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Abstract

Equations and graphs in order to evaluate the limitations and tradeoff between extreme
cross over frequencies and gain and phase margins of an important class of open loop non
minimum-phase transfer functions, as a function of the right half plane zeros or poles, are
given.

1 Introduction

It is well known that the benefit of feedback for non-minimum-phase (NMP) plants is limited.
This NMP phenomenon appears when the plant has right-half-plane (RHP) zeros, pure delay or
if the open loop includes sampling. Classic examples includes flight control (elevation to aft δe
control and elevation to throttle command as measured close to the aircraft center of gravity),
and the inverted pendulum. Notable examples include: Sidi (1976) and Horowitz and Sidi (1978)
who presented an optimal robust synthesis technique to design a feedback controller for an uncer-
tain NMP plant to achieve a given closed loop performance. Their synthesis technique provides
the designer with insight into the trade-off between closed loop performance and bandwidth,
and also defines an implicit criterion for determining whether a solution exists. Sidi (1980) de-
veloped a criterion to estimate the maximum bandwidth of a sampled plant for given gain and
phase margin. He assumed open loop transmission of the ideal Bode characteristics form and
used asymptotic approximations. Horowitz and Liau (1984) extended this technique to stable
plants with several RHP zeros. They showed how to achieve a large loop transmission in several
frequency ranges, although there will always be some frequency ranges which are determined
by the RHP zeros, in which the loop transmission must be less than 0dB. This known fact
was proven by Francis and Zames (1984) and by Freudenberg and Looze (1985) who showed
that for NMP plants, a small sensitivity in one frequency range forces a large sensitivity in the
complementary range. Freudenberg and Looze (1985, 1987) developed several constraints on the
closed loop sensitivity of NMP and/or unstable plants in the form of weighted integrals of the
sensitivity in log scale on all frequencies or on a frequency range where the open loop is much
less than 1. Middleton (1991) used their results to provide a bandwidth limitation on NMP
∗Email: sidi@barley.cteh.ac.il.
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and/or unstable plants. Sidi (1997) used a different approach based on the Bode relationships
to obtain graphical results on Bandwidth limitations for plants containing a single RHP zero or
one unstable pole.

The purpose of this paper is to develop sensitivity limitations and design trade-offs for NMP
plants (including unstable plants) using the notion of Phase Margin (PM), Gain Margin (GM)
and cross-over frequency. The results of Sidi (1997) are extended for plants containing multiple
RHP zeros and/or unstable poles. These limitations are developed now for systems whose type
is at least 1. Type 0 stable systems can, using low enough gain, have any GM, thus type 0
systems will not be discussed.

In Fig. 1 the classical definitions of GM, MH , PM, φ, cross over frequency, ωφ, and GM
frequency ωM , are defined.
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Figure 1: The classical definitions of GM, M , PM, φ, GM frequency, ωM , and cross-over fre-
quency, ωφ

2 GM and PM Limitations for Stable NMP Plants

2.1 Stable plants with a single RHP zero

Let L(s) = LM (s)A(s) denote an open loop transfer function where LM (s) is minimum-phase
and A(s) is an all-pass transfer function. Based on the celebrated Bode relations which relate
the amplitude and phase of minimum-phase transfer functions, and the practical criterion that
the bandwidth of the controller should be bounded, we make the following assumption.

Assumption 2.1 In the vicinity of the cross over frequency, ωφ, and at least up to the GM
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frequency, ωM , the minimum-phase transfer function, LM (s), can be approximated by

LM (s) ≈ k

s2α
(1)

Note that assumption 2.1 is satisfied to a very good approximation in realistic problems and is
justified by numerical examples in subsection 2.3 (see also Sidi (1997)).

