this two properties which are crucial for the success of an iterative
method, actually hold.

The algorithm in this paper has several advantages over previous methods for computing `1
controllers:

1. Truncation of the “Q” parameter is not required; rather, finite dimensional problems
appear as a natural consequence of the approach.

2. The optimization problems are H2 projections, which are easy to implement and can be
solved efficiently.

3. The approach does not rely on interpolation constraints. The same algorithm that works
for the simplest version of the `1 problem (e.g., 1-block, SISO), can be modified in a
straightforward manner to yield a solution to the general linear time-invariant case (e.g.,
4-block, MIMO).

3 Preliminaries and Problem Setup

In this section the notation used in the paper is established and the problem setup is presented.
The space `m×n1 is the set of all sequences of m× n real matrices such that ‖H‖1 <∞, where

‖H‖1
.= max

1≤i≤m

n∑
j=1

∞∑
t=0

|hij(t)|.

Similarly the `m×n2 space is characterized by ‖H‖2 <∞ where

‖H‖22
.=
∞∑
t=0

trace(H(t)H(t)T ) =
∞∑
t=0

∑
i,j

‖hij(t)‖2 .

In the paper, systems are represented by their transfer matrices, and denoted using bold letter
(e.g., x, H). Whenever dimensions are clear from the context, the supra-indices m× n will not
be indicated explicitly.

Systems considered in this paper are MIMO discrete-time, described by their transfer ma-
trices G(z). Stable systems have a single sided expansion of the form

G(z) =
∑
t≥0

G(t)z−t. (3-1)

The notation in (3-1) is used throughout the paper: a system G is expanded using the Markov
coefficients G(t). The truncation operator Pk : `2 → `2 is defined by

Pk

( ∞∑
t=0

G(t)z−t
)

=
k−1∑
t=0

G(t)z−t. (3-2)

With a slight abuse of notation, norms on a stable system G(z) are defined via the corre-
sponding one of the sequence in the expansion (3-1). Also, given G(z), the adjoint system is
defined as G(z)∼ .= G(1/z)T .

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel -  June 28-30, 1999

50



The `1 problem considered in this paper is defined in terms of the generalized interconnection
G illustrated in Fig. 1. Partitioning G compatible with the inputs w, u and the outputs z, y,

G =

[
G11 G12

G21 G22

]
.

Systems of interest are real-rational, with a state space representation (notice the notation)

G =

 A B1 B2

C1 D11 D12

C2 D21 D22

 . (3-3)

The dimension of these matrices are A ∈ Rn×n, B1 ∈ R
n×nw , B2 ∈ R

n×nu , C1 ∈ R
nz×n, C2 ∈

R
ny×n. The γ-suboptimal `1 problem consists on finding, whenever possible, an internally sta-

bilizing controller K such that the closed loop map T = G11 + G12K(I −G22K)−1G21 verifies
‖Φ‖1 ≤ γ.

All closed loop maps resulting from stabilizing controllers can be written as (Elia and Dahleh,
1994)

T = H−UQV

where H, U and V are stable systems computed from the problem data, and Q ∈ `nu×ny

1 is the
free parameter of the parameterization. Under mild assumption over the realization (3-3), the
transfer matrices U and V can be chosen to be inner and co-inner respectively. Moreover, they
can be completed to unitary transfer matrices, e.g., there exist U⊥, V⊥ such that:

T = H− [U U⊥]

[
Q 0
0 0

] [
V
V⊥

]
,

where Ua = [U U⊥], Va =

[
V
V⊥

]
verify U∼a Ua = UaU∼a = I and V∼a Va = VaV∼a = I.

With this selection,

‖T‖2 = ‖H−UQV‖2 = ‖U∼a HV∼a −Qa‖2, Qa =

[
Q 0
0 0

]
.

By a standard projection argument, minimization of ‖Φ‖2 is achieved by selecting the 1−1 block
of the stable part of U∼HV∼. The special selection of the parameterization results on the
optimal Q∗ being a constant matrix, namely the feed-through term in a state-space realization
of U∼HV∼. The reader is referred to (Rotstein, 1992) for a general way of computing these
transfer matrices.

