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Abstract

In a series of papers, the authors have developed a method for analysis of piecewise
linear systems. The idea is to use Lyapunov functions that are piecewise quadratic. Such
Lyapunov functions can be computed via convex optimization in terms of linear matrix
inequalities. This paper presents two approaches for improving the efficiency of these
computations. It is shown that by splitting the analysis computations into two distinct
steps, one can decrease the computations with roughly 50% essentially without introducing
conservatism. By using ellipsoidal boundings rather than polyhedral descriptions of the
operating regimes, it is possible to reduce the computations even further. Combined, the
two approaches allow the computation times to be reduced with an order of magnitude
compared to previous formulations. However, it is shown that the use of ellipsoidal cell
boundings in the S-procedure introduces conservatism in comparison with analysis based
on polytopic region descriptions. An explicit formula for the minimal volume ellipsoid
containing a simplex is also given, together with a complete proof.

1 Introduction

Piecewise linear systems have a wide applicability in a range of engineering sciences. Some
of the most common nonlinear components encountered in control systems, such as relays
and saturations, are piecewise linear. Diodes and transistors, key components in even the
simplest electronic circuits, are naturally modeled as piecewise linear. Many advanced
controllers, notably gain scheduled control systems, are based on piecewise linear ideas.
In a series of papers (Johansson and Rantzer, 1996; Rantzer and Johansson, 1997), the
authors have developed an approach for analysis of piecewise linear systems. A key idea is
to base the analysis on Lyapunov functions that are continuous and piecewise quadratic. The
approach gives a drastic reduction of conservatism compared to approaches based on a single
quadratic Lyapunov function (see (Johansson, 1999) for several illuminating examples.)
The analysis conditions are formulated as convex optimization problems in terms of linear
matrix inequalities (LMIs). This allows complex nonlinear systems to be analyzed using
efficient numerical computations. Moreover, the same ideas allow constructive extensions
of several aspects of linear systems with quadratic constraints to nonlinear systems and
non-quadratic constraints. Important examples are uncertainty modeling, passivity and
gain computations, as well as solutions to optimal control problems, see (Johansson and
Rantzer, 1996; Rantzer and Johansson, 1997; Johansson, 1999). An attractive feature of
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this approach is that the results can be packaged into software that can be easily used also
by inexperienced users, see (Hedlund and Johansson, 1999).

Piecewise quadratic Lyapunov functions are much more powerful than the globally quadratic
Lyapunov functions. Naturally, this additional power comes at a price. System analysis us-
ing piecewise quadratic Lyapunov functions is computationally more demanding than anal-
ysis based on quadratic Lyapunov functions. Indeed, stability analysis using the conditions
given in (Johansson and Rantzer, 1996) can be time consuming for large systems. It is
therefore important to look for methods that decrease the computations of the piecewise
guadratic analysis without introducing excessive conservatism. This paper presents two
such methods. The first idea is to split the stability analysis into two steps. This reduces
the number of analysis constraints by roughly 50% and eliminates a large number of search
variables, essentially without introducing conservatism. The second idea is to restrict the
number of free parameters in the S-procedure by a priori fixing an ellipsoidal cell bound-
ing, rather than optimizing over the ellipsoidal cell boundings as was done in the original
work. This allows us to reduce the number of search variables even further. However, this
approach is not always appropriate as it introduces conservatism in the analysis. We will
show that for some important classes of polytopes, it is possible to compute the minimum
volume covering ellipsoid explicitly using basic matrix manipulations. To the best of the
authors’ knowledge, these are completely novel results. They have a direct practical use as
they eliminate some intricate computations that would otherwise have been necessary, but
they are also of theoretical interest. In this paper, we will use these results to prove that
polyhedral relaxation used in our original work (Johansson and Rantzer, 1996) is always
less conservative than the ellipsoidal relaxations used in this paper. This is contrary to a
statement in (Hassibi and Boyd, 1998). Hence, by using ellipsoidal relaxations one reduces
the computational effort at the expense of conservatism in the analysis. The developments
also give useful insight in the use of the S-procedure in the analysis computations.

