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Abstract

The problem of optimal control of stochastic discrete linear time-invariant uncertain systems on finite time
interval is formulated and partially solved. This optimal solution shows that previously published adaptive
optimal control schemes and indirect adaptive control schemes do not need heuristics for their rationalization.  It
is shown that these schemes are suboptimal causal approximations of the optimal solution. The solution is
achieved by the introduction of the State and Parameters Observability form - SPOF. This representation of linear
time-invariant systems enables application of tools from the LQR-LQG theory of control and estimation of
discrete linear time-varying systems. The optimal solution is exact and non causal. It is composed of a causal
optimal estimator of the augmented state composed of the state of the system and the parameters and of a
non-causal controller. The solution shows that certainty equivalence principle applies for the state and
parameters, but the separation does not apply. A causal suboptimal controller, using certainty equivalence, is
proposed as an ad-hoc solution. This controller needs only the  knowledge of the order of the system. The scheme
is bibo stable for sufficiently low noises. As an example, the proposed algorithm, is applied to an unstable
nonminimum phase model of a dynamic vehicle.

1. Introduction

Optimal control is a well established theory, in general, and the optimal control of deterministic and
stochastic linear known systems, the LQR-LQG theory [1], in particular.  The treatment  of control of
uncertain systems is covered by the adaptive control theory.  The main goal of the "first generation"
adaptive controllers has been to maintain stability and performance in terms of the steady state
tracking error. The transient, e.g., the performance on finite time interval, is not covered. Lately, the
issue of optimizing the performance has emerged. The problem of optimal control of uncertain
stochastic systems has been posed and solved for infinite time interval and for the case when the
system's uncertainty set is finite [2]. The problem of adaptive optimal control on finite time interval
has been posed and a so called "candidate adaptive controller" is presented [3]. A control of
continuous deterministic uncertain system based on the state and parameters canonical form is dealt
with in [4, 5]. Discussion of existing various adaptive algorithms is presented in [5] and comparison
of the performance of state of the art adaptive algorithms in noisy environment on a common basis is
presented in [12,21].
The objective of this paper is to formulate and partially solve the optimal control of uncertain discrete
stochastic system on finite interval for the case when the system's parameters are treated as a random
vector and the uncertainty set is specified by its mean and covariance. The solution is achieved by the
introduction of the State and Parameters Observability Canonical form [6]. This new canonical
representation of linear time-invariant systems enables application of tools from existing LQR-LQG
theory of control and estimation of discrete linear time-varying systems. The solution is exact and
noncausal. It is composed of the optimal estimator of the augmented state composed of the state of the
system and the parameters, and of the optimal controller. The estimator is causal. The controller is
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non-causal as it needs the future outputs and inputs to the plant. This shows the necessity of
parameters identification for achieving the goal of optimal control of uncertain stochastic systems.
This optimal solution shows that previously published adaptive optimal control schemes[3] and
indirect adaptive control schemes [7] do not need heuristics for their justification.  It follows that
these schemes are suboptimal causal approximations of the optimal solution. Moreover, a comparison
between the presented algorithm and state of the art adaptive control algorithms on a common basis
for stochastic continuous first order system as presented in [12] demonstrates the superiority of the
presented algorithm over other adaptive control algorithms for the control of uncertain stochastic
systems.
In this paper causal approximation of the optimal noncausal solution based on the SPOF form and the
certainty equivalence principle is presented. The optimal adaptive control algorithm is presented. The
asymptotic convergence properties of the algorithm are analyzed.  Examples that demonstrate the
performance are presented.

2. Statement of the problem

The following is the optimal control problem of uncertain stochastic discrete linear time-invariant
systems. We consider the nth order discrete stochastic linear time-invariant single-input single-output
system

x t Ax t bu t w t x t x

y t cx t w t t t
o o

o

( ) ( ) ( ) ( ), ( ) ,

( ) ( ) ( ),

+ = + + =
= + ≥

1 1

2

 (2.1a)
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; cT, b�R
nx1

; x(t)�R
nx1

 is the state; and y(t)�R
1
 is the output;

w
1
(t)�R

nx1
is the process driving noise; and w

2
(t)�R

1
 is the output measurement noise. The noises are

mutually uncorrelated, zero mean, white stochastic sequences, i.e.

