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Abstract:
An new indirect adaptive algorithm is derived for pole placement control of linear continuous-time
systems with unknown parameters. The control structure proposed relies on a periodic controller,
which suitably modulates the sampled output and discrete reference signals by a multirate
periodically time-varying function. Such a control strategy, allows us to assign the poles of the
sampled closed-loop system to desired prespecified values and does not make assumptions on the
plant other than controllability, observability and known order. The proposed indirect adaptive
control scheme estimates the unknown plant parameters (and consequently the controller
parameters) on-line, from sequential data of the inputs and the outputs of the plant, which are

recursively updated within the time limit imposed by a fundamental sampling period T;. On the

basis of the proposed algorithm, the adaptive pole placement problem is reduced to a controller
determination based on the well known Ackermanns’ formula. Known indirect adaptive pole
placement schemes usually resort to the computation of dynamic controllers through the solution
of a polynomial Diophantine equation, thus introducing high order exogenous dynamics in the
control loop. Moreover, in many cases, the solution of the Diophantine equation for a desired set of
closed-loop eigenvalues might yield an unstable controller, and the overall adaptive pole placement
scheme is then unstable with unstable compensators because their outputs are unbounded. The
proposed control strategy avoids these problems, since here gain controllers are needed to be
designed. Moreover, persistency of excitation and, therefore, parameter convergence, of the
continuous-time plant is provided without making any assumption either on the existence of
specific convex sets in which the estimated parameters belong or on the coprimeness of the
polynomials describing the ARMA model, or finally on the richeness of the reference signals, as
compared to known adaptive pole placement schemes.

1 Introduction

Periodically varying and/or multirate feedback strategies for continuous-time linear systems have
long been the focus of interest by many control designers. Several digital control schemes were
proposed in the literature, among them periodically varying gain controllers (Chammas and Leondes,
1978; Greshak and Vergese, 1982; Khargonekar et al., 1985), mutlrate-input controllers (MRICs;
Araki and Hagiwara, 1986), intersample-data controllers (Mita et al., 1987), multirate-output
controllers (Hagiwara and Araki, 1988; Hagiwara ef al., 1990), generalized sampled-data hold fumc-
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tions (GSHF; Kabamba, 1987) and multirate GSHF (Arvanitis, 1995a). These classes of digital
controllers have been applied successfully in solving many important control problems (Chammas and
Leondes, 1978; Greshak and Vergese, 1982; Khargonekar ef al., 1985; Araki and Hagiwara, 1986;
Mita et al., 1987, Hagiwara and Araki, 1988; Hagiwara et al., 1990; Kabamba, 1987; Arvanitis,
1995a, 1995b, 1996, 1997; Al-Rahmani and Franklin, 1989; Paraskevopoulos and Arvanitis, 1994;
Arvanitis and Paraskevopoulos, 1994, 1995). The increased interest for such a type of feedback
strategies is warranted by the new dimensions of flexibility of the design procedure, offered by these
control schemes, which also provide, a series of remarkable advantages over ordinary time-invariant
feedback strategies, such as state feedback, dynamic compensation or state observers; for an overview
of these advantages see Hagiwara and Araki (1988), Kabamba (1987), Arvanitis and Paraskevopoulos
(1995), Arvanitis (1995b), (1996).

Araki and Hagiwara (1986), in their inspired work, propose a digital multirate-input controller
(MRIC), which suitably modulates the sampled output and discrete reference signals by a multirate
periodically varying function, in order to solve the sampled pole placement problem for linear time-
invariant continuous-time systems. In Arvanitis and Paraskevopoulos (1994), the MRIC based
approach is extended to the solution of the model matching problem. Under certain conditions, the
modulating functions can be tailored to a given system in such a way that for the sampled closed loop
system a discrete-time transfer function matrix can be arbitrarily assigned. A main feature of the
approach reported in Araki and Hagiwara (1986) and Arvanitis and Paraskevopoulos (1994) is that the
pole placement or the model matching is obtained without the requirement of pole-zero cancellation.

The purpose of the present paper is to explore the possibility of extending the MRIC based
approach presented in Araki and Hagiwara (1986) and subsequently used in Arvanitis and
Paraskevopoulos (1994), to the control of linear time-invariant plants with unknown parameters. In
particular, we use the certainty equivalence principle to combine the identification method with a
control structure derived from the pole placement problem. Adaptive pole placement is of particular
interest, since the middle of '70s, for obvious reasons. Several techniques based on either direct or
indirect adaptive control schemes were presented to treat the problem and a very large number of
papers were reported on the subject (see for example Astrom and Wittenmark (1974; 1980), Wellstead
et al. (1979), Egardt (1980), Elliott (1982), Elliott ef al. (1984; 1985), Anderson and Johnstone (1985),
Lozano-Leal and Goodwin (1985), Giri et al. (1988; 1989), Mo and Bayoumi (1989), Abramovitch
and Franklin (1990), Das and Cristi (1990), Kim et al. (1991), and the references therein). The
feedback strategies proposed to solve the adaptive pole placement problem, are hitherto based on
dynamic output feedback, thus introducing high order exogenous dynamics in the control loop. On the
other hand, a common feature of these techniques is that they reduce the solution of the problem to the
solution of a polynomial Diophantine equation. This approach, however, does not ensure that the
compensators obtained from the solution of the Diophantine equation are necessarily stable. In the
case of unstable solutions, the control scheme composed by feedforward and feedback compensators is
not stable and thus is not useful. The control signal is calculated from two unbounded signals that are
the outputs of the compensators. In a short time the system becomes unstable. It is worth noticed at
this point, that unstable solutions of the Diophantine equation, can occur even though, the system
under control possesses the parity interlacing property (p.i.p.; is strongly stabilizable; Youla ef al,,
1974). A plant is said that it possesses the p.i.p. if the number of its real poles between each pair of
zeros in the unstable domain is even. In this case, it is possible to obtain a stable controller from these
unstable solutions by using the approach presented in Kinaert and Blondel (1992), which is based on
an interpolation procedure. Unfortunately, as mentioned above, this approach can be applied only in
cases where the system under control is strongly stabilizable. When the system under control contains
unknown parameters (as in the case of adaptive pole placement control), this information of crucial
importance is not available to the designer. Thus, up to now, the design of a stable and useful adaptive
pole placement compensator cannot be guaranteed.

