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Abstract: The present paper presents away to incorporate QFT principles to the He control
design technique to solve the Two-Degree of Freedom Feedback Problem with Highly Uncertain
Plants. The proposed design procedureisillustrated with SISO and MIMO design examples
for highly uncertain plants.

1- Introduction

Both QFT and He, design techniques occupies the control community for along time, from
the beginning of the 70's. The so called today QFT design technique was first introduced in
Horowitz and Sidi (1972), while the H,, norm as conceived today was first introduced by
Zames (1976), (1979), and Zames and Francis (1983) to formulate the problem of sensitivity
reduction by feedback as an He, optimization problem. In the following years, the oriented
design techniques for robust feedback systems has enormously expanded and devel oped for
solving the robust feedback problem, Doyle 1978, Doyle and Stein (1981), Francis and Doyle
(1986), Francis (1986), Zhou and Doyle (1998) and many others. During the past twenty years
it was felt that there exist a very pronounced schism between the two techniques having the
same design task, namely, robust design for uncertain feedback systems. Fortunately it isfelt
today that there exist alot of parallelism between both design philosophies which can complement
each other. The aim of this paper is to show how both techniques can be applied in a combined
and efflcient way to design two degree of freedom (TDOF) uncertain feedback systems, SISO
and MIMO.

2. Parallelism between the QFT and the H,, norm design techniques.

The QFT for SISO and MIMO feedback systemsis defined and solved in the classical frequency
domain using Nyquist, Bode and Nichols oriented design techniques. The Hco norm design
technique uses basicdlly the state-space formulation for solving the feedback problem optimization,
although the process and the desired performances to be achieved are specified once morein
the frequency domain. A short review of both techniques follow.

A. The QFT design technique (It is assumed that the reader is familiar with this technique, if
not, it is recommended to have alook in Horowitz and Sidi (1972) for the SISO case).
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Figure 1. A canonic TDOF feedback system.

The problem studied here is how to design the controller G(s) and prefilter F(s) in Fig. 1
such that for a given set of plants {P}: (i) The closed loop transfer function (TF) I{s) =
Y(s)/r(s) is stable and its sensitivity to bounded uncertainties of the plant family {P(s)} remains
within given specifications; (ii) for a given set of disturbances {d}, the plant output is bounded
and constrained by given specifications, explicitly:

* The plant P can be any member of a given uncertain set of linear time -invariant plants
denoted by {P}. It is supposed to be linear time invariant and minimum-phase, although the
nonminimum-phase and sampled feedback systems can also be solved with the same QFT
approach, Sidi (1976), (1977), Horowitz and Sidi (1978).

* Tracking specifications. There are given two time functions B (?), B, (¢) and command
input r(7) (for example a step) that specify the output tolerances of y(t) in the form: For all P
e{Pr},

BL() < y()) < Bu() | M

Y(?) is the output for a step input to the TDOF system, including the prefilter F{(s).

These tracking specifications in the time domain are translated in the frequency domain as
upper and lower bounds shown in Fig.2, and satisfying

B.(0) < |T(jo)| < Bu(w) (2)
where PO
_ F(s)G(s)P(s

10 =T GPes) 3)

-

~ Figure 2. Unity gain feedback closed loop TFs |7, (jw)ls (1st DOF) for different plant
cases, and the corrected |7(jo)ls by the prefilter F(s) (2nd DOF).
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* Disturbance rejection specifications: There is given a function D(w) that specifies the
output specifications on 7 (jw), in the form: For all P € {P}

| Tu(j@)| < D(w) (4)

where

_ya(s) _ 1 def
LO="39 “Tr00Pe ~ @ ©)

*Peaking of the disturbance rejection transfer function gains.
In order to avoid too underdamped closed- loop TFs, there are given limits in the form of two
numbers, B and y, such that

I71G0)] 1, < B ©)
and

I7(0) |y = 1860 ¥ )
where

O =Ty ®

T\(s) stands for the unity feedback closed-loop TF, with no prefilter F(s). This is the one
degree of freedom (ODOF) standard tracking input/output TF.

*Sensor noise amplification. Another important TF is related to the amplification of the
Sensor noise A,.

w6
T = 28 = T 0oRG = G956 ©)

This TF is responsible for the level of control effort, which, if not carefully limited, may lead
to control effort saturation with the immediate consequence of causing instability to the
feedback system.

* Design of the inner compensator G(s):, I1st DOF. The nominal open-loop gain L (jw) is
designed so that the obtained bounds on L, (jw) in the Nichols chart are all satisfied for all
plant cases, thus guaranteeing that overall gain changes Al7(jw)| are smaller than those
included between the upper and lower tracking specification bounds in Fig.2. A desired design
criterion tends to minimize the amplification of the sensor noise » that spoils the control effort

u in Fig.1. Sensor noise spectrum is usually at high frequencies, much higher than the active
frequency range where sensitivity specifications and disturbances attenuation are considered.
Hence, this is approximately achieved by asking for minimization of & defined in }1530 L(s)

— k/s®, where e is the number of excess of poles over zeros at infinity. Moreover, the
designed inner compensator G(5) is to be strictly proper.
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*Design of the prefilter F(s): 2nd DOF. With the obtained G(s) in the previous step, the
unity feedback closed-loop TF I7,(jw)| gains of all plant cases are plotted on Bode plots, as in
Fig 2. Their maximum changes at all frequencies are equal or smaller than the permitted
changes defined by the permitted bounds in the same figure. However, most probably, they all
lie outside these bounds. The prefilter F(s) is designed in this step, whose task is to move all
I7,(w)!s inside the permitted upper and lower bounds through the identity 17(ja)1=
TG\ Fja)l.

