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Abstract

Generalized predictive control (GPC) problem of ARIMAX/ARMAX system in the pres-
ence of input constraints and parametric uncertainty is considered. An adaptive controller is
implemented in an indirect way, and the considered constraints imposed on the control signal
are of the rate, amplitude and energy type. A simulation comparative study of the adap-
tive control system behavior is given with respect to the design parameters and constraints.
Additionally, two one-step controllers are compared by means of simulations.

1 Introduction

Predictive control seems to be one of the most popular topics in academic research and process
control engineering mainly because of its simplicity and succesful industrial applications.

Because input constraints are ubiquitous in control engineering applications, the way of
handling them in control system design is an important question. However, this does not often
happen in the design of control algorithms reported in the literature. Disregarding constraints
or imposing them on the control signal in a heuristic way can cause performance deterioration
or even instability, especially in adaptive control with unstable systems. Taking constraints into
account in the design stage leads inherently to a solution of constrained optimisation problem.
It is well known that quadratic programming (QP) techniques can be applied to solve different
kinds of predictive control problems under constraints.

In this paper, the generalized predictive control (GPC) is considered which is perhaps one of
the most succesful representative amongst predictive control proposals. The application of the
QP to solve the GPC is widely used, see for example the comments given in [5] and [7]. The
constrained GPC has also been discussed in [3], [2] where the QP problem is transformed into the
so called Linear Complementarity Problem which in turn is solved using Lemke’s algorithm. This
reduces the amount of computation compared with the QP. As an alternative to QP, a method
based on a modification of Lawson’s weighted least squares algorithm was proposed in [5] Another
approach to solve the constrained optimization problem involves Linear Matrix Inequalities [7].
In [6], an interesting approach based on the dynamic programming was proposed to solve the
constrained model predictive control. The desaturating approach for adaptive receding-horizon
predictive control in the case of simultaneous amplitude and rate constraints is presented in [8].
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In recent years some research has been done on the predictive control of stochastic systems
which contain parametric uncertainty. Here, as in all adaptive systems, it is necessary to combine
both facets of the adaptive controller, the identification and the control algorithm, in order
to obtain a proper interplay between them resulting in a robust performance of the adaptive
controller.

In this paper, the constrained adaptive GPC (AGPC) for discrete-time stochastic system
of ARIMAX/ARMAX structure with unknown but constant parameters is considered. For
the indirect adaptive controller considered here, the controller parameters are tuned on the
base of system parameter estimates along with the Certainty Equivalence Principle, and the
rate, amplitude and energy constraints are assumed to be imposed on the control input. Few
concepts about how the adaptive GPC can be realized are discussed in [9] and [10].

It is well known that the form of GPC makes the analytical examination of closed-loop
stability and performance properties (including steady-state error) difficult. The objective of
this paper is to present a simulation-based comparison of these properties with respect to control
design parameters and constraints. To this end, stable, unstable as well as non-minimum phase
second-order systems are taken for the simulation study.

2 Standard GPC

First, the standard unconstrained GPC problem of ARIMAX/ARMAX system will be shortly
characterized. An ARMAX model is described by

A(q−1)yt = q−1B(q−1)ut + C(q−1)et (1)

where A,B, and C are polynomials in the backward shift operator q−1, i.e.

A(q−1) = 1 + a1q
−1 + ...+ anaq

−na

B(q−1) = b0 + b1q
−1 + ...+ bnbq

−nb

C(q−1) = 1 + c1q
−1 + ...+ cncq

−nc

and yt is the output , ut is the control input and {et} is assumed to be a sequence of independent
variables with zero mean and variance σ2

e .
In some applications it is more preferable to use an ARIMAX model given by

A(q−1)yt = q−1B(q−1)ut +
C(q−1)

∆
et (2)

where ∆ = 1− q−1.
The GPC cost function is of the form

J(Ny, Nu, qu) = E[
Ny∑
i=1

(yt+i − rt+i)2 + qu

Nu∑
i=1

u?2
t+i−1] (3)

where the weight qu ≥ 0 and the horizons Ny, Nu are basic design parameters of GPC. The
object u?

t is ut for positional control based on an ARMAX model or ∆ut for incremental control
when an ARIMAX model is assumed.

