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Abstract

This paper establishes that when using a least squares criterion to estimate an output error type
model structure, then the measurement noise induced variability of the frequency response estimate
depends on the estimated (and hence also on the true) pole positions. This dependence on pole
position is perhaps counter to prevailing wisdom that for any ‘shift invariant’ model structure, the
variability depends only on model order, data length, and input and noise spectral densities. That is,
it is counter to the belief that variance error is model-structure independent.

1 Introduction

When considering the performance of prediction error identification methods using quadratic criteria,
a seminal result is that the measurement noise induced variability of the ensuing frequency response
estimate may be approximated as (L.Ljung, 1985; L.Ljung and Z.D.Yuan, 1985; Ljung, 1987)

VarfG^�N
(ej!)g � m

N

��(!)

�u(!)
: (1)

Here�� and�u are respectively the measurement noise and input spectral densities, andb�N is the
prediction error estimate based onN observed data points of a vector� parameterising a model structure
G�(q) for which (essentially)m = dim �=2d whered is the number of denominator polynomials to be
estimated in the model structure.

Apart from its simplicity, a key reason underlying the importance and popularity of the approximation
(1) is that, according to its derivation (L.Ljung, 1985; L.Ljung and Z.D.Yuan, 1985; Ljung, 1987), it
applies for a very wide class of so-called ‘shift invariant’ model structures. For example, all the well
known FIR, ARX, ARMAX, output error and Box–Jenkins structures are shift invariant (L.Ljung, 1985).

In contrast, in a series of recent works (Wahlberg, 1991, 1994; P.M.J. Van den Hofet al., 1995;
Ninnesset al., 1997) it has been established that for model structures which can be considered as shift
invariant generalisations of FIR (in that the fixed poles are not necessarily at the origin), then in the
interests of improved approximation (1) should be modified to become

VarfG^�N
(ej!)g � 1

N

��(!)

�u(!)

m�1X
k=0

1� j�kj2
jej! � �kj2 (2)
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where the�k are the fixed poles in the model structure, so that (2) reverts to (1) for the FIR case of�k = 0.
In (Ninnesset al., 1997) it has also been shown that for ARX model structures with fixed noise model

zeros, again not necessarily at points�0; � � � ; �n�1 which are at the origin, then again (2) rather then (1)
should be used in the interests of providing the most accurate approximation of VarfG^�N

(ej!)g.
For these afore-mentioned cases, for the purposes of actually calculatingb�N , the process of incorpo-

rating the fixed poles or zeros may be achieved by first pre-filtering the data with an all-pole filter, and
then fitting a conventional FIR or ARX structure. As such, the more general principle of the original
approximation (1) being invariant to the particular model structure (but not to the nature of the input and
noise spectral densities) is preserved.

The purpose of this paper is to establish that, in fact, an accurate approximation for the variance
VarfG^�N

(ej!)g is notmodel structure invariant. To establish this, the strategy employed here is to use
the output error model structure to illustrate the point. The lack of invariance to model structure stems
from the approximation, which outperforms (1), being again of the form (2), but this time with points
f�0; � � � ; �n�1g being the estimated poles ofG^�N

(q).

2 Motivational Example

In the interests of motivating the analysis to follow, it is preluded by an illustrative simulation example
in which the following continuous time system

G(s) =
1

(s+ 0:9163)2(s+ 0:3567)2(s+ 0:2231)3

is considered, and for which input-output samples are obtained at 1 second intervals with zero-order-
held inputs. This implies a discrete time representation with poles atz = 0:8; 0:7; 0:4 which is estimated
using a7’th order output error model structure and on the basis of observing a lengthN = 5000 sample
input-output record for which the output is corrupted by white Gaussian noise of variance�2 = 0:001,
and with input which is a realisation of a stationary Gaussian process with spectral density

�u(!) =
1

1:25 � cos!
:

The sample mean square error over500 estimation experiments with different input and noise realisa-
tions is used as an estimate of VarfG^�N

(ej!)g and plotted as a solid line in figure 1. The ‘classical’
approximation (1) is shown as a dash-dot line in that same figure, and is clearly a poor approximation to
the estimated variability. By way of contrast, the modified approximation (2) (with thef�kg being the
true poles inG(q)) shown as the dashed line in figure 1 appears to be quite an accurate approximation to
the estimated variability.

