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Abstract: This work deals with the firing sequences estimation for transitions - timed Petri nets by
measurement of the places marking. Firing durations are unknown, but supposed not to be null. In fact,
the Petri net marking is measured, on line, with a sampling pétcsmall enough such that each
transition is fired, at the most, one time duriig The estimation problem has exact and approximated
solutions that are described. Sufficient conditions are given on the accuracy of the marking measurement,
such that the estimation of the firing sequences is an exact one. If the estimation provides several
solutions, the Petri net is completed in order to give a unique solution.
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1. Introduction

Manufacturing systems often considered as discrete events systems and thus are described with
discrete time models (Cassand893, Caoet al 1990). Among the existing models, the
transitions - timed Petri nets (TPN) (Dawtlal 1992, Ramchandani 1973), are well adapted to
represent assembly, disassembly, and manufacturing workshops composed of buffers and
machines. With TPN models, buffers are represented by places, and machines are represented
by transitions. The places marking stands for the buffer contents or for resources allocation, the
transitions firing sequences represent the routings, and, for each transition, the minimal firing
duration corresponds to the machine operating time.

This work is concerned with the firing sequences estimation for TPN by observation of the
marking. Minimal firing durations are supposed to be unknown, but transitions with
instantaneous firing are avoided. Conflictual situations as resources allocation are also
considered. The problem is different from Petri nets state estimation (Bbrdel990, Giua

1997, Kailath 1980), where transitions firing are observed, and marking is estimated. The
proposed estimation is useful to provide the firing frequencies without studying the marking
invariance properties (Daviét al 1992). Applications of our results are identification of
deterministic or stochastic TPN (Dawtl al 1992), and faults diagnosis (Isermann 1984, Knapp

et al 1992, Wanget al 1993, Zenget al1991).

The section two is about PN, and TPN. Our notations and hypothesis are also presented. In the
section three, the estimation of the firing sequences is obtained from the places marking
measurement. The problem is solved with linear systems inversion (Gantmacher 1966, Rotella
et al1995). The estimation is obtained with the help of the Moore Penrose inverse (Bentlsrael

al 1974, Campbelét al 1979, Rotellaet al 1995), of the incidence matrix and with a binary
classifier function. When the set of solutions contains several elements, the TPN is completed
such that a unique solution does fit the problem. A sufficient condition is also given on the
marking measurement accuracy, such that the estimation of the firing sequences is the exact
one. The last section is an illustration of the previous results.
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2. Timed Petri nets

A PN with n places and p transitions is defined as < P, T, Pre, Postwiere P={R} -1
a not empty finite set of places, T5fE.,..,
n T =0. IN is defined as the set of integer numbers and IR as the set of real numberss Pre: P
T - IN is the pre-incidence application (Prg, (B) is the weight of the bond from placet®
transition T), Post: Px T - IN is the post-incidence application (Post (F) is the weight of

the bond from transition;To place B. Let us also define M(t) = (f0)i-1,.» O IN "as the
marking vector at time t and VI IN " as the initial marking vector. The PN incidence matrix

defined as an ordered series of transitions that are successively fired from marking M to
marking M’

M(S - M. (1)

for the number of jTfiring. Equation (1) is equivalent to:

M =M+ W.S. (2)
A TPN with n places and p transitions is defined as < B, Pwhere PN is a Petri net, and
firing of transition T starts when jTis enabled (there are enough parts in each upstream place),
and ends after a positive non null duration equalf@;dDuring the firing of T parts are
reserved. Only non reserved parts are considered for enabling conditions. When two transitions
T, and T, have a common upstream place, the TPN presents a structural conflict. The conflict
becomes an effective one there are not enough parts in the common place to enable both. The
conflict is solved according the TPN definition. Part in the common place are reserved for the
firing of the transition with the smallest minimal firing duration.
of the firing sequence that occurs during '[.(.kAl)k.At[. Thus, considerind\M, = M(k.At) -
M((k-1).At) O IN "as the variation of the marking during [(kA)k.At[, equation (2) results in:

AM k = WXk . (3)
Let us assume that the sampling pedds small enough such that each transition of the PN

could be fired, at the most, one time during [(KALK.At[. With this restriction, X O {0, 1}
with xkj = 1 if the transition jlis fired during [(k-1)At k.At[, and %J- = 0 if not. Let us consider B

..........

basis of IRP, and B represents the firing of transitior). TUsing the previous assumption, X
belongs to a set composed of exacflydiferent firing sequences, and can be written as in
equation (4):

p
Xk = .zlxlj( Bj (4)
J:

3. Estimation of the firing sequences

emphases the fact thﬁ/tkand AM  could contain integer values or real values according to the
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measurement sensor. But, in both cases the proposed approximation method results in vector
X that contains real values. Equation (3) results in:

Let us call r the rank of matrix WI IR "*P. Let us also definechas the rank of matrix (W,

AI\?Ik) 0 IR "*®*D \where matrix (W,AM k) stands for the aggregation of matrix W and vector
AM, .

