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Abstract:  This work deals with the firing sequences estimation for transitions - timed Petri nets by
measurement of the places marking. Firing durations are unknown, but supposed not to be null. In fact,
the Petri net marking is measured, on line, with a sampling period ∆t small enough such that each
transition is fired, at the most, one time during ∆t. The estimation problem has exact and approximated
solutions that are described. Sufficient conditions are given on the accuracy of the marking measurement,
such that the estimation of the firing sequences is an exact one. If the estimation provides several
solutions, the Petri net is completed in order to give a unique solution.

Keywords: Timed Petri nets, manufacturing systems, estimation, firing sequences, Moore Penrose
inverse.

1. Introduction
Manufacturing systems often considered as discrete events systems and thus are described with
discrete time models (Cassandras 1993, Cao et al 1990). Among the existing models, the
transitions - timed Petri nets (TPN) (David et al 1992, Ramchandani 1973), are well adapted to
represent assembly, disassembly, and manufacturing workshops composed of buffers and
machines. With TPN models, buffers are represented by places, and machines are represented
by transitions. The places marking stands for the buffer contents or for resources allocation, the
transitions firing sequences represent the routings, and, for each transition, the minimal firing
duration corresponds to the machine operating time.
This work is concerned with the firing sequences estimation for TPN by observation of the
marking. Minimal firing durations are supposed to be unknown, but transitions with
instantaneous firing are avoided. Conflictual situations as resources allocation are also
considered. The problem is different from Petri nets state estimation (Borne et al 1990, Giua
1997, Kailath 1980), where transitions firing are observed, and marking is estimated. The
proposed estimation is useful to provide the firing frequencies without studying the marking
invariance properties (David et al 1992). Applications of our results are identification of
deterministic or stochastic TPN (David et al 1992), and faults diagnosis (Isermann 1984, Knapp
et al 1992, Wang et al 1993, Zeng et al 1991).
The section two is about PN, and TPN. Our notations and hypothesis are also presented. In the
section three, the estimation of the firing sequences is obtained from the places marking
measurement. The problem is solved with linear systems inversion (Gantmacher 1966, Rotella
et al 1995). The estimation is obtained with the help of the Moore Penrose inverse (Ben-Israel et
al 1974, Campbell et al 1979, Rotella et al 1995), of the incidence matrix and with a binary
classifier function. When the set of solutions contains several elements, the TPN is completed
such that a unique solution does fit the problem. A sufficient condition is also given on the
marking measurement accuracy, such that the estimation of the firing sequences is the exact
one. The last section is an illustration of the previous results.
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2. Timed Petri nets
A PN with n places and p transitions is defined as < P, T, Pre, Post, M0 > where P={Pi} i=1,…,n is
a not empty finite set of places, T={Tj} j=1,…,p is a not empty finite set of transitions, such that P
∩ T = ∅. IN is defined as the set of integer numbers and IR as the set of real numbers. Pre: P ×
T → IN is the pre-incidence application (Pre (Pi, Tj) is the weight of the bond from place Pi to
transition Tj), Post: P × T → IN is the post-incidence application (Post (Pi, Tj) is the weight of
the bond from transition Tj to place Pi). Let us also define M(t) = (mi(t))i=1,…,n ∈ IN n as the
marking vector at time t and M0 ∈ IN n as the initial marking vector. The PN incidence matrix
W is defined as W = ( Post (Pi, Tj) - Pre (Pi, Tj)) i=1,…,n, j=1,…,p ∈ IN n × p. A firing sequence S is
defined as an ordered series of transitions that are successively fired from marking M to
marking M’:

M(S → M’ . (1)

Such a sequence is represented by its characteristic vector S = (sj)j=1,…,p ∈ IN p where sj stands
for the number of Tj firing. Equation (1) is equivalent to:

M’ = M + W.S. (2)

