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Abstract

We study a quasilinear reaction-di�usion problem that models the dynamics of a popula-

tion that is eager to quickly get out of zones with low population densities. A least squares

technique for identifying the singular di�usion coe�cient is developed. Numerical results

indicating the feasibility of this approach are presented.
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1 Introduction

We consider the reaction-di�usion problem

8<
:

ut =
1

a(P (t))
uxx + uF (u) (t; x) 2 (0; T ]� (0; 1);

u(t; 0) = 0 = u(t; 1) t 2 (0; T ];

u(0; x) = u0(x) x 2 [0; 1];

(1:1)

where P (t) =
R 1
0
u(t; x)dx. The di�usion coe�cient in (1.1) depends on the total population P

in the domain. If the function a is an increasing function with a(0) = 0 (e.g. a(P ) = P ) then a

di�usion of this type models a population that is anxious to quickly move out of territories with

low population densities. The term uF (u) describes the reaction or growth of the population.

Two commonly used reaction terms are the logistic model where F (u) = r(C�u) and the Monod

kinetics where F (u) = r=(C + u) (e.g. Ackleh et al., 1998; Bear, 1972; Freeze and Cherry, 1979;

Pao 1992).

Recently, existence-uniqueness of solutions for the homogeneous di�usion problem given

by (1.1) with F (u) = 0 was established by Chipot and Lovat (1999). In (Ackleh and Ke,
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1999) this existence-uniqueness result was extended to the reaction-di�usion problem (1.1).

Furthermore, the long time behavior of (1.1) with Logistic and Monod type of reaction functions

was discussed therein. In particular, the authors established conditions on the initial distribution

under which the population becomes extinct in �nite time and conditions under which the

population approaches a steady state. In this note we continue the investigation of problem

(1.1). The main goal here is to develop a numerical method for identifying the function a from

observation data.

Several researchers developed an abstract approximation framework for parameter identi�-

cation problems involving quasilinear parabolic evolution equations (Ackleh et al., 1998; Ackleh

and Reich, 1998; Banks et al., 1991, Banks et al., 1990). However, the theories in these papers

do not apply to the singular nonlocal di�usion given in (1.1). This paper is organized as follows.

In Section 2, a least squares approach for identifying the function a(P ) in (1.1) from observation

data is developed. Section 3 is devoted to numerical results while in Section 4 some concluding

remarks are made.

2 Parameter estimation problem

Consider the following inverse problem: Given observations Zr which correspond to the total

number of individuals in the population at times tr 2 [0; T ]; r = 1; 2; � � �; R; �nd a parameter

a 2 Q which minimizes the least squares cost functional

J(a) =

RX
r=1

jP (tr; a)� Zrj
2 (2:1)

where P (t; a), the total number of individuals at time t, is obtained from integrating the parame-

ter dependent solution u(t; x; a) to (1.1) over the interval (0; 1). We note that de�ning the linear

operator Av = v00 with domain D(A) = fv 2 H1
0 (0; 1) : Av 2 L2(0; 1)g then there exists a t0 > 0

such that (1.1) has a unique nonnegative solution u 2 C([0; t0];D(A)) \ C1((0; t0);L
2(0; 1))

provided that the following conditions are satis�ed (Ackleh and Ke, 1999):

1. The function F (u) is locally Lipschitz continuous.

2. The function a(P ) is locally Lipschitz continuous satisfying a(P ) > 0 for all P 6= 0, and

a(0) � 0.

3. u0 2 D(A) is nonnegative function with u0 6= 0.

For the rest of our discussion, we let D = CB [0;1) be the space of bounded uniformly

continuous functions on [0;1), and for �xed positive constants A1, A2, �P , and � we choose the

admissible parameter set Q to be the D closure of the following set

fa 2 CB[0;1) : a(0) = 0; �P � a(P ) � A1 for P 2 [0; �P ]; ja0(P )j � A2;

a(P ) = a(Pa) (i:e:; a is a constant function) for P � Pa; where Pa � �Pg:

Using Arzela-Ascoli theorem one can verify that Q is a compact subset of D. The �rst step

in solving the least squares problem is the approximation of (1.1), which we set up using the
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following implicit �nite di�erence scheme:

