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Abstract

The purpose of this short note is to establish and explore a link between the problem
of stabilizing a linear system using �nite-state hybrid output feedback and the problem of
�nding a stabilizing switching sequence for a switched linear system with unstable individual
matrices, each of which separately has recently received attention in the literature.
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1 Introduction

Suppose that we are given a linear time-invariant control system

_x = Ax+ Bu

y = Cx
(1)

where x 2 Rn, u 2 Rm, y 2 Rp, and A, B and C are matrices of suitable dimensions. Suppose
that the system (1) is stabilizable and detectable, i.e., there exist matrices F and K such that
the eigenvalues of A + BF and the eigenvalues of A + KC have negative real parts. Then, as
is well known, there exists a linear dynamic output feedback law that asymptotically stabilizes
the system|see, e.g., Wolovich (1974, Section 6.4). In practice, however, such a continuous
dynamic feedback might not be implementable, and a suitable discrete version of the controller
is often desired. Recent references (Brockett and Liberzon, 1997; Hu and Michel, 1998; Litsyn
et al., 1998; McClamroch et al., 1997; Sontag, 1999) discuss some issues related to control of
continuous plants by various types of discontinuous feedback.

In particular, in (Litsyn et al., 1998) it is shown that if the system (1) is controllable and
observable, then it admits a stabilizing hybrid output feedback that uses a countable number of
discrete states. A logical question to ask next is whether it is possible to stabilize (1) by using
a hybrid output feedback with only a �nite number of discrete states. Zvi Artstein explicitly
raised this question in (Artstein, 1996) and discussed it in the context of a simple example (cf.
Section 3 below). This problem seems to require a solution that is signi�cantly di�erent from
the ones mentioned above because a �nite-state stabilizing hybrid feedback is unlikely to be
obtained from a continuous one by means of any discretization process.

In this note we propose an approach to the problem of stabilizing (1) via �nite-state hybrid
output feedback which is motivated by the following observation. Suppose that we are given a
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collection of m � p matrices fK1; : : : ; Klg. Setting u = Kiy for some i 2 f1; : : : ; lg, we obtain
the system

_x = (A+BKiC)x:

Thus the stabilization problem for the original system (1) will be solved if we can orchestrate
the switching between the systems in the above form in such a way as to achieve asymptotic
stability. Denoting A+BKiC by Ai for each i 2 f1; : : : ; lg, we are led to the following question:
using the measurements of the output y = Cx, can we �nd a piecewise constant switching signal
� : [0;+1)! f1; : : : ; lg such that the system

_x = A�x

is asymptotically stable? The value of � at a given time t might just depend on t and/or y(t), or
a more general hybrid feedback with memory in the loop may be used. Below we discuss some
paradigms, old and new, for constructing such a stabilizing switching signal. We are assuming,
of course, that none of the matrices Ai are stable, as the existence of a matrix K such that the
eigenvalues of A+ BKC have negative real parts would render the problem trivial.

2 Stabilizing switching signals

According to the main result of (Wicks et al., 1994) and (Wicks et al., 1998), if there exists
a stable matrix of the form A := �Ai + �Aj for some i; j 2 f1; : : : ; lg and �; � > 0, then
it is possible to construct a stabilizing switching signal (by using a single Lyapunov function
that corresponds to A). In our case, the existence of such a stable linear combination would
imply that the system (1) can be stabilized by the linear static output feedback u = Ky with
K := �Ki + �Kj , contrary to the assumption made at the end of the previous section. Thus
the techniques of (Wicks et al., 1994; Wicks et al., 1998) cannot be applied here. However,
we will now demonstrate that linear combinations with positive coe�cients are still useful in
the present context. Assume for simplicity that l = 2, so that we are only given two matrices,
A1 = A + BK1C and A2 = A + BK2C. Let us further assume that the corresponding linear
systems are second-order and have purely imaginary eigenvalues. In what follows, we show how
to construct a switching signal such that the resulting switched system is asymptotically stable.

Since both individual linear systems are critically stable, there exist symmetric positive
de�nite matrices P1 and P2 such that

AT
i Pi + PiAi = 0; i = 1; 2:

Assume that we have hP1x; P2xi > 0 and hA1x;A2xi > 0 for all x 6= 0 (this is true, for example,
if the matrices K1 and K2, and consequently the matrices A1 and A2, are \su�ciently close" to
each other). De�ne P := P1 + P2. We have the following easy statement.

