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Abstract

The control of hemodynamic variables, particularly mean arterial pressure (MAP) and
cardiac output (CO), is a challenging problem. A good controller is difficult to design, due
to the complex, nonlinear behavior of the system. Adding to this are the significant changes
in dynamics from one patient to another, and even variations in the patients response to the
drugs as his condition evolves. A robust direct model reference adaptive controller (DM-
RAC) is developed for such plants with uncertainty in both the time delay elements and in
the transfer function coefficients. In order to satisfy the conditions for asymptotic model
following, it is sufficient to satisfy certain passivity conditions for all possible values of the
plant parameters. This is done by transforming the plant variations and time delays into
a frequency dependent plant perturbation in the plant transfer function. Feedforward com-
pensator design procedures are then developed using an optimization based robust stability
analysis, so that the passivity conditions are satisfied.

1 Introduction

The control of physiological parameters has been of interest for several years. One of the
particular problems that has been subject to considerable research is the control of hemodynamic
variables, particularly mean arterial pressure (MAP) and cardiac output (CO).

The two main cases where these variables have to be controlled are for patients in critical
care with cardiac failure and in operating room scenarios. Currently, it is a physician who has
to monitor these variables and adjust the infusion levels of the corresponding drugs manually.
Automating this process would reduce the work load of the physicians, allowing them to better
monitor other secondary parameters that are not as amenable to automation.

Over the past several years, different approaches have been investigated. Many have focused
on the SISO control problem of using sodium nitroprusside (SNP) to maintain a desired blood
pressure (Xu et al., 1982; He et al., 1986). An adequate controller for this problem is difficult to
design, due to the complex, nonlinear behavior of the system. Adding to this are the significant
changes in dynamics from one patient to another, and even variations in the patients response
to the drugs as his condition evolves.
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Others have explored the more challenging problem of multiple input multiple output (MIMO)
systems. Among these, most have concentrated in controlling blood pressure and cardiac out-
put with the use of SNP and dopamine (DP) (Voss et al., 1987; Barney and Kaufman, 1990;
Westvold, 1992).

Yu(Yu et al., 1992) modeled the hemodynamic system by a 2-input 2-output first order
system with delays. He proposed the following equation to represent the plant model:

[
∆CO

∆MAP

]
=




K11e
−T11s

τ11s + 1
K12e

−T12s

τ12s + 1

K21e
−T21s

τ21s + 1
K22e

−T22s

τ22s + 1




[
DP

SNP

]
(1)

with the gains Kij representing the patient sensitivity to the drug, τij the corresponding
time constant and Tij the corresponding time delay between drug infusion and the response of
the system. Typical values and ranges are shown in Table 1.

Parameter Typical Range
K11 5 1 to 12
τ11 300 300
T11 60 15 to 60
K12 12 −15 to 25
τ12 150 150
T12 50 15 to 60
K21 3 0 to 9
τ21 40 40
T21 60 15 to 60
K22 −15 −1 to −50
τ22 40 40
T22 50 15 to 60

Table 1: Nominal values and ranges of model parameters

The controller developed is based on a simple adaptive control approach of MIMO plants first
proposed by Sobel, Kaufman, and Mabius (Sobel et al., 1979) in 1979. This control structure
uses a linear combination of feedforward model states and command inputs and feedback of the
error between plant and model outputs. This class of algorithms requires neither full state access
nor adaptive observers. Other important properties of this class of algorithms include (1) their
applicability to non-minimum phase systems and (2) the fact that the plant (physical system)
order may be much higher than the order of the reference model. Its ease of implementation
and inherent robustness properties make this simple adaptive control approach attractive.

Although this simple direct model reference adaptive control (DMRAC) algorithm has the
above attractive features, it requires that the plant to be controlled satisfies a strictly positive
real (SPR) condition. That is, for a plant to be controlled, there exists a feedback gain such
that the resulting closed-loop system is strictly positive real. Note that the plant satisfying the
above condition is called almost strictly positive real (ASPR). One way to satisfy this positive
real constraint is to design a parallel feedforward compensator.

