
Some New Results in Theory of Controllability�

Agamirza Bashirovy

Department of Mathematics

Eastern Mediterranean University

Gazimagusa, Mersin 10, Turkey

and Institute of Cybernetics

Azerbaijan Academy of Sciences

F. Agayev St. 9, Baku 370141

Azerbaijan

Nazim Mahmudovz

Department of Mathematics

Eastern Mediterranean University

Gazimagusa, Mersin 10, Turkey

and Institute of Cybernetics

Azerbaijan Academy of Sciences

F. Agayev St. 9, Baku 370141

Azerbaijan

Abstract

The new necessary and suÆcient conditions, formulated in terms of convergence of a
certain sequence of operators involving the resolvent of the negative of the controllability
operator, are found for deterministic linear stationary control systems to be completely
and approximately controllable, respectively. These conditions are applied to study the ST -
controllability (that is a property of attaining for the time T an arbitrarily small neighborhood
of each point in the state space with a probability arbitrarily near to one) and the CT -
controllability (that is the ST -controllability forti�ed with some uniformity) of stochastic
systems. It is shown that a partially observable linear stationary control system with an
additive Gaussian white noise disturbance is ST -controllable (CT -controllable) for each T > 0
if and only if its deterministic part is approximately (completely) controllable for each time
T > 0.

1 Introduction

In this paper we present some new results concerning theory of controllability for deterministic

as well as for stochastic systems.

Theory of controllability originates from the famous work (Kalman, 1960) where the con-

cept of complete controllability was de�ned for �nite dimensional deterministic linear systems

and the rank condition for them was proved. The natural extension of the concept of complete

controllability to in�nite dimensional systems is too strong for many of them. Therefore, the

concept of approximate controllability was de�ned as a weakened version of the complete con-

trollability. A discussion of the concepts of controllability for deterministic systems the reader

can �nd in (Curtain and Zwart, 1995; Bensoussan et al., 1993; Zabczyk, 1992; Curtain and

Pritchard, 1978; Balakrishnan, 1976). Recently, the new necessary and suÆcient conditions

for the complete and approximate controllabilities were obtained in (Bashirov and Mahmudov,

1998). These conditions are called the resolvent conditions and they are discussed in this paper.

�The results presented in this report are in the main obtained in (Bashirov and Kerimov, 1997; Bashirov and

Mahmudov, 1998)
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The natural extension of the complete and approximate controllability concepts to stochastic

control systems has no meaning. Therefore, there is a need in further weakening of these concepts

in order to extend them to stochastic control systems. Some attempts in this direction are made

in (Synahara et al., 1974). In (Bashirov and Hajiyev, 1983 and 1984) an approach based on

separation was suggested to de�ne and to study the controllability of stochastic systems and

in (Bashirov, 1996; Bashirov and Kerimov, 1997) the concepts of ST - and CT -controllability

were de�ned for stochastic systems. Brie
y, an ST -controllable stochastic control system can

attain for the time T an arbitrarily small neighborhood of each point in the state space with

probability arbitrarily near to one. The CT -controllability is the ST -controllability forti�ed with

some uniformity. In this paper we discuss the ST - and CT -controllabilities as well.

2 Notation

In this paper X and Y are real separable Hilbert spaces. Rk denotes the k-dimensional real

Euclidean space. As usual, R1 = R. The closure of the set D is denoted by D. The space of

all linear bounded operators from X to Y is denoted by L(X;Y ). The brief notation L(X) =

L(X;X) is used as well. A� denotes the adjoint of the operator A. The trace of the operator A

is denoted by trA. If A 2 L(X) is self-adjoint and hh;Ahi � 0 (respectively, hh;Ahi � ckhk2,
where c =const.> 0) for all h 2 X, then we write A � 0 (respectively, A > 0), where h� ; � i is
an inner product and k� k is a norm. For A � 0, the square root of A is denoted by A1=2

: The

symbol I denotes an identity operator. A zero operator, a zero vector and the number zero are

denoted by 0 being clear which is meant from the context.

Always it is supposed that two time moments are given. The initial time moment is identi�ed

with zero and it is �xed. The terminal one is denoted by T (T > 0) and it is considered as

variable. L2(0; T ;X) denotes the space of equivalence classes of all Lebesque measurable and

square integrable with respect to the Lebesgue measure functions from [0; T ] to X. As usual,

we use the brief notation L2(0; T ) = L2(0; T ;R). The notation �T is used for the triangular set

f(t; s) : 0 � s � t � Tg. B2(�T ;L(X;Y )) denotes the space of all L(X;Y )-valued functions on

�T that are strongly measurable and square integrable with respect to the Lebesgue measure

on �T .

All integrals of vector-valued functions are considered in the Bochner sense. For probability,

for expectation and for conditional expectation, the notations P, E and E(� j� ) are used, respec-
tively. cov (x; y) is the covariance operator of the random variables x and y. The brief notation

cov x=cov (x; x) is used as well. The integrals of operator-valued functions (except stochastic

integrals) are in the strong Bochner sense.

3 Main de�nitions

Consider a deterministic or stochastic control system on the �nite time interval [0; T ] with

T > 0. Let xu
T
be its (random or not) state value at time T corresponding to the control u taken

from the set of admissible controls Uad. If the considered control system is stochastic, then by

Fu

T
we denote the smallest �-algebra generated by the observations on the time interval [0; T ]

corresponding to the control u. Suppose that X is the state space. Introduce the set

D(T ) = fxuT : u 2 Uadg: (1)

De�nition 1. Given T > 0, a deterministic control system will be called
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(a) D
c

T
-controllable if D(T ) = X;

(b) D
a
T
-controllable if D(T ) = X.

It is clear that theDc

T
- andDa

T
-controllabilities are the well-known complete and approximate

controllabilities for deterministic control systems, respectively. Originally, the Dc

T
-controllability

was introduced in (Kalman, 1960) as a concept for �nite dimensional deterministic control

systems. The natural extension of this concept to in�nite dimensional control systems is too

strong for many of them. Therefore, theDa
T
-controllability was introduced as a weakened version

of the Dc
T
-controllability.

The natural extension of the complete and approximate controllability concepts to stochastic

control systems is meaningless. Therefore, there is a need in further weakening of these concepts

in order to extend them to stochastic control systems.

Given T > 0, 0 � " <1 and 0 � p � 1, introduce the sets

S(T; "; p) = fh 2 X : 9u 2 Uad P(kE(xuT jFu

T )� hk2 > ") � 1� pg (2)

and

C(T; "; p) = fh 2 X : 9u 2 Uad h = ExuT and P(kE(xuT jFu

T )� hk2 > ") � 1� pg: (3)

The following de�nitions will be used as a step in discussing the main concepts of controllability

for stochastic control systems. Given T > 0, " � 0 and 0 � p � 1, a stochastic control system

will be called
(a) S

c

T;";p
-controllable if S(T; "; p) = X;

(b) S
a
T;";p

-controllable if S(T; "; p) = X;

(c) C
c

T;";p
-controllable if C(T; "; p) = X;

(d) C
a
T;";p

-controllable if C(T; "; p) = X;

(e) S
0

T;";p
-controllable if 0 2 S(T; "; p).

