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Abstract

It is well known that different radar signal waveforms produce very different resolution
cells. These affect fine measurement error, gross measurement error through spurious sidelobe
“pop-ups”, and miss probability, and hence yield different tracking performance. In a recent
paper, sonar waveform selection was explored via the hybrid conditional averaging (HYCA)
method — a technique for evaluating the dynamic interaction between tracking and imperfect
detection. Extension to the radar case is the subject of this paper, and this is more than
evolutionary, since in order that range-rate measurements be available from resolution cells
it is necessary that coherent processing of multiple pulses be used.

1 Introduction

Radar measurement and resolution performance, as well as target detection in clutter, depend
strongly on the transmitted waveform. For example, constant frequency (CF) pulses yield
good Doppler but poor delay resolution; and linearly frequency-modulated (LFM) transmitted
waveforms have the opposite behavior. The choice of a suitable waveform is one of the more
important problems of radar or sonar design, as the waveform controls resolution and clutter
performance and also affects system cost.

The conventional approach to tracking system design has been to treat the sensor and track-
ing subsystems as completely separate entities: the two basic functions — automatic detection
and tracking — are viewed and designed independently. Recently some authors have begun to
investigate waveform selection problems from a system engineering point of view — see figure 1.
In [Daum (1992)] the importance of waveform design from a tracking point of view is discussed.
The author presents a comprehensive discussion of system considerations for multiple target
tracking, including aspects of both measurement pattern optimization and waveform optimiza-
tion. In [Kershaw and Evans (1997)] an adaptive waveform-selective probabilistic data associa-
tion (WSPDA) algorithm for tracking a single target in clutter is presented. The assumption of
an optimal receiver allows the inclusion of transmitted waveform specification parameters in the
tracking subsystem equations, leading to a waveform selection scheme where the next transmit-
ted waveform parameters are selected so as to minimize the average total mean-square tracking
error at the next time step. This algorithm does not actually design the optimal waveform, but
rather chooses the best from a set of allowable waveforms containing a number of classes.

In [Rago et al. (1998)] the authors explored the relationship between the pulse shape and the
detection performance, and computed the corresponding measurement noise and state prediction
covariance matrix, where the latter was derived via the algebraic Riccati Equation modified
by the hybrid conditional averaging (HYCA) technique to account for missed detections. A
number of observations were made, among the more important being that for a kinematic target
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an upsweep linear frequency modulation (LFM) signal was superior to downsweep LFM and to
constant frequency (CF) pulses due to the negative correlation between range and range-rate
measurements. This is particularly so for low maneuvering-index targets.

In [Niu et al. (1999)] the analysis technique of [Rago et al. (1998)] was improved and aug-
mented by adopting a consistent model of the resolution cell, and by incorporating the effect of
false alarms. Thus:

e A probabilistic data association filter (PDAF) rather than a Kalman filter was assumed
for tracking; hence both missed detections and false-alarms were accounted for.

e A realistic detection model was used: the effect of spurious detections caused by sidelobe
“pop-ups” was incorporated.

e A “constant-volume” definition of the resolution cell was used; hence, it was possible to
compare different waveforms in a consistent manner.

e A wide variety of waveforms was studied.

In order to obtain measurements for tracking, a practical consideration is that interrogation for
targets’ presence or absence is possible only at a grid of sampling points, and hence a resolution
cell must arise. In [Rago et al. (1998)] these resolution cells were defined by probability of detec-
tion contours, and hence there was considerable variation in both size and shape, with the upshot
that certain of the resulting plots were “choppy” in appearance. Those in [Niu et al. (1999)]
are quite smooth; further, since the resolution cell was of constant volume — meaning that the
computational load accruing from “sampling” was held fixed — a wider variety of waveform
types could reasonably be studied and compared. In fact, a menu of CF, LFM, parabolic FM,
XFM/VFM, coded pulses, and hybrids were explored.

The results in [Niu et al. (1999)] were limited to the sonar situation. The main reason
for this, aside from the inherent interest of tracking underwater targets, was a reliance on
single-pulse operation. Central to the analysis is an assumption that a target’s true location is
uniformly distributed within a range/range-rate resolution cell; in order that this be applicable
to the radar case it is necessary either that (i) the pulse-length be unrealistically long (several
milliseconds); or (ii) the radar frequency be unrealistically high (several hundred gigahertz); or
(iii) the target’s range-rate be unrealistically fast (Mach 10 or more). Without such assumptions
it is not reasonable to assume uniformity; in fact, there is little reason for a target to escape from
a zero-Doppler resolution cell. (Many radar systems [Daum (1992), Levanon (1988)] appear
to operate in this way, with range-only measurements: Doppler appears only as a somewhat
predictable perturbation about a true range measurement. )

With extension to a multi-pulse radar operating in a coherent mode [Scheer and Kurtz (1993)]
the above objections become moot, since the effective pulse duration can become quite long.
Thus, in this paper we extend analysis to the radar situation:

e [t is assumed that the radar signal is operating in a multi-pulse mode.

e [t is assumed that there is appropriate signal processing to avoid dilution of results from
the “bed of nails” ambiguity function inherent to multi-pulse operation.

