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Abstract 

 
 The aim of this work is the application of the game theory in mixed H2/H∞ control 
problems, using convex optimization. We use the formulation of the mixed H2/H∞ control 
problem as a Nonzero-Sum NASH Game, where the two pay-off functions are associated with 
two players, which represent the H2 and H∞ criteria. We show that the necessary and sufficient 
conditions for the existence of a NASH equilibrium solution are related to the existence of a 
global optimal solution to a convex optimization problem. The plant is assumed linear and time-
invariant and the resulting controller is a state-feedback law. 
Keywords: Nash Game; H2/H∞ Control; Convex Optimization. 
 
 

1 Introduction 
 
 The concepts of games and strategies were originally presented by Von 
Neumann in 1928. In 1954 R. Isaacs introduced the differential games theory. Ten 
years latter L.D. Berkowitz presented a rigorous approach to game theory using 
variational calculus. In 1965 Ho et al., studied the optimal pursuit-evasion strategies 
problem. Since then, many real problems - missiles control, anti-missiles, aircraft 
traffic, etc. - were considered in the context. 
 Optimization theory, on the other hand, is undoubtedly one of the most 
relevant approach to modern control problems. Particularly, state feedback optimal 
control problems involving H2 and H∞ norms can be converted into equivalent convex 
problems, and solved through standard convex programming techniques. Yet, the 
convex approach allows the incorporation of additional constraints, as for example the 
minimization of disturbances external to the plant. In (Boyd et al., 1994), a variety of 
control problems that can be formulated as a convex optimization problem involving 
matrix inequalities and solved numerically is presented. 
 This paper brings together some elements of both these theories. The H2 /H∞ 
mixed control problem is formulated as a non-zero sum Nash game, with two players 
and two pay-off functions, which represent H2 and H∞ criteria. Necessary and 
sufficient conditions for the existence of an equilibrium solution are then related to the 
existence of a global optimal solution to a convex optimization problem. The 
considered problem has been originally considered by (Limebeer et al., 1994), where, 
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in contrast to the results here presented, the existence of an equilibrium solution is 
associated to the existence of a solution to a pair of coupled Riccati equations. 
 In section 2 some preliminary results are presented. In section 3 the H2 /H∞ 
mixed control problem is formulated as a non-zero sum Nash game. In section 4 
necessary and sufficient conditions for the existence of an equilibrium solution are 
obtained, and Section 5 presents the final conclusions. 
 
 

2 Preliminaries 
 
 Let the linear, continuous, time invariant control system, described by the 
following equations: 
 

 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

x t Ax t B w t B u t

u t Kx t

z t C x t D u t

z t C x t D u t

= + +

=

= +

= +∞ ∞ ∞

1 2

2 2 2

                                                                     (2.1) 

 
where x R n∈  is the state vector, 
 u R m∈  is the control vector,  
 w R∈  is the disturbance vector and 
 z R q

2
2∈  and z R q

∞ ∈ ∞  are the output vectors. 
 
 We assume that all the matrices are of known and appropriate dimensions 
and, 
 i) C D2 2 0' = , 
 ii) D D2 2 0' ,>                                                                                                  (2.2) 
 iii) C D∞ ∞ =' ,0  

iv) D D∞ ∞ >' .0  
 
 Associated with the system (2.1), we define the extended matrices, 

F R ,  where p m n,  G R ,  R R  and R Rpxp pxm
2

pxp pxp∈ = + ∈ ∈ ∈∞ ,  
 

 F
A -B

0
2=






0
,  G

0

I
=







 Q

B B 0

0
1 1

'

=










0
, 

 

 R
C C 0

0 D D2
2
'

2

2
'

2

=








,  R

C C 0

0 D D

'

'∞
∞ ∞

∞ ∞

=








,                          (2.3) 

 
the closed loop matrices, 
 A A B Kcl = + 2 ,                                                                          (2.4) 

