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Abstract

A novel technique to achieve output tracking via stable inversion of non-minimum phase
linear systems is presented wherein the desired signal is obtained from field measurements,
and hence corrupted by noise. The earlier approach to stable inversion does not take into
account the noise in the system. The unknown input decoupled observer approach is appli-
cable only to minimum phase systems. Moreover, the unobservable states are inadequately
constructed resulting in inferior output tracking in the presence of noise. In this paper we
extend this procedure to non-minimum phase systems. We present the novel Stable Dy-
namic model Inversion (SDI) approach which is applicable to non-minimum phase systems,
and takes into account the presence of noise in target time histories.

1 Introduction

Precision output tracking has been one of the fundamental problems for control engineers; in-
creasingly stringent performance requirements are to be satisfied in a variety of applications
notably in the robotics and aerospace industries. In the context of linear systems, it is well-
known that perfect tracking is relatively easy to achieve in minimum phase systems. However,
output tracking for non-minimum phase systems remains a challenging problem due to the
fundamental limitations on transient tracking performance characterised by the number and
location of the zeros which are non-minimum phase (Qiu and Davison, 1993).

In this paper we deal with the problem of output tracking wherein the desired signal is ob-
tained through a data acquisition system, and hence corrupted by noise. One such application is
that of time waveform replication which concerns with accurate reproduction of real or synthe-
sised target time histories. Thus complex vibration environments (such as automobile crashes)
may be recreated in a test laboratory by simulating field measurements thereby saving precious
resources. Other applications include durability tests of, for instance, automobile components,
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and driving comfort assessment. Thus, given a corrupted version of the true desired signal ydk,
and the following system,

xk+1 = Axk +Buk +Gwk

yk = Cxk +Duk

zk = yk + vk

our objective is to obtain the desired input udk such that it satisfies the following system of
equations

xdk+1 = Axdk + Budk

ydk = Cxdk +Dudk

thereby overcoming the effect of the noise wk and vk.
For linear continuous systems, Francis and Wonham (1976) show that the asymptotic track-

ing problem is solvable if, and only if, a set of linear matrix equations is solvable. This was
later generalised to nonlinear systems by replacing the linear matrix equations by a set of first
order partial differential equations (Isidori and Byrnes, 1990). These approaches asymptotically
track any member in a given family of signals generated by an exosystem. The stable inversion
approach was introduced by Devasia et al. (1996) to avoid the use of exosystems, and, in the case
of non-minimum phase systems, mitigate the poor transient performance by using pre-actuation.

The basic idea in the stable inversion approach (Devasia et al., 1996) is to use a dichotomic
split of a related system of equations in the case of a non-minimum phase plant to compute
an inverse trajectory udk for a desired output trajectory ydk. This inverse trajectory becomes a
feed-forward signal used in conjunction with a more conventional feedback control law in order
to make it attractive. (We note that such an approach is related to the classical Hirschorn
inverse (Hirschorn, 1979) in the case of minimum phase systems.) The resulting desired input
trajectory udk is evidently non-causal in the case of non-minimum phase systems, and hence pre-
actuation. From an engineering perspective, pre-actuation is applicable since the inversion is
not expressed as a solution of differential equations but as a map. The stable inversion approach
has been developed for continuous time systems. The starting point in this paper is to present a
discrete-time version of this technique for linear systems. However, this procedure, just like the
continuous time case, does not handle desired signals corrupted by noise, and, therefore, does
not fulfil our objective.

The problem of trajectory tracking can also be dealt with from the point of view of esti-
mating the state of a system subjected to unknown inputs. System uncertainties, quite often,
arise from linearisation errors, unmodelled nonlinearities, or from unmeasurable disturbances
which cannot satisfactorily be described as stochastic signals with known statistics. In order
to facilitate a simple linear system description, such uncertainties are frequently modelled as
‘unknown-inputs’. The problem of decoupling the unknown input affecting the underlying sys-
tem from the state estimation error has attracted considerable attention from researchers leading
to several applications typically in fault detection and isolation (see, (Hou and Patton, 1998),
and the references cited therein). Using a unified unknown-input decoupling technique, Hou
and Patton (1998) solve this filtering problem for time-varying linear systems in a rigorous and
straightforward manner. The approach consists of first building an ‘equivalent system’ which is
decoupled from the unknown inputs, and then designing a minimum covariance estimator for
this equivalent system.