* Finally, the designed controller G(s) and prefilter F(s) guarantee that for all plants Pe
{P} and/or all disturbances d € {d} introduced in d, Fig.1, the system is stable and Eqs.(2),
(4), (6) and (7) are satisfied while minimization of the sensor noise amplification at the input
to the plant is attained.

This completes the short review of QFT.

B. H, norm optimization in control design.

It is well known that the sensitivity function S(ja) and the complementary function 7, (jw) play
an important part in control design. Most design specifications can be defined in term of these
functions, which are related between them as follows: S(jw) + T,(jw) =1. Hence, they cannot
both be specified and realized independently.

In general, in order to fulfill some design specifications, for instance disturbance
attenuation, Eq.(4), the sensitivity function will be constrained to satisfy some norm inequality,
for instance, the H. norm, in the following way: |S(jo)||, <M. In general, M will be
frequency dependent, so that , define

1SG)| < 1/|WsGo)| (10)
which is equivalent to satisfying

17 sG@)S@)l, <1 (11
where W (jw) is a weighting function related to the sensitivity function S(jaw).

If I1SGw)! is the only specified function of interest to the feedback control problem, then a
weighting function W (ja) is first to be found, then, design the compensator G(s) by any
optimization algorithm so that Eq.(11) is satisfied for all frequencies. In practice, more than
one function need to be specified and the specifications satisfied, for instance,

W) TunGoll, < 1, [Pr1G@) TGO, <1, WsGo)SGo), <1 (12)
This is definitely impossible if the " <" sign is exchanged with the " =" sign becausein a

two degree of freedom feedback system only two compensator networks ,G(s) and F(s), can
be used at will for design purposes. The engineer then has to compromise between
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achievement of the different specifications. Tradeoff is a common practice without which no
engineering design can be completed.

Mixed sensitivity is a way to obtain a design when more than two specifications are to
be achieved in a TDOF feedback system, and more than one specification in a ODOF system.
Let us suppose that the system is ODOF. Then, we can define the different specifications in a
stacked vector form, a performance vector PV, in which all the important specifications in
term of weighting functions are mixed together, for instance

Ws(jo)S(jo) Ws(jo)S(in)
PV=| Wi(o)T\(o) |=| Wi(e)G(jo)P({o)S(in)
Wun(jo) T un(jo) Wun(j0)G(jo)S(o)

We have in this case a mixed sensitivity specification, Verma and Jonckheere (1984),
Skogestad and Postlethwaite (1996). In this and future discussions, all weighting functions are
assumed to be stable and NMP. For SISO systems, an Euclidean vector norm can be used for
the overall design specification

[PV(o)l,, =max |/|WsS|* + Wi T1[* + [WunTunl* <1 (13)
With this definition, a norm problem to be solved is of the form

min [PV(G)]., (14)

where G(5s) is the stabilizing compensator. In the MIMO case, PV is a matrix, and principal
gains (frequency dependent singular values) are used to measure the size of the optimized
matrix. Solution of Eq.(12) is not exactly the solution of Eq.(13) which is attractive from
mathematical point of view, and is also more conservative. This is especially pronounced when
the peaking of the three involved functions have their maximum approximately at the same

- frequency. If n specified requirements are involved in Eq.(12), then solution per Eq.(13) may
cause to an error in the achievef specifications by at most a factor of /7 .

Remember that the three TFs S(s), T\(s) and T, (s) include the plant P(s), which is
meanwhile considerate to be known and fixed (no uncertainties). The compensator G(s) is an
output of a solution of the optimization process in Eq.(14) performed by any existing
algorithm such as the hinfsyn of p-Analysis and Synthesis TOOLBOX or the Ainf of Robust
Control TOOLBOX, or hinfImi of the LMI Control Toolbox, all of them belonging to The
MATH WORKS Inc. In this context, the uncertainty of the plant is to be defined. There exist
several modeling structures, one of the most popular of them being the multiplicative
perturbation modeling, shown in Fig.3, in which

P(s) = P91 + War®)Ap()]; Arp(i0)<1 Vo (15)

- The subscript MP stands for Multiplicative Perturbation.
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Figure 3. Multiplicative perturbation modeling of the plant.

This structures is very general and, as such, allows modeling of many different kinds of plant
uncertainties. We can use Eq.(15) to model the uncertain plant in the following way: rewrite it
as

P(jo) - P,(jo)

P.Go) Wir(o)Aur(o);  |Amp(io)| <1 (16)

Calculate for each frequency the maximum value of the left side of Eq.(16) for the entire
uncertain set {P(jw)}. Call it §, ,(®), namely:

P(o) - P,(jo)
= P 1
Bur@) = | = G “
By Eq.(16), the weighting function W, , (jo) must satisfy
|Wrp(jo)| 2 81p(@)max, VO (18)

Very complicated and general uncertain plants can be modeled by use of Eqs.(17) and (18),
which are next used to ascertain robust stability, which means, stability for all plants in the
family{P(s)}. The condition for robust stability is summarized in the following theorem, see
for instance Doyle et.al (1992).

Theorem 1: For multiplicative modeled uncertain plant P(s) the compensator G(s) provides
robust stability iff

IrrT1(9)l < 1 | (19)

With this result, it is possible to redefine the sensitivity function W, (s)= W,(s) in Eq.(13) so
that stability is guaranteed for the entire set of plants in {P(s)}. (A similar theorem exist for
MIMO feedback systems.)

The basic problem in H,, control design is to define correctly the weighting functions so
that the control design will come up with a solution that satisfies in the best way all design
requirements.



Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

Weighting function selection

Weight selection of the different functions in Eq.(12) or (13) are the initial stage in a feedback
system design using the H,, norm optimization. This is done on the basis of defined
performance specifications by the customer. For instance, for known turbulence disturbances
acting on an aircraft, an attenuation factor for disturbance can be defined in different
frequencies, thus putting extremal limits on S| such as its higher corner frequency; thus,
W(s) can be explicitly defined. Moreover, in order to guarantee permitted steady state errors
in following different external command inputs, additional constrains on 1S(jw)! are defined
and W(s) is accordingly manipulated to its final form. Selection of W,(5s) is based on desired
input output properties on T'(jw) which cannot be achieved independently of S(jw) because of
the identity S(s)+7,(s) = 1. The designer can find some reasonable way to define a compatible
T\(s) (hence also a compatible /¥ (s) ), however, its final achieved form must also comply with
W.p (@) (for the multiplicative modeling in our case) so that robust stability is guaranteed for
all plant conditions. W,_(s) is generally generated according to acceptable control effort, due
to sensor noise and to reference control inputs data for the control problem at hand. This is
the situation when a ODOF control problem is to be solved. With the weighting functions so
defined, the H., control problem setup is as shown in Fig. (4) below, similar to that of Fig.1 in
which the weighting functions are incorporated.

The mixed sensitivity problem defined in Eqs.(13) and (14) is a special case of the so-called
Standard H. -Optimal Regulator Problem introduced by Doyle (1983), see also Kwakernaak
(1993) and Skogestad and Postletwaite (1996). The structure in Fig.4b is that of the Standard
H,-Optimal Regulator derived from the feedback control setup of Fig.4a using the following
relations:

z, (8) =-G(s)S()W, (s)n(s) =T, W, n(s)

2,(8) = T(IWy () 1, (8) = T W,po 7(5); [F(5) = 1] (20)
z;(8) = S(5) W (s)d(s)

T.As) = T'(s) in Eq.(8)

WS > 7i

Wun > 22 w F4

y w — % —{p
o e u o ag Ly

—> F | G >» P + 7

r AR r
1 - y G e
Ym n :

a ! b.

Figure 4. The mixed sensitivity standard problem with an added optional prefilter F(s) for
solving the TDOF uncertain problem .
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With the above adapted canonic structure we can define an input vector w(s) = col[ d(s),
n(s), r, (s)] and an output vector z(s) = colf z,(s), z,(s), z,(5) ]. The signal vector z is in fact a
system error vector to be minimized as per Eq.(14). In a ODOF feedback system Eq.(20) can
be also derived by use of one sole input d, » or r, , let us decide on w=d. Moreover

z(s)=W_(s)u

2)(8) = Wy (5) P(s)u 1)
z,(s) = W (s)[w +P(s)u]

e=-w-y=-w-Ps)u

The above identitied are used to obtain a generalized plant P,,_ so that the structure in Fig.4a
can be presented as in Fig.4b which has a more general interpretation than just the mixed
sensitivity problem. The structure in Fig.4b applies for any MIMO control feedback system,
but in the context of this explanation the SISO case is intended. The generalized plant P, in
Fig.4b can be seen as an augmented plant in which w(s) is a vector of external inputs (such as
r(s), d(s), n(s) in Fig.4a ), u(s) is the controlling input to the SISO plant, z(s) is a vector of
weighted external outputs (system errors such as PV in Eq.(13)), and e is the sensed error
delivered to the compensator G(s). In a MIMO feedback system, to be treated later, # and e
become vectors too. The general control problem is then to find the compensator G(s) so that

the norm of the closed-loop TF IT, | from w to z is minimized, minimize ||T\.|,.

c. Parallelism between the QFT and the H,, norm design techniques.

Having discussed shortly both design techniques, it is of interest to point on existing
parallelism between them, but also on existing shortcomings, so that potential
complementation between the QFT and H., design techniques may be performed in an useful
way.

1-A gross difference between the shortly explained design techniques is the fact that with the
H, design technique, closed-loop tracking input/output permitted bounds on the time
response are not specified for all plant conditions in the family {P(s)}. Hence, a TDOF
feedback problem is not solved systematically. On the other hand, when a nominal plant
desired response is specified, it can be achieved by correct specification of the weighting
function W (s), so that a specified TF T(s) is achieved.

2- Robust stability can be achieved with the H., design technique by calculating the maximum
gain changes of the plant at all frequencies, obtaining the limiting weighting function W, (5),
Eq.(18), and satisfying Eq.(19). This is in some sense equivalent to the plant templates in the
QFT design technique which must satisfy the Nyquist stability criterion in the Nichols chart.
The elements of the plant template in the QF T technique are complex numbers, while the
templates in the multiplicative perturbation modeling are real gains.

3- Maximum peaking in I7,(jw)| and 1SGw)!, B and y respectively in Eqs.(6) and (7), are
~ guaranteed with the QFT technique by manipulating the plant templates in the Nichols chart so
that they do not cross the standard closed-loop I7;(jw)l =B and ISGa)| =y contours in the
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Nichols and the inverted Nichols charts. The same effect is achieved with the H., design
technique by defining the weighting functions 1/IW, (jw)! and 1/1W; (jw)| to have maximum
peaking of B and y db respectively so that I7,(jw)! and ISGa)! will have maximum peaking of
B and vy db respectively.

4- Minimization of sensor noise amplification is obtained in the H,, technique by specifying the

W, (s), and real minimization is sometimes obtained by iterating with the different choice of
this weighting function. With the QFT design technique, minimization of sensor noise
amplification is achieved inherently when manipulating the nominal open-loop TF L (j&) in the
Nichols chart by tending to minimize its gain at the higher frequency range, while meantime
satisfying the frequency dependent tracking sensitivity bounds.

