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Abstract
The Self-Organizing Map Neural Network is used in a supervised way to represent a sensor-
actuator mapping. The learning of the controller assumes no prior information, but only
reward/failure signals that are produced by an evaluation criterion. The evaluation criterion used
is based on the low-pass filtering of the gradient of a reward function and the local storing of the
filtered gradient value. The control method is tested in vibration isolation of a flexible spray
boom used in agriculture for pesticide application. The Neural Network learns to stabilise the
boom on-line without any prior information and with a very high performance.
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1 Introduction

Many mechanical structures are subjected to vibrations that can lead to damage or to fatigue and thus
shorten the operational lifetime of the structure. Passive vibration isolation gives poor results because of
low selectivity. Active vibration isolation is much more performant. However, model-based techniques
require persistent excitation signals. In practice persistent excitation is rarely available during the
operating condition of a system. An alternative is to develop an algorithm that can discover the control
actions by itself. The only source of information in this case is a “reward function” which specifies at a
given moment how well the controller has performed. For this algorithm to be executed, the system must
now create at each learning step the control action, as shown in (Ritter et al., 1992). In the absence of
any further information a stochastic search can be performed in the space of the available control values
with the aim to maximize the reward received at each step. Performance based partitioning of the state-
space is achieved. Current sensor, actuator and target sensor values in a vectored form become
associated with next step control actions derived from the maximisation of a certain reward function.
For continuous state-spaces, the state-action look-up table refers to a quantization of the states of the
system through the use of an adaptive algorithm. Basically two types of learning are present here:

i)  the adaptation of the partitioner, and
ii)  the reinforcement learning of the controller, as shown in (Hermann and Der, 1995).
The determination of quantized states, which are internal states in the full control problem, represents an
instance of the hidden state problem, as shown in (Das and Mozer, 1994). For discrete actions, an ideal
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partition of the continuous state space consists of domains with each having a unique optimal action for
all states belonging to that domain. In this way, an optimal partition is defined by the use of a policy
function that assigns states to actions. In the current paper, the partitioning is performed by using a
learning vector quantizer, as shown in (Ritter et al., 1992). In such a case, the cells are defined by
reference vectors in the input space. The distribution of the reference vectors is usually determined by
statistical properties of the vector quantizer’s inputs, as shown in (Ritter and Schulten, 1986). Thus,
around the stable states of the controlled system, fine-grained partitions are formed.

In the present paper, the learning rule for the vector quantizer is based on Kohonen’s Self-Organizing
Feature Map, as shown in (Kohonen, 1995), which possesses interesting noise filtering properties. The
Self-Organizing Map commonly referred to as SOM, first presented in (Kohonen, 1982), is a neural
network (NN) that converts complex, nonlinear statistical relationships between high-dimensional data
into simple geometric relationships. The determination of quantized state cannot by itself represent
input-output relationships. By extending the SOM with output weights that store the output part of a
mapping can provide the original algorithm with the ability to approximate continuous relationships.
Such a network has been introduced earlier, in (Ritter et al., 1992). In the current paper, for the first
time, a partitioner based on the SOM is learned simultaneously with a reinforcement signal based
learning controller. A novel training algorithm is presented for updating the parameters of this network.
Then, this training algorithm is successfully applied in the on-line stabilisation of a flexible agricultural
spray boom.

2 Controller and Partitioner Learning

The Self-Organizing Map is a neural network (NN) that maps signals (x) from a high-dimensional input
space (V) to a one- or two-dimensional discrete lattice of neuron units (A). Each neuron stores a weight
(ws). The map preserves topological relationships between inputs in a way that neighbouring inputs in
the input space (V) are mapped to neighbouring neurons in the map space (A). When extended with
output weights (ys) it can learn in a supervised way the input-output (I/O) mapping  y = f (x), where y
belongs to the output space (U). This association is shown in Figure 1.

Output
Space
(U)Neural

lattice
(A)

Input
Space
(V)

 Figure 1. Association of input-output values by using a Self-Organizing Map
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The association of situation-action pairs is based on a reward/punishment scheme where a reinforcement
signal is produced. A two-state reinforcement signal (+1 or 0) is produced after an evaluation of the
result that a certain action has brought. In a control situation when a system is driven by a certain
control sequence:

u = (u(k-1),u(k-2),...,u(k-n))T (1)

And the response of the system is measured:

y = (y(k),y(k-1),...,y(k-n))T (2)

where the desired next step output is denoted as yd (generally a vector, but in the example with the boom
it is assumed to be a scalar), the state vector that is used as input to the state quantizer (SOM) is
constructed as follows:

x = (yd
T, yT, uT)T (3)

