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Abstract

Recent threat assessments by the Navy have indicated the need for improving the accuracy of defensive

missiles. This objective can only be achieved by enhancing the performance of the missile subsystems and by

finding methods to exploit the synergism existing between subsystems. Traditional approach for missile

guidance and control systems has been to design these subsystems separately and then to integrate them

together before verifying their performance. Such an approach does not exploit any synergistic relationships

between these and other subsystems. As a first step towards the development of integrated design

methodologies, this paper develops a technique for integrated design of missile guidance and control systems.

The application of the state dependent Riccati Equation (SDRE) method for integrated guidance/control

system design is discussed in this paper. Satisfaction of terminal aspect angle constraints in the

guidance/control problem is also discussed. Numerical results using a six degree-of-freedom missile simulation

are given. Integrated guidance/control systems are expected to result in significant improvements in missile

performance, leading to lower weight and enhanced lethality. Both of these factors will lead to a more

effective, lower-cost weapon system. Integrated system design methods developed under the present research

effort also have extensive applications in high performance aircraft control and guidance systems.

1. Introduction

The evolving nature of the threats to the Naval assets have been discussed in the recent

literature (Ohlmeyer, 1996; Bibel et al., 1994; Cahdwick, 1994; Zarchan, 1995).  These research

efforts have identified very small miss distance as a major requirement for the next generation

missiles used in ship defense against tactical ballistic missiles and sea skimming missiles. Two key

technologies that have the potential to help achieve this capability are the development of advanced

sensors and methods for achieving tighter integration between the missile guidance, autopilot and

fuze/warhead subsystems. This paper presents a preliminary research effort on the integrated design

of missile guidance and control system.

Past trend in the missile industry has been to design each subsystem using separate engineering

teams and then integrate them to form the complete missile. Modifications are subsequently made

to each subsystem in order to achieve the desired weapon system performance. Such an approach

can result in excessive design iterations, and may not always exploit any synergism existing
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between interacting subsystems. This has led to a search for integrated design methods that can help

establish design tradeoffs between subsystem specifications early-on in the design iterations. Recent

research (Ohlmeyer, 1996) on quantifying the impact of each missile subsystem parameters on the

miss distance can serve as the first step towards integrated design of missile guidance and autopilot

systems.

Integrated design of the flight vehicle systems is an emerging trend within the aerospace

industry. Currently, there are major research initiatives within the aerospace industry, DoD and

NASA to attempt inter-disciplinary optimization of the whole vehicle design, while preserving the

innovative freedom of individual subsystem designers. Integrated design of guidance, control, and

fuze/warhead systems represents a parallel trend in the missile technology.

The block diagram of a missile guidance and control loop is given in Figure 1. The target states

relative to the missile estimated by the seeker and a state estimator form the inputs to the guidance

system. Typical inputs include target position and velocity vectors relative to the missile. In

response to these inputs, and those obtained from the onboard sensors, the guidance system

generates acceleration commands for the autopilot. The autopilot uses the guidance commands and

sensor outputs to generate commands for the actuator blending logic, which optimally selects a mix

of actuators to be used at the given flight conditions. The fuse/warhead subsystem uses the relative

location of the target with respect to the missile as the input and responds in such a way as to

maximize the warhead effectiveness.

Guidance
System

Autopilot
Actuator
Blending

Logic

Missile
Airframe

Target

Seeker

Fuze/
Warhead

Fig. 1. Block Diagram of an Advanced Missile Guidance, Control,

and Fuze/Warhead Systems

Each of these subsystems have interactions that can be used to optimize the performance of the

missile system. For instance, missiles with higher accuracy guidance and autopilot systems can

employ smaller warheads. Guidance laws that have anticipatory capabilities can reduce the autopilot

time response requirements. High bandwidth autopilot can make the guidance system more

effective. High quality actuator blending logic can similarly lead to more accurate fuel conservative
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maneuvers that can enhance the autopilot performance. Similarly, the seeker field of view and speed

of response depend on the target agility, and the response of missile guidance and control system.

Traditional approach for designing the missile control and guidance systems has been to neglect

these interactions and to treat individual missile subsystems separately. Designs are generated for

each subsystem and these subsystems are then assembled together. If the overall system

performance is unsatisfactory, individual subsystems are re-designed to improve the system

performance. While this design approach has worked well in the past, it often leads to the

conservative design of the on-board systems, leading to a heavier, more expensive weapon system.