In this paper, we use the Hou-Patton technique to estimate the desired state of an input-
decoupled system, and hence compute the desired input. However, this approach is valid only for
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minimum phase systems. In this paper we also generalise this technique to non-minimum phase
systems. This generalisation is obtained via an inner-outer factorisation of the given system,
and hence avoids the computation of dichotomies. In principle, this generalisation consists of
first modifying the target time history by the inverse of the inner factor, and then applying the
Hou-Patton approach to the outer factor with the modified desired output trajectory.

Thus, we now have two techniques to solve the output tracking problem. It seems apparent
that the major advantage of the Hou-Patton approach as compared to the stable inversion
approach is that it takes into account the noise in the system. However, under fairly typical
conditions, we show that the equivalent system built in the Hou-Patton approach is related to
the system matrix of the inverse system. It is well-known that the internal dynamics, which is
part of the inverse system and related to the zeros of the given plant, is not observable from its
output. Therefore, the unobservable states are inadequately reconstructed resulting in inferior
output tracking in the presence of noise.

Evidently, there is a need for a different approach that is applicable to non-minimum phase
systems, and accounts for the noise on the desired trajectory. We present a simple approach to
this problem called the Stable Dynamic model Inversion (SDI) technique. Here, the given system
model is first augmented by a realistic model for the input time history, followed by designing a
Kalman filter for the augmented system. This technique is more general than the earlier schemes
in that it is not limited by the presence of zeros on the entire unit circle. Moreover, by suitably
designing the Kalman filter, we can easily take into account the presence of noise in target time
histories.

This paper is organised as follows. In Section 2 we present the discrete time version of the
stable inversion technique. The Hou-Paton approach is illustrated in Section 3 and we compare
these methods in Section 4. We present the generalisation of the Hou-Patton technique to non-
minimum phase systems and the novel Stable Dynamic model Inversion procedure in Section 5.
An illustrative benchmark example supporting the contributions of this paper is treated in
Section 6.

2 Inversion of the Input-Output Map

The stable inversion approach aims at providing a bounded inverse of the system even for non-
minimum phase systems. This bounded inverse is computed by solving a two point boundary
value problem obtained via a dichotomic split of the internal dynamics of the system. This
results in an acausal input udk in the case of non-minimum phase systems; the anti-causal part
of the input sets up the desired initial condition. We note that for minimum phase systems this
inverse is related to the classical system inverse. Although the procedure has been developed for
continuous time systems (Devasia et al., 1996), it can be extended, mutatis mutandis, to linear
discrete time systems.

Consider the following state space realisation of a linear time invariant system:

xk+1 = Axk + Buk (1)
yk = Cxk +Duk (2)

We assume that xk ∈ IRn, uk ∈ IRm, yk
∆=
(
y1,k y2,k · · · yp,k

)′
∈ IRp. Let p = m and

D = 0. (The extension to the non-zero D case is rather obvious.) If ci denotes the ith row of
C, then the system is said to have a well-defined relative degree r ∆=

(
r1 r2 · · · rp

)′
if

ciA
lB = 0 ∀ l < ri − 1, 1 ≤ i ≤ p
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and the matrix

D̃
∆=


c1A

r1−1B
c2A

r2−1B
...

cpA
rp−1B


is nonsingular. Thus,

yi,k+ri = ciA
rixk + ciA

ri−1Buk, 1 ≤ i ≤ p (3)

which implies that each output yi,k, when shifted forward ri samples, has a non-zero feed-through
term. Define

yk+r
∆=
(
y1,k+r1 y2,k+r2 · · · yp,k+rp

)′
Therefore,

yk+r = C̃xk + D̃uk (4)

where

C̃
∆=


c1A

r1

c2A
r2

...
cpA

rp


For a given a desired output trajectory ydk, we can obtain from eqn. (4) a relationship for the
desired input trajectory udk as follows:

udk = D̃−1
(
ydk+r − C̃xk

)
(5)

