Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

Discrete-Event State Equations and Petri Nets

Enrico Canut§ Fabio Balduzzi

Dipartimento di Automatica e Informatica
Politecnico di Torino
Corso Duca degli Abruzzi 24, 10129 Torino, ltaly

Abstract

In this paper we present a novel formulation for the modeling and control of discrete event
dynamic systems. This original approach leads to a discrete-event state equations formulation
satisfying Kalman axioms, where the state is defined as the sequence of potential events (enabled
transitions in terms of Petri net language) forced by the occurrence of state events (free
evolution) or by arbitrary input events (forced evolution).

The proposed formulation is considered to be very general and appropriate to any discrete
event systems. This conviction is supported by the analysis performed by comparing discrete-
event state equations with classical discrete-event models like untimed and timed Petri nets,
finite-state timed and untimed automata. We show that all these models can be formulated as a
sub-class of the discrete-event state equations.

1 Introduction

In this paper a novel theory of discrete-event dynamic systems (DEDS) is compared with classical
approaches such as Petri nets (PN) and finite-state automata. This novel approach has been recently
developed within the ESPRIT Basic Research HIMAC, dedicated to a new mathematical framework,
the Manufacturing Algebra, for the modeling and control of discrete manufacturing systems (Canuto,
1998a; Canuto, 1998b; Donati al, 1996; Vallauri, 1997). After a short review of the previous work
about DEDS, we present a synthesis of the novel theory which transposes the dynamic system
concept, originally developed by Kalman (Kalmeinal, 1969) in terms of input, state and output
variables to the field of discrete-event dynamics.

A DEDS is formulated as an operator which transforms input event sequences into output event
sequences satisfying the causality constraint. Causality implies that a state wéiatists at any
timet and can be described aspwténtia) event occurring at a time later thanThe evolution in
time of the potential event described X{¥) does not depend explicitly on tinteébut only on the
occurrence of other events, like the potential event itself or input events.

To provide a simple example, let us consider an alarm-clock endowed with keys for registering an
‘alarm’ =[alarm type(ring, music, ...)alarm timg and a function which automatically sets a new
‘alarm time’ only when an alarm rings. The asynchronous and unpredictable sequence of registrations
made by the user is tlput event sequenc&he sequence of alarms effectively ringing isdhgut
event sequencény event is described as a pdadf, occurrence timp Output events can also be
defined as pairs [alarm type, alarm time]. Input events can also be defined as pairs [alarm, registration
time]. The clock state is defined at any real tina@d corresponds to the last ‘alarm’ registered in the

" Email: {enrico.canutsbalduzz}@ polito.it

160

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

clock memaory. Therefore the clock state is a potential event which will occur and modify itself only if

no external registration occurs before its ‘alarm time’.

The alarm-clock is a simple but complete example of DEDS types treated in this paper that have
the following properties:

1. the time variables of the input events, like the alarm registration times, or of the output events,
like times when alarms ring, are countable but with real and unpredictable values. Therefore the
input-output operator cannot be described by discrete-time state equations;

2. the state is a variable defined at any real tin@nd contains the last registered ‘alarm’ (a
potential event) which may or may not occur;

3. the state can be only modified at the occurrence of input events (forced evolution) or of the
potential event itself (free evolution), i.e., when a registered ‘alarm’ occurs;

4, input and output time functions are discrete-event sequences belonging to well-defined
seguence spaces.

In this paper we show that such DEDS formulation is very general and can be realized with the
block-diagram depicted in Figure 1, where:

. an asynchronous delay makes the potential event registex@j tasoccur at a later time, if not
modified meanwhile;

. a feedback static function modifies the stqtewhen the potential event occurs;

. an input static function, possibly depending on the state, forces the input events to modify the
state;

. an output static function makes output events to occur when a potential event occurs.

Each block will be formulated in terms of event functions and the ensemble will define a discrete-
event state equation (DESE) which satisfies Kalman axioms and therefore is appropriate for applying
state-space control theory.

State

Input events Input f--——--= > State eventg Output | Output events
Delay |._____

V

---------=2> function function |7"""""= >

e —— 4

Feedback

Figure 1: Block-diagram of a discrete-event state equation

The proposed formulation is considered to be very general and appropriate to any DEDS. This
conviction is supported by the analysis performed by comparing DESE with classical discrete-event
models like untimed and timed Petri nets, finite-state timed and untimed automata.

It will be shown that all these models can be formulated as a sub-class of the discrete-event state
equations. Specifically finite-state automata and untimed Petri Nets correspond to forced state
evolution, timed automata and timed Petri nets correspond to free state evolution. The analysis
developed in this paper will be limited to deterministic DEDS, therefore we shall not treat stochastic
models like Markov chains or Generalized Semi-Markov Processes (GSMP).

161

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

1.1 Previous Work

A substantial body of literature about DEDS is concerned with the problem of how to formulate the
dynamics of a discrete-event system. Even so it seems to the authors that there is not a universally
accepted formulation like there is for continuous (discrete) variable dynamic systems.