The motivation for studying an adaptive version of the particular controller structure presented in
Araki and Hagiwara (1986) and Arvanitis and Paraskevopoulos (1994), is manifold. First, since it does
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not rely on pole-zero cancellation, it may be readily applicable for solving the adaptive pole placement
problem for nonstably invertible plants. Furthermore, the degrees of freedom in the choice of the
modulating function, provide a solution to the problem of assuring persistency of excitation of the
continuous-time plant under control, without imposing any special assumption either on the existence
of special convex sets in which the estimated parameters belong or on the coprimeness of the
polynomials describing the ARMA model, as in known techniques, or finally on the richeness of the
reference signals (except boundedness), as in known adaptive pole placement techniques. Finally, the
MRIC based adaptive pole placers sought are computed here, on the basis of the well known and fairly
simple Ackerman’s formula. No Diophantine equation is needed to be solved here as compared to
known techniques. The designed MRIC based adaptive pole placers are always stable, since gain
controllers are needed here, as compared to (possibly unstable) dynamic compensators obtained by
known techniques. Therefore, the proposed adaptive scheme is readily applicable to plants which do
not possess the p.i.p. As a consequence of this design philosophy, a useful globally stable indirect
adaptive control scheme is derived, which estimates the unknown plant parameters (and consequently
the controller parameters) on-line, from sequential data of the inputs and the outputs of the plant,
which are recursively updated within the time limit imposed by a fundamental sampling period T;. It

is remarked that, the a priori knowledge needed in order to implement the proposed adaptive pole
placers, is controllability and observability of the continuous and the discretized plant under control
and its order.

2 Preliminaries and Problem Formulation

Consider the continuous-time, linear time-invariant single-input, single-output system of the form
x(t) = Ax(t) + bu(t) , y(t)=c"x(t) 2.1
where, x(t) OR", u(t) JR and y(t) OR, are the state, control and output signals, respectively, and A,

b, ¢’ are real matrices having appropriate dimensions. With regard to system (2.1), we make the
following two assumptions.
Assumption 2.1. System (2.1) is controllable and observable and of known order n.

Assumption 2.2. There is a sampling period T, OR", such as the respective discretized system

g - T g
with matrix triplet é@ = exp(ATO ), b= I exp(A)\)bd)\, ¢! %, is controllable and observable.
0

Except for this prior information, the matrix triplet (A, b, ¢') is arbitrary and unknown. In
particular, no assumption is made here, on the relative degree of the plant or its stable invertibility.

Now consider applying to system (2.1) the multirate control strategy depicted in Figure 1. With
regard to the sampling mechanism, we assume that all samplers start simultaneously at t=0. The

sampling period T  has rational ratio, i.e. T =To N where T, is the so-called frame sampling

period and N OZ" is the input multiplicity of the sampling. The hold circuits H, and H, are the
zero order holds with holding times T~ and T,, respectively. The signal W(kTO) (R , is assumed to

be a bounded reference signal. Finally, the compensator f(t) is a periodically time-varying controller
with period T, i.e.

ft+To)=f ) . tO[kT, (k +1)T,) 22)
The resulting closed-loop system is described by the following state-space equations
X[(k+To] = (@ — kT (kTo) + kw(KTo) , fKTo)=c™x(kTg) , ke 0
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Figure 1. Control strategy in the nonadaptive case
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where X(kTO) OR" and y(kTo) OR are discrete measurement quantities obtained by sampling x(t)

and y(t), respectively, with sampling period T, and the vector K; is defined as
To
k= Iexr{A (To - )\)}Jf O XA (2.3)
0

The adaptive pole placement problem treated in the present paper is as follows: Find a periodic
controller f(t), which when applied to system (2.1), drives the poles of the resulting closed-loop

system to new desired values )Axl, )A\Z, e )A\n , Where complex poles appear in conjugate pairs.

To solve the above problem, an indirect adaptive control scheme is exhibited in the sequel. In
particular, we first solve the pole placement prolem, namely, the assignment of the poles of the

sampled system to the given values A;, A,, ---, A, using periodic multirate controllers, for known

systems. This is done in Section 3. Next, using these results, the pole placement problem is solved for
the configuration of Figure 2, wherein the periodic controller f(t) is with prespecified periodic
behavior and a persistent excitation signal is introduced in the control loop for future identification
purposes. This is done in Section 4. It is remarked that the motivation for modifying the control
strategy as in Figure 2, is that it facilitates the derivation of the indirect adaptive control scheme
sought, which is presented in Section 5. In Section 5, the global stability of the proposed scheme is
also studied.

3 Solution of the Pole Placement Problem for Known Systems

The procedure for stabilization through pole placement using the configuration depicted in Figure
1, consists in finding a periodic controller f(t), such that

de(zl —<D+kch)Eb(z) (3.12)

where
b =[](2-A)2 2" a2t g, 2 7g (3.1b)

=1

ince, dezl —P +kK . |= defa — +C , relation (3.1a), 1s equivalent to the relation
Since, def{zl —® +k ¢ 7 )= defd —®" +ck [ ), relation (3.1a), i ival he relati
del(zl o7 +cka)= B 2) (3.2)

Under Assumption 2.2, the vector k, satisfying (3.2) (and consequently (3.1a)) is given by the
well known Ackerman’s formula, which has the following form

kT =eTRf)(<DT) (3.3)
where e’ = (O,---,O,J) , R is the well known observability matrix of the pair (q),CT) and ﬁ(qJT) 18
given by
po7)=(e7) +a(e) 4 a0 + 3 (.4)
Using the vector k; as specified by (3.3), we can determine the modulating function f(t), by
solving (2.3). Under Assumption 2.1, on the controllability of the pair (A,b) , a solution of (2.3) is the
following (Kabamba, 1987)
f(t)=b"exd A™(T, ~t)W *(A b Tk, (3.5)
where W(A b ,To) is the controllability Grammian of the pair (A ,b) on [O, To] , which has the form
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Figure 2. The structure of the adaptive control system
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TO
W(Ab,To)= [exifA (T, ~A)pb T ex;[A (T, - }\)]d}\
0
Note that the controllability Grammian W(A b ,TO) is nonsingular and hence a solution of (2.3) of
the form (3.5) exists if the pair (A,b) is controllable.

