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Abstract

When only input/output data of a system are available the classical way to design a
linear quadratic Gaussian controller consists of mainly three separate parts. First a system
identification step is performed to find the system parameters. With these parameters a
Kalman filter is designed to find an estimate of the state of the system. Finally, this state is
then used in an LQ-controller. In the literature these three steps are hardly ever considered
as one joint identification/control problem. In (Favoreel et al., 1998a), (Favoreel et al.,
1998b), (Favoreel et al., 1998c) it was shown that, based on techniques from the field of
subspace system identification, the three steps of the LQG-controller design can be replaced
by a QR and a SV-decomposition. A drawback of the method is that the input and output
data available for the LQG-design must be retrieved in open loop. In the present paper, a
generalization of the results presented in (Favoreel et al., 1998a), (Favoreel et al., 1998b),
(Favoreel et al., 1998c) is presented for the case where the data is measured on a system
working in closed-loop. It is shown that under mild conditions the closed-loop subspace-
based controller and the classical LQG-controller are equivalent. The effectiveness of the
method is illustrated by the hand of a simulation example. It is shown that the open-loop
subspace-based LQG-controller gives biased results whereas the closed-loop version converges
to the classical LQG-controller when the length of the backward horizon increases.
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1 Introduction

In this paper we will be interested in the design of an LQG-controller for linear time-invariant
systems that can be described by the following state-space innovation form:

xk+1 = Axk + Buk + Kek, (1)
yk = Cxk + Duk + ek (2)

where the input uk ∈ IRm, the output yk ∈ IRl, the state xk ∈ IRn and the stationary, ergodic,
white Gaussian noise ek ∈ IRl has the following covariance matrix:

E[epe
T
q ] = Sδpq.

This system is operating in closed-loop with a linear time-invariant controller that is described
by the state-space equations:

xc
k+1 = Acx

c
k + Bcyk, (3)

uk = rk − Ccx
c
k − Dcyk. (4)

We assume that the problem is well-posed in the sense that the output yk should be uniquely
determined by the reference input rk, the disturbance input ek and both the state of the controller
xc

k and the system xk. This condition is satisfied when Il + DDc is non-singular.

The main problem we are interested in is the following:

LQG-Control Problem

Given a set of closed-loop measurements of the inputs uk and the outputs yk, k ≤ 0, of the
unknown system (1)-(2) and the N first impulse response coefficients of the controller (3)-(4),
find the input sequence uf = (u1, . . . uN) such that the following quadratic cost function J is
minimized over the horizon N :

J =
N∑

k=1

ŷT
k Qkŷk + uT

k Rkuk (5)

where ŷk is the k-step-ahead predicted output given past inputs and outputs and future inputs
up to time k. The reference output trajectory is described by rk and the matrices Qk ∈ IRl×l and
Rk ∈ IRm×m are user-defined non-negative definite weightings of the outputs and the inputs.

We will call the forward horizon (length N) the number of time steps over which the system
output is predicted and the control input is computed. The backward horizon (length M) is
the set of past input/output data points that are used to predict the outputs on the forward
horizon.

It should be noted that we use a receding-horizon approach which means that at every time-
step the optimization of (5) is recalculated and only the first input u1 of the calculated control
sequence uf is implemented.

As a lot of the modern control methods, LQG-control uses a state space model to design a control
system. When such a model is not available, the LQG-design thus requires a first step of system
identification from input/output data. In addition, once a state-space model is available, the
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Figure 1: The purpose of the present paper is to design an LQG-controller for the plant P
which is operating in closed-loop with a controller C that is assumed to be time-invariant
and not necessarily an LQG-controller. For the LQG-design we only dispose of a set of
measurements of the controlled inputs uk, the outputs yk and the impulse response of the
controller C.

state of the system must be estimated using a step of Kalman filter design. Finally the third step
then consists of designing an LQ-controller. In the literature the solution to the above problem
is hardly ever considered as one identification/control problem. Most authors concentrate on
either the identification of the unknown system given a set of input and output measurements or
on the LQG-design given the system parameters A,B,C,D,K and S. In (Favoreel et al., 1998b)
it was shown that one can bypass these three steps by designing an LQG-controller directly from
input/output data using techniques from the field of subspace system identification. This idea
is illustrated in Figure 2. A constraint of the method presented in (Favoreel et al., 1998b) is
that the data is assumed to be retrieved in open-loop conditions. In this paper we will remove
this restriction and generalize the results of (Favoreel et al., 1998b) for systems that can operate
in open as well as in closed-loop.