The most important formulations of DEDS are provided by state automata and Petri nets, either
timed or untimed. For these models, however, the general concepts of event and state do not
correspond to the definition we will provide in the following sections. Thus in this section we will
refer to events as the facts introduced in our formulation of DEDS. Petri net models have been widely
considered for describing DEDS, see for instance (Murata, 1989) and the references therein. Other
popular models include the automata model of Ramadge and Wonham (Ramadge, Wonham, 1989)
and the path-based models used for perturbation analysis (Cassandras, 1993). Other formalisms such
as the GSMP formulation (Glynn, 1989) and the model described in (Ziegler, 1989) deal also with
simulation issues for DEDS. However analytic results for the more general sditiogssed here are
available only for simple systems, while the analysis of more complex involves the use of
approximate decomposition techniques and Markov models as suggested by Gershwin (Gershwin,
1994).

A novel modeling approach is proposed in (Passino, Burgess, 1998) where a non-linear difference
eguation is formulated for modeling non-deterministic behavior, in the sense that if the system is at
any state, then there is a set of events that can occur and depending on which one occurs the system
can evolve through transitions to different states. lecant work Balduzzi and Menga (Balduzzi,
Menga, 1998) developed a discrete-time, time-varying linear stochastic state variable model for the
fluid approximation of flexible manufacturing systems. Then, by using perturbation analysis
techniques they obtained average values and variances of both performance measures and of their
gradients with respect to the system parameters to perform optimal design of the system
configuration.

All these formulations, however, do not make a clear distinction among free and forced responses
as well as input, output and state variables. Our main interests are towards control theory for DEDS,
hence the general framework we provide attempts to properly define all those system concepts by
mean of discrete-event state equations which satisfy Kalman axioms and therefore is appropriate for
applying state-space control theory. The theory developed in this paper is based on the works
produced by Donatet al (Donatiet al, 1996; Vallauri, 1997) and the results we will show are
obtained starting from the basic ideas presented in (Canuto, 1998a; Canuto, 1998bgtDainati
1996; Vallauri, 1997).

2 Discrete-Event State Equations

In this section we introduce the theory of discrete-event state equations for the modeling and control
of DEDS. For continuous(discrete)-time dynamic systems (strictly causal), the most general
formulation is to assume that the state funciiefix(t), t=0} and the input-output dynamic relation
satisfy relations of the form:

x(t) = F(x(t),u(t),1), x(0) =xq (1)

y(t) = g(x(t),t)
for some prescribed family of mapping&t{LL), g(t,0}, t=0}, initial condition x, and input function
u={u(t), t=0}.

Intuitively we may state an analogous formulation for DEDS, that is we require the existence of a

dynamic functionx(t) to describe the evolution in time of the state of the system, and which satisfies
Kalman axioms (Kalmaret al, 1969). Such a formulation can be obtained provided that an

162

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

appropriate choice of the state space is made. Adl ibevclear in what follows, we will define input,
output and state variables in a suitable space of event sequences.

2.1 Events and their Functions

Lett be the real time variable and BT be any real time interval=[t,,t)) finite or infinite, called

time setLet = be a countable set of elemefgizalledfacts including the null element 0. The fact set

may be:

. a finite set with appropriate algebraic properties like a set of symbols for a language. For
instance, the list of the different parts that a workstation can process, the list of the possible
functional status of a workstatiowdrking, idle, broken;

. a set endowed with algebraic operations like addition and scalar multiplication. For instance,
integer vectors defining for each part of a list the gtyastored in a buffer.
Definition 2.1.1 An eventeis defined as a paifdct, timd, i.e., e=[&,t] where¢[= andtJT.]

The timet is called theoccurrence timef the evene. The set of events is denoteg=xT. An
event is said to occur when its occurrence tinegmuals the monotone increasing clock function
(1), t00. Special events are thull evente=[0,t], the impossible event.=[0,00] and thepending
evente,=[&,»], i.e., an event missing the occurrence time.

In our formulation, differently from the literature, an event is always tagged by a real time instant
and called simply event (not timed event). In order to properly define the time evolution of a DEDS,
we need to specify a mechanism for generating the event sequences. Thus we assume that events car
be made function of the current tirhas long as their occurrence times are greatertttaimch events
are calledpotential eventaind play an essential role in our developments.

Definition 2.1.2 A potential events an evente(t)=[n,,7>t] whose occurrence time satisfies the
constraintr t. [

Events may be transformed into other events by appropriate event functions. We distinguish
among static and dynamic functions. For example, the input, output and feedback blocks in Figure 1
are static functions while the delay block is a dynamic function.

Definition 2.1.3 Given two event sets, the input $££UxT and the output SEE=YXT, the static
event functiorF :E, ~ E, mapping an input evemt=[¢t] into an output everg=[¢ ,t], is defined by
the pair of relations;, =f (e,) andt =t , with the constraint that a null event is mapped into a null event,
0=f (e).]

In the alarm-clock model, when an alarm rings, the clock will register a new alarm. The input and
output events are=[¢ ='alarm type’t =‘alarm time’] ande=[¢ ="alarm’,t =‘registration time’] with
t=t, and, for instance, =f (e)=[¢ ='same alarm typef +A="new alarm time'].

Definition 2.1.4 Given two event sets, the input &tUxT and the output s&=YxT , the dynamic
event functior’ :E, - E, mapping an input event=[¢ ,t] into an output everg=[¢ ,t], is defined by
the pair of relationg =y/(e,) andt = (e)>t,. The output event will occur delayed with respect to the
input event. A null event is mapped into a null every(e)). |

When an alarm has been registered and no further registrations are made, alarm will ring at a later
time expressed by the registration. The fact of an event might be an event itself. For instance when a
potential evene(t) occurs at the current timer (t), it can be useful to generate a new potential event
e’(t), which is embedded as the fact of an event callechéixé potential evenand obtained as the
output of a static functioN_ : [e (1), T (t)]=N[e(t)] .