  E[w
1
(t)]=0, E[w

2
(t)]=0, E[w

1
(t)w1

T(�)]=V1�t�� �[w
2
(t)w

2
(�)]=V2�t�

and V
1
�R

nxn
 , V

2
�R

1
  are given. The initial state xo is a random vector, with given mean xo and

covariance Q
o
. We assume that the system is observable and without loss of generality that (A,b,c) is
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The unknown parameters are � = [a1 a2 ... an b1 b2 ... bn]T � R2n and � is a random vector with

mean θ and covariance ��. The initial conditions, the parameters and the stochastic processes are
mutually uncorrelated.
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The optimal control of uncertain stochastic discrete linear time-invariant systems  is the problem of
finding the functional

u t y t t t t to o f( ) f[ ( ), ], ,= ≤ ≤ ≤ ≤τ τ (2.2)

such that the criterion

J E y t Gy t y t Q y t u t Ru tc f
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= + +
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( ) ( ) [ ( ) ( ) ( ) ( )] (2.3)

is minimized subject to the difference equation constraint (2.1),  for given terminal time, t
f
, and such

that u(t)�U, where U is the admissible input set. The expectation is taken with respect to the
stochastic sequences, initial conditions and the vector of parameters.

3. Simultaneous State and Parameters Observability

In this section we consider the problem of simultaneous state observability and parameter
identification of single-input single-output stochastic linear time-invariant system.
In this paper simultaneous state and parameters estimation-identification is performed by the State
and Parameters Observability form - SPOF. This form has been introduced for ARMA systems in [8,
9, 10] and in [5, 11, 12] for state space system model. Moreover, it is rederived here, that for
stochastic systems where the parameters are random variables this estimator is the optimal state and
parameters estimator. The SPOF is rederived here. The proof of optimality of this estimator is
presented in [23].

3.1 The States and Parameters Observability Form

We consider the nth order stochastic discrete linear time-invariant single-input single-output system in
the observer canonical form (2.1). In this section we derive a  time-varying canonical representation
of the linear system (2.1). This canonical form is called the states and parameters observability form -
SPOF. To derive it, let us choose (Ao,co) in the Brunovsk� form, namely we have

[ ]A co o=
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� �, (3.1)

and (Ao, co) is observable. Then, there exist h � R
nx1

 such that  A = Ao + hco  [13, 14]. We have

h=-[a1 a2 ... an-1  an]T. Further we can write

x(t+1) = (Ao + hoco)x(t) + �h[ y(t)-w2(t)] + bo u(t)+ �b u(t) + w1(t) =

(3.2)
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= (Ao+hoco)x(t)+�hy(t)+�bu(t)+bou(t)+w1(t)-�hw2(t)

where  E[h]=ho, E[b]=bo, �h=h-ho and �b=b-bo. Furthermore, we have time invariant system, so that

formally we have

δ δ δ
δ

h(t +1) =  h(t), h(t ) =  h - h ,

db(t +1) =  db(t), b(t ) =  b - b
o o

o o,
(3.3)

However, in any practical system the parameters are not strictly constants. There are thermal drifts,
drift of the setting points or the parameters are slowly time varying. Therefore, in this work we model
this as

δ δ δ
δ

h(t +1) =  h(t) + w (t), h(t ) =  h - h ,

db(t +1) =  db(t) + w (t), b(t ) =  b - b
h o o

b o o,
(3.4)

where wh(t) and wb(t) are zero mean white stochastic sequences independent of  xo, w1(t), w2(t),

and
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The above means that the average system is time-invariant and the actual-true system is time-varying.
In equation (3.2) we have exactly 2n parameters, in �h and �b.  Equations (3.2, 3.3) are a different
representation of equation (2.1). Now we can write (3.2, 3.3) in the augmented form, the state and
parameters observability form,  as
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which will be written as

X A X b w X X
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1020

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



where
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The initial state X( )t o is random vector with mean Xo  and variance Qo,
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E[w1(t)]=0, E[w2(t)]=0, E[w1(t) w1
T(t)]=V1 �t� ,E[w2(t)w2(�)]=V2�t� ,
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The stochastic processes remain uncorrelated as
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Notice that, although the stochastic sequences w1(t), w2(t) are statistically dependent, they are

uncorrelated. This is since
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 a)  E[(w1(t) -�h(t)w2(t))w2(�)] = E[w1(t)w2(�) -�h(t)w2(t)w2(�)]

= -E[�h(t)w2(t)w2(�)] = -E[�h(t)]E[w2(t)w2(�)]=0, since E[�h] = 0;

Similarly w1(t) and the initial conditions X(to) are uncorrelated, namely

b)  E[(w1(t) -�h(t)w2(t))�h(to)T] = E[(w1(t)�h(to) -�h(t)w2(t)�h(to)T]

=E[(w1(t)�h(to)T]-E[�h(t)w2(t)�h(to)T]=-E[w2(t)]E[�h(t)�h(to)T]=0, since E[w2(t)]=0;

and similarly the other terms and by the assumptions is section 2 and 3.

Notice: When the uncertainty diminishes, i.e. �h(to)=0, �h(to)=0, wh(t)=0, wb(t)=0, the SPOF

converges to the state space representation of certain stochastic system.