The idea of computing an LQG-controller directly from data, without any use of a model, has
been developed by Hjalmarsson and collaborators (see (Hjalmarsson et al., 1994), (Hjalmarsson
et al., 1998)) using a technique called Iterative Feedback Tuning (IFT) that is entirely different
from the subspace-based technique developed here. In some ways, the fundamental difference
between IFT-controller design and the subspace-based controller design developed here parallels
the fundamental difference between parametric identification based on criterion minimization,
and subspace-based identification based on subspace projections. Other recent work that is
related to the results presented here was done by Furuta et al. (Furuta and Wongsaisuwan,
1995) where starting from the Markov parameters of the system, i.e. without knowledge of the
state space matrices of the system thus without Kalman filter nor LQR-design, the Markov
parameters of the LQG-controller are calculated. The problem of obtaining consistent estimates
of the Markov parameters however is not addressed. A similar result was obtained by Kawamura
(Kawamura, 1997), (Kawamura, 1998) which allows for the calculation of an LQR-controller
based on a free response and an impulse response of the system. That method differs from
the Furuta method in that it allows for the calculation of the LQR state feedback gain directly
instead of a Markov parameter representation of the controller. A restriction of this approach
is that it only calculates the LQR feedback gain and does not pay attention to the problem of
finding an estimate of the state directly from the data without knowledge of the state space
matrices. Moreover the method is iterative, which means that the user has to choose an initial
value for the LQR state feedback gain. Only for an infinite control horizon the authors could
prove that this feedback gain converges to the optimal value. As in (Furuta and Wongsaisuwan,
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1995) the problem of obtaining a consistent estimate of the system impulse and free response is
avoided.

?

?

? ??

Classical Approach

A,B,C,D,K, S

State estimate

LQG controller

Input/output data Input/output data

LQG controller

System identification

KF-design

LQR-design

QR + SV-decomposition

Subspace Approach

Figure 2: Main result of the paper: based on techniques from the field of subspace system
identification, a new algorithm is proposed for direct implementation of LQG-controllers
starting from data. In the classical LQG-framework, first a system identification step is
performed to find the state space matrices A, B, C, D, K and S. In a second step these
matrices are used to design a Kalman filter which gives an estimate of the state. Finally,
this state estimate is used in a linear quadratic controller. The main result of the paper
is that these three steps can be short-circuited and replaced by one single QR and a SV-
decomposition of matrices constructed out of input and output data of the system.

The results in this paper are heavily based on subspace system identification theory (Van Over-
schee and De Moor, 1996b), (Verhaegen and Dewilde, 1992), (De Moor et al., 1998). Most of
the subspace system identification techniques one can find in the literature have been developed
for open-loop applications. This implies that they give biased results when applied on data
measured in closed-loop. Recently, a subspace system identification algorithm was proposed
(Van Overschee and De Moor, 1996a), (Van Overschee and De Moor, 1997) that gives consistent
estimates of systems operating in open as well as in closed-loop. Those results are used here
to generalize the algorithms presented in (Favoreel et al., 1998b) to find an LQG-controller for
systems operating in open- as well as in closed-loop.

We start the paper by giving a short overview of the basic results of closed-loop subspace
system identification (Van Overschee and De Moor, 1997). The basic idea of open and closed-
loop subspace identification are recalled. Section 3 contains the main results of the paper. First
the LQG-problem is presented, the classical framework of solving it is recalled and the new
subspace-based approach is given. Further it is shown under what conditions both approaches
give the same control law. In Section 4 we show by the hand of an example that the open-
loop subspace-based algorithm gives indeed biased results under closed-loop conditions. We also
illustrate that the closed-loop algorithm is unbiased and converges to the solution of the classical
LQG-controller. We end the paper in Section 5 with some conclusions and open problems.
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2 closed-loop subspace system identification

The problem treated in closed-loop linear subspace identification is the following:

Given measurements of the inputs uk and the outputs yk of the unknown system (1)-(2) and
the first N impulse response coefficients of the controller (3)-(4), find an estimate of the system
matrices A,B,C,D and the noise related matrices S and K.

The starting point of all subspace identification algorithms is the following set of matrix input-
output equations:

Yf = ΓNXf + HNUf + Hs
NEf . (6)

It represents the effect of the state xk, the deterministic input uk and the unknown stochastic
input ek on the outputs yk and can be directly derived from the state-space equations (1)-(2).
For the controller (3)-(4), an analogue equation holds:

Uf = Rf − Γc
NXc

f − Hc
NYf . (7)

In what follows, the different terms in (6) and (7) are defined.

