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Abstract

This contribution concerns the identification of the dynamics of a sled carrying the op-
tics housing of a CD player. The memory access time of the CD player depends, among
other factors, on the settling time of the sled after a step change. This contribution focusses
on the oscillations at the end of a step response. Measured closed-loop data are used to
identify different types of black-box models of the sled dynamic. First linear models are
concerned, and then different types of nonlinear models. The different types of models are
compared and discussed. Due to poor excitation of the plant, some conclusions are uncer-
tain. However, it is clear that the nonlinear models give better simulation performance on
validation data than the linear ones. Also, the oscillations at the end of a step response seem
to be controller induced. Therefore, it seems appropriate to use different models, and then
also different controllers, at different parts of a step response.

1 Introduction

The speed of a CD player can be measured in different ways. Often, only the rotational speed
of the disc is used as a measure. This is a relevant measure in a steady state reading situation,
i.e., when the CD player is following a certain track on the disc. As described in Section 2 the
CD player concerned in this paper uses multiple beams to increase the steady state reading
speed without increasing the rotation speed the disc.

Another important measure of speed is the memory access time. It is defined as the time
it takes to position the laser beam at a given track and to start reading there. To obtain a short
memory access time the step response of the optics housing has to be fast and the settling time
at the end of the step response must be short. It is first when the oscillations at the end of the
step response are less than some threshold value that data retrieval can start.

In this work we concentrate on this settling time at the end of a step response and the
dynamics of the sled, carrying the the optics housing, is identified in this region.

There are several aggravating factors which makes the identification hard. First, the resolu-
tion of the output signal, the position of the sled, is limited by fairly large quantization errors.
This means that only a crude measure of the output is available. Second, the system is operat-
ing in closed loop, and at the end of a step in the reference signal, there is no external excitation
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of the system. The only excitation on the system is the measurement noise on the output. As
we will see, these in-sufficiences in the data, to some extent, limits the possible faith in the
obtained models.

The identification procedure follows the general principle “Try Simple Things First”, and,
therefore, starts with linear black-box models. Standard algorithms are used, as described in,
e.g., (Ljung, 1999; Söderström and Stoica, 1989). See also some more introductory books on
identification, e.g., (Johansson, 1993; Ljung and Glad, 1994).

A main problem when nonlinear black-box models are considered, is that there are so many
different possibilities of model structures. Here, we will follow a strategy where an obtained
linear model is used as starting point for the nonlinear system identification. This makes it
possible to initialize nonlinear models with reasonable good parameter values, as described in
(Sjöberg and Ngia, 1998) or in (Sjöberg, 1997).

Other interesting approaches to nonlinear system identification are described in (Murray-
Smith and T.A., 1997). Some possible nonlinear model structures can be found in (Billings
et al., 1992), and in the references therein. The paper (Sjöberg et al., 1995) discusses the general
problems with nonlinear identification, and techniques how the problems can be handled.

The paper is organized as follows. In Section 2 the system is described, and Section 3 defines
the identification problem. Linear models are considered in Section 4 and nonlinear models in
Section 5. The paper is concluded in Section 6.

2 The plant

The multiple beam CD player, depicted in Figure 1, is developed by Zen Research Ltd 1.
The multiple beam approach to illuminating and detecting multiple tracks uses a diffracted

laser beam in conjunction with a multiple beam detector array. A conventional laser diode
is sent through a diffraction grating which splits the beam into seven discrete beams, spaced
evenly to illuminate seven tracks. The seven beams pass through a beam splitting mirror to the
objective lens and onto the surface of the disc. Focus and tracking are accomplished with the
central beam. Three beams on either side of the center are readable by a detector array as long
as the center is on track and in focus.

The reflected beams return via the same path and are directed to the multiple beam detector
array by the beam splitter mirror. The detector contains seven discrete detectors spaced to align
with seven reflected tracks. Conventional detectors are also provided for focus and tracking.

The control design uses a conventional approach to tracking and seeks. In particular, the
fine positioning of the optics is controlled in an inner loop, whereas the optics housing resides
on a sled with which the course positioning is done. In this paper we will identify the sled po-
sitioning dynamics from measured signals from a closed loop experiment on an experimental
laboratory set-up that does not necessarily reflect neither the performance nor the sled dynam-
ics of production CD-players.

Performance is far greater than that of conventional drives because the multi-beam technol-
ogy allows for lower, more disc tolerant rotational speeds.

