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Abstract– In this work, two techniques of robust control (LQG/LTR and LMI), applied to a
power  electric system, are available via stability radii of the system. The structured
uncertainties of the nominal model are considered in both designs. A set of models is
generated considering the combinations of the parametric uncertainties. The structured
singular values of the both systems are analysed.
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1 - Introduction

In this work, two techniques of robust control  , LQG/LTR (Linear Quadratic
Gaussian/Loop Transfer Recovery) and LMIs (Linear Matrix Inequalities) [1], [2], [5], [6], [9],
[11], [12], [18], [25], [26], [27] and [28] are available via singular value structured of the system.
The control of  load-frequency in a two-area model of an electric system are considered. The
structured uncertainties of the plant are considered too on the analysis of the real and complex radii.

The interconnection of electric power systems brings advantages from the operation point
of view and, among these advantages, one of the most important is the possibility of power
exchange in critical periods. In order to make this interconnected operation possible, a rigorous
control of the frequency in the entire system, through a process called automatic load-frequency
control, is necessary [28].

The controllers designed by the classic methods have been working in a satisfactory way.
However, the growth of the load demand has lead the systems to operate frequently close to critical
conditions, and more efficient controllers are needed to stabilise the systems at these points of
operation.

The main contributions of this work are: analysis of the stability radii, structured singular
values of the system (µ-analysis) and the uncertainty  matrices that do the system unstable
considering two methodologies of control design, LMI and LQG/LTR, in an electrical system. In
[28] was done a model of one electrical system with two areas connected and two control systems
were designed and compared. Here, they are compared considering the stability robustness of the
system taking into account the parameter variations, in specific ranges, of  the model. The main
question that will be answered is: what are the distances of the instability of both systems?

2 - Power system modelling

The controllers were designed for a system with 5 buses and 2 generators, which can be
obtained in [24]. By reducing this system to the constant e.m.f.’s behind the transient reactances of
the generator buses, the non-linear dynamic equations that describe its dynamic behaviour are
obtained:
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The data for this model are presented in table 1 (the basis values are 100 MVA and 138 kV).

Table 1.Values of the nominal model parameters.
Parameter Nominal Value
Inertia constant of generator 1 (m1) 0.2650 p.u. / rad/s2

Inertia constant of generator 2 (m2) 0.0050 p.u. / rad/s2

Damping of load 1 (d1) 1.0610 p.u. / rad/s
Damping of load 2 (d2) 1.3263 p.u. / rad/s
Speed regulations of the generators (r1,r2) 0.0400 p.u.
Time constants of the turbines (τ1 τ2) 0.3000 s

Considering the linear system equations, the state space model of the nominal plant is
obtained. This model is described in section 6, with integrators already introduced to the input. In
this plant, the input variables are the reference powers of the speed regulators (∆pref1 and ∆pref2), the
outputs are the angular speed of the generator (∆ω1) and the power transfer angle  (∆δ) and the state
variables are the mechanical powers of the generators (∆pm1 and ∆pm2), the angular speeds (∆ω1 and
∆ω2) and the power transfer angle between these generators (∆δ). The constant Ptie comes from the
linearization of the terms associated with the power transfer through the line (Cijsenδ+Dijcosδ). All
the variables of the linearized model represent variations around a fixed operation point and, then,
the objective of the controller is to keep the speed variations due to load variations and uncertainties
in the system model, inside the specified limits.

2.1 - Uncertainty ranges

The variation ranges of the model parameters were obtained from the maximum and
minimum values presented in [7] and [8] (see table 2), for damping, speed regulation and time
constants of the turbines. For the line power, it was assumed a variation of 10% in the transmitted
power, and this range was checked later with load flow simulations. Uncertainties in the inertia
constants were not considered.