C C D K C C D Kcl cl2 2 2= + = +
∞ ∞ ∞ and  ,                                                           (2.5) 
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the set of admissible controllers, 
K K R Aad

mxn
cl= ∈{ /  is asymptotically stable}                 (2.6) 

 
and the closed-loop transfer functions from w to z2 and de from w to z∞ are, 
respectively, 
 T C sI A Bz w cl cl2 2

1
1= − −[ ]  and       (2.7a) 

 T s C sI A Bz w cl cl∞ ∞
= − −( ) [ ] 1

1.       (2.7b) 
 
 For all K ∈ Kad we have the H2 norm associated with Tz w2

, defined as: 

T Tr C L C Tr B L Bz w cl c cl2 2 22

2

1 0 1= =( ) ( )' '         (2.8) 

 
where Tr(.) denotes the trace of (.) and Lc and Lo are, respectively, the controllability 
and the observability Gramians of ( , ) ( , )A B C Acl cl cl1 2

 and , and the H∞ norm associated with 
Tz w∞

, defined as: 
 

T T j T j T jz w max z w max z w z w∞ ∞ ∞ ∞∞
= = −sup [ ( )] sup{ [ ( )' ( )]}/

ω ω
σ ω λ ω ω1 2       (2.9) 

 
where σmax [.] is the maximum singular value of [.], λmax [.] is the maximum eigenvalue 
of [.] and ω ∈ R+. 
 
 From (2.3) we define the following functions: 
 

θ∞ (.,.) : ( , )R R Rpxp pxp→  
 

θ∞ (W,µ) = FW + WF' + WR∞W + µQ,       (2.10) 
 
associated with the set 

C∞ = { W = W' ≥ 0, µ > 0 : v'θ∞(W,µ)v ≤ 0, ∀ v∈Ν}              (2.11) 
 
and 
 

θ2(.) : R Rpxp pxp→  
 

θ2 (W) = FW + WF' + Q,                                                                      (2.12) 
 
associated with the set  

C2 = { W = W' ≥ 0 : v'θ2(W)v ≤ 0, ∀ v and N }              (2.13) 
 
 In both cases, N is the null space of G' and W is symmetric and partitioned in 
the form: 
 

 W
w w

w w
=







1 2

2 3'
                                                                       (2.14) 

where w1 ∈ R nxn , w1 > 0. 
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 It can be easily seen that 
v ∈ N iff v' = [x' : 0],  x ∈ R n        (2.15) 

 
In addition, (Colaneri et al., 1997) 

C2 and C∞ are convex with respect to W.     (2.16) 
 
Theorem 2.1 Assume ( , )A Ccl cl ∞

 observable and let γ > 0 given. Then Acl is 

asymptotically stable and Tz w∞ ∞
≤ γ  if and only if the Riccati inequality  

A P PA PB B P C Ccl cl cl cl
' ' '+ + + ≤−

∞ ∞
γ 2

1 1 0       (2.17) 
has a symmetric positive definite solution P R nxn∈ . 

Proof: see (Sherer, 1989) 
 
 

3 Statement of the Game 
 
 Let the system 
 

( ) ( ) ( ) ( ), ( )

( ) ( ) ( )

x t Ax t B w t B u t x x

z t Cx t Du t

= + + =

= +

1 2 00
         (3.1) 

 
where x R n∈  is the state vector , u R m∈  is the control vector, w R∈  is the 
disturbance vector, z R q∈  is the output vector and A, B1, B2, C and D are matrices of 
known and appropriate dimensions. This system corresponds to the particular case 
z t z t z t2 ( ) ( ) ( )= =∞

problem: Find a control law u*(t,x) such that 
 
 z w for all w t given2

2 2
2
2

20 0≤ ≠ ∈ >γ γ( ) , ,L                  (3.2) 
where L2  is a set of finite energy signals. Inequality (3.2) can be interpreted as a 
restriction on the H∞ norm, i.e., 
 
 ||Tzw||∞ ≤ γ                        (3.3) 
where the operator Tzw represents the map from the disturbance signal w(t) to the 
output z(t) in the presence of the optimal control law u*(t,x). 
 
