
Automatic Tuning of the Window Size in the Box Car Backslope

Data Compression Algorithm

Jens Pettersson∗

Division of Automatic Control
Royal Institute of Technology

100 44 Stockholm, Sweden

Per-Olof Gutman†

Faculty of Agricultural Engineering
Technion—Israel Institute of Technology

Haifa 32000, Israel

Abstract

An automatic algorithm to tune the Box Car Backslope (BCBS) data reduction algorithm
is given in this paper.

1 Introduction

In process industries such as the pulp and paper industry, thousands or ten of thousand variables
are measured and stored. For most of these variables the sampling rate might be large, e.g. one
reading/storage per minute. The data is used not only for immediate display on the operator
monitors but is also saved for future reference and analysis. A typical storage period is one
year. Even though computer storage media have become cheap and compact, the huge amount
of data to be stored still necessitates the use of data reduction algorithms whose purpose is to
reduce the amount of stored data points while retaining the essential features of the measured
signals.

This paper will not discuss the relative merits of various data reduction algorithms, but
concentrate on the Box Car Back Slope method (BCBS) (Hale and Sellars, 1981), which is
popular in the process industry.

The BCBS is a real time algorithm, i.e. at sampling instant n, when the measured value
y(n) is sampled, it decides whether y(n − 1) should be stored, or not. The BCBS contains
no mechanism to post-process the data in order to change the stored data points. Hence the
BCBS is a filter. It is obvious that better data reduction can be achieved with a smoothing or
post-processing algorithm, which would require, however, that measured data points be stored
for some time.

The underlying assumption of the BCBS is that the signal itself (without measurement noise)
can be well approximated by a piece-wise linear function and that the frequency of transitions
from one line segment to another is considerably smaller than the measurement noise frequency.
The crucial parameter of the BCBS is the window size, h. If both y(n) and y(n− 1) fall within
the current window(s), y(n−1) is not stored, otherwise y(n−1) may be stored. An approximant
of the original signal is then formed by linear interpolation of the stored values. The larger h is,
the less data points will be stored and the less faithful the approximant will be. Our experience
with the carton board machine at Assi-Domän Frövi, Sweden, shows that for many measured
∗E-mail: jep@s3.kth.se
†E-mail: peo@tx.technion.ac.il

1756

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

signals, BCBS with a window size approximately equal to four noise standard deviations achieves
satisfactory signal approximation with only about 10% of the original data. It is however easy
to synthesize noisy signals for which this rule of thumb gives too modest a data reduction.

It is however impossible to tune the window size manually for thousands of signal channels.
In most of them h remains at its default start up setting, e.g. 1% of the allowed signal span
which may be much larger than the actual measured signal variation. The result may be that
almost no data points are stored (Hanimann, 1998).

In this chapter we propose an algorithm to automatically tune the BCBS window size.
This is a non-trivial problem even if the measurement noise standard deviation was known, as
indicated above. The algorithm is based on the minimization of a criterion that weighs the
data reduction and the deviation of the approximant from the measured signal. The criterion is
estimated during each piece of the piece-wise linear approximant, and a modified descent search
is performed to find the optimal window size.

The algorithm is analysed for the simple synthetic signal consisting of a linear function
with identically independent Gaussian measurement noise, and is illustrated with simulations
on synthetic signals.

First, however, the BCBS algorithm is reviewed and illustrated in section 2.

2 The Box Car Back Slope algorithms

Assume without loss of generality that the sampling period equals one and that the sampling
instants are t = 1, 2, 3, Let the current sampling instant be t = n, with n ≥ 3. The measured
scalar data up to and including the current sampling instant are denoted y(1), y(2), . . . , y(n −
1), y(n). The set of stored data, in the form of time-value pairs, up to and including the current
sampling instant, is

Sn = {[t1, y(t1)], [t2, y(t2)], . . . , [tm−1, y(tm−1)], [tm, y(tm)]}, (1)

where m is a increasing function of n, and in particular m ≤ n − 1. The BCBS algorithm is
initialized with t1 = 1 and t2 = 2.

