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Abstract

The paper deals with the mathematical modeling of a high pressure jacketed tubu-
lar reactor and the development of a neural network based softsensor for estimating the
polymer quality at the exit of a tubular reactor. The reactor model consists of di�er-
ential equations written as function of the dimensionless reactor length. The method of
moments is used for describing the polymer molecular properties. The chain transfer to
solvent process and the coolant ow are taken into account. The reactor mixture speed
is assumed constant, the inlet pressure and the pulse valve e�ects are not included in
the model. The paper develops the general concept of the softsensor and applies it to
the problem of estimating the polymer quality. The softsensor is an arti�cial intelligence
instrument and belongs to the class of inferential measurement techniques. The process
variables not measurable are the initiator concentration and the heat transfer coe�cient.
The process information easily measurable and directly available for building the soft-
sensor consists of the discrete temperature pro�le, the coolant ow temperature and the
solvent concentration. As softsensor structure a feedforward neural neural network with
one hidden layer is employed. The neural networks inputs consist of directly measurable
process variables and process characteristics. The process characteristics (such as the area
under the temperature pro�le peak, the peak location) compensate for the not measur-
able process variables. The solvent concentration proves to be an important input for the
softsensor and improves signi�cantly the softsensor approximation property.

Keywords: Mathematical modeling, Tubular reactor, Polymerization, Neural network,
Softsensor.

1 Introduction

The paper investigates the possibility of building softsensors for the polymer quality (the

weight average degree of polymerization) at the exit of a tubular reactor. This is extremely

important because the measurement of polymer quality is needed for the control algorithm

that regulates the end-use properties of the polymer. The practical applicability of a control

methodology for a polymerization reactor, working well in simulations, is strongly inuenced

by the possibility of measuring precisely di�erent process variables. The measurement of

the weight average degree of polymerization is done with di�culty in practice (Zabisky et al.,
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1991; Nordhus et al., 1997) and basically three types of measurements are used (Joseph Schork

et al., 1993): inferential measurement, o�-line tests and on-line measurement. The inferen-

tial measurement uses a model relating some process variables or operating conditions (that

can be changed during the normal functioning of the process) to the weight average degree

of polymerization. O�-line tests can determine the polymer quality in the laboratory using

techniques such as gel permeation chromatography. On-line measurements are performed by

measuring the polymer melt index which is related to the weight average degree of polymer-

ization. All these measuring methods are traditionally based on physical and chemical laws

of the polymerization process. The general property of the reactors in the chemical industry

is that they are highly nonlinear and important variables (such as the weight average degree

of polymerization) can not be measured directly. The paper develops the general concept

of the softsensor and applies it to the problem of estimating the weight average degree of

polymerization. A lonely tubular reactor with a single injection of initiator/solvent with a

preheater section and coolant ow is considered.

The paper is organized as follows: Section 2 shows the tubular reactor white model and

its behavior. The formulation of the softsensor basic principle in the general case is presented

in Section 3. Section 4 applies the softsensor basic principle to the tubular reactor for estimat-

ing the polymer quality; each step of the development of a neural network based softsensor

is described. The conclusions are drawn in Section 5. In Appendix the numerical parameters

and notations used in the text are given.

2 The tubular reactor white model

2.1 First principle model of the reactor

The present work deals with the chemical process of producing low density polyethylene

(LDPE) in a high pressure polyethylene tubular reactor (Fig. 1). The tubular reactor is a

circular tube, with certain diameter (d) and length (L), where the chemical reactions take

place and polyethylene is produced.

A very simple description of the process is the following: the reactor feed (monomer +

solvent) enters the reactor at certain temperature ( To) and pressure, the initiator is injected

to start up the chemical reactions, the reactor mixture is moving with a certain speed (v)

inside the reactor and the polyethylene comes out (at temperature Tout) at the reactor end

(the tubular reactor is the main part of the whole process ow of polyethylene; there are

compressors, separators, product coolers, recycle systems (Zabisky et al., 1991) not presented

here). The heat released during the chemical reactions is removed through the reactor jacket

coolant ow (inlet temperature Tci, outlet temperature Tco). The heat transfer coe�cient

(U) of the jacket and the coolant volumetric ow (Fw) are assumed constant along the re-

actor length. A common method for making polymers is Free Radical Polymerization

and is thoroughly described (together with other methods: anionic, cationic and step-growth

polymerization) in Joseph Schork et al. (1993). The monomer (raw material used to make

polyethylene) consists of ethylene molecules (carbon-carbon double bonds). The polyethylene

is a large molecule of repeating ethylene units. The main steps of Free Radical Polymerization

are initiation, propagation, termination and chain transfer reactions. Initiation: the initiator

breaks down into molecules called free radicals; these radicals have an unpaired electron who
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Figure 1: The polymerization tubular reactor diagram

will pair with another electron as soon as it has the opportunity. Propagation: the radicals,

through the unpaired electron, will pair to the ethylene molecules forming live polyethylene

chains; these live chains are growing by being concatenated with new ethylene molecules.