4 Projections Algorithms for Convex Problems

This section contains a brief review on projections algorithms for solving convex feasibility
problems; the reader is referred to (Bauschke and Borwein, 1993, 1996) for a complete discussion
and a list of references. Let X be a possibly infinite dimensional Hilbert space and Si, i = 1, 2,
two closed convex subsets with possibly empty intersection S:

S = S1 ∩ S2.
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Given a convex set Si and a point x 6∈ Si, there exist a unique point Pi(x) ∈ Si such that
d(x, Pi(x)) = infs∈Si d(x, s), where d(·, ·) denotes the distance defined by the Hilbert space
norm. The point Pi(x) is called the projection of x onto Si.

The convex feasibility problem is to find a point x in the intersection set S assuming this
set is non-empty. Bauschke and Borwein (1993) suggested a generalization of the problem for
the case of S possibly empty, which is followed in this paper. Let d(S1, S2) denote the distance
between S1 and S2:

d(S1, S2) .= inf {‖s1, s2‖2 s.t. s1 ∈ S1, s2 ∈ S2} .

Then, the intersection S = S1 ∩ S2 is generalized as

E
.= {s1 ∈ S1 s.t. d(s1, S2) = d(S1, S2)} ,

F
.= {s2 ∈ S2 s.t. d(S1, S2) = d(S1, S2)} .

Notice that if S1 ∩ S2 6= ∅ then S1 ∩ S2 = E = F . As discussed in (Bauschke and Borwein,
1993), there exists a unique vector called the displacement vector v such that ‖v‖ = d(S1, S2)
and E + v = F .

In general, the convex feasibility problem must be solved iteratively. An algorithm often
used for solving this problem is based on successfully projecting a point onto the two convex
sets, which can be traced back to the work of von Neumann (1950). The general projection
algorithm works as follows. Given the current iterate x(n), the next iterate x(n+1) is constructed
by setting

x(n+1) =

(
2∑
i=1

λ
(n)
i

[
(1− α(n)

i )I + α
(n)
i Pi

])
x(n). (4-1)

The coefficients α(n)
i ∈ [0, 2] are relaxation parameters, and the λ(n)

i are positive weights verifying
λ

(n)
1 + λ

(n)
2 = 1. According to the way these parameters are chosen, the algorithm takes several

special forms. In particular, the selection of interest in the present paper is

α
(n)
i = 1 (4-2)

and

λ
(n)
1 =

{
1. n odd
0. n even

λ
(n)
2 =

{
0. n odd
1. n even

(4-3)

For this case, the algorithm can be described as:

b0
.= x, an

.= P1 (bn−1) , bn
.= P2 (an−1) ,

where (an) , (bn) are called “von Neumann sequences.” The following result holds for the very
general version of the problem considered so far.

Lemma 1

1. bn − an, bn − an+1 → v.

2. If E, F are nonempty, then an → e∗ ∈ E and bn → f∗ = e∗+v ∈ F , where the convergence
is weak.
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Recall that v = 0 if S1 and S2 have a nonempty intersection.
Proof. See Fact 1.2 in (Bauschke and Borwein, 1993)
To establish convergence in norm, additional properties on the convex sets are required. For

instance, consider the following definition.

Definition 1
The N -tuple of closed convex sets (S1, S2, · · · , SN ) is regular if (Bauschke and Borwein, 1996)

∀ ∃ ∀ d(x, S) ≤ ε.

ε > 0 δ > 0
x ∈ X

max {d(x, Sj) : j = 1, · · · , N} ≤ δ

If this property only holds on bounded sets, then the N -tuple is called boundedly regular.

The intuition behind this definition is clear: if a point lies close to each set of a (boundedly)
regular N -tuple, then it cannot be far away from its intersection. Under additional mild assump-
tion, it is possible to prove (see Theorem 5.2 in (Bauschke and Borwein, 1996)), that boundedly
regularness is a sufficient condition for the convergence of POCS in norm. A stronger property,
namely linear regularity, will give rise to stronger convergence results.

Definition 2
The N -tuple of closed convex sets (S1, S2, · · · , SN ) is linearly regular if (Bauschke and Borwein,
1996)

∃ ∀ d(x, S) ≤ κmax{d(x, Sj) : j = 1, · · · , N}.
κ > 0 x∈X

If this property only holds on bounded sets, then the N -tuple is called boundedly linearly regular.

As reviewed bellow, linear regularity provides convergence in the following sense.

