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Abstract

We present an idle-speed controller designed through an optimal LQ technique taking

into account during the design phase the presence of a �nite time delay between variations

in the manifold pressure and in the produced torque. E�ectiveness of the scheme and its

robustness to underestimation of the delay are shown through computer simulations.

1 Introduction

Aim of the idle speed controller for a Spark Ignition engine is to regulate the angular speed of

the crankshaft in front of additional loads and disturbances, e.g. related to power steering or

air conditioning. A number of control strategies have been proposed in the literature like PID

[1], LQ [2], H1 [3, 4], l1 [5], fuzzy [6], adaptive [7], sliding mode [8], neural networks [9]. The

presence of a �nite time delay between manifold pressure and torque generation is usually not

considered in the design phase and introduces additional di�culties in the controller validation

or calibration phases since it yields at least an oscillating behavior which easily degenerates into

instability. Here we try to make the control design more robust in this respect and present an

LQ controller designed taking explicitly into account the above-mentioned �nite-delay.

2 The Structure of the Linearized Model

We consider a model of the engine obtained through linearization around the nominal conditions

of engine angular speed n = 800 [rpm], manifold pressure p = 300 [mbar], spark advance a = 20

[degree], throttle angle � = 2:4 [degree] (see �gure 1). The model describes the dynamics in the

manifold chamber, the combustion process and the crankshaft dynamics.

�Email: glielmo@disna.dis.unina.it
yPhD student supported by CNR Istituto Motori (Italian National Research Council Engine Institute). Email:

santini@disna.dis.unina.it
zEmail: gabriele.serra@bologna.marelli.it

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel -  June 28-30, 1999

200



The independent variable of the di�erential equations is the angle of rotation of the crankshaft,

to which we refer as t, measured in Top Dead Center (TDC) units, i.e. 180o of crankshaft rotation

for a 4-cylinders engine. The model is detailed in the following subsections.
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Figure 1: Simulink scheme of the system model

2.1 Dynamics in the Manifold Chamber

If the manifold chamber has no leakage, the pressure dynamics can be described by the equa-

tion [10]

_p = K( _ma � _mp); (1)

where _ma and _mp are, respectively, the intake and the engine pumping air mass ow rate,

and K depends on the volumetric capacity of the manifold, the atmospheric pressure, the air

temperature, the speci�c heat parameters, the gas molecular weight.

Noticing that the mass ow rate _ma can be considered as a function of the throttle angle �

and the manifold pressure p, and the engine pumping mass ow rate _mp is related to the manifold

pressure and the angular speed n, linearization of (1) yields

� _p = k1��� k2�p� k3�n: (2)

2.2 Combustion Process

The combustion process is a physical phenomena with time constants much shorter than the

other time constants of the engine, in particular that one of the rotational dynamics. Thus,

it is possible to describe this process through algebraic relations in which its input variables

(spark advance position a, manifold pressure p, engine speed n) contribute linearly to the torque

production.

However the conditions in the manifold are not immediately reected into the torque pro-

duction [1]. The so called Induction-to-Power stroke delay �IP has signi�cant implications on
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control design and performance and, therefore, is explicitly considered in the model structure

(see �gure 1). The equation of the combustion subsystem is

�Te = k4�p(t� �IP) + k5�n(t� �IP) + k6�a; (3)

where Te is the torque produced.

2.3 Crankshaft Dynamics

The rotational dynamics equation is

J�_n = �Te � Tl � k7�n; (4)

where J is the moment of inertia, Tl is the external additional load torque and k7 is the viscous

friction constant.

3 The Idle Speed Control Design

The idle speed problem is formulated as a disturbance rejection problem since the main plant

output (engine speed) has to be constant in spite of external disturbance torque acting on the

engine crankshaft. One of the aspects to take into account is that the control action using the

spark advance path is faster than using the air-channel. It turns out that a typical control action

should be divided into two parts: the controller should �rst use the spark advance as the main

control input and afterwards, as soon as the engine speed is taken care of by the air input, the

spark advance should go back to its nominal value. In other words, the spark advance should

exert its fast action mainly during the �rst part of the transient phase. To aim the control

behavior in this direction the control system is structured as shown in �gure 2, where one can

notice that an integrator of the engine speed has been introduced to ensure zero steady-state

deviation, and a derivative action

1�
1

1 + s�d
=

s�d

1 + s�d

has been added on the spark advance signal so as to reset the advance correction soon after the

intervention of the air input. A closer adherence to the real plant for the validation phase is

ensured by the insertion of saturations on the input channels.