Termination: the termination step ends the growing of the live polyethylene chains; it occurs

either by combination (when two polyethylene live chains �nd each other, string together

and stop growing), chain transfer to polymer (the unpaired electron at the end of a growing

chain will pair with an electron from a carbon-hydrogen bond from another growing chain;

the result is a dead polyethylene chain (does not grow anymore) and another live chain; the

latter has carbons who have, instead of hydrogen, long chains of polyethylene attached to

them; this is called branched, or low density polyethylene), chain transfer to solvent (the live

chains stop growing by combining with the solvent molecules).

The tubular reactor model consisting of a set of highly nonlinear di�erential equations as

function of the dimensionless reactor length is the following (the parameters are given in

Appendix):
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The main references for building the reactor model is the work of Yoon (1982), Yoon and Rhee

(1985) and Kiparissides et al. (1993). The model (Munoz, 1996; Anghelea, 1998) is written

as function of the dimensionless reactor length and takes into account the chain transfer to

solvent process and the coolant ow. The equations (1), (2), (3), (4) describe the variations

of the initiator, monomer, solvent and radicals concentrations along the reactor length. The

live (�0, �1) and dead (�0, �1, �2) leading moments (of the polymer chains distributions)

variations are described by the equations (5)...(9). These leading moments are used for the

calculation, according to (12) and (13), of the number and weight average degrees of poly-

merization (Kiparissides et al., 1993). The variation of the temperature inside the reactor is

described by equation (10) and of the coolant temperature (Anghelea, 1998) by equation (11).

The parameters for the reaction rate constants (Arrhenius Equation: Kx=Kx0e
��E=(RgTabs))

given in Yoon and Rhee (1985) are used. The chain transfer to solvent kinetic rate con-

stant (Ktsi) parameters are Kx0=3.00�10
7 l/moles�sec and �E=10000 cal/moles. The reactor

pressure is not included in the calculation of the kinetic rate constants. The coolant ow
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equation (11) is written knowing that �w=1 Kg/l; Cpw=4.18 KJ/Kg�
oK; 1 cal=4.1868 Joules.

The model is simulated using the parameters given in Yoon and Rhee (1985). The solvent

concentration is considered 0 moles/l and the jacket temperature is assumed constant along

the reactor length. The reactor performances (temperature pro�le, initiator and monomer

conversion, number average degree of polymerization) are closely the same as in Yoon and

Rhee (1985). Only one exception is encountered: the shape of the weight average degree of

polymerization after the total consumption of initiator. Notice (Fig. 2) that the weight aver-

age degree of polymerization has an increasing shape close to the reactor end. For integrating

the sti� di�erential system of equations a numerical di�erentiation procedure with backward

di�erences is used. The parameters for the simulation in Fig. 2 are given in Appendix.
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Figure 2: Pro�les of weight average degree of polymerization (solid, dashdot, dotted, dashed)

for various jacket temperatures (170,180,190,200)

2.2 White model behavior overview

The reactor with the jacket temperature constant and with the same parameters used by

Yoon (1982) gives the same simulation results as reported in (Yoon, 1982; Yoon and Rhee,

1985) (with the exception in Fig. 2). For doing the simulations the heat transfer coe�cient,

feed conditions, jacket temperature and solvent concentration were varied. The complete list

of simulation results is given in Anghelea (1998). The simulations performed lead to the fol-

lowing observations: when the jacket temperature increases the peak temperature increases

and the peak location decreases; the exit monomer conversion increases but there exists a

particular jacket temperature for which the exit monomer conversion reaches its maximum.
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The exit weight average degree of polymerization varies when the jacket temperature varies.