2 Piecewise Linear Systems

We consider piecewise linear systems on the form

for x € X;. (1)

X = AiX + a; + Bju
y =Cix+c¢cj+ Dju

Here, {Xi}ias € R" is a partition of the state space into a number of closed (possibly
unbounded) polyhedral cells, see Figure 1, and | is the index set of the cells.

For convenient notation, we introduce

and write the system dynamics as

= A
y=_C

u
for x € X;.
u
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Figure 1: Linear system with saturated feedbacks (left) and the corresponding polyhedral
partition of R? (right).

The focus of this paper will be to investigate (possibly global) stability properties of equi-
libria. We therefore let 1o C | be the set of indices for the cells that contain the origin
and I; C | be the set of indices for cells that do not contain the origin. We will assume
that a; = 0, ¢; = 0 for i € lp. Further details on piecewise linear modeling are given in
(Johansson, 1999).

3 Analysis via Piecewise Quadratic Lyapunov Functions

We will base our analysis on piecewise quadratic Lyapunov functions on the form

xTPix for x € X;,i € Iy
T
V(X)) = X - | X 3
( ) [1] Pi [1] =XTPiX+2q;rX+I’i for x € Xj,i € 11. ( )

In the computations, we need to enforce continuity of the Lyapunov function candidate and
exploit the fact that a certain linear system only describes the dynamics in a specific region
of the state space. This is done by constructing matrices F; = [F; fi] and Ej = [E; ¢;] for
every i € | such that

Ei

I T
X1 X
Il

Y

|Ej)_( fOfXEXiﬂXj (4)
0 for x € X;. (5)
Here, the vector inequality z = 0 means that each entry of the vector z is non-negative.
The matrices F; express the continuity condition, while the matrices E; are used to bound
the operation regimes X;. To obtain strict LMI conditions in the analysis, we will have to
eliminate affine terms in the regions that contain the origin. This is done by imposing the
additional constraints

ei=fi=0 fori e lg. (6)
Now, let T be a symmetric matrix of appropriate dimensions. Then,

V(x) = X" FTTFix := X" Pix for x € X;

is a continuous and piecewise quadratic function on the form (3). The following result, first
stated in (Johansson and Rantzer, 1996), forms the starting point for the developments in
this paper.
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Proposition 1 (Piecewise Quadratic Stability) Consider symmetric matrices T, U; and
Wi, such that U; and W; have non-negative entries, while P; = FiTT Fi for i € lg and
Pi = F'TF; for i € | satisfy

0> AlPi + PiAi + El UiE; el )
0< Pi— E'W;iE;
0> AlPi + PiAi + Ef UiEj icl ®)
0< Pi— E/W;iE;

Then x(t) tends to zero exponentially for every continuous piecewise C! trajectory in Ujci X;
satisfying (1) with u =0 for t > 0.

Proof: See (Johansson, 1999) for a proof based on Lemma 2 of this paper.

Note that the stability conditions of Proposition 1 are LMI conditions in the variables T,
U; and W;. In the absence of attractive sliding modes, the above conditions assure that the
function (3) is a Lyapunov function for the system (1).

Simple algorithms for computing constraint matrices that satisfy (4), (5) and (6) for a
number of important partition types are given in (Johansson, 1999). For the purpose of
this paper, it is sufficient to show how one can compute constraint matrices for simplex
partitions.

4 Constraint Matrices for Simplex Partitions

Consider a compact domain of the state space {X;}ici C R" partitioned into convex polytopes.
A polytope is defined as the convex hull of a finite number of affinely independent vertices
Ve € R". It is called an n-dimensional simplex if the number of vertices equals n + 1.
Note that any polytope which is not a simplex can be partitioned into two polytopes, each
with fewer vertices than the original one. Repeating this procedure eventually generates a
partition of the original polytope into simplices, see Figure 2.

Vo
Vo

V3

Figure 2: Simplex partition of R?.

