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Abstract

The �nite horizon H1 control of time-invariant linear systems with a �nite number of

point and distributed time-delays is considered. For controllers coupled Riccati type partial

di�erential equations are derived. The solutions to these equations are related to the solutions

of the associated Hamiltonian systems. For small time delays the solutions and the resulting

controllers are approximated by series expansions in powers of the largest delay. Unlike

the in�nite horizon case, these approximations possess both regular and boundary layer

terms. It is shown that the controller obtained by high-order approximations improves the

performance of the system. The performance of the closed-loop system under the memoryless

zero-approximation controller is analyzed.

Keywords: time-delay systems, H1� state-feedback control, asymptotic approximation, continuous-

time systems, small delays .

1 Problem Formulation

Throughout this paper we denote by j � j the Euclidean norm of a vector or the appropriate norm

of a matrix. Given tf > 0, let L2[0; tf ] be the space of the square integrable functions with the

norm jj � jjL2
and let C[a; b] be the space of the continuous functions on [a; b] with the norm j � jc.

We denote xt = x(t + �); yt = y(t � �); � 2 [�h; 0]. Prime denotes the transpose of a matrix

and colfx; yg denotes a column vector with components x and y.

Consider the system

_x(t) = L(xt(�)) +Bu(t) +Dw(t); z(t) = colfCx(t); u(t)g; (1)

where x(t) 2 Rn is the state vector , u(t) 2 Rl is the control signal, w(t) 2 Rq is the exogenous

disturbance, and z(t) 2 Rp is the observation vector, B; C and D are constant matrices of

appropriate dimensions. The Rn-valued function L(�) which carries Rn-valued functions on

[�h; 0] into Rn is de�ned as follows:

L(xt(�)) =
rX

i=0

Aixt(�hi) +

Z 0

�h
A01(s)xt(s)ds; (2)

where �h = �hr < �hr�1 < ::: < �h1 < �h0 = 0, A0; A1; :::; Ar are constant matrices and

A01(s) is a smooth enough matrix function.
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Given  > 0, and assuming that w 2 L2[0; tf ], we consider the following performance index

J = jjzjj2L2
� 2jjwjj2L2

: (3)

The problem is to �nd a state-feedback controller which ensures that J � 0 for all w 2

L2[0; tf ] and for the zero initial conditions x(�) = 0; � � 0. This means that the H1-norm

of (1), which is de�ned by the supremum over w 2 L2[0; tf ] of the ratio between jjzjjL2
and

jjwjjL2
, is not greater than . In the in�nite horizon case such a controller has been obtained

by Bensoussan et al. (1992), Van Keulen (1993), Lee et al. (1994), Ge et al. (1996), Fridman

and Shaked (1998). In (Bensoussan et al.,1992) and (Van Keulen, 1993) the controller has been

obtained by solving Riccati operator equations. In (Lee et al., 1994) and (Ge et al., 1996), a

delay-independent controller has been designed. In (Fridman and Shaked, 1998) for the case

of one discrete time-delay, the controller has been derived from Riccati type partial di�erential

equations (RPDE's) or inequalities, and the solution of the RPDE's has been approximated by

expansions in the powers of the delay. In (Fridman and Shaked, 1999) a Bounded real lemma

has been obtained for the case of a �nite number of discrete and distributed time-delays. The

LQ optimal control problem for a system with small time delay has been studied by Sannuti and

Reddy (1973), where asymptotic series solution to the Hamiltonian system has been constructed.

Asymptotic approximation to the solution of the initial value problem for the system with small

delay has been constructed in (Vasilieva, 1962) (see also O'Malley, 1974).

In the present paper, we generalize the results of Fridman and Shaked (1998, 1999) to the

�nite horizon case. We obtain the required controllers by solving coupled RPDE's. We derive

an asymptotic approximation to the solution of these RPDE's by expanding it in the powers

of the largest delay. The resulting approximation is obtained by solving uncoupled low-order

partial di�erential equations. The performance of the system with the controller that has been

obtained using the zero approximation (the one that corresponds to zero delay) is analyzed when

the open-loop system possesses a non-zero delay.