The heat transfer coe�cient has a big inuence on the reactor behavior; the temperature

pro�les along the reactor and other reactor performances change as the heat transfer coef-

�cient varies. The peak temperature increases signi�cantly and the peak location decreases

as the initiator concentration increases. The change of the solvent concentration a�ects only

the weight and number average degrees of polymerization, other reactor performances do not

change. All these simulations were done for the reactor inlet temperature To=100
oC. The

same type of simulations were performed considering the reactor inlet temperature To=180
oC.

Typical temperature pro�les along the reactor are presented in Fig. 3. As the jacket temper-

ature increases the peak location decreases. The peak temperature increases signi�cantly as

the initiator concentration increases. Typical temperature pro�les obtained taking into ac-

count the coolant equation are presented in Fig. 4. The coolant temperature pro�le decreases

along the reactor. As the heat transfer coe�cient increases, more heat is transferred through

the jacket and the temperature in the reactor decreases. The parameters of the simulations

in Fig. 3, 4 are given in Appendix.
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Figure 3: Temperature pro�les (solid, dashdot, dotted, dashed) for di�erent

jacket temperatures (left) (170,180,190,200) and initiator concentrations (right)

(1�10�4,2.5�10�4,7.5�10�4,5.0�10�3)

The solvent concentration inuences only the average degrees of polymerization, other per-

formances (monomer conversion, initiator conversion, temperature pro�le, cooling ow tem-

perature pro�le) do not change. As a consequence using the solvent concentration as input

for the softsensor improves signi�cantly the estimation performances

3 The softsensor basic principle

A softsensor is a software program that uses arti�cial intelligence techniques to estimate

process or quality variables di�cult to measure in real time (due to the adverse process envi-
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Figure 4: Temperature pro�les (solid, dashdot, dotted, dashed, point) for di�erent heat

transfer coe�cients (0.002,0.004,0.006,0.008,0.01)
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Figure 5: The typical process control loop
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ronment, expensive sensors ...) (Anghelea, 1998). The typical process control loop (Anghelea,

1998) is suggested in Fig. 5. The available process information (assumed measurable) that

can be used for building softsensors for Yi+1 ... Yp (process outputs, end-use properties,

product quality indicators) consists of: the operating conditions (O1 ... Om), the measur-

able process outputs (Y1 ... Yi) and the process inputs (U1 ... Un) (also the measurable

disturbances, if there are any, can be taken into account). The softsensor (Fig. 6) uses the

easily measurable process information for estimating the di�cult/not measurable process or

quality variables.

The Inputs Selection Criterion/Method block selects from the amount of information available

the relevant and useful inputs for the softsensor S1 ... Ss. The outputs of the softsensor are

the estimations Ŷi+1 ... Ŷp of the real outputs Yi+1 ... Yp. The softsensor principle can

be applied to processes characterized by excessive noise, severe nonlinearities or multivariable

interactions.

EASILY MEASURABLE
PROCESS INFORMATION

SOFTSENSOR
INPUTS

QUALITY
VARIABLE

ESTIMATION

INPUTS SELECTION
CRITERION /

METHOD
SOFTSENSOR

 {U1 ... Un  }
 {O1 ... Om}
 {Y1  ...  Yi}

{S1 ... S s}
       { Y i+1  ... Y p}

Figure 6: The softsensor basic principle

A problem which arises is to select from the amount of information available the relevant

and useful information for the softsensor inputs (it makes no sense to use redundant or use-

less inputs). The inputs selection could be done by analyzing the process behavior and using

the process experts experience. In this paper, for �nding the softsensor inputs, a heuristic

approach is used.

4 Softsensors for the polymer quality

4.1 The easily measurable process information

The available and measurable process information is the temperature pro�le T (in this study

observed every 10 meters along the reactor), the solvent concentration (Csi) and the coolant

inlet/outlet temperatures (Tci, Tco). The reactor length is L=150 m and the reactor inlet

temperature is To=180
0C. The area under the peak temperature Apk, the peak location

Xpk, the peak temperature Tpk and the total area under the temperature pro�le Atot (Fig.

7) are used as inputs for the softsensor. All these quantities (equations (14),(15),(16),(17))

are calculated using the discrete temperature pro�le (consisting of the measurable tem-

peratures Ti, i=1 ... 15).
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Tpk = maxfTi; i = 1:::15g (14)

T (Xpk) = Tpk (15)

Apk =

Z Xpk

0
T (x)dx; x 2 f10 � i; i = 1:::15g (discrete integral) (16)

Atot =

Z L

0
T (x)dx; x 2 f10 � i; i = 1:::15g (discrete integral) (17)

4.2 Looking for relevant information

In practice the weight average degree of polymerization ultimately a�ects the end-use prop-

erties of the polymer and it is not easy to measure. The di�culty is due to the deadtimes

introduced (take a product sample, analyze it in the laboratory ...) and the methods used

(gel permeation chromatography). In this section we look for any relationships that exist

between the inaccessible process information and the process characteristics (as Apk, Atot).