Definition 3
A sequence {x(n)} converges linearly to x if for some ρ ∈ [0, 1], M > 0, then ‖x(n)−x‖2 ≤Mρn.

Theorem 1

1. If S1 or S2 is boundedly regular, then the von Neumann sequences converge in norm.

2. If S1 or S2 is linearly regular, then the von Neumann sequences converge linearly.

Proof. See (Bauschke and Borwein, 1993).
As shown in Section 6, the iteration proposed for computing a solution to the suboptimal
`1 problem is based on the projection onto two linear regular sets; consequently Theorem 1
guarantees linear convergence.

5 Projections for `1 Optimization

The approach used in this paper is to use projections onto convex sets to solve the `1 suboptimal
control problem. Projections are performed onto the two sets S1 and S2:

S1(γ) =
{
S ∈ `nz×nw

1 s.t. ‖S‖1 ≤ γ
}

S2 =
{
S = H−UQV, Q ∈ `nu×ny

1

}
.
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Without loss of generality take γ = 1, which amounts to scaling the `1 performance objective,
and call S1

.= S1(1.). These sets are subset of the Hilbert space X = `nz×nw
2 , so that projections

are to be computed using the distance induced by the 2-norm.

Lemma 2
The sets S1 and S2 are closed as subsets of `2.

Proof. That S2 is closed is obvious. See the Appendix for a proof that also S1 is closed.
As could be expected, computing the projection onto S2 is relatively straightforward, since it is
equivalent to solving an optimal approximation problem on the Hilbert norm. The remarkable
fact is that the projection onto S1 can be characterized in a computational attractive manner.

5.1 Projection onto S1

The SISO case m = n = 1 is discussed first. Let x be a real-rational stable transfer function,
‖x‖1 > 1. The purpose of this section is to show how the projection P1(x) onto S1 can be
computed. Consider first the case where x has a finite expansion, i.e., x(z) is a FIR, of length
k:

x(z) =
k−1∑
i=0

x(i)z−i.

The projection onto S1 can be characterized as follows.

Theorem 2
Let x(z) be an FIR of length k, ‖x‖1 > 1. If s = P1(x), s(z) =

∑k−1
i=0 s(i)z

−i, then there exists
λ > 0 such that

s(i) =

{
0 if |x(i)| ≤ λ/2

x(i)− λ/2 if |x(i)| > λ/2
(5-1)

Proof. Without loss of generality, assume that x(i) ≥ 0. Note that otherwise one can
consider x̂(z) =

∑k−1
i=0 |x(i)|z−i, and if ŝ = P1(x̂), then

∑k−1
i=0 sign(x(i))ŝ(i)z−i is an optimal

approximation to x. Under this assumption, the Markov parameters of the projection s(i) are
also non-negative, and the computation of the projection can be formulated as:

min

{
k−1∑
i=0

(x(i)− s(i))2 s.t.
k−1∑
i=0

s(i) = 1, s(i) ≥ 0

}
.

Introducing Lagrange multipliers:

L(s, λ, µ) =
k−1∑
i=1

(x(i)− s(i))2 + λ

[(
k−1∑
i=1

s(i)

)
− 1

]
+
k−1∑
i=0

µ(i)s(i), µ(i) ≥ 0

The Kuhn-Tucker necessary conditions (Franklin, 1980) for optimality give

−2(x(i)− s(i)) + λ+ µ(i) = 0

together with
µ(i)s(i) = 0,

for i = 0, · · · , k − 1. If s(i) > 0, then µ(i) = 0, so that x(i) − s(i) = λ/2, as required by the
Theorem.
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Corollary 1
Assume ‖x‖1 > 1. The transfer function s is such that s = P1(x) if and only if it verifies the

condition (5-1) and also ‖s‖1 = 1.

Proof. Notice that for every s verifying (5-1), then the norm ‖s‖1 strictly decreases for
increasing λ. Optimality is then achieved when ‖s‖1 = 1.
Theorem 2 and its Corollary can be used to formulate a numerical algorithm for computing
the optimal projection in the FIR case. Indeed, one can select a value for λ, and compute an
FIR verifying the conditions (5-1). The value of λ can then be adjusted iteratively, until the `1
constraint be verified.

Consider now the case with x real rational with an infinite expansion:

x(z) =
∑
i≥0

x(i)z−i

The projection onto S1 can be characterized as follows.

