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Abstract

In this paper, we investigate the implications for robust sampled-data feedback design of mini-
mum phase sampling zeros appearing in the transfer function of discrete-time plants. Such zeros may
be obtained by zero-order hold (ZOH) sampling of continuous-time models having relative degree
two or greater. In particular, we address the robustness of sampled-data control systems to multiplica-
tive uncertainty in the model of the continuous-time plant. We argue that lightly damped controller
poles, which may arise from attempting to cancel, or almost cancel, sampling zeros of the discretized
plant are likely to introduce peaks into the fundamental complementary sensitivity function near the
Nyquist frequency. This in turn makes the satisfaction of necessary conditions for robust stability
difficult for all but the most modest amounts of modeling uncertainty in the continuous-time plant.
SomeH2- andH1-optimal discrete-time and sampled data designs may lead to (near-) cancellation,
and we therefore argue that their suitability is restricted.

1 Introduction

For single-input, single-output (SISO) systems of relative degreep, the corresponding discrete-time
transfer function arising from zero-order hold (ZOH) sampling has unity relative degree for all but a
finite set of sampling periods. The additionalp � 1 discrete-time zeros are called the sampling zeros
(Åström et al., 1984; Hagiwaraet al., 1993), and the cancellation of minimum phase sampling zeros
by lightly damped controller poles has for many years been closely linked to problems with undesirable
intersample ripple of either the regulated output or the control signal—for a partial list, see (Åström and
Wittenmark, 1984, p. 116, pp. 226–227, and pp. 232–234), (Morari and Zafiriou, 1989, pp. 169–170),
(Chen and Francis, 1995, pp. 156–161), (Stephanopoulos, 1984, p. 648), (Goodwinet al., 1986; Tesfaye
and Tomizuka, 1993), (Ogunnaike and Ray, 1994, pp. 972–977), and (Sanchis and Albertos, 1995). In re-
cent years, however, renewed interest in analysis and synthesis methods which directly take into account
intersample behaviour has lead to direct sampled-data control synthesis techniques in which notions of
pole-zero cancellations and sampling zeros play no role (Chen and Francis, 1991b; Khargonekar and
Sivashankar, 1991; Bamieh and Pearson, 1992b; Chen and Francis, 1995), and (Dullerud, 1996).

In this paper, we focus on the role of sampling zeros and their effect on the robust stability of sampled-
data control systems, in which continuous-time plants are controlled by digital compensators in conjunc-
tion with appropriate sample and hold devices. While modern sampled-data control synthesis techniques
typically avoid consideration of sampling zeros, it is argued in this paper that these zeros can have a
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substantial effect on the robust stability of sampled-data feedback systems, whether or not they arise
explicitly during the synthesis procedure.

The key tools used in this paper are the fundamental sensitivity and complementary sensitivity func-
tions (denotedSfun(s) andTfun(s)) introduced by Freudenberget al. (1995) in the study of fundamental
design limitations for sampled-data feedback control systems; see also (Braslavsky, 1995; Freudenberg
et al., 1997). While these functions are not transfer functions in the usual sense, they do play a key
role in governing the tracking and disturbance rejection response of sampled-data systems, and are more
readily calculated than the complete sampled-data frequency response (Yamamoto and Khargonekar,
1996). Most importantly for this paper, however, is that a necessary condition for stability in the pres-
ence of multiplicative uncertainty in the continuous-time plant can be stated in terms of the fundamental
complementary sensitivity function (Freudenberget al., 1995, Theorem 1).

In this paper, we show that digital controllers which rely on cancellation of minimum phase sampling
zeros by lightly damped controller poles have poor robustness to unmodeled high-frequency plant dy-
namics. This has direct implications for those formulations of discrete-timeH2- andH1-optimal control
synthesis problems which lead to cancellation of all minimum-phase plant zeros—including those arising
through sampling—unless otherwise constrained (Goh and Safonov, 1993). Furthermore, the frequency-
domain formulation removes the need for dealing explicitly with pole-zero cancellations, so that the
robustness of modern sampled-dataH2- andH1-optimal controllers can also be addressed. For con-
trollers designed by these direct methods which lead to near (as opposed to exact) cancellations between
minimum phase plant zeros and controller poles, this suggests further research is required to clarify the
robustness margins of direct sampled-data controllers to unstructured uncertainty in the continuous-time
plant model. The results of this paper might therefore be used in conjunction with known necessary and
sufficient conditions for robust stability in the presence of linear, time-invariant perturbations, which re-
quire the solution of infinite dimensional structured singular value problems (Dullerud and Glover, 1993,
1995).

