Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

On Enhancing GJK Algorithm for Distance Computation Between

Convex Polyhedra: Comparison of Improvements

Shen-Po Shiang, Yu-Ren Chien, and Jing-Sin Liu"
Institute of Information Science
Academia Sinica
Nankang, Taipei, Taiwan 11529
R.O.C.

Abstract
The computation of Euclidean distance between two convex polyhedra is an important problem in robotics,
computer graphics and animation. By geometric reasoning, we present an improvement of the well-known
distance computation algorithm made by Gilbert, Johnson, and Keerthi (GJK). Some comparative
simulations are shown to verify the algorithmic improvement in the process of distance computation. In
addition, our work provides a simple and efficient algorithm for finding out the information where the
closest point of a convex polyhedron to a reference point is: on the face, the edge, or on one vertex of the

polyhedron.

I Introduction

In robotics, computer graphics and animation, the Euclidean distance between detected object and
obstacles around is an indispensable information when moving the object by manipulation robots or
for realistic, 3D environment modeling. It is found applicable in many problems, such as intersection
detection (14), collision avoidance (Khatib,1986), (Gilbert and Johnson, 1985), path planning (Bobrow,
1988), and path modification (Quinlan, 1994), where knowledge of the distance between the robot and
its environment (or in general two moving objects) is crucial. In general, the problem of finding the

distance between convex bodies (Gilbert et al. ,1988), (Bobrow, 1989), (Zeghloul et al., 1992) can be

YE-mail : liu@iis.sinica.edutw Acknowledgment This work was supported by National Science Council of

R.O.C. under contract NSC 88-2212-E-001-001.

2058

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

equivalent to the direct minimization of distance function, or the procedure of computing the closest
point of a body to the reference point in a translated space. For example, Rimon and Boyd (Rimon and
Boyd, 1997) used the L-J ellipsoid of the convex or non-convex objects to form a convex optimization
problem for distance computation. The computation of the distance estimate (within a user’s specified
error) is shown to be an eigenvalue problem. Lin and Canny (Lin and Canny, Apr. 1991) provide an
incremental algorithm of almost-constant time complexity for tracking a pair of closest points of
convex bodies, one on each body, in three dimensional space. The framework presented by Johnson
and Cohen (Johnson and Cohen, 1998) for minimum distance computation also gives an efficient
solution for objects described by different surface representations. Gilbert, Johnson, and Keerthi (GJK)
presented a popular computation algorithm (Gilbert et al., 1988) in which the convex set is represented
in terms of their support properties. For polytopes which is defined as th convex hull of a finite set of
vertices, in particular, the properties can be easily obtained from their vertices. In order to find out the
distance of two ployhedra named K, and K,, suppose the vertices of K, are s, s,, ..., s, (n points), and
the vertices of K, are t,, t,, ..., t, (p points), respectively. Then construct the set K = { s-t;, s; UK,
tUK,}(also a polyhedron), where the elements are the relative translations of K, and K,, in
translational configuration (TC) space (Cameron, Dec 1997). There should be n*p points in K. The
separation between the original two polyhedra is equal to the distance between the origin of TC space
and the convex obstacle formed by the points of K, called TCSO (translational C-space obstacle)
(Gilbert et al.,1988), (Cameron, Dec 1997), (Cameron, Apr. 1997). The TCSO is also often called the
Minkowski difference of the two polyhedra. The algorithm is extended in (Gilbert et al.,1988), (Lin
and Canny, Apr. 1991), (Chung Tat Leung, 1996) and to more general convex objects (Gilbert and Foo,
1990) and is organized in (Cameron, Dec 1997), (Cameron, Apr. 1997). With some modification by
Cameron (Cameron, Dec 1997), this method can also provide constant time updates for slowly moving
polyhedra. (Chung Tat Leung, 1996) presented an efficient means of updating the Minkowski
difference to create a collision detection method for convex polyhedra.

