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Abstract

The possibilities of studying nonlinear physical systems by small feedback action are dis-
cussed. Analytical bounds of possible system energy change by feedback are established. It
is shown that for 1-DOF nonlinear oscillator the change of energy by feedback can reach the
limit achievable for linear oscillator by harmonic (nonfeedback) action which corresponds to the
resonance phenomenon. The feedback resonance phenomenon is demonstrated also for 2-DOF
system consisting of two coupled pendulums and illustrated by computer simulation results.

1 Introduction: physics and control

Physics and mechanics provided generations of mathematicians with both problems to solve and

inspiration for solution. Same is true with respect to the control theory which essential part is

actually a branch of mathematics. However the reverse in
uence was not noticeable until recently.

The situation changed dramatically in 90s after it was discovered that even small feedback

introduced into chaotic system can change its behavior signi�cantly, e.g. turn the chaotic motion

into the periodic one (Ott et al., 1990). The seminal paper (Ott et al., 1990) gave rise to an

avalanche of publications demonstrating metamorphoses of numerous systems - both simple and

complicated - under action of feedback. However the potential of modern nonlinear control theory

(e.g. (Isidori, 1995; Pyragas, 1992; Nijmeijer and van der Schaft, 1990; Cook, 1994)) still was not

seriously demanded although the key role of the system nonlinearity was de�nitely appreciated. On

the other hand the new problems have some speci�c features for control theorists: the desired point

or the trajectory of the system is not prescribed whilst the "small feedback" requirement is imposed

instead. It took some time to realize that the problems of such kind are typical for control of more

general oscillatory behavior and to work out the uni�ed view of nonlinear control of oscillations and

chaos (Fradkov and Pogromsky, 1998).

It needs only one more e�ort to make the next step and to start systematic studying the

properties of physical (as well as chemical, biological, etc.) systems by means of small feedback

actions.

The �rst consequences of such an approach for physics and mechanics were demonstrated in

(Fradkov, 1998), where the mechanism of creating resonant behavior in oscillatory system by feed-
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back was examined for 1-DOF (one-degree-of-freedom nonlinear oscillator. This phenomenon was

called feedback resonance.

In this paper we continue investigation of feedback resonance phenomenon. In Section 2 the

speed-gradient method, useful for feedback design in oscillatory systems is outlined. In Sections

3,4 some results concerning feedback resonance in 1-DOF oscillators and its application to studying

escape from a potential well are re�ned. In Section 5 the feedback resonance is demonstrated

for 2-DOF system consisting of two coupled pendulums. The results are illustrated by computer

simulations.

2 Exciting nonlinear oscillator

Consider the controlled 1-DOF oscillator modeled after appropriate rescaling by the di�erential

equation

�'+
@�(')

@'
= u; (1)

where ' is the phase coordinate, �(') is potential energy function, u is controlling variable. The

state vector of the system (1) is x = ('; _') and its important characteristics is the total energy

H('; _') = 1

2
_'2 + �('). The state vector of the uncontrolled (free) system moves along the energy

surface (curve) H('; _') = H0. The behavior of the free system depends on the shape of �(')

and the value of H0. E.g. for simple pendulum we have �(') = !2
0
(1 � cos') � 0. Obviously,

choosing H0 : 0 < H0 < 2!20 we obtain oscillatory motion with amplitude '0 = arccos(1�H0=!
2
0).

For H0 = 2!2
0
the motion along the separatrix including upper equilibrium is observed, while for

H0 > 2!20 the energy curves get in�nite and the system exhibits the permanent rotation with the

average angular velocity < _' >� p2H0.

Let us put the question: is it possible to signi�cantly change the energy (i.e. behavior) of the

system by means of arbitrarily small controlling action?

The answer is well known when the potential is quadratic, �(') = 1

2
!2
0
'2, i.e. the systems

dynamics are linear:

�'+ !20' = u: (2)

In this case we may use the harmonic external action

u(t) = u sin !t (3)

and for ! = !0 watch the resonance unbounded solution '(t) = � ut
2!0

cos!0t.

However for nonlinear oscillators the resonant motions are more complicated with interchange

of energy absorption and emission. It is well known that even for simple pendulum the harmonic

excitation can even give birth to chaotic motions. The reason is, roughly speaking, in that the

natural frequency of a nonlinear system depends on the amplitude of oscillations.