163

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

2.2 Event Sequences and Operations

Event sequences in our framework correspond to time functions for classical state equations and allow
us to describe the evolution of input, output and state variables.

Definition 2.2.1 An event sequence is a countable set of events({)=[&(i),t(i)]E, iOK(o0)} that
does not contain simultaneous events, i.e., the sequeiscgubject to the constrait(i)#t(j) for any
pair of counter$,j0K(0)=1{1,2,...,i,...}, whereK(o) is the counter set of the sequence.]

Note that the absence of simultaneous events implies that the efintsare strictly ordered by
their occurrence times. The set of all event sequences defined by the e denoted(E). A
sequence will be denoted either by the collective symbot by the generic evegfi).

A null sequencds the event sequence made of null eventsiofmal sequencés an event
sequence without null events. Normal sequences are equal when they include the same events. Note
that, as already stated, null events cannot map into non null events. Several operations can be defined
over Z(E): addition and scalar multiplication, which depends on the corresponding operation defined
for the fact set, time-shift and time restriction.

Definition 2.2.2 Addition Given a pair of event sequenceso,lZ(E) with generic events

e ()=[&,(i).t,(i)] ande,j)=[&,().1,()], the event sequence (suorgo,+o,={e&K)=[§(K),t(K)]} is defined

as (1) the union of non simultaneous even8)#t,(), (2) the addition of the facts of two
simultaneous events, being admissible only when addition is defined for the fact set. Then

e(k)=[&,()+&,0).1,0)=t,0)] u

Definition 2.2.3 Restriction Given an event sequencél>(E) and a time intervalk|t,), the restricted
sequenc®’ is defined by the set of events restricted to the timeTsgt,,t). An event sequence
restricted to the future, i.e., tgof), wheret denotes the current time, is callegusal sequencand
indicated byo(t). In practice, it is thdist of the events not yet occurred. To avoid a causal sequence to
become empty as far s o, we add to the sequence the impossible eggnt [|

Definition 2.2.4 Timeshift Given an event sequencélZ(E) and a tima , the shifted sequenc® is
obtained by shifting the time s€&tand the occurrence times. A causal sequei@g shifted byt is
denoted byo(0,1). [|

Remark 2.2.5 The simplest way to build a potential evexft) is to restrict a causal sequence
o(0)={e(i)=[&(i),t(i)]} to the current time&>0. The fact is the restricted causal sequence itggtj(t)
and the occurrence time is the next aryemin{t(i)>t}.

2.3 Event Sequences and Time Functions

We have already stated that the state of a DEDS is a time funffipthat is modified only at the
occurrence of appropriate events, and the input and output variables are event sequences. The only
constraint we impose on the input event sequences is the concatenation axiom, meaning that there are
no links between the future and the past events. Therefore, suitable operators have to be defined,
mapping an input event sequemgento an output time functior(t).

Concatenation axiomLet Z(E) be the set of all input event sequewgeThis set must be closed
underconcatenatiorof arbitrary pairs of input event sequencgsando,, restricted over two non
overlapping but contiguous time sé@ts(t,,t,] andT,=(t,t)].

Note that the concatenation axiom, which is defined #8,t,]Co_(t,,t], is the basic property of
input functions in the Kalman formulation (Kalmahal, 1969). The most important operators that
map an input event sequerggnto an output time functior(t) are theevent register Rind theevent
adderZ.

164

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

Definition 2.3.1 Event register RE =UxT - U, whereU is the set of input facts. Given an input
event sequenceo,={e(j)=[¢,()t,()]}, the event registerR is defined by the equation
X(t")=Rle,()]=¢,(), wheret=t (j) andt” denotes the time interva(j)<tst (j+1). [

The output of an event register is a step-like time funetfnlU, whose value is equal to the fact
of the last occurred event. Therefa(® is a state function and the register equation plays the role of a
state equation with initial conditior(0). As it will be shown later, event registers allow us to
formulate in our theory finite state automata. When the fact set of input events is adujitivdacts
can be registered into a time functixit) in an additive way.

Definition 2.3.2 Event adderX: E xX- X, whereX is the set of state facts. Given an input event
sequenceas,={e,(j)=[¢,().t,()]}, with input fact setU endowed with addition operations, the event
adder is defined by the equatiot’)=2[e(j)]=x(t,())+& (), that holds in the time interval
t()<tst(j+1). L

Figure 2 shows the graphical symbols of event registers and event adders. Event sequences are
indicated with dashed arrows while time functions with solid arrows.

------ > Ri— e I —
Ou x(t) Oy x(t)

Figure 2: Symbols of event register and adder

2.4 Transitions and Delay Functions

The composition of an event regisRwith a static event functioB,, can be used to define transition
functions. For the sake of simplicity, in this presentation we will only consider time-invariant
transition functions.