2 H1-Controller Design

Consider the following RPDE's with respect to the n� n-matrices P (t); Q(t; �) and R(t; �; s):

_P (t) +A00P (t) + P (t)A0 +
Pr

i=1A
0

iQ
0(t;�hi) +

Pr
i=1Q(t;�hi)Ai

+P (t)SP (t) + C 0C +
R 0
�hQ(t; �)A01(�)d� +

R 0
�hA

0

01(�)Q
0(t; �)d� = 0;

(4)

@

@t
Q(t; �) +

@

@�
Q(t; �) = �[A00 + PS]Q(t; �)�

rX
i=1

A0iR(t;�hi; �)�

Z 0

�h
A001(s)R(t; s; �)ds; (5)

@

@t
R(t; �; s) +

@

@�
R(t; �; s) +

@

@s
R(t; �; s) = �Q0(t; �)SQ(t; s); (6)

P (t) = Q(t; 0); Q(t; �) = R(t; 0; �); R(t; �; s) = R0(t; s; �); � 2 [0; h]; s 2 [0; h]; (7)

P (tf ) = 0; Q(tf ; �) = 0; R(tf ; �; s) = 0; (8)

where S = �2DD0 �BB0.

A solution of (4)-(8) is a triple of n � n-matrices fP (t); Q(t; �); R(t; �; s)g t 2 [0; tf ]; � 2

[�h; 0]; s 2 [�h; 0], where P (t); Q(t; �) and R(t; �; s) are continuous and piecewise continuously

di�erentiable functions of their arguments that satisfy (4)-(8) for almost every t; � and s.
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We show that the controller that solves the H1 control problem has the form:

u�(t) = �B0[P (t)x(t) +

Z 0

�h
Q(t; �)F (xt)(�)d�]; (9)

where

F (xt)(�) =
rX

i=1

Aixt(�hi � �)�i(�) +

Z �

�h
A01(p)xt(p� �)dp; (10)

and where �i is the indicator function for the set [�hi; 0], i.e. �i(�) = 1 if � 2 [�hi; 0] and

�i(�) = 0 otherwise. We obtain

Theorem 1 Let (4)-(8) have a solution on [0; tf ] for given  > 0. Then, the controller of (9)

solves the H1-control problem.

Proof. Let x(t) be a solution of (1). Consider the following Lyapunov-Krasovskii functional

(Delfour, 1986):

V (t; xt) = x(t)0P (t)x(t) + 2x0(t)
R 0
�hQ(t; �)F (xt)(�)d�

+
R 0
�h

R 0
�h F

0(xt)(s)R(t; s; �)F (xt)(�)dsd�:
(11)

Then di�erentiating V (t; xt) with respect to t and integrating by parts, we obtain, similarly to

Fridman and Shaked (1998), that

d

dt
V (t; xt) = �x0(t)C 0Cx(t)� 2jw(t)� w�(t)j2 + 2jw(t)j2 + ju(t)� u�(t)j2 � ju(t)j2; (12)

where

w�(t) = �2D0[P (t)x(t) +

Z 0

�h
Q(t; �)F (xt)(�)d�]:

It follows from (12) that

V (tf ; xtf )� V (0; x0) +

Z tf

0

[jzj2 � 2jwj2]dt = �2jjw � w�jjL2
+ jju� u�jjL2

:

The latter relation implies J � 0 for u = u� and x0 = 0 and completes the proof.

Consider next the associated Hamiltonian system:

_x(t) = L(xt(�)) + Sy(t); _y(t) = �C 0Cx(t)� ~L(yt(�)); (13)

where

~L(yt(�)) =
rX

i=0

A0iy
t(hi) +

Z 0

�h
A001(s)y

t(�s)ds:

Notice that (13) depends on the future values of the adjoint vector y (similarly to the case of

the state delay LQ problem. Consider the following boundary conditions for (13):

xs = �; y(tf � �) = Q0

f (�)x(tf ) +

Z 0

�h
Rf (�; �)F (xtf )(�)d�; � 2 [�h; 0]; 0 � s � tf ; (14)

where � 2 C[�h; 0]. A solution of (13) on the segment [s; tf ] (tf > s) is a pair of continuous

functions x : [s� h; tf ]! Rn and y : [s; t+ h]! Rn, that is absolutely continuous and satis�es

