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Abstract

This article presents a modification of a classical nonlinear identification algorithm, which
permits then on-line identification (or real-time identification). This modification is particularly
based on using nonlinear optimization algorithm, not with a classical model of the process,
which needs a numerical integration algorithm to solve it, but with the flatness properties of the
model of the process (Fliess et al., 1995). The states of the system are then obtained without
any integration, which follows a significant saving of calculation time. This modified method is
applied to on-line identification of the parameters of a nonlinear model of an intensity/pressure
converter (i/p converter), used to supply air pressure inside an artificial pneumatic muscle used
like actuator on the robots of the laboratory. To illustrate the method, experimental results are
given and discussed.

1 Introduction

The application of identification methods for nonlinear systems is much more delicate than
for linear one’s. Indeed, for linear systems, there exist many methods quite easy to apply.
The methods based on mean squares algorithm are certainly the most common (extended
mean squares, generalized mean squares, least mean squares…) (Landau, 1988). The
advantage of these methods is that they do not need process simulator, but work only with
experimental data. This advantage and the easiness to write these methods under an
iterative form show that they are adapted to real-time applications, in particular for adaptive
control algorithms (Richalet, 1991).

When the system is described by a nonlinear model, above methods are not applicable.
Nonlinear parametric identification needs the use of nonlinear programming tools (Gradient,
Newton, Gauss-Newton…) (Norton, 1986), and the application of these tools is not always
possible. Although an iterative form of these algorithms exists, it uses all data at each
iteration and needs a process simulator (the response of the system is obtained by numerical
integration of differential equations describing process behaviour, using a lot of computation
time).
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The computation time is generally too long to able an application to an on-line identification.
In this paper, we propose some modifications to apply these nonlinear techniques in an on-
line identification process. The same nonlinear identification algorithm is not applied to the
classical model of the process, but to the flat differentially model ; the states vector X and
inputs U of the flat differentially model of a system are obtained directly without integration
(see section 3), from which computation time for identification process is largely reduced
(Sanchez and Mahout, 1998-1999). The identification process does not use all available
data, but the identification is performed inside a sliding window of F points (see section
4.2.2), the position of the window varies as the manipulation proceeds. The “Stop-tests” of
the optimization algorithm will be less restrictive than those used in an off-line identification
because in this case, the question of computation time is crucial. This modified method is
applied to on-line identification of the parameters of a model of an i/p converter.

The article is organized as follow:
Firstly, the studied system will be briefly described, and a knowledge model will be designed.
Then we note that this model has flatness properties, which permit to design its flat
differentially model. The modified identification method will be developed and applied.
Different experimental results will be given and discussed. Finally, we conclude about the
method, and the future works, in particular the use of this method in an adaptive control
algorithm will be wording.

2 Description and modelling of the studied system

The studied system is an i/p converter, used for supplying air pressure inside an artificial
pneumatic muscle, developed in the laboratory (Tondu and Lopez, 1995). The i/p converter
and the artificial pneumatic muscle form this pneumatic muscle actuator. To obtain an
accurate model of the actuator, in the aim to design an efficient control law, a knowledge
model of the i/p converter is used. The i/p converter is an electropneumatic converter,
controlled by continuous current SAMSON 5288. The model of the process is given by :

( ) ( )[ ]
bp

s
bpbpsbp

bp

s
s

P
VV(D.C1.G.Pu.G.C

V.

P1.
P

τ
−τ+−+−

τ
+γ

=
�

����� (eq. 1)

with

sP : Output pressure of the converter

u : Input (corresponding to a desired output pressure)
γ : Constant equal to 1.4 for air

D,C,,G bpbp τ : Parameters which must be identified

(See (Boîtier, 1996) for details of modelling)

To study the i/p converter independently of the inherent muscle properties, the converter is
connected to a constant volume. In this case V= teC , and so 0=V�  and 0=V�� .

Setting s1 P=x  and s2 P=x � , the following model is obtained :
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3 Flatness, flat differentially model of a system

After a brief introduction about flatness, a definition of flat differentially model of a system will
be given. Then, the flat differentially model of the studied process will be calculate.

3.1 Introduction

Fliess et al. have originally studied differentially flat systems in the context of differential
algebra (Fliess et al., 1992) and later using Lie-Bächlund transformation (Fliess et al., 1993).
Differentially flat systems have attracted considerable attention recently and, although there
are no general methods for determining whether or not a particular system is flat, it is know
that many systems of interest in application are flat (Murray et al., 1996).

3.2 Definition

A system is differentially flat if we can find a set of outputs (equal to number of inputs) such
that all states and inputs of the system can be determined from these outputs without
integration. More precisely, if the system has the states nx ℜ∈ , and the inputs mu ℜ∈ , then
the system is flat if we can find output my ℜ∈  (called flat output) of the form :
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 with α  and β  integers.