5- The QFT is in a way a synthesis design, in the sense that with specified plant uncertainties
and sensitivity input/output specifications, the boundaries on L, (jw) are uniquely derived in the
Nichols chart, and, based on them, the control solution is also unique. The H., design is
proceeded by solving Eq.(13) which comes to be an H, optimization problem, thus the three
specifications in Eq.(12) are not achieved exactly, and some tradeoff between the different
weighting functions is necessary until a satisfactory solution is obtained.

6- In summary, both H, and QFT techniques solve the same problem with equivalent
specifications, except for tracking input/output sensitivity specifications that can be solved by
adequately using the second degree of freedom and adding the prefilter F{(s).

The task of the present work is to use the second degree of freedom , F{(s), in the H., design
technique in a similar way that this is done with the QFT design paradigm.

3. He- norm optimization used in design of TDOF uncertain feedback system structures.

The present section deals with the last, but most important specifications concerning the
tracking input/output transfer function of a TDOF feedback system. This was the basic
problem treated in QFT for linear stable, minimum or nonminimum phase, unstable or sampled
feedback systems for which quantitative specifications on I7(jw)l, Eq.(2), are defined and
achieved. A design procedure for a TDOF feedback system using H., norm optimization will
be next derived. The basic idea is explained with the SISO uncertain feedback problem, and is
extended to the MIMO case in Section 4. The basic design philosophy includes two principal
stages:

Stage 1: Achieve tracking input/output quantitative sensitivity specifications defined in the
form of maximal permitted changes in I7,(jw)| by using the H., -norm optimization design
for robust performance specifications.

Stage 2: Use the prefilter F(s) (the second degree of freedom) to move the unity feedback
closed-loop TF gain obtained in Stage 1 inside the permitted tracking bounds, Eq.(2).
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Stage 1 consists in designing for robust performance specifications, as explained in the last
section, but with an adequately defined sensitivity weighting function W (s) which will satisfy
the permitted level of changes in IT, (jw)!. We shall see that when the norm optimization is
performed for the TDOF problem, definition of W, (s) alone is not sufficient, the control
effort weighting function W_(s) influence also the design procedure and is finally used for fine
tuning. This design stage is next discussed. '

We turn out to the initial definition of the sensitivity function S(s) which is,according to Bode
(1945)

g7 = OUT _din(D) _ 1 __1
P=8PIP~ dIn(P) ~ 1+G(s)P(s)  1+L(s)

(22)

The meaning of this equation is, as pointed by Bode in his basic theorem: The variation in the
Jfinal gain characteristic in db, per db changes in the gain of P, is reduced by feedback in the
ratio [1+L(s) ]-1.

Unfortunately, the above equation is defined and is exact for infinitesimal changes only,
but can as well be used for finite changes, Horowitz (1963). Eq.(22) can be used in its
simplest form, namely, ‘

[G0)] = |AT(0)] s @B/ AP(0) 1 4B | 23)

in which [AT(jo)| . are the maximal permitted changes in |7(jo)| dB as per Eq.(2) and
Fig2. |AP(jo)|_,. are the maximal changes in gain of the uncertain plant also in dB.

Once the nominal sensitivity function IS, (jw)! is obtained, W(s) can be calculated for use
in the design stage. It does not really matter that the basic sensitivity equation is correct for
very small plant changes, which is not our case, because anyway when the H,, optimization
algorithm is executed the achieved nominal sensitivity gain |S(jo)| will not follow exactly the
apriory defined 1/IW(jw)! since such algorithms minimize an Euclidean norm and none of the
elements of the mixed sensitivity vector, Eq.(13), can be satisfied individually with an equality
sign such as IS (ja) W (jw)! = 1. Consequently, some tradeoff is necessary for completing the
design. It is suggested here to use the control effort weighting function W, (s) as a tuning
parameter in the design process, explanation follows.

After W (s) is calculated we proceed to obtain the optimal compensator G(s) by one of
the known algorithms that solve the H. - norm optimization. In this first design stage, use a
low gain IW, (ja)l. This is equivalent to accepting large effort signals due to command and
disturbance inputs, and if the sensor noise is concerned, high sensor noise amplification 7, =
u/n is then expected. With this assumption, the H., control solution will tend to have very high
gains open-loop TFs, consequently, also low gain sensitivity functions, and overdesign is
achieved despite of the correctly defined nominal sensitivity function IS, (ja)l. With this initial
solution, draw the Bode plots of IT, (jw)! for V{P} and check if the changes are smaller than
as permitted by the specified upper and lower tracking bounds. If so, augment |W,_ (jaw)| which
will lead to an H,, control solution with lower open-loop gains, or higher sensitivity function
gains, in other words, with reduced sensitivity characteristics for the input/output TF 7(s) .
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Check again the maximum gain changes in |7, (jw)! and repeat this process until the maximal
changes comply with the permitted bounds.

This completes the first stage of the design in which the compensator G(s) is derived. In the
second stage, the prefilter F{(s) is designed so that all |7, (jw)ls are driven inside the permitted
bounds on IT(ja)l= 1F(ja)T,(jw)!, as in the QFT solution. Generally, no more than two to
three iterations with different 1W_(jw)l are necessary, as will be demonstrated in Example 1.
The different steps of the design process using the H., -norm optimization for solving the
uncertain plant TDOF problem with multiplicative perturbation modeling are summarized as
follows.