4 Solution of the Problem Appropriate for the Adaptive Case

In order to obtain a solution of the aforementioned pole placement problem which will be more
appropriate for application in the case of systems with unknown parameters, we slightly modify in the
sequel the control stategy of Figure 1 as it is shown in Figure 2. In particular, we focus our attention to
the special class of the time-varying T, — periodic modulating functions f(t), which are piecewise

constant over intervals of length T, i.e.
f(t)=f, , [m[pT*,(pu)T*) L H=01..N-1 (4.1)
The persistent excitation signal v(t) is defined as
v(it) = a" (v, q' (1) =[do(t). -, Ana (D]
Here, q(t) the T -periodic vector function with elements having the form
g =g, , for tD[pT*,(p +1)T*] , E0L..N-1 ,u=01..N-1 4.2)
where q; , is constant taking the following values
01, forp=i

= 4.3
Eo,forpii *3)

qi,u

It is pointed out that v is as yet unknown. We remark that the additive term v(t) = q' (t)v, in the

input of the continuous-time system, is used only for identification purposes and as it will be shown
later, it is selected such as it will not influence the pole placement problem. Furthermore define

N N ALT
A_exp(AT ) b —{exp(A)\))d)\

We are now able to establish the following Theorem.
Theorem 4.1. For the modulating function of the form (4.1), the resulting closed loop system has
the form

x[(k +1)T0] = (cp - éch)x(kTo) +Bfw(kT,) +B'v , YKT,) =c'x(kTy) , k0 (4.4)

where
B=[p Ab - A™%
f is the N-dimensional vector of the form
O
O
0 4.5)
a
and B” is the nx N matrix having the form
B"=|A"H A% ... b

Proof: To show that the closed-loop system can be written in the form (4.4), we start by discreti-
zing system (2.1) with sampling period T, to yield
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(k+D) T,

X[(k +2)T,] = Px(kTo) + [ exp[A[(k + T, - }\]}bu O oA (4.6)

By observing that u(t) = r(t) +q" (t)v and taking into account the structure of the control scheme
of Figure 2, we obtain

u(t) = f(t)e(kT,)+a" (t)v , for tD[pT* (n+D)T ) 4.7
where
g(kTo) = w(KTo) - y(kTo) = w(KTo) - cx(kT,) (4.8)
Combining relations (4.6)-(4.8), we obtain the following relationship
X(k+9)T,] = (q> -k fcT)x(kTo) +k,W(KTy) +Tv (4.9)
where

(k+1)To

r= | exp{A[(k +1)T, —)\]}qu o YA

Now, partition I" as follows
r=[r, r, - ryj
Then, the (i+1)-th column of the matrix I' , denoted by I';,,, for i=0,1,...,N-1, can be expressed as

To
My = Iexr{A(To —)\)]bqi A)dh , fori=01,...N-1 (4.10)
0
Introducing (4.2) in (4.10), yields
N-1(u+D) T
Fa=y Iex;{A(To —)\)]bqi’ud}\ , forq=01,...N-1 4.11)
u=0 1’

Relation (4.11) may further be written as

N-1 a7 N ¢ gog Lk
M= iy exr{A(N —p-0T ]J' ex;{A(f —A)})d)\ = g A D
p=0 0 =1 O
By making use of relation (4.3), we arrive at the following relationship
M., =AM
Clearly, I = B". Application of the above algorithm to the first two terms of (4.9) gives k; = B

f

(see Araki and Hagiwara (1986) for the details). This completes the proof of the Theorem ]

The following Lemma whose proof is given in Araki and Hagiwara (1986), will be useful in the
sequel.

Lemma 4.1. If N is chosen such that N>n, the matrix B has full row rank, for almost every T,.
Thus far, we have established that the pole placement controller vector K, is related to the vector

f via the relation k= Bf . It remains to determine f . To this end let S be the following matrix
éz[B Ab ... A”'ltS] (4.12)
From Lemma 4.1, it is clear that the matrix S is nonsingular for almost every T,. Let also E be the

nonsingular permutation matrix with the property E™* =ET and having the form
_ T
E=[E, E,]
where
E, :[81 € 8n] » E, =[5n+1 €pa 8N]
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where, in general, €; UR N is the column vector whose elements are zeros except to a unity appearing

in the jth position. Define

where the matrix Q has the form
Q=[A A™5 - AME]
Also, let A be the nonsingular permutation matrix with the property A™ = A" and having the form
A=[A, A, A
where
A, =[€N—n+1 EN-nt2 T SN] A PR TV A3=[8 N-n-1 Enep2 0 € J]
Furthermore, let
8'2B'a=[S A J]
where
S = [A”‘lﬁ A% ... 6] , Q= [AN‘lﬁ ANDH .. A ”*’6] (4.13)

Using the above definitions, one may determine f by inspection, to have the form
7S P(®)RTE]

o 0 0
It only remains to determine the appropriate vector v which does not influence the pole placement

f= (4.14)

problem. In other words v OkerB”, orB v =0. An obvious selection of such v obtained also by
inspection is the following
3§ 1A"0
0 O
v=A"qp 1 [ (4.15)
O
O

Eb(N—n—l)XI

Op, O
0. 0
=g 0P O 4.16
V=Bog'. g (4.16)
0 0
Pn-n0

where B, is the N x(N-n) matrix whose columns are the linearly indepedent N-dimensional

The general form of v is

vectors which are orthogonal to the rows of B" and where Pj j=12,....N—n are arbitrary real

parameters.