A TPN with n places and p transitions is defined as < PN, Dmin > where PN is a Petri net, and
Dmin = (dmin j)j=1,…,p ∈ IR+ p a vector of positive non null transition minimal firing durations. The
firing of transition Tj starts when Tj is enabled (there are enough parts in each upstream place),
and ends after a positive non null duration equal to dmin j. During the firing of Tj parts are
reserved. Only non reserved parts are considered for enabling conditions. When two transitions
Tj and Tj’  have a common upstream place, the TPN presents a structural conflict. The conflict
becomes an effective one there are not enough parts in the common place to enable both. The
conflict is solved according the TPN definition. Part in the common place are reserved for the
firing of the transition with the smallest minimal firing duration.
Considering a sampling period ∆t, Xk = (xk

j)j=1,…,p ∈ IN p is defined as the characteristic vector
of the firing sequence that occurs during [(k-1).∆t k.∆t[. Thus, considering ∆Mk = M(k.∆t) -
M((k-1).∆t) ∈ IN n as the variation of the marking during [(k-1).∆t k.∆t[, equation (2) results in:

kk X.WM =∆ . (3)

Let us assume that the sampling period ∆t is small enough such that each transition of the PN
could be fired, at the most, one time during [(k-1).∆t k.∆t[. With this restriction, Xk ∈ {0, 1}p

with xk
j = 1 if the transition Tj is fired during [(k-1).∆t k.∆t[, and xkj = 0 if not. Let us consider B

= {Bj} j=1,…,p with Bj = (bj
s)s=1,…,p ∈ IR p such that bjs =0 if j ≠ s, and bjj = 1. B is the canonical

basis of IR p, and Bj represents the firing of transition Tj. Using the previous assumption, Xk

belongs to a set composed of exactly 2p different firing sequences, and can be written as in
equation (4):

j

p

1j

k
jk BxX ∑=

=
(4)

3. Estimation of the firing sequences

Let us define kM̂  = (m̂ k
i)i=1,…,n ∈ IR n as the approximated value of M(t) measured at each time

t = k.∆t, kM̂∆ = kM̂  - 1kM̂ −  ∈ IR n as the variation of the measured marking during [(k-1).∆t

k.∆t[, and kX̂ = ( x̂ k
j)j=1,…,p ∈ IR p as the corresponding approximated value of Xk. Let us

emphases the fact that kM̂ and kM̂∆ could contain integer values or real values according to the
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measurement sensor. But, in both cases the proposed approximation method results in vector

kX̂ that contains real values. Equation (3) results in:

kk X̂.WM̂ =∆ . (5)

Let us call r the rank of matrix W ∈ IR n x p. Let us also define hk as the rank of matrix (W,

kM̂∆ ) ∈ IR n x (p+1), where matrix (W, kM̂∆ ) stands for the aggregation of matrix W and vector

kM̂∆ .
To estimate the firing sequence characteristic vector, equation (5) has to be solved. This
equation is considered as a set of n linear relations with a unknown vector kX̂  of dimension p.
This equation may have one, several or no exact solution according to the values of n, p, r, and
hk (Gantmacher 1966, Rotella et al 1995). Let us define Ek as the set of solutions for equation
(5) at time t = k.∆t, (ui)i=1…p as the column vectors of matrix W, and Vect(W) = Vect{u1,…up}
as the vector space defined by the vectors u1 to up.

• When r = hk, kM̂∆ ∈ Vect{u1,…up}. The equation (5) has at least one exact solution, and Ek

is defined as the set of exact solutions for (5). In this case the system is said to be
compatible (Rotella et al 1995).

• When r < hk, kM̂∆ ∉ Vect{u1,…up}. The equation (5) has no exact solution. But (5) has one

or several approximated solutions. The vector kX̂  is called an approximated solution for

equation (5) if it minimises the difference || kM̂∆ –W. kX̂  || where || . || stands for the
Euclidean norm (Rotella et al 1995). In this case, Ek is defined as the set of approximated
solutions for (5), and the system is said to be not compatible (Rotella et al 1995).

For all the cases, the solutions (the exact ones or the approximated ones) could be obtained with
the same result. The set of solutions for (5) can be expressed with the Moore Penrose inverse of
matrix W (Ben-Israel et al 1974, Campbell et al 1979, Rotella et al 1995). The Moore Penrose
inverse of W ∈ IR n x p is the unique matrix W+ ∈ IR p x n, that verifies the properties W.
W+.W=W, W+.W. W+= W+, (W. W+)T=W. W+, and (W+.W) T = W+.W.