(13) on [s; tf ].
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We look for a solution to (13) and (14) of the form

y(t� �) = Q0(t; �)x(t) +

Z 0

�h
R(t; �; �)F (xt)(�)d�; � 2 [�h; 0]: (15)

Setting � = 0 in (15) we get due to (7)

y(t) = P (t)x(t) +

Z 0

�h
Q(t; �)F (xt)(�)d�: (16)

The solvability of the RPDE's (4)-(8) is related to the existence of the solution (15) to the

boundary value problem of (13) and (14) by the following

Lemma 1 The system of (4)-(8) has a solution i� for every s 2 [0; tf ] and � 2 C[�h; 0] the two

point boundary value problem of (13) and (14) has a solution of the form (15) such that (16)

holds, where P (t); Q(t; �) and R(t; �; s) are continuous and piecewise continuously di�erentiable

functions of their arguments.

The proof of the lemma is omitted since it is similar to proof of Theorem 2 in (Fridman and

Shaked, 1999).

3 Asymptotic Approximation of the H1 Controller

3.1. Asymptotic solutions to the RPDE's. As we have seen, in both the continuous

time and the sampled-data cases, the H1 controller has been found by solving a set of coupled

PRDE's. Finding a solution to the latter is not an easy task and we are, therefore, looking for

a solution to the RPDE's in a form of asymptotic expansion in the powers of the delay h:

P (t) = P0(t) + h[P1(t) + �1P (�)] + h2[P2(t) + �2P (�)] + :::;

Q(t; h�) = Q0(t; �) + h[Q1(t; �) + �1Q(�; �)] + h2[Q2(t; �) + �2Q(�; �)] + :::;

R(t; h�; h�) = R0(t; �; �) + h[R1(t; �; �) + �1R(�; �; �)] + h2[R2(t; �; �) + �2R(�; �; �)] + :::;

� =
tf�t

h
; � 2 [�1; 0]; � 2 [�1; 0]:

(17)

The 'outer expansion' terms fPi; Qi; Rig; i = 0; 1::: constitute the major part of the solution

that satis�es (4)-(7) for t 2 [0; tf ]; � 2 [�1; 0]; � 2 [�1; 0]. The boundary-layer correction terms

�iP ; �iQ and �iR will be chosen such that (17) satis�es the terminal conditions of (8) and that

j�iP (�)j+ sup
�2[�1;0]

j�iQ(�; �)j+ sup
�;�2[�1;;0]

j�iR(�; �; �)j ! 0 as � !1: (18)

Since � is a stretched-time variable around t = tf , (18) asserts that �iP ;�iQ and �iR are

essential only around t = tf and they thus provide a correction to the outer expansion at the

terminal point t = tf .

We substitute (17) in (4) and (7) and equate, separately, outer expansion and boundary-layer

correction terms with the same powers of h. We notice that for t = tf � h�; � = h� and s = h�

we have @=@t = �h�1@=@�; @=@� = h�1@=@� and @=@s = h�1@=@�. Thus, for the zero-order

terms we obtain from (5), (6) and (7):

Q0(t; �) = P0(t); R0(t; �; �) = P0(t): (19)

Then, from (4), we have

_P0(t) +
rX

i=0

A0iP0(t) +
rX

i=0

P0(t)Ai + P0(t)SP0(t) + C 0C = 0; P0(tf ) = 0; (20)

1353

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



The latter is the well-known di�erential Riccati equation (DRE), that corresponds to (1) for

h = 0.

Our main assumption is:

A1. For a speci�ed value of  > 0, the DRE of (20) has a bounded solution on [0; tf ].

Assumption A1 means that the H1 state-feedback control problem for (1) without delay has

a solution. If this were not the case, even P0, the zero-order term in (17), would not exist.