Table 2. Uncertainties in the nominal model parameters.
Parameter Minimum Maximum Unit

d1 1.0000 3.0000 p.u. (MVA) / rad/s
d2 1.0000 3.0000 p.u. (MVA) / rad/s

τ1,τ2 0.1000 0.5000 S
ptie 0.4462 0.5454 p.u.
r1,r2 0.0394 0.0406 p.u.
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3 LQG/LTR controller design

After determining the uncertainties in the model, the post-multiplicative error is calculated, for
a range of frequencies from 10-4 to 102 rad/s, generating the stability robustness barrier. Then, three
performance criteria are defined (where ωin is the reference signal frequency) :

1. Reference signal tracking with maximum error of 1 % for ωin ≤ 10-2 rad/s ;
2. Perturbation rejection with maximum error of 1 % for ωin ≤ 10-2 rad/s ;
3. Plant variation sensibility inferior to 10 % for ωin ≤ 10-2 rad/s.

The Kalman Filter is included for loop shaping and, after that, the recovery procedure is
applied, see this procedure in [5], [6], [26], [27] and [28]. The singular values generated by this
process (for ρ = 10-12 ) are shown in Fig. 1. The observer and controller gains obtained are
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Figure 1. Target loop recovery.

4 - Linear Matrix Inequalities (LMIs) applied to the observer-based controller

The application of Linear Matrix Inequalities in the problem of controlling a linear system subjected
to uncertainties is growing considerably in the last years [1, 9, 11, 12, 18]. In this design
methodology, the observer-based controller is presented in a LMI structure, with the objective of
stabilizing a control system subjected to structured uncertainties by the optimization of LMIs. A
more detailed description of this problem can be seen in [1].

Consider the linear system, subjected to uncertainties,

)())(()(

)())(()())(()(

txtCCty

tutBBtxtAAtx

∆+=
∆++∆+=� (1)

where x(t), u(t), y(t), A, B and C are the states, inputs, outputs and  their respective constant
matrices with appropriate dimensions, defined in equation 1.
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The scalar functions αi(t), βi(t) and χi(t) are Lebesgue measurable and

|αi(t)|, |βi(t)|, |χi(t)| ≤ 1 . (3)

Ai, Bi and Ci are matrices with known uncertainties, which are assumed to be constant and
to have rank 1, given by

Ai = di oi
’ , Bi = fi gi

’ , Ci = hi ji
’  . (4)

If these matrices do not have unitary rank, it is possible to decompose them in order to
obtain a sequence of rank 1 matrices. Scalar vi and si are defined for Bi and Ci, respectively.
Constant matrices T, W, S, U, V and Y represent the time-varying uncertainties, which are the
upper bound of these uncertainties.

T =
∆

l d di i
i

p

i
=
∑

1

' =D �L D’ W =
∆

v f fi i
i

q

i
=
∑

1
' =F �V F’

S=
∆

s h hi i
i

r

i
=
∑

1

' =H �SH’ U =
∆

l o oi i
i

p

i
−

=
∑ 1

1

' =O’ �L
-1O

V =
∆

v g gi i
i

q

i
−

=
∑ 1

1
' =G’ �V

-1G

      Y=
∆

s j ji i
i

r

i
−

=
∑ 1

1

' =J’ �S
-1J (5)

where

D =
∆

 [ d1  ... dp], F =
∆

 [ f1  ... fq], H =
∆

 [ h1  ... hr],

O =
∆

 [ o1  ... op]’, G =
∆

 [ g1  ... gq]’, J =
∆

 [ j 1  ... jr],
�L =

∆
 diag ( �l1  ... �l p ), �V  =

∆
 diag ( �v1  ... �vq ),

�S =
∆

 diag ( �s1  ... �sr ). (6)

Consider the state observer with the form

))t(y)t(zC(L)t(uB)t(zA)t(z lmi −−−=� (7)

 where z(t) ∈ Rn is the state observer, Llmi (n×q) is the gain matrix of the observer, u(t) ∈ Rm is the
input signal defined by u(t) = -Klmi z(t) and Klmi (m×n) is the state feedback gain matrix. The
stability of the system can be analyzed looking at the dynamics of the error e(t) =

∆ x(t) - z(t) and of
the states, respectively given by the following system of equations :

       [ ] )t(eK)BB()t(xK)BB(AA)t(x lmilmi ∆∆∆ +++−+=�

)t(e)BKCLA()t(x)CLBKA()t(e lmilmilmilmi ∆∆∆∆ +−+−−=�
(8)
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The quadratic Lyapunov function V(x,e) = x’Pcx + e’Poe is used to verify asymptotic
stability for the system of eq. (8). Pc  and Po are (nxn) positive definite matrices.