Definition 2.4.1 Transition functionsGiven a time functiorx(t)X and a finite set of input event
sequences(j,)=[¢,().t()ICE, 1=12,....L, a vector of transition function®:ExX- X, is defined by
the equationsx(t)=®[e(j).x(t)], where t=t(j) and t" corresponds to the interval of time
t(j)<t<min{t (K>t (j)}. |
Transition functions may not depend explicitly x{t), which means that(t)=® [e(j,)]. Moreover
we can show that transition functions satisfy Kalman axioms and conseq(Britlya state function.

Proposition 2.4.2The transition function®, satisfy the following axioms of strictly causal dynamic
systems:

1. ConsistencyThe time functiorx(t) only changes after an event occurrence.
2. Causality Given any initial value(t,) and applying two event sequeneaeandac’ restricted to
T=[t,.t), it yieldsx(t,) if it holds o(T 0)=0" (T o).
3. Composition Given any initial value(t,) and a sequenag consider the restrictions, ando,
defined for the consecutive interval§,t) and [,t) respectively and the concatenation
0,,=0:00,. Then sequentially applying, ando,or applying their concatenatian, it yields the
same final state valugt,). [|
A transition function receives a sequence of events and registers their facts, possibly altered, in a
time function. If the facts to be registered are potential events, like the ‘alarms’ set in an alarm clock,
then we need a dynamic function making such events to occur. We now introduce the event delay
operator.

165

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

Definition 2.4.3 Event delay\: E - E xX, whereE =E xT andX=E,. Given an input event sequence
o= {e(h)=[e(n).t(N]CE} such thate(ht)=[n (h),T (h)>t] is a potential event at time a state
functionx(t): T— X and an output event sequerre{e(K)LIE} can be obtained as follows:

1. Potential event registratiariThe potential everg(h) embedded as the fact in the input event
e(h) is registered in the state variable. Formal§)=e(h) where t=t(h) and t" means
t (h)<t<min{t (h+1),T ()}.
2. Potential event occurrencéVhen a potential everg(k) occurs, first the state content is
cancelled, formally(t")=e. wheret=t (K) andt" meanst, (k)<< min{t,(h)>1 (k)}; second an
output event will occur matching the potential event, formglf)=x(t) if and only if t (K)=t,
wheret=c(1), the delay clock.
3. Initial condition The initial condition is given bx(0)=ge(0). u
The event delay operator plays a key role in our development, thus it deserves a complete
investigation. First we observe that the input and output coumtatdk are generally different, since
the factse(h) of some input events may not occur, being cancelled by subsequent events. This feature
is essential for closed-loop control design, since it allows to correct potential events forced either by
previous decisions or by external disturbances. Second, two consecutive outputegkerstisd
e(k+1) define a seH(K)={h+1,...,h, -1} of input counters corresponding to input events that have
never occurreddfeam3. The setH(K) is called thehidden setand becomes empty whén =h+1.
The counterd), corresponding to the occurring events are caletdome counterdrinally, the facts
g(h) of the input events which may or may not occur will be indicated hereaftef(lgs The
outcomes will be denoted ByK). If we only consider the input and output sequences of potential
events effectively occurring, we can write the delay equati@(lgsA ([e (h).t,(h)]).
In Figure 3 we have shown the symbols of transition functions and event delays.

—>

------ > P > > A | X0
Ou X(1) O >
Ox

Figure 3: Symbols of transition functions and event delays

3 Discrete-Event State Equations

Let T be the usual positive time sdt@} with t the current time. We now introduce the input and

output event sequences and the state function.

. Input event sequencBenote witho, a sequence of input everg§)=[u().t (j)]UE,=UXT, with
Q(Z) the subset of the admissible input sequences in the set of the input seqieh@g3.
We assume th&2(Z) is closed under concatenation.

. Output event sequencBenote witho, a sequence of output eveg)=[y(K),t (K]UE=YxT,
with Z =%(E)) the set of the output event sequences.
Note that output and input events do not need to be synchronous, and in general they have
different occurrence times and different counter sets.
. State event and state functiofhe set of state evenE=XxT is the set of potential events

e (t)=[n,, 1 >t], whose fact is a causal sequengeX. The state functiom(t)CJE, corresponds to
the potential everg(t) at the current time

166

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

Definition 3.1 A DEDS is a dynamic operator mapping input event sequesnC&3(Z) into output
event sequences 1% . It is defined by a pair of state transition functishsand ®, and an output
static functionC,_ such that:
1. Free evolution x(t")=®[e(Kk),T] where 1=t (K) is the occurrence time of tHeth state event
e (K)=x(1).
Forced evolutionx(t)=®,[e (j).x(t)] where &t (j) is the occurrence time of tfi¢h input event.
Output equatione (K)=C[e (k),t (K)].
Initial condition: x(0)=[n,,,T ,<O0].
Time interval between transitiong” meanst (K<t<min{t (k+1)t ()>t(K)} and f means
t ()<t<min{t (j+1).t (K>t (j)}. [|
We can now state the following proposition.
Proposition 3.2 The equations given hyefinition 3.1satisfy Kalman axioms and consequently the
time functionx(t) is a state function. [|
The state variable of the state equations is the time funkfiprBy means of event delays it is
possible to write down state equations in terms of the potential @/&htegistered irx(t).

Proposition 3.3 The state equations given IDefinition 3.1 can be rewritten using a single event
delay. [|

We write the state equations with a single event delay by introducing the seqyefiegh)} of
the potential events registered in the state funcffjrand the sequence of the next potential events
[e(n).t (N)] forcing the event delay. The state equations can be written as follows:

Free evolution [e (h+1)t (K]=F(e(K), i.e., the next potential event is generated at the
occurrence of a state event.