To estimate the firing sequence characteristic vector, equation (5) has to be solved. This
equation is considered as a set of n linear relations with a unknown \)Aﬁgtof dimension p.

This equation may have one, several or no exact solution according to the values of n, p, r, and
he (Gantmacher 1966, Rotel& al 1995). Let us define Eas the set of solutions for equation

(5) at time t = KAt, (u)i-1.., as the column vectors of matrix W, and Vect(W) = Vegt{uy}

as the vector space defined by the vectots u,

* Whenr=1R, AI\A/Ik O Vect{u,,...ug}. The equation (5) has at least one exact solution, and E

is defined as the set of exact solutions for (5). In this case the system is said to be
compatible (Rotellat al 1995).

« Whenr<Rh AM « O Vect{u,,...us}. The equation (5) has no exact solution. But (5) has one
or several approximated solutions. The vecf&cp(r is called an approximated solution for

equation (5) if it minimises the differen¢|eAl\7|k—W.>ZK [| where]| . || stands for the

Euclidean norm (Rotellat al 1995). In this case,Hs defined as the set of approximated
solutions for (5), and the system is said to be not compatible (Retelld995).

For all the cases, the solutions (the exact ones or the approximated ones) could be obtained with
the same result. The set of solutions for (5) can be expressed with the Moore Penrose inverse of
matrix W (Ben-Israekt al 1974, Campbelet al 1979, Rotellaet al 1995). The Moore Penrose

inverse of WO IR " * P is the unique matrix WO IR P * " that verifies the properties W.
WS W=W, W"W. W'= W, (W. W)'=W. W', and (W.W) " = W".W.

Theorem 1:For system (5), the set of solutions (exact or approximated) is given by:
Eﬁ@zk/f(kzw“,m\hk+(|p—W+W)zE, (6)

where } stands for the identity matrix of IR*P, and z stands for any vector of fRThe

solution )A(Ok corresponding to z=0 is such that:

il =gt % ™

The Moore Penrose inverse of matrix W can be worked out with a help of maximal rank
factorisation of W.

Theorem 2: Let be W IR " *P of rank r. There exists two matrices AVIR " *" of full column
rank r, and W IR "*P of full row rank r, such that W= YWW,. In this case the Moore Penrose
inverse of matrix W is given by:

wr=w T w,Tww, ) tw, T, (8)
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Theorem 3: The dimension of the seti& given by p-r. When p =r the system (5) has a unique
solution (exact or approximated).

For the sake of brevity, the proof of theorems 1, 2 and 3 is omitted (CaneplallL979,
Rotellaet al 1995). From a numerical point of view, the maximal rank factorisation of matrix W
is not easy to obtain. A more efficiency method consists to apply the Greville constructive
algorithm (Ben-Israedt al 1974, Goluket al 1986, Rotellet al 1995).

Let us remind that the components of ved(qgare real values. To deal with firing sequences,
and according to our assumptions the veoiqrhas to be transformed into a vectd =

classifier such thak¥ = 1 if X% > %, andx = 0 if X% < %. We call the vectoK, as the
estimated value of X

Two problems may occur regarding the approximaf(cp(n

» E could contain several solutions. In this case, some complementary information must be
added to the PN in order to choice the good one. This difficulty will be studied in paragraph
3.1.

 E( may also contain no exact solution. In this case, a sufficient condition is given on the
marking measurement accuracy, such tkat= Xy. The approximation error is studied in
section 3.2.

3.1. Petri net complement

When E contains several elements, the marking vecﬂbp does not contain enough
information to work out an unique estimation of the firing sequences. In this case, one solution
is to increase the dimension of the marking vector, by adding some new places to the PN such
that the rank of matrix W will increase to p. The places must be located such that the rank of the
incidence matrix increases.

Theorem 4: When equation (5) has several solutions, the approximation vé(qgocould be

obtained by the addition of p - r complementary places located such that the rank of matrix W
increases to p.

