
Robust Quasi NID Current and Flux Control of an Induction
Motor for Position Control

Marc van Duijnhoven∗
Eindhoven Technical University

Department of Electrical Engineering
5600 MB Eindhoven

Marian J. Błachuta†
Silesian Technical University

Department of Automatic Control
16 Akademicka St., PL 44-101, Gliwice, Poland

Abstract

In the paper, a new control design method called Dynamic Contraction method is applied to the
flux and quadrature current robust control of an induction motor operated using the field orientation
principle. The resulting input-output decoupled and linearized drive is then used for time-optimal
position control. Two control structures providing a practically time-optimal control are presented
and compared.

1 Introduction

The last 25 years there was a fast development of new power semi-conductors and digital electronics.
Due to the availability of these new devices and the price decrease a great deal of research has been done
in the field of controlling AC-drives.
The induction motor is indispensable because of its ruggedness and low cost but until recently its control
applications were restricted by the difficulties in controlling its torque and speed.
The great step towards induction motor control was invention of the field orientation control principle
(Blaschke, 1971) which allows to eliminate the coupling between two control inputs provided that the
flux is stabilized.
It is usually assumed that position and the drive currents are measured, and flux, flux-angle, speed and
torque are observed. The parameters, especially the rotor resistance, vary significantly from their nominal
values. Therefore controllers should be robust against these effects. The position control problem is split
in two different parts as shown in Fig. 1 and the paper concentrates mainly on inner loops.
With increasing rated power the electromagnetic transients become slower and slower, and to arrive at
good overall performance for middle range rated power motors (>1kW) they should be accelerated by
control systems. In contrast to micro-motors high gains in control loops and large magnitudes of control
signals are then required, which is not always possible. This is the problem dealt with in this paper.
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Several approaches have been applied in literature: sliding mode control (Bartolini, Pisu, Marchesoni,
and Usai, 1998), adaptive nonlinear control (Marino, Peresada, and Valigi, 1993), and PI linearizing con-
trol (Bodson, Chiasson, and Novotnak, 1994). Recently, a new nonlinear control method called Dynamic
Contraction Method (DCM) was developed (Yurkevich, 1995a,b). This method offers performance sim-
ilar to that of Nonlinear Inverted Dynamics (NID) but it works well for uncertain nonlinear systems. In
the paper the DCM method will be applied to the AC-motor in field coordinates to linearize and decouple
the flux and the current channels.
The paper is organized as follows. In section 2 and 3 the AC-motor model and field oriented control are
introduced. In section 4 the DCM method is introduced, and applied to the induction motor in section 5.
In section 6 the inner loops are thorougly analyzed. In section 7 a time optimal control is designed (the
outer loops), and the paper is concluded with remarks that additionaly base on the research done by van
Duijnhoven (1998)
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Figure 1: AC-motor position control in field coordinates

2 Induction Motor

The dynamics of a 2-phase induction motor are described ina− b coordinates by the following 6th order
model:

dθ

dt
= ω (1)

dω

dt
= µ(ψraisb − ψrbisa) − TL

J
(2)

dψra

dt
= −ηψra − npωψrb + ηMisa (3)

dψrb

dt
= −ηψrb + npωψra + ηMisb (4)

disa
dt

= ηβψra + βnpωψrb − γisa +
1
σLs

usa (5)

disb
dt

= −βnpωψra + ηβψrb − γisb +
1
σLs

usb, (6)

with

σ = 1 − M2

LsLr
, η =

Rr

Lr
, β =

M

σLsLr
, µ =

npM

JLr
, γ =

M2Rr

σL2
rLs

+
Rs

σLs
(7)
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The induction motor usually consists of three stator windings and three rotor windings. As shown by
Krause and Thomas (1965) the above equations can be seen as a two phase equivalent representation of
a 3-phase system. This model may also be used for squirrel cage rotors.

