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Abstract

Direct adaptive control systems without the familiar reference models is considered. A
framework for design using quadratic cost functions is presented, and corresponding error
equations are derived using ideas from linear-quadratic optimal control.
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1 Direct Adaptive Control

The first step in the design of a direct adaptive control system is to decide on the underlying
control design methodology. The adjustable control parameters, the shape of the error equation,
the ever-present adaptive observer, all follow from this initial choice. This contrasts with indi-
rect adaptive control systems. Indirect controllers typically comprise a parameterized observer
which generates an identification error; a certainty-equivalence feedback regulator; and a tuner
or adaptive law. These components can be designed in a modular fashion, more or less inde-
pendently, provided each possesses some properties which are indeed satisfied by typical control
and estimation algorithms.

The overwhelming majority of the direct adaptive control literature uses reference models
as the design paradigm. This is because the control error between a plant’s output and that of
a suitably defined reference model can be expressed in a convenient form in which the control
parameters appear linearly — provided, of course, that a number of restrictive hypothesis are
satisfied. Another class of direct controllers are non-identifier based universal controllers (see
(Mareels and Polderman, 1996) for a current presentation of direct, indirect, and non-identifier
based adaptive control).

However, reference models are just one possibility in indirect adaptive control, and they
are used sparingly outside adaptive control if at all. In this paper we explore the feasibility of
another design technique: linear-quadratic optimal control. Design using a quadratic objective is
perhaps the most transparent and best understood paradigm that can be applied to detectable,
stabilizable linear dynamical systems in general. (Interestingly, universal adaptive controllers
often employ quadratic cost functions.) In the sequel we show that a parameterized controller

∗Research partially supported by cnpq – Brazilian Research Council, grant 523949/95-2, and by fapesp – São
Paulo State Research Agency, grant 97/04668-1.

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel -  June 28-30, 1999

365



can be constructed using tools from linear-quadratic optimal control. Suitable tuners to complete
the adaptive feedback loop are the subject of a companion paper (Pait, 1998).

2 Framework

We wish to control a plant with measured output y ∈ R
ny and control input u ∈ R

nu using an
n-dimensional identifier-based direct adaptive controller of the form

ẋ = AIx + BIu + DIy (1)
u = Fx. (2)

The “adaptive observer” or identifier given by (1) can be constructed as spelled out in (Morse,
1992; Morse and Pait, 1994).1 The plant to be controlled must satisfy the

Gardening Hypothesis: There exist an ny × n matrix C∗ and an ny × ny singular, strictly
lower triangular matrix G∗ such that the pair (AI + DI (I − G∗)−1C∗, BI ) is stabilizable and
moreover

ỹ = C∗x − (I − G∗)y (3)

is small in some well-defined sense (for instance, ỹ ∈ L2 on some time interval; or ỹ has bounded
power; or yet ỹ = ∆(s)u(s) with the stable transfer function ∆ subject to some operator norm
bound). ♣♣

The point of this hypothesis is that if the construction in (Morse and Pait, 1994) is followed
there must exist an nD × n matrix EI (C∗, G∗) such that x̂ = EIx is a nonminimal asymptotic
observer for the nD-dimensional stabilizable, detectable “nominal plant” or design model

ẋD = (AD + DI (I − G∗)−1CD)xD + BDu (4)
y = (I − G∗)−1CDxD. (5)

Thus if u = F̄ xD is a state feedback that stabilizes (4), the separation principle tells us to use
as dynamic output feedback

u = F̄ x̂ = F̄EIx.

That is to say, in order to stabilize the process (4), (5) we might use controller (1), (2) with
F = F̄EI . Of course the hypothesis is somewhat restrictive; it implies that the real plant’s
input-output behavior is close to that of the nominal model.

We may substitute the value of y given by (3) into (1):

ẋ = (AI + DI (I − G∗)−1C∗)x + BIu − DI (I − G∗)−1ỹ.

If we can choose F (t) in a way that keeps the trajectories of the system above bounded, then u
and y must both remain bounded; detectability and stabilizability of the plant then guarantee

1 If the plant is siso (ny = nu = 1), then one could pick the matrix triple (AI , BI , DI ) as follows: choose

n/2 > 0 and a controllable pair (Ān /2× n/2 , b̄n /2× 1 ) with Ā stable. Then define AI =

[
Ā 0
0 Ā

]
, BI =

[
0
b̄

]
, and

DI =

[
b̄
0

]
. In this case G∗ = 0.
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that all signals in the overall system remain bounded. Naturally we are interested in the case
where neither C∗ nor G∗ are known! From now on we shall write A = (AI + DI (I − G∗)−1C∗),
B = BI , and w = −DI (I − G∗)−1 ỹ, and concern ourselves with the problem of adaptively
stabilizing a process

ẋ = Ax + Bu + w (6)

using state feedback control (2), where A, B, and w are unknown, A and B are fixed, and w is
“small.”

3 Error Equation

Choose constant, symmetric, nonsingular matrices Q and R and define, for each matrix P̂ , a
tuning error

eT = ẋT P̂ x + xT P̂ ẋ + xT Qx + uT Ru. (7)

Notice that x’s derivative can be obtained from (1) so eT is a computable quantity. Motivation
for the definition above is as follows. Stabilizability of (A,B) in (6) assures that there exists a
positive-definite solution to the algebraic Riccati equation

AT P + PA − PBR−2BT P + Q2 = 0

for any choice of positive-definite matrices Q2 and R2. Thus

d

dt
xT Px = xT PAx + xT PBu + xT Pw + xT AT Px + uT BT Px + wT Px

= −xT Q2x + xT PBR−2BT Px + xT PBFx + xT FT BT Px + 2xT Pw

= −xT Q2x − uT R2u + xT (F + R−2BT P )T R2(F + R−2BT P )x + 2xT Pw.

In order to minimize eT we may thus resort to the following identity:

eT = ẋT (P̂ − P )x + xT (P̂ − P )ẋ + |R(F − F∗)x|2 + 2xT Pw, (8)

where F∗ denotes the (unknown) feedback gain matrix −R−2BT P .

If we can adjust the direct adaptive control parameter F and the state cost matrix estimate
P̂ in a manner that keeps eT small in some sense without allowing P̂ to blow up, then we have
achieved a form of direct stabilization without a reference model. How one might deal with this
problem, at least in the single-input case (F is an n× 1 vector), is the subject of a forthcoming
paper (Pait, 1998).

4 Concluding Remarks

If we abstract for a moment the terms in P̂ − P and w, (8) looks very much like a traditional
parameter estimation problem. It would then be amenable to treatment by a least-squares
algorithm, except that in the present case the error is known in magnitude only. The need arises
for tuners with capabilities comparable to the traditional least-squares or gradient-type, which
can function with information on the magnitude of the error only. With the help of such a tuner
one can close a direct adaptive feedback loop without making the usual restrictive assumptions
of minimum phase, known relative degree, etc.
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