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Abstract

In this note, fault detection techniques based on �nite dimensional results are extended
and applied to a class of in�nite dimensional dynamical systems. This special class of systems
assumes linear plant dynamics having an abrupt additive perturbation as the fault. This fault
is assumed to be linear in the (unknown) constant (and possibly functional) parameters. An
observer-based model estimate is proposed which serves to monitor the system's dynamics
and its well posedness is summarized. Using a Lyapunov synthesis approach applied to
in�nite dimensional systems, a stable parameter learning scheme is developed. The resulting
parameter adaptation rule is able to \sense" the instance of the fault occurrence. In addition,
it identi�es the fault parameters using the additional assumption of persistence of excitation.
Simulation studies are used to illustrate the applicability of the theoretical results.

1 Introduction

The motivation of this work has come from recent developments in the use of neural networks

for failure detection and diagnosis of �nite dimensional dynamical systems using a model-based

scheme (Polycarpou and Helmicki, 1995; Polycarpou and Vemuri, 1995). Extensions of these

model-based schemes to in�nite dimensional systems have not received considerable attention

as in the �nite dimensional case.

In this paper an abstract framework for the on-line fault detection and diagnosis for a class

of in�nite dimensional dynamical systems (plants) is developed. The fault is modeled as an

additive perturbation of the dynamics that is expressed as a parametrized operator evaluated at

an unknown parameter. The fault (i.e. the additive perturbation) is assume to commence at an

unknown time instance. The nature of the additive perturbation in the dynamics is assumed to

be known, but the parameter at which is evaluated is unknown and desired to be identi�ed. The

state estimator, or observer, takes the form of an in�nite dimensional linear evolution system

with time varying coe�cients. This state estimator uses as its inputs the state of the plant

(plant output) and the plant's adjustable parameters estimates (adaptive estimates). Using an

argument based on Lyapunov redesign method (Ioannou and Sun, 1995; Krstic et al., 1995;

Khalil, 1992), which essentially forces the time derivative of a Lyapunov functional to be non

positive, the update laws (adaptation rules) for parameter adjustment are derived. The right

choice of the online parameter laws guarantees the convergence of the state error to zero with
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no additional conditions imposed either on the state of the plant or the input to the system.

By imposing additional conditions on the state of the plant, and implicitly on the input signal,

parameter convergence can be established, and hence failure isolation.

The combined state and parameter estimator purpose is twofold: (i) to serve as a monitor

of the system dynamics and detect the time instance the failure occurs, and (ii) to diagnose the

nature of the failure which in this case is assumed to be either a perturbation of the nominal

dynamics or another operator whose structure is known but the parameter at which it is eval-

uated is unknown. Speci�cally, it is assumed that the failures are additive and are linear with

respect to the parameters. No failures in the input term (actuator failure), commonly denoted

by Bu(t) in the literature, are considered at this stage as this would be more relevant in the

context of actuator failure and plant accommodation.

The approach here represents an in�nite dimensional analogue of an automated fault de-

tection scheme developed for �nite dimensional systems in (Polycarpou and Helmicki, 1995;

Polycarpou and Vemuri, 1995) and more recently in (Demetriou and Polycarpou, November,

1998). The design of the diagnostic observers falls under the category of model-based analytical

redundancy approach. The survey papers by Frank (Frank, 1990), Gertler (Gertler, 1988), Is-

ermann (Isermann, 1984) and Patton (Patton, 1994) provide detailed overviews of the various

model-base fault detection algorithms. For an in-depth exposure the reader is directed to the

books (Basseville and Nikiforov, 1993; Gertler, 1998; Liu and Patton, 1998). The convergence

of the state error is obtained using a Lyapunov estimate in a fashion similar to the �nite di-

mensional case. Due to the linearity of the parameters with respect to the additive failures,

parameter convergence can be guaranteed using the notion of persistence of excitation.

An outline of the remainder of the paper is as follows. In Section 2, the problem is formulated

in an abstract setting and the mathematical preliminaries are provided. The detection observer

(estimated model) and the fault (parameter) estimator are de�ned in a variational form. Con-

vergence of the proposed adaptive monitoring scheme is investigated in Section 3. Examples

and results of numerical simulations are presented in Section 4. Conclusions with directions for

future research on fault detection and accommodation of systems governed by partial di�erential

equations are presented in Section 5.

