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Abstract

This paper addresses the identification problem for nonlinear multivariable dynamical sys-
tems. A novel identification method is presented, which is based on a suitable modification of
Simulated Annealing Algorithm. This method allows to formulate and solve numerically the
related minimization problem by using an efficient random search minimization approach.
The main features of the proposed identification method are illustrated through its appli-
cation to a case study, which consists of the simulated hysteretic model of a vibrating civil
structure under seismic excitation. The results show that the proposed identification method
is quite efficient in comparison with other conventional identification methods.

1 Introduction

Many identification problems can be formulated as the estimation of an unknown n-dimensional
parameter vector θ, which characterizes the system dynamics as expressed by a set of non linear
continuous-time differential equations plus a set of discrete-time noisy observation equations of
the form :

.
x = f(x, u, θ) (1)

y(tk) = g(x(tk), u(tk), θ) + e(tk) (2)

on the basis of a finite number of discrete time measurements of the output vector {y(tk)}Nk=1

and input vector {u(tk)}Nk=1 , where e(tk) is a discrete-time measurement noise vector.
The estimation problem is usually formulated in the form of the Prediction Error method

(Ljung, 1987), which attempts to minimize directly a cost function associated to the unknown
parameter vector θ, given by :

J(θ) =
1
N

N∑
k=1

εT (tk)W−1(tk)ε(tk) (3)

which is constituted by a sum of squares of prediction errors , weighted through the positive
definite matrix W (tk), where ε(tk) denotes the prediction error vector at time tk, i.e. the
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difference between the observed output vector y(tk) and the one-step prediction of the output
vector ŷ(tk), which is supposed to be supplied by a suitable predictor, given by :

ε(tk) = y(tk)− ŷ(tk) (4)

Under the hypothesis of linearity with respect to the parameter vector θ and of wide sense
stationarity of measurement noise sequence e(tk), it can be shown (Zhou and Blanke, 1989) that
prediction error vectors can be obtained by a set of Kalman filter equations.

According to Prediction Error identification method (Ljung, 1987) no particular assumptions
are required on the probability distribution of measurement noise vector.

A number of identification methods based on Prediction Error have been widely used as
parameter estimators for both linear systems (Ljung, 1987) and certain classes of non linear
multivariable systems (Zhou and Blanke, 1989). Such methods are essentially based on the
recursive minimization of the quadratic cost function expressed by Eq.(3), which takes prediction
errors into account. It is worth noting that the minimization of such a cost function under
constraints given by Eq. (1) and Eq. (2) is a rather difficult task, particularly in the case
of nonlinear multivariable systems with a high number of parameters to be estimated. Such a
minimization should be carried out with the aim of locating the global minimum of the likelihood
function, not just simply a local minimum. Only the global minimum provides an estimate with
good statistical properties: unbiasedness, consistency and efficiency, (Ljung,1987).

The minimization algorithms are generally based on a gradient-type iteration of the form

θk+1 = θk − γkH−1
k gk (5)

where θk is the parameter vector estimate at k-th iteration, gk is the corresponding gradient
vector of cost function J(θ), i.e. gk =

[
∂J
∂θ

]
θ=θk

and Hk is a suitable approximation of the

Hessian matrix
[
∂2J
∂θ2

]
θ=θk

. The positive scalar step size coefficient γk is chosen by a linear

search procedure in such a way to ensure that cost function J is monotonically decreasing at
each iteration, i.e. J(θk+1) < J(θk).

Different numerical algorithms have been proposed, see, e.g. (Gupta, 1974), for the efficient
implementation of Eq.(5), all of which can be regarded as variants of the basic Newton-Raphson
method, in the sense that they try to reduce the numerical efforts required by computation
of the Hessian, using an approximation of this matrix. At the same time it is required that
such approximations result into a positive definite matrix, since only in this case a satisfactory
convergence of the iterative algorithm to the global minimum of cost function J(θ) may be
guaranteed.

It should be noted, however, that a number of drawbacks may seriously affect such algo-
rithms. First of all, the approximations of the Hessian matrix, in the presence of a large number
of variables or of an highly non linear cost function, is very critical, since it may become quite
difficult to balance the influence of rounding errors and truncation errors, when using finite
differences to estimate derivatives. As a consequence of that, the approximated Hessian matrix
may become not positive definite, thus preventing convergence of the algorithm to the global
minimum. Another issue of concern is that gradient-type algorithms used for minimization suf-
fer from the fundamental weakness that the algorithm may get stuck in local minima that are
not globally optimum.