The effect of the volume of resolution cell is explored.

The effect of the number of pulses is explored.

Both CF and LFM pulse trains, with Hamming and rectangular weighting, are studied.
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e Both an “averaging” and “strongest return” approach to derivation of the measurement
to be presented to the tracker from the resolution-cell-sampled returns are studied.

With respect to the second item above, the analysis of [Niu et al. (1999)] would have accorded
a multiple-pulse waveform an unrealistically high measurement inaccuracy.

2 Modeling

2.1 Detection

Receiver processing is assumed, without loss of generality, to be performed at “baseband”; that
is, subsequent to carrier-removal via mixing. If the transmitted baseband signal is s(t), the
matched filter is the one with an impulse response h(t) = s*(—t), i.e. the impulse response
of the matched filter is the conjugate time-reversed baseband signal. With r;(¢) the received
waveform, and r(t) the baseband representation of r;(¢), we have, as an output process of our
matched filter,

o) = / S (A= )r(N)e 927TA 1)

/ 50— )r(N)dA (1)

where fy is the carrier frequency, and s(t) is a replica of the transmitted baseband signal.
The (baseband) received signal will be modeled as a return from a Swerling 1 target, meaning
that we have [Levanon (1988)]

r(t) = (Z Al-) s(t, 7, fa)Z(target) + v(t)
= As(t —7)d* L (target) + v(t) (2)

where s(t, 7, f1) = s(t — 7)e??™/at is a delayed (1) and Doppler-shifted (f4) replica of the emitted
baseband complex envelope signal s(t), and Z(target) is a target indicator. The complex numbers
A; represent the amplitude and phase of each of the target reflectors. For a Swerling 1 model
the assumption is that there are many such reflectors, each one with a random amplitude and
phase. Hence A =3, A; approaches a complex Gaussian random variable with zero mean and
variance 20%. [Levanon (1988)]. We assume v(#) is complex white Gaussian noise independent
of A, with zero mean and variance 2Ng.

If the return signal is expected to be Doppler shifted by a frequency fn, and delayed by a
time 7., (the subscript m denotes “measured”), then the appropriate matched filter output is
given by

Ty Fim) = / S5 (A = )€ T2 O= T (X)d (3)
and the appropriate test is of
|2 (T, fon))? (4)

against a threshold whose value is a function of the desired false alarm rate. This forms the
basis of our analysis: we compute (4) at an appropriate grid of points in delay/Doppler (or
range/range-rate) space, and use any threshold exceedances to estimate a target’s coordinates.
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2.2 The Ambiguity Function and the Measurement

Of major interest in the sequel is the “ambiguity function” [Levanon (1988)], given by
1
2 2
(S Is(0)Pax)

The ambiguity function specifies the output of the matched filter in the absence of noise; its
shape is related to the implied resolution cell, and is strongly dependent on the waveform. The
importance of the ambiguity function is that the response of the statistic (4) to a target having
true delay 74, true Doppler shift f, (the subscript a denotes “actual”), and normalized complex
return amplitude A, is given by

Alr, f) = / S5 (= D2 (5)

’AIQ'A(Tm — Ta, fa - fm) (6)

plus a noise term which for reasonably large signal-to-noise ratios (SNRs) is insignificant. For
the Swerling 1 target model, the multiplier |A|? has an exponential distribution. Perhaps more
important, it is the same for all (T, fm) pairs. This means that a strong target return will
cause many contiguous (and in the case of an ambiguity function with unfortunate sidelobes,
some noncontiguous) matched-filter threshold exceedances; and that a weak target return will
cause correspondingly few.