In general all notation is standard. For X and Y Banach spaces, L(X;Y ) denotes the space
of bounded linear operators from X into Y . Also, for X a linear space and Y a space of linear

functionals on X, h'; xiX;Y denotes the action of the linear functional ' 2 Y on the element

x 2 X.

2 Problem statement and formulation

In this section a procedure for designing a fault detection scheme for a class of in�nite dimensional

systems is outlined. Speci�cally, we will be concerned with the following class of dynamical

systems

_x(t) +Ax(t) + �(t� t�)D(�)x(t) = Bu(t); x(0) = x0 2 H (1)

where H is an in�nite dimensional space, x denotes the state, A;D;B denote the system op-

erator, the failure operator and the input operator, respectively. In this case, the failure is

assumed to be abrupt (Polycarpou and Helmicki, 1995), and speci�cally the function �(t � t�)

that represents the time pro�le of the failure is assumed to be a step function that is given by

�(t� t�) =

(
1 for t � t�

0 for t < t�.
(2)
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The nominal system dynamics given in (1) via the term Ax(t), i.e. the system

_x(t) +Ax(t) = Bu(t); x(0) = x0 2 H; (3)

are assumed to be known. The anticipated failure is modeled by the ��parameterized operator

D(�) and it is assumed that the structure of the failure is known, i.e. for a given parameter

� the operator D(�) is known, but the parameter � is unknown. Below, we summarize the

mathematical preliminaries required for the analysis and well-posedness of the plant and the

derivation of the on-line estimated model of (1). This estimated model, or state observer, will

use as its inputs the output of the plant x(t) and the adjustable (on-line) estimates �̂(t) of the

(unknown) parameter �.

It will be shown in the next section that the proposed estimated model can detect the time

of failure t� and, by imposing the additional condition of persistence of excitation, the parameter

� in the additive term D(�)x(t) will be identi�ed asymptotically with time. This will also be

demonstrated via some numerical simulations in Section 4 , where the time t� of the failure

will be \sensed" by this detection observer and the parameter error �̂(t)� � will asymptotically

converge to zero in an appropriate norm.

2.1 Plant in Variational Form

We will consider the above equation (1) in weak or variational form. Towards this end, let H

be a Hilbert space with inner product h�; �i and corresponding norm j � j. We also let V be a

re
exive Banach space with norm denoted by k � k, and assume that V is embedded densely

and continuously in H. We let V � denote the conjugate dual of V (i.e. the space of continuous

conjugate linear functionals on V ) with norm denoted by k � k� (i.e the usual uniform operator

norm). It then follows that V ,! H ,! V � with both embeddings dense and continuous. We

then have that

j'j � Kk'k; ' 2 V; (4)

for some positive (embedding) constant K, (Lions and Magenes, 1972; Showalter, 1977; Tanabe,

1979; Wloka, 1987). The notation h�; �i will also be used to denote the duality pairing between

V � and V induced by the continuous and dense embeddings in (4).

The parameter space is denoted by Q and it is assumed to be a Hilbert space with inner

product h�; �iQ and norm j � jQ. The dual Q� of Q is identi�ed by Q� = Q. For each � 2 Q, let
D(�) : V ! V � be an operator satisfying the following assumptions

(D1) (Q-Linearity) The map �! D(�)' is linear from Q into V � for each ' 2 V .
(D2) (V � V �-Boundedness) There exists a scalar �d > 0 such that for each � 2 Q

jhD(�)'; ij � �dj�jQk'kk k; ';  2 V:

Remark 1 The fact that the parameter space is chosen to be a Hilbert space (as opposed to a

Euclidean space), enables the proposed scheme to identify functional parameters in the failure

term D(�)x(t).

Continuing, we consider the rather standard assumptions on the nominal plant operator A

that are required for the existence and uniqueness of solutions to the nominal system (3).

(A1) (V � V �-Boundedness) There exists a scalar �a > 0 such that

jhA'; ij � �ak'kk k; ';  2 V:
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(A2) (V �H-Coercivity) There exists a �a 2 R and a scalar �a > 0 such that

Re hA';'i + �aj'j2 � �ak'k2; ' 2 V:

In addition, we consider the operator L : V ! V �, appearing in the diagnostic observer model

below, which satis�es the following assumptions.