Therefore the idea comes: to create resonance in a nonlinear oscillator by changing the frequency

of external action as a function of amplitude of oscillations. To implement this idea we need to make

the value u(t) depending on the current measurements '(t); _'(t) which exactly means introducing

the feedback

u(t) = U ('(t); _'(t)) : (4)

Now the problem is: how to �nd the feedback law (4) in order to achieve the energy surface

H('; _') = H�. This problem falls into the �eld of control theory. To solve it we suggest to use

the so called Speed-Gradient(SG) method (Fradkov and Pogromsky, 1998; Fradkov, 1979; Fradkov,

1996; Shiriaev and Fradkov, 1998) which is outlined below.
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3 Speed-gradient algorithms and energy control

Various algorithms for control of nonlinear systems were proposed in the literature, see e.g. (Isidori,

1995; Nijmeijer and van der Schaft, 1990; Cook, 1994; Vorotnikov, 1997). For purposes of "small

control" design the following "speed-gradient" procedure is convenient (Fradkov and Pogromsky,

1998; Fradkov, 1979; Fradkov, 1996; Shiriaev and Fradkov, 1998).

Let the controlled system be modeled as

_x = F (x; u); (5)

where x 2 Rn is the state and u 2 Rm is input (controlling signal). Let the goal of control be

expressed as the limit relation

Q(x(t))! 0 when t!1: (6)

In order to achieve the goal (6) we may apply the SG-algorithm in the �nite form

u = �	(ru
_Q(x; u)); (7)

where _Q = (@Q=@x)F (x; u) is the speed of changing Q(x(t)) along the trajectories of (5), vector

	(z) forms a sharp angle with the vector z, i.e. 	(z)Tz > 0 when z 6= 0 (superscript \T" stands for

transpose). The �rst step of the speed-gradient procedure is to calculate the speed _Q. The second

step is to evaluate the gradient ru
_Q(x; u) with respect to controlling input u. Then the vector-

function 	(z) should be chosen to meet sharp angle condition. E.g. the choice 	(z) = 
z; 
 > 0

yields the standard proportional (P) feedback

u = �
ru
_Q(x; u); (8)

while the choice 	(z) = 
signz, where sign is understood componentwise, yields the relay algorithm

u = �
sign(ru
_Q(x; u)): (9)

The integral (I) form of SG-algorithm

du

dt
= �
ru

_Q(x; u); (10)

also can be used as well as combined, e.g. proportional-integral (PI) forms.

The underlying idea of the choice (8) is that moving along the antigradient of the speed _Q

provides decrease of _Q. It may eventually lead to negativity of _Q which, in turn, yields decrease

of Q and, eventually, achievement of the primary goal (6). However, to prove (6) some additional

assumptions are needed, see (Fradkov and Pogromsky, 1998; Fradkov, 1979; Fradkov, 1996; Shiriaev

and Fradkov, 1998).

Let us illustrate derivation of SG-algorithms for the Hamiltonian controlled system of the form

_q = rpH(q; p) +rpH1(q; p)u; _p = �rqH(q; p)� rqH1(q; p)u; (11)

where H is Hamiltonian of the free system, H1 is interaction Hamiltonian. In order to control the

system to the desired energy level H�, the energy related goal function Q(q; p) = (H(q; p)�H�)
2 is

worth to choose. First step of speed-gradient design yields

_Q = 2(H �H�) _H = 2(H �H�)[(rqH)TrpH1 � (rpH)TrqH1]u = 2(H �H�)fH;H1gu
where fH;H1g is Poisson bracket. Since _Q is linear in u, the second step yields ru

_Q = 2(H �
H�)fH;H1g. Now di�erent forms of SG-algorithms can be produced. For example proportional (P)

form (8) looks as follows

u = �
(H �H�)fH;H1g; (12)
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where 
 > 0 is gain parameter. For special case H1(q; p) = q; q = ' it turns into the algorithm (13)

Analysis of the behavior of the system containing the feedback is based on the following theorem

(proof see in (Fradkov and Pogromsky, 1998)).

