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Abstract

In this paper the problem of robust control for a class of linear infinite dimensional systems
under mixed disturbances of the multiplicative type is addressed. The Lyapunov function
approach is used for proving that there is a controller that stabilizes this class of systems
under the presence of uncertainties and perturbations, and guarantees some tolerance level
for the joint cost functional. A comment is added to the Riccati operator equation’s solution
for this problem.

1 Introduction

The affect of uncertainty on the behavior of linear control systems has been for many years
a subject of great interest to researches in systems and control engineering. Various ways of
modeling uncertainty have been proposed, and it is arguably the case that no single model is
best for all applications. It is perhaps most common to model uncertainty about a control system
in terms of imprecisely known “plant parameters” (suitable defined) or in terms of disturbances
(either deterministic or stochastic) which corrupt the system’s input and output.

There has been a great deal of research effort regarding the modelling and control of infi-
nite dimensional systems (e.g., see, among others, (Bensoussan et al., 1992; Van Keulen, 1993;
Curtain and Pritchard, 1978; Curtain and Zwart, 1995; Hinrichsen and Pritchard, 1994; Mor-
dukhovich and Zhang, 1994; Pritchard and Salamon, 1987) and the references there in).

The problem of robust control has been briefly considered in (Curtain and Zwart, 1995)
using the semigroup approach, and also in (Bensoussan et al., 1992) through the Method of
transposition in the Variational Theory setting. These references propose an optimal program
control strategy for the case when all the state is available and do not consider the presence
of any type of uncertainties involved in the description of the class of systems they deal with.
Recently, however, Curtain et al. (1997, 1998a,b), based on Lyapunov redesign, present an
adaptive observer along with a parameter adaptive law that, under certain conditions imposed
on the plant, achieve state error convergence for a class of infinite dimensional systems with
unknown time varying perturbation in the input term.
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Based on our previous works (Poznyak and Rodŕiguez, 1995, 1999) which deal with full state
feedback control and robust boundary control, here we are concerned with the robust control
problem for the same class of linear infinite dimensional systems but under mixed disturbances
of the multiplicative type, which comprises uncertainties (bounded time-varying unmodeled
operators descriptions) as well as perturbations. We assumed that the perturbations are smooth
enough such that the Cauchy problem has a unique solution. We used the Lyapunov approach
for proving the existence of a controller that robustly stabilizes the already mentioned class of
systems together with the disturbance structure described in (Poznyak and Rodŕiguez, 1995,
1999).

Section two deals with the class of systems and uncertainty. In section three we describe the
disturbance structure we are interested in. The problem is posed in section four together with
the reference model for robust tracking. The main result of the paper where it is shown that
the above mentioned controller exists, is presented in section five. Section six is devoted to the
proof of main theorem. Operator Riccati equation and the factorization of all state feedback
controllers is given in section seven. And, finally, in the last section we present some brief
conclusions.

2 System Description

Let Ω be an open set of R
n with smooth boundary ∂Ω. Let T > 0, T ∈ R. Introduce the

cylinders

Q = Ω× (0, T ), Ξ = ∂Ω× (0, T ).

Let U , W , Z, X , V be Hilbert spaces with their associated scalar product < ·, · >X , satisfying
Z ↪→ X ↪→ V with continuous dense injections, that is, i(Z) = X and i(X ) = V . We mention
here that Z is a dense subspace of X with respect to the norm ‖ · ‖X induced by the inner
product defined on X . Similarly for X and V .

Following (Poznyak and Rodŕiguez, 1995, 1999), let us consider the class of linear infinite
dimensional dynamical systems, that we denoted by Σ, described as follows:

For all t ∈ R+,

∂x(z, t)
∂t

= A(t)x(z, t) +Bu(t)u(z, t) +Bw(t)w(z, t), z ∈ Ω, x ∈ X , (1)

where for all z ∈ Ω, t ≥ 0, the densely defined1 linear operators A(t) : D(A(t)) ⊂ X → X are
given by

A(t)x(z, t) = α ∇ · [A(z, t)∇ᵀx(z, t)] + β

t∫
0

∇ · [A(z, τ)∇ᵀx(z, τ)]dτ (2)

where α ∈
{

0, 1,
√
−1
}

and β ∈ {0, 1}, with appropriate boundary and initial conditions which
will depend upon the case.

