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ABSTRACT.
New approach for the absolute stability analysis of nonstationary control systems is used for

investigation of one special kind of dynamical systems. This approach is based on results from the inner theory,
stability theory, optimal control theory, variational methods. Inner approach allows to obtain sufficient algebraic
conditions of absolute stability for different kinds of dynamical systems. The way to obtain necessary and
sufficient conditions for absolute stability of systems with parameter perturbations is shown in this paper. Inner
approach is combined with use of the Poutriagin’s Maximum Principle and solving of the Cauchy problem. This
method leads in some cases to algebraic necessary and sufficient conditions of absolute stability, but in some
cases the question about necessary and sufficient conditions of absolute stability obtained by use of developed
method is open.

Let us consider the following differential equation [1]

x(n)+a1 x
(n-1)+ … +an-1 x′+ an(ν)x = 0 (1)

where an (ν) = an
0 + ν (t), ν=ν (t)  is bounded function of time:

|ν (t)|≤ V0,  a1, … , an-1, an
0, V0  are numbers and  a1λn-1 + … +an-1λ+ an(ν) is the Hurwitz polynomial for

an arbitrary constant function v.

The existence and uniqueness of a solution of Eq. (1) are guaranteed.

Absolute stability of Eq. (1) will be understood as the asymptotic stability in global of the trivial
solution x=0 for any choice of permissible functions  ν= ν (t).

The problem is to find conditions whose fulfillment would lead to the absolute stability of Eq. (1).

Let us divide the set of Eqs. (1) which is given by the functional set
V = {ν (t)| |ν(t)|≤V0}

into the following subsets.

#1. Equations all solutions of which are such that their (n-2) derivative does not oscillate.
… … … … … … … … … … … … … … … … … … … … … … … … … .
… … … … … … … … … … … … … … … … … … … … … … … … … .
#k. Equations all solutions of which are such that their (n-k-1) derivative does not oscillate, but there
is at least one solution (n-k) derivative of which does oscillate    (k=2, 3, … .., n-2).
… … … … … … … … … … … … … … … … … … … … … … … … … ..
… … … … … … … … … … … … … … … … … … … … … … … … … ..
#(n-1). Equations which have at least one solution first derivative of which oscillates, and at least one
solution first derivative of which does not oscillate.
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#n. Equations all solutions of which are such that their first derivative oscillates.

Using the coefficients of the Eq.(1) we construct the square inner matrix ∆ of order   2n-1 [2-4]:

1 a1 … an-2 an-1 an(ν) … 0 0

0 1 … an-3 an-2 an-1 … 0 0

M M M M M M  M M M

0 0 … 1 a1 a2 … an-1    an(ν)

∆= 0 0 … n     n       (n-1)a1 …         2an-2 an-1

0 0 … n       (n-1)a1    (n-2)a2 … an-1 0

M M M M M M M M M

0 n … 3an-3 2an-2 an-1 … 0 0

n  (n-1)a1 … 2an-2 an-1 0 … 0 0

The inners of the matrix ∆ are the square matrices of orders 1,3, … , 2n-3 shown in ∆. A constant
square matrix ∆ is called inner-positive if the determinants of all its inners and also the determinant of
the matrix ∆ are positive.

Similarly to [3,4], the following propositions are proved.

Eqs. (1) from the subset #1 are absolutely stable.

For Eq. (1) to belong to the subset #1 it is necessary and sufficient that the following conditions (A)
and (B) are satisfied for all numbers      v∈ [-v0, v0].

(A) Coefficients of the Eq. (1) are positive
(B) The matrix ∆ is inner-positive

Inner indication. If conditions (A) and (B) are satisfied for all numbers
v∈ [-v0, v0], then Eq. (1) is absolutely stable.

In the Euclidean phase space {x1 = x, x2=x', … , xn = x(n-1)} a straight line l which crosses the origin is
called attainable if there exist such ν (t) ∈ V, t∈ [t0, t1] that the corresponding phase curve leaves l at the
moment of time t0 and comes back to the line l at the moment of time t1 <∞  .

The following propositions are held.

If the Eq.(1) from the subset #(n-1) is absolutely stable then

max        x2(t1)<1 (2)
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ν (t) ∈ V

where  x(t0)∈  l, x(t1)∈  l, x(t)∉  l, for all t∈ (t0, t1);
x2

1(t0)=1 for all  l∈ L={l | x2=0, x1x2<0}.

The condition (2) is necessary and sufficient for the absolute stability of Eqs.(1) from the subset #n.

Let us consider Eq.(1) of order 3. Following the approach from [5] it is necessary to find

max     [x2
1(t) +x2

3(t)] (3)
v(t)∈ V

(this variational problem is equivalent to the problem (2)).

To solve the problem (3) we can use the Pontriagin’s Maximum Principle which leads to the Cauchy
problem:
x′1 = x2 x1(t1) = - cosγ
x′2=x3 x2(t1)=0
x′3= - (a1x3+a2x2+a3

0x1)+v0x1 sign(ψ 3 x1) x3(t1)=sinγ
ψ ′1= a

0
3 ψ 3 - v0 ψ 3 sign(ψ 3 x1) ψ 1(t1)= - cosγ

ψ ′2 =-ψ 1 + a2 ψ 3 ψ 2(t1)=a1sinγ-a0
3cosγ+ν0|cosγ|

ψ ′3 =-ψ 2 + a1 ψ 3 ψ 3(t1)= sinγ γ ∈ (o,π)

The Cauchy problem has a solution in our case. On the basis of results from [3-5] the following
criterion has been proved.

For the absolute stability of Eq.(1) of order 3 it is necessary and sufficient that condition (A) is
satisfied and, besides that, either condition (B) or condition

max [x2
1(t0) +x2

3(t0)] >1 (4)
γ∈ Γ

is satisfied.

Here x(t) is a solution of Cauchy problem, t0 is the second zero of function x2(t), the parameter γ
belongs to the special point set Γ  which corresponds to the set of attainable lines l.

All relations (A), (B) and (4) are algebraic and are imposed on the coefficients of the Eq.(1) only.

This approach to the absolute stability analysis allows us to investigate Eq. (1) which belong to the
classes #1, #3(n-1) and #n from the division shown above. The mentioned classes are the only classes
that occur in the division of the set of Eq.(1) for n=3. This is why necessary and sufficient conditions
of absolute stability for Eq.(1) of order 3 are obtained by using this method. The question about
absolute stability of Eq.(1) from classes #2, #3,… , #(n-2) in the common case is still open. The cases
of systems with time delay are investigated in [6,7].
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