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Abstract

On a chip re�ner the gain of the transfer function between the re�ner motor load and the

plate gap is both nonlinear and time-varying, with reversal in the sign of the gain indicating

the onset of pulp pad collapse towards lower values of the plate gap. The control objective is

to regulate the motor load while avoiding pad collapse. The problem is principally stochastic

in nature, since the gap at which gain reversal occurs can wander unpredictably. An active

suboptimal dual controller is designed to control the motor load by manipulating the plate

gap. It uses an adaptive Kalman �lter to track both slow drifts and sudden sign changes in

the gain. The controller minimizes a myopic nonlinear performance index designed especially

to re
ect the peculiarities of the process. Thus, no heuristic logic is needed. Simulations

show the superior performance o�ered by this strategy.

1 Introduction

Wood chip re�ners are now used extensively to produce wood pulp in thermomechanical pulping

(TMP) plants and in high-yield or chemical thermomechanical pulping plants. Although there

has been a fair amount of activity in the development of control systems for TMP plants, today

only a small fraction of TMP plants in operation in the world are under closed-loop control.

Among the reasons for this situation, are the problems associated with on-line sensing of the

pulp quality and the fact that a chip re�ner is a di�cult process to control. At the heart of

any TMP control system is the re�ner motor load control loop. It is a di�cult loop to control

because its gain is subject to slow drifts as well as to sudden changes in sign.

In the past, there have been a number of di�erent approaches to that problem. Horner

and Korhonen (1980) proposed to use gain scheduling to compensate for plate wear, assum-

ing exponential decay of the gain and relying on operator judgment for the severity of plate

clashes. Plate gap sensors and plate clash detectors using vibration monitors have been used

in conjunction with heuristic logic to try to detect pad collapses. Although very useful as last

resort safety devices, they are not used much in practice. A �rst attempt at applying adaptive

control (�Astr�om and Wittenmark, 1995) to the chip re�ner was made by Dumont (1982), using a

self-tuning regulator consisting of a recursive least-squares parameter estimator with a variable

forgetting factor (Fortescue et al., 1981) and a Dahlin controller. A set of rules was used to back

out the plates and restore the pulp pad in the case of pad collapse. Although some success on an

industrial re�ner was reported, the strategy was deemed unreliable for continuous, unsupervised

operation. The main problem was in adjusting the variable forgetting factor scheme to track

both slow drits and abrupt changes (Dumont, 1986).
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The notion of dual control was �rst introduced by Feldbaum (1960-61) in the early sixties.

A few years later, �Astr�om and Wittenmark (1971) pointed out that adaptive control strategies

based on the certainty equivalence principle (�Astr�om and Wittenmark, 1995) can be signi�cantly

inferior to the case where dual control is used. The intractability of the optimal dual controller,

due to the excessive numerical computations required, has motivated the development of subop-

timal approaches (Wittenmark, 1995) that attempt to retain the dual property of the optimal

controller. Meanwhile, progress in numerical methods has made possible the computations of

the optimal dual control law for a simple process with unknown gain (�Astr�om and Helmersson,

1982). Simulations show that the dual controller behaves well on such a process even when the

gain changes sign. Because the model describing the motor load can be reduced to a simple

process with unknown gain, it seems reasonable to study the applicability of dual control to

that problem. Dumont and �Astr�om (1988) investigated several alternatives including active

suboptimal dual control with a nonlinear performance index tailored to ful�ll the demands of

the process nonlinear nature. Their technique proved reliable and performed well in simula-

tions. Their work, however, was limited to simulation studies of simple, �rst-order, delay-free

systems with white noise disturbances. Allison et al. (1995) developed what is probably the �rst

application of dual control to process control. The controller is an active adaptive controller,

which consists of a constrained certainty equivalence approach coupled with an extended output

horizon, a cost function to get probing and some heuristic logic to deal with the nonlinear-

ity. More recently, Ismail and Dumont (1999) extended the approach in (Dumont and �Astr�om,

1988) to handle time delays and employed adaptive Kalman �ltering to accurately track the

gain variations. This article further extends that control strategy by considering coloured noise

disturbances.

The rest of this article is organized as follows. In the next section, process dynamics are

described in some detail. Next to that, process modelling and adaptive Kalman �ltering are

discussed. Finally, the controller is introduced and the design is supplemented with appropriate

simulation.

