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Abstract

In the paper the analysis is presented of forced periodic oscillations in systems described

by the second order ODE with resonant linear part and complex nonlinearities: with hys-

teresis and with delay. For such equations we give conditions of the existence of at least one

periodic solution and conditions of the existence of unbounded sequences of such solutions.

Analogous results are formulated for forced periodic oscillations in resonant control systems.

1 The statement of the problem

Consider the equation

x′′ + x = f(t, x) (1)

with a continuous bounded function f(t, x) : R×R → R, 2π-periodic in t. Consider the problem
of existence of 2π-periodic solutions for this equation. The linear part of this equation is resonant;

equation (1) with various right-hand sides may have or may have not 2π-periodic solutions. For
f(t, x) ≡ b(t) the answer is given by the Fredholm alternative lemma: the 2π-periodic solutions
exist i�

b
def
=

∫
2π

0

b(t)eit dt = 0, (2)

if this condition is valid then there exist in�nitely many such solutions. For f(t, x) depending on x
even particular answers are much more cumbersome. We consider cases where the nonlinearities

have the form \time-independent nonlinearity" + \forcing term b(t)". The value |b| de�ned by

(2) plays the main role in the following statements, the value |b|/√π is equal to the norm in L2

of the orthogonal projection of the function b(t) onto two dimensional subspace with the basis

cos t, sin t.

The �rst theorems on 2π-periodic solutions of nonlinear equation (1) where obtained in

(Lazer and Leach, 1969). Later, various authors generalized the Landesman { Leach results in

di�erent directions. They used various topological methods, potential methods, lower and upper

solutions, etc., and proved the existence of at least one periodic solution and the non-existence

of such solutions. Generally speaking, the results obtained can be formulated in the following

way. Under suitable (and rather strong) conditions for the nonlinearity f(t, x), two numbers

k and K are calculated, 0 ≤ k ≤ K. If |b| < k, then at least one 2π-periodic solution exists.

If |b| > K, then 2π-periodic solutions do not exist at all or they may exist, but their common
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topological index equals zero. Results of this type were obtained for more general than (1) types

of equations, in particular, for equations with hysteresis and delays. In (Krasnosel'skii, 1996)

a class of nonlinearities was presented such that k = K, and in a natural sense the results are

sharp.

Recently, in (Krasnosel'skii and Mawhin, to appear), more general results were obtained.

For arbitrary bounded nonlinearity f(t, x) = f(x) + b(t), again, two numbers 0 ≤ k ≤ K are

presented. If |b| < k, then, again, at least one 2π-periodic solution exists. The most interesting

case is k < |b| < K. For this case there exists an in�nite sequence of 2π-periodic solutions,

norms (in any reasonable sense) of these solutions tend to in�nity.

In this paper we consider the equations

x′′ + x = f(x(t), x(t− h)) + b(t) (3)

with the delay h and the equations

x′′ + x = G(x) + b(t) (4)

where G(x) is the special type of hysteresis nonlinearity considered in Section 3 (for more

details, properties and general theory, see (Krasnosel'ski�� and Pokrovski��, 1984)). The results

for equations (3) and (4) are generalized in Section 5 for some equations arising in control theory.

De�nition 1. We say that some equation has correct boundaries k ≤ K for the

forcing term b(t) if the following statements are valid:

• The inequality |b| < k guarantees an existence of at least one 2π-periodic solution of the

equation and an a priori estimate ‖x‖C ≤ c for all such solutions;

• The inequality k < |b| < K guarantees the existence of an in�nite sequence xn of 2π-
periodic solutions of the equation: ‖xn‖C → ∞ as n→ ∞;

• The inequality K < |b| guarantees an a priori estimate ‖x‖C ≤ c for all 2π-periodic

solutions of the equation.

Generally speaking, if the inequality K < |b| holds, then the equation may have not 2π-

periodic solutions.

The paper is organized in the following way: in the next section we present a result about

second order ODE with delay, in Section 3 we give a minimal description of hysteresis nonlin-

earity named hysteron and in Section 4 we present a result about second order ODE with the

hysteron. Remarks are in Section 6, Section 7 contains all the proofs.

