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Abstract

In this paper we propose the design of a decentralized constant-volume control law for
open-channel networks. The decentralized control law enables us to maintain the stored vol-
umes in the different reaches practically constant, even with variations in users withdrawals,
by acting only on the upstream gate of the reach whose volume variation is detected. Con-
trol law is designed by solving a linear least squares problem in the frequency domain. The
numerical algorithm adopted allows us to impose the desired structure to the feedback gain
matrix by means of the optimization of the controller parameters. It makes the closed-loop
transfer function approach a target function as closely as possible over a specified frequency
range.

1 Introduction

Many irrigation canal regulation methods have been developed in the world. These methods
differ from a country or region to another. They range from the simplest methods, developed
more than 2000 years ago, to the most sophisticated ones developed recently, or under develop-
ment (Reddy, 1992; Sawadogo et al., 1992; Seatzu, 1999). A very detailed classification on the
subject has been proposed by Malaterre in his Ph.D. thesis (Malaterre, 1995). These methods
differ in their choice of: controlled variables, measured variables, control variables and logic of
control.

In this paper we consider the two models deduced from the Saint-Venant equations by Corriga
et al. in (1982; 1983; 1989). The first one, denoted as the reference model, expresses the dynamic
relationships, in terms of transcendental functions, between the gate opening sections and the
corresponding stored water volume variations in the different canal reaches with respect to an
initial reference configuration of uniform flow. The second one, denoted as approximate nominal
model, is obtained from the previous one by means of a series expansion around s = 0. It is a state
variable linear and time invariant model. The state variables and the control variables are equal
to the output and input variable of the preceding model, respectively. In this paper we propose
the design of a decentralized constant–volume control law that enables us to maintain the stored
volumes in the different reaches practically constant, even with variations in users withdrawals,
by acting only on the upstream gate of the reach whose volume variation is detected.

When considering the control of large scale systems, like hydraulic open-channel networks,
decentralized decision making is essential. When dealing with linear state variable models valid
solutions to this problem has been proposed in (Duan, 1994; Lu et al., 1993) where complete
∗E-mail: seatzu@diee.unica.it.
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parametric approaches for the eigenstructure assignment are suggested. However, even if these
procedures are satisfactory from a theoretic point of view, the number of unknown feedback gains
introduces a bound on their effectiveness. On the contrary, in this paper we use a really simple
procedure which, even if it presents some drawbacks with respect to the more sophisticated
ones cited above, it has the considerable advantage that its computational complexity weakly
increases with the dimension of the problem. Furthermore, it is useful even when dealing with
systems whose models are nonrational transfer functions.

In this paper the control law has been designed by means of a numerical algorithm firstly
proposed by Edmund in (Edmund, 1979) and involves the solution of a linear least squares
problem. As it will be shown later, it revealed to be particularly effective in the case at hand.
The main advantage with respect to other procedures based on parameter optimization (Seatzu,
1999) is that it does not require a good initial parameter estimation and no problem related
to local minima occur. So it can be useful when dealing with high dimensional problems.
Furthermore, it enables us to use the more general reference model instead of its low frequency
approximation. The approximate linear model is only used to design satisfactory and compatible
closed loop target functions.

In this paper we also present the results of numerical simulations that demonstrate the
satisfactory behaviour of the system when unknown disturbances occur and the decentralized
control law is implemented. All numerical simulations have been carried out by means of the
commercial SIC software (Malaterre et al., 1997).

2 Dynamic model of the open channel

In this section we recall the fundamental steps in the deduction of both the reference and the
approximate nominal models used for the synthesis of the controller. These models are the
result of much research effort by Corriga et al. (1982; 1983; 1989). The section provides all
the analytical expressions of the basic transfer function matrices and summarizes the main
simplifying assumptions introduced.

2.1 Reference model

Consider the system shown in Figure 1, consisting of a channel of N reaches joined by N + 1
gates, where the last gate (the (N + 1)-st) is fixed and the others are controlled. Let us suppose
that water is conveyed to the first reach from a reservoir with constant level and that the level
downstream from the final reach is also constant.

All the other variables considered, apart those that define the geometry, represent the vari-
ations with respect to a reference configuration, assumed to be of uniform flow.

