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Abstract
We consider systems governed by nonlinear second order evolution equations in a Hilbert

space and establish explicit conditions for the input-output stability.

1 Introduction

The present paper is devoted to the input-output stability of nonlinear second order evolution
equations in a Hilbert space. It is well-known that wide classes of distributed systems are
governed by such equations. Many works deal with the Lyapunov stability of the first and second
order nonlinear evolution equations (see for instance (Krasnosel’skii et al., 1983; Kunimatsu and
Sano, 1994; Lakshmikantham et al., 1989; Likhtarnilov and Yakubovich, 1983) and references
given therein). At the same time, the input-output stability of nonlinear systems governed by
the second order evolution equations to the best of our knowledge was not investigated.

Let E be a real Hilbert space with a scalar product (., .)E , and X,Y be arbitrary Banach
spaces, ‖.‖X means the norm in X. The concepts of functional analysis used by us can be found
in the books (Ahiezer and Glazman, 1969) and (Tanabe, 1997). Denote by L(X) ≡ L2(R+, X)
the space of X-valued functions defined on R+ ≡ [0,∞) and equipped with the norm

‖v‖L(X) = [
∫ ∞

0
‖v(t)‖2Xdt]1/2 (v ∈ L(X)).

In addition, C([0, l], X) is the space of all continuous X-valued functions defined on a segment
[0, l] (l <∞) with the sup-norm, Ck([0, l], X) (k = 1, 2, ...) is the space of all X-valued functions,
whose derivatives of the order k are in C([0, l], X).

Furthermore, let A and B be closed linear operators in E. Consider in E the system

ẅ(t) +Aẇ(t) +B2w(t) = F (w(t), ζ(t), t),

y(t) = NSw(t) +NIζ(t) (t ≥ 0), (1.1)

where w(t) ∈ E is the state, ζ(t) ∈ X is the input, y(t) ∈ Y is the output, and F maps
E ×X ×R+ into E. In addition, NS : E → Y, NI : X → Y are bounded linear operators.

Take the zero initial conditions

w(0) = 0, ẇ(0) = 0. (1.2)

The definition of a solution to problem (1.1), (1.2) and conditions for solution existence and
uniqueness are given below. In the following definition, the solution existence and uniqueness
are assumed.
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Definition 1.1 System (1.1) is said to be input-output L2-stable, if under conditions (1.2), for
any δ > 0, there is a constant ε > 0, independent of an input ζ ∈ L2(R+, X), such that the
condition ‖ζ‖L(X) ≤ δ, implies the inequality ‖y‖L(Y ) ≤ ε for the corresponding output y.

System (1.1) is said to be input-output L2-stable with finite gain and zero bias (L2-stable zb),
if there exists a positive constant γ2, independent of ζ ∈ L(X), such that

‖y‖L(Y ) ≤ γ2‖ζ‖L(X). (1.3)

These definitions generalize the corresponding definitions for systems with lumped parameters
cf. the paper (Vidyasagar, 1993). About some other approaches to the input-output stability
see (Georgiou and Smith, 1997) and references therein.

In the present paper, explicit conditions for the L2-input-output stability of system (1.1) are
derived. Moreover, in Section 6 below, we separate a class of distributed systems satisfying the
generalized Aizerman conjecture in the input-output version. About the history of the Aizerman
conjecture for the finite dimensional systems see for instance (Aizerman, 1949; Reissig et al.,
1974); Gil’, 1983; 1994; Voronov, 1979), etc. The input-output version of Aizerman’s conjecture
for finite dimensional systems was considered in (Vidyasagar, 1993) and (Gil’ and Ailon, 1998).

A few words about the contents. In Sections 2 and 3 we discuss the solvability of considered
equations. The main result of the paper-Theorem 4.1 is presented in Section 4. In Section 5
we specialize the main result for equations whose operators are pencils of selfadjoint operators.
Besides, the coefficients of the pencils are matrices. Systems with positive impulse functions
and the generalized Aizerman conjecture in the input-output version are considered in Section
6. In Section 7, the relevant examples are collected.

