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Abstract

The contribution is focused on control system design for the purposes of suboptimal LQ
tracking in continuous-time SISO linear systems. The proposed method is based on the
polynomial approach. The presented procedures are proposed for a class of references frequently
used in practice. The resulting controller is obtained via the solution of a polynomial Diophantine
equation with the right side given by spectral factorization. The theoretical results are tested on
an illustrative example.

1 Introduction
Linear quadratic optimal control methodologies have been intensively studied in recent years. Optimal
control design, based on the LQ performance criterion, has been developed historically first in terms of
the state space approach. By this method we solve differential or algebraic Riccati equations. Progress
in polynomial algebra and the polynomial approach to the analysis and synthesis of control systems
have offered new tools for tackling the LQ control problem. The procedures, based on the polynomial
approach lead to spectral factorizations and other algebraic operations in the polynomial ring. The
problems of both deterministic (LQ) and stochastic (LQG) control have been solved by many authors.
Some recent results in this field can be found in works of (Kucera and Šebek, 1984; Hunt, Kucera and
Šebek, 1992) for discrete-time SISO systems, (Kucera and Šebek, 1985) for continuous-time SISO
systems, (Johnson and Grimble, 1987; Hunt and Šebek, 1991) and (Mosca, 1995) for both continuous-
time and discrete-time MIMO systems. Some results, obtained for discrete-time and MIMO systems,
respectively, can be employed in procedures for continuous-time SISO system control design.
This paper deals with the problem of deterministic LQ tracking. This problem is given by some
properties of the control of real technological processes. In most theoretical works the reference signal is
assumed to be from a class of stochastic functions. When applied in practice, the references always
belong to a class of deterministic functions. It is known (see, e.g. Kucera and Šebek, 1984) that the
solution of optimal deterministic tracking problem results in an ill-posed controller whose parameters
depend upon the initial conditions of the controlled system. Naturally, this controller cannot be
acceptable for control purposes. Here we will propose a well-posed controller which enables the
suboptimal tracking for a defined class of references.
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2 Control system description
The feedback control system is depicted in Fig.1. The controlled system is described in the time domain
by differential equation

yuew ~u
Q F G

=

Figure 1. Control system scheme

a y t b u t( ) ( ) ( ) ( )σ σ= (1)

where t is time, σ is the derivative operator, y  is the controlled output, u  is the control input and e  is
the tracking error. Both a and b are polynomials in σ. Generally, nonzero initial conditions for both
output and input variables are considered. Using the Laplace transform, the system is represented in the
complex domain by

y s
b s
a s

u s
o s
a s

( )
( )
( )

( )
( )
( )

= + 1 (2)

where s is the complex argument and o1 is the transform of initial conditions. Both a and b are now
coprime polynomials in s. Assuming deg b ≤ deg a , transfer function  G s b s a s( ) ( ) ( )=  is proper. The
condition deg o1 < deg a ensues from  Laplace transform properties. Moreover, conditions   a(0) ≠ 0 and
b(0) ≠ 0 are assumed.
The relations between other signals in the control system are described as

~( ) ( ) ( ) and ( ) ~( ) ( ) ( )u t f u t p u t q e t= =σ σ σ (3)

in the time domain and
~( ) ( ) ( ) ( ) and ( ) ~( ) ( ) ( ) ( )u s f s u s o s p s u s q s e s o s= − = +2 3 (4)

in the complex domain, where o2 and o3 are transforms of generally nonzero initial conditions.
The feedback controller Q is represented by its transfer function

Q s
q s
p s

( )
( )
( )

= (5)

where q and p are coprime polynomials and F is a pre-compensator with the transfer function

F s
f s

( )
( )

= 1
. (6)

Evidently, the pre-compensator is only a component of the feedback controller. In some of the following
procedures the pre-compensator may be formally separated from the controller. In this case, polynomial
p in (3) fulfills condition p(0) ≠ 0. Further we consider the reference from a class of step or exponential
functions frequently used in practice with the transform in the form of polynomial fraction

w s
h s
f s

h s
s f s

w
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w

w

= = (7)
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so that  deg hw ≤ deg fw .
After some algebraic manipulation the transform of signals in the control scheme can be obtained in the
form (to simplify writing, polynomial arguments s are omitted)

