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Abstract

The paper deals with the feedback control law design methodology that applies
to singularly perturbed linearly systems with time-delay control under saturation
constraints. The results obtained by a scalar inequalities allows us to investigate a
variety of control problems.

1. Introduction

There has been much interest in the last few years concerning stabilization
of linear systems with time-delay in control and saturating actuators. It is well
known that stabilizability of such systems but with perturbed parameter is
equivalent to the common definition of stabilizability plus the added conditions.

The problem of stabilizing of linear time-delay systems with saturating
controls has been studied by Chen, Wang and Lu [1],[2] and Shen and Kung [3].
A comprehensive treatment on singular perturbation theory has been developed by
Kokotovic, Khalil et Reilly [6]. The singular perturbed systems with small delays,
associated with fast subsystem has been analysed by E. Fridmann [7].
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In this paper we propose two feedback strategies for a singular perturbed
systems with time delay and saturating controls. Delay parameter is associated to
the slow variables. Several sufficient conditions expressed in term of norm or
matrix measures are derived to guarantee the stability of such systems.

The remainder of this paper is organized as follow. In section 2 we precise
formulate our problem and the main results will be proven in sections 3 and 4. An
example is given in section 5 to illustrate our results. A brief concluding remarks
is made in section 6.

2. Problem formulation

Consider the linear system:
& (1) =A X (1) +A X {t)+B u(t)
e (1) = A X (1) +A X t) +B u(t) t=0
(2.1) where x, OO™,i=1,2,u00™ and A;,B;i,j =1,2 are real
matrices of appropriate dimensior&> 0 is a small parameter.

The presence of the small parameatem system (2.1), shows that the
evolution of the variableX, is "faster" than the one of the variables

Our aim is to stabilize the system (2.1) by using controls of the form:
u(t) = Fx,(t-1)+ Kx (9
(2.2) If in (2.1) we take=0 and assume thdk ,, is an invertible matrix
we obtain the so called reduced subsysg(t) = ;\Xl(t) + §u(t)
(2.3)

whereA =A ,-A A A, andB=B,-A AB,.

Also, to system (2.1.) we associate the so called "boundary layer
subsystem" or "fast subsystem".

X,(0) = A ,x ,(0) +B (o)
(2.4)

ij?

t
Wherecy:;
It is know [9] that to design a stabilizing feedback law
u(t) = Fx(t)+ Ex,(1) for system (2.1.) we can design separately the feedback

gain E and F, such thatA +BF and A,,+BJF, be stable matrices. A
stabilizing feedback gain for the full system (2.1) is obtained by taking
k= (Im + FzA;Bz)F'*' FzA;éAzr
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In this paper we proposed a similar method to design a stabilizing
feedback law of type (2.2) based on designing of a stabilizing feedback gain for
the boundary layer subsystem (2.4) and of a time delayed stabilizing state
feedback for the reduced subsystem (2.3).

In section 4 the problem of designing of a stabilizing control law (2.2) is
investigated in the presence of saturating actuators.

3. Atime delayed stabilizing composite control

The main result of this section is:
Theorem 3.1. Assume that the feedback gairsand F are such that:
4B R < B ¢, 120 and

(] <pe™, B 2La,>0,i=12

Ef(.) being the fundamental matrix solution of the linear differential
equation with lower dimension.
X,(£) =[A = BF,(A 5, +B F,) A [x,(t) + BFx,(t - 1)
(3.1)
SetF, = (I +F,A3B,)F and consider law
u(t) = Fx,(t-1)+ Kx (9
(3.2)
Then for arbitrarye [J(0,g,), whereg, can be estimated, the control
(3.8) stabilizes the system (2.1).

Remark Design of control law (3.2) has two steps :
-first we choose the gain matrix Such that to stabilize
the faster modes to meet design specifications,

- in second step we choose such that the control law

U(t) = —F, (A, + B,F) " Ay X, () + Fx,(t-1)
must stabilize the slow modes so as to meet constraints imposed
by some requirements.