There are two windows in the BCBS algorithm: the Box Car window (BCwindow), and the
Back Slope window (BSwindow). The windows are illustrated in figure 2, and are defined as
follows:

BCwindow = {x(t)|y(tm)− h ≤ x(t) ≤ y(tm) + h, t ≥ tm} (2)

BSwindow = {x(t)|y(tm)− h+
y(tm)− y(tm−1)

tm − tm−1
(t− tm) ≤ x(t) ≤

≤ y(tm) + h+
y(tm)− y(tm−1)

tm − tm−1
(t− tm), t ≥ tm} (3)

where h is the window size. Note that the width of the window intersected along the y-axis is
2h.

A window is said to be active if the incoming measurement, y(n+1) and its predecessor y(n)
are tested against it: the Box Car test fails if at least one of two measurements does not belong
to BCwindow, and, the Back Slope test fails if at least one of the two measurements does not
belong to BSwindow. Which windows are active depends on the state p that may assume the
values 0 (both windows are active), 1 (BCwindow active), and 2 (BSwindow active). The state
transition diagram is found in figure 1.

1757

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

test both

0

21
test BC test BS

no failno fail

both fail: saveno fail

BC fails

BS fails: save

Initialization: save first two data points

BS fails

BC fails: save

Figure 1: State transition diagram for the Box Car Back Slope data reduction algorithm

The algorithm is initialized with p = 0. When p = 0 the state remains there as long the
incoming measurement y(n + 1) and its predecessor y(n) both belong to BCwindow and to
BSwindow, or both of them fail the two tests. In the latter case, denoted as “both fail” in
Figure 1, [n, y(n)] is appended to Sn+1, unless [n, y(n)] already belongs to S which happens for
n = 2. If the Back Slope test fails alone then p = 1, and BSwindow ceases to be active. As
long as the Box Car test does not fail the state remains p = 1. When the Box Car test fails,
p returns to 0 and [n, y(n)] is appended to Sn+1. When p = 0, and the Box Car test fails, p
becomes 2, and BCwindow ceases to be active. As long as the Back Slope test does not fail the
state remains p = 2. When the Back Slope test fails, p returns to 0 and [n, y(n)] is appended to
Sn+1. Clearly, when data is appended to Sn+1, m is increased by one, and the windows change.

2.1 Example

Figures 2 and 3 illustrates the BCBS algorithm, with h = 1, on each consecutive measurement of
the sequence y(1), y(2), . . . , y(10) which simulates e.g the measured step response of a controlled
system. At t = 2 the two initial values have been stored and they are marked with a star (*).
The state p = 0, and both windows are active. The edge of BCwindow is drawn with a solid
line, and the edge of BCwindow is dashed.

At time t = 3 the measurement y(3) = 4 is recorded, marked with a ring (o). Since y(3) and
y(2) both belong to BCwindow and BSwindow (“no fail” in figure 1), p remains equal to 0 and
no value is stored into S3.

The next measurement is y(4) = 7. Clearly, only the BC test fails, since y(4) /∈ BCwindow
while y(4) ∈ BSwindow, y(3) ∈ BCwindow, and y(3) ∈ BSwindow. Hence, p becomes 2, and
only the Back Slope window remains active.

At t = 5, both the new measurement y(5) = 9 and the preceding y(4) belong to BSwindow,
and p remains equal to 2. At t = 6, the current measurement y(6) = 6 fails the Back Slope test,

1758

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

and p becomes 0. As a result [5, y(5)] is appended to S5, and a new BCwindow (solid) and a
new BSwindow (dash-dotted) are defined as seen in figure 3 f). Note that the new Back Slope
window by chance coincides with the previous one, but it is marked dash-dotted to emphasize
that it is new.