. Forced evolution[e (h+1)t,()]=B(e().x(,())), i.e., the next potential event is generated at
the occurrence of an input event.

. State event occurrence(k+1)=A (e (h,..).t,(N.)])-
. State functionx(t')=R([e (h),t]), wheret=t (h) is equal to eithet (j) or t (k).
. Output equatione(K)=C[e (Kk),t (K)].
The new set of equations can be represented with a block-diagram as shown in Figure 4.

akrowbd

X(t)

[€(h+1).1,0)]

[ehict 1) 1(K)]

Figure 4: Block diagram of DESE

167

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

Linear DESE have been already developed and stability analysis has been performed (Vallauri,
1997) even if not reported in this work.

4 Automata and Untimed Petri Nets

In the remainder of this paper we shall formulate in terms of our theory classical DEDS models like
automata and Petri nets. To this end the analysis will first concern with untimed (or logical) models
and then with timed models. We shall limit ourselves to the deterministic case. The main results we
have obtained can be summerized as follows.

First, untimed automata and Petri nets cannot describe a generic DEDS mapping input event
sequences into output event sequences, because their input sequences (events in the case of automat
and transitions in the case of Petri nets) do not satisfy the concatenation axiom, being constrained by
the state itselfgnabling or feasible conditionsin an ambiguous way (for each marking several
transitions can be enabled). In other words, given an initial state (an initial marking for PN) the state
evolution is not uniquely specified, being dependent on the input sequence. Furthermore, given an
arbitrary input sequence the corresponding forced evolution may not exist, because the sequence does
not respect the enabling conditions.

Second, this peculiarity leaves designers to specify an external mechanism of their own in order to
solve such an ambiguity, which is often appropriate to model conflicts. If the (internal) input sequence
is made dependent on an external one satisfying concatenation, i.e., external disturbance or reference,
the state of the untimed DEDS will be only subject to forced evolution. If the internal input sequence
is made dependent on the state through a not ambiguous relation, i.e., feedback control policy, the
state will be subject to free evolution. Of course mixed cases are possible.

A typical mechanism to solve input ambiguity is to make enabled transitions (or feasible events)
to occur (fire) only after a deterministic or random delay. The corresponding models are called timed
and we shall show they possess only a free state evolution.

4.1 Finite-State Automata

Consider a finite-state automata defined by the BetX, Y, I', B, v, X}, where U, X andY are the
input, state and output sets, respectivie(x) denotes a feasible set defining the enabled input elements
uduU for each state elemeriIX, B:XxU - X denotes the transition functiopXxU - Y is the output
function andx, is the initial state.

Theorem 4.1.1Any finite-state automata can be formulated as a dynamic system mapping an input
event sequenae,={e,(K)=[u(k),t,(K)]} belonging to an admissible s&, into a state functiow(t) and

an output event sequensg={ e,(K)=[y(k).t,(K)]}. Input and output sequences are synchronous, i.e., they
have the same counteand the same set,{k)=t,(k)} of occurrence times.

Proof.

Q) The setX is the set of values that the state functifth) may assume at time The state
function can vary only at a countable sequence of time instants belonging to the fimsex It
holdsx(0)=x,.

(2) The setU is the fact set of the input event sequenze® (E) defined over the event set
E =UxT. Input event sequences must belong to the admissible <UH$EE) defined by the feasible
setl(X). Such input sequences and their events will be catadbled

3) The state functiom(t) is obtained from the enabled input everggl} through a static input
function B, expressing the transition functi@ and a registeR. The functionB_ forces the sequence
of the intermediate events(K)=[x(k),t]=B (e (k) x(t)) where t=t (k), x(t)=x(k-1) and x(K)=B(x(k-1),
u(k)). The last equation is the usual automaton state equation. The register fistioes the fact
x(k) of the evene (K) within x(t").

168

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

(4) The setY is the fact set of the output event sequemege (K=[y(K),t (K)]}, defined over the
setE=YxT. The output sequence is generated by the seqagrie(K)} through a static functiolT,
defined by the equationy(K)=y(x(k)). By replacing the expression ofk), one can obtain the
automaton output equatigfk)=y(B(x(k-1), u(k)))=y(x(k-1), u(k)).
This completes the proof. [|
The block diagram of an automaton is shown in Figure 5. The dependence on tki) $tatthe
admissible se® of input sequences is sketched with a cloud relatg()to

eu(k) k) x(t)
>

WA S Be |-

____________ > G |-

Figure 5: Block diagram of a finite-state automata

It can be shown that the admissible input@ets not closed under concatenation, and therefore
automata do not satisfy all Kalman axioms. This means that the state evolution cannot be expressed in
terms of forced and free evolution, since they cannot be distinguished among each others.

Lemma 4.1.2The admissible s&p [1>(E,) of input sequences is not closed under concatenation.