Subsequently, these state vectors are clustered by the SOM. The control values u(k) are stored as an
output weight through the training procedure of Kohonen’s algorithm, as shown in (Kohonen, 1995). In
the case of MIMO systems, the data can be concatenated in the same vector. The use of SOMs to
cluster concatenated sequential data has already been attempted by Kangas (1990). A scalar reward
function that determines the association of states to actions can be defined as

R(k) = -(y(k)-yd)
T Q (y(k)-yd) (4)

Where, with y(k) the vector of current (at t=k) output measurements is defined, yd is the vector of
current target output values, and Q is a positive definite matrix (in the flexible boom application Q is a
unity matrix). A policy can be based on this reward function by calculating the difference between two
consecutive values of the reward function, thus approximating the first derivative of the reward function
with respect to time (Ts is the sampling period):

R    
T

1)R(kR(k)

T

5

ss

&≅−−= (5)

In Figure 2 the evaluation is performed by the look-up table block and produces a firmness signal that
modifies the state quantizer. It is clear that every increase of ∆R is desirable, since the maximum target
value of the reward function (R) is zero. However, a maximisation of R over a number of steps is better
because temporary variations of the reward function can be due to disturbances and not caused by the
control sequence. For this reason every neuron stores a moving average of the increase 5  of the
reward function R. This moving average is denoted as R∆ .
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Figure 2. Scheme of learning problem of combined controller and partitioner learning 

In the presented method when a neuron is selected and a control action produces an increase over the
stored moving average for this specific neuron, a positive reinforcement signal is produced indicating
that this neuron and its immediate neighbours are allowed to learn the state-action pair that has led to
the positive reinforcement signal. But since only increases of the reward function that are greater than
the stored moving average for each neuron lead to learning, a continuous improvement of the partitioner
and the look-up table of control-action pairs is achieved. The moving average of the increases of the
reward function can be obtained for time-step t=k:

 ∆ ∆ ∆ ∆R R R R
k k k k

= + −− −1 1
γ ( ) (6)

where γ  is a small positive constant. Note that the momentary value of the increase is denoted without

brackets. After the update, the new moving average is stored in the activated neuron. The whole concept
has to do with supplying to each neuron a bias term to avoid overtraining. The learning algorithm for
the input and output weights is derived from the original Kohonen algorithm, as shown in (Kohonen,
1982):

∆ ws 
(in)

 = εh(x-ws
(in) ) (7)

∆ ws 
(out)

 = ε´h (́u-ws
(out) ) (8)

Where ε, ε  ́and h, h  ́are the learning rates and the neighborhood kernels respectively. With ws
(out) the

output weight ys is denoted. It must be noted that in the updating equations the winning neuron is
denoted with s, i.e. the one that has the smallest distance from the input x. However the updating
equations apply to the lattice neighbours of the winning neuron at every updating step. The
neighbourhood kernels used have the form of a Gaussian distribution like:

h = exp(- x-ws
2 /σ2) (9)

Where .  denotes the Euclidean norm and σ denotes the variance of the Gaussian distribution. In
either case, the applied control action that is applied, is constructed by two components:

u(k) = ws 
(out)  - as(y(k)-yd ) (10)

Where as is a small positive value (reduced slowly to a final much smaller value). This allows rapid
improvement initially and allows a small margin for adaptation after the partitioner and look-up table
have been learned. The value of control action u(k) from equation (10) is used for updating the output
weight of updating equation (8) only in case the reinforcement signal is positive. Such updating of the
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output weights ensures that the controller improves continuously. The updating equation for the gain
factor as is:

∆ as  = ε’’h’’(a-a s ) (11)

In equation (11), ε’’ and h’’ are the learning rate and the neighborhood kernel respectively. By setting
ε’’ very small (in the example of the boom it is set equal to 0.005) the “exploration step” will converge
to the final value denoted as (a) slowly enough to allow for satisfactory learning of control actions. If
the final value (a) is set different than zero some residual plasticity is allowed.

Alternative ways of producing the control action of equation (10) include the utilisation of Local Linear
Mappings as shown in (Moshou et al., 1997), or "fuzzy" interpolation of outputs of neighbouring
neurons.