2 Equations with delay

For f : R × R → R continuous and bounded, set

ψs(ξ) =

∫
2π

0

sin t f(ξ sin t, ξ sin(t− h)) dt, ψc(ξ) =

∫
2π

0

cos t f(ξ sin t, ξ sin(t− h)) dt,

	(ξ) =

√
[ψc]

2 + [ψs]
2 (5)

and

k = lim inf
ξ→+∞

	(ξ), K = lim sup
ξ→+∞

	(ξ). (6)
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We say that the function f(x, y) satis�es a proper Lipschitz condition in x if for any δ and

� a function1 ζ(r) exists such that

lim
r→+∞ ζ(r) = 0 (7)

and

|f(x1, y)− f(x2, y)| ≤ ζ(r) |x1− x2|, δ r ≤ |x1|, |x2|, |y| ≤ � r. (8)

Similarly, we say that the function f(x, y) satis�es a proper Lipschitz condition in y if for

any δ and � a function ζ(r) exists such that (7) and

|f(x, y1)− f(x, y2)| ≤ ζ(r) |y1 − y2|, δ r ≤ |y1|, |y2|, |x| ≤ � r. (9)

We say that the function f(x, y) has proper behavior at in�nity, if it can be represented as a

sum of two functions, one satisfying a proper Lipschitz condition in x and another one satisfying

a proper Lipschitz condition in y.

Theorem 1. Suppose the function f(x, y) has proper behavior at in�nity. Equation (3) has

correct boundaries (6) for the forcing term b(t).

The typical example of the function f(x, y) having proper behavior at in�nity is the function
f1(x) + f2(y) with arbitrary bounded and continuous f1 and f2.

3 Hysteresis nonlinearity

�
0 x

g


λ

η1α

η2α

H2(x)

H1(x)

gα(x)

Fig. 1. Hysteron

Only a very simple modi�cation of the nonlinearity \hysteron" is described below. See

(Krasnosel'ski�� and Pokrovski��, 1984) for the general de�nition. Consider in the plane {x, g}
the graphs of two continuous functions H1(x), H2(x) satisfying the inequality H1(x) < H2(x),
x ∈ R. Suppose that the set 
 = {{x, g} : x ∈ R, H1(x) ≤ g ≤ H2(x)} in the plane {x, g}
is sliced into the disjoint union of continuous family of graphs of continuous functions gα(x),
where α is a parameter. Each function gα(x) is de�ned on its interval [η1α, η

2
α], η

1
α < η2α and

gα(η
1

α) = H1(η
1

α), gα(η
2

α) = H2(η
2

α), that is, the endpoints of the graphs of the functions gα(x)

1
It may depend on δ and �.
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belong to the union of the graphs H1(x), H2(x) (see Fig. 1). The �gure graphs one of the

functions gα(x).
The hysteron is the transducer with internal states µ from the segment [0, 1] and the input{

output operators which are described as follows. The variable output H(µ0)x(t) ≡ H(µ0, t0)x(t)
(t ≥ t0) is de�ned by the formula

H(µ0)x(t) =




gα(x(t)), if η1α ≤ x(t) ≤ η2α,
H1(x(t)), if x(t) ≤ η1α,

H2(x(t)), if η2α ≤ x(t)

for the monotone inputs x(t), t ≥ t0. The value of α is de�ned by the initial state µ0 to satisfy
gα(x(t0)) = µ0H1(x(t0)) + (1 − µ0)H2(x(t0)) and the corresponding variable internal state is

de�ned by

�(µ0)x(t) =
H(µ0)x(t)−H1(x(t))

H2(x(t))−H1(x(t))
.

For the piecewise monotone continuous inputs, the output is constructed by the semigroup

identity. The input{output operators can then be extended to the totality of all continuous

inputs by continuity (see (Krasnosel'ski�� and Pokrovski��, 1984)). The operators H(µ0)x(t),
�(µ0)x(t) are de�ned for each continuous input and for each initial state. They are continuous

as operators in the spaces of continuous functions with the uniform metric.

