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Abstract

The guidance problem with continuous time-delayed control is considered. The interception conflict we are
dealing with involves a pursuer continuously measuring his relative position and velocity , and who is able to
control his own acceleration subject to a given pure time delay , and an evader who can apply constant
maneuvers.  The cost function for this optimal control problem includes the control effort and  a quadratically
weighted version of the miss distance and final relative velocity.

Within this setup , several guidance problems are formulated and analytically solved : proportional navigation
(PN), augmented PN (APN), and augmented optimal rendezvous (AOR). The solution is obtained by applying
results previously published by the authors to the corresponding discrete-time guidance problems and by using an
alternative derivation based on the theory of continuous-time linear quadratic optimal control with an input delay.
The resulting new guidance laws are compared to the numerically classical guidance laws.  The examples
demonstrate the advantage of  the optimal guidance laws which take the delay into account over the classical
ones.

1. Introduction

The problem of minimum effort guidance has been formulated and solved in (Bryson and Ho,
1975). For the case of ideal pursuer and stationary evader (Zarchan 1990) the resulting
guidance law is the well known Proportional Navigation law (PN) whereas for maneuvering
targets it turns out to be  the Augmented Proportional Navigation law(APN).

In (Bryson and Ho, 1975) it was shown that when the pursuer is non-ideal and is characterized
by a single time constant , a guidance law emerges which has the structure of APN but has a
time varying navigation constant.

The case where the pursuer has very fast dynamics so that its time constant can be neglected ,
but its acceleration commands are subject to a pure time delay has not been considered  , in an
optimal control framework to the best of our knowledge.

In the present work , the ideal pursuer and evader , with a pure time delay of the pursuer’s
acceleration command is considered. Two solution methods are compared. The first  is a
limiting case of the sampled data guidance law (Gitizadeh , et. al. 1999) , and the second is a
direct method. The resulting guidance law performance is evaluated using simulations. The
results are encouraging and ask for realistic applications.

In (Gitizadeh , et. al. 1999) the Proportional Navigation law(P.N.)  for discrete time systems
with time delays was considered. The continuous-time case is a limiting situation of the
solution when h→0 (h being the sampling time). To check our results , we calculate the P.N.
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guidance law for non-maneuvering targets , using the corresponding theory of linear-quadratic
one sided optimal control problem.

The guidance laws of  Augmented Proportional Navigation (APN) and the Augmented
Optimal Rendezvous laws(AOR) for continuous time systems with time delays are also
considered.

2. Continuous Time System with Time Delay

In (Gitizadeh , et. al. 1999) we find that if  τ , the time delay , is longer than the sampling time
(h) , then we define an integer d and τ′ as :

τ τ τ= − + ′ ≤ ′ <( )d h h1 0 (2.1)

The optimal control with time delay for k∈{0,1,2,...,N-d} is :

u g x g x g u t g u t g wk k k k d k j
j

d

k= − + + + +− −
=

−

∑( ( ) ( ) )1 1 2 2 3 4
1

1

5 (2.1a)

where  x1k and x2k , the components of Xk , are the relative displacement and velocity ,
respectively ; uk , wk are the corresponding normal accelerations of the pursuer and  evader.

defining tgo=t f - t , tgoτ = tgo -τ  , we get  :

g b h ct hc t c h Dengo go1
26 2= − + − + ′ ′ −( ( ) ( )) /τ τ τ τ  (2.1b)

g bct h c bt h h h c h bt

h h h c h b c Den

go go go2
3 2 2 2

2 2

4 2 4 3 6 6 6 12 6

6 3 6 2 6 12

= − + − − + + − + − + +

− + − ′ + + + −

( (( ) ) (( ' ' ) )

( ' ' ) ' ) ) /

τ τ ττ τ τ τ τ

τ τ ττ τ τ τ
 (2.1c)

g bct h c bt h h h c

h bt h h h c h h b c Den

go go

go

3
3 2 2 2

2 2

4 3 6 3 12 6 9 6 6

12 6 6 3 6 2 6 3 12

= − + − + − + + − + + −

+ + − + − ′ + + + − −

τ τ τ τ τ τ τ

τ τ τ ττ τ τ τ τ
τ τ

τ

' [ (( ' ) ) (( ' ' ) '