Proof. The system obtained coupling the control (3.2) to the system
(2.1)is:
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& (1) =A, X (1) +BFX{t-1) +(A ,+B F)x {1)

(1) = A, X (1) +B FX(t=T) +(A ,+B F)x {t)
(3.3)

Let x,(t,€),X,(t,€) be a solution of the system (3.3) which verifies
x,(0,€) =x2,%,(0,€)=xI x,(t,e)=¢,(t),-T<t<O0.
By constants variation formula, we deduce from the second equation of
(3.3), that

t
()= g2 [ (A, x(se)+ BEX(sTe) ds
(3.4)

Further, the first equation of the system (3.3) can be rewritten

& (t) = [All_(A +tBF)(A ,+B F)7A 21]X () +
+[Bl - (A 2t B 1F2)(A 22t B E Q)_lBZ]lel(t - T) +
+ (A12 + BlFZ)X 2(t) + (A 12+ B F Q)(A 22+ B E )_l(A 21X 1(t)
+B,Fx,(t-1))

(3.5)

We can write:

All_(A12+B J:z)(A »tB F 2)_1A21 =A _BFz(A »tB fz)_lA 21

_ -~ _ -1
Bl _(A12 + Ble)(A 22t B f?) le = B[lm +F2A 2282]

The fact that | -F,(A,+BJF,)"B,=(,+FA;B,)™" can be
verify by direct calculations.

Thus, the equation (3.5) becomes:
)gi(tie):[A_BFz(A22+Bf2)_lA21]X1(t’8)+BFX1(t_T’8)+
+(AL+BFIXAL,€)+(A ,+B E)(A ;B F ) '[AX(1,€)+B Fx {t-T)]

Hence we have the representation formula [7], [8] :

X,(6€)= GOX + [ G- BRES ds [[@( t X A+ B X 5) ds

t~
+[ ®t=9)(A, + BIR)(A,+BF)[Ax(s€) + B,RX( s T,€)] ds
h(s—1) for O<s<Tt

for s>t

Taking into account (3.4) we write further:

t-s

where §(s) =
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S

X,(1,€) = @O +£?p(t—s)§|$(s) ds- J: (X A+ BY & o g

(Ax+B fz)s;o

%Jﬁ?“t‘s)(”*u““Ble)Jj e s (A(0,6)+ BEX(0-T,)) t ds-
+[Qt-9( A+ BE A+ BE)'[AX(52)+ BEX sT8)] ds

After a change of the order of integration, the last but one term may be
written:

S (AptB fz)s;

%J’; Ela(t —S)(A, + BlFZ)J’O e EG[ A, x(o,€)+ BZF1X1(O'—T,E)] @ ds=

Lees (Ag B —

=L J ®t-0)A, +BFe = b A, x(SE) + BEX(0-T,¢)] ds
‘' _1|:| d (Azz"'sz)L_S U

:J’OJ’S (P(t_O)(A12+BlF2)(A 22+B J:Z) E-)H?O_e € Etb-[Alel(se)+

+B,FXx,(s—T1,€)]ds=
= _J’; E(t - S)( A12 + Ble)( A22+ B 2]:2)_1[10\21X1(S 8) + Bzlel( ST, 8)] ds

+ [M(t,5,£)[A,x,(5€)+ ByFix(s-T,€)] ds
Where:

-1 e(Azz“Bze)%S

M(t,s,e)= (A, +B,F)(A,+BF) +

+£{Fp(t_o)[z\_éFZ(A22+Bze)_lA21 +ZP(t—0—T)§E}*

(A2+BF))

(A, +BF)(A ,+B f)'le G o)

(3.6)
Now (3.5) becomes :