4 Equations with hysteron

Suppose that both functions Hi(x) are bounded. Set

R(t, ξ) =

{
H1(ξ sin t), cos t > 0,
H2(ξ sin t), cos t < 0;

�(ξ) =

√[∫
2π

0

sin tR(t, ξ) dt

]2
+

[∫
2π

0

cos tR(t, ξ) dt

]2
and

k = lim inf
ξ→+∞

�(ξ), K = lim sup
ξ→+∞

�(ξ). (10)

Theorem 2. Let, for any α,

η2α − η1α ≤ θ(max{|η2α|, |η1α|}) (11)

where the function θ(u) : (0,∞)→ (0,∞) is sublinear at in�nity:

lim
u→∞

θ(u)

u
= 0. (12)

Then the system

x′′ + x = H(µ0)x+ b(t), �(µ0)x(t)
∣∣∣
t = 2π

= µ0 (13)

has correct boundaries (10) for the forcing term b(t).

The second equation in (13) means that the 2π-periodic function x(t) is a solution of equation

with hysteresis if the corresponding time-depending state of hysteresis nonlinearity is also 2π-
periodic (and this function satis�es the �rst equation (13)).
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-⊗ - -W •
x(t)b(t) F [x(t)] + b(t)

F [x(t)]
�

6

F

Fig. 2. Control system

5 Control theory equations

In this section we consider equations arising in control theory:

L

(
d

dt

)
x =M

(
d

dt

)(
f(x(t), x(t− h)) + b(t)

)
(14)

and 


L

(
d

dt

)
x =M

(
d

dt

)( H(µ0)x+ b(t)
)
,

�(µ0)x(t)
∣∣∣
t = 2π

= µ0.

(15)

Here L(p) and M(p) are real coprime polynomials, l = degL > m = degM . Again, H(µ0)x is

a hysteron of the type considered in Section 3.

In Fig. 2, one can see a block diagram of such systems. Nonlinearity is denoted as F and

W is a linear element with rational transfer function W (p) =M(p)/L(p).

Theorem 3. Let L(i) = 0 and let L(ni) 6= 0 for n = 0, 2, 3, 4, . . .. Let the function f(x, y)
be continuous and bounded and let it have proper behavior at in�nity. Then system (14) has

correct boundaries (6) for the forcing term b(t).

Theorem 4. Let L(i) = 0 and let L(ni) 6= 0 for n = 0, 2, 3, 4, . . .. Let, for any α, inequality
(11) be valid with sublinear θ(u). Then system (15) has correct boundaries (10) for the forcing

term b(t).

6 Remarks

6.1 Index at in�nity

For any di�erential equation presented above we consider (see the proofs) some equivalent

operator equation. This equation has the form x = Ax, where A is a completely continuous

nonlinear operator. For the vector �eld x − Ax, one can calculate its index at in�nity (see

(Krasnosel'ski�� and Zabre��ko, 1984)). If |b| < k, then the index equals ±1; if k < |b| < K, then

the index is unde�ned; if K < |b|, then the index is equal to 0.
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6.2 Bifurcation at in�nity

Let, in a Banach space E, the equation B(x, λ) = 0 be given with some operator B(x, λ)
depending on a parameter λ ∈ � = [a, b].

A value λ0 of the parameter is called a bifurcation point at in�nity or (the same) an asymptotic

bifurcation point if, for every ε > 0, there exists a λε ∈ (λ0− ε, λ0+ ε)
⋂
� such that, for λ = λε,

the equation B(x, λ) = 0 has at least one solution xε satisfying ‖xε‖ > ε−1.

Let us formulate an application example of Theorem 1 for some equation with a parameter.

Consider the equation

x′′ + x = f(x(t), x(t− h)) + λ sin t (16)

with a real parameter λ.
Let us consider function (5) and numbers (6). Suppose k 6= K.

Theorem 5. The set [−K/π,−k/π]⋃ [k/π,K/π] is the set of asymptotic bifurcation points

for equation (16).

This set is a union of 2 intervals if k > 0 and the interval [−K/π,K/π] if k = 0.