) ( ' ' ) ' ' ) ] /

     (2.1d)

g hbct bjh h h b t h c h bj

h h h c h b t h c h h bj

h h h h c h b ch Den

go go

go

4
3 2 2 2 3 2

2 2 2 2 2

2 2 3

4 6 6 12 6 12

6 6 2 12 6

4 6 2 3 12

= − + − + − + − +

− + − + + + + +

− + − −

[ ( ( ) ) (( )

( ' ' ) ) ) (( ' ' ) )

(( ' ) ' ) ] /

τ τ

τ

τ

τ τ τ τ

τ τ τ

(2.1e)

g bct c bt h h h c h bt

h h h h h c h h b c

t h h h c h b c Den

go go go

go

5
4 3 2 2 2 2

3 2 2 2

2 2 3

4 6 3 3 3 3 12 3

2 6 3 6 3 3 6 3 12

2 3 3 3 12

= − + − − + − + + − + − + +

+ − + − + + + + + + −

+ + − + − + −

[ ( ) (( ' ' ) )

((( ' ( ) ' ( ) ' ( )) ( ) ) )

(( ' ' ( ) ( ) ' ) ) ] /

τ τ τ

τ

τ τ τ τ τ τ

τ τ τ τ τ τ τ τ τ τ
ττ ττ τ τ τ τ τ τ

(2.1f)
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Den bct bt h h cbt h h c h b

c t h h b

go go go

go

= − − + + ′ − ′ + ′ + − ′ ′ +

− + ′ + − ′ ′ −
τ τ τ

τ

τ τ τ τ τ

τ τ τ

4 3 2 2 2 2 2 2

2 2 2

4 3 3 2 3

12 2 3 12

( ) ((( ) )

) ( )

(2.1h)
For  k∈{ N-d+1 , N-d+2 , ... , N } we have uk = 0 .

If the time delay is very large with respect to the sampling time , then the number of states is
accordingly large. Thus we now consider the continuous-time case as a limiting case of the
solution in (Gitizadeh , et. al. 1999 - equation 5.28). Since the delay τ is given by
τ  = (d-1)h+τ′  where 0 ≤ τ′< h , then taking h→0 implies τ′→0.

We should , however , be careful about taking h→0 . By definition ,  the relation 
t

h
Nf =

must be maintained , thus be letting h→0 we make  N→ ∞ . We denote jh by τ1 in the sequel.
In the limit g3 tend to zero and :

u t g t x t g t x t g t u t d g t w t( ) ( ( ) ( ) ( ) ( ) ( , ) ( ) ( ) ( ))= − + + − +∫1 1 2 2 4 1 1 1

0

5τ τ τ
τ

              (2.2)

where:

g t
bt ct

bct bt ctgo
go go

go go go
1 4 3

6 2

4 12 12
( )

( )
=

+
+ + +

τ τ

τ τ τ

    (2.3)

g t
c bc t bct b t bt

bct bt ctgo
go go go go

go go go
2

2 3 2

4 3

2 6 3 2 6 6

4 12 12
( )

( )
=

+ + + +
+ + +

τ ττ τ τ τ

τ τ τ

     (2.4)

g t
bt bct c b t ct

bct bt ctgo
go go go go

go go go
4 1

2 3
1

4 3

2 2 3 6 6 1

4 12 12
( , )

( ( ))
τ

ττ τ τ τ

τ τ τ

=
+ + + +

+ + +
(2.5)

g t
t c bt b t bct bc t

bct bt ctgo
go go go go go

go go go
5

2 3 2

4 3

12 6 6 3

4 12 12
( )

( )
=

+ + + +
+ + +
τ τ τ τ

τ τ τ

τ τ
(2.6)

3.  Non-maneuvering target

3.1    Time Delayed Continuous Proportional Navigation (TCPN)

In this case w = 0 and c = 0, and from (2.3 - 2.6) we find that:
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g
b t

b t
go

go
1 3

3

3
=

−
+ −

( )

( )

τ
τ

(3.1)

g
bt t

b t
t ggo go

go
go2 3 1

3

3
=

−
+ −

=
( )

( )

τ
τ

      (3.2)

g
b t t

b t
t ggo go

go
go4

1

3 1 1

3

3
=

− − +
+ −

= − +
( )( )

( )
( )

τ τ τ
τ

τ τ    (3.3)

We define µ = t-τ1  , thus :

u t g t x t g t x t g t u d
t

t

( ) ( ( ) ( ) ( ) ( ) ( , ) ( ) )= − + +
−
∫1 1 2 2 4 µ µ µ

τ

(3.4)

where:

g
b t

b t
go

go
1 3

3

3
=

−
+ −

( )

