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Abstract

The PI, PD and PID controllers are widely used and successfully applied controllers to many applications. Their
successful application, good performance, easiness of tuning are sufficient rational for their use, although their
structure is justified by heuristics.

In this paper by the use of optimal control theory we formulate a tracking problem and show those cases when
their solution gives the PI, PD and PID controllers, thus avoiding heuristics and giving a systematic approach to
explanation for their excellent performance. It is shown that the PI controller is optimal for a first order system,
the PID controller is optimal for a 2nd order systems with no zero. The reference trajectory is generated by a
system identical to the plant.

Then, the same approach, that led to the Pl and PID controller, is applied to a general linear, strictly proper

. . 5 . -1
system and a generalized PID controller is derived. Such controller is called here &Btroller. As an
example, a generalized PID controller for a DC motor with one flexible mode is presented.

1. Introduction

The PD, Pl and PID controllers are successfully applied controllers to many applications, almost
from the beginning of controls applications [1,2].

The facts of their successful application, good performance, easiness of tuning are speaking for
themselves and are sufficient rational for their use, although their structure is justified by heuristics:
"These ... controls - called proportional-integral-derivative (PID) control - constitute the heuristic
approach to controller design that has found wide acceptance in the process industries.” [2, pp. 168].
In [3, pp. 114] it is shown that Internal Model Control - "IMC leads to PID controllers for virtually

all models common in industrial practice."

In [4] the linear quadratic regulator (LQR) theory has been used to formulate tracking problems and
show those cases when their solution gives the PID controllers. Namely, a problem has been state
whose solution leads to the PD, Pl and PID controllers. This enables avoiding heuristics and is giving
a systematic approach to explanation for the good performance of the PID controllers. The main
contribution of the results in [4] is that it shows for what problems the PID controllers are the optimal
controllers and for which they are not. The importance of this is:

1) From theoretical point of view it is important to know that a widely used control
architecture can be derived from an optimal control problem.

2) The solution shows for what kind of systems the PID controllers are optimal and will show
for which systems it is not, thus enabling to show why a PID controller does not perform well for all
systems. This will enable to forecast what control designs not to apply a PID controller.

3) For those systems that the PID is not the optimal controller architecture the optimal
control approach shows what is the optimal controller architecture, thus achieving generalization.

It is shown in [4] that the PI controller is optimal for a first order system, the PID controller is
optimal for a 2nd order systems with no zero. The reference trajectory is generated by a system
identical to the plant. The differences are the initial conditions and the input to the reference
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trajectory generator. The tracking error is the position error, and zero steady state is imposed by
integral action on the tracking error. This is the reason that the PID controllers are so well performing
in servo applications and chemical processes, as these are of this type.

In this paper we apply the approach that has been developed in [4] to more general cases. First, for
the coherence of presentation, the main result from [4] are rederived. Then the approach is applied to

a general linear strictly proper system and a generalized PID controller is derived, fhe PID
controller. As an example, a generalized PID controller for a DC motor with one flexible mode is
presented.

2. Optimal Tracking Problem
We assume the n-th order muttput multtoutput system

X = AX + Bu

y =Cx @

nXm

where xR’ is the state; aR" is the input and ng is the measured output;e,Rnxn, BeR and
Xn
CeR" . The reference trajectory generator is

X, =AX,+B,u,

2
yr :Crxr ( )

vXpu

where xe R is the state; [UER“ is the input and ng is the reference output;eCRVXV, BeR = and

pXv
CeR .
The integral action is introduced into the control in order to “force” zero tracking errors for
polynomial inputs, and to attenuate disturbances. This is done by introducing the auxiliary variable
(the integral of the tracking error )

n=e=y-y, 3)
The control objective is

I=3{(Mt) = ¥(1)) "GN 1) = Y1) + (%) " Gon( )

ty 4
+[In(0) =Y (0) T QU — Y, () +n() " Qn()+ U D" Ru ] @

The optimal tracking problem [6] is to find an admissible input u(t) such that the tracking objective
(4) is minimized subject to the dynamic constraints (1, 2, 4). All vectors and matrices are of the
proper dimensions.