First of all there are the data block-Hankel matrices:

Yp =


y0 y1 . . . yj−1

y1 yM+2 . . . yM+j

. . . . . . . . . . . .
yM−1 y2M . . . y2M+j−2

 , Yf =


yM yM+1 . . . yM+j−1

yM+1 yM+2 . . . yM+j

. . . . . . . . . . . .
yM+N−1 yM+N . . . yM+N+j−2

 . (8)

The indices p and f stand for past and future. In a similar way the block-Hankel matrices Up,
Uf , Ep, Ef and Rp, Rf can be defined for the inputs uk, the output noise ek and the reference
signal rk. We will also use the following short-hand notation:

Wp =

(
Yp

Up

)
.

It should be noted that, for statistical reasons, it is assumed that the number of columns j goes
to infinity. The state sequences Xf and Xc

f of the system and the controller are defined as:

Xf =
(

xM xM+1 . . . xM+j−1

)
, Xc

f =
(

xc
M xc

M+1 . . . xc
M+j−1

)
. (9)

Further we also have the following system related matrices:

HN =


D 0 . . . 0

CB D . . . 0
. . . . . . . . . . . .

CAN−2B CAN−3B . . . D

 , Hs
N =


Il 0 . . . 0

CK Il . . . 0
. . . . . . . . . . . .

CAN−2K CAN−3K . . . Il

 ,

ΓN =


C

CA
. . .

CAN−1


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where ΓN is the extended observability matrix, HN and Hs
N the matrices containing the impulse

response of the system due to the deterministic input uk and the unknown stochastic input ek

respectively. The analogue of these matrices for the controller are defined as:

Γc
N =


Cc

CcAc

. . .
CcA

N−1
c

 , Hc
N =


Dc 0 . . . 0

CcBc Dc . . . 0
. . . . . . . . . . . .

CcA
N−2
c Bc CcA

N−3
c Bc . . . Dc


where Γc

N is the extended observability matrix and Hc
N the block Toeplitz matrix containing the

impulse response coefficients of the controller.

Although there exist several subspace identification methods in the literature (Van Overschee
and De Moor, 1996b), (Verhaegen and Dewilde, 1992), they all have the following three main
steps in common:

Step 1: The first step of subspace identification problem can be interpreted as follows: given
the past inputs and outputs Wp and the future inputs Uf , find a prediction of the future
outputs Yf . If we use a linear predictor:

Ŷf = LwWp + LuUf (10)

the least squares prediction Ŷf of Yf can be found from the following least squares problem:

min
Lw,Lu

||Yf −
(

Lw Lu

)( Wp

Uf

)
||2F . (11)

Usually, the problem of finding Ŷf is formulated in terms of the orthogonal projection of
the row space of Yf into the row space spanned by Wp and Uf defined as:

Ŷf = Yf/

(
Wp

Uf

)
= Yf

(
Wp

Uf

)†(
Wp

Uf

)
QR=

(
Lw Lu

)( Wp

Uf

)
. (12)

The implementation of this projection can be done in a very fast and numerically robust
way with a QR-decomposition (which is a standard Matlab command).

Step 2: The second step then consists in calculating the SVD of Lw, which is a rank deficient
term (of order n) if the number of columns in the data block Hankel matrices is infinite
(j = ∞). Due to the noise, Lw will not be a rank-deficient matrix in practise:

Lw
SVD=

(
U1 U2

)( S1 0
0 S2

)(
V T

1

V T
2

)
.

To get rid of a part of the noise, Lw is approximated by a rank deficient matrix:

Lw ≈ U1S
T
1 V T

1

where the rank is determined by inspecting the number of dominant singular values S1.
This number is an approximation of the order n of the system. Important is that, under
the assumption that the number of columns in the data matrices is infinite (j = ∞),
U1S

1/2
1 equals the observability matrix ΓN while S

1/2
1 V T

1 Wp is a Kalman filter estimate of
the state sequence Xf .
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Step 3: The last step consists in finding the state space matrices A,B,C,D and K,S from ΓN

and/or X̂f . One can distinguish three classes of algorithms: those that use the observability
matrix ΓN , those that use the estimate of the state sequence X̂f and finally those that use
both. Since in this paper we only need the first two steps we do not go into details here.
The interested reader is referred to (Van Overschee and De Moor, 1996b).