( )

τ
τ

    (3.5)

g
bt t

b t
t ggo go

go
go2 3 1

3

3
=

−
+ −

=
( )

( )

τ
τ

       (3.6)

g
b t t t

b t
t g

go go

go
f4 3 1

3

3
=

− − + −
+ −

= − −
( )( )

( )
( )

τ τ µ
τ

τ µ       (3.7)

We describe the optimal control law as function of the line-of-sight-rate (Gitizadeh , et. al.
1998). We get :

u t N V
t

t u dC
go

f

t

t

( ) ' ( ( ) ( ) )= − + − −
•

−
∫λ τ µ µ µ

τ

1
2

(3.8)

Where :

N
t t

b
t

go go

go

'
( )

( )
=

−

+ −

3
3

2

3

τ

τ
    (3.9)

is the navigation constant  for a continuous time system with time delay. This results shows
that if  we take b → ∞ (for perfect hit)  , we  find that the N′→ ∞ as tgo→ τ. Therefore we
should take finite b to ensure finite guidance gains.

3.2   Time Delayed Continuous Optimal Rendezvous (TDCOR)

The perfect  rendezvous for non-maneuvering target is obtained from (2.2 - 2.5) by letting

 b c→ ∞ → ∞ (3.10)
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We obtain the following feedback gains (w = 0) :

g
tgo

1 2

6=
−( )τ

 (3.11)

g
t

t
go

go
2 2

2 2
=

+
−

( )

( )

τ
τ

(3.12)

g t
t

tgo
go

go
4 1

1

2

2 2 2 3
( , )

( )

( )
τ

τ τ
τ

=
− +

−
(3.13)

We define µ = t-τ1  , thus :

u t g t x t g t x t g t u d
t

t

( ) ( ( ) ( ) ( ) ( ) ( , ) ( ) )= − + +
−
∫1 1 2 2 4 µ µ µ

τ

(3.14)

when:

g
tgo

1 2

6=
−( )τ

 (3.15)

g
t

t
go

go
2 2

2 2
=

+
−

( )

( )

τ
τ

(3.16)

g t s
t t

tgo
go

go
4 2

2 2 2 3 3
( , )

( )

( )
=

− + −
−
τ µ

τ
(3.17)

We describe the optimal control law as function of  the line-of-sight angle and its rate. We
get :

u V g g g t u di c i i go

t

t

= − + −
•

−
∫( ) ( , ) ( )1 2 4λ λ µ µ µ

τ

(3.18)

where:

g
tgo

1

2=
− τ

(3.19)

g
t t

t
go go

go
2 2

2 2
=

+
−

( )

( )

τ
τ

(3.20)

g t s
t t

tgo
go

go
4 2

2 2 2 3 3
( , )

( )

( )
=

− + −
−
τ µ

τ
(3.21)

This result shows that if we take b c, → ∞ , we find that the guidance gains tend  to infinity

as  tgo→ τ . Therefore finite b and c should be taken as to obtain bounded gains.
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4. Control with input delay (stationary target)

For checking of our results for TDCPN and TDCOR we describe the optimal control  for this
case by another method. Consider the following system :

X AX B w B u t

J X t H t X t X t Q t X t u u w w dtt
f f f

t t t

t

tf

.

( )

( ) ( ) ( ) ( ( ) ( ) ( ) )

= + + −

= + + −∫

1 2

2

0

τ

γ
(4.1)

The general case of  finite γ where w is not available for the controller is quite complex. The
coresponding controller turns out to be infinite dimensional  in an intricate way (Pila , et. al.
1996)  . In our case where  γ→∞  (one sided optimal control problem) , and where w is we
known ( in fact we assume for simplicity that w ≡ 0 ), a rather simple solution can be obtained.

Defining:

~( ) ( )u t u t= − τ         (4.2)

We readily obtain from the well known standard LQ problem (Bryson and Ho, 1975) that:

~( ) ( ) ( )u t B P t X tt= − 2      (4.3)

where:

− = + − + =P A P PA PB B P Q P t H tt t
f f

.

