
A Composite Semigroup for the In�nite-Dimensional Di�erential

Sylvester Equation∗

Zbigniew Emirsajlow†

Institute of Control Engineering

Technical University of Szczecin

70-313 Szczecin, POLAND

Abstract

This paper presents a certain approach to the study of the operator di�erential Sylvester
equation which arises in various control problems on �nite time horizon. A crucial role in this
approach is played by the so-called composite semigroup. It is a strong-operator continuous
semigroup de�ned on a Banach space of linear bounded operators obtained as a composition
of two `classical' strongly continuous semigroups de�ned on a Hilbert space. We investigate
basic properties of the solution to this equation in the case when the operators occuring in
in the equation are unbounded.

1 Introduction

This paper introduces to the concept of a composite semigroup and its application to the analysis

of the operator di�erential Sylvester equation. This equation arises in various control problems

on �nite time horizon [0, τ ], τ ∈ (0,∞), for linear in�nite-dimensional systems with unbounded

input or output operators. In order to formulate the problems precisely we have to introduce

the following notation and assumptions.

A1 and A2 are linear unbounded operators on a real Hilbert space H (identi�ed with its dual)

with the domains D(A1) and D(A2). We assume that both A1 and A2 generate strongly con-

tinuous semigroups T1(t) ∈ L(H) and T2(t) ∈ L(H), t ∈ [0,∞). H1
1 = D(A1) is a Hilbert

space with appropriately de�ned scalar product and H1
−1 is a completion of H with respect to

the norm ‖ · ‖H1
−1

= ‖(λI−A1)−1(·)‖H . Notice that H1
−1 can be equivalently de�ned as D(A∗1)

∗,

i.e. the dual to the domain D(A∗1) of the unbounded adjoint operator A∗1 on H. Analogously,

we de�ne spaces H2
1 and H2

−1 for the operator A2.

The main objective of our examination is the following operator di�erential equation (for the

time being written formally)

Ẋ(t) = A1X(t) + X(t)A2 + B1C2, X(0) = X0, (1)

where t ∈ [0, τ ], A1 are A2 are unbounded operators de�ned above, C2 ∈ L(H2
1 , Z) is an ad-

missible observation operator for T2(t) (see Weiss (1989a)) and B1 ∈ L(Z,H1
−1) is an admissible
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control operator for T1(t) (see Weiss (1989b)), where Z is a real Hilbert space. Usually, equation

(1) is referred to as the di�erential Sylvester equation , e.g. Gajic and Qureshi (1995), and it is

almost impossible to overestimate the importance of this equation in systems and control theory.

Probably, the most important special cases of equation (1), frequently appearing in analysis

of numerous control problems on �nite time horizon [0, τ ] , see e.g. Gajic and Qureshi (1995) or

Emirsajlow and Townley (1995), are the following operator di�erential Lyapunov equations

Ẋ(t) = AX(t) + X(t)A∗ + BB∗, X(0) = X0, (2)

or

Ẋ(t) = A∗X(t) + X(t)A + C∗C, X(0) = X0, (3)

where t ∈ [0, τ ].
The main goal of this paper is to develop a certain mathematical framework whithin which

the basic properties of a solution to the di�erential equation (1), can be analyzed.

The main idea we explore is an introduction of the so-called composite semigroup T(t) ∈
L(L(H)) (i.e. T(t) : L(H)→ L(H)), t ∈ [0,∞), de�ned as follows

T(t)X = T1(t)XT2(t), X ∈ L(H), t ∈ [0,∞), (4)

where T1(t),T2(t) ∈ L(H), t ∈ [0,∞), are generated by A1 and A2, respectively.

2 Properties of the composite semigroup

We start with examination of basic properties of the operator T(t) ∈ L(L(H)).

Lemma 2.1 (a) If ‖T1(t)‖L(H) ≤M1e
ω1t and ‖T2(t)‖L(H) ≤M2e

ω2t, then

‖T(t)X‖L(H) ≤M1M2e
(ω1+ω2)t‖X‖L(H), t ∈ [0,∞). (5)

(b) The family T(t) ∈ L(L(H)), t ∈ [0,∞), is a semigroup, i.e.

T(0)X = X, X ∈ L(H),
T(t+ s)X = T(t)(T(s)X) = T(s)(T(t)X), X ∈ L(H), t, s ∈ [0,∞).

(c) T(·) ∈ L(L(H)) is strong-operator continuous at origin, i.e.

lim
t→0+

‖(T(t)X)h− (T(0)X)h‖H = 0, h ∈ H, X ∈ L(H).

This lemma can be proven rather easily using the de�nition (4). It can be also shown that

Part (c) implies that T(·) ∈ L(L(H)) is strong-operator continuous at every t ∈ [0,∞) and,

in general cannot be strongly continuous unless the semigroups T1(·) and T2(·) are uniformly

continuous.