If the data is measured in open-loop, the above subspace identification scheme will work fine.
However, if the data is recovered under closed-loop conditions, the results will be biased. The
reason for this is that, due to the feedback, the regressors Uf are correlated with the residuals
Ef . In that case the solution Lw, Lu of the least squares problem (11) will be asymptotically
(j → ∞) biased. This was shown in more details and illustrated with simulation examples in
(Van Overschee and De Moor, 1996a), (Van Overschee and De Moor, 1997).

However, there is a way to get around this problem (Van Overschee and De Moor, 1997). The
“trick” is to replace the future input Hankel matrix Uf by a new matrix Mf that is uncorrelated
with the residuals Ef . The philosophy behind this approach is very similar to that of the
well known instrumental variable method (See e.g. (Gustafsson, 1997)). Substituting the future
input block Hankel matrix Uf in the system matrix input output equation (6) with Uf from the
controller matrix input output equation (7) we have:

Yf = TN {ΓNXf + HNMf + Hs
NEf} (13)

where we define TN = (INl + HNHc
N)−1 and Mf = Uf + Hc

NYf . The matrix Mf can be directly
calculated from its definition since we assumed that the first N impulse response coefficients of
the controller (3)-(4), and therefore Hc

N , are known. Since Mf can also be written as Mf =
Rf − Γc

NXc
f and RfET

f = 0,Xc
f ET

f = 0 it is easy to see (Van Overschee and De Moor, 1996a)
that:

MfET
f = 0.

In this sense Mf can be considered as a matrix containing the instrumental variables. The
closed-loop subspace identification problem then consists of finding the linear prediction of the
future outputs Yf given the past inputs and outputs Wp and the instrumental variables Mf :

Ŷf = Yf/

(
Wp

Mf

)
Lc

wWp + Lc
uMf . (14)

A prediction Ŷf of the future output data Hankel matrix Yf is provided by the solution Lc
w, Lc

u

of the following least squares problem:

min
Lc

w,Lc
u

||Yf −
(

Lc
w Lc

u

)( Wp

Mf

)
||2F . (15)

which leads to asymptotically (j → ∞) unbiased estimates of Lc
w and Lc

u. However, as we
will see in Section 3.2, the matrices we are really interested in for the LQG-controller design
are Lu and Lw of which only an asymptotically biased estimate could be found from the least
squares problem (11) are asymptotically biased. It is however possible to calculate consistent
estimates of Lw and Lu based on the knowledge of Lc

w, Lc
u and Hc

N . It can be seen from the
results presented in (Favoreel et al., 1998b) that if the backward horizon M → ∞ we have that
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Lu = HN . It can be seen from the closed- and open-loop matrix input output equations (6),
(10), (13) and (14) that Lc

w, Lc
u and Lw, Lu are related by the following equations:

Lc
w = TNLw, (16)

Lc
u = TNLu.

From the definition of TN it can then be seen that the open loop parameters can be calculated
as:

Lu = Lc
u(INl − Hc

NLc
u)−1, (17)

Lw = (INl + LuHc
N)Lc

w. (18)

3 LQG: classical vs. subspace approach

3.1 LQG - The classical approach

The classical way of solving the LQG-problem (5) as presented in the Introduction is to split
it up into three separate subproblems: system identification, Kalman filter design and LQ-
controller design (Kwakernaak and Sivan, 1972), (Bitmead et al., 1990). These three steps can
be summarized as follows:

System Identification: Given measurements of the inputs uk and the outputs yk of the
unknown system (1)-(2), find an estimate of the system matrices A,B,C,D and the noise
related matrices S and K. For the present paper it does not really matter what system
identification has been used as long as an asymptotically unbiased estimate of A,B,C,D,K
and S is found. This can be achieved for instance with subspace identification.