This provides clear evidence that the true variability is in fact not model structure invariant, and
hence accurate approximation of it may need to take that phenomenon into account. The remainder of
the paper is devoted to supplying theoretical analysis of this issue. A key tool in this is the employment
of a class of rational orthonormal basis functions that are adaptable to the system being estimated, and
which have been discussed in some detail in (Ninness and Gustafsson, 1997; Ninnesset al., 1998).

3 Problem Setting

This paper addresses model structures which describe the relationship between an input data recordfutg
and an output data recordfytg according to

yt = G�(q)ut +H�(q)et
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Figure 1:Variability of Output Error Estimate - True variability vs. new and existing theoretically derived
approximations.

wherefetg is a zero-mean white noise sequence such thatEfe2
t
g = �2;Efjetj4+�g <1 for some� > 0

andG�(q);H�(q) are transfer functions, rational in the forward shift operatorq, and parameterised by a
vector� 2 Rn. The mean-square optimal one-step ahead predictionbyt(�) based on this model structure
is (Ljung, 1987) byt(�) = [1�H�1

�
(q)]yt +H�1

�
(q)G�(q)ut

with associated prediction error

"t(�) = yt � byt = H�1(q) [yt �G�(q)ut]

involved with the quadratic estimation criterion

VN (�) =
1

2N

NX
t=1

"2
t
(�)

used to define the prediction error estimateb�N of � as

b�N , argmin
�2Rn

VN (�):

As has been established in (L.Ljung, 1978; Ljung, 1987), under the assumption that the inputfutg is
quasi-stationary (Ljung, 1987), thenb�N converges with increasingN and with probability one according
to

lim
N!1

b�N = �Æ , argmin
�2Rn

lim
N!1

E fVN (�)g ;

As well, it also holds that asN increases the estimateb�N tends to be Normally distributed about�Æ
according to (L.Ljung and P.E.Caines, 1979; Caines, 1988; Ljung, 1987)

p
N(b�N � �Æ)

D�! N (0; Pn); (3)
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Pn , R�1
n
QnR

�1
n

where with the definition of prediction error gradient t(�) as (�0 denotes differentiation with respect to
�)

 t(�) , by0
t
(�) = H�1

�
(q)

�
G0
�
(q)ut +H 0

�
(q)"t(�)

�
(4)

so that more succinctly
 t(�) = H�1

�
(q)�0

�
(q)�t(�)

where
��(q) , [G�(q);H�(q)]; �0

�
(q) ,

�
G0
�
(q);H 0

�
(q)
�
;

�t(�) ,

�
ut
"t(�)

�
:

Therefore,

Rn , lim
N!1

1

N

NX
t=1

h
E
�
 t(�Æ) 

T

t (�Æ)
	� E

n
"t(�Æ)

�
 0t(�)

�
T
oi

and

Qn , lim
N!1

1

N

NX
t;`=1

E
�
 t(�Æ) 

T

`
(�Æ)"t(�Æ)"`(�Æ)

	
:

While an asymptotic distributional result like (3) is very satisfying theoretically, for practical applications
it is rather less appealing, mainly due to the (just presented) intricate definition ofPn via Qn; Rn and
 t(�).

This was recognised in (L.Ljung, 1985; L.Ljung and Z.D.Yuan, 1985; Ljung, 1987) which pro-
posed the solution of investigating how (3) manifested itself in the variability of the frequency responses
G^�N

(ej!);H^�N
(ej!), the result being approximations such as (1).

4 Synopsis of Output Error Case

To see how this strategy of evaluating the implications of (3) in the frequency domain, and in such a way
as to expose the genesis of the inaccuracy illustrated in figure 1 of the approximation (1), this section
focuses on the case of the model structure being of the output error form

yt = G�(q)ut + et =
B�(q)

A�(q)
ut + et

where the numerator and denominator polynomials are of the form

A�(q) = qm + am�1q
m�1 + � � �+ a1q + a0;

B�(q) = bm�1q
m�1 + � � � + b1q + b0;

and� 2 Rn (with n = 2m) is defined as

�T = [a0; b0; a1; b1; � � � ; am�1; bm�1]:
In this case

dG�(q)

d�
=

�
�B�(q)

A2

�
(q)

;
1

A�(q)
;�qB�(q)

A2

�
(q)

;
q

A�(q)
; � � � ;�q

m�1B�(q)

A2

�
(q)

;
qm�1

A�(q)

�T

= [�m(q)
 I2]Z�(q)
1

A�(q)
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where
 is the Kronecker tensor product of matrices,I2 is a2� 2 identity matrix, and

�m(q) , [1; q; � � � ; qm�1]T ; Z�(q) ,

� �G�(q)