X,(t,€) = ()X +I;?p(t—s)'é’|5@(s) dgﬁfp( £ X A+ BB (e £ 4 ds

t
ij;M(t,s,e)[Amxl(s; €)+ B,Ex(s-1,€)] ds
By direct estimates (3.6) we deduce
M(tse)syee? ry,e™ "
wherey, ,y, > 0
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Thus, from (3.6) we deduce

O o, FsH0
x,(te) < e || + €[] +[o]] + [ yiee T ry,e Hg
*(|Alx (s 8)|+|B,F|x{s-1.¢)) ds
(3.7)

Let T>0, 6 0(0,1) be fixed. Denotep(T,€) = supee"1t xl(te)| then,

to,7]
from (3.7) we deduce

O oy (1- s —(0,—€Bay t_SD
ot X1(t15)| SVS[‘X‘;‘+5‘X‘;‘ +||(|)||] +p(T’e)J'; %’188 (-0~ +Y, e( 8 )YE
x (A, +e"|B,F|)ds
Hence
6at 0 0 Oy, y, O
€ xl(t,e)\sys[\x1\+e\x2\+||¢||]+ea_ea +O( — €60 E
1 2 1
x (A, +e*|B,F|)p(T.€), (O)t0[0,T] T
0 0
p(T,e)svs[\X?\+€\X2\+||¢||]+€a_y§a L ]
1 2 1
x (A, +e**|B,F])p(T,€)
Choose :
mlnSO(F2 Yy D where
- 0
RPN (A, +BF)A ,+B 52)'1\[1 B
yo G 12 2 22 (1 e)al
<[|A-BF (A, + B.R ) A+ B alAml+ ¢ BR) ,60(0,)

Itis clear that if€ [1(0,€) we have

p(T,£) < V.o X3 +elx3] + 6]
WhereY 3, Y 4> 0 and thus
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%, (t,€) < yyy 4e“’le“[| x| + ¢8| + ||¢||] t0fo,T]
(3.8)
SinceY 3, Y4 are not depending upon T, we conclude that (3.8) holds

for t D[O,OO].
On the other hand from (3.3) we deduce

ptte) <Be ™ i+ 2, o A x 0+ B R (s )] s

and taking into account (3.16) we obtain finally

X, (t,e) <B.e
complete.

t
€

xg|+y5e'“19t[|)€|+e| )§|+||¢||] and the proof is

4. Stabilization of a sinqular perturbed linear system
with delay and saturation control

Now we consider the following system containing saturation control :
(1) =A X () +A x {t)+By’
K (1) = A,x (1) +A x {t)+B y’ & 0
4.1)
whereu — U = Sat \{ J is defined [3] by :
Saty )=[saty saty satu.., satil
Cu; if u Ofuy, U]
saty = [, if u, <u,
H‘JZ If l"Ii > l"I2
Our aim is to design a state feedback control
u(t) = Ex(t-1)+ Kx(9
4.2)

which to stabilize the system (4.1).
By the same procedure is that used in section 3, we will separately

design the feedback gain matricEsand F, for low-order system (2.3) and for

boundary layer system (2.4) which are f&emall parameter.
The results of this section are a extension of [2], [3] works applied to
singular perturbed system.
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Throughout this section we take vector ndui= z|xi| (such asL ¢
1=1

norm in [] In) and the adequate norm for matrix A which is defined by the relation

n

|A| = max Aij|

if{1,.n} i

Assume matrix F, D0™" is chosen such that the control law
1
u(t)= > E x(t) stabilizes the boundary layer system (2.4) and

1
(A +5BF)o)t _
2 at
<B,e

t=>0,p3,210,>0
4.3)
are satisfied.

Also we chose feedback matrix 0™ that the control law
1 1 ~ 1~
U('[) = _E Fz( A22 + E Bze) ' A21X1(t) + E Fxl(t_ T)

stabilize the low order system (2.3) and such that the fundamental matrix of
solution for the closed loop system

(1) <pe
t>0,B3,210a,>0

4.4)
is satisfied.