Section 2 is a summary of GJK algorithm. In Section 3, we present some modifications after
carefully examining the steps of GJK algorithm. The changes we made would give more readability of
the output yet, keep the results that confirm an almost-linear time complexity. In Section 4, the
Cameron’s enhancement (Cameron, Dec 1997) in the computation of support function is introduced
for comparison study. A convenient method is developed to find out the neighbor points, so-called
vicinity matrix, which is the information required in the “hill climbing” (Cameron, Apr. 1997), (Sato
et al., Apr. 1996) of Cameron’s enhancement. The verification of neighbor points of a vertex is the key
to achieve the constant time complexity. In other words, if the adjacency information of vertices is
available before computing the distance, the computation will be much more efficient. Because the
body is assumed rigid, the neighboring points in a body won’t change during motion and the

verification can be viewed as a preprocessing procedure. The preprocessing, however, can consume a

2059

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

lot of time even more than the distance algorithm itself, as shown in Section 4. Section 5 is the

conclusion.

II The GJK Algorithm

GJK Algorithm:

V, < initial set ;
1< 0;

Repeat{

Y, < find_ affinely

independent set(V)) ;

V; < nu_compute(Y)) ;

(S;, H,) < support_functions(- v ;) ;
Viqp < V,U{S}:

1 <—1i+1;

yuntil (y; e v+ H;=0)

Fig. 1 The GJK algorithm

It is essential to describe the GJK algorithm first before we introduce the algorithmic modifications

that we make. The GJK algorithm is shown in Fig.1.

2.1 Definitions
The main advantage of GJK algorithm is the specification of the convex sets in terms of their support
properties. Recall the definition of the support function (Gilbert et al.,1988) Hy: R” — R for a
polyhedron X is the evaluation of inner products of a fixed vector with all vertices of polyhedron and
looking for the maximum:

Hy ()= max{x n : xOX}
where n [JR"is a given vector, is the inner product. Define the support mapping Sy : R" - X to

be any mapping that, given a direction N, is the solution of the support function, i.e. one of the points

2060

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

in X which is farthest in the direction n):

Hy (N)=Sx(mn

The (nonunique) points Sy(N) of X is called the supporting vertex of X in the direction . It has the
property that the hyperplane passing through it with normal] is a supporting hyperplane of X. For two
polyhedra K, and K,, we have
Hi(N) = Hi,(N) + Hix(-N): - Sk(N) = Sii(N) - S -N)-

i.e., find supporting vertex Sy,(n) on K, and Si,(-n) on K, in the direction n and -n, respectively.

The GJK algorithm shown in Fig. 1 finds the closer vertex for each polyhedron by using the
support function which makes the updated point S; of set V; remain on the TCSO. The set will satisfy
the goal,v;* v; + H; = 0, by dropping the affinely independent set and taking a new point §; into

consideration. The goal is achieved by checking if the points A, B in Fig. 2 satisfy
Hg (A-B) = A(A-B) and Hi,(A-B) = B (-(A-B))

\

\

‘\

‘\

max{r]-V,:V,DKl} max{n°V,:V,DK2}
Fig. 2. Illustration of support function evaluation.

Or whether K, lies to the left of the line through A and orthogonal to (A-B), and similarly for K, and
B.

Note that the goal v ;e v; + H; = 0 can be replaced by the more robust condition “reoccurrence of

supporting vertices” in the iterations of GJK algorithm to avoid numerical imprecision due to roundoff

error of the floating point addition (Chung Tat Leung, 1996).

Definition (Rockfellar, 1970). A set of m + 1 points {b,, b,, ... , b, } is said to be affinely

independent if

2061

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

!
aff{b,.b,.....h, } = EZ Ax,:x, O{by.by b, A+t A, = 3o
~ O

is m-dimensional.
From the above definition,
aff{b,,b,,....,b,} =L+b,
where
L=aff{0,b,-b,,...b, -b,}.
L is the same as the smallest subspace containing b,-b, ..., b, -b. Its dimension is m if and only if
these vectors are linearly independent.
Thusb,,b,, ..., b, areaffinely independent if and only ifb,-b, ..., b, - b, are linearly
independent. Furthermore, the coefficients A, in such an expression (1) of a point in aff{b,, b, ...,

b, } are unique if and only if by,b,,.....,b, are affinely independent.