3 Field oriented control

The idea of field oriented control introduced by Blaschke (1971) consists in rewriting the dynamic equa-
tions of the induction motor in a reference frame that rotates with the rotor flux vector. Denoting its
angular position byρ, one gets

ρ(t) = arctan
ψb(t)
ψa(t)

(8)

The transformation of currents, fluxes and voltages to two components which are perpendicular and
parallel to the field is referred to as the direct-quadrature or DQ transformation.
We have: (

id
iq

)
=

[
cos ρ sin ρ
− sin ρ cos ρ

] (
ia
ib

)
,

(
ψd

ψq

)
=

[
cos ρ sin ρ
− sin ρ cos ρ

] (
ψa

ψb

)
, (9)

so that

ψd =
√
ψ2

a + ψ2
b = |ψ|

ψq = 0 (10)

In the field coordinates the induction motor is described by the following system of equations:

dω

dt
= µψdiq − TL/J (11)

dψd

dt
= −ηψd + ηMid (12)

did
dt

= −γid + ηβψd + npωiq + ηM
i2q
ψd

+
1
σLs

ud (13)

diq
dt

= −γiq − βnpωψd − npωid − ηM
iqid
ψd

+
1
σLs

uq (14)

dρ

dt
= npω + ηM

iq
ψd

(15)

The inverse transformation, IDQ, applied to voltages
(
ua

ub

)
=

[
cos ρ − sin ρ
sin ρ cos ρ

] (
ud

uq

)
(16)

shows that in the steady-state when bothud anduq are constant anḋρ(t) = ω0 then the supplying
voltagesua andub become sinusoidal,ua(t) = um

a sin(ωot+φ), ua(t) = um
b cos(ωot+φ), and they are

more complicated functions of time in transient states. It is assumed here that the AC-drive is fed by a
voltage source inverter working at frequencies high enough for a good dynamic performance and smooth
operation at stillstand.
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4 Nonlinear Control - Dynamic Contraction Method

4.1 Preliminaries

Let us consider a nonlinear time-varying system in the following form:

ẋ = f(t,x) + B(t,x)u(t), x(0) = x0 (17)

y = g(t,x) (18)

wherex(t) is ann-dimensional state vector,y(t) is a p-dimensional output vector andu(t) is a p-
dimensional control vector.
Following Yurkevich (1995a), assume that each outputyi can be differentiatedαi times until the control
input appears. This results in the following equation:

y� = c�(t,x(t)) + B�(t,x)u, x(0) = x0, (19)

where
y� =

[
y

(α1)
1 , y

(α1)
2 , . . . , y(αp)

p

]′
. (20)

Assume that a reference model for transients ofy
(αi)
i (t) is given in the following vector differential

equation:
y

(αi)
i (t) = Fi(yi(t), ri(t)), i = 1, 2 . . . p (21)

whereFi is referred to as the desired dynamics ofyi(t), and

yi = [yi, y
(1)
i , . . . , y

(αi−1)
i ]′, ri = [ri, r

(1)
i , . . . , r

(αi−1)
i ]′. (22)

In case the componentsy(αi)
i are independent and the control inputsui are decoupled theith element of

y� could be written as:

y
(αi)
i = −

αi−1∑
j=0

ai,jy
(j)
i +

αi−1∑
j=0

bi,jr
(j)
i (23)

The difference between the desired and the actual response of the system is defined as:

∆ = F (y(t), r(t)) − y�(t) (24)

The control system to be designed must be stable and provide the following condition:

∆(t,x(t),u(t)) = 0 (25)

Equation (25) can be solved with respect tou(t) analitically leading to NID control algorithmunid(t):

unid(t) = B�(t,x)−1[F (y(t), r(t)) − c�(t,x(t))] (26)

This control law may be used only if there is complete information about disturbances, model parameters
and the state of the system. Therefore it has no real practical value.
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4.2 The Dynamic Contraction Method (DCM)

Let us introduce nonsingular matricesK0, andK1 whose meaning will be discussed later.K1 is usually
a diagonal matrix. In the next equation the new control inputv is defined as:

u(t) = K0K1v(t) (27)