Step 1. Translation of the time domain specifications to frequency domain specifications.
Step 2. Choice of a nominal plant and the plant weighting function W, (s) for robust stability.
Step 3. Calculation of the sensitivity weighting function W (s) ,based on Eq.(23), and a first
try low gain W, (s) weighting function.
Step 4. Solve the norm optimization, Eq.(14), use for instance hinfsyn in the p-Analysis and
Synthesis Toolbox or hinflmi, hinfric in the LMI Toolbox.
Step S. Use the obtained semi-optimal controller G(s) to calculate 17,(ja)| for extreme plant
cases. If the maximal changes in I7,(jw)| are exactly satisfied by the specified upper and
lower bounds of |7(jw)l at some frequencies, then proceed to Step 6. If not, repeat Step 5
with a modified W, (s) weighting function until the maximal changes in IT,(jw)| exactly satisfy
the maximal permitted changes at some frequencies. Then proceed with Step 6.
Step 6: Design the prefilter F(s) as to locate all IT,(ja)ls inside the permitted bounds.

TGl = IFGa) I T, ()]
Step 7. Evaluation of the design in the time and frequency domains and refinement of the
solution if necessary.

The following example illustrates the above design procedure.

Example 1. P(s) = k/(s+a)(s+b); k = [1-10], a = [1-5], b = [0.2-1]. The tracking
input/output specifications in the frequency domain must lie between the upper and lower
bounds shown in Figs.(5),(6)and (7). Maximum allowed peaking in S and T are: B =
|T1(o)| ., = 3db;y = |S(o)|_,, = 3db.Use H., design technique to achieve a solution
satisfying the above specification under the constraint of minimizing as much as possible the
sensor noise amplification.
Solution: The solution of this problem follows the above design stages.
Step 1. The permitted changes in |7(jo)ldb are shown in Fig.5, from which A|T(jw)| are
extracted.

PGo) |

P.(jo)
favorable one is detected in the sense that the lowest gain I, ,, (jw)| is attained. In this
example P (s) = 10/(s+0.2)(s+1) was the most favorable choice, attaining a maximum value
of 0.95 for I( P/P, -1)I. Hence, let us choose W, (5)=0.95.

Step 2. In practice, is plotted for different choice of P () until the most
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Step 3. The choice of W (s) is more complicated. To find the nominal specifications of S(s),
IP(jw)/P (jw)! for most of the plant cases can be calculated and the maximum AlP@Ga)l_,, for
the chosen frequencies used in the table below. Since AlT(jw)l,,, is known from the
permitted bounds shown in Fig.5, Eq.(23) can be used to calculate the needed 1S(w)l, see
Table 1.

Table 1. Data for calculating W(s) that satisfy the sensitivity bounds in Figs.5,6 and 7.
o rad/sec | 021 03105107 1) 15| 2f 3
ATl _dB {04 1| 2[ 4] 6| 11| 13] 17
AlPI_,dB 42| 38| 36| 34] 34| 30] 28] 25
1S1db -40| -32| -25{ -19] -15] -9 -7| -3

A little cut and try on the Bode diagram allows to find a 1/W(s) that slightly oversatisfies
|S(jw)]|in the table in order to be on the safe side for the first trial design

_ s+5)(s+7) . e gt _
Ws(s) = 15 £0.00G+ 0D W _(s) is chosen initially as W, (s) = 0.001

Step 4-1. The compensator G(s) is obtained by solving the H. norm sensitivity problem
with the aid of Ainfsyn algorithm in pu—Analysis and Synthesis Toolbox. The detailed program
for the solution is not shown for lack of space. G(s) is found to be

(s +0.1997)(s + 1)(s + 1.695)

G(s) = 1.66 x 10°
©) 5 +0.01)(s +0.1)(s + 164 41)(s + 2.146 x 10°)

Step 5-1. The obtained semi-optimal controller G(s) is used to calculate 17,(jw)! for all plant
cases. These are shown in Fig.5. It is not surprising that all resulting 17,(jw)ls lie outside the
permitted upper and lower bounds, also shown. However, it is also observed that the overall
changes in |7, (jw)| are much smaller than allowed by the permitted bounds at all frequencies,
in other words, an overdesign was achieved with too high open-loop gains which cause
unnecessarily increased sensor noise amplification. Return to Step 4 for ameliorating the
solution with a second choice of W, (s).

Ex.4.8.86;Wu=0.001;Wss=(s+5)(8+7)/1.5(s+0.01)(s+0.1)

Frequency (rad/sec)

Figure 5. |7,(jaw)ls Bode plots, 1st trial design.
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Step 4-2. For the second design trial W _(s) is readjusted to W, (s) =0.007. After rerunning
the H., design program the following compensator is derived

(s+0.2)(s+ 1)(s+2.02)
(s+0.01)(s+0.1)(s + 63.59)(s + 1.46 x 10°)

G(s) = 1.906 x 108

Step 5-2. The obtained semi-optimal controller G(s) is once again used to calculate 17,(jw)ls
for all plant cases. These are shown in Fig.6. It is observed that the changes in the gains of
I7,(jw)| at the frequency

range ® = 0.4 to 0.7 r/s match exactly the permitted

bounds and are lesser than these bounds for higher frequencies.

Step 6: A simple prefilter F(s) is used to achieve the tracking closed loop specifications. It is
designed so as to relocate all 17, (jw)ls inside the permitted bounds on |7(jw)l, see Fig.7. With
the prefilter

_ 2.727(s+0.22)
T (s+03)(s+1D(s+2)

F(s)

the second degree of freedom specifications are completely achieved.

Ex.4.8.6; Wum0.007; Wes{s+5)(8+7)/1.5(s+0.1){8+0.01)

TTYTY T LB AL AR |
K . e e

.30 - . [y .,; Py
10 10 - .
Frequency (md/sec) :

Fig.6 . |7,(jaw)ls Bode plots, 2nd trial design.