{ }y s
d

bqw s p f o bo bo( ) ( ) ( )= + + +1
1 2 3 (8)

[ ]{ }u s
d

q aw s o a po ao( ) ( )= − + +1
1 2 3 (9)

[ ]{ }e s
d

p a f w s f o bo bo( ) ( )= − − −1
1 2 3 (10)

[ ]{ }~( ) ( )u s
d

q a f w s f o bo a f o= − − +1
1 2 3 (11)

where d a f p bq= + .
The basic properties required on the control system are formulated as
• internal properness and stability of the control system
• asymptotic tracking of the reference signal
The condition of control system stability can be found for instance in the work of (Kucera, 1986). We
cann express both controlled system and feedback controller transfer functions in the form of rational
function fractions

G s
B s
A s

Q s
Y s
X s

( )
( )
( )

, ( )
( )
( )

= = (12)

where

A s a s
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B s b s
m s

( ) ( )
( )

, ( ) ( )
( )

= =
1 1

(13)

X s
p s

m s
Y s q s

m s
( )

~( )
( )

, ( ) ( )
( )

= =
2 2

(14)

with stable polynomials m1 and m2 so that deg m1 = deg a and deg m2 = deg ~p . Then A, B, X and Y
belong to a ring of stable and proper rational functions and stabilizing controllers are derived from the
solution of a Diophantine equation in the ring of rational functions

AX BY+ =1 . (15)

Substituting Eqs. (13) and (14) into (15), the condition of stability in a polynomial ring takes the form

a p bq m m~ + = 1 2 . (16)

Since m1, m2 are stable polynomials, their product d is also a stable polynomial. Taking into account the
pre-compensator relation ~p f p=  holds and the stabilizing feedback controller is derived from the
solution of polynomial Diophantine equation

a f p bq d+ = (17)

with a stable polynomial d on the right side.
The control system satisfies the condition of internal properness only when the transfer functions of all
its components are proper. The degrees of polynomials of the controller transfer function (inclusive of
the pre-compensator) must then fulfill the inequality

deg deg degq p f≤ + . (18)
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From analysis of the solvability of Eq. (17) and taking into account condition (18), the degree of q is
given as

deg deg degq a f= + − 1. (19)

The asymptotic tracking of reference w  is only ensured for f(s) in Eq. (10) divisible by s in the
denominator of w(s) in Eq. (7). This claim will be always fulfilled for f(s) = s and the pre-compensator
in Fig. 1 is then an integrator. Now, substituting this relation into Eqs. (10) and (11), respectively, the
relevant signals take the form

{ }e s
f d

p z b f o( )
w

w= −1
3 (20)

{ }~( ) ~

w
wu s

f d
q z a f o= +1

3 (21)

where
z ah f o b f o= − −w w w

~
1 2 . (22)

3 Suboptimal LQ tracking
The idea of suboptimal control issues from the optimal control theory. The goal of optimal deterministic
LQ tracking is to design a feedback controller Q that enables the control system to satisfy the above
basic requirements and in addition the control law minimizes the cost function in the complex domain

{ }J
j

e s e s u s u s ds
j

j

= +∗ ∗

− ∞

∞

∫1
2π

µ ϕ( ) ( ) ~ ( ) ~( ) (23)

where µ ≥ 0 and ϕ >  0 are weighting coefficients. It is known (see, for example Kuèera and Šebek,
1984) that the solution of this problem results in a controller where the parameters depend upon the
initial conditions of the signals in the control system. Clearly, this controller is ill-posed and
unacceptable for control purposes.
Note: The resulting controller is given by the solution of a polynomial Diophantine equation. The initial
conditions of the control system variables (in our case o1, o2 and o3) enter into spectral factorization of
one part of the right side of the polynomial Diophantine equation.
An acceptable controller which ensures suboptimal tracking may only be obtained for the above
determined class of references with transform in the form (7). The design procedure can be now realized
by taking the following steps:
• Calculate stable polynomials g and n as the results of spectral factorizations