We now are interested in the ambiguity function of a pulse train. If the envelope of each
pulse of unit energy is s,(t), then that of a train of N, equally spaced pulses is

L Mt

s(t) = N Z sp(t —nTR) (7)

n=0

where T'r is the pulse repetition period. In some implementations a “staggered” pulse repetition
time [Scheer and Kurtz (1993)] is used to avoid ambiguity; we do not explore that here. The
division by /N, will maintain unit energy for the entire train. For a uniform (that is, constant
frequency) pulse train s, (t) is

1 0<t<t
sn(t) = { 0 else (8)
where £, is the pulse length. For an LFM pulse train, we have s, () as
eIt 0<t<t,
snlt) = { 0 else (9)

The parameter b controls the LEM sweep-rate, the total frequency sweep being bt,/m Hz in t,
seconds.

Ambiguity functions for these two kinds of pulse trains are shown in figures 2 and 3. The
ambiguity functions have many replicas, and sometimes it is referred to as a “bed of nails”.
According to the techniques of [Niu et al. (1999)] all threshold exceedances from by all replicas
would be averaged to obtain a measurement. This is not realistic: the posterior uncertainty
from tracking can restrict attention to only one (primary) replica, and if this is not the case we
argue that the target track is so inaccurate that it can be considered lost. At any rate, from
[Levanon (1988)], we know the spacing between replica peaks is Tx in delay and ﬁ in Doppler.
We thus take as the “neighborhood” (see Assumption 1, below) the rectangles in figures 2 and 3.
The borders along the delay and Doppler axes are [-Tg/2 Tr/2] and [—ﬁ ﬁ], respectively.
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Assumption 1 Observations are exceedances of a threshold n by {|2(Tm, fm)|*} within the rect-
angular neighborhood of dimension Tr x 1/Tg around the main peak, according to (4), at a grid
of delay/Doppler-shift points {Tm, fm}. If a target with complex return amplitude A is present
at delay/Doppler-shift coordinates {74, fo}, then threshold exceedances are directly computable

from (6).

The sampling in range and range-rate is illustrated in figure 4. Note that an alternative sampling,
in which the resolution cell parallelograms were oriented such that range-rate sampling was fine
and range sampling coarse, was explored in [Niu et al. (1999)], with the conclusion that there
was little difference.

Assumption 2 When there are contiguous or nearby threshold exceedances it is reasonable to
take as the estimated target location their direct average.

More generally a weighted average based upon the target return strengths may be preferable;
however, in our experience to date this makes little difference. However, we later explore the
situation that the strongest measurement is taken as true, with no averaging. Some model must
be made for the target location, and it is reasonable to assume uniformity. The idea is illustrated
in figure 5 and formalized in:

Assumption 3 The actual target location (7a, fo) has a uniform distribution within the resolu-
tion cell defined by the sampling grid. For a target whose actual location is in a “corner” of the
resolution cell this may imply a high miss probability.

As indicated earlier, it is to make this assumption reasonable with radar parameters that we
must assume multi-pulse operation.
We have an expression for the measurement error covariance :

1 A( ) A( ) T
Hon :t/ (/__ P S B A dydradv, (10
< T >€R o ’R’ < v(’yﬂr’aava) — Vq ’U(’%(r‘aava) — v, p(’)/) Y ( )
v

where v refers to the magnitude square of the return, and R is the basic resolution cell having
area |R|. p(7) is the probability density function of 7. For a Swerling 1 model:

1
—__ -  _—/(+SNR)
P() = T75NR" (11)

The estimates are formed as direct averages:

~ . Z’Fmﬂ)m TmZ(PVA(Tm — Ta, fa - fm) Z 77)
et = R At — Tarfa — ) 2 1) (12)

. . Zrm,vm UL (VA(Tm — Ta, fa — fm) 2 1)
B rava) = Zrm,vm Z(vA(Tm — Tas fa — fm) 2 1) (13)

IV <

for which Z denotes the indicator function. The integration over the resolution cell (i.e. over
(ra,vq)) in (10) is performed via evaluation over a dense grid of 400 points uniformly spaced
within the resolution cell; the integration over - is explicit. The conversion from delay/Doppler
to range/range-rate is well-known to be r = (7¢)/2 and v = —(c¢fq)/(2fo), with ¢ the speed of
propagation and fy the transmitted carrier frequency.
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2.3 The Resolution Cell