Kalman filter: Given the system related matrices A,B,C,D,K, S and measurements of the
inputs uk and outputs yk for k ∈ {−M + 1, . . . , 0} and the initial condition x̂−M+1 for
the Kalman filter then the steady-state Kalman filter state estimate x̂1 is the solution for
q = 0 to the following equations:

x̂q+1 = Ax̂q + Buq + Kf (yq − Cx̂q − Duq), (19)
Kf = (KS + AΣCT )(S + CΣCT )−1, (20)
Σ = AΣAT + KSKT − (KS + AΣCT )(S + CΣCT )−1(KS + AΣCT )T . (21)

LQ-controller: Given the system related matrices A,B,C,D, the weighting matrices Qk, Rk,
the steady-state Kalman filter state prediction x̂1 and the initial condition P0 = 0 for LQR
Riccati equation, then the input u1 that minimizes the performance criterion (5) is the
solution to the following recursive LQR equations:

u1 = Lx̂1, (22)
LT = −(CT Q1D + AT PNB)(R1 + DT Q1D + BT PNB)−1, (23)

Pq+1 = AT PqA + CT QN−qC − (CT QN−qD + AT PqB)
(RN−q + DT QN−qD + BT PqB)−1(CT QN−qD + AT PqB)T . (24)
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3.2 LQG - A subspace approach

In (Favoreel et al., 1998b) the LQG-problem was studied from another point of view. There it
was shown that the LQG-control law (19)-(24) can be written as:

uf = −(R + LT
u QLu)−1LT

u QLwwp. (25)

where

wp =

(
yp

up

)

with up ∈ IRMm and yp ∈ IRMl the M last known values of the inputs and the outputs, and uf

the calculated N first control steps (of which only the first one will be implemented):

yp =


y−M+1

...
y−1

y0

 , up =


u−M+1

...
u−1

u0

 , uf =


u1
...

uN−1

uN

 .

The controller parameters Lu and Lw are calculated as in (11) for the open-loop case, or (17)-(18)
for the closed-loop case. The matrices Q ∈ IRNl×Nl and R ∈ IRNm×Nm are defined as:

Q =


Q1 0 . . . 0
0 Q2 . . . 0
...

...
. . .

...
0 0 . . . QN

 , R =


R1 0 . . . 0
0 R2 . . . 0
...

...
. . .

...
0 0 . . . RN

 .

If we look at the subspace-based LQG control law (25) on the one hand and the classical LQG
control laws (21)-(22) on the other hand, one might wonder if they are equivalent. The answer
is given in the following theorem of which a proof can be found in (Favoreel et al., 1998b).

Theorem 1
The subspace-based LQG-controller (25) and classical LQG-controller equations (19)-(24) pro-
duce the same value for u1 if the backward horizon is infinite (M → ∞).

The final subspace-based LQG-algorithm can now be implemented as in Figure 3.

We make the following final remarks:

• Although the results presented here are clearly based on techniques from the field of
subspace system identification, we deliberately avoided the term “subspace system iden-
tification”. Indeed, the system identification step is inherent in the way of solving the
control problem in the sense that the system parameters A,B,C,D,K and S are never
explicitly calculated.

• Except for the user-defined parameters Q and R, the different steps in the design of the
LQG-controller, i.e. the system identification step, the Kalman filter and the LQ-controller,
are replaced by a QR- and a SV-decomposition (see also Figure 2).
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Closed-loop subspace-based LQG-controller

1. Construct the data block-Hankel matrices Yf , Uf and Wp =
(Yp

Up

)
from the

data. Also calculate the matrix Mf = Uf + Hc
NYf .

2. Make the following projection and derive (preferably with a QR-
decomposition) the parameters Lc

w and Lc
u:

Yf/

(
Wp

Mf

)
QR= Lc

wWp + Lc
uMf .

3. Derive the open-loop predictor parameters:

Lu = Lc
u(INl − Hc

NLc
u)−1,

Lw = (INl + LuHc
N)Lc

w.

4. Approximate Lw by a rank-n matrix by taking the singular value decomposi-
tion i.e.:

Lw
SVD= U1S1V

T
1 .

An estimate of the system order n can be found by inspecting the number of
dominant singular values.

5. Construct the controller inputs:

wp =
(

yT−M+1 . . . yT−1 yT
0 uT−M+1 . . . uT−1 uT

0

)T
.

6. Implement the first input u1 of the LQG-control sequence uf :

uf = −(R + LT
u QLu)−1LT

u QLwwp.

7. To implement the following control step, measure the system output y1 and
repeat from step 5 i.e. calculate the new controller inputs with y1, which are
simply the previous controller inputs shifted one time step.

Figure 3: Algorithm for the subspace-based LQG-controller. The first 4 steps, from which
the controller parameters Lw and Lu are derived, only have to be performed once. The next
3 steps represent the implementation of the controller.
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• Contrary to the classical LQG-framework the extension to output tracking is straightfor-
ward. The control law (25) simply becomes:

uf = (R + LT
u QLu)−1LT

u Q(rf − Lwwp)

where rf is the a vector containing the output reference trajectory rf = [rT
1 rT

2 . . . rT
N ].