3 Flexible Boom Stabilisation

Flexible spray booms are used in the agricultural domain for pesticide application. They usually consist
of lightweight beams on which spraying nozzles are mounted. When driving a tractor over a field, the
unevenness of the soil causes the flexible boom to vibrate, leading to under- and over-application of
pesticides, thus resulting in environmental pollution. Stabilisation of flexible spray booms is needed in
order to achieve a uniform spraying liquid distribution and avoid environmental damage. The learning
algorithm of section 2 is applied in the on-line vibration isolation of a 12th order linearised model of a
flexible spray boom (total length of 12m tip to tip). The test set-up from which the model has been
obtained is shown in Figure 3. The linearised model is of the form:

&x Ax Bu Ew

y Cx Du Fv

= + +
= + +

(12)

The E matrix is the disturbance input (w) distribution matrix and v represents sensor noise. The direct
feedback (D) matrix appears because of the collocation of the sensor and the actuator (y, u are both
accelerations). For the simulations that are presented, only translational motion in the horizontal plane
of the flexible boom is considered (SISO system). In Figure 3 is shown that the horizontal acceleration
caused by translational motion is measured by the accelerometer that is attached on the boom.

The disturbances used are the accelerations resulting from a standardised field track as shown in
(Norme Internationale, 1979), fed through a model of the tractor wheels and a model of a tractor on
which the spray boom has been attached. The excitation signal runs for 23 sec and is shown in Figure 4.
The tractor was supposed in the model to run with a constant speed of 5 km/h. The excitation signal of
Figure 4 is used as a disturbance input (w) to the system. The system is discretised (Tustin transform)
and integrated with Runge-Kutta of fifth order. This method of simulation is preferred because different
sampling rates are used, and so effects of latency can be assessed realistically. The uncontrolled
response of the system is shown in Figure 5. The sensor (accelerometer) and electro-hydraulic actuator
are supposed to be collocated at 0.25m from the connection joint of boom. The input of the network
consists of vectors of delayed input and output values of the system (accelerations) of a certain length
(in this case two, and yd=0):

x = (yd,y(k),...,y(k-n),u(k-1),...,u(k-m))T (13)
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Figure 3. Set-up for spray-boom measurements (sensor and actuator collocated)
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Figure 4. The acceleration profile of the standardised track used as input to the flexible boom
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Figure 5. The response of the system when excited by a standardised track
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Figure 6. Controlled against uncontrolled system response (thick line: controlled)

The entire systematic procedure of section 2 has been followed. The values of the parameters (ε, σ) in
the updating equations (7), (8) and (11) were chosen to decrease exponentially with time from a large
initial to a small final value. The result of following the above on-line learning of control actions is
shown in Figure 6. From Figure 7 it is evident that the peaks have been reduced by 20 dB. The
evolution of the reinforcement signal through the first sampling steps (at a sampling rate of 1 kHz) is
shown in Figure 8. Most of the learning occurs during the first 0.2 sec, thus resulting in a very small
acceleration from the very beginning of the training session.
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Figure 7. Controlled against uncontrolled frequency response of the system
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Figure 8. The reinforcement signal during the initial 0.5 sec of the training session
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Figure 9. The SOM grid at the end of the learning period
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A way of visualising the spatial structure of the representative vectors that the Self-Organizing Map has
stored is by plotting these vectors in the case that they are also two-dimensional like the SOM itself. In
the case of a higher dimension of the input data the geometrical relations of the representative vectors
are difficult to visualise. As is evident from Figure 9, in which the first two weights of the map are
plotted, there is a very clear ordering at the end of learning. These two weights are representative values
of two consecutive controlled acceleration values that have emerged through the learning process of the
SOM. It has to be mentioned that during learning the SOM tends to represent the states that occur more
frequently. However because of the bias that is introduced through the moving average of the reward
function increase in the updating policy the states that are visited tend to be equiprobable. An important
aspect of the final stage of the SOM is that the states around the diagonal cover a wider range. This
follows from the cooling schedule of the updating equations (7), (8); i.e. the learning rate assumes a
very small final value.

4 Conclusions

A new neural network method for disturbance suppression of dynamical systems has been presented.
The main advantage of this method is the local representation of the controller and state partitioner
which are learned simultaneously by reward and failure signals. The whole learning scheme doesn’t
need any prior information but only output measurements of the controlled system. Local updating
algorithms assure much faster convergence than global updating algorithms. The method is generally
applicable from the point of view that it is not based on a model of the system under control. It only
relies on a reward function and the moving average of locally stored rewards over time. It can be used
equally well for on-line control of linear and nonlinear systems or systems with changing parameters.
The new method presented can be applied in the automotive (vehicle suspensions) and the aerospace
domain (flexible space structures), in systems with uncertain or complex dynamic behaviour.
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