To determine the �rst-order terms we start with the equations for Q1:

@

@�
Q1(t; �) = �M0(t)P0(t)� _P0(t); Q1(t; 0) = P1(t); M =

rX
i=0

Ai + SP0: (21)

Then,

Q1(t; �) = P1(t)� [M0(t)P0(t) + _P0(t)]�:

Substituting this expression into the equation for P1, we obtain

_P1 +M
0P1 + P1M+

Pr
i=1 giA

0

i(P0M+ _P0) +
Pr

i=1 gi(M
0P0 + _P0)Ai = 0;

P1(tf ) + �1P (0) = 0; gi = hi=h:
(22)

It follows from (4) that _�1P (�) = 0. Since �1P vanishes for � ! 1, we have �1P (�) �

0; � � 0. Hence, P1(tf ) = 0, and P1 is a solution to the linear di�erential equation (22) with

the latter terminal condition.

For �1Q; R1 and �1R we obtain from (5), (6) and (19)

@
@�
�1Q(�; �)�

@
@�
�1Q(�; �) = 0; Q1(tf ; �) + �1Q(0; �) = 0(�);

�1Q(�; 0) = �1P (�) = 0;
@
@�
R1(t; �; �) +

@
@�
R1(t; �; �) = �P0(t)SP0(t)� _P0(t); R1(�; 0; �) = Q1(�; �);

(23)

and
@
@�
�1R(�; �; �)�

@
@�
�1R(�; �; �)�

@
@�
�1R(�; �; �) = 0;

R1(tf ; �; �) + �1R(0; �; �) = 0(�; �); �1R(�; 0; �) = �1Q(�; �):
(24)

Then, for � � 0 and t 2 [0; tf ], we �nd successively

�1Q(�; �) =

(
�Q1(tf ; � + �); if � � ��;

0; if � > ��;

R1(t; �; �) = R01(t; �; �) = ��[P0(t)SP0(t) + _P0(t)] +Q1(t; � � �); � � �;

�1R(0; �; �) = � _P0(tf );

�1R(�; �; �) = �01R(�; �; �) =

(
�1R(0; � + �; � + �); if � � ��; � � �

�1Q(� + �; � � �); if � > ��; � � �:

Therefore,

�1Q(�; �) = 0; � + � > 0; �1R(�; �; �) = �1Q(� + �; � � �) = 0; � + � > 0; � � �:

The higher order terms of the outer expansions can be similarly found. We obtain next the

boundary-layer terms and show by induction that

�iP (�) = 0; � > i� 1; �iQ(�; �) = 0; � + � > i� 1;

�iR(�; �; �) = 0; � + � > i� 1; � � �:
(25)
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We assume that (25) is satis�ed for all i � m � 1. Then we derive the following equations

for �mP ; �mQ and �mR:

_�mP (�) = fm(�); �mP (m� 1) = 0;

@
@�
�mQ(�; �)�

@
@�
�mQ(�; �) = �m(�; �)

�mQ(�; 0) = �mP (�); Qm(tf ; �) + �mQ(0; �) = 0;

@
@�
�mR(�; �; �)�

@
@�
�mR(�; �; �)�

@
@�
�mR(�; �; �) =  m(�; �; �);

�mR(�; 0; �) = �mQ(�; �); Rm(tf ; �; �) + �mR(0; �; �) = 0;

where fm and �m are known functions that vanish for � > m� 1 , and  m is a known function

that vanishes for � + � > m� 2; � � �.

From these equations we �nd

�mP (�) =

Z �

m�1
fm(s)ds;

and thus (25) for �mP holds since fm(s) = 0 for � > m� 1. Further

�mQ(�; �) =

(
�mQ(0; � + �) +

R �
0 �m(s;�s+ � + �)ds if � � ��;

�mP (� + �)�
R �
0 �m(�s+ � + �; s)ds if � > ��;

and �mQ satis�es (25) since �mP (� + �) = 0 for � + � > m� 1 and �m(�; �) = 0 for � > m� 1.

Finally,

�mR(�; �; �) = �0mR(�; �; �)

=

( R �
0  m(s;�s+ � + �;�s+ � + �)ds+�mR(0; � + �; � + �); if � � ��; � � �

�
R �
0  m(�s+ � + �; s; s+ � � �)ds+�mQ(� + �; � � �); if � > ��; � � �:

Conditions (25) for �mR readily follow from the latter expressions and the properties of �mQ

and  m.