Ozcelik et. al. (Ozcelik and Kaufman, 1995; Ozcelik, 1996; Ozcelik and Kaufman, 1997b,a),
has developed and applied systematic design procedures that utilize optimization techniques
for both the SISO and MIMO systems with parametric and/or frequency domain uncertainties.
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However, feedforward compensator design methods were not addressed for plants with uncertain
time delay elements, of which the drug infusion control problem is a specific case (Yu et al., 1992).

Therefore, considering both the SISO and MIMO plants, this paper focuses on the design
of parallel robust feedforward compensators for the DMRAC algorithm proposed in (Kaufman
et al., 1998), so that the strictly positive real (SPR) condition is satisfied in the presence of plant
uncertainty which is modeled as variations in both the plant time delay elements and transfer
function coefficients.

Formulation of the DMRAC algorithm is discussed in section 2, robust feedforward com-
pensator design is formulated in section 3, the design of such a controller for the drug infusion
control problem and the corresponding simulation results are given in Section 4. Finally, results
are discussed, and conclusions are drawn in section 5.

2 Formulation of the DMRAC Algorithm

The linear time invariant model reference adaptive control problem is considered for the plant

ẋp(t) = Apxp(t) + Bpup(t)
yp(t) = Cpxp(t) (2)

where xp(t) is the (nx1) state vector, up(t) is the (mx1) control vector, yp(t) is the (qx1) plant
output vector, and Ap, Bp are matrices with appropriate dimensions. The range of the plant
parameters is assumed to be known and bounded with

aij ≤ ap(i, j) ≤ aij, i, j = 1, · · · , n (3)

bij ≤ bp(i, j) ≤ bij, i, j = 1, · · · , n

The objective is to find, without explicit knowledge of Ap and Bp, the control up(t) such that
the plant output vector yp(t) follows the reference model

ẋm(t) = Amxm(t) + Bmum(t)
ym(t) = Cmxm(t) (4)

The model incorporates the desired behaviour of the plant, but its choice is not restricted. In
particular, the order of the plant may be much larger than the order of the reference model.

The adaptive control algorithm being presented is based upon the command generator tracker
concept (CGT) developed by O’Brien and Broussard (Broussard and O’Brien, 1979). In the CGT
method, it is assumed that there exists an ideal plant with ideal state and control trajectories,
x∗p(t) and u∗p(t), respectively, which corresponds to perfect output tracking (i.e., when yp(t) =
ym(t) for t ≥ 0). By definition, this ideal plant satisfies the same dynamics as the real plant,
and the ideal plant output is identically equal to the model output. Thus,

ẋ∗p = Apx
∗
p + Bpu

∗
p for all t ≥ 0 (5)

and
y∗p = ym = Cpx

∗
p = Cmxm (6)

Hence, when perfect tracking occurs, the real plant trajectories become the ideal plant trajecto-
ries, and the real plant output becomes the ideal plant output, which is defined to be the model
output.
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The ideal control law u∗p(t), generating perfect output tracking and the ideal state trajectories
x∗p is assumed to be a linear combination of the model states and model input:

[
x∗p
u∗p

]
=

[
S11 S12

S21 S22

] [
xm(t)
um(t)

]
(7)

where the Sij submatrices satisfy the following conditions

S11Am = ApS11 + BpS21

S11Bm = ApS12 + BpS22 (8)
Cm = CpS11

0 = CpS12

In summary, when perfect output tracking occurs, xp(t) = x∗p(t), and the ideal control is given
by

u∗p(t) = S21xm(t) + S22um (9)

If when perfect output tracking does not occur, yp(t) 6= ym(t), asymptotic tracking is achievable
provided stabilizing output feedback is included in the control law

up(t) = S21xm(t) + S22um + Ke(ym(t)− yp(t)) (10)

Then the adaptive control law based on this command generator tracker (CGT) approach is
given as (Kaufman et al., 1998)

up(t) = Ke(t)[ym(t)− yp(t)] + Kx(t)xm(t) + Ku(t)um(t) (11)

where Ke(t), Kx(t), and Ku(t) are adaptive gains and concatenated into the matrix K(t) as
follows