The following equation was discussed by Yurkevich (1995a):

q∑
j=0

µjDjv
(j) = k∆, ~v(0) = ~v0, (28)

with µ = diag{µ1, µ2, . . . , µp} andq ≥ maxαi. Hereµi are small positive parameters, andDq−1, . . . ,D0

are diagonal matrices and~v(t) =
[
v′,v(1)′, . . . ,v(q−1)′

]′
. Using Eqs. (23), (24) and (27) the following

controller equation can be written for eachi-th channel:

qi∑
j=0

µj
idi,jv

(j)
i = ki(

αi−1∑
j=0

bi,jr
(j)
i −

αi−1∑
j=0

ai,jy
(j)
i ), vi(0) = vi,0, (29)

wherevi =
[
vi, v

(1)
i , . . . , v

(qi−1)
i

]′
. Sinceqi ≥ αi the controller is proper and realizable without differ-

entiation.
Assuming thatv(t) changes much faster thenx(t),y(t), andr(t) our control problem can be translated
into a two time scale problem. One for the fast motions (the control) and one for the slow motions
(the states). The new fast time scale is defined asτ = µ−1t, whereµ = max(µi) is a small positive
parameter.

4.2.1 Fast motions

From equations (17), (19), (24), (27), (28) the close loop system can be rewritten as:

ẋ = f(t,x) + B(t,x)K0K1v, x(0) = x0 (30)

Γv +
q∑

i=1

µiDiv
(i) = k [F − c�(t,x)] , ~v(0) = ~v0, (31)

whereΓ is defined as:

Γ = D0 + kB(t,x)K0K1, K1 = diag{k1, . . . , kp} (32)

Taking limµ→ 0 and returning to the primary time scale witht = µτ we obtain the fast motion system
which is defined by:

Γv +
q∑

i=1

µiDiv
(i) = k [F − c�] , ~v(0) = ~v0, (33)

whereF andc� are assumed constant if there is good time separation between the fast and the slow
motions. The matrixK0 is often chosen as(B�)−1 to decouple the fast motion subsystem and thus to
simplify the design. MatrixK1 can be used to tune the control inputs.
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4.2.2 Slow motions

The slow motion system is found by using equations (19), (27), (35) and takingµ→ 0.

y� = F + k−1D0

[
k−1D0 + B�(t,x)K0K1

]−1
[c�(t,x) − F ] (34)

The steady state of the fast motion time system is defined by:

vs = kΓ−1 [F − c�] (35)

Usingunid = K0K1v
nid(t) this can be rewritten into the following form:

vs = vnid + Γ−1D0 [B�K0K1]
−1 [c�(t,x) − F ] (36)

If D0 = 0 or D0 6= 0 but k → ∞ thenvs → vnid andy� → F . As a result, the DCM control will
converge to the NID solution.
However, in contrast to NID, the DCM method can be used in systems with incomplete information
aboutf(t,x), g(t,x) andB(t,x) and varying parameters.

5 Applying DCM to the Induction Motor Control

The goal of this section is to apply the DCM method to our MIMO motor system, and design a current
and flux controller. Rewriting the motor equations (11) in state space gives:

ẋ =




µx2x4 − TL/J
−ηx2 + ηMx3

−γx3 + ηβx2 + npx1x4 + ηMx2
4/x2

−γx4 − βnpx1x2 − npx1x3 − ηMx3x4/x2

npx1 + ηMx4/x2


 +




0 0
0 0
1

σLs
0

0 1
σLs

0 0


 u, (37)

with x1 = ω, x2 = ψd, x3 = id, x4 = iq, x5 = ρ, u1 = ud, andu2 = uq.

Let us denotey1 = iq, y2 = ψd andy� = [y(1)
1 , y

(2)
2 ]′. Then we have

y� = c�(t,x) + B�u, (38)

with

c�(t,x) =
[−γx4 − βnpx1x2 − npx1x3 − ηMx3x4/x2

ηM(−γx3 + ηβx2 + npx1x4 + ηMx2
4/x2)

]
(39)

B� =
[

0 1/(σLs)
ηM/(σLs) 0

]
.

B� is diagonal and does not depend onx and unknown parameters, which greatly simplifies the analysis
and design of the control system.