It is noted that the vector v, eventhough does not affect the pole placement problem, it provides
persistent excitation useful for the identification of the system, as it will be shown in the following
Section.

Clearly, the modulating function f(t) in the configuration depicted in Figure 2 has the form

f(t)=ey,f, Ot D[pT*,(p +1T') , g =01,..,N-1 (4.17)
where ey_, is the N-dimensional row vector defined as ey_, = SL_“. Note that, the above periodic

function is largely affected upon the multirate mechanism, while the modulating function f(t) of Figure
1, is not. Furthermore, the introduction of the reference signal v(t) in the control loop, greatly
facilitates the estimation of the plant parameters in the case of unknown systems. For these reasons,
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the control strategy of Figure 2 is more appropriate than the control strategy of Figure 1 for the
development of the indirect adaptive control scheme that follows.

5 Control Strategy for the Adaptive Case

The control scheme presented in Sections 3 and 4 has a corresponding scheme in the case where
the system is unknown. For the case of unknown systems, the control strategy is mainly based on the

computation of the vectors f and v from suitable estimates of the parameters of the plant with
updating taking place every kT,, k=0 and results to a globally stable closed-loop system whose

poles are located to the prespecified values A 11 ) PYIRTEIY, W

5.1. Identification of the system

System (2.1), when descretized with sampling period T = 2T+ , takes the form
n

x[(v+1)r]:<brx(vr)+t3ru(vr) , Y(vt)=c"x(vt) ,v=0 (5.1)
where
o, =exgAt) , b, = fexdA (T - A)pdA (5.2)
{AT) . b. = fexfa(t-Ap
Iterating equation (5.1), 2n+1 times and observing that u(vt) 1is constant for
VT D[mT*,(m+1)f), m= 0 yields
x[(m+1)T*]=CDT*x(mT*)+6T*L(mT) , (mT)=c'§(mT) , m20
where

>

A ~ ~ 2n R
A=0"" andb. =b=Y @b, (5.3)
p=0
We also note that matrix ® can be written as
D= AN — q)$2n+1)N (54)
From the above analysis, it is clear that the matrices @, b andA (which are the only matrices
involved in computing the vectors k{ andv ) can be computed on the basis of the pair (CDT , 61)

Moreover, fixing the coordinate system such that

M 0 0 -a,O 0B, O
O O
30 000 . B
= O =10 o7 =

L D'bT'Dsm'C‘[O 0 1 (5.5)

O d, O

%) 0O - 1 -a,g 0B: O
only a; andpB, , i=12,...,n are considered as unknown parameters. Note that relations (5.1) and

(5.5), are equivalent to the following difference equation
n n
y(vo) + > ay(vr—pr) = 5 Bu(vi—pr) , v=0 (5.6)
p=1 p=1

Relation (5.6), can now be used for the identification of the parameters of the unknown system. To
this end, relation (5.6) can be written in the following linear regression form

y(vt) =¢ " (vr)8

where
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o) =[-y(vr-1) - —y(vr-m) uve-1) e uve- m)'
and
e:[ql ey, Bl Bn]
Next, define

Y(KTo) =[y(KTo) y(KTo=1) - y[(k-2)T]
Z(KTo) =[0(To) @(KTo=1) - ¢[(k=2)T]
6, =[au(kTo)  Gu(kT) BulkT) - Bo(KTO)

Clearly, we have the relation
Y(kT,) =2 "(kT,)0

We now choose the recursive algorithm for the estimation of 8, as

A N -1 A
B =0y ~[al +Z T (KT (KT)] Z (KT T(KTo)B, Y (KTy) (57)
where alJR" is arbitrary and éo is arbitrarily specified. It is pointed out that the term al in (5.7), is
added in order to avoid numerical ill conditioning, arising in the identification procedure based on the
usual least-square algorithm, when the determinant of the matrix Z " (KT,)Z (kT,) takes small values.

Clearly, the adaptive law (5.7) describes an on-line estimation procedure which deals with
sequential data of the inputs and the outputs of the plant and in which the parameter estimates are
recursively updated within the time-limit imposed by the sampling period T,. The convergence and

the boundedness properties of the proposed identification procedure are summarized in the following
proposition.
Proposition 5.1. Let ék be the parameter estimation error, defined as
6, =6, -6 (5.8)
Then, for the parameter estimation algorithm (5.7), the following properties hold
(@) Hék“ <& , for some finit&€ OR *.

k N
(b) If Ili[rzog())\mm(z(pTo)ZT(pTo))=oo then fim 8, =6

where, A (-) denotes the minimum eigenvalue of a matrix.

Proof: (a) Introducing (5.8) in (5.7) and taking into account that ZT(kTO)G —Y(kTO)=0 , We

readily obtain

Bea = ~[d +Z (kTp T(KT)) Z (kT " (k7o) B (5.9)

On the basis of the Matrix Inversion Lemma, relation (5.9) may further be written as
-1

~ 1 ~
8., = @ +=Z (KT T(m)@ 8, (5.10)

Therefore,

aT 3 AT 1 T 05 E 3T
9k+19k+1=9k@+52(kT0)Z (kTO)E " 8,6, (5.11)

By repeatedly using the above inequality, we obtain
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=2
0 A (2(oTo)2 " (o s
k + mln p 0 (p 0)) pTO)Z (pT ))é ég@o (5.12)

ek+1ek+1 =

O—|
D]];D
9J|I—\
||M>t

where, 9 -90 6. Hence,

, and since O is finite, Gk is also
uniformly bounded for some finite & OR *.

k ~
(b) If lim pzzo)\mm(z(kTo)ZT(kTO))zoo, then from (5.11) it follows that lim 8, =0, and

therefore, Ilim ék =0.