K(t) = [Ke(t) Kx(t) Ku(t)] (12)

Defining the vector r(t) as

r(t) =


 ym(t)− yp(t)

xm(t)
um(t)


 (13)

the control up(t) is written in a compact form as follows

up(t) = K(t)r(t) (14)

The adaptive gains are obtained as a combination of an integral gain and a proportional gain
as shown below (Kaufman et al., 1998)

K(t) = Kp(t) + Ki(t)
Kp(t) = [ym(t)− yp(t)]rT (t)Tp, Tp ≥ 0 (15)
K̇i(t) = [ym(t)− yp(t)]rT (t)Ti, Ti > 0

The sufficiency conditions for asymptotic tracking are

1. There exists a solution to the CGT problem (6).
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Figure 1: DMRAC with plant and reference model feedforward

2. The plant is ASPR; that is there exists a positive definite constant gain matrix Ke, not
needed for implementation, such that the closed loop transfer function

G(s) = [I + Gp(s)Ke]
−1Gp(s) (16)

is strictly positive real (SPR).

In general, the ASPR condition is not satisfied by most real systems. Therefore, Bar Kana
and Kaufman (Bar-Kana and Kaufman, 1985) have shown that a non-ASPR plant of the form
Gp(s) = Cp(sI −Ap)

−1Bp can be augmented with a feedforward compensator H(s) such that
the augmented plant transfer function

Ga(s) = Gp(s) + H(s) (17)

is ASPR. However the resulting adaptive controller will in general result in a model following
error that is bounded but not zero in steady state. To eliminate this problem, a modification
that incorporates the supplementary feedforward into the reference model output as well as
the plant output has been developed by Kaufman and Neat (Kaufman and Neat, 1993). This
configuration is shown in Figure 1.

3 Feedforward Compensator Design

This section presents the design of feedforward compensators for plants with plant uncertainty
and time delay. Development of design procedures for feedforward compensators will be per-
formed using the transfer function representation of a plant. Plant uncertainty will be repre-
sented as variations in the coefficients of the numerator and denominator polynomials of the
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Figure 2: Closed-Loop System

plant transfer function. Design conditions for a feedforward compensator will be developed
utilizing an optimization procedure for robust stability.

The objective is to develop a feedforward compensator design procedure such that the ASPR
conditions for the augmented system are satisfied over the given range of parameter variations of
the plant. In (Iwai and Mizumoto, 1994), Iwai and Mizumoto showed existence of a feedforward
compensator in the presence of plant unmodeled dynamics only and did not take time delays
into account. In the following, design conditions are developed using an optimization based
method for robust stability, in which parametric variations and the time delay of the plant are
explicitly taken into account.

In the following, the ASPR Lemma (Bar-Kana, 1991), which will be needed in the develop-
ment of a design procedure for a feedforward compensator, is given.

Lemma 1 Let Gp(s) be any m×m transfer matrix of arbitrary McMillan degree. Gp(s) is not
necessarily stable or minimum phase. Let H(s)−1 be any dynamic stabilizing controller as shown
in Figure 2. Then

Ga(s) = Gp(s) + H(s) (18)

is ASPR if the relative McMillan degree of Ga(s) is zero or m.

Proof 1 See (Bar-Kana, 1991)

An equivalent statement of the ASPR Lemma is the following (see (Kaufman et al., 1998)): Let
Gp(s) be a strictly minimum phase m × m transfer matrix of relative McMillan degree m or
zero. Let Gp(s) have the minimal realization (Ap, Bp, Cp) with the high frequency gain CpBp > 0
(positive definite). Then, Gp(s) is ASPR.

