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Abstract

Given data x, we wish to adjust a parameter vector p(t) so as to minimize z(t) = x>p−y
as best we can in some norm sense. If y (or equivalently z) were available, we might choose as
our cost function the integral of z2 and minimize it using standard least-squares algorithms.
We consider the case when neither y nor z are available; rather, at each instant we are able
to choose p(t) and measure z2(t), that is to say, z’s magnitude but not its sign.
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1 On gradient and least-squares tuning

Given data x : [0, t̄) → R
n, we wish to adjust a parameter vector p(t) so as to minimize

z(t) = x>p − y (1)

as best we can in some norm sense. If y : [0, t̄) → R (or equivalently z) were available, we
might choose as our cost function the integral of z2 and minimize it using standard least-squares
algorithms. We consider the case when neither y nor z are available; rather, at each instant
we are able to choose p(t) and measure z2(t), that is to say, z’s magnitude but not its sign.
The garden-variety least-squares algorithm depends on explicit knowledge of y; and its recursive
version relies, as do other recursive gradient-type methods, on z(t) to specify the direction of
the adjustment. In this note we propose a recursive algorithm to tune estimates of p(t). One
application we have in mind is direct adaptive control (Pait, 1999).

Running the risk of boring the reader, we shall briefly review some standard parameter
estimation concepts. With M symmetric, positive-semidefinite, define

J(t) =
1
2
p̂>Mp̂ +

1
2

∫ t

0
dτ (x> p̂ − y)2.

J(t) represents a cost to be minimized at a given instant t by choosing an appropriate p̂, which
must satisfy

∂J

∂p̂>
(t) = Mp̂ +

∫ t

0
dτ x(x> p̂ − y) = 0,
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so that

p̂ =
(

M +
∫ t

0
dτ xx>

)−1 ∫ t

0
dτ xy (2)

is the solution to the least-squares estimation problem. If M > 0 this solution is unique, and
because the Hessian

∂2J

∂p̂>∂p̂
(t) = M +

∫ t

0
dτ xx> > 0,

J(t) is a convex function of p̂ and the solution is a global minimum.
Equation (2) can be used to construct a recursive solution p̂ to the least-squares problem.

However, most important is that the solution to the least-squares problem exist and be unique.
Once this condition is satisfied, a number of techniques can be used, assuming that y is a noisy
measurement of the scalar product of data x with an unknown parameter vector p∗, namely,
y = x>p∗ + w, so that p̂ can be interpreted as an estimate of p∗. If y were available, perhaps
the simplest way of constructing a recursive estimate p̂ would be to choose as tuning error
ẑ = x> p̂ − y and set

˙̂p = −xẑ.

Then x>(p̂ − p∗) = ẑ + w, so the derivative of

V =
1
2
(p̂ − p∗)>(p̂ − p∗),

one-half of the squared parameter error, is

V̇ = (p̂ − p∗)> ˙̂p = −(p̂ − p∗)>xẑ

= −ẑ2 − ẑw.

Using the inequality |ẑw| ≤ 1
2 ẑ2 + 1

2w2 and integrating results in

V (t) ≤ V (0) − 1
2

∫ t

0
ẑ2 +

1
2

∫ t

0
w2.

Because V ≥ 0, this shows that the energy of the signal ẑ is limited by that of w plus a finite
constant; in particular if w ∈ L2 then ẑ ∈ L2 as well, and p̂ is bounded. If for all t we choose the
adjustable parameters p equal to p∗’s estimate p̂, which of course we are free to do, then ẑ = z
and

z = x>p − y ∈ L2 and p ∈ L∞ .

Remark: If p are parameters of a direct or indirect adaptive feedback controller, then p = p̂
can be considered an expression of the certainty-equivalence principle. The distinction between
the adjustable parameters p and the parameter estimate p̂ may appear recherché, but it plays a
crucial role in the solution of the more complex problem treated in §2 of this paper.

2 Gradient tuning

The method just described requires that we set the tuning error equal to z, that is to say, z
must be known in sign as well as magnitude. If only the latter were known, we might choose as
our tuning error

eT (p̂, t) = (p̂ − p)>xx>(p̂ − p) − z2. (3)
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Intuition motivates the definition of eT above: if the sign of z is unknown, then at each instant
we might equally believe that y = x>p+ |z| or that y = x>p−|z|. Unable to minimize x> p̂−y as
before, we content ourselves with trying to keep the product (x> p̂−x>p−|z|)(x> p̂−x>p+ |z|) =
eT small. Using ẑ − z = x>(p̂− p), a useful formula that relates eT to the parameter estimation
error can be derived:

eT = (x> p̂ − x>p − z)(x> p̂ − x>p + z)

= (x>(p̂ − p) − z)ẑ.

Notice that eT is a function of p̂ as well as of time. The control engineer’s instinct is to tune
the parameter estimate in the direction of the negative “gradient” of e2

T :

˙̂p = −xx>(p̂ − p)eT (p̂, t). (4)

Along the trajectories of (4), the derivative of the positive function V used in §1 is

V̇ = −(p̂ − p∗)>xeT x>(p̂ − p)

= −(ẑ + w)ẑ (x>(p̂ − p) − z)x>(p̂ − p)︸ ︷︷ ︸ .

For the analysis to carry through as in §1, it would be necessary to choose p in a manner
that ensures that the underbraced term stays positive. This is unfortunately not feasible with-
out further assumptions about p∗. The following proposition indicates that gradient tuning is
nonetheless a reasonable route to follow.