The entries of the operator matrix A(·, ·) belong to C1(Ω × R+) ∩ L∞(Ω × R+), which can
be seen as a nonstationary and spatial variable coefficient. Bu(t) ∈ L(U,V), Bw(t) ∈ L(W,V),
with u(·, ·) ∈ L2(Ω× R+;U), and w(·, ·) ∈ L2(Ω× R+;W ).

1An operator T acting on a Hilbert space H is densely defined in H if D(T ) is dense in H.
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If the operator matrix A(·, ·) in (2) is symmetric and positive definite in Ω × R+, then the
operator

∇ · [A(z, t)∇ᵀx(z, t)]

is uniformly elliptic in Ω× R+.
The following diagram pictures the scenario for each t ≥ 0,

X
↓ A

Z ↪→ X ↪→ V
Bw ↑ ↑ Bu
W U

Since in general, (1) involve unbounded operators we assume that they hold in a dense
subspace which is to be determined for each system.

Remark. As has been shown in (Poznyak and Rodŕiguez, 1995, 1999), this class of linear infinite
dimensional systems contains the three known families of PDEs which are used to model many
physical systems.

Once defined this class of systems we will turn our attention to the disturbance structure
and the disturbed evolution equation.

The source of internal uncertainty comes from the term A(·, ·). We are going to consider the
multiplicative disturbance structure so that

A(·, ·) = A0

[
I + ∆A(·, ·)

]
or A(·, ·) = A0 + ∆A(·, ·) (3)

where A0 is some central linear operator, which is known and can be consider as representing
the stationary nominal coefficient of system (1), and ∆A(·, ·) .= A0∆A(·, ·) represents the un-
certainty, where the operator ∆A(·, ·) is unknown but bounded under an appropriate norn2.
Therefore, ∆A(·, ·) is unkown but bounded. Hence,

A(t) = A0 + ∆A(t)

where for all z ∈ Ω, t ≥ 0, the uncertainty ∆A(t) in operator A, which describes the dynamics
of system (1), is given by

∆A(t)(·) = α ∇ · [∆A(z, t)∇ᵀx(z, t)] + β

t∫
0

∇ · [∆A(z, τ)∇ᵀx(z, τ)] dτ (4)

and

A0x(z, t) = α∇ · [A0∇ᵀx(z, t)] + β

t∫
0

∇ · [A0∇ᵀx(z, τ)]dτ (5)

In general, we have that the disturbed system is giving by the disturbed evolution equation

∂x(z, t)
∂t

= [A0 + ∆A(t)]x(z, t) + [B0
u + ∆Bu(t)]u(z, t) + [B0

w + ∆Bw(t)]w(z, t) (6)

2See next Section.
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where B0
u, B0

w are also central operators, and ∆Bu(t), ∆Bw(t) are the perturbation operators
associated with Bu and Bw, respectively, given by

∆Bu(t) .= B0
u∆Bu(t), ∆Bu(t) .= B0

w ∆Bw(t) (7)

for suitable operators ∆Bu(t), and ∆Bw(t), unknown but bounded. We will assume that these
perturbation operators satisfy certain assumption introduced in next section.

This way, we have included the uncertainty in the system dynamics and the perturbations
due to external sources of disturbances, both of the multiplicative type.

3 Disturbance Structure

Uncertainty is present in every control problem and is caused by either a lack of precise knowl-
edge of the models describing the underlying physical system, or the deliberate simplification of
the mathematical models for analysis and design convenience. Thus two types of uncertainty
models are used in building mathematical models of physical systems for control purposes. A
first class includes the so called unstructured norm bounded perturbations and is representative of
unmodeled or difficult to model system dynamics. The second class includes structured pertur-
bations, reflecting uncertainty distributed at several places of the control loop, e.g. plant inputs
or outputs, actuator inputs, and sensor outputs. These uncertainties are represented by several
‘structured’ perturbation blocks. Parametric uncertainty, which is included in the second class,
represents the highest level of structure present in plant perturbations.