Lemma 1 Under the above assumptions, for each x 2 R2 n f0g one of the following is true:

(i) A1x = �A2x for some � > 0

(ii) xTPA1x < 0 and xTPA2x > 0

(iii) xTPA2x < 0 and xTPA1x > 0
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Proof. Fix an arbitrary x 6= 0. Since hP1x; P2xi > 0, hA1x;A2xi > 0, and hPix;Aixi = 0 for
i = 1; 2, there exists a 90� rotation matrix � 2 SO(2) such that �P1x = A1xkP1xk=kA1xk
and �P2x = A2xkP2xk=kA2xk. Let � := kP1xk=kA1xk and � := kP2xk=kA2xk. By linearity,
�Px = �A1x + �A2x. Therefore, the matrix A := �A1 + �A2 is such that xTPAx = 0. It
follows that either both quantities appearing in (ii) and (iii) are zero, or one of them is negative
and the other one is positive. But the former is possible only when (i) holds.

By the above lemma, we can de�ne the switching control policy as follows: at each time t,
set �(t) equal to 1 if xTPA2x � 0, and set �(t) equal to 2 if xTPA1x � 0. Clearly, the switching
will occur only when the state trajectory crosses the set of points on which (i) holds. This set is
described by two lines intersecting at the origin (which are the coordinate axes corresponding to
the basis in which P1 and P2 are simultaneously diagonalized), unless it is the entire R2 in which
case the above switching strategy does not make sense. Observe that chattering cannot occur
because the switching set is characterized by (i) with a positive �. To see that the resulting
switched system is asymptotically stable, de�ne the Lyapunov function V (x) := xTPx. We have
_V � 0, and LaSalle's principle easily leads to the desired conclusion.

It is important to notice that, since both systems being switched are linear time-invariant, the
time between a crossing of the set fx : Cx = 0g and the next crossing of the switching set can be
explicitly calculated and is independent of the trajectory. In other words, the switching strategy
can be implemented based just on the measurements of the output (and on the knowledge of
the matrices A1 and A2).

Feron (1996) has shown that a switched linear system of the type studied here is quadratically
stable only if there exists a stable linear combination of its matrices with nonnegative coe�cients.
This result implies that by using the above switching control policy we cannot achieve quadratic
stability. Indeed, on the switching set we have _V = 0. Note also that the need to satisfy
the assumptions of Lemma 1 poses a limitation on the speed of convergence of the switched
system's trajectories to the origin: loosely speaking, as the matrices A1 and A2 come closer to
one another, the convergence becomes slower.

The above method can be easily extended to the case of switching between nonlinear systems
whose trajectories are closed orbits in R2. It is also applicable to certain special classes of higher-
order systems.

3 Harmonic oscillator revisited

As an example that illustrates the above ideas, we present a modi�ed version of the stabilizing
switching strategy for the harmonic oscillator with position measurements described by Artstein
(1996). Consider the system

d

dt

 
x1
x2

!
=

 
0 1
�1 0

! 
x1
x2

!
+

 
0
1

!
u ;

y = x1

Although this system is both controllable and observable, it cannot be stabilized by (even
discontinuous) static output feedback (Artstein, 1996). We will now apply to this system a
switching control strategy along the lines described at the end of the previous section. Letting
u = �y we obtain the system

d

dt

 
x1
x2

!
=

 
0 1
�2 0

! 
x1
x2

!
(2)
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while letting u = 1

2
y we obtain the system

d

dt

 
x1
x2

!
=

 
0 1
�1

2
0

! 
x1
x2

!
: (3)

The functions V1(x) :=
2

3
x2
1
+ 1

3
x2
2
and V2(x) :=

1

3
x2
1
+ 2

3
x2
2
are integrals of motion for (2) and (3),

respectively. De�ne V (x) := V1(x)+V2(x) = x2
1
+x2

2
. This function decreases along the solutions

of (2) when x1x2 > 0 and decreases along the solutions of (3) when x1x2 < 0. Therefore, if the
system (2) is active in the 1st and 3rd quadrants while the system (3) is active in the 2nd and 4th
quadrants, we will have _V < 0 whenever x1x2 6= 0, hence the switched system is asymptotically
stable by LaSalle's principle.