Theorem 1: For system (5), the set of solutions (exact or approximated) is given by:





 −+∆= ++

= z)WWI(M̂.WX̂X̂E pkkkk
, (6)

 where Ip stands for the identity matrix of IR p × p, and z stands for any vector of IR p. The

solution k
0X̂  corresponding to z=0 is such that:

k
EX̂

0
k X̂infX̂

kk∈
= . (7)

The Moore Penrose inverse of matrix W can be worked out with a help of maximal rank
factorisation of W.

Theorem 2: Let be W ∈ IR n x p of rank r. There exists two matrices Wl ∈ IR n x r of full column
rank r, and Wr ∈ IR r x p of full row rank r, such that W= Wl . Wr. In this case the Moore Penrose
inverse of matrix W is given by:

T
l

1T
r

T
l

T
r W)W.W.W(WW −+ = . (8)
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Theorem 3: The dimension of the set Ek is given by p-r. When p = r the system (5) has a unique
solution (exact or approximated).

For the sake of brevity, the proof of theorems 1, 2 and 3 is omitted (Campbell et al 1979,
Rotella et al 1995). From a numerical point of view, the maximal rank factorisation of matrix W
is not easy to obtain. A more efficiency method consists to apply the Greville constructive
algorithm (Ben-Israel et al 1974, Golub et al 1986, Rotella et al 1995).

Let us remind that the components of vector kX̂ are real values. To deal with firing sequences,

and according to our assumptions the vector kX̂ has to be transformed into a vector kX  =

( x k
j)j=1,…,p ∈ {0, 1} p. Let us define x k

j as x k
j = sign(x̂ k

j – ½). The function sign is a binary
classifier such that x k

j = 1 if x̂ k
j ≥ ½, and x k

j = 0 if x̂ k
j < ½. We call the vector kX as the

estimated value of Xk.

Two problems may occur regarding the approximation kX̂ .

• Ek could contain several solutions. In this case, some complementary information must be
added to the PN in order to choice the good one. This difficulty will be studied in paragraph
3.1.

• Ek may also contain no exact solution. In this case, a sufficient condition is given on the
marking measurement accuracy, such that kX = Xk. The approximation error is studied in
section 3.2.

3.1. Petri net complement

When Ek contains several elements, the marking vector kM̂  does not contain enough
information to work out an unique estimation of the firing sequences. In this case, one solution
is to increase the dimension of the marking vector, by adding some new places to the PN such
that the rank of matrix W will increase to p. The places must be located such that the rank of the
incidence matrix increases.

Theorem 4: When equation (5) has several solutions, the approximation vector kX̂  could be
obtained by the addition of p - r complementary places located such that the rank of matrix W
increases to p.

Proof (constructive): The equation (5) has a unique solution if and only if r = p. When r<p, the
addition of well chosen complementary rows to the matrix W increases the rank of W. Let us
assume that W ∈ IR n x p is of rank r<p and let us define wi as the ith row of matrix W. There
exists wn+1

T ∈ IR p such that rank(w1
T, … , wn

T, wn+1
T) = r+1. Repeating the same operation p-r

times, the rank of augmented matrix W increases to p. Each row defines the location of a new
place in the Petri net. Thus the approximation of the vector Xk requires the addition of p-r
places.

3.2. Estimation error

From a theoretic point of view the non-compatible case does not occur, because the equation (3)
is always compatible. The marking vector results from the PN evolution, and considering any
firing sequence Xk, the resulting vector ∆Mk belongs to Vect(W). Moreover, if equation (6)

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel -  June 28-30, 1999

128



provides several solutions, the TPN is completed according the result given by theorem 4, such
that only a unique solution does fit the approximation problem. Thus Xk is unique.
From a numerical point of view, the compatibility of equation (5) is not warranted. Only an
approximation kM̂∆ of ∆Mk is measured, and this approximation is not exact. In this case, r<hk,
and equation (5) has one or several approximated solutions according to the value of n, p and r.
The vector kM̂∆  includes a measurement error ek and for this reason may be out of Vect(W):

kkk eM̂M +∆=∆ , (9)

Equation (3) results in:

kkk e.WM̂.WX ++ +∆= (10)

where kk M̂.WX̂ ∆= + and kk e.W +=ε  represents the influence of the measurement error on the

approximation kX̂  of Xk.

