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Abstract

This paper focuses on adaptive modeling of non-linear systems which operate in slowly
changing environments. Due to an inability to control the environment, a large amount of
data spanning the whole feasible input space can not be collected over a reasonably short
period of time. As a result, modeling such systems with neural networks, which usually
have poor extrapolation properties, might lead to poor results. In order to avoid these poor
extrapolations, hybrid physical/neural network models are used. Such models are formed by
the combination, in parallel, of a physical model (approximately valid over the whole space),
and a radial basis function (RBF) network, which provides localized predictions only where
training data are available.

In this paper, the hybrid modeling approach is extended by adapting the RBF network
on-line, so that the region over which the network is valid grows over time. In order to
simplify the RBF training, the centers are located on a fixed rectangular grid: if necessary,
a new center is added at the grid point closest to the new datapoint. This approach also
allows for keeping the RBF width constant and equal for all the centers.

The problem of discarding some of the data, so that the database does not become
prohibitively large, is also addressed. In order to avoid ‘forgetting’ previously modeled
regions of the space, datapoints are not discarded based solely on their ‘age’. Rather, the
number of datapoints near each center is limited, and when this limit is reached, the oldest
datapoint associated with that center is discarded.

Greenhouse climate modeling, and its use for climate optimization, is presented as an
illustration of the method.

1 Introduction

Greenhouses provide a protected environment in which crops can be grown under a tightly
controlled climate. Since the control of the greenhouse climate is costly, its optimization has
been studied by several authors (Seginer et al., 1986; Gutman et al., 1993; Ioslovich et al., 1995;
Chalabi and Zhou, 1997). Optimization requires adequate models of the greenhouse and of the
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crop. The present work focuses on the greenhouse model, while the crop model is taken from
the literature.

A situation in which the greenhouse manufacturer provides not only the greenhouse but also a
model of that greenhouse (such as the model used to design the greenhouse), is considered. Such
a model does not include location-dependent effects such as orientation, surrounding buildings,
local wind, etc.. The goal of the present work is to answer the following questions: How can the
original (manufacturer) model be adapted to the specific location? How much time is required
for this adaptation, and by how much does it improve the greenhouse operation?

The greenhouse models described in the literature can be classified into two categories:
physical models, and black-box models. Physical models (Takakura et al., 1971; Kindelan, 1980;
Avissar and Mahrer, 1982; Boulard and Baille, 1993) are based on energy balance equations
between the indoor air, the outdoor air, and the greenhouse soil (in which heat storage takes
place). In order to be accurate, such models require the calibration of a relatively large number
of parameters such as cover transmissivity and heat transfer coefficient, air-soil heat transfer
coefficient, soil heat capacity, etc.. The calibration of such parameters requires time-consuming
dedicated experiments. In order to avoid the calibration of these ‘physical’ parameters, Seginer
et al. (1994) suggested the use of black-box neural network models. The use of such models
was reported also by Kok et al. (1994), and Linker et al. (1998b) extended their use to the
determination of optimal temperature and CO2 concentration setpoints. While these studies
showed that neural networks could be trained to model greenhouse climate accurately, Linker
et al. (1998b) emphasized the problems associated with the poor extrapolation properties of
such models. Due to the strong influence of the outdoor weather on the greenhouse climate, the
input vector of a greenhouse model includes uncontrollable variables, which makes the collection
of training data covering the whole operating domain virtually impossible over a reasonable
period of time. Furthermore, the high dimensionality of the input space makes it difficult to
detect input vectors which are outside the training domain and cause the neural network to
extrapolate.

Hybrid physical/neural network modeling was introduced by Thompson and Kramer (1994)
as a mean to overcome, at least partially, the poor extrapolation properties generally associated
with neural networks. Such a hybrid modeling can be interpreted as a way to include prior
knowledge in a neural network (NN). Basically, NN models are black-box models, and as such,
do not contain prior knowledge about the system to be modeled, except for the knowledge
contained in the choice of the input and output variables (Rudolph, 1997). The absence of prior
knowledge explains, at least partially, the poor extrapolation properties of the NN models. In
models based on physical understanding of the system (physical models), the prior knowledge is
automatically reflected by the structure of the model. This structure acts as a constraint on the
mapping that the model is able to create between the input and output variables. In such cases,
the model structure (and its complexity) directly affects the ability of the model to approximate
correctly the real system.