( ) ( )2 21 (4.4)

Remark :
We assume1 that in t ∈ [-τ , 0]  :

 u(t) = utrim                                 (4.5)

Therefore from (4.2) and (4.3) we get:

u t u t B P t X tt( ) ~( ) ( ) ( )= + = − + +τ τ τ2  for  t0 ≤ t ≤ tf -τ (4.6)

Defining 
~
( ) ( )P t P t= + τ  leads to :

                                                          
1Eq.  (4.5) follows from the fact that in t∈ [-τ , 0] the missile is assumed to be trimmed and the control

commands are not to be optimized. It should be noted that  due  to  the  time delay  of  the input             ( control
signal ) , the states X(t) are  influenced  by utrim during  t∈[-τ,0]. We also note the fact that the control signal is
zero for the τ seconds prior to target approach because then the states are not dependent on u(t).
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~
( ) ( )P t P t− =τ (4.7)

thus:

u t B P t X tt( )
~
( ) ( )= − +2 τ (4.8)

Since τ is constant , 
~
( )P t  satisfies :

− = + − + − =~ ~ ~ ~ ~ ~
( ) ( )

.

P A P PA PB B P Q P t H tt t
f f2 21 τ (4.9)

However , since w(t) =0  (Non-maneuvering target) , we can estimate X(t+τ) by :

X t t t X t t s B u s ds
t

t

( ) ( , ) ( ) ( , ) ( )+ = + + + −
+

∫τ τ τ τ
τ

Φ Φ 2 (4.10)

where  Φ(t+τ,s)=eA(t+τ -s)  and  Φ(t+τ,t)=eAτ  . Thus we get:

u t B P t e X t e B u s dst A A t s

t

t

( )
~
( )( ( ) ( ) )( )= − + −+ −

+

∫2 2
τ τ

τ

τ (4.11)

If we define µ = s -τ , we obtain:

u t B P t e X t e B u dt A A t

t

t

( )
~
( )( ( ) ( ) )( )= − + −

−
∫2 2

τ µ

τ

µ µ (4.12)

Note that in our case :

A B

e I A ce AA

= 





= 





= + = 





=

0 1

0 0

0

1

1

0 1
0

2

2

,

sinτ τ
τ

(4.13)

From (4.12) we get:

[ ]u t P t
x t

x t

t
u d

t

t

( )
~
( )(

( )

( )
( ) )= − 










+
−








−

∫0 1
1

0 1

1

0 1

0

1
1

2

τ µ
µ µ

τ

 (4.14)

where:

− = + − +~ ~ ~ ~ ~.

P A P PA PB B P Qt t
2 21 (4.15a)

~
( ) ( )P t H t

b

cf f− = = 





τ
0

0
(4.15b)

Since in our case  Q = 0 , we can define S t P t( )
~

( )= −1 . Multiplying (4.15a) by S from
bothsides , we get:
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S SA AS B B S t
b

c
t t

f

.

( )
/

/
= + − − = 





2 2

1 0

0 1
τ (4.16)

thus :

s s

s s

s s

s s

s s

s s

s s

s
11 12

12 22

11 12

12 22

11 12

12 22

12 22

22

0 0

1 0

0 1

0 0

0 0

0 1

2

1

. .

. .












= 










+ 










− 





=
−







(4.17)

We define tgo =t f -t and solve the above equation. We get  :

s s

s s

t t

b

t t

c
t t

c
t

c

go go go go

go go
go

11 12

12 22

3 2 2

2
3 2

1

2

2

1









 =

−
+

−
+ −

−
−

−

−
−

−
−

− +



















( ) ( ) ( )

( )

τ τ τ τ

τ τ
τ

(4.18)

Then(define : tgoτ  = tgo -τ )

~ ( ) ( )

( ) (
P S

bct bt ct

b ct bt ct

bt ct bct bt c
go go go

go go go

go go go go

= =
+ + +

+ +
+ + +











−1
4 3 3 2

1

4 12 12

12 1 6 2

6 2 4 3 3τ τ τ

τ τ τ

τ τ τ τ

(4.19)
The control is :

[ ]u t
bct bt ct

b ct bt ct

bt ct bct bt c

x t

x t

t
u d

go go go

go go go

go go go go

t

t

( )
( ) ( )

( ) (

(
( )

( )
( ) )

= −
+ + +

+ +
+ + +






















+
−








−

∫

0 1
1

4 12 12

12 1 6 2

6 2 4 3 3

1

0 1

1

0 1

0

1

4 3 3 2

1

2

τ τ τ

τ τ τ

τ τ τ τ

τ

τ µ
µ µ

(4.20)

or:

