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Abstract

A controller for robot manipulators is proposed in this paper. The design is based on a

Lyapunov approach with V.S.C. and sliding mode technique. Fundamental properties of the

robot, as well as some engineering considerations are taken into account during the design

procedure. Chattering is tackled by indexing the magnitude of the bound to the tracking

error. Simulations reveal a great reduction of chattering while maintaining the controller

performance.

1 Introduction

Increasing demand for high performance robots has lead to the development of various advance

control techniques. Two general controller approaches may be considered for robot manipu-

lators, the model-based approach and the non-model-based approach. The model based con-

trollers consider some of the system structures in their designs. In contrast non-model-based

controllers do not take account of the system properties. The latter group of controllers has been

largely used in industry because of the ease of implementation and relatively good performances.

However the increasing demand for high speed response and accuracy leads to more and more

interest in the model-based controllers. The idea behind model-based controllers is to use the

dynamic equations of the system as feedforward terms of the control algorithm, transforming

the non-linear system into a new linear system incorporating the robot and its controller. This

linearization is only e¤ective if the exact dynamic equations are available, which in practice is

not the case as uncertainties on the parameters as well as on the model equations exist. To

deal with these imperfections, a robust algorithm can be used. Variable Structure Control in

conjunction with sliding mode is an e¢cient technique, that can render the system insensitive to

parameter variations as well as to disturbances as demonstrated by (Drazenovic, 1969; Kaynak

et al., 1985 or Utkin, 1978).

The �rst application of V.S.C. with sliding mode to robotics is due to (Young, 1978), and

the number of reported experiments since has kept increasing with (Ritcher et al., 1982; Slotine,

1984; Kai S. Yeung et al., 1988 and Chee-Fai Yung et al., 1994) to only cite those ones.
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2 Proposed V.S.C. algorithm

Accurate trajectory following in robotics is an important problem, and many control algorithms

using V.S.C. and sliding mode have been proposed by (Slotine et al., 1983; Bailey et al., 1987;

Wijesoma et al., 1990; Yi-Feng Chen et al., 1990; Gao et al., 1990; Gorez, 1997 and Yu Tang,

1998). The limitation with the use of sliding mode is the high frequency switching, commonly

known as chattering. Chattering is unacceptable in robotics as it may excite unmodeled high

frequency modes, which could damage the robot manipulator. The general approach to over

come the problem is to replace the non-linear switching function by a smooth one as in (Slotine

et al., 1983 and Ambrosino et al., 1984). This method however seriously alters the performance

of the controller, because of the high degree of smoothness needed to completely overcome

chattering.

The proposed V.S.C. algorithm is based on a general Lyapunov approach, physical constraints

are used to establish the convergence to zero of the errors. The problem of chattering is overcome

by making the magnitude of the discontinuous element a function of the errors.

The design procedure starts with the selection of n linear sliding surfaces S, where n is the

number of joints of the robot manipulator.

Si = (
¢

µi ¡
¢

µdi) + ¸(µi ¡ µdi); i = 1; :::; n (1)

where µi and
¢

µi are the angular position and velocity of the ith joint, and µdi and
¢

µdi the

are demand angular position and velocity for the ith joint. By the de�ning the position error

(µ¡ µd)=
»

µ and S = [S1:::Sn]
T .

S =
¢eµ +¸eµ (2)

and
¢

S=
¢¢eµ +¸

¢eµ (3)

Now de�ne

e = (¡
¢

µd +¸
»

µ) (4)

¢

e = (¡
¢¢

µd +¸
¢eµ) (5)

The inverse dynamics of the robot are given as

Ta = M (µ)
¢¢

µ +C(µ;
¢

µ)
¢

µ +G (µ) (6)

M (µ)
¢¢

µ = Ta¡C(µ;
¢

µ)¡G (µ) (7)

where M (µ) is the inertia matrix, which is symmetric positive de�nite and
¢¢

µ is the joint

acceleration. C(µ;
¢

µ)
¢

µ represents the Coriolis and centripetal e¤ects with
¢

µ the joint ve-

locity and the vector C(µ;
¢

µ) is de�ned such that it veri�es the skew-symmetric properties:

xT

·
¢

M (µ)¡ 2C(µ;
¢

µ)

¸
x = 0, for all x 2 Rn. The gravitational torque is given by G (µ).