For neural networks, this constraint does not exist, and the NN is free to create any input-
output mapping, as long as this mapping provides good predictions for the training/test data.
An indirect way to constraint the input-output mapping (or to introduce prior knowledge in the
NN) is to create additional training points using a physical model. This augmented-data-set
approach was introduced by Tsen et al. (1996), and an application of this method was presented
by Milanic et al. (1997). However, this method has the following drawbacks: (1) the data set
may become very large, which slows the training process, and (2) if few experimental points are
available, these may be ‘lost’ among the artificial points, and the NN will replicate the physical
model.
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Several authors have tried to restrict the mapping created by neural networks by impos-
ing constraints either on the model structure (design approaches) or on the values that the
parameters (weights) are allowed to take (training approaches) (Joerding and Meador, 1991;
Thompson and Kramer, 1994). The latter can enforce monotonicity, convexity (or concavity),
or smoothness of the input-output mapping (e.g. Bishop (1993)). However, such methods are
mathematically and computationally complex, and their use remains very limited. Design ap-
proaches use prior knowledge as the basis for the selection of the type of network, activation
functions, inclusion of non-network parametric models, or modularization of the network archi-
tecture. Modular design approaches result in partially connected networks. Each subnetwork
corresponds to a subprocess of the process modeled. Methods for the inclusion of non-network
parametric models, which lead to hybrid models, are reviewed below.

1.1 Series hybrid modeling

Figure 1: Series hybrid modeling

A schematic representation of the series hybrid modeling approach (Thompson and Kramer,
1994) is presented in Figure 1, where a NN is used to predict one or several parameters of a
physical model. In this manner, the structure of the physical model is maintained, but the
parameters are expressed as (complex) functions of the environment or working point. It must
be noted that the output(s) of the NN are parameter values, which are not available to train
the NN straightforwardly. However, it is possible to train the NN by back-propagating the
prediction error through the physical model, using the model’s Jacobian (such an approach is
similar to learning with distal teacher (Jordan and Rumelhart, 1992), and inverse model neural
control (Tanomaru and Omatu, 1992)). This approach was also presented by Psichogios and
Ungar (1992), and applications were presented by Feyo de Azevedo et al. (1997), Piron et al.
(1997), and Wilson and Zorzetto (1997). All these studies reported extrapolation performances
superior to the ones of either standard sigmoid NNs or pure physical models. However, series
hybrid modeling presents only a partial solution to the extrapolation problem of neural networks:
NN extrapolation is not avoided, but rather the NN might have to extrapolate the parameter
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values instead of the model output itself.

1.2 Parallel hybrid modeling

Figure 2: Parallel hybrid modeling

Parallel hybrid modeling (Thompson and Kramer, 1994) involves the arrangement of a phys-
ical model, which is approximately valid over the whole input space, and a radial basis function
(RBF) neural network (Figure 2). The predicted output is the sum of the physical model and
RBF outputs, so that the RBF contribution can be viewed as a correction to the physical model.
If the RBF network is trained by assigning centers only where training data are available, the
RBF output differs from zero only inside (and near) the training domain. In this manner,
the physical model provides a first approximation, which is improved wherever training data is
available.

1.3 Focus of this paper

This work extends the parallel hybrid modeling approach by including on-line adaptation of the
RBF component of the model. The motivation is that, in many practical applications, an initial
model of the system is available. While such a model might be rather coarse and not sufficiently
accurate for optimal (or satisfactory) operation, it might be sufficient for starting the system
operation. The data collected on-line can then be used to improve the model, in the present case
by adapting the RBF component of the hybrid model. At this stage, the physical component of
the hybrid model, which provides first approximation (default) predictions over the whole space,
is not adapted.

2 Adaptive hybrid modeling

The training phase of a RBF network requires the calculation (or a priori determination) of the
centers’ position, the widths of the activation functions, and the output weights. The original
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algorithm for training RBF networks was developed by Moody and Darken (1989). According
to this algorithm, the centers and widths of the neurons are determined in a self-organizing
manner, so that centers are placed only in regions of the input space where datapoints are
present. The standard k-means clustering algorithm is used to find the location of the centers,
and the neurons widths are determined using some P nearest neighbors heuristic. The output
weights are determined using the supervised least-mean-square (LMS) rule.