[ ]
u t

bt ct bct bt c

bct bt ct

x t x t t u d

x t u d

go go go go

go go go

t

t

t

t( )
( ) ( )

( ) ( ) ( ) ( )

( ) ( )
= −

+ + +

+ + +

+ + −

+



















−

−

∫

∫

6 2 4 3 3

4 12 12

3 2

4 3

1 2

2

τ τ τ τ

τ τ τ

τ

τ

τ µ µ µ

µ µ

(4.21)

4.1    Time Delayed Continuous Proportional Navigation (TCPN)

In this case  c = 0, and from (4.21) we find that:
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[ ]
u t

bt bt

bt

x t x t t u d

x t u d

go go

go

t

t

t

t( )

( ) ( ) ( ) ( )

( ) ( )
= −

+

+ + −

+



















−

−

∫

∫

3 3

3

2

3

1 2

2

τ τ

τ

τ

τ

τ µ µ µ

µ µ
(4.22)

or:

u t g t x t g t x t g t u d
t

t

( ) ( ( ) ( ) ( ) ( ) ( , ) ( ) )= − + +
−
∫1 2 31 2 µ µ µ

τ

(4.23)

where:

g
b t

b t
go

go
1 3

3

3
=

−
+ −

( )

( )

τ
τ

(4.24)

g
bt t

b t
t ggo go

go
go2 3 1

3

3
=

−
+ −

=
( )

( )

τ
τ

(4.25)

g
b t t t

b t
t ggo go

go
f3 3 1

3

3
=

− − + −
+ −

= − −
( )( )

( )
( )

τ τ µ
τ

τ µ (4.26)

Which is the same optimal control law of (3.4 -3.7)

4.2   Time Delayed Continuous Optimal Rendezvous (TDCOR)

The perfect  rendezvous is obtained from (4.21) by letting:

b c→ ∞ → ∞ (4.27)

We obtain :

[ ]
u t

t

t

x t x t t u d

x t u d

go

go

t

t

t

t( )

( ) ( ) ( ) ( )

( ) ( )
= −

+ + −

+



















−

−

∫

∫

6 4
2

1 2

2

τ

τ

τ

τ

τ µ µ µ

µ µ
(4.28)

or:

u t g t x t g t x t g t u d
t

t

( ) ( ( ) ( ) ( ) ( ) ( , ) ( ) )= − + +
−
∫1 2 31 2 µ µ µ

τ

(4.29)

where:

g
tgo

1 2

6=
−( )τ

(4.30)
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g
t

t
go

go
2 2

2 2
=

+
−

( )

( )

τ
τ

        (4.31)

g t
t t

tgo
go

go
3 2

2 2 2 3 3
( , )

( )

( )
µ

τ µ
τ

=
− + −

−
(4.32)

Which is the same optimal control law of (3.14 -3.17)

5.  Maneuvering target

5.1 The case without velocity weighting -
         Time Delayed Continuous Augmented Proportional Navigation
         (TCAPN)

In this case c = 0 , and from (2.2 - 2.6) we find that

g
b t

b t
go

go
1 3

3

3
=

−
+ −

( )

( )

τ
τ

(5.1)

g
bt t

b t
t ggo go

go
go2 3 1

3

3
=

−
+ −

=
( )

( )

τ
τ

(5.2)

g
b t t

b t
t ggo go

go
go4

1

3 1 1

3

3
=

− − +
+ −

= − +
( )( )

( )
( )

τ τ τ
τ

τ τ (5.3)

g
bt t

b t

t
ggo go

go

go
5

2

3

2

1

3

2 3 2
=

−
+ −

=
( )

( ( ) )

τ
τ

(5.4)

We describe the optimal control law as function of the line-of-sight-rate. We get :

u t N V
t

t u t d
t

w t

N V
t

t t s u s ds w t

C
go

go
go

C
go

go

t

t

( ) ' ( ( ) ( ) ( ))

' ( ( ) ( ) ( ))

= − + − + − + =

= − + − + − +

•

•

−

∫

∫

λ τ τ τ τ

λ τ

τ

τ

1 1

2

1 1

2

2 1 1 1

0
2

2

(5.5)

Where :

N
t t

b
t

go go

go

'
( )

( )
=

−

+ −

3
3

2

3

τ

τ
(5.6)
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We should be take finite b to ensure finite guidance gains.

