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Abstract
An adaptive controller is proposed, for the tracking control of robotic manipulators that does not require the
measurement of joint velocities. The controller belongs to the class of model-reference adaptive controllers. An
observer is used to generate an estimate of the joint velocities and an observer-based identifier with projection is
used to update the parameter vector estimate. Simulation results are given to show the effectiveness of the
control algorithm.

1. Introduction

The application of adaptive control to robot manipulators has been an active area of research
for the last two decades. The problem of tracking control using state feedback, where both position
and velocity are accessible, has been examined extensively (see for example (Slotine and Li, 1987),
(Li and Slotine, 1989), and (Ortega and Spong, 1989)). In (Slotine and Li, 1987), an adaptive
controller and a parameter adaptation rule are derived based on Lyapunov-like arguments, which
guarantee the global asymptotic convergence of the tracking error. In (Li and Slotine, 1989) an
indirect adaptive controller is derived which uses the torque estimation error to update the estimate of
the parameter vector. Again, global asymptotic stability of the tracking error is shown. Several direct
and indirect adaptive controllers are reviewed in (Ortega and Spong, 1989). However, although joint
position measurement can be done very accurately, velocity measurements are noise-prone. This
motivated attempts to design an observer-based controller. Several papers have been published with
variations of this idea. In (Canudas De Wit and Fixot, 1992), an adaptive controller is proposed which
utilizes a sliding observer to estimate the joint velocities. However, the discontinuities of the driving
terms in the adaptation and observer differential equations induce high frequency signals that can
create numerical stability problems. In (Lee and Khalil, 1997), an adaptive controller is presented
which is based on a high-gain observer and an identifier with parameter projection. However, the
control design requires estimating several parameters including the maximum torque possible.

In this paper, we review a recently proposed output feedback controller for robot
manipulators which is based on the work of (Jankovic, 1996), and then present an new output
feedback adaptive controller that belongs to the class of model reference adaptive controllers. A
virtual control signal is computed and used to generate a linearizing control signal that uses an
estimate of the joint velocities generated by an observer.

2. Review of a recently proposed controller
In this section we formulate the control problem and present the results of a recently proposed output
feedback controller by (Hajjir and Schwartz, 1999).
The equation of motion for an-link rigid robot is given by

D(@)d+C(aq,9)g+g(q) =u 1)

T Email:schwartz@sce.carleton.ca

2292



Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

where q 0 R"is the joint position vectory [ R"is the input torqueD(q) O R™ is the symmetric
and uniformly positive definite inertia matrixG(g,)q [ R"is the Coriolis and centrifugal loading
vector, andg(q) 0 R"is the gravitational loading vector. An important property of equation (1) is
that its left-hand side of can be written as

D(a)g +C(a,6)a+g(a) =Y,(a,9.6)¢ @
where @ ORP" is the parameter vector ang(q, ¢, ¢j) is the regressor. Thus the robot equation of

motion can be linearly parameterized.
The nonlinear dynamics (1) can be rendered linear by the following nonlinear control signal:

u=D(aq)v+C(q,9)q+9(q) ®3)
wherev [ R"is the virtual control signal. Under the action of (2), equation (1) yields

g=v (@)
We may now specify the virtual control by

v=(g, - K,e-K.e (5)

where K, K,are positive definite diagonal matrices, amd=q—0, is the tracking error.
Substituting (4) in (3), one gets the error equation

eé+Ky,e+K,e=0 (6)
which is asymptotically stable by proper choicekaf, K .

The control given by (2) and (4) requires exact knowledge of the parameters of the robot, and that the
joint velocity be available. In practice, the measured parameters are only approximate and may vary
with time (e.g. when the load changes). Thus (2) and (4) are modified to

u=D(a)(-Kx+d,) +C(q,4) + §(a) (6)
Where, X = [xlT XJ ]T = [eT e’ ]T, and K =[K, K,]. The termsD(q). C(q,¢)and §(q)
are estimates ob(q), C(qg,q) and g(q), that satisfy linear parameterization, that is,

D(a)§+C(a,a)a + §(a) =Y,(a, 6, )@ (7)
In a recent work (Hajjir and Schwartz, 1999), it is noted that
C(a.9)g+9(q) =Y(q.9)6 ®)

This follows from the linear parameterization property. The vett obtained fromp by retaining

only those parameters that spec@q, ) and g(q), and Y(q,q) is obtained fromY;(q,q, ) by

retaining the corresponding columns. If, in addition we assume that the joint velocity vector is not
available to the controller then an observer has to be used to estimate it. The observer of (Hajjir and
Schwartz, 1999) is given by