Definition [9]: The system of eq. (1) is asymptotically stable if there exists a constant α ∈ R
such that the derivative of the Lyapunov function V(x,e), related to the system of eq. (8), satisfies
the limit �V (x,e,t) ≤ -α(||x||2+||e||2) for all x, e ∈ Rn and t ∈R given any admissible αi(⋅), βi(⋅) and χi(⋅)
. Let

Klmi= 1

ε c
Rc

-1 B’Pc and Llmi = 1

ε o
Po

-1 C’R0
-1,    (9)

where εc, εo ∈ R are positive constants, Rc ∈ Rm×m and Ro ∈ Rq×q are chosen constant matrices. Using
eqs. (2) to  (6) and (8) - (9) and the fundamental inequality 2|ab| ≤ a2+b2 for any a, b real scalars, the
following equation can be obtained :
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Adding (εcQc - εcQc) in Ωc  (Qc is a symmetric positive definite matrix), the right side of eq.
(10) can be divided in two parts,
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Theorem 1: If there are positive constants εc , εo , symmetric positive definite matrices Pc,

Po and diagonal positive definite matrices �L , �V , �S  so that Θ1  > 0 and Θ2  > 0, the linear system
(8), with Klmi and Llmi defined in (9), is asymptotically stable.

Proof:  See [9].

Theorem 1 states sufficiency conditions for the robustness of the controller through
feedback of all states. Theorem 2 below presents an adaptation of theorem 1 to an LMI form.
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Theorem 2: If there are positive constants δc and δo, symmetric positive definite matrices
Wc, Wo, Rc, Ro, Qc, and Qo and diagonal positive definite matrices ~

L , ~
S , ~

V  so that the following
conditions are satisfied

i) Λc =
∆
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∆

 ~
L−1, V =

∆ ~
V −1 , S =

∆ ~
S−1 then, the linear system with uncertainties, where K and L are

defined in eq. (9), is asymptotically stable.

Proof: See [9].

The following design procedure can be established.

1. Choose the matrices Qc and Rc, so that the optimization problem P1 has a non-empty set
of feasible solutions (Mc , Wc,

~
V , ~

L , ~
S ,δ c ), where Mc and Wc are symmetric positive definite

matrices, ~V , ~
L  and ~S  are diagonal positive definite matrices and δ c  is a scalar.

P1: min  fc (Mc , Wc ,
~
V , ~

L , ~
S  ,δ c ) = tr(Mc) (16)

Mc, Wc, 
~
V , ~

L , ~
S ,δ c

subjected to:M I

I W
c

c












>0, Λc>0, Mc, Wc, 

~
V , ~

L , ~
S  ,δ c >0

(17)

2. Calculate V , L , S  and Pc =
∆

Wc
-1. Choose symmetric positive definite matrices Qo and Ro

so that the optimization problem P2 has a non-empty set of feasible solutions (Mo , Po ,δ o )
with matrices Po and Mo and a scalar δ o .

P2: min  fo (Mo , Po ,δ o ) = tr(Mo) (18)
Mo , Po ,δ o

subject to :M I

I P
o

o










 > 0, Λo > 0, Mo, Po, δ o  > 0 . (19)

3. Calculate Klmi  and Llmi by eq. (9). Theorem 2 guarantees asymptotic stability for the
system (7).

The choices of Qc and Rc are similar to the choices of the weighting matrices of the
algebraic Riccati equations (AREs). In the optimization problem P1, there is the advantage of
choosing the weighting matrices ~

V , ~
L , ~

S and the constant εc. In a similar way, this freedom of
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choice is also valid for problem P2. Comparatively, the formulation of these problems via LMI has
more flexibility than the formulation via ARE. This flexibility is related to the rank 1 decomposition
of the weighting matrices and with the choice of the constant εc and εo . When the solutions via ARE
are chosen, these decompositions must be made in such a way that simultaneous solutions for both
AREs do exist, and this can be an exhaustive task. LMIs overcome this problem and there’s no need
to choose the constants εc and εo.