A more realistic problem is when different types of uncertainties affect the control loop. Here
we present a measure of the a priori information regarding uncertainties and perturbations.

Definition 1. (Poznyak and Rodŕiguez, 1995) Let H be a Hilbert space, and γ > 0 a real
number. For linear operators H, F , and Λ on H, with R(H) ∩ R(F ) ⊂ D(Λ), and Λ = Λ∗ > 0
is bounded, we define the following seminorm

||H||F |Λ,γ
.=
[
sup
z

||Hz||2Λ
||Fz||2Λ + γ

]1/2

(8)

where the sup is taken over all z ∈ D(H) ∩ D(F ) such that R(H) ∩R(F ) ⊂ D(Λ), and

||Hz||2Λ = < Hz,ΛHz >H = z∗H∗ΛHz. (9)

Remark. In definition (8) we do not assume that operators H and F are necessarily bounded.
So, this expression can be consider as an extension of the classical operator H∞-norm commonly
used for the class of bounded operators (F = 0) to the class of unbounded operators (one can
also consider the case when the ratio of two unbounded functions ||Hx||2Λ and ||Fx||2Λ remains
bounded over all space). The parameter γ can be seen as a regularizing coefficient to avoid the
indeterminacy of 0/0-type in (8).

Remark. If it happens that just F is bounded, then the seminorm is a norm. Certainly it is a
norm if both operators are bounded.

Remark. Needless to say that there must be other types of norms that can be proved to be
useful, but it is not the intention of this paper to do research on this issue.

Concerning the measurement of perturbations and uncertainties we have the following as-
sumption:
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Assumption 1. (Uncertainty and Perturbation Measurement)
Let c, cu, cw, γ, γu, and γw be real positive numbers. Let us take X , L2(Ω × R+;U), and
L2(Ω× R+;W ) as before. Regarding the uncertainty in A, Bu, and Bw we assume that

sup
t≥t0
||∆A(t)||A0|Γ,γ ≤ c, (10)

sup
t≥t0
||∆Bu(t)||B0

u|Γu,γu ≤ cu, (11)

sup
t≥t0
||∆Bw(t)||B0

w|Γw,γw ≤ cw, (12)

where Γ : X → X , Γu : X → L2(Ω×R+;U), and Γw : X → L2(Ω×R+;W ) are linear operators
such that Γ = Γ∗ > 0, Γu = Γ∗u > 0, and Γw = Γ∗w > 0. t, t0 ∈ R+.

Remark. Here we are considering the same disturbance structure for ∆A(t) as well as for ∆Bu(t)
and ∆Bw(t). We use this assumption to deal with uncertainties and perturbations in our systems
class, which will be reflected in the following proposition. However, this not need be the case in
general. A study of how rich can be made the class of disturbances that can be allowed by fixing
bounds on them by other appropriate norms or seminorms. is out of the scope of this paper.
We recall that unstructured perturbations are usually modelled as norm bounded perturbations.
We will comment on this after the next proposition.

¿From Assumption 1 we have the following

Proposition 1. (Poznyak and Rodríguez, 1995)(Uncertainty Inequality). ∀t ≥ t0; t, t0 ∈
R+, ∀x ∈ X it follows from (10) that

< ∆A(t)x(z, t),Γ∆A(t)x(z, t) > ≤ c2[γ+ < A0x(z, t),ΓA0x(z, t) >] (13)

Moreover, similar expressions can be obtained for ∆Bu and ∆Bw.

Remark. It is important to notice that the constant c2 describes the margin level of the relative
structured uncertainty with respect to the nominal model and the constant c2γ describes the
allowable tolerance level of the additive unstructured uncertainty. The constant c2 must
be small enough as to preserve the properties of the operator A.

This way we have defined the disturbance structure we are going to deal with for purposes of
designing the robust controller for the class of systems previously defined. Those are the allowed
disturbances for the robust control problem we will pose in next section.

4 Problem Statement

The general goal is to design a robust stabilizing controller for a class of linear infinite dimensional
systems in the presence of uncertainties and perturbations of the multiplicative type.