2.2 GJK algorithm (Fig. 1)

The algorithm is more conveniently described by using the pictures in TC space, although the
algorithm never needs to explicitly construct the TCSO. The key element of the approach is the
algorithm for computing the distance between convex sets in m-dimensional space. m = 3 is a special
case of this algorithm, and the convex sets are polytopes defined by their vertices. The sets defined in
the approach, without loss of generality, always contain not larger than four elements because of the
Caratheodory theorem (Rockfellar, 1970). Arbitrary set of one to four points, each is the difference of
two vertices (one from K, and one from K,), can be chosen as the initial set in GJK algorithm. One
better choice (Gilbert et al.,1988), (Sato et al., Apr. 1996) is to find the direction of the vector
defined by the difference of the centers of two objects, and then compute a most appropriate point on
the TCSO by the use of support function. It is because the closest points of two convex polyhedra are
usually in the direction we just mentioned.

In GJK algorithm, the step of determining affinely independent set Y, = { y; O K: i O } from V;
and the minimum distance point v ; of the polyhedron formed by Y; is the Distance Subalgorithm. The

Distance Subalgorithm in its mathematical form is presented in the following:

Take a subset Y, from V; . Define the real number A(Y,), A(Y,) by
A{y) =1, il (I,= The numbers of elements in Y,)
AY,ULyD) = S A0 ve-i ey forall i0l, kL, , jOI
(I, = The complement of L)
AYy)= X;A(Y,) forallilll.

Then the output of the Distance Subalgorithm consists of positive real numbers A ; and set Y, :

2062

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

A=A YA, XiA=1, A; >0 2)
The closest point v ; computed can be expressed as
v;= 2i(A;y) forallilll 3)

This completes the GJK algorithm for computing the closest point to the origin in TC-space. By
finding the initial set of next loop, the v is computed by a recursive formula for finding out each A
(Y, and is used in later application of support function. We can calculate v ; in the form of (3) if we
know the affinely independent set Y, and A ; in (2) is the solution of (3). The approach used in GJIK
algorithm (Theorem 3 in (Gilbert et al.,1988)) is to check all the subsets of every initial set in each
loop of the algorithm whether the following three conditions are satisfied: (a)A(Y,) >0, (b)A(Y,)
>0 for each ilJ I, (¢)A(Y,;U{y;}) < 0 for each jlI’. Because of the constraint of the numbers of
elements in each set, there won’t be more than 15 subsets that need to verify. Usually, Y, is uniquely

determined.

II.The Modification

The algorithm in our improvement is based on three functions nu_compute(), support functions(),
and refine_set(), which make the concept more obvious and the implementation easier. In addition, the
feature of the closest point (i.e. vertex, edge or face) can be found.

The modification is applicable to two- or three-dimensional space. However, the situations are more
complicated in three-dimensional space. We will discuss two-dimensional space first, then the

situations in three- dimensional space follows.

3.1 Two-dimensional case
(a) Description of the algorithm (Fig. 3):

First, take two vertices Z, and Z, on the TCSO as the initial set V. Then compute the
nearest point v , using the function nu_compute(). (v ; is the nearest point on the object formed by
the points of set V; to the origin of the TC-space and is an approximation to v , atstepi (Gilbert et
al.,1988), (Ong and Gilbert, 1997), (Gilbert and Foo, 1990)). Afterv , is determined, the algorithm
then obtains a new point in K from support_functions(). In the algorithm, the new point is named S, =
S ¢ (v), which is farthest toward the origin away from » ;. The new point thus found will give us
the optimized path to the final answer (Gilbert et al.,1988). S; and two other initial points form next
set V..

Geometrically clear, the v , of this set is on one edge of the triangle which is made by S, and the

2063

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

initial points. Thus, the function of refine set() is to refine the new initial set V; of next loop with the
two points that compose this edge. The procedure

continues until the termination condition v ;e v, + H; = 0 is satisfied. In other words, the iteration in
Fig. 3 will terminate when the points of V; can form the nearest edge of the TCSO to the origin. The v ;

we get at this time is what we look for. Fig. 4 shows an illustration of basic cycle of the process.

The Algorithm in 2D:
V, < initial_set(Z,, Z,) ;
i< 0;

Repeat{
V; < nu_compute(V)) ;
(S;, H)) < support_functions(- v ,) ;
V.,, < refine set(V, S);
1 <—1i+1;

juntil (v;e v+ H;=0)

Fig.3 GJK algorithm with our modification in 2D case.