To de�ne the hybrid output feedback strategy, let T be the time needed for a trajectory of
the system (2) to pass through the 1st or the 3rd quadrant. The feedback control will be of the
form u = ky, where the gain k will switch between the values �1 and 1

2
. When x1 changes sign,

we will let k = �1 for a period of time T , after which we let u = 1

2
, wait for the next change

in sign of x1, and so on. This strategy can be easily formalized according to the de�nition of
hybrid feedback given in (Artstein, 1996). The hybrid automaton will have three discrete states
(one responsible for control in the 1st and 3rd quadrants, one responsible for control in the 2nd
quadrant and detecting the change of sign from positive to negative, and one responsible for
control in the 4th quadrant and detecting the change of sign from negative to positive). It can
be described by an appropriate state transition diagram|see (Artstein, 1996) for details.

The above hybrid control strategy can also be illustrated by the following computer-like
diagram, similar to the ones used in (Morse, 1995). An auxiliary variable r is introduced to
detect a change in sign of x1 (the left branch), and a reset integrator is employed to determine
the transition time (the right branch).

    

Begin

k = � 1

2

r = x1r = x1

k = 1

_� = 1

� = 0

� � T ?

yes

yes

r �x1 < 0 ?

no

no

4 Multiple Lyapunov functions

In the previous sections the stability analysis of a switched system was based on a single Lya-
punov function. In (Peleties and DeCarlo, 1991; Wicks and DeCarlo, 1997) the question of
stabilizing switched systems has been addressed using multiple Lyapunov functions. In particu-
lar, (Peleties and DeCarlo, 1991) contains a worked example of stabilizing a system that switches
between two unstable linear systems. The basic idea is to associate to each individual system a
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Lyapunov-like function that decreases along the trajectories in a certain region. One then tries
to orchestrate the switching in such a way that the value of each of these functions at the end
of each interval on which the corresponding system is active exceeds the value at the end of the
next such interval|see also (Branicky, 1997; Branicky, 1998; Hou et al., 1996; Pettersson and
Lennartson, 1996). In what follows, we will apply similar ideas to the problem at hand.

As before, let A1 and A2 be the two given matrices. Take a candidate Lyapunov function
V1(x) = xTP1x that decreases along solutions of the system _x = A1x in some region (such a
function always exists unless A1 is a nonnegative multiple of the identity matrix). Similarly,
take a candidate Lyapunov function V2(x) = xTP2x that decreases along solutions of _x = A2x in
some region. Following (Wicks and DeCarlo, 1997), we consider the situation when the following
condition holds:
Condition 1. xT (P1A1 + AT

1
P1)x < 0 whenever xT (P1 � P2)x � 0 and x 6= 0, and xT (P2A2 +

AT
2
P2)x < 0 whenever xT (P2 � P1)x � 0 and x 6= 0.
If this condition is satis�ed, then a stabilizing switching signal can be de�ned by �(t) :=

argmaxfVi(x(t)) : i = 1; 2g. Indeed, the function V� will then be continuous and will de-
crease along solutions of the switched system, which guarantees asymptotic stability. A similar
technique was used independently in (Malmborg et al., 1996) in a more general, nonlinear con-
text (that paper addresses an application to the interesting problem of stabilizing an inverted
pendulum via a switching control strategy).

It is not hard to see that Condition 1 holds if the following condition is satis�ed (by virtue of
the S-procedure, the two conditions are actually equivalent provided that there exist x1; x2 2 R

n

such that xT
1
(P1 � P2)x1 > 0 and xT

2
(P2 � P1)x2 > 0; see (Boyd et al., 1994)).

Condition 2. There exist 
1; 
2 � 0 such that �P1A1�AT
1
P1+ 
1(P2�P1) > 0 and �P2A2�

AT
2
P2 + 
2(P1 � P2) > 0.
Alternatively, if the same condition is satis�ed with 
1; 
2 � 0, then a stabilizing switching

signal can be de�ned by �(t) := argminfVi(x(t)) : i = 1; 2g. Now recall that in our present
situation the given data is not the matrices A1 and A2, but rather the matrices A, B and C,
and the problem is to �nd output feedback gains K1 and K2 such that the resulting matrices
A1 = A + BK1C and A2 = A + BK2C satisfy the above requirements. This leads us to the
following condition.
Condition 3. There exist two numbers 
1 and 
2, either both nonnegative or both nonpositive,
such that