The paper is organized as follows. Inx2, we review the notion of the frequency response of sampled-
data systems as presented in the work of Freudenberget al. (1995), Braslavsky (1995), and Braslavsky
et al. (1998). Inx3 we use this frequency-domain based framework to investigate the implications of
cancellation (or near-cancellation) of sampling zeros on the fundamental complementary sensitivity op-
eratorTfun(s). In x4, we apply the results ofx3 to a recent example of a direct sampled-dataH2-optimal
controller (Yamamoto, 1996). While this example is striking in its demonstration of how sampled-data
design can substantially improve intersample ripple in comparison with the associated classical con-
troller, the corresponding fundamental complementary sensitivity function indicates very poor stability
robustness to multiplicative plant uncertainty, a fact borne out by simulation experiments.

2 Frequency response of sampled-data systems

The steady-state response of a stable sampled-data feedback system to a sinusoidal input consists of
a fundamental component at the frequency of the input, together with all of its aliases, i.e. harmonics
located at integer multiples of the sampling frequency (Åström and Wittenmark, 1984; Goodwin and
Salgado, 1994). In this section, we introduce the assumptions, notation and definitions needed in the
sequel for dealing with the fundamental components of the response ofy(t) in Figure 1 to output distur-
bancesd(t), measurement noisen(t) and commandsr(t). The reader is referred to (Freudenberget al.,
1995) for a more complete exposition.

Consider the single-input, single-output sampled-data feedback system in Figure 1, whereP (s) and
F (s) are the transfer functions of the continuous-time plant and anti-aliasing filter,Cd(z) is the transfer
function of the digital controller,r(t), d(t) andn(t) are the command, output disturbance and noise
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Figure 1: Unity feedback sampled-data control system

signals,u(t) is the control input, andy(t) is the system output. The sampling period is denoted byT ,
the sampling frequency by!s = 2�=T , and the Nyquist frequency by!N = �=T . The frequency range


N
4
= (�!N; !N] is termed the baseband.
A rational function ofs (respectively,z) is minimum phaseif it has no zeros in the open right half-

plane (respectively, in the complement of the closed unit diskD
4
= fz : jzj � 1g). Likewise, a rational

function ofs (respectively,z) is stableif it has no poles in the closed right half-plane (respectively, in

the complement of the open unit diskD
4
= fz : jzj < 1g.

We shall assume that the plant, prefilter and controller are each free of unstable hidden modes, that
P (s) is rational and proper,F (s) is rational, strictly proper, and has no closed right half-plane poles or
zeros, and thatCd(z) is rational and proper. We restrict attention to a zero-order hold (ZOH) defined by

u(t) = uk; for kT � t < (k + 1)T;

for a discrete input sequencefukg1k=0. The associated frequency response function of the ZOH is

H(s) =
1� e�sT

s
: (1)

The discrete transfer function of the series connection of hold, plant, prefilter and sampler is given
by (Middleton and Freudenberg, 1995)

(FPH)d(z)
4
= ZfSTfL

�1fF (s)P (s)H(s)ggg; (2)

and is referred to as thediscretized plant. Opting for this somewhat unconventional notation has the
distinct advantage of allowing the role of the anti-aliasing filter and the frequency response of the hold
function to remain completely clear at all times. Define thediscrete sensitivityand complementary
sensitivity functions

Sd(z)
4
=

1

1 + (FPH)d(z)Cd(z)
(3)

and
Td(z)

4
= (FPH)d(z)Cd(z)Sd(z): (4)

Definition 2.1 (Hybrid sensitivity and complementary functions) Define thefundamental sensitivity
andcomplementary sensitivity functionsby

Sfun(s)
4
= 1�

1

T
P (s)H(s)Cd(e

sT )Sd(e
sT )F (s) (5)

and

Tfun(s)
4
=

1

T
P (s)H(s)Cd(e

sT )Sd(e
sT )F (s) (6)

respectively.
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The functionsSfun(s) andTfun(s) are not transfer functions in the conventional sense, since they
are not equal to the ratio of transformed input and outputs signals. Nevertheless, they do govern the
baseband component of the steady-state response to sinusoidal inputs, and therefore play a key role
in the overall response. To discuss steady-state behaviour, we assume the absence of unstable pole-zero
cancellations in the product(FPH)d(z)Cd(z), that all poles ofSd(z) lie within D, and that the standard
non-pathological sampling conditions are satisfied (Kalmanet al., 1963), from which exponential and
L2 input–output stability follow (Francis and Georgiou, 1988; Chen and Francis, 1991a).