(L1) (V � V �-Boundedness) There exists a scalar �l > 0 such that

jhL'; ij � �lk'kk k; ';  2 V:

(L2) (V -Coercivity) There exists a scalar �l > 0 such that

Re hL';'i � �lk'k2; ' 2 V:

In addition, for ' 2 V we de�ne the linear operator G(') : V ! Q by

hG(') ; �iQ = hD(�)'; i;  2 V; � 2 Q: (5)

Using Assumption (D2), it is clear that for ' 2 V , we have G(') 2 L(V;Q) with

kG(')kL(V;Q) � adk'k: (6)

Using equation (5) we de�ne, for ' 2 V , the Banach space adjoint of the operator G('), denoted

here by G�(') 2 L(Q;V �), as

hG�(')�;  iV �;V = hG(') ; �iQ;  2 V; � 2 Q:

Let the initial data x(0) = x0 2 H and the input, or control, term Bu(t) 2 L2(0; T ;V
�), and

consider the initial value problem

_x(t) +Ax(t) + �(t� t�)D(�)x(t) = Bu(t); a:e: t > 0; (7)

x(0) = x0: (8)

We establish the well-posedness of the above system via the existence of a weak solution. First,

we show the well posedness of the (nominal) system for t < t�, i.e. prior to the failure, and

then establish the well posedness of the system with the failure incorporated into its dynamics.

Speci�cally, we �rst consider the system

(I)

(
_x(t) +Ax(t) = Bu(t); 0 < t < t�;

x(0) = x0;
(9)

and then (using (2)) the system

(II)

(
_x(t) +Ax(t) +D(�)x(t) = Bu(t); t > t�;

x(t�) = x�:
(10)

By a weak solution to the initial value problem (9) we mean a function x 2 L2(0; T ;V ) with _x 2
L2(0; T ;V

�) for all 0 < T < t� that satis�es (9). Similarly, by a weak solution to (10) we mean

a function x 2 L2(t
�; T ;V ) with _x 2 L2(t

�; T ;V �) for all T � t� that satis�es (10). Su�cient

conditions that guarantee the existence of a unique solution are presented in (Banks et al.,

2175

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



1996; Lions, 1971; Lions and Magenes, 1972; Pazy, 1983; Showalter, 1977; Tanabe, 1979; Wloka,

1987). Speci�cally, the operator A being coercive and bounded with Bu(t) 2 L2(0; T ;V
�),

are su�cient conditions to guarantee the existence of a unique solution to (9). Similarly, if

the operator [A + D(�)] is coercive and bounded for all � 2 Q with Bu(t) 2 L2(0; T ;V
�), are

su�cient conditions for the existence of solutions to (10). The former condition can for example

be satis�ed if

Re h(A +D(�))';'i + �aj'j2 � Re hA';'i � jhD(�)';'ij + �aj'j2
� �ak'k2 � adj�jQk'k2
� (�a � adj�jQ) k'k2;

which would require �a > adj�jQ.

2.2 Estimated Model and a Learning Scheme

Before we present the state estimator, we give the de�nition of a bounded plant, which in a way

is a uniform boundedness condition on kx(t)k.

De�nition 2 (Bounded plant) A bounded plant is a pair (�; x) with x a solution to (7), (8)

for which there exists a constant 
 = 
(x) such that

jhG(x(t))'; �iQj � 
(x(t))j�jQk'k; t > t�; � 2 Q; ' 2 V:

It should be noted that if the pair (�; x) is a bounded plant, then we have that G(x(�)) 2
L2(t

�; T ;L(V;Q)) for all T > t�. It also follows from equation (6) that if (�; x) is such that

kx(t)k � 
 < 1, a.e. t > t�, for some 
 > 0, then (�; x) is indeed a bounded plant. In

(Baumeister et al., 1997), it was shown that it is possible to provide su�cient conditions for the

uniform boundedness of kx(t)k for t > t�.

We can now propose the estimated model of (7), (8) along with the adaptive law for the

adjustment of the parameter estimates. They take the form of an initial value problem and are

given by
_̂x(t) + Lx̂(t) +G�(x(t))�̂(t) = Bu(t)�Ax(t) + Lx(t); (11)

_̂
�(t)�G(x(t))x̂(t) = �G(x(t))x(t); a:e: t > 0; (12)

x̂(0) = x(0); �̂(0) = 0: (13)

To establish the well posedness of the (state and parameter) estimator (11) - (13), we follow a

procedure similar to the one taken for the adaptive parameter estimation of distributed param-

eter systems in (Demetriou, 1993). We let X = H � Q and Y = V � Q. When X and Y are

endowed with the usual product norm topologies, X becomes a Hilbert space and Y a re
exive