Chen et al. (1992) adapted the original RBF training algorithm of Moody and Darken (1989)
to non-linear system identification. Their main contribution was to implement the k-means
algorithm recursively, so that, if the data distribution is changing, the centers’ distribution can
follow the data. However, neither Moody and Darken (1989) nor Chen et al. (1992) did address
the problem related to the required number of neurons in a systematic manner. Platt (1991)
proposed an ever-growing network in which new centers are added whenever an unusual (or
new) input-output pair is presented to the network. Novelty is determined by two factors: (1)
the datapoint is far from the existing centers, and (2) the difference between the desired and
predicted output is large. In such cases, a new center is added at the location of the new
datapoint. Whenever there is no need to allocate a new center, the LMS algorithm is used to
adjust the centers’ positions and widths, and the output weights, in order to reduce the prediction
error. Simulations of adaptive time series prediction showed that the network resulting from
Platt’s method attains accuracy comparable to that of a back-propagation trained network, but
requires fewer computations.

Yingwei et al. (1997) further extended the idea of time-varying system identification by
not only adding centers, but also removing ‘obsolete’ ones. Centers which consistently make
little contribution to the output are assumed to model dynamics which are no longer present in
the system, and are removed. Simulation results showed that the networks obtained with this
add/drop algorithm were far more compact than the networks obtained with Chen et al. (1992)
algorithm.

An approach somewhat similar to that of Platt (1991) is used here to adapt the RBF com-
ponent of a hybrid model. Instead of adding the centers at the location of the new datapoints,
the centers are added on a rectangular grid: A new center is added at the grid point closet
to the new datapoint. This is illustrated on a two-dimensional example in Figure 3. In this
figure, the red ‘+’ denote old datapoints, with which are associated centers indicated by green
‘ ’. When the new datapoints denoted by cyan ‘∗’ become available, new centers, denoted by
blue ‘o’, are added. This grid approach allows for keeping the width of the Gaussian activation
function constant, and equal for all the centers, which simplifies the computations. Also, nov-
elty is determined only by the distance of the datapoint from the existing centers, regardless
of the prediction error. In the second phase of the adaptation procedure, prediction errors are
minimized by computing the linear output weights using the least squares algorithm. Note that
since a zero contribution of the RBF network is desired outside of the training domain, the bias
of the output neuron is not adapted (it is determined by the output scaling, if any).

3 Database formation

The previous section was concerned with the adaptation of the model parameters. However, the
problem regarding which data should be used to train (or adapt) the model was not considered.
This is a classic problem in adaptive system modeling. As time progresses, the amount of data
available becomes prohibitively large, and some of the data have to be discarded. In general,
the oldest data are discarded first, which implicitly assumes that the goal of the adaptation is
to obtain a good model around the current working point. Such a selection of the training data
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Figure 3: Grid positioning of the radial basis function centers for a two-dimensional example.
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is not suitable for the present application, which is concerned with enlarging the domain over
which the RBF network is valid.

Due to the locality of the Gaussian activation function, each datapoint is associated primarily
with one center (the closest one). Such a center also corresponds to a specific region of the input
space, or in other words, to a given working point. Therefore, the database is formed according
to the following rule: A limit is imposed on the number of datapoints associated with each center.
When this limit is attained, the oldest datapoint associated with this center is discarded. This
can be viewed as a local implementation of the standard method described previously. For a
given center, or a given working point, only the newest data are used. However, the addition
of new data resulting from a change of working point does not cause the model to ‘forget’ the
information recorded around old working points. This approach is somewhat opposite to that
of Yingwei et al. (1997), because the problems considered are fundamentally different. Yingwei
et al. (1997) was concerned with modeling of dynamic systems, and old (obsolete) centers were
assumed to correspond to dynamics no longer present in the system. In the present case, not
the system itself, but rather the environment in which it operates, is changing.

4 Application to greenhouse climate modeling and optimization

Greenhouse climate modeling is used as an illustration of the method. Due to the lack of
experimental data, a simulation study, in which the ‘real’ greenhouse is described by the models
detailed in Section 4.1, is used.