2 Preliminaries

Denote by D(A) the domain of a linear operator A and by σ(A) the spectrum of A.
It is assumed that operators A and B in (1.1) have in E dense domains and the relation

(Ax, x)E ≥ a(x, x)E (x ∈ D(A)) (2.1)

holds with a real constant a. Let Re B, Im B be the Hermitian components of B. That is,
Re B, Im B are selfadjoint operators, such that B = Re B + iIm B. We will suppose that

B is invertible and Im B is bounded. (2.2)

In other words, D(B∗) = D(B) and the extension of the operator B − B∗ from D(B) to E is
bounded. The star means the adjointness. In addition, it is assumed that

D(A) ⊇ D(B). (2.3)

Consider in E the system
ż1 = −Az1 −Bz2, ż2 = Bz1. (2.4)

This system can be written in the space H = E ⊕ E as

ż = Tz (z = (z1, z2)) (2.5)

with the operator

T =

(
−A −B
B 0

)
,
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and
D(T ) = {x = (x1, x2) ∈ H : x1 ∈ D(A), x2 ∈ D(B)}.

Since 2ab ≤ a2 + b2 for all real a, b, we have by (2.1) the relations

(Tz, z)H = −(Az1, z1)E − ((B −B∗)z2, z1)E/2 ≤

−a‖z1‖2E + ‖Im B‖E‖z1‖E‖z2‖E/2 ≤ γ(z, z)H (z = (z1, z2) ∈ D(T ), γ = const). (2.6)

We need the notion of the m-dissipative operator (Tanabe, 1997, pp. 310 and 311). Denote by
IH , IE the unit operators in H and E respectively.

Lemma 2.1 Let conditions (2.1-2.3) hold. Then there is a constant γ, such that the operator
T − γIH is m-dissipative.

Proof: Consider the system

−Ay1 −By2 = f1, By1 = f2 (2.7)

with given f1, f2 ∈ E. Clearly, y1 = B−1f2. Since D(A) ⊇ D(B), we have AB−1f2 ∈ E.
Thus (2.7) gives the relation y2 = B−1(f1 + Ay1) = B−1(f1 + AB−1y2). Therefore, for any
f1, f2 ∈ E system (2.7) has a solution. But (2.7) is equivalent to the equation Ty = f with
f = (f1, f2), y = (y1, y2). Hence, it follows that T is invertible. So according to (2.6) T − γIH
is m-dissipative in H. 2

Since T is m-dissipative, due to the well-known Theorem 3.1.5 (Tanabe, 1979, p. 62), T
generates a strongly continuous semigroup. Thus, the Cauchy problem for equation (2.5) is
well-posed. This means that for any z0 ∈ D(T ), equation (2.5) has a solution z(t) : R+ → D(T )
with a strong derivative ż(t) ∈ H, and z(t) → z0 as t → 0+ in the strong topology. Besides,
z(t) = (z1(t), z2(t)) with z1(t) ∈ D(A), z2(t) ∈ D(B) (t ≥ 0).

Put in (2.4) u(t) = B−1z2(t). Then u(t) ∈ D(B2). By (2.4) we have u̇(t) = z1(t) ∈ D(A),
and ü(t) = ż1(t) ∈ E (t ≥ 0). System (2.4) takes the form

ü+Au̇+B2u = 0 (t ≥ 0). (2.8)

We thus have proved the following

Lemma 2.2 Let conditions (2.1)-(2.3) hold. Then for any finite l > 0 and all

u0 ∈ D(B2) and u1 ∈ D(A), (2.9)

there is a unique function u ∈ C2([0, l], E) satisfying (2.8), such that

u(t) ∈ D(B2), u̇(t) ∈ D(A) (0 ≤ t ≤ l). (2.10)

In addition,
lim
t→0+

u(t) = u0, lim
t→0+

u̇(t) = u1. (2.11)

We need the following result

Lemma 2.3 Let S be a positive definite selfadjoint operator in E and R be a linear bounded
one. Then (S +R∗)1/2 − (S +R)1/2 is a bounded operator provided Reσ(S +R) > 0.
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Proof: Due to Corollary 1.4.5 from (Henry, 1981), T = S +R is a sectorial operator. Due to
Theorem 1.4.2 (Henry, 1981) we have T 1/2 = TJ , where

J = π−1
∫ ∞

0
s−1/2(T + IEs)−1ds.