Clearly, Proposition 5.1 states that for the convergence of the plant parameter estimates ék to their
true values 0, it is sufficient that the regression vector Z(kTo) is persistently exciting to the amount
that

lim i A (Z(kTO)Z T (kTO)) =

Therefore, since adaptation and stability of the adaptive scheme depend on the convergence of the
parameter estimates to their true values, it is necessary to prove excitation of Z(kTO) . This is done in

Subsection 5.3, that follows (see Theorem 5.1, therein).
Remark 5.1. It is worth noticed, at this point that the only reason for choosing the sampling period

*

for the identification procedure as T = is due to the fact that using this period much more

2n+1
information from the plant input and output data is available, for the estimation of the unknown plant
parameter vector 0, . Indeed, if we use a sampling period e.g. of the form T = T*, we can directly
identify matrix A as well as vector b (and hence @ using (5.4)). However, in the later case, only

N+1 values of the plant input as well as N+1 values of the plant output are available for the
identification procedure, instead of the (2n+1)N+1 values of the input and the (2n+1)N+1 values of the

output, available in the case whereT =

Tl This fact can deteriorate the results obtained by the
n

identification process, whenever T=T .

5.2. Adaptive controller synthesis algorithm

On the basis of the estimated parameter vector ék obtained from (5.7), as well as on the basis of
the relations (5.3)-(5.5), one can take the estimates, which are needed for the computation of the
matrices C' (ék), A EA(ék), O] ECD(ék) and Bzﬁ(ék), which are involved in the algorithms

presented in the previous Sections. Moreover, since the matrices R and [5(CDT) can be constructed on
the basis of the matrices Cb(ék) andc’ (ék) , then provided that the matrix triplet
(QJT* (ék), 61, (ék), CT) is minimal, for all possible values of ék, we can obtain the following

results:
fsf(ék) v Ev(ék) (5.13)

Overall, the procedure for the synthesis of a periodic multirate adaptive pole placer of the form
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(4.1), consists on the main steps given bellow:

*

T, _ T

Step 1. Choose the sampling period T such thatT = = .
(2n+)N 2n+1

Step 2. Update the estimates using (5.7).
Step 3. Use (5.5) to compute the matrices P, BT andc’ .

Step 4. Use (5.3) and (5.4) to compute the matrices A, b andd .
Step 5. Compute the vector K, using relations (3.3) and (3.4).

Step 6. Compute the matrices Sand § using relations (4.12) and (4.13).

Step 7. Compute the vectors f andv using relations (4.14) and (4.15) or (4.16).
Step 8. Implement the periodic multirate modulating function f(t) using relation (4.17).

5.3 Stability analysis of the adaptive control scheme

We now investigate the stability of the closed loop system for arbitrary initial conditions on the
plant. To this end, the following fundamental result, can be established.
Theorem 5.1. The regressor sequence (V) is persistently exciting, i.e. there is a & >0, such that

Z(KT,o)Z T (KT,) = (zan O(kTo—vr)p T (KT, - vr)=d (5.14)

v=0
Proof: Let u(t) =q' (t)v and observe that introducing the pseudovariable {(Vvt), the plant takes
the form

L)+ Y aZ(vi-in =u(vD) |, YD) = 3 BLvE-in) vzl (5.15)
Defining the following Veclt;)rs )
d(vr) =[u(vr) - uvt-m) yvi-1) o yvi-m)]
Lo =[gvn) - gve-m)]”

it is easy to see that

¢ (vr) = P{(vr) (5.16)
where P is a Sylvester-matrix which is nonsingular due to Assumption 2.2, and has the following form

D- a 1 a 2 G 3 M G n 0 O 0 cee O |:|

%) 1 a, a, -~ a,, a, 0 0 - OE

R : Do : : : - g

O

%) o 0 o - O 1 o, a, - a,g

P= 0

%) 0 Bl I32 Bn—l Bn 0 o - OD

® 0 0 By = Bpo Byt By 0 - 0

o : L : : : o O

O : : : : : : -t

o0 0 0 - 0 B, Br Bs -+ BnO

Observe also that the vectors ¢(vr) andd(vt) are interrelated upon the following relation

o(vr) =T (vr) (5.17)

where T OR2™@™Y s the full row rank matrix of the form

0., —Il.,,0
Tz%Znﬂ e nnD
0 |

nxn Onxn
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It is now obvious that excitation of Z(VT) implies excitation of ¢(vt). Therefore, we next
investigate excitation of Z(VT) .To this end, observe that from relation (5.15), we can write
y'(vD) = u(vi) (5.18)
where yT OR ™! is the following vector
:p a, a, - a, 0o --- q

Now, let X(vt) OR2™?" be the following symmetric matrix

X0 =[evn L1 - Lve-2m) (5.19)
and 0(vt) OR?" be the following vector
G(vr) =[u(vt) uvr-1) - L(\)T—er)]T (5.20)

Combining relations (5.18)-(5.20), we obtain
y'X(vr) =07 (vr)
Therefore, for every column vector |, with norm equal to unity, we have
R 2 2 2 2 2
InTaevo)[” =™ vy =y o] < v X T o
Summing over the interval [kT0 +(2n+ D1, KT, +(4n+ ZDI] and observing that

nm 1 - 1
A A o1,
[U(kTo+(2n+J)r) 0(KT, +(2n+ 1) - G(KTy+(4n+ Jr] = O(KT)
3 0. f

we obtain

5 Ta(kT, +w‘ HU(kTO)r]H <|v|’ z Hx (vr)n” <y (2n+1)zI (kT0+VT)r]]2

v=2n+1
Hence,
4n+ - 2 -1 . 2
z{g (KTo +vo)n| " 2 (v’ @n+3| |O(KTo)n|
v=1

Since the smallest singular value of U(kTO) is greater than a constant, there is a constant 6 > 0 such

that
4n+1,

S (KT, + Vi) (KTo +vr) 2 5

Therefore, the vector Z(VT) is persistently exciting. According to (5.16) and (5.17), the regressor
sequence §(Vr), is also persistently exciting. This completes the proof of the Theorem. ]