2 Process Description

A chip re�ner consists of either one �xed and one rotating or two rotating grooved plates, with

pressure exerted on one of them by a hydraulic cylinder (see �gure 1). Wood chips and dilution

water are fed near the axis and forced to move outward between the plates by centrifugal and

friction forces. Steam produced by evaporation and chips broken down into �bers by mechan-

ical action create a few hundred micrometers thick pad between the plates. Steam and pulp

are discharged at the periphery. The speci�c energy, or energy per mass unit of wood �bres,

is a major factor controlling the pulp quality, thus, both wood feed rate and motor load need

to be controlled. The chip feed rate must be held constant to meet production requirements.

To control the motor load, the plate gap is adjusted by manipulating the hydraulic pressure.

Although plate gap sensors are available, the common practice is to simply measure the shaft

displacement to indicate plate movement. However, because of plate wear and thermal expan-

sion, this does not provide an absolute measurement of the gap. The hydraulic pressure is

generally manipulated by sending a pulse to a microdial commanding a servo valve directing oil

to the cylinder (Stebel and Aeby, 1980).

The process dynamics are both nonstationary and nonlinear. The nonstationarity is due

to the variability in the feed characteristics, such as wood species, chip size and density as

well as to plate wear. As the plates wear, the noise level increases and the process gain drops

dramatically (Rogers et al., 1980). Wear generally occurs gradually over a period of several
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Figure 1: Schematic diagram of a chip re�ner.

hundred hours but can also occur quickly in case of plate clash, i.e., metal to metal contact

between the plates. In manual operation, plate clashing is a very fast phenomenon primarily

related to feeding problems. It is highly undesirable as it disrupts production and damages the

plates. An idealized steady-state operating curve for a chip re�ner is shown in �gure 2. As

the gap decreases, a maximum load is reached. If the gap is reduced further, the load drops

sharply as the pad -no longer able to sustain the pressure- collapses. This causes the incremental

gain between load and gap to change sign. This also corresponds to the point where the re�ner

starts cutting �bers. Then, for the pad to rebuild and the gain to become negative again,

the gap has to be opened past the point where the collapse occured. This corresponds to the

hysteresis pattern in �gure 2. To avoid plate clashing, the re�ner must be operated in the safe

region where closing the gap increases the load. Productivity and pulp quality considerations

often dictate operating the re�ner close to the maximum load where pad collapse is always a

possibility. A further complication comes from the fact that the curve in �gure 2 depends on

feed characteristics, re�ning zone consistency, plate wear, etc. and thus, the maximum load and

the collapse point vary and are unpredictable.

The chip re�ner dynamics are essentially due to the hydraulic system. Thus, the chip re�ner

can be modeled by a discrete linear system with an output nonlinearity as described by the

following equations.

�x(t) =
k(1� a)

1� aq�1
�u(t� d) (1)

where � is the increment operator, �u the duration of the pulse sent to the hydraulic cylinder,

x the plate gap, a the process pole, and d the dead time. The load y is given by

y(t) = g(x(t)) (2)

where g(x) represents the load-gap nonlinearity. Then,

�y(t) =
dg(x)

dx
�x(t) (3)

This linear model is a reasonable approximation of the actual system for small variations around

the operating point. Using equation 1, we can write

�y(t) = a�y(t� 1) + b(x)�u(t� d) (4)
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Figure 2: Motor load versus plate gap.

where

b(x) = k(1� a)
dg(x)

dx
(5)

Typical values of the dead time and the time constant were found to be respectively 4 sec and 7

sec on a double disc re�ner (Rogers et al., 1980). For a sampling interval Ts = 2 sec, this gives

�y(t) = 0:75�y(t� 1) + b(x)�u(t� 3) (6)

With exact knowledge of k, x and g(x), the control of the system (equation 6) is trivial. Un-

fortunately, as mentioned earlier, not only is the exact nonlinearity unknown, but it is also

time-varying.

A simplistic approach to this control problem is to ignore the nonlinearity and use a �xed-

parameter linear controller. As long as a reasonable gain is used for the particular operating

point, the performance is satisfactory. However, if, for some reason, the re�ner enters the zone

where the gain is positive, the closed-loop system becomes unstable. This situation is inevitable

if the setpoint were made greater than the maximum load, in which case the controller would

actually accelerate pad collapse and induce plate clashing as a result of the gain sign change

associated with traversing the critical gap. A solution to prevent plate clashing in case of pad

collapse could consist in opening the gap when it is below a given value. However, the collapse

point is not constant and is rather unpredictable. Moreover, this can induce a cyclic behaviour,

creating oscillations between the open position and the lower gap limit. What is really needed

is a control scheme that can recover on its own from a pad collapse without plate clash and that

also tracks the slow drift in gain due to plate wear.