3.2 Simultaneous Optimal State Estimation and Parameters Identification

The SPOF enables the use of theory of observers-estimators for linear time-variant systems. The
optimal estimator of the augmented state is [1 ch. 6, 15]

1) The state estimate extrapolation

� ( ) ( ) � ( ) ( )( ) ( )X X b− ++ = +t A t t u t1

2) State estimate update

� ( ) ( ) � ( ) ( )[ ( ) � ( )], � ( ) ,( ) ( ) ( ) ( )X X K cX X X+ − − ++ = + + + − + =t A t t t y t t t o o1 1 1 1

where
3) The error covariance Extrapolation is

Q(-)(t) = A(t-1)Q(+)(t-1)A(t-1)T+V1, Q(to) = Qo

4) the Kalman Gain is

K (t) =  Q(-)(t)cT [ c Q(-)(t) cT + V2]-1.

5) The error Covariance update is

Q(+)(t) = [I- K (t) c]Q(-)(t)
(3.13)

The proof is presented in [23].

This is an optimal estimator, by what we mean that given {y(�), u(�), to���tf} there is no other, input

and output dependent, with a "linear" structure as described above, algorithm that derives smaller
mean square error estimate of the augmented state. Notice that this is highly nonlinear algorithm.
These equations are easily solved since up to time t, A(t),  b and c are known and the iteration goes
forward. The issue of how the selection of the input to the system, u(t), affects the quality of the
estimation for continuous systems is dealt with in [16] and for discrete systems in [11]. For example
the quality that we may look is the convergence of the estimation error,  namely, asymptotic,
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exponential or in Lyapunov sense convergence, the magnitude of the estimation error covariance, etc.
The following presents a result on the performance of the optimal estimator-identifier.

Theorem 3.1: If the input to the plant u(t) is such that (A(t),c) is uniformly completely observable

and V1 is such that ( ( ), )A VT t 1
1/2  is uniformly completely controllable then the optimal observer

(3.13) is exponentially stable, and the minimal mean square estimation error is Q(t).
Proof: Direct outcome of [1, theorem 6.45].

Remark: theorem 3.1 states  when the system

��(t+1) = [A(t) -  K (t) c ] ��(t) ,  ��(to)  =  ��o, (3.14)

is exponentially stable for any initial conditions.

Notice: When the uncertainty diminishes, i.e. �h(to)=0, �h(to)=0, wh(t)=0, wb(t)=0, then  the SPOF
based state  estimation (the parameters are known) is algebraically identical to the Kalman filter of the
certain stochastic system.

4. Formal solution of the optimal control of uncertain systems.

One possible approach to the solution of optimal control of uncertain systems has been presented by
[2]. There the uncertainty set has been approximated by a finite set of models. Thus it was possible to
derive finite dimensional causal approximation of the optimal solution. This means that the optimal
solution for the case when the uncertainty set is not finite is infinite dimensional. In this section we
will derive by the use of the SPOF a different solution. This solution is finite dimensional but not
causal. This is the reason that we call this the formal solution, as it is not causal, i.e. it is not
computable in real time and can not be applied to real time control.

4.1 Derivation of the Optimal Solution

In order to derive the optimal solution we use the SPOF (3.7). An important observation that is used
in the derivation of the solution is that

E E E Ex w w x w wo o o1 2 1 2 1 2θ θ θ[ ] { [ ]} [ ]= = X w w (4.1)

Therefore (2.3) can be written as

E E x t c Gcx t x t c Q cx t u t Ru tx w w f
T T
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T T
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t t
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f

θ 1 2
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=

−

∑ (4.2)

minimization of the inner expectation is the well known LQG problem and its solution is known [17] .
We proceed as in [17] by introducing

~ ( ) �( ) ( )( )x t x t x t+ = − (4.3)

then the inner expectation of (4.2) is given by as in [17]
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where the cross terms E x t x Q c x t x tx w w
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0[ ( ) ( ( ) � ( )) ]( ) ( )+ +− =θ cancel out due to the orthogonality

principle. From the second term in (4.4), the estimation term, we have
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which means that this term is minimized by the Kalman Filter introduced in section 3.2. From the first
term in (4.4), the control term,  we have
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=

−

+ +






















∑ (4.7)

the inner expectation is a LQR problem. Equation (4.7) can be rewritten as

E t t t t u t Ru t
o

o

f

f
T

f
T T

t t

t

X w w X X X X
1 2

1

� ( ) � ( ) [ � ( ) � ( ) ( ) ( )] .( ) ( ) ( ) ( )+ + + +

=

−

+ +












∑Γ Θ . (4.8)