3.3 Application to the studied system

For the system described by (eq. 2), the flat differentially model is found immediately. Setting

s1 Pxy ==  like flat output, we note that the input u of the system is function of

21211 xxy,xxy,xy ������� ===== . The expression of flat differentially model of the system can be
written :
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Remark :  For more complex systems with higher order, the expression of the flat
differentially model can not be immediately deduced like previously, but the use of Lie-
Bächlund algebra is required. It is particularly the case for the model of the actuator (i/p
converter + muscle), which is a fourth order, and the expression of the flat differentially model
is complex.

4 Description of identification method

First, the general principle of nonlinear optimization method will be described, and then the
modifications of the algorithm, to allow on-line identification, will be developed with its
application to the i/p converter.

4.1 Principle of the method

The method is based on the minimization of a criterion function of the difference between the
output of real system Os and the response of the model of the system Om (fig. 1).
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This minimization is performed thanks to a nonlinear optimization algorithm, which return the
optimal values of the parameters.

Figure 1 : Principle of identification method

Remark :  For the “classical case”, I = u and Om = Ps (desired pressure) ; for the “flat case”,
( )sP,sP,PsI ���=  and Om = u.
The chosen criterion is a quadratic criterion and the optimization algorithm chosen is a

damped Gauss-Newton algorithm, used on account of convergence rapidly (Walter and
Pronzato, 1997).

4.1.1 Criterion

The criterion can be write :
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where
Φ : Parameters vector

k,sO : Output of the system, at thk point
( ) k,mO Φ : Output of the model, at thk point

B : Point of begin of identification process

E : Point of end of identification process

4.1.2 Optimization algorithm : damped Gauss-Newton algorithm

The damped Gauss-Newton algorithm is one of the most used algorithms in nonlinear
programming (Walter and Pronzato, 1997). It is described by the following recurrence :

( ) ( )i

1

iiii1i Grad.Ha. ΦΦµ−Φ=∆Φ+Φ=Φ −
+ (eq. 5)

with
Φ : Parameters vector
∆Φ : Variation parameters vector
µ : Step size, which is adjusted so that ( ) ( )i1i JJ Φ<Φ +

Grad ( )iΦ : Criterion gradient vector

Ha ( ) 1

i

−Φ : Inverse criterion hessian matrix

Remark :  The Gauss-Newton method uses an approximation of the hessian matrix. This
approximation does not take into account the terms of second order ; consequently the
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matrix is positive semi-definite, that assures to reach a minimum of the criterion. The
expressions of Φ , ( )ΦGrad  and ( ) 1

iHa −Φ are given by
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with Np : Number of parameters which must be identified
( )

i

k

k,mO
i Φ∂

Φ∂=σ Φ  : Sensibility function of the output model, in relation with the parameter iΦ .

4.2 Development of the modified algorithm

4.2.1 Use of flat differentially model of the system

Usually, the identification algorithm is applied to a classical model of a system (eq. 1-2),
which needs numerical integration algorithm to solve it, using significant computation time.
The use of a flat differentially model on the identification process permits to save not-
negligible computational time (Sanchez and Mahout, 1998-1999). Indeed, a flat differentially
model just needs first and second order output derivatives. These derivatives are obtained by
using a numerical derivation recurrence (eq. 7), based on the Lagrangian interpolation
polynomial form (Demidovitch and Maron, 1970).

[ ]4n3n2n1nnn y.3y.16y.36y.48y.25
h.12

1
y −−−− −+−+−=� (eq. 7)

where h is the  sampling time

For the flat differentially model of the i/p converter (eq. 3), the output of the “system” is the
input u of the i/p converter. The physical output of the system 1x is used to calculate u. Like u
is a vector-valued function of ( )111 x,x,x ��� , so the sensibility coefficients (noted σ ), necessary
to the damped Gauss-Newton method are given as :
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4.2.2 “Sliding window”

Usually, the identification algorithm is used off-line because the necessary computation time
does not allow an on-line (or real-time) application. To obtain real-time application of this
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algorithm, which means that the parameters are varying as the manipulation proceeds, the
identification process is applied inside a “sliding window” of F points.
1. For (F-1) first points, the identification process is disable, but the experimental data are

conserved (inputs, outputs…).
2. When F points are obtained, the identification process is enable, and the “sliding window”

slide as the manipulation proceeds (points [1⇒ F], [2⇒ (F+1)]…[B⇒ E]…[(N-F)⇒ N]),
with (E-B) = F and N is the total number of measurements.

4.2.3 “Stop-tests”

It is necessary to define when it becomes unnecessary to continue iterations. The stop
conditions used are double :
1. A criterion test : ( ) ( ) 11kk1 JJ δ<Φ−Φ=τ − . The difference between two successive values

of the criterion is smaller than a fixed limit 1δ .

