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Technická 2, 166 27 Prague 8, CZ

and
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Abstract

An uncertain polynomial is robustly stable, or stable in the sense of Kharitonov, if it is
stable for any admissible value of the uncertainty, provided the uncertainty is not varying.
The same polynomial is quadratically stable, or stable in the sense of Lyapunov, if it is stable
for any admissible value of the uncertainty, regardless of whether the uncertainty is varying
or not. In this paper, relationships between robust and quadratic stability of discrete-time
uncertain polynomials are studied.

1 Introduction

Most results pertaining to the robust control literature can be cast into the two following cate-
gories:

• Kharitonov-like results, for systems with parametric or structured uncertainty.
Launched by the seminal Kharitonov theorem for polynomials with interval uncertainty,
these results generally apply to systems described in a transfer function setting (Barmish,
1994; Bhattacharyya et al., 1995).

• Lyapunov-like results, for systems with frequency-domain or unstructured uncertainty.
Originating from the work of Lyapunov on the stability of motion, these results generally
apply to systems described in a state-space setting (Boyd et al., 1994; Zhou et al., 1996;
Skelton et al., 1998).
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Despite this apparently neat separation, several results tend to show that both categories are
actually connected. For example, an early Lyapunov-based proof of the Routh-Hurwitz stability
criterion was unveiled in (Parks, 1962). In the same vein, Mansour and Anderson demonstrated
the theorem of Kharitonov via the second method of Lyapunov (Mansour and Anderson, 1992).
More recently (Henrion et al., 1998, 1999), efficient Linear Matrix Inequality (LMI) optimization
techniques, traditionally relevant in a state-space setting (Boyd et al., 1994; Zhou et al., 1996;
Skelton et al., 1998), were used as relaxation procedures when pursuing a polynomial approach
(Kučera, 1979, 1991) to control system design.

This paper aims at further reinforcing the above mentioned links. Thanks to the theory of
Schur-Cohn-Fujiwara matrices (Jury, 1974; Parks and Hahn, 1981) and to recent achievements
on bounded rate parameters (Amato et al., 1998), we enlighten some relationships between
robust (or Kharitonov) stability and quadratic (or Lyapunov) stability in the simple case of a
discrete-time polynomial affected by a single real uncertain parameter. Most of the material in
this paper is based on well established results. However, we believe that our main contribution
is in the way these results are combined to lend new insights into a key feature of robustness
theory.

The paper is organized as follows. In Section 2, we define the robust stability of an uncer-
tain polynomial and the associated real stability radius. A new polynomial matrix eigenvalue
technique is proposed for computing the real stability radius, based on the Schur-Cohn-Fujiwara
stability criterion. In Section 3, the quadratic stability of an uncertain polynomial is introduced,
together with the quadratic stability radius. An LMI technique is then described to compute
the quadratic stability radius. In Section 4, new links between both kinds of stability are inves-
tigated. For this purpose, we combine the Schur-Cohn-Fujiwara criterion and recently published
results on piecewise-constant Lyapunov functions. Following an illustrating numerical example,
the paper ends with some concluding remarks.

2 Robust Stability

Throughout the paper, we will study the discrete-time uncertain polynomial

p(z, r) = p0(z) + rp1(z)

where p0(z) is a Schur monic polynomial, p1(z) is a polynomial such that degp1(z) < degp0(z)
and r is an uncertain parameter belonging to a real symmetric interval, i.e.

|r| ≤ rmax. (1)

Several kinds of stability can be defined with respect to uncertain polynomial p(z, r). In this
section, we first focus on the definition most frequently encountered in the parametric approach
to control systems (Barmish, 1994; Bhattacharyya et al., 1995).

Definition 1 Uncertain polynomial p(z, r) is robustly stable if it is stable for any fixed value of
r such that (1) holds.

Definition 2 The real stability radius of p(z, r) is the smallest absolute value of r that destabi-
lizes p(z, r), i.e.

rR = min rmax s.t. p(z, r) is not Schur.
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There are several ways to evaluate the real stability radius of a polynomial. All of them stem
from the concept of a guardian map (Saydy et al., 1990). Well-known methods for computing rR

are the Schur matrix eigenvalue criterion (Barmish, 1994) and the Sylvester resultant eigenvalue
criterion. The latter has the advantage of being easily extended to polynomial matrices (Šebek
and Kraus, 1996). In the sequel, we propose a new, alternative method for evaluating rR. It is
based on a straightforward use of the Schur-Cohn-Fujiwara matrix of a polynomial.