Now, consider a non-ASPR SISO plant of the form

Gp(s) = G(s)T (s) (19)

where

G(s) =
Cmsm + Cm−1s

m−1 + · · ·+ C0

Bnsn + Bn−1sn−1 + · · ·+ B0
(20)

in which the coefficients Bn−j and Cm−j can take any values within the given bounds:

Cm−j ≤ Cm−j ≤ Cm−j , j = 0, 1, · · · ,m (21)
Bn−j ≤ Bn−j ≤ Bn−j, j = 0, 1, · · · , n

and T (s) is the time delay of the plant and is of the form

T (s) = e−Tds (22)

994

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



Let G0(s) be the nominal plant obtained from G(s) using the nominal values of parameters.
Then, defining

∆a(s) = G(s)−G0(s) (23)

and
∆m(s) = T (s)− 1 (24)

The actual plant Gp(s) can be rewritten as

Gp(s) = (G0(s) + ∆a(s))(1 + ∆m(s)) (25)

Defining
∆(s) = ∆m(s) + G−1

0 (s)∆a(s)(1 + ∆m(s)) (26)

The actual plant Gp(s) takes the following form

Gp(s) = G0(s)(1 + ∆(s)) (27)

From (23) and (26), it is seen that the uncertainty ∆(s) is a function of plant parameters which
vary in a given range. Thus, in the design of a feedforward compensator, the worst case un-
certainty should be taken into account. To this effect, the following optimization procedure is
considered to determine the worst case uncertainty at each frequency.

Define a vector whose elements are plant parameters, i.e.,

V = Cm Cm−1 · · ·C0 Bn Bn−1 · · ·B0 (28)

Then
maximize | ∆(jw) | at each w

V

subject to :

{
Cm−j ≤ Cm−j ≤ Cm−j

Bn−j ≤ Bn−j ≤ Bn−j
(29)

where ∆(jw) is the perturbation given by (26). It is important to note that this optimization is
performed for each frequency. Given the worst case uncertainty at each frequency, it is assumed
that there exists a known rational function W (s) ∈ RH∞ such that

| W (jw) | ≥ max| ∆(jw) |, ∀ w (30)

Now, the following assumptions are imposed on the plant

Assumption 1

1. Nominal plant G0(s) is known, minimum phase, and stable,

2. Actual plant Gp(s) is stable,

3. min(ρp) ≥ ρm, where ρp and ρm are the relative degrees of the actual plant and the nominal
plant, respectively.

4. ∆(s) satisfies (30)
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Now consider the following augmented plant with the parallel feedforward compensator

Ga(s) = Gp(s) + H(s) (31)

The following theorem gives the design conditions for a parallel feedforward compensator H(s)
so that the ASPR conditions of the augmented plant are satisfied in the presence of plant
perturbations and time delay.

Theorem 1

If H(s) is designed according to the following conditions, then the augmented plant Ga(s) =
Gp(s) + H(s) with plant perturbations will be ASPR.

1. H(s) is stable with relative degree one

2. The augmented nominal plant, G0(s) + H(s) is ASPR

3. ∆̃(s) ∈ RH∞ and ‖ ∆̃(s) ‖∞ < 1
where

∆̃(s) =
G0(s)W (s)

G0(s) + H(s)

is the uncertainty of the augmented plant.

Proof 2 See (Ozcelik, 1996)

With regard to the design conditions for a feedforward compensator, the following design pro-
cedure is proposed

Design procedure 1

1. the order of a feedforward compensator can be determined from the fact that the sufficient
order of a feedforward compensator is equal to the order of a plant.

2. compensator parameters are determined from the following optimization procedure:

minimize ‖ ∆̃(jw) ‖∞ (32)
X

subject to: Real[roots(z(s))] < 0

where z(s) is the zero polynomial of the augmented nominal plant and X is a vector whose
elements are compensator parameters. All the conditions of Theorem 1 will be satisfied using
the design procedure given above.

Extension to MIMO plants

In this section, the feedforward compensator design procedure developed for SISO plants will
be extended to MIMO plants. Now consider a non-ASPR (mxm) MIMO plant of the form

Gp(s) = G(s)T (s) (33)
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where

G(s) =




g11 g12 . . . g1m

g21 g22 . . . g2m
...

...
. . .