Banach space. We then have the dense and continuous embeddings Y ,! X ,! Y �. We de�ne

the operator A(t) : Y ! Y � by

A(t) =
"

L G�(x(t))

�G(x(t)) 0

#
; (14)

and the input F(t) 2 Y � by

F(t) =
"
Bu(t)�Ax(t) + Lx(t)

�G(x(t))x(t)

#
; (15)
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for almost every t > 0.

The fact that (�; x) is a bounded plant (De�nition 2) and Bu(t) 2 L2(0; T ;V
�) implies that

F 2 L2(0; T ;Y
�) for all T > 0. Assumptions (L1) and (L2) together with (�; x) being a bounded

plant imply that A(t) 2 L(Y; Y �), t > 0 and that for t > 0

RehA(t)';'iY �;Y + �j'j2X � �k'k2Y ; ' 2 Y;

where j � jX and k � kY denote respectively, the norms on X and Y , and �, � > 0. It follows (see,

for example, (Lions, 1971; Lions and Magenes, 1972; Showalter, 1977; Tanabe, 1979; Wloka,

1987)) that the initial value problem

_�(t) +A(t)�(t) = F(t); a.e. t > 0;

�(0) 2 X;

admits a unique solution � 2 L2(0; T ;Y ) with _� 2 L2(0; T ;Y
�), all T > 0. Consequently, the

estimator (11) - (13) admits a unique solution (�̂; x̂) 2 L2(0; T ;Q) � L2(0; T ;V ) with (
_̂
�; _̂x) 2

L2(0; T ;Q)�L2(0; T ;V
�), all T > 0. Moreover, for each T > 0, �̂ and x̂ agree almost everywhere

with functions in C([0; T ];Q) and C([0; T ];H), respectively.

We denote the output estimation error or state error, by e(t) = x̂(t)�x(t) and the parameter

estimation error or parameter error, by r(t) = �̂(t) � �. Using the linearity assumption (D1)

and the fact that for t < t� the parameter � � 0, we have

�(t� t�)D(�)x(t) = 0 �D(�)x(t)

= D(0)x(t)
; t < t�;

and that for t � t�

�(t� t�)D(�)x(t) = 1 �D(�)x(t)

= D(�)x(t)
; t � t�;

we can then write the error equations as

_e(t) + Le(t) +G�(x(t))r(t) = 0; a:e: t > 0; (16)

_r(t)�G(x(t))e(t) = 0; a:e: t > 0; (17)

where for t < t� the parameter error is given by r(t) = �̂(t) � 0 and for t � t� it is given by

r(t) = �̂(t)� �. The initial conditions are given by

e(0) = x̂(0) � x(0) = x(0)� x(0) = 0; r(0) = �̂(0) � 0 = 0: (18)

Equivalently, the error equations (16), (17) can be written as

d

dt

"
e(t)

r(t)

#
+A(t)

"
e(t)

r(t)

#
= 0; a:e: t > 0; (19)

with the operator A(t) given by (14).

The choice �̂(0) = 0 will be explained in the next section where it will be shown that for t < t�

the parameter estimator �̂ will estimate the zero parameter (i.e. �(t) = 0) and at t � t� will

adaptively estimate the nonzero parameter �. In addition, the choice x̂(0) = x(0) will be shown

to guarantee that for t < t�, e(t) � 0 and for t � t�, je(t)j � 0. The latter is a means of sensing
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the failure in the system, i.e. when e(t) becomes nonzero it means that the system dynamics

changed from Ax(t) to [A +D(�)]x(t). With no additional assumptions, it will be shown that

the state error e(t) converges to zero asymptotically after the failure occurs. Additionally, the

parameter estimate will be shown to estimate the zero parameter (i.e. �̂ remain at zero) for

t < t� and after the failure occurs, it will attempt to estimate the parameter �. In order to

quarantee that the parameter estimator will asymptotically estimate the parameter � after the

failure, we must impose the additional assumption of persistence of excitation, see (Krstic et al.,

1995; Narendra and Annaswamy, 1989; Sastry and Bodson, 1989).

3 Convergence of the Learning Scheme

In this section, we make the standing assumption that the pair (�; x) is a bounded plant (De�-

nition 2). We use a Lyapunov-like argument to show convergence of the state error e(t) to zero.