8>>>>>>>>>><
>>>>>>>>>>:

uk+1j � ukj

�t
=

1

a(P k)

uk+1j+1 � 2uk+1j + uk+1j�1

�x2
+ uk+1j F (ukj )

j = 1; � � � ; N � 1;

k = 0; � � � ; L� 1

uk+10 = 0 = uk+1N k = 0; � � � ; L� 1

P k+1 =
PN�1

j=1 �xuk+1j k = 0; � � � ; L� 1

u0j = u0(xj) j = 0; � � � ; N

(2:2)

where �t = T=L, �x = 1=N , and ukj is the �nite di�erence approximation of u(t; x). Hence,

solving the discrete system (2.2) is equivalent to solving the following tridiagonal system of linear

equations

Ak�!u
k+1

= �!u
k
for k = 0; : : : ; L� 1; (2:3)

where

Ak =

0
BBBBBBBBBBBBB@

dk1 �
�

a(P k)
0 0 : : : 0

�
�

a(P k)
dk2 �

�

a(P k)
0 : : : 0

0 �
�

a(P k)
dk3 �

�

a(P k)
: : : 0

: : : : : : : : : : : : : : : : : :

0 : : : 0 �
�

a(P k)
dkN�2 �

�

a(P k)

0 : : : 0 0 �
�

a(P k)
dkN�1

1
CCCCCCCCCCCCCA

;

� =
�t

(�x)2
; �!u

k+1
=
h
uk+11 ; uk+12 ; : : : ; uk+1N�1

i
;

and

dkj = 1��tF (ukj ) +
2�

a(P k)
; j = 1; : : : ; N � 1:

Assuming that there exists a constant E > 0 such that F (u) � E for all u � 0 then one can

verify that the di�erence approximation has a local nonnegative solution provided that �t is

chosen su�ciently small. Note that this condition is satis�ed for the logistic and the Monod

reaction terms.

The above approximation can be extended to a function on [0; 1] � [0; T ] by de�ning

U�t;�x(t; x; a) = ukj (a); (t; x) 2 (tk�1; tk]� (xj�1
; xj ]; k = 1; :::; L; j = 1; :::; N

where ukj (a) denote the parameter dependent solution of equation (2.3). Since our parameter set

is in�nite dimensional a �nite dimensional approximation is necessary for computing minimizers.

To this end, we consider the following �nite dimensional approximate inverse problem: Given

observations Zr which correspond to the total number of individuals in the population at times

tr 2 [0; T ]; r = 1; 2; � � �; R; �nd a parameter a 2 QM which minimizes the following approximate

cost functional

J�t;�x(a) =

RX
r=1

jP�t;�x(tr; a)� Zrj
2: (2:4)
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Here, P�t;�x(tr; a) =
R 1
0 U�t;�x(tr; x; a)dx and QM = IM (Q), where for each a 2 Q,

(IMa) (P ) =

MX
i=1

a

�
iPa

M

�
�iM (P ;Pa)

where �iM (P ;Pa), i = 0; 1; : : : ;M , represent the linear B-splines de�ned by using the uniform

mesh f0; Pa
M
; : : : ; Pag, on the interval [0; Pa]: The function (IMa) (P ) is extended to a continuous

function over [0;1) by setting �iM (P ;Pa) = �iM (Pa;Pa) for any P � Pa. The Peano Kernel

Theorem is used to yield

lim
M!1

IM (a) = a in CB [0;1);

uniformly in a; for a 2 Q (Schultz, 1973). Hence, if aM 2 QM = IM (Q) is given by

aM (P ) =

MX
i=1

�iM�iM (P ;Pa) ;

then the solution of our �nite dimensional identi�cation problem involves identifying the (M + 1)

coe�cients
�
�iM ; Pa

	M
i=1

from a compact subset of RM+1 so as to minimize the least squares

cost functional (2.4).

3 Numerical results

In this section we test the above technique using computationally generated data with random

noise. To generate data we choose the parameter functions

u0(x) = 1:5 sin �x; F (u) = 10� u; and a(P ) = 0:9(1 � exp(�10P 2));

and solve the system of equations (2.3) using �x = 10�2 and �t = 10�3. Then we let Zr =

P�t;�x(tr); tr = r�t; r = 1; 2; : : : ; 500. In Figure 1 we present the total population data Zr as a

function of t. Observe that for this choice of parameters, the population is driven to extinction

at t = 0:48.