“Hit-to-kill” capabilities required in the next generation missile system will require a more

quantitative design approach in order to exploit synergism between various missile subsystems and

thereby guaranteeing the weapon system performance. Integrated system design methods available

in the literature (Garg, 1993; Menon et al., 1995) can be tailored for designing the missile

subsystems.

This paper presents the application of an emerging nonlinear system design method for the

integrated design of missile guidance and autopilot systems. Integration of actuator blending logics

(Menon et al., 1998) and other subsystems will be considered during future research efforts. The

present research employs a six degree-of-freedom nonlinear missile model, and a spiraling point-

mass target model. These models are discussed in Section 2. Section 2 also lists the general

performance requirements of the integrated guidance/control system design.

Integrated guidance/control system design using the State Dependent Riccati Equation (SDRE)

technique (Cloutier et al., 1996; Mracek et al., 1997; Cloutier, 1997) will be discussed in detail in

this paper. The SDRE design technique is based on the State Dependent Coefficient (SDC) form of

the missile equations of motion, and provides a stabilizing control law that is optimal with respect

to an infinite-time performance index. The SDRE implementation requires the on-line solution of a

matrix Riccati equation. Since the SDRE guidance/control law is based on an infinite-time

formulation, a command generator is desirable to provide fast response without encountering

actuator saturation. The command generator can also be used to meet a terminal aspect angle

requirement. Section 3 presents the details of the integrated SDRE guidance/control system design,

command generation and performance evaluation. Conclusions from the present research are given

in Section 4.

2. Missile Model

A nonlinear six degrees-of-freedom missile model is used for the present research. This model

is derived from a high fidelity simulation developed under a previous research effort (Menon et al.,

1996), and will be further discussed in Section 2.1. The guidance/control law development will

include a point-mass target model performing weaving maneuvers. The equations of motion for the
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target will be given in Section 2.2. Section 2.3 will discuss the performance requirements of the

integrated guidance/control law.

2.1. Six Degrees of Freedom Missile Model

A body coordinate system and an inertial coordinate system are used to derive the equations of

motion. These coordinate systems are illustrated in Figure 2. The origin of the body axis system is

assumed to be at the missile center of gravity. The XB axis of the body axis system points in the

direction of the missile nose, the YB axis points in the starboard direction, and the ZB axis

completes the right-handed triad. The missile position and attitude are defined with respect to an

earth-fixed inertial frame. The origin of the earth-fixed coordinate system is located at the missile

launch point, with the X axis pointing towards the initial location of the target, and the Z axis

pointing along the local gravity vector. The Y axis direction completes the right-handed coordinate

system.

XB

YB

ZB
X

Y

Z Earth-Fixed
Coordinate System

Body Coordinate
System

Fig. 2. Missile Coordinate Systems

The translational and rotational dynamics of the missile are described by the following six

nonlinear differential equations:
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In these equations, U, V, W are the velocity components measured in the missile body axis

system; P, Q, R are the components of the body rotational rate; Fxg, Fyg, Fzg are the gravitational

forces acting along the  body axes; and Ix, Iy, Iz are the vehicle moments of inertia. For Phase I

research, it is assumed that the missile body axes coincide with its principal axes. The aerodynamic

force and moment coefficients are described in a polynomial form with respect to angle of attack α,

angle of sideslip β, pitch fin deflection δQ, yaw fin deflection δR, and the roll fin deflection δP. The

coefficients of the polynomials describing the aerodynamic coefficients were derived by carrying

out least squares fits on the aerodynamic data from Menon and Iragavarapu (1996). The variable s is

the reference area and l is the reference length.

The missile speed VT , Mach number M, dynamic pressure q  , angle of attack α, and the angle

of sideslip β are defined as:
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Due to the preliminary nature of the present research, the aerodynamic coefficients are assumed to

be independent of the Mach number.

The missile position with respect to the earth-fixed inertial coordinate system can be described

by using a coordinate transformation matrix TIB between the body frame and the inertial frame as:
















=

















W

V

U

T

Z

Y

X

IB

&

&

&

The coordinate transformation matrix with respect to the Euler angles ψ, θ, φ is:
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Yaw (ψ), pitch (θ), roll (φ) Euler angle sequence is used to derive this transformation matrix. The

Euler angle rates with respect to the body rotational rates are given by the expressions:

φφθ sincos RQ −=&

1473

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



θφθφφ tancostansin RQP ++=&

( ) θφφψ seccossin RQ +=&

Since the missile seeker defines the target position relative to the missile body coordinate

system, it is desirable to describe the relative position of the missile with respect to the target in a

coordinate system parallel to the instantaneous missile body axis system. For instance, if the target

velocity is assumed to be negligible when compared with the missile velocity, and if the origin of

the coordinate system is assumed to be located at the target, the kinematic equations for describing

the missile position relative to the target are:

QZRYUX bbb −+=&

PZRXVY bbb +−=&

PYQXWZ bbb −+=&

The  main advantage of describing the target relative missile position in the rotating coordinate

system is that it circumvents the need for computing the Euler angles required in the transformation

matrix during guidance law computations. In all that follows, the target velocity vector will be

assumed to be negligible when compared with the missile velocity vector.