2. A parameters test : ( ) ( ) 2

Ni

1i

Ni

1i

2

i

2

i2

p p

/ δ<Φ∆Φ=τ ∑ ∑
=

=

=

=

 with pN  : Number of parameters. The

value of 2τ  becomes smaller than a precision value 2δ .
Like the identification process is iterative, besides this two stop-test, it has been

necessary to do that the number of loop which permits to adapt the parameters is executed
at the most kmax  times.

4.3 Diagram of the method

The figure 2 illustrates the method.

Figure 2 : Diagram of identification method
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Remarks :  The Numerical values used ( ),...,max,k 21 δδ  will be given in section 5, with the
experimental results. The damped Gauss-Newton algorithm is not developed here because it
is classical in nonlinear programming {see for example (Norton, 1986; Walter and Pronzato,
1997)}.

5 Experimental results

After have mentioned experimental conditions, some significant numerical and graphical
results will be given and analysed.

5.1 Conditions of experimentation

Different Pseudo random Binary Sequence (PBS) input signals are used on the
identification process. For each manipulation, the volume connected to the i/p converter is
equal to 3cm75 . The value of 1δ  is equal to 610− and the value of 2δ is equal to 610− . The

initial value of µ  is equal to 1, and is adjusted so that ( ) ( )i1i JJ Φ<Φ +  (damped Gauss-Newton
algorithm). For all the manipulations, the sampling time is equal to 2ms, the “sliding window”
is composed of 100 points (0.2s), and kmax = 5.

5.2 Numerical results

The following table regroups some identification results. Column 1 represents the value of
the criterion for on-line identification, column 2 represents the value of the criterion for off-line
identification, and column 3 corresponds to the value of the criterion with weighted average
parameters. This average parameters are calculated using off-line identified parameters,
weighted with the accuracy of each off-line identification

Criterion value
(on-line identification)

Criterion value
(off-line identification)

Criterion value (with
average parameters)

PBS n°1 12.6643 14.2823 15.8532
PBS n°2 311.2988 273.6110 1241.2307
PBS n°3 46.3551 60.8253 319.0061
PBS n°4 37.9916 25.6090 186.3793

Table 1 : Identification results

5.3 Graphical Results

Figures 3-6 are results of some significant identifications.
Solid lines represent the response of the real process, (--) lines represent the simulated
output with weighted average parameters, and (-.-) lines represent the results of simulation
with on-line identified parameters. The values of the final criterion, calculated with all the
points of the experimentation, and for both cases on-line identification and use of average
parameters are given. We can note that for all the cases, the results of on-line identification
are more accurate than results with average parameters. For the legibility of the graphical
results, the response of the simulated output with off-line identified parameters is not given
but results given in the table 1 permit to verify that off-line identification results are of the
same order than on-line results.
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criterion with average parameters = 15.8532        on−line criterion = 12.6643

Figure 3 : Results for PBS n°1
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criterion with average parameters = 319.0061        on−line criterion = 46.3551

Figure 5 : Results for PBS n°3
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criterion with average parameters = 1241.2307        on−line criterion = 311.2988

Figure 4 : Results for PBS n°2
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criterion with average parameters = 186.3793        on−line criterion = 37.9916

Figure 6 : Results for PBS n°4

5.4 Analysis of results

Some remarks must be deduced of the previous results :

1. The identification method gives quite good results. The response of the model of the
system globally well tracks the output of the real system, and the results are generally more
accurate using on-line identified parameters.

2. An improvement of on-line results can be obtained increasing the number of points of
the sliding window, or increasing value of kmax, but our material configuration (Pentium)
limits us. This algorithm will be soon implemented on a more efficient configuration (Pentium
II), which allow us to increase the number of points of the sliding window, and allow more
restrictive stop-tests, from which it follows that results of identification would be more
accurate.
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6 Conclusion, future works

The modification of a classical nonlinear programming algorithm (the algorithm used is a
damped Gauss-Newton algorithm), in the aim to permit its use on-line has been developed.
This modification is centred on the use of the flat differentially model of a process, from which
solution is directly obtained without integration, which save considerable computation time.
Some experimental results have been given, which show feasibility and efficiency of the
method.

Present work deals with the improvement of accuracy of the method, working on
numerical filtering and derivative algorithms, on the stop-tests of the optimization algorithm,
on the limitation at each iteration of the variation of the value of the parameters (variation
limited in percents regarding previous value of parameters, or average value).

Future works, and the objective of final work is to use this method in an adaptive control
algorithm, on the i/p converter in a first time, then on the actuator (i/p converter + muscle), so
we hope obtain an efficient control law, then implementation of this control law on the robots
of the laboratory will be done.
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