6.3

After all, a natural question arises: How to calculate the numbers k and K, used in the

hypotheses of Theorems 1 { 4 or, the same, how to estimate the behaviour of the integrals∫
2π

0

sin t f(ξ sin t, ξ sin(t− h)) dt and

∫
2π

0

cos t f(ξ sin t, ξ sin(t− h)) dt (17)

or ∫
2π

0

sin tR(ξ, t) dt and

∫
2π

0

cos tR(ξ, t) dt (18)

for ξ → ∞?

The general approach is the following: for various functions f(x, y), at least one or both such

integrals tend to zero or even are equal to zero. Therefore one can split the function f(x, y) into
the sum of functions such that for some of these functions integrals (17) tend to zero and for

others the integrals can be computed in an obvious form.

More information on the calculation of the integrals (17) for the simplest case f(x, y) = f(x)

without delays can be found in (Krasnosel'skii and Mawhin, to appear).

Integrals (18) can be rewritten in the form∫
2π

0

sin tR(ξ, t) dt =

∫ π/2

π/2

sin t(H1(ξ sin t) +H2(ξ sin t)) dt

and ∫
2π

0

cos tR(ξ, t) dt = H1(ξ)−H2(ξ)−H1(−ξ) +H2(−ξ).

It is easy to see that the even parts of the functions Hj(x) do not play any role, the answers are
de�ned by the odd parts.

6.4 Arbitrary period

Of course, instead of the left-hand side x′′ + x it is possible to consider left-hand sides of

more general type x′′+ n2x with integer n > 1. Formulations for this case are almost the same.

It is possible to rewrite all theorems for T -periodic problem with arbitrary period T .
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7 Proofs

7.1 General scheme

The proofs of all theorems have common schemes. In the beginning we reduce the periodic

problem for initial di�erential equation to an operator equation in an appropriate Banach space.

This operator equation has the form x = Ax + Fx with linear completely continuous A and

nonlinear completely continuous bounded F . The asymptotically linear vector �eld �x = x −
Ax − Fx is degenerate: the value 1 is an eigenvalue for the linear operator A. For the case

b < k, we calculate the index at in�nity for this �eld, the index is well de�ned and equal to ±1.
For the case b > K, the index is also well de�ned and equal to 0. This proves the corresponding

parts of the theorems.

The most di�cult case is k < b < K. For this case we calculate the rotation of the vec-

tor �eld �x on the boundary of some in�nite-dimensional cylinder in L2; this cylinder has a

2-dimensional component and a bounded 2-codimensional part. Using the rotation product for-

mula the rotation calculation can be reduced to the rotation calculation of some planar vector

�eld on the boundary of annulus. The last calculation can be done in obvious form, the rotation

of �x equals ±1. Therefore, in such cylinder at least one solution exists. As a last step of the

proof, we see that our cylinders may not intersect arbitrary large balls {‖x‖ ≤ r}, consequently
these solutions may have arbitrary large norms. The main part of the proof is the reduction of

the rotation of the in�nite-dimensional vector �eld to the rotation of a 2-dimensional one. This

2-dimensional vector �eld has the form �(|z|)z/|z|+ z0, where z is the point of the plane, con-
sidered as a complex number, �(|z|) is a bounded complex function, z0 is some vector. Denote

K ′ = lim sup |�(ξ)|, and k′ = lim inf |�(ξ)|, then if |z0| < k′ the index at in�nity of the �eld

�(|z|)z/|z|+ z0 is equal to ±1, if k < |z0| < K then the equation �(|z|)z/|z|+ z0 = 0 has an

unbounded set of solutions.

The idea of the proof was already used for functional nonlinearity f(x) in (Krasnosel'skii

and Mawhin, to appear). The main part is the reduction of in�nite dimensional vector �elds to

some planar ones. This reduction follows from Lemmas 1 and 2 below. The �nal study of the

planar vector �elds is common for both Theorems 1 and 2.