The goal of the GPC is the output yt to follow some reference signal rt taking into account
the control effort. This can be expressed in the following cost function

J(Ny, Nu, qu) = (Gū+ f − r)T (Gū+ f − r) + quū
T ū (4)
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where the matrix G is composed of the impulse response coefficients, {gi}, of the system model
B

A∆ in the ARIMAX case

G =


g0 0 ... 0
g1 g0 ... 0
... ... ... ...

gNy−1 gNy−2 ... gNy−Nu


and

f = (ft+1, · · · , ft+Ny)T

r = (rt+1, · · · , rt+Ny)T

where the free response ft+i = ŷt+i/t with ŷt+i/t being a part of the prediction ŷt+i, i = 1, ..., Ny,
assuming that ∆ut+i = 0, i = 0, ..., Ny − 1. The unconstrained optimal control is then [1],[2],[4]

ū∗ = (GTG+ quI)−1GT (r − f) (5)

where
ū∗ = (∆u∗t , · · · ,∆u∗t+Nu−1)T (6)

The first element of the sequence (6), i.e. ∆u∗t , is applied to the system. At the next
time instant (t + 1), the optimization procedure starts again with the current data. In the
non-adaptive case, this means that in control law (5) only the vectors f, r should be updated.

The derivation of GPC controller for an ARMAX system needs some modifications to the
two polynomial partitions (identities) [1]. In the first identity associated with the prediction
partition, the polynomial A must be used, not A∆ as in the ARIMAX case. In the second
identity concerning the control variables separation, the polynomials Gi =

∑i−1
j=0 gjq

−j appearing
in the ARIMAX derivation must be replaced by Gi∆ for the ARMAX case. Thus, in the GPC
for an ARMAX system, the coefficients gi are the impulse response parameters of the transfer
function B

A .

3 GPC subject to input constraints

Now, the GPC in the presence of rate, amplitude and energy constraints will be examined. As
already mentioned, QP techniques are computationally demanding. However, as pointed out by
Tsang and Clarke [4], for reducing the computation load the separate treating of amplitude and
rate constraints can be advantageous.

First, the main results of [4] are given for the case of rate and amplitude constraints taking
as a base the unconstrained GPC solution (5) to an ARIMAX model.

3.1 GPC under rate constraint

The rate of the control input is constrained in amplitude

| ∆ut |≤ β (7)

In the case of ARIMAX model, using the Lagrange multipliers method as proposed in [4], the
constrained optimal control can be found from (in the case when only one future control saturates
at +β or −β)

ūc = ū∗ + (GTG+ quI)−1λjej (8)
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where ej = (0, 0, · · · , 1, 0, · · · , 0)T where the entry 1 is at the j − th place. To find the Lagrange
multiplier the following equation has to be solved, say for +β

β = ∆u∗t+j−1 + gjjλj (9)

wrt the Lagrange multiplier λj for j = 2, · · ·Nu, and gjj is entry (j, j) of the matrix (GTG +
quI)−1. Now, the optimal constrained ∆uc

t can be found putting λj back to (8).
The above procedure can be extended to the case when more than one future controls saturates,
i.e. for Nu > 2. However, as pointed out in [4] the unsolved problem is on which limits
the optimum lies. A reasonable solution, however heuristic, is based on the assumption that
the constrained optimal control lies on the constraint which is violated by the solution to the
unconstrained optimum. In particular, this reasonning is valid for Nu = 2.

