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Abstract

In this paper we develop an unified approach to the solution of the adaptive decentral-
ized tracking problem. First we propose a decentralized information setup of control with
reference model coordination, which allows to use coordinating information about reference
signals of the other subsystems in all local control laws. This setup guarantees zero resid-
ual tracking errors for unmodeled interconnections and the local dynamics. We proposed
a modified local adaptive control scheme with an additional delayed signal,which improves
the transient performance. We use our new setup for the decentralized adaptive control of
hybrid systems in which the control parameters are updated at discrete instants.
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1 Introduction

In recent years there has been considerable interest to the study of decentralized adaptive control
of large-scale multivariable systems. A variety of decentralized adaptive techniques have been
developed (P.A.Ioannou and P.Kokotovich, 1983; B.M.Mirkin, 1986; D.T.Gavel and D.D.Siljak,
1989; R.Ortega and A.Herrera, 1993; A.Datta, 1993; Mirkin, 1995).

A specific class of this technique is the model reference adaptive control (MRAC). However
the essential disadvantage of the known model reference adaptive decentralized control laws is
that the local tracking errors converge only to a bounded residual set.

However the best it can achieve in the known model reference adaptive decentralized control
laws is the convergence of errors to some bounded residual set. Besides the bounds of this set
are unknown apriori and the size depends upon the bound for the strength of the unmodeled
interconnections, so such adaptive schemes may be unsuitable for applications and one needs to
develop new methods which would allow to avoid this disadvantage.

In this paper we develop an unified approach to the solution od the adaptive informationally
decentralized tracking problem, based on the basic idea contained in (Mirkin, 1995).

There are several contributions in this paper. First we propose a decentralized information
setup of control with reference model coordination, which allows to use coordinating information
about reference signals of the other subsystems in all local control laws. This setup guarantees
zero residual tacking errors for unmodeled interconnections and the local dynamics.

The second contribution of this work is that we present a modified model reference decen-
tralized adaptive control scheme aimed at improving the performance of adaptive systems. In
the scheme proportional integral time delay (PITD) algorithms updating the parameters in the
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local adaptive controller is used. This scheme has essentially the same stability properties of
coordinated decentralized scheme of control but with the performance improved.

As a third contribution, we use our setup of control for the decentralized adaptive control of
hybrid systems in which the control parameters are updated at discrete instants.

2 Model of system

The class of large-scale plants with M subsystems and parametric uncertainty that we shall
consider in this paper is of the form

ẋi(t) = Aixi(t) +Biui(t) +
M∑
j=1

Aijxj(t),

yi(t) = h′ixi(t), i = 1, 2, . . . ,M, (1)

where for the i-th subsystem xi ∈ Rni is the state vector ui(t) ∈ R is the input control vector;
yi(t) ∈ R is the output vector, the constant matrices Ai ∈ Rni×ni , Bi ∈ Rni , Aij ∈ Rni×nj , are
not specified;

∑M
j=1 ni = n.

The following assumptions are made:

(A1): All subsystems are completely controllable and system (1) is decentralizely stabilizable.

(A2): The matrices of subsystems Ai, Bi and matrices of interaction Aij have the form

Ai =


0 1 . . . 0
...

...
. . .

...
0 0 . . . 1
−ai1 −ai2 . . . −aini

 ,

a′i = [−ai1, . . . ,−anii], Bi = [0, . . . , bi],

Aij = Bia
∗
ij
′, a∗ij

′ = [aij1 , . . . , a
ij
nj ],

(A3): The signs of bi are assumed to be positive.

The composite system can be written as

ẋ(t) = Adx(t) +Bdu(t) +BdA
∗x(t),

y(t) = Cdx(t), (2)

x(t) ∈ Rn1+...+nM , u(t) ∈ RM , y(t) ∈ RM are the overall state, control and output vector
respectively, the matrices Ad ∈ Rn×n , Bd ∈ Rn×M and Cd ∈ Rn×M are block diagonal with
blocks A1, . . . , AM , B1, . . . , BM and C1, . . . , CM .