We are now able to establish the stability of the adaptive control system.
Proposition 5.2. The closed loop adaptive control system is globally stable, i.e. for arbitrary finite
initial conditions, all states are uniformly bounded, and as k — oo, the closed-loop system poles are

A

driven to the prespecified locations A A, )A\n. Furthermore, the proposed adaptive scheme

provides exponential convergence of the estimated parameters.
Proof: Since according to Theorem 5.1, the regressor sequence is persistently exciting, then the

difference ék —0 converges to zero. That is, the plant parameter estimates converge to their true

values. As a consequence of this and of the fact that ék is uniformly bounded, the controller
parameter estimates (5.13) also converge to their true values. Therefore, at the sampling instants
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uniform boundedness of all states and stabilization through pole placement follow on the basis of
(4.4). Uniform boundedness of u(t) andx(t) then follows from (2.1), (4.7), (4.8) and the fact that

W(kTo) is bounded by assumption. Finally, exponential convergence of the plant parameter estimates

follows from (5.10), which together with (5.14), ensures that ék - 0 exponentially as kK - . ]

6 Illustrative Examples and Simulation Study

In this Section, the proposed adaptive pole placement algorithm is tested through two illustrative
simulation examples. The simulation results that follows have been obtained by the use of the
«ppmricy» procedure, which has been programmed for this purpose in MATLAB 4.2¢ for WINDOWS.

Example 6.1. In this example, we address the same continuous-time plant utilized in Kinaert and
Blondel (1992), which is the unstable second order system with transfer function

H(S) = s-10
(s-1)
The plant has a non-minimum phase zero at s=10. Note that the plant possesses the p.i.p. and hence it
is strongly stabilizable. The plant is discretized by using a zero order hold and a sampling interval of
T¢=0.02 secs, that yields the following discrete-time plant
0.018% - 00222
H(z) =

z* -2.0202+ 10202
which has a pole at z=1, an unstable pole at z=1.0202 and an unstable zero at z=1.2221. Our aim here
is to find an adaptive periodic multirate pole placer of the form (4.1), such that the eigenvalues of the

closed loop system to be A; = A, = 0.9231 This reveals that the closed-loop system model is
0.018Z - 00222

z? -18462+ 08521
which represents a second order system with damping ratio coefficient of 1 and a natural frequency of
4 rads/sec.

The above pole placement problem, can be solved by using a dynamic controller, which consists on

H.(2) =

a precompensator 1) and an output feedback compensator X2 , 1.e. with a compensator of the
form
U(2) ZEW(Z)-EY(Z) 6.1
R(2) R(2)

where W(z) and Y(z) are the usual Z -transforms of w (kTo) and y (kTO) , respectively.

As it can be easily checked, from the solution of the Diophantine equation, the resulting

compensators are constituted by the following polynomials
T(z)=z , R(2 = z+12275, §3)=-578852#+ 564102

The compensators are unstable and have unbounded outputs. In a short time, the controller
produces an non-negligible error in computing the control signal which unables to stabilize the plant.
In this case the solution is purely mathematical and useless for applications. Therefore, it is necessary
to use other controllers or procedures to obtain solutions with stable compensators.

Let us try to apply the proposed procedure, based on MROCs. By selecting the output multiplicity
of the sampling N such that N=4, the sampling period T has the value T=1 msec. Application of the
results of Sections 3 and 4, result to the following periodic multirate modulating function

f(t) =e,,[8901630 ~ 8960177 0 ]6 , U= ,0123

In the unknown plant case, the simulation has been performed using the proposed modified recur-
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sive least square algorithm given in (5.7). The nominal parameter vector 8 has the form

0= [— 2.0010 10010 0O0010- .0 OO]lTO
The identification algorithm was initialized with the following parameter vector

6o=[1 11 7

and with a=0.2. Simulation results are given in Figures 3-8. To obtain the simulation results both
nominal and estimated closed-loop system are excited by a reference signal, which is a unity square
wave with period of 12 secs. Similar simulation examples can be obtained in the case where éo or a,
take other values, e.g. a=0.5 or 0.9 and

6,=[4 4 3 § orb,=[2 -2 1 ¥

Example 6.2. Consider the following unstable third order system with transfer function
H(S) — (S_l)(S+5)
(s=2)(s+ (st 3
Note that the plant has a non-minimum phase blocking zero at s=1 and an unstable pole at s=2.
Namely, this plant does not possesses the p.i.p. in the continuous-time sense and hence it is not
strongly stabilizable. The plant is discretized by using a zero order hold and a sampling interval of
T, = 0.2 secs that yields the following discrete-time plant

0.236%% - 037212+ 01025

z° —2.85947* + 2489%- 06703

which has two poles at z=0.5488 and z=0.8187, an unstable pole at z=1.4918, a zero at z=0.3557 and a
non-minimum phase zero at z=1.2203. The discretized system also does not possesses the p.i.p. Our
aim here is to find an adaptive periodic multirate pole placer of the form (4.1), such that the

H(z) =

eigenvalues of the closed loop system to be A, =09, A, = Q7and\; =-086 a fact which reveals
that the closed-loop system has the following discrete transfer function
H (2) = 0.236%° - 03722+ 01025
" z° - 72 -0.3301z+ 03780
The foregoing pole placement problem, can be solved by using a dynamic controller of the form (6.1).

As it can be easily checked, from the solution of the Diophantine equation, the resulting compensators
are constituted by the following polynomials

T(z2)=7Z" , R(9=7Z-84540z+ 26579, $2= 436825 - 567412 173813

The roots of R(z) are z=0.3270 and z=8.1270. Clearly, the compensators are unstable and useless.
Therefore, it is necessary to use other controllers or procedures to obtain solutions with stable
compensators. However, no such procedure exists hitherto, since, as already mentioned, the given
system does not possesses the p.i.p..