Theorem 3
Let x(z) be a stable transfer function, with x(z) =

∑
i≥0 x(i)z−i and ‖x‖1 > 1. Let s = P1(x).

Then:

1. The transfer function s is an FIR.

2. There exists a constant λ > 0 such that either s(i) = 0 or |x(i)−s(i)| = λ/2 (i.e., condition
(5-1) holds).

Proof. As in the proof of Theorem 2, assume without loss of generality that x(i) ≥ 0. Let
xk = Pk(x) be the truncation of x of length k, where k is selected so that ‖xk‖1 > 1. Since xk

is a FIR, the projection sk = P1(xk) can be characterized using the previous theorem:

sk(i) =

{
0 if x(i) ≤ λk/2

xk(i)− sk(i) = λk/2 otherwise

Since s ∈ S1 but ‖xk‖1 > 1, the constant λk verifies

λk/2 ≥ ‖x
k‖1 − 1
k

.

It is claimed that the sequence {λk} is non-decreasing. To see this take k1 < k2. Since the FIR
Pk1

(
P1(xk2)

)
verifies the conditions (5-1) for xk1 , the inequality λk1 > λk2 would contradict

Corollary 1. Since x ∈ `2, the coefficients x(i) → 0 and consequently there exists K1, K2 such
that x(k) < λK2/2 for each k ≥ K1. This implies that sl(k) = 0 for each k ≥ K1 and each
l ≥ K2, so that sk = sK2 , for each k ≥ K2. It is claimed next that d

(
sK2 ,x

)
= d (S2),x), so

that sK2 = P1(x). This claim can easily be established by using a contradiction argument.
The construction in the proof can be implemented for computing the projection onto S1. Indeed,
if x is a stable, real-rational transfer function, the coefficients x(i) in the series expansion con-
verge to zero exponentially fast, i.e., there exist M and ρ < 1 such that |x(i)| < Mρi. Selecting
a k such that ‖Pk(x)‖1 > 1, compute a lower bound for the optimal λ and use the exponential
upper bound for x(i) to truncate x. Now use the algorithm for projecting an FIR to conclude
the computation.
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The MIMO case

The extension from SISO to MIMO is relatively straightforward. By definition of the `1-norm,
s ∈ `m×n if and only if

n∑
j=1

∞∑
t=0

|sij(t)| ≤ 1, ∀ i = 1, · · · ,m.

Given x ∈ X , the square of the norm of x can also be computed “row-wise”, namely

‖x‖22 =
m∑
i=1

 n∑
j=1

∞∑
t=0

|xij(t)|2
 ,

so that minimizing the norm is equivalently to minimizing each row and then summing up.
Consequently, the projection P1(x) can be computed by the m projections P1 (xi·), where xi·
represents the i-th row of x. The projection of each row can be performed using the same
algorithm described for the SISO case, with only minor changes to accommodate notation.

5.2 Projection onto S2

Let x 6∈ S2. The projection onto S2 consists on finding the point x2 ∈ S2 such that ‖x−x2‖2 =
mins2∈S2 ‖x− s2‖2 = minQ∈`2 ‖x−H + UQV‖2. From the material reviewed in Section 3, the
solution to this problem is:

Q∗ = stable part (U∼ (x−H) V∼)
= stable part (U∼xV∼)−DQ,

where DQ is the stable part of U∼HV∼, which is known to be constant.
Of special interest is the case when x is an FIR, x =

∑N−1
k=0 x(k)z−k. Since U and V are

stable (Rotstein, 1992), they can be expanded as

U(z) =
∑
t≥0

U(t)z−t

V(z) =
∑
t≥0

V (t)z−t,

so that

U(z)∼ =
∑
t≥0

U(t)T zt

V(z)∼ =
∑
t≥0

V (t)T zt.

Since U and V are stable, the transfer matrices U∼, V∼ are anti-stable (all poles outside the
unit disk). Consequently, the stable part of U∼xV∼ is also an FIR. Some tedious but otherwise
straightforward calculations show that

Q∗(z) =
[
U(n− 1)T · · · U(1)T U(0)T

]

x(n− 1) 0 · · · 0

x(n− 2) x(n− 1)
. . .

...
...