S, (also S;) 0

Fig.4. An illustration of GJK.

(b). The choice of initial points:

One of the most important ways to reduce the computation time is to make a good choice of initial
points (Gilbert et al.,1988), (Bobrow, 1989), (Zeghloul et al., 1992). Because the available points are
on the boundary of the TCSO, we must take advantage of the feature of support function. One is

2064

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

chosen to be the supporting vertex with respect to the vector pointing from the centroid to the origin in
the TC space, i.e. Sg(n) where n is centroid of K, minus centroid of K, , as illustrated in Fig. 5. In
order not to start partially in some particular points, the other point is distinct but arbitrary so that it
can effectively lead us to two new points far apart after the calculation of support function. This is a

good initial choice for efficient computation.

Supporting plane

Fig. 5 The choice of initial point.

(c). The computation of v (about nu_compute()) :
Each v is computed by the function nu_compute. It represents the nearest point on the TCSO to
the origin of the TC-space (Gilbert et al.,1988), (Cameron, Dec 1997). It is also a vector that gives us
the
direction from the origin to the nearest point on the TCSO. The idea of this function is mainly the
same as that used in (Gilbert et al.,1988), but the sets we use are sometimes different. As will be
seen later, A might be negative in the computations. Because we won’t consider the affinely
independent set, there are always two points contained in the set V;.
Given two points X;, X,, let
A=Xe X, - X, 0 X,
A, =X e X, —X, ¢ X,
Conveniently, set the notation
A =lambda_ 1(X,, X,);
A, =lambda 2(X,, X,);
then express the nearest point by a convex combination of X, X,
Aoy, A

v = 1
/\1+A2)‘1+)‘2

X2 4)

2065

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

In (4), the meaning of v is the nearest point on the line segments connecting X;, X,. Because the
correct point v is between X, and X,, v should be the point X, (or X,) if A (or A ,) is negative. A,
and A , cannot be negative at the same time, so there are only three variations in two-dimensional
space.

(d). How to refine the set V; (about refine set()) :

The refinement method used by Gilbert, Johnson, and Keerthi is to investigate every subsets of V; ,
or the set V;U{S;} in our modified algorithm Fig.3, and then verify them with the three conditions in
the article (Gilbert et al.,1988). Eventually, the unique affinely independent subset will be found.
However, the process is very complicated. Instead, our modification is a discard-and-add process and
makes the refinement much simpler and, furthermore, geometrically clear. Firstly, the process starts
from two initial points and adds a third point S; in the way that can speed up computation. Then keep
the two points which form the proper edge to refine the set V,,,. In brief, we regularly choose a
triangle and then discard a vertex of the triangle and add another point to construct a new triangle.

Now, which point is to be discarded? The point that has maximum distance is not the correct one.
The method used here is quite similar to that of determining an affinely independent set. Refer to Fig.
5 for illustration. Select two points from the set V;U {S;} which contains three points. Its three subsets
are three edges of the triangle formed by the set V;U {S;}. A line-by-line testing can decide which line
of edge can
separate the origin of the TC-space and the remaining point, then discard the remainder. The
separating edge is precisely the edge of the triangle formed by V,

which contains (or repesents) V, .

Incorrect Correct Incorrect

Fig. 5 Decide which point should be discarded.

2066

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

There might be more than one subset corresponding to the separation condition we just mentioned.
The simplest way is to discard the farthest point once the non-unique situation happens.

Remark: The reason why three points suffice in our modification is obviously revealed by the
Caratheodory theorem (Gilbert et al.,1988). Suppose X belongs to the translate of a linear space .
Without loss of generality, assume X contains no more than (dimX +1) points. Thus, the set V; in our

algorithm will contain two points.

3.2 Three-dimensional case (Fig. 6)
(a). Main ideas:

The main idea for three-dimensional case is the same as two-dimensional case, but there are some
important changes should be made. From Caratheodory theorem, the triangles we update in two-
dimensional space now change as tetrahedrons in 3D space. A tetrahedron has three triangles at each
vertex, and three vertices per face. Thus, there should be three points in the initial set. The way to find
v in function nu_compute() is changed from seeking an edge of a triangle to finding a face of a
tetrahedron. Moreover, where v is either on a face, an edge, or a vertex is examined after we determine
the subsets of V,U{S; }.
(b). refine_set() in three-dimensional space:

The equation used to refine the set V; should be replaced by one representing a plane in three-
dimensional space. Four non-coplanar points form a tetrahedron. Three points determine a face of the
tetrahedron. In 3D case, we compute the normal vector of the plane formed by the three points, then

find out which plane can separate the origin and the remaining (the fourth) point.