3. Solution of the Tracking Problem

In order to solve the Optimal Tracking Problem we augment the state variables to the form [6]
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Ox O (A 0O 0O BO
x=thp A=t 0 -Cr, B=Pp C=[c 0 -G, (5)
== B 0 A H =)=

then the problem is minimization of (4) subject to (1, 2) is the problem of minimization of

J:%{th)TGXtr)+JI>()TQJ€)+'(IIT RO dit (6)
subject to
i :K)?+§U (7)
where
00
Q=C'QC+dQ[o 1 g
ELS
8
o0
G=C'GC+dgG[o 1 g
HH

Notice that the solution is not affected kyy u
The solution is [5,6]

u=-R™"BPx )
-P=PA+ATP+ Q- PBR'BP Pi)= G
if we write P={[Hj]; i,j=1,2,3}, then
u= -R* [B'R, BR BR ], (10)
where in steady state we have
0=P1A - P12C + ATP11- CTP12+ CTQ1C - P11BR1BTP 1 (11.11)
0=ATP12- CTP22- P11BR1BTP (11.12)
0= PL2Cr + PL3Ar + ATP13- CTP23- CTQ1Cr - P11BRIBTP13 (11.13)
0=Q- P12BRIBTP (11.22)
0= P22Cr + P23Ar - P12BRIBTPy3 (11.23)
0 = P23Cr + P33Ar + GrTP23+ ArTP33 + G TQ1Cr - P13BR1BTP1 3 (11.33)
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4. First Order system -The PI controller

If A=Ar=0, C=¢=1and B=B=1, i.e. one integrator, then from (11)

0=-P2 -Pi2+Q-P1IRIP11 (12.11)
0=-P2-P11R 1P (12.12)
0=P12 - P23- Q1 - P11IRIP13 (12.13)
0=Q-P2R P12 (12.22)
0="P2-PoR1P13 (12.23)
0=P3+ P23+ Q- P13R1IP13 (12.33)

from (12.22)
P, =-JQ,R (we select the negative root) (13.1)

from (12.11) and (13.1)

Pa=-/RQ-2R) = RB+2| % (13.2)

from (12.12)
P, = - (13.3)

from (12.23) and (13.3)

P,,R
;2 =P, (13.4)
12

Ps=

This means, by the use of (3), that

x O (X
u:_%[Pll R, —Fil]gﬂ%—[kl k., _kﬂgn

B H X
=k, (x=x,)+k,n=ke+ kZJ' edt

mOoOaO

(14)

-

This is the Pl controller.

5. General solution - The General PID Controller

Now, for the general case A 5AC = G =1 and B = B, i.e. the reference trajectory generator is
identical to the plant, it can be shown thatz3P= -Pj1. Then
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X O
u=-RYBR, BR, B %]Bn E=K§+K2J'edt (15)
=L
where
K1=-R1BTPyy, Ko=R1BTp1s. (16)

6. Second Order System with no Zero

Here we assume that the plant (for example, DC motor with low electrical time constant) and the
trajectory generator are

0o 1 D 00 O
A=A =0 ,B=p pC=C=[1q,
oa -~ %3
17)
i.e. H(s) = Hf(g:#.
s"tast 3

The state of the plant and trajectory generator are de@(ﬂ%@” @ respectively.
2r

6.1 We want to force zero steady state tracking error on the output. Here
Y =X, Y, =Xy @and Y= X, ¥ = X, . Then, since the tracking errorés = y-y, , we have

n=e=y-y (18)
X, O Oy Od
] a. O
20 0¥ O
u=|[k, k, ks -k, -k,)JUnUO=[k, k, ks, -k, -k,/[OnO
[1 2 K 1 2]%:]E [1 2 Ks 1 Z]DnD (19)
1r r

¥ O
Fka B H.H
=k,e+ k,e+ k31 edt
That is, we get PID controller.

6.2 Here we want to force zero steady state tracking error on the rate of the output as well,
e =Yy,

n=§ == Sn  edt (20)
y: O D ge 3
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5 g
1 O

u=[k, k, ks k, —k; —kj]O 0O=(k,*+k Je+k e+ k{edt (21)

L

=

These are PID controllers. For other second order plants, or when the trajectory generator is not
identical to the plant we will not get generally such structure.
Notice that the solution is independent of the reference trajectory generator pnptiisuneans that

the optimality criterion induced some smoothness conditions on the trajectory and its derivative.