Although it is possible to write an expression of the optimal controller, it is of no practical importance
as it is not causal. The expression needs the future inputs and outputs {u(�), y(�), t �� �tf}, where t is

the current time.  It means that it can not be realized in real time. This is the reason it is called a
formal solution.
The original optimal problem of order n, in section 2, is incomputable as the parameters are unknown
and we have no hint on the structure of the solution. Here we have increased the order of the problem
to 3n and obtained the optimal solution. Although part of this solution is non causal it suggests a
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structure on the solution and points out that an observer of the augmented state is necessary to achieve
the goal of optimal control of uncertain systems. We know the structure of the optimal observer of the
augmented state and it is causal. Moreover, this solution shows that certainty equivalence principle
holds and separation does not, the optimal controller (solution of (4.8)) depends on the outcome from
the optimal observer (3.13) and the optimal observer (3.13) depends on the output of the controller
(solution of (4.8)). This means that since the optimal controller can not be solved in real time, the
observer that can be implemented in real time will not be optimal with respect to the control objective
(2.3).
Notice: (a) for the estimation problem when the uncertainty diminishes the presented proof is
identical to the proofs that result in the optimal LQG controller for certain systems.

(b) in the solution we required only the order of the observable subspace (along with the
technical requirements that all stochastic processes and random variables are uncorrelated).

5. Certainty Equivalence Based Control

The purpose of this section is to apply the certainty equivalence principle as a causal, ad-hoc
approximation of the optimal solution to the control of uncertain linear systems.

5.1 Certainty Equivalence Based Control on Finite Time Interval

In this section we present control algorithm based on the certainty equivalence principle as an
approximation to the optimal non-causal solution of the optimal control of uncertain systems problem.
This algorithm is called the optimal adaptive control of uncertain stochastic discrete linear systems.
In this section the algorithm is described. In the following subsection the asymptotic performance,
conditions for exponential  and bibo stability, are stated.
The observer-identifier is the presented in section 3.2. It derives the estimated state and parameters of
the plant. We denote

� ( ) � ( ),

�( ) � ( ),

� ( ) � ( ) ,

h t h h t

b t b b t

A t A h t c

o

o

o

= +

= +

= +

δ

δ , (5.1)

The controller is the certainty equivalence version of the optimal controller for known plant, that is

u t F t x t

F t R b t P t I b t R b t P t A t

P t A t P t A t b t F t c Q c P t c Gc

cei

cei i
T

cei i i
T

cei i

cei i cei i i cei
T

c cei f
T

( ) ( )�( )

( ) �( ) ( )[ �( ) �( ) ( )] � ( )

( ) � ( ) ( )[ � ( ) �( ) ( )] , ( ) ,

= −

= + + +

= + − + =

− − −1 1 11 1

1

(5.2)

where the times ti, i=0,1,2,3,..., are the update times at which the certainty equivalence optimal

feedback, P
cei

(t), is recomputed. Equations (5.2) state that at the times ti the gain to be used during the

following period [ti,ti+1], is computed with the available parameters estimates used as the true plant

parameters - certainty equivalence. Formally, the update times can be the iteration times or larger.
Their values do not influence the asymptotic performance, but will influence the
transient-performance and the computational effort. When there is no uncertainty then (5.2) is the
control for known system, where in this case there is only one iteration instant at to.
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5.2 Asymptotic Properties of Certainty Equivalence Based Control for Deterministic Systems

When designing controls on finite time interval, stability is not necessarily an issue. However, due to
testability, maintainability, safety of operation, or the system operates over long period, asymptotic
stability is a necessary feature of a proposed control algorithm. In this section we analyze the
asymptotic performance of certainty equivalence principle based control algorithm for deterministic
systems.  We show in this section, that the proposed algorithm, based on the certainty equivalence,
possesses the same exponential stability properties under the same conditions, as the existing adaptive
control algorithms [7], i.e., persistency of excitation of the input. In this section we analyze
deterministic systems as explicit results on stability appear, in the literature, mainly, for deterministic
systems. Thus we show that the proposed algorithm generalizes the existing adaptive control
strategies.

I)  The deterministic system is

x t Ax t bu t x t x

y t cx t t t
o o

o

( ) ( ) ( ), ( ) ,

( ) ( ),

+ = + =
= ≥

1
(5.3)

where A, b, c, u(t) and y(t) are as defined in section 2.
II)  The states and parameters observability canonical form for deterministic system is  from (3.7)

X A X b X X

c X

( ) ( ) ( ), ( ) ,

( ) ( ),

t (t) t u t t

y t t t t
o o

o

+ = + =
= ≥

1
(5.4)

where are  A(t), b, c and X(t) are defined in section 3.
III)  The observer-identifier is

� ( ) � ( ) ( ) ( )[ ( ) � ( ) ( )], � ( ) ,

( ) ( ) ( ) ( ) , ( ) ,

( ) ( ) [ ( ) ) ,

( ) [ ( ) ]

( ) ( ) ( )

( ) ( )

( ) (

X A X b K cA X cb X X

Q A Q A N Q N

K Q c cQ c +

Q K c Q

t (t) t u t t y t (t) t u t t

t t t t t

t t t N

t I t

o o

T
o o

T T

+ = + + + − + =

= − − − + =

=

= −

− + +

− − −

+

1 1

1 1 1 1

2
1

− ) ( ),t

(5.5)