The Algorithm in 3D:
Vo < initial set(Z,, Z,, Z;) ;
i< 0;
Repeat{
V; < nu_compute(V)) ;
(S;, H)) < support_functions(- v ,) ;
V., < refine set(V, S);
1 <—1i+1;
juntil (v;e v+ H;=0)

Fig.6 GJK algorithm with our modification in 3D case.

2067

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

Given the vertices of the tetrahedron P, P, P; P,, let the remaining point be P, . The plane formed
by the three points P, P, P; is given by

f(x, y, z)=Ax+By+Cz+K=0

where the normal vector (A, B, C)=(P,—P,) X (P;—P,)
K=-- (A P,|0] + B P, (Gilbert et al.,1988) + C P,(Cameron, Dec 1997)) .
Define
N = (A P,J0] + BP, (Gilbert et al.,1988) + C P,(Cameron, Dec 1997)) + K,
3)
where P,= (P;[0], P; (Gilbert et al.,1988), P(Cameron, Dec 1997)).
Then the separation condition will be satisfied if Z « N < 0. Discard the subsets containing the farthest
point when more than one subset saisfying the separation condition.
(c). nu_compute() in three-dimensional space:

The goal of the function is to find out the nearest point v on the plane, which is determined by the
three points in V;, to the origin of the TC-space. From (2) (or Theorem 3 in (Gilbert et al.,1988)), we
have:

A, =lambda_1(P,, P;)(P, ¢ P,- P, e P,) + lambda 2(P,, P;)(P; ¢ P,-P; ¢ P));
A,=lambda 1(P, P;)(P, « P,— P, ¢ P,)+ lambda 2(P,, P;)(P; ¢ P,- P; ¢ P,);
A;=lambda 1(P,, P,)(P, ¢ P,—P, ¢ P;) + lambda 2(P,, P,)(P, ¢ P,— P, ¢ P;);
C))
Awill be negative if v is on the edge of the tetrahedron. There are seven kinds of variations in the

sign of A . This is shown in Table 1.

(A) All A are positive 1 case Y On Face

(B) | One of A is negative, the others are positive | 3 cases v On Edge

(C) | One of A is positive, the others are negative | 3 cases v On Vertex

(D) All A are negative None Not Exist
Table 1

In situation (A), no more modification is needed.

In situation (B), suppose the v is on the edge composed by the points P and P . As two-

2068

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

dimensional case,
the only negative A <— 0;
Compute the other two A, A, with
A =lambda_1(P_P,);
A, =lambda_2(PP,); x,y (01,2,3

In situation (C):
A, < 0,if A,.<0;
the only positive A < 1;

Finally, the nearest point v is computed by:
A=A +A,t A5,

Al Az A%
U=—P+—=P +—=P
A A A

IV. Comparison

In this section, simulations are performed to compare the improvements made by us and by

Cameron (Cameron, Dec 1997). The input data are the vertices of two polyhedra.

4.1 Cameron’s Enhancement (Cameron, Dec 1997)

From our experience in implementing the GJK algorithm shown in Fig. 1, the computation time is
largely contributed by the evaluation of the support function. Therefore, the key to faster computation
of distances between two convex bodies is to improve the computation speed of the support function.
Stephen Cameron (Cameron, Dec 1997) achieved the improvement. The enhancement exploits the
adjacency feature of vertices (two vertices are adjacent if they are connected by an edge) and is now
described as follows. Given a convex polyhedron, an initial vertex of it, and the edge connection data
of its vertices, the goal is to find a “supporting vertex”. The procedure starts by finding the one with
the largest inner product from the initial vertex and its vicinities. If the search result happens to be the
initial one, the search is stopped and the answer is obtained owing to convexity property. Otherwise,
the obtained vertex is set as a new initial and the process is repeated. In a finite number of iterations,

due to convexity, we’ll find the supporting vertex without the need of evaluating inner product for