Therefore,

xk+1 =
(
A−BD̃−1C̃

)
xk +BD̃−1ydk+r (6)

yk+r = ydk+r (7)

and exact tracking is maintained. In particular, if D is non-singular, then the system clearly
has a relative degree r = 0, and we simply replace D̃ by D and C̃ by C in the above equations.
Evidently, the boundedness of xk is related to the eigenvalues of Ã ∆= A−BD̃−1C̃, which, in the
case of a nonsingular D, are precisely the zeros of the original system. It is well-known (Isidori,
1995) that there exists a transformation T such that(

ξk
ηk

)
= Txk

where

ξk
∆=
(
y1,k y1,k+1 · · · y1,k+r1−1 y2,k · · · y2,k+r2−1 · · · yp,k yp,k+1 · · · yp,k+rp−1

)′
and (

ξk+1

ηk+1

)
=

(
Ã11 0
Ã21 Ã22

)(
ξk
ηk

)
+

(
B̃1

B̃2

)
ydk+r

y =
(
C̃1 0

)( ξk
ηk

)
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The matrix Ã has r̂ ∆=
∑i=p
i=1 ri eigenvalues, corresponding to those of Ã11, located at the origin,

and the remaining n− r̂ eigenvalues, corresponding to those of Ã22, located at the zeros of the
original system. Clearly, the states ηk represent the internal dynamics of the system, and are
not observable from yk. However, we require the knowledge of the complete state xk in order
to compute udk from eqn. (5). We note that the desired trajectory of ξk, denoted ξdk, is fixed by
the desired output trajectory. Therefore, given a desired output trajectory, only the desired ηk
remains to be computed.

Under the condition that Ã22 does not have any eigenvalues on the unit circle, and hence a
similar condition on the zeros of the original system, we can choose, without loss of generality,
the state coordinates such that

Ã22 =

(
As 0
0 Au

)
where As is completely stable, and Au anti-stable. We use this dichotomic split of Ã22 to obtain
the solution of the following two point boundary value problem:

ηk+1 = Ã22ηk +
(
B̃2y

d
k+r + Ã21ξ

d
k

)
subject to the boundary conditions η∞ = η−∞ = 0. In essence, the stable part of Ã22 is evolved
forward in time, and its unstable part backward in time. It can be verified that

ηsk =
k−1∑
i=−∞

Ak−1−i
s

(
B̃2y

d
i+r + Ã21ξ

d
i

)
s

ηuk = −
∞∑
i=k

Ak−1−i
u

(
B̃2y

d
i+r + Ã21ξ

d
i

)
u

where ηsk and ηuk respectively are the states corresponding to As and Au, and the input appropri-
ately partitioned. Thus, the desired ηk can be computed by stable inversion of the system. The
input to the system necessary for exact output tracking of a desired trajectory is then computed
using eqn. (5).

In this section we have considered the discrete time version of the stable inversion technique.
The necessary feed-forward input required can be computed by obtaining first the desired state
trajectory. We emphasise that the stable inversion technique does not take into account the noise
in the system, and is restricted to systems that do not have zeros on the unit circle. Evidently,
the stable inversion technique is dependent on a model of a given plant, and hence not robust. We
note that in the continuous time framework, an attempt to make the stable inversion technique
robust is considered by Monsees et al. (1999). In the next section we compute the desired input
trajectory by estimating the state trajectory.

3 The Unknown-Input Decoupled Observer Approach

The principal idea in this approach is to estimate the state of a system subjected to unknown
inputs. Here, the state estimation error is decoupled from the unknown inputs affecting the
underlying system by first computing an equivalent system (Hou and Patton, 1998). A minimum
covariance estimator is then obtained for this equivalent system. In this section, we summarise
this approach for time invariant systems.