 Note that the missile/target position coordinates in this rotating frame can be related to their

position vector in the inertial frame using the TIB transformation matrix as:
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Second-order fin actuator dynamics from Menon and Iragavarapu (1996) is incorporated in the

missile model. However, due to their fast speed of response, these models are not used for

integrated control law development or in routine simulations. The reaction jet actuators are not

included in the present research. During future work, the actuator blending logics developed in a

previous research study (Menon et al., 1997) will be used to integrate the reaction jet actuators in

the integrated guidance/control loop.

Although the measurements available on board the missile are limited, the present research will

assume that all the measurements required for the implementation of the integrated guidance/control

law are available.

2.2. Target Model

Two types of target models are considered in the present research. These are maneuvering and

nonmaneuvering targets. The maneuvering targets are assumed to execute weaving maneuvers, and

the nonmaneuvering targets are assumed to fly along straight line flight paths.
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The maneuvering target model is formulated based on the work of Chadwick (1994) and

Zarchan (1995) where it was indicated that tactical ballistic missiles (TBM) exhibit severe spiraling

maneuvers as they reenter earth’s atmosphere. The spiral maneuver magnitude is in  1 to 10 g range,

with an altitude range of 60 kft to 100 kft. The spiraling frequency range is between 0.5 and 1.0 Hz.

In the present research, the target motions are described in an earth-fixed inertial frame with the

Z-axis pointing along the local gravity vector, X-axis pointing towards east, and the Y-axis

completing the right-handed triad. The equations of motion of the target are given by:

gtAtAX T −=−=−= T
2

T
2 Z ,cosY ,sin &&&&&& ωωωω

Here, A is the amplitude of the spiral motion in feet, ω is the frequency of the spiral in

radians/second, t is the elapsed time in seconds, and g is the acceleration due to gravity. Both the

amplitude and frequency of the spiral are assumed to be constant in the present research.

2.3. Integrated Guidance/Control Law Performance Requirements

In traditional flight control systems, the guidance law uses the relative missile/target states to

generate acceleration commands. The acceleration commands are generated with the assumption

that the missile rotational dynamics is fast enough to be considered negligible. If perfectly followed,

these acceleration commands will result in target interception. The autopilot tracks the acceleration

commands by changing the missile attitude to generate angle of attack and angle of sideslip using

fin deflections and/or moments generated using the reaction jet thrust.

These two functions are combined in integrated guidance/control laws. Integrated

guidance/control laws use the target states relative to the missile to directly generate fin deflections

that will result in target interception. In addition to achieving target interception, the integrated

guidance/control law has the responsibility for ensuring the internal stability of the missile

dynamics. Some of the general performance guidelines used during the present research for

integrated guidance/control system design are that:

1. It must intercept maneuvering targets with very small miss distances.

2. It must maintain the roll rate near zero throughout the engagement.

3. It must be capable of intercepting the target with a desired terminal aspect angle. The aspect

angle may be defined in various ways. For purposes of this research, it is defined as the angle

between the missile velocity vector and the target velocity vector, as illustrated in Figure 3.

4. It must stabilize all the states of the missile.

5. It must achieve its objectives while satisfying the position and rate limits on the fin/reaction

jet actuators.

6. It must be capable of adapting to small, but rapid changes in target position as may occur

during the last few seconds of interception.
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Figure 3 illustrates one definition of the terminal aspect angle. This is the angle that the missile

velocity vector makes with respect to the target velocity vector at intercept. It is obvious that a good

estimate of the target velocity vector with respect to the missile is essential for reliably

implementing the terminal aspect angle constraint. Although it is not necessary, for the sake of

simplicity, the integrated guidance/control law development will meet the aspect angle constraint

separately in the pitch and yaw planes.

.

Missile
Velocity
Vector

Target Velocity Vector

Aspect
Angle

Fig. 3. Aspect Angle at Target Interception

The terminal aspect angle constraint can be satisfied in several different ways. Firstly, the

guidance law can be explicitly formulated to meet the terminal aspect angle constraint. While this is

the most direct approach, the resulting analytical formulation may be intractable. The approach

followed in the present research is based on ensuring that the relative missile/target lateral velocity

component at interception will be a fixed fraction of the relative missile/target longitudinal velocity

component. This way, the terminal aspect angle constraint is converted into a constraint on the

relative missile/target lateral velocity component at the final time.