Let us try to apply the proposed procedure. By selecting the output multiplicity of the sampling N
such that N=5, the sampling period T has the value 1=5,71 msec. Application of the results of
Sections 3 and 4, result to the following periodic multirate modulating function

f(t)=ey.,[21966 - 47560 25704 0]b, p= ,01234

In the unknown plant case, the simulation has been performed using the proposed modified
recursive least square algorithm given in (5.7). The nominal parameter vector 8 has the form

0= [— 29888 29774 - 09886 .00057~ .00114. 00ﬁ56
The identification algorithm was initialized with the following parameter vector
0,=[-2 4 212 7%

and with a=1. Simulation results are given in Figures 9-16. To obtain the simulation results both nomi-
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nal and estimated closed-loop system are excited by a reference signal, which is a unity square wave
with period of 12 secs. Similar simulation results can be obtained in the case where éo or a, take other
values, e.g. a=0.5 or 0.2 and

6=[-5 4 211-Fob,=[11111]

From the two illustrative examples, it is easily seen that the proposed adaptive pole placement
algorithm based on MRICs has a good performance even if it is applied to nonminimum-phase plants
and to systems which do not possesses the p.i.p.

It is remarked at this point that, the square wave with period of 12 secs used in both examples, as
the reference signal, provides sufficient excitation to the plant under control. So in this case the
excitation signal v(t) is useless. In the case where v(t) is added in the control loop, simulation results
show that, in the case where v is evaluated by (4.15), the convergence of the identification algorithm is
ameliorated. It is worth noticed that in this case, the excitation v(t) causes to the closed-loop system
output, a static steady state error of approximately 15%. However, this static error is eliminated by
evaluating v through (4.16) and by selecting appropriately the arbitrary parameters p;, j=1,2 (e.g.

p,=0.5, p,=-0.45 in the case of Example 6.1).

7 Conclusions

A new periodic multirate sampled-data adaptive pole placer for continuous-time linear systems has
been exhibited in the present paper. The proposed control strategy has several advantages over known
indirect adaptive pole placement techniques. The main of them are:

(@) It is readily applicable to nostably invertible plants having arbitrary poles and zeros and
relative degree. This due to the fact that the approach used to solve the adaptive pole
placement problem does not rely on pole-zero cancellations.

(b) Following the proposed technique a gain controller is essentially needed to be designed, as
compared to dynamic compensators or state observers needed by known indirect adaptive pole
placement schemes. Consequently, the proposed approach avoids the problems of known
adaptive pole placement techniques, interwoven with the possibly unstable solutions of the
Diophantine equation. Moreover, no exogenous dynamics are introduced in the control loop by
the proposed technique, whereas in many known techniques the dynamics introduced are of
high order. This fact improves the computational aspect of the problem, since the proposed
technique does not require many on-line computations and its practical implementation
requires computer memory only for storing the modulating function f(t) over one period of
time.

(c) Finally, persistency of excitation of the plant under control and hence parameter convergence,

is provided, without making any special richeness assumption on of the reference signals, as

compared to known indirect adaptive pole placement control schemes.

The present paper gives some new insights to the adaptive pole placement problem of linear
systems. The proposed technique can be easily extended to solve other important problems of the area
of adaptive control, such as model reference adaptive control, adaptive LQG regulation, etc. and for
other types of systems, such as time-varying periodic and non-periodic linear systems. Adaptive
control schemes based on alternative parameter-estimation algorithms or on alternative multirate
controllers are currently under investigation.

References

Abramovitch, D.Y., and G.F. Franklin (1990). "On the stability of adaptive pole placement controllers
with a saturating actuator", IEEE Trans. Autom. Control, AC-35, 303-306.
Al-Rahmani, H.M., and G.F.Franklin (1989). “Linear periodic systems: Eigenvalue assignment using

973



Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

discrete periodic feedback”, IEEE Trans. Autom. Control, AC-34, 99-103.

Anderson, B.D.O., and R.M. Johnstone (1985). "Global adaptive pole positioning", IEEE Trans.
Autom. Control, AC-30, 11-22.

Araki, M., and T.Hagiwara (1986). “Pole assignment by multirate sampled data output feedback”, Int.
J. Control, 44, 1661-1673.

Arvanitis, K.G. (1995a). “Adaptive decoupling of linear systems using multirate generalized sampled-
data hold functions”, IMA J. Math. Control Inf., 12, 157-177.

Arvanitis, K.G. (1995b). “An indirect adaptive ploe placer for MIMO systems, based on multirate
sampling of the plant output”, IMA J. Math. Control Inf., 12, 363-394.

Arvanitis, K.G. (1996). “An indirect model reference adaptive controller based on the multirate
sampling of the plant output”, Int. J. Adaptive Contr. Sign. Process., 10, 673-705.

Arvanitis, K.G. (1997). “An indirect model reference adaptive control algorithm based on
multidetected-output controllers”, Appl. Math. Comput. Sci., 7, 101-140.

Arvanitis, K.G., and P.N.Paraskevopoulos (1994). “Exact model matching of linear systems using
multirate digital controllers”, Proc. 2" Europ. Control Conf., Groningen, The Netherlands, 3,
1648-1652.

Arvanitis, K.G., and P.N.Paraskevopoulos (1995). “Discrete model reference adaptive control of
linear multivariable continuous-time systems via multirate sampled-data controllers”, J. Optim.
Theory Appl., 84, 471-493.

Astrom, K.J., and B.Wittenmark (1974). "Analysis of a self-tuning regulator for non-minimum phase
systems", Proc. IFAC Stochast. Contr. Symp., Budapest, Hungary, 165-173.

Astrom, K.J., and B. Wittenmark (1980). "Self-tuning controllers based on pole-zero placement",
Proc. IEE-pt. D, 127, 120-130.

Chammas, A.B., and C.T.Leondes (1978). “On the design of linear time invariant systems by periodic
output feedback™, Parts I and I, Int. J. Control, 27, 885-903.