Proof. Consider two enabled input sequenogsando,, leading to different state valugsandx, at
time t and such that they have disjoint feasible sét), i=1,2. Consider the concatenation
0,[0,t)0o,[t,»). By construction it does not belong@>(E). |

We observe that the simplest mechanism to distinguish between forced and free state evolution is
to select among the enabled input events by means of an input sequdigenging to a sequence
set’ closed under concatenation. The occurrence at e of the new input events’(j) may or
may not make to occur one of the enabled events through some static flB)ctiorthis case the
input sequence may have more event occurrences than the output sequence, meaning thgt counters
andk do not coincide; the state evolution is defined by a forced evolution,gtheeay only change
when an input event occurs. Moreover whenever only enabled input events are considered, all event
sequences are synchronous and therefore occurrencetffk)esre not essential to describe state
evolution.

The simplest automaton is a read/write memory. Input events are read and write events. The state
function is the memory content. A write event modifies the state. A read event does not modify the
state, but creates an output event. Enabling can be included by constraining memory writing to
memory content.

4.2 Untimed Petri Nets

Consider an untimed Petri nets defined by the Bgh,Pre,Postm} where P is the finite set oh
placesp, A is the finite set ofm transitionsA, Pre:PxA - N' andPostPxA - N' are thepre- andpost

incidence functionshat specify the arcs. We denote the preset (postset) of transitgnA (A°).
Similar notation may be used for presets and postsetsacéspl Thancidence matrixof the net is

169

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

defined asC(p,A\)=Pos{p,A)-Pre(p,A). A markingm:P - N' is a function that assigns to each place a
non-negative number of tokens, denotes the marking of plapeThe value of a marking at tintes
denotedm(t) and the initial marking im,. A transition)\'is enabledatm if for all pl0’'A, m=Pre(p,A).
An enabled transitioh fires yielding the new markingn = m+C(LM).

Untimed Petri nets can be considered as a generalization of finite-state automata in the sense that
the state function(t) is multivariable and corresponds to the markimd), and the state function can
be modified in an additive way. As a consequence enabling conditions may depend on smezal pl
(state components) and when a transition fires severegdpimight change their content.

In our formulation the set of input fadtkcorrespond to the transition getand for each marking
m there is a sef(m) of enabled transitions defining the admissible(seof input event sequences.
When an enabled input evegfk) occurs (a transitio fires) a new evene (K)=[Am(K),t (K)] is
generated through a static functi@py. The factAm(k) of such an event is the marking variation
Am(K)=C(.,A) forced by the firing transition. The marking variation event modifies the marking of the
net by an event adder. Therefore the following proposition can be proved.
Proposition 4.2.1Any untimed Petri net with an additive marking can be formulated as a dynamic
system mapping an input event sequendeelonging to an admissible s@t, into a state function
m(t) and an output event sequemceThe dynamic mapping can be realized as a cascade of two static
functionsB_andB_ and an event adder. The admissible input set is not closed under concatdmation.

In Figure 6 we have depicted the block-diagram of a untimed Petri net represented as a DESE.

e (k) em(K) m(t)
Qu A" > Be |----3 Bm F—=——> 2

T m(0)

Figure 6: Block diagram of an untimed Petri net

5 Timed Automata and Timed Petri Nets

Timed Petri nets and automata include an internal mechanism for selecting among enabled transitions.
The mechanism assigns a deterministic or random delay to each enabliérirasisch that the
transition with the least delay fires. When a transition fires two events occur: (1) the marking is
updated; (2) new transitions might be enabled. Thus the future state evolution at anyigime
completely determined by the marking(t) and by the set of enabled transitions, which therefore
defines at any timethe state of a timed PN or automata. As a consequence timed PN and automata
do possess only free state evolution.

5.1 Timed Petri Nets

Timed Petri nets are untimed ne® T,Pre,Postm D} where a functiorD: T 0" specifies the time
delayt=D(A)>0 associated to each triimn AOA. We assume only deterministic delays, but possibly
time-varying. An enabled transition fires (after its delay) yielding the markimg(t)=m(t)+C(CA).
Timed Petri Nets can be mapped into DESE according to the following guidelines:

170

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

+ The sety of the output facts corresponds to the set of transitforGutput eventg (K)LE=YxT
are defined ag(k)=[y(k=A.t(K)] and their occurrences satisfy a one-to-one relationship with
transition firings.

« Marking m(t)CIN" defines at any timea state function vector of dimension

» The evente (K=[Am(K),t (k)] have been already defined. They are synchronous with transition
firings, that impliest (K=t(k). They can be expressed as the output of a static function
e (k=B (e(K)).

+ Enabled transitions are mapped into potential evextts)=[A(i),t(i)=t+1(i)>t]JE\=AXT, whose
fact is a transitiorh and whose occurrence time is given by the enabling tipkis the firing
delay. A finite sequenceef(i,t)} JX(E)) of enabled transitions at timtés denoted by (t). Since

we assume that any transition can be enabled only once before firing, any transition can appear
only once in such sequences.

« Any finite sequence of enabled transitions defines a potential eyet=[n (K.t (k)>t], whose
occurrence time(h) is the least occurrence tinmgi) of the sequence. The set of potential events
e(kt) is denoted withX. Note that all potential events do occur and therefore the hiddéf{lget
is always empty. A state functiot) with values inX defines a further state function besides the
markingm(t).

« Transitions firing corresponds to the occurrence of a potential ey®)#[n (k),t (k)] which in
turn generates an output eveyk)=[y(k),t (k)=t,(k)] and the next potential everg(k+1)t (K)].