Clearly,

J−J∗ = π−1
∫ ∞

0
s−1/2[(T+s)−1−(T ∗+s)−1]ds = π−1

∫ ∞
0

s−1/2(T+s)−1(R−R∗)(T ∗+s)−1ds.

Hence,

T (J − J∗) = π−1
∫ ∞

0
s−1/2T (T + s)−1(R−R∗)(T ∗ + s)−1ds.

Since σ(T ) has no points on the negative halfline, ‖T (T + s)−1‖ is uniformly bounded on [0,∞).
So

‖T (J − J∗)‖ = π−1
∫ ∞

0
s−1/2‖T (T + s)−1(R+R∗)‖‖(T ∗ + s)−1‖ds <∞.

Furthermore,
T 1/2 − (T ∗)1/2 = T (J − J∗) + (T − T ∗)J∗.

Since T − T ∗ and J∗ are bounded, we have the required result. 2

3 Existence of mild solutions

We will say that K(t) is the impulse (Green) function of equation (2.8) if it satisfies the equation

K̈(t) +AK̇(t) +B2K(t) = 0

with the initial condition
K(0) = 0, K̇(0) = I.

This means that for any h ∈ D(B2), the function u(t) = K(t)h is in C2([0, l], E) for any finite
l, and satisfies equation (2.8) and the relations u(0) = 0, u̇(0) = h. The existence of K(t) under
conditions (2.1)-(2.3) is due to Lemma 2.2.

Lemma 3.1 Under conditions (2.1)-(2.3), let a twice continuously differentiable function v :
R+ → E satisfy the problem

v̈ +Av̇ +B2v = f(t) (t ≥ 0) (3.1)

v(0) = v̇(0) = 0 (3.2)

with a given bounded continuous function f : R+ → E. Then the formula

v(t) =
∫ t

0
K(t− s)f(s)ds,

is valid, where K is the Green function to (2.8). Moreover,

K(t) =
1

2πi

∫ i∞+c0

−i∞+c0
eλt(λ2IE +Aλ+B2)−1dλ (c0 = const). (3.3)

The integral is understood in the sense of the inverse Laplace transformation.
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Proof: As it was above proven, the Cauchy problem for equation (2.5) is well-posed. Thanks to
the variation constant formula (Krein, 1971, Section 1.6, formula (6.2)), any solution of equation
(3.1) has the exponential growth. Consequently, we can apply the Laplace transformation to
equation (3.1). It gives

(λ2IE +Aλ+B2)ṽ(λ) = f̃(λ),

where ṽ(λ), f̃(λ) are the Laplace transforms to u and f , respectively. Further, since T − γIH is
dissipative, λ2IE +Aλ+B2 is invertible in E for any λ from the half-plane Reλ > γ. Hence,

ṽ(λ) = (λ2IE +Aλ+B2)−1f̃(λ) (Reλ > γ). (3.4)

By virtue of the inverse Laplace transformation and the property of the convolution we arrive
at the required result. 2

Now consider the problem

ü+Au̇+B2u = F0(u(t), t); u(0) = 0, u̇(0) = 0 (t ≥ 0), (3.5)

where F0 maps E × R+ into E. Due to Lemma 3.1, any function u ∈ C2([0, l], E) (l < ∞)
satisfying the problem (3.5) (if it exists), also satisfies the equation

u(t) =
∫ t

0
K(t− s)F0(u(s), s)ds. (3.6)

Using this relation, we will call a continuous function u(t) : R+ → E satisfying the integral
equation (3.6) for all t ≥ 0, a mild solution to problem (3.5).

Lemma 3.2 Under conditions (2.1)-(2.3), let F0(x, .) ∈ L2([0, l], E) for any x ∈ E and a
positive l <∞. In addition, let F0 have the Lipschitz property

‖F0(x, t)− F0(y, t)‖E ≤ L‖x− y‖E (L = const, x, y ∈ E, t ≥ 0). (3.7)

Then problem (3.5) has a unique mild solution.

Proof: Take a fixed l <∞. Define in C([0, l], E) a mapping Ψ by

(Ψ(z))(t) =
∫ t

0
K(t− s)F (z(s), s)ds.

Then
‖Ψ(z)−Ψ(y)‖E ≤

∫ t

0
‖K(t− s)‖E‖F (z(s), s)− F (y(s), s)‖Eds ≤∫ t

0
‖K(t− s)‖EL‖z(s)− y(s)‖Eds (z, y ∈ C([0, l], E)).