3.2 GPC under amplitude constraint

The amplitude constraint imposed on the control input is given as follows

| ut |≤ α (10)

First, it can be noted that the calculation of optimal amplitude-constrained control for an
ARIMAX is more complex than for an ARMAX model. The opposite statement can be made
in the case of rate constraint.
Again, the use of Lagrange multiplier method for solving the amplitude-constrained GPC for
ARIMAX model is possible, however in general case the involved computations make this ap-
proach not beneficial anymore. The important case Nu = 2 makes an exception. Consider this
case following the idea of [4]. When the future control is feasible then

uc
t = sat[u∗t ;α] (11)

where u∗t = ut−1 +∆u∗t is the control signal obtained by the standard algorithm and sat denotes
the well-known saturation function with saturation limit α.
When the future control signal is infeasible, say ut = α then

∆ut = ∆u∗t −
σ1

σ1 + σ2
[α
′ − (∆u∗t + ∆u∗t+1)] (12)

where σ1, σ2 are the sums of the first and second rows of the 2x2 matrix (GTG + quI)−1,
respectively and α

′
= α−ut−1. Note that α

′
= ∆ut + ∆ut+1. The applied control signal follows

then from
uc

t = sat[ut−1 + ∆ut;α] (13)

where ∆ut is given by (12).

3.3 GPC under energy constraint

Consider the GPC for an ARMAX model with the cost function (4) for qu = 0

J(Ny, Nu) = (Gū+ f − r)T (Gū+ f − r) (14)

under the energy constraint of input signal

ūT ū ≤ γ2 (15)
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For the minimization of (14) under the constraint (15), the Kuhn-Tucker conditions yield

GTGū+GT (f − r) + λū = 0 (16)
λ(ūT ū− γ2) = 0 (17)

λ ≥ 0 (18)

The optimal constrained control is then given by

ūc = (GTG+ λI)−1GT (r − f) (19)

where the multiplier λ can be calculated from

(r − f)TG(GTG+ λI)−1T (GTG+ λI)−1GT (r − f) = γ2 (20)

Summarizing, when the constraint (15) is fulfilled the applied optimal control is the uncon-
strained optimal control ū∗ calculated for qu = 0. Otherwise, the applied constrained control is
given by (19) where the multiplier λ must be recalculated at each time step t whenever the con-
straint (15) is violated. It is worth to notice that the inversion of (GTG+λI) can be calculated
in a recursive way along with the increasing control horizon Nu [10].
The above constrained minimization problem can also be solved iteratively by the method of
Carroll [12] using an unconstrained minimization technique for the modified cost function

Jm(Ny, Nu) = (Gū+ f − r)T (Gū+ f − r) + rk(γ2 − ūT ū)−1 (21)

where for monotonically decreasing rk, so that rk → 0, the succsessive minimizations of (23)
yield the constrained minimum.

4 One-step control

As a particular, however important case, consider GPC for an ARIMAX model with one-step
control horizon (Nu = 1). From (5) one obtains

∆ut = (gT g + qu)−1gT (r − f) (22)

where g is the leading column in G. Thus, an explicit form for ∆ut can be obtained

∆ut =
∑Ny−1

i=0 εt+i+1gi∑Ny−1
i=0 g2

i + qu
(23)

where εt+i = rt+i − ft+i, i = 1, · · · , Ny are the future reference deviations over the prediction
horizon Ny. The coefficients gi can be calculated recursively from

gi = bi −
i∑

k=1

a∗kgi−k (24)

with g0 = b0, bi = 0 for i > nb and a∗j = aj − aj−1 for j = 1, · · · , na + 1 with ana+1 = 0 and
a0 = 1. It can be seen that the minimal value of Ny should be taken as Ny = na+ 1.

Taking the rate constraint into consideration the constrained control law is

∆cut = sat[∆ut;β] (25)
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so, that uc
t = ∆cut + ut−1 becomes the next input to the system. It is worth to notice that

controller (23) can be written in a convolution-type form

∆ut =
Ny∑
i=1

piεt+i (26)

where parameters pi are (complicated) functions of parameters in polynomials A,B and design
parameters Ny, qu. In this way, the numbers pi can be treated as controller parameters.

For comparison, consider the ARIMAX model and the following one-step cost function

J1(qu) = E[(yt+1 − rt+1)2 + qu∆u2
t | yt, yt−1, · · · , ut−1, ut−2] (27)

under the rate constraint (7). Let ∆u∗t denote the unconstrained optimal control signal, i.e. the
optimal control signal in the absence of any saturation limits. This control signal is given by

∆u∗t = − b0H

b0FB + quC
yt +

b0C

b0FB + quC
rt+1 (28)

If ∆u∗t is not feasible then the implemented control signal ∆ut differs from it by u+
t =

∆u∗t −∆ut which denotes the unimplemented portion of optimal contol signal. This correction
takes into account the fact that the past values of cost function J1 may not be zero due to
saturation.