1

�
(5)

Therefore, using (4) and noting that there is no parameterised noise modelH�(q), leads to an expression
for the gradient of the prediction error as a filtered version of the inputfutg

 t(�) = [�m(q)
 I2]Z�(q)
1

A�(q)
ut:

Now, assuming that the true system is in the model structure so that a true parameter vector�Æ exists,
then"t(�Æ) = et so that use of Parseval’s Formula leads to (theej! dependence will not be made explicit
in what follows in order to improve readability, and�? will be used to denote‘conjugate transpose’)

Rn = lim
N!1

1

N

NX
t=1

E
�
 t(�Æ) 

T

t (�Æ)
	

=
1

2�

Z
�

��

[�m(e
j!)
 I2]

ZÆ�uZ
?
Æ

jA�(ej!)j2 [�
?

m

 I2] d!:

In this case, with a2m � 2m block-Toeplitz matrix being defined by a2 � 2 positive definite matrix
valued functionF (!) as

Tn(F ) ,
1

2�

Z
�

��

[�m 
 I2]F (!)[�
?

m

 I2] d! (6)

then

Rn = Tn

�
ZÆ(e

j!)�u(!)Z
?

Æ (e
j!)

jA�(ej!)j2
�
:

Also, again under the assumption of"t(�Æ) = et

Qn , lim
N!1

�2

N

NX
t=1

E
�
 t(�Æ) 

T

t (�Æ)
	
= �2Rn

so that the matrixPn quantifying the parameter space variability ofb�N via (3) is in fact expressible as a
block Toeplitz matrix associated with a particular spectral density as follows

Pn = �2R�1
n

= �2T�1
n

�
ZÆ�u(!)Z

?
Æ

jA�j2
�
: (7)

This formulation ofPn is a key ingredient underlying the methods of (L.Ljung, 1985; L.Ljung and
Z.D.Yuan, 1985; Ljung, 1987) that arrive at the approximation (1). A second fundamental idea is to
relate this parameter space variability to frequency domain variability ofG^�N

(ej!) via Taylor expansion
according to eGN(!) , G^�N

(ej!)�GÆ(e
j!)

=

"
dG�

d�

����
�=�Æ

#T
(b�N � �Æ) + o(kb�N � �Æk)

= A�1
�Æ
ZT

Æ [�
T

m 
 I2](b�N � �Æ) + o(kb�N � �Æk) (8)

1691

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



so that using (3) and the previous Toeplitz matrix formulation ofPn
p
N eGN (!)

D�! N (0;�n(!)) (9)

where (with obvious compactification of notation involving�Æ) using (7)

�n =
1

jAÆj2Z
?

Æ [�
?

m

 I2]Pn[�m 
 I2]ZÆ

=
�2

jAÆj2Z
?

Æ [�
?

m

 I2]T

�1
n

�
ZÆ�uZ

?
Æ

jAÆj2
�
[�m 
 I2]ZÆ:

A potential difficulty in continuing the analysis of this expression is that although the Toeplitz matrix
involved is non-singular, the matrix valued functionZÆ�uZ

?
Æ is itself, by definition, singular when eval-

uated at any one frequency. To circumvent this, define a perturbed matrix

�n(!; Æ) ,
�2

jAÆj2Z
?

Æ [�
?

m

 I2]T

�1
n

�
ZÆ�u(!)Z

?
Æ

jAÆj2 + ÆI2

�
[�m 
 I2]ZÆ

so that since matrix inversion is continuous

�n(!) = lim
Æ!0

�n(!; Æ):

The final principle underlying the analysis of (L.Ljung, 1985) is that that the quadratic form defining
�n(!), by virtue of being formulated in terms of inverses of Toeplitz matrices parameterised by spectral
densities, it can be viewed as ann’th order Fourier reconstruction of the inverse of the spectral density.
Specifically, by Lemma A.1

lim
m!1

1

m
�2m(!; Æ) , �(!; Æ)

=
�2

jAÆj2Z
?

Æ

�
ZÆ�u(!)Z

?

Æ

jAÆj2 + ÆI2

��1
ZÆ: (10)

Therefore, using the matrix inversion lemma provides

�(!; Æ) =
�2

jAÆj2
Z?

ÆZÆjAÆj2
�uZ?