Theorem 4.1Assume that :

3 1 _ ~| ~ 1 _ _
a, >§Bl(| +§F2A 2ﬁz)FHB(I +§F2A 2282) !

and

1
a,> EBz|Bz||F2|

are satisfied.
Then the control law
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u() =+ RAZB, Fx(t- 1)+ Rt

(4.5)
stabilize the system (4.1) for arbitragy> O sufficiently small.
Besides the solutions of closed loop system satisfy

|X1(t’5)| < [§1e X2| +5| X(z)| + o[l
and

t
0,00~

°[

t
|X2(t, €)| < §ze'ezorzg Xg| + §3e—91cxlt[
where 6, [J(0,1) i = 1,2 such that

(1—el)a1>§BA‘ﬁ+§FQA;1 zﬁf‘

&l+el 2l +lol], 0120

- 1 7t
BQ +§F2A;l 2@

1
(1-8,)a,>2B,[B,|F)

T<—
Ba,

Proof : After taking

1 -1
F= Q +§ FzAzszg
and substituting (4.5) into (4.1) the closed loop is obtained as:

(1) = A, (LE)+ 5B FX (=T )+ (A 458 F )X {te)+
+8,[Bat (9 W)
X, (LE)= ALK, (1) 5B FX (1= TE)+ (A o4 2B F )¢ (1)

+B,[Bar ) ()

The second equation of (4.6) leads to the relation:

(4.6)
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(Azz Bze)txoz :I-t (Azz fz)
X,(t.e)=e ; +§Ie ¢ [A21X1($5)+— B EX(sT.€)]ds

0

1 ; At fz)
*gj' 2 BZ[S tl(l)s—— U@ ds
0
4.7)
The first equation of (4.6) could be rewritten as:

, O 1 1 .
Xl(tie): mll_@lZ-FEBEZ@ 22+§B Eg Amml(t’e)
U U
10 1 1 0
+_ml_@°‘12+_81|:2@‘ 22+_BE§ B, Fx,(t-T1,€)
2 2 2 ]

1 1 1 T
+§°‘12+581F2§<2(t18)+§0‘ 12+§B 52@224'582':2@

*%\21)(1( £ )"'%Bzlel([_T £ %Blsat U(t)—% u(t)

As before in the proof of theorem (3.1) the above equation could be
written in a more explicit form :

X,(t,€) = m——BFQAZZ ZBJ:Z@_A21§(1(t,s)+%§ﬁxl(t—ns)+§A12+%BF§<,‘(t,s)

+Fh, + 2B TR+ 2B F A9+ 2B Fx -t o)l +BlSa() -5 ()

By usmg of constants variation formula we obtain the following relation:

X,(6,8) = KX+ jcp(t—s)BF@(s dsqcp( tX A+, BD A 5) ds

+_([(~p(t - S)@A*lz + E BlB%AZZ + E Bzeg @AZle(S S) + E Bz lel( t- SS) d%"'

+[ot-9B[Sat ¢ 3-3 () ds

(4.8)
By eliminating of X, (t,€) from (4.7) and (4.8) and using integration by
parts (see proof of theorem 3.1):
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22 ZFZ)S ds H—

X,(t,€) = (U +—jcp(t s)BF@(sd&jcp( EX A+ BHE
¥ J;rﬁ(t,s,s)QAmxl(s,sﬁE B,Fx,(s-T,¢ fds J;M(IS)[ Sat(u)s—% (Uls ds

where
1 1 I 22"’E 2E
Iﬁ(t,S,e):@124’581':2@224'55;2@ e(A ey

+J’[cp(t o)m——BF @Azz+ BFQ A21[|+ (p(t -0- T)BFE*

1 1 2% 2;
*@124'581':2@ 22+§BZF2§ e(A ZBZF) Y

M, (t,s,€)=@(t- s)BgH EA; BQ + Mi(t,s€)B,

Direct evaluation gives:

t-s

‘I@(t,s,e)‘ <Pee™ 1§ ee

t-s

- 1 . 71 0 . a8
BQ +§ BFA +$1‘BZ‘SE$ il +y2‘ lee )

