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Abstract
In this study, we propose a new method to control multi-input multi-
output (MIMO) systems optimally. The method is based on a rule-
base derived optimally, which is then interpolated by neural networks.
The ideais originally based on the knowledge-based artificial neural
networks (KBANN) which perform interpolation in the rule space of
an expert system.
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[.INTRODUCTION

The design of controllers for MIMO systems has aways been a
hard problem even for the linear ones [1]. The only prevailing
idea used in the control of linear MIMO system is decoupling,
if possible at all. During the last 10-15 years there have been
serious attacks on this problem by methods that are especialy
constructed to control nonlinear plants, such as neuro-control
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and diding mode control techniques. Just to mention a few of
those studies recently done, one may look a (Nie 1997),
(Shogested and Postlethwaite 1997), (Ahmed and Tasaddug
1998), (Linker and Nyogesu 1996), (Utkin 1970). Most of these
techniques are quite complicated and possibly working for a
particular case only.

The fuzzy control techniques had limited application in
MIMO systems control mainly because of the facts that the
derivation of rules is not easy (usuadly not available) and the
number of rules is too high, depending on the number of
outputs and states.

Ours is a new attempt to this unsettled problem using a rule-
base combined with neura networks. The idea is originaly
based on the knowledge-based artificia neural networks
(KBANN) which perform interpolation in the rule space of an
expert system (Towell and Shavlih 1994). On the other hand
there are interesting details and generdlizations (that we have
developed together with an interesting case study) which have
been discussed in the following sections.

1.1 PROBLEM DEFINITION

It is assumed that a MIMO plant is given with a known
mathematical model as shown below

x(t) = £ (x(t), u(t)) )
y(t) = o(x(t))

where x(t), f(x(t),u(t)T R", u®)i R" and
y(t), g(x(t))T RP . There is a reference signd y, (t)T R

and the system output Y(t) is supposed to track it. Thus the

controller to be developed has the modd the reference tracking
controller structure.
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2.CONTROLLER

It is based on a rule-base and the rules are developed by
making use of the mathematicadl model of the plant in an
optimal sense. That is, since model is available, by partitioning
the sate-space and the output-space and defining a
representative for each partition, one can determine the control
signas (i.e. rules) optimaly, using a suitably chosen cost
function.

21 RULE DERIVATION

Suppose that each component of the state vector has N;,
k

oo fON GO0
components. Then there is a total of N, g O, = rules
i=1 k=1 4]
to be derived. If the system state is initialy at the i-th partition
(the representative of which is x;) and the system's initial and
final or desired stated are at partitions O, and Oy (their
representatives are y, and Yy, respectively), the associated rule
can be found optimally by solving the optima control problem
of minimizing the cost function

S0=2k b b))
L0 Q) vhe Lol Rl)

Subject to the state equation
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x(t) = £ (x(t) u))

x(O) = X
y(t)= g(x(t) o

Usudly H, Q and R are diagona matrices with suitably chosen
diagona entries. The vector function yq (t) can be taken as any
smooth function with

Ye(O) =y, , yst;) =Y,
Ya(0) =y, (t;)=0

In addition, the constraints on u(t), that is, |u; (t)] £ B;
can be easly incorporated in our steegpest descent like optimal
control problem solver (Haykin 1996) .

2.2 NEURAL NETWORK

In order to be able to generate the control inputs so that the system
output trgjectory follows an optimal path between arbitrarily specified
initial and final output states, one has to train a multilayer perceptron-
like neural network [8]. This neural network should accept present
state x(0) and output y(0), and desired output y(t; ) as its inputs and
should generate the optimal control signal u(t) to accomplish the task.
For training, input signals produced by optimal control and initial and
final points of outputs should be used. It is interesting to note that, at
least theoretically, the neural network is a semi-infinite dimensional
one [9], [10] in the sense that it is a mapping between the finite
dimensional input space and the infinite dimensional output space
(i.e., control functions). In practice, the neural network can produce
the samples of the control signal. After training, the neural network
acts as a real-time optimal controller.
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3. CASE STUDY

The dynamic response and control of the steam-jacketed kettle
shown in figure 1 are to be considered. The system consists of a
kettle through which water flows at a variable rate w Ib/time.
The inlet water temperature T;, is 40 °F, which may vary with
time. The kettle water, which is well agitated, is heated by
steam condensing in the jacket at temperature T,. This is a
three-input two output nonlinear system. Flow rate of inlet
water, flow rate of outlet water and flow rate of steam are the
inputs for the system. Temperature and the mass of the water
inside the kettle are outputs.

Water
W T,
T, m
Jacket wall Wy
B Steam
ndensate
&8 — w, T,
VWater
Figure 1

steam-jacketed kettle
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3.1. ANALYSISof theKETTLE

The following assumptions are made for the kettle:

1. The heat loss to the atmosphere is negligible.

2. The thermal capacity of the kettle wall, which separates
stem from water, is negligible compared to that of water in
the kettle.

3. The thermal capacity of the outer jacket wall, adjacent
to the surroundings, is finite, and the temperature of this
jacket wall is uniform and equal to the steam temperature at
any instant.

4, The kettle water is sufficiently agitated to result in a
uniform temperature.