Fig. 8 shows the areas under the temperature pro�le (Apk, Atot) as function of the ini-

tiator concentration for various heat transfer coe�cients (the parameters of the simulation

are given in Appendix). Notice that there are initiator concentrations for which there is a

(bijective) relationship between the area under the peak and the heat transfer coe�cient.

Such relationships exist also between the total area under temperature pro�le and the heat

transfer coe�cient.

The areas (Apk, Atot) require calculations and temperature sensors placed along the re-

actor. If the temperature pro�le is approximated with straight lines then Apk and Atot

depend on the product between the peak location with the peak temperature (Xpk�Tpk) and

with the output reactor temperature (Xpk�Tout). Similar correspondences proved to exist

between the initiator concentration, the heat transfer coe�cient and Xpk�Tpk, Xpk�Tout.

The idea is to compensate for the lack of the initiator concentration (this quantity is very

532

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



2.5 3 3.5 4 4.5 5

x 10
−3

80

90

100

110

120

130

140

150

Initiator concentration

Area under the peak

2.5 3 3.5 4 4.5 5

x 10
−3

225

230

235

240

245

250

255

260

265

270

Initiator concentration

Total area under the temperature profile

Figure 8: Areas (solid, dashed, dashdot, dotted) under the temperature pro�les as function

of the initiator concentration for various heat transfer coe�cients (0.002,0.004,0.005,0.007)

small and is a combination of di�erent chemical substances) and the heat transfer coe�cient

(the reactor mixture while it is moving to the reactor end is sticking on the reactor wall and

makes the measurement of the heat transfer coe�cient di�cult).

The goal is to use the information in the temperature pro�le for estimating the weight aver-

age degree of polymerization. The reason is that the temperature pro�le is the deterministic

outcome of the chemical reactions taking place in the reactor as the consequence of certain

process variables and operating conditions. The process variables not measurable can be

inferred, due to the deterministic aspect, from the temperature pro�le or other measurable

process information.

4.3 Neural network based softsensors for the polymer quality

The arti�cial neural networks consist of a number of simple processing elements or units called

neurons. The neurons are interconnected, exchange information and implement distributed

processing. One of the most important properties of the neural networks is that they satisfy

the Universal Approximation Property (Hunt et al., 1995): they are able to approximate an

arbitrary continuous function de�ned on a compact set to an arbitrary degree of accuracy.

Important elements of the arti�cial neural networks are the model structure (regressor vector)

selection and the neural network training. The model structure selection is concerned with

the selection of the number of hidden layers and the number of neurons (and activation func-

tions) for each layer. During the training process the neural network's parameters (neurons

biases and weights) are continuously adjusted for realizing the input-output dependence with

the desired accuracy. For detailed explanations about neural networks structure, training

and validation methods and other aspects of the neural networks see Warwick et al. (1992),

Haykin (1994), Hunt et al. (1995).
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As softsensor structure the feedforward neural network (Haykin, 1994) with one hidden layer

is employed. The neural network is trained using Levenberg-Marquardt (Declercq and De

Keyser, 1995) minimization algorithm (this algorithm ensures a relatively fast convergence

and robustness against local minima). A lot of simulations and experiments were done for

choosing the type of activation function and the number of neurons in the hidden layer. For

this purpose the neural networks were trained for a number of epochs and the activation

function was chosen by looking at SSE (Sum Squared network Error) (Haykin, 1994) and

MGE (Mean Global Error) (Anghelea, 1998) over both training and validation sets. The

mean global error de�nition for N training (validation) points is:

MGE =
NX
i=1

jWMi �NNij

WMi
(18)

where WMi is the exit weight average degree of polymerization calculated using the white

model and NNi is the exit weight average degree of polymerization calculated using the neural

network.
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Figure 9: Choosing the number of neurons in the hidden layer

The neural networks inputs were scaled in the interval [-1 1] and the outputs in the interval

[1 2]. Typical graphs obtained for every neural network are shown in Fig. 9. The SSE and

MGE over the training set are represented as function of the number of neurons in the hidden

layer (in this case the number of neurons should be greater than 8). The activation function

of the neurons in the hidden layer was chosen by looking at the same indicators (SSE, MGE).