The next potential event is created through a static funeffenl)=F (e (kK),m(t)), t=t (K), which
drops from the sequenggk) of the enabled transitions that one just fired and possibly add a new
enabled transition.

We can now state the following theorem.

Theorem 5.1.1A timed Petri net with additive marking can be formulated as a DESE that has only
free state evolution and it is defined by the following components:

1. Two state functions: the marking(t) and the functiorx(t):T - X corresponding to the potential
evente (k+1)=[n (k+1)t (k+1)] at timest (k)<tst (k+1).

2. The state event sequerze{e(K)} of the occurred potential events.

3. The output event sequenag-{e(K)} of the fired transitions.

4. The input static functioB_that generates the evertgk) forcing the adder to modify the marking
at any state event occurrence.

5. The feedback function (free evolutioR) generating the new potential evea(K+1)t (K)], thus
making the sequence of enabled transitions to evolve.

6. The output functiorC_ making the first event of the state event sequence to occur (fire). B

The discrete-event state equations corresponding to a timed Petri nets are defined as follows:

e, (k+1) =, (e, (k),m(t, (k)

X(t)=e(k+D, t (k) <t<t (k+1), x(0) =X,

e, (k) =C.(e (k) ()

m(t, (k)") =m(t,(k)) + B, (ey(k)), m(0) =m,

@, (e, (K).m(t, (k) = A, (F. (e, (). m(t, (kD) L, (K)])

Petri nets that have no transitions with no input places, i.e., their firings simply take place
unconditionally, do not have input event sequences and therefore they describe an autonomous DESE,
having only free evolution.

Moreover the feedback functidh, does not need to know all markimgmponents in order to
enable transitions. All transitions which are enabled by a single place, are actually enabled by the

171

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

firing of the input transition of such gde. In practice tokens are added and simultaneously used for
enabling, which is against causality. Therefore suakgd should be dropped. That means that Petri
nets are not minimal state equations, because some state components can be dropped.

The presence of conflicting transitions does not pose any problem. In such case, enabled
transitions are included in the potential event with that occurrence time (possibly random). The first
transition which fires, makes the conflicting one to be dropped from the next potential event. In
Figure 7 we have shown the block-diagram of a timed Petri net represented as a DESE.

i ~> A | o >
i : i Oy
| e (e 1) | Moy
I R >

B Om m(t)

2
1\ m(0)

Figure 7: Block diagram of a timed Petri net in terms of DESE

5.2 A Simple Petri Net

Let us now introduce a simple Petri net (Figure 8). We consider a set of tranAititms,c,b,r}: a,
part arrival;s, service starts;: service completion (and part leaves);server breaks dowm; server
repaired.

The set of places iB={A,Q,1,B,D}. Arrival process is represented by the input plActor the
transitiona; since such a place is always markdd kept enabled.

Figure 8: Petri net model of a simple queueing system

172

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

Enabling of transitiors depends on placad andl, which implies the presence of a part in the
input queueand the server being idle. Transitiomequires that the server be busy (a token in place
B). Transitionsb andr model server fail/repair as a an operation-dependent failure. Thus an initial
marking may ben=[1,0,1,0,0,0], which implies that the queQeis empty and the server is idle.
Conflict may arise among transitionsandb whose enabling depend on the same input fadenhe
conflict is solved by the first enabled transition that fires. The delay time of tranbito@am be
progressively reduced with the number of cycles or by the absolute time. It is reset to a larger value
after repair (firing of transition). Note that such information is not explicit in the Petri net formalism,
but it can be easily included in DESE.

The DESE which define the Petri net model depicted in Figure 8 is obtained as: (1) the output fact
setY corresponds to the transition get{a,s,c,b,r}; (2) the state seX is the set of the sequences of
enabled transitions, such that each fitaors can appear only once; (3) the marking time function
m(t):PxT - N° maps the pair (placéime) into a vector of non negative integer values of dimension 5.
Actually the seP is not minimal, since the three placésB,D} can be dropped, and a minimal place
setP,={1,Q} can be defined. The static functid) transforms the four firing transitionsag,c,r}
formulated as output events into three input events for the marking adder. Their facts are
Am={Am =[-1,-1], Am,= [1,0], Am_=[0,1]}. Hence the four relations amdm =b,(s), Am,=b,(c),
Am_=b,(r), Am_=b,(a). They can be still represented graphically with the Petri net symbols as shown

in Figure 9.
a I B
g Q @:i
r

oy Q%L/O | 1 Om

Figure 9: Petri net symbols of functi@

The feedback functiof_ receives the occurred potential events (sequences of enabletiotnans
at the firing time of the first one) and generates the new potential event, i.e., the new sequence of
enabled transitions. The firing transition is dropped from the sequence. If the case, a new transition is
enabled. Using the minimal set of places, five functions are necessary (depending on the minimal
markingm(t)) to generate the new enabled ones. The fact relationsa@ef (a,m(t)), (c,b,9)=f,(s),
(r.b,0)=f,(b), (sr)=f(r,m(t)) (sb.c)=f(cm(t), where underline means that the corresponding
transition has to be droppetihey can be graphically represented with a formalism similar to a Petri
net as shown in Figure 10.

a I ; . R
QI__%@ \‘: e
ex(k) a s r [ex(k+1),4(K)]

c LTS

B b

b

Figure 10: Petri net symbols of functién

173

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

The colored rectanglegpresent new enabled transitions while the white ones dropped transitions
(conflicting). Here each transition when fires drops itself, exaept

5.3 Timed Finite State Automata

Timed automata, like timed Petri nets, includes an internal mechanism for selecting among the
enabled (or feasible or activated) transitions (we prefer the name transition instead of event, not to
make confusion with our definition of event) (Cassandras 1993). The time delay mechanism allows to
distinguish between enabling and firing times.