We are going to focus on the robust tracking problem. Consider a system in the class Σ of
systems for which the disturbance structure of Assumption 1 holds. Such a system is described
by (1) which we rewrite here again

∂x(z, t)
∂t

= A(t)x(z, t) +Bu(t)u(z, t) +Bw(t)w(z, t), z ∈ Ω, t ≥ 0, x ∈ X , (14)

where X = L2(Ω× R+).
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Remark. Since in general, (14) involve unbounded operators we assume that they hold in a dense
subspace which is to be determined for each system (Adams, 1975).

Let us assume that we have a reference system in the class Σ which is given by

∂xr(z, t)
∂t

= Arxr(z, t) + Br
u(t)ur(z, t), z ∈ Ω, t ≥ 0, (15)

with appropriate boundary and initial conditions for known operators Ar, Br
u, and some control

action ur ∈ L2(Ω × R+;U), where xr is the mild (strong) solution of this reference system
(Poznyak and Rodŕiguez, 1995).

For a to be controlled system (14) in class Σ, whose solution is denoted by x(·, ·), we define
the error tracking function e as follows

e(z, t) .= x(z, t)− xr(z, t) (16)

in order to consider a Lyapunov-like approach with Lyapunov function V (e) defined by

V (e) .= < e, Pe >, P = P ∗ ≥ 0, (17)

where P is a positive, self-adjoint operator.

Remark. We recall that for the ordinary algebraic operations with unbounded operators S and
T , defined on a specific functional space, say X , the natural definitions for the domains of sums
and products are:

D(S + T ) = D(S) ∩ D(T ),
D(ST ) = {x ∈ D(T ) | Tx ∈ D(S)} . (18)

Remark. In (15) we allow the term Br
u(t)ur(z, t) for having a richer class of reference models.

In the following two definitions we are going to introduce the notions of admissible robust
controller and stability in average which we will use as a criterion of stability for the class Σ.

Definition 2. (Poznyak and Rodŕiguez, 1999) We call a dynamic system an admissible ro-
bust controller if, for any system belonging to class Σ, it generates the control action u (·, ·)
such that the control problem

∂x(z, t)
∂t

= A(t)x(z, t) +Bu(t)u(z, t) +Bw(t)w(z, t), z ∈ Ω, x ∈ X ,
x(z, 0) = x0(z), z ∈ Ω,

(19)

for any disturbance satisfying Assumption 1, is well posed.

Definition 3. (Poznyak and Rodŕiguez, 1999) We say that an admissible robust controller
stabilizes “in average” the class Σ if for any external perturbation w of “bounded power”3

lim
T→∞

1
T

T∫
0

< w,w >(·) dt <∞ (20)

the corresponding tracking process x as well as the generated control action u have bounded
power too, i.e.,

sup
Σ

lim
T→∞

1
T

T∫
0

(
||x||2(·) + < u, u >(·)

)
dt <∞ (21)

3Here, (·) denotes the appropriate space which we are working with.
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Remark. Physically, stability in average means that the power (not the energy) of the process
is bounded.

Next, we pose the problem of this paper.

Problem Statement: Given the systems class described by (1) and (2), with the uncertainty
and perturbations as in (3) to (7), and the specified disturbance structure of Assumption 1, the
problem is to design a robust controller that stabilizes this class of systems in the presence of both
uncertainties and perturbations, and to give a tolerance level for which this robust stabilization
can be guaranteed.

5 Result in Robust Controller Structure

In this section we present one of the main results of this work. We must first prove that there is a
robust controller, and then we synthesize this control in terms of the solution of a corresponding
Riccati Operator Equation which will be the content of the next section. Keeping in mind what
we have discussed from (15) to (17), we state the following

Theorem 1. (Robust Controller Structure). Consider the class Σ of systems defined by
(1) - (2) for which the disturbance structure of Assumption 1 holds. Let us assume that

1. the following Riccati operator equation has a positive, possibly self-adjoint, solution P

[A∗0P + PA0 + PRP +Q]e = 0, ∀e ∈ X (22)

where

R .= Γ−1 + Ψ + Γ−1
w , R > 0

Q .= c2A∗0ΓA0 + I,

with

Ψ .= Γ−1
u −B0

uΛ−1
0 (B0

u)∗,

Ψ = Ψ∗ > 0, Γ = Γ∗ > 0, Γu = Γ∗u > 0, Γw = Γ∗w > 0, Λ0 = Λ∗0 > 0;