Let Xj C R" be a simplex. Each x € X; has a unique representation as a convex combination
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of the cell vertices

X = ZZka, X,V € X (9)
k

with z, > 0, Y, zx = 1. The numbers z, are sometimes called the barycentric coordinates
of x. Since they are non-negative for x € X;j, this indicates that the mapping from x to the
barycentric coordinates of X; would qualify for the cell bounding (5). Moreover, if x lies on
the boundary between two cells the only non-zero coordinates will be those 7z, that describe
this boundary. This observation allows us to construct a mapping on the form (4) from x to
the set of all z, of the partition, see (Rantzer and Johansson, 1997).

To describe the computations, let vp,...,V, be the vertices of the partition with vy = 0.
Using the notation v{ = [v{ 1], construct the matrices

V=[V1 Vp}, V=[|)1 Gp} (10)

Finally, we need the following definition.

Definition 1 (Extraction Matrix) For each simplex X;, define an extraction matrix E; as
follows: the kth row of E; is zero for all k € {1..p} such that vy ¢ X; and the non-zero rows
of E; are equal to the rows of an identity matrix.

Note that since k ranges from 1 to p, E; € R™*P for i € Iy and E; € R"U*P when i € I;.

Now, let E; be the extraction matrix for cell X; and compute the constraint matrices as

Ei — (V Ei)_li Fi = EiEi fOF i € IO, (11)
Ei=(VE)™? Fi=EE foricly. (12)

The following result can be established, cf. (Johansson and Rantzer, 1997).

Lemma 1 (Simplicial Domain Description) The matrices Ei, Fi, Ei and Fi describing
a simplicial partition UX; C R" as constructed in (10),(11), (12) satisfy the conditions (4),(5)
and (6).

5 Improved Efficiency via Two-Step Analysis

The computations resulting from a straightforward implementation of the LMI conditions of
Proposition 1 are often time consuming. This is particularly true if the state space partition-
ing is performed in high-dimensional space. It is therefore of interest to look for methods
that decrease the computational burden without introducing excessive conservatism. Es-
sentially, such savings can be done either by reducing the number of search variables (the
entries of T, U; and W;), or by reducing the number of constraints that have to be satisfied.

Our first suggestion is to initially ignore the positivity condition in the Lyapunov function
search. A solution to the remaining inequalities guarantees that the function (3) is decreas-
ing along all system trajectories. Once such a function is found, we proceed to check if it
has the desired positivity properties. This separation is justified by the following result.
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Lemma 2 Let x(t) : [0,00) — R" and let and let V(t) : [0,00) — R be a non-increasing
and piecewise C! function satisfying

Sy <P (13)

for some y > 0 and some p > 0, almost everywhere on [0, c0).
If there exists a > 0 such that

alx@®IP < V(1) < BIx®)[° (14)

then |x(t)| tends to zero exponentially. If the maximal a that satisfies (14) is negative, then
[x(t)] — o0 as t — oo.

Proof: See (Johansson, 1999).

Lemma 2 suggests that if we can find a function which is decreasing along all system
trajectories, it contains all information about the stability properties of the system. If
the function can be shown to be positive on the partition, stability follows analogously to
Proposition 1. If we find some point where the computed function is negative, then no
trajectory in the partition starting at this point can approach the origin as t — oc.

The computational consequence of Lemma 2 is that the LMI problem in Proposition 1 can
be split into several smaller problems. In order to find V(x) with the desired decreasing
properties, one only needs to solve the decreasing conditions in Proposition 1 (the upper
LMIs in (7) and (8)). This reduces the number of LMI conditions by roughly 50% and gives
a large decrease in the number of search variables. Hence, this problem can be solved in
a fraction of the time needed to solve the original problem. Moreover, if this LMI problem
has no solution, then neither has the original formulation in Proposition 1.

