
Adaptive Sliding Backstepping Control of Nonlinear Semi-Strict

Feedback Form Systems

A. Jafari Koshkouei and A. S. I. Zinober ∗

Applied Mathematics Department
The University of Sheffield

Sheffield S10 2TN
U.K.

Abstract

This paper considers the application of a combined adaptive backstepping sliding mode
control (SMC) algorithm to a class of nonlinear continuous uncertain processes which can be
converted to a semi-parametric strict form. The algorithm follows a systematic procedure for
the design of dynamical adaptive SMC laws for the output regulation of observable minimum
phase nonlinear systems.

1 Introduction

The backstepping design procedure is a systematic design technique for globally stable and
asymptotically tracking adaptive controllers for a class of nonlinear systems. In fact, adaptive
backstepping algorithm has been its applicability to systems which can be transformed to a tri-
angular form, in particular, the parametric pure feedback (PPF) form and the parametric static
feedback (PSF) form (Kanellakopoulos et al., 1991). This method has widely been studied in
the last few years (Kanellakopoulos et al., 1991, 1992; Rios-Boĺivar and Zinober, 1994, 1997a,b).
When plants include uncertainty with lack of information about the bounds of unknown pa-
rameters, adaptive control is more convenient; whilst, if some information about uncertainty
(e.g. bounds) is available, robust control is usually employed. Sliding mode control (SMC) is
a robust control method, and backstepping can be considered a method of adaptive control.
The combination of these methods yields benefits from both methods. A systematic design
procedure has been proposed to combine adaptive control and SMC for the nonlinear systems
with relative degree one (Yao and Tomizuka, 1994). The sliding mode backstepping approach
has been considered for some classes of nonlinear systems which need not be in the PPF or
PSF forms (Rios-Boĺivar and Zinober, 1994, 1997a,b; Rios-Boĺivar, 1997). A symbolic algebra
toolbox allows striagthforward design (Rios-Boĺivar and Zinober, 1998).

If a plant contains unmatched uncertainty, the system may be stabilized via state feedback
control (Corless and Leitmann, 1996). Some techniques have been proposed for the case of plant
containing unmatched uncertainty (Freeman and Kokotović, 1996). In this paper we consider
nonlinear systems which can be converted to a particular form, the so called semi-parametric
strict form (SPSF). In this form the plant contains unmodeled terms and unmeasurable external
disturbance which are bounded by known functions. We extend the classical backstepping
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method to this class of systems in Section 2 to achieve the output tracking of a dynamical
reference signal. Sliding mode control design is studied in Section 3. An example illustrating
the results is presented in Section 4 with some conclusions in Section 5.

2 Adaptive Robust Control

Consider the semi-strict feedback form

ẋ1 = x2 + ϕT1 (x1)θ + η1(x,w, t)
ẋ2 = x3 + ϕT2 (x1, x2)θ + η2(x,w, t)
ẋ3 = x4 + ϕT3 (x1, x2, x3)θ + η3(x,w, t)

... (1)
ẋn−1 = xn + ϕTn−1(x1, x2, . . . , xn−1)θ + ηn−1(x,w, t)
ẋn = f(x) + g(x)u+ ϕTn (x)θ + ηn(x,w, t)
y = x1

where x = [x1, x2, . . . , xn] is the state, y the output, u the control and ϕi(x1, . . . , xi) ∈ Rρ,
i = 1, . . . , n, are known functions which are assumed to be sufficiently smooth. θ ∈ Rρ is the
vector of constant unknown parameters and ηi(x,w, t), i = 1, . . . , n, are the unknown nonlinear
scalar functions including all the disturbances. w is an uncertain time-varying parameter.

Assumption. The functions ηi(x,w, t), i = 1, . . . , n are bounded by known functions hi(x1, . . . xi)
∈ Rρ, i.e.

|ηi(x,w, t)| ≤ hi(x1, . . . xi), i = 1, . . . , n (2)

Suppose yr(t) is the bounded reference signal with bounded n-th order derivative.

We now follow the backstepping approach.