As here we deal with the deterministic case the parameters associated to the noise and uncertainty
N

o

0, N

1

0  and N2 >0  serve as tuning parameters [6]. The estimation error is

E X X E( ) ( ) � ( ), ( )

( ) �( )

( ) � ( )

( ) �( )

( )

( )

( )

t t t t

x t x t

h t h t

b t b t

t

h t

b t

= − =
−
−
−

















=
















δ δ
δ δ

ε
ε
ε

, (5.6)

and

E K c A E E X X( ) [ ( ) ] ( ) ( ), ( ) � ,t I t t t t o o o= − = − (5.7)

where �( ), � ( ), �( )x t h t b tδ δ are the estimates of  x(t), �h(t) and �b(t) respectively, as derived by the
observer (5.5).The following states a performance theorem of the deterministic observer-identifier.
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Theorem 5.1: If the input to the plant u(t) is such that (A(t),c) is uniformly completely observable

and the tuning matrix N1  is such that ( ( ), )A NT t 1
1/2 is uniformly completely controllable then the

optimal observer (5.5) is exponentially stable.
Proof: Direct outcome of [1, theorem 6.45].

Remarks: 1) The pair ( ( ), )A NT t 1
1/2 can be made uniformly controllable by setting  N

1 = �I,  �>0. Any

� will do, but its value will influence the convergence rate; 2) The condition of uniform complete
observability of (A(t),c) is the condition that  the input to the plant, u(t), is persistently exciting-PE.
For further details see [6, 12].

IV)  The certainty equivalence control law  is given by

u t F t x t v t( ) ( )�( ) ( )= − + (5.8)

where v(t)�R
1
 is an external input and F(t)�R

n
 is a certainty equivalence controller gain given by

F t F A b c F A h h t c b b t co o o( ) ( � , � , ) ( ( �( )) , �( ), )= = + + +δ δ . (5.9)

The last expression is valid as up to the current time the input and output are measured and therefore

known functions. It follows that δ�( )h t and δ�( )b t are up to the current time known functions and
therefore F(.) up to the current time is a known function of time. We do not specify the specific
algorithm of computing the certainty equivalence controller gain except that it is such that

 F(A,b,c) = F, and A-bF is exponentially stable, (5.10)

and additional conditions as stated in theorem 5.2 are satisfied. Condition (5.10) states that the
certainty equivalence controller F for the exact values of the parameters of the system is a stabilizing
controller (exponentially stable). Before stating the main theorem, similarly to [18], we define several
properties of function.

Definition 5.1: The function F: Rs � Rq is bounded  if there exist a finite Fmax < �, such that

sup
ξ

|| F(�) || �  Fmax, � �� Rs. (5.11)

Definition 5.2: The function F: Rs � Rq has finite incremental gain  (Lipschitz) if there exist  a
finite kmax < �, such that

 || F(�1) - F(�2) || � kmax || �1 - �2 ||, � �1, �2 � Rs. (5.12)

The following theorem states the main stability result.

Theorem 5.2: If
i) F A b c( � , � , ) is bounded and with finite incremental gain function of the variables  � , � ,A b c ;
ii) A-bF(A,b,c) is exponentially stable (we denote F=F(A,b,c)) ;
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iii) the external input v(t) is bounded and such that (A(t),c) is uniformly completely
observable; and

iv) the tuning matrix N1 is such that ( ( ), )A NT t 1
1/2  is uniformly completely controllable;

then the system (5.3) with the observer-estimator (5.5) and the certainty equivalence feedback (5.8) is
bibo stable and the system transition matrix is exponentially stable .
Proof: See  appendix A.

The most important outcome of theorems 5.1 and 5.2 is that the proposed certainty equivalence based
control converges exponentially to the separated observer controller structure that is well known for
uncertain systems.

Proposition 5.3:  There almost always exists a bounded external input v(t) such that (A(t),c) is
uniformly completely observable.
Proof: presented in [6].

Notice that in the derivation of the algorithm and the proofs we required the observability of the
system and its order only. The rest of the parameters and requirements are in our control, "tuning
parameters".