Geometrically, the Sc
T;";p

-controllability (Sa
T;";p

-controllability) can be interpreted as follows.

If a control system with the initial state x0 is S
c

T;";p
-controllable (Sa

T;";p
-controllable), then with

probability not less than p it can pass from x0 for the time T into the
p
"-neighborhood of an arbi-

trary point in the state space (in a set that is dense in the state space). The interpretation of the

C
c

T;";p
- and Ca

T;";p
-controllabilities di�ers from the same of the Sc

T;";p
- and Sa

T;";p
-controllabilities

since among the controls, with the help of which the
p
"-neighborhood of any point h is achieved,

there exists one with property that the expectation of the state at the time T , corresponding

to this control, coincides with h. Obviously, a Cc
T;";p

-controllable (Ca
T;";p

-controllable) control

system is Sc
T;";p

-controllable (Sa
T;";p

-controllable), but the converse is not true.

Smaller " is and larger p is for a control system, better controllable it is, i.e. it is possible

to hit into a smaller neighborhood with a higher probability. One can observe that for any

T > 0, all control systems are Sc
T;";p

-, Sa
T;";p

-, Cc

T;";p
- and C

a

T;";p
-controllable with " � 0 and

p = 0 or " = 1 and 0 � p � 1 if we admit 1 as a value for ". At the same time it is clear

that a Dc

T
-controllable (Da

T
-controllable) deterministic system is Sc

T;0;1
- and Cc

T;0;1
-controllable

(Sa
T;0;1

- and Ca

T;0;1
-controllable) with parameters " = 0 and p = 1, since for deterministic systems,

D(T )=S(T; 0; 1)=C(T; 0; 1). Also, each kind of controllability, mentioned above, with a smaller

" and a greater p implies the same kind of controllability with a greater " and a smaller p.

Summarizing, we can give the following easy necessary and suÆcient conditions for the Dc

T
-

and Da

T
-controllabilities.

Proposition 2. Given T > 0, for a deterministic control system, the following conditions

are equivalent:
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(a) the Dc

T
-controllability;

(b) the Sc
T;";p

-controllability for all " � 0 and for all 0 � p � 1;

(c) the Cc
T;";p

-controllability for all " � 0 and for all 0 � p � 1:

Proposition 3. Given T > 0, for a deterministic control system, the following conditions

are equivalent:
(a) the Da

T
-controllability;

(b) the Sa
T;";p

-controllability for all " � 0 and for all 0 � p � 1;

(c) the Ca

T;";p
-controllability for all " � 0 and for all 0 � p � 1:

Excepting the limit values " = 0 and p = 1 from the above mentioned necessary and suÆ-

cient conditions of the complete and approximate controllabilities, one can obtain the weakened

versions of these concepts. For a moment call a given stochastic control system to be
(a) S

c

T
-controllable if it is Sc

T;";p
-controllable for all " > 0 and for all 0 � p < 1;

(b) S
a
T
-controllable if it is Sa

T;";p
-controllable for all " > 0 and for all 0 � p < 1;

(c) C
c

T
-controllable if it is Cc

T;";p
-controllable for all " > 0 and for all 0 � p < 1;

(d) C
a

T
-controllable if it is Ca

T;";p
-controllable for all " > 0 and for all 0 � p < 1.

The following proposition shows that the concepts of Sc
T
- and Sa

T
-controllabilities are equiv-

alent.

Proposition 4. Given T > 0, a stochastic control system is Sa
T
-controllable if and only if it

is Sc
T
-controllable.

Proof. The suÆciency is obvious. For the necessity, suppose that a given stochastic control

system is Sa
T;";p

-controllable for all " > 0 and 0 � p < 1. Let S(T; "; p) be the set (2) correspond-

ing to this system. We have S(T; "; p) = X for all " > 0 and 0 � p < 1, where X is the state

space. We have to show that the stronger condition S(T; "; p) = X for all " > 0 and 0 � p < 1

holds. Fix arbitrary "0 > 0, 0 � p0 < 1 and h 2 X. Since S(T; "; p) = X for all " > 0 and

0 � p < 1, there is h0 2 S(T; "0=4; p0) such that kh0 � hk2 � "0=4. At the same time, since

h0 2 S(T; "0=4; p0), there exists u 2 Uad with

PfkE(xuT jFu

T )� h0k2 > "0=4g � 1� p0:

Hence, for this u 2 Uad, we have

PfkE(xuT jFu

T )�hk2>"0g � PfkE(xuT jFu

T )� h0k+ kh0 � hk > p
"0g

� PfkE(xuT jFu

T )� h0k+
p
"0=2 >

p
"0g

= PfkE(xuT jFu

T )� h0k2 > "0=4g
� 1� p0:

Thus, h 2 S(T; "0; p0). We obtain S(T; "0; p0) = X for all "0 > 0 and for all 0 � p0 < 1 that

proves the proposition.

Also, it will be shown (see Proposition 27) that for partially observable linear stationary con-

trol systems with an additive Gaussian white noise disturbance the concept of Ca

T
-controllability

is equivalent to the concept of Sc
T
- or Sa

T
-controllability. So, we can de�ne two basic and one

additional concepts of controllability for stochastic systems.

De�nition 5. Given T > 0, a stochastic control system will be called
(a) ST -controllable if it is Sc

T;";p
-controllable (or, equivalently, Sa

T;";p
-controllable) for

all " > 0 and for all 0 � p < 1;

(b) CT -controllable if it is C
c
T;";p

-controllable for all " > 0 and for all 0 � p < 1;

(c) S
0

T
-controllable if it is S0

T;";p
-controllable for all " > 0 and for all 0 � p < 1.

Geometrically, the ST -controllability can be interpreted as follows: an ST -controllable con-

trol system can attain for the time T an arbitrarily small neighborhood of each point in the state
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space with a probability arbitrarily near to one. The CT -controllability is the ST -controllability

forti�ed with some uniformity. The S0
T
-controllability is useful in discussing ST - and CT -

controllabilities.

In order to interprete the ST -, CT - and S
0

T
-controllabilities in (Mahmudov and Denker, 1999)

the sets

S(T ) =
\
S(T; "; p) and C(T ) =

\
C(T; "; p);

where the intersections are taken over all " > 0 and all 0 � p < 1, are introduced. With these

sets a stochastic control system is
(a) ST -controllable if and only if S(T ) = X;

(b) CT -controllable if and only if C(T ) = X;

(c) S
0

T
-controllable if and only if 0 2 S(T ).