What remains is the definition of the resolution cell R itself. Selection of R is to some extent
a matter of choice; but it secems reasonable to set certain ground rules. These are: (i) that
the resolution cell pattern form a tesselating grid; (ii) that the volume of the resolution cell is
a function of N, and for a given N, the volume should be constant, regardless of its actual
shape; and (iii) that the resolution cell be oriented and shaped to match, in some sense, the
ambiguity function. While the first consideration could give rise to many different patterns, we
adopt the convention that the resolution cell must be a parallelogram. The second rule avoids
the problem in [Rago et al. (1998)], and further seems natural from consideration of fairness (all
waveforms being examined imply the same sampling effort). Since this measure matches the

case of a CF pulse, we initially (o = 1) choose the area of the resolution cell (in (74, v4)-space)
2
fOA;;TR) - foivi%}%
detection-tracking performance. We define and will subsequently explore a scaling factor /o
which controls its volume, to « fO(JZ\iETR
With respect to the third procedure it is clear for example that an LEM pulse is ill-served
by a “rectangular-shaped” resolution cell better suited to CF, and vice-versa. To quantify this,

we measure the uncertainty in the ambiguity function as

T
Jirw) ( " > ( Z > A(r/2¢, —vfo/2¢)drdv

as (ctp) x ( . We will explore the effect of the volume of resolution cell on the

v
Ram = S0y Alr/2¢, —v fo/2¢)drdv (14)

meaning that the ambiguity function A is treated as a probability density (pdf).

Assumption 4 The resolution cell is defined as the parallelogram of a constant volume whose
corners satisfy
T
T -1 T

This means, from an intuitive perspective, that were the pdf described by A Gaussian (it is
generally not) the resolution cell as defined would maximize the enclosed probability subject to
a volume constraint. The idea is illustrated in figure 6. In fact, with reference to that figure

and defining
Rfl _ Prr Prov 16
amb ( Pro Pov ( )

and for which & is minimized.

we have simultaneously

§ = PrrT% + 2ppriv1 + /)mﬂ/%
= Prﬂ“% + 2pprov1 + /)mﬂ/%
201(r1 —ra2) (17)

cQtp
JoNpTR

1/4
B x/5< P2 >
o= o\
PrrPvo = Pry
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where a is the volume of the resolution cell (a = ). After some algebra, we obtain
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1 < a 2/)1"1)7}1)
rn = —-|z— - —
! 2\ 2v Prr
1 < a 2/’7‘1}”1)
rg = —=-|7— + — 18
2 \2v; Prr ( )

as the values minimizing &. And we finally have:

Assumption 5 The probability of false alarm is Py, = e~". The probability of a target located
at (T, fa) being missed is 1 — e/ AHSNEA(Tm=Ta.fa=fm)) for the Swerling 1 case.

The false-alarm and miss probability expressions are reasonably well-known, and are justified
in [Rago et al. (1998)]. The overall miss probability is again computed via the average over all
(uniformly-distributed) (rq,v,) € R. Since the resolution cells are of constant volume, and are
assumed to be Poisson-distributed, the Poisson parameter (average number of false alarms per
unit volume) is A = LrafolNpTh

ac?ty
2.4 Target Motion and State Estimation
Our target model is kinematic with range/range-rate as state variables. That is, we have:
x(k+1) = Fx(k) + v(k) (19)

where the process noise is white and zero-mean with covariance E{v(k)vT(k)} = Q. Our
observations are delay and Doppler-shift:

y(k+1) = Hx(k) + w(k) (20)

where the measurement covariance E{w(k)(w(k))T} = R is a function of the waveform shape
employed. We write

F=| A” (21)
1 2/e 0
H_[ 0 —2f0/01 (22)
QzailiTi %] (23)
S A

where At represents the time between samples, ¢ is the propagation speed in the medium, fy is
the carrier frequency, and o2 is the variance of the piecewise constant white process noise (23)
[Bar-Shalom and Li (1993)]. Note that for clarity we have chosen to work in one dimension,
range, since it is in this domain that the differences between the various waveform types become
apparent. The maneuvering index Mpan = 0,(At)? /oy, [Bar-Shalom and Li (1993)] is often used
as a means of comparison of the tracking difficulty in various situations.

In the previous paper [Rago et al. (1998)] estimation error covariances were calculated ac-
cording to a Markov chain adapted from the HYCA (hybrid conditional averaging) procedure
of [Li and Bar-Shalom (1991)]. The Markov chain had two states, corresponding to a detec-
tion and missed detection at the current sample. No false alarms were assumed, and hence
update could be calculated according to the Riccati equation. In this paper we allow false
alarms, and assume that state estimation is via the appropriate probabilistic data associa-
tion filter (PDAF) [Li and Bar-Shalom (1995)]. This implies that the full HYCA routine of
[Li and Bar-Shalom (1991)] should be used; for details the reader should consult that reference.
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3 Results and Discussions

Here we explore the use of two pulse trains via the analysis techniques just presented. The situ-
ation most closely corresponds to the “radar” scenario of [Rago et al. (1998)]; unless otherwise
specified we use

o Pr,=103

e At =1 second

e spced of propagation ¢ = 3 x 108 meters per second
e carrier frequency fo = 4GHz

e pulse length £, = 10us

e pulse repetition period T = 50us

e SNR = 20dB

In the figures which follow, distance units are in meters and velocity in meters per second.
Ambiguity functions are integrated once, via an FFT (fast Fourier transform) with adaptive step
size, over a dense grid of range/range-rate values. For subsequent evaluations this dense grid is
interpolated. In many cases (c.g. LEM, CF) there exist explicit ambiguity function expressions
[Cook and Bernfeld (1993)], and these are used when appropriate.