Step 1. Define the error variable z1 = x1 − yr then

ż1 = x2 + ϕT1 (x1)θ + η1(x,w, t)− ẏr (3)

From (3)

ż1 = x2 + ωT1 θ̂ + η1(x,w, t)− ẏr + ωT1 θ̃ (4)

with ω1(x1) = ϕ1(x1) and θ̃ = θ − θ̂ where θ̂(t) is an estimate of the unknown parameter θ. It
is desired that θ̂ → θ when t → ∞. The subsystem (3) can be stabilized with respect to the
Lyapunov function

V1(z1, θ̂) =
1
2
z2

1 +
1
2
θ̃TΓ−1θ̃ (5)

where Γ is a positive definite matrix. The derivative V1 is

V̇1(z1, θ̂) = z1

(
x2 + ωT1 θ̂ + η1(x,w, t) + ω1T θ̃ − ẏr

)
+ θ̃TΓ−1

(
Γω1z1 − ˙̂

θ
)

(6)

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

2377



Define τ1 = Γω1z1. If ˙̂
θ = τ1, the estimate error θ̃ can be eliminated from V̇1, i.e. the second

term of V̇1 is zero. Let

β1 = α1(x1, θ̂, t) + ẏr = −ωT1 θ̂ − h1(x1)sgn(z1) + ẏr − c1z1 (7)

with c1 is a positive number. In subsystem (3), x2 acts a virtual control. So with the control
law x2 = β1(x1, θ̂), V̇1(z1, θ̂) = −c1z

2
1 + η1(x,w, t)z1 − h1(x1)|z1|. However, x2 is not the actual

control and therefore x2 6= β1(x1, θ̂). Define the error variable as

z2 = x2 − α1(x1, θ̂, t)− ẏr = x2 + ωT1 θ̂ + h1(x1)sgn(z1)− ẏr + c1z1 (8)

Then

ż1 = −c1z1 + z2 + ωT1 θ̃ + η1(x,w, t)− h1(x1)sgn(z1) (9)

and V̇1 is now converted to

V̇1(z1, θ̂) = −c1z
2
1 + z1z2 + η1(x,w, t)z1 − h1(x1)|z1|+ θ̃TΓ−1

(
τ1 − ˙̂

θ
)

Step 2. Consider the second Lyapunov function

V2(z1, z2, θ̂) = V1 +
1
2
z2

2 (10)

Then

V̇2 = −c1z
2
1 + η1(x,w, t)z1 − h1(x1)|z1|+ z2

[
z1 + x3 + ωT2 θ̂ +

(
η2(x,w, t)− ∂α1

∂x1
η1(x,w, t)

)
−∂α1

∂t
− ∂α1

∂x1
x2 −

∂α1

∂θ̂

˙̂
θ − ÿr(t)

]
+ θ̃TΓ−1

(
τ2 − ˙̂

θ
)

(11)

where ω2 = ϕT2 (x1, x2)− ∂α1

∂x1
ϕT1 (x1) and τ2 = τ1 + Γω2z2 = Γ (ω1z1 + ω2z2).

Let

β2(x1, x2, θ̂, t) = α2(x1, x2, θ̂, t) + ÿr = −z1 − c2z2 − ωT2 θ̂ −
(
h2(x1, x2) +

∣∣∣∣∂α1

∂x1

∣∣∣∣h1(x1)
)
×

sgn(z2) +
∂α1

∂x1
x2 +

∂α1

∂θ̂
τ2 +

∂α1

∂t
+ ÿr(t) (12)

and z3 = x3 − β2 = x3 − α2 − ÿr. If x3 = β2 and τ2 = ˙̂
θ, then V̇2 < 0. But x3 6= β2, and so

ż2 = −z1 − c2z2 + z3 + ωT2 θ̃ +
(
η2(x,w, t)− ∂α1

∂x1
η1(x,w, t)

)
−
(
h2(x1, x2) +

∣∣∣∣∂α1

∂x1

∣∣∣∣h1(x1)sgn(z2)
)

+
∂α1

∂θ̂

(
τ2 − ˙̂

θ
)