Under assumption 2.1, if L(s) includes a single RHP zero at a, then

argL(jω) = −απ − 2 tan−1(ω/a); ωφ ≤ ω ≤ ωM , (2)

which yields

ωaφ
def=

ωφ
a

= tan
(1− α)π − φ

2
(3)

ωaM
def=

ωM
a

= tan
(1− α)π

2
. (4)

From equations (3,4) and assumption 2.1, the high frequency GM is

MH =

[
ωM
ωφ

]2α

=

[
tan απ+φ

2

tan απ
2

]2α

. (5)

Also from equations (3,4)

ωaM
ωaφ

ωaφ =
ωM
ωφ

ωaφ =
ωaφ + tan(φ/2)

1− ωaφ tan(φ/2)
(6)

Equation (5) for MH and the PM, φ, as a function of the slope, α, can be solved numerically,
its solution is presented graphically in Fig. 2.

The results in Fig. 2 are a good practical estimation to the relation between its parameters.
For a quantitative discussion see subsection 2.3

One reasonable approximate to the results in Fig. 2 is the hyperbolic expression

ωφ
a

=
k1(φ)

MH + k2(φ)
. (7)

A good approximation for k1 and k2 in the range φ = 30◦ − 45◦ and MH = 4 − 12dB (MH in
dB units and φ in degree units) is

ωφ
a

=
0.02φ+ 1.6

MH − 0.026φ− 0.24
(8)

Example 1: For the following two plants, use loop shaping to achieve maximum ωφ for PM, 45◦,
and GM, 10dB.

P1(s) =
1
s

3− s
8 + s

; P2(s) =
1
s2

3− s
8 + s

.

Solution: The shaped open loops for P1 and P2, respectively, are

L1(s) =
2.5(3− s)(s+ 0.5)
s(s+ 8)(s+ 0.1)

L2(s) =
2.5(3− s)(s+ 0.4)

s2(s+ 8)
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Figure 2: Typical plots of PM versus GM, also shown constant contours of ωφ/a and α

for which ωφ = 1 which is about 10% more than the estimated value in Fig. 2 and equation (8).
The reason is that assumption 2.1 was violated by slightly increasing the phase of LM (jω) in
frequencies larger than ωφ. Nichols and Bode plots of L1(s) and L2(s) are given in Fig. 3 and
Fig. 4, respectively. Note that adding more integrators to the open loop without violating the
phase margin will keep ωφ almost unchanged (but it increases the benefit of feedback below the
cut-off frequency, ωφ).

2.2 Extension to several RHP zeros

NMP plants with only real RHP zeros: A reasonable estimation for the relation between GM,
PM and cross over frequency can be achieved by replacing the RHP zeros by an equivalent single
RHP zero whose phase is the first order approximation of the original RHP zeros. A simple
formula is derived as follows: Let the RHP zeros be located at z1, · · · , zn, the zero z which
replaces them is found from the following low frequency first order approximation

arg
1− s/z1
1 + s/z1

· · · 1− s/zn
1 + s/zn

≈ arg
1− s/z
1 + s/z

.

The argument due to all RHP zeros and all LHP poles at some ω is

arg[A(s)]s=jω = mπ − 2
i=m∑
i=1

arctan
ω

zi
.

But since the smallest RHP zero, let say z1, is the important one, and the additional RHP zeros
can only aggravate the stability problem at lower frequencies, then at the frequency range ω < zi
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Figure 3: Nichols of L1(s) and L2(s)

it holds

arctan
ω

zi
≈ ω

zi

therefore

arg[A(s)]s=jω ≈ mπ − 2
i=m∑
i=1

arctan
ω

zi
= mπ − 2

ω

zi
,

hince

1
z
≈ 1
z1

+ · · ·+ 1
zn
. (9)

The reason for choosing this approximation is that the frequency range in which all the parame-
ters involved is in a range where the linear approximation of tanω/zi ≈ ω/zi is applicable. This
result can be exemplified with the following open-loop transfer functions:

L1(s) =
−2.35(s− 2)(s+ 0.4)
s(s+ 0.1)(s+ 8)

, L2(s) =
3.8(s− 3)(s− 6)(s+ 0.35)
s(s+ 0.1)(s+ 8)(s+ 15)

where the equivalent NMP zero of the RHP zeros of L2 is at 2 (by approximation of equation (9)).
Both transfer functions are shown in Fig. 5 for which the GM is 10.2dB and the PM is 45◦.
From Fig. 2, ωφ/a = 0.3 thus by the approximation ωφ = 2 × 0.3 = 0.6 is expected. By loop
shaping of L1(jω), ωφ = 0.65 and of L2(jω), ωφ = 0.67 where obtained, thus equation (9) is a
very good approximation.
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Figure 4: Bode of L1(s) and L2(s)