 It is desired that the control signal u*(t,x) produces regulation of the state x(t) 
and minimizes the output energy, in the presence of the worst disturbance signal 
w*(t,x), in the sense that w*(t,x) activates the maximum energy gain from the 
disturbance input to the output signal. 
 The above problem can be formulated as a non zero sum linear quadratic 
game, following the same lines presented in (Limebeer et al., 1994). The two cost 
functions are given by: 

J u w w t w t z t z t dt1
2

0

( , ) ( ( )' ( ) ( )' ( ))= −
∞

∫ γ          (3.4) 

J u w z t z t dt2
0

( , ) ( ( )' ( ))=
∞

∫          (3.5) 
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 The cost function J1 is related to the H∞ criterion and J2 optimizes the H2 norm. 
The strategy sets for each player, denoted by Σ1 and Σ2, are defined as: 

Σ1 =
∆

 {w(t)=K2 x(t) : J1(u,w)≥0 and K2 is real matrix}                (3.6) 
 

Σ2 =
∆

 {u(t)=K1 x(t) : K1 is real matrix and K1 ∈ Kad }                (3.7) 
 
 We look for equilibrium strategies u* and w* in Σ1 and Σ2, respectively, which 
satisfy the Nash equilibrium conditions:  
 

J1(u*,w*) ≤ J1(u*,w) for all w∈Σ1                 (3.8a) 
J2(u*,w*) ≤ J2(u,w*) for all u∈Σ2                (3.8b) 

 
 From (3.8a), if  J1(u

*,w*) ≥ 0, then z w2

2 2
2

2≤ γ  for all w(t) ≠ 0 ∈L2, and ||Tzw||∞ ≤ 
γ. The second inequality, (3.8b), says that u* produces state regulation with minimum 
output energy in the presence of the worst disturbance input, w*. 
 The game, denoted by Γ, is represented in the form 

 Γ =
∆

 { J1 , J2 , Σ1 , Σ2 }, 
and the strategies set, denoted by Ω, is defined as 

Ω =
∆

 { (u(t,x),w(t,x)) : w(t,x) ∈ Σ1 and u(t,x) ∈ Σ2 }                (3.9) 
 
 

4 The Necessary and Sufficient Conditions for the Existence of Nash 
Equilibrium Strategies 
 
 In this section we determine necessary and sufficient conditions for the 
existence of Nash equilibrium strategies for the game Γ formulated in Section 3. The 
main result is presented in Theorem 4.1. 
 
Lemma 4.1  Let the system 

( ) ( ) ( ), ( )

( ) ( ) ( )

( ) ( ),

x t A x t B u t x x

z t C x t D u t

u t K x t K K ad

= + =

= +

= ∈

0 0

                   (4.1) 

and define 

J(u) [z' (t)z(t)]dt
0

=
∞

∫
∆

.            (4.2) 

Assume that there exists V P( ) 'ξ ξ ξ= , such that 

P
d V x t

dt
z t z t> = −0 and 

( ( ( )))
( )' ( )           (4.3) 

for all x and z satisfying (4.1). Then,  
J u x Px( ) '= 0 0            (4.4) 

and 
min J u min x Px

u P K
P

( )
,

'=
> 0

0 0

                  
                 

(A + B K ) ' P + P(A + BK) + (C + D K ) ' (C + D K ) = 0                  (4.5) 

 Proof. It follows by simple manipulations on (4.1)-(4.3). 
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Lemma 4.2 Let the system (3.1) with 
 u x= −w w2 1

1' , 
 w1, w2 such that w1 > 0 and 

w w w w w w w w w w w w w w1
1

1
1

1
1

2 2 1
1

1
1

2 2 1
1

1
1

2 2 1
1 2

1
1

1 1 1
1 0− − − − − − − − − − −+ + + + + + =A A B B CC B B' ' ' ' ' 'γ              (4.6) 