Now the result is due to the contraction mapping theorem (cf. the trivial Lemma 15.3.1 from
(Gil’, 1998)). 2
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4 The main result

In the sequel it is assumed that for any ζ ∈ L2(R+, X) the function F0(x, t) ≡ F (x, ζ(t), t)
satisfies the Lipschitz condition (3.7) and F0(x, .) ∈ L2([0, l], E) for all x ∈ E and positive
l <∞. Clearly, constant L in (3.7) depends on ζ, in general.

In addition, C+ means the closed right half-plane.

Theorem 4.1 Let the conditions (2.1)-(2.3) and

‖F (s, z, t)‖E ≤ qS‖s‖E + qI‖z‖X (qS , qI = const, s ∈ E, z ∈ X, t ≥ 0) (4.1)

be fulfilled. In addition, let K̃(λ) ≡ (λ2 +Aλ+B2)−1 be regular on C+ and

M(K) ≡ max
−∞≤ω≤∞

‖K̃(iω)‖E < q−1
S . (4.2)

Then system (1.1) is input-output L2-stable zb. Moreover, the constant γ2 in (1.3) can be taken
as

γ2 = (1−M(K)qS)−1M(K)qI‖NS‖E→Y + ‖NI‖X→Y .

Firstly, let us prove the following

Lemma 4.2 Under conditions (2.1)-(2.3), let K̃ be regular on C+. If, in addition, M(K) <∞,
then function v, defined by the formula

v(t) =
∫ t

0
K(t− s)f(s)ds

with f ∈ L(E), satisfies the inequality ‖v‖L(E) ≤M(K)‖f‖L(E).

This result is due to the Parseval equality and equality (3.4).
Proof of Theorem 4.1: The existence and uniqueness of mild solutions are due to Lemma

3.2. Since K̃ is regular in C+, we can take in (3.3), c0 = 0. Hence, it easily follows that for a
sufficiently small ε > 0,

‖K(t)‖E ≤ const e−εt (t ≥ 0). (4.3)

Furthermore, introduce the scalar-valued function zl(t) defined by the relations zl(t) = 1 for
0 ≤ t ≤ l <∞ and zl(t) = 0 for t > l. Consider the equation

ul(t) =
∫ t

0
K(t− s)zl(s)F (ul(s), ζ(s), s)ds =

∫ l

0
K(t− s)zl(s)F (ul(s), ζ(s), s)ds (t ≥ l) (4.4)

Thanks to (4.3) the solution ul of (4.4) is in L(E). Due to (3.6) and the previous lemma,
condition (4.1) implies the relations

‖ul‖L(E) ≤M(K)‖F (ul, ζ, .)‖L(E) ≤M(K)(qS‖ul‖L(E) + qI‖ζ‖L(X)).

Therefore, (4.2) implies

‖ul‖L(E) ≤ (1−M(K)qS)−1qIM(K)‖ζ‖L(X).

But, clearly, ‖ul‖L(E) → ‖w‖L(E) as l→∞. This proves the required result. 2
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5 Equations with selfadjoint operators

In this section we are going to specialize Theorem 4.1 in the case when operators A,B are
represented by pencils of selfadjoint operators. Namely, let E = Hn

0 be an orthogonal sum of
the same Hilbert spaces H1 = ... = Hn = H0. We will assume that

A =
m∑
k=0

akS
k, B2 =

l∑
k=0

bkS
k (m ≤ l/2), (5.1)

where ak, bj (k = 0, ...,m; j = 0, ..., l) are real constant n×n-matrices, S is a selfadjoint positive
definite operator in E commuting with matrices ak, bj (k = 0, ...,m; j = 0, ..., l). So

β(S) ≡ inf σ(S) > 0.