Toward this end, we de�ne the function E : [0;1)! R by

E(t) =
1

2

n
je(t)j2 + jr(t)j2Q

o
; t � 0: (20)

As a �rst result we get a bound on the energy function E(t).

Lemma 3 For all t < t� we have

E(t) + �l

Z t

0
ke(�)k2d� � E(0); (21)

and for t > t� we have

E(t) + �l

Z t

t�
ke(�)k2d� � E(t�): (22)

Proof 1 Using (16), (17), (18) and assumption (L2) we have that for t < t�

d

dt
E(t) = h d

dt
e(t); e(t)i + h d

dt
r(t); r(t)i = �hLe(t); e(t)i

� ��lke(t)k2:
(23)

When equation (23) is integrated from 0 to some t < t� we obtain the desired result (21).

Similarly, when we integrate from t� to some t� t� we get (22).

The above lemma is used to show that the state error e(t) either remains at zero for t < t�

or it converges asymptotically to zero for some t� t�. This is stated as a theorem below.

Theorem 4 The error equations (16) - (18) that result by combining the plant (7), (8) with the

state and parameter estimator (11) - (13), satisfy:

(i) for t < t� we have

E(t) � e(t) � r(t) � 0;

(ii) for t > t� the energy function E(t) is nonincreasing and

lim
t!1

je(t)j = 0:
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Proof 2 Case (i), t < t�. Using the fact that at t = 0 the initial conditions e(0) = x̂(0)�x(0) =
0 and r(0) = �̂(0)� 0 = 0, and the result of Lemma 3, we have that

E(t) + �l

Z t

0
ke(�)k2 d� � E(0) � 0; t < t�;

which implies that E(t) � 0 for all t < t�.

Case (ii), t > t�. Using equation (22)

E(t) + �l

Z t

t�
ke(�)k2 d� � E(t�); t > t�

we have that E (with E(t�) 6= 0) is nonincreasing. The convergence of je(t)j to zero follows

from the same arguments used in (Demetriou, 1993) for the adaptive parameter estimation of

distributed parameter systems. It is essentially based on Barb�alat's lemma (Popov, 1973) often

used in the adaptive estimation and control of �nite dimensional systems, (Krstic et al., 1995;

Narendra and Annaswamy, 1989; Popov, 1973).

Remark 5 It can be observed from Theorem 4 that the estimator will sense the time t� of

failure, since the state error is identical to zero for all time t up to failure time t�. The state

error becomes nonzero after t� and converges to zero afterwards. When the state error attains

a nonzero value it indicates that the failure occurred and hence the time t� can be detected by

monitoring the state error e(t). Another way to detect the failure is by monitoring the parameter

estimate �̂(t), as it too remains at zero for t < t� and becomes nonzero thereafter.

Remark 6 In the above design, it was assumed that the initial condition x(0) was known. If

this is not known, one can actually built a monitoring observer of the healthy system in the

in�nitely remote past and assume that the state error e(t) is relaxed at time t0, (Green and

Limebeer, 1995). Alternatively, if an upper bound on the norm of e(t0) is known, then a dead-

zone adaptive law can be augmented in the design to ensure that false alarms due to nonzero

e(t0) are avoided, see (Demetriou and Polycarpou, November, 1998; Polycarpou and Helmicki,

1995; Polycarpou and Vemuri, 1995) for the �nite dimensional treatment.

The convergence of �̂(t) to the actual parameter � is established by imposing the additional

assumption of persistence of excitation, (Krstic et al., 1995; Narendra and Annaswamy, 1989).

Below, we provide the equivalent de�nition of this persistence of excitation condition as it

extends to in�nite dimensional systems, (Demetriou, 1993).

De�nition 7 (Persistence of Excitation) A bounded plant (�; x) is said to be persistently

excited, if there exists T0; �0; �0 > 0 such that for each p 2 Q with unit norm (i.e. jpjQ = 1) and

each t > 0 su�ciently large (in this case t� t�), there exists a ~t 2 [t; t+ T0] such that





Z ~t+�0

~t
G�(x(�))p d �







�

� �0; (24)

where G�(x(t)) 2 L(Q;V �) is the Banach space adjoint of the operator de�ned in (5).