The state is twofold: (1) the stait)(1X of the finite automata, (2) a time functiat)0Z
registeringthe potential (or state) eveg(k) whose fact is the finite sequenggof enabled transitions
at timet. When a state everj(k) occurs at time (k) the following actions are taken:

. The first transition (least occurrence time) of the state event fires, and an outpué @yest
generated by a static functi@

. The statex(t) is updated ax(k+1)=x(t(k)") depending on the previous staig) and on the
output eveng(K) by a static functiorB,.

. The statez(t) is updated according to some rules (Doeagl, 1996): all enabled transitions of
e(K) are dropped; the transitions enabled by the new state x(kitlg are included ire(k+1);
the occurrence times of the new enabled transitions which belong to the previous state event
e(K) do not change, except for the fired transition. Such rules are described by a feedback (free
evolution) functionF_forcing the new potential event to a delay operator.

We can now state the following proposition.

Proposition 5.3.1Any timed finite automaton can be described by the following discrete-event state
eguations:

e (k+1) = d, (e, (k), x(K))

2(t) =, (k +1), t, (k) <t <t (k +1), 2(0) = z,

e, (k) =C. (& (K) (3)
x(k+1) = R(Bn (e, (K), x(K))) x{t, ()")= x(K), X(0) = x,

., (e, (k), x(K) = 8., ([F. (e, (K), x(K). £, (K)])

Finally, in Figure 11 we have shown the block-diagram of a timed finite automaton represented as
a DESE.

| Ox |
i |__> Ae ____r_> Ce 2
! ! ! %
CGR 'x0) !
>l B f——3 R

Or X(t)

/I\x(0)

Figure 11: Block diagram of a timed finte automaton in terms of DESE

174

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

6 Conclusions

A novel theory of discrete-event dynamic systems (DEDS) has been shortly presented in this paper.
The theory allows us to describe any classical DEDS model in terms of discrete-event state equations
(DESE) satisfying Kalman axioms (Kalma al, 1969), therefore exhibiting forced and free state
evolutions.

The state is defined as the sequence of potential events (enabled transitions in terms of Petri nets
language) forced by the occurrence of state events themselves (free evolution) or by arbitrary input
events (forced evolution). The theory puts in evidence that automata and Petri nets cannot be
considered the most general DEDS since they miss either free or forced evolution. The theory has
been already applied to real-time control of Manufacturing Systems (Vallauri, 1997). Hybrid dynamic
systems can be easily defined over this theory.

Our main future goal will be to explore potential application fields of this theory for the optimal
design and control of discrete event dynamic processes.

7 Acknowledgments

The authors are grateful to Prof. Francesco Donati, Politecnico di Torino, who has been the
initiator of the novel theory presented in this work.

References

Balduzzi, F. and G. Menga (1998). “A State Variable Model for the Fluid Approximation of Flexible
Manufacturing SystemsJEEE Int Conkrenceon Robotics and Automatiqheuven, Belgium),
pp. 1172-1178.

Canuto, E. (1998a). “Discrete-Event Models of Manufacturing SysterRsgc. 6" IEEE
Mediterranean Confon Control and Systengélghero, Italy).

Canuto, E. (1998b). “Discrete-Event Modelling and Control of Manufacturing Systemus;,”1998
IEEE Conf on Control ApplicationgTrieste, Italy).

Cassandras, C.G. (199d)iscrete Event SystemBlodeling and Performance AnalysR.D. Irwin,
Inc. and Aksen Associates, Inc.

Donati, F., E. Canuto, and M. Vallauri (1996). “A new Approach to Discrete-Event Dynamic System
Theory; in Periodica PolytechnicaSer El. Eng, Vol. 41, pp. 1-11.

Gershwin, S.B. (1994Manufacturing Systems Engineerjrigyentice Hall, Inc., Englewood Cliffs.

Glynn, P.W. (1989). “A GSMP Formalism for Discrete Event Systef¢. IEEE, Vol. 77, No. 1,
pp. 14-23.

Kalman, R.E., P.L. Falb, and M.A. Arbib (1969)opics in Mathematical System TheokcGraw-
Hill.

Murata, T. (1989). “Petri Nets: Properties, Analysis and ApplicatidP)t. IEEE, Vol. 77, No. 4,
pp. 541-580.

Passino, K.M. and K.L. Burgess, (1998})ability Analysis of Discrete Events SystethsWiley &
Sons, Inc.

Ramadge, P.J.G. and W.M. Wonham, (1989). “The Control of Discrete Event Systeats JEEE,
Vol. 77, No. 1, pp. 81-98.

Vallauri M. (1997). “A new methodology for Manufacturing System EngineeriRgot. 2" HIMAC
Workshop CELID, Torino.

Ziegler, B.P. (1989). “DEVS Representation of Dynamical Systems: Event Based Intelligent
Control,” Proc. IEEE, Vol. 77, No. 1, pp. 72-80.

175

	HOME
	SESSION