Consider the following linear discrete time system:

xk+1 = Axk +Buk +Gwk (8)
yk = Cxk +Duk +Hwk (9)
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where uk is the unknown input and {wk} is a white noise process with zero mean. Without loss
of generality, we assume that it has covariance Ewkw′l = δk,lI . We have the following result:

Lemma 1 ((Hautus, 1983)) There exists an unknown input decoupled observer if and only if

1. rank

(
D CB
0 D

)
= rank

(
B
D

)
+ rankD

2. rank

(
−zI + A B

C D

)
= n+ rank

(
B
D

)
, ∀ |z| ≥ 1

Most practical systems have more outputs than inputs (p ≥ m), and the model is typically
chosen with no redundant inputs (rank of B is full). Thus, for such systems, each of the above
rank conditions are simplified by the following fact:

rank

(
B
D

)
= rankB

Moreover, the first rank condition in Lemma 1 is satisfied whenever the matrix D has full rank.
For systems with rankD < m, this condition is satisfied whenever the matrix product CB
has full rank. If this rank condition fails, we can consider a modified system provided that the
original plant model has a well-defined relative degree. Similar to eqn. (3), we can then shift each
of the outputs sufficiently forward until the rank condition is satisfied; we build an equivalent
system for this modified system. Further, the second rank condition in Lemma 1 is equivalent
to the fact that the system (A, B, C, D) should not have any non-minimum phase zeros.

Under the conditions stated in Lemma 1, the unknown-input decoupled equivalent system
exists (Hou and Patton, 1998) and is as follows:

xk+1 = Āxk + B̄1yk + B̄2yk+1 + Ḡ1wk + Ḡ2wk+1 (10)
ȳk = C̄xk + H̄wk (11)

where

Ā =
(
I − B̄C̄

) (
A− BD†C

)
B̄ = B(I −D†D)

(
C̄B(I −D†D)

)†
C̄ = (I −DD†)C
B̄1 =

(
I − B̄C̄

)
BD†

B̄2 = B̄(I −DD†)
Ḡ1 =

(
I − B̄C̄

) (
G−BD†H

)
Ḡ2 = −B̄H̄
H̄ = (I −DD†)H

Evidently, the equivalent system is independent of the unknown input uk.
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Lemma 2 ((Hou and Patton, 1998)) The unknown input decoupled linear minimum covari-
ance estimator for the system is given by:

x̂k+1|k+1 = x̄k+1 +Kk+1

(
ȳk+1 − C̄x̄k+1

)
x̄k+1 = Āx̂k|k + B̄1yk + B̄2yk+1 + Ḡ1

(
H̄ ′ + Ḡ′2C̄

′)R†k (ȳk − C̄x̄k)
Kk+1 =

(
Σk+1|kC̄

′ + Ḡ2H̄
′
)
R†k+1

Rk+1 = C̄Σk+1|kC̄
′ + H̄H̄ ′ + C̄Ḡ2H̄

′ + H̄Ḡ′2C̄
′

Σk+1|k+1 = Σk+1|k −
(
Σk+1|kC̄

′ + Ḡ2H̄
′
)
R†k+1

(
Σk+1|kC̄

′ + Ḡ2H̄
′
)′

Σk+1|k = ĀΣk|kĀ
′ + Ḡ1Ḡ

′
1 + Ḡ2Ḡ

′
2 + Sk + S ′k −Qk

Qk = Ḡ1
(
H̄ + Ḡ2C̄

)′
R†k
(
H̄ + Ḡ2C̄

)
Sk = Ā

(
Ḡ2 −KkC̄Ḡ2 −KkH̄

)
Ḡ′1

We remark that the term Qk in the equation for Σk+1|k has perhaps been inadvertently omitted
in (Hou and Patton, 1998). The desired input can easily be computed from the estimated state.
Define the following matrices:

X1,N−1 =
(
x̂1|1 x̂2|2 · · · x̂N−1|N−1

)′
X2,N =

(
x̂2|2 x̂3|3 · · · x̂N |N

)′
U1,N−1 =

(
u1 u2 · · · uN−1

)′
where N is the number of samples of the desired output. From the original system we have

U1,N−1 = B† (X2,N −AX1,N−1) (12)

We, therefore, have an alternative method to compute the desired input udk for a particular
given desired output ydk; this approach apparently takes into account the noise in the system.
We compare the two methods in the next section.