5.2 Perfect intercept with terminal velocity weighting -
         Time Delayed Continuous Augmented Optimal Rendezvous
         (TDCAOR)

The perfect  rendezvous is obtained from (2.2 - 2.6) by letting

  b c→ ∞ → ∞ (5.7)

We obtain the following feedback gains :

g
tgo

1 2

6=
−( )τ

(5.8)

g
t

t
go

go
2 2

2 2
=

+
−

( )

( )

τ
τ

        (5.9)

g t
t

tgo
go

go
4 1

1

2

2 2 2 3
( , )

( )

( )
τ

τ τ
τ

=
− +

−
(5.10)

g
t t

t
go go

go
5 2

2
=

+
−

( )

( )

τ
τ

(5.11)

We describe the optimal control low as function of  the line-of-sight and its rate . We get :

u v g g g t u t d g t w t

v g g g t s u s ds g t w t

i c i i go

c i i go

t

t

= − + − − −

= − + − −

•

•

−

∫

∫

( ) ( , ) ( ) ( ) ( )

( ) ( , ) ( ) ( ) ( )

1 2

1 2

4 1 1 1

0

5

4 5

λ λ τ τ τ

λ λ

τ

τ

          (5.12)

where g1,  g2 , g t sgo4 ( , ) is given in (3.19 -3.21) and g6 is given in (5.11).

This result shows that if we take b c, → ∞ , we find that the guidance gains tend  to infinity

as  tgo→ τ . Therefore finite b and c should be taken as to obtain bounded gains.
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6. Numerical Simulations

6.1 Perfect Intercepts - Numerical Simulations for Continuous Time System with Time
Delay :

In this section the effects of two guidance laws for the perfect intercepts case will be analyzed.
The following Simulink diagram describes the Perfect Intercepts case. In this example  the
closing  velocity is  300 m/s and tf =0.5 sec.
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Fig. 6.1 The Simulink diagram describe the Perfect Rendezvous case for Continuous Time
System with Time Delay

The following guidance laws are compared:

i. CAPN (Continuous Augmented Proportional Navigation) :
We use a sampled version of the proportional navigation guidance law with  N′=3 .

ii. TCAPN (Time Delayed Continuous Augmented Proportional navigation):
The optimal control law in Eq. 5.5-5.6.

Initial conditions are :  τ = 0.2 [sec]  , y0 =20 [m] , v0=26.2 [m/s]  b=1e6.

Target is maneuvering with:  w t g t( ) = − ≥10 0

The  results for this case are depicted in Fig. 6.2a-d. Fig. 6.2a-d illustrate the performance of
the guidance laws in the presence of this evasive maneuver. In Fig. 6.2a  the relative
separation is  in meters , while Fig. 6.2b shows the missile acceleration and Fig. 6.2c the

1506

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



relative velocity in m/sec. The control effort   J u t dt
tf

= ∫1

2
2

0

( )  is shown in  Fig. 6.2d where

J(tN) is the overall control effort. In all subfigures the solid line shows the TAPCN , and dotted
line shows the CAPN.
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Fig. 6.2a The relative separation is  in meters for Perfect Intercepts in Continuous Time
System with Time Delay
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Fig. 6.2b The missile acceleration for Perfect Intercepts in Continuous Time System with
Time Delay
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Fig. 6.2c The relative velocity in m/sec for Perfect Intercepts in Continuous Time System with
Time Delay
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Fig. 6.2d The overall control effort for Perfect Intercepts in Continuous Time System
with Time Delay

The miss-distance is 0.003m for TCAPN , and 3.8m for APN. Moreover APN  lead to larger
cost  than the TCAPN .
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If the target is evasively maneuvering with:  w t
g t t

g t t
f

f

( )
.

.
=

< −
− ≥ −





10 0 3

10 0 3

The results of numerical simulations for this case are depicted in Fig. 6.3a-d. In all subfigures
the solid line shows the TAPCN , and dotted line shows the CAPN.
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Fig. 6.3a The relative separation is  in meters for Perfect Intercepts in Continuous Time
System with Time Delay
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Fig. 6.3b The missile acceleration for Perfect Intercepts in Continuous Time System with
Time Delay
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Fig. 6.3c The relative velocity in m/sec for Perfect Intercepts in Continuous Time System with
Time Delay
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Fig. 6.3d The overall control effort for Perfect Intercepts in Continuous Time System
with Time Delay

The miss-distance is 0.04m for TCAPN , and 8.6m for APN. Moreover APN  lead to larger
cost  than the TCAPN .
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The Fig. 6.4a-b describes the relative separation in meters and the overall control effort for
perfect intercepts in continuous time system with time delay as function of  tgo  for b = 10 , 100
, 1000 , 1e6 .
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Fig. 6.4a The relative separation is  in meters for Perfect Intercepts in Continuous Time
System with Time Delay for b = 10 , 100 , 1000 , 1e6 .
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Fig. 6.4b The overall control effort for Perfect Intercepts in Continuous Time System
with Time Delay for b = 10 , 100 , 1000 , 1e6 .