NMP plants with highly under-damped RHP zeros: Under assumption 2.1, L(s) has a simple
property, as the damping factor tends to zero its Nichols plot converges to the simple 3 straight
lines structure of Fig. 6. Hence, the relation between the GM, MH , PM, φ, ωM and cross-over
frequency, ωφ, for a highly under-damped RHP complex zero at a converges, as ξ → 0, to

φ = π(1− α)
ωM = a

log
ωφ
a

=
MH/20

2α
.

2.3 Discussion of the applicability of Assumption 2.1

It is possible that the relations (summarized in Fig. 2) between GM, PM, and ωφ/a are violated
if assumption 2.1 is violated. In order to check the results for transfer functions that deviate
strongly from assumption 2.1, we performed the following comparison: Eight open-loop transfer
functions which on the Nichols chart, at frequencies higher than ωaφ, were shaped such that (i)
the unity feedback closed loop contours are 0, 1, 3, 6dB in Fig. 7a for ω > ωφ; and (ii) the same
transfer functions having all the same GM, 6dB, with PM of 60, 54.2, 45.3, 34 deg in Fig. 7b.

The results obtained are summarized in the tables below. The difference in ωφ between the
one obtained based on assumption 2.1 (given in Fig. 2) and the results given in the tables is less
than 16%. This error is a result of large deviations from assumption 2.1, which means that α
is not kept constant, moreover α → 0 at frequencies not much larger than ωφ, which is not a
practical realization.
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Figure 5: Nichols graphs for two TFs containing one and two NMP zeros

Errors for approximated ωφ of L1(s) to L4(s) of Fig. 7a
L1 = L2 = L3 = L4 =
−0.5(s−3)(s+0.1)

s(s+0.1)
−0.52(s−3)(s+0.28)

s(s+0.1)
−0.575(s−3)(s+0.55)

s(s+0.1)
−0.65(s−3)(s+0.95)

s(s+0.1)

|T |dB 0 1 3 6
GM [dB] 6 5.68 4.81 3.74
PM [deg] 60 52.0 42.2 29.7
ωφ 1.74 1.86 2.2 2.8
ωφ (Fig. 2) 1.85 1.93 2.17 2.36
error ωφ % 6.6 3.5 1.1 16

Errors for approximated ωφ of L1(s) to L4(s) of Fig. 7b
L1 = L2 = L3 = L4 =
−0.5(s−3)(s+0.1)

s(s+0.1)
−0.5(s−3)(s+0.28)

s(s+0.1)
−0.5(s−3)(s+0.55)

s(s+0.1)
−0.5(s−3)(s+0.95)

s(s+0.1)

GM [dB] 6 6.1 6 6
PM [deg] 60 54.2 45.3 34
ωφ 1.74 1.73 1.89 1.97
ωφ (Fig. 2) 1.85 1.81 1.69 1.42
error ωφ % 6.6 4.7 6.0 27
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3 Margins and ωφ Relations in Unstable Plants

3.1 Statement and origin of the problem

The existence of unstable poles renders the transfer function to be NMP in the sense of Bode.
The existence of unstable poles puts a lower bound on the achievable bandwidth. The phase of
a single unstable pole located at a is −π+tan−1 ω/a and the phase of an open loop with at least
one RHP pole at ω = 0 must be −kπ, therefore it has GM due to crossing of its Nyquist plot by
the −180◦ line above 0dB (denoted by ML), thus there must exist ωφ, but high frequency GM
may not exist. As is well known, practical physical systems have at least 2 more poles than zeros,
moreover in order to minimize sensor noise amplification, high frequencies must be attenuated.
Hence the controller must have more poles than zeros, thus the phase of the open loop at high
frequencies must approach at least −270◦, therefore ωM exists. The problem considered here
will then be: Given low frequency GM, ML, high frequency GM, MH , PM, φ and the system’s
RHP poles; find the minimal ωφ. A graphical representation of all the parameters involved, i.e.,
φ, ML, MH , ωφ and ωM is given in Fig. 8.