At t = 7, both the new measurement y(7) = 5 and the preceding y(6) fail both tests; “both
fail” in figure 1. Hence p remains 0, and [6, y(6)] is appended to S7, and a new BCwindow (solid)
and a new BSwindow (dashed) are computed, see figure 3 g).

The following measurement, y(8) = 6 in figure 3 g), makes the BS test fail, since y(8) and
y(7) both belong to BCwindow and do not belong to BSwindow. The state p then switches to
1 implying that only the BC window remains active. Notice that if y(7) had had a value less
than 5 or larger than 7, then the state transition at t = 7 in figure 3 f) would have remained
unchanged 0 → 0, but at time t = 8 in figure 3 g) both tests would have failed and the state
would have remained p = 0.

This is however not the case and, as noted above, the state is initially p = 1 at time t = 9
and only the Box Car window is active as seen in figure 3 h) when the measurement y(9) = 6
comes in. The state remains p = 1 since BCwindow contains both y(9) and y(8).

At t = 10 however, y(10) = 7.5 is outside BCwindow, the state returns to p = 0, and [9, y(9)]
is appended to S10. The computation of the two new windows is left as an exercise for the
reader.

One may appreciate the goodness of the BCBS approximant in figure 3 i). The approximant
is given by the straight line segments between the stored values which include the points marked
by stars, and [9, y(9]), i.e. S = {[1, 1], [2,3],[5,9],[6,6], [9, 6]} The drawing of the approximant is
left to (the imagination of) the reader. The RMS of the approximation error for t = 1, 2, . . . , 9
is √

(0 + 0 + (−1)2 + 0 + 0 + 0 + (−1)2 + 0 + 0)/9 = 0.47.

If no data reduction had taken place, 9 real numbers would have had to be stored. After the
reduction 10 numbers1 are stored! Hence, in this example there is no reduction at all. This
concludes the example.

3 An off-line algorithm for determining the window size

It was stated above that the Box Car Back Slope algorithm is a filter implying that measured
consecutive data are not saved temporally for post-processing. In order to develop an efficient
window sizing algorithm it is however instructive to investigate how the window size would have
been chosen if a batch of measured data was at hand.

Assume therefore that a batch of N measurements have been recorded, and that it is desired
to select the stored data set, SN (1) with the Box Car Back Slope algorithm. Since the window
size h reflects a trade-off between the data reduction ratio and the goodness of the approximant,
it is reasonable that h should be chosen such that an appropriate criterion is minimized. In this
section a criterion will be proposed, and analysed in a simple case, for which also a numerical
example is given.

Define e(t) = y(t) − ŷ(t) as the approximation error at time t, where y(t) is the measured
value, and ŷ(t) the BCBS generated approximant. Let RN = 1/N

∑N
t=1 e

2(t) be the sample
mean square of the approximation error.

Let rN = card SN/N define the data reduction ratio, where card SN denotes the number of
stored pairs in SN , i.e. half the amount of numbers actually stored.

1In general the time stamp does not have to be stored as a real number

1759

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

0

2

4

6

8

10

12

14

16

time

y

a) current time = 2

0 0.5 1 1.5 2 2.5 3 3.5 4
−2

0

2

4

6

8

10

12

14

16

time

y

b) current time = 3

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

0

2

4

6

8

10

12

14

16

time

y

c) current time = 4

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−2

0

2

4

6

8

10

12

14

16

time

y

d) current time = 5

Figure 2: An illustration of the Box Car Back Slope algorithm for Example 2.1. Solid lines
denote the edges of Box Car windows, and dashed or dash-dotted lines denote the edges of Back
Slope windows. Values saved in the set S are marked with a star, and currently unsaved vales
are marked with a ring. The state transitions are in a) 0→ 0, b) 0→ 0, c) 0→ 2, d) 2→ 2.