Proof (constructive): The equation (5) has a unique solution if and only if r = p. When r<p, the
addition of well chosen complementary rows to the matrix W increases the rank of W. Let us
assume that W1 IR "*?is of rank r<p and let us defing as thef row of matrix W. There

exists w1 O IR P such that rank(W, ... , W', Wns1') = r+1. Repeating the same operation p-r
times, the rank of augmented matrix W increases to p. Each row defines the location of a new
place in the Petri net. Thus the approximation of the vectorejuires the addition of p-r
places.

3.2. Estimation error

From a theoretic point of view the non-compatible case does not occur, because the equation (3)
is always compatible. The marking vector results from the PN evolution, and considering any
firing sequence ¥ the resulting vectoAM, belongs to Vect(W). Moreover, if equation (6)
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provides several solutions, the TPN is completed according the result given by theorem 4, such
that only a unique solution does fit the approximation problem. This xhique.
From a numerical point of view, the compatibility of equation (5) is not warranted. Only an

approximationAl\?lkof AM, is measured, and this approximation is not exact. In this caseg, r<h
and equation (5) has one or several approximated solutions according to the value of n, p and r.
The vectorAM « includes a measurement errpiaad for this reason may be out of Vect(W):

AMK:AMK +ek, (9)
Equation (3) results in:
X, =W AM, +W* e (10)

where X, =W* AM, and e, =W™ e, represents the influence of the measurement error on the
approximationX , of X,.

Theorem 5:The approximatioﬁ(k of Xy includes an errog such that:

lexl=Voled, (11)

where o stands for the spectral radius of matrix ‘W' (o is the maximal module of the
eigenvalues of matrix (W.W").

Proof: Let us mention that the Euclidean norm is a multiplicative norm, thus:
Jewl =W e | < [w e (12)
The Euclidean norm of matrix Wesults from the vectorial Euclidean norm:

. 13
Ix|= } 49

with [)x| =4/xTx and "W*x =yxT(WHTwW*x .

The matrix (W)".W* O IR "*"is a symmetric non negative matrix. There exists an orthogonal
matrix PO IR "*" such that (W{)".W" = P".D.P where DO IR "*"is the diagonal matrix that

Jw

=ma ||W+x

=\/xT.PT.D.P.x =\/yT.D.y = f%diyiz ,
i=1

with y = P.X = (Y)iz1..n. Let us notice thafix| =1« xTx=1« x"PTPx=1« yTy=1« |y|=1.
Calling o as the maximal eigenvalue of (W', we have:

||W+x

n
||W+x|| < losy? =o
i=1
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and this maximal value is reached. Tiﬂ <o, and equation (11) holds.

The estimation of the measurement error obtained with the last result is composed of 2 terms:
the term+/o depends only from the structure of the PN, and the tlerih depends only from

the place marking measurement method. Because of the non linear sign function, it is not easy
to work out the estimation errcHD(k —Yk". But a result is proposed that gives a sufficient

condition such that the estimatiot) of X, has no error.

Theorem 6: The estimation vector verifies, = Xy if the measurement error is such that:

M- #i <

1
, k=0, 14
ado (14)
Proof: Let us assume that equation (14) holds. Thus:

o s < e

But ||Mk —Mk""'”M k—l_Mk—l||2||Mk _Mk +Mk—l_Mk—l||:||AMk —AM k||=||ek||.

Thus ey | < 1/ (240 ), and according to theorem 5, for every j=1,...,p, we have:

=] Bk -5 F <2,
s=1

K is bounded by:

and >“<J-

Ky = (15)

According relation (15), and the definition of the estimation vexstor if x'j‘ =0, >“<'J‘ -1/2 <0,

andx¥ = 0. On the contrary, k¥ =1, %X - 1/2 >0, andk¥ = 1. ThusX = X;.

Let us notice that a sufficient condition to verify equation (14) is:

|m (kAt) - | k>0, i=1..n, (16)

4¢n0

where|mi (k.At) - rh,"| is the approximation marking error for plageaPtime t=KkAt.

4. Example

Let us consider, as an example, the TPN in figure 1 (Da&tid) 1992) with 8 places and 4
transitions of unknown minimal firing durationg d,, &, and d (not smaller than 1/6 second).

The places Pto R limit the number of simultaneous firing of transitionst® T, to one. The
system is working at maximal speed (i.e. parts are immediately reserved when a transition is
enabled). This PN has a structural conflict because the pldwes RPwo downstream transitions

Tz and T,. The conflict becomes an effective one if there is a unique part in plaoedRf the
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parts in P and R are both not reserved. In this case, the conflict is solved according the TPN
definition. The part in place4Rs reserved for the firing of ;JJLet us notice that the estimation
procedure is not related to the conflict resolution rule, and does work for any other rule.