Theorem 5: The approximation kX̂  of Xk includes an error εk such that:

kk e.σ≤ε , (11)

where σ stands for the spectral radius of matrix (W+)T.W+ (σ is the maximal module of the
eigenvalues of matrix (W+)T.W+).

Proof: Let us mention that the Euclidean norm is a multiplicative norm, thus:

kkk e.WeW ++ ≤=ε . (12)

The Euclidean norm of matrix W+ results from the vectorial Euclidean norm:

{ }xWmaxW
1x

+
=

+ = . (13)

with xW)W(xxWandxxx TTT +++ == .

The matrix (W+)T.W+ ∈ IR n x n is a symmetric non negative matrix. There exists an orthogonal
matrix P ∈ IR n x n such that (W+)T.W+ = P T.D.P where D ∈ IR n x n is the diagonal matrix that
contains the eigenvalues {di} i=1,…,n, of (W+)T.W+. Thus:

∑===
=

+ n

1i

2
ii

TTT ydy.D.yx.P.D.P.xxW ,

with y = P.x = (yi)i=1…n. Let us notice that 1y1yy1PxPx1xx1x TTTT =⇔=⇔=⇔=⇔= .

Calling σ as the maximal eigenvalue of (W+)T.W+, we have:

σ=∑σ≤
=

+ n

1i

2
iy.xW
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and this maximal value is reached. Thus σ≤+W , and equation (11) holds. 

The estimation of the measurement error obtained with the last result is composed of 2 terms:

the term σ depends only from the structure of the PN, and the term ke  depends only from

the place marking measurement method. Because of the non linear sign function, it is not easy
to work out the estimation error kk XX − . But a result is proposed that gives a sufficient

condition such that the estimation kX  of Xk has no error.

Theorem 6: The estimation vector verifies kX = Xk if the measurement error is such that:

0k,
.4

1
M̂M kk ≥

σ
<− , (14)

Proof: Let us assume that equation (14) holds. Thus:

1k,
.2

1
M̂MM̂M 1k1kkk ≥

σ
<−+− −− .

But kkk1k1kkk1k1kkk eM̂MMM̂M̂MM̂MM̂M =∆−∆=−+−≥−+− −−−− .

Thus ke  < 1/ (2. σ ), and according to theorem 5, for every j=1,…,p, we have:

( )
2

1
x̂xx̂x

p

1s

2k
s

k
s

k
j

k
j <∑ −≤−

=
,

and k
jx̂  is bounded by:

2

1
xx̂

2

1
x k

j
k
j

k
j +<<− . (15)

According relation (15), and the definition of the estimation vector kX , if k
jx  = 0, k

jx̂  - 1/2 < 0,

and k
jx  = 0. On the contrary, if kjx  = 1, k

jx̂  - 1/2 > 0, and k
jx  = 1. Thus kX  = Xk. 

Let us notice that a sufficient condition to verify equation (14) is:

n,...,1i,0k,
.n.4

1
m̂)t.k(m k

ii =≥
σ

<−∆ , (16)

where k
ii m̂)t.k(m −∆  is the approximation marking error for place Pi at time t=k.∆t.

4. Example
Let us consider, as an example, the TPN in figure 1 (David, et al 1992) with 8 places and 4
transitions of unknown minimal firing durations d1, d2, d3, and d4 (not smaller than 1/6 second).
The places P5 to P8 limit the number of simultaneous firing of transitions T1 to T4 to one. The
system is working at maximal speed (i.e. parts are immediately reserved when a transition is
enabled). This PN has a structural conflict because the place P4 has two downstream transitions
T3 and T4. The conflict becomes an effective one if there is a unique part in place P4 and if the
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parts in P7 and P8 are both not reserved. In this case, the conflict is solved according the TPN
definition. The part in place P4 is reserved for the firing of T4.Let us notice that the estimation
procedure is not related to the conflict resolution rule, and does work for any other rule.

