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Abstract

We discussed the application of the concept of practical stability to chaotic synchronized
attractors located at the invariant subspaces. Additionally, we present the controlling method
which allows enlarging the practical stability regions.

1 Introduction

One of the fundamental problems in practical applications of chaotic dynamics is the problem
of stability of chaotic attractor A. e.g., chaos synchronization (Fujisaka and Yamada, 1983;
Afraimovich et al., 1986; Pecora and Carroll, 1990; Anishchenko et al., 1991; Lai and Grebogi,
1993; Kapitaniak, 1994; Carroll, 1995; Chen, 1996; Carroll et al., 1996; Kapitaniaak, 1996).
The basin of attraction β(A) is the set of points whose ω -limit set is contained in A. In
Milnor’s definition (Milnor, 1985) of an attractor the basin of attraction need not include the
whole neighborhood of the attractor, i.e., we say that A is a Milnor attractor if β(A) has
positive Lebesgue measure. For example, riddled basins (Alexander et al., 1992; Ott et al.,
1994; Heagy et al., 1996; Kapitaniak, 1995; Kapitaniak and Chua, 1996) which have recently
been found in practical physical systems (they usually occur in the systems with a simple class
of symmetry like most of the chaos synchronization procedures (Heagy et al., 1996; Kapitaniak,
1995; Kapitaniak and Chua, 1996), have positive Lebesgue measure but do not contain any
neighborhood of the attractor. If the basin of attraction contains the neighborhood of A, then
attractor is asymptotically stable.

Most of the chaotic attractors which can be met in the practical engineering systems are
quasiattractors, i.e., the limiting sets enclosing the periodic orbits of different topological types,
structurally unstable homoclinic trajectories, etc. Practical systems are mainly quasihyperbolic,
i.e., many different types of attractors co-exist in the phase space.
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Existing definitions of the stability of chaotic attractors can not always give sufficient practi-
cal information about the behaviour of the real engineering system which is under the influence
of both permanently acting and short time impulse-like perturbations. Even the property of the
asymptotic stability of the synchronized chaotic state can be practically insufficient as the basin
of attraction of the asymptotically stable chaotic attractor can be so small that perturbations
can take trajectory out of it to the basin of another attractor.

In this paper we introduce the concepts of the practical stability (Bogusz, 1966; Kapitaniak
and Brindley, 1998) of the chaotic synchronized attractors located at the invariant manifold.

The paper is organized as follows. In Sec. 2 we recall the definition of practical stability
of chaotic attractors and describe its possible importance in the study of the stability of the
synchronized chaotic systems. The examples of practically stable and unstable attractors are
shown in Sec. 3. Section 3 also introduces the controlling procedure which allows to extend the
regions of practical stability in the parameter space. Finally, we summarize our results in Sec. 4.

2 Practical stability of chaotic attractors

Consider a dynamical system given by

dx

dt
= f(x, t) (1)

which for initial conditions x(t0) = x0 ∈ ω, where ω is an open set, has asymptotically stable
attractor A ∈ Rn.

Definition
(1) Let the system (1) be under the influence of permanently acting perturbations p(x, t) so the
perturbed system is in the form

dx

dt
= f(x, t) + p(x, t). (2)

(2) Let perturbation function p(x, t) fulfill condition

||p(x, t)|| ≤ δ

where δ > 0.
(3) Let Ω be a closed, bounded set such that A ∈ Ω and ω ∈ Ω.
If for all initial conditions x(t0) = x0 ∈ ω, all functions p(x, t) and all t ≥ t0, x(t) ∈ Ω then
attractor A is practically stable (in relation to sets ω, Ω and perturbations p(x, t)). 3

In this definition function p(x, t) describes all continuously acting perturbations. Set ω de-
fines limits of both uncertainties in initial conditions and short time perturbations. Perturbed
trajectories x(t) of the system (2) evolve in the region of the phase space given by the set Ω
which is usually larger than attractor A of unperturbed system (1).

If attractor A is a fixed point (Bogusz, 1966) and in the absence of permanently acting
perturbations (p(x, t) = 0) the above definition is equivalent to the definition of the stability in
the sense of Lagrange in relation to the set Ω. In every case the practical stability is independent
of the stability in the sense of Lyapunov.

As many engineering systems operate in a finite time we introduced in (Kapitaniak and
Brindley, 1998) the weaker definition of practical stability in finite time but this problem will
not be discussed here.
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The application of the above definition will be illustrated on the example of unidirectionally
coupled systems

dx

dt
= f(x) (3a)

dy

dt
= f(y) + d(x− y) (3b)

where x, y,∈ Rn, d ∈ Rn is constant. For d = 0 both x and y subsystems evolve on the
asymptotically stable chaotic attractor A. It is well-known that there exists value of d for which
x and y subsystems can synchronize, i.e., x = y (Kapitaniak, 1996). In the synchronized state
chaotic attractor A located on the invariant manifold x = y has to be asymptotically stable in
the 2n-dimensional phase space of the coupled system (3).