Then Proposition 4 easily follows from the fact that for any control system, S(T ) is a closed set

in X and, hence, the conditions S(T ) = X and S(T ) = X are equivalent. Also, Proposition 2

and Proposition 3 are consequences of the fact that for a deterministic control system

D(T ) = S(T; 0; 1) = C(T; 0; 1) =
\
S(T; "; p) =

\
C(T; "; p);

where the intersections are taken over all " � 0 and all 0 � p � 1.

Finally, notice that the abbreviations D, S, C, c and a in the previously introduced control-

lability concepts mean deterministic, stochastic, combined, complete and approximate, respec-

tively.

4 Description of the system

We will examine the ST - and CT -controllabilities of the partially observable linear control system(
dx

u
t = (Axut +But + ft) dt+ d't; 0 < t � T; x

u
0
= x0;

d�
u
t = Cx

u
t dt+ d t; 0 < t � T; �

u
0
= 0;

(4)

where x, u and � are the state, control and observation processes. Under the set Uad of addmis-

sible controls we consider the set of all controls u in the linear feedback form

ut = �ut +

Z
t

0

Kt;s d�
u

s ; 0 � t � T; (5)

with �u 2 L2(0; T ;Y ) and K 2 B2(�T ;L(Rk
; Y )).

Throughout this paper we assume that A is a densely de�ned on X closed linear operator

generating a strongly continuous semigroup U , B 2 L(Y;X), C 2 L(X;Rk), f 2 L2(0; T ;X),

x0 is an X-valued Gaussian random variable, ' and  are X- and Rk-valued Wiener processes,

respectively, x0, ' and  are independent. We will use the notations

cov x0 = P0 and cov't =Mt;

and assume that cov t = It. If u 2 Uad, then under a solution of the equation in (4) it will be

meant its mild solution, i.e. the function

x
u

t = Utx0 +
Z

t

0

Ut�s(Bus + fs) ds+

Z
t

0

Ut�s d's; 0 � t � T:
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One can associate two control systems with the system (4). The �rst of them is the deter-

ministic control system

d

dt
y
v

t = Ay
v

t +Bvt + ft; 0 < t � T; y
v

0
= y0 = Ex0; (6)

with the admissible controls v taken from Vad = L2(0; T ;Y ). The second one is the partially

observable stochastic control system(
dz

w
t = (Azwt +Bwt) dt+ d't; 0 < t � T; z

w
0
= z0 = x0 �Ex0;

d�
w
t = Cz

w
t dt+ d t; 0 < t � T; �

w
0
= 0;

(7)

where w is a control from the set of admissible controls Wad consisting of all controls in the form

wt =

Z
t

0

Kt;s d�
w

s ; t � 0; (8)

with K 2 B2(�T ;L(Rk
; Y )). The same mild sense will be applied to the solutions of the

equations in (6) and (7).

5 Dc
T - and D

a
T -controllabilities: the resolvent conditions

In this section the necessary and suÆcient conditions in terms of convergence of operators will

be obtained for the system (6) on Vad to be Dc

T
- and Da

T
-controllable.

With the systems (4), (6) and (7), one can associate the operator-valued function

QT =

Z
T

0

UsBB�U�s ds; T � 0; (9)

which is called a controllability operator. For T � 0, the operator QT is nonnegative (QT � 0)

and, hence, R(�;�QT ) = (�I +QT )
�1 is well-de�ned bounded linear operator for all � > 0 and

for all T � 0. If QT > 0, then R(�;�QT ) is de�ned for � = 0 as well. The operator R(�;�QT )

is called the resolvent of �QT . This resolvent will be used to represent the optimal control in

the linear regulator problem of minimizing the functional

J(v) = kyvT � hk2 + �

Z
T

0

kvtk2 dt; (10)

where yv is a state process de�ned by (6), v is a control taken from Vad = L2(0; T ;Y ) and T > 0,

h 2 X and � > 0 are parameters.

Lemma 6. Given T > 0, h 2 X and � > 0, there exists a unique optimal control v� at

which the functional (10) takes its minimum value on Vad. Furthermore,

v
�

t = �B�U�T�tR(�;�QT )(UT y0 � h+ g); a:e: t 2 [0; T ]; (11)

and

y
v
�

T � h = �R(�;�QT )(UT y0 � h+ g); (12)

where R(�;�QT ) is the resolvent of �QT and

g =

Z
T

0

UT�tft dt:
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Proof. The existence and uniqueness of the optimal control v� follows from the general

results about linear regulator problems, see for example (Curtain and Pritchard, 1978). We will

prove the formulae (11) and (12). Computing the variation of the functional (10), one can easily

obtain

v
�

t = ���1B�U�T�t
�
y
v�

T � h

�
; a:e: t 2 [0; T ]: (13)

Substituting this in (6) and using (9), we obtain

y
v�

T = UT y0 +
Z

T

0

UT�t(Bv�t + ft)dt

= UT y0 + g � �
�1

Z
T

0

UT�tBB�U�T�t
�
y
v�

T � h

�
dt

= UT y0 + g � �
�1QT

�
y
v
�

T � h

�
:

Hence,

�y
v
�

T = �(UT y0 + g)�QT

�
y
v
�

T � h

�
;

which implies

(�I +QT )y
v
�

T = �(UT y0 + g) +QTh

and, consequently,

y
v�

T = �(�I +QT )
�1(UT y0 + g) + (�I +QT )

�1(�I +QT � �I)h

= �R(�;�QT )(UT y0 + g � h) + h:

Thus, the equality (12) holds. Substituting (12) in (13), we obtain the equality (11). Lemma is

proved.

Theorem 7. Given T > 0, the following statements are equivalent:
(a) the control system (6) on Vad is Dc

T
-controllable;

(b) QT > 0;

(c) R(�;�QT ) converges as �! 0 in uniform operator topology;

(d) R(�;�QT ) converges as �! 0 in strong operator topology;

(e) R(�;�QT ) converges as �! 0 in weak operator topology;

(f) �R(�;�QT ) converges to zero operator as �! 0 in uniform operator topology.

Proof. The equivalence (a), (b) is well-known. For the implication (b)) (c), let QT > 0.

