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Abstract
An adaptive controller is proposed, for the tracking control of robotic manipulators that does not require the
measurement of joint velocities.  The controller belongs to the class of model-reference adaptive controllers.  An
observer is used to generate an estimate of the joint velocities and an observer-based identifier with projection is
used to update the parameter vector estimate.  Simulation results are given to show the effectiveness of the
control algorithm.

1. Introduction
The application of adaptive control to robot manipulators has been an active area of research

for the last two decades. The problem of tracking control using state feedback, where both position
and velocity are accessible, has been examined extensively (see for example (Slotine and Li, 1987),
(Li and Slotine, 1989), and (Ortega and Spong, 1989)).  In (Slotine and Li, 1987), an adaptive
controller and a parameter adaptation rule are derived based on Lyapunov-like arguments, which
guarantee the global asymptotic convergence of the tracking error.  In (Li and Slotine, 1989) an
indirect adaptive controller is derived which uses the torque estimation error to update the estimate of
the parameter vector.  Again, global asymptotic stability of the tracking error is shown.  Several direct
and indirect adaptive controllers are reviewed in (Ortega and Spong, 1989).   However, although joint
position measurement can be done very accurately, velocity measurements are noise-prone. This
motivated attempts to design an observer-based controller.  Several papers have been published with
variations of this idea.  In (Canudas De Wit and Fixot, 1992), an adaptive controller is proposed which
utilizes a sliding observer to estimate the joint velocities.  However, the discontinuities of the driving
terms in the adaptation and observer differential equations induce high frequency signals that can
create numerical stability problems.  In (Lee and Khalil, 1997), an adaptive controller is presented
which is based on a high-gain observer and an identifier with parameter projection.  However, the
control design requires estimating several parameters including the maximum torque possible.

In this paper, we review a recently proposed output feedback controller for robot
manipulators which is based on the work of (Jankovic, 1996), and then present an new output
feedback adaptive controller that belongs to the class of model reference adaptive controllers.  A
virtual control signal is computed and used to generate a linearizing control signal that uses an
estimate of the joint velocities generated by an observer.

2. Review of a recently proposed controller
In this section we formulate the control problem and present the results of a recently proposed output
feedback controller by (Hajjir and Schwartz, 1999).
The equation of motion for an n -link rigid robot is given by

uqgqqqCqqD =++ )(),()( ���� (1)
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where nRq∈ is the joint position vector, nRu ∈ is the input torque. nnRqD ×∈)(  is the symmetric

and uniformly positive definite inertia matrix, nRqqqC ∈��),( is the Coriolis and centrifugal loading

vector, and nRqg ∈)( is the gravitational loading vector.  An important property of equation (1) is
that its left-hand side of can be written as

φ),,()(),()( 1 qqqYqgqqqCqqD ������� =++  (2)

where pR∈φ  is the parameter vector and ),,(1 qqqY ��� is the regressor.  Thus the robot equation of
motion can be linearly parameterized.
The nonlinear dynamics (1) can be rendered linear by the following nonlinear control signal:

)(),()( qgqqqCvqDu ++= �� (3)

where nRv∈ is the virtual control signal.  Under the action of (2), equation (1) yields
vq =�� (4)

We may now specify the virtual control by
eKeKqv PDd −−= ��� (5)

where PD KK , are positive definite diagonal matrices, and dqqe −=  is the tracking error.

Substituting (4) in (3), one gets the error equation
0=++ eKeKe PD ��� (6)

which is asymptotically stable by proper choice of PD KK , .
The control given by (2) and (4) requires exact knowledge of the parameters of the robot, and that the
joint velocity be available.  In practice, the measured parameters are only approximate and may vary
with time (e.g. when the load changes).  Thus (2) and (4) are modified to

)(ˆ),(ˆ))((ˆ qgqqCqKxqDu d +++−= ��� (6)

Where, [ ] [ ]TTTTTT eexxx �== 21 , and [ ]DP KKK = .  The terms )(ˆ qD , ),(ˆ qqC � and )(ˆ qg
are estimates of )(qD , ),( qqC �  and )(qg , that satisfy linear parameterization, that is,

φ̂),,()(ˆ),(ˆ)(ˆ
1 qqqYqgqqqCqqD ������� =++  (7)

In a recent work (Hajjir and Schwartz, 1999), it is noted that
θ),()(),( qqYqgqqqC ��� =+ (8)