Missile/target models discussed in this section form the basis for the development of integrated

guidance/control laws in the following section.
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3. Integrated Design Using the State Dependent Riccati Equation Method

State Dependent Riccati Equation (SDRE) method (Cloutier et al., 1996; Mracek et al., 1997;

Cloutier, 1997) is a recently emerged nonlinear control system design methodology for direct

synthesis of nonlinear feedback controllers. Using a special form of the equations of motion, this

approach permits the designer to employ linear optimal control methods such as the LQR

methodology and the H• design technique for the synthesis of nonlinear control systems. The

application of the SDRE technique for the development of integrated guidance and control system

will be discussed in this section. A brief introduction to the SDRE technique will be presented in

Section 3.1.

The SDRE design technique requires the dynamic model of the system to be placed in the State

Dependent Coefficient (SDC) form. The SDC form has the structure:

( ) ( )uxBxxAx +=&

In its most general form, the SDRE technique allows the inclusion of a disturbance term (Cloutier,

et al., 1996). In that case, the method is amenable for control law synthesis using the H• technique.

However, since the present research does not anticipate using the H• technique for design, this term

will be dropped from consideration.

Note that the SDC form has the same structure as a linear dynamic system, but with the system

matrix A and the control influence matrix B being functions of the state variables. Cloutier et al.

(1996) have shown that the SDC form can be derived for most nonlinear dynamic systems using

simple algebraic manipulations. That work has also demonstrated that a multivariable system can be

parameterized in this manner in an infinite number of ways. Some of these forms may be superior to

others in terms of their dynamic behavior near desired points of equilibria.

The SDRE technique uses the equations of motion in the SDC form together with a state

dependent quadratic performance index to derive the nonlinear control law. A state dependent

algebraic Riccati equation is first  formulated using the SDC model and state dependent weights in

the performance index. The solution to the state dependent Riccati equation then yields a state

dependent gain matrix that stabilizes the nonlinear system. In the case where all the system states

are not available from measurements, the procedure can be modified to synthesize state dependent

estimators. If sufficient computational resources are available, the SDRE approach can be extended

to include design techniques such as H• and µ-synthesis. The application of the SDRE design

technique for integrated guidance/control system design will be discussed in Section 3.3, together

with simulation results.

Since the SDRE approach solves the infinite time-horizon control problem, the resulting

controller will have purely reactive characteristics. As a result, the controller will attempt to

immediately correct any errors in the control loop. This property can lead to actuator saturation

when the missile is far away from the target. Moreover, the infinite time-horizon nature of the
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SDRE solution makes it difficult to meet terminal boundary conditions. One such boundary

condition of interest is the terminal aspect angle. These difficulties can be circumvented by using a

command generator. The command generator can then be considered as an additional design degree

of  freedom. Note that the command generator can be considered to be the input compensator in a

two degree-of-freedom design procedure (Wolovich, 1994), currently gaining acceptance in the

robust-linear control community.  Two degree-of-freedom design technique allows the designer to

independently shape the tracking performance and the closed-loop behavior of automatic control

systems. The synthesis of a simple command generator that accomplishes target interception while

achieving a desired terminal aspect angle is discussed in Section 3.3. Evaluation of the integrated

guidance/control system for three interception scenarios are given in Section 3.4.

3.1. A Summary of the SDRE Design Approach

The SDRE approach was first discussed by Cloutier et al. (1996). This approach assumes that

the dynamic model of the system under consideration can be placed in the SDC form discussed at

the beginning of Section 3.  The second ingredient of the SDRE design technique is the definition of

a quadratic performance index in state dependent form:

( ) ( )[ ]∫ +=
∞

02

1
t

TT dtuxRuxxQxJ

The state dependent weighting matrices Q(x) and R(x) can be chosen to realize the desired

performance objectives. In order to ensure local stability, the matrix Q(x) is required to be positive

semidefinite for all x and the matrix R(x) is required to be positive definite for all x.