2. there exists a control u that is given by

u = u0 + ū

ū = −Λ−1
0 (B0

u)∗Pe
(23)

where u0 is the compensating part of the control action and satisfies the following relation-
ship4:

B0
uu0 = (Ar −A0)xr +Br

uur (24)

4The initial condition u(z, 0) = n0(z) can be selected based on a priori information.
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Then, ∀z ∈ Ω and the Lyapunov function (17) it holds that

dV (e)
dt

≤ − < ū,Θū > − < e, e > + < w, ηw > + τ (25)

where

Θ .= Λ0 − c2
u(B0

u)∗ΓuB0
u, Θ = Θ∗ > 0,

η
.= (B0

w)∗ΠB0
w, η = η∗ > 0,

Π .= Σ[(1 + c2
w)I + Γ−1

0 Σ] + c2
7Γ0, Π = Π∗ > 0,

Σ .= Γw[I + (Λ−1
1 + Λ−1

3 )Γw], Σ = Σ∗ > 0,
Σ1

.= (c2
1 + c2

6ΓwΛ−1
2 )Γw + c2

3Λ1, Σ1 = Σ∗1 > 0,
Σ2

.= c2
2Γw + c2

4Λ2 + c2
5Λ3, Σ2 = Σ∗2 > 0,

τ
.= ‖A0xr‖2Σ2

+ ‖B0
uu0‖2Σ1

+ υ

with

Λi = Λ∗i > 0, i = 1, 2, 3;
υ
.= h+ hu + ρ,

h
.= c2γ, hu

.= c2
uγu, ρ

.= hw + ϑ, hw
.= c2

wγw + c2
7γ7,

ϑ =
6∑
i=1

c2
i γi

and c, cu, cw, γ, γu, γw; ci, γi, with i = 1, ..., 7, are positive constants.

Remark. Expression (24) restricts the allowable reference system models we can deal with, which
in turn imposes a restriction on the trajectories we can track.

Remark. The control is given by u = u0 − Λ−1
0 (B0

u)∗Pe, where P is a solution of (22). When it
happens that Ar −A0 ≡ 0, we can select ur = 0, then u0 = 0 also, and u = −Λ−1

0 (B0
u)∗Pe is a

state feedback type controller without compensating part.

Remark. In expression (25) we do not mean to attain asymptotic stability, i.e., we do not claim
that e → 0 as t → ∞. But that the error function e remains bounded, which means that the
solution x remains “close” to that of the reference system, xr, and the power of the process x is
bounded

Remark. We cannot cancel the term τ through the control action. Moreover, there is the
presence of the perturbation signal w which we consider bounded, and the operator η that is
also bounded. So the quantity < w, ηw > + τ is known to be bounded as well.

Here we include a Lemma about an inequality between operators which will be useful for
proving the main result.

Lemma 1. (Poznyak and Rodríguez, 1995) (Hermitian Operator Inequality). Let X, Y ,
and Γ be linear operators on a Hilbert space H. Assume that the operator Γ is self-adjoint and
strictly positive: Γ = Γ∗ > 0. Then the linear operator F , defined by

F .= X∗ΓX + Y ∗Γ−1Y −X∗Y − Y ∗X, (26)

satisfies F ≥ 0 ∀w ∈ H, w 6= 0. Where the domains for the algebraic operations of these
operators are taken as in (18), and are considered dense in H.
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6 Proof of Theorem

We present the proof of this theorem in sections to make it easier to follow.

6.1 Lyapunov Like Analysis

Proof. ¿From the definition of the error function e(z, t), u = ū + u0, and (1) we get (omitting
arguments for the sake of simplicity)

∂e

∂t
= Ae+ (A−Ar)xr +Buū+Buu0 −Br

uur +Bww.

Then, with A = A0 + ∆A, and Bu = B0
u + ∆Bu we have

∂e

∂t
= Ae+Buū+ [(A0 −Ar)xr +B0

uu0 −Br
uur]+

+[∆Buu0 + ∆Axr +Bww].