Theorem 8 If the plant (q; x) is persistently excited then

lim
t!1

jr(t)jQ = lim
t!1

j�̂(t)� �jQ = 0:

Proof 3 The proof is identical to the one used for the adaptive parameter identi�cation of

in�nite dimensional dynamical systems in (Baumeister et al., 1997) and it is therefore omitted.
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4 Examples

In this section we present some examples to demonstrate the applicability of the proposed fault

detection scheme. We �rst examine a one dimensional heat equation with spatially varying

coe�cients and then a second order (in time) hyperbolic pde (wave equation) with spatially

varying fault of the sti�ness parameter.

4.1 Example 1

As a �rst example, we consider the one dimensional di�usion equation with spatially varying

parameter given by

@

@t
x(t; �) =

@

@�

�
a(�)

@

@�
x(t; �)

�
+ f(t; �) + �(t� 10)

@

@�

�
�(�)

@

@�
x(t; �)

�
(25)

and with boundary and initial conditions

x(t; 0) = x(t; 1) = 0; t > 0; x(0; �) = 0; 0 < � < 1: (26)

The Hilbert space H is taken to be H = L2(0; 1) and the Sobolev space V is V = H1
0 (0; 1);

the reader is directed to the books of Adams (Adams, 1975) or Lions and Magenes (Lions

and Magenes, 1972) for an exposition to Sobolev spaces. The parameter space in this case is

Q = H1(0; 1) endowed with the weighted inner product

hq; piQ = !1

Z 1

0
q(�) � p(�) d� + !2

Z 1

0
q0(�) � p0(�) d�; q; p 2 H1(0; 1);

where the weights !1 and !2 are assumed to be positive.

The operators A and D(�) in (1) are given by

hA�; i =

Z 1

0
a(�) � �0(�) �  0(�) d�;

hD(�)�;  i =

Z 1

0
�(�) � �0(�) �  0(�) d�:

(27)

The operator G(x(t)) in (5) is given in weak form by

hG(x(t))'; piH1(0;1) = hD(p)x(t); 'i =
Z 1

0
p(�)

@

@�
x(t; �) � '0(�) d�;

for ' 2 H1
0 (0; 1), p 2 H1(0; 1), and the estimator operator L is given by

hL�; i = 2

Z 1

0
�(�) �  (�) d�; �;  2 H1

0 (0; l):

In this case, the e�ect of the fault is a change in the thermal di�usivity from a(�) to a(�)+�(�).

In other words,

D(�)j�(�)=a(�) x(t) � Ax(t)

or the �-parameterized operator D(�) is the same as the nominal operator A evaluated at a

di�erent di�usivity parameter. The nominal thermal di�usivity is given by

a(�) = 1:5 � 10�3 (1:5 � sin(��)) ; 0 � � � 1; (28)
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and the unknown perturbation �(�) of the di�usivity is chosen as

�(�) = 1:5� 10�3
 
1�

p
2

2
� sin(3��)

!
�[0:3;0:7](�); 0 � � � 1; (29)

where �[0:3;0:7](�) denotes the characteristic function over the interval [0:3; 0:7]. This is also

illustrated in Figure 1 where both a(�) and a(�) + �(�) are depicted. It can be easily veri�ed

that assumptions (D1), (D2), (A1), (A2) and (L1), (L2) are satis�ed with �d = 1:0, �a = 0,

�a = 2:25 � 10�3, �a = 0:75 � 10�3, �l = �l = 2. The embedding constant in (4) is K = ��1.

It follows that

h[A+D(�)]';'i =
Z 1

0
(a(�)� �(�)) ['�(�)]

2 d� � 1� 10�3k'k2

will guarantee the existence of a unique solution to (25) as mentioned in Section 2.
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Figure 1: Example 1; Di�usivity parameter �(�) (before failure) and �(�) + �(�) (after failure).

The forcing function is given by

f(t; �) = 10�2
��

3 + 0:1 sin

�
�t

50

��
� 2e�0:01t + sin

�
�t

200

��
�[0:3;0:7](�):

In Figure 2, we observe that both je(t)j and jr(t)j remain at zero for 0 � t < t�. The

estimated model approximates the system after failure and the state increases at the time of

the system failure at t = 10 seconds but converges to zero within 6 seconds. Additionally, we

observe that the on-line parameter approximator can also serve as an indicator of the system's

failure. Figure 3 shows the parameter approximator �̂(t; �) compared to the actual parameter
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System failure occurs at t=10sec

Figure 2: Example 1; Evolution of state error, e(t) = x̂(t) � x(t), and parameter error r(t) =

�̂(t)� �.

