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Abstract

We propose a least squares technique for identifying parameters in a nonautonomous

nonlinear Volterra integral equation. Numerical results indicating the feasibility of this

method are presented.

1 Introduction

The development of theoretical and computational methods for inverse problems involving the

identi�cation of linear and nonlinear distributed parameter systems has been the focus of many

researchers in the past decade (see, e.g. Ackleh and Fitzpatrick, 1996a; Ackleh and Fitzpatrick

1996b; Ackleh and Reich, 1998; Banks and Kunisch, 1989; Banks et al., 1989; Banks et al.,

1990a; Banks et al., 1990b; Banks et al., 1991; Fitzpatrick, 1995). In a recent paper, Aizicovici et

al. (1993) developed an abstract approximation framework and convergence theory for Galerkin

approximations to inverse problems involving autonomous nonlinear Volterra integral equations.

Their results guaranteed the convergence of solutions of a sequence of �nite dimensional Galerkin

approximations to a solution of the original in�nite dimensional identi�cation problem. In

(Ackleh et al., 1999) we discussed implementation questions involving such approximations to

inverse problems and reported on several computational studies and experiments. Both of these

papers were concerned with the autonomous case. The goal of this work is the numerical study

of an identi�cation problem involving a nonautonomous nonlinear Volterra integral equation.
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This paper is organized as follows. In Section 2, a least squares technique for numerically

identifying parameters in a nonlinear nonautonomous Volterra integral equation is discussed. In

Section 3, we present results of parameter estimates obtained using computationally generated

data. Finally, in Section 4 we make some concluding remarks.

2 The least squares problem

We consider the following parameter identi�cation problem: Given observations z (ti; x) at times

ftig
K
i=1, with 0 � t1 < t2 < � � � < tK � T and a position x 2 (0; 1), �nd a parameter �q 2 Q

which minimizes the performance index

� (u; z) =

KX
i=1

Z 1

0

ju(ti; x; q)� z (ti; x)j
2
dx; (2:1)

where for each q 2 Q, u (t; x; q) is the parameter dependent solution of the following Volterra

integral equation�
u(q)� b � f(c (t; ux(q)) ux(q))x � q(t; u(q))g = f (t; x) (t; x) 2 [0; T ] � [0; 1]

u (t; 0; q) = 0 = u (t; 1; q) t 2 [0; T ]:
(2:2)

Here, we assume that u 2 L2(0; T ;H1
0 (0; 1)) \ C(0; T ;L2(0; 1)), _u 2 L2(0; T ;H�1(0; 1)),

f 2 W 1;1(0; T ;L2(0; 1)) and b 2 W 1;1(0; T ). We assume that the function c(�; �) satis�es the

following two conditions:

1. The mapping �! c(t; �) is C1 for almost every t 2 [0; T ];

2. There exists a constant � > 0 for which

(c(t; �)� � c(t; �)�) � (� � �) � �j� � �j2

for almost every t 2 [0; T ] and every �; � 2 R.

To de�ne our admissible parameter set Q we let D = CB([0; T ] �R), the space of bounded

uniformly continuous functions on [0; T ] � R with the supremum norm, and for �xed values of

�; �; and �u > 0; we choose Q to be the D closure of the set

fq 2 CB ([0; T ] � R) : jq(t; u)j � �; jqt(t; u)j ; jqu(t; u)j � �;

q(t; u) = 0 for u � 0 and q(t; u) = q(t), independent of u,

for u � uq(t) where uq satis�es 0 < uq(t) � �ug.

One can verify that Q is a compact subset of D. We note that other choices for Q are

possible. However, the techniques developed here can easily be modi�ed to work for di�erent

choices of Q. As a �rst step towards solving this inverse problem, the solution of equation

(2.2) must be approximated. To this end, we use the following Galerkin scheme. De�ne the

approximating solution uN (t; x) as follows:

uN (t; x) =

NX
i=0

�Ni (t)�Ni (x) ; (2:3)
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where �Ni (x) represents the ith linear B-spline on the interval [0; 1] which is de�ned by using

the uniform mesh

�
0;

1

N
;
2

N
; � � � ; 1

�
(see, Ackleh et al., 1998; Banks et al., 1989). From the

boundary condition in (2.2), it follows that �N0 (t) = 0 = �NN (t) : This gives rise to the following

�nite dimensional problem:

�N�N (t) + JN
�
�N (t) ; q

�
= FN (t) ; t 2 [0; T ]; (2:4)

where �N (t) =
�
�N1 ; �

N
2 ; : : : ; �

N
N�1

�
2 RN�1: The matrix �N is an (N � 1) � (N � 1) matrix

whose (i; j)th element is given by
D
�Ni ; �

N
j

EN�1
i;j=1

: Using the de�nition of the linear B-splines

�Nj ; j = 1; : : : ; N � 1, the inner product ha; bi =
R 1
0 a � b dx, �x = 1

N
, and the integral

approximation

Z 1

0

a (x) dx �

NX
i=1

a

�
i

N

�
�x;

we determine FN (t); an (N � 1)-dimensional vector, in the following manner:

FN
i (t) = �xf

�
t;
i

N

�
i = 1; : : : ; N � 1:

Similarly, JN (�; q) : RN�1
! RN�1 is given by:

JN1 (; q) = �

Z t

0

b(t� s)

�
1(s)

�x
c

�
s;
1(s)

�x

�

+

�
1(s)� 2(s)

�x

�
c

�
s;
2(s)� 1(s)

�x

�
� q (s; 1)

�
ds;

JNN�1(; q) = �

Z t

0

b(t� s)

�
N�1(s)

�x
c

�
s;�

N�1(s)

�x

�

+

�
N�1(s)� N�2(s)

�x

�
c

�
s;
N�1(s)� N�2(s)

�x

�
� q (s; N�1)

�
ds;

and for i = 2; : : : ; N � 2

JNi (; q) = �

Z t

0

b(t� s)

��
i(s)� i�1(s)

�x

�
c

�
s;
i(s)� i�1(s)

�x

�

+

�
i(s)� i+1(s)

�x

�
c

�
s;
i+1(s)� i(s)

�x

�
� q (s; i)

�
ds:

Since our parameter space Q is in�nite dimensional, a �nite dimensional approximation for

this space is needed as well. To this end, we approximate any q 2 Q as follows:

(IM1;M2
q) (t; u) =

M2X
i=0

M1X
j=1

q

 
iT

M2
;
juq(

iT
M2

)

M1

!
 
j
M1

�
u;uq(

iT

M2
)

�
�iM2

(t;T ) ;
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where  
j

M1

�
u;uq(

iT
M2

)
�
; j = 0; : : : ;M1; are the linear B-splines de�ned by using the uniform

partition f0;
uq(

iT
M2

)

M1
; : : : ; uq(

iT
M2

)g of the interval [0; uq(
iT
M2

)]. Similarly �
j

M2
(t;T ), j = 0; : : : ;M2,

represent the linear B-splines de�ned by using the uniform mesh f0; T
M2
; : : : ; Tg: The func-

tion (IM1;M2
q) (t; u) is extended to a continuous function over the entire real line by setting

(IM1;M2
q) (t; u) = 0 for any u � 0; and  

j

M1

�
u;uq(

iT
M2

)
�

=  
j

M1

�
uq(

iT
M2

);uq(
iT
M2

)
�
for any

u � uq(
iT
M2

). The Peano Kernel Theorem is used to yield

lim
M1;M2!1

IM1;M2
q = q in CB ([0;T]� R) ;

uniformly in q; for q 2 Q (Schultz, 1973). Hence, if qM 2 QM = IM (Q); M = (M1;M2), is given

by

qM (t; u) =

M2X
i=0

M1X
j=1

�
i;j

M1;M2
 
j

M1

�
u;uiM2

�
�iM2

(t;T �) ;

then the solution of our �nite dimensional identi�cation problem involves identifying the (M1+

1)(M2 + 1) coe�cients
n
�
i;j

M1;M2
; uiM2

oM2;M1

i=0;j=1
from a compact subset of RM1M2+M1+M2+1 so as

to minimize the least squares cost functional �((uN �; qM ); z), where uN (�; qM ) is obtained by

solving (2.4) with qM in place of q.

3 Numerical example

In this section we test the least squares technique discussed in Section 2 using data that we

computationally generate as follows: We choose the parameter functions

b(t) = 1 + sin(20t); f(t; x) = 3 exp(�20t);

c(t; �) = 1� 0:5 exp(�3(t+ 0:5)�2); q = (1 + 10t2)
u2

r + u2

and we set r = 0:003 and the �nal time T = 0:15. Then we solve the �nite dimensional problem

(2.4) using these parameters with N = 9; and let z(ti; x) ti = 0:005(i � 1), i = 1; 2; : : : ; 31; be

equal to the solution of the �nite dimensional problem at these points in time.

To identify q(t; u); we apply the technique discussed in Section 2 with the assumption that

uq(t) = �u; and set M = (4; 4) and N = 9. Hence, our identi�cation problem involves estimating

21 constants f�i;j ; �ug
4;4
i=0;j=1 from a compact subset of R21 . In Figures 1 and 2 we present

the exact function q(t; u) and the estimated function qM (t; u), respectively. Figure 3 gives the

di�erence between the exact and estimated functions. We note that the mean of the di�erence

is approximately zero and the �nal least squares value for this estimate is of the order 10�7.

4 Concluding remarks

We developed a numerical scheme for identifying parameters in a nonlinear nonautonomous

Volterra integral equation. The numerical experiments presented here indicate that this tech-

nique is very promising. The focus of this paper was on the numerical implementation. General

questions concerning the existence and uniqueness of solutions to nonlinear nonautonomous

Volterra integral equations as well as the convergence of parameter estimates are expected to
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be discussed by the authors in a future work. This theory will cover the model discussed in this

paper as a special case.

We also remark that we have performed experiments for identifying the parameter c(t; ux)

from computationally generated data using a slight modi�cation of the method presented in

Section 2. The estimates were as good as those obtained for the function q(t; u). Finally, we

mention that the experiments presented here are computationally very intensive. For example,

the experiment with M = (4; 4) presented in Section 3 lasted approximately 22 hours on an

Ultra-Sparc 2000.
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Figure 1: Exact function q(t; u)
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Figure 2: Estimated function qM (t; u) with M = (4; 4)
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Figure 3: The di�erence between q(t; u) and qM (t; u)
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