System (1.1) takes the form

ẅ(t) +
m∑
k=0

akS
kẇ(t) +

l∑
k=0

bkS
kw(t) = F (w(t), ζ(t), t),

y(t) = NSw(t) +NIζ(t). (5.2)

In addition, assume that

am + a∗m > 0; bl = b∗l > 0; ak + a∗k ≥ 0; bj = b∗j ≥ 0 (k = 1, ...,m− 1; j = 1, ..., l − 1) (5.3)

Besides, a0, b0 are arbitrary provided that Reσ(B2) > 0. It is simple to check that (5.3) implies
(2.1). In addition, due to the Lemma 2.3 under the conditions (5.3), operator B satisfy relation
(2.2). Furthermore, clearly that D(A) = D(Sm), D(B) = D(Sl/2) and, thus, condition (2.3)
holds.

Introduce the matrix pencil

Q(s, λ) = λ2 + λ
m∑
k=0

aks
k +

l∑
k=0

bks
k (s ∈ σ(S); λ ∈ C).

In this section it is supposed that Reσ(B2) > 0 and for any fixed s ∈ σ(S), all the roots of
det Q(s, λ) are in the open left half-plane. To formulate the result, put

MQ = max
ω∈R1, s∈σ(S)

‖Q−1(s, iω)‖Cn .

Lemma 5.1 Under conditions (5.3) and (4.1), let

qSMQ < 1. (5.4)

Then system (5.2) is input-output L2-stable zb. Moreover, the constant γ2 in (1.3) can be taken
as

γ2 = (1−MQqS)−1MQqI‖NS‖E→Y + ‖NI‖X→Y .

Proof: Omitting simple calculations, we have

K̃(λ) = [λ2 + λ
m∑
k=0

akS
k +

l∑
k=0

bkS
k]−1.
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Hence, due to Lemma 6.3.1 from (Gil’, 1995, p. 179)

M(K) ≡ max
ω∈R
‖K̃(iω)‖Cn = MQ. (5.5)

Now Theorem 4.1 yields the result. 2

Let W be a linear operator in a complex Euclidean space Cn with the eigenvalues λ1(W ), . . . ,
λn(W ). We apply the following estimate for the resolvent from (Gil’, 1995, p. 9, Corollary 1.2.4)
(see also (Gil’, 1998, p. 353)):

‖(W − λICn)−1‖Cn ≤
n−1∑
k=0

gk(W )√
k!ρk+1(W,λ)

for all regular λ, (5.6)

where ρ(W,λ) is the distance between the spectrum σ(W ) of W and a complex point λ, and

g(W ) = (N2(W )−
n∑
k=1

|λk(W )|2)1/2.

Here N(W ) is the Frobenius (Hilbert-Schmidt) norm of W , i.e. N2(W ) = Trace(WW ∗). If W
is a normal matrix: WW ∗ = W ∗W , then g(W ) = 0. The following relations:

g(W ) ≤
√

1/2N(W ∗ −W ) and g(Weiτ + zICn) = g(W ) for every τ ∈ R, z ∈ C (5.7)

are true (Gil’, 1995, Section 1.1). Here ICn is the unit matrix.
So we have by (5.6)

‖Q−1(s, iω)‖Cn ≤
n−1∑
k=0

gk(Q(s, iω))√
k!ρk+1

0 (Q(s, iω))

where ρ0(Q(s, iω)) is the smallest modulus of the eigenvalues of matrix Q(s, iω) with fixed s, ω.
Now Lemma 5.1 yields

Theorem 5.2 Under conditions (5.3) and (4.1), let

Γ(Q) ≡ sup
ω∈R,s∈σ(S)

n−1∑
k=0

gk(Q(s, iω))√
k!ρk+1

0 (Q(s, iω))
< q−1

S . (5.8)

Then system (5.2) is input-output L2-stable zb. Moreover, the constant γ2 in (1.3) can be taken
as

γ2 = (1− Γ(Q)qS)−1Γ(Q)qI‖NS‖E→Y + ‖NI‖X→Y .