2069

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

every vertex of the polyhedron. The searching sequence from such a procedure form a path of edges
originating from the initial vertex, going toward the vector with respect to which we evaluate the
support function, and stopping at the supporting vertex. In addition, the vectors with respect to which
we evaluate the support function, i.e., - v ,, roughly point from the polyhedron to the origin. Therefore,
all supporting vertices lie on the sides of the polyhedron closer to the origin (as Fig. 8 shows). Thus, in
most cases, only a few inner product evaluations are needed and this greatly reduces the computation
time by using the previous evaluation result as the new initial vertex for next search. As a whole, the

procedure achieves the O(1) improvement of GJK algorithm.

initial

vertex

Fig. 8. The path of searching supporting vertex.

4.2 The Edge Connection Data

In implementing Cameron’s improvement, a method is developed to find the edge connection
data of the vertices for convex polyhedron (see Appendix), without the use of the so-called edges
graph. The edges data are found from the faces data, which specify the sets of vertices that form a face.
To obtain the faces data, we first test all the combinations of three vertices to see which ones
determine the hyper-planes with the property that all the other vertices and the centroid of the
polyhedron are in the same half-space, i.e., support the polyhedron. Then, we consider combinations
that determine the same hyper-planes and integrate them with sets of more than three vertices, which

then uniquely and completely determine the faces of the polyhedron. The edges of a polyhedron are,

2070

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

by definition, the union set of the edges of each face; therefore, the edges data can be constructed by
tracing along the boundary of every face. As a matter of fact, this method is extremely time-
consuming. It is found that to compute the edges data for a polyhedron with hundreds of vertices on a
400-MHz Pentium II PC, a few hours to half-day of computation time is required. However, it is quite
useful for visualization of a convex polyhedron, or, as we have seen, for faster distances computation.
Though time-consuming, the computation of edges data from a set of vertices can be taken as a priori
information (i.e. set-up time) for the problem.
c¢).Comparisons

For comparison study, consider the following four algorithms for computing the distances
between two static convex bodies approximating the unit balls in 3-D space: the original GJK, GJK

with our modification, GJK with Cameron’s, and GJK with

Fig.9. The construction of a polyhedron from a unit ball

ours plus Cameron’s modifications. All of them are implemented in MATLAB 5.2
on a 266-MHz Pentium II PC under Windows98. A pair of polyhedra of varying complexity is
systematically given, each vertex of which is generated from a set of random points on a unit ball (see
Fig. 7) with translation. With increasing number of points, the polyhedron approximates the unit ball
more accurately. The experimental results are shown in Table 2 and collectively in Fig.8. In Table 2,
the most efficient results are marked by a *. It seems that when the total number of vertices increases,
the combined algorithm (ours plus Cameron’s modification) becomes more efficient. The results
obtained give us ideas about how to compute the distance between the polyhedra efficiently. On one
hand, Cameron’s enhancement, which doesn’t cause the computation time linear in the total number of
hull points if the adjacency information of vertices is available, is significant especially when the total
number of vertices is large.

On the other hand, our modification provides an alternative approach to distance calculation. By

examining the performance of the algorithm with and without our modification for a specific problem,

2071

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

as Table 2 shows, a more efficient combined algorithm can be adopted. Moreover, our modification

has mathematical intuition and thus facilitates comprehension and implementation of the algorithm.

(Unit: ms)

Number of Vertices (Object] /Object2)| 8/8 10/20 | 20/30 | 30/40 | 40/50
The Original GJK 16* 30* 80 105 210
Our Modification 17 30* 70%* 100* 205
Cameron’s Modification 30 55 80 110 175

Ours plus Cameron’s Modification 31 60 75 105 150*

Number of Vertices (Objectl /Object2)| 50/60 | 100/120 | 150/180 | 200/240 | 250/300

The Original GJK 95 445 440 380 480

Our Modification 100 480 430 385 480

Cameron’s Modification 85%* 250 145 250%* 220*

Ours plus Cameron’s Modification 90 220* 130%* 255 220*
Table 2.

