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Abstract

In this paper, we consider the robust stabilization problem for single-input/single-output
continuous time-invariant systems with feedback connected uncertainty such that the number
of poles of the plant in the right half plane is not necessarily equal to that of the nominal
plant. First of all, we define a class of uncertainty to be considered. The necessary and
sufficient robust stability condition for the system with such class of uncertainty is presented
by using a relation between the plant and the nominal plant.

1 Introduction

Notations

R field of real numbers
C field of complex numbers
R(s) the space of all real-rational transfer function
<{·} real part of {·} ∈ C

2 Introduction

In the present paper, we emamin the robust stability problem for single-input and single-output
continuous time-invariant systems with an uncertainty. On robust stability problem, several
paper has been considered (Doyle and Stein, 1981; Doyle, Wall and Stein, 1982; Chen and
Desoer, 1982; Kishore and Pearson, 1992; Glover and Doyle, 1988; Doyle, Glover, Khargonekar
and Francis, 1988; Verma, Helton and Jonckheere, 1986; McFarlane and Glover, 1989; Doyle,
Francis and Tannenbaum, 1992). Doyle and Stein built the basis for this problem (Doyle and
Stein, 1981) under the assumption that the number of unstable poles of the plant is equal to that
of the nominal plant. Chen and Deseor gave the complete proof of the result by Doyle and Stein
(Chen and Desoer, 1982). Doyle et al. summarized the robust stability condition for several type
of uncertaity (Doyle, Francis and Tannenbaum, 1992). Kishore and Pearson clarifid if an class
of uncertainty is closed set then the gap between the necessary robust stability condition and
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sufficient one exist(Kishore and Pearson, 1992). In addition, if an class of uncertainty is open
set then the necessary robust stability condition is equal to that of sufficient one. In this way,
the robust stability condition for the system with invariant number unstable poles completely
clarified.

However, these study on robust control such as (Doyle and Stein, 1981; Doyle, Wall and Stein,
1982; Chen and Desoer, 1982; Kishore and Pearson, 1992; Glover and Doyle, 1988; Doyle, Glover,
Khargonekar and Francis, 1988; McFarlane and Glover, 1989; Doyle, Francis and Tannenbaum,
1992) can not be applicabele for the system having uncertain number of poles in the closed
right half plane. There exist applications such that the number of unstable poles changes. For
example, the number of right half plane poles of a large flexible spacecraft changes when the
configuration of the spacecraft is changed (Vidyasagar and Kimura, 1986). The problem of
obtaining the robust stability condition for the system having a varying number of the closed
right half plane poles is difficult because the problem does not reduce to the small gain theorem.
To this problem, Verma et al. gave a solution ascribed to Nevanlinna-Pick theory (Verma, Helton
and Jonckheere, 1986). Verma et al. showed that it is necessary to restrict the plants to have
no more unstable poles than the nominal plant and under this assumption the necessary and
sufficient robust stability condition is that Nevanlinna-Pick matrix related to the set of plant is
nonnegative difinite(Verma, Helton and Jonckheere, 1986). Actually speaking , study on this
problem has never been completed.

In the present paper, we consider the robust stability plebem for the system having uncertain
number of poles in the closed right half plane using the relation between the plant and the
nominal plant. First of all, we define the class of uncertainty to be considered. This uncertainty
is conected to the plant such that the plant has the uncertainty with feedback loop. The
condition that the set of the plant and the nominal plant is contained in such class, is made
it clear. By using this relation, the necessary and sufficient robust stability condition for the
system having uncertainty number of unstable poles is shown.

3 Problem Formulation

Let us consider the control system as below.{
y(s) = G(s)u(s)
u(s) = C(s) (r(s) − y(s))

(1)

Here G(s) ∈ R(s) is the strictly proper plant with single-input and single-output. C(s) is
the controller, r is the reference input, y is the output. The nominal plant of G(s) denotes
Gm(s) ∈ R(s). G(s) is assumed to have same number of right half plane zeros of Gm(s).

The purpose of this paper is to obtain robust stability condition for the system included in
following class

G(s) =
Gm(s)

1 − Gm(s)∆(s)
(2)

|∆(jω)| < |W (jω)| ∀ω ∈ R. (3)

Here Ω denotes the set of plant with included in above class of uncertainty. That is,

Ω =
{

G(s)|G(s) =
Gm(s)

1 − Gm(s)∆(s)
, |∆(jω)| < |W (jω)| ∀ω ∈ R

}
(4)

2094

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



Note that this uncertainty permit that the number of unstable poles of G(s) is not always equal
to that of Gm(s). The connection of the nominal plant Gm(s) and the uncertainty ∆(s) in (2) is
shown in Fig. 1 . Therefore we call the plant (2) the plant with feedback connected uncertainty.

Gm(s)

∆(s)

+
+

Figure 1: Connection of Gm(s) and ∆(s)

Before considering the robust stability condition for the above class of uncertainty, the robust
stability condition under general assumption is presented. That is the robust stability condition
under the assumption that the number of unstable poles of G(s) is equal to that of Gm(s) is
summarized as follows.