Figure 1: Example of TPN

The initial marking vector is given by M0=(10 20 0 0 1 1 1 1)T. There is no interest to consider
the marking evolution of places P5 to P8 because the marking of these places is always equal to
1. Thus, only a reduced incidence matrix W is considered that defines the marking evolution of
places P1 to P4.
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The matrix W∈IR 4 x 4 is of rank 3. Thus Ek contains several solutions, and to estimate the vector
Xk, the system (17) must be completed with another row that is independent from each other.
Applying theorem 4, a possible solution is to add a new place P5 to measure the flow coming
from the transition T3, such that the rank of W increases to 4 (this solution is represented with
dashed point in figure 1). Equation (17) results in (18):

k4

3

2

1

1k5

4

3

2

1

k5

4

3

2

1

x

x

x

x

.

0100

1111

1010

0010

0101

m

m

m

m

m

m

m

m

m

m









































−−
−
−

−

+























=























−

   ⇒   kk M̂.

01231

30000

00030

31102

3

1
X̂ ∆



















−−−

−
−

= (18)

The resulting estimation equation is given by (18) and the marking evolution is given in figure
2. The estimation of the firing sequences is achieved by measurement of the marking vector
with a sampling period ∆t = 0.13 seconds. Let us notice that ∆t < 1/6 second, that is to say ∆t is
small enough such that each transition of the PN could be fired at the most one time during [(k-
1).∆t k.∆t[.

P1 P2 P3

T1 T2

P4
d1

d2

d3 d4

P9

P5

P7 P8

P6
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An uniformly distributed random error is considered. Thus, depending on the error, the vector

kM̂∆  may belong or not in Vect(W), and the approximation kX̂  is either an exact solution,

either an approximated one for equation (18). For transition T4, the estimation kX , as the exact

value of Xk are represented in figure 3, for a local measurement error of maximal value α =
0.05. Similar results are obtained for the transitions T1 to T3. One can notice that the estimation

kX  corresponds exactly (with a delay) to the vector Xk.
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Figure 2: Marking evolution Figure 3: Estimation of Xk for T4

The set of eigenvalues of (W+)T.W+ is given by {0, 0.1529, 0.3820, 2.1805, 2.6180}. Thus
σ=2.6180 and applying theorem 6, the maximal admissible measurement error such that kX =
Xk is given by equation (19):

0k,15.0
6180.24

1

4

1
M̂M kk ≥==

σ
<− . (19)
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Figure 4: Error εk for α=0.05 Figure 5: Error εk for and α=0.2

This condition is satisfied if each component of kM̂  verifies 051.0m̂m k
i

k
i

<− . Considering, on

one hand, the previous local measurement error of maximal value α = 0.05 for each place
marking, the approximation error verifies εk < 0.5, as represented in figure 4, and kX = Xk.

Considering, on the other hand, a local measurement error of maximal value α = 0.2 for each
place marking, the accuracy of the measurement is not good enough, as represented in figure 5.
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There exist several values of k such that εk > 0.5, that result in estimationkX different from Xk.

But there exist also values of k such that εk > 0.5, that result in kX = Xk. This illustrates the fact
that the condition given in theorem 6 is a sufficient but not a necessary one.

It is also interesting to notice that decreasing the sampling period does not improve the firing
sequences estimation. The sampling period must only verifies the hypotheses given in section
two, that is to say, for this example, ∆t<1/6 (smallest firing duration of transitions).

5. Conclusions
Using transitions - timed Petri nets for the modelling of manufacturing systems, an estimation of
the firing sequences was proposed. This problem results in linear system inversion for which the
Moore Penrose inverse of the incidence matrix has to be worked out. The set of solutions was
described (theorems 1 to 3). When several solutions exist, the Petri net was completed with
additional relations in order to provide a unique solution (theorem 4). A sufficient condition was
given on the marking measurement accuracy, such that the estimation of the firing sequences is
an exact one. (theorems 5 and 6). The proposed method is not limited to transitions – timed Petri
nets. The same results hold in the cases of places – timed Petri nets, or stochastic – timed Petri
nets.
Our further work is to apply the firing sequences estimation to determine firing occurrences, and
firing frequencies. Applications like faults diagnosis and timed Petri nets identification will also
be considered.
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