�(�) at four di�erent time instances. It is observed that the parameter approximator identi�es

the location (i.e. function is nonzero on the spatial interval 0:3 � � � 0:7) and the shape of the

failure (i.e. the function 1 �
p
2
2 � sin(3��)) within 4 seconds, from t = 11 seconds to t = 14

seconds.

4.2 Example 2

In this example we consider a second order system that can be written as a �rst order system.

The plant is given by the wave equation with Kelvin-Voigt viscoelastic damping

@2

@t2
w(t; �)� @

@�

 
cDI(�)

@2

@�@t
w(t; �) +EI(�)

@

@�
w(t; �)

!

��(t� 10)
@

@�

�
�(�)

@

@�
w(t; �)

�
= f(t; �); in 


(30)

where w(t; �) denotes the displacement and wt(t; �) the velocity. The boundary and initial

conditions are given by

w(t; �)j@
 = wx(t; �)j@
 = 0;
w(0; �) = d0(�) 2 H1

0 (0; l);

wt(0; �) = v0(�) 2 L2(0; l):

Since equation (25) has strong damping, we can use the same techniques in (Demetriou, 1993)

applied for the adaptive parameter estimation of hyperbolic distributed parameter systems, to

write equation (30) as a �rst order system with H = H1
0 (0; l)�L2(0; l), V = H1

0 (0; l)�H1
0 (0; l)
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Figure 3: Example 1; Parameter �̂(t; �) (dashed) and �(�) (solid) at di�erent time epochs

t=11,12,13 & t=14 seconds.

and the parameter space Q = H1(0; l). We brie
y describe the procedure. When the above

system is written as an abstract second order initial value problem, we arrive at

wtt(t) +K1wt(t) +K2w(t) + �(t� 10)K3(�)w(t) = f(t); a:e: t > 0

w(0) = d0; wt(0) = v0:
(31)

which when written in a weak (or variational) form becomes

hwtt(t); �i + hK1wt(t); �i+ hK2w(t); �i + �(t� 10)hK3(�)w(t); �i
= hf(t); �i

w(0) = d0 2 H1
0 (0; l); wt(0) = v0 2 L2(0; l):

(32)

The state and parameter estimators are given, for � = (�1; �2) 2 H1
0 (0; l)� L2(0; l), by

hL2
d

dt
ŵ(t); �1i = hL2ŵt(t); �1i+ �hL2e(t); �1i;

h d
dt
ŵ(t); �2i+ hL1et(t); �2i+ hL2e(t); �2i+ �het(t); �2i

+hK3(�̂(t))w(t); �2i = hf(t); �2i

(33)

and

h d
dt
�̂(t); piH1(0;l) = hK3(p)w(t); et(t)i; p 2 H1(0; l): (34)

The design operators L1; L2 2 L(H1
0 (0; l);H

�1(0; l)) are chosen to satisfy assumptions (L1) and

(L2) and the operators Ki 2 L(H1
0 (0; l);H

�1(0; l)), i = 1; 2, K3(�) 2 L(H1
0 (0; l);H

�1(0; l)),
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� 2 Q, are given by

hK1wt(t);  i =

Z l

0
cDI(�) �

@

@�
wt(t; �) �  0(�) d�;

hK2w(t);  i =

Z l

0
EI(�) � @

@�
w(t; �) �  0(�) d�;

hK3(�)w(t);  i =

Z l

0
�(�) � @

@�
w(t; �) �  0(�) d�:

(35)

The fault is modeled as a change (decrease) in the sti�ness parameter EI which is given below

and depicted in Figure 4,

�(�) = �1:5� 10�4�[0:3;0:7](�)

 
1�

p
2

2
� sin(3��)

!
; 0 < � < l: (36)

Since in this case EI(�) + �(�) > 0 8� 2 [0; l] and hence h(K1 +K3(�))';'i � �k'k2, we can
conclude well posedness using already established results on second order systems.