5.1 Controllers

Since the relative order of the quadrature currenty1 = iq is equal to1 and the relative order of the flux
y2 = ψd is equal to2, the controller equations can be expressed in terms of time constants and damping
coefficients as follows:

µqv
(1)
q + d0,qvq = k1[−i(1)q + τ−1

q (iqref − iq)] (40)

µ2
dv

(2)
d + 2d1,dµdv

(1)
d + d0,dvd = k2[−ψ(2)

d + τ−2
d (ψdref − 2αdτdψ

(1)
d − ψd)] (41)
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or in a slightly modified form:

µqv
(1)
q + d0,qvq = kq[−τqi(1)q − iq + iqref ] (42)

µ2
dv

(2)
d + 2d1,dµdv

(1)
d + d0,dvd = kd[−τ2

dψ
(2)
d − 2αdτdψ

(1)
d − ψd + ψdref ] (43)

The controllers in (40)-(41) can also be presented in the transfer function forms:

vq(s) = kq

[
1

µqs+ d0,q
iqref (s) − (1 + τqs)

µqs+ d0,q
iq(s)

]
(44)

vd(s) = kd

[
1

µ2
ds

2 + 2d1,dµds+ d0,d
ψdref (s) − τ2

d s
2 + 2αdτds+ 1

µ2
ds

2 + 2d1,dµds+ d0,d
ψd(s)

]
(45)

Puttingd0,q = 0 andd0,d = 0 introduces the integral action to the above controllers.

5.2 Controllers design rules

Usingk = 1, andK0 = (B�)−1, then the fast motions equation takes the following form:

µ2D2v
(2) + µD1v

(1) + Γ = k [F − c�] , (46)

Γ = D0 + K1 (47)

for the motor control. The parameters that determine the fast dynamics of the controller can now be
chosen.
The current controller: The characteristic equation for the current controller can be written as:

µq

d0,q + kq
s+ 1 = 0 (48)

Denoting

µ0
q =

µq

d0,q + kq
, (49)

then the design rule to have a good time scale separation is:

µ0
q ≤ 0.1τi (50)

The flux controller: The characteristic equation for the flux controller is:

µ2
d

d0,d + kd
s2 +

2d1,dµd

d0,d + kd
s+ 1 = 0 (51)

This equation can be rewritten in the following form:

(µ0
d)

2s2 + 2d0
dµ

0
ds+ 1 = 0, (52)

with
µ0

d =
µd

d0,d + kd

√
d0,d + kd, (53)

and

d0
d =

d1

d0,d + kd

√
d0,d + kd. (54)

The design rules are:
µ0

d ≤ 0.1τd, d0
dmin ≤ d0

d ≤ d0
dmax (55)
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Table 1: Example Motor Parameters

Rs stator resistance 0.18Ω
Rr rotor resistance 0.15Ω
Ls stator inductance 0.0699H
Lr rotor inductance 0.0699H
M mutual inductance 0.0680H
J rotor moment of inertia 0.0568kgm2

np number of pole pairs 1
T rated power 15kW

Table 2: Constants
σ η β µ γ

0.0536 2.1459 259.5 8.3 85.89

6 Refined Analysis of Inner Control Loops

In this chapter the inner loops are analyzed in more detail assuming finite values ofµ-parameters. The
parameters of an example motor given in tables 1 and 2 are used further in this paper.

6.1 Analysis of the current controller

Assuming that the flux is constant and usingψd = Mid the current equation (14) is transformed to:

diq
dt

= (−γ − η)iq − (βM − 1)npωid +
1
σLs

uq (56)

If the drive is accelerating, a slope-wise speed forms an important disturbance in the system. Therefore
it is reasonable to setd0,q = 0 andµq = τq in the current controller in (44) to have the integral action
keeping the control error as small as possible. The current control loop is shown in Figure 2 with
τ1 = 1/(γ + η), d(t) = (βM − 1)npωid andB1 = (γ + η)−1(σLs)−1. The blockB−1

1 is used to
normalize the gain, and is the new input for the controller.
The parameters relevant for the current loop are given in Table 3. The two different time scales in the
system are seen in this figure. The filter is the slow time scale, and the control loop the fast time scale.