To identify the parameter a(P ), we used the technique presented in Section 2 with M =

10. Hence, our �nite dimensional identi�cation problem involved estimating the 11 constants

f�i10; Pag
10
i=1. Rather than implement compactness constraints directly, we work with a regular-

ized cost functional

J

�t;�x(a) = J�t;�x(a) + 

Z �P

0

ja0(P )j2dP:

The properties of the regularized cost functional is examined in details in (Banks and Ku-

nisch, 1989). The compactness of the embedding H1(0; �P ) ,! C[0; �P ] enforces the constraints

indirectly. We used LMDIF1 routine obtained from NETLIB that implements the Levenberg-

Marquardt algorithm for the minimization.

In Figure 2 we present the di�erence between the exact function a(P ) and the linear spline

least squares estimate aM (P ). In this experiment the regularization parameter used  = 3�10�4

and the least squares value obtained J�t;�x(aM ) = 9�10�5. We then modify the data set using

noise with mean zero and standard deviation � = 0:03 and present the function a(P ) versus the

linear spline least squares estimate aM (P ) in Figure 3. We use the same regularization parameter

as in the previous experiment, and we obtain the least squares value J�t;�x(aM ) = 0:15. We
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note that the mean of the di�erence between the exact and estimated functions is approximately

zero for both of these experiments.

For our second example, we use the function a(P ) = 0:7 P
0:05+P

and generate data using the

same procedure discussed above. In Figure 4 we present the total population data versus time.

For this choice of the function a, the total population is driven to extinction at t = 0:43. In

Figure 5 we present the di�erence between the exact and estimated functions when no noise

is added to the data. The least squares value J�t;�x(aM ) for this experiment is 1:3 � 10�3

and the regularization parameter used is  = 3 � 10�3. Finally, in Figure 6 we present the

estimated versus the exact function for noisy data with mean zero and standard deviation

� = 0:03. The regularization parameter used is  = 3 � 10�2 and the �nal least squares value

J�t;�x(aM ) = 5:9� 10�2.

4 Concluding remarks

The least squares technique developed in this paper appears to be promising for identifying the

di�usion coe�cient in (1.1). The main focus in this paper was the numerical implementation of

this technique. Our future e�orts will focus on theoretical questions concerning the convergence

of the �nite di�erence approximation (2.2) to the unique solution of problem (1.1). Furthermore,

we will investigate the convergence of computed minimizers of the �nite dimensional least squares

problem (2.4) to a minimizer of the in�nite dimensional least squares problem (2.1). A crucial

step in obtaining such a result is proving the uniform (in the parameter) convergence of the

�nite di�erence approximation (Banks and Kunisch, 1989).
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Figure 1: The computationally generated data with a(P ) = 0:9(1� exp(�10P 2)).
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Figure 2: The di�erence between a(P ) = 0:9(1� exp(�10P 2)) and the linear spline estimate aM (P ).
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Figure 3: The function a(P ) = 0:9(1� exp(�10P 2)) and the linear spline estimate aM (P ).
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Figure 4: The computationally generated data with a(P ) = 0:7 P
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Figure 5: The di�erence between a(P ) = 0:7 P

0:05+P
and the linear spline estimate aM (P ).
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Figure 6: The function a(P ) = 0:7 P

0:05+P
and the linear spline estimate aM (P ).

In (2.2) we used a mixed explicit-implicit approximation for the reaction function uF (u).

Our numerical experience indicates that this type of discretization provides a more accurate

approximation near the extinction time of the population (the point where 1
a(P )

has a singularity)

than an explicit discretization. To obtain a similar accuracy using an explicit approximation

for uF (u) a smaller �t was required resulting in more intensive computations. Our future

e�orts will focus on the development of a time adaptive �nite di�erence scheme with an explicit

approximation for the reaction term. We believe this will result in an e�cient method that will

not be computationally intensive since the adaptation of the time step size �t will most likely

play a major role only near the extinction time.
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