The Lyapunov function used for the design : V = 1

2
ST :M:S, represents the pseudo-kinetic

energy of the system. Di¤erentiating the function V with respect to time gives:
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¢

V = S
T
:M:

¢

S +
1

2
S
T
:

¢

M :S (8)

¢

V = S
T
:M:

¢¢

µ +ST
:M:(¡

¢¢

µ +¸
¢eµ) + 1

2
S
T
:

¢

M :S (9)

Substituting equation (7) and equation (4) and its derivative equation (5) into equation (9),

gives:

¢

V= S
T
:

·
Ta¡ C(µ;

¢

µ)
¢

µ ¡G (µ)¡C(µ;
¢

µ)e+ C(µ;
¢

µ)e

¸
+ S

T
:M:

¢

e +
1

2
S
T
:

¢

M :S (10)

Using the skew-symmetry property, the expression is reduced to:

¢

V= S
T
:

·
Ta ¡G (µ) + C(µ;

¢

µ)e +M:
¢

e

¸
(11)

Letting Ta = bG (µ)¡ bC(µ; ¢µ)e¡ cM:
¢

e +Ts, and substituting it into equation (11) gives

¢

V= S
T
:

· eG (µ)¡ eC(µ; ¢µ)e¡ fM:
¢

e +Ts

¸
(12)

where ( b¢ ) is the parameter estimate and ( e¢ ) = ( b¢ )¡ ( ¢ ), is the parameter error.

The value for Ts that will guarantee the negativeness of
¢

V is found by considering the physics

of the system.

Assumption 1 For a robot manipulator, since the link lengths and joint displacements (linear

or rotational) are bounded, the gravitational torque and its estimate are bounded, and so

is the gravitational error eGi (µ) for each link. i.e. : eGi (µ) <Kgi.

Assumption 2 The C(µ;
¢

µ)matrix relates the velocity/position to torque. This matrix depends
linearly on the velocity. Again, for a robot manipulator with bounded joint displacements,

the velocity of the joint is bounded as well (maximum velocity of the actuator). The

matrix C(µ;
¢

µ) is then bounded and so is its estimate (maximum velocity pro�le set in the

trajectory generation control algorithm). So it can be said that the error eC(µ; ¢µ) is also
bounded. i.e. : eCij(µ;

¢

µ) < Kcij .

Assumption 3 The inertia matrix is a function of the position of the joint. Since each joint

position is bounded, each term of the inertia matrix is bounded, and so are the estimated

terms, the errors on the inertia matrix terms are then bounded. i.e. : fMij < Kmij .

Assumption 4 The function e = (¡
¢

µd +¸eµ) , represents a velocity demand function, which

incorporates the position error. The velocity demand is bounded in the trajectory genera-

tion algorithm (safety limit). The position error is assumed to be and to remain bounded

by taking Kei su¢ciently large. i.e. : ei < Kei.

Assumption 5 For
¢

e= (¡
¢¢

µd +¸
¢eµ), a similar argument as for e is used. The demand accelera-

tion is bounded in the trajectory generation algorithm (safety limit), and the velocity error

is assumed to be and to remain bounded by taking
:

Kei su¢ciently large. i.e. :
¢

e<
:

Kei.
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The two last assumptions will to be smoothen later on.

Using all the previous assumptions, the inverse dynamics error ( eG (µ)¡ eC(µ; ¢µ)e¡ fM:
¢

e) can
be bounded by some coe¢cients.