The control law including the saturation correction is as follows [11]

∆ut = − b0H

b0FB + quC
yt −

(b20 + qu)(1− C)
b0FB + quC

u+
t +

b0C

b0FB + quC
rt+1 (29)

where H, F follow from the identity

C = ∆AF + q−1H (30)

where the monic polynomial F is of degree 0. This means that the actually applied control
signal is determined by

∆uc
t = sat[∆ut;β] (31)

The control laws corresponding to (23), (28) in the case of ARMAX with the cost function

J1 = E[(yt+1 − rt+1)2 + quu
2
t | yt, yt−1, · · · , ut−1, ut−2] (32)

can be easily derived.

5 Adaptive control

The adaptive controller which is proposed here is a certainty equivalence or indirect controller.
To estimate the unknown system parameters θ = (a1, ..., ana, b0, ..., bnb, c1, ..., cnc)T the recursive
extended least-squares(RELS) algorithm is applied. Next, the current system parameter esti-
mates θ̂t are used for tuning of the GPC controller. Thus, the obtained adaptive GPC (AGPC)
controller generates the current control signal. The procedure is repeated while the new output
sample is available. From (5) it follows that actually applied unconstrained control signal is
given by

u∗t = u∗t−1 + qT
1 (r − f) (33)
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where qT
1 denotes the first row of matrix (GTG+quI)−1GT . This means that in the unconstrained

adaptive controller only q1 and predictions f have to be recalculated at each discrete time
instant t for current values of parameter estimates θ̂t according to the standard derivation of the
GPC algorithm. Implementing the constrained adaptive controller along with the derivations of
Sections 3.1, 3.2 and 3.3, additional computations have to be performed at each discrete time
instant t for current estimates θ̂t.

At present, there are no rigorous theoretical results regarding the stability of adaptive finite
horizon predictive control. The lack of such results is more evident in adaptive control systems
under amplitude or rate-constrained input. In this case, it is generally not possible to assure
the closed-loop stability for unstable noisy systems. However, in some cases, e.g. for noise-free
or bounded-noise et unstable systems, the close-loop stability can be obtained by an adaptive
controller with constrained output. Then some stability-instability boundary can be evaluated
in terms of initial conditions and initial parameter estimates wrt constraints. In simulations
given below some runs are presented in order to evaluate the close-loop stability for given design
parameters and initial parameter estimates wrt constraints imposed on the input.

6 Simulations

The following examples are simulated:

1. the second-order stable ARIMAX/ARMAX system with actual values of parameters a1 =
−1.8, a2 = 0.9, b0 = 1.0, b1 = 0.5

2. the second-order unstable ARIMAX/ARMAX system with actual values of parameters
a1 = 1.8, a2 = −0.9, b0 = 1.0, b1 = 0.5

3. the second-order non-minimum phase ARIMAX/ARMAX system with actual values of
parameters a1 = −1.5, a2 = 0.7, b0 = −1.0, b1 = 2.0

The polynomial C is taken as C = 1 and the noise variance σ2
e was set at 0.1. System parameters

were identified using the standard RELS method.
For the considered second-order ARIMAX example, the coefficients gi in the GPC controller

(23) for Ny = 3 are g0 = b0, g1 = b1 − b0(a1 − 1), g2 = −(a1 − 1)[b1 − b0(a1 − 1)]− b0(a2 − a1).
On the other hand, the one-step controller ∆ut (29) has the following explicit form

∆ut = − b0
b20 + qu

(h0yt + h1yt−1 + h2yt−2 + b1∆ut−1 − rt+1)

where h0 = 1− a1, h1 = a1 − a2, h2 = a2.
Simulation runs were performed for a square wave as a reference signal given by

r25N+t+5 = 5(−1)N t = 0, 1, ..., 24 N = 0, 1, ...

and for horizons Nu = 2, Ny = 3 with the weight qu = 0.1 if not given otherwise.