It seems, therefore, that minimization methods which do not require derivatives should
generally be preferable for multivariable identification problems characterized by a high number
of parameters to be estimated or by an highly non linear system dynamical model. A global
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minimization method, based on direct cost function evaluation and its application to nonlinear
multivariable identification, will be described in the next section.

2 Simulated Annealing Algorithm

One of the most efficient random search methods for global minimization is Simulated Anneal-
ing, (Collins et al.,1988), (Aarts and Kurst,1989). In a previous paper (Tiano and Blanke,1997),
Simulated Annealing was successfully applied to the identification of a multivariable linearized
ship model. In the case of a nonlinear system such a method might require a fairly high num-
ber of iterations before achieving convergence. It is therefore necessary to find out suitable
modifications capable to reduce the number of iterations before achieving convergence. Such
modifications consist of an adaptive scheme used for carrying out the random search procedure
associated with Simulated Annealing algorithm.

The determination of the solution of the global minimization problem is carried out by a
direct random search procedure, which attempts to reduce the value of the cost function by
means of proper tests near a preset initial parameter vector.

This method is based on an analogy between the global minimization problem and the
problem of determining the lowest energy state of a physical system. A physical system has
a large number of interacting atoms in thermal equilibrium at a specified temperature. If the
system states are characterized by a parameter vector θ and E(θ) is the energy associated with
state θ, τ is the temperature and kb is the Boltzmann’s constant, then according to statistical
mechanics, the probability P (θ) that the system is in the state θ is given by :

P (θ) = exp

(
−E(θ)
kbτ

)
(6)

Under equilibrium, the most probable states at any given temperature are those associated
with the lowest energy. As it can be demonstrated by theoretical arguments as well as by
experimental evidence, the most effective strategy for obtaining the state with globally minimum
energy consists of slowly cooling a thermodynamic system. This enables it to achieve equilibrium
during the transition from a given initial state to the lowest energy state. In fact, if the cooling
process is carried out sufficiently slowly, the system is allowed to skip over locally stable states
and reach the global minimum energy one. Usually, the Boltzmann’s constant kb is combined
with the temperature and the term temperature is used with reference to their product. In this
way, temperature can also be viewed as nothing but a control parameter for the minimization
procedure.

Simulated Annealing consists of three distinct steps:

• a random search step;

• a minimization step;

• a stopping rule.

The random search step is basically given by the iterative generation of random vectors in
a domain S(θk), constituted by neighboring vectors associated to the current vector θk, at k-th
iteration. The minimization step consists of applying a local minimization routine to some of
the sampled vectors, while the stopping rule is used to stop the algorithm if there is sufficient
evidence that the global minimum has been detected within the limits of a specified accuracy
or when some specified iterations number and/or computing resources have been exhausted.
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The Simulated Annealing algorithm is sketched in Table 1.

begin
θ := initial solution θ0;
τ := initial temperature τ0;
while (stopping criterion is not satisfied) do

begin
while (not yet in equilibrium) do

begin
ξ : = random vector selected in S(θ);
∆J := J(ξ)− J(θ);
P := min

{
1, e−

∆J
τ

}
;

ε := random generation uniform in [0, 1] ;
if ε ≤ P then θk := ξ;

end
τk := updated temperature f(J(θ));

end
output of optimal solution

end

Table 1. Outline of Simulated Annealing algorithm

After the assignment of an initial value θ0 to the unknown parameter vector, an initial temper-
ature τ0 is chosen high enough to ensure that virtually all transitions in the parameter space
may be possible. The random search is then carried out iteratively. A new vector ξ is chosen
belonging to the neighboring set S(θk) associated to the current parameter vector θk ∈ Rn :

θk =
[
θ

(1)
k θ

(2)
k · · · ·θ(n)

k

]T
(7)

Before taking a new vector ξ into account, however, a statistical test is performed to decide
if equilibrium has been reached. Such test essentially consists in the verification that a given
finite sequence of vectors generated by the algorithm inside the inner loop can be regarded as a
realization of a time-homogeneous Markov chain, (Feller, 1950).