Then, 
J (u,w) x(t) B x(t) u(t) B x(t) w(t) B x(t) x x1 2

'
1

1
2
'

1
1

2

2

2
'

1
1

2

2 2 2
1 1

1
2

2

0
'

1
1

0= + − + + − −− − − − − −w w w w w wγ γ  

 Proof. Computing 
dx' (t) x(t)

dt
1
-1w

, and using (4.6), we get 

dx'(t) x(t)
dt

x'(t) x(t) x'(t) x(t)  = (Ax(t) B w(t) B u(t))' x(t) x'(t) (Ax(t) B w(t) B u(t))

x'(t)(A' A)x(t) w'(t) B x(t) u'(t) B x(t) x'(t) B w(t) x'(t) B u(t))  

x'(t)( B B C'C w B

1
-1

1
-1

1
-1

1 2 1
1

1
1

1 2

1
1

1
1

1
'

1
1

2
'

1
1

1
1

1 1
1

2

1
1

2 2
'

1
1

1
1

2 2
'

1
1

1
1

2 2
'

1
1 2

1
1

1

w
w w w w

w w w w w w

w w w w w w w w w w

= + + + + + + =

= + + + + + =

= − − − − −

− −

− − − − − −

− − − − − − − −γ B )x(t) 2 w(t),B x(t)

2 u(t),B x(t) .

1
'

1
1

1
'

1
1

2
'

1
1

w w

w

− −

−

+ +

+
  
Using a standard completion of squares, 
dx'(t) x(t)

dt
z(t) w(t) u(t) B x(t) x(t) B x(t) w(t) B x(t)1

-1
2 2 2

2
'

1
1 2

2
'

1
1

2
'

1
1 2 2 2

1 1
1w

w w w w w= − + + + − + − −− − − − −γ γ γ
2
. 

 
But under (4.6), we have also that x(∞)=0, (Colaneri et al., 1997), and since w ∈ L2, 
integrating the above equation from 0 to ∞, we get 
γ γ γ2

2

2

2

2

2
'

1
1

2
'

1
1

2

2

2
'

1
1

2

2 2 2
1 1

1
2

2

0
'

1
1w(t) z(t) x(t) B x(t) u(t) B x(t) w(t) B x(t) x x− = + − + + − −− − − − − −w w w w w w 0 

 
which concludes the proof. 
 
Theorem 4.1. Let the game formulated in Section 3. Then, there exist Nash 
equilibrium strategies 
 (u*(t,x), w*(t,x)) ∈ Ω 
if and only if the optimization problem 
 min Tr RW

W( , )
( )

γ
γ

2

2

∈ ∞C
                     (4.7) 

where 

 R =
C'C 0

0 D'D






 and γ > 0 given, 

admits one global optimal solution, which is given by W
w w

w w
* =







1 2

2 3
' . 

Furthermore, if such solution exists, then: 
 

i) The Nash equilibrium strategy  (u*(t,x), w*(t,x)) is given by 
 u*(t,x) = w2'w1

-1 x(t) 
 w*(t,x) = γ-2 B1w1

-1 x(t), 
ii) In the case that u(t) = u*(t,x), with x0 = 0, we have 

||Tzw||∞ ≤ γ  for all w∈L2,  γ > 0  given. 
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 Proof. (⇐) Problem (4.7) consists of the minimization of a linear function on 
the closed convex set C∞. Then, if it has an optimal solution, it is achieved at a 
boundary point of C∞, that is, for all v ∈ N,  
 vθ∞(W*,γ-2)v = 0          (4.8) 
Thus, using the special form of v, (2.15), 

(A B ) (A B )' (C D )'(C D ) BB 02 2
'

1
1

1 1 2 2
'

1
1

1 2
'

1
1

2
'