Denote the responses ofy(t) to each ofd(t); n(t) andr(t) by yd(t); yn(t) andyr(t), respectively,
whered(t) = ej!t; t � 0; n(t) = ej!t; t � 0 andr(t) = ej!t; t � 0. Then, ast ! 1 (Freudenberg
et al., 1995):

yd(t)! ydss(t); yn(t)! ynss(t); andyr(t)! yrss(t);

where

ydss(t) = Sfun(j!)e
j!t �

1X

k=�1

k 6=0

Tk(j!)e
j(!+k!s)t; (7)

ynss(t) = �Tfun(j!)e
j!t �

1X

k=�1

k 6=0

Tk(j!)e
j(!+k!s)t; (8)

and

yrss(t) = Tfun(j!)e
j!t �

1X

k=�1

k 6=0

Tk(j!)e
j(!+k!s)t; (9)

where

Tk(s)
4
=

1

T
P (s+ jk!s)H(s+ jk!s)Cd(e

sT )Sd(e
sT )F (s); k 6= 0 (10)

is thekth harmonic response function.

3 Implications of sampling zero cancellation

We now consider the consequences for robust stability of cancellations between minimum phase sam-
pling zeros appearing in the discretized plant, and poles of the digital controllerCd. While state-space
frameworks sometimes obscure the role of pole-zero cancellations, it is nevertheless well known that
cancellations of the form just described are a feature in several different classes of discrete-timeH2- and
H1-optimal control problems (Saberiet al., 1995; Tsaiet al., 1992; Goh and Safonov, 1993). Moreover,
for direct sampled-data control synthesis in which no exact cancellations occur, the frequency-domain
approach of this paper nonetheless provides quantitative and qualitative information about the likely
implications for robustness of near pole-zero cancellations.

We assume that a controllerCd has been designed to ensure the nominal stability of the feedback
system in Figure 1, and consider the effect of multiplicative uncertainty of the form

P 0(s) = P (s)(1 +W (s)�(s)); (11)

where�(s) is proper and stable, andW (s) is a stable weighting function used to represent the frequency
dependence of the modeling error. It was shown in (Freudenberget al., 1995) that anecessarycondition
for the closed loop system to remain stable for all�(s) satisfying

j�(j!)j < 1; 8 ! 2 R
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is that
jW (j!)Tfun(j!)j � 1; 8 ! 2 R: (12)

SinceTfun(j!) is readily calculated from (6), and the weighting functionW (s) reflects the designers
uncertainty in the continuous-time plant model, condition (12) is very useful for assessing the robust
stability properties of a given controller to unstructured plant uncertainty of various kinds. For instance,
by representing a single high-frequency pole as multiplicative uncertainty, it is possible to estimate the
maximum time constant of a neglected lag for which a given controller maintains stability. If the true
plant has transfer function

P 0(s) = P (s)
1

�ps+ 1
; 0 � �p � �max;

it follows that an appropriate choice of weight is (Skogestad and Postlethwaite, 1996, p. 267):

W (s) =
�maxs

�maxs+ 1
: (13)

Tuning�max until condition (12) is just barely satisfied then gives a useful indication of the likely robust-
ness (or otherwise) of a given control design.

The simplicity of condition (12) is a direct consequence of ignoring the effect of aliases on the
closed-loop response. By taking these aliases into account, it is possible to use the results of Dullerud
and Glover (1993) to state a stronger necessary condition for closed-loop stability (Freudenberget al.,
1997) whose testing requires only a little more effort than (12):

jW (j!)Tfun(j!)j +w jS�d(j!)j � 1; ! 2 
N; (14)

where
w
4
= inf

!=2
N
jW (j!)j; (15)

andS�d(s) is thefidelity function

S�d(s)
4
= Sfun(s)� Sd(e

sT )

= �Tfun(s) + Td(e
sT ): (16)

Conditions (12) and (14) both indicate that controllers leading to large peaks injTfun(j!)j are likely
to have their nominal stability destroyed by only modest high-frequency deviations of the continuous-
time plant from the nominal modelP (s). In the remainder of this section, we show how controllers which
cancel, or almost cancel, minimum phase sampling zeros of the discretized plant near�1 necessarily lead
to these undesirable peaks injTfun(j!)j near the Nyquist frequency.