4 Application

Let us now use an example to compare the presently discussed closed loop algorithm with the
previously presented open-loop algorithm (Favoreel et al., 1998b). The example is partially
borrowed from (Hakvoort, 1990) and is also used in (Verhaegen, 1993) and (Van Overschee and
De Moor, 1996a). The plant corresponds to a discrete time model of a laboratory plant setup
of two circular plates rotated by an electrical servo motor with flexible shafts. The state space
matrices of the model (1)-(2) are:

A =


4.40 1 0 0 0

−8.09 0 1 0 0
7.83 0 0 1 0

−4.00 0 0 0 1
0.86 0 0 0 0

 , B =


0.00098
0.01299
0.01859
0.0033

−0.00002

 , CT =


1
0
0
0
0

 , K =


2.3

−6.64
7.515

−4.0146
0.86336

 ,

D = 0 and ek is a Gaussian zero mean white noise sequence with E[e2
k] = 1/9. Note that

the plant has an integrator and is therefore marginally stable. The configuration of model and
controller is the one depicted in Figure 1. The controller has a state space description as in
(3)-(4) with:

Ac =


2.65 −3.11 1.75 −0.39

1 0 0 0
0 1 0 0
0 0 1 0

 , Bc =


1
0
0
0

 , CT
c =


−0.4135

0.8629
−0.7625

0.2521


and Dc = 0.61. The reference signal rk is a Gaussian zero mean white noise sequence with
variance 1 (Figure 4). We take the number of data points j = 1000 and the future horizon in the
LQG criterion N = 10. Note that N is also the number of block rows in the Hankel matrices of
future data Yf and Uf . Different values for the backward horizon M where used. On this data
set the following three algorithms were applied:

Classical: the classical algorithm to solve the LQG-control problem as described in Section 3.1.
An important note is that, for the classical LQG-controller, we did not identify the state
space matrices A,B,C,D,K, S from the data but assumed that they were known. This
was done since Theorem 1 assumes assymptotic conditions (M, j → ∞).

Open-loop: the open-loop version of the closed-loop algorithm presented in this paper (Favoreel
et al., 1998b). The closed-loop data was used in the open-loop algorithm.

Closed-loop: the closed-loop algorithm of Figure 3.

Figure 5 compares the response of the controlled system with the classical, the open-loop
subspace-based and the closed-loop subspace-based LQG controller.
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Figure 4: Left: the reference input signal rk is a white zero mean stationary signal, Right:
the corresponding output signal yk. One can clearly see a trend on the output which is due
to the integrator in the system.
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Figure 5: The above figures compare the response of the controlled system with the classical
(full line), the open-loop subspace-based (dotted line) and the closed-loop subspace-based
(dashed line) LQG-controller. The comparison is made for different values of the backward
horizon (M = 7, 10, 20) and a constant forward horizon (N = 10). The controller is calculated
based on the data up to time step 0 (vertical line). From time step 1 on the LQG controller
is implemented. The reference signal rk for k > 0 is equal to zero. One can see that the
closed-loop subspace-based controller converges to the classical LQG-controller as the size
of the backward horizon M increases (See Theorem 1). It is clear that, due to the fact
that the data was measured in closed-loop, the open-loop subspace-based LQG-controller
is biased and may even become unstable when the backward horizon is not large enough.
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5 Conclusions

In this paper we have presented an algorithm for the calculation of LQG-controllers of linear
systems directly from input/output data, i.e. without a plant model. It is a direct generalization
of a previously presented algorithm (Favoreel et al., 1998b) where it was assumed that the data
is measured under open-loop conditions. Here, this assumption is removed and the algorithm
now also holds for data measured on systems under time-invariant linear feedback. Even though
the derivation is based on expressions from closed-loop subspace system identification theory,
the algorithm bypasses the identification step altogether. The main result is that given in-
put/output data of the system, one can directly derive the LQG-controller parameters from one
single QR and a SV-decomposition. It was proven that in the case the backward horizon is infi-
nite, the model-free subspace-based LQG-controller is equivalent to the classical LQG-controller.
The theoretical results where confirmed when applied on a simulation example: the open-loop
subspace-based control algorithm is biased (due to the feedback) whereas the closed-loop version
converges to the classical LQG-controller as the backward horizon increases.
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