4 Connections Between Stable Inversion and Hou-Patton
Approaches

Albeit the Hou-Patton approach is not equivalent to the stable inversion technique, we can
compare them, for minimum phase systems, under conditions that are fairly typical.

1. Suppose that D is square and nonsingular. Clearly, such a system has a well-defined
relative degree r = 0, and the equivalent system in the Hou-Patton approach reduces to
the following:

xk+1 =
(
A−BD−1C

)
xk +BD−1yk +

(
G−BD−1H

)
wk

(Note that ȳk ≡ 0.) However, the decoupled input observer, in this case is as follows:

x̂k+1|k+1 =
(
A− BD−1C

)
x̂k|k + BD−1yk
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Evidently, for such systems, the observer is in an open loop as there is no correction for the
noise. Observe that if the initial conditions are the same, the state of the inverse system
(refer eqn. (6)) and the estimated state are the same. Therefore, the performance of both
the stable inverse and Hou-Patton approaches are comparable. However, we emphasise
that whilst the stable inverse can be computed for non-minimum phase systems, the Hou-
Patton approach is applicable only to minimum phase systems.

2. Similarly, for a square system with D = 0, we have Ā = A − B(CB)−1CA. Moreover,
rankCB = rankB if, and only if, the system has a well-defined relative degree r =(

1 1 · · · 1
)
. Therefore, under this condition, Ā is similar to Ã (refer eqn. (6)), and

hence has m zero eigenvalues, and the remaining n − m eigenvalues correspond to the
zeros of the system. Thus, for SISO systems with D = 0, the estimator has only one state
observable from the output; for MIMO systems, only m states are observable. Evidently,
for the states corresponding to the unobservable eigenvalues, there is no correction for the
noise through the innovation process. Therefore, the observer fails to overcome the effect
of noise in these n−m states.

We can therefore conclude that, for a large class of systems, the two techniques are similar
in their noise handling capabilities. We illustrate this drawback with an example in the next
section. The second major drawback for the Hou-Patton approach is that it is applicable only
for minimum phase systems. In the next section, we propose a method that would overcome
these drawbacks. At this juncture, we note that although Lemma 1 preclude the presence of
zeros on the unit circle, in practice, however, the technique seems, by experience, applicable to
systems with such zeros.

5 Stable Inversion for General Systems

In this section, we first present a method that would make the Hou-Patton technique applicable
for non-minimum phase systems. We avoid the use of dichotomies, and hence the computation of
the eigenvalues, by performing an inner-outer factorisation. We then present a different approach
to the problem of computing the desired input which not only is applicable for non-minimum
phase systems, but as well takes into account the noise.

5.1 Hou-Patton Approach for Non-minimum Phase Systems

Consider the following, possibly non-minimum phase, linear time invariant discrete time system:

xk+1 = Axk +Buk +Gwk

yk = Cxk +Duk +Hwk

Obviously, in the z-domain, we have the transfer function

P (z) = C (zI − A)−1
(
B G

)
+
(
D H

)
Suppose P (z) = Pi(z)Po(z) constitute an inner-outer factorisation of the transfer function P (z)
where Pi and Po respectively are the inner and outer factors. Thus,

y = PiPo

(
u
w

)

=⇒ P∼i y = Po

(
u
w

)
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We first compute
ỹ

∆= P∼i y

and then apply the Hou-Patton procedure to the following system:

ỹ = Po

(
u
w

)

Evidently, the pre-actuation necessitated by the non-minimum phase zeros are incorporated in
ỹ. The length of this pre-actuation is related to the non-minimum phase zeros by the following
result:

Lemma 3 Suppose that the unstable zeros lie outside a circle of radius ρ, and that the support
of yd is contained in [k0,∞) for some k0. Then ∃M > 0 such that∥∥∥udk∥∥∥∞ ≤Mρk−k0 ∀ k < k0

The proof of the lemma is similar to the corresponding result for continuous time systems
(Devasia, 1997).