3.1 Constant frequency (CF) pulse train
3.1.1 Effect of the sampling rate

As mentioned before, we use the factor a to control the volume of the resolution cell; that is, the
sampling in time and Doppler can be scaled by a factor \/a, with a smaller value of a denoting
finer sampling. The results are shown in figures 7, 8 and 9. From those figures, it is apparent that
better performance is available when the sampling is finer. This is not surprising, considering
that both measurement accuracy (bounded by the CRLB) and probability of detection (fewer
misses from smaller resolution cells) are enhanced by a finer sampling. Naturally, the cost is in
terms of computation, and we subsequently choose a value a = 0.17. Further research on this
topic is indicated. It is interesting that the PDAF estimation (figure 9) is of poorer quality than
the measurement itself (figure 7). This is due to the relatively high miss probability and to false
alarms.

3.1.2 Effect of the number of the pulses

We explore the effect of the number of pulses N, in figures 10, 11, and 12. Please note that
overall signal to noise ratio is kept constant, meaning that the amplitude of each pulse is propor-
tional to 1//Np. From figure 10 it is clear that measurement error decreases with an increasing
number of pulses, explainable from the increased centrality of the ambiguity function. The trend
is not uniform, as an even number of pulses offers superior performance to odd, presumably an
artifact of a relatively “busy” ambiguity function. It is noteworthy that the decrease appears
to reach a limit. Observe further from figure 11 that the miss probability rises with the number
of pulses for the same reason. These two effects do not precisely offset: it appears from figure
12 that the overall tracking error is decreased by a greater number of pulses, particularly and
not-unexpectedly in velocity.
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3.2 Linear frequency modulated (LFM) pulse train
3.2.1 Effect of correlation

The results for an LEM pulse train having ¢, = 10us, Tr = 50us are shown in figures 13,
14, and 15; and for ¢, = 1us, Tr = 5us in figures 16, 17, and 18. In terms of measurement
quality (figures 13 and 16) there is no difference between downsweep (negative sweep rate)
and upsweep. However, as is clear from figures 14 and 17 the correlation between range and
range-rate measurements is positive in the former and negative in the latter.

The dependable superiority of LFM upsweep, as opposed to LEFM downsweep or CF, pre-
viously reported in [Daum (1992), Rago et al. (1998), Niu et al. (1999)], is we hope clear from
figures 15 and 18. Further, it is seen that the sensitivity to the choice of waveform decreases
as the target becomes more agile (higher o,). The reason for the former is, of course, that
the estimation error for a kinematic target tends to exhibit positive correlation between po-
sition and velocity; if this is treated as prior information, then overall accuracy is enhanced
by a measurement having complementary characteristics, meaning an LFM upsweep with its
negatively-correlated position and velocity measurements. As to the latter, consider that a
larger o4 corresponds to prior information of lower quality (higher motion uncertainty). With
poorer prior localization the tracking system is forced to rely more heavily on each measurement
as it becomes available: as is suggested by figure the measurement accuracy (meaning the size of
the diagonal terms in its correlation matrix) has more to do with the pulse length that waveform.
This is illustrated in figure 26.

3.2.2 Effect of envelope shading

In [Niu et al. (1999)] it was observed that Hamming and/or Gaussian shading (i.e. windowing)
of the transmitted pulse [Cook and Bernfeld (1993)] had a beneficial effect on tracking in the
single-pulse sonar situation, due to the more manageable sidelobe behavior. For the former we
use

0 else

n(t—T 2
o(t) = { 0.08 + 0.92 cos? T 2 eitt 0<t<T (24)

and the ambiguity function is given in figure 19. Figures 20-25 correspond to earlier figures 13-
18. The situation is less clear in this radar-parametrized situation than for sonar, and indeed it
appears that the rectangular shading is somewhat preferable. This may be due to the increased
sampling effort (v = .17) in use here.