3 Process Modelling and Adaptive Kalman Filtering

The linearized stochastic model of a chip re�ner is

�y(t) = a�y(t� 1) + b(t)�u(t� 3) + e(t)� ce(t� 1) (7)

1745

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



where e(t) is a white noise sequence N(0; �) and c is the noise �lter zero. By de�ning the �ltered

output v(t) as

v(t) =
�y(t)� a�y(t� 1)

1� cq�1
(8)

and s(t) as

s(t) =
b(t)�u(t� 3)

1� cq�1
(9)

Then, equation 7 can be rewritten as

v(t) = s(t) + e(t) (10)

Assuming that the gain b is described by

b(t+ 1) = b(t) + w(t) (11)

where w(t) is additional white noise N(0; �), then s(t+ 1) can be expressed as

s(t+ 1) = cs(t) + �u(t� 2)b(t) + �u(t� 2)w(t) (12)

Using equations 10-12, the chip re�ner is represented by the following nonlinear state-space

model

x(t+ 1) = F (t)x(t) + 
(t) (13)

v(t) = Hx(t) + e(t) (14)

where x(t) is the state vector

x(t) =

"
b(t)

s(t)

#
(15)

F (t) is the state transition matrix

F (t) =

"
1 0

�u(t� 2) c

#
(16)


(t) is the state noise vector


(t) =

"
w(t)

�u(t� 2)w(t)

#
(17)

and H is the output matrix

H =
h
0 1

i
(18)

The gain b can then be estimated using a standard Kalman �lter.

"(t) = v(t)�Hx̂(tjt� 1) (19)

K(t) = P (tjt� 1)HT
�
�
2 +HP (tjt� 1)HT

�
�1

(20)

x̂(tjt) = x̂(tjt� 1) +K(t)"(t) (21)

x̂(t+ 1jt) = F (t)x̂(tjt) (22)

P (tjt) = (I �K(t)H)P (tjt� 1) (23)

P (t+ 1jt) = F (t)P (tjt)F (t)T +G(t)�2 (24)
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where

G(t)�2 = E
n

(t)
T (t)

o
=

"
1 �u(t� 2)

�u(t� 2) �u2(t� 2)

#
�
2 (25)

Dumont and �Astr�om (1988) pointed out that the performance of the estimator is quite

in
uenced by the choice of �. It was suggested that � should be time-varying due to the fact

that the gain undergoes two types of changes: slow drifts due to plate wear and sudden jump

changes due to pad collapse. Since no apriori knowledge is available, direct estimation of the

process noise variance �2 will be investigated in this paper. In Kalman �ltering, the problem

of estimating the noise covariances is known as adaptive �ltering. Adaptive �ltering was a very

active �eld in the late sixties and early seventies. For a recent survey of di�erent approaches

see (Isaksson, 1988). An enhanced version of Isaksson's adaptive Kalman �lter (Isaksson, 1988)

will be used. Isaksson's algorithm is based on expressing "2(t) as a linear function of �2 and �2

and using a least-squares approach to estimate the noise variances. We now derive the adaptive

�lter algorithm.

If we de�ne the estimation error as

~x(t) = x(t)� x̂(tjt� 1) (26)

We obtain, using equations 13, 21 and 22,

~x(t) = F (t� 1) (I �K(t� 1)H) ~x(t� 1) + 
(t� 1)� F (t� 1)K(t� 1)e(t� 1) (27)

Now, de�ne the conditional covariance of ~x(t) as

M(t) = E
n
~x(t)~xT (t) jYt�1

o
(28)

where Yt�1 denotes all data observed up to and including time t� 1. Note that, since the true

values of � and � are unknown, the Kalman �lter is not optimal, and so, P (tjt � 1) does not

represent the actual error covariance M(t). Using equation 27, M(t) is evaluated

M(t) = F (t� 1) (I �K(t� 1)H)M(t� 1) (I �K(t� 1)H)T F T (t� 1)

+G(t� 1)�2 + F (t� 1)K(t� 1)KT (t� 1)F T (t� 1)�2 (29)

Starting at time to, we may rewrite equation 29 as

M(t) = f (M (to) ; t) + T (t� 1)�2 +Q(t� 1)�2 (30)

where T (t) and Q(t) can be computed recursively as

T (t) = G(t) + F (t) (I �K(t)H)T (t� 1) (I �K(t)H)T F T (t) (31)

Q(t) = F (t)K(t)KT (t)F T (t) + F (t) (I �K(t)H)Q(t� 1) (I �K(t)H)T F T (t) (32)

If we have a stable Kalman �lter, the �rst term in equation 30 will tend to zero as t increases.