We now remark on the choice of the method to compute the inner-outer factorisation.
Presently, there are two different ways to obtain this factorisation. In one method, a right
invertible outer factor is first factored followed by the corresponding inner factor. This method
requires the solution of a Riccati equation, and simple and explicit formulae can be provided in
terms of the solution of this Riccati equation. However, as remarked in an earlier section, the
square and invertible feed-forward term corresponding to the outer factor leads to a Hou-Patton
observer without the innovation process. Moreover, such a factorisation technique usually has
problems when there are zeros on the unit circle. A second method to compute an inner-outer
factorisation is to first extract an elementary square inner factor. In a recent paper, Varga
(1998) provides such a procedure which relies on the dislocation of unstable zeros in an efficient
recursive manner, and then reflect them into the stable region in the complex plane. Any zeros
on the unit circle are included in the outer factor. This latter method is more amenable for the
generalised the Hou-Patton approach.
Example: We will now illustrate this technique with the following simplified model of a lunar
roving vehicle (Dorf and Bishop, 1995):

Gc(s) =
2e−0.1s

0.2s+ 1
(13)

The objective is to make the steering angle track a desired trajectory. After approximating
the delay by a second order Pade approximation, and discretising the system, we obtain the
following model:

G(z) =
0.0359z2 − 0.0833z + 0.0487

z3 − 2.6903z2 + 2.4134z − 0.7225
The two zeros 1.1595±0.1005i are located outside the unit circle. We perform an inner-outer

factorisation, and apply the general approach to this example. The results are shown in Fig. 1.
The desired steering angle is shown in Fig. 1(a), and the signal corrupted by white noise is shown
in Fig. 1(b). As expected, the procedure faithfully reproduces the signal, as shown in Fig. 1(c);
the figure shows the superposition of both the desired and actual trajectories. However, as
mentioned earlier, the technique cannot be used for time waveform replication of signals that
are measurements of field tests, as the noise content is also faithfully reproduced.
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5.2 The Stable Dynamic Model Inversion (SDI) Procedure

We now describe a new approach that overcomes the main drawback of the generalised Hou-
Patton approach in terms of its noise handling capability. The Stable Dynamic model Inversion
technique is based on augmenting the state space model of the given plant by a reasonable
model for the input sequence, and then designing a Kalman filter to provide an estimate from
the measurements.

Consider the following state space realization of a linear time invariant system:

xk+1 = Axk +Buk +Gwk

yk = Cxk +Duk

zk = yk + vk (14)

We assume that xk ∈ IRn, uk ∈ IRm, yk ∈ IRp, wk and vk are white noise processes with
covariances Qw and Rv respectively, uncorrelated with each other, and with the initial condition
x0. From intuitive and physical reasoning, it seems realistic to model the input signal uk as
follows

uk+1 = uk + ηk (15)

for some ηk. For simplicity, we assume that ηk is white noise with covariance Qη, and uncorre-
lated with wk and vk. The resulting augmented system is as follows:

(
xk+1

uk+1

)
=

(
A B
0 I

)(
xk
uk

)
+

(
G 0 0
0 0 I

) wk
vk
ηk

 (16)

zk =
(
C D

)( xk
uk

)
+
(

0 I 0
) wk

vk
ηk

 (17)

In compact form, we have,

xa,k+1 = Aaxa,k +Gawa,k

zk = Caxa,k +Hawa,k

where the definition of each of the individual matrices and vectors is rather obvious. We note
that the system matrix Aa is different from that of Ã of the stable inverse approach, and Ā
of the Hou-Patton approach. Therefore, it is expected that the properties are different from
that of the earlier techniques. Indeed, the following result shows that if the original system is
observable, then the augmented system is observable for almost all points in the complex plane;
the proof of the result readily follows from the definitions of observability and the zeros of a
system.

Lemma 4 Suppose the pair (C,A) is observable. The pair (Ca, Aa) is observable if, and only
if, z = 1 is not a zero of the system (A,B, C,D).