We start by writing

Tfun(s) =
1

T
F (s)P (s)H(s)Cd(e

sT )Sd(e
sT )

=
1

T

F (s)P (s)H(s)

(FPH)d(esT )
(FPH)d(e

sT )Cd(e
sT )Sd(e

sT )

=
1

T

F (s)P (s)H(s)

(FPH)d(z)
Td(z); z = esT : (17)

Suppose that the discretized plant(FPH)d(z) has a minimum phase zero,z0 say, near�1, which is
exactly cancelled by a pole in the controllerCd. Since the zero atz0 no longer appears in the discrete
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complementary sensitivity function,Td(z0) 6= 0, andTfun(s) consequently has a pole ats0, where

s0 =
1

T
ln jz0j+ j

1

T
arg z0

= � + j
1

T
�; � small and negative,

= � + j!N: (18)

Thus the pole inTfun(s) at s0 ensuresjTfun(j!N)j � 1, with undesirable consequences for robust
stability.

Conversely, if the zero of the discretized plant(FPH)d(z) is not cancelled by a controller pole,
Td(z) and(FPH)d(z) share a common zero atz0, so no such pole appears inTfun(s) for s � j!N.
If, however, the controllerCd has a pole atz1, with z1 � z0 (as is the situation with near pole-zero
cancellations),Td(z0) = 0 since the discretized plant zero atz0 is not cancelled by a controller pole,
Td(z1) = 1 and j(FPH)d(z1)j � 0 sincez1 � z0. Thus depending on the proximity ofz0 andz1,
Tfun(j!) might still be unacceptable large over a range of frequencies.

It is also possible to interpret (17) in terms of engineering rules of thumb applied to digital control
design. Specifically, since

jTfun(j!)j =
1

T

����
F (j!)P (j!)H(j!)

(FPH)d(ej!T )

���� jTd(e
j!T )j; ! 2 R; (19)

large peaks inTfun(j!) are avoided by ensuring thatjTd(ej!T )j is sufficiently small at frequencies!
where the discrepancy between the frequency responses of the continuous-time and discretized plants,
F (j!)P (j!)H(j!) and(FPH)d(e

j!T ) respectively, is large, i.e. near the Nyquist frequency. This is
therefore consistent with the guideline of restricting the closed-loop bandwidth to no more than around
one-fifth the Nyquist frequency.

4 Example

In this section we show how the fundamental complementary sensitivity function and the robust stability
necessary condition (12) can be used to assess the robust stability of both a classical discrete-timeH2-
optimal controller and its sampled-data counterpart. The example we consider in this section originally
appeared in (Yamamoto, 1996); see also (Haraet al., 1996) for details of the same design procedures
applied to a different plant.

The plant is open-loop unstable, with transfer function

P (s) =
1

s2 + 2s� 10
: (20)

With a sample periodT = 0:2 s, zero-order hold, and anti-aliasing filterF (s) = 1, the corresponding
discretized plant transfer function

(FPH)d(z) =
0:0182(z + 0:8768)

(z � 0:4218)(z � 1:5893)
(21)

clearly exhibits a sampling zero atz = �0:8768. The controller

Cdt(z) =
282:95(z � 0:3768)

(z + 2:8880)(z + 0:8768)
(22)
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Figure 2: Response to unit step input disturbance applied at timet = 0 for three different controllers.
Key: Cdt: - - -, Csd: —, Cpp: -.-.-.

minimizes theH2 norm of the closed-loop transfer function from an additive input disturbancew appear-
ing on the control input to plant outputy. That is, the discrete-time controllerCdt minimizes the energy
in the pulse response of the closed-loop system fromw to y, and clearly cancels the sampling zero of
(FPH)d.

The second controller we consider is

Csd(z) =
179:5(z � 0:3955)

(z + 1:7765)(z + 0:9493)
; (23)

which minimizes the average of responses to unit intensity impulses applied tow over the period[0; T ),
and thus captures the intersample behaviour of the closed-loop system more satisfactorily. This controller
is designed by solving a purely discrete-timeH2-optimal control problem for an appropriately defined
auxiliary discrete-time system obtained from the underlying continuous-time plant and the sampling
periodT (Khargonekar and Sivashankar, 1991; Bamieh and Pearson, 1992a), and will be referred to as
the sampled-data controller.

Figure 2 shows the simulated response to a unit amplitude step inw applied at timet = 0 s of the
controllersCdt (- - -) andCsd (—). While the discrete-timeH2-optimal controller has a steady-state gain
somewhat smaller than the sampled-data controller, a substantial intersample ripple with period0:4 s
(corresponding to the Nyquist frequency!N = 5�= rad/s) is present in the discrete-time design. Note
that the intersample ripple with the sampled-data controller is small, despite the presence of a very lightly
damped pole atz = �0:9493 in Csd.