We give the complete proof for Theorem 1 only. For equations with hysteresis we give only

the proof of the main lemma and give some explanations for the equivalent operator equation

construction. Other parts of the proof are very close to the proof of Theorem 1.

7.2 Main lemma for nonlinearities with delay

Denote

th =

{
t− h, t ≥ h,

t− h+ 2π, t < h.

Lemma 1. Let the function g(t) be Lipschitz. Let the function e(t) ∈ C1 satisfy the condition

mes{t ∈ [0, 2π] : e(t)e′(t) = 0} = 0. Let the function f(x, y) have proper behavior at in�nity.

Then the following relation is valid for any c > 0:

lim
ξ→∞

sup
‖z‖C1≤c

∣∣∣∣
∫

2π

0

g(t)
(
f(ξe(t) + z(t), ξe(th) + z(th))− f(ξe(t), ξe(th))

)
dt

∣∣∣∣ = 0. (19)

Proof. Without loss of generality we prove this lemma for the case where the function

f(x, y) satisfy a proper Lipschitz condition in y only.
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Let us choose an ε > 0 and let us show that the supremum in (19) is less than ε for su�ciently

large |ξ|:

sup
‖h‖C1≤c

∣∣∣∣
∫

2π

0

g(t)
(
f(ξe(t) + z(t), ξe(th) + z(th))− f(ξe(t), ξe(th))

)
dt

∣∣∣∣ < ε. (20)

To this end, let us split the interval [0, 2π] into a �nite number of subintervals [ai, bi] and [bi, ai+1]

as follows. The intervals (bi, ai+1) contain the set {t ∈ [0, 2π] : e(t)e′(t) = 0}, the union of these

intervals can have any arbitrarily small measure, they can be chosen such that

t ∈ ⋃
[ai, bi]⇒ th ∈ ⋃

[ai, bi], sup |f(x, y)|
∫

⋃
[bi,ai+1]

|g(t)| dt < ε/2. (21)

Suppose that the points ai and bi are �xed till the end of the proof of the lemma. For any [ai, bi],
the estimates

inf
t∈[ai,bi]

min{|e(t)|, |e′(t)|, |e(th)|} ≥ δ > 0 (22)

hold. This means that the function e(t) is strictly monotone on every [ai, bi], and, for su�ciently
large |ξ| (|ξ| > 2cδ−1), the function ξe(t) + z(t) is also strictly monotone, and |ξe′(t) + z′(t)| >
1/2 |ξ|δ. Consider the integrals

Ji =

∫ bi

ai

g(t)f(ξe(t) + z(t), ξe(th) + z(th)) dt.

Fix any one of them, and perform in this integral, for any ξ, the change of variables t = t(τ) =
t(ξ, τ) de�ned by the formula ξe(τ) = ξe(t) + z(t):

Ji =

∫ t−1(ξ,bi)

t−1(ξ,ai)

g(t(ξ, τ)) f(ξe(τ), ξe(t(ξ, τ)h) + z(t(ξ, τ)h)) t
′
τ(ξ, τ) dτ.

The function t(ξ, τ) is one-to-one, t(ξ, τ)→ τ and t′τ (ξ, τ)→ 1 uniformly in τ as |ξ| → ∞. Now

t−1(ξ, ai)→ ai, t−1(ξ, bi)→ bi,

and g(t(ξ, τ))→ g(τ) due to the continuity of g(·). One can see that |t(ξ, τ)h − τh| ≤ const ξ−1

hence |ξe(t(ξ, τ)h) + z(t(ξ, τ)h) − ξe(τh)| ≤ const. Consequently from the Lipschitz condition

(9) it follows that

Ji −
∫ bi

ai

g(τ)f(ξe(τ), ξe(τh)) dτ → 0

for every i. This, together with (21), proves (20) and the lemma. �

7.3 Main lemma for hysteron

Let

r(t, ξ; e) =

{
H1(ξe(t)), e′(t) > 0,
H2(ξe(t)), e′(t) < 0;