The subscript ”d” denotes that matrices are block-diagonal and prime denotes transpose.
The block matrix BdA∗ where

A∗ ∈ RM×n =

 A′∗11 . . . A′∗1M
...

. . .
...

A′∗M1 . . . A′∗MM

 .
represents the interconnection pattern.
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3 Problem formulation

Let M reference models are given by

ẋmi(t) = Amixmi(t) +Bmiumi(t),
xmi(t0) = xmi0, i = 1, . . . ,M, (3)

where for the i-th model, xmi(t) ∈ Rni is the state vector, umi ∈ R is the input vector. The
matrices Ami, Bmi are known constant matrices of appropriate dimensions.

The composite reference model can be written as

ẋm(t) = Amdxm(t) +Bmdum(t), xm(t0) = xm0,

where xm(t) ∈ Rn1+...+nM and um(t) ∈ RM are the overall state vector and the input vector
respectively and the matrices Amd ∈ Rn×n and Bmd ∈ Rn×m are block diagonal.

Coordinates for each local model are chosen so that the pairs (Ami, Bmi) are in canonical
form as in (1).

With this choice of coordinates, it is clear also, that there exists constant unknown vectors
A∗i , A

∗
ij , b
∗
i so that Aij = BiA

∗
ij
′, Ai = Ami +BiA

′∗
i Bmi = Bib

∗
i .

Then the control objective is to design decentralized controllers for system (1) and (2) such
that the closed-loop system is stable and the states xi(t) track the states of M stable local
reference models xmi with the conditions

lim
t→∞

ei(t) = lim
t→∞

(xi(t)− xmi(t)) = 0,

i = 1, 2, . . . ,M., (4)

We demand that the tracking errors converges to zero asymptotically with time.

4 Decentralized Controller Synthesis

In this section, we first design a state feedback decentralized controller with reference model
coordination that ensures the boundendness of all signals and yields zero steady-state tracking
error. Second, this same controller is used in the state feedback case with using of combined
proportional, integral and time delay adaptive control. The time delay is artificially introduced
in order to improve transient response.

4.1 Proposed controller structure

Basically each local controller consist of two loops, i.e. the controller for the i-th subsystem we
define as sum of two components

ui(t) = uli(t) + ugi(t). (5)

The local component uli(t) is defined as a linear combination of the tracking error vector and
the input vector as follows

uli(t) = −K ′iωi(t), (6)

where K ′i(t) = [K ′ei(t),−Kumi(t)] is the vector of local adaptive parameters, the vector ω′i(t) =
[e′i(t), umi(t)] is the ”regressor” vector, ei(t) = xi(t)− xmi(t) is the tracking error.
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The global feedforward component uig(t) is defined as a linear combination of the states of
all reference models as follows

ugi(t) = −
M∑
j=1

K ′ij(t)xmj(t), (7)

where Kij(t) ∈ Rnj are the time-varying adaptation gain vectors.
The main difference from standard DMRAC schemes used in decentralized adaptive control

is defined by the global component.
This is the main contribution of our approach. We assume that every local controller uses

the reference trajectories of all subsystems. Such control law allows to get a result having
a new quality connected with the zero tracking error under the unknown coefficients in the
interconnection matrices. And in this way the totally decentralized structure of the current
information update is saved.

The proposed setup with reference model coordination for decentralized model reference adap-
tive control uses decentralized feedback but centralized feedforward and provides zero tracking
errors.

In summary, the total control input ui(t) to the i-th local system is

ui(t) = uli(t) + ugi(t) = −K ′iωi(t)−
M∑
j=1

K ′ij(t)xmj(t). (8)

4.2 Error model.

Following similar steps (B.M.Mirkin, 1986) we can write the error of the system as

ėi(t) = Amiei(t) +Bi

M∑
j=1

A′ij
∗
ej(t) +

+Bi∆K ′i(t)ωi(t) +Bi

M∑
j=1

∆K ′ij(t)xmj(t), (9)

where

∆K ′i(t) =
[
(A∗i −Kei(t))

′ , (Kumi(t)− b∗i )
]
,

∆Kij(t) =
[
A∗∗ij −Kij(t)

]
,

A∗∗ij =
{
A∗ij , if i 6= j,

A∗ii +A∗i , if i = j.