Definition 3 (Jury, 1974; Parks and Hahn, 1981) Let a(z) = a0+a1z+. . .+anzn be a discrete-
time polynomial such that an > 0. The (i, j)th entry of the n×n symmetric Schur-Cohn-Fujiwara
(SCF) matrix Pa associated with a(z) reads

[Pa]ij =
min(i,j)∑

k=1

(an−i+kan−j+k − ai−kaj−k).

For n = 3 one has, for example,

Pa =

 a2
3 − a2

0 a2a3 − a1a0 a1a3 − a2a0

a2a3 − a1a0 a2
3 + a2

2 − a2
0 − a2

1 a2a3 − a1a0

a1a3 − a2a0 a2a3 − a1a0 a2
3 − a2

0

 .

Based on the above matrix is the Schur-Cohn-Fujiwara stability criterion, the quadratic coun-
terpart to Schur determinantal criterion.

Theorem 1 (Jury, 1974; Parks and Hahn, 1981) Polynomial a(z) is Schur if and only if SCF
matrix Pa is positive definite.

When considering stability of uncertain polynomials, we shall also use compound SCF matrices,
defined as follows.

Definition 4 Let a(z) = aeven(z2) + zaodd(z2) and b(z) = beven(z2) + zbodd(z2). Define c(z) =
aeven(z2) + zbodd(z2). The Schur-Cohn-Fujiwara matrix of a(z) and b(z) is defined as

Pab = Pc.

Using Definition 4, Theorem 1 and the results on compound SCF matrices developed in (Henrion
et al., 1998), we can state the following

Lemma 1 The real stability radius rR of polynomial p(z, r) is the real zero of quadratic polyno-
mial matrix

Pp(r) = Pp0 + r(Pp0p1 + Pp1p0) + r2Pp1.

that lies nearest to the origin, i.e.

rR = min |r| s.t. det Pp(r) = 0 and Im r = 0.

Zeros of polynomial matrices can be computed for instance with the eigenvalue method proposed
in (Kwakernaak and Šebek, 1994). Note that, although not mentioned in (Saydy et al., 1990),
the SCF matrix introduced in Definition 3 also belongs to the family of guardian maps for
discrete-time polynomials. The continuous-time counterpart of the SCF matrix was recently
used in (Henrion et al., 1998, 1999) to derive robust controller design methods through the
polynomial approach. We shall make use of the SCF matrix later on in Section 4.
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3 Quadratic Stability

In this section, we introduce a new kind of stability for uncertain polynomial p(z, r), originally
defined for linear systems in a state-space setting (Boyd et al., 1994; Zhou et al., 1996; Skelton
et al., 1998).

For this purpose, suppose that uncertain parameter r is time-varying and denote by r(k) the
value taken by r at sample times k = 0, 1, 2, . . .. Let p(z, r(k)) be the characteristic polynomial
appearing at the denominator of the transfer function of a discrete-time uncertain linear system

xk+1 = A(r(k))xk, (2)

i.e. it holds
p(z, r(k)) = det(zI − A(r(k))).

When entries of state-space matrix A(r) depend affinely on uncertain parameter r, then the affine
dependence of p(z, r) with respect to r is preserved if A(r) is affected by rank-one perturbations
(Barmish, 1994). One possible choice is to select A(r) as the companion matrix of p(z, r), viz.

A(r) =


0 1

. . .
1

−p00 −p01 · · · −p0n−1


︸ ︷︷ ︸

A0

+r


0 0

.. .
0

−p10 −p11 · · · −p1n−1


︸ ︷︷ ︸

A1

. (3)

In order to study uncertain linear system (2), the notion of quadratic stability was introduced
(Barmish, 1985). It can readily be extended to cover stability of uncertain polynomial p(z, r).

Definition 5 Uncertain polynomial p(z, r) is quadratically stable if and only if there exists a
symmetric positive definite matrix P such that

A′(r(k))PA(r(k))− P < 0 (4)

for any k = 0, 1, 2, . . .

Quadratic stability has launched an entire area of research in the late eighties, based on the
simple but remarkable fact that, under some assumptions on the uncertainty, the problem of
finding a unique Lyapunov matrix valid on the whole uncertainty set can be cast into a con-
vex optimization problem (Bernussou et al., 1989). Later on, these problems where coined as
LMI optimization problems and shown to be solved efficiently via semidefinite programming,
a generalization of linear programming to the cone of positive definite matrices (Boyd et al.,
1994).

With notation (3), LMI (4) can be written as a polynomial matrix inequality linear in P and
quadratic in r

(A′0PA0 − P ) + r(A′1P + PA1) + r2A′1PA1 < 0,

or, equivalently, using a standard Schur complement argument, as an LMI eigenvalue problem
in r [

A′0PA0 − P 0
0 −P

]
+ r

[
A′1P + PA1 A′1P

PA1 0

]
< 0. (5)
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As a result, LMI (4) is convex in r: the inequality holds for any r(k) within the interval
[−rmax, rmax] if and only if it holds at both extrema.