Ex.4.8.6; Wuw0.007;F(6)=2.727(8+0.22)/(s+0.3)(8+1 )‘(»z)

Figure 7. IT(jw)l= |F(ja)l IT,(jw)l Bode plots.

It is of interest for comparison purposes to show the achieved nominal sensitivity function
IS, Ga)l versus 1/IW (jw)l, see Fig.8 on which are also shown 17, (jw)l and IT, jw)l. The
obtained nominal 1S (jaw)! does not follow exactly the specified /W (jw), but this is a direct
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consequence of the inability of the optimizing H. -norm design technique to satisfy exactly
both IS (jaw)| and IT, (jw)l, remember that S(s) + T, (s) = 1!

Ex.4.9.6; Wum0.007; Wsn(8+5)(3+7)/1.5(s+0.1)(s+0.01)

T T T T
. AR . e e e v P
) T T cie v m
. o e . Coe e O R
. e e ' I EREE . IR

Frequency (rad/sec)

Figure 8. VW (o)l , IT, (jo)l , IT,(jw)! and 1S, (je)| Bode plots.

Step 7. Evaluation of the design follow.

1- Stability margins. The open-loop TFs on Nichols chart (NC) for all the set {P} are shown
in Fig.9. It is important to realize that none of the open-loop TFs exceeds the contours of 17l
= 3db and 151 = 3db as required, so that no large overshoots in the time domain will occur for
disturbances. Moreover, for the same reason, large gain and phase margins are achieved, at
least 17 db and 50° respectively.

2- Step time response. As can be seen from Fig. 10, the step time responses for all the family
of plants are well inside the permitted bounds.

3- Sensor noise amplification. Sensor noise amplification is one of the most difficult
problems in control engineering. Large noise amplification can preclude the possibility of using
preferred engineering practical control schemes, Sidi (1997).

The control compensator achieved in Step 4-2 shows that in practice it is a TF with the same
number of poles and zeros (one of the poles is located at s = -1.46 10°) hence a tremendous
noise amplification w/n=T, , (Fig .4a), is to be expected, leading to a control effort that
cannot be maintained. This RMS amplification was computed for all plant cases and the results
was an average amplification of 1.1147 10° (RMS) ! Practically, with such a tremendous
noise amplification, no engineering solution exists.

A noise filter is to be added to the nominally obtained G(s) with the H. control
optimization algorithm using classical frequency design methods. When a filter 100/(s+100) is
added, the average noise amplification decreased to 746 (RMS) which is acceptable from
engineering point of view. The results in Figs.6, 7, 9 and 10 are obtained with the modified
compensator including the noise filter. For comparison purposes, if the same problem is solved
with the QFT design procedure, (using the QFT Toolbox), the average noise amplification is
about 1000 (RMS), which is practically the same result achieved with the A., design
procedure. The time response of both designs are also very similar.

This completes the design of Example 1.
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Ex.4.8.6; Wu=0.007; wm:nmau- 100Wa-(s+6)(.+7)l1 5{s+0. 1)(M01)

30

-
=]
~~ -2

Open-Loop Gain (db)
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-
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™
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20fi b r sl

B0 270 <180 90 0
Open-Loop Phase (deg) odb

Figure 9. Nichols diagram plots of open-loop TFs. Solid lines contours: |S| in inverted
NC. Dashed line contours: |L/(1 +L)| in the NC.

Ex.4.8.8:nolse fiter 100/(s+100);Wu=0.007;Ws=(s+5)(8+7)/1.5(8+0.1)(8+0.01)
4 T - T + Y

02
0

10 1§

Figure 10. Step time responses for some extreme plant cases.

4. The MIMO case.

The design procedure for the TDOF MIMO problem using the H., design technique follows

almost exactly the same procedure explained in the previous section. The difference is in the
use of 'principal gains' for characterizing magnitudes when matrices are dealt with, instead of
using the classical 'gains' for algebraic feedback systems. For lack of space, the MIMO TDOF
- case for uncertain feedback systems will not be treated in length. Basic lines of the solution
will be only cited.
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Similarly to the SISO case, tracking closed-loop input/output specifications for each of
the n channels are defined in upper and lower permitted bounds; in a nxn MIMO feedback
system, a nxn transfer matrix including »° tracking transfer functions is specified. All
weighting functions become weighting transfer matrices, with each element pertaining to the
equivalent physical channel. The only major difference is the way in which the uncertainty of
the MIMO plant is represented, so that robust stability can be guaranteed. Based on the
definition of matrix uncertainty, conditions for robust stability can be also stated.

4.1 Uncertainty modeling of MIMO plants.

There exist multiple ways of modeling

uncertainties of MIMO systems, a common one being once more the multiplicative
perturbation modeling. As for the SISO case, different kinds of uncertainties can be lumped in
this model. However, in the MIMO case the uncertainty can be defined at the input, or the
output of the MIMO plant, depending on where the loop is opened.

1- Output uncertainty
P(s) = [I+w(s)A()IP.(s) JAoll, <1 (24)

where w (s) is a scalar weight, see Skogestad and Postletwaite (1996).
Exactly as for the SISO case we can find a limiting frequency dependent function satisfying
the maximum principal gains of the matrix plant perturbations

d,(w) =fax G[(P— PP (jo)] (25)

and
Wo(j®)| 2 8,(0) Vo

2- Input uncertainty
In a similar way, for the multiplicative input perturbation,

HOE max S[P,! (P - P,)(jo)] (26)
and
|W,’(j()))| 2 6,'(0)) Yo

With this definition and limiting weighting functions based on the maximum principal gains of
the matrix perturbations, an important theorem on MIMO robust stability has been proven by
different authors, Doyle and Stein (1981), Lehtomaki (1981), Stein and Athans (1987), and
others. This theorem is very similar to that pertaining to the SISO case and states that when
the perturbation is defined as in Eq.(24), robust stability is maintained if and only if the
nominal unity feedback tracking matrix

Turn(s) = Pu(8)G()I + Pr()G(s)] @7
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satisfies the inequality

SITurn(0)] < s (28)

The subscript () in the above equations stand for the nominal plant case.