The composite system error can be written as

ė(t) = Amde(t) +BdA
∗e(t) +Bd∆Kd(t)ω(t) +Bd∆K(t)xm(t), (10)
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where the block vectors e(t), ω(t) and matrices A∗, A∗∗,∆Kd(t),∆K(t), have the form

e′(t) = [e′1(t), . . . , e′M (t)],
ω′(t) = [ω′1(t), . . . , ω′M (t)],

∆Kd(t) = bdiag[∆K ′1, . . . ,∆K
′
M ],

∆K(t) = A∗∗ −K(t),

A∗ =

 A′∗11 . . . A′∗1M
...

. . .
...

A′∗M1 . . . A′∗MM

 ,
A∗∗ =

 A′∗∗11 . . . A′∗∗1M
...

. . .
...

A′∗∗M1 . . . A′∗∗MM

 ,
K(t) =

 K ′11(t) . . . K ′1M (t)
...

. . .
...

K ′M1(t) . . . K ′MM (t)

 ,
and other notations were introduced earlier.

The decision of the formulated problem is given with the below theorems.

4.3 Integral adaptation algorithms

We denote the solutions of the system (10) by (e,∆Kd,∆)K(t) and prove the following theorem.

Theorem 1. Consider the closed-loop system consists of a plant described by (1) and (2), con-
trollers with control law given by (8). Under assumptions (A1)-(A3), all the signals in the system
are bounded and the tracking errors ei(t) → 0 as t → ∞ (i = 1, . . . ,M), if we choose the local
adaptive laws as

K̇i(t) = Γ1i[B′miPiei(t)]ωi(t),
K̇ij(t) = Γ2i[B′miPiei(t)]xmj(t),

i, j = 1, . . . ,M, (11)

where Γ1i = Γ′1i > 0, Γ2i = Γ′2i > 0 are constant matrices, and Pi is a positive definite solution
for the following Lyapunov matrix equation

A′miPi + PiAmi +Q0i = 0, i = 1, . . . ,M, (12)

where Q0i = Q′0i > 0.

Proof: Consider a positive definite function V as Lyapunov function

V =
M∑
j=1

Vi,

Vi = e′iP̂iei + (∆Ki − K̄1i)′Γ−1
1i (∆Ki − K̄1i)

−
M∑
j=1

∆K ′ij(t)Γ
−1
2i ∆Kij(t), (13)
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where Γ1i = Γ′1i > 0, Γ2i = Γ′2i > 0 the weighting matrices, P̂i = b∗iPi.
The variables K̄ ′1i = [K ′1i 0] are introduced as in (D.T.Gavel and D.D.Siljak, 1989) and

they will be defined later.
The total time derivative of the function Vi which is computed with respect to (9) , is

obtained as

V̇i = −e′i(t)b∗iQ0iei(t)− 2∆K̇i(t)Γ−1
1i K̄1i +

+2e′i(t)PiBmi∆K
′
iωi(t) + 2∆K ′i(t)Γ

−1
i ∆K̇i(t)

+
M∑
j=1

[e′j(t)A
′∗∗
ij B

′
miPiei(t) + e′i(t)PiBmiA

∗∗
ij ej(t)] (14)

+
M∑
j=1

[x′mj(t)∆KijB
′
miPiei(t) + e′i(t)PiBmi∆K

′
ij(t)xmj(t)].