. . . . . .
...

x(0) x(1) · · · x(n− 1)


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
V (0)T · · · · · · 0
V (1)T V (0)T · · · 0

...
. . . . . . 0

V (n− 1)T · · · · · · V (0)T




1
z−1

...
z−(n−1)

−DQ. (5-2)

6 Algorithms and Convergence

From the material in the previous section, the following von Neumann algorithm can be used to
solve the suboptimal `1 problem.

Algorithm 1

1. Set k = 0. Compute an initial stabilizing solution, e.g., the solution to the optimal `2
problem. Let T0 denote the corresponding closed loop transfer matrix.

2. Compute Sk = P1

(
Tk
)

, by using the algorithm outlined above. Note that Sk is a FIR.

3. Compute Tk+1 = P2

(
Sk
)

by first computing the optimal Q using (5-2).

4. Set k = k + 1 and repeat until the convergence of Sk −Tk.

Whenever S1 ∩ S2 6= ∅, convergence of the algorithm is based on the following fact.

Lemma 3
The pair (S1, S2) is linearly regular

Proof. See Appendix B.
The main convergence result can hence be formulated as follows.

Theorem 4 (Convergence of the AP algorithm for `1 Optimization)

Suppose that a stabilizing controller K exists for the configuration in Fig. 1, such that the
closed loop transfer matrix T verifies ‖T‖1 ≤ 1. Then Algorithm 1 converges linearly to a
solution of the suboptimal `1 problem.

Proof. From the previous Lemma, and the fact that the algorithm is of von Neumann type,
the hypotheses in Theorem 1 hold. Convergence follows.
Suppose now that no internally stabilizing controller achieves the performance level 1. Then,
from Lemma 1 the difference between successive projections onto S1 and S2 will converge to
the displacement vector v, such that ‖v‖2 = d(S1, S2). This fact can be used to establish the
following lemma.

Lemma 4 Suppose that S1 ∩ S2 = ∅ so that the optimal `1 norm is larger than 1, and let
0 < δ < d(S1, S2). Then, the optimal `1 norm is also larger than 1 + δ√

m
.

Proof. It will be shown that if δ is as in the Lemma, then S1(1 + δ/
√
m) ∩ S2 = ∅. To see

this, define
Sδ1

.= {s̃ = s+ r s.t. s ∈ S1, ‖r‖2 ≤ δ} .
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By the hypotheses of the Lemma, Sδ1 ∩ S2 = ∅; consequently, it suffices to show that S1(1 +
δ/
√
m) ⊂ Sδ1 . Let s ∈ S1(1 + δ/

√
m) with ‖s‖1 = η > 1 (the other case is trivial). Write:

s =
1
η
s+

η − 1
η

s.

Notice that 1
ηs ∈ S1 and also

∥∥∥η−1
η s

∥∥∥
1

= η − 1 ≤ δ/
√
m. Now:∥∥∥∥η − 1

η
s

∥∥∥∥
2

≤
√
m

∥∥∥∥η − 1
η

s

∥∥∥∥
1

=
√
m(η − 1) ≤ δ

which establishes that S1(1 + δ/
√
m) ⊂ Sδ1 , thus concluding the proof.

6.1 Computation of an optimal `1 solution

An optimal solution to the `1 problem can be computed using a bisection algorithm in the
spirit of the γ-iterations for computing a solution to the optimal H∞ control problem. Begin by
computing the parameterization of all stabilizing controllers, and set:

γmin =
1√
m
‖H−DQ‖2

γmax = ‖H−DQ‖1.

Recall that m is the number of controlled outputs of the system. Since
√
mγmin is the optimal

H2 norm, γmin provides a lower bound over the achievable `1 norm. The value γmax is an upper
bound since it is the `1 norm of a transfer matrix resulting from a stabilizing controller.

Algorithm 2

1. Set γ = γmin+γmax

2 .

2. Use Algorithm 1 to compute a solution in S1 ∩ S2.

3. If Algorithm 1 terminates with a solution in S1 ∩ S2, set γmax = γ and go to Step 5.

4. Otherwise, if Algorithm 1 terminates with 0 < δ =
∥∥∥SK −TK

∥∥∥
2
, set:

γmin = γmin +
1√
m
δ

γmax = min
{
γmax,

∥∥∥TK
∥∥∥
1

}
.

5. If γmax − γmin < ε, stop. The transfer matrix TK computed by Algorithm 1 is at most ε
away from optimal. Otherwise, go to Step 1.