In most cases, a reduction of the number of constraints in an optimization problem can only
be done at the cost of increased conservatism in the solution. The remarkable consequence of
Lemma 2 is that for the suggested separation, the situation is completely opposite! By first
looking for a function with the desired decreasing properties and then checking positivity,
one can not only assess exponential stability, but may also detect instabilities. This is
illustrated by the following example.

Example 1 (Detection of Instabilities) Consider the following piecewise linear system

X = Ax — Bmax(Cx, 0)

-
0 1 0 3
Sl = U I R H
The LMI conditions of Proposition 1 have no solution. Hence, no conclusion can be drawn
regarding system stability. By disregarding the positivity constraints, however, it is possible
to find a continuous piecewise quadratic function that decreases along all system trajectories.
Verifying positivity of the computed function fails for the region Cx < 0. By plotting the level

set {x|V(x) < 0} and invoking Lemma 2, we conclude that the computations prove state
divergence for all initial value within this set, see Figure 3.

with
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-4 -2 0 2 4

Figure 3. State divergence is proved for all trajectories starting in the shaded region.

Positivity can, for example, be checked as in Proposition 1. Checking positivity then amounts
to solving a number of small independent problems (one for each region). Since the Lyapunov
function candidate obtained from the first step is now fixed, these problems consist of only
one constraint and few free parameters (the entries of the matrix W;).

6 Improved Efficiency via Ellipsoidal Cell Boundings

In many cases it is the number free parameters of the relaxation terms that add the most
parameters to the Lyapunov function search. A second way to reduce the computational
burden is therefore to try to minimize the number of free parameters in the S-procedure.
Returning to Proposition 1 we see that, for a given Pj, a solution to the inequality

F;i—éiTUiéi>0

does not only imply that V(x) =XTP;X > 0 for all x € X;, but that V(x) is positive for all x
in the quadratic set

5i={X|)_(TéiTUiéi)ZZO}

We may view the term &_‘,i = éiTUiéi as a description of a quadratic set derived from its
polyhedral representation. From this perspective, the free parameters in U; are used to
adjust the quadratic set so as to verify the desired inequality, see Figure 4.

5 5 5

0 0 0
0 5 0 5 0 5

Figure 4: Several quadratic boundings &(E;) (dark) of the cell X; (light) can be derived by
optimizing the free parameters in the matrix U;.
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One way of reducing the number of search variables would be to simply fix the matrix Si
before the Lyapunov function search. This is equivalent to specifying a quadratic set

&i(Si) = {x| X" Six > 0}

that contains the cell Xj, i.e., & D Xj. Now, rather than using the polyhedral relaxation term
E;" U; E; with U; = 0 in Proposition 1, we use the ellipsoidal relaxation u;S; with u; > 0.

Clearly, this approach admits large savings in the number of search variables. More pre-
cisely, if E; € RP*("+1) the polyhedral relaxation has (p—1)(p—2)/2 free parameters, while
the ellipsoidal relaxation uses just one free parameter.

The drawback of this approach is that the quadratic set has to be fixed before the optimiza-
tion. On the contrary, the polyhedral relaxation has a lot of freedom in adjusting a quadratic
superset of the region during the Lyapunov function search. This freedom may be critical,
as will be shown later in this paper.

We also note that ellipsoidal cell boundings may sometimes be attractive for other reasons
that computational efficiency. In (Pettersson, 1996), ellipsoidal cell descriptions are used to
guarantee robustness of hybrid systems, while in (Hassibi and Boyd, 1998), ellipsoidal cell
boundings are used to allow the S-procedure in quadratic stabilizability computations for
piecewise linear systems.

6.1 Computing Minimal Volume Ellipsoids

A natural candidate for quadratic approximation of a polyhedral cell is to compute the ellip-
soid with minimum volume that contains the cell (Hassibi and Boyd, 1998). The covering
ellipsoid of minimal volume can be obtained by solving the following convex optimization
problem (Vandenberghe et al., 1998).