Let K1i be defined as

K1i = −r0B
′
miPi, (15)

where the numbers r0 is assumed positive. Substituting (15) and (11) in (14) yields

V̇ =
M∑
i=1

V̇i

= e′(t)[A∗B′mdPd + PdBmdA
′∗

−r0PdBmdB
′
mdPd − Q̂0d]e(t), (16)

where the block diagonal matrices Pd, Q̂0d have the form

Pd = bdiag[P1, . . . , PM ],
Q̂0d = bdiag[b∗1Q01, . . . , b

∗
MQ0M ].

After completing the squares in (16) and dropping negative terms, we obtain

V̇ ≤ −[r0λmin(Q̂0d)− λmax(A′∗A′)]‖e‖2, (17)

where λmin(.) and λmax(.) are the minimum and maximum eigenvalues. By selecting a suffi-
ciently large finite value r∗0 so that

r∗0 > λmin(A′∗A∗)λ−1
min(Q̂0d), (18)

we get V̇ ≤ 0.
Using standard arguments from the Lyapunov theory (Narendra and Annaswamy, 1989), we

conclude that the solutions (e,∆Kd,∆K)(t) are bounded and e(t)→ 0 as t→∞ and the proof
is complete.

4.4 PITD adaptation algorithms

In this subsection we seek ways of improving transient performance. We propose a modified
local adaptive control scheme which improves the transient performance. The local control laws
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is kept the same as the one used before, whereas the adaptive algorithm used for updating gains
is modified with an additional delayed signal.

In nonadaptive control design some authors (for example, (I.H.Suh and Z.Bien, 1980)) al-
ready have used intentional time delays. These studies have shown that the performance of the
controlled system may be improved by the judicious use of time-delay actions. For example, it
has been shown that an appropriate controller with time delay performs an averaged derivative
action and can thus replace the conventional proportional plus derivative (PD) controller.

An appropriate time-delay action in the centralized adaptive control (B.M.Mirkin, 1991) also
may improve the performance on the controlled system.

Below we present a local adaptive controller with time delays for decentralized adaptive
systems, which guarantees stability and performance improvements.

Theorem 2. Consider the closed-loop system consists of a plant described by (1) and (2), con-
trollers with control law given by (8). Under assumptions (A1)-(A3), all the signals in the system
are bounded and the tracking errors ei(t) → 0 as t → ∞ (i = 1, . . . ,M), if we choose the local
adaptive laws as

K̇i(t) = Γ1i[B′miPiei(t)]ωi(t) +

+Γ1i
d

dt
[B′miPiei(t)]ωi(t)] + Γ1i

d

dt
[B′miPiei(t− τi)]ωi(t− τi)],

K̇ij(t) = Γ2i[B′miPiei(t)]xmj(t) + (19)

+Γ2i
d

dt
[B′miPiei(t)]xmj(t)] + Γ2i

d

dt
[B′miPiei(t− τij)]xmj(t− τij)],

i, j = 1, . . . ,M.

or

Ki(t) = Ki(0) + Γ1i[B′miPiei(t)]ωi(t)

+Γ1i

∫ t

0
[B′miPiei(t)]ωi(t)dt+ Γ1i[B′miPiei(t− τi)]ωi(t− τi),

Kij(t) = Kij(0) + Γ̂2i[B′miPiei(t)]xmj(t) (20)

+Γ2i

∫ t

0
[B′miPiei(t)]xmj(t)dt+ Γ2i[B′miPiei(t− τij)]xmj(t− τij),

i, j = 1, . . . ,M.

Proof: Consider the positive definite function V as Lyapunov function

V =
M∑
i=1

Vi, (Vi = V1i + V2i + V3i), (21)
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where

V1i = e′iP̂iei,

V2i = (∆Ki(t)− K̄1i −K0i(t)−K0i(t− τ))′Γ−1
i (∆Ki(t)− K̄1i −K0i(t)−K0i(t− τi)),

+
∫ t

t−τi
K ′0i(s)Γ

−1
i K0i(s)ds

V3i =
M∑
j=1

(∆Kij(t)−K0ij(t)−K0ij(t− τij))′Γ−1
2i (∆Kij(t)−K0ij(t)−K0ij(t− τij))