ÆZÆ + ÆjAÆj2 :

Therefore

lim
Æ!0

�(!; Æ) =
�2

�u(!)

and hence

lim
Æ!0

lim
m!1

1

m
�2m(!; Æ) =

�2

�u(!)
: (11)

Consequently, assuming that the convergence has approximately occurred for finitem leads to the ap-
proximation

�2m(!) � m
�2

�u(!)
(12)

and in a similar vein, assuming that convergence of (9) has approximately occurred for finiteN provides
the approximation

E
n
j eGN (!)j2

o
� 1

N
�2m(!):

Combining these expressions then furnishes the overall approximation

E
n
jG^�N

(ej!)�GÆ(e
j!)j2

o
� m

N

�2

�u(!)
(13)

which is, as mentioned earlier, a special case of (1) for the output-error model structure case of�� = �2.
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4.1 Genesis of Impaired Approximation

The point of the preceding synopsis of the methods originating in (L.Ljung, 1985) is to isolate why, as
illustrated in figure 1, the phenomenon of (1) providing poor approximation occurs.

Put simply, it arises since (1) is predicated on the convergence in (11) having approximately occurred
for finite model orderm so that (12) can be concluded and in fact, it is problematic as to whether the
Fourier series convergence underlying this has in fact approximately converged.

In more detail, the convergence of (11) was highlighted to be one of Fourier series convergence in
(10) of a matrix valued function

ZÆ(e
j!)�u(!)Z

?

Æ (e
j!)

jAÆ(ej!)j2 + ÆI2: (14)

As is well known (Edwards, 1979), the rate of Fourier series convergence is governed by the smooth-
ness of the function being reconstructed. Furthermore, the variation (and hence smoothness) of (14) is
degraded by the division byjAÆ(ej!)j2 term since, supposing for simplicity that all the zeroes ofAÆ(z)

are in the left half plane, then (see figure 2)jAÆ(ej0)j � �m for some� < 1 and jAÆ(ej�)j � 
m

for some
 > 1 so that division of a function byjAÆ(ej!)j2 can magnify the maximum and minimum
values of that function by factors of1=�2m and1=
2m respectively. Therefore, as the model orderm

�

jei!2 � �j

jei!1 � �j

Imaginary

Real

1

1

jAn(e
i!

)j
2
=

nY

k=1

je
i!

� �kj
2

�(R
 ) �
max! �u=jAnj

2

min! �u=jAnj
2

Figure 2:Graphical illustration of how magnitude ofAÆ(ej!) depends on!.

grows, the function (14) being implicitly Fourier reconstructed in (10) develops greater variation, which
necessitates more terms in it’s Fourier expansion before approximate convergence can be assumed in the
step (12) leading to (1). But the number of terms in the implicit Fourier reconstruction (10) is also given
by the quantitym.

The net result is that it is problematic as to whether Fourier convergence can be assumed to hold in
such a way that the approximation (13) can be concluded. This appears, at a theoretical level, to be the
genesis of the approximation discrepancy shown in figure 1.

5 Resolution

As pre-cursed via the plot of the modified expression (2) in figure 1, these Fourier series convergence
difficulties are not insurmountable, the solution being to change the orthonormal basis involved in the
Fourier series to one that is adapted to the function (14) being reconstructed. That is, the problem may
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be re-parameterised in terms of a new orthonormal basis that is ‘adapted’ toA�Æ
(z) in the sense that

this polynomial is incorporated into the basis. A basis suitable for this has been discussed in (Ninness
and Gustafsson, 1997), analysed in (Ninnesset al., 1998), applied to FIR and ARX model structures
in (Ninnesset al., 1997), and is formulated as a sequence of rational functionsfB0(z); � � � ;Bm�1(z)g
defined by a choice of polesf�0; � � � ; �m�1g all contained in the open unit diskD = fz 2 C : jzj < 1g
by

Bn(z) ,
p
1� j�nj2
z � �n

n�1Y
k=0

�
1� �

k
z

z � �k

�
: (15)

These functions are orthonormal with respect to the inner product

hf; gi = 1

2�

Z
�

��

f(!)g(!) d!

and the usual trigonometric basisfe�j!; � � � ; e�jm!g (which is the one used in the previous analysis of
expressions like (10) ) is obtained as a special case of�0 = �1 = � � � = �m�1 = 0. In the sequel the
functionKm(!; �) defined as

Km(!; �) =

m�1X
k=0

Bk(ej!)Bk(ej�);