6.2 Finite Convergence and Acceleration

Algorithm 1 may exhibit slow convergence, specially when the `1 performance level is close to
optimal. This difficulty can be addressed in different ways. For instance, Algorithm 1 can be
modified so that it exhibits guaranteed convergence in a finite number of steps. For instance,
following (De Pierro and Iusem, 1988), one could compute Sk by projecting into the set S1(γ−εk),
εk > 0, where the sequence

(
εk
)

verifies εk → 0 but
∑
k ε

k → ∞. See the Example section for
further comments. Alternatively, instead of using the “cyclic” algorithm characterized by Eqns.
(4-2) and (4), one could select different values for both the weights and the relaxation parameters,
following, e.g., (Bauschke and Borwein, 1996).
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Figure 2: The case γ = 1.2 > γ∗

7 Example

This section considers the first example included in (Dahleh and Pearson, 1987), which is SISO
and one-block. Given is the plant

p(z) =
.56z2 − 1.5z + 1

z3 − 1.9z2 + 1.18z − .24
,

and the objective is to design a controller minimizing the weighted sensitivity function
∥∥∥ w

1+pk

∥∥∥
1
,

where
w = .5

z − .99223
z − .223

.

From (Dahleh and Pearson, 1987), the optimal `1 norm is .99286. The generalized interconnec-
tion of Fig. 1 then takes the form

G =

[
w −wp
1 −p

]
.

Calculation of the parameterization of all stabilizing controllers and the optimal H2 solution
was performed using the formulas in (Rotstein, 1992). The cyclic algorithm described in the
previous section was used for searching for a suboptimal solution. Figures 2 and 3 show the
performance of the algorithm for the case of performance specification higher and lower than
the optimal. For each case, the `1 norm of the projections onto S2, and the H2 norm of
the difference between iterates is shown. Notice that the norm of the difference between the
projections converge according to the theory presented in the previous section, and can be used
as a stopping criteria. Next, an optimal `1 solution was computed using a bisection algorithm.
Since the optimal H2 closed loop transfer function T2 verifies ‖T2‖2 = .62, ‖T2‖1 = 1.34, the
optimal `1 norm lies within these two bounds. In order to highlight the computation of the
lower and upper bounds, an initial value for the performance of γ1 = .85 was selected. Figure 4
shows the upper and lower for the performance as a function of the iterations. In the course of
the experiments, it was found that a faster convergence can be achieved if the projections are
done onto the set S1(γ1), where γ1 is slightly smaller than the desired γ. For instance, Figure 5
shows the performance of the algorithm for the case γ = 1, both for the projections onto S1(1.)
and S1(.98). The acceleration in convergence is readily noticeable.
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Figure 4: Upper and lower bounds over optimal performance
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8 Conclusions

In this paper, an algorithm for computing suboptimal `1 controllers has been presented. The
algorithm is based on the alternative projection onto two convex sets: the set of stabilizing
controllers and the unit ball in `1. The algorithm begins from an initial solution and constructs
a sequence of iterates that converge to a stabilizing controller achieving the performance level,
when such a controller exists. Otherwise the norm of the difference between the two projections
on each iteration converge to the distance between the sets. An example has been given to
illustrate the performance of the algorithm.

The computation of an optimal solution using iterations on the algorithm has also been
discussed. Following this algorithm, one can think of the following hierarchy for the H2, H∞
and `1 problems:

1. H2 optimal control problem. Can be solved in closed-form (e.g., using Riccati Equations).

2. H∞ optimal control problem. Can be solved iterating over sub-optimal problems. Each
sub-optimal problem can be solved in closed-form (e.g., by using Riccati Equations).

3. `1 optimal control problem. Can be solved iterating over sub-optimal problems. Each
sub-optimal problem can be solved performing alternate projections onto two sets. Each
projection can be solved in closed-form.

As described in the paper, the algorithm is straightforward and easy to implement, even for
the more complicate four-block MIMO problem. The preliminary implementations suggest the
following observations:

• Similarly to what happens with the γ iterations for optimal H∞ control, verifying the
existence of a controller achieving the performance becomes harder as γ converges to the
optimal level. In the present approach, the number of iterations of the AP algorithm until
convergence increases.