3.2. Near-optimal continuous-time H1-control.

Theorem 2 Under A1 the following holds for all small enough time-delay h :

(i) The system of (1)-(8) has a solution. This solution is approximated, for any integer m, by:

P (t) = P0(t) +
Pm

i=1 h
i[Pi(t) + �iP (�)] +O(hm+1);

Q(t; h�) = P0(t) +
Pm

i=1 h
i[Qi(t; �) + �iQ(�; �)] +O(hm+1);

R(t; h�; h�) = P0(t) +
Pm

i=1 h
i[Ri(t; �; �) + �iR(�; �; �)] +O(hm+1);

� =
tf�t

h
; � 2 [�1; 0]; � 2 [�1; 0];

(26)

where the boundary-layer terms satisfy (25), and jO(hm+1)j � chm+1, where c is a positive scalar

which is independent of h; t; � and �.

(ii) The controller of (9) is approximated by

u(xt) = um(xt) +O(hm+1); um(xt) = �B0[P0(t) +
Pm

i=1 h
i[Pi(t) + �iP (�)]]x(t)

�B0h
R 0
�1

n
P0(t) +

Pm�1
i=1 hi[Qi(t; �) + �iQ(�; �)]

o
x(t+ h�)d�:

(27)

The approximate controller um guarantees an attenuation level of  +O(hm+1).

The proof of theorem is given in the Appendix. It follows from Theorem 2 that a high-

order approximate controller improves the performance polynomially in the size of the small

time-delay h.

Note that in (Ndiaye and Sorine, 1999) the delay sensitivity of J has been investigated. The

gradient of J with respect to h at h = 0 has been computed there in terms of P0.
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4 The zero-order controller performance

We study the performance of the system under the zero-order controller u0(t) which solves the

H1-control problem for (1) without delay.

Theorem 3 Under A1 the controller u0 for all small enough h leads to a performance level

of .

Proof . We start with the continuous-time case. Applying u0 to (1), we obtain a system

_x(t) = �A(t)x(t) +
Pr

i=1Aix(t� hi) +Dw(t); �A(t) = A0 �BB0P0(t);

z = ~Cx(t); ~C(t) = colfC;�B0P0(t)g:
(28)

Note that in (28) only the matrices �A(t) and ~C(t) are time-varying and thus the corresponding

F (xt) is given by (10) and is time-invariant. Similarly to (1) it can be proved that this closed-

loop system has an induced L2-gain less or equal to  if the corresponding RPDE's of (4)- (7),

where A0 = �A(t); C = ~C(t); and S = DD0=2, have a solution. The existence of a solution

to the resulting RPDE's, approximated by (26) with m = 0, can be proved similarly to (i) of

Theorem 2.

Given  > 0 and h, one should verify that the corresponding RPDE's have a solution in

order to make certain that u0 leads to a performance level of . This is not an easy task. That

is why one may resort to more conservative, but computationally simpler, conditions in terms

of di�erential linear matrix inequalities (DLMI) or Riccati di�erential inequalities (RDI) that

were formulated for the case of one delay in (Shaked et al., 1998) and can be easily generalized

to the case of r delays.

Example. Consider the following system:

_x(t) = x(t)� x(t� h) + u+ w; z = colfx; ug: (29)

For h = 0 we obtain
_P0(t)� (1� �2)P 2

0 + 1 = 0; P0(tf ) = 0:

Choosing  = 1 and tf = 1 we �nd

P0 = 1� t; P1 = 2P0; Q1 = 2P0 + �; �1Q = �(� + �)�1(� + �); R1(t; �; �) = �;

�1R(�; �; �) = � + �; � + � � 0; �1R(�; �; �) = �(� + �)�1(� + �);

where � � �. We obtain

u0(t) = t� 1; u1(t) = u0(t) + h(t� 1)
h
2x(t)�

Z 0

�1

x(t+ h�)d�
i
:

Consider now the performance of (29) under u = u0. Applying to the closed-loop system the

delay-dependent criterion of (Shaked et al., 1998), we �nd that u0 leads (29) to  = 1 for all

0 < h � 0:29 , since the corresponding RDI's have bounded solutions on [0,1]. For h = 0:3 the

solution to this RDI has an escape point.
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5 Conclusions

The paper presents a solution to the state-feedback H1 control of linear time-invariant systems

with state time-delays in the �nite horizon case. The theory that has been developed in this paper

shows that for small delays, similarly to the case of singularly perturbed systems (Pan and Basar,

1993) and (Fridman, 1996), our controllers are a�ected by the boundary-layer phenomenon. This

fact requires evaluation of both, outer expansion and boundary-layer corrections.