‘I@l(t,s,e)( < [D[B1
B

wherep, , $, > 0
Taking into account above evaluations and using [3] :

sat u—— \~A —| U

we obtain:
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~ - 0 o[
L(t,8) <y.e™[x] 0 ] : D
potte) svee ™ b v oo 40
o] m

1 O

E%lﬂxl(s £) +§\BZF1HX1(3—T,aX§Js
1 t 1 ) -1
3R e

X|x, (5T, e)\ds+%\F2\*

t H 1 4 H‘l A D—al(t—s) ~ _azt%s
I@ [ +§F2Azsz g +y15‘52‘§ +y2\Bz\e 5 F,)‘ds
0

We choosed,, 0, [1(0,1) where the conditions in the statement fulfilled.
Under the assmption that T>6,> 0, denote:

p,(T,€) = supe®™|x, (te b
to,T]

t-s

O a1
+91482‘§_a1(t_5) +92‘Bz‘e 0

t

0,0 ,—

p,(T.€) = supe” *|x, (tg)
t[o,T]

From (4.10) it follows that:

0,—€0 |:|
X(te) <$3[m\+4y§\+||¢||]+Q<Te>;%seeﬂl<lﬁ>«~s>+¢ el :

<ol 3orie o oS maaf] e eror
-(GZ_ Gl)t;s GTD 1 t 1 1 T
+HfBJe” ™ 6 o o] ol TS)EE#E A, B

rgBle”" " s

gt

+ SI a$l ‘e(ezaz‘eef’l)g

It is revealed that:
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9101 1

e

1 o] 1 . :
<l 4B B(Te) ] FJ%@“L B el |ee|oua
xelcxltpl(-re)+ |F|S%H+ F 2 SIB |$2 (1 0 )%z(T )

(OteT
Consequently:
0 _ O
0 BeRamp] 0
ou(T, 8)S$3(‘Xg‘+£‘X(2)‘+"¢")+%Bleepﬂ - a-ey P B0
1 1 ]
g g
0,(T.€)
(4.11)

where we defined$, , $. > 0
Other way from (4.7) we have a similar expression
Po(T,€) < B,[xY + $ipu(T,€) + $p,(T )
(4.12)
where §, , $, > 0

Now this proof can be handled similarly that in theorem 3.1 and finally
we find a result for saturating case.

5. Example

Let us consider a simple singular perturbed system [6] with input delay
and saturated control :

& (1) = x,(t)
X, (t) = =X (t) — x,(t) +sat u(t- 1)
(5.1)

If we neglect time delay and saturating contribution a composite control
result :
u(t) = —5x,(f) = x,(1)
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with F, = -1 and k= -2 for a desired eigenvalue spectrunB(— 2/f).
When we assume= 0.2 and the system is saturated at levkithen
(4.5) became :

u(t) = =226t 1) = x,(0)

1
We choose 0, =2, a, =2, Blzﬁ, B,=1

This control stabilizes (4.1) when the inequalities of the theorem 4.1 are

true :
2 J— A+ ( D(- 1)(1))(——)H(1)(1+ (-D(-D(D) 01531
2>§(1)IJH—1=§
Thus, one can conclude that the stability of system (4.10 is controlled by
(4.5).

6. Conclusion

Time - delay and actuator saturation could lead to instability of closed -
loop systems. In this paper two linear feedback laws both state and output
feedback are constructed to that achieve stabilization of singular perturbed
systems with time delay control and position and rate limited actuators. The
sufficient conditions for stability are derived and these inequalities allow us to
evaluate the transient behaviour of the stabilized systems with a simple algorithm.
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