Taking the Laplace transform of all the variables (we shall use capital letters for the L-
transformed variables), we obtain the following vectors:

H = [HA1 HB1 · · · HAi HBi · · · HAN HBN ]T

where HAi and HBi denote the upstream and downstream water level variations, respectively,
in the i-th reach;

Q = [QA1 · · · QAi · · · QBN ]T

where QAi is the flow rate variation through the i-th gate, which is equal to the downstream
flow rate variation in the previous reach (QAi = QB(i−1),∀i) assuming constant users flow rates,
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Figure 1: Scheme of system composed by a cascade of N canal reaches.

that is, their variations QCi = 0,∀i (they will subsequently be introduced as disturbances);

Λ = [Λ1 · · · Λi · · · ΛN ]T

where Λi is the variation in the i-th gate opening section, and finally,

V = [V1 · · · Vi · · · VN ]T ,

Vi being the water volume variation in the i-th reach.
It has been shown by Corriga et al. (1989) that the dynamics of such a system can be

described by the following equations:

H(s) =
1
s
Ã(s)Q(s) (1)

Q(s) = ΓΛ(s) + ∆H(s) (2)

Ã(s) being a 2N × (N + 1) matrix with the following structure:

Ã(s) =



A11(s) A21(s) 0 0 · · · · · · 0
A31(s) A41(s) 0 0 · · · · · · 0

0 A12(s) A22(s) 0 · · · · · · 0
0 A32(s) A42(s) 0 · · · · · · 0
...
0 · · · · · · A4(N−1)(s) 0
0 · · · · · · A1N (s) A2N (s)
0 · · · · · · A3N (s) A4N (s)


.

The expressions of Aji(s) are given in (Seatzu, 1999).
The (N + 1)×N matrix Γ and the (N + 1)× 2N matrix ∆ are written as:

Γ =


a1 0 · · · 0
0 a2 0 · · · 0
...
0 · · · aN
0 · · · 0

 , ∆ =


c1 0 · · · 0
0 b2 c2 0 · · · 0
0 0 0 b3 c3 0 · · · 0
...
0 · · · 0 bN+1

 .
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The constants ai, bi and ci are coefficients of the Taylor series expansion of the laws governing
flow through the i-th gate (which depend of course on the reference situation). They are a
function of the discharge coefficient η. Their expressions are given in (Seatzu, 1999).

To obtain an expression of equation (1) that also holds for s = 0, it can be rewritten as

H(s) = A1(s)V (s) +A2(s)Q(s) (3)

where A1(s) and A2(s) are given in (Seatzu,1999). Substituting equation (2) into (3) gives

Q(s) = [I −∆A2(s)]−1∆A1(s)V (s) + [I −∆A2(s)]−1ΓΛ(s)
= A3(s)V (s) +B3(s)Λ.

(4)

Left-multiplying both sides of equation (4) by the following N×(N+1)-dimensional operator:

I∗ =


1 −1 0 · · · 0
0 1 −1 0 · · · 0
...
0 · · · 0 1 −1


gives

I∗Q(s) = sV (s) = I∗A3(s)V (s) + I∗B3(s)Λ(s)

and setting
Ã(s) = I∗A3 B̃(s) = I∗B3(s)

we get
sV (s) = Ã(s)V (s) + B̃(s)Λ(s)

from which the ’exact’ transfer matrix is obtained:

G(s) = [sI −A(s)]−1B(s) (5)

whose elements are transcendental functions of s.

2.2 The approximate nominal model

To obtain an approximate model of the channel dynamics of the form

v̇(t) = Av(t) +Bλ(t) (6)

where matrices A and B are constant, equation (1) can be expanded in Taylor series, the
elements of Ã(s) being analytic functions. Since the model needs to hold mainly in the low-
frequency range, where the most significant phenomena take place, s = jω = 0 is taken as initial
point. By truncating the series expansion to the second term, equation (1) becomes

H(s) ∼=
1
s

[
Ã(0) + s

(
d

ds
Ã(s)

)
s=0

]
Q(s)

=
1
s
Ã(0)Q(s) + Ã

′
(0)Q(s).