Then for all x 2 X and for all � � 0,

hx; (�I +QT )xi � (�+ k)kxk2;

where k > 0 is a constant. Therefore, for all � � 0,

kR(�;�QT )k = k(�I +QT )
�1k � 1

�+ k
� 1

k
:

We obtain that kR(�;�QT )k is bounded with respect to � � 0. This implies

kR(�;�QT )�Q�1T k = k(�I +QT )
�1 �Q�1

T
k

= kQ�1
T
(QT � �I �QT )(�I +QT )�1k

� �kQ�1
T
k k(�I +QT )

�1k
� �k

�2
:
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So, R(�;�QT ) converges uniformly to Q�1
T

as � ! 0. The implications (c) ) (d) ) (e)

are obvious. The implication (e) ) (f) follows from the boundedness of a weakly convergent

sequence of operators. For the implication (f)) (b), suppose

�kR(�;�QT )k = �




(�I +QT )
�1




! 0; �! 0:

Then �1=2



(�I +QT )

�1=2




! 0 as �! 0. For suÆciently small �0 > 0, we can write

�
1=2

0
k(�0I +QT )

�1=2k � 1p
2
:

So, for all x 2 X, we have

kxk2 = k(�1=2
0

(�0I +QT )
�1=2)(�

�1=2

0
(�0I +QT )

1=2)xk2

� 1

2
k��1=2

0
(�0I +QT )

1=2
xk2

=
1

2

D
�
�1

0
(�0I +QT )x; x

E
;

which implies D
�
�1

0
(�0I +QT )x; x

E
� 2kxk2

and, consequently,

hQTx; xi � �0kxk2:
Thus, QT > 0. The theorem is proved.

Theorem 8. Given T > 0, the following statements are equivalent:
(a) the control system (6) on Vad is Da

T
-controllable;

(b) if B�U�t x = 0 for all 0 � t � T , then x = 0;

(c) �R(�;�QT ) converges to zero operator as �! 0 in strong operator topology;

(d) �R(�;�QT ) converges to zero operator as �! 0 in weak operator topology.

Proof. The equivalence (a) , (b) is well-known. For the implication (c) ) (a), let

�R(�;�QT ) be strongly convergent to zero operator as � ! 0. Consider an arbitrary h 2 X

and the functional (10) with this h. By (12), selecting � suÆciently small, we can make yv
�

T

to be close to h. So, the system (6) on Vad is Da

T
-controllable. For the implication (a) ) (c),

let the control system (6) on Vad be Da

T
-controllable. Then for arbitrary h 2 X, there exists a

sequence f�vng in L2(0; T ;U) such that ky�vn
T
� hk ! 0 as n!1. We have




yv�T � h




2 � 


yv�T � h




2 + �

Z
T

0

kv�t k2dt �



y�vnT � h




2 + �

Z
T

0

k�vnt k2dt;

where v� is the control at which the functional (10) takes on its minimum value. If " > 0 is

given, then we can make ky�vn
T
� hk < "=

p
2 for some suÆciently large n and then we can select

Æ > 0 to be suÆciently small so that for all 0 < � < Æ,

�

Z
T

0

k�vnt k2dt <
"
2

2
:

Thus, kyv�
T
� hk < " for all 0 < � < Æ, i.e. yv

�

T
converges to h as � ! 0. By (12) and by the

arbitrariness of h, this implies the strong convergence of �R(�;�QT ) to zero operator as �! 0.

Finally, the equivalence (c), (d) is a consequence of �R(�;�QT ) � 0. Theorem is proved.
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The conditions (f) in Theorem 7 and (c) in Theorem 8 clearly distinct the Dc

T
- and D

a

T
-

controllabilities of the control system (6) showing that the distinction between them is in a

kind of convergence of �R(�;�QT ) to zero operator as � ! 0. We call these conditions the

resolvent conditions for the control system (6) to be Dc

T
- and Da

T
-controllable, respectively. The

conditions (b) in Theorem 7 and (b) in Theorem 8 are the well-known complete and approximate

controllability conditions.

6 Applications of the resolvent conditions

An application of the resolvent conditions to a concrete control system requires a computation

of the respective resolvent and then a veri�cation of the respective convergence. These are

illustrated below in the examples of controlled one-dimensional heat and wave equations.

Example 9. Consider the controlled one-dimensional heat equation

@

@t
yt;� =

@
2

@�2
yt;� + vt;�; 0 � � � 1; 0 < t � T; (14)

with the initial and boundary conditions

y0;� = f�; yt;0 = yt;1 = 0; 0 � � � 1; 0 � t � T: (15)

Let X = Y = L2(0; 1) and let f 2 X. In the system (14)-(15), the second order di�erential

operator d2=d�2 stands for the operator A with the domain

D(A) = fh 2 X : (d2=d�2)h 2 X; h0 = h1 = 0g

and it generates the strongly continuous semigroup U de�ned by

[Uth]� =
1X
i=1

2e�i
2�2t sin(i��)

Z
1

0

h� sin(i��) d�; 0 � � � 1; t � 0; h 2 X:

If v is a control action taken from the set of admissible controls Vad = L2(0; T ;L2(0; 1)), then it

is easily seen that B = B
� = I and, since Ut is self-adjoint,

QT =

Z
T

0

UsBB�U�s ds =
Z

T

0

U2s ds:

Therefore, for h 2 X,

[QTh]� =

"Z
T

0

U2sh ds
#
�

=
1X
i=1

Z
T

0

2e�2i
2
�
2
s sin(i��)

Z
1

0

h� sin(i��) d� ds

=
1X
i=1

1� e
�2i

2
�
2
T

i2�2
sin(i��)

Z
1

0

h� sin(i��) d�:

The half-range Fourier sine expansion of h 2 X is

h� =
1X
i=1

2 sin(i��)

Z
1

0

h� sin(i��) d�; 0 � � � 1:
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Using this, we obtain

[(�I +QT )h]� =
1X
i=1

2i2�2�+ 1� e
�2i

2
�
2
T

i2�2
sin(i��)

Z
1

0

h� sin(i��) d�:

Let (�I +QT )h = g. If we use the half-range Fourier sine expansion of g 2 X, then

1X
i=1

2i2�2�+ 1� e
�2i

2
�
2
T

i2�2
sin(i��)

Z
1

0

h� sin(i��) d� =
1X
i=1

2 sin(i��)

Z
1

0

g� sin(i��) d�;

which for all i 2 N implies

Z
1

0

h� sin(i��) d� =
2i2�2

2i2�2�+ 1� e�2i
2�2T

Z
1

0

g� sin(i��) d�:

Therefore,

h� = [(�I +QT )
�1
g]
�
= [R(�;�QT )g]�

=
1X
i=1

4i2�2

2i2�2�+ 1� e�2i
2�2T

sin(i��)

Z
1

0

g� sin(i��) d�:

If g� � 1, then by Parseval's identity,

kR(�;�QT )gk2X =
1

2

1X
i=1

(4i2�2)2

(2i2�2�+ 1� e�2i
2�2T )2

�Z
1

0

sin(i��) d�

�2

=
1X
i=1

8i2�2(1� (�1)i)2
(2i2�2�+ 1� e�2i

2�2T )2

�
1X
i=1

8i2�2(1� (�1)i)2
(2i2�2�+ 1)2

=
X

i=1;3;5;:::

32i2�2

(2i2�2�+ 1)2
:

One can verify that the inequality

i

2i2�2�+ 1
>

i+ 1

2(i+ 1)2�2�+ 1

holds whenever i is an integer that is greater than the number 1=
p
2��. Let N� be the smallest

odd integer that is greater than 1=
p
2��. Then the sequence

fi2�2=(2i2�2�+ 1)
2g

i=1;2;:::

is decreasing for i � N�. The following limits are obvious:

N� !1 and �N2

� !
1

2�2
as �! 0:

Using these, for g� � 1, we obtain

kR(�;�QT )gk2X �
1X

i=N
�

16i2�2

(2i2�2�+ 1)2
�
Z
1

N
�

16�2t2

(2�2�t2 + 1)2
dt

�
Z
1

N
�

4�2t

(2�2�t2 + 1)2
dt =

1

�(2�2�N2

�
+ 1)

!1
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as � ! 0. So, by (a) , (d) in Theorem 7, for any T > 0, the control system (14)-(15) on

Vad = L2(0; T ;L2(0; 1)) is not D
c

T
-controllable. At the same time, for all g 2 X,

k�R(�;�QT )gk2X =
1X
i=1

8i4�4�2

(2i2�2�+ 1� e�2i
2�2T )2

�Z
1

0

g� sin(i��) d�

�2

! 0

as � ! 0 and, hence, by (a) , (c) in Theorem 8, for each T > 0, the control system (14)-(15)

on Vad = L2(0; T ;L2(0; 1)) is D
a

T
-controllable.

Example 10. Consider the controlled wave equation

@
2

@t2
�t;� =

@
2

@�2
�t;� + b�vt; 0 � � � 1; 0 < t � T; (16)

with the initial and boundary conditions

�0;� = f�;
@

@t
�t;�

���
t=0

= g�; �t;0 = �t;1 = 0; 0 � � � 1; 0 � t � T; (17)

where v is a control action taken from the set of admissible controls Vad = L2(0; T ), i.e. Y = R.

We assume that f , g and b are functions in L2(0; 1). For these functions we will use the half-range

Fourier sine expansions

f� =
1X
i=1

�i sin(i��); g� =
1X
i=1

�i sin(i��); b� =
1X
i=1


i sin(i��)

and suppose that
1X
i=1

i
2
�
2

i <1:

Let X be a Hilbert space of all functions

h =

"
f

g

#
: [0; 1]! R;

where f and g satisfy the above mentioned conditions, endowed with the scalar product

hh; ~hi =
*"

f

g

#
;

"
~f

~g

#+
=

1X
i=1

(i2�2�i ~�i + �i
~�i);

where ~�i and ~�i are the respective Fourier coeÆcients of ~f and ~g. In (Curtain and Zwart, 1995;

Zabczyk, 1992) this space X is taken as suitable for the problem (16)-(17). For the operator

A =

"
0 I

d
2
=d�

2 0

#
; (18)

where d2=d�2 has the domain

D(d2=d�2) = f� 2 L2(0; 1) : (d
2
=d�

2)� 2 L2(0; 1); �0 = �1 = 0g;

and for B 2 L(R;X) de�ned by

[Bv]� =

"
0

b�v

#
; 0 � � � 1; v 2 R;
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the problem (16)-(17) can be formulated in the abstract form

d

dt
yt = Ayt +Bvt; 0 < t � T; (19)

where

[yt]� =

"
�t;�

(@=@t)�t;�

#
; 0 � � � 1; 0 � t � T ; y0 =

"
f

g

#
:

In (Curtain and Zwart, 1995; Zabczyk, 1992) it is shown that the operator A de�ned by (18)

generates a continuous group U as de�ned by

[Uth]� =
1X
i=1

"
cos(i�t) (i�)�1 sin(i�t)

�i� sin(i�t) cos(i�t)

# "
�i

�i

#
sin(i��); 0 � � � 1; t � 0;

where

h =

"
f

g

#
2 X

and �i and �i are Fourier coeÆcients of f and g, respectively. Since U is a group, we have

U�t = U�t. Therefore, the controllability operator QT of the system (19) is

QTh =

Z
T

0

UT�tBB�U�T�th dt =
Z

T

0

UtBB�U�th dt; h 2 X:

We have

[U�th]� =
1X
i=1

"
�i cos(i�t)� �i(i�)

�1 sin(i�t)

�ii� sin(i�t) + �i cos(i�t)

#
sin(i��):

One can calculate that

B
�
h =

1X
i=1


i�i; h 2 X:

Hence,

B
�U�th =

1X
i=1


i(�ii� sin(i�t) + �i cos(i�t))

and, consequently,

[UtBB�U�th]� =
1X
i=1

"

i(i�)

�1 sin(i�t)


i cos(i�t)

#
sin(i��)�

1X
j=1


j(�jj� sin(j�t) + �j cos(j�t)):

Thus, for T = 2,

[Q2h]� =

Z
2

0

[UtBB�U�th]� dt =
1X
i=1

"


2

i
�i



2

i
�i

#
sin(i��):

We obtain that

[(�I +Q2)h]� =
1X
i=1

(�+ 

2

i )

"
�i

�i

#
sin(i��);

which implies

[R(�;�Q2)h]� = [(�I +Q2)
�1
h]

�
=

1X
i=1

(�+ 

2

i )
�1

"
�i

�i

#
sin(i��):
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Finally, for all h 2 X,

k�R(�;�Q2)hk2 =
1X
i=1

�
2

(�+ 
2
i
)
2
(i2�2�2i + �

2

i )! 0

as �! 0 if 
i 6= 0 for all i = 1; 2; : : :. Thus, by (a), (c) in Theorem 8, we obtain the following

suÆcient condition for the approximate controllability of the system (16)-(17) which agrees with

Theorem 2.10 in (Zabczyk, 1972): if T � 2 and b is so that

Z
1

0

b� sin(i��) d� 6= 0; i = 1; 2; : : : ;

then the control system (16)-(17) on Vad = L2(0; 1) is D
a-controllable.

7 S0
T -controllability

In this section the S0
T
-controllability of the control system (7) on Wad is studied. For this, we

consider the Riccati equations

d

dt
Qt +QtA+A

�
Qt � �

�1
QtBB

�
Qt = 0; 0 � t < T; QT = I; � > 0; (20)

and
d

dt
Pt �APt � PtA

� �M + PtC
�
CPt = 0; 0 < t � T; P0 = cov z0: (21)

Lemma 11. There exist the unique strongly continuous solutions (in scalar product sense)

Q
� and P of the equations (20) and (21), respectively, satisfying Q�

t � 0 and Pt � 0 for all

0 � t � T . Moreover, the solution of the equation (20) has the explicit form

Q
�

t = �U�T�tR(�;�QT�t)UT�t; 0 � t � T; � > 0: (22)

Proof. For the existence and for the uniqueness, see (Curtain and Pritchard, 1978). For

the representation (22), see (Da Prato and Barbu, 1992; Bashirov and Kerimov, 1997).