M∑
j=1

∫ t

t−τij
K ′0ij(s)Γ

−1
2i K0ij(s)ds. (22)

Taking the time derivative of (21) along (9) gives

˙V1i = e′i(A
′
miP̂i + P̂iAmi + b∗iQ0i)ei − e′i(t)b∗iQ0iei(t)

+2e′i(t)PiBmi∆K
′
iωi(t)

+
M∑
j=1

[e′j(t)A
′∗∗
ij B

′
miPiei(t) + e′i(t)PiBmiA

∗∗
ij ej(t)] (23)

+
M∑
j=1

[x′mj(t)∆KijB
′
miPiei(t) + e′i(t)PiBmi∆K

′
ij(t)xmj(t)].

V̇2i = +2∆K ′i(t)Γ
−1
i ∆K̇i(t)− K̇0i(t)− K̇0i(t− τi))

−2[K0i(t) +K0i(t− τi)]Γ−1
i (∆K̇i(t)− K̇0i(t)− K̇0i(t− τi))

−2K̄ ′1iΓ−1
i (∆K̇i(t)− K̇0i(t)− K̇0i(t− τi))

+K ′0i(t)Γ
−1
i K0i(t)−K ′0i(t− τi)Γ−1

i K0i(t− τi). (24)

V̇3i = +2
M∑
j=1

[∆K ′ij(t)Γ
−1
2i [∆K̇ij(t)− K̇0ij(t)− K̇0ij(t− τij)]

−2
M∑
j=1

[(K̇0ij(t) + K̇0ij(t− τij))Γ−1
2i (∆K̇ij(t)− K̇0ij(t)− K̇0ij(t− τij))]

+
M∑
j=1

[K ′0ij(t)Γ
−1
ij K0ij(t)−K ′0ij(t− τij)Γ−1

2i K0ij(t− τij)]. (25)

Let matrices K0i(t) and K0ij(t) be defined as

K0i(t) = −Γ̂1i[B′miPiei(t)]ωi(t),
K0ij(t) = −Γ̂2i[B′miPiei(t)]xmj(t), (26)

Substituting K0i(t) from (26) into (24) and using (20) and (12), it can be shown after lengthy
manipulation that

V̇2i = −2K̄ ′1iΓ−1
i K0i(t)− 2K ′0i(t)Γ

−1
i K0i(t)− 2K ′0i(t− τi)Γ−1

i K0i(t)
+K ′0i(t)Γ

−1
i K0i(t)−K ′0i(t− τi)Γ−1

i K0i(t− τi)
= −2K̄ ′1iΓ−1

i K0i(t)− (K0i(t)−K0i(t− τi))′Γ−1
i (K0i(t)−K0i(t− τi)) (27)
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Now using K ′1i as given by (15)

K̄ ′1i = [K ′1i, 0], K ′1i = −r0iB
′
miPi (28)

we obtain

V̇2i = −2r0ie
′
iPiBmiB

′
miPiei − (K0i(t)−K0i(t− τi))′Γ−1

i (K0i(t)−K0i(t− τi)) (29)

Similarly it can be shown that

V̇3i = −2K ′0ij(t)Γ
−1
2i K0ij(t)− 2K ′0ij(t− τij)Γ−1

2i K0ij(t)

+K ′0ij(t)Γ
−1
i K0ij(t)−K ′0ij(t− τij)Γ−1

2i K0ij(t− τij)
= −(K0ij(t)−K0ij(t− τij))′Γ−1

2i (K0ij(t)−K0ij(t− τij)). (30)

From (23), (27) and (30), it follows that

V̇i = −e′i(t)b∗iQ0iei(t)

+
M∑
j=1

[e′j(t)A
′∗∗
ij B

′
miPiei(t) + e′i(t)PiBmiA

∗∗
ij ej(t)− 2r0ie

′
i(t)PiBmiB

′
miPiei(t)]

−(K0i(t)−K0i(t− τi))′Γ−1
i (K0i(t)−K0i(t− τi))

−(K0ij(t)−K0ij(t− τij))′Γ−1
2i (K0ij(t)−K0ij(t− τij)) (31)

Substituting (31) in (21) yields

V̇ =
M∑
i=1

V̇i

≤ e′(t)[A∗B′mdPd + PdBmdA
′∗ − r0PdBmdB

′
mdPd − Q̂0d]e(t). (32)

Further all as in the theorem 1.