Lemma 2 Uncertain polynomial p(z, r) is quadratically stable if and only if there exists a sym-
metric positive definite matrix P such that

A′(−rmax)PA(−rmax)− P < 0
A′(rmax)PA(rmax)− P < 0.

(6)

A noteworthy property of quadratic stability is that the uncertain parameter r(k) can vary
arbitrary fast without threatening stability of polynomial p(z, r(k)). We shall elaborate further
on this point in the next section.

Definition 6 The quadratic stability radius of p(z, r) is the smallest absolute value of r such
that p(z, r) is not quadratically stable, i.e.

rQ = min rmax s.t. (6) is infeasible.

The next lemma follows from Lemma 2 and inequality (5).

Lemma 3 The quadratic stability radius rQ of polynomial p(z, r) can be obtained by solving for
a symmetric positive definite matrix P the eigenvalue LMI optimization problem

rQ = max r

s.t.
[

A′0PA0 − P 0
0 −P

]
+ r

[
A′1P + PA1 A′1P

PA1 0

]
< 0[

A′0PA0 − P 0
0 −P

]
− r

[
A′1P + PA1 A′1P

PA1 0

]
< 0.

4 Links Between Robust and Quadratic Stability

In this section, we focus on establishing links between the previously defined notions of robust
and quadratic stability of polynomial p(z, r).

Note that robust stability implies that p(z, r) is stable for any fixed value of r such that |r| ≤ rR

but does not imply anything about stability of p(z, r) when r varies. Conversely, quadratic
stability precisely ensures that p(z, r) remains stable for any arbitrarily fast varying r, provided
|r| ≤ rQ. Obviously, it holds

rQ ≤ rR.

In a recent publication (Amato et al., 1998), Amato and co-workers studied linear systems
with stability radii located between rQ and rR. Motivated by their results, we first propose
a straightforward reformulation of their main theorem. Then, we show that the Schur-Cohn-
Fujiwara matrix defined in Section 2 will prove useful to unveil relationships between robust and
quadratic stability of uncertain polynomials.
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As in Section 3, we suppose that uncertain parameter r is time-varying and denote by r(k) its
value at time k = 0, 1, 2, . . .. The variation of r at time k is defined as ∆k = |r(k + 1)− r(k)|.
We say that r varies at rate ∆ if

∆ = max
k=0,1,2,...

∆k.

Moreover, suppose that the uncertainty interval [−rmax, rmax] is split into N sub-intervals
[ri−1, ri] such that r0 = −rmax, rN = rmax and

ri − ri−1 ≥ ∆ (7)

holds for any i = 1, 2, . . . , N .

Theorem 2 Given a partition of the uncertainty interval into N sub-intervals [ri−1, ri], i =
1, 2, . . . , N , uncertain polynomial p(z, r) is stable with r varying at rate ∆ if there exists a
family of symmetric positive definite matrices P1, P2, . . .PN such that

A′(rj)PiA(rj)− Pk < 0 (8)

for i = 1, 2, . . . , N, j = i− 1, i, k = i− 1, i, i+ 1 and 1 ≤ k ≤ N .

The proof, developed in (Amato et al., 1998), follows by considering the first difference of the
Lyapunov function associated to linear system (2). Note that Theorem 2 is only a sufficient
condition of stability dependent upon the partitioning of the uncertainty interval. Associated
to Theorem 2 is the following stability radius.

Definition 7 Given a partition of the uncertainty interval, the bounded-rate stability radius of
p(z, r) is defined as

rB = min rN s.t. (8) is infeasible.

The following result is the counterpart to Lemma 3.

Lemma 4 Given a partition of the uncertainty interval into N sub-intervals [ri−1, ri], i =
1, 2, . . . , N , the bounded-rate stability radius rB of polynomial p(z, r) can be obtained by solving
for symmetric positive definite matrices P1, P2, . . . , PN the eigenvalue LMI optimization problem

rB = max rN

s.t.
[

A′0PiA0 − Pk 0
0 −Pi

]
+ rj

[
A′1Pi + PiA1 A′1Pi

PiA1 0

]
< 0

for i = 1, 2, . . . , N, j = i− 1, i, k = i− 1, i, i+ 1 and 1 ≤ k ≤ N .

It must be underlined that the maximum rate of variation ∆, the stability radius rB and the
partition of the uncertainty interval are strongly intercorrelated parameters.