An appropriate criterion is then

VN (h) = (1− α)rN + α
RN (e)
σ2
N (y)

(4)

where α ∈ [0, 1] and σ2
N (y) = 1/(N − 1)

∑N
t=1[y2(t) − 1/N(

∑N
t=1 y(t))2] is the variance of y(t).

The constant α is a user-chosen constant that reflects the trade-off between data reduction and
the reproduction of the original signal. For example, α close to 0 will emphasise data reduction.
The window size is then found from

ĥ = arg min
h
VN (h) (5)

3.1 Analysis of VN

We vill now for a simple case analyse exact expression of VN (h), given a set of data. In order
to simplify the calculations we consider only the Box Car algorithm, and in particular the true
Box Car algorithm, i.e. when only the value that fails the boxcar test is stored and the data
reproduction is done by zero-order holding of each stored value.

Consider now the case when y(t) ∈ N (0, σ2). Assume that some value, y(t0), at time t0 was
stored. Then we are interested in the probability that y(tk), where k ≥ 1 will be stored. We
are also interested in the variance of the error e(tk) if y(tk) is not stored. Since y(t1) and y(tk)
are independent, we have that for the process z(tk) = y(tk)− y(t0), z(tk) ∈ N(0, 2σ2). Now, let
r = P(store), i.e. the probability that a value is stored. Thus,

P(store) = P(|z(tk)| > h)

1760

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

0 1 2 3 4 5 6
−2

0

2

4

6

8

10

12

14

16

time

y

e) current time = 6

0 1 2 3 4 5 6 7
−2

0

2

4

6

8

10

12

14

16

time

y

f) current time = 7

0 1 2 3 4 5 6 7 8
−2

0

2

4

6

8

10

12

14

16

time

y

g) current time = 8

0 1 2 3 4 5 6 7 8 9
−2

0

2

4

6

8

10

12

14

16

time

y

h) current time = 9

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

10

12

14

16

time

y

i) current time = 10

Figure 3: An illustration of the Box Car Back Slope algorithm for example 2.1 (cont.). Solid
lines denote the edges of Box Car windows, and dashed or dash-dotted lines denote the edges of
Back Slope windows. Values saved in the set S are marked with a star, and currently unsaved
vales are marked with a ring. The state transitions are in e) 2 → 0, f) 0 → 0, g) 0 → 1, h)
1→ 1, i) 1→ 0.

1761

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h/σ
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

0

0.5

1

1.5

2

2.5

3

3.5

h/σ

Figure 4: Analytical values (solid lines) and simulated values (dashed lines) of rN (left) and
R2
N (e)/σ2

N (y) (right) as functions of h/σ. In the simulation N = 1000 was used. Notice the big
difference between the analytical and simulated values of R2

N (e)/σ2
N (y) for large h.

= 1− 1
2σ
√
π

∫ h

−h
e−x

2/(4σ2)dx

= 1− erf(h/2σ) (6)

For the error, e(tk), we have

e(tk) =
{
z(tk), if |z(tk)| < h
0, otherwise

The statistical properties of the error are then

E{e(tk)} =
1

2σ
√
π

∫ h

−h
xe−x

2/(4σ2)dx = 0 (7)

and

E{e2(tk)} =
1

2σ
√
π

∫ h

−h
x2e−x

2/(4σ2)dx

=
2σ√
π

(σ
√
πerf(h/2σ)− he−h2/4σ2

) (8)

where erf(x) = (2/
√
π)
∫ x
0 e

−x2
dx. Hence, R(e) = E{e2(tk)}.

In figure 4 the analytical functions for r and R(e)/σ2(y) are plotted together with calculated
values of rN and R2

N (e)/σ2
N (y), respectively, from a simulation of y(t) with N = 1000. As can

be seen, the analytical functions are smooth, while the curves from the simulation contains large
peaks for higher values of h. Hence, the conclusion is that VN may have many local minima for
finite N while the theoretical analysis shows it only to have a global minimum.