( )a f a f b b g g∗ ∗ ∗+ =ϕ µ (24)

n n a a∗ ∗= (25)

where f(s) = s.
• Both polynomials q and p of the controller transfer function are then given by the solution of coupled

polynomial equations

g q v a f b n∗ ∗ ∗− = µ (26)

g p v b a f n∗ ∗ ∗+ = ( ) ϕ (27)

so that deg v < deg g.
• Eliminating v∗  results in only one polynomial Diophantine equation
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a f p b q gn+ = (28)

As a matter of interest, by expressing both integrand parts in (23) as

{ }S e e
f d d f

pz b f o pz b f oe
w w

w w( ) ( )= = − −∗
∗ ∗

∗µ µ1
3 3 (29)

{ }S u u
f d d f

qz a f o qz a f ou~

w w
w w

~ ~ ( ~ ) ( ~ )= = + +∗
∗ ∗

∗ϕ ϕ1
3 3 (30)

and using some algebraic manipulations, the integrand in (23) takes the form

S S S
f g g f

z z v v
n n

u= + = +





∗ ∗

∗
∗

∗e ~

w w

~ ~1 µ ϕ (31)

where ~
wv z v f g o= +∗ ∗

3  .
The resulting feedback controller stabilizes the control system. Dividing (28) by its right side and

denoting A
a
n

B
b
n

X
f p
g

Y
q
g

= = = =, , ,  where both g and n are stable polynomials, the condition of

stability (15) is evidently fulfilled.
The transfer function of the feedback controller (inclusive the pre-compensator) is strictly proper. The
degree of the right side of (28) is given by deg ( ) degg n a= +2 1 . Taking into account relations
deg deg deg degq a f a= + − =1  and deg ( ) deg ( ) deg degf p g n a a= − = + 1 , respectively, the strict
properness of QF is evident.

4 Illustrative example
Suboptimal control was simulated for a second order controlled system represented by the transfer
function

G s
b s
a s

b
s a s a

( )
( )
( )

= =
+ +

0
2

1 0

where  b0 = 0.02,  a0 = 0.0125 and a1 = 0.225 , with zero initial conditions at the beginning of control.
The references w t t( ) exp ( . )= − − ⋅1 0 8  for  0 ≤ t < 50, w t( ) = − 1for  50 ≤ t < 100 and w(t) = 1 for t >
100  have been chosen. The weighting coefficient µ  in the cost function (23) has been chosen equal to
one. The influence of the weighting coefficient ϕ upon the behaviour of the control system has been
investigated. Both stable polynomials g and n obtained from spectral factorizations (24), (25) take the
form

g s g s g s g s g( ) = + + +3
3

2
2

1 0  ;   n s s n s n( ) = + +2
1 0

with coefficients

g b0 0
2= µ  ;  g3 = ϕ  ;  g g g a1 2 0 0

22= + ϕ  ;  g g g a a2 3 1 1
2

02 2= + −ϕ ( )

n a0 0
2=  ;  n n a a1 0 1

2
02 2= + − .

The resulting degrees of both polynomials of  controller transfer function Q are deg q = deg p = 2. Their
coefficients have been calculated from polynomial equation (28) by employing the so-called method of
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uncertain coefficients. The strictly proper transfer function of the feedback controller inclusive of pre-
compensator is in the form

( )
~( ) ( ) ( )Q s Q s F s

q s q s q

s p s p s p
= = + +

+ +
2

2
1 0

2
2

1 0

.

The control input is then computed in the time domain from the differential equation

p u t p u t p u t q e t q e t q e t2
3)

1
2

0
1

2
2

1
1

0
( ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )+ + = + +

The time responses of signals in the control system are illustrated for various ϕ values in Figs.2-4.
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Figure 2. Controlled output time responses for ϕ = 0.04 (1), 1 (2), 25 (3)
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Figure 3. Control input time responses for ϕ = 0.04 (1), 1 (2), 25 (3)
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Figure 4. Control input derivative time responses for ϕ = 0.04 (1), 1 (2), 25 (3)

5 Conclusion
This paper has introduced an suboptimal tracking design procedure for linear continuous-time SISO
systems. The resulting control law has been derived for a class of references given by practical needs.
The control simulation results clearly demonstrate the influence of weighting coefficients in the
quadratic criterion on control behaviour. This fact can be important for the purposes of controlling some
technological processes.
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