Proposition 2 (Minimal Volume Ellipsoids) Let X be a convex polytope with vertices vj,
X =conv(vy,...,Vp)
The ellipsoid
E={x[[Px+b|]|<1}

of minimum volume that contains X is given by the solution to the convex optimization
problem

min Indet P~1
Pb
s.t. P=P">0
| Pvi+b .
> =
[(Pvi+b)T 1 ]_Oforl 1,...,p

The matrices S; can be computed from the solution P,b of the optimization problem in
Proposition 2 as

S — —PTP  —PTb
" |-b™P 1-DbTb|"
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Note that in order to compute the minimum volume ellipsoid, we need to compute all the
vertices of the cell. This computation is called a vertex enumeration, and it is known that
solving the vertex enumeration problem can be computationally intensive (Avis et al., 1997).
Once the vertices are found, Proposition 2 can be invoked to compute the optimal bounding
ellipsoid. In the light of these computations, the actual savings in using ellipsoidal cell
boundings are not always obvious.

7 A Comparative Example

To give a flavor of the benefits and limitations of the different formulations of piecewise
quadratic stability we consider analysis of the system shown in Figure 5(left). The system
dynamics is given by

X = AX + blf(Xl) + bzf(Xz)

where A € R?*2, by,b, € R?*! and f(z) = arctan(z). We will present results for both
piecewise linear approximations and piecewise linear sector bounds on the nonlinearities,
see Figure reffig:compex (right). The analysis conditions for the different approaches are
given explicitly in (Johansson, 1999).

— Y
> 2 1.75 ~ e
0.875
f(O 0
-0.875
(O = PR I
-5 -175 0 175 5

Figure 5: The system used as comparative example (left). The nonlinearity fi(x;) is shown
in full lines in the right figure. The dash-dotted line illustrates a piecewise linear approxi-
mation and the dashed lines show piecewise linear sector bounds.

In all cases, the nonlinearity descriptions induce a partition of the domain [-5,5] x [—5, 5]
into nine regions. If piecewise linear approximations are used, the resulting dynamics is
piecewise linear. If piecewise linear sector bounds are used, the dynamics in each region is
specified by a linear differential inclusion with four extreme dynamics.

S P LT P LS Y

and use the piecewise linear approximation of fi(x;). In this case, all approaches verify
stability. The different computational requirements are shown in Table 1. The computations
were performed on a SUN Ultra 10 computer using the LMI software (Gahinet et al., 1995).
In the table the acronym P refers to the use of polyhedral cell description in the S-procedure

First, we let
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Approach | Time (s) | #Variables | #Constraints
P-1 1.04 117 114

P-2 0.41 69 57

Q-1 0.23 37 34

Q-2 0.11 29 17

Table 1: First set-up. All approaches verify stability. Large savings in computations are
obtained from the alternative formulations (P-2,Q-1,Q-2).

terms while Q indicates the use of quadratic cell boundings. The number 1 means that the
analysis was performed in a single step (enforcing both positivity and decreasing conditions
simultaneously) while 2 means that the analysis was performed in two steps (enforcing the
decreasing condition in the Lyapunov function search and then verifying positivity). As seen
in Table 1, the two-step procedure (P-2) results in a large reduction in computation time
compared with the computations required by Proposition 1 (P-1). The computational savings
when using quadratic cell boundings (Q-1) are even greater. In this case, the quadratic cell
boundings are taken as the minimal volume ellipsoids that cover each region. By combining
the two-step analysis procedure with quadratic cell boundings (Q-2), the computational time
is reduced to around than 10% of what was required by the original formulation.

Using the same matrices A, b; and by, we now consider the case when the nonlinearities are
described by piecewise linear sector bounds. This approach allows rigorous stability analysis
of the original system, but requires more computations than an approach based on piecewise
linear approximations. In each region, the system is now described by a differential inclusion
with four extreme dynamics. Stability is assured by searching for a Lyapunov function that
is decreasing with respect to each extreme dynamics, see (Johansson, 1999). As the main
burden in analysis of such systems is verification of the multiple decreasing conditions, the
savings of the two step analysis procedure gets somewhat lower, see Table 2.