4 An on-line algorithm for determining the window size

In this section we will present an on-line algorithm that adaptively tunes the window size h.
The basic assumption is that the signal y(t) can be described by a low frequency signal with an
additive Gaussian measurement noise, i.e. y(t) = y0(t) + n(t), where y0(t) is the “true” signal
and n(t) ∈ N (0, σ2). If σ was known an intuitive condition on h would be h > d · σ where the

1762

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

constant d would be equal to, say 4, since otherwise a too low data reduction will be achieved,
see figure 4. On the other hand, a higher value of d might be bad, since it could give poor
reproduction of the original signal.

A first step in the on-line algorithm is thus to estimate the noise standard deviation σ. This
is done by introducing the process x(ti) = y(ti)− y(ti−1). Since we have assumed that y0(t) is a
low-frequency signal, y0(ti) ≈ y0(ti−1) and x(ti) ∈ N (0, 2σ2). The estimate σ̂ can be calculated
in a recursive maner by

σ̂2(ti) = λ · σ̂2(ti−1) + (1− λ)x2(ti)/2 (9)

where the forgetting factor λ typically is 0.95-0.99 (Ljung, 1987). The use of a forgetting factor
enables us to deal with time varying noise.

The above method may give a large bias in the case of a signal with a slope. However, the
slope is detected by the BCBS-algorithm, and the estimate σ̂ can be modified when in Back
Slope mode, by assuming that y(t) = m · (t − t0) + y0 + n(t), when in Back Slope mode. Here
the time t0 is when the BCBS algorithm enters the Back Slope mode, m is the slope and y0 is
a constant. Now x(ti) = y(ti)− y(ti−1) = m · (ti − ti−1) + n(ti)− n(ti−1). Assume now that the
time is normalized so that ti − ti−1 = 1, then x(t) ∈ N (m, 2σ2). The recursive estimate of σ is
now

m̂(ti) = m̂(ti−1) + 1/(ti − t0) [x(ti)− m̂(ti−1)]
σ̂2(ti) = λ · σ̂2(ti−1) + (1− λ) [x(ti)− m̂(ti)]

2 /2 (10)

Equation 10 is initialized with m̂(t0) = x(t0) and is proceeded until a recording is made and the
BCBS algorithm leaves the Back Slope mode.

We now have the estimate σ̂ of the noise standard deviation. The question then is how to
choose the factor d. As mentioned in section 1 using the ad hoc d = 4 may give either poor
data reproduction or poor data reduction. Instead, d may be chosen such that the criterion like
equation (4) is minimized. The minimization can be done on-line with a recursive minimization
algorithm presented in (Baril and Gutman, 1997). The minimization algorithm functions as
follows:

Let the function to be minimized be given by

Vn = (1− α)rn + α
Rn(e)
σ2
n(y)

(11)

which is a function of h, and since h = d · σ̂, it is subsequently a function of d. Assume that we
during the time interval Tn = [Tn, Tn+1], where Tn+1 − Tn = Nn and values are stored at the
interval endpoints, have d = dn. This means that d only is updated after each interval Tn. Now,
let

Σn = sign
[
Vn − Vn−1

dn − dn−1

]
(12)

The recursive algorithm is then
dn+1 = dn − γnΣn (13)

where

γn =
{
bγn−1, if ΣnΣn−1 = −1
aγn−1, otherwise

with γ0 > 0. In (Baril and Gutman, 1997) a value set for a and b is given for which the algorithm
converge. To use this algorithm, we must calculate Vn for the time interval Tn without storing

1763

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

any more values then stored by the BCBS algorithm. First we will consider the mean square of
the error,

Rn(e) =
1
Nn

Tn+1∑
ti=Tn

e2(ti) (14)

To calculate Rn(e) it is thus essential to know
∑Tn+1

ti=Tn
e2(ti). From the choice of Tn, it consists

of Ln intervals of unstored values. Assume that during interval j, j = [1, . . . , Ln], values are
stored at time t0 and tk and that no values are stored in between t0 and tk. At time ti, where
t0 < ti < tk we naturally do not know neither the time tk, nor the value of y(tk). We therefore
introduce the estimated error at time ti,