• As iteration progress, so can in general increase the McMillan degree of the iterates Tk

and Sk. Consequently, one could attempt to model reduce Tk after each iteration (notice
that model reducing Sk destroys the nice structure of the projection onto S2). However,
this should be done with care since it may reduce the convergence rate.

• When looking for a solution with sub-optimal level γ significantly far from the optimal
one, projecting over S1(γ − ε) for some fix ε > 0, results in a much faster convergence.

Current research focus in improving the convergence properties of the algorithm along the lines
of the above comments, and of more general AP algorithms. It is worth stressing that even
for the general algorithm described by (4-1), finite-dimensional of all transfer functions involved
at each iteration is preserved. Application of the AP algorithm to other sub-optimal control
problems is also being explored.
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A Closedness of S1

The fact that S1 is defined via the `1 norm, but it is claimed to be closed in the Hilbert space `2,
maybe somewhat hard to visualize. It is hence convenient to show that S1 is indeed closed as a
subset of `2. Consider a sequence xn ∈ S1 such that ‖xn−xm‖2 → 0 as m, n→∞, and let xn →
x in the 2 norm. The set S1 is closed if for any such sequence, x ∈ S1. Assume by contradiction
that this is not the case, then ‖x‖1 > 1, which implies that ‖PN (x)‖1 > 1 for some finite N .
Take ε .= ‖PN (x)‖1 − 1 > 0. The convergence in the 2-norm implies that xn(i) − x(i) → 0,
although possibly not uniformly. Let M be such that |xn(i)− x(i)| < ε/N ∀n ≥M, 0 ≤ i < N .
Then

‖PN (xm − x) ‖1 =
N−1∑
i=0

|xM (i)− x(i)| < Nε/N = ε.

It follows that

N−1∑
i=0

|x(i)| =
N−1∑
i=0

|x(i)− xM (i) + xM (i)|

≤
N−1∑
i=0

|x(i)− xM (i)|+
N−1∑
i=0

|xN (i)|

< ε+ 1,

which is a contradiction. Hence x ∈ S1 and consequently S1 is closed.

B Proof of Linear Regularity

This section will establish the linear regularity of the pair {S1, S2} in two different manners.
First, a particular instance of the property is establish exploiting the specific properties of the
pair. Then, the general case is established using a general result in linear regularity. The
advantage of the former proof is that the more direct argument makes the result more plausible.

Lemma 5
Suppose the interconnection matrix G has two inputs and two outputs, and the performance level
γ = 1 is larger than the optimal γ∗. Further assume that all the zeros ci, i = 1, · · · ,M of U are
simple. Then the resulting pair S1, S2 is linearly regular.

Note that for the case described in the Lemma, the parameterization of all closed-loop transfer
functions resulting from stable controllers reduces to T = H−UQ for some stable Q.

Proof. Given x ∈ `2, assume that there exist s,T ∈ `2 such that:

‖x− s‖2 ≤ δ1 and ‖s‖1 ≤ 1
‖x−T‖2 ≤ δ2 and T = H−UQ
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for some Q ∈ `2 (i.e., s ∈ S1, T ∈ S2).
Given c ∈ C such that |c| > 1, write the bound

|x(c)−T(c)| =

∣∣∣∣∣∑
i

(x(i)− T (i)) c−i
∣∣∣∣∣

≤ ‖x−T‖2

∑
i≥0

c−2i

1/2

≤ δ2
c√

c2 − 1
.

Likewise,

|s(c)− x(c)| ≤ ‖s− x‖2
c√

c2 − 1

≤ δ1
c√

c2 − 1
.

For each zero ci of U, i = 1, · · · ,M , define:

∆i = s(ci)−T(ci) = s(ci)−H(ci).

From the bounds above
|∆i| = ci

δ1 + δ2√
c2i − 1

.

Form the square matrix

C
.=


1 c−1

1 c−2
1 · · · c

−(M−1)
1

1 c−1
2 c−2

2 · · · c
−(M−1)
2

...
...

...
...

1 c−1
M c−2

M · · · c
−(M−1)
M


which is invertible since ci 6= cj for i 6= j. Consider now the vector

y(0)
y(1)

...
y(M − 1)

 = C−1


∆1

∆2
...

∆M−1


and define the transfer function

y =
M−1∑
i=0

y(i)z−i

which verifies
y(ci) = ∆i.