For all s ∈ σ(S), λ ∈ C, let Q(s, λ) be a normal matrix, then g(Q(λ, s)) = 0 and

Γ(Q) = sup
ω∈R,s∈σ(S)

ρ−1
0 (Q(s, iω)). (5.9)

In particular, if n = 1, then Q(s, iω) is a polynomial in ω, and

Γ(Q) = sup
ω∈R,s∈σ(S)

|Q(s, iω)|−1. (5.10)

1734

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



6 Systems with positive impulse functions

In this section we consider in E system (5.2) with n = 1 and the constants

am, bl > 0, ak, bj ≥ 0 (k = 1, ...,m− 1; j = 1, ...l − 1, m ≤ l/2). (6.1)

Constants a0, b0 are arbitrary real, such that Reσ(B2) > 0.
So Q(s, λ) is a scalar polynomial whose roots for all s ∈ σ(S) lie in the open left half-plane,

and S is a positive definite selfadjoint operator in E, again.
The following problem can be considered as a generalization of the Aizerman conjecture in

the input-output version:
Problem 1: To separate a class of systems (5.2) such that the asymptotic stability of the

linear system

ẅ +
m∑
k=0

akS
kẇ +

l∑
k=0

bkS
kw = q1w (6.2)

with some q1 ∈ [0, qS ] provides the input-output L2-stability of system (5.2) under condition
(4.1).

Let us write
K(t, s) = (2π)−1

∫ ∞
−∞

etiωQ−1(s, iω)dω.

Assume that
maxs∈σ(S)|K(t, s)| = K(t, s0) ≥ 0, (6.3)

where s0 does not depend on t.

Theorem 6.1 Let condition (6.3) be satisfied. Then Q(s0, 0) > 0. If, in addition,

qS < Q(s0, 0), (6.4)

then system (5.2) under (6.1) is input-output L2-stable zb provided condition (4.1) holds.

Below we will check that this theorem separate a class of systems satisfying Problem 1.
The proof of this theorem is divided into a series of lemmata

Lemma 6.2 Let w0(t) be a scalar-valued function defined by the convolution

w0(t) =
∫ t

0
W (t− s)y(s)ds (6.5)

with a scalar integrable kernel W (t) and a scalar-valued function y ∈ L2(R+). In addition, let
the Laplace transform W̃ (λ) to W (t) exist and regular in C+. Then the relation

‖w‖L2(R+) ≤ max
ω
|W̃ (iω)|‖y‖L2(R+)

is valid.

Proof: Applying the Laplace transformation to equation (6.5), we have w̃(λ) = W̃ (λ)ỹ(λ),
where w̃(λ), ỹ(λ) are the Laplace transforms to w0(t), y(t). Hence, the result is due to the Par-
seval equality. 2
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Lemma 6.3 Let W̃ (λ) be the Laplace transform to a positive function W ∈ L1(R+). Then

max
s∈R
|W̃ (is)| = W̃ (0) =

∫ ∞
0

W (t)dt > 0.

Proof: We have

|W̃ (is)|2 = |
∫ ∞

0
e−itsW (t)dt|2 = (

∫ ∞
0

cos(ts)W (t)dt)2 + (
∫ ∞

0
sin(ts)W (t)dt)2.

Hence,

|W̃ (is)|2 =
∫ ∞

0

∫ ∞
0

W (t1)W (t)(cos(t1s)cos(ts) + sin(ts)sin(t1s))dt1 dt =

∫ ∞
0

∫ ∞
0

W (t1)W (t) cos[(t− t1)s] dt1 dt ≤
∫ ∞

0
W (t1)dt1

∫ ∞
0

W (t) dt = W̃ 2(0).

As claimed. 2

Corollary 6.4 Let w0(t) be a scalar-valued function defined by (6.5) with a positive kernel
W (t) ∈ L1(R+) and a function y ∈ L2(R+). Then the Laplace transform W̃ (λ) to W (t) has the
property W̃ (0) > 0 and the relation ‖w‖L2(R+) ≤ W̃ (0)‖y‖L2(R+) is valid.

Proof of Theorem 6.1: Rewrite equation (5.2) in the form

w(t) =
∫ t

0
K(t− τ)F (w(τ), ζ(τ), τ)dτ, (6.6)

where K(t) again is the Green function. Let Es be the resolution of the identity for S. Due
to the definition of the function of a selfadjoint operator cf. (Ahiezer and Glazman, 1969), we
easily get

K(t) =
∫ ∞
−∞

K(t, s)dEs.

Therefore, by virtue of condition (6.3),

‖K(t)‖E = maxs∈σ(S)|K(t, s)| = K(t, s0) ≥ 0.