The optimal control for the daytime (solar radiation higher than 10 [W/m2]) weather recorded
at the Technion, Haifa, Israel, between April 25 and October 17, 1997 is determined using the
hybrid models described in Section 4.3. The optimization is performed every half an hour, using
averaged weather measurements. The instantaneous criterion to be maximized is the differ-
ence between the added dry matter and the CO2 enrichment cost (note that the crop model is
assumed to be known):

j = KgG−KcR. (1)

The crop photosynthesis G is a function of the temperature and CO2 concentration, and there-
fore, indirectly, a function of the ventilation and enrichment rate. The optimal is found by com-
puting the criterion over a fixed two-dimensional grid (ventilation rate and enrichment rate).
The optimum control fluxes are then implemented in the ‘real’ greenhouse which is represented
by the models described in Sections 4.1 and 4.2 (Figure 4). Due to the inaccuracy of the models
used in determining the optimal control fluxes, the actual temperature and CO2 concentration
differ from the predicted ones. This, in turn, causes the actual criterion to be lower than the
true optimum criterion which could be obtained if perfect greenhouse models were available.

4.1 Models of the ‘real’ greenhouse

The indoor air temperature is calculated according to

Ti(t+ ∆t) = (hTs(t) + (ρCQ(t) + U)To(t)) / (ρCQ(t) + U + h) . (2)

In this equation, h is the air-soil heat transfer coefficient; Ts denotes the soil temperature; ρ and
C are the air density and specific heat, respectively; Q is the ventilation rate; U is the cover heat
transfer coefficient; To is the outdoor temperature; and ∆t denotes the time-step (half an hour
in the simulation). The first term on the right hand side denotes the heat exchange with the
soil, in which heat storage takes place, and the second term denotes the sensible heat exchange
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Figure 4: Schematic description of the simulation.

702

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



with the outdoor air through ventilation and conduction. Note that for simplicity, latent heat
exchange is not modeled.

The soil temperature is described by:

Ts(t+ ∆t) = Ts(t) + (λSo(t)− h(Ts(t)− Ti(t)))/(Lc)∆t. (3)

Here So is the solar radiation; λ is the solar radiation heating efficiency; L is the thickness of
the soil layer in which the heat storage is assumed to take place; c is the soil heat capacity. This
simplified model does not include the effect of long wave radiation, which is a dominant factor
during nighttime. Therefore, cooling of the soil during nighttime is not simulated, but rather
the initial morning temperature is reset daily to To + 5 [K], which is in good agreement with
experimental observations.

The CO2 concentration is described by:

Xi(t+ ∆t) = Xo + (R(t)−G(t))/ (ρQ(t)) (4)

where Xi and Xo denote the indoor and outdoor CO2 concentration, respectively; R denotes the
enrichment rate, and G denotes the net photosynthetic flux, which is equal to the CO2 uptake
by the crop.

4.2 Crop model

The crop is described by

G = f1f2 − f3 (5)

where

f1 =
εζτSoγXi

(εζτSo + γXi)
(6)

f2 =

{ (
(Ti − Tmin)0.5 (Tmax − Ti)0.5

)
/11 if Ti ≤ Tmin and Ti ≥ Tmax

0 otherwise
(7)

f3 = wφeν(Ti−25) (8)

f1 denotes the Michaelis-Menten response to light CO2 concentration, f2 represent the effect
of temperature on photosynthesis, and f3 is the maintenance respiration rate. This model is
similar to the one used by Linker et al. (1998b), except for the temperature function f2. This
function f2 has been adapted from Yin et al. (1995), and strongly penalizes temperatures close
to Tmin and Tmax.

4.3 Greenhouse hybrid modeling

4.3.1 Physical models

The physical (manufacturer) model of the greenhouse air temperature is given by

Ti(t+ ∆t) = To(t) + 0.2So(t)/ (ρCQ(t) + 30) (9)

This model includes only the effect of solar heating, and sensible heat exchange. In particular,
heat storage in the greenhouse (in the soil) is not included in the model. This causes systematic
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overestimation of the temperature during morning hours, and systematic underestimation during
afternoon hours.