Approach | Time (s) | #Variables | #Constraints
P-1 3.79 261 285

P-2 217 213 228

Q-1 0.80 61 85

Q-2 0.45 53 58

Table 2: Second set-up. The use of piecewise linear sector bounds decreases the benefits of
the two-set analysis procedure, but good savings are still obtained.

The problem with ellipsoidal cell boundings is that there is very little freedom in adjusting
the S-procedure terms during the Lyapunov function search. This introduces some conser-
vatism as can be seen by letting

-2 2 -1 0
Sl e B Iy R Y
and using piecewise linear sector bounds on the nonlinearities. The computational results

are shown in Table 3. Stability can no longer be verified using ellipsoidal cell boundings,
while the computational savings in the use of the two-step procedure (P-2) remain the same.
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Approach | Time (s) | #Variables | #Constraints
P-1 4.15 261 285

P-2 2.62 213 228

Q-1 fails - -

Q-2 fails - -

Table 3: Final set-up. Quadratic cell boundings fail to verify stability.

8 Explicit Formulas for Optimal Covering Ellipsoids

The computations outlined above are unnecessarily complicated if we have cells with special
structure. In this section, we will derive explicit expressions for the minimal volume ellip-
soids containing a simplex. An explicit formula for the minimal volume ellipsoid that con-
tains a parallelepiped can be found in (Johansson, 1999). This makes ellipsoidal boundings
computationally efficient and easily applicable for these type of cells. Moreover, these results
are useful for the theoretical study of piecewise quadratic analysis. Amazingly enough, the
problem of finding the minimum volume ellipsoid that contains a simplex seems to be if not
unknown, then very poorly documented in the mathematical literature. For some related
results, see (John, 1948; Ball, 1992).

Appendix A contains a full proof of the fact that the minimal volume ellipsoid containing
the standard simplex is a sphere.

Theorem 1 The minimum volume ellipsoid containing the standard simplex,

n+1
Xi={x€R™ x>0, x=1}
k=1
is the ball
n+1
= {x|x"x<1,) x =1} (15)
k=1

Proof: See Appendix A.

The following result for simplex boundings now follows.

Corollary 1 (Simplex Bounding) Let X; be a non-degenerate simplex, and let E; be the
corresponding cell identification matrix, as computed in (12). Then, the ellipsoid of minimum
volume that contains X; is given by

x"ElEix < 1. (16)

Proof: The map A = Eix is a bijective affine map that transforms a non-degenerate simplex
into a standard simplex in the constraint hyperplane }; A; = 1. In these coordinates (16)
describes the ball (15), and the desired result follows.
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9 Polytopic Relaxation is Stronger than Ellipsoidal

The use of ellipsoidal descriptions in the S-procedure allows significant reductions in the
number of free variables of the optimization problem compared to the use of polytopic de-
scriptions. As indicated by the example in the previous section, this reduction in number of
search parameters comes at the price of increased conservatism in the analysis.

Next, we will show that the use of quadratic cell boundings always introduces some con-
servatism compared to the use of polytopic relaxation terms. More precisely, we will show
that if the piecewise quadratic computations with ellipsoidal cell boundings have a solution,
the so has the computations in Proposition 1, while the opposite is not always true. This is
contrary to a statement in (Hassibi and Boyd, 1998)(Section 4.1) where it was conjectured
that computations using ellipsoidal cell boundings would be less conservative than those
using polyhedral relaxations since the S-procedure may be lossy when several quadratic
terms are used.

Proposition 3 For simplex cells, the polytopic S-procedure relaxation ETUE is stronger
than the S-procedure using optimal outer ellipsoids, uS.

More precisely, let X be a simplex, E be the associated cell bounding satisfying (10) and (12),
and let S be the minimal volume ellipsoid that contains X. Then, if the LMI

P—uS>0 (17)
has a solution, then so has the LMI
P_ETUE >0, (18)

but there exists cases when (18) admits a solution while (17) does not.

