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Abstract

In this paper, the Loop Transfer Recovery design procedure is extended to non stabilizable systems. After a
brief description of the systems considered in this paper, we revisit some results concerning the RPIS
(Regulator Problem with Internal Stability), and give the structure of the controller. Thereafter we consider the
LTR dual approach and stress the particular configuration of the output sensitivity function of the closed-loop
system. We show that it is sufficient to recover only a part of the sensitivity function to guarantee the stability
robustness of the loop. Finally the adjustment rules which lead to the desired result are described.

1 Introduction

It is well-known that full-state linear-quadratic regulators and Kalman-Bucy filters have attractive
robustness properties, but that these properties disappear in the case of observer-based linear control
systems (Anderson et al., 1990; Doyle, 1977; Safonov et al., 1977). One of the most popular way of
designing robust controllers is then to use the well-known Loop Transfer Recovery techniques. These
consist in choosing an appropriate parametrization of the compensator design, so as to recover a
robust target loop. A wide range of sophisticated adjustment rules has been proposed in the last two
decades, and provides attractive solutions for the control of detectable and stabilizable plants (Doyle
et al., 1979;1981; Kwakernaak, 1972; Niemann et al., 1991; Saberi et al., 1993; Stein et al., 1977).
However, there is no so clear theory when the system is not asymptotically stabilizable. In the case of
eigenvalues at the origin, for example, there are some techniques which consist in "placing them to
the left of it, the distance being much smaller than the required bandwith" (Maciejowski, 1989). The
recovery step is then performed on the resulting stable system. This method would give approximate
LTR, probably sufficient but not satisfactory for some general setting.
In this paper, systems composed of a stabilizable plant and an non stabilizable exosystem are
considered, and we attempt to solve the recovery problem without any approximation of the unstable
poles. The class of the systems under consideration is illustrated in figure 1.
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Figure 1 : Configuration of the systems for which RPIS is solvable

Both the system and the controller are finite dimensional LTI systems. The system is composed of a
stabilizable part (represented by the state x1) and a non stabilizable one (state x2). The measurement
vector y contains the quantities to minimize (y1 = e) and possible additional measures (y2). We stress
the fact that the possible additional measures are assumed to concern only the exosystem.
This paper proposes an extent of the LTR techniques to such systems. Following Kwakernaak
(Kwakernaak, 1972), we will focus here on the dual LTR (or LTR at the output). In this case (Doyle
et al., 1981) one first chooses a observer gain to give some desired properties to a particular target
transfer function. In a second step, one calculates a state feedback gain which allows to recover this
target transfer function. However, since the exosystem is unstable, direct application of this technique
is not possible here. The idea is to decompose the state feedback in two parts : the first one is devoted
to solve the disturbance decoupling problem (occultation of the exosystem (Wonham, 1985)) the
second one to the stabilisation of the plant and the recovery problem.
The remainder of this paper is thus organized as follows.
We begin in section 2 with an application, to our configuration, of the solution of the RPIS
(Regulation Problem with Internal Stability) as it is given in (Wonham, 1985). A simple interpretation
of it (de Larminat, 1995) will help us to understand the organization of the closed loop system and the
way we tackle the recovery problem.
In Section 3 the dual recovery procedure is discussed in detail. We adapt the concept of sensitivity
recovery as developed in (Niemann et al., 1991) to the considered systems. It turns out that there is no
need to recover the whole target sensitivity function to guarantee the stability robustness of the loop.
We show that partial, but sufficient, recovery is feasible, and we present the appropriate design
procedure.
Section 4 is devoted to concluding comments.

2 The regulator Problem with Internal Stability

Consider the LTI system described by the following state-space representation (notations are
consistent with figure 1) :
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(2.1)

The dimension of the vectors u and e are equal.
The system is supposed to be detectable, even in the lack of the y2 measurement, but not stabilizable;
the crucial point here is that only( , )A B11 1  is assumed to be stabilizable.

Also note that ),,( 11111 CBA is supposed to be of minimum phase and right invertible. These last two

hypothesis are needed for the recovery procedure detailled in section 2.3 (Stein et al., 1977).
Moreover, for the RPIS to be solvable we need to assume that the following Sylvester system has a
solution (Wonham, 1985; de Larminat, 1995) :

A T T A B G A

C T C
a a a

a

11 22 1 12

11 12

− + =
=



 (2.2)

If such a solution exists, the system described in the previous state space representation can be
rewritten in such a way that (see appendix A) :

A B G

C
a12 1

12 0

=
=

. (2.3)

So, in the re-arranged configuration (see A.7), the non stabilizable part of the system involves a
disturbance d G xa= 2  , additive to the control input u (see figure 2).

u e

Ga �x A x2 22 2=

� ( )x A x B u d

e C x
1 11 1 1

11 1

= + +
=

x2

d

Figure 2 : Equivalence with an additive input disturbance

The full-state feedback law for the regulator problem with internal stability (RPIS) is now
straightforward :

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel -  June 28-30, 1999

2171



[ ]u K K
x

xc c= −








1 2

1

2

 , (2.4)

where Kc1 stabilizes the subsystem (A11, B1) and where K Gc a2 =  rejects the disturbance d.