(7)

As shown in (Corriga et al., 1989) equation (7) can be rewritten as

H(s) ∼= A1(0)V (s) + Ã
′
(0)Q(s). (8)
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Equations (2) and (8) define the approximate model.
Following the same procedure as for the reference model, the expressions for the constant

matrices A and B of equation (6) are obtained:

A = I∗[I −∆Ã
′
(0)]−1∆A1(0)

B = I∗[I −∆Ã
′
(0)]−1Γ

and the corresponding transfer matrix is

GA(s) = [sI −A]−1B (9)

whose elements are rational functions of s, which is an approximation of (5).
Finally, taking into account the variations of the users flow rates qC , equation (6) can be

rewritten as:
v̇(t) = Av(t) +Bλ(t)− IqC(t) (10)

where I is the N order identity matrix.

3 Edmund’s algorithm

We now describe the numerical algorithm proposed by Edmund (1979) and clearly summarized in
(Maciejowski, 1989). Suppose that our plant is represented by transfer function matrix G, with
l columns (inputs) and m rows (outputs), and that we are to design a controller with transfer-
function matrix K (with m columns and l rows). Let the closed-loop transfer function actually
achieved by a controller K be T = GK(I+GK)−1, and let the ’target’ transfer function which
we would like to achieve be T t. Corresponding to T t, there is a ’target’ controller Kt such that

GKt = T t(I − T t)−1. (11)

We define an error function
E = T t − T . (12)

Then it can be shown, with a little manipulation, that

(I − T )(GKt −GK)(I − T t) = E. (13)

If we suppose that ‖E‖ is sufficiently small, which will be the case if K is sufficiently close to
Kt, then, by replacing I − T by I − T t in (13), we obtain

(I − T t)(GKt −GK)(I − T t) u E (14)

since

(I − T )(GKt −GK)(I − T t) = (I − T t)(GKt −GK)(I − T t) +O(‖E‖2). (15)

Now let us write
K(s) =

1
d(s)

N(s) (16)

where d(s) is a common-denominator polynomial which is assumed to be known, and N(s) is a
matrix of polynomials of known degrees but with unknown coefficients. Finally, we define

L(s) = I − T t(s) (17)
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M(s) =
1
d(s)

L(s)G(s) (18)

and
Y (s) = L(s)G(s)Kt(s)L(s). (19)

Then (14) becomes
Y (s) uM(s)N(s)L(s) +E(s). (20)

The noteworthy features here are that the unknown coefficients in N(s) appear linearly in this
expression, that M(s), L(s) and Y (s) are well known and can be evaluated at particular values
of s when required and, hence, that the problem of finding N(s) which minimizes

‖E‖22 =
∫ ∞
−∞

tr[ET (−jω)E(jω)]dω

is a linear least-squares problem if the approximate equality in (20) is replaced by exact equality.
To put (20) into the more familiar standard form in which linear least-squares problems are

usually seen, we need to ’stack’ the columns of Y , N and E on top of each other. For this
purpose we define their columns by

Y (s) =
[
y1(s) · · · ym(s)

]
(21)

N(s) =
[
n1(s) · · · nm(s)

]
(22)

E(s) =
[
e1(s) · · · em(s)

]
. (23)

We also need to use the ⊗ notation for the Kronecker or tensor product of two matrices:
if P̄ has p rows and q columns, and Q̄ has r rows and s columns, then P̄ ⊗ Q̄ is the pr × qs
matrix:

P̄ ⊗ Q̄ =


p11Q̄ p12Q̄ · · · p1sQ̄
p21Q̄ p22Q̄ · · · p2sQ̄

...
...

...
pr1Q̄ pr2Q̄ · · · prsQ̄

 . (24)

In this notation, (20) can be written as
y1(s)
y2(s)

...
ym(s)

 u [LT (s)⊗M(s)
]

n1(s)
n2(s)

...
nm(s)

+


e1(s)
e2(s)

...
em(s)

 . (25)

Remember that ni(s) represents a vector of polynomials:

ni(s) =
[
n1i(s) · · · n1i(s)

]T (26)

and suppose that
nij(s) = ν0

ijs
p + ν1

ijs
p−1 + · · ·+ νpij (27)

for some positive integer p, assuming for notational convenience that each νij has the same
degree. This is not a real restriction, since νxij = 0 is allowed, and can be forced if desired.
Then {νxij} is the set of controller parameters to be optimized; if each nij has degree p, there
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are lm(p + 1) of them. We need to introduce one more new notation: let σ(s) be the matrix
(with lm rows and lm(p+ 1) columns)