It follows from (6.6) that

‖w(t)‖E ≤
∫ t

0
K(t− τ, s0)‖F (w(τ), ζ(τ), τ)‖Edτ.

But (4.1) implies

‖w(t)‖E ≤
∫ t

0
K(t− τ, s0)(qS‖w(τ)‖E + qI‖ζ(τ)‖X)dτ. (6.7)

Now Corollary 6.4 yields

‖w‖L(E) ≤ Q−1(s0, 0)(qS‖w‖L(E) + qI‖ζ‖L(X)).

Thanks to (6.4),
‖w‖L(E) ≤ (1−Q−1(s0, 0)qS)−1qIQ

−1(s0, 0)‖ζ‖L(X).

This inequality proves the required result. 2
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Corollary 6.5 Let conditions (4.1), (6.1) and (6.3) be satisfied. If, in addition, equation (6.2)
with q1 = qS is asymptotically stable in E, then system (5.2) is input-output L2-stable zb.

Thus, Theorem 6.1 specifies a class of equations that satisfy Problem 1.
Consider now in E the system

wtt + 2Swt + cS2w = F (w, ζ(t), t) (0 < c = const < 1)

y(t) = NSw(t) +NIζ(t) (6.8)

with a positive definite selfadjoint operator S.

Corollary 6.6 Let the conditions (4.1) and

cβ2(S) > qS

hold. Then system (6.8) is input-output L2-stable zb.

In fact, under consideration, the roots of P (λ, s) = λ2 + 2sλ+ cs2, are

r1,2(s) = −s(1± b) with b =
√

1− c,

and
K(t, s) = (2bs)−1[e−st(1−b) − e−st(1+b)] ≥ 0.

So the derivative in s is

Ks(t, s) = −(2bs2)−1[((1− b)ts+ 1)e−st(1−b) − ((1 + b)ts+ 1)e−st(1+b)].

The function (1 + z)e−z (z ≥ 0) decreases. Therefore,

((1− b)ts+ 1)e−st(1−b) − ((1 + b)ts+ 1)e−st(1+b) ≥ 0 (t, s > 0).

Thus
Ks(t, s) ≤ 0 (s > 0) and max

s≥β(S)
K(t, s) = K(t, β(S)) ≥ 0.

So due to Theorem 6.1 if Q(β(S), 0)) = cβ2(S) > qS , then system (6.8) is input-output L2-stable
zb, as claimed.

7 Examples

In the following examples the existence and uniqueness of mild solutions are assumed.

Example 7.1 Take X = Y = C[0, 1] and consider in the real space E = L2[0, 1] the problem

wtt + 2a0wt + b0w − b1wxx = F (w, ζ(x, t), x, t) (0 < x < 1)

w(0, t) = w(1, t) = 0 (t > 0), (7.1)

y(x, t) = Mw(x, t) + ζ(x, t), (7.2)

where M,a0, b0, b1 are real constants and a0, b1 > 0. In addition, the continuous function
F : R2 × [0, 1]×R+ → R satisfies the condition

|F (v, z, x, t)| ≤ qS |v|+ qI |z| (v, z ∈ R; t ≥ 0; 0 ≤ x ≤ 1). (7.3)
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So condition (4.1) is fulfilled. On the set

D(S) = {w ∈ L2[0, 1] : w′′ ∈ L2[0, 1] : w(0) = w(1) = 0} (7.4)

define the operator S by the equation (Sw)(x) = −w′′(x). Then (7.1) takes the form

wtt + 2a0wt + b0w + b1Sw = F (w, ζ(t), x, t).

Clearly,
σ(S) = {π2k2; k = 1, 2, ...}. (7.5)

So β(S) = π2. Assume that
b0 + b1π

2 > 0. (7.6)

Under condition (7.6), for any s ≥ β(S) all the roots of the polynomial

Q(s, λ) = λ2 + 2a0λ+ b0 + b1s. (7.7)

are in the open left-plane, and

inf
s≥0,ω∈R

|Q(s, iω)| ≥ b0 + b1π
2.

So due to Lemma 5.1 the inequality qS < b0 + b1π
2 provides the input-output L2-stability of

system (7.1), (7.2).