For all neural networks presented in the following the hidden layer neurons have log-sigmoid

(Haykin, 1994) activation functions.

The reactor length is L=150 m and the reactor inlet temperature To=180
oC. The pa-

rameters varied for data generation are the initiator concentration, the solvent concentration,

the heat transfer coe�cient and the coolant outlet temperature. The coolant volumetric ow

534

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



PARAMETER RANGE

Initiator concentration, Ci [2.5�10�3 ... 5�10�3] moles/l

Solvent concentration, Csi [0 ... 0.05] moles/l

Heat transfer coe�cient, U [0.002 ... 0.007] cal/cm2�sec�oC

Coolant outlet temperature, Tco [65 ... 70] oC

Table 1: Parameter ranges for data generation

is considered constant Fw=10 l/sec. The ranges for the parameters are given in Table 1.

In order to generate the training/validation sets, for each parameter 6 equidistant values were

selected; this leads to 1296 points for each training and validation set. The neural networks

inputs are summarized in Table 2 and their performances in Table 3 (MPET denotes the

maximum percentage error over the training set, MPEV denotes the maximum percentage

error over the validation set).

NNET NR. INPUTS OUTPUT

1. Tpk, Tco, Tout, Tci, Xpk, Csi Exit Xwr

2. Tpk, Tco, Tout, Tci, Apk, Atot, Xpk Exit Xwr

3. Tpk, Tco, Tout, Tci, Apk, Atot, Xpk, Csi Exit Xwr

4. Tpk, Tco, Tout, Tci, Xpk�Tpk, Xpk�Tout, Xpk, Csi Exit Xwr

5. T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15 Exit Xwr

6. T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, Csi Exit Xwr

Table 2: Neural networks inputs

NNET NR. Hidden neurons Training epochs MPET MPEV

1. 8 80 0.102 % 0.310 %

2. 8 60 18.01 % 14.86 %

3. 8 75 0.091 % 0.054 %

4. 10 50 0.51 % 0.56 %

5. 15 50 22.50 % 22.13 %

6. 12 50 0.098 % 0.152 %

Table 3: Neural networks performances

The best performances are obtained by the third neural network (Table 2). The process

information needed for the neural network inputs consists of the discrete reactor tempera-

ture pro�le, the cooling ow inlet/outlet temperatures and the solvent concentration. The

approximation capability of this neural network (softsensor) over the training/validation sets

is presented in Fig. 10.

5 Conclusions

A mathematical model of the high pressure tubular reactor for producing low density polyethy-

lene is developed. The model is based on the equations of Yoon and Kiparissides, takes into

account the chain transfer to solvent process and includes the coolant ow. The white model

535

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



0 200 400 600 800 1000 1200 1400
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Training set samples

Training set − Absolute error (percentage)

535 540 545 550 555 560 565 570 575 580 585

1.334

1.336

1.338

1.34

1.342

1.344

1.346

1.348

1.35

Validation set samples

DETAIL Validation set − Neural network / white model output

Figure 10: Softsensor performances

simulations are compared with the results obtained by Yoon. Similar simulation results are

obtained except the shape of the weight average degree of polymerization after the total ini-

tiator consumption. The practical expertise and assistance was used for developing the model.

The softsensor basic principle is developed and applied for estimating the polymer quality

(weight average degree of polymerization) at the exit of the tubular reactor (with preheater

section and one feed/initiator injection). A study is done for �nding the relevant information

consisting of areas (under the peak temperature, under the total temperature pro�le) or other

process characteristics (peak location) for compensating the unmeasurable process variables.

The softsensors consist of feedforward neural networks with one hidden layer (log-sigmoid

activation functions for the neurons in the hidden layer). Because real-life process data is

not available for the present study we generate data using the white model by varying the

initial conditions. The generated data is used afterwards for training/validating the neural

networks. The parameters varied for generating the data are the initiator concentration, the

solvent concentration, the heat transfer coe�cient and the coolant outlet temperature.