(13)

Step k (1 ≤ k ≤ n− 1). The time derivative of the error variable zk is

żk = xk+1 + ωTk θ̂ −
k−1∑
i=1

∂αk−1

∂xi
xi+1 −

∂αk−1

∂θ̂

˙̂
θ + ξk − y(k)

r (t) +(
k−2∑
i=1

zi+1
∂αi

∂θ̂
Γwk

)
+ ωTk θ̃ −

∂αk−1

∂t
(14)
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where

ωk = ϕk(x1, . . . , xk)−
k−1∑
i=1

∂αk−1

∂xi
ϕi(x1, . . . , xi)

ζk = hk(x1, . . . , xk) +
k−1∑
i=1

∣∣∣∣∂αk−1

∂xi

∣∣∣∣hi(x1, . . . , xi) (15)

ξk = ηk −
k−1∑
i=1

∂αk−1

∂xi
ηi

Since xk+1 = zk+1 + βk = zk+1 + αk + y
(k)
r ,

αk(x1, x2, . . . , xk, α̂, t) = −zk+1 − ckzk − ωTk θ̂ +
k−1∑
i=1

∂αk−1

∂xi
xi+1 +

∂αk−1

∂t
− ζksgn(zk)

+
∂αk−1

∂θ̂
τk +

(
k−2∑
i=1

zi+1
∂αi

∂θ̂

)
Γwk (16)

Then the time derivative of the error variable zk is

żk = −zk−1 − ckzk + zk+1 + ωTk θ̃ + ξk − ζksgn(zk)−
∂αk−1

∂θ̂

( ˙̂
θ − τk

)
+

(
k−2∑
i=1

zi+1
∂αi

∂θ̂

)
Γwk

(17)

The time derivative of Vk is

V̇k = −
k−1∑
i=1

ciz
2
i + zkzk+1 +

k−1∑
i=1

(ξi − ζisgn(zi)) zi −

(
k−2∑
i=1

∂αi

∂θ̂
zi+1

)(
τk −

˙̂
θ
)

+θ̃TΓ−1
(
τk −

˙̂
θ
)

(18)

since

τk = τk−1 + Γωkzk = Γ
k∑
i=1

ωizi (19)

Step n. Define
zn = xn − βn−1 = xn − αn−1 − y(n)

r

with αn−1 obtained from (16) for k = n. Then the time derivative of the error variable zn is

żn = f(x) + g(x)u+ ηn(x,w, t) + ωTn (x, t)θ̂ −
n−1∑
i=1

∂αn−1

∂xi
xi+1 −

∂αn−1

∂θ̂

˙̂
θ +

∂αn−1

∂t

+ωTn (x, t)θ̃ − ξn − y(n)
r +

(
n−2∑
i=1

zi+1
∂αi

∂θ̂

)
Γwn (20)

where ωn(x, θ̂) is defined in (15) for k = n. Consider

Vn = Vn−1 +
1
2
z2
n (21)
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The time derivative of Vn is now

V̇n = −
n−1∑
i=1

ciz
2
i +

n−1∑
i=1

(ξi − ζisgn(zi)) zi + zn

[
zn−1 + f(x) + g(x)u+ ωTn θ̂−

k−1∑
i=1

∂αk−1

∂xi
xi+1 −

∂αk−1

∂θ̂

˙̂
θ − ∂αk−1

∂t
+ ξn +

(
n−2∑
i=1

zi+1
∂αi

∂θ̂
Γwn

)

−y(n)
r − ∂αn−1

∂t

]
+ θ̃TΓ−1

(
τn − ˙̂

θ
)

(22)

with τn = τn−1 + ΓωTk zn = Γ
∑n

i=1 ω
T
i zi and ζn (15). The control law

u =
1

g(x)

[
−f(x)− zn−1 − cnzn − ωTn θ̂ +

k−1∑
i=1

∂αk−1

∂xi
xi+1 +

∂αk−1

∂θ̂
τn +

∂αk−1

∂t

−

(
n−2∑
i=1

zi+1
∂αi

∂θ̂

)
Γwn + y(n)

r − ζnsgn(zn)

]
(23)

and the final tuning function

˙̂
θ = τn (24)

guarantee the last term of (23) to be zero and, then V̇n < 0, i.e. the global stability of the error
system is achieved.