B−1
1 B1

?

+
+ 1

τ1s+1

iq(t)
-- - -

u(t)

d(t)

�

��

sτd+1
τds kq

�

��

�

��

�

?

?

�

�

+
−

+
−

1
sτd+1

�

iqref

n(t)

�

-

Figure 2: The current control subsystem
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Table 3: Current dynamics parameters

γ η np β τ1 B1

85.89 2.14 1 260 11.4e-3 3.03

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

10

20

30

40

50

60
iq

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
−100

0

100

200

300

400

Uq

Figure 3: Simulation plot forkq=50 andτq =.2e-3 (dashed), .5e-3 (dash-dot), 1e-3 (solid), 2e-3 (dots).

Assuming zero noise and zero disturbances there is:

iq(s) = kq
1

τqs(sτ1 + 1) + (sτq + 1)kq
iqref (s) (57)

If τq = τ1 then

iq(s) = kq
1

(sτq + 1)(sτq/kq + 1)
iqref (s) (58)

and the charactristic polynomial of the fast motion subsystem overlaps with that of (51). With large
enough gain both (57) and (58) reduce to:

iq(s) =
1

sτq + 1
iqref (s) (59)

which is independent of the plant time constantτ1.
The gain must be large enough to track the reference trajectory and have a small steady state error. On
the other side, when choosing the gain larger the system becomes more sensitive to high frequency noise.
As a result, a tradeoff between robustness and sensitivity is to be chosen. More details about designing
controllers to operate in the conditions of high-frequency sensor noise can be found in (Błachuta, Yurke-
vich, and Wojciechowski, 1997). Figure 3 shows the simulation result for differentτq and constantkq.
From Fig. 4 the influence is shown for choosing different values ofkq. For largerkq the system better
follows the trajectory, is more robust against disturbances, and has a smaller steady-state error.
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Figure 4: Simulation plot for differentkq and constantτq, τq=1e-3,kq=30 (dashed),kq=50 (solid),kq=75
(dots),kq=100 (dash-dot).

Table 4: Flux dynamics parameters

η γ β τ2 τ3 B2 M

2.146 85.89 259.5 11.7e-3 476e-3 38.92 0.068

6.2 Analysis of the flux controller

With the assumptiondψd/dt = 0 equation (13) determiningid simplifies to:

did
dt

= (−γ +Mηβ)id + npωiq + η
i2q
id

+
1
σLs

ud (60)

With (13) andτ1 = 1/(γ + Mηβ), τ2 = 1/η andB2 = M/((γ − ηβM)σLs) this can be presented
as a linear system disturbed byd(t) = npωiq + ηi2q/id. The blockB−1

2 is used to normalize the gain,
and is the new input for the controller. The flux control subsystem is displayed in Fig. 5. In Table 4
the parameters of the flux subsystem are given. The transfer function from reference input to output is
defined by:

ψ(s) =
k

µds(µds+ 2d1,d)(τ2s+ 1)(τ3s+ 1) + (τ2
d s

2 + 2αdτds+ 1)k
ψdref (s) (61)

The effects of changing parameters can be visualized by root locus plots in Fig. 6.
If the gain is high enough, the poles of the closed loop system are on the asymptote located at

σc =
−2d1,d/µd − γ − η + αd/τd

2
(62)

The simplest case is if the controller zeros exactly cancel the two poles of the flux dynamics and then
σc = −d1,d/µd. If the poles and zeros are different but co-measurable andµd is small enough the
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Figure 5: The flux control subsystem
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Figure 6: Root locus if controller zeros do not cancel flux poles. The upper picture shows the total view
of the root locus, the two other pictures are zoomed views of the upper.
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Figure 7: Flux response with the optimized controller,ω = 0, ρ̇ = 0

Table 5: DCM controller parameters

αd τd d0,d d1,d µd kd

1 1e-2 0 1.4 0.001 1.6

situation is similar to the previous case. Figure 7 shows the flux response for the optimized controller. To
check the influence of disturbances on the flux control a step is made oniq with constant flux and zero
speed (t = 0.5 s). Later the same step is made with speed at a high value (t = 0.6 s, andt = 1.0 s). The
controller parameters are collected in Table 5.