Finally, an observer is included, in order to define the complete output feedback controller :

�( ) �( ) ( ) ( ( ) ( ) �( ))

( ) � ( ) � ( )

x t Ax t Bu t K y t C t x t

u t K x t G x t

f

c a

= + + −

= − −


 1 1 2

, (2.5)

The observer gain K
f
  will be calculated through the Kalman-Bucy formalism, and the feedback gain

K
c1 via the Linear-Quadratic optimization.

Our goal is now to check that robust stability of the loop (the exosystem being outside) can be ensured
via the LTR design procedure despite the particular configuration of the problem.

3 Sensitivity Recovery Design Techniques

3.1 Introduction

Classically, the first step of the LTR design procedure consists in defining a target loop which has
desirable properties in terms of stability margins. Then, the second step lies in minimizing the
difference between the loop of the observer-based control system and the target loop.
In this paper we prefer to discuss the sensitivity recovery rather than the loop transfer recovery
(Niemann et al., 1991). The reason is that when a plant is unstable, the sensitivity recovery error
remains stable, which is not the case for the loop transfer recovery error.
Moreover, we consider the dual LTR where the Kalman-Bucy Filter is defined as a target loop, in
place of the full-state Linear Quadratic Control of the LTR primal approach.

3.2 Properties of the target loop sensitivity function

In this section  we deal with the first step of the LTR design procedure, which consists in choosing a
target loop with good robustness properties. The target loop considered here is a Kalman-Bucy filter
loop, the output sensitivity function of which is given below :

( )S I Lo o= +
−1

(3.1)

with

( )L s C sI A Ko f( ) = − −1
, (3.2)

where K
f
  is the gain of the observer (see eq. 2.5).

As there are two output signals y1 and y2, the sensitivity function will be partitioned into 
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S
S S

S So
o o

o o

=










11 12

21 22

(3.3)

where the block dimensions are fixed  by  those of y
1
 and y

2
.

The target sensitivity function So  satisfies the well-known robustness property (Anderson et al.,

1990) :

S j S j Io
T

o( ) ( )− ≤ω ω (3.4)

And a few technical manipulations show that the same property applies to the submatrix So11
 (see

Appendix B).

S j S j Io
T

o11 11( ) ( )− ≤ω ω (3.5)

3.3 Recovery procedure

Consider the output sensitivity function of the closed-loop system :

( )S I Lo o= +
−1

(3.6)

where L
o
 = GK is the loop transfer function of the control system.

The sensitivity function S
o
 has a particular configuration which derives from the structure of the

system (see Appendix C).

S
S S

Io

o o=










11 12

0
(3.7)

One can notice that So21 0≡  and S Io22 ≡ , while So21 0≠  and S Io21 ≠ due to the Kalman-Bucy

synthesis of the observer. This implies that the recovery of the complete sensitivity target So  will

never be possible.
However, note that that the robust stability of the loop is only linked to the properties of the
sensitivity function S

o11. It does not depend on S
o12, which represents the sensitivity of the output y1 to

the measurement noise through the feedforward branch (remember that y2 can only be a measure of the
exosystem).
As a consequence, it is sufficient that S

o11 asymptotically recovers the target function So11
 for the

robust stability of the loop to be guaranteed.
Hence, it remains to be shown that S

o11 asymptotically recovers the target function So11
 despite the

non stabilizable part of the system.

Let the output sensitivity recovery error be defined as the difference between the target loop
sensitivity function and the sensitivity function of the observer-based control system.
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E s S s S sS o o o, ( ) ( ) ( ) = − (3.8)

Niemann et al. (1991) have shown that the output sensitivity recovery error satisfies

E s M s S sS o o o, ( ) ( ) ( )  = , (3.9)

where ( )M s C sI A BK Ko c o( ) = − +
−1

 . (3.10)

M
o
(s) is called the recovery matrix for the plant output node.

