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Abstract

This study presents an explicit upper bound to the energy function of an n-degree of

freedom rigid robot while it is under the action of a PD controller. The resulting upper

bound is an exponential function that re
ects the e�ect of the controller gains on the form of

the system response. A tuning-rule for setting the controller gains and adjusting the system

rate of convergence towards the desired operating point in any given ball, centered at the

system equilibrium point, has been demonstrated. As shown, the e�ect of the controller

structure on the proposed upper bound is similar to the one resulted in the case of a second-

order linear system.

1 Introduction

The passivity property of a robot was stressed �rst in (Ortega and Spong, 1989). Later on,

several papers (Takegaki and Arimoto, 1981; Tomei, 1991; Ailon and Ortega 1993; Berghuis and

Nijmeijer 1995; Ortega et al., 1995) have studied and demonstrated simple state and output

controllers which are based on the particular properties of the robot, for the set-point tracking

control tasks. All these control schemes guarantee global asymptotic stability, but do not give

any quantitative evaluation concerning the behavior of the trajectory and the nature of the

convergence of the robot towards its �nal target.

As indicated in Khalil (1996, Ch. 3), provided the origin of the linearization of a given

nonlinear system is exponentially stable and the norm of the solution is bounded in a given

region by some class of a KL function, the solution is bounded by an exponential function whose

parameters may be dependent on the initial condition. But as far as the robot manipulator is

concerned, still there is a need to have some method for carrying out an explicit and as tight

estimate as possible, to the norm of the system trajectory.

To be more speci�c, the following questions are essential in robotic applications: how fast

the system moves in the direction of the �nal target, and how the feedback gains can be tuned

in order to change the system's rate of convergence to comply with the user needs.

In this paper we consider some issues associated with the energy function of a rigid robots

under the action of a PD controller. Actually, the starting point of this study is (Wen and

Bayard, 1988). In this reference an exponential stability was demonstrated using a Lyapunov

function which includes a cross term of the position and the generalized momentum vectors. In
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the present study we also insert a cross term in the Lyapunov candidate function, but unlike

in (Wen and Bayard, 1988), the scalar product here is of the position and the velocity (rather

than the generalized momentum) vectors. This allows us later on to present an explicit formula

which re
ects the e�ects of controller gains on the form of the system response. Further, this

formulation provides us with a simple procedure for tuning the controller gains according to

possible design speci�cations.

In other words, if the design objective is to ensure that the robot will move fast enough

towards the target in a point-to-point task, then by employing the proposed procedure, which

in a way resembles the pole-placement method in a second order linear system, the design goal

can easily be accomplished.

2 Preliminaries

Using the Lagrangian formulation the model of an n-degree of freedom rigid robot is (Spong and

Vidyasagar, 1989)

D(q(t))
::
q +C(q(t);

:
q (t))

:
q (t) + g(q(t)) = u(t); t � 0; q (0) = q0;

:
q (0) =

:
q
0;

where q 2 <n is the vector of generalized coordinates, D(q) is the inertia matrix, C(q;
:
q)

:
q

represents the Coriolis and the centrifugal forces, g(q) is the gravitational vector, and u 2 <n is

the applied torques vector. With x =
h
xT
1
; xT

2

iT
=
h
qT ;

:
q
T
iT

we have:

_x1 = x2

_x2 = D�1(x1) (�C(x1; x2)x2 � g(x1) + u) ; (1)

Along this paper we consider two controllers. In the �rst case the feedback is given by

u = �k (x1 � x1d)� bx2 + g(x1); (2)

with the controller gains k; b > 0. The vector x1d is the robot set-point. Hence, applying (2) in

(1) we obtain the closed-lop system

_x1 = x2

_x2 = D�1(x1)(�C(x1; x2)x2 � k (x1 � x1d)� bx2): (3)

The more practical case, is associated with a feedback that was proposed in (Tomei, 1991)

u = �K (x1 � x1d)�Bx2 + g(x1d); (4)

with K = KT ; B = BT > 0. Using (4), (1) becomes

_x1 = x2

_x2 = D�1(x1) (�C(x1; x2)x2 � g(x1)�K (x1 � x1d)�Bx2 + g(x1d)) : (5)