1Zen Research, Ltd., Aluf David 40, Ramat Gan, Israel 52232, http://www.zenresearch.com/. The kindness
of Zen Research Ltd to supply the data used in this work, and the physical description of the plant, is gratefully
acknowledged.
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Figure 1: Illustration of the multiple beam CD player.

3 The Data

The closed loop system is depicted in Figure 2. The output signal, y(t) is the position of the
sled (in meters), and the input, u(t) is the applied voltage (in Volts) to the servo acting on the
sled. The sampling interval of the signals is Ts = 0:455 ms.

Contr.
yr u

v

Plant ��

Figure 2: System description.

Data from a step response experiment is shown in Figure 3. The reference signal is a low-
pass filtered step (not shown in the plot) and the output signal follows close to the reference
signal until the step amplitude is reached. At the end of the step response the output oscillates
around the reference value. This is barely seen in the Figure 3. >From a control perspective, it
is interesting to understand the plant dynamics at a new, constant, reference value. With such
knowledge the control may be improved so that the settling time can be shortened. Therefore,
we focus the identification on the end of the step response and Figure 4 this part of the step
response in Figure 3 is shown.

The decaying oscillations of the output values are clearly seen as well as the quantization
of the output signal. Also, the reference signal is shown together with a scaled version of the
control signal.
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Figure 3: Step response data of the CD sled versus time samples. a) Plant output signal, u(t).
b) Plant input signal, y(t).

The sensor measuring the position of the sled gives quantized values. In between the quan-
tization levels the output is not observable, and this fact limits the control performance when
the output is near the reference signal. Consider the second data half in Figure 4. >From the
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Figure 4: Reference signal (solid), measured output signal (dashed), and (scaled) control signal
(dotted).

figure you see that the control signal looks the same, but with opposite sign, whenever the po-
sition error is one quantization step from the correct value; a short pulse in the control signal
moves the sled to to the correct position. However, after the first pulse a second pulse follows
which moves the sled so that an error with opposite sign is obtained. We can, therefore, con-
clude that the controller is badly tuned for this signal range. From the figure it is clear that the
controller induces a limit cycle.

Although these oscillations about the reference value are not wanted, they do not cause any
problem in the system. The reason for this is that the oscillations are compensated in a second
control loop controlling the lens on the sled.

Instead, we will focus on the first data half in Figure 4, before the oscillations are of ampli-
tude � one quantization step. It is the oscillations in this data range which limits the access
time of the CD player. First when the amplitude of the oscillations is small, the retrieval of
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information can start. Hence, with a better model of the plant in this domain it is possible to
design a better controller.

4 Linear System Identification

In the previous section the interesting range of the data was defined. The identification data
chosen according to that description are shown in Figure 5. A second data set from a similar
step response is used for validation. Both the identification and the validation data sets consist
of about 100 samples.
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Figure 5: Identification data. a) Time-domain. b) Frequency domain.

Some trial and error shows that there is no reason to use larger than first order models. The
first model structure considered is an ARX model is defined by

y(t) =
B(q)

A(q)
u(t) +

1

A(q)
e(t) (1)

and the second model structure is an OE model defined by

y(t) =
B(q)

F(q)
u(t) + e(t) (2)

where A(q) = 1+a1q
-1, B(q) = b1q

-1, F(q) = 1+ f1q
-1, and q is the shift operator defined as

q-1u(t) = u(t-1). The second exiting signal, e(t), is a non-measured white noise signal which
is used to explain the discrepancy between measured values and data.

The ARX and the OE differ only in the noise model. In most problems there is no reason
why you should choose the noise model as 1=A(q), as for the ARX model. Instead, the ARX
model is preferred since it can be expressed as linear regression, and the noise model is some-
thing you get with that. In many problems only the plant model is of interest, and the exact
design noise model does not influence the end result very much. In such cases it is convenient
to use ARX models due to their linear regression feature. As you will see, in this identification
problem the noise model does make a difference.
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The parameter estimate is defined as the minimum of the summed-squared error (SSE)
using the identification data, i.e.,

VN =
1

N

NX
t=1

(y(t) - ŷ(t))2 (3)

is minimized with respect to a1, and b1, or, for the OE model, f1, and b1. N is the number of
identification data.
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Figure 6: Simulation on validation data with a first order a) ARX model b) OE model.

In Figure 6 the simulation results for first order ARX and OE models on validation data
are shown. Although, the ARX model has a good prediction performance (not shown), its
simulation performance is very poor.