Km(!; !) ,

m�1X
k=0

1� j�kj2
jej! � �kj2

will be important (it happens to be the reproducing kernel associated with the space SpanfBkgm�1k=0
, hence

the notation).
The use of this basis to obtain the approximation (2) appearing as the improved dashed line ap-

proximation in figure 1 now involves the analysis used in (L.Ljung, 1985) up until (8) being retained.
However, if the polesf�kg of the bases (15) are chosen the same as the zeros ofA�Æ

(z), then with the
definition

�m , [B0(z);B1(z); � � � ;Bm�1(z)]T

it holds that for some non-singularn�nmatrixJ , the matrix�m(z) appearing in (8), and defined in (5)
in terms of a trigonometric basis, is expressible asA�1

�Æ
�m = J�m. Therefore

(�m 
 I2)A
�1

�
= J�m 
 I2 = (J 
 I2)(�m 
 I2)

so that with the further (generalised block Toeplitz matrix) definition

Mn(F ) ,
1

2�

Z
�

��

[�m 
 I2]F (!)[�
?

m 
 I2] d! (16)

then the block Toeplitz matrix formulation (7) is expressible as

Tn(F=jA2

Æj) = (J 
 I2)Mn(F )(J
T 
 I2)

and hence the quantity�n(!; Æ) previously analysed via Fourier theory with respect to the trigonometric
basis becomes

�n(!; Æ) =
�2

jAÆj2Z
?

Æ [�
?

m 
 I2]M
�1
n

�
ZÆ�uZ

?

Æ + ÆjAÆj2I2
�
[�m 
 I2]ZÆ:
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In (Ninnesset al., 1998, 1997) a generalised Fourier theory involving the generalised basis (15) is devel-
oped, for which the most pertinent result in the current context is the convergence one reproduced in the
appendix as Lemma A.2. Applying it provides the conclusion

lim
m!1

�2m

Km

=
�2

jAÆj2Z
?

Æ

�
ZÆ�uZ

?

Æ + ÆjAÆj2I2
��1

ZÆ

=
�2Z?

ÆZÆ

�u(!)Z?
ÆZÆ + ÆjAÆj2I2:

so that

lim
Æ!0

lim
m!1

�2m

Km(!; Æ)
=

�2

�u(!)
:

A vital point here is that the implicit Fourier reconstruction operating here, by virtue of the use of the
basis (15), is of a functionZÆ(ej!)�u(!)Z

?

Æ (e
j!) whose smoothness is constant with respect to Fourier

reconstruction lengthm.
Therefore, following the same line of argument established in (Ljung, 1987) that led to (13) provides

E
n
jG^�N

(ej!)�GÆ(e
j!)j2

o
� �2

N

Km(!; !)

�u(!)

=
1

N

��(!)

�u(!)

m�1X
k=0

1� j�kj2
jej! � �kj2 : (17)

which is the new approximation (2).

6 Conclusion

The main theme of this paper was to highlight that the variability of quadratic cost prediction error
estimates is not invariant to the choice of model structure, nor is it necessarily invariant to the dynamics
of the actual system being estimated.

This is perhaps counter to previous thought that has argued that since only shift invariance is required
of the model structure for (1) to hold, then since this depends only on model order, data length and signal-
to-noise ratio, then in fact the precise choice of model structure or the dynamics of the estimated system
are irrelevant to the variance error.

As illustrated here, this argument can fail since convergence of a certain Fourier series is central to
the approximation (1) being accurate, and this can easily be upset in the output error model structure
case. A strategy circumventing this was shown to involve re-parameterisation with a certain rational
orthonormal basis, which lead to an extension (2) of (1) which can offer improved accuracy by explicitly
accounting for factors (such as estimated pole positions) that may otherwise destroy convergence, and
hence approximation.

A Technical Lemmata

In the following lemmata, the definitions (6) and (16) need to be recalled.

Lemma A.1 ProvidedF (!) of dimensionp� p is positive definite and (componentwise) continuous for
all ! 2 [��; �], then

lim
m!1

1

m
[�?

m

 Ip]T

�1
mp

(F )[�m 
 Ip] = F�1(!)

componentwise and uniformly on! 2 [��; �].
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Proof: See (Hannan and Wahlberg, 1989).

Lemma A.2 ProvidedF (!) of dimensionp� p is positive definite and (componentwise) Lipschitz con-
tinuous of order� > 0 for all ! 2 [��; �], then

lim
m!1

1

Km(!; !)
[�?

m

 Ip]M

�1
mp

(F )[�m 
 Ip] = F�1(!)

componentwise and uniformly on! 2 [��; �].

Proof: See (Ninnesset al., 1997).
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