...
gm1 gm2 . . . gmm


 (34)

in which each element gij of G(s) is of the form

gij(s) =
Cij

p sp + Cij
p−1s

p−1 + · · · + Cij
0

Bij
r sr + Bij

r−1s
r−1 + · · ·+ Bij

0

(35)

The coefficients Bij
r−k and Cij

p−k can take any values within the given bounds:

Cij
p−k ≤ Cij

p−k ≤ C
ij
p−k, k = 0, 1, · · · , p (36)

Bij
r−k ≤ Bij

r−k ≤ B
ij
r−k, k = 0, 1, · · · , r

T (s) is the time delay of the plant and is of the form

T (s) = diag[e−Td1s, e−Td2s, ..., e−Tdms] (37)

Let G0(s) be the nominal plant obtained from G(s) using the nominal values of parameters.
Then, defining

∆a(s) = G(s)−G0(s) (38)

and
∆m(s) = T (s)− I (39)

The actual plant Gp(s) can be rewritten as in the SISO case

Gp(s) = (G0(s) + ∆a(s))(I + ∆m(s)) (40)

Again, defining
∆(s) = ∆m(s) + G−1

0 (s)∆a(s)(I + ∆m(s)) (41)

The actual plant Gp(s) takes the following form

Gp(s) = G0(s)(I + ∆(s)) (42)

As in the SISO case, from (38) and (41), it is obvious that the uncertainty ∆(s) is a function
of plant parameters which vary in a given range. Thus, the worst case uncertainty should be
taken into account for the design of a feedforward compensator. The worst case uncertainty at
each frequency can be determined from the following optimization procedure.

Define a vector whose elements are plant parameters, i.e.,

v = [Cij
p Cij

p−1 · · ·Cij
0 Bij

r Bij
r−1 · · ·Bij

0 ] (43)

Then
maximize ‖ ∆(jw) ‖ at each w

v
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subject to :

{
Cij

p−j ≤ Cij
p−j ≤ C

ij
p−j

Bij
r−j ≤ Bij

r−j ≤ B
ij
r−j

(44)

where ∆(jw) is the perturbation given by (41). Note that this optimization is performed for
each frequency. Given the worst case uncertainty at each frequency, it is assumed that there
exists a known rational function W (s) ∈ RH∞ such that

‖ W (jw) ‖ ≥ max ‖ ∆(jw) ‖ ∀ w (45)

Now, the following assumptions similar to Assumption 1 are made on the plant,

Assumption 2

1. The nominal plant G0(s) is known, minimum phase, and stable,

2. Actual plant Gp(s) is stable and the degrees of its diagonal elements are known,

3. The off-diagonal elements of Gp0(s) and ∆(s) are strictly proper.

4. min(ρp) ≥ ρm, where ρp and ρm are the relative McMillan degrees of the actual plant and
the nominal plant, respectively.

5. ∆(jw) satisfies (45).

Now, consider the following augmented plant with the parallel feedforward compensator

Ga(s) = Gp(s) + H(s) (46)

where the feedforward compensator H(s) is defined as follows in Lemma 2

Lemma 2

Let the feedforward compensator H(s) be of the form,

H(s) =




h11 0 . . . 0
0 h22 . . . 0
...

...
. . .

...
0 0 . . . hmm


 (47)

with each element hii(s) of a feedforward compensator being relative degree zero, then the aug-
mented plant Ga(s) = Gp(s) + H(s) will have positive definite high frequency gain and relative
McMillan degree zero.

Proof 3 See (Ozcelik, 1996)

It should noted that the above Lemma 2 gives the sufficiency condition for the satisfaction of
the positive definite high frequency gain and the relative degree conditions of Lemma 1. It is
possible, in some cases, that using relative degree one elements in the feedforward compensator
may also satisfy the above conditions. For detailed discussion on the feedforward compensator,
interested readers are referred to (Ozcelik, 1996; Kaufman et al., 1998).