6.3 The PD controlled is derived if no integral action is required, 3& &, then we get

u== (a+ka) e +lo

7. Second Order System with Zero

Here we assume that the plant and the trajectory generator are

00 10 _ 0O
A=A, = , B= c=c =1 d,
“Ha -al " .0 9

(22)
i.e. H(s) = H,(9 = bs+(ah+b) x,_ bs-ah

S+astg X bst(ah+b)

7.1
We want to force zero steady state tracking error on the output. Here y&=X1r but %, r_X2or.

Then, since the tracking error is

nN=e = y-y =% -%; (23)
we have

X, O
O

2]

u=[k, k, kg -k -kz]gng
K O

E(Zra

=X X0+ KX, X ) +k D =k Bt k£ X o) + k { et

(24)

To proceed we write the controller in Laplace domain
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U= ket k(Xm %)+ 2e= ket ko2 (x, —xy) + S
s X, S

(25)
=k th e 2 Ko
bis+(ab+ b) s
u_ (b +Kkb)S 43+ ) k+ bk- abH s K ab b 6)

(bst(ah+ b))

D

We used the assumption thafz = X2 and ignored the response to initial conditions. This is a
X1 Xy

proper PID controller, i.e. no direct derivative is required. To see this we write

Uop vk, —S 4K (27)
e ° sT,+1 s

u_ (kg + kad)52 +(k,+ Kk Ty)s+ K, (28)
e (sT, +1)

That is, for 2nd order plant with one zero, the optimal controller is a proper PID controller.

7.2Here we want to force zero steady state tracking error on the second state, as well, i.e.

O 0
. XXy, O edt
2= X[ B'(XZ-XZr)dtD
0 Xq 0
0 % 0
0 Iedt 0
u=[k, k, ks k, -k, —k,|O O
a’(xz _er)dt% (30)
O Xu O
E Xor E
= kle+ kz(Xz_ er)+ k3I edt+ k4I( X2_ Xz) dt
To proceed we write the controller in Laplace domain
U= ket k(% — ) 2 e+ K2 (6, ) = (k, + K9 (, +52) X2 (4, -x,)
S S S S X,
Yok +Kop (i, + Koy D" BB (31)
e s s bs+(ah+ b)

(kiby + ko0 ) +[(a g+ ) k+ hk+ bk- 3 bR 6 k B +b)-abk
(bst(ah+ b))

Notice that the PI controller on each of the states created a PID controller on the error. For a plant
with zero, in the PID structure controller a pole that cancels out this zero has been introduced. This
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means that as long as the zero is in LHP (minimum phase) the optimal PID controller can be build
without measuring all states. However, if this zero is in RHP (non minimum phase) it introduces an
unstable pole that cancels the plants zero, and this can not be realized in the PID structure. Therefore,
for a plant with unstable zero the optimal PID can not be realized, and measurement of the two states,
or an observer are required if one wishes to build the optimal controller.

7.31f no integral action is required, i.e; ¥ 0, k, = 0, then we get

bs—ah  _ (kb +kyby)st[(ab+ b) k- ah i (32)
*bs+(ah+ b) b,s+(ah+ b)

u
_:k1+
e

This is the lead-lag/lag-lead controller.

7.4We arrived at the family of PID controllers. For other second order plants, or when the trajectory
generator is not identical to the plant we will not get generally such structure.
Notice that the solution is independent of the reference trajectory generator pnptiisuneans that

the optimality criterion induced some smoothness conditions on the trajectory and its derivative.

8. Third Order System

8.1As an example of a third order system we consider a DC motor. The differential equation that are
describing a linear DC motor are

mx = kel - DX

33
v-kx=Ld+Ri (33)
dt

where

- is the mass

- is the position

- is the force constant

- Is the current of the motor
- is the friction coefficient

- is the applied voltage

- is the back emf coefficient

- is the inductance of the motor
- is the resistance of the motor.

;Ul_mx< U__I_IWXB

an we have
Ong’ + Ds - k OxO_ 00

3 kes  Ls+ R RH .

xO_ 1 Is+R k. 100 (35)
HH (m&+D9(Lst B+ k k s-ke  ms’+ DSH\

ke
(ms’+ DY(Ls+ R+ k k s

X
\
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ms? + Ds

:(msz+ D9(Lst R+ k k s

1 (36)
V
x
|

From equation (31), one can see that our method applies a PI controller on each state. This is denoted
as

c=keXe (37)
s

The full state feedback controller (parallel structure) is
U= Cy(X= %)+ Cy(X= %)+ Cy(I- 1) (38)

This structure is presented in figure 1. Usually the control engineers prefer the architecture, that is
presented in figure 2, the cascade architecture. Then the controller is

= C1-1)+ S - )+ S (x-x, ) T (39)
GO G, %
and we have
C =C;=Kkq +ﬁ, the controller of the current loop;
S
C, = G M the controller of the velocity loop; (40)
Cs  Kgstki
Cp= G _ kstky , the controller of the position loop;
C, kgstk,

i.e. Pl controller in the current loop and lead-lag/lag-lead controllers in the velocity and position
loops. Notice that there are only six free parameters and not ten as one might guess.