The sti�ness and damping parameters EI(�) and cDI(�) are chosen as EI(�) = 3 � 10�2

and cDI(�) = 5� 10�3, 0 < � < l respectively. The input f(t; �) is given by

f(t; �) = �[0:4;0:6](�)

�
sin(

�t

200
) + 5(3 + 0:1 sin(

�t

50
))e�0:01t

�
:

The constant � is set to � = 1 and the initial conditions d0(�), v0(�) are given by

d0(�) = 0:01 sin(��=l); v0(�) = 0:001 sin(4��=l); 0 < � < l:

The design operators L1; L2 are chosen to have the same structure as the damping and sti�ness

operators K1;K2 evaluated at di�erent (and constant) damping and sti�ness parameters, and

are given by

hL1wt(t);  i =
Z l

0
0:02wt�(t; �) �  0(�) d�;  2 H1

0 (0; l)

hL2w(t);  i =
Z l

0
0:04w�(t; �) �  0(�) d�;  2 H1

0 (0; l);

(37)

The adaptation rule for �(t; �) is given by

h d
dt
�(t); piH1(0;l) =

Z l

0
p(�)w�(t; �) � et�(t; �) d�; p 2 H1(0; l): (38)

Both displacement and velocity state errors (in their respective norms) converge to zero

after the failure occurs as depicted in Figure 5. The norm of the parameter estimate �(t; �)

converges to the norm of the actual parameter �(�) as observed in Figure 6. The graph of the

parameter estimate and its adaptive estimate are plotted (pointwise) in Figure 7. The pointwise

convergence is established at 100 seconds.

5 Conclusions and Further Research

In this note the �nite dimensional theory of model-based fault diagnosis was extended into a class

of in�nite dimensional dynamical systems. The proposed state estimator with the parameter
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identi�ers can detect the failure time. These on-line parameter estimators can identify (isolate)

the location of the fault (in the spatial domain) and assess the nature of the fault thus allowing

for the successful design of a control policy to accommodate such a system. The proposed scheme

was designed with the applications for 
exible structures in mind, but this general framework

encompass systems governed by parabolic and hyperbolic partial di�erential equations. Delay

di�erential equations can also be included in the proposed framework. Another application is in

the aerospace applications and especially in the area of detection of air contamination in both

enclosed and open environments (cavities), see (Skliar and Ramirez, 1997).

This scheme is by no means complete as it requires full state measurements, often impossible

to acquire, and assumes known initial conditions with no modeling uncertainties and no external

inputs present. It does however lay down the abstract framework for the study of a wide class of

in�nite dimensional systems with unbounded state and input operators. Such a class of systems

includes the Pritchard-Salamon class (Curtain and Zwart, 1995; Keulen, 1993; Pritchard and

Salamon, 1987) of in�nite dimensional systems.

Future direction would involve failures in actuators and in the form of nonlinear dynamics

(as opposed to the current case of linear perturbations with linearly parametrized operators) or

exogenous failures. This could possibly employ neural networks as used in the �nite dimensional

case in (Polycarpou and Helmicki, 1995). As it is often the case, restricted plant information is

available, which means that only a noise-corrupted system output is available to assess failures

in the system. This type of failure would be studied in the context of 
exible structures. Some

attempts were made to detect the failure in a model for a nonlinear beam in (Demetriou and

Fitzpatrick, 1995a,b, 1997) and in (Demetriou, 1996) to detect failures in thermal processes.

Speci�cally, for an Euler-Bernoulli beam with Kelvin-Voigt viscoelastic damping

@2

@t2
w(�; t) +

@2

@�2

"
EI(�)

@2

@�2
w(�; t) + cDI(�)

@3

@�2@t
w(�; t)

#
= f(�; t)

the failure could be modelled as a (non)linear additive perturbation of sti�ness, to give the

following model

@2

@t2
w(�; t) +

@2

@�2

"
EI(�)

@2

@�2
w(�; t) + cDI(�)

@3

@�2@t
w(�; t)

+�(t� T )G
 
�(�);

@2w(�; t)

@�2

!#
= f(�; t):

Using an additive perturbation of the sti�ness parameter to model failures in structures has been

suggested in (Chen and Garba, 1987) where for a series of interconnected masses with springs,

the failure was modelled as a break of one of the connecting springs. The above proposed model

of failure in the beam bares no similarity to the aforementioned paper but it uses the sti�ness

perturbation as in (Chen and Garba, 1987) to model the failure. The nonlinear function G(�; w��)

is desired to be identi�ed in order to allow for the correct accommodation of the post-failure

structure.

Another avenue of interest involves the detection of actuator failure and consequent controller

design for the accommodation of the structure. Some preliminary studies on this appeared in

(Demetriou and Polycarpou, 1997c,a,b, 1998; Ackleh et al., 1998). Many 
exible structures are

using smart actuators and sensors for control and observation. These sensors and actuators need

to be monitored in order to detect their failures. On-line schemes for actuator/sensor failure

detection are thus needed to accommodate these intelligent structures.
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