Now, the `1 norm of y can be bounded by

‖y‖1 ≤ σ (δ1 + δ2) .

Where σ depends on the ci’s (through the matrix C) and on the bound discussed above for |∆i|.
Take

ŝ = s− y
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so that
ŝ(ci) = s(ci)− y(ci) = H(ci).

Since the ŝ(ci) satisfy the interpolation constraints, ŝ ∈ S2. The `1 norm of the transfer function
ŝ, can be larger than 1 but is bounded by

‖ŝ‖1 ≤ 1 + σ(δ1 + δ2)

and also

‖x− ŝ‖2 ≤ ‖x− ŝ‖2 + ‖s− ŝ‖2
≤ δ1 + σ(δ1 + δ2).

The next step is to reduce the `1 norm of ŝ while remaining inside S2 and close to ŝ. To do
this, take x∗ ∈ S2 such that ‖x∗‖1 ≤ 1 − ρ for some 0 < ρ < 1. Existence of one such x∗ is
guaranteed by the assumption that γ > γ∗. Define

s∗ .= λx∗ + (1− λ)ŝ

where λ is to be defined bellow. It is clear that s∗ belongs to S2. Also:

‖s∗‖1 ≤ λ(1− ρ) + (1− λ) (1 + σ(δ1 + δ2))
= 1 + σ(δ1 + δ2)− λ (ρ+ σ(δ1 + δ2)) .

Consequently, taking

λ =
σ(δ1 + δ2)

ρ+ σ(δ1 + δ2)

guarantees ‖s∗‖1 ≤ 1, so that s∗ ∈ S1 ∩ S2. The distance between s∗ and s can be bounded as:

‖s∗ − ŝ‖1 = λ‖x∗ − ŝ‖2 ≤ λ (‖x∗‖1 + ‖ŝ‖1)

=
σ(δ1 + δ2)

ρ+ σ(δ1 + δ2)
(1− ρ+ 1 + σ(δ1 + δ2))

<
σ(δ1 + δ2)

ρ+ σ(δ1 + δ2)
(2 + σ(δ1 + δ2).

Finally,

‖s∗ − x‖2 ≤ ‖s∗ − ŝ‖2 + ‖ŝ− x‖2

≤ σ(δ1 + δ2)
ρ+ σ(δ1 + δ2)

(2 + σ(δ1 + δ2)) + δ1 + σ(δ1 + δ2).

Taking δ = max{δ1, δ2} and assuming without loss of generality that δ < 1
2 , it follows that for

some κ > 0,
‖s∗ − x‖2 ≤ κδ.

Since κ is independent of x, the proof follows.
To give the general proof for Lemma 3, some additional notation is needed. Given the sets

A, B in the Banach space X, intAB denotes the interior of B with respect to A, AffA denotes
the closed affine span of A, while icr(A) denotes the intrinsic core of A, i.e., icr(A) = intAffAA.
The proof is then based on the following result.
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Lemma 6
A pair (A,B) is linearly regular if 0 ∈ icr(A−B).

Proof. See Corollary 4.5 in (Bauschke and Borwein, 1993).
Proof of Lemma 3
In order to use the previous lemma, define B = H + S1 and A = {UQV s.t. Q ∈ `2}. Being a
geometrical property, it is clear that (S1, S2) is linearly regular if and only if the pair (A,B) is
so.Then, except for the trivial case where 0 ∈ B, ‖H‖1 > 1 and 0 ∈ (A−B).

It is now claimed that Aff(A−B) = A. Being A a close subspace, it is clear that Aff(A−B) ⊂
A. Now let a ∈ A, a 6= 0, and assume that a 6∈ A − B. The ‖a −H‖1 ≤ 1. Now, for some
λ ∈ R large enough, ‖λa−H‖1 > 1, so that λa ∈ A−B, and consequently a ∈ Aff(A−B). This
establishes the claim.

It follows from the claim that 0 ∈ Icr(A − B) if and only if 0 ∈ IntA(A − B). To show this
latter fact, take x ∈ A. Let δ = d(0, B), which is larger than zero since ‖H‖1 > 1, and consider
the open ball B(0, δ), centered at 0 and with radius δ. Take Ba

.= B ∩A. It is clear that 0 ∈ Ba
and that Ba is open with respect to A. Moreover, by the definition of δ, Ba ∩ B = ∅. This
concludes the proof.
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