8.21In the previous examples we assumed measurement of all state variables. If we assume that only
the error is measured then the generalized PID controller is

U=[C+ G5t G e

Ui+ Ky, flk, + X ]S+[k+£]msz+Ds

e S ke

41
ﬂk3s3+(k2+k.sﬂ+fk3)s2+(kl+k.2+3k|3)s+k.l (1)
K, ke K K,

S

CsS+CsS+Gs G

S

This is a generalized PID controller denoted hereZri@ntroller. This controller is not proper and it
might create problems in realization.
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8.3 Here we assume that the plant and the trajectory generator are a general third order system

0o 1 OD

A=A, =00 0 5 B= %)ZDC c=10d,
Fas - & —Qﬁ b5
(42)
i.e.X:H(s):H(gzblsz‘L(qq* b)s ab+ bat b
u r sS+as+39 a '
X, _ b, +(abh+h)s gb
X, bs+(ah+hb)s ab+ bat b 43)

Xg_  b¥-(ah+ah)s abp
x; bsg+(ah+bh)s ab+ bar b

We want to force zero steady state tracking error on the output. Here
Yy =X3,Y, =X, but V2 x,, ¥, # X, . Then, since the tracking error is

n=e = y-y =% -X, (44)
we have
X, 0
%( 0
2[
2°0
u=[k, k, ks k, -k, -k, -kJgnp
L, O
0o
D(2r|:|
H(BrH

=Ky (X = X5 ) +Ky(X =X ) +Kk {X ;=X g)+k ] (45)

to proceed we write the controller in Laplace domain
K,
u=kiet k(X = X3) + Ky(X3= X3) +—e
S

X X k
= kyet+ ky =2 (Xy = Xy,) + k3_2 (Xy =Xy ) t—2e
X, X, s

:[k1+k2 b232+(qq+ Q)S‘ @IP
bS+(ah+ b)s ab+ b
K, b, -(ah+3h)s ab +Kage
b, g +(ah+by)stab+ by s

(46)

439



Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

_ ()S+( )+ )sr( )
sbs+(ah+ h) s abt P

u (47)
e

This is a proper PIBcontroller, i.e. no direct derivative is required. To see this we write

(sE+) L ke
kp+kd822deS+w§ +- (48)
_( S+ )+ )sH( )
S(S + 20y s+ W)

olc olc

(49)

That is, for 3rd order plant with zeros, the optimal controller is a prope? Eubxroller. Notice that
the controller cancels out the zeros of the plant.

9. Fifth Order System

This section deals with a fifth order system. It is, for emphasis of its relevance, a DC motor with one
flexible mode. The differential equation that are describing the system are

M, %, = —K(X,— X )= D(X 1~ X ) + k|
m, X, = K(X;=X,) +D(X ;=X ) (50)

dl
V-Kkgx, =L—+RI
X1 at

and we have
s+R Kes 0 Ml o vod

O-ke mg+Dst K —(Dst K ko= 00 (51)
HO0  -(Ds+K) m,$+Dst KIX,H HH
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, D _ K
S+ —s+——
X _1lke m, M,
v Smls(LS+ R)(§+(i+—1)Ds+(—1+—1)K)+kEﬁ(sz+£s+£)
1 My m, m, my m, m,
D K
— s+

X 1k m, " m,

ViooSMyg st R)(§+(i+i)Ds+(—1+—1)K)+kE&(sz+£s+£)
m, m m, m, 1 m, m,
32+(i+i)Ds+(i+7l)K

l_s 1 My m,_mp

v LS(LS+ R)(§+(i+—l)Ds+(—1+—l)K)+kE&(sz+£s+£)

m, 2 RLLP m, 2 2
D K
s+
%o _1ke m,""m,
Xl Smlsz+£s+£
m, m,
, D_ K
s?+— s+
X _1Kke m, My (52)
2
I s*my 52+(i+71)DS+(71+71)K
1 My m;, m,
The full state feedback controller (parallel structure) is
U= Ci(X = X)) + Co( X = X)) + C X, Xp) + Cf X~ Xp)+ CLI= 1) (53)

9.1 There are many possibilities of measurements. Here we assume that the pgsijtiiogity, 1,
and current, |, of the motor are measured. Then we can write

U=(Cy+ Gy D)0 ~X3) +(Co * Co 2K, = X3, + Cel1 =) (54)
1 1
u=Ci(x = X) + C( %= X))+ CL 1= 1)