This follows from the linear parameterization property.  The vector θ  is obtained from φ  by retaining

only those parameters that specify ),( qqC � and )(qg , and ),( qqY �  is obtained from ),,(1 qqqY ���  by
retaining the corresponding columns.  If, in addition we assume that the joint velocity vector is not
available to the controller then an observer has to be used to estimate it.  The observer of (Hajjir and
Schwartz, 1999) is given by

)ˆˆˆ(ˆ)(ˆ 11
dqYDuDBLCxxLCAx ��� −−+Γ+Γ−= −− θ (9)

where [ ] [ ]TTTTTT eexxx ˆˆˆˆˆ 21 �== is the observed error vector, and
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The positive scalar G is the observer gain constant.  The matrix ),( 21 xqxqYY dd ++= � , where

[ ] )ˆ(21 xSatxxx
xΩ==  is the saturated error on a convex set xΩ .  The saturation function is

applied component-wise and is defined as follows
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The positive scalars ia  define the convex set (hypercube) xΩ .

The control law (Hajjir and Schwartz, 1999) is a modification of (6) to

)(ˆ),(ˆ))((ˆ qgqqCqxKqDu d +++−= ��� (11)

where 1xqq d +=  and 2xqq d += �� .

Similar to (8), we can write

θ̂),()(ˆ),(ˆ qqYqgqqqC ��� =+ (12)
Applying (11) to (1), we get the following error equation

))ˆ()(ˆ( 11 θθ YYDxKDDqEBAxx d −+−++= −−
��� (13)

Where,

 IDDE −= − ˆ1

Substituting (11) in (9), the observer equation reduces to

)()ˆ(ˆˆ xKBxxLCxAx −+−Γ+=� (14)
An identifier (parameter estimator) is given by

xKxcquDYDxc d −−≡−+−−= −− )(ˆˆˆ)( 20
11

20 ηθηη ��� (15a)

))(ˆ(Projˆ
2

1
1 ηθ −−= − xDYc T�

(15b)

where 0c  and 1c  are positive constants.  The projection operator in (15b) is applied component-wise,

and is given by (Lee and Khalil, 1996)
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where it is assumed that the actual parameter vector θ  belongs to the set Θ  defined by
}|{ δθδθ +≤≤−=Θ iii ba

This completes the specification of the controller of (Hajjir and Schwartz, 1999).  A simulation study
of this controller is presented in section 4.  The following section presented the new controller of this
paper, and its performance will be compared to (Hajjir and Schwartz, 1999) by simulation.
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3. The MRAC controller
In this paper, we assume that the desired trajectory )(tqd  is the output of a second order reference

model,
rsWq md )(= (17)

where )(sWm  is the reference model transfer function, and r  is the reference input. We design v  as

follows (Narendra and Annaswamy, 1989)

krddqdv TT +++= 22110 ωω (18)

where

lv+Λ= 11 ωω� (19a)

lq+Λ= 22 ωω� (19b)

The vectors nR∈21, ωω , Rkd ∈,0 , and the diagonal matrices nnRldd ×∈Λ,,, 21 . We will assume

that nIλ−=Λ , 0>λ , so that nI
s

sI
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1
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λ
=Λ− − , where λλ += ss)( .  From equations (6), we

have
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Using (21a) and (21b) in (18), we obtain
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Rearranging, and using (4),
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Now we can select klddd ,,,, 210  such that

)()( sWsW m=
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The above development was carried out assuming perfect knowledge of the robot model
parameters, and that the joint velocities were available to the controller.  In the case where only an
estimate of the parameter vector is available, the control (2) is modified to

)(ˆˆ)ˆ,(ˆ)(ˆ qgqqqCvqDu ++= �� (24)

The vector q̂�  is an estimate of the joint velocity vector.  It is generated by an observer that will be

specified later.  The terms )(ˆ qD , )ˆ,(ˆ qqC � and )(ˆ qg  are estimates of )(qD , ),( qqC �  and )(qg ,
respectively such that the linear parameterization property is preserved, i.e.

θ̂),ˆ,()(ˆˆ)ˆ,(ˆ)(ˆ vqqYqgqqqCvqD ��� =++ (25)

Applying the control (24) to the robot model (1), we obtain
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where

]),,(ˆ),ˆ,()[(1 θθη vqqYvqqYqD �� −= − (27)

Note that the vector η  results from parameter estimation error and velocity estimation error.