Introducing new variable e = x− y we can rewrite eq.(3) as follows

dx

dt
= f(x) (4a)

de

dt
= f(x)− f(y)− de (4b)

where eq.(4a) describes evolution on the chaotic attractor A and eq.(4b) evolution transverse to
it. In the synchronized state when x = y e = 0 is a fixed point of eq.(4b).

Suppose there exists a function V (e, t) ∈ C1 given for all e, x, y ∈ A and t ≥ 0 such that
(1)

V (e, t) > 0

for e 6= 0.
(2)

dV (e, t)
dt

≤ 0

for e ∈ Rn − ω.
(3)

V (e1, t1) < V (e2, t2)

for e1 ∈ ω, e2 ∈ Rn − Ω and t1 < t2.

We have the following result:

Theorem
If there exists a function V (e, t) which fulfills conditions (1-3) for all x ∈ A, then attractor
A located on the invariant manifold x = y is practically stable (in relation to sets ω, Ω and
perturbations p(x, t).

Proof Consider the solution e(t) for initial conditions x(t0) ∈ ω. As set ω is open and ω ⊂ Ω
there exists t1 > t0, such that for all x, y ∈ A and e(t1) ∈ ω. If for t > t1 solution e(t) for
all x ∈ A stays in Ω then the theorem is true. Suppose that x(t) leaves set Ω and for t2 > t1,
e(t2) ∈ Rn − Ω. From the condition (3) one can write

V [e(t1), t1] < V [e(t2), t2].
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This means that the function V (e, t) grows along e(t), but this is impossible as based on condi-
tions (1-2) V (e, t) is a nongrowing function. This proves theorem.

3 Controlling practical stability

In this section we present the controlling procedure which allows to enlarge the regions of practi-
cal stability in the parameters space of the considered system. Although our controlling method
is general we introduce it using the particular but representative for chaos synchronization prob-
lems example.

3.1 Example of practical stability and instability

We consider dynamics of two coupled one-dimensional maps (a three-parameter family of two-
dimensional piecewise linear endomorphism) (Maistrenko and Kapitaniak, 1996; Kapitaniak and
Maistrenko, 1998)

Fl,p =

 fl,p(xn) + d(yn − xn) : xn+1 = pxn + l
2

(
1− p

l

) (
|xn + 1

l | − |xn −
1
l |
)

+ d(yn − xn)

fl,p(yn) + d(xn − yn) : yn+1 = pyn + l
2

(
1− p

l

) (
|yn + 1

l | − |yn −
1
l |
)

+ d(xn − yn)
(5)

where l, p, d ∈ R which consists of two identical linearly coupled one-dimensional maps.
If parameter point (l, p) belongs to the region of

∏
0 given by {l > 1,−l/(l − 1) < p ≤

(1 + (1 + 4l2)1/2/2l} one-dimensional map fl,p has two symmetrical chaotic attractors Γ(+) =
[1 + p(l− 1)/l, 1] and Γ(−) = [−1,−(1 + p(l− 1)/l)]. Consider the stability of the corresponding
main diagonal attractors A(+) = {x = y ∈ Γ(+)} and A(−) = {x = y ∈ Γ(−)}. Due to the
symmetry we can restrict ourselves to the consideration of one of them, let us say A(+), (results
for the second one would be the same).

In (Maistrenko and Kapitaniak, 1996) it was shown that the chaotic attractors A(+) and A(−)

at the main diagonal are asymptotically stable if

|p− d| < 1

and
|l − d|k|p− d| < 1

where

(l, p) ∈
{
l > 1,− l + 1

l
< p ≤ −1 +

√
1 + 4l2

2l

}
if k = 2

and

(l, p) ∈
{
l > 1,− lk − 1

(l − 1)lk−1
< p ≤ − lk−1 − 1

(l − 1)lk−2

}
if k = 3, ...

The boundaries of asymptotic stability region in the d-parameter space are given by the relation

|l − d||p− d|
µ

1−µ = 1

where the measure µ = µl,p({|x| > 1/l}). It should be mentioned here that at some param-
eter values invariant measure µl,p of the map fl,p can be easily constructed (Maistrenko and
Kapitaniak, 1996).
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An example of asymptotically stable attractor A(+) at the main diagonal can be found in
(Maistrenko and Kapitaniak, 1996; Kapitaniak and Maistrenko, 1998). The basin of attractor
A(+) is shown in white while the basin of the other attractor A(−) (not shown in this figure) is
indicated in black. If we define set ω and Ω in the way ω,Ω ⊂ β(A(+)) and allow perturbations
p(x, t) to evolve only in Ω attractor A(+) is practically stable in relation to sets ω, Ω and
perturbations p(x, t). If the sets ω and Ω are too small from practical point of view and we have
to consider ω,Ω 6⊂ β(A(+)) attractor A(+))is no more practically unstable.