Lemma 12. There exists the �nite limit

aT = lim
�!0

tr

Z
T

0

CPsQ
�

sPsC
�
ds; (23)

where Q� and P are the solutions of the equations (20) and (21), respectively.

Proof. Consider the family of the stochastic optimal control problems on Wad with the

state-observation system (7) and the functional

J
�(w) = E

 
kzwT k2 + �

Z
T

0

kwtk2 dt
!
; � > 0; (24)

to be minimized. In (Curtain and Pritchard, 1978) it is shown that the functional J� takes its

minimum value at some control w� 2Wad and

J
�(w�) = trPT + tr

Z
T

0

CPsQ
�

sPsC
�
ds:
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Therefore, to prove the lemma it is suÆcient to show that the sequence fJ�(w�)g has a �nite

limit as �! 0. Let � > � > 0. Then

J
�(w�) = E

 
kzw�T k2 + �

Z
T

0

kw�

t k2 dt
!

� E

 
kzw�T k2 + �

Z
T

0

kw�

t k2 dt
!

� E

 
kzw�T k2 + �

Z
T

0

kw�

t k2 dt
!
= J

�(w�):

We conclude that fJ�(w�)g is a nonnegative and nondecreasing function of � > 0. Hence, there

exists a �nite limit of J�(w�) as �! 0 proving the lemma.

Lemma 13. The equality

inf
Wad

E kE (zwT jFw;�

T
)k2 = aT ; (25)

holds, where aT is de�ned by (23), Q� and P are the solutions of the equations (20) and (21),

respectively.

Proof. We will compare the functional (24) and

~J�(w) = E

 
kE (zwT jFw;�

T
)k2 + �

Z
T

0

kwtk2 dt
!
;

where w 2 Wad and zw is the state of the system (7). Since PT is the covariance of the error

z
w

T
�E (zw

T
jFw;�

T
) independently on w 2Wad, we have

trPT = E kzwT �E (zwT jFw;�

T
)k2 = E kzwT k2 �E kE (zwT jFw;�

T
)k2;

and, consequently,

~J�(w�) = J
�(w�)� trPT = tr

Z
T

0

CPsQ
�

sPsC
�
ds:

If we denote by f ~wng any minimizing sequence of the functional

J0(w) = E kE (zwT jFw;�

T
)k2;

then

inf
Wad

E kE (zwT jFw;�

T
)k2 � ~J�(w�) � E

 


E�z ~wnT jF ~wn;�

T

�


2 + �

Z
T

0

k ~wn

t k2 dt
!
:

Consequently, taking the limit as �! 0 and n!1, we obtain the statement.

Theorem 14. Given T > 0, " > 0 and 0 � p < 1, the control system (7) on Wad is

S
0

T;";p
-controllable if

aT < "(1� p); (26)

where aT is de�ned by (23).

Proof. By Lemma 13, we have

inf
Wad

EkE(zwT jFw;�

T
)k2 = aT < "(1� p):
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Therefore, there exists w0 2Wad such that

E



E�zw0

T jFw
0
;�

T

�


2 < "(1� p):

Using Chebyshev's inequality, we obtain

P
�


E�zw0

T jFw0;�

T

�


2 > "

�
� 1

"
E



E�zw0

T jFw0;�

T

�


2 < (1� p);

proving the theorem.

It should be noted that the condition (26) being a suÆcient condition of S0
T;";p

-controllability

is not necessary in general. In view of this we present the following arguments. For a given

system, de�ne the functions

�p = inf �p; �p = f" : the system is S0T;";p�controllableg; (27)

�" = sup	"; 	" = fp : the system is S0T;";p�controllableg: (28)

Obviously, � and � are nondecreasing functions with �0 = 0 and lim"!1 �" = 1. It follows from

the de�nitions that the necessary and suÆcient condition for the system to be S0
T;";p

-controllable

is (
�p < " if inf �p is not achieved;

�p � " if inf �p is achieved;
(29)

which can also be written in the following equivalent form:(
�" > p if sup	" is not achieved;

�" � p if sup	" is achieved:
(30)

Using (26), de�ne the functions

~�p =

(
aT (1� p)�1; 0 � p < 1;

1; p = 1;
~�" =

(
1� aT "

�1
; aT < " <1;

0; 0 � " � aT :

By (29), (30) and Theorem 14, it follows that

�p � ~�p; 0 � p � 1; and �" � ~�"; 0 � " <1;

i.e. in the case of the control system (7) the functions ~� and ~�, de�ned with the help of (26), give

only approximations of the functions � and � and may not be equal to them. In case �p < ~�p
or �" > ~�" the condition (26) cannot be a necessary condition of S0

T;";p
-controllability.

Theorem 15. Given T > 0, the control system (7) on Wad is S0
T
-controllable if aT = 0.

Proof. By Theorem 14, aT = 0 implies that the control system (7) is S0
T;";p

-controllable for

all " and for all p satisfying "(1� p) > 0. This condition includes all pairs ("; p) with " > 0 and

0 � p < 1. So, the system (7) is S0
T;";p

-controllable for all " > 0 and for all 0 � p < 1 proving

the theorem.

Theorem 16. Given T > 0, the control system (7) on Wad is S0
T
-controllable if the system

(6) is Da
t -controllable for each 0 < t � T .

Proof. From (a) ) (c) in Theorem 8, we obtain that �R(�;�QT�t) strongly converges to

zero operator as � ! 0 for all 0 � t < T . Hence, by Lemma 11, Q�
t strongly converges to zero

operator as �! 0 for all 0 � t < T . Furthermore, substituting h = �
1=2(�I +QT�t)

�1=2
x in

h��1(�I +QT�t)h; hi � hh; hi;
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we obtain

h�(�I +QT�t)
�1
x; xi � kxk2:

So, �R(�;�QT�t) � I and by Lemma 11, Q�
t � U�

T�t
UT�t for all � > 0 and for all 0 � t � T .

Hence, we can change the places of the limit, the integral and the trace in (23) to obtain aT = 0.

Thus by Theorem 15, we obtain the S0
T
-controllability of the control system (7) proving the

theorem.

Theorem 17. The control system (7) on Wad is S0
T
-controllable for each T > 0 if the control

system (6) on Vad is Da
T
-controllable for each T > 0.

Proof. This is a direct consequence of Theorem 16.

8 CT -controllability

In this section the CT -controllability of the control system (4) on Uad is studied. We use

the results about the Dc

T
-controllability of the control system (6) on Vad and about the S0

T
-

controllability of the control system (7) on Wad from the previous sections.

Lemma 18. Uad = Vad +Wad, where + is the sign of the sum of sets.