Now, the following theorem gives the design conditions for a parallel feedforward compensator
H(s), so that the ASPR condition of the augmented plant is satisfied in the presence of plant
perturbations.
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Theorem 2

If H(s) is designed according to the following conditions, then the augmented plant Ga(s) =
Gp(s) + H(s) with plant perturbations will be ASPR.

1. H(s) is stable with each hij(s) being relative degree zero

2. H(s)−1 stabilizes the nominal closed-loop system

3. ∆̃(s) ∈ RH∞ and ‖ ∆̃(s) ‖∞ < 1

where ∆̃(s) is the uncertainty of the augmented plant and defined as follows:

∆̃(s) = (Gp0(s) + H(s))−1Gp0(s)W (s)

Proof 4 See (Ozcelik, 1996)

With regard to the design conditions for the feedforward compensator, the following design
method is proposed to determine the necessary coefficients of the compensator.

Design method 2

1. the order of each element hii(s) of a feedforward compensator is chosen to be equal to the
order of the corresponding diagonal element of the nominal plant G0(s).

2. compensator parameters are determined from the following optimization procedure:

minimize‖ ∆̃(jw) ‖∞ (48)
X

subject to: Real[roots(Z(s))] < 0

where Z(s) is the characteristic polynomial of the nominal closed-loop system matrix and X is
a vector composed of the parameters of each hij(s). All the conditions of Theorem 2 will be
satisfied using the design procedure given above. Thus, the augmented plant satisfies the almost
strictly positive real condition over a wide range of plant parameter variations.

Having proposed a feedforward compensator design procedure for MIMO plants with un-
certainties, the following example demonstrates the use of this design procedure and shows its
effectiveness.

4 Simulation Results

To facilitate the illustration of the feedforward compensator design procedures presented in
section 3 both a SISO and MIMO example will be considered. The SISO transfer function
between MAP and SNP is

Gp(s) =
K22e

−T22s

τ22s + 1
(49)

The nominal transfer function, defined with the typical gain and time constant from Table 1,
but without time delay, is given by
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G0(s) =
−15

40s + 1
(50)

Of interest is an MAP response with a settling time less than 10 min; thus a reasonable
choice for a reference model is:

Gm(s) =
1

90s + 1
(51)

The additive uncertainty is then obtained, using equation (23), to be

∆a(s) = −K22 + 15
40s + 1

(52)

The multiplicative uncertainty, as defined in equation (24), then becomes

∆m(s) = e−T22s − 1 (53)

Then the combined uncertainty, using equation (26), is

∆(s) = e−T22s K22 + 30
15

− 1 (54)

Figure 3 shows the maximum at each frequency of ∆(jw), as well as the bounding rational
function given by

W (s) =
125s + 1
35s + 1

(55)

In this case a first order compensator is adequate; the denominator can be predetermined,
taking into account that the compensator should be faster than the reference model. Thus
consider,

H(s) =
b0

s + 2
(56)

The uncertainty of the augmented plant is then given by

∆̃(s) =
−45(s + 2)

(40b0 − 15)s + b0 − 30
(57)

In this case we can easily solve for ‖ ∆̃(jw) ‖∞ analytically. For all conditions in Theorem
1 to be satisfied we find that we need either b0 ≤ −60 or b0 ≥ 120; the larger | b0 |, the smaller
‖ ∆̃(jw) ‖∞ will be. Since a high gain in the feedforward compensator will decrease performance,
we choose the smallest positive gain possible. This resulted in

H(s) =
120

s + 2
(58)

The values for the adaptation gains Tp and Ti were obtained by tuning for the nominal
system and fine tuning to minimize the overshoot for the extreme high gain of −50. The initial
gains were also adjusted to improve the response of the system. These values are

Tp =
[

1e−5 1e−8 1e−6
]

Ti =
[

1e−8 1e−12 1e−6
]

K0 =
[

5e−3 5e−5 2e−2
] (59)
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Figure 3: max‖∆(jw)‖ and its bound ‖W (jw)‖ for SISO case

The results for the cases described below in Table 2 are shown in Figure 4. All cases were
stable although the plant with the very low gain value of −1 took quite a bit longer to adapt.
This could have been ameliorated at the expense of a larger overshoot in the first cycle for the
high gain case.