The physical model of the CO2 concentration is

Xi(t+ ∆t) = Xo +R(t)/ (ρQ(t)) . (10)

This model is similar to the real greenhouse (Equation 4), except that it does not include the
crop CO2 uptake.

4.3.2 RBF models

The temperature RBF model has for inputs the ventilation rate, the outdoor temperature and
solar radiation, and the soil temperature (all normalized between 0 and 1 using fixed values
(Appendix C)). The CO2 RBF model has for inputs the outdoor solar radiation, the ventilation
rate, and the enrichment rate. These RBF models are adapted daily (at the end of the day),
using databases formed with part of data collected up to that time (according to the method
described in Section 3).

4.4 Results

Figure 5 presents average results for the whole simulation period (167 days), with different
widths of the RBF activation functions σ, and different grid sizes (κ). The maximum number of
datapoints associated with a center is five. The top frame of Figure 5 shows that the addition
of the RBF models reduces the criterion loss from about 6 % (with the physical models alone)
to about 1.5 % for κ between 0.2 and 0.5. The middle and bottom frames show that the
temperature and CO2 root mean square errors (RMSE) are also reduced, from about 2.5 [K]
to 1 [K], and from 125 [ppm] to 35 [ppm], respectively. Very small values of κ lead to poorer
results, because for such κ the activation function width σ is also very small, and the network
has almost no extrapolation properties. Large values of κ also lead to poorer results, because
the limited number of centers does not give enough flexibility to the network. All the results
deteriorate when σ is reduced (relatively to κ), which corresponds to decreasing overlapping of
adjacent activation functions.

The results obtained when the maximum number of datapoints per center is increased to ten
or reduced to two (instead of five) are presented in Figures 6 and 7. Changing the maximum
number of datapoints per center affects primarily the temperature RMSE. However, due to the
weak influence of the accuracy of the temperature predictions on the performance criterion, the
maximum number of datapoints per center has almost no effect on the performance criterion.
As expected, the maximum number of datapoints per center influences strongly the size of the
databases and, for the present application, a maximum of five datapoints per center is a good
compromise between the size of the databases and the accuracy of the predictions.

Figure 8 shows the evolution of the number of centers for both models. At the beginning of
the simulation, a large number of centers are added to correct the predictions of the physical
models. For the CO2 model, which has only three inputs (and has to model the CO2 crop
uptake), the number of centers stabilizes in about 10 days. For the temperature model, this
process is longer, and stabilizes after about 25 days. However, as a result of changes in the
outside weather, new centers are added between Days 160 and 180. Another change in the
outside weather causes the addition of new centers during the last days of the simulation.
Figure 9 presents the prediction errors (for the following day), in the particular case when
κ = σ = 0.3. The error obtained if only the physical models are used is given for comparison.
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Figure 5: Criterion reduction (top frame), temperature RMSE (middle frame), and CO2 RMSE
(bottom frame), as function of the grid size κ. All the results are average results over the period
considered. κ = 0 corresponds to the physical models alone. σ is the distance from a center at
which the activation function equals 0.5.
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Figure 6: Criterion reduction (top frame), temperature RMSE (middle frame), and CO2 RMSE
(bottom frame), as function of the grid size κ. In all cases, σ = κ. κ = 0 corresponds to the
physical models alone.
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Figure 7: Size of the temperature (top frame) and CO2 (bottom frame) database at the end of
the simulation.
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It can be seen that the prediction errors of the hybrid models quickly decrease, and comparison
with Figure 8 shows that periods with relatively high RMSE correspond to periods during which
new centers have to be added at the end of the day. The reduction of the daily criterion (relative
to the true optimum criterion) is presented in Figure 10. After a short period of adaptation,
the criterion calculated with the hybrid models becomes practically equal to the true optimum
criterion which could be obtained if exact models of the system were known a priori.

5 Conclusions

Adaptive hybrid modeling offers the possibility to initiate a system’s operation using an ap-
proximate model, and to use collected data to improve the model on-line. The adaptation is
performed by enlarging the region over which a RBF network improves the predictions of a
physical (or default) model which is approximately valid over the whole working domain. By
comparison to standard model adaptation, in which the model is adapted only around the cur-
rent working point, the training (or calibration) datapoints are selected so that they cover as
large as possible a region of the input space.