5.4 Asymptotic Properties for Stochastic Systems

In this section we analyze the asymptotic performance of certainty equivalence control algorithm for
stochastic systems. For stochastic systems we are unable to guarantee global exponential stability.
The reason is that if the noises are large then the estimation errors are large and stability can not be
guaranteed. However, if the noises are sufficiently small, the signal-to-noise ratio is sufficiently large,
then the performance in the presence of noises will be close to the performance without noises. This
section will formalize these statements.
The stochastic system is (2.1). We use the SPOF (3.7) and the identifier is (3.13, 5.5). The
performance of this identifier is stated in theorems 3.1 and 5.1.
The certainty equivalence controller is given by (5.8) and the certainty equivalence controller gain
given by (5.9). The certainty equivalence controller gain is such that  (5.10) is satisfied. The
estimation error is (5.6) and

E K c A E w K w E E X X(t+ ) [I- (t) ] (t) (t) + (t) t t (t ) (t)o o o1 1 2= − = = −( ) ( ), . . (5.13)

In previous section we showed via Lyapunov analysis that the certainty equivalence based control
system is globally bibo stable and the state transition matrix is globally exponentially stable. In the
case of stochastic systems we have to specify what type of stability we deal with. The issue of
stochastic stability of stochastic systems is dealt with in [19]. As the existence of stochastic Lyapunov
function is not guaranteed we adopt a different approach. This approach will treat the first and second
moments of the distribution of the variables. We will present conditions such that the mean is
exponentially stable and the variance is bounded. Such results does not mean that the processes
themselves are bounded but means that the power in the stochastic processes is finite.
The following theorems state the main asymptotic behavior of certainty equivalence principle based
control of stochastic uncertain linear systems.

Theorem 5.4: If
i) F A b c( � , � , ) continuous and has bounded first derivative with respect to the variables� , � ,A b c ;
ii) A-bF(A,b,c) is exponentially stable (we denote F=F(A,b,c)) ;
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iii) the external input v(t) is bounded and such that (A(t),c) is uniformly completely
observable;

iv) the input disturbance noise V1 is such that ( ( ), )A VT t 1
1/2 is uniformly completely

controllable; and
v) the noise levels of the input disturbance and measurement noise are sufficiently low;

then
(a) the transition matrix of the mean of the state of the system (2.1) with the estimator (3.13)

and the certainty equivalence feedback (5.9, 5.10) is exponentially stable.
(b) the covariance of the state of the system (2.1) with the estimator (3.13) and the certainty

equivalence feedback (5.9, 5.10) is bounded.
Proof:  see appendix B.

Although theorem 5.4  states that the mean of the state is exponentially stable and the variance is
bounded only if the noises are sufficiently small. The quantity that really matters is the
"signal-to-noise ratio" at the input and output. This signal-to-noise ratio is directly governed by the
amplitude of the external input v(t). Therefore, as the observability of the system (3.6) is not
influenced by the amplitude of the input, only by its spectral support, then formally we can increase
the amplitude of the external input and to achieve good signal-to-noise ratio.

6. Example 

As an example we present the problem of control of uncertain system described in figure 1. This is a

linear model of a launch vehicle [20, 3].  The second order transfer function k/(s2-�) represents the
dynamics of the vehicle rigid body. In parallel with the rigid body dynamics are the first flexible mode
dynamics. The output represents the vehicles attitude. None of the system parameters values are
known precisely, but are known to vary during operation of the system within the following bounds:
�=0.01, 0.01<�<6, k=1, 2�0.5<�<2�4.
We apply the certainty equivalence algorithm described in section 5.2, where the control law in (5.8)
is computed to place the closed loop poles in s-domain at -1�j and -40�10j. The discrete control is
applied with sampling interval of 100msec. The control scheme is presented in  figure 2. The DC gain
takes care that the overall transmission will have DC gain of 1. The pole placement algorithm does
not satisfy the boundedness condition required by the theorems. The problem arises when the
estimated parameters of the plant give an uncontrollable system. As the estimated plant approaches
uncontrollability the gains tend to infinity. Therefore, the algorithm should bound the gains. In the
presented simulations this bound is the maximal number of the computer.
Figure 3 presents the external input to the closed loop. The first 5sec have a representation of the
launch transient, for the next 5sec the loop maintains constant attitude and at t=10sec a "step" with
unit amplitude and time constant of 0.5sec is applied.
The true parameters of the plant (unknown to the algorithm) are �=-0.01,  �=4¹(2Hz), k=1, and the
average values are µ =0.05, ω =2�, k=1.

The example is presented for

w t bw t1 1( ) ~ ( )= ,

The specific values of the parameters are presented in table 10.1.
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Table 10.1: The parameters used in the examples.

example no. 1 2 3
~
V 1

0 0.1

V2 0 0.1

sign + + -
N1, V1 diag(10-3,10-3,10-3,10-3,10-5,10-5,10-5,10-5,10-5,10-5,10-5,10-5)
N2, V2 0.1

Qo diag(1,1,1,1,108,108,108,108,108,108,108,108)

Example 1: This example is without noise. This is similar to the example presented for continuous
plant in [3], however, this example is for discrete plant. Figure 4 presents the states of the plant. We
can see the transient. This transient can be seen on the plot of the output and input on figures  5 and 6,
respectively. Figure 7 presents the estimates of the parameters, and figure 8 presents the normalized
parameters estimation norm.