Case K22 T22

1 −1 15
2 −1 50
3 −1 60
4 −15 15
5 −15 50
6 −15 60
7 −50 15
8 −50 50
9 −50 60

Table 2: Values of model parameters for simulation cases

For the MIMO case, G0(s) was again selected using the typical value from Table 1, but
without time delays. Thus,

G0(s) =




5
300s + 1

12
150s + 1

3
40s + 1

−15
40s + 1


 (60)
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Figure 4: Simulation of DMRAC for SISO case.
Tp = [1e−5, 1e−8, 1e−6] Ti = [1e−8, 1e−12, 1e−6] K0 = [5e−3, 5e−5, 2e−2].

and

T (s) =


 e−T11s 0

0 e−T22s


 (61)

Once again, of interest is an MAP response with a settling time less than 10 min. For CO
the desired settling time should be less than 20 min. Thus, a reasonable choice for a reference
model is:

Gm(s) =


 1

90s+1 0

0 1
300s+1


 (62)

The combined uncertainty, based on equation (41), is computed numerically for each fre-
quency when doing the maximization of ∆(jw) according to equation (44).

Figure 5 shows the maximum at each frequency of ∆(jw), as well as the bounding rational
function given by

W (s) =




3.75(300s+1)
170s+1 0

0 3.75(300s+1)
170s+1


 (63)

For this case a first order compensator is also adequate; the denominator can be predeter-
mined as well. Thus consider,

H(s) =


 b0

5s+1 0

0 b1
5s+1


 (64)
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Figure 5: max‖∆(jw)‖ and its bound ‖W (jw)‖ for MIMO case

The uncertainty of the augmented plant for the MIMO case is best computed numerically.
The compensator was selected to be

H(s) =


 84

5s+1 0

0 120
5s+1


 (65)

The values for the adaptation gains Tp and Ti were obtained by tuning for the nominal
system and fine tuning to minimize the overshoot for the extreme high gains. The initial gains
were also adjusted to improve the response of the system. These values are

Tp =

[
1e−1 0 2.5e−8 0 1e−5 0

0 1e−1 0 2.5e−7 0 1e−4

]

Ti =

[
1e−3 0 1e−8 0 1e−6 0

0 1e−2 0 1e−8 0 1e−6

]

K0 =

[
−2.8598e−2 6.5843e−16 6.1421e−4 1.0842e−19 1.7798e−2 −1.5405e−2
−5.1605e−3 −4.2026e−15 5.1594e−3 −8.6736e−19 −4.5475e−3 7.7027e−2

]

The results for the cases described below in Table 3 are shown in Figure 6. As with the SISO
case, the system with the low gains takes a long time to adapt. Larger values for the initial
gains and/or larger adaptation gains would improve this response significantly, but would cause
larger overshoots and oscillations for the case with the high gains.
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Figure 6: Simulation of DMRAC for MIMO case.

5 Conclusions

Considering both SISO and MIMO plants with uncertainties in both plant parameters and time
delay elements, a systematic design method based on an optimization procedure for robust
stability analysis for a feedforward compensator was developed. This easily implementable
design procedure enables the augmented plant to satisfy the ASPR conditions in the presence
of variations in plant parameters and time delay elements. Hence, the applicability of direct
adaptive controllers has now been extended to systems with time delays. Simulation results
demonstrate the viability of the DMRAC algorithm designed using this new method.

There is obviously a need to improve the response of the system over the whole range of
possible plant variations. Due to their wide range, and the time delay factor, it is extremely
difficult to have a single controller perform optimally. Work is in progress to incorporate the
concepts presented in (Narendra et al., 1995), to use multiple models. Command limiting is
another issue that is being addressed, as in reality there are physical and safety constraints
imposed on the drug infusion rates.

The design procedure outlined is also being used to design controllers for the same system,
but using a nonlinear model. These designs will be tested on dogs.
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