Proof. Let u 2 Uad be of the form (5) with �u 2 L2(0; T ;Y ) and K 2 B2(�T ;L(Rk
; Y )).

Then Eu = �u 2 Vad and, if w = u� �u, then

wt =

Z
t

0

Kt;sC(x
u

s �Exus ) ds+

Z
t

0

Kt;s d's

=

Z
t

0

Kt;sCz
w

s ds+

Z
t

0

Kt;s d's =

Z
t

0

Kt;s d�
w

s :

Thus, w = u � �u 2 Wad and, consequently, u 2 Vad +Wad. On the other hand, if v 2 Vad and

w 2Wad where w has the form of (8) with K 2 B2(�T ;L(Rk
; Y )), then

ut = vt +

Z
t

0

Kt;sCz
w

s ds+

Z
t

0

Kt;s d's

= vt �
Z

t

0

Kt;sCy
v

s ds+

Z
t

0

Kt;sCx
u

s ds+

Z
t

0

Kt;s d's

Denote

�ut = vt �
Z

t

0

Kt;sCy
v

s ds: (31)

Then u has the form of (5) with �u as in (31), i.e. u 2 Uad. Thus, Uad = Vad +Wad proving the

lemma.

Lemma 19. If u = v + w where v 2 Vad and w 2 Wad, then the �-algebras Fu;�

T
and Fw;�

T
,

generated by �us , 0 � s � T , and �ws , 0 � s � T , respectively, are equal.

Proof. It is easy to show that

�
u

t = �
w

t + C

Z
t

0

y
v

s ds; 0 � t � T: (32)

Since the second term in the right-hand side of (32) is nonrandom, we conclude that Fu;�

T
and

Fw;�

T
are equal.

Lemma 20. Given T > 0, " > 0 and 0 � p < 1, the control system (4) on Uad is Cc
T;";p

-

controllable if and only if the control system (6) on Vad is Dc
T
-controllable and the control system

(7) on Wad is S0
T;";p

-controllable.
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Proof. Let C(T; "; p) be the set (3) corresponding to the control system (4). Similarly,

let D(T ) be the set (1) corresponding to the control system (6). Assume that the system (4)

is Cc

T;";p
-controllable. Then from the inclusion C(T; "; p) � D(T ), it follows that the control

system (6) is Dc

T
-controllable. Let h 2 C(T; "; p). Then there exists u 2 Uad such that h = Exu

T

and

P fkE (xuT jFu;�

T
)� hk2 > "g � 1� p:

Consider w = u�Eu 2Wad. By Lemma 19, Fu;�

T
= Fw;�

T
. Therefore,

P fkE (zwT jFw;�

T
)k2 > "g = P fkE (xuT jFu;�

T
)�ExuT k2 > "g � 1� p;

i.e. the control system (7) is S0
T;";p

-controllable. So, the necessity is proved. To prove the

suÆciency, let h 2 D(T ). Then there exists v 2 Vad such that h = y
v

T
. Also, from the S0

T;";p
-

controllability of the control system (7), we conclude that there exists w 2Wad with

P fkE (zwT jFw;�

T
)k2 > "g � 1� p:

Consider u = v + w. By Lemma 18, u 2 Uad = Vad +Wad. Moreover,

P fkE (xuT jFu;�

T
)� hk2 > "g = P fkE (zwT jFw;�

T
)k2 > "g � 1� p;

i.e. h 2 C(T; "; p). Therefore, D(T ) � C(T; "; p). Since D(T ) = X, we obtain C(T; "; p) = X.

Thus, the control system (4) is Cc

T;";p
-controllable. Lemma is proved.

Theorem 21. Given T > 0, the control system (4) on Uad is CT -controllable if and only

if the control system (6) on Vad is Dc
T
-controllable and the control system (7) on Wad is S0

T
-

controllable.

Proof. This is a direct consequence of Lemma 20.

Theorem 22. The control system (4) on Uad is CT -controllable for each T > 0 if and only

if the control system (6) on Vad is Dc

T
-controllable for each T > 0.

Proof. The necessity follows from Theorem 21. For suÆciency, note that by Theorem 17,

the Dc

T
-controllability of the control system (6) for each T > 0 implies the S0

T
-controllability

of the control system (7) for each T > 0. Thus, by Theorem 21, the control system (4) is

CT -controllable for each T > 0. Theorem is proved.

9 ST -controllability

In this section the ST -controllability of the control system (4) on Uad is studied. At �rst we

present the results about Ca

T
-controllability which are similar to those of CT -controllability.

Lemma 23. Given T > 0, " > 0 and 0 � p < 1, the control system (4) on Uad is Ca

T;";p
-

controllable if and only if the control system (6) on Vad is Da

T
-controllable and the control system

(7) on Wad is S0
T;";p

-controllable.

Proof. This can be proved in a similar way as Lemma 20.

Theorem 24. Given T > 0, the control system (4) on Uad is Ca

T
-controllable if and only

if the control system (6) on Vad is Da
T
-controllable and the control system (7) on Wad is S0

T
-

controllable.

Proof. This is a direct consequence of Lemma 23.

It turns out that Theorem 24 is true if the Ca
T
-controllability in it is replaced by the ST -

controllability. To prove this result, we will use the following fact.

Lemma 25. Uad is a convex set.
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Proof. At �rst, note that if w 2 Wad is of the form (8) with K 2 B2(�T ;L(Rk
; Y )), then

there exists M 2 B2(�T ;L(Rk
; Y )) so that

wt =

Z
t

0

Mt;s d�
0

s ; 0 � t � T;

and vice versa, where �0 is the observation process of the system (7) corresponding to the

zero-control. The proof of this well-known fact one can �nd in (Curtain and Pritchard, 1978).

Therefore, if u1; u2 2 Uad, then by Lemma 18,

u
i

t = v
i

t +

Z
t

0

M
i

t;s d�
0

s ; 0 � t � T; i = 1; 2;

for some v1; v2 2 L2(0; T ;Y ) and M
1
;M

2 2 B2(�T ;L(Rk
; Y )). Let �1 > 0 and �2 > 0 be so

that �1 + �2 = 1. Then for v = �1v
1 + �2v

2 and for M = �1M
1 + �2M

2, we have

ut = �1u
1

t + �2u
2

t = vt +

Z
t

0

Mt;s d�
0

s ; 0 � t � T;

with v 2 L2(0; T ;Y ) and with M 2 B2(�T ;L(Rk
; Y )). Thus, u 2 Uad proving the lemma.

Theorem 26. Given T > 0, the control system (4) on Uad is ST -controllable if and only

if the control system (6) on Vad is Da

T
-controllable and the control system (7) on Wad is S0

T
-

controllable.