Theorem 2 therefore provides a piecewise-constant Lyapunov matrix that proves stability of
uncertain polynomial p(z, r) given a partition of the uncertainty interval and provided r(k)
varies sufficiently slowly. Our main observation then follows from the study of the two following
extreme cases:
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Corollary 1 When N = 1, there is no partition of the uncertainty interval. Theorem 2 reduces
to Lemma 3 and becomes a sufficient condition of quadratic stability, i.e.

rB = rQ.

Proof Lemma 3 ensures stability of polynomial p(z, r) for arbitrary fast varying uncertainty
r, hence it ensures bounded-rate stability of p(z, r) for arbitrary variation rate ∆. 2

Corollary 2 When N → ∞, parameter r tends to vary continuously within the uncertainty
intervals. The piecewise-constant Lyapunov matrix tends to vary continuously with r and can be
considered as parameter dependent. Theorem 2 becomes a sufficient condition of robust stability,
i.e.

rB = rR.

Proof As shown in (Parks and Hahn, 1981), the SCF matrix introduced in Definition 3 is
actually a special choice of a parameter dependent Lyapunov matrix. More precisely, if P (r) is
the SCF matrix of polynomial p(z, r) as in Lemma 1 and A(r) is the companion matrix defined
in equation (3), it can be shown that

x′k[A
′(r(k))P (r(k))A(r(k))− P (r(k))]xk < 0

for any non-zero vector xk in the trajectory of linear system (2). Since mini(ri − ri−1) tends
to 0, the rate of variation ∆ also tends to 0 in view of relation (7). As a result, stability of
uncertain polynomial p(z, r) is only ensured when r is constant. 2

5 Example

We consider the example given in (Amato et al., 1998) where

p0(z) = z2 − 1.9979z + 0.9980
p1(z) = −8 · 10−5.

First we compute the real stability radius with the help of Lemma 1. The quadratic SCF matrix
reads

P (r) = 10−3

[
3.9960 −3.9958
−3.9958 3.9960

]
+ 10−4r

[
1.5968 −1.5983
−1.5983 1.5968

]
+

10−9r2

[
−6.4000 0

0 −6.4000

]
.

Using the Polynomial Toolbox for Matlab (Šebek et al., 1998; Šebek and Kwakernaak, 1999),
we found that the zeros of this polynomial matrix are located at 4.9951 · 104, −25.004, −24.996
and 1.2500. Hence

rR = 1.2500.

The quadratic stability radius is derived by carrying out a one-dimensional search on the LMI
optimization problem of Lemma 3 where

A0 =
[

0 1
−0.9980 1.9979

]
A1 =

[
0 0

8 · 10−5 0

]
.
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With the LMI Control Toolbox for Matlab (Gahinet et al., 1995), we got

rQ = 0.2483.

Then, we considered bounded-rate stability radius rB for a partition of the uncertainty interval
into N sub-intervals [ri−1, ri], i = 1, 2, . . . , N of equal lengths, i.e. ri = (2i − N )r/N . Using
Lemma 4, we computed values of rB as a function of N . Our results are reported in Table 1.

N 1 2 3 4 5 10
rB 0.2483 0.2504 0.2519 0.2539 0.2557 0.2653
N 15 20 25 30 35 40
rB 0.2749 0.2845 0.2942 0.3040 0.3136 0.3180

Table 1: Stability radius rB versus number of partitions N .

Practically, the size of the LMI systems to be solved precluded us from computing rB for higher
values of N . Theoretically, when N tends to infinity, radius rB tends to rR as pointed out in
Corollary 2. A special choice of a parameter dependent Lyapunov matrix is the SCF matrix
P (r) given above.

6 Conclusion

In this note, we combined several results of the robust control literature to provide new insights
into the relationships existing between Kharitonov and Lyapunov approaches to robustness.
Using a piecewise-constant Lyapunov function defined on a partitioned uncertainty interval, we
showed that, for a discrete-time polynomial featuring a single uncertain parameter,

• quadratic stability corresponds to a partition into a single interval and a constant Lyapunov
function, whereas

• robust stability corresponds to a partition into an infinite number of intervals and a
parameter-dependent Lyapunov function. One possible choice of Lyapunov matrix is the
Schur-Cohn-Fujiwara matrix.

Several open research directions underline the fact that the results proposed in this note are only
preliminary. Relevant topics include extensions of our work to continuous-time uncertain poly-
nomials, to polynomials with several uncertain parameters and to robust stability of polynomial
matrices.
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Kwakernaak, H. and M. Šebek (1994). “Polynomial J-spectral Factorization”, IEEE Transactions on
Automatic Control, 39, pp. 315–328.

Mansour, M. and B. D. O. Anderson (1992). “Kharitonov’s Theorem and the Second Method of Lya-
punov”, in Mansour, M., S. Balemi and W. Truöl (Editors), Robustness of Dynamic Systems with
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