We shall use the notation kxk for the Euclidean norm of x and respectively kGki denotes
the induced norm of a matrix G. It is always possible to determine �nite positive constants M1,

M2, m1, m2, and kc such that for all x1; x2 2 <n the following hold:

M1 � kD(x1)ki �M2;m1 �



D�1(x1)





i
� m2; kC(x1; x2)ki � kc kx2k : (6)

Following (Tomei, 1991), the system (5) is globally asymptotically stable if

�min (K) > �
:
= x1 2 <nsup





@g (x1)@x1






i

: (7)

It is clear therefore that (3) is globally asymptotically stable for all k; b > 0.

We assume without loss of generality that the robot set-point is x1d = 0.
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3 Solution Estimates

Recall that we take x1d = 0, consider the scalar function

V1(x) =
1

2

�
k kx1k2 + xT

2
D(x1)x2

�
+ 
xT

2
x1 =

1

2
xT
"
k 



 D (x1)

#
x: (8)

The derivative of V1 (�) along the trajectory of (3) is given by

:

V 1 (x) = � (b� 
) kx2k2 � 
kxT
1
D�1(x1)x1

+
xT
1
D�1(x1)(�C(x1; x2)� bIn)x2; (9)

where In is the n� n identity matrix.

Select arbitrarily r > 0. We shall show that a positive number 
 > 0 can be selected in

(8) such that V1 (�) > 0 and _V1 (�) < 0 for all x 2 Br, x 6= 0, where Br is a ball with radius r

centered at x = 0.

To this end we �rstly select a number 
 such that the following conditions are satis�ed:

�
:
=

"

km1 �1

2

m2 (kcr + b)

�1

2

m2 (kcr + b) b� 


#
> 0;�1

:
=

"
k �

�
 M1

#
> 0; (10)

where m1, m2, and kc are given in (6). Recalling that k; b > 0 we have that

kM1 > 
2 ) �1 > 0; km1 (b� 
) > 
m2

2
(kcr + b)2 =4) � > 0: (11)

Hence, (here and below
p� is a non-negative number)

0 < 
 < min

(p
kM1;

kbm1

km1 +m2

2
(kcr + b)2 =4

)
) �;�1 > 0: (12)

But then, using (6) and (8)-(10) we conclude that

V1(x) � 1

2
[kx1k ; kx2k]�1[kx1k ; kx2k]T �

1

2
�min(�1) kxk2 ;8x 2 Br

:

V 1 (x) � �[kx1k ; kx2k]�[kx1k ; kx2k]T � ��min(�) kxk2 ;8x 2 Br; (13)

and thus V1(x) is a Lyapunov function in the domain Br.

Next, in view of (6) and (8), and using (12)

V1(x) �
1

2
M2 kx2k2 +

1

2
k kx1k2 + 
 kx2k kx1k �

1

2
�max (�2) kxk2 ; (14)

where

�2

:
=

"
k 



 M2

#
> 0: (15)

Lemma 3.1. Fix arbitrarily r > 0 and select 
 such that (12) is satis�ed. Then, for each

kx (0)k 2 B� with

�
:
= (�min (�1) =�max (�2))

1=2 r � r (16)

the norm of the solution of (3) satis�es

kx (t)k � a kx (0)k exp (��t) ;8t � 0; (17)
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with

a
:
= (�max (�2) =�min (�1))

1=2 ;�
:
= �min (�) =�max (�2) ; (18)

where �i and � are given in (10) and (15).

Proof. Observing (13)-(14), the lemma follows from (Vidyasagar, 1993, Ch. 5). }}
Remark. It should be emphasized that the parameters �, a, and � depend on r.

Next we shall extend the previous results to the second case, namely, the closed-loop system

(5). In order to establish the exponential upper bound on the norm of the solution, we impose

on the selected sti�ness coe�cient matrix K the following condition

�min (K) > �m2=m1; (19)

which is of course stronger then (7).