Lemma 2. Let the function g(t) be Lipschitz. Let the function e(t) ∈ C1 satisfy the condition

mes{t ∈ [0, 2π] : e′(t) = 0} = 0. Then the following relation is valid for any c > 0:

lim
ξ→∞

sup
µ∈[0,1],‖z‖C1≤c

∣∣∣∣
∫

2π

0

g(t)
( H(µ)(ξe(t) + z(t))− r(t, ξ; e)

)
dt

∣∣∣∣ = 0. (23)
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Proof. Again, let us choose an ε > 0 and let us show that the supremum in (23) is less than

ε for su�ciently large |ξ|:

sup
µ∈[0,1],‖z‖C1≤c

∣∣∣∣
∫

2π

0

g(t)
( H(µ)(ξe(t) + z(t))− r(t, ξ; e)

)
dt

∣∣∣∣ ≤ ε.

Let us split the interval [0, 2π] into interval in the same way as in the proof of Lemma 1, the

intervals (bi, ai+1) have an arbitrarily small common measure. Consider the integrals

Ji =

∫ bi

ai

g(t)
( H(µ)(ξe(t) + z(t))− r(t, ξ; e)

)
dt.

On any interval (ai, bi), the function x(t) = ξe(t) + z(t) is monotone for su�ciently large ξ. At

the beginning of the interval the state of hysteron can be di�erent from 0 and 1, after some time

the state becomes 0 if x(t) decreases and it becomes 1 if x(t) increases. Let us estimate how long

the state can be in the interior (0, 1) of the interval [0, 1]. Since we have the uniform estimate

(22), for su�ciently large ξ the velocity x′(t) is arbitrary large of the order ξ. This means that
x(t) always reaches the end ηj

α (j = 1, 2) after the time

η2α − η1α
ξ

≤ θ(c1ξ)

ξ
→ 0.

Therefore

Ji = o(ξ) +

∫ bi

ai+σ0

g(t)
( H(µ)(ξe(t) + z(t))− r(t, ξ; e)

)
dt

where for t ≥ ai + σ0 one has

H(µ)(ξe(t) + z(t)) = Hj(ξe(t) + z(t))

with the corresponding j = 1, 2. The rest of the proof, i.e. the equality

lim
ξ→∞

sup
‖z‖C1≤c

∣∣∣∣
∫ bi

ai+σ0

g(t)
(
Hj(ξe(t) + z(t))−Hj(ξe(t))

)
dt

∣∣∣∣ = 0

can be done with a change of variables similar to one in the proof of Lemma 1. �

7.4 Equivalent operator equations

Consider the space L2 = L2(0, 2π) of square integrable functions with the usual norm.

Denote by �0 the 1-dimensional subspace of constant functions and by �n, n = 1, 2, . . . the
2-dimensional subspaces spanned by the functions sin t and cos t. De�ne for any u(t) ∈ L2 the

linear self-adjoint operator

Au(t) =
2

π

∞∑
n=0

1

2− n2
Pnu

where by Pnu we denote the orthogonal projector onto �n. This operator is completely contin-

uous in L2, it is also completely continuous as the operator from L2 to C1, it maps any function

u(t) into the 2π-periodic solution x = Au of the equation x′′ + 2x = u(t). If u(t) is continuous,

then this solution is the classical one, if u(t) ∈ L2, then x(t) ∈W 1,2.
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This means that 2π-periodic problem for the equation (3) is equivalent to the equation

x = A
(
x+ f(x(t), x(th)) + b(t)

)
(24)

and this problem for the equation (13) is equivalent to the system

x = A
(
x+H(µ0)x+ b(t)

)
, �(µ0)x(t)

∣∣∣
t = 2π

= µ0. (25)

Analogously we can rewrite the periodic problem for equation (14) and for system (15), we

do not write the exact formulas.

We prefer to consider the operator equations in the space L2 but the operators H and � are

de�ned for continuous functions x(t) only. Instead of (24) and (25) we consider the systems

y = Ay + f(Ay(t), Ay(th)) + b(t) (26)

and

y = Ay +H(µ0)Ay + b(t), �(µ0)Ay(t)
∣∣∣
t = 2π

= µ0. (27)

Equation (26) is considered in L2, any its solution y ∈ L2 generates the solution x = Ay ∈ C
of equation (24). Analogously, any solution {y, µ0}, y ∈ L2 of the equation (27) generates the

solution {x = Ay, µ0} of equation (25), x ∈ C.