As could be expected , the overall control effort  lead to larger when  b is large and then the
relative separation is small.
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6.2 Perfect Rendezvous  - Numerical Simulations for Continuous Time System with
Time Delay :

In this section the version of tow guidance laws for the perfect rendezvous case will be
analyzed .The following Simulink diagram describes the perfect rendezvous case. In this
example the closing velocity is 300 m/s and tf is 0.5 sec.
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Fig. 6.5 The Simulink diagram describe the Perfect Rendezvous case in Continuous Time
System

The following  guidance laws are compared:

i) AOR( Augmented Optimal Rendezvous)
We use a sampled version of the Augmented Optimal Rendezvous guidance law.

ii)  TCAOR (Time Delayed Discrete Augmented Optimal Rendezvous )
The optimal control law in Eq. 5.12.

Initial conditions are :  τ = 0.13 [sec]  , y0 =20 [m] , v0=26.2 [m/s]  ,  b=1e4 , c=1e5

Target is maneuvering with:
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The results of numerical simulations for this case are depicted in Fig. 6.6a-d. In all subfigures
the solid line shows the TCAOR , and dotted line shows the CAOR.
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Fig. 6.6a The relative separation is  in meters for Optimal Rendezvous in Continuous Time
System with Time Delay
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Fig. 6.6b The missile acceleration for Optimal Rendezvous in Continuous Time System with
Time Delay
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Fig. 6.6c The relative velocity in m/sec for Optimal Rendezvous in Continuous Time System
with Time Delay
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Fig. 6.6d The overall control effort for Optimal Rendezvous in Continuous Time System with
Time Delay

The miss-distance is 0.04m for TCAOR , and 18m for CAOR , the relative velocity is 3 m/sec
for TCAOR , and 390 m/sec for CAOR. Moreover CAOR  lead to larger cost than the TCAOR .
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The Fig. 6.7a-c describes the relative separation in meters and the relative velocity in m/sec
and the overall control effort for perfect intercepts in continuous time system with time delay
as function of  tgo  for b = 10 , 1000 , 100000 , c=1e6 .

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

5

10

15

20

25

30

35

Time [sec]

y 
[m

]

b=10  c=1e+006

b=1000  c=1e+006

b=100000  c=1e+006

Fig. 6.7a The relative separation in meters for Optimal Rendezvous in Continuous Time
System with Time Delay for b = 10 , 1000 , 100000 , c=1e6 .
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Fig. 6.7b The the relative velocity in m/sec for Optimal Rendezvous in Continuous Time
System with Time Delay for b = 10 , 1000 , 100000 , c=1e6 .

1515

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−100

0

100

200

300

400

500

600

Time [sec]

C
os

t F
un

ct
io

n*
0.

00
1

b=10  c=1e+006

b=1000  c=1e+006

b=100000  c=1e+006

Fig. 6.7c The overall control effort for Optimal Rendezvous in Continuous Time System with
Time Delay for b = 10 , 1000 , 100000 , c=1e6 .

As could be expected , the overall control effort  lead to larger when  b,c is large and then the
relative separation and the relative velocity are small.

7.  Summary and Conclusions

In the present paper we described the Augmented Proportional Navigation (APN) and the
Augmented Optimal Rendezvous laws(AOR) for continuous time systems with time delays. The
continuous-time case is a limiting situation of the discrete-time delay results as h→0. As a
check , we also calculated the P.N. gains using the corresponding linear-quadratic optimal
control thory and obtained an identical solution.

Our results show that if we take b→∞ for APN and b c, → ∞ for AOR , we find that the

guidance gains tend  to infinity as  tgo→ τ. Therefore finite b and c should be taken  to obtain
bounded gains.

The results of the simulations are promising and show a clear advantage of our guidance laws
, over guidance laws which neglect the delay.
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