PEN = parameters estimation norm =
p p

p
i

ii

−







∑ �

2

We can see the convergence rate and its quality, thus at t=10sec when the input is applied the
algorithm is ready and the response of the closed loop is identical to the response of controller for
perfectly known plant. Additional results on the performance without noise are presented in  [21].

Example 2: This example is for the same parameters as example 1 but here noises are present at the
input and the output. The results are presented in figures 9 to 13, respectively. We can see from the
figures that the transient, when the noises are present , is much larger, respectively to the case without
noises. Due to the noises the parameters estimation norm reduces to RMS value of about 1%.

Example 3:This example is for the same parameters as example 2 but here the sign of the input to the
plant has been reversed, i.e. the average plant sign and the actual sign have unmatched signs. This
example demonstrates that the presented algorithm is insensitive to the sign (neither low nor high
frequency) of the plant. The results are presented in figures 14 to 18, respectively. We can see from
the figures that the transient, for reversed sign, is larger respectively to the case when the average
plant and the actual plant have matched signs.

We can see, in all examples, that within 2 sec the parameters converged closely to the true values and
thus the controller is "ready" for the input at t=10sec. The input to the plant and the output have
vigorous transient during the first seconds of operation. However, during this transient the values of
the input and output are of the same order of magnitude as are during normal operation, i.e. after
transient died out. Notice that the algorithm is applied at 10Hz rate while the flexible mode is at 2Hz,
i.e. Nyquist rate of the plant is ~4Hz. This again demonstrates the performance of the algorithm.
A comparison between the presented algorithm and state of the art adaptive control algorithms on a
common basis for stochastic continuous first order uncertain plant is presented in [12]. This
comparison demonstrates the superiority of the presented algorithm over other adaptive control
algorithms for the control of uncertain stochastic systems.
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7. Conclusions 

The problem of optimal control of stochastic discrete linear time-invariant uncertain systems on finite
time interval has been formulated. By the use of the State and Parameters Canonical form the problem
of optimal control of stochastic linear time-invariant uncertain systems on finite time interval is
partially solved. The solution is explicit and noncausal. As causal approximation to the optimal
noncausal solution, control schemes based on the certainty equivalence principle a called optimal
adaptive control algorithms, are presented. The conditions for bibo stability of the algorithm had been
presented and performance of the algorithm has been demonstrated by examples.
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Appendix A

Proof of theorem 5.2
The condition that  (A(t),c) is uniformly completely observable and the tuning matrix N1 is such that

( ( ), )A NT t 1
1/2 is uniformly completely controllable guarantees the exponential convergence of the

estimation errors from theorem 5.1.  That is, for every E(to) there exists some �>M
1
>0 and |�

1
|<1

such that

E t M t to( ) .≤ −
1 1λ (A.1)

The system with the certainty equivalence feedback (5.8) is

x(t+1) = Ax(t) +bu(t)  = (A-bF(t)) x(t) - bF(t)�(t)+ bv(t) (A.2)

The solution of (A.2) is given by
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x t t x t t bF bvo
t

t

o

( ) ( , ) ( ) ( , )[ ( ) ( ) ( )]= + − +
=

−

∑Φ Φ0
1

τ τ ε τ τ
τ

(A.3)

where  the state transition matrix is

�(t+1,t) = (A - b F(t)) �(t,t), �(0,0)=I. (A.4)

Since F t F A b c( ) ( � , � , )= is a bounded operator, �(t) is bounded, and v(t) is bounded by assumption, the

solution x(t) is always bounded for every finite time t <� (the solution can not "escape" in finite
time).
The closed loop system  (A-bF) is exponentially stable, therefore there exists P>0 and Q1
0 such that

(A-bF)TP(A-bF)  - P = -Q1. (A.5)

To investigate the stability of the solution of (A.4), we construct the Lyapunov function

V(t)=x(t)TPx(t) for the autonomous part of (A.2)

x(t+1)= (A - b F(t))x(t), (A.6)

 and we have

V(t+1) - V(t) = x(t)T[(A-bF(t))TP(A-bF(t))  - P ]x(t). (A.7)

We denote F(t) = F + F(t), and we have

V(t+1) - V(t) = x(t)T[(A-bF)TP(A-bF) - P -(A-bF)TP F(t)- F(t)TbTP(A-bF) + FTbTPb F)] x(t) (A.8)

= x(t)T[-Q1-(A-bF)TbP F(t)- F(t)TbTP(A-bF)+ FTbTPb F] x(t).