4.2. Design procedure for the MIMO uncertain case.

With the definitions and the robust stability theorem in the last section, design procedure for
the TDOF MIMO case follows exactly the procedure for the SISO case with the difference
that we deal now with matrices. A 2x2 system design example follows.

Example 2. There is given an uncertain plant MIMO system p,(s) = k(1+s/4,) with plant
uncertainties defined in Table 3 below for nine plant cases .

Table 3. MIMO plant parameters
Case |k, |ky |k |k |4y (A2 |4 |4
No

1 1] 2]05] 1 1 2 2 3

2 1] 2105] 1|05 1 1 2

3 1| 2}05] 1] 02| 04f 0.5 1

4 4] 5| 1} 2 1 2 3

5/ 4] 5] 1} 2]05 1 1 2

6 4| 5| 1] 2[ 02| 04} 05 1

70 10] 8| 2 4| 1 3

8| 10| 8| 2| 4|05 1 1 2

9 10 8| 2| 4] 0.2] 04} 0.5 1

Solution:

Step 1. The specified bound on the transfer function 17}, (jw)l and 17, (jw)! are shown in
Figs.13 and 14 together with the achieved closed-loop TFs. From these bounds, permitted
changes AlT;; (jw)! are extracted for the next design steps. Design specifications ask for
minimizing the transfer between channels, 17, (jw)! and I7,, (jw)l, so that initially they are put
to zero.

Step 2. To find the limiting weighting matrix for the plant perturbations, Eq.(26) or (28) are
calculated with different nominal plant conditions until the lower 6(®) is obtained. In this
example case 9 was chosen as the nominal case, (@) was calculated for the remaining plant
cases, the results are shown in Fig.11. It is easily found that a limiting multiplicative
perturbation weighting function is w_(®) =w,, (®) = 0.92(s+1)/(s/1.09+1)

which is also shown in the same figure.
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Step 3. Permitted changes of Al7; (jw)l are specified in Fig.13, see also Table 4. In the
MIMO problem, Ac(P(jw)),.,. is used in calculating the sensitivity function §,,(s) and S,,(s)
because the maximum changes in principal gains (Fig.12) are larger than the gain changes of
all individual elements of the transfer matrix P, see Table 4. In this way, the uncertainties in
P,, and P, are also taken into consideration when designing the T}, and T,, channels. From
this data wg,,(s) and wy,,(s) are approximated as

W, (s) = 0.7(s+12)/(s+0.01) and
W, (s) = 0.7(s +80)(s+0.01).

sigma of Gokn=3
0 T 3 T
Vimgno o= 24
HE-gss By
- ) bt )
“Apeo-d-- i F’;/
St/
i ,m‘//:/'./’ g
S
3 el i
25 EEREy )
§ i / ¥
a i L
2 Wbl
% R
3
23
0w
-4 1-
i
n A H Ry IR it i
10° 10 10° 10’ 10° 10°

Frequency (rad/sec)
Figure 11. Principal gains of o[(P - P,)P;!(jo)] Vv{P}for evaluating w, (®).

Table 4. Data for calculating the needed sensitivity functions §;;, and S,, .
orad/sec | 02| 05| 1 2| 5| 10| 20

Ao, P 27| 26| 26| 30| 31| 33| 35
AT,, (db) 1 25| 7| 12| 22| 30{ -
AP, (db) | 20| 20| 22| 26| 33| 35| 37
S, @) | -28] 20| -12| 8] 3| -1 -
AT,@b) |01] 02| 1| 35| 9| 13 15
AP, (db) | 12| 15| 19| 23| 26| 28| 28
S, (db) | -47| -42| -28] -19| -11] 8| -8

Step 4-1. The compensator G(s) is obtained by solving the H. norm sensitivity problem with
the aid of hinfsyn algorithm in pn—Analysis and Synthesis Toolbox. In a first trial design,
choice for the control effort weighting functions matrix W, (s) was as follows:

w,,, =0.5;w,, =1, W, (s)=diag(0.5, 1)

~ Step 5-1. With the choice in Step 4-1, the sensitivity specifications for |7, 11 (jo)l were
completely satisfied.
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However, the changes in 1T, (jw)! at low frequencies were larger than allowed by the design
specifications.

Step 4-2. W_ (s) was readjusted as follows:

Wy, =0.5; w,, =0.5so that the T,, channel is affected adequately, finally, W_(s) =
diag( 0.5, 0.5) and the design was repeated using the hinfsyn algorithm. The elements of the
compensating matrix G(s) are after cancellation of very close poles and zeros

Sing.values of plant

RS S Rt
[N EEY L} Corrrnen
HEoo b

30

HEREAL
[Nt
IRERIN]

20F

Singular Values dB
=

40

50 H H H : R N l:"'!:‘
10? 10" 10° 10’ 10° 10°

Figure 12. Principal gains of P(jo) for all plant conditions.