X=(A-TLC)X+TLCx+B(D'u-D"Y6 -¢,) ©)
where X = [)“(1T X3 ]T = [éT éT]T is the observed error vector, and
I 00 [Gl 0 O
Az% ”B,B=H oC=[, o.r=g." ., O (10)
0n o0l 00 GO

The positive scalaG is the observer gain constant. The malfix= Y(q4 +X,,q, +X,), where
X= [il )_(2]= SatQX(f() is the saturated error on a convex §kf. The saturation function is
applied component-wise and is defined as follows
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Oa if x <-a
sa(x)={x if |x|<a
Ha if x>a
The positive scalarg, define the convex set (hyperculi2), .
The control law (Hajjir and Schwartz, 1999) is a modification of (6) to
u=D(q)(-Kx +d,) +C(d,9) + §(d) (11)
whereG =g, +X, andq =¢, +X,.
Similar to (8), we can write

C(q.0)q +§(@) =Y(@.9)8 (12)
Applying (11) to (1), we get the following error equation

x = Ax+ B(Ed, + D*D(-KX) + D (Y8 - Y0)) (13)
Where,

E=D"'D-I
Substituting (11) in (9), the observer equation reduces to

X = AX+TLC(x~X) + B(-KX) (14)
An identifier (parameter estimator) is given by

1N =y (X, —'7)—5_17@”5_1“‘% =Co (X, =) — KX (15a)

6 = Proj(-c,Y "D (X, - 1)) (15b)

where ¢, and c, are positive constants. The projection operator in (15b) is applied component-wise,
and is given by (Lee and Khalil, 1996)

] if a, <6 <b or

p if & >b andg <Oor

0 R

0 if 6, <a and@ =20
[Proj(@)], =§(1+ '; g if 6, 2b and@ =0 (16)

o .

E{1+6’i_a")(pI if 6<a andg <0

5

0

0

E

where it is assumed that the actual parameter véctoglongs to the séd defined by
©={0|a -0<6 <b +J}
This completes the specification of the controller of (Hajjir and Schwartz, 1999). A simulation study

of this controller is presented in section 4. The following section presented the new controller of this
paper, and its performance will be compared to (Hajjir and Schwartz, 1999) by simulation.
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3. The MRAC controller
In this paper, we assume that the desired trajeaiigy) is the output of a second order reference
model,
Ay =W (9)r 17
whereW,_ (s) is the reference model transfer function, a&n the reference input. We designas
follows (Narendra and Annaswamy, 1989)

v=d,q+d;w, +d]w, +kr (18)
where
w, =\w, +lv (19a)
@, = A\w, +1q (19b)
The vectorsy,, w, OR", d,, kOR, and the diagonal matricel, d,, |, A R™. We will assume
that A=-Al_, A >0, so that(sl —A) ™ = Tls) I, whereA(s) =s+A. From equations (6), we
have
w,(S) = (sl =A) 1 v(s) (20a)
and w,(s) = (sl =A)*q(s) (20b)
Define dy(s) | =d] (sl =A)7 (21a)
A(S)
and LHC) I =d;(sl-A)7 (21b)
A(S)
Using (21a) and (21b) in (18), we obtain
v=d,q+ jl((:)) v+ d}\z((ss)) q+kr (22)

Rearranging, and using (4),

- 2y = gyq+ 9289 g

A9 %9 %

Therefore,

KA(S)r =W(9)r (23)

1A -d(9) - doA(9 —dy(9)

Now we can seleatl,,d,,d,,l,k such that

W(s) =W, (s)
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The above development was carried out assuming perfect knowledge of the robot model
parameters, and that the joint velocities were available to the controller. In the case where only an
estimate of the parameter vector is available, the control (2) is modified to

u=D(q)v+C(q, ¢4+ d(q) (24)

The vectora is an estimate of the joint velocity vector. It is generated by an observer that will be

specified later. The termé(q), é(q,a) and g(q) are estimates oD(q), C(q,q) and g(q),
respectively such that the linear parameterization property is preserved, i.e.

D(a)v+C(a,4)d+ §(a) =Y(q,4,v)0 (25)
Applying the control (24) to the robot model (1), we obtain
=D (q)[D(a)v+C(a, GG+ d(a) - C(q,4)a- 9(a)]
= D(q)[D(a)v +Y(q,G,v)8 - Y(q,4,v)8]

o (26)
=v+D(q)[Y(q,§,V)8 - Y(q,¢,V)6]
=v+n
where
n =D ()[Y(q,G, V)8 - Y(q, 4, v)6] 27)

Note that the vectan results from parameter estimation error and velocity estimation error.
Using (26) in (22), and manipulating, we arrive at
q=W(s)r +W, (s)n (28)

where

W (s = NORCAC ____ s*a,

T2 T3 2 (29)
$7(A(s) —dy(9)) —dpA(s) —dy(s) s”+a,s” tasta,

Sinced,,d,,d,,l,k can be selected such thaft(s) =W, (s), we can express the tracking error as

e=q-qy =W, (s)n (30)
where we have used (4) in equation (15).