1
1

1
2

1 1
'+ + + + + + + =− − − − −w w w w w w w w w w w w λ     (4.9) 

and, K= w2w1
-1  is a stabilizing state feedback gain and ||Tzw||∞ ≤ γ, (Colaneri et al., 

1997). Equation (4.9) implies also that, for all (f ,Y) such that 
f A B Yf A B Yf f f C B Yf C B Yf f B B( )' ( ) ( )' ( ) '+ + + + + + ≤− − − − −

2
1

2
1

2
1

2
1 2

1 1 0+ γ  
we have 
 w1 ≥ f., (Ron et al., 1988)       (4.10) 
 In the following we determine u* satisfying (3.8b). From lemma 4.1, we note 
that the problem 
 min J u w

u∈

∗

∑2
2 ( , )          (4.11) 

where 
( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

'x t A B B x t B u t

z t Cx t Du t

u t Kx t

= + +

= +

=

−γ 2
1 1 1

1
2w -

  

x(0) = x0 
is equivalent to 

min x Px
P, K,P 0 0

'
0

(A
2

B1B1
'

1
1

B2 K)' P P(A
2

B1B1
'

1
1

B2 K) (C DK)' (C DK) 0

>

+
− −

+ + +
− −

+ + + + =γ γw w

  (4.12) 

 for which, from (4.9), (P,K), P = −w1
1  and K = −w w2 1

1' , is a feasible solution. 
Moreover, f=w1 and Y=w2  

min x x
Y, 0 0

' 1
0

(A B2Y )' (A B2 Y ) (C DY )' (C DY )
2

B1B1
'

0
1 1 1 1

f, f

f f f f f f f f

f
>

−

+ + + + + + +
−

≤
− − − −

γ

             (4.13) 

 
 Now, suppose that there exists an optimal solution, (f*,Y*), to (4.13) .Assume 
by contradiction that  w f1 ≥ * , or equivalent that  w f1

1 1− −≤ *  . Then for all x ∈ Rn ,

 x x x x      ' * '
1

11

f w
−

≥ −  
In particular, for x = x0, we have 
 x x x x      0

' *
0 0

'
1

1
0

1

f w
−

≥ −  
which is an absurd since (f*,Y*) is an optimal solution, and we conclude that 
  w f1 ≤ * .         (4.14) 
 On the other hand, since (f*, Y*) is an optimal solution to (4.13), 
        f f f f f f f f*

2
* *

2
* * * * * * * * * 2

1 1
'(A B Y )' (A B Y ) (C DY )' (C DY ) B B 0

1 1 1 1

+ + + + + + + ≤
− − − − −γ ,  (4.15) 

 
and, from (4.10) and (4.15), we have 
 w1 ≥ f*                    (4.16) 
and hence, from (4.14) and (4.16), it follows that 
 w1 = f*.  
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Thus, (w1, w2) is an optimal solution to (4.13), which implies that (P,K), P = −w1
1  and 

K = −w w2 1
1' , solves the problem (4.12), and consequently u t x x t* '( , ) ( )= −w w2 1

1  is a 
solution to (4.11) and satisfies 
 J2(u*,w*) ≤ J2(u,w*), for all u(t) ∈ Σ2. 
 In the next we determine w*(t,x) that satisfies the Nash equilibrium condition 
(3.8a). This is equivalent to solve the problem: 
 m i n

w 1∈ Σ
 J1 (u*,w)                   (4.17) 

where 

J u w w t w t z t z t1
2

0

( , ) ( ( )' ( ) ( )' ( ))dt* = −
∞

∫ γ  

and 
( ) ( )x( ) ( )

( ) ( )x( )

'

'

x t A B t B w t

z t C D t

= + +

= +

−

−

w w

w w

2 1
1

2 1

2 1
1

 