ê(ti) = y(ti)− y(t0) (15)

The real error, e(ti), after the BCBS algorithm has stored the value at time tk and interpolated
between y(t0) and y(tk), is given by

e(ti) = y(ti)− (ti − t0)
y(tk)− y(t0)

tk − t0
− y(t0) (16)

Now, let s = (y(tk)− y(t0))/(tk − t0) and i = ti − t0, then

e(ti) = ê(ti)− i · s (17)

Then
k−1∑
i=0

e2(ti) =
k−1∑
i=0

ê2(ti) + 2s
k−1∑
i=0

iê2(ti) + (
k3

3
− k2

2
+
k

6
) · s2 (18)

The sums
∑k−1

i=0 ê
2(ti) and

∑k−1
i=0 iê(ti) can be computed recursivly, for example,

∑k−1
i=0 iê(ti) =

(k − 1)ê(tk−1) +
∑k−2

i=0 iê(ti). At time tk, when the recording is made, s and k becomes known,
and Rj =

∑k−1
i=0 e

2(ti) can be calculated. Thus, the total mean square error during Tn is,

Rn(e) =
1
Nn

Ln∑
j=1

Rj (19)

We also need to calculate the variance σ2
n(y) during Tn. We have that

σ2
n(y) =

1
Nn − 1

(
Tn+1∑
Tn

y2(ti)− [
1
Nn

Tn+1∑
Tn

y(ti)]2) (20)

Here
∑Tn+1

Tn
y2(ti) and

∑Tn+1

Tn
y(ti) can be computed recursivly. The number of stored values

during Tn, Sn, is simply calculated by letting Sn = Sn+1 if a value is stored. The data reduction
ratio is then

rn = Sn/Nn (21)

Finally, at time Tn+1, Vn can be calculated.
During simulations of the on-line tuning algorithm, it became evident that the search algo-

rithm may find a local minimum. The reason for this is that Vn is realization dependent. This
was solved by a) choosing Nn > M where M is large enough to make Vn smooth and b) by
modifying equation(13) in the following way

dn+1 = dn − γnΣn + c · wn (22)

where c is a constant and wn is a stochastic variable, with wn ∈ N (0, 1). The search algorithm
will thus always take a step in some direction and eventually find a global minimum.

In appendix A the full on-line tuning algorithm is shown in pseudo-code.

1764

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

4.1 Simulations

To verify that the proposed algorithm functions as designed, it has been simulated on both
process data and superficial data. In the simulations the following numerical values were used:
λ = 0.95, M = 600, c = 0.2 and α = 0.01.

In figure 5 a sequence from one of the process signals is shown. The original signal, reproduced
signal and stored values are shown in figure 5 a. One can clearly see that the tuning algorithm
finds a window size h which captures most of the variation in the original signal without storing
too many values. For this particular signal a compression ratio of 99% was achieved. Values of
d are presented in figure 5 b, the algorithm converges to d ≈ 7.5.

The second test signal is a sinus without noise. Although such a signal hopefully is not
representative of signals in the process industry, it is interesting to see how the tuning algorithm
can handle this case. The result of the simulation is shown in figure 6 a and one sees that the
interpolated signal would capture most of the variations in this signal too. Also, d converges to
a higher values in this case, see figure 6 b.

5 Conclusions and Discussion

We have in this chapter studied the Box Car Back Slope algorithm for compressing process data.
The performance of the BCBS algorithm depends strongly on the chosen window size h. A too
small window will result in a low data reduction ratio, while a too large window will result in
loss of information.

An on-line tuning algorithm for the window size was proposed. The tuning algorithm first
estimates the measurement noise, then chooses the window size as a factor times the estimated
measurement noise. The factor is chosen by adaptively minimizing a loss function.