¯̄
¯̄ eG (µ)¡ eC(µ; ¢µ)e¡ fM:

¢

e

¯̄
¯̄
i

< Ki (13)

µ eG (µ)¡ eC(µ; ¢µ)e¡ fM:
¢

e

¶
i

¡Ki < 0 (14)

The negative de�niteness of
¢

V as well as the reaching condition for equation (12), can be

guaranteed by taking Tsi = ¡Ki:sign(Si).
If Si > 0,

µ eG (µ)¡ eC(µ; ¢µ)e¡ fM:
¢

e

¶
i

¡Ki:sign(Si) < 0 (15)

Si:

µ eG (µ)¡ eC(µ; ¢µ)e¡ fM:
¢

e

¶
i

¡Ki:sign(Si) < 0 (16)

If Si < 0,

µ eG (µ)¡ eC(µ; ¢µ)e¡ fM:
¢

e

¶
i

¡Ki:sign(Si) > 0 (17)

Si:

µ eG (µ)¡ eC(µ; ¢µ)e¡ fM:
¢

e

¶
i

¡Ki < 0 (18)

So

¢

V= S
T
:

· eG (µ)¡ eC(µ; ¢µ)e¡ fM:
¢

e ¡K:sign(S)

¸
< 0 (19)

The controller has the form :

Ta = ¡cM:
¢

e ¡ bC(µ; ¢µ)e+ bG (µ)¡K:sgn(S) (20)

3 Evaluations

3.1 Simulations

The initial control law, equation (20) was simulated on a two degrees of freedom robot manip-

ulator as described in (Slotine�s book, 1986, p.229). The kinetic terms used to compute the

control law presented an error on their values of 20%. The position demand is shown in �gure

1.a, the robot manipulator starts with a position error of ¦

8
for joint 1 and ¦

6
for joint 2. The

torque applied to the system (�gure 1.b), exhibits a large amount of chattering which would

be unacceptable in a real application. Figure 1.c and 1.d shown the global convergence of the

errors to zero.
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a.Position demand b.Applied torque

c.Error position d.State space tracking error
Figure 1

The problem with the initial design is the high degree of chattering, which is due to the large

value of the switching bound. This large value is mainly due to assumptions 4 and 5, where the

magnitude is chosen to be always greater than the position and velocity error. This over large

magnitude can be drastically reduced by indexing it with the position and velocity error. In the

following parts, the magnitude of the bounds are made directly proportional to the position and

velocity error. Initial tests reveal that with this form of control, an o¤set occurs in the steady

state. This phenomena is simply due to the fact that the magnitude of the switching term is not

large enough to guarantee the sliding condition when the error is close to zero, this is because

of the linearity between the magnitude of the switching terms of the errors. To overcome this

problem, an integral term is added to the control law such that the new control law is now of

the form :

Ta = ¡
cM:

¢

e ¡ bC(µ; ¢µ)e + bG (µ)¡K(
¢eµ; eµ):sgn(S) +K:

TZ
0

eµ:dt (21)

Simulation of the proposed control law, equation (21) on the same system (�gure 2), reveals

a great reduction of the chattering in the applied torque while guaranteeing trajectory tracking

and zero steady state error.
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a.Applied torque b.Position error

c.State space tracking error
Figure 2

4 Conclusion

In this paper, a new type of controller for robot manipulator has been proposed, equation (21).

The design of this controller is based on a Lyapunov approach with sliding mode. During

the derivation of the algorithm, the robot fundamental properties are taken into account and

engineering considerations are used to establish bounds on the system uncertainties. The initial

form of the controller is tested and the e¤ectiveness of the approach is con�rmed by simulations.

To guarantee the negativeness of the Lyapunov function derivative and that sliding mode occurs

on each sliding surfaces, the bounds have to conservatively selected. This imposed a large

value on the magnitude of the switching terms and results in a high level of chattering on the

applied torque, making the algorithm unsuitable for practical applications. By reconsidering

some of the terms to be bounded, it appears that the constant high magnitude for the bounds

can be reduced by indexing it with the position and velocity error. This results in signi�cant

reduction of the chattering magnitude, an o¤set however is generated. An integral term is

then added to the control law to remove the steady state error. Simulations of the control

laws reveal that chattering is greatly reduced if not completely eliminated whilst maintaining

the performances of the control algorithm. The e¤ectiveness of the scheme for the purpose

of trajectory following is clearly demonstrated by simulations results and promising practical

implementations are currently conducted (Nigrowsky et al., May 1999; Nigrowsky et al., June

1999).

The authors would like to thanks the E.P.S.R.C. and the Dept. of Elect. Eng. & Electronics,

Brunel University for supporting this research.
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