Theorem. Let functions H;H1 and their partial derivatives be smooth and bounded in the

region 
0 = f(q; p) : jH(q; p)�H�j � �g. Let the unforced system (for u = 0) have only isolated

equilibria in 
0.

Then any trajectory of the system with feedback either achieves the goal or tends to some equilib-

rium. If, additionally, 
0 does not contain stable equilibria then the goal will be achieved for almost

all initial conditions from 
0.

Similar results are also valid for the goals expressed in terms of several integrals of motions and

for the general nonlinear systems with SG-algorithms (see (Shiriaev and Fradkov, 1998)).

4 Feedback resonance in 1-DOF system

For the system (1) the SG-method with the choice of the goal function Q(x) = [H(x)�H�]
2 produces

simple feedback laws:

u = �
 (H �H�) _'; (13)

u = �
 sign (H �H�) � sign _'; (14)

where 
 > 0, sign(H) = 1, for H > 0 , sign(H) = �1 for H < 0 and sign(0) = 0. It follows

from the Theorem 1 of Section 3 that the goal H(x(t))! H� in the system (1), (13) (or (1), (14))

will be achieved from almost all initial conditions provided that the potential �(') is smooth, its

stationary points are isolated and there is no stable equilibria of the unforced system within initial

energy layer f('; _') : H0 � H('; _') � H�g, where H0 = H('(0); _'(0)) is initial energy level (we

assume H0 � H�).

It is worth noticing that since the motion of the controlled system always belongs to an energy

layer between H0 and H�, the right hand side of (13) is bounded. Therefore, taking su�ciently

small gain 
 we can achieve the given energy surface H = H� by means of arbitrarily small control.

Of course this seemingly surprising result holds only for conservative (lossless) systems.

Let now the losses be taken into account, i.e. the system be modeled as

�'+ % _'+
@�

@'
= u: (15)

where % > 0 is the damping coe�cient. Then the upper bound of the energy level H reachable by

the feedback of amplitude u can be calculated as

H =
1

2

�
u

%

�
2

: (16)

Indeed, consider the 1-DOF oscillator with losses (15) controlled by the algorithm (14) (Exten-

sion to the n-DOF systems can be found in (Fradkov, 1999)). Evaluating the change of the goal

function and substituting u(t) from (14) with 
 = u yields

_H =
@H

@p
(�%p+ u) = �%p2 + pu = jpj(u� %jpj):

Therefore _H � 0 in the region de�ned by the inequality jpj � u=% which is equivalent to the

restriction on the kinetic energy p2=2 � (u=%)2=2. The latter inequality holds if the condition

H � 1

2

�
u

%

�2
(17)
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is imposed on the total energy of the system. Hence the energy increases as long as (17) remains

valid. It justi�es the estimate (17).

In the case when the feedback (13) is used we obtain _H = �%p2 � (H �H�)
p
2 = p2(
(H �

H�)� %), and _H � 0 within the region H � H� � %=
. It yields the estimate

H = H� �
%



: (18)

However H� cannot be taken arbitrarily large because of control amplitude constraint juj � u which

is equivalent to 
jH �H�j jpj � u. The above inequality is valid if


2(H �H�)
2H � 1

2
u2: (19)

Since (19) should be valid in the whole range of energies 0 � H � H�, it is su�cient to require it

for H = H�=3 providing maximum value of the left hand side of (19). Therefore the maximum 


consistent with (19) is 
 = u=
�
2

3
H�

�3=2
. Substituting the above 
 into (18) and taking maximum

over H� we obtain that the bound (16) is achieved with the choice 
 = %=(2H); H� = 3H.

If damping is nonlinear then the maximum damping in the domain 
 should be taken into

account in (16). Note, that although the estimate (16) holds for both feedback laws (13) and (14),

to achieve it, the parameters of feedback should be chosen in di�erent ways, namely, for feedback

(13) H� = 3H; 
� = %=(2H), while for (14) 
� = u;H� = H .

It is worth comparing the bound (16) with the energy level achievable for linear oscillator

�'+ % _'+ !20' = u(t); (20)

where % > 0 is the damping coe�cient, by harmonic (nonfeedback) action. The response of the

model to the harmonics u(t) = u sin !t is also harmonics '(t) = A sin(!t+ '0) with the amplitude

A =
uq�

!2 � !2
0

�2
+ %2!2

: (21)

Let �2 < 2!20. Then A reaches its maximum for !2 = !20 � �2=4 . The energy averaged over the

period is

H =
1

2

�
u

%

�2
+O(�2); (22)

Comparison of (16) and (22) shows that for nonlinear oscillator a�ected by feedback the change of

energy can reach the limit achievable for linear oscillator by harmonic (nonfeedback) action at least

in the case of small damping.