¿From hypothesis, there exists u0 ∈ L2(Ω × R+;U) such that B0
uu0 = (Ar − A0)xr + Br

uur.
Hence,

∂e

∂t
= Ae+Buū+ w̄ (27)

where w̄ .= ∆Buu0 + ∆Axr +Bww.
Taking time derivative of the Lyapunov function candidate (17) along the trajectories of (27)

with zero initial conditions and z fixed, we get

dV (e)
dt

= 2 <
∂e

∂t
, Pe > . (28)

Substituting (27) into (28) yields (omitting the arguments for making the expressions simpler),

dV

dt
= 2 < Ae+Buū+ w̄, Pe > . (29)

6.2 Estimation of Terms

Here we are going to work with each term of the inner product (29) separately.
i) (2 < Ae, Pe >). From the previous section we have that A = A0 + ∆A, hence

2 < Ae, Pe > = < A0e, Pe > + < Pe,A0e > +
+ < ∆Ae, Pe > + < Pe,∆Ae > .

(30)

Now using Lemma 1 for the last two terms of (30) where X .= ∆Ae and Y
.= Pe, with

Γ = Γ∗ > 0, then

2 < Ae, Pe > ≤ < A0e, Pe > + < Pe,A0e > +
+ < ∆Ae,Γ∆Ae > + < Pe,Γ−1Pe > .

(31)

Using Proposition 1, for ∆A, we have

< ∆Ae,Γ∆Ae > ≤ c2[γ+ < A0e,ΓA0e >]
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hence

2 < Ae, Pe > ≤ < A0e, Pe > + < Pe,A0e > +
+c2 < A0e,ΓA0e > + < Pe,Γ−1Pe > + h.

(32)

where h .= c2γ, with c, and γ positive constants.
We are going to do the same for the other two terms.
ii) (2 < Buū, Pe >). Here Bu = B0

u + ∆Bu, and using Lemma 1 where X .= ∆Buū and
Y

.= Pe, with Γu = Γ∗u > 0, we have

2 < Buū, Pe > ≤ < B0
uū, Pe > + < Pe,B0

uū > +
+ < ∆Buū,Γu∆Buū > + < Pe,Γ−1Pe > .

Using Proposition 1 for ∆Bu and rearranging terms we get

2 < Buū, Pe > ≤ < B0
uū, Pe > + < Pe,B0

uū > +
+c2

u < B0
uū,ΓuB

0
uū > + < Pe,Γ−1

u Pe > + hu
(33)

where hu
.= c2

uγu, with cu, and γu positive constants.
With Λ0 = Λ∗0 > 0 and Λ0 = Λ1/2

0 Λ1/2
0 , the first two terms of the right hand side of (33), for

all e ∈ X , can be written as follows

2 < B0
uū, Pe > = 2 < B0

uū, Pe >

= ||Λ1/2
0 ū+ Λ−1/2

0 (B0
u)∗Pe||2− < ū,Λ0ū > −

− < (B0
u)∗Pe,Λ−1

0 (B0
u)∗Pe > .

(34)

Substituting (34) in (33) yields

2 < Buū, Pe > ≤ ||Λ1/2
0 ū+ Λ−1/2

0 (B0
u)∗Pe||2−

− < ū,Θū > + < Pe,ΨPe > + hu
(35)

where

Θ .= Λ0 − c2
u(B0

u)∗ΓuB0
u (36)

and

Ψ .= Γ−1
u −B0

uΛ−1
0 (B0

u)∗.

Besides, Θ = Θ∗ > 0, and Ψ = Ψ∗ > 0.
¿From hypothesis on u we have

2 < Buu, Pe > ≤ − < u,Θu > + < Pe,ΨPe > + hu (37)

iii) (2 < w̄, Pe >). Here Bw = B0
w + ∆Bw, and using Lemma 1 where X .= w and Y

.= Pe,
with Γw = Γ∗w > 0, we have

2 < w̄, Pe > ≤ < w̄,Γww̄ > + < Pe,Γ−1
w Pe > .