Proof: According to Lemma 1, the outer ellipsoidal approximation is given by

__0n><n0 — =
s_[oT 1]—EE

Let 0 = [01xn 1] and 1= [1;,, 1]. From the computation of E, Equations (10), (12), we
have

1TE =0
and thus
uS =uET(11T — E

This expression is on the form ETU E with uijj = u if i # j and 0 otherwise. This concludes
the first part of the proof.

For the second part of the proof, consider the simplex

X = cony( [ﬂ ’ [ﬂ ’ H)
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for which we have

o [-1 -1 3 2 1 -4
E=|1 0 -1/, S=|1 2 -4
0 1 -1 —4 —4 10
Let
20 0 5
P=|0 1 0
|5 0 —25

Pre- and postmultiplying the LMI (17) by z = [3 6 4]T we obtain —64 — 2u, which is
negative for all admissible values of u (u > 0). Hence, there is no solution to this LMI.
However, for the formulation (18), it is straightforward to verify that the choice

0 20 5
U=120 0 20
5 20 O

solves the LMI.

A similar result can be established also for hyper-rectangular cells.

To understand the use of the S-procedure in the piecewise quadratic analysis, it is fruitful
to consider the problem of verifying the constraint

)_(TF;i)_(>0 X € Xj

using LMI computations. In this case, the role of the S-procedure is to separate the set
Vi = {x|xTPix < 0} from the set X;. The volume of the covering ellipsoid may have very
little to do with this separation. This is illustrated in Figure 6. The minimum volume
ellipsoid of X; intersects the set V;~, hence it cannot be used to verify the desired inequality.
By using the polyhedral relaxation, there is a lot of freedom in optimizing over the quadratic
bounding and separation can easily be accomplished, see Figure 6(right).

a

Vi Vi
2] 2|
1] 1]
C0 1 2 3 C0 1 2 3

Figure 6: The counter example in Proposition 3. The minimal volume ellipsoid fails to
separate X; from V;~ (left), while optimizing over the covering ellipsoids using the polytopic
formulation easily finds a separating supset.

Another point is that although the S-procedure is only sufficient when there is more than
one quadratic constraint, adding new constraints can never make the inequalities harder to
satisfy since the associated multipliers can always be set to zero. On the contrary, adding
new terms may allow separations that would otherwise not be possible.
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10 Conclusions

This paper presented two methods for improving efficiency in the computations of piecewise
guadratic Lyapunov functions. The first idea was to split the analysis problem into two
distinct steps. It was shown that once a function with the desired decreasing properties has
been found, it contains all information about the stability properties of the system. Thus,
by not imposing positivity constraints in the Lyapunov function search one does not only
decrease the computational burden by 50%, but one also obtains more information from the
computations than in the original formulation. This additional information can be used to
detect instabilities.

The second idea was to use ellipsoidal cell boundings. This approach gives a large decrease
in the number of search variables, but comes at the cost of increased conservatism. More
precisely, it was shown that for simplex partitions the use of ellipsoidal cell boundings in
the S-procedure is always more conservative than the use of polyhedral region descriptions.
An explicit formula for the minimal volume ellipsoid that contains a regular simplex was
given, together with a complete proof.
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A Auxiliary Results on Ellipsoids

A.1 Existence and uniqueness of the minimal volume ellipsoid containing
a compact convex set

Lemma 3 Given two matrices P = PY> 0 and Q = QU there exists a matrix S, det(S) = 1,
such that S'PS and SUQS are both diagonal.

Proof: There exists an orthogonal matrix U such that D = UPPU is diagonal. The matrix
R = D~Y2UMQU D~1/2 is Hermitian and then, similarly, there exists an orthogonal matrix
V such that VPRV is diagonal. The matrix S = UD~1/2v D/2 satisfies the conditions
above.

Denote P C R™" the set of all positive definite (Hermitian) matrices.
Lemma 4 The function f(P) = Indet(P) is strictly concave on P .

Proof: Let Py, P, €P, Py # P2, A1, A2 >0and A1 + A, = 1. We are to prove that
f(/\lpl +/\2P2)>/\1f(P1)+/\2f(P2).