Das, M., and R.Cristi (1990). "Robustness of an adaptive pole placement algorithm in the presence of
bounded disturbances and slow time variation of parameters", IEEE Trans. Autom. Control, AC-
35, 752-756.

Egardt, B. (1980). "Stability analysis of discrete-time adaptive control scheme", IEEE Trans. Autom.
Control, AC-25, 710-716.

Elliott, H. (1982). "Direct adaptive pole placement with application to nonminimum phase systems",
IEEE Trans. Autom. Control, AC-27, 720-722.

Elliott, H., W.A. Wolovich, and M. Das (1984). "Arbitrary adaptive pole placement for linear
multivariable systems", IEEE Trans. Autom. Control, AC-29, 221-229.

Elliott, H., R.Cristi, and M. Das (1985). "Global stability adaptive pole placement algorithms", /EEE
Trans. Autom. Control, AC-30, 348-356.

Giri, F., M. M'Saad, L. Dugard, and J.M. Dion (1988). "Robust pole placement indirect adaptive
controller", Int. J. Adaptive Contr. Sign. Proc., 2, 33-47.

Giri, F., J.M. Dion, L. Dugard, and M. M'Saad (1989). "Robust pole placement direct adaptive
control", IEEE Trans. Autom. Control, AC-34, 356-359.

Greshak, J.P.,, and G.C.Vergese (1982). “Periodically varying compensation of time-invariant
systems”, Syst. Control Lett, 2, 88-93.

Hagiwara, T., and M.Araki (1988). “Design of a stable state feedback controller based on the
multirate sampling of the plant output”, IEEE Trans. Autom. Control, AC-33, 8§12-819.

Hagiwara, T., T.Fujimura, and M.Araki (1990). “Generalized multirate-output controllers”, Int. J.
Control, 52, 597-612.

Kabamba, P.T. (1987). “Control of linear systems using generalized sampled-data hold functions”,
IEEFE Trans. Autom. Control, AC-32, 772-783.

Khargonekar, P.P., K.Poolla, and A.Tannenbaum (1985). “Robust control of linear time-invariant
plants using periodic compensation”, [EEE Trans. Automm. Control, AC-30, 1088-1096.

974



Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

Kim, J.-H., Y.-C.Hong, and K.-K. Choi (1991). "Direct model reference adaptive pole placement
control with exponential weighting properties", IEEE Trans.Autom. Control, AC-36, 1073-1077.

Kinnaert, M., and V.Blondel (1992). “Discrete-time pole placement with stable controller”,
Automatica, 28, 935-943.

Lozano-Leal, R., and G.C. Goodwin (1985). "A globally convergent adaptive pole placement
algorithm without a persistency of excitation requirement", [EEE Trans. Autom. Control, AC-30,
795-798.

Mita, T., B.C.Pang, and K.Z.Liu (1987). “Design of Optimal strongly stable digital control systems
and application to output feedback control of mechanical systems”, Int.J.Control, 45, 2071-2082.

Mo, L., and M.M. Bayoumi (1989). "A novel approach to the explicit pole assignment self-tuning
controller design", IEEE Trans. Autom. Control, AC-34, 359-363.

Paraskevopoulos, P.N., and K.G.Arvanitis (1994). “Exact matching of linear systems using
generalized sampled-data hold functions”, Automatica, 30, 503-506.

Wellstead, P.E., J.M.Edmunds, D.Prager, and P.Zanker (1979). "Self-tuning pole/zero assignment
regulators", Int. J. Control, 30, 1-26.

Youla, D.C., J.J.Bongiorno, and C.N.Lu (1974). “Single-loop feedback stabilization of linear
multivariable dynamical systems”, Automatica, 10, 159-173.

3 Yol —— '_
2500 u() Yoest(®) oo )
2000 2r :
1500 -
1 . ’\
1000 A
500
or
0 ;
-500 Ab
-1000 v
-1500 2l
-2000
g 200 400 [600 800 1000 1200 0 200 400 600 80 1000 1200
t K
Figure 3. Controller output for Example 6.1. Figure 4. Closed-loop system output under

identification process yes(k) versus nominal
closed-loop system output Vyeaom(k) for
Example 6.1.

975



Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

150 k)

0.5

5 10 15 20
k

Figure 5. Estimates of a (k) for Example 6.1.

e %

0.5

05 . . .
0

Figure 6. Estimates of o ,(k) for Example 6.1.

976

1.8}
1.6f
14f
12t

0.8r
0.6
04r
0.2r

0 5 10 15 K20

Figure 7. Estimates of 3,(k) for Example 6.1.

0.02r Bo(K)
0015
001}

0.005}

-0.0051
001}

-0.015¢

002 : : : :
0 5 10 15 20
k
Figure 8. Estimates of [3,(k) for Example 6.1.



Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

u(t)

200 400 600 800 1000 1200

Figure 9. Controller output for Example 6.2.

3 el ——

C Yaea) o
2t i

i
1,
0,
_17

S

2f
0 200 400 600 800 1000 1200

k
Figure 10. Closed-loop system output under
identification process yes(k) versus nominal
closed-loop system output ycaom(k) for
Example 6.2.

977

r &

)

&
o

Figure 11. Estimates of o ;(k) for Example 6.2.

35r %W

25

0 5 10 5 20
k
Figure 12. Estimates of O ,(k) for Example 6.2.



Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

Or 95K

0 5 10 15 k20

Figure 13. Estimates of O ;(k) for Example 6.2.

574605 0 B0

5.7468-

0 5 10 15 2
k

Figure 14. Estimates of 3(k) for Example 6.2.

978

Or B(K

-0.02 . . . )
0 5 10 15 20

k
Figure 15. Estimates of [,(k) for Example 6.2.

5.5¢

4.5¢

350

0 5 10 15 2
k
Figure 16. Estimates of [35(k) for Example 6.2.



	HOME
	SESSION