Consider the scalar function

V2(x) =
1

2

�
xT
2
D(x1)x2 + xT

1
Kx1

�
+ 
xT

2
Kx1 + P (x1)� xT

1
g (0)� U (0) ; (20)

with @P (x1) =@x1 = gT (x1). The derivative of V2 (�) along the trajectory of (5) is

:

V 2 (x) = �xT
2
(B � 
K) x2 � 
xT

1
KD�1(x1)Kx1

�
xT
1
KD�1(x1)(g (x1)� g (0))

+
xT
1
KD�1(x1)(�C(x1; x2)�BIn)x2: (21)

In the present case we are looking for a number 
 that satis�es

�
:
=

"

�min(K)(m1�min (K)�m2�) �1

2

m2�max(K)(kcr + �max(B))

�1

2

m2�max(K)(kcr + �max(B)) �min(B)� 
�max(K)

#
> 0;

�1

:
=

"
�min(K)� � �
�max(K)

�
�max(K) M1

#
> 0; (22)

where we recall that by the mean value theorem � in (7) satis�es kg (x1)� g (0)k � � kx1k for
all x1 2 <n (Tomei, 1991). Hence, we have the following implications

(�min (K)� �)M1 > 
2�2
max

(K)) �1 > 0;


�min (K) (m1�min (K)�m2�) (�min (B)� 
�max (K)) >

(
m2�max (K) (kcr + �max (B)))
2 =4 ) � > 0: (23)

Therefore recalling the condition (19), if 
 is selected such that

0 < 
�max (K) < min

�q
(�min (K)� �)M1;

��min (B)

� +m2

2
�max (K) (kcr + �max (B))

2 =4

)
; (24)

where �
:
= �min (K) (m1�min (K)�m2�), then (22) is satis�ed and V2(x) is a Lyapunov function

in the domain Br.

Next, similar to the previous case we have now

V2(x) �
1

2
�max (�2) kxk2 ; (25)
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where

�2

:
=

"
�max (K) + � 
�min (K)


�min (K) M2

#
> 0: (26)

Thus, by replacing the matrices �, �1, and �2 in (10) and (15) with those presented in (22)

and (26), while 
 is selected such that (24) holds, the statement of lemma 3.1 is applicable to

the system (5).

Remark. If the sti�ness coe�cient matrix in (4) is selected as K = kIn the cross term in

the energy function (20) can be reduced to 
kxT
2
x1 and the relevant positive de�nite matrix in

(21) becomes 
kD�1(x1) and the structures of the matrices � and �i and equation (24) are

respectively simpli�ed.

4 Some Related Results and a Simple Gain Tuning-Rule

We shall illustrate below how the previous results can be applied for adjusting the system rate of

convergence. In particular we shall draw an interesting analogy between some features associated

with the dynamics of the robot and a second order linear system.

To make the presentation more transparent we consider below the closed-loop system (5).

However, as previously the extension of the results to the system (4) can be accomplished in a

straightforward manner.

Consider a second-order linear system"
_�1 (t)
_�2 (t)

#
=

"
0 1

�k=M2 �b=M2

# "
�1 (t)

�2 (t)

#
; � (0) =

"
�1 (0)

�2 (0)

#
; (27)

where M2 is given in (6), and as previously k; b > 0. Equation (27) can be regarded as the

state-space model of a 'one-link robot' M2
��1 = �k�1 � b _�1 with a moment of inertia M2. This

linear system enables us to draw some interesting results regarding the e�ect of the controller

gains k and b on the response of the system (3).

Clearly, an upper bound of the form (17) can be presented for the norm of the solution of

the linear system (27). Then, observing (18) it can be shown that � < �l and a > al, where the

subscript l stands for the linear system (27). In other words, the upper bound of the response

of the multi-link manipulator can not be tighter than the one associated with (27). Moreover,

we can state the following.

Lemma 4.1. A constant $ can be determined such that for any pair of positive gains fk; bg,
for any r > 0 and 
 that satis�es (12), the exponent in (17)-(18) satis�es � < $.