The second equation in systems (25) and (27) is de�ned only for µ ∈ [0, 1]. Let us formally
continue the operator �(µ)x for µ 6∈ [0, 1] as follows:

�(µ)x = �(0)x, if µ < 0 and �(µ)x = �(1)x, if µ > 0.

Now the operator �(µ)x(t) can be considered as the operator de�ned for µ ∈ R and x ∈ C.

Equations (26) and (27) have the form x = Bx where x is an element of some Banach space

E. We have E = L2 and By = Ay + f(Ay(t), Ay(th)) + b(t) for equation (26) and E = L2 × R

and the corresponding B for system (27). For both theorems the operator B is completely

continuous in the corresponding space E.
The proof of Theorems 1 and 2 is di�erent for 3 di�erent items of De�nition 1. We give the

proofs only for Theorem 1. Theorem 2 has additional di�culty: we need to control the state µ
for the hysteresis. From the proofs it is clear that this di�culty does not give any troubles.

7.5 Index at in�nity calculation, the case |b| < k

The proof of this part is very close to the proof of its analog from (Krasnosel'skii and Mawhin,

to appear).

In the proof we use the notation

Pu(t) =
1

π

∫
2π

0

cos(t− s)u(s) ds

for the orthogonal projector onto the plane �1 and the notation Qx = x− Px.

Let k > |b|. Consider the homotopy

�(λ, x) = x−Ax− λf(Ax, Ax(th))− (1− λ)Pf(Px, Px(th))− b, λ ∈ [0, 1]. (28)

Now we have to do two things, namely to prove an a priori estimate for all possible zeros of

the homotopy �(λ, x), and to study the vector �eld �(0, x).
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Suppose that x(t) = ξ sin(t+ϕ)+z(t) where z(t) = Qx(t) and �(λ, x) = 0. Then Q�(λ, x) =

0 and P�(λ, x) = 0. The equality Q�(λ, x) = 0 implies the estimate

‖Az‖C1 ≤ c <∞.

The equality P�(λ, x) = 0 has the form

λPf(Ax, Ax(th))− (1− λ)Pf(Px, Px(th))− Pb = 0. (29)

If ξ → +∞, then according to Lemma 1, Pf(Ax, Ax(th))−Pf(Px, Px(th))→ 0, therefore (29)

implies

lim
ξ→∞

Pf(Px, Px(th)) = −Pb(t) (30)

Since 2

lim inf
ξ→∞

‖Pf(Px, Px(th))‖L2 ≥ lim inf
ξ→∞

	(ξ)/
√
π = k/

√
π

and
√
π ‖Pb‖L2 = |b| the condition |b| < k contradicts to (29). This proves the required a priori

estimate.

Now consider the vector �eld �(0, x) = x−Ax−Pf(Px, Px(th))− b. This vector �eld in L2

has two independent components: in �1 and in QL2. In QL2 this �eld is asymptotically linear

and non-degenerate, its index at in�nity is ±1. On the plane �1 this vector �eld depends on

Px only. Consider this planar vector �eld on circles {ξ = ρ} of �xed large radius ρ. Since

Pf(Px, Px(th)) = Pf(ξ sin(t+ ϕ), ξ sin(th + ϕ)) =
1√
π

(
ψs(ξ) sin(t+ ϕ) + ψc(ξ) cos(t+ ϕ)

)
the image P�(0, Px){ξ = ρ} of the circle {ξ = ρ} is one-to-one passed circle with the center

|b|/√π and the radius ψ(ξ). The origin lies inside this circle; this means that the rotation of

the vector �eld P�(0, Px) on the circle {ξ = ρ} is equal to 1. The rotation product formula

completes the proof: the index of in�nity of the vector �eld �(0, x) is ±1 as well as the index

of �(1, x).