¿From the definition of w and applying Lemma 1 and Proposition 1 conveniently when needed,
we get

< w̄,Γww̄ > ≤ ‖B0
uu0‖2Σ1

+ ‖A0xr‖2Σ2
+ < Bww,ΣBww > + ϑ (38)
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where

Σ1
.= c2

1Γw + c2
3Λ1 + c2

6ΓwΛ−1
2 Γw, Σ1 = Σ∗1 > 0,

Σ2
.= c2

2Γw + c2
4Λ2 + c2

5Λ3, Σ2 = Σ∗2 > 0,
Σ .= Γw[I + (Λ−1

1 + Λ−1
3 )Γw], Σ = Σ∗ > 0,

ϑ
.=

6∑
i=1

c2
i γi, ci > 0, γi > 0, i = 1, ..., 6. Λi = Λ∗i > 0, i = 1, 2, 3.

Knowing that Bww = B0
w + ∆Bw and applying Lemma 1 and Proposition 1 when needed, we

obtain

< Bww,ΣBww > ≤ ‖B0
ww‖2Π + hw (39)

where

Π .= Σ[(1 + c2
w)I + Γ−1

0 Σ] + c2
7Γ0, Π = Π∗ > 0,

with

hw
.= c2

wγw + c2
7γ7, (40)

and cw, c7, γw, and γ7 positive constants. Hence,

2 < w,Pe > ≤ < Pe,Γ−1
w Pe > + ‖B0

uu0‖2Σ1
+ ‖A0xr‖2Σ2

+ ‖B0
ww‖2Π + ρ (41)

with

ρ
.= hw + ϑ.

6.3 Final Estimation of the Time Derivative of the Lyapunov Function

Substituting (32), (37), and (41) into (29) we obtain, for all e ∈ X , after rearranging terms that

dV

dt
≤ < e, {PA0 +A∗0P + c2A∗0ΓA0 + P [Γ−1 + Ψ + Γ−1

w ]P + I}e > −
− < ū,Θū > − < e, e > + ‖B0

uu0‖2Σ1
+ ‖A0xr‖2Σ2

+ ‖B0
ww‖2Π + υ

(42)

where υ .= h+ hu + ρ.
¿From hypotheses of the theorem we have

dV

dt
≤ − < ū,Θū > − < e, e > + < w, ηw > + τ (43)

where

η
.= (B0

w)∗ΠB0
w, η = η∗ > 0,

τ
.= ‖B0

uu0‖2Σ1
+ ‖A0xr‖2Σ2

+ υ
(44)
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6.4 Estimation of the Joint Cost Functional

¿From the previous theorem, it follows the next result concerning the corresponding tolerance
level for the suggested robust control.

Corollary 1. For every object from the class Σ, and under Assumption 1, we have that

J
∆= sup

Σ
lim
T→∞

1
T

T∫
0

[ ||e||2+ < ū,Θū >] dt ≤ lim
T→∞

1
T

T∫
0

< w, ηw > dt + τ. (45)

where Θ, η, and τ are defined by expressions (36), and (44), respectively.

Proof. It follows directly from (43) if we take into account that

− 1
T

T∫
0

dV (t) =
V (0)− V (T )

T
≤ V (0)

T
→

T→∞
0

Remark. In the ideal situation when both operators Ar(t) and A0 coincide for all z ∈ Ω and
t ≥ 0, and there are no external perturbations, then from Corollary 1, we can conclude that the
tracking error function e as well as the control action u are asymptotically stable, i.e.,

||e (t) ||2+ < ū (t) ,Θū (t) > lim
t→∞

→ 0.

7 Riccati Operator Equation

One of the difficulties regarding Lyapunov approach is faced when we want to solve the asso-
ciated Riccati equation involved. For infinite dimensional systems is even more complicated
because the equation can have no solution at all or can be rarely solved exactly. Moreover, in
infinite dimensions, the Riccati differential equation is not always well posed. There are some
results concerning the approximation theory of solutions to operator Riccati equations (e.g., see
(Curtain, 1990; Kappel and Salamon, 1990; Lasiecka, 1992; Oostveen and Curtain, 1997; Weiss,
1997) and the references therein).