Hence, we may neglect the in
uence of the initial values andM(t) is then a known linear function

in �2 and �2. We can use this fact in the following way.

The prediction error, de�ned in equation 19, can be expressed as

"(t) = H~x(t) + e(t) (33)
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We get the conditional variance of "(t)

E
n
"
2(t) jYt�1

o
= HM(t)HT + �

2 (34)

Hence, it is possible to approximate "2(t) as

"
2(t) =

h
HT (t� 1)HT

i
�
2 +

h
HQ(t� 1)HT + 1

i
�
2 (35)

A simple recursive least-squares (RLS) estimator can then be used to estimate �2 and �2 based

on equation 35. To improve the accuracy of the adaptive �lter, two additional approximate

linear regressions are derived in the same way for the correlation functions E f"(t)"(t� 1) jYt�2g
and E f"(t)"(t� 2) jYt�3g. Then,

"(t)"(t� 1) =
h
HF (t� 1) (I �K(t� 1)H)T (t� 2)HT

i
�
2

+HF (t� 1)
h
(I �K(t� 1)H)Q(t� 2)HT �K(t� 1)

i
�
2 (36)

and,

"(t)"(t� 2) =
h
HF (t� 1) (I �K(t� 1)H)F (t� 2) (I �K(t� 2)H)T (t� 3)HT

i
�
2

+HF (t� 1) (I �K(t� 1)H)F (t� 2)

�
h
(I �K(t� 2)H)Q(t� 3)HT �K(t� 2)

i
�
2 (37)

The implemented RLS estimator utilizes the three linear regressions (equations 35-37).

Since � is assumed time-varying, the RLS estimator employs an exponential forgetting factor.

As suggested by Isaksson, the estimates �̂ and �̂ are not used to improve the Kalman �ltering

of the gain b(t) until they are likely to have converged. This is carried out in the simulations by

waiting 500 sec before using �̂ and �̂ in the Kalman �lter.

4 Active Suboptimal Dual Control

Most control laws suggested so far for the re�ner motor load control loop are all linear in �u

and, because of that, require the addition of heuristic logic to handle pad collapses. Although

the exact nonlinearity is not known, its general shape is known apriori. It is thus natural to use

a performance index that yields a nonlinear control law. An important feature of the control

criterion is that control in the positive gain zone should be severely penalized if not prohibited.

When the gain estimate is negative and is relatively of large amplitude, closing the gap should

obviously be allowed. However, as the estimate approaches zero, negative control actions should

be increasingly penalized. Furthermore, when the estimate is close to zero and the uncertainty

is large, probing should not tend to further close the plates. Given all these considerations, the

loss function is chosen as

J = E
n
(y(t+ 3)� yr(t+ 3))2 + e

mb(t+3)
e
��u(t) + �Pb(t+ 4jt) jYt

o
(38)

where yr is the setpoint, m and � are positive weighting constants and the covariance matrix P

is represented by P =

"
Pb Pbs

Pbs Ps

#
. The minimization is carried out with respect to �u(t).

The nonlinear function emb(t+3)e��u(t), �rst suggested by Dumont and �Astr�om (1988), sat-

is�es all preceding requirements while being simple.
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The future variance Pb(t+4jt) is included in the loss function as an arti�cial way to introduce
probing. This was �rst suggested by Wittenmark (1975) and later re�ned by Wittenmark and

Elevitch (1985). Using equation 24 and the inversion form of equation 23, we may write

P (t+ 2jt) = F (t+ 1)

�
1

�2
H

T
H + P

�1(t+ 1jt)

�
�1

F (t+ 1)T +G(t+ 1)�2 (39)

Then,

P (t+ 3jt) = F (t+ 2)

�
1

�2
H

T
H + P

�1(t+ 2jt)