Proof. If the control system (6) is Da

T
-controllable and the control system (7) is S0

T
-

controllable, then by Theorem 24, the control system (4) is Ca

T
-controllable which implies its

ST -controllability since C(T; "; p) � S(T; "; p). SuÆciency is proved. For the necessity, let the

control system (4) be ST -controllable. Take an arbitrary h 2 X and consider the sequences f"ng
and fpng with "n > 0, 0 � pn < 1 and "n ! 0, pn ! 1 as n ! 1. From S

a
"n;pn

-controllability

of the system (4), we obtain the existence of the sequence fung in Uad such that

P fkE (xu
n

T jFun;�

T
)� hk2 > "ng � 1� pn:

The obtained inequality implies the convergence in probability of E (xu
n

T
jFun;�

T
) to h. Indeed,

for " > 0, we can �nd a number N such that 0 < "n < "
2 for all n > N . Therefore, for n > N ,

P fkE (xu
n

T jFun;�

T
)� hk > "g � P fkE (xu

n

T jFun;�

T
)� hk2 > "ng � 1� pn ! 0; n!1:

Hence, E (xu
n

T
jFu

n
;�

T
) converges to h in probability. Since for all n, E (xu

n

T
jFu

n
;�

T
) is a Gaussian

random variable, the characteristic function of it has the form

�n(x) = exp

�
ihmn; xi � 1

2
h�nx; xi

�
; x 2 X;

where mn = E (E (xu
n

T
jFun;�

T
)) = Exu

n

T
and �n = covE (xu

n

T
jFun;�

T
) and i is the imaginary

unit. Also, the vector h 2 X is considered as a degenerate Gaussian random variable with the

characteristic function

�(x) = exp (ihh; xi) ; x 2 X:
The convergence of E (xu

n

T
jFu

n
;�

T
) to h in probability implies �n(x) ! �(x) for all x 2 X. The

last convergence is possible when for all x 2 X,

hmn; xi = hExunT ; xi ! hh; xi and h�nx; xi ! 0 as n!1: (33)
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The �rst of these convergences means the convergence of Exu
n

T
to h in the weak topology of the

Hilbert space X. By Mazur's theorem (Balakrishnan, 1976) we can construct the sequence

hn =
nX
i=1

c
n

i Ex
u
i

T ; c
n

i � 0;
nX
i=1

c
n

i = 1; i = 1; 2; : : : ; n; i = 1; 2; : : : ;

of convex combinations of Exu
n

T
such that hn converges to h in the strong topology of X.

Denote ~un =
P

n

i=1 c
n
i
u
i, n = 1; 2; : : :. By Lemma 25, ~un 2 Uad for all n. Moreover, in view of

the aÆneness of the system (4), hn = Ex~u
n

T
. In terms of the system (6) this means that for

the sequence of controls ~vn = E ~un in Vad, the sequence of vectors hn = Ex~u
n

T
= y

~vn

T
converges

to h in the strong topology of X. Since h is an arbitrary point of X, we conclude that the

set D(T ) de�ned by (1) for the control system (6) is dense in X, i.e. the control system (6) is

D
a

T
-controllable. Now consider the second convergence in (33). Let feig be a basis in X. We

can select a subsequence fn1mg of fng so that the sequence fh�n1
m

e1; e1ig decreases and goes to

0. Then we can select a subsequence fn2mg of fn1mg so that the sequence fh�n2
m

e2; e2ig decreases
and goes to 0. Continuing this procedure for all ei and taking the diagonal sequence fnmmg, we
obtain that for all ei, the sequence fh�nm

m

ei; eiig decreases and goes to 0. Thus, in

lim
m!1

tr �nm
m

= lim
m!1

dimXX
i=1

h�nm
m

ei; eii (34)

the series is so that for all m and for all i,

h�nm
m

ei; eii � h�
n1
1

ei; eii:

So, we can interchange the places of the limit and the sum in (34) and obtain that limm!1 tr �nm
m

=

0. Without loss of generality, assume that limn!1 tr �n = 0. By Lemma 18 and Lemma 19, if

w
n = u

n �Eun, then wn 2Wad and

�n = covE (xu
n

T jFun;�

T
) = covE (zw

n

T jFwn;�

T
):

Therefore,

lim
n!1

E kE (zw
n

T jFwn;�

T
)k2 = lim

n!1
tr �n = 0:

By Lemma 13, this implies aT = 0. Finally from Theorem 15, we obtain that the system (7) is

S
0

T
-controllable. The theorem is proved.

Proposition 27. Given T > 0, the stochastic control system (4) on Uad is ST -controllable

if and only if it is Ca

T
-controllable.

Proof. This follows from Theorem 24 and Theorem 26.

Theorem 28. The control system (4) on Uad is ST -controllable for each T > 0 if and only

if the control system (6) on Vad is Da
T
-controllable for each T > 0.

Proof. The necessity follows from Theorem 26. For suÆciency, note that by Theorem 17,

the Da

T
-controllability of the control system (6) for each T > 0 implies the S0

T
-controllability

of the control system (7) for each T > 0. Thus, by Theorem 26, the control system (4) is

ST -controllable for each T > 0. Theorem is proved.

Example 29. Consider the control system (4) with the operators A and B as de�ned

in Example 9. It was shown in Example 9 that the deterministic part of this system is Da

T
-

controllable for each T > 0. Hence by Theorem 28, this system is ST -controllable for each

T > 0.
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Example 30. Consider the control system (4) with the operators A and B as de�ned in

Example 10. It was shown in Example 10 that the deterministic part of this system is Da

T
-

controllable for each T > 2 if some additional condition holds. However, Theorem 28 does not

guarantee the ST -controllability of this system for any T > 0.

Finally, we present the following theorem about the equivalence of the above discussed con-

cepts of controllability in a �nite dimensional case.

Theorem 31. Given T > 0, if X = Rn and U = Rm, then the following conditions are

equivalent:
(a) the rank of the matrix [B;AB; : : : ; An�1

B] is n (Kalman's rank condition);

(b) QT > 0 (complete controllability condition);

(c) if B�U�t x = 0 for all 0� t�T , then x = 0 (approximate controllability condition);

(d) �R(�;�QT ) converges to zero operator as �! 0 in uniform operator topology

(resolvent condition of complete controllability);

(e) �R(�;�QT ) converges to zero operator as �! 0 in strong operator topology

(resolvent condition of approximate controllability);

(f) �R(�;�QT ) converges to zero operator as �! 0 in week operator topology;

(g) R(�;�QT ) converges as �! 0 in uniform operator topology;

(h) R(�;�QT ) converges as �! 0 in strong operator topology;

(i) R(�;�QT ) converges as �! 0 in weak operator topology;

(j) the control system (4) on Uad is CT -controllable;

(k) the control system (4) on Uad is ST -controllable;

(m) the control system (6) on Vad is Dc
T
-controllable;

(n) the control system (6) on Vad is Da
T
-controllable.

Proof. These follow from the results of this paper and from the other well-known results.
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