3.2.3 Effect of the sweep rate

It is clear that sweep rate affects tracking performance, and moreover that this effect is itself
a function of the target’s process noise level. There is usually a “best” (always positive) LEM
sweep rate to use for a particular target dynamic model; the intuition behind this is given in
figure 27.

Further, this best sweep rate decreases as the maneuvering index increases. This is an indi-
cation that for low-maneuvering targets the orientation of the prior (tracking error) covariance
ellipse becomes more horizontal (again see figure 27); an alternative way of putting this is that
for such a target velocity is well-estimated and reasonably unchanging, and the improved po-
sition measurements from a high sweep rate are most desirable. A higher sweep rate confers
greater posterior accuracy on position measurements, and lesser on velocity measurements. This
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is valuable when the velocity varies slowly (low Aman); if velocity varies rapidly (high Apan),
then the enhanced accuracy in velocity measurement of a low sweep-rate is more appropriate.

This is explored quantitatively in figures 28 and 29, in which the optimal sweep rate is
determined as a function of maneuvering index. Note that a shorter pulse requires a higher
sweep rate in order to that the same frequency excursion be obtained; it is interesting that the
total frequency excursion required for best performance with a shorter pulse length is actually
greater than for a longer pulse.

3.2.4 Effect of measurement model

Assumption 2 earlier stipulated that when a number of near or contiguous resolution cells enjoyed
“hits”, then the measurement supplied to the tracker is taken as their average, as illustrated in
figure 5. We are aware that this is perhaps oversimplified, in that some amplitude weighting
may be useful, or indeed that some morphological or image-processing techniques may be used.
The procedures appear to be in many cases proprietary and unavailable for general comment.
In this section we mention a simple alternative to the direct “averaging” scheme to which it can
be compared. The idea is that (12,13) are replaced by

(72(7’ Ta, Ua)a @(77 Ta, Ua))
= argmax, ., ) {A(Ty — Ta, fa — fm) such that vA(7,, — 74, fa — fim) =10} (25)

and this may be thought of as a “strongest-neighbor” approach, although the correspondence
is not exact. From figures 30-32 it is apparent that this new scheme is inferior to the original.
Presumably the averaging approach yields sub-cell accuracy, which by and large the new scheme
does not.

3.3 Alternating CF and LFM pulses

In [Niu et al. (1999)] it was observed that a 50%-50% combined CF/LFM pulse could in some
situations produce superior performance. Such a combined pulse was essentially an abutment
of two half-duration pulses, with assumed coherence. In the current situation it appears that
the same effect can be obtained via alternation of pulses: LFM followed by CF followed by
LFM, etc. We explore this idea in figures 33-35, plotted as a function of sweep rate for those
pulses which are LEM. It turns out that although the measurements themselves appear to be
superior in this case to pure LEM (sce figure 33), their resolution cells are essentially rectangular
(see figure 34), and hence there is no beneficial effect to be had from upsweep LFM’s negative
correlation between range and range-rate measurements see figure 35). In fact, there is a slight
tendency for upsweep LFM to produce a positive correlation and hence results degraded with
respect to downsweep, presumably from sidelobe structure; but this effect is minimal.

4 Summary

In this paper we have investigated the effect on tracking performance of the type of waveform
used. Measurements of a one-dimensional kinematic target are assumed derived from sampling
a two-dimensional (range and range-rate) grid of points whose locations are fixed, meaning that
the target’s true location need not coincide with these points. As such, a key concept is the
resolution cell from which these sampling points are derived, and we have taken for this the
parallelogram of constant volume whose orientation most closely matches that of the implied
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ambiguity function. The results are analytical, and are based on the HY CA tracking performance
prediction algorithm for the PDAF — false alarms are included in a natural way.

This paper extends the sonar-parameter results in [Niu et al. (1999)] to the radar situation;
in doing so, it is necessary to allow for coherent processing of multi-pulse waveforms. Of par-
ticular interest is the necessity for restriction of attention to the main ambiguity function peak
from amongst the usual “bed of nails”. We list the following:

As before, LFM upsweep is relatively difficult to beat, due largely to its negative correlation
between range and range-rate measurements.

It is possible to specify an optimal LEM sweep rate as a function of target maneuvering
index.

Sampling on a finer time-frequency grid yields uniformly better performance. Thus, sam-
pling effort must be traded against computational effort.

Unlike the sonar situation, there does not appear to be benefit from Hamming shading of
the transmitted pulses.

As the number of pulses being integrated increases tracking performance improves. While
this may appear obvious, note that the statement is made about a system whose overall
SNR is held fixed, meaning that more pulses corresponds to lower amplitude on each.