�P1A� ATP1 + 
1(P2 � P1)� P1BK1C � CTKT
1
BTP1 > 0

and
�P2A� ATP2 + 
2(P1 � P2)� P2BK2C � CTKT

2
BTP2 > 0:

Using the procedure for elimination of matrix variables described in Boyd et al. (1994,
Section 2.6.2), one can show that the above inequalities are satis�ed if and only if for some
�1; �2 2 R we have

� P1A �ATP1 + 
1(P2 � P1)� �1P1BB
T PT

1
> 0

� P1A �ATP1 + 
1(P2 � P1)� �1C
TC > 0

(4)

and

� P2A �ATP2 + 
2(P1 � P2)� �2P2BB
T PT

2
> 0

� P2A �ATP2 + 
2(P1 � P2)� �2C
TC > 0

(5)

Suppose that our system is such that the above switching strategy can be implemented based
just on the measurements of the output. As discussed in the previous sections, this is true,
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for example, when the individual systems are second-order critically stable. More generally,
if y 2 Rp with p � n � 1 and if for some t we have y(t) = 0, then, since the systems being
switched are linear time-invariant, the time T (� +1) until the next crossing of the switching
set can be explicitly calculated and is independent of the trajectory. Also note that when (C;A)
is an observable pair, we can reconstruct the entire state from n sampled measurements of
the output, and determining the next switching time becomes an easy task. We arrive at the
following statement.

Proposition 2 If there exist two numbers 
1 and 
2, either both nonnegative or both nonpos-
itive, and two numbers �1 and �2 such that the inequalities (4){(5) are satis�ed for some sym-
metric positive de�nite matrices P1 and P2, then the system (1) can be asymptotically stabilized
by using hybrid output feedback with two discrete states.

When 
1 = 
2 = 0, we recover LMIs that express conditions for stabilizability of (1) by static
output feedback (and are equivalent to the ones given, e.g., in Syrmos et al. (1997, Theorem
3.8)). It would be interesting to compare the above bilinear matrix inequalities with the ones
obtained in (Pogromsky et al., 1998) as a characterization of stabilizability via switched state
feedback, and also with the dynamic programming approach presented in (Savkin et al., 1996;
Savkin et al., 1999).

5 Conclusions

We addressed the problem of stabilizing a linear system using �nite-state hybrid output feedback.
We proposed an approach to this problem that consists in switching between a �nite number of
constant linear gains, thereby reducing it to the problem of �nding a stabilizing switching signal
for a switched linear system with unstable individual matrices.

This note poses more questions than it provides answers. While available techniques that
rely on the existence of stable linear combinations do not seem to be relevant in the present
context, we have shown by way of examples how in some cases of interest a stabilizing switching
signal can be constructed. The fact that the individual gains can be chosen as part of the design
introduces considerable 
exibility into the problem and is to be explored further. It remains to
be seen whether the main results of (Wicks and DeCarlo, 1997), which relate the existence of a
stabilizing switching signal to the eigenvalue locations of certain matrix operators, are useful in
this regard. An interesting question left to consider is exactly what advantage is to be gained by
switching between more than two linear systems. The developments of Section 4 make contact
with the work reported in (Johansson and Rantzer, 1998) and (Pettersson and Lennartson, 1996)
on LMI tests for piecewise quadratic Lyapunov functions for switched systems. Another possible
source of interesting ideas, which suggests an altogether di�erent approach to the problem, is the
literature on periodic sampled-data output feedback control of linear systems|see, e.g., (Araki
and Hagiwara, 1986; Aeyels and Willems, 1992; Francis and Georgiou, 1988).

Acknowledgment. The author would like to thank Jo~ao Hespanha and Steve Morse for helpful
discussions.

References

Araki, M. and T. Hagiwara (1986). Pole assignment by multirate sampled-data output feedback, Int. J.
Control, 44, pp. 1661{1673.

181

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



Artstein, Z. (1996). Examples of stabilization with hybrid feedback, in Hybrid Systems III: Veri�cation

and Control (R. Alur et al., Eds.), Lecture Notes in Computer Science, vol. 1066, pp. 173{185.

Aeyels, D. and J. L. Willems (1992). Pole assignment for linear time-invariant systems by periodic
memoryless output feedback, Automatica, 28, pp. 1159{1168.

Boyd, S., L. E. Ghaoui, E. Feron, and V. Balakrishnan (1994). Linear Matrix Inequalities in System and

Control Theory, vol. 15 of SIAM Studies in Applied Mathematics, SIAM.