3 Sliding Mode Control Design

Sliding mode techniques yield robust control, and adaptive control techniques are popular when
there is uncertainty in the plant. The combination of these methods has been studied in recent
years (Rios-Boĺivar and Zinober, 1994, 1997a,b). In general, at each step of the backstepping
method, the new update tuning function and the defined error variables (and virtual control
law) take the system to the equilibrium position. At the final step, the system is stabilized via
the control. With sliding mode control we desire the trajectory to tend to the equilibrium point
along the sliding hyperplane. If the sliding surface is given by the final variable zn, i.e. zn = 0,
the sliding mode condition holds for the control design (23) (Rios-Boĺivar and Zinober, 1994).
However, if the sliding hyperplane is a given hyperplane, σ 6= zn, some additional conditions on
the sliding gain matrix and the sliding equation are needed (Rios-Boĺivar and Zinober, 1997a,b).

Consider the sliding surface σ = zn = 0. The sufficient condition for existence of the slid-
ing mode is σ̇σ < 0. Consider the Lyapunov function (21) and the control law

u =
1

g(x)

[
−f(x)− zn−1 − cnzn − ωTn θ̂ +

k−1∑
i=1

∂αk−1

∂xi
xi+1 +

∂αk−1

∂θ̂
τ2 +

∂αk−1

∂t
−(

n−2∑
i=1

zi+1
∂αi

∂θ̂

)
Γwn + y(n)

r − (ζn +K) sgn(zn)

]
(25)

where K is a non-negative real number and is a design parameter. The control law (25) guar-
antees that the condition V̇ < 0 is satisfied. Both the control laws (23) and (25) assure system
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stability and guarantee that the trajectories tend to the equilibrium point along the surface
σ = zn = 0. However, the control (25) contains a gain parameter K which can be changed by
designer to yield additional design freedom.

4 Example

Consider the second order system in semi-PSF form

ẋ1 = x2 + x1θ + ax2
1 cos(bx1x2)

ẋ2 = u

where a and b are unknown but it is known that |a| ≤ 2 and |b| ≤ 3. We have

h1 = 2x2
1

z1 = x1 − yr
z2 = x2 + x1θ̂ + 2x2

1sgn (x1 − yr) + c1 (x1 − yr)− ẏr
α1 = −x1θ̂ − 2x2

1sgn(z1)− c1z1

ω1 = x1

ω2 = −∂α1

∂x1
x1

τ2 = Γ (x1z1 + ω2z2)

ζ2 =
∣∣∣∣∂α1

∂x1

∣∣∣∣ 2x2
1

Then the control law (25) becomes

u = −z1 − c2z2 − ωT2 θ̂ +
∂α1

∂x1
x2 +

∂α1

∂θ̂
τ2 +

∂α1

∂t
+ y(2)

r − (ζ2 +K) sgn(z2) (26)

For yr = 0, simulation results are shown in Figs. 1 and 2 for different values of K. Fig. 3 shows
the simulation results when K = 0 and yr = 0.05 sin(0.5πt).

5 Conclusions

Backstepping technique is a systematic method to design a control so that the systems is stabi-
lized via the control. The sliding mode control is a robust control method design and adaptive
backstepping is an adaptive control design method. In this paper the method of design has
benefited both design methods. So the design method has the advantages of both methods.
The method was employed for a class of nonlinear systems which can be converted to the semi-
parametric strict form. The considered plant may have a unmodeled or external disturbance in
the system equations. The discontinuous control may contain a gain design so that the designer
can select to change the velocity of the convergence to impose the trajectories to the sliding
hyperplane.
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Figure 1: Responses the example with K = 0
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Figure 2: Responses the example with K = 4
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Figure 3: Responses the example with K = 0 and yr = 0.05 sin(0.5πt)
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