An alternating LFM/CF pulse scheme does not appear to offer any tangible benefits.

In [Niu et al. (1999)] a key assumption was that the measurement supplied to the tracker
was the average of local threshold exceedances. For the most part that assumption was
used in this paper, but also tested was a scheme whereby only the strongest return was
supplied. It turned out that this was a poor idea: the sub-cell accuracy of the original
idea was lost.

The conclusion that upsweep LFM is heartening, in that it corroborates much radar practice.
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Figure 1:  System block diagram: the waveform is selected and this choice must be shared
with all subsystems up to the tracker. The information provided to the tracker should be of
the measurements’ locations, and also of their associated covariances, which depend on the
waveform.
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Figure 2: The ambiguity function contours and the neighborhood region around the main peak
for a CF pulse train, t, = 10us, Tp = 50us, N, = 3.
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Figure 3: The ambiguity function contours and the neighborhood region around the main peak
for a LEM pulse train, t, = 10us, Tr = 50us, Np = 3, and sweep rate 5 x 103Hz/s.
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Figure 4:  The resolution cell (parallelogram), ambiguity function contours and {(r,,vm)}
sampling points (dots) for an LFM waveform.
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Figure 5: TIllustration of derivation of measurement delivered to tracker. The target’s position,
denoted by an airframe shape, is not at the center of a resolution cell — resolution cells are
parallelograms, and their center’s denoted by o’s. The threshold exceedances are shown as
five-pointed stars, and their average (the delivered measurement) as a many-pointed star.
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Figure 6: Illustration of the procedure of finding the resolution cell. The shaded region denotes
range/range-rate values within an ambiguity function contour. From this the ambiguity function

uncertainty Rgnp is formed, and is pictured as the ellipse. The actual resolution cell is drawn
within that ellipse.
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Figure 7: Measurement range and range-rate error as a function of « for a rectangular-shaded
CF pulse train, N, = 20
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Figure 8:  Probability of miss as a function of « for a rectangular-shaded CF pulse train,

N, = 20
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Figure 9:  Measurement range and range-rate error as a function of a for a rectangular-
shaded CF pulse train , N, = 20. In cach figure, bottom, middle, and top curves refer to
012) = 10, 100, 1000, 10000, corresponding to maneuvering indices Apqn, = .0073,.023,.073, .23,
respectively.
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Figure 10: Estimation range and range-rate error as a function of N, for a uniform pulse train,

a=0.17
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Figure 11: Probability of miss as a function of NNV, for a uniform pulse train, a = 0.17
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Figure 12: Estimation range and range-rate error as a function of N, for a uniform pulse train,

a = 0.17. In each figure, bottom, middle, and top curves refer to o2 = 10,100, 1000, 10000,
corresponding to maneuvering indices Apqn = -0073,.023,.073, .23, respectively.
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Figure 13: Measurement range and range-rate error as a function of sweep rate for a LFM
pulse train, & = 0.17 and N,, = 20.
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Figure 14: Probability of miss as a function of sweep rate for a LFM pulse train, a = 0.17 and

N, = 20.
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Figure 15:  Estimation range and range-rate error as a function of sweep rate for a LFM
pulse train, @ = 0.17 and N, = 20. In each figure, bottom, middle, and top curves refer to

o2 =10, 100, 1000, 10000.
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Figure 16: Measurement range and range-rate error as a function of sweep rate for a LFM
pulse train, a = 0.17, N, = 20, t, = 1us, Tr = dus.
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Figure 17: Probability of miss as a function of sweep rate for a LFM pulse train, « = 0.17, N, =
20, t, = 1us, Tr = Sus.
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Figure 18:  Estimation range and range-rate error as a function of sweep rate for a LFM
pulse train, o = 0.17, N, = 20, t, = 1lus, Tr = 5us. In each figure, bottom, middle, and
top curves refer to o2 = 10,100, 1000, 10000, corresponding to mancuvering indices Apan =

.073,.23,.73, 2.3, respectively.
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Figure 19: The ambiguity function contours and the neighborhood region around the main
peak for a Hamming shaded CF pulse train, ¢, = 10us, Tp = 50us, N, = 3, and sweep rate