Branicky, M. S. (1997). Stability of hybrid systems: state of the art, in Proc. 36th Conf. Decision

Control, pp. 120{125.

Branicky, M. S. (1998). Multiple Lyapunov functions and other analysis tools for switched and hybrid
systems, IEEE Trans. Automat. Control, 43, pp. 475{482.

Brockett, R. W. and D. Liberzon (1997). Quantized feedback stabilization of linear systems, IEEE Trans.

Automat. Control, to appear.

Feron, E. (1996). Quadratic stabilizability of switched systems via state and output feedback, Technical
Report CICS-P-468, MIT. Submitted to SIAM J. Control Optimization.

Francis, B. A. and T. T. Georgiou (1988). Stability theory for linear time-invariant plants with periodic
digital controllers, IEEE Trans. Automat. Control, 33, pp. 820{832.

Hou, L., A. N. Michel, and H. Ye (1996). Stability analysis of switched systems, in Proc. 35th Conf.

Decision Control, pp. 1208{1212.

Hu, B. and A. N. Michel (1999). Stability analysis of digital feedback control systems with time-varying
sampling periods, submitted to Automatica.

Johansson, M. and A. Rantzer (1998). Computation of piecewise quadratic Lyapunov functions for hybrid
systems, IEEE Trans. Automat. Control, 43, pp. 555{559.

Litsyn, E., Y. V. Nepomnyashchikh, and A. Ponosov (1998). Stabilization of linear di�erential systems
via hybrid feedback controls, submitted to SIAM J. Control Optimization.

Malmborg, J., B. Bernhardsson, and K. J. Astr�om (1996). A stabilizing switching scheme for multi-
controller systems, in Proc. 13th IFAC World Congress, vol. F, pp. 229{234.

McClamroch, N. H., C. Rui, I. Kolmanovsky, and M. Reyhanoglu (1997). Hybrid closed loop systems:
A nonlinear control perspective, in Proc. 36th Conf. Decision Control, pp. 114{119.

Morse, A. S. (1995). Control using logic-based switching, in Trends in Control (A. Isidori, Ed.), Springer-
Verlag, New York, pp. 69{113.

Peleties, P. and R. A. DeCarlo (1991). Asymptotic stability of m-switched systems using Lyapunov-like
functions, in Proc. American Control Conf., pp. 1679{1684.

Pettersson, S. and B. Lennartson (1996). Stability and robustness for hybrid systems, in Proc. 35th

Conf. Decision Control, pp. 1202{1207.

Pogromsky, A. Yu., M. Jirstrand, and P. Sp�ang�eus (1998). On stability and passivity of a class of hybrid
systems, in Proc. 37th Conf. Decision Control, pp. 3705{3710.

Savkin, A. V., I. R. Petersen, E. Ska�das, and R. J. Evans (1996). Hybrid dynamical systems: robust
control synthesis problems, Systems Control Lett., 29, pp. 81{90.

Savkin, A. V., E. Ska�das, and R. J. Evans (1999). Robust output feedback stabilizability via controller
switching, Automatica, 35, pp. 69{74.

182

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



Sontag, E. D. (1999). Stability and stabilization: Discontinuities and the e�ect of disturbances, in Proc.

NATO Advanced Study Institute \Nonlinear Analysis, Di�erential Equations, and Control", Kluwer, pp.
551-598.

Syrmos, V. L., C. T. Abdallah, P. Dorato, and K. Grigoriadis (1997). Static output feedback|a survey,
Automatica, 33, pp. 125{137.

Wicks, M. A., P. Peleties, and R. A. DeCarlo (1994). Construction of piecewise Lyapunov functions for
stabilizing switched systems, in Proc. 33rd Conf. Decision Control, pp. 3492{3497.

Wicks, M. A. and R. A. DeCarlo (1997). Solution of coupled Lyapunov equations for the stabilization of
multimodal linear systems, in Proc. American Control Conf., pp. 1709{1713.

Wicks, M. A., P. Peleties, and R. A. DeCarlo (1998). Switched controller synthesis for the quadratic
stabilization of a pair of unstable linear systems, European J. Control, 4, pp. 140{147.

Wolovich, W. A. (1974). Linear Multivariable Systems, Springer-Verlag, New York.

183

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999


	HOME
	SESSION