7 Time Optimal Position Control

The position control problem in this section refers to a system, whose mechanical equations are given
by:

dθ

dt
= ω (63)

J
dω

dt
= Te − TL, (64)

with J the moment of inertia,Te electrical torque, andTL a constant load torque.
The motor along with the inverter has several electrical, mechanical and thermal limits. For example,
electrical constraints are given by:

u2
a + u2

b = u2
q + u2

d ≤ V 2
max (65)

i2a + i2b = i2q + i2d ≤ I2
max, (66)
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Figure 8: Influence of disturbances onψd

whereVmax and Imax are respectively the fixed voltage and current limit, which can be translated to
speed and acceleration limits. In (Bodson, Chiasson, and Novotnak, 1994) a flux reference was generated
which maximizes the torque at arbitrary speed without violating the voltage and current limits (Bodson,
Chiasson, and Novotnak, 1995). Unfortunately the analysis in (Bodsonet al., 1995) was performed
assuming steady-state values which is only useful when electrical transients are much faster than the
mechanical ones. This only applies for micro-motors and is useless for larger motors. Therefore in our
setup the flux is kept constant and a maximum speed limit is imposed.
For given bounds on current and velocity the position control problem can be stated as a time optimal
control problem. Under assumption that the current loop is fast the system can be approximated by
a double integrator system of equations (63)-(64) withTe being a control variable for which the time
optimal solution consists of two intervals of maximum acceleration/deceleration. If the position error is
large enough there is a third interval with maximum speed and zero acceleration. The solution to the
problem with an extra time constantτq, (Ryan, 1982), is difficult to be found and implement.
The relation between position and velocity during deceleration is as follows:

ω =

{ √
2amax|∆θ| sign(∆θ), |ω| < ωmax

ωmax sign(∆θ), |ω| ≥ ωmax
(67)

with ∆θ = θref − θ. If the load torqueTL is knownamax can be calculated from Eq. (11). The function
in (67) can be implemented as a nonlinear block directly in the control loop of Fig. 1 or it can be used to
control the model (63)-(64), which generates feed-forward signals for a linear cascaded control system
(Leonhard, 1990).
In the former case, to work with the non-ideal system having the additional time constantτq, the speed
controller is a high-gain linear controller whose output saturates at|iqref | = iqmax rather than a relay,
and to avoid infinite gain the function in (67) is linearized around the origin. In Fig. 9 the nonlinear
function is shown. The solid line is the ideal function, and the dashed line the linearized one. In Table
6 the simulation parameters are collected.
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8 Concluding Remarks

The inner loops are controlled by Dynamic Contraction Method controllers which have advantages above
PI controllers. A comparison between PI and DCM was done in (van Duijnhoven, 1998) if the input was
stepwise. In this case the DCM controller was superior. In PI case the gain could not be as high as in the
DCM case, because this resulted in over-steered stator voltages. Due to the high gain the DCM controller
is less sensitive to disturbances and has a smaller steady state error.
In (van Duijnhoven, 1998) two control structures which base on the two integrator problem were ex-
amined. The non-feed-forward structure was superior if torque was not known. If small initial position
errors appear the feed-forward structure is preferred. In case of large position errors and unknown but
estimated torque the non-feed-forward structure is better.
In (van Duijnhoven, 1998) observers (Novotnak, Bodson, and Chiasson, 1995) were added to the motor
control structure. They worked well if there was a good observation of the flux angle. Unfortunately,
when the rotor resistance varied the flux angle was not observed correctly. A solution to robustify the
control system is to construct an observer for the rotor resistance (Gorter, 1997).
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Table 6: Simulation parameters for non-linear structure

imax ωmax TL J kspeed τq kq linear zone
50 A 150 rad/s 10 Nm 2*0.0586 80 1e-3 50 5
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