The in�nitesimal generator A of T(t), understood as an operator on L(H), is de�ned as the

limit

(AX)h = lim
t→0+

(T(t)X)h−Xh
t

}, X ∈ D(A), h ∈ H, (6)

where D(A) ⊂ L(H) is its domain de�ned as follows

D(A) = {X ∈ L(H) : lim
t→0+

(T(t)X)h−Xh
t

}, (7)

with the limit existing for every h ∈ H.

1724

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



Lemma 2.2 The operator A : D(A) 7→ L(H) enjoys the following properties.

(a) D(A) is strong-operator dense in L(H).

(b) A is uniform-operator closed on L(H).

(c) For X ∈ L(H)∫ t

0
(T(r)X)dr ∈ D(A) and A(

∫ t

0
(T(r)X)dr) = T(t)X−X.

(d) For X ∈ D(A)

T(t)X ∈ D(A) and
d

dt
(T(t)X) = A(T(t)X) = T(t)(AX).

(e) For X ∈ D(A) and h ∈ D(A2)

(AX)h = A1Xh+ XA2h. (8)

Proof : We omit the proofs of Parts (a)-(d) since they are essentially the same as for the

strongly continuous case (see Pazy (1983)). Part (c) can proven as follows. Let h ∈ D(A2) ⊂ H,

g ∈ D(A∗1) ⊂ H, X ∈ D(A) ⊂ L(H) and then

lim
t→0+

1
t
〈(T(t)X)h−Xh, g〉H

= lim
t→0+

1
t
〈X(T2(t)− I)h, (T∗1(t)− I)g〉H

+ lim
t→0+

1
t
〈X(T2(t)− I)h, g〉H + lim

t→0+

1
t
〈Xh, (T∗1(t)− I)g〉H

= 〈XA2h, g〉H + 〈Xh,A∗1g〉H

= 〈(A1X + XA2)h, g〉D(A∗1)∗,D(A∗1).

Hence

〈(AX)h, g〉H = 〈(A1X + XA2)h, g〉H

and since this extends to all g ∈ H we have

(A1X + XA2)h ∈ H, A1Xh ∈ H.

2

Using the above concept of a composite semigroup we can look at the following operator

di�erential equation

Ẋ(t) = AX(t) + Y, X(0) = X0, t ∈ [0,∞), (9)

where Y ∈ L(H). It can be easily shown that for X0 ∈ D(A) this equation has a unique solution

X(t) ∈ D(A) which is strong-operator di�erentiable in L(H). It is also clear that this solution

is given by

X(t) = T(t)X0 +
∫ t

0
(T(t− r)Y)dr. (10)
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3 Some generalization

If we take into considerations properties of the semigroups T1(t) and T2(t) then it can be seen

that the second term in the formula (10) makes also sense for Y ∈ L(D(A2), D(A∗1)
∗), as an

integral on L(D(A2), D(A∗1)
∗) with the strong-operator topology. Now we need the following

de�nition.

De�nition 3.1 An operator Y ∈ L(D(A2), D(A∗1)
∗) is said to be admissible for T(t) ∈ L(L(H))

if for every t > 0 the following inequality holds

|〈
∫ t

0
(T(t− r)Y)hdr, g〉D(A∗1)∗,D(A∗1)| ≤ m(t)‖h‖H‖g‖H , h ∈ D(A2), g ∈ D(A∗1). (11)

It is clear that in this case (11) extends to all h, g ∈ H which can be equivalently written as∫ t

0
(T(t− r)Y)dr ∈ L(D(A2), D(A∗1)

∗) ∩ L(H).

Lemma 3.2 If C2 ∈ L(D(A2), Z) is an admissible observation operator for T2(t) and B1 ∈
L(Z,D(A∗1)

∗) is an admissible control operator for T1(t), then B1C2 ∈ L(D(A2), D(A∗1)
∗) is

admissible for T(t) ∈ L(L(H)).

The proof follows rather easily from the Cauchy-Schwarz inequality, so we omit details. Let us

now consider the following di�erential equation

Ẋ(t) = AX(t) + B1C2, X(0) = X0 (12)

and notice that for X ∈ L(H) the expression AXmakes sense as an operator in L(D(A2), D(A∗1)
∗).

Our �nal result reads as follows.

Theorem 3.3 If C2 ∈ L(D(A2), Z) is an admissible observation operator for T2(t) and B1 ∈
L(Z,D(A∗1)

∗) is an admissible control operator for T1(t), then for every X0 ∈ L(H) equation

(12) has a unique solution X(t) ∈ L(H) such that Ẋ(t) ∈ L(D(A2), D(A∗1)
∗), both with weak-

operator topologies. This solution is explicitly given by the formula

X(t) = T(t)X0 +
∫ t

0
(T(t− r)B1C2)dr. (13)
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