- (s+5)(s+1.09)(s +0.9997)
G1() =677 722 35 + 1.1383)(s + 0.904)(s £ 0.01)

_ s (s+2.5)(s+1.09)(s+0.983)
O2ls) = 1973 X 107 e 176 + 1.155)(s + 0.904)(s + 0.01)

G =—518.8 (s + 151)(s +4.995)(s +2.5)(s + 1.09)
=T s+ 441T) (s + 142.48)(s + 1.138)(s + 0.904)(s + 0.01)

_ (s - 588.7)(s + 5)(s+2.64)(s + 1.09)(s + 1)
Grals) = 266'989(s+4417)(s+ 142.48)(s +2.022)(s + 1.155)(s + 0.904)(s + 0.01)

Step S-2. The obtained semi-optimal controller G(s) was once more used to calculate the

unity feedback 17, (jw)l and |7, (jo)l. They are shown in Fig.(13) a and b respectively.
The changes in the unity feedback TFs gains satisfy completely the sensitivity specifications.

Step 6-2. Prefilters F.(s) and F),, (s) are designed for both channels in order to relocate the
unity feedback transfer functions 17, (jw)l and 17, (jw)! inside the permitted bounds of
|T11Go)| and |Txo)l;

F,,(s) = 0.6(s+3.25)(s+1/3.25)/(s+1)*(s+0.6); F,,(s) = 90/(s+3)(s+30)
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The final resulting transfer functions 17, (jo)l = 1F}, (jw) Ty, (@)l and IT,, (jo)l = IF,, (jw)
T4, (o)l for all plant conditions are shown in Fig.14 a and 4. The design specifications for
tracking are completely achieved. In Fig.15 are shown the cross-channel TFs. They cannot
stay null as wished because of plant uncertainties, but they are practically very low as
expected. The defined weighting functions 1/lwg,, | and 1/ lwy,, | and the achieved IS ,(jo)!

and 1S,,,(jo)l are shown in Fig.16. On the same figure are also shown the achieved nominal

17, (@)l and 1T, ,,(jw)l.

T11utwul {=wu22=0.5;

Frequency (rad/sec)

T22uf,2nd design;wul1=wu22=0.5;

TrTTY T
vk 4

Frequency (rad/sec)

Figure 13. T, (jw)l and 17, (jw)! ODEF unity feedback solution, no prefilters.

TI=T11ufF F=0.6(s+3.25)(s+1/2.25)/(s+ 1)"2(s+0.8);wu22=0.5=wu11

10" 10° 10 10
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T22,wul1=0,5,wu22=0.5;F22(s)=1/(s/3+1)(s/30+1)
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Figure 14. 1T}, (jw)l and |7, (jw)l TDOF solution with prefilters F,,.(s) and F,, (s)
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Step 7. Evaluation of the design follow.

1- Stability margins. The open-loop TFs on Nichols chart are shown for both channels in
Figs.17 and 18. Exactly as in the SISO Example 1, it is important to realize that none of the
open-loop TFs exceeds the contours of 17,1 =3db and ISl = 3db as required, so that no large
overshoots in the time domain will occur for disturbances. Moreover, for the same reason,
large gain and phase margins are achieved, at least 17 db and 50° respectively.

2- Step time response. As can be seen from Fig. 19, the step time responses for all the family
of plants are well inside the permitted bounds. Interchannel responses are also shown, their
amplitudes are negligible.

3- Disturbance responses. 1t is of importance to check the attenuation of disturbances, whose
frequency responses are shown in Fig.20.

Frequency {rad/sec)
T21

Gl T T T T YT

Fraquency {rad/sec)
Figure 15. 17, (jw)l and 1T, (jw)! .
T11uf,T22uf, 511,522 1ws11; 14ws22
T T T 1 L} H T T ¢ el
0 . _,__:,-—#—r—fy—_T—
B .10} SR
| 4
3
20k e
_30 n il 1 :
10" 10° 10’ 10°
Froquency (rad/sec)

Figure 16. Achieved IT), (jw)l, 1T (jw)l, IS,,,Go)l, 1S,,(o)l, and the specified 1/lwg,, |, 1/

wg,, | .
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Figure 17. Open-loop TFs L, (jo) opened at u, for all plant conditions

4- Sensor noise amplification. The control compensator achieved in Step 4-2 shows that in
practice it is a TF with the same number of poles and zeros (one of the poles of all G(s) are
located very far from the active frequency range ) hence a high noise amplification of the
sensor noise generators to the control signals #, and u, can exist (Fig .4) leading to a
control effort that cannot be maintained. A noise filter is to be added to

L22 wilh ROISe NMHars FNI=NZs IWW{B+ IWY)

301

20} ¢

-
[=]
RN | N

Open-Loop Gain (db)

“as0

Figure 18. Open-loop TFs L, (jo) opened at u, for all plant conditions
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Figure 19. Step time responses at /n, and /n, for all plant conditions
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Figure 20. Frequency Responses to disturbances

the nominally obtained G(s) with the H, control optimization algorithm using classical
frequency design methods. When a filter 100/(s+100) is added, the average noise amplification
for both channels is quite low, in the order of 1.2 (RMS) for the first and 18.3 (RMS) for the
second channel which is acceptable from engineering point of view. The results in Figs.13 to
20 are obtained with the modified compensator including the noise filter.
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5. Summary and conclusions.

Using the proposed TDOF Heo - design technique for uncertain plants, it is seen that the
specifications are completely achieved, with two to three design iterations at most. Specified
tracking characteristics in the time domain are achieved by trans ating them as upper and
lower permitted bounds in the frequency domain, exactly asin the QFT design technique.
Acceptable noise amplification is achieved by manipulating the nominal open-loop TF in the
higher frequency range with classical Nyquist/Bode equency design techniques. The
technique works adequately for both SISO and MIMO uncertain systems.
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