Theorem 1 Let C(s) stabilize the nominal plant Gm(s). It is assumed that the number of the
poles of the plant G(s) is equal to that of the nominal plant Gm(s). C(s) is the robustly stabilizer
for all ∆(s) satisfying

|∆(jω)| < |W (jω)| (5)

if and only if ∥∥∥∥ Gm(s)W (s)
1 + Gm(s)C(s)

∥∥∥∥
∞

≤ 1 (6)

holds.
(Proof is omitted.)

4 Relation between nominal plant and plant

In this section, we describe the relation between the nominal plant Gm(s) and the plant G(s)
that there exist controller C(s) satisfying Theorem 1.

From internally stability condition, the controller must be proper. When the controller C(s)
is proper, we have

lim
ω→∞

∣∣∣∣ 1
1 + Gm(s)C(s)

∣∣∣∣ = 1 (7)

since the nominal plant is assumed to be strictly proper.
From (7), we have following theorem.
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Theorem 2 Necessary condition that there exists robust stabilizer C(s) is that the relative degree
of G(s) is equal to that of Gm(s).

Proof: The proof is to show if the relative degree of G(s) is not equal to that of Gm(s), then
(6) of Theorem 1 can not be satisfied.

To satisfy Theorem 1, from (2),

lim
ω→∞

∣∣∣∣ Gm(jω)∆(jω)
1 + Gm(jω)C(jω)

∣∣∣∣
< lim

ω→∞

∣∣∣∣ Gm(jω)W (jω)
1 + Gm(jω)C(jω)

∣∣∣∣
≤ 1 (8)

must be hold for all ∆(s) satisfying (3). From (2) and (3), we have

lim
ω→∞

∣∣∣∣ Gm(jω)∆(jω)
1 + Gm(jω)C(jω)

∣∣∣∣ = lim
ω→∞

∣∣∣∣ Gm(jω)
1 + Gm(jω)C(jω)

G(jω)− Gm(jω)
Gm(jω)G(jω)

∣∣∣∣
= lim

ω→∞

∣∣∣∣ 1
1 + Gm(jω)C(jω)

G(jω)− Gm(jω)
G(jω)

∣∣∣∣
= lim

ω→∞

∣∣∣∣ 1
1 + Gm(jω)C(jω)

∣∣∣∣ lim
ω→∞

∣∣∣∣G(jω)− Gm(jω)
G(jω)

∣∣∣∣
= lim

ω→∞

∣∣∣∣G(jω)− Gm(jω)
G(jω)

∣∣∣∣ . (9)

If the relative degree of Gm(s) is greater than that of G(s), we have

lim
ω→∞

∣∣∣∣ Gm(jω)∆(jω)
1 + Gm(jω)C(jω)

∣∣∣∣ = lim
ω→∞

∣∣∣∣G(jω)− Gm(jω)
G(jω)

∣∣∣∣
= 1 (10)

In this case, (8) can not be satisfied.
Conversely if the relative degree of Gm(s) is smaller than that of G(s), then

lim
ω→∞

∣∣∣∣ Gm(jω)∆(jω)
1 + Gm(jω)C(jω)

∣∣∣∣ = lim
ω→∞

∣∣∣∣G(jω)− Gm(jω)
G(jω)

∣∣∣∣
= ∞. (11)

This case can not satisfy (8), too.
We have thus completed the proof of this theorem.

From the proof of Theorem 2, we have following corollary.

Corollary 1 Necessary condition that there exists robust stabilizer C(s) is

lim
ω→∞ |Gm(jω)W (jω)| ≤ 1 (12)

Proof: Proof is obvious from (8) and (9).
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5 Robust stability condition

In this section, we consider the robust stability condition for the number of poles of the nominal
plant Gm(s) in the closed right half plane is not equal to that of G(s).

The robust stability condition for the class of the system with uncertain number of poles in
the right half plane is summarized as following theorem.

Theorem 3 Let C(s) stabilize Gm(s). C(s) is the robust stabilizer for Ω if and only if∥∥∥∥ Gm(s)W (s)
1 + Gm(s)C(s)

∥∥∥∥
∞

≤ 1. (13)

The proof of Theorem 3 requires the following lemma.