Σ(s) =


sp sp−1 · · · 1 0

sp sp−1 · · · 1

0
. . .

sp sp−1 · · · 1

 (28)

then  n1(s)
...

nm(s)

 = Σ(s)ν (29)

where
ν =

[
ν0

11 ν1
11 · · · νpml

]T
. (30)

so if we let
X(s) =

[
LT (s)⊗M(s)

]
Σ(s) (31)

%(s) =
[
yT1 (s) · · · yTm(s)

]T (32)

and
ε(s) =

[
εT1 (s) · · · εTm(s)

]T (33)

then (25) becomes
%(s) uX(s)ν + ε(s) (34)

which is in a standard form; %(s) is a known matrix, ν is a vector of unknown parameters and
ε(s) is a vector of ’errors’.

To obtain a practical algorithm, we need to evaluate %(s) and X(s) at a number of points
on the imaginary axis, say {s = jωi : i = 1, 2, · · · , µ}, and approximate ‖E‖2 (which is the same
as ‖ε‖2) by

‖E‖22 u
µ∑
i=1

εT (jωi)ε(jωi). (35)

Assembling data from all these points, we obtain %(jω1)
...

%(jων)

 u
 X(jω1)

...
X(jων)

ν +

 ε(jω1)
...

ε(jων)

 . (36)

The standard least-squares solution to this would be (Lawson et al. 1974):

ν̂ =

[ XT (−jω1) · · · XT (−jωµ)
]  X(jω1)

...
X(jωµ)



−1

×

[ XT (−jω1) · · · XT (−jωµ)
]  %(jω1)

...
%(jωµ)




(37)

but in general this would give complex parameter values. A solution to this problem can be
obtained by means of the following lemma:
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Lemma 1. If Y = Xθ+E, the value of θ which minimizes ‖E‖2, given X and Y , and subject
to the constraint Im{θ} = 0, is

θ̂ =
[
Re
{
XHX

}]−1
Re
{
XHY

}
. (38)

With the aid of this lemma we obtain the optimal real parameters:

ν̂ =

Re
[ XT (−jω1) · · · XT (−jωµ)

]  X(jω1)
...

X(jωµ)




−1

×Re

[ XT (−jω1) · · · XT (−jωµ)
]  %(jω1)

...
%(jωµ)


 .

(39)

The validity of this algorithm depends on the validity of (14), which in turn depends on the
size of ‖E‖2 obtained with the parameter vector ν̂.

It is imperative that the actual algorithm employed solves (36) by using a numerically stable
procedure and does not use (39), since in the neighborhood of the true solution the matrix

Re

[ XT (−jω1) · · · XT (−jωµ)
]  X(jω1)

...
X(jωµ)




approaches singularity. A numerically stable algorithm is obtained as follows. In the notation of
Lemma 7.1, let X = XRe + jXIm, Y = Y Re + jY Im, then θ̂, defined by (38), is also obtained
as the least squares solution of the equation[

Y Re

Y Im

]
=
[
XRe

XIm

]
θ +

[
ERe

EIm

]
.

This can be solved in a numerically stable way by using the Householder transformation and
QR factorization (Stoer et al. 1992).

4 Applicative example

The procedure was applied to a two-reach canal, corresponding to the general scheme shown in
Figures 1-2, with the following characteristics (Corriga et al., 1989):

• length of the first reach: l1 = 4000m;
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• length of the second reach: l2 = 5000m;

• canal bottom slope: p1 = 0.0003;

• water level depth in upstream reservoir measured from the canal bottom in the upper end
section: hM = 2.5m;

• water level depth in downstream reservoir measured from the canal bottom in the lower
end section: hV = 1m;

• trapezoidal cross section (see Figure 2) with w = 1.7m, θ = 45o;

• constant opening section of the third gate: λ3 = λ03 = 2.41m2;

• discharge coefficient: η = 0.6;

• roughness coefficient: γ = 0.36.

The nominal configuration of uniform flow is characterized by the following levels and discharge
values:

• water level depth in the 1-st reach: h01 = 1.70m;

• water level depth in the 2-nd reach: h02 = 1.20m;

• flow rate in the 1-st reach : q01 = 5.94m3/s;

• flow rate in the 2-nd reach : q02 = 3.02m3/s;

• user flow rate at the 1-st reach lower end: q0c1 = 2.92m3/s;

• user flow rate at the 2-nd reach lower end: q0c2 = 0.15m3/s;

• opening section of the 1-st gate: λ01 = 2.50m3/s;

• opening section of the 2-nd gate: λ02 = 1.61m3/s.