In the implementation of Simulated Annealing described in this paper, the neighboring set
S(θk) is constituted by the interior of a hyper-ellipsoid centered in θk and having semi-axes ρ(i)

k ,
i = 1, ...n. These semi-axes are chosen according to an adaptive scheme, in such a way that
when the cost function decreases, a step is made in the same direction, and when it increases,
in the opposite direction:

ρ
(i)
k+1 = λ

(i)
1 ρ

(i)
k if J(ξ) < J(θk)

ρ
(i)
k+1 = λ

(i)
2 ρ

(i)
k if J(ξ) ≥ J(θk) (8)

where λ(i)
1 ≥ 1 , 0 < λ

(i)
2 < 1 and λ

(i)
1 λ

(i)
2 < 1 are the parameters characterizing the adaptive

scheme, (Rastrigin,1983).
The region can be set to depend on properties such as output sensitivity for each particular

parameter. The direction of search is chosen as the realization of n independent, equally dis-
tributed random variables, sampled inside the hyper-ellipsoid with adaptively varying semi-axes.
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The determination of the solution of the global minimization problem is carried out by a direct
random search procedure, which attempts to reduce the value of the cost function by means of
proper tests near a preset initial parameter vector.

At each iteration a decision has to be taken whether or not to accept the new vector ξ in
place of the current one θk. Acceptance of the new vector is made with probability

min
{

1, exp
(
−J(ξ)− J(θk)

τk

)}
(9)

where τk is the current value of temperature. Every descent is thus accepted, but it is also
possible, even if at a limited extent, to perform also up-hill transitions, which may allow the
algorithm to escape out of local minima.

The temperature is gradually, at each iteration, reduced according to a proper cooling sched-
ule. Such cooling should be carried out quite slowly, in order to enable the algorithm to achieve
equilibrium. For this purpose, the cooling schedule is implemented automatically as a function
of the current cost function, i.e.

τk = f(J(θk)) (10)

After a number of simulation experiments, following also a suggestion (Bohachevsky, 1986),
it has been used a piecewise linear schedule of the type:

f(J(θk)) = γk(J(θk)− Jinf) (11)

where Jinf is the value of the cost function corresponding to the global minimum and the co-
efficients γk are positive constants. In this way the temperature parameter τk is automatically
driven to zero, with a speed regulated by γk. It is immediately clear that the implementation of
the method requires the knowledge of the solution Jinf itself, which unfortunately is unknown.
A procedure for estimating recursively Jinf can, however, be developed, which is illustrated in
(Tiano and Blanke,1997).

Two salient features of Simulated Annealing compared to conventional iterative minimization
algorithms were shown to be

• The algorithm very rarely gets stuck into local minima, since transition out of a local mini-
mum is always possible when the search operation is carried out at a nonzero temperature.

• Simulated Annealing exhibits an interesting temperature-dependent adaptive behavior,
according to which the gross features of the global minimum become evident at higher
temperatures, while fine details appear at lower temperatures.

As concerns convergence analysis of the algorithm, some theoretical results, (Aarts and
Korst, 1989), show that convergence with probability one to a globally optimal solution can be
achieved, under some conditions concerning the temperature cooling schedule. Unfortunately,
however, such conditions are of limited practical use, since they are only sufficient but not
necessary and the results are asymptotic by nature. Nevertheless, these convergence results give
some confidence on the Simulated Annealing method and does offer an explanation of its success
in optimization practice.
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3 On the need of system identification in seismic design and
retrofit

In the presence of strong earthquakes, civil structural systems undergo permanent inelastic de-
formations. A physically sound model able to describe the nonlinear relationship between the
applied dynamical loads and the response of the structure in terms of stresses and strains is of
utmost importance at design stage as well as for retrofitting existing damaged structures. En-
dochronic and standard plasticity models are among the most widely used by the civil engineer-
ing community to simulate the dynamics of structures under the action of strong earthquakes.
Such idealizations are of parametric type. The parameters involved in the model are material–
dependent and govern the yielding stress, i.e. the stress above which permanent deformations
occur, the smoothness and the shape of the hysteresis loop that is of crucial importance in that
it controls the amount of energy that the structure may dissipate in the inelastic range. As
to this contribution, we have adopted the Bouc-Wen model that is described in the section to
come.