By Lemma 3 there exists a matrix S with det S = 1 such that S"P;S and SUP,S are both
diagonal.

SDPls = dlag (d11,d12,--- ,dln),
SDPZS = dlag (d21,d22,... 1d2n)-
Then det(A1P1 + A2P2) = [[iL;(A1d1i + A2d2i) and the fact that In is strictly concave yields

n
f(A]_P]_ —{-Azpz) = Z |n(/\1d1i +A2d2i) >
i=1

> Aliln(dli) + A 2": In(dpi) =

= A1ln det(SDPls) +Asln det(SDPZS) =
= Alf(Pl)—{-Azf(Pz)
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Theorem 2 The minimal volume ellipsoid containing a compact convex set C € R" exists
and is unique.

Proof: There is a bijective map between the set of all ellipsoids in R" and the space P x R".
This map is given by

(P,a) < E(P,a)={xeR": ||Px+al|<1}.
Let { x; }}_; be the extremal points of C. The set

E

{(P,a)eP xR" : E(P,a)DC}=
p
MN{(P.a)eP xR" : x; € E(P,a)}

is convex as the intersection of the convex sets. The minimal volume ellipsoid E(Py ap) is
a solution of the following optimization problem

(Pphan) = arngin(—Indet(P))=

= arg E’lﬂig(— Indet(P))

where
D={(P,a) : g(P)|<diam(C)}

and o denotes the matrix spectrum. By Lemma 4 this is the minimization of the strictly
convex continuous function over the compact convex set. Hence there exists a unique solu-
tion.

A.2 The minimal volume ellipsoid containing the standard simplex is a
ball

Lemma 5 A hyperplane L C R" is the hyperplane of symmetry for an ellipsoid E if and
only if the center of E belongs to L and the normal vector of L coincides with a semi-axis of
the ellipsoid.

Proof: The if implication is trivial.

Only if. Without loss of generality we assume that the center of the ellipsoid is the origin.
It evidently belongs to L as an invariant point of symmetry. The ellipsoid and its boundary
is given by

E = {xeR": x"Hx<1},
OE = {xeR" : x"Hx=1}.

First of all we remark that the hyperplane L is the symmetry hyperplane for all ellipsoids
AE, A € R if it is at least for one of them. Let x € L and n be the normal vector of the
hyperplane L. The symmetry condition means that the points x + yn and x — yn belong
or not belong to (A E) simultaneously. Thus the symmetry condition is equivalent to the
equality

(x+yn)"H(x + yn) = (x — yn)"H(x — yn)
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for all x € L and y € R. This yields
x"Hn =0, OxeL,

that is HnOL. Since nOL we conclude that Hn || n, i.e. n is the eigenvector of H.

Lemma 6 Any hyperplane of symmetry for the standard simplex K € R" is also the hyper-
plane of symmetry for the minimal volume ellipsoid containing K.

Proof: Theorem 2 implies the minimal volume ellipsoid E(K) containing the standard sim-
plex K is unique. Then the map K — E(K) is well defined. Denote S(F) the mirror image
of a set F with respect to the hyperplane L. We have K — E(K). Hence S(K) — S(E(K)).
Since K = S(K) we conclude E(K) = S(E(K)).

Theorem 3 The minimal volume ellipsoid containing the standard simplex in R" is the
ball.

Proof: For each pair of the standard simplex vertices P; and Pj, the normal vector P; — P;
and the point (P; + Pj)/2 define the hyperplane uniquely. It is easy to show that this
hyperplane contains the center and all other vertices of the simplex and is the hyperplane
of symmetry. By Lemma 6 it is also the hyperplane of symmetry for the minimal volume
ellipsoid and by Lemma 5 we conclude that P; — P; is the semiaxis the ellipsoid. Thus the
ellipsoid in R" has at least n semiaxes, { Pn+1—Pj }I;, each pair of which is nonorthogonal.
Hence it is the ball.
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