Neglecting the saturations the system is described by

_x(t) = A0x(t) +A1x(t� �IP) +Bu(t); (5)

where x 2 IR4 and u 2 IR2 are de�ned in �gure 2,

A0 =

0
BB@
�k2 �k3 0 0

0 �k7 �k6=�d 0

0 0 �1=�d 0

0 1 0 0

1
CCA ; A1 =

0
BB@
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k4 k5 0 0

0 0 0 0

0 0 0 0

1
CCA ; B =

0
BB@
k1 0

0 k6
0 1

0 0

1
CCA :

We introduce a quadratic performance criterion for system (5)

J =

Z
1

0

[xT (t)Qx(t) + uT (t)Ru(t)]dt; (6)
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Figure 2: Closed-loop model

where Q is a symmetric positive semide�nite matrix and R is a symmetric positive de�nite

matrix and, following [11], we assume the following structure for the feedback controller:

u(t) = �R�1BTK0 x(t)�R�1BT

Z
0

��IP

K1(�)x(t+ �) d�: (7)

In order to minimize the performance index the coe�cients K0, K1(�) in equation (7)

have to satisfy the following system of di�erential-algebraic equations on the rectangle (�; �) 2

[��IP; 0]
2 [11]:

AT
0K0 +K0A0 �K0BR

�1BTK0

+K1
T (0) +K1(0) +Q = 0; (8a)

dK1

d�
(�) = A0

TK1(�)�K0BR
�1BTK1(�) +K2(0; �);

(8b)

@K2

@�
(�; �) +

@K2

@�
(�; �) = �K1

T (�)BR�1BTK1(�); (8c)

K1(��IP) = K0A1; (8d)

K2(��IP; �) = AT
1K1(�): (8e)

An approximate yet e�ective solution of (8) can be obtained by replacing equations (8b),

(8c) by a �nite di�erence scheme and requiring that equation (8e) hold at discrete times in

the interval [��IP; 0]. Thus, calling m a suitably chosen integer number, we form a grid of

(m + 1)2 points on the rectangle [��IP; 0]
2 with nodes (�i�IP=m;�j�IP=m) for i; j = 0; : : : ;m.

Denoting, for the sake of brevity,

~K1(i) = K1(�i�d=m) ~K2(i; j) = K2(�i�d=m;�j�d=m)
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Figure 3: Disturbance torque

system (8) becomes

AT
0
K0 +K0A0 �K0BR

�1BTK0

+ ~KT
1
(0) + ~K1(0) +Q = 0; (9a)

[ ~K1(i� 1)� ~K1(i)]m=�IP = (A0
T
�K0BR

�1BT ) ~KT
1
(i� 1)

+ ~K2(0; i� 1); i = 1; : : : ;m; (9b)n
[ ~K2(i� 1; j � 1)� ~K2(i; j � 1)]

+ [ ~K2(i� 1; j � 1)� ~K2(i� 1; j)]
o
m=�IP = � ~KT

1 (i� 1)BR�1BT ~K1(j � 1)

i; j = 1; : : : ;m; (9c)

~K1(m) = K0A1; (9d)

~K2(m; j) = A1
T ~K1(j); j = 0; : : : ;m: (9e)

Once system (9) is solved, it is possible, through linear interpolation, to obtain the continuous

function K1(�) from the discrete function ~K1.

A possible on-line implementation of the control law can be obtained sampling the state x(t)

with period �IP=N (with N � 1), and using linear interpolation to reconstruct the function x(t)

on the interval [t� �IP; t] and compute the integral in (7).

4 Simulation Results

The closed loop system of �gure 2 has been simulated assuming the time delay �IP to be com-

parable with the manifold time constant 1=k2 which gives, for the engine under consideration,

�IP = 5 TDC. System (9) was solved with m = 50; the implementation was realized with N = 5.

Simulation results for a disturbance load torque step of 15Nm as of �gure 3 are in �gures 4, 5,

6, 7 where one can notice how the air input gradually replaces the spark advance in rejecting

the disturbance.
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Figure 4: Engine speed
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Figure 5: Pressure

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel -  June 28-30, 1999

205



0 50 100 150 200
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

[TDC]

[d
eg

re
e]

Figure 6: Variation of the spark advance w.r.t. its nominal value
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Figure 7: Variation of the throttle angle w.r.t. its nominal value
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Figure 8: Engine speed (�IP = 10 TDC)

To test the robustness of the control scheme in front of possible variations of the �nite delay

duration, we employed the same controller while doubling the delay, i.e. �IP = 10 TDC. The

response to the same disturbance can be found in �gures 8, 9, 10, 11.

5 Conclusions

The e�ects of �nite time delays on idle speed control are well known. Here the authors have

employed an optimal control design technique which takes into account the delay and, hence, is

aimed at reducing the a posteriori validation phase of the design. E�ectiveness of the scheme

and its robustness to underestimation of the delay are shown through computer simulations.

Future research will explore on one side the practical implementation of the proposed con-

troller on a laboratory SI engine; on the other side the possibility to use the same technique to

overcome the di�culties introduced by �nite time delays on the spark advance input channel.
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Figure 9: Pressure (�IP = 10 TDC)
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Figure 10: Variation of the spark advance w.r.t. its nominal value (�IP = 10 TDC)
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