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Abstract. A new extended Roesser type model isintroduced. It is shown that:

1. Any singular 2D general model (1) with E* 0 can be reduced to the model (6) (or (6)),

2. Regular singular 2D model (9) can be reduced to standard extended Roesser type model
(11),

Sufficient conditions are established under which a singular 2D general model (1) can be

reduced to standard models of the form (28) or (35).
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1. Introduction

The most popular two-dimensional (2D) models are the discrete models proposed by Roesser
[18] and by Fornasini and Marchesini [2,3] and Kurek [15]. Extensions of these models from
2D to nD has been suggested in [13,12,19]. Polynomial and agebraic approachs for
transformations and recasting of different 2D and nD models have been studied by Galkowski
[5-7]. Singular 2D and nD general models have been introduced in [9-12]. Recently the
relationship between the general nD Roesser model and Fornasini-Marchesini models has been
given by Miri and Applevich in [17].

In[1,8,12] the 2D shuffle agorithm has been used for checking of the regularity of singular 2D
model and its reduction to standard form. It is known that in some cases the algorithm may
stop without reaching a definite conclusion about the regularity of the singular 2D model and
its reduction to the standard form [1,8,12]. The results of this paper clarify at least partly why
it takes place.

In this paper a new extended Roesser type model will be introduced and some new procedures
for reduction of singular 2D general to standard models will be proposed.

3. Modelsof 2D systems.

Let R"™ beset of m" n red matricesand R" := R"*. The set of nonnegative integers will be
denoted by Z, .

Consider a 2-D system described by the equations [9,10]

(1a) EXiijm = AoXy T A X T ALX, 4 T BU;

(1b) y; =Cx; +Du, ijl Z,

where x; T R" is the emistate vector at the point (i, j), u; T R™ istheinput vector, y, T RP
isthe output vectorand ET R"", AT R"",k=012,BT R"™,CT R"",DT R""

Boundary conditions for (1a) are given by

i+1,j i,j+1
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) X, foril Z, and x,; for jI Z,

The modd (system) (1) iscalled standard if E =1, (the identity matrix) and it is called singular
if dtE=0

If

(3) det[Ezz,- A,- A- A] 0 forsome zz,T C (thefield of complex numbers)

the model (system) (1) iscalled regular.

We shall also considered an extended 2D Roesser type model of the form

U ¢ u u
(43) e><.+1,u g% AlzueX” eF 0Uexu+1 eBlou”

gX,JJ,lg A, Azz@, gj 2U§X.+1,H eB. g

h\

u ~
(4b) . =[c, C]e G+ Dy, iil z,

ij
where x{' T R™ isthe horizontal semistate vector, u; I R™ isthe input vector, y, T R® isthe
output vector, A,,F,T R*™ A, ,F,1 R*™, ET R"", n=n+n,, BT R*™, B,T R® ",
c,1 R"™,C,T R"™ DI R"™
The extended model (4) iscaled standard if E=1, anditiscalled sngular if detE =0.
If

3E,, 7 - - kz,, E,z,-
(5) detg uh” Au Rz 2 Ao ul0 for some z,z,1 C

6 Exz-A, L Enz- Ay- Fzz1u

then the model (4) iscaled regular. For F, =0 and F, =0 from (4) we obtain the singular 2D
Roesser model [11].

Theorem 1. The model (1) can be reduced to the form

(63.) AJX|]+A1X|+1J+A2X|J+1+BU _0

(6b) C>q]

or

(6'a) AKE+ AKS |+ AIKE, + B‘U

(6'b) yij:C&i]q:

where

_ &0~ 6A AU~ & OU-~ é&E Al~ éBu-=

=6 0 A me A= a A =a ,B=g 3C:=[0 C]
'Tex g &, 0d T ®-LETE0 of @y

_ & U~ 6A AU~ E&E A~ € 00 ~ 6B~
X¢=6 "0 Ab=g W AC= A  Ab= & ,,Bt=a ;,C¢=[0 C]
L 8% g g, 04 §0 04 0 -1, oy

Proof. The equations (1) can be written in the form
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(7) [- E, AZ]%“” i+[A, Aolem‘wBu =0
8%,nf g% H
and
@(H-lj
(8) y; =[0 C]e U
eXu H

Using (7) we can write the equation
@Ai A)Uexul i U é) 0 UeX|+ZJ l;‘l e' E AZUeXHl J+1ltj
§ AR 2780 0 3)““
€hn USXJ H “L@XHlJH e nglﬁlg
which is equivalent to (6a). The proof of the dual equations (6°) is similar. (I

4. Reduction of singular models.

Now first we shall consider a particular case of (1a) for E=0, i.e.