5x 108Hz/s.
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Figure 20: Measurement range and range-rate error as a function of sweep rate for a Hamming
shaded LFM pulse train, a = 0.17 and N,, = 20.
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Figure 21: Probability of miss as a function of sweep rate for a Hamming shaded LFM pulse
train, o = 0.17 and N, = 20.
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Figure 22: Estimation range and range-rate error as a function of sweep rate for a Ham-
ming shaded LFM pulse train, a« = 0.17 and N, = 20. In cach figure, bottom, mid-

dle, and top curves refer to o2 = 10,100, 1000, 10000, corresponding to manecuvering indices
Aman = -0073,.023,.073, .23, respectively.
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Figure 23: Measurement range and range-rate error as a function of sweep rate for a Hamming
shaded LEM pulse train, a = 0.17, N, = 20, ¢, = lus, Tr = 5us.
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Figure 24: Probability of miss as a function of sweep rate for a Hamming shaded LFM pulse
train, a = 0.17, N, = 20, t, = 1lus, Tr = Sus.
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Figure 25: Estimation range and range-rate error as a function of sweep rate for a Hamming
shaded LFM pulse train , o = 0.17, N, = 20, t, = 1us, Tr = 5us. In each figure, bottom,

middle, and top curves refer to o2 = 10, 100, 1000, 10000, corresponding to maneuvering indices
Aman = .073,.23,.73, 2.3, respectively.
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Figure 26: Heuristics of combination of prior (tracking) and posterior (measurement) informa-
tion. On the left the prior information is of high quality (small o), and hence its combination
with the measurement, as represented by the shaded intersection region, is better than either
alone. On the right o4 is large, and the intersection as projected on either axis is little smaller
than for the measurement alone.
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Figure 27: Heuristics of the effect of different sweep rates on tracking performance. (a) High
negative sweep rate, hence tracking performance as illustrated by intersection between prior
and measurement correlation ellipses, is good; (b) Negative sweep rate is such that orientation
between prior and measurement ellipses is the same — the worst LFM waveform to use; (¢) CF
situation; (d) Positive LFM sweep, best LEM waveform; (¢) LEM upsweep rate is too high, some
enlargement of posterior uncertainty over (d).
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Figure 28:  Optimal LFM sweep rates for N, = 10, t, = 1us, and Tr = 5Sus, plotted as
a function of maneuvering index. Note that a 100GHz/s sweep rate corresponds to a total
frequency excursion of 100kHz.
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Figure 29:  Optimal LFM sweep rates for N, = 10, t, = 10us, and Tr = 50us, plotted as a
function of maneuvering index. Note that a 1GHz/s sweep rate corresponds to a total frequency
excursion of 10kHz.
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Figure 30: Measurement range and range-rate error as a function of sweep rate for a LEM pulse
train, o = 0.17, N, = 20, t, = 1us, Tr = dus. The dashed line is for the original “averag-
ing” measurement model of (12,13); that for the solid line is the new “strongest-neighbor”-like
measurement model of (25).
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Figure 31: Probability of miss as a function of sweep rate for a Hamming shaded LFM pulse
train, o = 0.17, N, = 20, t, = 1us, Tr = 5us. The dashed line is for the original “averag-
ing” measurement model of (12,13); that for the solid line is the new “strongest-neighbor”-like
measurement model of (25).
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Figure 32: Estimation range and range-rate error as a function of sweep rate for a Hamming
shaded LFM pulse train , o = 0.17, N, = 20, t, = 1us, Tr = 5us. In each figure, bottom,
middle, and top curves refer to o2 = 10, 100, 1000, 10000, corresponding to maneuvering indices
Aman = -073,.23,.73, 2.3, respectively. The dashed line is for the original “averaging” measure-
ment model of (12,13); that for the solid line is the new “strongest-neighbor”-like measurement
model of (25).
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Figure 33:
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Measurement range and range-rate error as a function of sweep rate for a LFM

pulse train, o = 0.17, N, = 10, t, = 10us, Tr = 50us. The dashed line refers to standard LEM
pulses, and the solid to alternating LFM/CF pulses.
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Figure 34:

Probability of miss and correlation between range and range—rate measurements
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Probability of miss and correlation coefficient as a function of sweep rate for a

Hamming shaded LFM pulse train, a = 0.17, N, = 10, t;, = 10us, Tr = 50us. The dashed line
refers to standard LFM pulses, and the solid to alternating LEM/CF pulses.
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Figure 35: Estimation range and range-rate error as a function of sweep rate for a Hamming
shaded LFM pulse train , a = 0.17, N, = 10, t, = 10us, Tr = 50us. In each figure, bottom,

middle, and top curves refer to a2 = 10, 100, 1000, 10000, corresponding to maneuvering indices
Aman = -0073,.023,.073, .23, respectively. The dashed line refers to standard LFM pulses, and
the solid to alternating LFM/CF pulses.
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