The cascade architecture is

“:Cs%"|r)+&%k—xr)+g,l(x—x,)[@ (55)
C5 D C2 %
and we have
C =C=ks +Xi5 " the controller of the current loop: (56)
S
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C,=—= —X; the controller of the velocity loop

(k,s5+ k,)(& +£s+£)+(k4s+ k|4)(35+£) ' (57)
_ m, m, m, m,

(kss+ k|5)(52 +£S+L)

2 My

X
C,+C;-2
c _C_ ' 3xl

0 = ; the controller of the position loop;
C,

c,+C, 2
X1 (58)
(kis+ ki )(+ 2 s+ ) (st kls)(m3s+£)

2 m, 2 m, _

(st k)@ +m3s+£)+(k4s+ k|4>(m3s+£)

2 2 2 2

i.e. Pl controller in the current loop and third order proper controllers in the velocity and position
loops. Notice that there are only ten free parameters and not fourteen as one might guess. The total
controller order is 7 relative to 5 with full state feedback.

9.2 Here we assume that the current of the motor, |, the positoand velocity,2, are measured.
Then we can write

U=(Cy* G Bk =) +(C €5 1)K, =)+ CofI-1,) (59)

This architecture can not be implemented, as the controllers are not proper. Even the cascade
architecture is not proper. To arrive at a proper controller we proceed as follows: we can derive that

ke D K
-k — s+
X =g T = (Y I+ CEH X, (61)
S+ s+ S+ s+ I X2=0 X211=0
m_m m,m
Then
X X . . X
U:(Cl+C3_2 )(X_Xlr)+(C2+C4_2 )(Xl_xlr)+[05+(cl+c2s_l 1(-=r,) (62)
Xl 1=0 Xl 1=0 I X,=0
U=GC3(X, = Xy )+ Cy(Xy= Xz)+ CL 1= 1) (63)

The cascade architecture is
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B GO ... G E
u—CSE(I e @x )+ G X (64)

and we have the controller of the current loop

C =C=[GHGH G35 ]

X=0
(kes+ k)€ + st )1 Ko, 4 (kg + K )s+ k) (65)
—_ 1 ml m

D K
& +7S+E)

1

the controller of the velocity loop

Cy+ Cpt
_ C, _ X2 1=0
v T A
G c,+(c+ C.y't
X,=0=0 (66)
(kas* k)€ + 2 st Ky r st k) Ds+ <)
_ 1 1 m; m;

(ks k)@ + 25K+ Ke (108 1 (1 + k)st k)
m m

1 My 1

the controller of the position loop

C+C ot
C. = Ezé :.________53_131
p ] X
*C,+C, 1t
X2li=o (67)
(kss* kis) (€ + 2 st Xy (st k) (Ds+ &)
_ m; my my m;

kst k(€2 st K (st k) Dsr K
m_ m, m_ m,

1 1

these are third order proper controllers in the current, velocity and position loops. Notice that there
are only ten free parameters and not eighteen as one might guess. The total controller is of order 9
relative to 5 with full state feedback (parallel architecture).

9.3 Here we assume that only the error, g =x, is measured then the generalized PID controller
is

U=[C + Cyst( G+ g\,:%mf,xl]e (68)
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D, K
S+ KD o 52 g 2 T2
e S s T2y D K
m; m;
} 32(52+(i+i)[)s+(71+71)|()
[+~ Te ThMe T (69)
S kF SZ+£S+L
m, m,

=CZSS+QS4+ GS+ C&+ ¢ C
& + 2w, st wj)

This is a generalized PID controller denoted here?Ribntroller. This controller is not
proper and it might create problems in realization.

10. Discussion

Similarly, for higher order systems generalized PID controller can be derived. These controllers have

the structure of proper and not proper Pib where n is the order of the plant. The controller's poles
cancel out the plant's zeros.
Although from input-output transfer function, there is no difference between the full state feedback

PI controller and the generalized Btd controller, there is difference with respect to the response to
initial conditions, effects of saturation etc..

11. Conclusions

By the use of Linear Quadratic Tracking theory we formulated a control-tracking problem and
showed those cases when their solution gives the PID family of controllers. This way we avoided
heuristics and gave a systematic approach to explanation for the good performance of the PID
controllers. The PID controller architecture is optimal for Linear Quadratic Tracking problem of a
2nd order systems with no zero. The reference trajectory is generated by a system identical to the
plant.
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Xr i-\/—\ G X
N
y X
X, MV G DC motor
A .
Ir 50O 3l c
%IH '

Figure 1: Parallel Pl controller structure of a DC motor.

q DC motor

Figure 2: Cascade PI controller structure of a DC motor.
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