9 Ak + A X TAX By =0
under the assumption that
(10) det{Az+A]* 0 forsomesi C

Theorem 2. If the condition (10) is satisfied then the equation (9) can be reduced to the form

eX|+1 U 1 U 1 +1u eB oA
(11) S-S AN ¢ 0N B
éxu J+1H éA21 A22U€X“ g) FZ L@XH“ H @BZ o

where x] , X ,U; and the submatrices A,,B,,F, (i, j =12) are defined in the same way as for
(4a)

Proof. It iswell-known [12] that if (10) holds then there exists a pair of nonsingular matrices
P,Ql R"" such that

(12) PAQ—élnl 0 @p & F 0u
_go B FZH’ eo Inzg

where n, is equal to the degree of the polynomid det[Az+A,], F,T R*™, F,1 R*™ isa
nilpotent matrix.

Premultiplying (9) by the matrix P and introducing the new subvectors x ] R™, Xj T R™
defined by

h ~
]

U
a=Q %
¢!

(Digg\

(13)

vV -
]

>

®

and using (12) we obtain

Zoh L, ,
ex'u @l 0 uex,+ & F Oue><,+u eBu
" AL AECY 8, 0 B0 e R 0L @y
eA21 A22L€X”H é) - 210§X|+11 é nzL@(| J+1H @BZQ

where
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A.Zu ,1ltj
15 P _-ei W PB=-6 '
( ) AJQ e“21 AZZH eéEZE

It is easy to see that the equation (14) can be rewritten in the desired form (11). O
From theorem 2 it follows that if (10) holds then the singular moddl (9) with det A =0 (or

and det A, =0) can be reduced to standard extended Roesser type model (11).

7 h N
u
To find the solution g& U of (11) it is enough to know the boundary conditions
&
(16) xg; for j1 Z, and x for il Z,

and u; for i, jT Z,.Knowing (2) the boundary conditions (16) may be computed the from
equation (13).

Theorem 3. If detF, * O thenthe model (11) can be transformed to the standard model
A h N - R L

g)(i’jﬂg:g- Fl 1A111 F AiZLLEX”u e— F 1B HJH +gF11 OUeX|V+1]

&l 6 A Ar BN H @ B, § & F.088

andif detF, * O then the model (11) can be transformed to the standard model
e)(H-lJ u e Al]_ ’ A.Z lﬁxu u e B l:l eF 0 Lﬁx| J+1

(18) u= c Vl;‘|+é L“l] c
€X‘+11H e_ F AZl’ FZ AZZCG)(|] F Bzg d) F %X' J+1H

(17)

Proof. The model (11) can rewritten in the form
él 0 uex|+118 e‘ F Ouex| j+13 @Aﬂ Aiz Uexu U eB U

(19) é v v Ue L“'
éD - FZ C@(Hljg e 0 I C@Xlﬁlg éA21 AZZLQXII @Bzg ]
& F*' o _ :
If the detF, * O then premultiplying (19) by e 0 IOE we obtain (17) and if detF, * O
é a

g 0
then premultiplying (19) by a E- L4 weobtain (18). [
& -
In general case of (1) it is assumed that |det A| +det|A,| 0.
It is well-known [12] that if rank E =r <n then there exist nonsigular matrices T,,T,T R""
such that

0 | ¢
(20) TET, =& &
D of
. a el
Premultiplying (18) by T, and defining the new subvectors x T R™ ',x” T R by é 2;:T2 X;
i
we obtain
(22a) X|2+1 j+l j + A12X|] + Aill |1+lj + A12X|+1J + Aizl Ilj+1 A12X|2,j+1 + Bluij
(22b) 0= Aglxi} + Agzxij2 + A;lxilﬂ,j + A;ZXiZJrl,j + Azzlxil,jﬂ + AZZZXiZ,j+1 +B,u;
where
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L Al @u AR BIRT
22 =T AT, = k=012, TB=a - . - .
( C) A( A( @A;l Azzlél’ :L SBZ A;(ZI Rn-rr’BZI Rn-rm