Lemma 1 Let W (s) satisfies (12). It is assumed that Gm(s) has q-th number of zeros in the
closed right half plane and the pm-th number of poles in the closed right half plane, and G(s) has
q-th number of zeroes in the closed right half plane and the p-th number of poles in the closed
right half plane. Then the Nyquist plot of 1/(1 − Gm(s)∆(s)) encircles the origin (0, 0) p − pm

times in the counter-clockwise direction.
Proof: From the assumption that W (s) satisfies (12) and Theorem 2, the relative degree of

G(s) is equivalent to that of Gm(s). Therefore G(s) and Gm(s) can be drown by

G(s) =

k
n−β−q∏

i=1

(s + µi)
n−β∏

i=n−β−q+1

(s − µi)

p∏
i=1

(s − γi)
n∏

i=p+1

(s + γi)
(14)

Gm(s)

=

km

nm−β−q∏
i=1

(s + µmi)
nm−β∏

i=nm−β−q+1

(s − µmi)

pm∏
i=1

(s − γmi)
nm∏

i=pm+1

(s + γmi)
(15)

respectively. Where β is the relative degree of G(s) and Gm(s). Without loss of generality, let
us assume to satisfy nm − β − q ≥ 0, n − β − q ≥ 0, <{γi} > 0(i = 1, . . . , n) , <{γmi} > 0(i =
1, . . . , nm) , <{µi} > 0(i = 1, . . . , n − β) , <{µmi} > 0(i = 1, . . . , nm − β) From (2),(14) and
(15), 1/(1− Gm(s)∆(s)) is written by

1
1 − Gm(s)∆(s)

=
G(s)

Gm(s)

=

k
n−β−q∏

i=1

(s + µi)
n−β∏

i=n−β−q+1

(s − µi)

p∏
i=1

(s − γi)
n∏

i=p+1

(s + γi)
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pm∏
i=1

(s − γmi)
nm∏

i=pm+1

(s + γmi)

km

nm−β−q∏
i=1

(s + µmi)
nm−β∏

i=nm−β−q+1

(s − µmi)

(16)

From above equation and argument principle, the Nyquist plot of 1/(1 − Gm(s)∆(s)) encircles
the origin (0, 0) p − pm times in the counter-clockwise direction.

In this way, we have thus completed proof of this theorem.

Theorem 3 is proven using the above lemma.
Proof: If the Nyquist plot of the characteristics polynomial of (1) for all G(s) included in Ω
encircles the origin p − pm times in the counter-clockwise direction, then (1) is robustly stable.
The characteristics polynomial of (1) is given by

1 + G(s)C(s) = 1 +
Gm(s)C(s)

1 − Gm(s)∆(s)

= (1 + Gm(s)C(s))
1

1 − Gm(s)∆(s)

(
1 − Gm(s)

1 + Gm(s)C(s)
∆(s)

)
. (17)

From the assumption that C(s) stabilize Gm(s), the Nyquist plot of 1+Gm(s)C(s) encircles the
origin pm + pc times in the counter-clockwise direction. Here pc means the number of zeroes of
the controller C(s) in the closed right half plane. In addition, from Lemma 1, the Nyquist plot
of 1/(1 − Gm(s)∆(s)) encircles the origin p − pm times. Therefore the necessary and sufficient
condition that C(s) is the robust stabilizer for Ω is equivalent to the condition that the Nyquist
plot of

1 − Gm(s)
1 + Gm(s)C(s)

∆(s)

does not encircle the origin any times.
The remaining problem is to prove the necessary and sufficient condition that the Nyquist

plot of

1 − Gm(s)
1 + Gm(s)C(s)

∆(s)

does not encircle the origin any times, is same to (13).
Sufficient part of the proof is as follows. Assume that

∥∥∥∥ Gm(s)W (s)
1 + Gm(s)C(s)

∥∥∥∥
∞

≤ 1. (18)

It is clear that the Nyquist plot of

1 − Gm(s)
1 + Gm(s)C(s)

∆(s)

can encircle the origin no time for arbitraly ∆(s) satisfying (3).
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Necessary part is to show if ∥∥∥∥ Gm(s)W (s)
1 + Gm(s)C(s)

∥∥∥∥
∞

> 1

, then ∆(s) ∈ Ω exists to let the Nyquist plot of

1 − Gm(s)
1 + Gm(s)C(s)

∆(s)

encircle the origin. If ∥∥∥∥ Gm(s)W (s)
1 + Gm(s)C(s)

∥∥∥∥
∞

> 1

, then some ω exists satisfying

Gm(jω)W (jω)
1 + Gm(jω)C(jω)

= ε (|ε| > 1)

If

∆(jω) =
W (jω)

ε
, (19)

∆(s) satisfies (3) on ω because of

|∆(jω)| =
|W (jω)|

|ε|
< |W (jω)| . (20)

We have

1 − Gm(jω)∆(jω)
1 + Gm(jω)C(jω)

= 0. (21)

This means the Nyquist plot of (1) pass on the origin and (1) is unstable.
From above discussion, the proof of this theorem is shown.

6 Control system design

The problem to construct the controller to satisfy (13) is precisely H∞ control problems. There-
fore we can obtain the controller to hold (13) by using the method the references (Glover and
Doyle, 1988; Doyle, Glover, Khargonekar and Francis, 1988) or LMI base H∞ control design
method (Iwasaki and Skelton, 1994; Gahinet and Apkarian, 1994).

7 Conclusion

In this paper, we considered the robust stability for single input and single output continuous
time invariant systems with feedback connected type of uncertainty. The necessary and sufficient
robust stability condition for the system having uncertainty number of unstable poles was shown.
This result is very important to give a design procedure for the system having a uncertain number
of unstable poles.
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