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Abstract

One of the first steps towards control is developing a mathematical model of the process of
interest. A rigorous model is not always appropriated for on-line control tasks, especially for
batch systems, which are characterised by frequent changes in process conditions. In this work, a
linear time-varying state-space model for batch distillation columns was developed and tested.
The model is suitable for on-line implementation and to predict the system behaviour from
measurable and easily available information. Comparing the model predictions with the rigorous
simulation results, the state-space model was able to predict the batch distillation column
behaviour accurately, even for the nonideal mixture ethanol/water.

1. Introduction

Batch processing has become more and more important in the chemical industries and this trend is
expected to continue as the interest in low-volume and high-value products is increasing.
Batch distillation, in particular, is the most frequent separation method in batch processes (Lucet et
al., 1996) and is widely used in the production of fine chemicals. Fine chemicals must be
manufactured according to high and well-defined standards of purity, so the distillate composition
control plays a significant role in the fulfilment of the market demands. However, due to the strongly
nonlinear and time-varying behaviour of batch distillation columns, the composition control is not
merely a task, but a real challenge.
One of the first steps towards control is developing a mathematical model of the process of interest.
The model should predict how the system will behave in response to inputs and disturbances and may
be used as a tool in control system analysis and design. When the process contains time delays due to
transportation lags or measurement delays, the controller requires future values of the process state
variables. In such cases, the control law cannot be implemented unless a model is employed to
estimate the future state of the system.
The main advantage of batch distillation is its flexibility in purifying many kinds of products with
different specifications. An increasing variety of products have been manufactured in batch plants and
the deadline requirements have also become shorter. With frequent process changes, it is impractical
to use rigorous models for control tasks because a rigorous dynamic model for batch distillation
consists of a large number of nonlinear differential equations and demands much information about
the system (compositions, vapour and liquid flow-rates, liquid hold-ups, in all stages every instant,
tray hydraulics, energy balances, liquid-vapour equilibrium data). So, it is necessary to develop
models which capture the essential elements of the dynamics.
In the classical control theory, the system is characterised by transfer functions using Laplace
transformation. In the late 1950s and early 1960s, a time-domain approach using state variable system
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models began to emerge. This approach is commonly referred to as “modern” control theory.
The state-space methods are based on the description of the system by a set of coupled, first-order
differential equations. One of the major advantages of the state-space approach is that it is very
suitable to implementation by digital computers. Furthermore, it naturally and automatically handles
the coordination of many variables and the time delay, which is relevant in many systems, can be
modelled by introducing a delay element in the input vector.
A common approach in the state-space description of nonlinear systems is to linearize the model at an
operating point. In the algorithm presented by Quintero-Marmol et al. (1991) to design an observer to
predict compositions from temperature measurements in multicomponent batch distillations, the
authors used a linearized state-space model of the system to calculate the open-loop eigenvalues.
Average values of compositions were used in the linear model.
Sorensen and Skogestad (1996) developed a dynamic model of a combined batch reactor/distillation
process and, based on a linearized version of the model, the controllability of the process depending
on different reactor conditions and different times during a batch has been analysed. They concluded
that the responses of the system changed considerably with the operating point.
In both works, the linearized models were used off-line as a tool for the design of an observer and for
controllability analysis, respectively.
For continuous processes, only the operating point corresponding to the steady-state condition is
normally considered. In the case of batch distillation, the system follows a trajectory along a wide
range of operating conditions. Therefore, the linearized model must be time-varying.
In this work, for on-line control applications, a linear time-varying state-space model for batch
distillation columns was developed and tested. The Taylor expansion was applied to linearize the
system at the current operating point. The model was developed to be suitable for on-line
implementation and to predict the system behaviour from measurable and easily available
information.
Considering a 10s sampling period and using a rigorous simulator to represent a batch distillation
column, the state-space model was tested with the ethanol/1-propanol and with the ethanol/water
systems. Comparing the model predictions with the rigorous simulation results, the state-space model
was able to predict the batch distillation column behaviour accurately, even for the nonideal mixture
ethanol/water.

2. Nonlinear Model

The assumptions made in the model of the batch distillation system are as follows:

x binary separation

x equimolal overflow (Lj = L, 0d j dNP; Vj = V, 1d j dNP+1)
x constant relative volatility. Therefore:
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x theoretical stages
x negligible vapour hold-up
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x constant liquid hold-up (Sj, 1d j dNP)
x constant pressure
x negligible reflux drum hold-up and total condenser:

xo = y1 (3)
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yx úúúú    (4)

If the state variables are the liquid composition of the light component in every stage (still, trays and
condenser), the state vector is given by:

x =
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And the input vector:

u = »
¼

º
«
¬

ª
V

L
(6)

Then, under the above assumptions, the nonlinear model of the batch distillation column in the state-
space representation is:
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3. Linearized Model