Also, we believe that process information systems using the BCBS algorithm must, beside
on-line tuning algorithms, utilize some kind of fault diagnosis function. For example, we have
shown it possible to recursivly calculate the statistics of the error for the reproduced signal.
The statistics could then be shown to the user of the reproduced signal, such that he/she gets a
figure of the accuracy of the signal. It would also be possible to include alarm functions, which
alerts when the error becomes too large or the reduction ratio becomes too small, indicating
that the window size must be re-tuned.

A Algorithm for on-line tuning of the Box Car Back Slope al-
gorithm

We will now show the full algorithm for the on-line tuning of the window h.

Initialize all variables
repeat until

[store,p]=BCBStest(y(t), t, . . . , p)
if store
rn := rn + 1
if i > 1
s := (y(t− 1)− y(tr))/i
Rj = Rj + Σê2 + 2s · Σiê + (k

3

3 −
k2

2 + k
6) · s2

i := 0
Σê2 := 0

1765

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

6200 6300 6400 6500 6600 6700 6800
0.145

0.15

0.155

0.16

0.165

0.17

0.175

0.18

Time [min]

a)

0 5 10 15 20 25
6

6.5

7

7.5

8

8.5

n

b)

Figure 5: Simulation of the BCBS tuning algorithm with the first test signal. In a) the original
signal (solid line), stored values (“*”) and reproduced signal (dashed line) are shown. The
reproduced signal is close to the original signal. In b) the values of d are displayed.

1766

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

2.8 2.805 2.81 2.815 2.82 2.825

x 10
4

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time [min]

a)

0 5 10 15 20 25 30 35 40 45 50
6

7

8

9

10

11

12

13

n

b)

Figure 6: Simulation of the BCBS tuning algorithm with the second test signal. In a) the
original signal (solid line), stored values (“*”) and reproduced signal (dashed line) are shown.
The BCBS algorithm “cuts” the tops of original signal but the overall reproduction is fairly
good. In b) the values of d are displayed. As can be seen, it converges to a larger value than for
the first signal.

1767

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

Σiê := 0
end
m̂ := 0; tm := 0
if Mn > M
Re := Rj/Mn

rn := rn/Mn

σ2
y := (Σy2 − (Σy/Mn)2)/(Mn − 1)
Vn := (1− α)rn + αRe/σ

2
y

Sn := sign((Vn − Vn−1)/(dn − dn−1))
if SnSn−1 = 1
γn := aγn1

else γn := bγn1

end
dn+1 := dn − γnSn + cwn
dn−1 := dn; dn := dn+1

Sn−1 := Sn; Sn := Sn+1

Vn−1 := Vn
rn := 0; En := 0
Σy2 := 0; Σy := 0

end
end
else

z := y(t)− y(t− 1)
if p = 1
σ̂2 := λσ̂2 + (1− λ)z2/2
h := d

√
σ̂2

end
if p = 2
tm := tm + 1
m̂ := m̂+ 1/tm(z − m̂)
σ̂2 := λσ̂2 + (1− λ)(z − m̂)2/2
h := d

√
σ̂2

end
Mn := Mn + 1; i := i+ 1
ê := y(t)− y(tr)
Σê2 := Σê2 + ê2

Σiê := Σiê + iê
end
Σy := Σy + y(t)
Σy2 := Σy2 + y(t)2

end

References

Baril C.G., and P.O. Gutman (1997). “Performance enhancing adaptive friction compensation for uncer-
tain systems,” Transactions on Control Systems Technology, 5, no. 5, pp. 465–479.

Hale J.C., and H.L. Sellars (1981). “Historical Data Recording For Process Computers”, Chemical Engi-
neering Progress, 37, no. 11.

1768

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

Hanimann M. (1998). Personal communication with M. Hanimann, AssiDomän Frövi AB.

Ljung L. (1987). System Identification, Theory for the user. Prentice Hall.

1769

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

	HOME
	SESSION