From (2.1), (2.3) and (2.5) ,

[ ]A
A B G
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22
1

11 12

21 220 0

0

0
, , , , .(3.11)

So M
o
(s) can be expanded into

M s
C

C

sI A B K B G B G

sI A

K K
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c a a f f

f f
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
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11 12

21 22

0

0 0
  (3.12)

or

( )
( )M s

C sI A B K

C sI A

K K

K Ko
c f f

f f

( ) =
− +

−












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−
11 11 1 1

1
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1

11 12

21 22

0

0
 (3.13)

The state feedback gain K
c1 results from a Linear-Quadratic Control minimizing the following

criterion :

( )J u t R u t x t Q x t dtT
c

T
cto

= +
∞

∫ ( ) ( ) ( ) ( ) , (3.14)

where R
c
 is a non-zero matrix, and Q

c
 is defined as :

Q C Cc
T= µ 11 11. (3.15)

The classical adjustment rule is then applied, assuming that (A11, B1, C11)  is a minimum phase system
an right invertible (Stein et al., 1977). It follows that

( )C sI A B Kc11 11 1 1

1
0− + →

−
 pointwise in s as µ → ∞ . (3.16)

As a result, the recovery matrix M
o
(s) has the finite limit :
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( ) ( )M s
C sI A K C sI A Ko

f f

( ) = − −
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− −

0 0
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Finally, substituting (3.17) into  

E s E s

E s E s

M s M s

M s M s

S s S s

S s S s
S o S o

S o S o

o o

o o

o o

o o
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11 12

21 22

11 12

21 22

11 12

21 22









 =



















 . (3.18)

yields

E sS o, ( ) 11 0→  as µ → ∞ . (3.19)

Now since

E j S j S jS o o o, ( ) ( ) ( ) 11 11 11ω ω ω= − , (3.20)

it follows that asymptotic recovery is obtained for S
o11.

4 Conclusion

This paper has attempted to deal with the design of robust controllers for non stabilizable systems. A
two-step procedure has been proposed, concerning the systems for which the regulator problem with
internal stability is solvable . The first step consists in re-arranging the system via the RPIS solution.
The second step is devoted to the output sensitivity recovery, via an appropriate adjustment rule
(under the condition of minimum phase and right invertibility of (A11, B1, C11) ). A significant point of
the proof is that recovery can be performed in the presence of additional measures giving information
about the exosystem. These measures tackle the controller as feedforward inputs, and do not affect the
stability robustness of the loop.

Appendix A

Consider the LTI system described by the state differential equations :
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(A.1)
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X
1 represents the stabilizable part of the system, and X

2 the exosystem. The signal vector y is
composed of y1, the measure of the controlled output, and y

2, an additional measure concerning the
exosystem.

The state X is transformed into x via

x TX= , (A.2)

where T is a square matrix given by

T
I T

I
n a

n

x

x

=








1

2
0

. (A.3)

Considering the transformation (A.2), the state-space representation equivalent to (A.1) is
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(A.4)

Define Ta and Ga as a solution of the Sylvester system (assumed to be solvable) (Wonham, 1985 ; de
Larminat, 1995) :

− + =
− + + =





C T C
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11 12 22 1

0
(A.5)

Substituting (A.5) into (A.4) yields :
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(A.6) may be rewritten as
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. (A.7)

Hence, the initial system has been reorganized into a new system, with a disturbance d G xa= 2

additive to the input.
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Appendix B

Let the matrix M  be defined as

M S j S j Io
T

o= − −( ) ( )ω ω (B.1)

M expands into :

M
S j S j S j S j I M

M M I
o
T

o o
T

o=
− + − −

−










11 11 21 21 12

21 22

( ) ( ) ( ) ( )ω ω ω ω  
(B.2)

The matrix M is negative definite, which implies

S j S j S j S j Io
T

o o
T

o11 11 21 21 0( ) ( ) ( ) ( )− + − − ≤ω ω ω ω  . (B.3)

(B.3) may be rewritten as

S j S j S j S j Io
T

o o
T

o11 11 21 21( ) ( ) ( ) ( )− ≤ − − +ω ω ω ω  , (B.4)

where S j S jo
T

o21 21( ) ( )− ω ω  is positive definite.

It follows that

S j S j Io
T

o11 11( ) ( )− ≤ω ω . (B.5)

Appendix C

Consider the sensitivity function of the system described by (A.6) 

( )S I GK= + −1
(C.1)

where G and K are the plant and regulator transfer functions respectively.

G is written in the form :

( )G C sI A B= − −1
, (C.2)

which expands into

G
C

C

sI A B G

sI A

Ba=










−
−





















11

22

11 1

22

10

0 0 0
  

-1

. (C.3)
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Let

M
M M

M
=











1 2

30
 (C.4)

be a square matrix, with M1 and M3 non singular.

The formula giving the inverse of M is

 -1M
M M M M

M
=

−









− − −

−
1

1
1

1
2 3

1

3
10

(C.5)

Using this formula in (C.3) yields

( )
G

C sI A B= −











−

11 11

1

1

0
. (C.6)

The transfer of the regulator is a two-column matrix :

[ ]K K K= 1 2 . (C.7)

Substituting (C.6) and (C.7) into (C.1) yields :

( ) ( )
S

I C sI A B K C sI A B K

I
= + − −











− − −

11 11

1

1 1 11 11

1

1 2

1

0
(C.8)

Use the formula (C.5) to check that the output sensitivity function has the form

S
S S

Io

o o=










11 12

0
. (C.9)
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