Linearization methods are often applied to nonlinear systems and are the mathematical formalization
of the intuition that a nonlinear system should behave similarly to its linearized approximation for
small changes. From the Lyapunov’s Theory, it is possible to show that stable design by linear control
guarantees the stability of the original physical system locally, what justify the use of linear control
techniques in practice.
A point (xe, ue) is an equilibrium point if:
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f(xe, ue) = 0 (9)

For the nonlinear systems represented by (7), the Taylor expansion at the equilibrium point (xe, ue) is:
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where fh.o.t stands for higher-order-terms in x and u. Considering (9) and neglecting any term of order
higher than 1, the linearization (or linear approximation) of the nonlinear system (7) at the
equilibrium point is given by:
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If the point (0, 0) belongs to the neighbourhood of (xe, ue) where the linear approximation is valid,
and if the point (0, 0) is also an equilibrium point, then:
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Expanding (11) and substituting (13), equation (11) results in:
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For the batch distillation system, the point (0, 0) is an equilibrium point, i. e., =xú f(0, 0) = 0. If the
batch distillation column is assumed to be at steady-state at all times (which is true if the hold-up on
the trays and in the reflux drum are negligible), every operating point may be considered an
equilibrium point. So, at each sampling period, the Ae and Be matrices are updated from the current
data:
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And,          kkkkk uBxA=x òú (17)

1780

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



Future values are then predicted by the Euler method:

   Takk1k xxx úò ò (18)

The Euler method, which usually works well at high sampling rates, provided good results in this
study.

4. Algorithm

In the following algorithm, the linear time-varying model is used to predict the future state of the
batch distillation column from the current state. It was developed to be appropriated for on-line
implementation and to predict the system behaviour from measurable and easily available
information.

(1) Define Ta, So, xSo, P, R and D

(2) Estimate Sj, 1d  jd  NP (e.g., by simulation)

(3) At each sampling period:

(3.1) Obtain xk = (xo, x1, ..., xj, ..., xNP+1)
T

k.
The full state may be estimated from temperature measurements using techniques such as
observers or Kalman filter.

system ethanol/
1-propanol

ethanol/
water

Pressure
(mmHg)

760 760

So (mol) 50.0 180.0

xSo
0.3300 0.1250

P (W) 1250 1250
R 0.5; 3.0 0.8

NP 10 20
I.D. (mm) 40 40

weir length
(mm)

12 12

weir height
(mm)

7 7

DDaverage
2.07 3.95

Estimate of

Sj (mol)

0.2 0.2

Table 1. Dimensions and operating
conditions of the batch distillation
column

t
(s)

xNP+1

(sim.)
xNP+1

(lin. mod.)
rd
(%)

xo

(sim.)
xo

(lin. mod.)
rd
(%)

20 0.3083 0.3088 -0.2 0.9991 0.9993 -0.02
60 0.3058 0.3059 -0.03 0.9979 0.9983 -0.04
110 0.3019 0.3018 0.03 0.9948 0.9955 -0.1
170 0.2967 0.2965 0.1 0.9899 0.9907 -0.1
200 0.2939 0.2937 0.1 0.9871 0.9880 -0.1
400 0.2743 0.2739 0.1 0.9640 0.9654 -0.1
801 0.2322 0.2317 0.2 0.8799 0.8828 -0.3
1201 0.1900 0.1894 0.3 0.7560 0.7591 -0.4
1602 0.1499 0.1493 0.4 0.6318 0.6349 -0.5
2003 0.1135 0.1128 0.6 0.5070 0.5101 -0.6
2404 0.0819 0.0813 0.7 0.3858 0.3887 -0.8
2805 0.0559 0.0554 0.9 0.2757 0.2783 -0.9
3206 0.0358 0.0354 1.1 0.1834 0.1854 -1.1
3606 0.0212 0.0210 1.3 0.1122 0.1137 -1.4
4007 0.0115 0.0113 1.5 0.0621 0.0631 -1.6
4077 0.0102 0.0100 1.6 0.0553 0.0563 -1.7

Table 2. Ethanol/1-Propanol (R = 3.0)
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(3.2) Obtain uk = (L V)
T

k.
From the still composition, estimate the latent heat of vaporisation of the still content and, as the
heating power is known, the vapour flow rate is: Vk = P/ý'H

vap
. And L

k
 is given by:
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(3.4) Calculate Ak and Bk

(3.5) Calculate kkkkk uBxA=x òú

(3.6) Predict the future state of the system: Takk1k xxx úò ò

5. Results and Discussion

In order to simulate the column behaviour, a rigorous batch distillation simulator was used. At each
sampling period, xk and Rk values were read from the simulator and the future state of the system was
then predicted by the linear time-varying state-space model.
The geometric features of the column adopted in the runs (Table 1) were the same as the dimensions
of the pilot-scale batch distillation in our laboratory. Based on the work of Oisiovici et al. (1998), the
sampling period was chosen to be 10 s. It corresponds to 278 times the step size used to integrate the
differential equation of the simulator (1 x 10-5 h).
The runs were carried out with the ideal binary mixture ethanol/1-propanol and with the ethanol/water
system, which presents nonideal behaviour. For the results presented here, the operating conditions
and the values of Sj and D used in the linear model are shown in Table 1.