5 - LMI controller design

Eqs. (1) and (2) give the nominal plant and the uncertainty matrices, considering the system
with integrators we have:
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−
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−

− −
− −
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0 0 9 9160 0 387 7955 0 6 6666

. . .

. . .
, and the matrices

F, G, H and J are zeroes matrices. The same observer of the LQG/LTR design is used here. The
gain of this controller is

                            






 −
=

3253701078.053777023.1391385205.12870016.0

1755.017.4949549.07.237075.1630016.0740.40
lmiK .

6 - Real and complex stability radii

6.1 - LQG/LTR Controller

The stability real radius is a problem that has been considered by several researchers of the
control theory [2], [3], [4], [10], [13], [14], [15], [16], [17].  This radius measures the capacity of  a
matrix in preserving  her stability when occur real perturbations.

In [22] is presented a general definition of the stability radius in the field K  (i.e. K=C or
K=R) taking into account the structured singular value (ssv) of the system via H∞-norm. It is
possible to calculate singular vectors to generate a perturbation matrix in an appropriated mapping,
with a real parameter γ that belongs to (0,1]. Two algorithms to determine the frequency range
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where the maximum of the singular values of a transference matrix M∈Cpxm is contained and to
calculate the perturbation matrix, ∆∈Rmxp,  are used, see for more details [3] and [22]. The first
algorithm determines, too, the frequency that this maximum is given. The second algorithm utilizes
the singular vectors of a determined real matrix, of the transfer matrix M of the system, denoted by
P(γ).  With this, the real stability radius can be calculated.

For the construction of the uncertainty matrix, the real and complex parts of the matrix
M∈Cmxm, M=X+jY, are utilized. Three cases are implemented in the algorithm: when the matrix Y
is equal zero, when the rank of Y is equal one, and when the rank of Y is grater than 1.

Here, the limits of the ssv and the real and complex stability radii of one electric system
controlled via two techniques LQG/LTR and LMI, are given. We display  too, the perturbation
matrices that can cause the instability of the system. The complex stability radius is

rC(A,B,C) = 

1
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  is the frequency where the maximum of  the greatest complex ssv of the system is given.

The real structured singular value is
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where the σ2(.) is the second singular value. The real stability radius is given by
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For any  M∈Cnxn we have the following inequalities

ρR(M) ≤ µK(M)≤ σ
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where ρR(.) and σ
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(.) denote spectral radius and maximum singular value. When γ=1 in

]1,0(
],[

])[ 1
2

∈
∈

−−

γ
ωωω

ωσ
Mm

BAjIC = ( ) ( )
( ) ( ) 


















−ω−ωγ

−ωγ−−ω
σ

−−−

−−

B)AjI(CReB)AjI(CIm

B)AjI(CImB)AjI(CRe
111

11

2

2108

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



we have the complex ssv.  The function that describe the real ssv in the frequency, with
minimization in γ, is

       µ ω
ω ω ω

R
m M

C jI A B[ ) ]
[ , ]

− −

∈

1 =








































 −


 −




 −−


 −

−−−

−−
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11

2
]1,0( )(Re)(Im

)(Im)(Re
inf

ωωγ

ωγω
σ

γ
.

The first controller analyzed is the designed via LQG/LTR methodology. We consider the
nominal plant with integrators, the uncertainty matrix  Adel, given bellow, the observer gain
(designed via  Kalman filter), Hkf, and the controller gain (designed via Linear Quadratic Gaussian
regulator), Glqg, given above.

Adel = 





























−
−−

0000000

0000000

00d7955.3870c916.900

000b3169.7a1873.000

0000000

0000000

0000000

a, b, c e d belong to [-1,1] with appropriated combinations. In the following, the real and complex
stability radius for the controller KLQG are given

KLQG(ω)=Glqg (ωI-An-Adel+BnGlqg+HkfCn)
-1Hkf.

We have 625 combinations of the system uncertainties, for these models we fix a
determined parametric uncertainty changing  the resting, this procedure was done for all parametric
uncertainty. For each combination we have one model. The following results were obtained
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a)

        b)

 

Figure 5 - Real (a) and  complex (b) stability radius for 625 models, LQG/LTR controller for the
power electric system.