5. The flow of heat from the steam to the water in the
kettle is described by the expression

q= U (Tv - To)
where
g=flow rate of heat Btu/(hr)(ft?)
U=overall heat transfer coefficient, Btu/ (hr) (ft*)(°F)
T,=steam tempreture °F
T,=water temperature °F

The mathematicadl model of the kettle can be obtained by
employing the ideas of energy and mass balance on the water
side firgt, and then on the steam side next. The symbols used
throughout this analysis are defined below:

Ti= Temperature of inlet water. °F

T,= Temperature of outlet water °F

w; = flow rate of inlet water, Ib/time

w, = flow rate of outlet water, Ib/time

w, = flow rate of steam, Ib/time

w, = flow rate of condensate from kettle, [b/time
m = mass of water inside the kettle, Ib

my = mass of jacket wall, Ib

V = volume of the jacket steam space, ft*
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C = heat capacity of water Btu/ ( Ib)( °F)

C.: = heat capacity of metal in jacket wall Btu/ ( Ib)( °F)
A = cross sectiona areafor heat exchange

t=time

H, = specific enthalpy of steam entering, Btu/ Ib

H. = specific enthapy of steam leaving, Btu/ Ib

U, = specific interna energy of steam in jacket, Btu/ Ib
r, = density of steam in jacket, Ib / ft®

Writing energy balance and mass balance equations for water
and steam side we obtain

dT,
mC dto =w,C(T, - T,)+UA(, - T,))+w, (T, - T,)
dm
— =W - W,
dt
dT, dr
rnlcl : :Wv(Hv_ Hc)_ (Uv Hc)v V_UA(TV_TO)
dt dt
dr
V—=w, - w,
dt
So, the state, input and output vectors are, respectively
AT
£°0 6w
_ e u _ A | 7 /T AN
X:é u u= = g;:?og
€T, U e vy S gl
e vu

3.2.SIMULATION RESULTS

In our simulation, the temperature range is [40 °F, 180 °F] and
mass (i.e., the level of the water inside the kettle.)) rangeis [20
Ib, 30 Ib]. There is no need to partition the rest of the states
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because these are related with the temperature of the steam
flowing into the jacket. Since the temperature of the steam
flowing into is constant, single partition is enough for these
states. The temperature range is divided into seven regions and
mass range into two regions. Therefore, we have to produce
7X7x2x2=196 rules from the optimal control procedure and
then use these 196 rules in the training of the neural networks.
Since there are three inputs, three separate neural networks,
each of them have four inputs, two hidden layers having 100
and 50 neurons respectively, and an output layer consisting of
25 neurons, have been constructed.

Temperature of the outlet water

E5 T T T T
o Ry iy Sttt Pt ST 2
o : :
e LrnmnnRen e R =
B 1 i i
=i 5| EERSES S oS === R —
E 1 1 1
& 1 : 1
-45 """""""" ': """"" : """"" : """" -
; ! ' ! !
40 1 1 1 1
0 05 1 1.5 2 25
time
Mass of the water inside the kettle
35 T T T T
| E e v
5 ] | . |
$25__________'_________' ________ : _________ : ________ =
£33 1 1
= l i i
204 R s e PSS e -
15 H ! ! \
0 05 1 145 2 25
time

Figure 1, * desired trajectory, _ trgjectory from neuro-controller
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After training, neural networks work as real time controllers for
the system. For example, if we take the initial values for outlet
water temperature and mass of the water as [20 Ib, 42 °F] and
reference inputs as [30 Ib, 62 °F], the results from neural
networks are given in figures 2, 3, 4 and 5 together with the
results from the optima control procedure. In figure 6, water
temperature in the kettle which is controlled by a neura
network in rea time is given with the desired trgjectory.

IMPLIT 1
100
£
=
5
g
z
s
e
g
L
g2 -
o 0.3 1 145 2 23
time
Figure 2. * output from optimal control, _ output from neural
network.
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Figure 3. * Output from optimal control, _ output from neural
network

It can be seen from figure 1 that the online optima neuro-
controller can bring the system into the desired output states
through a desired trgjectory. The desired trgectories for the
output states are also given in figure 1.

520



Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

INPUT 3
100

fio rde of outlet weater [trtime

time

Figure5
* output from optimal control
_output from neural network

In figure 6, a bell-shaped output state trgjectory for one of the
output states, the temperature of the water inside the kettle, is
given, the neuro-controller achieves to produce control inputs to
follow the given trgjectory which can be seen in figure 6.
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time
Figure 6
* Desired trgjectory
_ Trgjectory produced by the inputs from online neural
network controller

4. CONCLUSIONS

In this work, an optimal neurocontroller has been suggested for
controlling MIMO systems. The ideas presented were checked
by smulation studies on a smple steam-jacketed kettle system.
The preliminary results obtained so far have shown that the
suggested method is worth pursuing further. The only
disadvantage of the method (according to us) is that the number
of rules to be derived in a complex plant control can be
prohibitively high which aso makes the derivation time too
long. On the other hand, the method is very simple and can be
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made adaptive with some effort. Studies are continuing to
generadize the method to cover the disturbance rgection and
robustness problems as well.
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