Now, we have,

F(t)= F(t) - F = F(A+�h(t)c,b+�b(t),c) - F(A,b,c). (A.6)

Since F(.) is bounded with finite incremental gain and due to (A.1), there exist  �>M2,M3>0 and  |�2|

<1such that

∆F t F A h t c b b t c M
h t

b t
M t to( ) ( ( ) , ( ), )

( )

( )
.= + + ≤ ≤ −ε ε

ε
ε

λ2 3 2 (A.10)

and there exists �>M4, M5>0 such that

V(t+1) - V(t)  � - xT(t) Q1 x(t)  + 2 || x(t) ||2 || (A-bF)TbP F(t) || + || x(t) ||2 || FTbTPb F||

� - xT(t) Q1 x(t) +  || x(t) ||2 M4 λ2
t to− +  || x(t) ||2 λ2

t to− . (A.11)

Moreover, there exist a finite time t1 < �, such that
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V(t+1) - V(t) < 0, for t >t1. (A.12)

This means that for t > t1, �(.,.) is exponentially stable [5, Lemma 6.2.1], and
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all terms are bounded, therefore we proved the bibo stability. Q.E.D.

Appendix B

Proof of theorem 5.4:  It is easy to get that

(B.1)
E[x(t + 1)] = (A - bF) E[x(t)] - bE[ F(t)x(t)] + bv(t), E[x(t )] =   xoo oo∆ �

where
�F(t) = F(t) - F (B.2)

and where we redefined the time origin to the point, too,  where the initial conditions of the states and

parameters observer-estimator faded out. Such point instant exists by assumption (iii) and lemma 5.4.
From assumption (iv)  the noise levels are sufficiently low and from (i) F(t) has first derivatives,
therefore

∆F t h t
F t

h
b t

F t

b
ZT T( ) ( )

( )
( )

( )= + +ε ∂
∂

ε ∂
∂

(B.3)

where Z contains the high order terms so that

[ ]E x t A bF E x t E h t
F t

h
x t E b t

F t

b
x t E Zx t bv tT T[ ( )] ( ) [ ( )] ( )

( )
�( ) ( )

( )
�( ) �( ) ( )+ = − −









 −









 − +1 ε ∂

∂
ε ∂

∂
(B.4)
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From the orthogonality property of the Kalman filter estimates, we have

[ ] [ ]E h t x t E b t x tT T Tε ε( ) � ( ) ( ) � ( )− = 0 , (B.5)

and for sufficiently small noises Z is small enough such that [ ]E Zx t�( ) will not influence the stability

properties, so that we have

[ ]E x t A bF E x t bv t E Zx t E x t xoo oo[ ( )] ( ) [ ( )] ( ) �( ) , [ ( )] .+ = − + − =1 (B.6)

From here follows that the transition matrix of the mean of the plant state is exponentially stable. In
other words, after the transient died out the average behavior, for sufficiently small noises, is as the
behavior of the deterministic system. Q.E.D.

Proof of Theorem 5.5:  As the noise levels decrease the estimation errors, Q(t) of (3.13) decreases
accordingly. The covariance is

Q(t) =  E[ (x(t) - x(t))(x(t) - x(t)) ]T (B.7)

where x(t) = E[x(t)]  and

Q(t+1) = (A-bF)Q(t)(A-bF)T+ V1 + W (B.8)

where

W = E[(Zx(t) - E[Zx(t)])(Zx(t) - E[Zx(t)]) ]+ E[(Zx(t) - E[Zx(t)])(x(t) - x(t)) ](A - bF)

+ (A - bF)E[(x(t) - x(t))(Zx(t) - E[Zx(t)]) ]

T T T

T

� � � � � �

� �

(B.9)

where Z is defined in (B.3) and W = 0 for known systems. The magnitude of W is governed by the
"magnitude" of Z, which depends on the high order statistics of the stochastic sequences. For
sufficiently small noises W will be small enough and will be neither influence the stability of (B.8)
nor the boundedness of Q(t). Q.E.D.
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Figure 1: Block diagram of the dynamic vehicle model.
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Figure 2: The bloc\k diagram of the controller for linear uncertain system.
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Figure 3: The external input from the moment of launch.
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Figure 4: The states and the estimated states of the plant - example 1.

1037

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



0 5 10 15 20
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2
output

time [sec]

Figure 5: The external input and the output of the plant - example 1.

0 5 10 15 20
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
input to the plant

time [sec]

Figure 6: The input to the plant - example 1.
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Figure 7:The parameters of the plant and their estimates - example 1.
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Figure 8: The normalized parameters estimation norm - example 1.
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Figure 9: The states and the estimated states of the plant - example 2.
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Figure 10: The external input and the output of the plant - example 2.
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Figure 11: The input to the plant - example 2.
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Figure 12:The parameters of the plant and their estimates - example 2.
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Figure 13: The normalized parameters estimation norm - example 2.
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Figure 14: The states and the estimated states of the plant - example 3.
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Figure 15: The external input and the output of the plant - example 3.
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Figure 16: The input to the plant - example 3.
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Figure 17:The parameters of the plant and their estimates - example 3.
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Figure 18: The normalized parameters estimation norm - example 3.
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