Proof. Since � < �l, it is su�cient to show that there exists $ such that for any pair fk; bg,
�l < $. Indeed, solving the Lyapunov matrix equation ATP + PA = �I2, for P = [pi;j] where

A is the system matrix in (27), we obtain

p11 =
k2=M2 + k + b2=M2

2kb=M2

; p12 = p21 =
1

2k=M2

; p22 =
k=M2 + 1

2kb=M2

2

:

Clearly p11 >
�
k2 + b2

�
=2kb. But since k2 + b2 � 2kb we have p11 > 1, and thus �max (P ) > 1.

The rest of the proof follows from (Vidyasagar, 1993, Ch.5). }}
However, by employing a pole-placement technique it appears that for a proper selection of

the gains k and b, we can assign arbitrarily the dominant eigenvalue of the system matrix in

(27), and hence the time constant of the slow mode of the linear system becomes as short as

needed. In this regard we can adopt the following procedure.
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The solution of the characteristic equation s2 + sb=M2 + k=M2 = 0 of (27) is

s1;2 =

�
�b=M2 �

q
(b=M2)

2 � 4k=M2

��
2; (28)

and thus s1 =

�
�b=M2 +

q
(b=M2)

2 � 4k=M2

��
2 is the dominant pole. Select arbitrarily an

� > 1 and replace the pair of gains fk; bg in (27) by the pair
�
�k;�b
	
= f�k;p�bg. Then, the

dominant pole of the linear system with the new gains is given by

�1 =
p
�

�
�b=M2 +

q
(b=M2)

2 � 4k=M2

��
2 =

p
�s1; (29)

and thus the time-constant of the slower mode becomes shorter.

Motivated by this idea we adopt in the sequel a �ner approach that allows us to show that

a proper change in the controller gains k and b induces a similar e�ect on the response of the

robotic system.

To this end we further simplify the model of the one-link robot in (27) as follows:

M ��1 = �b _�1; (30)

where the positive constant M is to be determined later on. The system (30) has an equilib-

rium subspace. However, the kinetic energy U1(�) of the mechanical system represented by this

equation decays exponentially as

U1( _�1) =M _�2
1
=2 =M exp (� (2b=M) t) _�2

1
(0) =2: (31)

The rate of decay of U1(�) is described by the equation

_U1

�
_�1 (t)

�
= �b




 _�1 (t)


2 = �b exp (� (2b=M) t) _�2
1
(0) : (32)

Let a scalar _�1 (0) be selected such that

V1 (x (0)) � U1( _�1 (0)) =M _�2
1
(0) =2; (33)

where V1 (�) is given in (8).

Lemma 4.2. Consider the systems (3) with the associated function V1(�) in (8). Fix arbi-

trarily r > 0, and select 
 > 0 such that (12) holds. Take M in (30) such that

� > b�2=M; (34)

where � and �2 are given respectively in (10) and (15). Suppose that kx (0)k 2 B� where � is

given in (16) and let
h
�1 (0) ; _�1 (0)

iT
= [�1 (0) ; �2 (0)]

T , the initial state vector of (30), be taken

such that (33) holds. Then, the following is satis�ed

V1 (x (t)) � U1

�
_�1 (t)

�
=M exp (� (2b=M) t) _�2

1
(0) =2;8t � 0: (35)

Proof. Observing (33) if the lemma claim is false, there must exist t1 � 0 such that V1(�) �
U1(�) for all � � t1, V1(t1) = U1(t1) and _V1(t1) > _U1(t1). Since U1( _�1 (t)) is a monotonically

decreasing function, kx (t1)k � r. Hence, from (13)

:

V 1 (x) � � [kx1k ; kx2k] � [kx1k ; kx2k]T : (36)
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Since V1(t1) = U1(t1) we have using (6), (8), (15), and (31)

_�2
1
(t1) � k

M
kx1 (t1)k2 +

M2

M
kx2 (t1)k2 +

2


M
kx1 (t1)k kx2 (t1)k

=
1

M
[kx1 (t1)k ; kx2 (t1)k] �2 [kx1 (t1)k ; kx2 (t1)k]T : (37)