3.2 Unstable plants with a single RHP pole

The simplest unstable open loop transmission with a single RHP pole and finite GM will be
used for our discussion, it is of the form (same form was used by Sidi 1997)

L(s) =
k

s/a− 1
ω2
n

s2 + 2ξωns+ ω2
n

(10)

681

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



−210 −180 −150 −120 −90
−10

−5

0

5

10

15

20

dB

deg

ω=1

ω=10

L
1
(jω)

L
2
(jω)

L
3
(jω)

L
4
(jω)

(a)

−210 −180 −150 −120 −90
−10

−5

0

5

10

15

20

deg

ω=1

ω=10

L
1
(jω)

L
2
(jω)

L
3
(jω)

L
4
(jω)

(b)

Figure 7: Nichols plots for NMP TFs L(s) for which the closed loop |L/(1 + L)| is close to
0, 1, 3, 6dB (a), and same TFs as per (a) but gain change for GM 6dB (b)

Without loss of generality we can normalize the pole such that a = 1 (if a 6= 1 the following
equations and results are true where s is replaced by s/a, ω by ω/a and ωn by ωn/a). Using
standard complex numbers arithmetic (ML in arithmetic units):

|L(jω)| =
MLω

2
n√

1 + ω2
√

(ω2 − ω2
n)2 + (2ξωnω)2

(11)

argL(jω) = −π + tan−1 ω − tan−1 2ξωnω
ω2
n − ω2

. (12)

Equation (11) for the cross over frequency ωφ (|L(jωφ) = 1|) yields

ML =
√

1 + ω2
φ

√
(ω2
φ − ω2

n)2 + (2ξωnωφ)2/ω2
n. (13)

Note that from stability considerations ML > 1, hence the following inequality must hold(
(ω2
φ − ω2

n)2 + (2ξωnωφ)2
)

(1 + ω2
φ) > ω2

n (14)

Equation (12) for the high frequency GM (argL(jωM ) = −π) yields

−π = −π + tan−1 ωM − tan−1 2ξωnωM
ω2
n − ω2

M

which gives

ωM =
√
ω2
n − 2ξωn. (15)
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Figure 8: Definition of the margins MH , ML, ωφ and ωM

Substituting equation (15) in equation (11) gives (MH in arithmetic units),

1
MH

=
ωnML

2ξ(1 + ω2
n − 2ξωn)

. (16)

Note that from stability considerations MH > 1, hence the following inequality must hold

ωnML

2ξ(1 + ω2
n − 2ξωn)

< 1. (17)

Equation (16) and equation (13) links between the GMs, ML, MH and the cross over frequency,
ωφ.

The next important relationship is related to the PM, φ. By equation (12) it satisfies

−π + φ = −π + tan−1 ωφ − tan−1 2ξωnωφ
ω2
n − ω2

φ

, (18)

2ξωnωφ
ω2
n − ω2

φ

=
ωφ − tanφ

1 + ωφ tanφ
. (19)

By use of equations (13,16,19) we can get a set of graphical relationships between the PM, φ,
GMs ML, MH and ωφ for different ξ’s. First we differentiate equation (12) in order to obtain
the maximum argument of L(jω) to be at ω = ωφ. The result is the solution of the following
4th order equation

(1− 2ξωn)ω4
φ +

(
−2ω2

n + 4ξ2ω2
n − 2ξω3

n − 2ξωn
)
ω2
φ +

(
ω4
n − 2ξω3

n

)
= 0.