5 Escape from a potential well

The feedback resonance phenomenon is related to escape from the potential wells which is important

in many �elds of physics and mechanics (Virgin and Cartee, 1991; Stewart et al., 1995). Sometimes

escape is an undesirable event and it is important to �nd conditions preventing it (e.g. buckling of

the shells, capsize of the ships, etc.). In other cases escape is useful and the conditions guaranteeing

it are needed. In all cases the conditions of achieving the escape by means of as small external force

as possible are of interest.

In (Stewart et al., 1995) such a possibility (optimal escape) has been studied for typical nonlinear

oscillators (15) with a single-well potential �e(') = '2=2� '3=3 (so called "escape equation") and
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a twin-well potential �d(') = �'2=2+'4=4 (Du�ng oscillator). The least amplitude of a harmonic

external forcing u(t) = u sin!t for which no stable steady state motion exists within the well was

determined by intensive computer simulations. For example, for escape equation with % = 0:1 the

optimal amplitude was evaluated as u � 0:09, while for Du�ng twin-well equation with % = 0:25 the

value of amplitude was about u � 0:212. Our simulation results agree with (Stewart et al., 1995).

The typical time histories of input and output for u = 0:209 are shown in Fig. 1. It is seen that

escape does not occur.

Figure 1: u(t), y(t) time histories for u(t) = u sin!t, u = 0:209.

Using feedback forcing we may expect reducing the escape amplitude. In fact using the results

of section 2, the amplitude of feedback (13), (14) leading to escape can be easily calculated, just

substituting the height of the potential barrier max



�(')�min



�(') for H into equation (16) where


 is the well corresponding to the initial state. For example taking H = 1=6; %= 0:1 for �e(') gives

u = 0:0577, while H = 1=4; % = 0:25 gives u = 0:1767, the values which are substantially smaller

than those evaluated in (Stewart et al., 1995). The less the damping, the bigger the di�erence

between the amplitudes of feedback and nonfeedback signals leading to escape. Simulation exhibits

still stronger di�erence: escape for Du�ng oscillator occurs even for u = 
 = 0:122 if the law (14) is

applied, see Fig. 2. Note that the oscillations in the feedback systems have both variable frequency

and variable shape.

We also studied the dependence of escape amplitudes on the damping by means of computer

simulations in the range of damping coe�cient % varying from 0.01 to 0.25. Simulations con�rmed

theoretical conclusion that the feedback escape amplitude is proportional to the damping (Fig. 3).

6 Exciting the two coupled pendulums

Consider the special case of the di�usively coupled oscillator model (used for modeling various

physical and mechanical systems, see (Jackson, 1990)): the two pendulums model. For lossless case

it has the form (
�'1(t) + !2 sin'1(t) = k('2(t)� '1(t)) + u(t);

�'2(t) + !2 sin'2(t) = k('1(t)� '2(t));
(23)
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Figure 2: u(t), y(t) time histories for the law (14), 
 = 0:122.

Figure 3: Dependence of the feedback escape amplitude uf on the damping %.

where 'i(t); (i = 1; 2) are the rotation angles of pendulums, u(t) is the external torque, (control

action), applied to the �rst pendulum, !; k are the system parameters: ! is the natural frequency

of small oscillations, k is the coupling strength (e.g. sti�ness of the string).

Introduce the state vector x(t) 2 R4 as x(t)
�
= colf'1; '2; _'1; _'2g: The total energy of the

system (23) H(x) can be written as follows

H(x) = 1
2 _'21 + !2(1� cos'1) +

1
2 _'22 + !2(1� cos'2) +

k
2('1 � '2)

2
(24)

Consider the problem of excitation a "wave" with the desired amplitude by means of small

feedback. The problem can be understood as achieving the given energy level of the system with

additional requirement that pendulums should have the opposite phases of oscillation.