�
�1

F (t+ 2)T +G(t+ 2)�2 (40)

Knowing �u(t� 1), P (t+ 2jt) is determined. P (t+ 3jt) is dependent on �u(t), yet, Pb(t+ 3jt)
is not. Pb(t+ 4jt) is given by

Pb(t+ 4jt) =
h
1 0

i � 1

�2
H

T
H + P

�1(t+ 3jt)

�
�1

"
1

0

#
(41)

Pb(t+4jt) is thus a deterministic function of �u(t). Pb(t+4jt) penalizes inaction in the presence
of large uncertainty, so, preventing the turn-o� phenomenon (�Astr�om and Wittenmark, 1971).

In fact, the e�ect of Pb(t+4jt) is to increase the magnitude of the optimal control that minimizes

the loss function J . This excess in magnitude can be viewed as a probing component to enhance

the quality of future estimates.

Using equation 7, y(t+ 3) can be written as

y(t+ 3) =
�
1 + a+ a

2 + a
3
�
y(t)�

�
a+ a

2 + a
3
�
y(t� 1) + b(t+ 3)�u(t)

+ b(t+ 2)(1 + a)�u(t� 1) + b(t+ 1)
�
1 + a+ a

2
�
�u(t� 2)

+ e(t+ 3) + (1 + a� c)e(t+ 2) +
�
1 + a+ a

2 � c(1 + a)
�
e(t+ 1)

� c

�
1 + a+ a

2
�
e(t) (42)

Provided that a and c are deterministic, the probability distribution of y(t + 3) given Yt is

gaussian. Equations 10 and 11 direclty lead to

E fe(t) jYt g = v(t)� ŝ(tjt) (43)

and,

b̂(t+ 3jt) = b̂(t+ 2jt) = b̂(t+ 1jt) = b̂(tjt) (44)

Using equations 42-44 and the facts: E
�
z2
	
= �2 + �2, and E femzg = e

m�+m
2

2
�2 , where z is

N(�; �), the expectation in equation 38 is evaluated

J =

2
64 b̂(t+ 1jt)�u(t) + b̂(t+ 1jt)(1 + a)�u(t� 1) + b̂(t+ 1jt)

�
1 + a+ a2

�
�u(t� 2)

+
�
1 + a+ a2 + a3

�
y(t)�

�
a+ a2 + a3

�
y(t� 1)� c

�
1 + a+ a2

�
(v(t)� ŝ(tjt))

�yr(t+ 3)

3
75
2

+ Pb(t+ 3jt)�u2(t) + Pb(t+ 2jt)(1 + a)2�u2(t� 1) + Pb(t+ 1jt)
�
1 + a+ a

2
�2

��u2(t� 2) + 2Pb(t+ 2jt)(1 + a)�u(t)�u(t� 1) + 2Pb(t+ 1jt)(1 + a)
�
1 + a+ a

2
�

��u(t� 1)�u(t� 2) + 2Pb(t+ 1jt)
�
1 + a+ a

2
�
�u(t)�u(t� 2) + 2c

�
1 + a+ a

2
�2

�Pbs(tjt)�u(t� 2) + 2c(1 + a)
�
1 + a+ a

2
�
Pbs(tjt)�u(t� 1) + 2c

�
1 + a+ a

2
�
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�Pbs(tjt)�u(t) + �
2

�
1 + (1 + a� c)2 +

�
1 + a+ a

2 � c(1 + a)
�2�

+
h
c

�
1 + a+ a

2
�i2

Ps(tjt) + e
mb̂(t+1jt)+m

2

2
Pb(t+3jt)e

��u(t) + �Pb(t+ 4jt)

(45)

Typical curves of this performance index for several values of b, P and for both a positive

and negative control error are plotted in �gures 3 and 4. Some comments on the loss function

and the resulting control law are now in order:

1. The in
uence of the nonlinear function emb(t+3)e��u(t) is negligible when the estimator is

con�dent that the re�ner is operating well inside the desirable zone. As the con�dence

decreases and the gain estimate increases, it is seen that the optimal control is pushed

towards positive values. So, the resulting control law tends to open the gap when closing

it is likely to induce a collapse.

2. The resulting control law will never attempt to control the re�ner in the pad collapse

region.

3. The use of probing is justi�ed by the fact that the gain estimate is the key to identifying

a pad collapse and that probing targets a portion of the input energy at contiuously

identifying that parameter.