3.1 The Bouc-Wen model

The Bouc–Wen model is often used to include hysteretic phenomena into the analysis of civil
structures within a rather simple framework. Referring to shear–beam idealizations, the i–th
interstory restoring force Fsi reads

Fsi = αikixi + (1− αi)kiDyivi, (12)

where αi is the post–to–pre yielding stiffness ratio, ki is the initial elastic stiffness, xi is the
relative displacement between adjacent storeys and Dyi is the yielding displacement. The new
hysteretic variable vi is a state variable so that each story of the building is now described by
a triplet of state variables, i.e. displacement, velocity and hysteretic variable. The nonlinear
constitutive law is then introduced by means of the nonlinear equation

v̇i = D−1
yi {Aiẋi − βi|ẋi||vi|

ni−1vi − γiẋi|vi|ni}, (13)

where Ai, βi and γi control the shape of the hysteresis loop and ni determines the smoothness
of the loop and the degree of nonlinearity. In particular, as ni approaches infinity, an elastic
perfectly plastic behavior is attained. Equations (12) and (13) define completely the Bouc–Wen
endochronic model that need to be coupled to the classical second–order equation of motion. One
should notice that, unlike standard plasticity models that call for an incremental formulation,
the adoption of the Bouc–Wen model allows to use finite quantities likewise the linear case. This
allows the usage of classical methods of integration for nonlinear differential equations avoiding
expensive techniques based on Newton–Raphson iterative schemes.

3.2 Global equations of motion

Let us focus our attention on a nd degree–of–freedom system which is excited by a ground base
acceleration ẍg(t), see Figure 1 for a schematic of the system and Figure 2 for the El Centro
seismic record that has been used for the numerical simulations to be presented next. The vector
equation of motion of the system may be written as

Mẍ(t) + Cẋ(t) +Kex(t) +Khv(t) = Γẍg(t), (14)
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Figure 1: Typical 3DOF shear-type structure
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Figure 2: El Centro seismic record

where M = nd × nd mass matrix, C = nd × nd damping matrix, Ke = nd × nd initial stiffness
matrix, Kh = nd × nd hysteretic stiffness matrix and Γ = nd × 1 vector distributing the inertial
forces due to the base motion to each story. An nd-dimensional vector f is then introduced that
groups all the equations of type 13, one for each story of the structure,

v̇ = h(ẋ, v), hi(ẋi, vi) = D−1
yi {Aiẋi − βi|ẋi||vi|

ni−1vi − γiẋi|vi|ni}, i = 1, . . . , nd. (15)

Toward the adoption of classical time integration schemes for first–order vector differential
equations, we introduce a 3nd state vector z(t) and a 3nd vector W as

z(t) =


x
v
ẋ

 , W =


0
0

M−1Γ

 . (16)

One may then write the nonlinear state–space equation of motion as

ż = g(t, z) +Wẍg(t) ≡ f(t, z), (17)
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Figure 3: Hysteretic restoring force
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Figure 4: Comparison of SA (dotted line) and MSA (solid line) convergence properties

where g(t, z) is a 3n vector, depending nonlinearly on the state z(t), that reads

g(t, z) =


ẋ

h(ẋ, v)
−M−1[Cẋ+Kex+Khv]

 . (18)

There exist several numerical schemes for the integration of (17). We have considered the uniform
r+ 1-steps Adams-Bashforth family that approximates the state vector z with the vector η that
is computed by

ηi+1 = ηi + ∆t
r∑
j=0

bj,rfi−j , i ≥ r, fi = f(ti, ηi), (19)

where bj,r are properly computed weight factors.

4 Identification Results

Figure 3 presents a typical hysteresis cycle that describes the restoring force of a SDOF system
subject to the El Centro record. The latter was scaled by a factor 0.4 to match the features of
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Figure 5: Fitting of MSA identified model (dotted line) and simulated (solid line) displacement

the system that were chosen as shown in Table 2.

M C Ke Kh Dy A β γ n

10000 692 600000 300000 0.1 1 0.5 0.5 3

Table 2: Physical properties of the system

In order to test the proposed identification method, a number of simulations were first carried
out on a structure described by parameters shown in Table 2. The identification problem
consisted in estimating from input/output simulated time histories the unknown parameter
vector

θ = [Dy A β γ n]′. (20)

A standard Simulated Annealing algorithm and the one modified with the adaptive scheme above
described were compared with respect to a varying range of initial parameter vector estimates.
It has been verified that the modified SA method is capable to achieve an appreciably faster
convergence to the true parameter vector. A typical behavior is shown in Fig. 4, where the cost
function time histories of the standard SA (.) and the modified SA one (-) are plotted.

Such results are based on a 10 second time length seismic excitation record and corresponding
civil structure response.

The rather good agreement between simulated displacement and identified one is shown in
Fig. 5.

More complete and detailed result, not reported here, which will be published in the near
future allow to draw the following conclusions:

• The modified SA identification algorithm can achieve an appreciable reduction in conver-
gence time with respect to the standard SA method.

• The quite high reliability of the estimated parameters indicates that it can be used as a
tool for nonlinear system identification and particularly in the area of seismic design.
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