 
 From the hypothesis, (see (4.9)), 
   w w w w w w w w w w w w w w1

1
1

1
1

1
2 2 1

1
1

1
2 2 1

1
1

1
2 2 1

1 2
1

1
1

1 0− − − − − − − − − − −+ + + + + + =A A B B C' C B B1 1
'' ' ' ' γ  

 
 From lemma 4.2, we have 

J1(u,w) =γ2 w(t)-γ-2 B1w1
-1x(t) 2

-2 - u(t)+ +B2w1
-1 x(t) 2

2 +  w2w1
-1x(t)+ 

  + B2w1
-1 x(t) 2

2 - x0 w1
-1 x0                       (4.18) 

 
which, for u u x t= = −* ' ( )w w2 1

1 , gives 
J1(u*,w) = γ2 w(t)-γ-2 B1w1

-1x(t) 2
2- x0 w1

-1 x0               (4.19) 
 
that assumes its minimum value for w*(t,x)=γ-2B1w1

-1x(t), and so 
 J1(u*,w*) ≤ J1(u*,w) for all w∈Σ1.  
 
In addition, for x0 = 0, we get 
 J1(u*,w)=γ2 w(t)-γ-2 B1w1

-1x(t) 2 ≥ 0 
and 

 ( ( )' ( ) ( )' ( ))dtγ 2

0

0w t w t z t z t− ≥
∞

∫  

or 
||Tzw||∞ ≤ γ, for all w(t)≠0 ∈L2, given γ >0. 

 
 (⇒) The equilibrium strategy 
 w*= K1x(t) 
 u*= K2x(t) 
applied to the system (3.1) produces 

( ) ( ) ( )

( ) ( ) ( )

x t A B K B K x t

z t C DK x t

= + +

= +

1 1 2 2

2

       (4.20) 

 Defining φ (t,0)  as the transition matrix associated with 

 x
•

(t)=(A+B1K1+B2K2) x(t), x(0)=x0;          (x(t)= φ (t,0)x 0 ) 
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we get 

J (u*,w*) = x '[ '(t,0) (  K 'K - CC- K 'K ) (t,0) dt  ]x1 0
2

1 1 2 2
0

0φ γ φ
∞

∫             (4.21) 

 From the hypothesis, 
 J1 (u*,w*) ≤ J1 (u*,w) 
which, for u = u* and x0 = 0, gives, 

0 ≤ (γ 2

0

w '(t)w(t) -  z' (t)z(t)
∞
∫ )dt                 (4.22) 

and so 
 ||Tzw||∞ ≤ γ  ∀ w(t) ≠ 0 ∈L2  
 
 It follows from Theorem 2.1 that the Riccati inequality 

(A+ B2K)f+f(A+B2 f f +γ-2B1B1≤ 0 
 

has a solution   > 0. Defining Y = K f,  K= Y f  -1, we have 
(A+B2 Y f -1 ) f + f (A+B2 Y f -1 f(C+D Y f -1 f -1) f + γ-2B1B1≤ 0  

and 
f+ f 2 2 f f γ-2 B1B1 ≤  0, x ∈ Rn 

 
 Due to the special form of v, the above inequality implies that  
 (W,γ-2)∈C∞ 

 
where the matrix W  is of the form 

 W= 
 f Y
Y' L







 ≥  0, f > 0 

and f -1Y                   (4.23) 
 
 Then C∞  is not empty and the convex optimization problem: 
 min Tr RW

W( , )
( )

γ
γ

−
∞∈2

2

C
 

 
has an optimal solution of the form (4.23), which concludes the proof. 
 
 

5 Conclusion 
 

 This work states a connection between the game theory and the mixed H2/H∞ 
control theory, following a convex approach. We determine the necessary and 
sufficient conditions for the existence of a Nash equilibrium solution for the Nonzero-
Sum Nash Game, as proposed in (Limebeer et al., 1994), where the control law and 
the output disturbance are game variables. We show that these necessary and 
sufficient conditions are related to the existence of a global optimal solution to a 
convex optimization problem, in contrast with the (Limebeer et al., 1994), which 
associates these conditions to the existence of a solution to a pair of coupled Riccati 
equations. 
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