In order to estimate the joint velocity vecir we use the following observer

do oL, |, 060 0,0 00
prE Thg Mtg v (31)
derd B, ofsH H.B' H.5

It can be easily shown that the observation error equation is given by

gEﬁDzm'Ll InDBﬁD ED% (32)
dtify HL, ofgH H.H
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or X = AX + By (33)
~ [~1 = L, |
wherex:[qT qT]T, Abzg_ ' nBandBO:—[O 1]
L 00

Finally, to update the parameter vector estimate, we define the virtual error as
e =V-(, (34)

This is the error between the virtual control and desired joint acceleration. Using (26) and (30), we
have

e, =8g-n-d, = (W, () - =W, (s)n (35)

doA(S) +d,(s)
s*(A(5) — dy(8)) — doA(S) — d(s)

Now we select the parameter update law as
6 = Proj¢ (t)e,) (37)
where (1) =W, (YT (4.G,V)] (38)

The projection operator in (37) is used to ensure fhatemains bounded. This completes the
specification of the algorithm.

where W, (s) = (36)

4. Simulation

The proposed controller was simulated on a two-link revolute joint robot. For this robot, we have
[0, +6,+20,cosq, 6,+6;cosq,[]

D(q) =
E 6, +06,cosq, 0, E
C(q,C]) - g’es S'in(qz).cb _93 Sin(Qz)(ql + qZ)S
16, sin(0,) ¢, 0 0
_[®,9cosq, +6;9cos@, +q,)0
g(@ =0 0
0 8;9cos@, +d,) N

where 0,-0.are dependent on the physical properties of the two links and are given by,
2

O, =ml2+1,+ml?, 8,=1,+ml5, 6,=mll,, 6,=ml,+ml, 6,=m,l,, and
g=9.81 m/s.
The following physical parameters were assumed:

m = 10,m, =5,1, =1,1, =11, =1,/2,1 ,=1,/2, 1, = ml?/12.

17cl

With these values, the actual value of the parameter vector is

0 =[833,1.67, 25,10, 25]"
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The initial estimate was set to 75% of the actual value. The reference trajectory for both joints was set
to the step response of the second-order reference model with double gwle ab. Thus the
reference model is given by

25
s® +10s+25
The corresponding design parameters are

A =10, d, = -125d, =-10,d, =1000, k = 25,1 =1

W, (s) =

The observer gain matrix was set to

1,0 [200,0
.4 Hot,H

Figure 1 shows the tracking error performance of the two joints. The maximum tracking error is 0.32
radian for the first joint and 0.5 for the second joint. The tracking errors quickly converge to zero after
two seconds. The parameter estimate trajectory is shown in Figure 2.

We then compared the performance of the new MRAC controller with the controller of (Hajjir and
Schwartz, 1999). The same desired trajectories and initial parameter estimate were used. The
controller parameters were selected as follows

G =10
020 0 O
0 0
0 20 900 0 60 00
L= il - ¢, =2,¢=1
400 0p Ho 900 0 60H @~ &

Ho 100§

Figure 3 shows the resulting tracking error. The maximum tracking error is 0.05 radian for the first
joint and 0.26 radian for the second joint. The tracking error for both joints tends to a very small
neighborhood of the origin. Figures 4 show the parameter estimate trajectory obtained with this

controller. Only three parameters can be updated; nafighd, and 8, which are the parameters
of C(g,q) and g(q) .

5. Conclusions

In this paper, we reviewed a recent output feedback controller proposed in (Hajjir and Schwartz, 1999)
and then presented a new output feedback controller that belongs to the class of model reference
adaptive controllers. An important advantage of the new controller is the ability to adapt all the robot
parameters unlike the controller of (Hajjir and Schwartz, 1999) in which the estimate of the inertia
matrix parameters is kept fixed.

Given any reference model, the new controller parameters can be directly computed that result in a
closed loop system with a matching transfer function. It is shown that in the absence of exact
knowledge of the robot parameters, and its actual joint velocity; the tracking error is the output of a
linear filter whose input is a nonlinear function of the parameter estimate error, and the velocity
estimate error (equation (28)). The effectiveness of the controller is demonstrated by simulation.
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Figure 1. Tracking Error of the two joints with the new controller
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Figure 2. Parameter estimate trajectories
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Figure 3. Tracking error with the controller of (Hajjir and Schwartz, 1999)
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Figure 4. Parameter estimate trajectories for the controller of (Hajjir and Schwartz, 1999)
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