Note that det A * O impliesthe full row rank of the matrix
(23) A =[m Al

and there exists itsright inverse (A A’ =1, ) of the form
~ o~ [~ ~_T]1
(29 A=R[AA]

where T denotes the transposition.
Using (24) from (22b) we have

(25) 2= Ay (A0 + AL+ AZXE L+ AL, + B, )
where A, = Azlg[Al A ]
From (22a) and (25) we obtain N
0= ALX + A + AL, + A2, +(AZ + A, AL X+ (A + A AL I +
(26)

+A21( Ij+2+A22)(I j+2+B u| j+l)+BuI]
The equations (22b) and (26) can be written in the form

(27) AYJXU + A1X|+1J + Azq;(u j+l + A3¢(| j+2 + B U + B u| j+l o
where A, and A are defined by (22c) and

é u__ é 6B _ 6éA B.U éx; u
A2¢— 'Ai1+A21A21 ’ A_2+A21A22u Ag:AAzlAzl ’ AzlAzzu é 15’ = éAZLBZE,Xij :é lzl;I
e A, A, 0 eO,OO éBzu e 0@ &%t
From (22¢) it follows that det A * 0 implies det A * 0 and from (27) we obtain
(28) |+1j A)X|]+A2X|J+1+A3X|J+2+Bu +Blu| L
where
(29) Av=-AA A = ATAS A= ATAGB, =- ATBy, B i=- AT
If detA, 1 O then the matrix
(30) A=y A
has full row rank and there existsitsright inverse
~r _~ _~ o~ _1
(31) A = A [AA]]
Using (31) from (22b) we have
(32) X0 = - A (A0 + ALK+ ALKy + A+ B, )

where A, = AZ[A,AT|*
From (22a) and (32) we obtain
0= AT, + ALK + (AL + A AL I+ (AL + A AD I | + AT L+ AR, +
(33)
+ AZZAélxil+2,j + AZZA;ZXiZJrZ,j + Bluij + Azszui+1,j
The equations (22b) and (33) can be written in the form
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(34) 'Koxij + Kiq:xﬂl,j + 'Kz Xt AngZ,j + §0¢uij + E1¢ui+1,j =0
where A, and A, are defined by (22c) and

Al= eA11+A22A21’A12+A22A22u —¢_ AA22A21 , AzzAzzu eB u§1 eAzzB U eX u

éAa, Azzu eO,OO eBz e'ouléx.,2
From (22¢) it follows that det A, * 0 implies det A, * 0 and from (34) we obtain
(35) | j+l Ag:xu +A1¢X|+1] +A$)(I+Zj + Bguu + B¢u|+lj
where

Ag=- AR, AS=- A'AG A= - A'AGB:=- A'Bg Bi=- A 'BS

Therefore, we have proved the following theorem

Theorem 4. The singular model (1a) can be reduced to the standard model (28) if detA * O
and to the standard model (35) if det A, * 0.
Note that to find the solution x; for i, j1 Z, of the equation (28) we need to know only Xo;

for jT z, and u; for i,j1 Z,.
Similarily to find the solution x; for i, j1 Z, of the equation (35) we need to know only Xo;
foriT Z, and u; fori, j1 Z,.

Example 1. Consider the model (1a) with

€0 0 1 & 0 Oy €0 1 0y €0 1 0u du
_é G , _@é a & G , _@é 0o _ &0
(36) E-go 0 o@,Ab-go 1 0y A= gl 0 o@,Az-go 1 OQ,B—gO@
g 0 0Og @019 @0 0 1y gl 0 1f &g

Inthiscase n=3,r =1, matrix A isinvertibleand A, singular.
By theorem 4 we may reduced the singular model (1a) with (36) to the standard model (28).
Taking into account that in this case