t
(s)

xNP+1

(sim.)
xNP+1

(lin. mod.)
rd
(%)

xo

(sim.)
xo

(lin. mod.)
rd
(%)

20 0.3078 0.3078 0.0 0.9982 0.9990 -0.1
60 0.3036 0.3033 0.1 0.9760 0.9877 -1.2
110 0.2981 0.2977 0.1 0.7332 0.8033 -9.6
170 0.2914 0.2910 0.1 0.5551 0.5620 -1.2
200 0.2880 0.2875 0.1 0.5453 0.5477 -0.4
400 0.2644 0.2639 0.2 0.5128 0.5145 -0.3
801 0.2131 0.2123 0.4 0.4377 0.4398 -0.5
1201 0.1563 0.1552 0.7 0.3436 0.3462 -0.8
1602 0.0957 0.0943 1.4 0.2284 0.2315 -1.4
2003 0.0374 0.0360 3.8 0.1000 0.1032 -3.2
2203 0.0137 0.0125 9.2 0.0414 0.0440 -6.4
2233 0.0108 0.0096 11.2 0.0337 0.0362 -7.4

Table 3. Ethanol/1-Propanol (R = 0.5)
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Figure 1. Comparison between the simulation and the linear model predictions for the ethanol/1-
propanol system
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Figure 2. Comparison between the simulation and the linear model
predictions for the ethanol/water system
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Figures 1 (a) and (b) compare the distillate and still compositions obtained in simulation with the
values predicted by the linear state-space model. In Tables 2 and 3, some instantaneous composition
values were quantitatively compared.
The linear model provides good estimates of the distillate and still compositions, as it is shown in
Figures 1 (a) and (b). However, comparing Tables 2 and 3, those estimates are more accurate for R =
3.0 than for R = 0.5. The smaller the reflux ratio, the greater are the changes in composition with
time. Between the sampling instants, the linear model does not get any new information about the
system. This fact is more critical when R is small because the compositions change more significantly
at each sampling period (as it is shown in Figures 1 (a) and (b), especially at the beginning of the
distillate withdrawal).
The results for the ethanol/water system are presented in Figure 2 and Table 3. In this case, the linear
time-varying state-space model also provided good estimates of the distillate and still compositions.

6. Conclusions

A linear time-varying state-space model for batch distillation columns has been developed and tested.
Some runs were carried out with the system ethanol/1-propanol and ethanol/water. Comparing the
model predictions with the rigorous simulation results, the state-space model was able to predict the
batch distillation column behaviour accurately.
The results have shown that, for the same sampling period, the predictions are better for higher reflux
ratios.
The algorithm of the linear model was developed to be suitable for on-line implementation. The main
disadvantage of the linear state-space model is that it demands the knowledge of the full state of the
system. This problem may be solved if an observer or the Kalman filter is employed.
The model is simple and its format is appropriated for studying the controllability and observability
properties of the system and for the design and implementation of an on-line control law.

t
(s)

xNP+1

(sim.)
xNP+1

(lin. mod.)
rd
(%)

xo

(sim.)
xo

(lin. mod.)
rd

(%)
20 0.1080 0.1081 -0.1 0.8919 0.8928 -0.1
60 0.1060 0.1062 -0.1 0.8869 0.8883 -0.2
100 0.1038 0.1038 0.0 0.8793 0.8815 -0.2
200 0.0979 0.0979 0.0 0.8496 0.8529 -0.4
400 0.0860 0.0860 0.0 0.8027 0.8042 -0.2
600 0.0742 0.0743 -0.1 0.7813 0.7821 -0.1
801 0.0627 0.0628 -0.1 0.7625 0.7638 -0.2
1001 0.0516 0.0517 -0.2 0.6956 0.7024 -1.0
1402 0.0319 0.0320 -0.4 0.4404 0.4442 -0.9
1803 0.0170 0.0171 -0.6 0.2832 0.2871 -1.4
2003 0.0117 0.0118 -0.8 0.2103 0.2137 -1.6
2083 0.0100 0.0101 -0.8 0.1839 0.1871 -1.7

Table 4. Ethanol/Water (R = 0.8)
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7. Nomenclature

A, B = Jacobian matrices

'H
vap

 = latent heat of vaporisation

L = liquid flow rate, mol/time
NP = number of trays
P = heating power
R = reflux ratio

rd = relative deviation = 100
x

xx

sim

modlinsim u¸̧
¹

·
¨̈
©

§ ð

.

. . .  

S = liquid hold-up, mol
So = initial charge, mol
Ta = sampling period
t = time
u = input vector
V = vapour flow rate, mol/time
x = state vector
x = liquid composition of the light component, mole fraction
xSo = composition of the light component in the initial charge, mole fraction
y = vapour composition of the light component, mole fraction
D = relative volatility

subscripts:
o = condenser
NP+1 = still
j = tray
k = current values
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Appendix. Elements of the A and B matrices
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