Here we propose some way to deal with the Riccati Operator Equation of Theorem 1. We will
assume that all the operators involved here are densely defined on their appropriate domains.

Lemma 2. (Poznyak and Rodríguez, 1999) Let us consider the following Riccati Operator Equa-
tion

F(P ) .= PA+A∗P + PRP +Q = 0 (46)

with R = R∗ > 0 and Q = Q∗, that is, R and Q are self-adjoint and, in addition, R is positive.
Then, Equation (46) has a solution if, and only if

G
.= A∗R−1A−Q ≥ 0 (47)

and all the self-adjoint solutions have the following parameterization:

P =
1
2

[R−1/2UG1/2 +G1/2U∗R−1/2 −R−1A−A∗R−1], ∀U : U∗U = I (48)

where the unitary operator U satisfies the linear equation

R−1/2UG1/2 −G1/2U∗R−1/2 −R−1A+A∗R−1 = 0 (49)
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Remark. We take the domains and ranges of R and A so that they satisfy (18) and are such
that equation (46) makes sense for the ordinary algebraic operations of the operators involved:
D(RP ) = {x ∈ D(P ) | Px ∈ D(R)}. And for the sums we take the intersection of the operators’
domains.
Remark. Notice also, that with the assumptions impose on the operator R, the operators R−1,
R1/2, and R−1/2 are well defined.
Remark. Assuming that one can solve (49), then one is face with the problem to solve U∗U = I,
which in general may be not solvable or very difficult to solve. However, for the one dimensional
case this is not that complicated.

Positivity5 of the solution is not so trivial though. Conditions under which this will be the
case for the maximal solution are, for instance (in the matrix case), (A,B) controllable and
Q ≤ 0, or (A,B) stabilizable, (Q,A) detectable and Q ≤ 0. Weaker conditions are possible.
Anyway, some condition like Q ≤ 0 should be always there.

For the case of unbounded operators, Q < 0 plus some condition that guarantees the existence
of a stabilizing solution will probably work as well. Moreover, from the semigroup approach, one
can work this equation using the Popov function approach for the Pritchard-Salamon systems
(see for instance (Van Keulen, 1993; Oostveen and Curtain, 1997; Weiss, 1997)). However, we
do not pursue this study here. This will be another research topic for future.
Remark. G ≥ 0 is a necessary and sufficient condition.
Remark. For any bounded linear operator T on H, T1 = [T + T ∗] is self-adjoint6.
Remark. In the one-dimensional case, U ≡ 1, and these formulae (48), and (49) are constructive.
For more dimensions we need apply numerical methods.

7.1 Fractional Power Representation for the Solution of the Riccati Operator
Equation

Notice that we have here A = A0, R = R, and Q = Q. And for the terms R−1/2, G1/2 and R−1

we use, for all α > 0, the fractional power representation given by

T −α =
1

2πi

∞∑
j=0

∫
Υ

λ−(j+1+α)dλT j .

and

T α =
sin (πα)

π

∞∑
j=0

(−1)j
∞∫

λ=0

λ−(j+2−α)dλT j+1

(see (Balakrishnan, 1960; Kato, 1976, 1961, 1962, 1960; Pazy, 1983; Poznyak and Rodŕiguez,
1999; Tanabe, 1979; Yosida, 1996)).

In our case, α = 1/2, and 1. From the practical point of view, one can truncate the sum up
to the number of terms that may be relevant for computation.

5For an unbounded self-adjoint linear operator T : H → H: (a) < Tx, x > ≥ 0, ∀x ∈ D(T ) ⊂ H (briefly:
T ≥ 0) iff σ(T ) ⊂ [0,∞). (b) If T ≥ 0, then there exists a unique self-adjoint B ≥ 0 such that B2 = T (see
(Rudin, 1991)).

6See, for instance, (Rudin, 1991)
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8 Conclusions

In this paper we have presented a class of linear infinite dimensional systems, and a disturbance
structure. We show in the main theorem that, under certain conditions, there exists a state-
feedback controller that stabilizes the class Σ with mixed disturbances and guarantees some
tolerance level in a general tracking problem in an infinite dimensional space. Much of this work
is under research, and other results will appear elsewhere.
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