Also shown as a dash-dotted line (-.-.-.) in Figure 2 is the step response corresponding to the con-
troller

Cpp(z) =
56:4101(z � 0:4218)

z + 0:5651
(24)

obtained by cancelling the stable pole of the discretized plant(FPH)d at z = 0:4218, and placing two
poles of the discrete-time transfer function fromw to y at the origin.

1079

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



10
−1

10
0

10
1

−40

−30

−20

−10

0

10

20

30

40

50
Fundamental complementary sensitivity function (Tfun)

Frequency [rad/s]

T
fu

n 
[d

B
]

Figure 3: Fundamental complementary sensitivity function magnitude (jTfun(j!)j) for three different
controllers. Key:Cdt: - - -, Csd: —, Cpp: -.-.-.

To assess the robust stability of the feedback systems corresponding to the three controllersCdt; Csd

andCpp, we evaluate the fundamental complementary sensitivity functionsTfun(j!) up to a maximum
frequency of2!N rad/s. From Figure 3, both the discrete-time and sampled-data controllers lead to
peaks injTfun(j!)j near! = !N = 15:7 rad/s. In view of the necessary condition in (12), we should
therefore expect poor robustness for both of these feedback systems to uncertainty in the continuous-
time plant model at frequencies around!N, wherejTfun(j!)j is large. By way of comparison, the value
of jTfun(j!N)j for the pole-placement controllerCpp is some 20 dB lower than the peak forCsd, and
almost 50 dB lower than the corresponding value forCdt, so that improved stability margins are expected
compared with either controller.

Equation (19) pinpoints the reason for the large peaks injTfun(j!)j for theCdt andCsd controllers.
That is, while there is a substantial gap between the continuous-time and discrete-time plant frequency
responses at! = !N due to the sampling zero in(FPH)d:

1

T

����
F (j!N)P (j!N)H(j!N)

(FPH)d(ej!NT )

���� � 12 dB;

the corresponding value of the discrete-time complementary sensitivity functionjTd(e
j!NT )j is compar-

atively large for controllersCdt andCsd, as shown in Figure 4. In contrast,jTd(ej!NT )j = �18 dB for
the pole-placement controller, which does not cancel the plant sampling zero atz = �0:8768 (as does
Cdt) nor almost cancel it (as doesCsd).

To give a concrete example of the poor robustness implied by the peak values ofjTfun(j!)j, consider
the effect of a single neglected high-frequency pole in the continuous-time plant:

P 0(s) =
1

(s2 + 2s� 10)

1

(�ps+ 1)
; 0 � �p � �max: (25)

A little experimentation shows that the necessary condition (12) is just barely satisfied forCdt when
�max = 0:0003 s andW (s) is chosen as in (13), indicating extreme sensitivity to neglected high-
frequency dynamics in the continuous-time plant. For the sampled-data controllerCsd the necessary
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condition is satisfied when�max = 0:01 s, which is an improvement overCdt, but still indicates poor
sensitivity to neglected dynamics. For the pole-placement controller, the necessary condition (12) is
satisfied for weighting function (13) when�max = 0:1 s.

Figure 5 shows the simulated response to a unit amplitude step inw applied at timet = 0 s for each
of the controllersCdt, Csd andCpp applied to the plant (25), where�p = 0:01 s. For both controllers
Cdt andCsd with large peak values ofjTfun(j!)j at the Nyquist frequency, the robustness is quite poor.
Indeed, neither feedback system maintains stability when the true plant includes a pole ats = �100 rad/s.
In contrast, the responses of the controllerCpp for plantsP (s) andP 0(s) are virtually identical, and
repeated simulation experiments with the controllerCpp indicate that stability is maintained even when
the bandwidth of the neglected pole is somewhat less than 10 rad/s.