In the following subsection we show how the above numerical procedure can be satisfactorily
applied to design decentralized controller.

4.1 Decentralized control law

As already specified in the previous section, the effectiveness of the Edmund’s algorithm depends
on the choice of the target closed loop function which should be compatible with both the model
and the feedback gain matrix structure. At this purpose, the target closed loop matrix function
T t has been designed by means of the LQR technique (Kwakernaak, 1972) applied to the linear-
time invariant model (6). In fact, the feedback gain matrix Kt has been obtained as the solution
of the following linear optimization problem by solving a Riccati equation (Kwakernaak, 1972):

minJ =
∫ ∞

0
[v(t)TQv(t) + λ(t)TRλ(t)]dt

s.t.
v̇(t) = Av(t) +Bλ(t)

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

588



where

A =
[
−1.50 0.56

1.10 −1.90

]
· 10−4, B =

[
1.81 −0.92
−0.33 1.31

]
,

Q =
[

1 0
0 v10/v20

]
, R = 50000.

The structure of Q has been chosen such that the volume variations in each reach, with respect
to the initial volume, are weighted in the same manner. R has been assumed to be scalar so
as to control all the gates with the same energy. R = 50000 is an appropriate numerical value
determined by a trial and error procedure. In such a way we obtained

Kt =
[
−4.31 −1.12

0.91 −4.74

]
· 10−3

and
T t(s) = GA(s)Kt(I +GA(s)Kt)−1

where GA(s) = (sI −A)−1B.
Now, we want to design a proportional decentralized control law

λ(t) = Kv(t)

by applying the Edmund’s algorithm. Therefore we assumed d(s) = 1 and

Σ =


1 0
0 0
0 0
0 1

 .
In such a way all the off-diagonal elements of the feedback gain matrix are constrained to be
zero.

Since the most important hydraulic phenomena occur in a low frequency range, we assumed
w1 = 10−9 and wµ = 10−2. We further evaluated that a good choice for µ is 250.

In such a way the diagonal gain matrix is

K =
[
−6.91 0

0 −4.42

]
· 10−3,

while the corresponding closed loop transfer matrix is

T (s) = G(s)K(I +G(s)K)−1,

where G(s) is defined by relationship (5).
To evaluate the effectiveness of the applied procedure we compared the Bode diagrams of all

the elements of T and T t. The results of such a comparison are reported in Figure 3. As it can
be clearly seen, the Bode diagrams are really close even in a wider frequency range than that
considered for the controller parameter identification procedure.

In this subsection we also present the results of a numerical simulation that demonstrate
the good performance of the system in the presence of unknown disturbances, when the above
decentralized control law is implemented. All numerical simulations have been carried out using
the commercial SIC software (Malaterre et al. 1997), a completely nonlinear model developed
at Cemagref (Montpellier, France).

The unknown disturbances are those given in Figure 4. The results of simulations are shown
in Figure 5: a) shows the volume percentage variations; the gate opening variations are shown
in b). As it can be seen, the system’s behaviour is rather satisfactory.
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Figure 3: Bode diagrams of all the elements of T and T t.
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Figure 4: Unknown disturbances.
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Figure 5: Results of the numerical simulation.

5 Conclusions

In this paper a decentralized constant-volume controller has been designed by solving a linear
least squares problem in the frequency domain. The solution has been obtained by means of
the Edmund’s algorithm which enables us to impose the desired structure to the feedback gain
matrix. The controller parameters are evaluated so as to make the closed-loop transfer function
approach a target function as closely as possible over a specified frequency range.

The main advantage of this procedure is that it does not require a good initial parameter
estimation and no problem related to the local minima occur. Finally, it allows us to use a more
general model than that considered in previous approaches.

A comparison between the transfer function elements of the target and of the resulting closed
loop transfer function is proposed.

Finally, numerical simulations, carried out by means of the commercial SIC software, demon-
strated the satisfactory behaviour of the system when the proposed decentralized control law is
implemented.
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