Example 7.2 Consider system (7.1), (7.2) in space E = L2([0, 1],Rn) of

vector-valued functions, assuming now that a0, b0, b1 are now n×n-matrices and M is an m×n
matrix. In addition, a0 = a∗0 > 0, b1 = b∗1 > 0 and the continuous function

F : Rn ×Rm × [0, 1]×R+ → Rn

satisfies the condition

‖F (v, z, x, t)‖Rn ≤ qI‖z‖Rm + qS‖v‖Rn (z ∈ Rm; v ∈ Rn; t ≥ 0; 0 ≤ x ≤ 1)

Take X = Y = C([0, 1],Rm). Then condition (4.1) holds. For the sake of simplicity assume
that either

a0 commutes with b0 and b1, (7.8)

or
b1 commutes with a0 and b0. (7.9)

Further, on the set

D(S) = {w ∈ L2([0, 1],Rn) : w′′ ∈ L2([0, 1],Cn) : w(0) = w(1) = 0}

define the operator S by the equality (Sw)(x) = −w′′(x). Then σ(S) is given by (7.5).
Define Q(s, λ) by (7.7) and assume that for each s ≥ 0, det Q(s, λ) is a Hurwitz polynomial.

In the case (7.8), due to Corollary 1.3.9 from (Gil’, 1995) according to (5.7) we have

g(Q(s, iω)) = g(b0 + b1s) ≤
√

1/2N(b0 − b∗0) (ω, s ∈ R).
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Similarly, in the case (7.9),

g(Q(s, iω)) = g(a0iω + b0) ≤
√

1/2N(b0 + b∗0) (ω, s ∈ R).

Thus, g(Q(s, iω)) ≤ g0, where g0 =
√

1/2N(b0 + b∗0) in the case (7.9), and g0 =
√

1/2N(b0− b∗0)
in the case (7.8).

With fixed s, ω, let ρ0(Q(s, iω)) be the smallest modulus of the eigenvalues of matrix Q(s, iω).
Put

ρ̃ = inf
ω∈R, k=1,2,...

ρ0(Q(k, iω)).

Then according to (5.8),

Γ(Q) ≤
n−1∑
k=0

gk0√
k!ρ̃k+1

.

So due to Theorem 5.2, the inequality

qS

n−1∑
k=0

gk0√
k!ρ̃k+1

< 1

provides the input-output L2 stability zb of system (7.1), (7.2) in the considered case.

Example 7.3 Take X = Y = C[0, 1] and consider in the real space E = L2[0, 1] the problem

wtt − 2wtxx + cwxxxx = F (w, ζ(x, t), x, t) (t > 0; 0 < x < 1; c ∈ (0, 1))

w(k)(0, t) = w(k)(1, t) = 0 (k = 0, 2; t ≥ 0), (7.10)

together with equation (7.2), where M is a constant. Here the real continuous function F :
R2 × [0, 1] × R+ → R satisfies condition (7.3). On set (7.4) define the operator S by the
equation (Sw)(x) = −w′′(x). Then (7.10) takes the form (6.7). Further, clearly, condition (7.3)
implies relation (4.1). Thanks to Corollary 6.6 and (7.5), under condition cπ4 > qS , system
(7.10) is input-output L2-stable zb.

8 Concluding remarks

A lot of papers and books are devoted to solvability of the linear second order equation of the type
(2.8) (see the books (Fattorini, 1985) and (Skhlyar, 1997), and references therein). For example,
in the paper (Sandefur, 1983), it is supposed that A = A1 +A2, B

2 = A1A2 with linear operators
A1, A2. The paper (Engler, 1985) is devoted to the case A = aA1 + bIE , B

2 = cA1 + dIE where
a, b, c, d are numbers. In the book (Skhlyar, 1997), A and B are normal commuting operators.
In the paper (Engel, 1994) the following restrictions are imposed: B is selfadjoint and positive
definite, Re(Bx,A−1x) ≥ 0 for x ≥ 0. In the paper (Neubrander, 1986), it is assumed that
D(A) ⊆ D(B2). The paper (Chen and Triggiani, 1989) is devoted to equation (2.8) with
positive definite A and B. In addition, c1A

α ≤ B2 ≤ c2A
α with 1/2 ≤ α ≤ 1. At the same time

Lemma 2.2 gives the solvability conditions (2.1)-(2.3).
Theorems 4.1, 5.2 and 6.1 and give explicit input-output stability conditions.
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