5 Conclusions

In this paper, we have investigated the role of sampling zeros on the robustness of sampled-data control
systems to uncertainty in the underlying continuous-time plant model. It has been argued that very lightly
damped controller poles (which may arise from attempting to cancel, or almost cancel, minimum phase
zeros of the discretized plant near�1) are likely to introduce peaks into the fundamental complementary
sensitivity function near the Nyquist frequency. In turn, excessively large peaks injTfun(j!)j make the
satisfaction of the necessary condition (12) difficult for all but the most modest amounts of modeling
uncertainty in the continuous-time plant. Expressed another way, controllers which cancel, or almost
cancel, minimum-phase sampling zeros of the discretized plant close to�1 are virtually assured of
violating design guidelines recommending the closed-loop bandwidth be no more than around one-fifth
the Nyquist frequency. This may therefore restrict the suitability of discrete-timeH2- andH1-optimal
design procedures (or their sampled-data counterparts) which lead to (near-) cancellation of all minimum-
phase plant zeros.
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Francis, B. and T. Georgiou (1988). “Stability theory for linear time-invariant plants with periodic digital con-
trollers,” IEEE Trans. Automat. Control, 33, no. 9, pp. 820–832.

Freudenberg, J., R. Middleton, and J. Braslavsky (1995). “Inherent design limitations for linear sampled-data
feedback systems,”Int. J. Control, 61, no. 6, pp. 1387–1421.

Freudenberg, J., R. Middleton, and J. Braslavsky (1997). “Robustness of zero shifting via generalized sampled-data
hold functions,”IEEE Trans. Automat. Control, 42, no. 12, pp. 1681–1692.

Goh, K.-C. and M. Safonov (1993). “H1 control: Inverse free formulae forD11 6= 0 and eliminating pole-zero
cancellations via interpolation,” inProc. 32nd IEEE Conf. Decision Contr., San Antonio, TX, pp. 1152–1157.

Goodwin, G., R. Lozano Leal, D. Mayne, and R. Middleton (1986). “Rapprochement between continuous and
discrete model reference adaptive control,”Automatica, 22, no. 2, pp. 199–207.

Goodwin, G. and M. Salgado (1994). “Frequency domain sensitivity functions for continuous time systems under
sampled data control,”Automatica, 30, no. 8, pp. 1263–1270.

Hagiwara, T., T. Yuasa, and M. Araki (1993). “Stability of the limiting zeros of sampled-data systems with zero-
and first-order holds,”Int. J. Control, 58, no. 6, pp. 1325–1346.

Hara, S., Y. Yamamoto, and H. Fujioka (1996). “Modern and classical analysis/synthesis methods in sampled-data
control—A brief overview with numerical examples,” inProc. 35th IEEE Conf. Decision Contr., Kobe, Japan,
pp. 1251–1256.

Kalman, R., Y. Ho, and K. Narendra (1963). “Controllability of linear dynamical systems,” inContributions to
Differential Equations, John Wiley, New York, pp. 189–213. Volume 1.

Khargonekar, P. and N. Sivashankar (1991). “H2 optimal control for sampled-data systems,”Systems & Control
Letters, 17, no. 6, pp. 425–436.

Middleton, R. and J. Freudenberg (1995). “Zeros and non-pathological sampling for generalized sampled-data hold
functions,”Automatica, 31, no. 2, pp. 315–319.

Morari, M. and E. Zafiriou (1989).Robust Process Control, Prentice-Hall, Englewood Cliffs, NJ.

Ogunnaike, B. and W. Ray (1994).Process Dynamics, Modeling, and Control, Oxford University Press, New York.

Saberi, A., P. Sannuti, and B. Chen (1995).H2 Optimal Control, Prentice Hall Int., Hemel Hempstead, Hertsford-
shire.

Sanchis, R. and P. Albertos (1995). “Design of ripple-free controllers,” inProc. 3rd European Control Conf., Rome,
Italy, pp. 3660–3664.

Skogestad, S. and I. Postlethwaite (1996).Multivariable Feedback Control—Analysis and Design, John Wiley &
Sons, Chichester.

Stephanopoulos, G. (1984).Chemical Process Control: An Introduction to Theory and Practice, Prentice-Hall,
Englewood Cliffs, NJ.

Tesfaye, A. and M. Tomizuka (1993). “Robust digital tracking with perturbation estimation via the Euler operator,”
in Proc. Winter Ann. Meet. ASME DSC, pp. 49–54. Volume 50.

Tsai, M., E. Geddes, and I. Postlethwaite (1992). “Pole-zero cancellations and closed-loop properties of anH
1

mixed sensitivity design problem,”Automatica, 28, no. 3, pp. 519–530.

Yamamoto, Y. (1996). “A retrospective view on sampled-data control systems,”CWI Quarterly, 9, no. 3, pp. 261–
276.

Yamamoto, Y. and P. Khargonekar (1996). “Frequency response of sampled-data systems,”IEEE Trans. Automat.
Control, 41, no. 2, pp. 166–176.

1083

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999


	HOME
	SESSION