Figure 1: Example of TPN

The initial marking vector is given by $4(10 20 0 0 1 1 1 1) There is no interest to consider

the marking evolution of places B B, because the marking of these places is always equal to
1. Thus, only a reduced incidence matrix W is considered that defines the marking evolution of
places Pto P,

g5 ™o B” 0 1 OHf

0 _[Mo -1 0 OD](2D

T T v

The matrix WIIR #*%is of rank 3. Thus Econtains several solutions, and to estimate the vector
Xk the system (17) must be completed with another row that is independent from each other.
Applying theorem 4, a possible solution is to add a new plate Peasure the flow coming

from the transition 7, such that the rank of W increases to 4 (this solution is represented with
dashed point in figure 1). Equation (17) results in (18):

g gug g0 OQM

2 0 1 1 3
p0 a0 -1 0 ED( ; 1@0 o o B
D 2 . -
qnsg =gnsp +g0 -1 0 Xk o o EAMK (18)
m,0 [m,0 D1 -1 -1 Er ﬁ
00 g0 0O, 1 -32 -10
s OMs(, OO 0g

The resulting estimation equation is given by (18) and the marking evolution is given in figure
2. The estimation of the firing sequences is achieved by measurement of the marking vector
with a sampling periodit = 0.13 seconds. Let us notice thak 1/6 second, that is to say is

small enough such that each transition of the PN could be fired at the most one time during [(k-
1).At KA.

131



Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

An uniformly distributed random error is considered. Thus, depending on the error, the vector
AI\?Ik may belong or not in Vect(W), and the approximatiﬁm is either an exact solution,
either an approximated one for equation (18). For transitipth& estimationX, , as the exact

value of X are represented in figure 3, for a local measurement error of maximalavalue
0.05. Similar results are obtained for the transitiofi® T; One can notice that the estimation
X corresponds exactly (with a delay) to the vector X

Firing
sequences
M(parts) for T4
18} 15
16}
141 1 +
12}
10 05
sl
0
6 —
—— Actual firing
4t 05 sequences
) =+ Estimated
2F firing sequences
0 -1
t(s) 0 1 2 3 4 5 6 7 8 9 s)
Figure 2: Marking evolution Figure 3: Estimation of fér T,

The set of eigenvalues of (W.W* is given by {0, 0.1529, 0.3820, 2.1805, 2.6180}. Thus
0=2.6180 and applying theorem 6, the maximal admissible measurement error suchthat
Xk is given by equation (19):

||Mk—|\7|k||< k=0. (19)

L. 1 _o1s
4o 4J26180

& &

[ Approximation |

ZE:,\VA{ it riR VVV\’: Tt L

0.04}

Estimation
error

0.02 |

0o 1 2 3 4 5 6 7 8 9 {(s) 5 6 7 8 9 {(s)

Figure 4: Error, for a=0.05 Figure 5: Errog, for anda=0.2

This condition is satisfied if each component\of verifies |m'f —rhik| <0.051. Considering, on

one hand, the previous local measurement error of maximal walaed.05 for each place
marking, the approximation error verifigs < 0.5, as represented in figure 4, axg= X.

Considering, on the other hand, a local measurement error of maximabval@e2 for each
place marking, the accuracy of the measurement is not good enough, as represented in figure 5.
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There exist several values of k such that 0.5, that result in estimatio, different from X..
But there exist also values of k such that 0.5, that result inX, = X,. This illustrates the fact
that the condition given in theorem 6 is a sufficient but not a necessary one.

It is also interesting to notice that decreasing the sampling period does not improve the firing
sequences estimation. The sampling period must only verifies the hypotheses given in section
two, that is to say, for this exampl&<1/6 (smallest firing duration of transitions).

5. Conclusions

Using transitions - timed Petri nets for the modelling of manufacturing systems, an estimation of
the firing sequences was proposed. This problem results in linear system inversion for which the
Moore Penrose inverse of the incidence matrix has to be worked out. The set of solutions was
described (theorems 1 to 3). When several solutions exist, the Petri net was completed with
additional relations in order to provide a unique solution (theorem 4). A sufficient condition was
given on the marking measurement accuracy, such that the estimation of the firing sequences is
an exact one. (theorems 5 and 6). The proposed method is not limited to transitions — timed Petri
nets. The same results hold in the cases of places — timed Petri nets, or stochastic — timed Petri
nets.

Our further work is to apply the firing sequences estimation to determine firing occurrences, and
firing frequencies. Applications like faults diagnosis and timed Petri nets identification will also

be considered.
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