Having found ωφ as a function of ωn we get the PM by equation (18), and ML and MH by
equation (13) and equation (16), respectively. These relations are shown in Fig. 9 for ξ =

683

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



0.5 via ωφ/a, φ, MH and ML as a function of ωn/a. Fig. 10 shows the resulting open loop
transmissions on the Nichols chart for ωn/a = 3.65, 5.3, 8.3, 14.5, 33 and 100 with respective PM
of 30, 40, 50, 60, 70 and 80deg.
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Figure 9: PM, φ and upper and lower GMs, MH , ML versus ωn/a for ξ = 0.5

3.3 Application of the results in practical problems

In practical feedback control problem, we are interested in reducing ωn/a as much as possible,
in order to minimize the sensor’s noise amplification at the plant input, see Horowitz (1963) and
Horowitz and Sidi (1972). The results in Fig. 9 can be used to find what the constraints posed
by the open loop RHP pole are. For instance, let us suppose that we need PM of φ = 40◦ then
from Fig. 9, ωn/a = 5.3 is the smallest value that can be used, for which (from the same graph)
ωφ/a = 1.8, ML = 5.8dB and MH = 7.2dB. These results are confirmed in the Nichols chart of
Fig. 10 on which are shown some L(jω) of equation (10).

Practical open-loop transfer functions will be more complicated than the assumed form
here, i.e., will contain more poles and zeros than equation (10). However, optimal shaping of the
open-loop transfer function will have the basic margin characteristics shown for the simplified
structure of equation (10) given in Fig. 10, for which the results in Fig. 9 exactly hold.

3.4 Extension to several RHP poles

NMP plants with only real RHP poles: A reasonable estimation for the relation between GM,
PM and cross over frequency can be achieved by replacing the RHP poles by a single equiva-
lent RHP pole whose phase is the first order approximation of the original RHP poles in high
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Figure 10: Several Nichols plot which confirm the relations of Fig. 9

frequencies. This is because high frequencies are the region that dominate the bandwidth equa-
tions. A simple formula is derived as follows: Let the RHP poles be located at p1, · · · , pn. The
argument of the all-pass due to all RHP poles and all LHP zeros at some ω is

arg[A(s)]s=jω = −mπ + 2
i=m∑
i=1

ctan−1 pi
ω
.

But since the largest RHP pole, let say p1, is the important one, and the additional RHP poles
can only aggravate the stability problem at higher frequencies, then at the frequency range
ω > pi, it holds

ctan−1 pi
ω
≈ pi
ω

therefore

arg[A(s)]s=jω ≈ −mπ + 2
i=m∑
i=1

ctan−1 pi
ω

= −mπ + 2
pi
ω
,

and the pole p which replaces them is

p ≈ p1 + · · ·+ pn. (20)

This approximation is exemplified with the following transfer functions

L1(s) =
8

(s− 4)(s2/21.22 + s/21.2 + 1)
,

L2(s) =
16(s+ 2.2)(s+ 5)

(s− 1)(s− 3)(s2/202 + 1.6s/20 + 1)(s+ 15)
.
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In this case the equivalent unstable pole is by equation (20) at 4. Both transfer functions are
shown in Fig. 11, whose PM are 40◦ and MH +ML are approximately the same for both cases
(13.5dB). For φ = 40◦ we find by Fig. 9 that ωn/a = 1.85, so that ωφ = 7.4 which is a good
approximation for the cross over frequency ωφ = 7.5 of L2(s) and 7.8 of L1(s), as shown in
Fig. 12.
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Figure 11: Nichols graphs of a TF containing two NMP poles and a TF containing an equivalent
single RHP pole

NMP plants with highly under-damped RHP poles: Under assumption 2.1, L(s) has a simple
property, as the damping factor tends to zero, its Nichols plot converges to its minimum phase
part for frequencies larger than the under-damped poles, thus can be treated as minimum phase
transfer function in that range.

4 Conclusions

The existence of a RHP zero in a plant, limits the achievable bandwidth of the open loop
transmission, thus limiting the benefits of feedback with respect to the closed loop sensitivity.
This paper gives simple equations and graphs in order to find limitations and tradeoff between
the cross over frequency and gain margin and phase margin as a function of the RHP zeros;
where the slope of its Bode plot around the cross over frequency is given.

The existence of an unstable pole has an opposite effect, it puts a lower bound on the cross
over frequency. Equations and graphs in order to find limitations and tradeoff between the cross
over frequency and gain margin and phase margin as a function of the RHP poles, based on a
simplified structure of its loop transmission around the cross over frequency are given.
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Figure 12: Bode plot of the TF in Fig. 11, a TF containing two NMP poles and a TF containing
an equivalent single RHP pole
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