The figure 5 displays that the real radius has more variations (fig. 5 a), it is more sensible to
the parametric uncertainties, than the complex radius. The complex radius are always smaller or
equal than  the real radius.

Table 3
Real and complex SSV and real and complex stability radii - LQG/LTR controller

*
Cω 256.8650 *

Rω 319.7072

µC[Clqg(j
*
Cω I-Alqg)

-1Blqg] 1.5883e+004 µR[Clqg(j
*
Rω I-Alqg)

-1Blqg
1.4625e+004

rC(Alqg,Blqg,Clqg) 6.2962e-005 rR(Alqg,Blqg,Clqg) 6.8374e-005
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Matrix M in the frequency *
Rω

M=








++−

−−
ii

ii

3838.17312713.164441.148840.5

8778.441546.1269620.255141.14725 .

For any M∈Cnxn we have the following inequalities:

ρR(M) ≤ µK(M)≤ σ
_

(M).

0≤µR(M)= 1.4620e+004≤1.4726e+004

and the perturbation matrix of the system is

∆= 







−−
−

300000677245.0690000076429.0

900000074903.0920000679565.0 .

Figure 6 - Real and complex ssv for the LQG/LTR controller.

The minimum of the second singular value of the matrix P(γ) is given by:
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Figure 9:  Real ssv for each frequency minimised  in γ - LQG/LTR controller.

6.2 - LMI controller

The gain of the controller designed via Linear Matrix Inequality is given by:

KLMI = 






 −
3253701078.053777023.1391385205.12870016.0

1755.017.4949549.07.237075.1630016.0740.40
.

The real and complex radius for the same uncertainty combinations given above, are given
bellow for the following transfer function

KLMI (ω) =Kdml(ωI- An+Adel-BnKlmi-HkfCn)
-1Hkf.

We have the following graphics
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Figure 10 - Real and complex radii for 625 models - controller designed via LMI for the power
electric system.

In the table 5 the real and complex radii and ssv of the LMI controller are given in the

frequencies *
Rω and *

Cω .  The matrices of the LMI controller are

Adml = An+Adel-BnKlmi-HkfCn

=

























−−
−−−

−
−−
−−

−−−−−−−
−−−−−−

3333.306920.8904351.03333.30

03333.33892.03333.838539.803333.3

0000.20006908.2200760.10400

07736.30420.03131.30065.700

000083.00000.19917.000

3253701078.09979.5378892300.1399534.1385195000.12870016.0

1755.01700.4940054.17000.23707521.430016.07400.40

Bdml’=Hkf,          Cdml=Kdml;

Real and complex radii and ssv - LMI controller

*
Cω 893 *

Rω 997.5

µC[K LMI ] 5.008e+003 µR[K LMI ] 4.8528e+003

rC(KLMI ) 1.9965e-004 rR(KLMI ) 2.0607e-004

Table 5.
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Matrix M on the frequency *
Rω

M= 







+−

−−−
ii

ii

3810.05187.48580551.60419.22

0735.00172.08895.207825.0
.

In the following we display the perturbation matrix of the system for the frequency*
Rω

∆= 







−−
−−

0002057741.00000109053.0

0000109908.00002046036.0

and for any M∈Cmxm we have the inequalities

ρR(M) ≤ µK(M)≤ σ
_

(M).

0≤µR(M)= 4.8528e+003≤4.8586e+003

The graphic of the ssv µR(M)  is given in the figure 11.

Figure 11 - Real and complex ssv - LMI controller.

In the following, the graphic of  the minimum structured singular values, in the frequency

domain, for the system controlled via Linear Matrix Inequalities is displayed in the figure 12.
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Figure 12 - Real ssv for each frequency minimised  in γ - LMI controller.

CONCLUSION

In this paper we considered the real and complex stability radii and the structured singular
values of  a power electric system controlled via two methodologies LQG/LTR and LMI. The
figures 5 and 10 display the behaviour of these radii for both systems. The variations of the radii
considering LMI controller are more intensifies than the radii for the system controlled via
LQG/LTR methodology. The real and complex radii of the LMI controller are bigger than the
LQG/LTR controller radii. For this electric power system, the distance of the instability for the first
controller is bigger than the second controller. For a further research it is interesting to investigate
the generalisation for any system.
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