The temperature pro�le only is insu�cient for estimating the exit weight average degree

of polymerization. Big estimation errors are obtained by a neural network having as inputs

only temperatures along the reactor. The solvent concentration proves to be an important in-

put for the softsensor and improves signi�cantly the performances. The best performances are

obtained by a neural network having as inputs: the peak temperature, the peak location, the

area under the peak, the total area under the temperature pro�le, the solvent concentration,

the outlet reactor temperature and the coolant inlet/outlet temperatures.

Appendix

PARAMETERS FOR THE REACTOR MODEL: Ci (moles/l)-Concentration for the initia-
tor; Csi (moles/l)-Concentration for the solvent; Cm (moles/l)-Concentration for the monomer;
CR(moles/l)-Concentration for the radicals; Kd (1/sec)-Rate constant for dissociation of ini-
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tiator; Ktsi (1/moles�sec)-Rate constant for chain transfer to solvent; Ktm (1/moles�sec)-Rate
constant for chain transfer to monomer; Ktp (1/moles�sec)-Rate constant for chain transfer to
polymer; Kr (1/moles�sec)-Rate constant for termination by combination; Ki (1/moles�sec)-
Radicals rate constant; Kp (1/moles�sec)-Propagation rate constant; v (cm/sec)-Reaction
mixture velocity; d (cm)-Inside tube diameter; Fw (l/sec)-Coolant volumetric ow; �w (Kg/l)-
Water density; Cpw (KJ/Kg�oK)-Water speci�c heat capacity; fi-Initiator e�ciency; L (cm)-

Reactor length; z-Dimensionless axial distance; � (g/cm3)-Reaction mixture density; Cp

(cal/g�oC)-Speci�c heat capacity; T (oC)-Reaction temperature; Tc (oC)-Jacket tempera-
ture; To (oC)-Reaction inlet temperature; -�Hp (cal/moles)-Heat of polymerization reac-

tion; U (cal/cm2�sec�oC)-Heat transfer coe�cient; �E (cal/moles)-Activation energy; Rg

(cal/mol�oK)-Universal gas constant; �n (moles/l)-nth moment with respect to the NCLD
(Number Chain Length Distribution) of "live" polymer; �n (moles/l)-nth moment with re-
spect to the NCLD of "dead" polymer; K (cm3/l)-Scaling factor (for unit conversion); x
(cm)-Axial distance; Xnr-Number average degree of polymerization; Xwr-Weight average de-
gree of polymerization.

KINETIC RATE CONSTANTS (Kx,Kx0, �E) (Arrhenius Equation: Kx=Kx0e
��E=(RgTabs)):

Kd, 1.60�10
16 sec�1, 38400 cal/moles; Ki, 2.95�10

7 l/moles�sec, 7091 cal/moles; Kp, 2.95�10
7

l/moles�sec, 7091 cal/moles; Ktm, 5.83�10
5 l/moles�sec, 10090 cal/moles; Ktp, 9.00�10

5 l/moles�

sec, 9000 cal/moles; Kr, 1.60�10
9 l/moles�sec, 2400 cal/moles; Ktsi, 3.00�10

7 l/moles�sec, 10000
cal/moles.

CONSTANT SYSTEM PARAMETERS: -�Hp=22000 cal/moles; fi=0.5; d=5 cm; K=103;

�Cp=600 g/cm
3; Rg=1.987 cal/moles�

oK; v=10 m/sec.

STANDARD SYSTEM PARAMETERS: Cm=18 moles/l; Ci=5�10
�4 moles/l; To=100

oC;
Tc=190

oC; U=0.03 cal/cm2�sec�oC.

SIMULATION PARAMETERS: The simulations use the constant/standard system param-
eters presented above; for each simulation only the parameters with other values are given.
Simulation in Fig. 2: L=800 m, Csi=0 moles/l; for di�erent jacket temperatures Tc=170, 180,
190, 200 oC. Simulation in Fig. 3 left side: To=180

oC, L=400 m, Csi=0 moles/l; for di�er-
ent jacket temperatures Tc=170, 180, 190, 200

oC. Simulation in Fig. 3 right side: To=180
oC, L=400 m, Csi=0.01 moles/l; for di�erent initiator concentrations Ci=1�10

�4,2.5�10�4,
7.5�10�4,5.0�10�3 moles/l. Simulation in Fig. 4: L=150 m, To=180

oC, Csi=0 moles/l,
Ci=3�10

�3 moles/l, Tci=35
oC, Fw=10 l/sec; for di�erent heat transfer coe�cients U=0.002,

0.004, 0.006, 0.008, 0.01 cal/cm2�sec�oC.
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