Using (26) in (22), and manipulating, we arrive at

ηη )()( sWrsWq += (28)

where
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Since klddd ,,,, 210  can be selected such that )()( sWsW m= , we can express the tracking error as

ηη )(sWqqe d =−= (30)

where we have used (4) in equation (15).

In order to estimate the joint velocity vector q� , we use the following observer
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It can be easily shown that the observation error equation is given by
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or η00
~~ BxAx +=� (33)

where [ ]TTT qqx �~~~ = , 
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Finally, to update the parameter vector estimate, we define the virtual error as

dv qve ��−= (34)

This is the error between the virtual control and desired joint acceleration.  Using (26) and (30), we
have

ηηη φη )()1)(( 2 sWsWsqqe dv ≡−=−−= ���� (35)
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Now we select the parameter update law as

))(Proj(ˆ
vetζθ =� (37)

where )],ˆ,()[()( vqqYsWt T
�φζ = (38)

The projection operator in (37) is used to ensure that θ̂  remains bounded. This completes the
specification of the algorithm.

4. Simulation

The proposed controller was simulated on a two-link revolute joint robot.  For this robot, we have









+

+++
=

2232

2322321

cos

coscos2
)(

θθθ
θθθθθ

q

qq
qD








 +−−
=

0)sin(

))(sin()sin(
),(

123

2123223

qq

qqqqq
qqC

�

���
�

θ
θθ









+

++
=

)cos(

)cos(cos
)(

215

21514

qqg

qqgqg
qg

θ
θθ

where 1θ - 5θ are dependent on the physical properties of the two links and are given by,
2
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111 lmIlm c ++=θ , 2

2222 clmI +=θ , 2123 cllm=θ , 12114 lmlm c +=θ , 225 clm=θ , and

81.9=g  2m/s .

The following physical parameters were assumed:

2,2/11510 22112121 /llll,l,l,m,  m cc ====== , 122 /l m I iii = .

With these values, the actual value of the parameter vector is

T., ,., , . ]5210 5267.1338[=θ

2297

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



The initial estimate was set to 75% of the actual value.  The reference trajectory for both joints was set
to the step response of the second-order reference model with double pole at 5−=ip .  Thus the

reference model is given by

2510

25
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2 ++
=

ss
sWm

The corresponding design parameters are

1,25,1000,10,125,10 210 ===−=−== lkdddλ

The observer gain matrix was set to
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Figure 1 shows the tracking error performance of the two joints.  The maximum tracking error is 0.32
radian for the first joint and 0.5 for the second joint.  The tracking errors quickly converge to zero after
two seconds.  The parameter estimate trajectory is shown in Figure 2.

We then compared the performance of the new MRAC controller with the controller of (Hajjir and
Schwartz, 1999).  The same desired trajectories and initial parameter estimate were used.  The
controller parameters were selected as follows
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Figure 3 shows the resulting tracking error.  The maximum tracking error is 0.05 radian for the first
joint and 0.26 radian for the second joint.  The tracking error for both joints tends to a very small
neighborhood of the origin.  Figures 4 show the parameter estimate trajectory obtained with this
controller.  Only three parameters can be updated; namely, 3θ , 4θ  and 5θ , which are the parameters

of ),( qqC � and )(qg .

5. Conclusions

In this paper, we reviewed a recent output feedback controller proposed in (Hajjir and Schwartz, 1999)
and then presented a new output feedback controller that belongs to the class of model reference
adaptive controllers.  An important advantage of the new controller is the ability to adapt all the robot
parameters unlike the controller of (Hajjir and Schwartz, 1999) in which the estimate of the inertia
matrix parameters is kept fixed.
Given any reference model, the new controller parameters can be directly computed that result in a
closed loop system with a matching transfer function.  It is shown that in the absence of exact
knowledge of the robot parameters, and its actual joint velocity; the tracking error is the output of a
linear filter whose input is a nonlinear function of the parameter estimate error, and the velocity
estimate error (equation (28)).  The effectiveness of the controller is demonstrated by simulation.
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Figure 1.  Tracking Error of the two joints with the new controller

Figure 2.  Parameter estimate trajectories
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Figure 3.  Tracking error with the controller of (Hajjir and Schwartz, 1999)

Figure 4.  Parameter estimate trajectories for the controller of (Hajjir and Schwartz, 1999)
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