Proposition 1 Suppose that w = 0, that x(t) is continuous, and that there exist instants t1, t2,
t3, and t4, ti < t1 < t2 < t3 < t4 < tf , such that

∫ t2
t1

xx> > 0 and
∫ t4
t3

xx> > 0. Let p be chosen
so that p(t) = p0 + p1(t) + α(t)x(t)/|x(t)|, where p0 is constant, p1(t) is orthogonal to x(t), and
α(t) is such that if x(t5)/|x(t5)| = x(t6)/|x(t6)| for some t5 and t6 then α(t5) 6= α(t6). Then

J[ti ,tf ](p̂) =
∫ tf

ti
eT (p̂, t) = 0

has a unique minimum at p̂ = p∗.

Proof: If w = 0, then ẑ = x>(p̂ − p∗) and eT = x>(p̂ − 2p + p∗)x>(p̂ − p∗), so

J[ti ,tf ](p̂) = (p̂ − p∗)>
(∫ tf

ti
xx>(

x>(p̂ − 2p + p∗)
)2

)
(p̂ − p∗).

Clearly J(·) ≥ 0 and J(p∗) = 0. For there to be another minimizing solution, it is necessary
that, for some constant xi, ∫ tf

ti
(x>

i x)2
(
x>(p̂ − 2p + p∗)

)2 = 0,

that is to say, ξ(t) = x>(p̂ − 2p + p∗) = 0 when x>
i x 6= 0. But by assumption there must exist

τ1 and τ2 such that x>
i x(τ1) and x>

i x(τ2) are both nonzero. With p as chosen

ξ(t) = x>(p̂ + p∗ − 2p0 − 2p1(t) − 2α(t)x(t)/|x(t)|)
so ξ(t) = 0 implies

α(t)|x| =
1
2
x>(p̂ + p∗ − 2p0),
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which by construction of α can only happen either for t = τ1 or for t = τ2. But the support
of x>

i x must have open interior because
∫ tf
ti xx> > 0 and x(t) is continuous, so x>

i ξ(t) must be
nonzero on an open set, hence no other minimizing solution can exist. �

The requirements Proposition 1 makes on x(·) are not excessively demanding, being much
less restrictive than a persistency of excitation condition. However the description of p(t) does
not furnish an explicit algorithm for choosing it in a manner that ensures uniqueness of the
minimum. Work is in progress to develop a complete algorithm and study its properties in the
presence of noise. An alternative approach is presented in the sequel.

3 Convexity

In this section we approach the problem by searching for conditions for global convexity of the
cost function

J(t) =
1
2
p̂>Mp̂ +

1
4

∫ t

0
dτ e2

T (p̂, τ).

The p̂ that minimizes J must satisfy

∂J

∂p̂
(t) = p̂>M +

∫ t

0
dτ eT (p̂, τ)(p̂ − p(τ))>xx> = 0.

If the Hessian

∂2J

∂p̂>∂p̂
(t) = M +

∫ t

0
dτ

(
2(x>(τ)(p̂ − p(τ))2 + eT

)
xx>(τ) > 0,

then J(t) is a convex function of p̂ and has a global minimum. Given an arbitrary vector vi, let

hi = mi +
∫ t

0
dτ ξi(τ)

(
2(x>(τ)(p̂ − p(τ))2 + eT

)

where mi = v>i Mvi and ξi = (v>i x)2. The minimum of hi over all p̂ occurs when

∂hi

∂p̂>
(t) = 6

∫ t

0
dτ ξi(τ)xx>(p̂ − p) = 0,

namely, at p̂ = p̄ where

p̄ =
(∫ t

0
dτ ξixx>

)−1 ∫ t

0
dτ ξixx>.

So

him in = 3
∫

ξi(x>p)2 −
∫

ξiz
2 − 3p̄>

(∫ t

0
dτ ξixx>

)
p̄

=
∫

ξi

(
3

(
x>(p − p̄)

)2 − z2
)

.

We are, of course, assuming that
∫

ξixx> is invertible. This assumption is more restrictive than
the excitation condition in Proposition 1, but greatly simplifies the resulting equations.

The patient reader will not complain overmuch if we continue the orgy of derivatives and
compute

ḣim in = 3ξi

(
x>(p − p̄)

)2 − ξiz
2.
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We are concerned with the magnitude of the output z̄ of the system

d

dt
(p − p̄) = −

(∫ t

0
dτ ξixx>

)−1

ξixx>(p − p̄) + ṗ

z̄ = x>(p − p̄)

As long as |z̄|2 > 1
3 |z|2, ḣim in remains positive, the minimum value attained by the Hessian is

increased, and J stays convex! This needs to happen for all directions vi, of course.
We are finally in a position to justify the fastidious distinction between p and p∗’s estimate p̂.

For if p̂(t) were the output of some successful tuner, ˙̂p would become small. Thus if we were to
set p(t) = p̂(t), the tuner’s success would render z̄ small and thus possibly undermine convexity
— the basis on which its success rests.

4 Concluding Remarks

We have presented conditions under which tuning when the estimation error is known in mag-
nitude only is feasible. Besides the intrinsic interest of an estimation problem under partial
output information (reminiscent of recent work on stabilization of linear systems for which only
the magnitudes of outputs are measured (Nesic and Sontag, 1998)), our motivation lies in the
possibility of using such tuners to develop novel direct adaptive control algorithms that can
be applied more broadly than the usual model-reference adaptive controllers. Direct adaptive
control using concepts from linear-quadratic regulator theory is the subject of a companion
paper (Pait, 1999). Whether tuners based on the ideas discussed here will indeed bear fruit
for the latter application will depend crucially on their properties, which are currently under
investigation.
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