6.1 Adaptive GPC under rate constraint

Fig.1 shows the control behavior for example 1 (ARIMAX) with β = 1.5. For β lower than 0.5
the performance is poor. Example 2 (ARIMAX) is simulated in Fig.2 for β = 90, and for β < 75
the system destabilizes. Obviously, in this case as well as in all other examples related with
unstable systems, for a given set of design parameters Nu, Ny, qu, the unconstrained closed-loop
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system is stable for known actual values of parameters. Simulations of example 3 (ARMAX) are
shown in Figs.3,4 for β = 0.5, β = 1.5, respectively. In this example the horizons Nu = 3, Ny = 5
are needed to stabilize the system.

6.2 Adaptive GPC under amplitude constraint

The results for example 1 (ARMAX) are shown in Figs.5,6 with α = 0.6 and α = 2.2, respectively.
Example 2 (ARMAX) is simulated in Fig.7 for α = 35. For α < 27 the system gets unstable.
Here again, for a given set of design parameters Nu, Ny, qu the closed-loop system is stable for
actual values of parameters. Simulation of example 3 (ARMAX) is shown in Fig.8 for α = 4
and Nu = 3, Ny = 5. The tracking deteriorates for lower values of constraint α, and for α < 2
the system gets unstable. The similar behavior can also be observed for an ARIMAX model not
presented here.

6.3 Adaptive GPC under energy constraint

The control behavior for example 1 (ARMAX), is shown in Fig.9 with γ = 3 where the plot of
of λ is also given. For γ < 1, the performance essentially deteriorates. Example 2 (ARMAX)
is simulated in Fig.10 for γ = 45. For γ < 31 the system falls into instability. Simulation of
example 3 (ARMAX) is given in Fig.11 for γ = 3.

6.4 Adaptive one-step controllers

Fig.12 shows the one-step control behavior (25) for example 1 (ARIMAX) with β = 18 and
Nu = 1, Ny = 3 while the one-step controller (31) is simulated in Fig.13 for the same example
with Nu = 1, Ny = 1. The tracking performance in Fig.13 is much better than in Fig.12. This is
because the one-step controller (31) takes the saturation correction into account, and moreover
the matrix G in (23) is not of full dimension 3x3 but it is truncated to a 3x1 matrix (Nu = 1).

7 Conclusions

The GPC problem is presented in the case of rate, amplitude and energy-constrained input
for one and multi-stage cost functions. An indirect adaptive version of GPC with parametric
uncertainty is also discussed. A second-order example is simulated as an indirect adaptive control
system for different configurations of design parameters. As expected, the simulation results
show an essential influence of design parameters and constraints on the stability and control
performance. This is very crucial point in the analysis of the closed-loop stability, especially of
unstable open-loop systems. In general, these systems can not be stabilized using adaptation
under input constraints. However in practice, by a proper choice of design parameters, the close-
loop stability of unstable systems can be achieved when the initial parameter estimates are close
to actual values of parameters and the noise level is low. In this case, given the assumed initial
conditions some stability boundaries wrt constraints can be established through simulations.
This is for example, illustrated in Figs.2,7,10 where the stable response is obtained for large
values of constraint β, α, γ, i.e. for practically unconstrained control.
In all cases, the tracking performance is poor at the initial phase of control and gets better
later on along with the identification of system parameters, however, in this regard the non-
minimumphase systems show the worst performance.
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Figure 1: AGPC under rate constraint

Figure 2: AGPC under rate constraint

Figure 3: AGPC under rate constraint
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Figure 4: AGPC under rate constraint

Figure 5: AGPC under amplitude constraint

Figure 6: AGPC under amplitude constraint
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Figure 7: AGPC under amplitude constraint

Figure 8: AGPC under amplitude constraint

Figure 9: AGPC under energy constraint
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Figure 10: AGPC under energy constraint

Figure 11: AGPC under energy constraint

Figure 12: One step control under rate constraint
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Figure 13: One step control under rate constraint
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