6 Appendix

Proof of Theorem 2. (i) To prove the validity of (26) we consider the equations for the

remainders

hm+1Pm+1 = P �
Pm

i=0 h
iPi;

hm+1Qm+1(t; �) = Q(t; �)�
Pm

i=0 h
i[Qi(t; h

�1�) + �iQ(h
�1t; h�1�)];

hm+1Rm+1(t; �; s) = R(t; �; s)�
Pm

i=0 h
i[Ri(t; h

�1�; h�1s) + �iR(h
�1t; h�1�; h�1s)];

in these expansions:

_Pm+1 + Pm+1M+M0Pm+1 +
Pr

i=1A
0

i[Q
0

m+1(t;�hi)�Q0

m+1(t; 0)]

+
Pr

i=1[Qm+1(t;�hi)�Qm+1(t; 0)]Ai +Em(t; h; hPm+1(t)) = 0;
(30)

@
@t
Qm+1(t; �) +

@
@�
Qm+1(t; �) = �M0Qm+1(t; �)�

Pr
i=1A

0

i[Rm+1(t;�hi; �)�Rm+1(t; 0; �)]

+Gm(t; h; hQm+1(t; �));

(31)
@

@�
Rm+1(�; s) +

@

@s
Rm+1(�; s) +Km(t; h; �; s; hQm+1(t; �); hQm+1(t; s)) = 0; (32)

Pm+1(t) = Qm+1(t; 0); Qm+1(t; �) = Rm+1(t; 0; �); Rm+1(t; �; s) = R0m+1(t; s; �);

Pm+1(tf ) = 0; Qm+1(tf ; �) = 0; R(tf ; �; s) = 0:
(33)

Note that Pm+1; Qm+1 and Rm+1 depend on h. The known matrix functions Em; Gm and Km

are continuous on t; h; �; s and contain linear and quadratic terms in hPm+1 and hQm+1.

Let �(t; s) be the transition matrix of the system _x(t) = �M0(t)x(t). Denote by

�Em(t) = Em(t; h; hPm+1(t)); �Gm(t; �) = Gm(t; h; hQm+1(t; �));
�Km(t; �; s) = Km(h; �; s; hQm+1(t; �); hQm+1(t; s)):

Then, the system of (30)-(33) implies the following integral system for the determination of

Pm+1; Rm+1 and Qm+1:

Pm+1(t) = �
R t
tf
�(t; s)

nPr
i=1A

0

i[Q
0

m+1(s;�hi)�Q0

m+1(s; 0)]

+
Pr

i=1[Qm+1(s;�hi)�Qm+1(s; 0)]Ai + �Em(s; h; hPm+1(s))
o
�0(t; s)ds;

Qm+1(t; �) =

( R t
tf
�(t; p) �Gm(p; p+ tf � t+ �)dp if t� � � tf ;

�(t; tf )Pm+1(tf � t+ �) +
R �
0 �(t; p)

�Gm(p� tf + t� �; p)dp if t� � < tf ;

Rm+1(t; �; s) = R0m+1(t; s; �) =
R t
tf

�Km(p; p+ � + tf � t; p+ s+ tf � t)dp

+ �Rm+1(tf ; � + tf � t; tf � t+ s); if tf � t � ��; s � �;

Rm+1(t; �; s) = R0m+1(t; s; �) = �
R �
0
�Km(p� � � tf + t; p; p+ s� �)dp

+Qm+1(�tf + t� �; s� �); if tf � t > ��; s � �:
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Applying the contraction principle argument on the latter system, one can show that for all small

enough h this system has a unique solution Pm+1; Qm+1 and Rm+1, continuously depending on

h; t; s and �. Hence, the approximation of (26) is uniform on h; t; � and �.

(ii) Eq(27) follows from (26) and the rest of (ii) is similar to (Fridman and Shaked, 1998).
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