é 00y 0 100 € 1 0y
e 0 g 2R u
A=A=D 1 0GA=A=E 0 0pA=A=D 1 0;
e 0:1y @ 01§ el 0:1y
40 0~ & oo
N - % 4N — unx _
Azg o 4N =L 0GA=l0
0 14
2 0 2 LA A0 € 1 1d
N _9A11+A21A21’A12+A21A22u_é0 a
Af=é ) , Cu=0 1 0
e 1 ) A22 é]_ 0 1é
6 A2 AzAzzuélolu 5 QU éRZBuém
_ i Po s Py e Ug _eBU_é.0g5 _SAb,Y_ &\
Apme ) TETIm R 0 0yBim g 6= 0B e U=
€& 0 0Oy el €0t

and using (29) we obtain the model (28) with the matrices
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0 1 0y © 1 0 0 0 0
_ A1y - € u — A-1AM— u o u
A=-A'A=-2l 0 0y A =-A ¢_-go 1 1p A=-A'Ag=-2l 0 1;
g€ 0 1f gl 0 1§ g€ 0 0g

& Q0

0:'A11§0_ H’Blz'pilBlz H

ey €08

Note that in this case A, is singular but A¢ is invertible. Therefore the singular model (1a)

with (36) may be also reduced to the standard model (35).
Note that using the 2D shuffle algorithm [1,8,12] we can not reduce the model (1a) with (36)
to the standard 2D generd model since both matrices

[A21 Azz] g; g 23 [Azz1 Ajz]zg é SQ of (22) are nonzero.

Theorem 5. The singular model (1a) can be reduced to the standard model (28) with
(37) A =-AC'A A =- AC'A A, :=- AC'AE B, :=- AC'BE B, :=- AC'BC

if the matrix (30) has full row rank and det A¢* 0 and to the standard model (35) with

(38)  Afi=- AS'A Al=- ARTA Afi=- ASTALBE:=- AS'B,, Bfi=- AF'B,
if the matrix (23) has full row rank and det Ag* 0.

Proof. If the matrix (30) has full row rank then we can find the equation (34) in the same way
asin the proof of theorem 4. If det A¢* O then solving the equation (34) with respect to X.,, J

we obtain (28) with (37). If the matrix (23) has full row rank then we can find the equation
(27) in the same way as in the proof of theorem 4. If det A¢* 0 then solving the equation (27)
with respect to x; ;,, we obtain (35) with (38). [

Example 2. Consider the model (1a) with

€ 01u e 00 &0l &1l du
— u - u - u - Up_6Uu
3) E=0 0 03 A=0 1 03A=5l 0 03A =0 1 0;B=g

O 00y g 01y OO0 O 1y &4

Inthiscase n=3,r =1, thematrices A and A, are singular but the matrix

~ _él 0 0Ou
(40) Aiz[Aél g) 0 1Ll
has full row rank. To check if det A$* O we compute
o ,~, € 0 1o
A RIAA] =10 9, A=E0M ARG o of
e - 00 gm0 o

and
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+ 2 L A AO U e 1 2
(41) Az —_ AAi A21A21 J Au AZiAZZI;I é 1 Olil
A21 , A, 0 0 0 1H

The matrix (40) has full row rank and the matrix (41) is invertible. Therefore the conditions of
theorem 5 are satisfied and the singular model (1a) with (39) can be reduced to the standard
model (35) with

61 1 21 61 0 1y € 0 -1
rs=-AgA =80 -1 olas=-AgA=-S1 0 olAg=-AgAE=% 0 o
&1 0 -1é| g0 0 1EI € 0 OH

640 & 20

Bg=- APB, = 1Be=- A9B =50

e 2 eod

It is easy to check that in this case the det A¢=0.

4. Concluding remarks.

It has been shown that the singular 2D general model (1) can be always reduced to the singular
model (6) or (6°) (theorem 1). If the condition (1) is satisfied, then the equation (9) can be
reduced to the standard form (11) (theorem 2). If detA * O (detA, * 0) then the singular
model (1a) can be reduced to the standard model (28) ((35)) (theorem 4). If the matrix (30)
((23)) has full row rank and det A¢=0 (det A¢=0) then the singular model (1a) can be

reduced to the standard model (28) ((35)) (theorem 5). The above considerations can be
extended for singular nD (n>2) models. Note that by theorem 4 the singular model (1) can not
be reduced to the standard 2D general model but it can be reduced to the standard model (28)
or (35). Futher investigations are needed to established necessary and sufficient conditions
under which the singular 2D general model (1) can be reduced to the standard 2D general
model.
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