Hence, in view of the second equation in (13), (33)-(34), and (36)-(37)

_U1 (t1) = �b



 _�1 (t1)


2

� � 1

M
b[kx1(t1)k ; kx2(t1)k]�2[kx1(t1)k ; kx2(t1)k]T >

:

V 1 (t1): (38)

But (38) contradicts the assumption _V1(t1) > _U1(t1), and we complete the proof. }}
For further applications consider the following procedure. Let, for a given pair of gains fk; bg

and for a �xed r > 0, a constant 
 > 0 be selected, and respectively a constant M be determined

such that (34) and hence (35), are satis�ed. De�ne arbitrary � > 1 and let the gains in the

systems (3) and (30) be replaced as follow: k ! �k = �k, and b! �b =
p
�b. Take �r =

p
�r and

�
 =
p
�
, and by observing (8), (10), (15), and (31) de�ne �V1(�), ��, ��1, ��2, and �U1(�) by using

the new constants �k = �k, �b =
p
�b, �r =

p
�r, and �
 =

p
�
. Then, we have the following

result.

Lemma 4.3. Consider the system (3) with fk; bg !
�
�k;�b
	
. Suppose that kx (0)k 2 B�� where

�� is given in (16) with r ! �r, �1 ! ��1, and �2 ! ��2. Let _�1 (0), the initial velocity of (30)

with b! �b, be taken such that �V1 (x (0)) � �U1( _�1 (0)). Then,

�V1 (x (t)) � �U1(� (t)) =M exp
�
�
�
2
p
�b=M

�
t
�
_�2
1
(0) =2;8t � 0: (39)

Proof. Since M was selected such that (34) holds, following the proof of lemma 4.2, to

establish the present lemma it is su�cient to show that

� > b�2=M ) �� > �b��2=M: (40)

Recalling (10) and (15), we have

� > b�2=M )
"


km1 � bk
M

�1

2

m2 (kcr + b)� b


M

�1

2

m2 (kcr + b)� b


M
b� 
 � bM2

M

#
> 0: (41)

Moreover, the left hand-side of (41) implies


km1 �
bk

M
> 0;

�

km1 �

bk

M

��
b� 
 � bM2

M

�
>

�
1

2

m2 (kcr + b) +

b


M

�2
: (42)

But recalling that �k = �k, �b =
p
�b, �r =

p
�r, and �
 =

p
�
, (42) yields

�
�km1 �
�b�k

M
> 0;

 
�
�km1 �

�b�k

M

! 
�b� �
 �

�bM2

M

!
>

 
1

2
�
m2

�
kc�r +�b

�
+

�b�


M

!
2

; (43)

which ensures that the right hand-side of (40) is satis�ed. }}
In view of lemma 4.3 and equations (29) and (28) we conclude the following. As far as the

upper bound in (39) is concerned, the adjustment of the controller gains of the robotic system

according to the rule k ! �k = �k, b! �b =
p
�b, yields a result which resembles the e�ect of a

similar change in the gains in the linear system (27).
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Remarks. The �ctitious one-link robot (30) allows us to select the controller gains and to

derive the upper bound (35). A similar model of a one-link robot is used in (Ailon, 1995).

However in this study the upper-bound is obtained by increasing in a proper way the moment

of inertiaM in (30), while in the last reference the estimate to the robot energy (in the presence

of non-conservative forces) is obtained by reducing the moment of inertia of the one-link robot

whose energy function provides the upper-bound.

5 Conclusions

This study presents an estimate to the energy function of a rigid robot with a PD controller

in a point-to-point task. The resulting exponential upper bound exhibits an explicit relation

between the controller structure and the system rate of convergence. A simple procedure for

regulating the controller gains has been established.

In view of the present approach, in the case of model uncertainty, as long as the upper and

lower bounds in (6) are available the procedure which allows us to select the desired controller

parameters and to evaluate the form of the system response, is still applicable.

More e�cient procedures that may propose 'tighter' estimates to the energy function for

more complicated models like a 
exible-joint robot, are subject to future research.
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