5 Hybrid adaptive problem

In this section we extend our information scheme for the case of hybrid systems.

5.1 Controller structure.

For the hybrid adaptive control problem we use an identical structure for the controller as early
but only adjust the controller parameters at discrete instants ts, ts = sδt (s = 1, 2, . . . ) and δt
is the sampling interval.

Each local controller now we define as sum of three components

ui(t) = uil(t) + uig(t) + vi(t). (33)

The local component uil(t) is defined as a linear combination of the tracking error vector and
the input vector as follows

uil(t) = −Ki
′[ts]ωi(t), (34)
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where the vector ω′i(t) = [e′i(t), umi(t)] is the ”regressor” vector, ei(t) = xi(t) − xmi(t) is the
tracking error and the vector K ′i[ts] = [K ′ei[ts],−Kumi[ts]]

′ is the adaptively adjusted feedback
gain vector of local parameters, which is constant over each sampling interval [ts, ts+1), but may
change from one interval to another. The global feedforward component uig[ts] is defined as a
linear combination of the states of all reference models as follows

ui(t) = −
M∑
j=1

Kij
′[ts]xmj(t) (35)

where Kij [ts] ∈ Rnj is the time-varying adaptation gain vectors, which also is constant over each
sampling interval [ts, ts+1), but may change from one interval to another.

We also introduce auxiliary local feedback components vi(t) i = 1, 2 and they will be defined
later.

Also as early the control objective is (4).

5.2 Error model and stability analysis.

Following similar steps as early we can write the error of the system instead of (9) and prove
the next theorem.

Theorem 3. Consider the closed-loop system consists of a plant described by (1) and (2), con-
trollers with control law given by (33). Under assumptions (A1)-(A3), all the signals in the
system are bounded and the tracking errors ei(t) → 0 as t → ∞ (i = 1, . . . ,M), if we choose
the local adaptive laws as

Ki[ts+1] = Ki[ts] +
1

∆t

∫ ts+1

ts

(B′miPiei)ωi dt

Kij [ts+1] = Kij [ts]

+
1

∆t

∫ ts+1

ts

(B′miPiei)xmj dt (36)

and auxiliary signals vi(t) as

vi(t) = v1i(t) + v2i(t), (37)

where

v1i(t) = −α1(B′miPiei)ω
′
iωi,

v3i(t) = −α2(B′miPiei)
M∑
j=1

x′mjxmj , (38)

and Pi is a positive definite solution of the Lyapunov matrix equation (12).

The proof is based on the Lyapunov theory (K.S.Narendra et al., 1985).

6 Conclusion

In this paper, we have developed coordinated decentralized adaptive controllers for a class of
large-scale systems with unknown interconnected strengths.
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We presented a modified DMRAC scheme which requires the signals exchange between the
different reference models and does not involve the exchange of output signals between the differ-
ent subsystems. Our scheme can be classified as the decentralized adaptive control scheme with
model coordination. It can not only guarantee closed-loop stability but can also guarantee the
asymptotical zero of the tracking errors under uncertainties in subsystems and interconnections.

Since the reference model signals can be easily exchanged between the subsystems this scheme
is feasible.

We proposed a modified local adaptive control scheme which improves the transient perfor-
mance. The local control laws is kept the same as the one used before, whereas the adaptive
algorithm used for updating gains is modified with an additional delayed signal.

Next we presented a modified model reference decentralized adaptive control scheme for
hybrid systems in which the control parameters are adjusted at discrete instants.

Proposing new control laws that sometimes are viewed as ‘upgrades’ to the existing schemes.
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