3.2 Controlling procedure

We can enlarge the d-parameter space region of practical stability if we adopt the controlling
procedure described in (Lai, 1996). The set Ω contains a fraction f+ (larger one) of initial
conditions which yield trajectories that asymptote to attractor A(+), and the remaining initial
conditions (smaller fraction f−), asymptote to attractor A(−). Our goal is to enlarge the fraction
f+ to 1 so the typical trajectory originating in Ω will asymptote at A(+). To achieve this goal we
assume that one of the system parameters, let us say d can be adjusted finely around a nominal
value d0, i.e., d ∈ [d0 + ∆p, p0 −∆p], where ∆p/p0 << 1.

To allow the practical stability control we consider the region
∑

(Ω ∈
∑

) of the phase space
and we build the ”bush-like” structure of paths to the set Ω. First consider the randomly chosen
initial point in

∑
such that it generates a trajectory leading to Ω. We call this trajectory

the root path 1 and denote it by X0, X1, ..., XΩ, where XΩ ∈ Ω. Next we choose the second
trajectory to Ω from an arbitrary initial condition Y0 ∈

∑
. For this second path, we examine if

it approaches to Ω directly (not coming close to the path 1), in which case we call it root path 2.
If Yn falls into a suitably small neighborhood of some points along root path 1 before it comes
close to Ω in this case the trajectory Y0, Y1, ..., Yn is the secondary path of the root path 1. This
procedure can be repeated for initial conditions chosen on a uniform grid of size δ in

∑
. If the

trajectory goes to the undesirable attractor A(−), we simply disregard this trajectory in bush
building procedure. Finally a hierarchy of paths to Ω in

∑
can contain, say, Nr paths. Each

root path i can have some secondary paths, and on each secondary path there can be third-
order paths, etc. The only difference between the described bush structure and one given in
(Lai, 1996), is that in our case paths terminate in the set Ω not on the desired attractor A(+)

so they are shorter and require less computer memory to storage them.
To control a trajectory to direct it to the set Ω after it comes close to a path on the bush,

we use a simple feedback procedure. Suppose that the trajectory of the N -dimensional map
xn+1 = M(xn, p) (a map (5) is an example of such system) originated from leaving the set Ω
falls into a ε-neighborhood of a point yn on the bush at some later time n, i.e., |xn − yn| ≤ ε.
Let yn, yn+1, ..., yΩ be a path on the bush. In the neighborhood of this path, we can consider
the following linearized dynamics

∆xx+1 = DM(xn, d)∆xn +
∂M

∂d
∆dn,

where ∆xn = xn − yn, ∆dn = dn − d0, and the Jacobian DM(xn, d) and the vector ∂M/∂d are
calculated at xn = yn and dn = d0. If we choose a unit vector u in the phase space and let
u∆xn+1 = 0, we obtain the d- parameter perturbation necessary to achieve control

∆dn = −uDM(xn, d)∆xn
u∂M∂d

. (6)

The unit vector can be chosen arbitrarily provided that (i) it is not orthogonal to xn+1, and (ii)
the denominator in (6) is not zero.
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We have controlled the system (1) and consider the set Ω = {(x, y);x ∈ (0.5, 0.9), x − 0.3 <
y < x + 0.3} (without control about 18 % of the initial condition originated in Ω leave it).
We assumed that an accessible parameter can be slightly perturbed around its nominal value
−d = 0.95 as we took the maximal allowed parameter perturbation ∆dmax to be 10−2. We built
a bush of paths to Ω by using a grid of 600× 600 initial conditions in the region L = {(x, y);x ∈
(0.45, 0.65), x − 0.5 < y < x + 0.5} and in the controlling procedure took ε = 10−3. With such
a control we managed to ensure that only 2 % of trajectories is not asymptotized in Ω.

Practically we observed that in the case when the set Ω has the property that all the points
which belong to it and to the basin of undisered attractor A− have in its neighborhood points
which belong to the basin of desired attractor A(+) our controlling method is nearly 100 %
effective. Unfortunately, in most systems such Ω set will be no more larger than the basin of
A(+).

4 Conclusions

We hope that the concept of practical stability can be very useful in the study of chaos synchro-
nization problems. Having the practical device we usually can estimate the bounds of possible
continuously acting and short time perturbations and define sets ω and Ω. If the synchronized
chaotic state is practically stable in relation to the considered perturbation we can be sure that
the evolution of the system will not leave the attractor further than allowed by the boundaries
of the set Ω.

Property of the practical stability of the synchronized chaotic state seems to be essential for
practical applications of chaos synchronization like for example secure communication.

The described controlling procedure of practical stability allows the trajectories leaving the
set Ω to be diverted into it. The application of this method to the practically unstable systems
makes the loss of stability only temporal. Unfortunately, this method is only effective when Ω
is not much larger than the basins of attraction of the considered attractor.
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