In order to apply the Speed-gradient procedure of Section 3, we introduce objective functions

as

Q'( _'1; _'2)
�
= 1

2(�')
2

QH(x)
�
= 1

2
(H(x)�H�)

2:
(25)

where �' = _'1 + _'2 and H� is the prescribed value of the total energy.

The minimum value of the function Q' meets the "opposite phases" requirement (at least for
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small initial phases '1(0); '2(0)) : Q'( _'1; _'2) � 0 i� _'1 � � _'2: The minimization of QH means

achievement of the desired amplitude of the oscillations.

In order to design the control algorithm the weighted objective function Q(x) is introduced as

the weighted sum of Q' and QH , namely

Q(x)
�
= �Q'( _'1; _'2) + (1� �)QH(x); (26)

where �; 0 � � � 1 is a given weighting coe�cient.

Performing calculations according to the Speed-gradient procedure of Section 3, we arrive to

the following control law

u(t) = �
 (��'(t) + (1� �)�H(t) _'1(t)) ;

�'(t) = _'1(t) + _'2(t);

�H(x(t)) = H(t)�H�;

(27)

where 
 > 0 is a gain coe�cient.

Applying the results of (Fradkov and Pogromsky, 1998; Shiriaev and Fradkov, 1998) yields that

su�cient conditions for the achievement of the control goal Q(x(t)) ! 0 are valid if the desired

level of energy does not exceed the value H� = 2!2, corresponding to the upper equilibrium of one

pendulum and lower equilibrium of another one.

Computer simulations were performed in order to complement the theoretical conclusions. The

typical results are shown in Fig. 4 { 7 for the following values of parameters: k = 5, ! = 0:4�;


 = 0:8; � = 0:7; H� = 4:0. All the initial conditions were taken equal to zero, except '2(0) = 0:05�:

Figure 4: The phase angles '1, '2 time history.

Figure 5: The control action u(t) time history

It is seen that after some transient time both pendulums oscillate with the opposite phases

while both goal functions approach the prescribed values. The transient time for both H and for

Q' is about 100 time units. The relation between transient times for H and for Q' can be changed
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Figure 6: The total energy H(x(t)) time history.

Figure 7: The qoal function Q'( _'1; _'2) time history.

by means of changing the weight coe�cient �. The control amplitude can be arbitrarily decreased

by means of decreasing the gain 
 (in the case when damping is not taken into account).

Discussion

The fundamental question of physics, mechanics and other natural sciences is: what is possible and

why? In this paper we attempted to investigate what is possible to do with a physical system by

feedback. It was shown that if system is close to conservative, its energy can be changed in a broad

range by small feedback. Moreover, for multidimensional (e.g. 2-DOF) systems some additional

symmetry (synchronization) properties can be preserved by feedback.

The nature of such an e�ciency of feedback is very similar to the case of control of chaos (Ott

et al., 1990; Ott et al., 1994). The method of (Ott et al., 1990) and other related methods apply

small control on the cross sections when the trajectory passes near an (unstable) periodic orbit

which trace on the section is just the �xed point. By virtue of recurrence property of chaotic motion

the trajectory will return into the vicinity of the �xed point. It can be interpreted as a kind of

approximate conservativity for the discretized system considered at the sample instances. Therefore

in this case it is also possible to achieve large changes in system behavior by means of small control.

Thus the mechanism, possibilities and limitations of feedback are understood for the two broad

classes of processes | conservative and chaotic oscillations | which are of importance in physics.

It motivates further study of this phenomenon which belongs to the boundary area of physics and

control science (in a broader sense | cybernetics) and In fact one may constitute this �eld as the

new �eld of physics: cybernetical physics. Its subject is investigation of the features of the natural

system by admitting (weak) feedback interactions with the environment. Its methodology heavily

relies on the design methods developed in cybernetics. However the approach of cybernetical physics

di�ers from the conventional usage of feedback in control applications (e.g. robotics, mechatronics,

see (van Campen, 1997)) aimed at driving the system to the prespeci�ed position or the given
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trajectory.

Other related phenomena which are already under investigation are: controlled synchroniza-

tion, excitation of waves in nonlinear media, controlling energy exchange of subsystems, etc. We

believe that the cybernetical methodology will also gain new insights in chemistry, biology and

environmental studies.
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