V. Conclusion

We have described possible modifications of the steps in the GJK algorithm that make the
computation of Euclidean distance between convex polyhedra easily realized. The improvement
proceeds by updating the coefficient A, instead of verifying A(Y,) of each subsets, and these induce
an explicit triangulation of the TCSO boundary. By the numbers of elements in the final set in our
modified algorithm, the nearest point, together with the information about the feature of the nearest
point is on a vertex, an edge or a face of TCSO can be provided. These can be used to compute the
gradient of the distance with respect to the configuration variables, which is useful in robot path
planning.

Finally, we have demonstrated experimentally that our modifications and the GJK algorithm both
have an almost linear time complexity, and we have also presented an approach to calculate the
vicinity matrix, which must be provided in updating the support function. After combining with
Cameron’s modifications, the comparison has also been shown. The reason why our changes do not
dominate timings as much as Cameron did can be easily shown by the simulation, which means that
computation of support function is the most time-consuming part in GJK algorithm (Cameron, Dec
1997), (Sato et al., Apr. 1996), (Ong and Gilbert, Apr. 1997).

2072

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

—a— The Qriginal GJK
600 —x— Qur Modification ! !
- O Cameron's Modification
--4%-- Qurs plus Cameron's Modification
500 g

400 -

I+

Computation Time (ms)
(%]
(]
[

100+

0 100 200 300 400 500 G600 700
MNumber of Hull Foints

Fig. 10. The simulation result

VI. References

E. G. Gilbert, D. W. Johnson, and S.S. Keerthi, “A fast procedure for computing the distance between
complex objects in three-dimensional space,” IEEE Trans. Robot. Automation, vol. 4, pp. 193-203,

Apr.1988.

Stephen Cameron, ”A Comparison of Two Fast Algorithms for Computing the Distance between
Convex Polyhedra,” IEEE Trans. Robot. Automation, vol. 13, No 6, pp. 915-920, Dec.1997.

Bobrow, J.E., “Optimal robot path planning using the minimal-time criterion,” [EEE Journal of

Robotics and Automation, vol.4, no. 4, pp.443-450, Aug.1988.

Quinlan, Sean. “The Real-Time Modification of Collision-Free Path,” Ph.D. Thesis, Stanford
University, 1994,

Khatib, O., “Real-Time Obstacle Avoidance for Manipulators and Mobile Robots”, The International

2073

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

Journal of Robotics Research, vol. 5, no.1, pp.90-98, Spring 1986.

M. Lin and J. Canny, “A fast algorithm for incremental distance calculation,” in /JEEE Int. Conf. Robot.
Automat., Sacramento, CA, April 1991, pp 1008-1014.

Chung Tat Leung, Kelvin. “An efficient collision detection algorithm for polytopes in virtual

environments,” M. Phil. Thesis, The University of Hong Kong, 1996.

S. Cameron, “Enhancment GJK: computing minimum and penetration distances between convex

polyherdra,” in IEEE Int. Conf. Robot. Automat. Albuquerque, NM, April. 1997, pp 3112-3117.
Y. Sato, M. Hirata, T. Maruyama, and Y. Arita. “Efficient collision detection using fast distance-
calculation algorithms for convex and non-convex objects,” In IEEE Int. Conf. Robot. Automat, pp.

771-778, Minneapolis, April 1996.

Elon Rimon, Stephon P. Boyd, “Obstacle Collision Detection Using Best Ellipsoid Fit,” Journal of
Intelligent and Robotic Systems, vol. 18, pp 105-126. 1997.

David E. Johnson, Elaine Cohen, “A Framework For Efficient Minimum Distance Computations,” in

IEEE Int. Conf. Robot. Automat., pp. 3678-3684, May 1998.

R. T. Rockfellar, Convex Analysis. Princeton, NJ: Princeton Univ. Press, 1970.

J.E. Bobrow, “A direct minimization approach for obtaining the distance between convex

polyhedra,” The International Journal of Robotics Research, vol.8, pp.65-76, 1989.

C. J. Ong and E. G. Gilbert, “Growth Distances: New Measures for Object Separation and
Penetration,” IEEE Trans. Robot. Automat., vol. 12, No 6, pp. 888-903, 1997.

C. J. Ong and E. G. Gilbert, “The Gilbert-Johnson-Keerthi distance algorithm: a fast version for
incremental motions,” in /[EEE Int. Conf. Robot. Automat., pp. 1183-1189, Albuquerque, New Mexico,

April 1997.