Therefore, we can set up a Kalman filter for the augmented system whenever the model has
no zeros at z = 1. Evidently, this method is easily and directly applicable for a larger class of
systems as compared to the earlier approaches. Besides, under the conditions of Lemma 4, the
augmented system is completely observable. Therefore, the Kalman filter is able to overcome
the effect of noise in each and every state.
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For systems that do have a zero at unity, we can easily dislocate these zeros and factor them
into an invertible transfer function by using the numerically efficient technique developed by
Van Dooren (1990). (We note that for numerical efficiency, it is recommended that any zeros
located within a circle of radius ε centred at unity be dislocated.) This generalisation is similar
to the one considered earlier for the Hou-Patton approach via an inner-outer factorisation. The
details of this approach will appear elsewhere (George et al., 1999). Further, it is well-known
that the Kalman filter can be viewed from an H2 perspective. This is summarised by Westwick
et al. (1999), and is not included here for brevity.
Example: We now apply the SDI approach to the example lunar-vehicle considered earlier in
this section. Evidently, since the discretised model does not have any zeros at unity, we can apply
the method directly to this example, and the results are as shown in Fig. 2. Fig. 2(c) shows
the superposition of both desired and actual trajectories. Minor deviations from the desired
trajectory are observed in Fig. 2(d). It is clear from the response plots that this technique
performs rather reasonably even in the presence of noise in the desired output signal: the
standard deviation of the tracking error is an order of magnitude smaller than that of the noise
level in zk.

6 Application to Helicopter Hover Control

In this section we apply to the hover control of a Bell 205 helicopter the generalised Hou-Patton
and the SDI approaches for output tracking. The example considered in this paper is a case
wherein the dynamics was trimmed at a nominal 5 degrees pitch attitude with a midrange weight
and a mid-position centre of gravity, and operating at near sea level (see (Devasia, 1997), and
the references cited therein).

We discretise the linearised model given by Devasia (1997) to obtain

xk+1 = Axk + Buk

yk = Cxk

This is an eighth order system with four inputs. The states of the system are the forward,
vertical and lateral velocities, pitch and roll attitudes, and the roll, pitch and yaw rates. The
inputs to the system are collective, longitudinal and lateral cyclic, and the tail rotor collective.
The system has zeros at 0.9997± 0.0114i, and 1.0000± 0.0215i, which are clearly very close to
z = 1.

The objective is to control the forward, vertical and lateral velocities, and the yaw rate of
the helicopter. The forward velocity and the yaw rate are to be maintained at zero, and the
desired profiles of vertical and lateral velocities are respectively shown in Fig. 3(a) and Fig. 3(b).
These profiles are similar to the ones given in (Devasia, 1997). We apply both the generalised
Hou-Patton and SDI approaches to this model in order to track the desired profiles. The results
are as shown in Fig. 3. In each of the response plots, we superimpose the desired and actual
trajectories. Evidently, both techniques perform reasonably well in the absence of noise, and
are comparable to the results in (Devasia, 1997).

7 Conclusions

The stable inversion technique is applicable to a large class of systems. However, it consists
of numerical computation of a dichotomy in the case of non-minimum phase systems, and it
does not take into account noise in the system. A numerically more efficient procedure is the
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combination of the inner-outer factorisation with the Hou-Patton approach. However, it is
evident that this generalisation is still unable to reasonably handle noise. The Stable Dynamic
model Inversion technique overcomes these main drawbacks; it is both numerically efficient
and tries to overcome the system noise, thereby making it rather suitable for time waveform
replication of target time histories. The extension of SDI for the task of output tracking of
nonlinear time-varying linear systems is currently being investigated. Further, methods to make
SDI robust towards modelling uncertainties and parameter variations are also being considered.
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Figure 1: Time Waveform Replication: Application of the generalised Hou-Patton approach to
a lunar roving vehicle; – – output of system; — desired signal.
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Figure 2: Time Waveform Replication: Application of the Stable Dynamic model Inversion
approach to a lunar roving vehicle; – – output of system; — desired signal.
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(a) Generalised Hou−Patton Approach
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(c) SDI Approach
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(d) SDI Approach

Figure 3: Application to helicopter example; – – output of system; — desired signal.
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