Regarding the application to greenhouse climate modeling and optimization, the results
show that, in the simplified situation considered (crop model known, no latent heat exchange,
no heating required), the hybrid models adaptation takes place mostly during the first three
weeks of operation. After this initial adaptation, new centers are added whenever the working
point trajectory changes because of outside weather variations. By comparison with a situation
in which fixed ‘manufacturer’ models would be used, the adaptive hybrid modeling improves
the predictions’ accuracy, and leads to a performance criterion very close to the true optimum
criterion. This adaptive modeling approach has also been validated using experimental data
(Linker et al., 1998a; Linker, 1999), and more data are being collected to validate the method
for a full growing season.
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Figure 8: Number of centers of the temperature (top frame) and CO2 (bottom frame) RBF
models, as a function of the julian day. Day 115 corresponds to April 25.
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Figure 9: RMSE of the temperature (top frame) and CO2 (bottom frame) models. The predic-
tions for Day d+ 1 are calculated with the hybrid models trained with part of the data collected
up to Day d. RMSE of the physical (fixed) models are given for reference.
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Figure 10: Daily criterion reduction, expressed in percent of the true optimum criterion.
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A Main symbols

C Specific heat of air at constant pressure J/(kg(air)K)
c Soil heat capacity J/(m3(ground)K)
G Net photosynthesis flux kg(CO2)/(m2(ground)s)
h Air-soil heat transfer coefficient W/(m2(ground)K)
j Instantaneous performance criterion $ /(m2(ground)s)
Kc Unit price of supplied CO2 $ /kg(CO2)
Kg Unit price of CO2 in biomass $ /(kg(crop CO2)
L Soil layer thickness m(ground)
Q Ventilation rate m3(air)/(m2(ground)s)
R Enrichment rate kg(CO2)/(m2(ground)s)
S Solar radiation W/m2(ground)
T Temperature K
t Time s
U Heat transfer coefficient of greenhouse cover W/(m2(ground)K)
w CO2 content of crop kg(crop CO2)/(m2(ground))
X CO2 concentration of the air kg(CO2)/kg(air)

γ Leaf conductance to CO2 m/s
ε Photosynthetic efficiency kg(CO2)/J(PAR)
ζ Ratio of PAR to solar radiation -
κ Radial basis function grid size -
λ Solar radiation heating efficiency -
ν Respiration exponent K−1

ρ Air density kg(air)/m3(air)
σ Distance from RBF center at which the activation

function equals 0.5 -
τ Cover transmissivity -
φ Respiration rate per unit crop mass kg(CO2)/(kg(crop CO2)s)

Subscripts

i indoor
o outdoor
s soil

Acronyms

NN Neural Network
PAR Photosynthetic Active Radiation
RBF Radial Basis Function
RMSE Root Mean Square Error
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B Parameter values

B.1 Greenhouse models

U=10 [W/m2]
c = 2912× 103 [J/(m3K)]
h=20 [W/(m2K)]
L=0.2 [m]
λ=0.5 [-]

B.2 Crop model

Tmin = 15 [oC]
Tmax = 37 [oC]
w= 0.1 [kg(crop CO2)/m2(ground)]
ε = 10−8 [kg(CO2)/J(PAR)]
γ = 2× 10−3 [m/s)]
ν= 0.0693 [K−1]
φ = 0.4× 10−6 [kg(CO2)/(kg(crop CO2)s)]
τ=0.5 [-]
ζ=0.7 [-]

B.3 Prices

Kc=0.4 [$ /(kg(CO2)]
Kg=15 [$ /(kg(CO2)]

C Normalization values

Each variable is normalized according to:
normalized value=(value-minimum value)/(maximum value-minimum value).

Variable Minimum Maximum Units
CO2 RBF output -300 ×10−6 300 ×10−6 kg(CO2)/kg(air)
Enrichment rate 0 40 ×10−6 kg(CO2/(m2s))
Soil temperature 10 45 oC
Indoor temperature 10 45 oC
Outdoor solar radiation 0 1000 W/m2

Outdoor temperature 10 35 oC
Temperature RBF output -8 8 oC
Ventilation rate 0 0.05 m3/(m2s)
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