E. G. Gilbert and C.-P. Foo, “Computing the distance between general convex objects in three-

dimensional space,” IEEE Trans. Robot. Automat., vol.6, No 1, pp. 53-61, 1990.

2074

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

S. Zeghloul, P. Rambeaud and J.P. Lallemand,” A fast distance calculation between convex objects by
optimization approach.” in IEEE Int. Conf- Robot. Automat., pp. 2520-2525, Nice, France, May 1992.

E. G. Gilbert and D.W. Johnson, “Distance functions and their application to robot path planning in the
presence of obstacles,” IEEE J. Robot. Automat., vol.1, No 1, pp. 21-30, 1985.

APPENDIX

A Method to Construct Face and Edge Data from a Vertex Set of Convex Polyhedron

Given the vertices of a convex polyhedron, the information about which vertices determine a
face or an edge is usually required., especially when the polyhedron is visualized in a computer
graphics environment, or when the adjacency relationships of the vertices are needed in some
geometric algorithms. In this appendix, a method to acquire such information, which can be
implemented in the form of a function block and applied to individual cases, is developed.

By definition, a face of a convex polyhedron is a polygon located on a unique support plane
(Rockfellar, 1970) of the polyhedron and whose vertices are all those of the polyhedron on the support
plane. Since each support plane contains at least three vertices of the polyhedron, such planes can be
found by enumerating all possible triples of vertices, each triple for one plane, and discarding those
bearing no supporting property. Note that some of the resulting triples may determine the same support
plane, for one face may have more than three vertices. Thus, identifying each set of triples lying on the
same plane and taking the union set of those triples gives a list of vertices determining each face.

To test whether a triple of three vertices determine a support plane or not, a simple criterion,
which follows from the definition of a support plane, is provided here (Fig. 9). A plane supports the
polyhedron if and only if there is no vertex such that the centroid lies on its opposite side. Thus, it
suffices to check each of the remaining vertices and the centroid of the polyhedron lie on which side of
the plane determined by the three vertices under test.

The edges of a polyhedron are the union set of the edges of all its faces. An edge connects two
adjacent faces, therefore the edge can be constructed by tracing along the boundary of every face. Of
course, finding the edges of a face or convex polygon is the 2-D equivalent to finding the faces of a
convex polyhedron and can be done using similar procedures to the above; however, due to the
geometric simplicity of this case, a more direct method is provided here. First, obtain the vector u,,,
pointing from the center of the polygon to an arbitrary vertex. Then, sort in a counterclockwise (or
clockwise) all the vertices according to the angle between u,,,and each of the vectors pointing from the
center to all the vertices. Finally, two adjacent vertices in the circular order comprise the endpoints of

an edge of the polygon.

2075

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

/*
* An Algorithm Finding the Sets of Vertices Determining the

* Faces of a Given Convex Polyhedron

*/

Function prototype(s):

boolean IsFace(a triple of vertices);

Definition of variable(s):

F, the output of algorithm, is the set of the triples, or quads, etc., of vertices determining the faces.

F=0;
for (each triple of vertices)
if (IsFace(the triple))
F = F [0 the triple;
for (each element of F, say, f1)
for (each of the other elements of F, say, f2)
if (p O the plane determined by f1, O p O £2)
modify F by changing f1 to f1I 0O f2 and excluding f2;

boolean IsFace(a triple of vertices) {
return (whether the centroid of the polyhedron does not lie
on the plane determined by the triple
and all the other vertices lie on the same side of

the plane as the centroid does);

Fig.9 Pseudo code of the face determination

2076

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

for (each face) {
x = the vector pointing from the center of the face to a certain vertex,

say, Vi;
for (each of the other vertices, v;)

calculate the angle from x to the vector pointing from the center

of the face to v;;

sort the vertices, starting from v,, in the ascending

order of those angles calculated for them;
for (each of the sorted vertices)

if (this is the last one)
add the line segment connecting this vertex and the first one

to the list of edges of the polytope;

else
add the line segment connecting this vertex and the next to the

list of edges of the polytope;

Fig. 10 Pseudo code of edge determination

2077

	HOME
	SESSION