7.6 In�nite sequences of solutions, the case k < b < K

For this case there exist unbounded sequences ξn and ξn with ξn+1 > ξn > ξn such that

	(ξn) + ε < |b| < 	(ξn)− ε, 	(ξn) < 	(ξ) < 	(ξn), ξn < ξ < ξn (31)

for some �xed ε > 0. Without loss of generality, suppose that any ξn is su�ciently large so that

the supremum in formula (19) is small enough for ξ ≥ ξn.

Below we prove that the rotation γ of the vector �eld x − Ax − f(Ax, Ax(th)) − b on the

boundary of the set 
n = {‖Qx‖ ≤ R1 + 1} × {ξ sin(t + ϕ) : ξ ∈ [ξn, ξ
n]} ⊂ L2 is de�ned and

that |γ| = 1. This equality proves the remaining part of the theorem: any 
n contains its own

solution of equation (26), and the sets 
n are disjoint. The constant R1 will be chosen below,

and it does not depend on n.

Let us �x some n and let us calculate |γ| for this number n. Consider again the homotopy

(28)

For λ = 0 this homotopy is our vector �eld x−Ax− f(Ax, Ax(th))− b, for λ = 1 it is equal

to �(x, 1) = x−Ax − Pf(Px, Px(th))− b.

2
We write \≥" instead of \=" in the next formula because the value ξ is not arbitrary.
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Let us prove that the homotopy is nonzero on ∂
n. If it is not the case, then �(x, λ) = 0

for some λ ∈ [0, 1] and x(t) = ξ sin(t + ϕ) + z(t). Therefore, Q�(x, λ) = 0 and P�(x, λ) = 0.

The �rst equality again implies the estimates

‖z‖L2 ≤ R1, ‖Az‖C1 ≤ c (32)

where the constants c and R1 are independent from λ and ξ. With this de�nition of the constant

R1, we see that Q�(x, λ) is nonzero if ‖Qx‖L2 = R1 + 1.

Now consider the remaining part of the set ∂
n, which is made of the sets {‖Px‖L2 =

ξn, ‖Qx‖L2 ≤ R1 + 1} and {‖Px‖L2 = ξn, ‖Qx‖L2 ≤ R1 + 1}. The equality P�(x, λ) = 0 can

be rewritten as

P [f(Px, Px(th)) + b] = λP [f(Px, Px(th))− f(Ax, Ax(th))]

But the last equality is impossible for large n: the left-hand side is uniformly nonzero due to

(31), and the right-hand side is arbitrarily small for large ξ.
Now consider the vector �eld �(x, 1) = x − Ax − Pf(Px, Px(th)) − b. The rotation

γ(�(x, 1), ∂
n) can be calculated with the use of rotation product formula. This formula for

our case takes the form

γ(�(x, 1), ∂
n) = (−1)βγ(Pf(Px, Px(th))− Pb, ∂Zn),

where β is an integer. Here Zn = {ξn ≤ ‖Px‖L2 ≤ ξn} ⊂ �1 is an annulus in the plane �1, and

the value of γ(Pf(Px, Px(th))−Pb, ∂Zn) can be calculated directly. The map Pf(Px, Px(th))−
Pb is one-to-one on the boundary ∂Zn, and the image of this boundary is again the annulus.

Simple computation shows that the origin lies in this second annulus, this means that the

rotation γ is equal to 1.

7.7 A priori estimate, the case b > K

This is the most simple part of the proof.

Consider equation (26) and suppose that the set of its solution is unbounded. Then these

solutions have the form ξn sin(t+ ϕ) + zn(t) with ξn → ∞.

Again ‖Azn‖C1 ≤ c and we can apply Lemma 1. Since Py = PAy and

Pf(Ay(t), Ay(th)) + Pb(t) = 0, (33)

we have for ξn → ∞:

‖Pf(Ay(t), Ay(th))− Pf(Py, Py(th))‖L2 → 0

therefore for su�ciently large ξn

lim sup
ξn→∞

‖Pf(Ay(t), Ay(th))‖L2 ≥ K
√
π <

√
π|b| = ‖Pb(t)‖.

This contradicts to K < |b|. �
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