The good prediction ability of the ARX model can intuitively be explained by the fact that
the output signal is constant except at the jumps between the quantization levels. Therefore,
an ARX model consisting of a pure integration, ŷ(t) = y(t - 1), would give a perfect one-step
prediction except at the jumps. Indeed, in Figure 8 the SSE criteria are shown for the ARX, and
the OE models as functions of the parameters, and the models’ poles are close to one.

The prediction with the OE model is based solely on the measured input signal, and it can,
therefore, not exploit the locally constant output.

The failure of the ARX model can also be theoretically motivated. The expectation of the
SSE criterion on new data can be expressed in the frequency domain as

V̄(�) =
1

4�

Z�
-�

h
jG0(e

i!) -G(ei!)j2�u(!) +��(!)
i 1

jH(ei! j2
d! (4)

where G(q) is the plant model, G0(q) is the true plant, and H(q) is the noise model. �u(!) and
�u(!) are the spectra of the input signal and the noise2. See, e.g., (Ljung, 1999).

Equation (4) shows that the model fit will be frequency weighted with the inverse of the
noise model. In the ARX case this weighting becomes jA(ei!j2. If A(q) has a root near 1 then
the estimated model can be expected to be very poor at low frequencies. This is exactly what
happens with the ARX model, and this explains the poor simulation performance.

2The noise, denoted �(t), is modeled using the white noise sequence e(t), i.e., �(t) = H(q)e(t).
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For the OE model this does not happen since its noise model is 1, and hence constant over
the whole frequency domain.

The expected quality (4) is strictly valid only if the input, u(t), is independent on the noise,
e(t). This does not hold in our case since the data come from a closed loop experiment. There-
fore, we cannot have too much trust in (4). In Figure 7 the cross-correlation between the input
signal and the residuals, i.e., the estimate of e(t), is shown. For (4) to be strictly valid the cross
correlation should be zero.
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Figure 7: Correlation of the residuals on validation data for the first order ARX model.

From Figure 8 it is evident that the criteria have a valleys for both the ARX and the OE
model. This means that the parameters can be varied along the valley without the criterion
changing substantially. This verifies our earlier worries that the system is poorly excited due
to the constant reference signal.
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Figure 8: The SSE criterion versus the model parameters for the first order models a) ARX b)
OE. The minima for the two models are marked with dots (in both plots). The value of the pole
is on the -a1 (-f1 axis, and both models have poles near 1.

The original sampling time is unnecessarily short and the data can be down sampled a
factor 2. This done by first low-pass filtering the data to avoid aliasing, and then picking out
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every second data sample. In this way the sampling time is doubled.
The down sampled data are shown in Figure 9. Notice that the down sampling removed

the local constant feature of the output signal. The down sampling also halves the number of
data so that the identification data set consists of about 50 samples.

Figure 10 shows simulation with OE and ARX models on down sampled data. The ARX
model performs much better on the down sampled data. The reason for this is that high fre-
quency noise was removed in the down sampling.
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Figure 9: Down sampled identification data. a) Time-domain. b) Frequency domain.
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Figure 10: Simulation on validation data with first order a) ARX model b) an OE model.

In Figure 11 the simulation result of a second order OE model is shown. The performance
is slightly better than the first order models. However, the poles are real, as shown in Figure 11
b), and this indicates that the oscillations in the output signal could be controller induced.
However, due to the poor excitation of the plant this conclusion is uncertain.

5 Nonlinear System Identification

Consider now nonlinear models on the original data, i.e. the data in shown in Figure 5.
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Figure 11: Second order OE model a) simulation on validation data. b) poles (�) and zeros (o).

The linear models from the previous section will be used to define different nonlinear mod-
els. Using a linear model for the initialization of a nonlinear model, as described in (Sjöberg
and Ngia, 1998; Sjöberg, 1997), has the advantage that the performance of the initial nonlinear
model is equal to that of the linear one. In this way, stability of the model can be assured and the
risk to end up in a bad local minimum decreases. Starting at the initialization, the parameters
of the nonlinear model are tuned by a iterative minimization algorithm, so that all parameters
are fitted to the identification data.

The nonlinear models are defined by adding small nonlinear parts to the linear models. In
this way the nonlinear models inherit most of their structure from the linear ones. The defined
nonlinear models become “close” to being linear, and the nonlinearity is constrained to a part
of the nonlinear model. By following a trial and error procedure, different possible ways to add
nonlinearities to the linear models are investigated.