4. No heuristic logic is needed, which makes the resulting controller more appealing for im-

plementation.

5. The optimal control cannot be computed analytically. For simulation purposes, it is ob-

tained through a Newton-Raphson numerical optimization scheme.
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Figure 3: The performance index J(�u(t)) (load below setpoint).
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Figure 4: The performance index J(�u(t)) (load above setpoint).

5 Simulations

The behavior of the strategy was thoroughly tested by way of computer simulations. The process

was simulated by equations 1 and 2 with the output nonlinearity g(x) represented by

g(x) = g1 � g2
(�x)4 + 1=3

(�x)3
(46)

In normal case � = 1. In collapsed state, i.e., when x < 0:9 mm, � = 0:77. Once in collapsed

state, the re�ner stays in that state until the plates are opened past the point where the two

curves intersect. Maximum load is achieved at x = 1 mm. For both curves g1 = 7600 and

g2 = 800. Other settings are: process pole a = 0:75, noise �lter zero c = �0:95, sampling

interval Ts = 2 sec, m = 12, � = 100, � = 0:5, initial gap xo = 1:6 mm, process noise standard

deviation initial estimate �̂o = 0:05 and measurement noise standard deviation initial estimate

�̂o = 0:4. In all simulations, it is assumed that the process pole and the noise �lter zero are

exactly known.

Figure 5 demonstrates the normal operation case, i.e., when the re�ner is operating well into

the negative gain zone. The control problem is relatively easy in this case as the gain varies

little. This is re
ected by �̂ being very small. For 1000 < t < 2000 sec, the setpoint is raised

by 250 kW to an unreachable value. If the controller tries to achieve the new setpoint, it will

induce a pad collapse. The controller performs very well as it does not provoke any collapse. It

keeps the load as close as possible to the unreachable setpoint while not closing the gap below

the collapse point. The adaptive Kalman �lter successfully tracks the rapid variations of the

gain as the gap alternates around the maximum load point x = 1.

In �gure 6, the re�ner is required to operate near maximum load, a situation preferred in

practice in order to maximize production but that carries a high risk of collapse. The controller

successfully maintains the motor load close to the setpoint while avoiding any collapse. Again,

the controller behaves very well as the setpoint is raised to an unreachable value for 1000 < t <

2000 sec.

Finally, �gure 7 depicts the occurrence of a pad collapse. The adaptive Kalman �lter is very

fast to react as seen from the process noise variance estimate and the gain estimate. The setpoint
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is reduced shortly after the gain sign has become positive. This situation (load above setpoint

and positive gain) usually poses a challenge to any chip re�ner control scheme as the controller

will tend to further close the gap if it directly tries to achieve the new setpoint. However, as

evident from the gap plot, the implemented controller opens the gap, recovers from the pad

collapse and brings the load to the new safe setpoint.
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Figure 5: Safe operation, then unreachable setpoint.
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Figure 6: Operation around zero gain.

1753

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



0 500 1000 1500 2000 2500 3000
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Time, sec

P
la

te
 g

ap
, m

m

0 500 1000 1500 2000 2500 3000
6200

6300

6400

6500

6600

6700

6800

Time, sec

M
ot

or
 lo

ad
 &

 s
et

po
in

t, 
kW

0 500 1000 1500 2000 2500 3000
−1

−0.5

0

0.5

1

1.5

2

Time, sec

A
ct

ua
l p

ro
ce

ss
 g

ai
n 

(d
as

he
d 

lin
e)

 &
 g

ai
n 

es
tim

at
e

0 500 1000 1500 2000 2500 3000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time, sec

E
st

im
at

io
n 

er
ro

r 
va

ria
nc

e

0 500 1000 1500 2000 2500 3000
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Time, sec

ρ 
es

tim
at

e

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time, sec

σ 
es

tim
at

e

Figure 7: Behavior of the controller when the pad collapses.

6 Conclusions

This paper has demonstrated that it is possible to obtain a reliable controller for the chip re�ner

motor load. This approach does not require additional heuristic logic or expensive dedicated

sensors. The adaptive Kalman �lter proved capable of tracking both slow drifts and abrupt
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sign changes in the gain. Probing seems to be bene�cial on various simulations. In the case of

pad collapse, the controller rapidly recovers on its own. Future work will focus on applying this

strategy to a chip re�ner.
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