Figure 12 depicts a nonlinear OE, (NOE), model structure defined by adding a nonlinearity
in parallel to the linear first order OE model, i.e., the model is described by

ŷ(t) = -f1ŷ(t- 1) + b1u(t - 1) + g(�; u(t - 1)) (5)

where g(�; �) is a one-hidden layer feedforward neural net with 2 hidden neurons, and � is
the parameter vector of the net. This model structure is equivalent to a Hammerstein model.
Figure 13 depicts the simulation result using this first order NOE Hammerstein model. The

Σ
linear

ŷ(t- 1)

ŷ(t)

u(t- 1) g(�; �)

Figure 12: First order NOE model with nonlinearity only on the lagged input value.

result is slightly better than for the first order OE model. The RMS error on the validation data
decreased with 9%, compare Figures 6 and 13. The model’s estimated dependence on u(t - 1)
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Figure 13: First order NOE model with nonlinearity only on the lagged input value. a) Simula-
tion on validation data. b) Estimated dependence on u(t - 1) for the linear- and the nonlinear
model.

is also depicted in Figure 13 together with that for the linear OE model. The deviation from the
linear model is most clear at high input amplitudes. A possible interpretation could be that the
nonlinearity is caused by a saturation.

Similar simulation result to that shown in Figure 13 is also obtained if the NOE model
structure (5) is changed so that it becomes nonlinear also in past output values, i.e.,

ŷ(t) = -f1ŷ(t- 1) + b1u(t - 1) + g(ŷ(t - 1); u(t - 1)): (6)

where the nonlinear mapping g(�; �) is a small neural net.
>From the results so far, we can conclude that different nonlinear model structures give

models superior to the linear ones. Therefore, the exact form of the nonlinear model does
not seem to be crucial for the simulation result, the important feature is instead that some
nonlinearity is introduced in the model.

Consider now the down sampled data. We start with a second order model. Several differ-
ent types of second order NOE models have been tried and the following model structure has
the best simulation performance on validation data:

ŷ(t) = f1ŷ(t - 1) + f2ŷ(t- 2) + b1 u(t- 1) + g(u(t - 1)) + b2 u(t - 2) (7)

The nonlinearity g(�) is a one-hidden layer feedforward net with one single hidden neuron. It
takes only one of the lagged values input as argument, u(t - 1). The model is illustrated in
Figure 14 a). Figure 14 b) shows the simulation result with the second order NOE model. The
RMS value is 13% lower than the corresponding linear model. Compare with Figure 11.

In Figure 15 the dependence on u(t - 1) of the NOE model (7) is shown together with the
corresponding relationship for the linear OE model. Like all other estimated nonlinearities
there are larger deviation between from the linear model at large amplitudes.

Consider now a Wiener model, a linear dynamic model followed by a static nonlinearity, as
depicted in Figure 16. The linear part of the model consists of an OE model, and the nonlinear
part is a feedforward net with one single neuron in parallel with a linear mapping. The model
contains 6 parameters. The simulation with the fitted Wiener model is shown in Figure 17 a)
and the estimated static nonlinearity is shown in Figure 17 b). In Figure 18 the correlation
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Figure 14: NOE 221 model with nonlinearity only on the first lagged input value. a) Illustrated
model. b) Simulation on validation data.
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Figure 15: The nonlinear relation in (7) compared to the one in the corresponding linear model.
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Figure 16: Wiener model, a linear dynamic model followed by a static nonlinearity.
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Figure 17: Simulation of a first order Wiener model on validation data.
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Figure 18: Correlation of the residuals on validation data for the first order Wiener model.
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between the residuals and the the inputs signal is shown. The nonlinear behavior is most
predominant at large output values. There are two, possible, easy explanation for this; there
might be some kind of saturation, or, since the speed becomes zero at the turning points, there
might be problem with friction at these points.

6 Conclusions

The dynamics of a the position sled of a CD player at the settling after a reference step is
identified.

The data are collected in closed loop, and the external excitation is poor. These aggravating
circumstances make the results less reliable. The coarse quantization of the output signal also
gives problems.

Several different linear and nonlinear models are investigated, and the simulation results
of the well performing models are presented in the paper.

The identification procedure of the nonlinear models follows a stepwise procedure where
the linear black-box models are used to define and initialize the nonlinear black-box models.
By keeping the nonlinear model, and adding smaller nonlinear parts to it, more constrained
nonlinear models with less parameters, are obtained.

Best simulation results on validation data is obtained with a first order Wiener model af-
ter down sampling of the data with a factor 2. However, superior higher order models can
probably be identified if data exciting the system better are made available. In particular, if the
main non-linearity is friction, it could be possible to assume a model structure that includes a
non-linear friction feedback from the sled velocity to the force input. Such an attempt would
probably also demand that the position measurement quantization is made smaller.
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