Next, a state dependent  algebraic Riccati equation:

 ( ) ( ) 0)()()()()()()()( 1 =+−+ − xQxPxBxRxBxPxAxPxPxA TT

is formulated and is solved for a positive definite state dependent matrix P(x). The nonlinear state

variable feedback control law is then constructed as:

( )xxPxBxRu T )()(1−−=

Cloutier et al. (1996) have shown that this control law is locally stable and optimal with respect to

the infinite time performance index. Moreover, Cloutier et al. (1996) have shown that the SDRE

control laws are globally stable if the following condition is satisfied:

0)()()()()()( 1 <−− − xPxBxRxBxPxQP T&

This completes the basic SDRE design procedure. Additional sophistication can be introduced in the

SDRE design approach by including state estimators, and frequency weighting terms in the

performance index. If adequate computational resources are available, the design problem can also

be cast as an H• design problem. An excellent overview of the SDRE design technique can be found

in Cloutier (1997).
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It may be observed that the crucial part of the control law derivation is the solution of the state

dependent Riccati equation. In rare situations, this Riccati equation may be solvable in closed-form.

In most situations, however, this equation must be numerically solved at each sample. A flow chart

illustrating the steps involved in the computation of the SDRE control laws is given in Figure 4.

At each sample, the state vector obtained from feedback sensors or estimators is used to

compute the SDC matrices, which are then used to find the state dependent gains. The product of

the state dependent gains and the state vector then yields the control variables. Due to the

requirement for real-time solution of a Riccati equation, the SDRE approach demands significant

amount of computational resources for implementation.

The SDRE methodology will be specifically tailored for use in the development of integrated

guidance/control system in the following section.

State Feedback
Control Law:
u = - K(x) x

Compute
Model Matrices

A(x), B(x)

Formulate and Solve
The StateDependent

Riccati Equation for P(x) >0

Compute
State-Dependent Gain

K (x) = R-1(x) BT(x) P(x)

State
Vector: x
From the

Dynamic System

Off-Line Selection of
State & Control

Weighting Matrices
Q(x), R(x)

Control
Vector: u

To the
Dynamic System

Fig. 4. SDRE Control Law Computations

3.2. Missile Model in State Dependent Coefficient Form

In order to apply the SDRE technique for integrated guidance/control system, the missile

equations of motion presented in Section 2 will next be placed in the SDC form. As indicated in the

previous section, since the missile is a multivariable system, infinite number of SDC forms can be

found for this model. Mracek and Cloutier (1997) presents one of the possible SDC forms for the

missile model. The state variables chosen in that work were the body rates, Mach number, angle of

attack and the angle of sideslip. Note that Mracek and Cloutier (1997) treated only the autopilot

design problem, and did not include the missile translational dynamics in the formulation.

Due to the particular choice of state variables, the SDC parameterization approach presented in

Mracek and Cloutier (1997) requires the missile aerodynamic model to be specified in a polynomial
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form. This may not be acceptable in situations where the design has to be based on non-smooth

table look-up aerodynamic data obtained from wind tunnel tests.

An alternate SDC form for the missile equations of motion will be presented in the following.

This approach has the advantage of allowing the designer to work with the original set of state

variables, while enabling the use of aerodynamic models of arbitrary structure. Thus, the SDC form

presented here can be considered to have a more general character. It is important to observe that

the SDRE design technique requires the control variables to appear linearly in the SDC equations

and alternate state variable selection does not circumvent this limitation.

The three body velocity components, three body angular rates and two body axis referenced

position coordinates are used as the state variables in the present formulation. This choice of state

variables is motivated by the observation that the dynamic pressure appears linearly in all the

aerodynamic force and moment components. If the winds aloft are neglected, the dynamic pressure

is the product of the air density and the sum of the square of the velocity components.

Consequently, the missile velocity components can be extracted from the equations of motion to

yield the SDC form of the equations of motion. This SDC form has the advantage that it can use

aerodynamic models of arbitrary complexity, and is uniformly valid for all angles of attack and

angles of sideslip. Thus, the present SDC form can be considered to be particularly suitable for use

in high angle of attack missile guidance/control law development.

Following the standard practice in missile guidance law and autopilot design, the gravitational

force contributions to the equations of motion will be dropped from consideration. The state vector

and the control vector for the SDC model are chosen to be: [ ]TPx bb  ZY W  V  UR Q = ,

[ ]Tu PRQ   δδδ= . Using the missile equations of motion given in Section 2, the elements of the

system matrix A(x) can be found to be:
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Numerical evaluations at several values of the state variables have shown that the missile model in

the above SDC form is completely controllable. This missile model will be used next for the

development of the integrated guidance/control system.

3.3. LQR - SDRE Design of Integrated Guidance/Control System

After transforming the missile model into the SDC form, the next major responsibility of the

designer is to select the state weighting matrix Q(x) and the control weighting matrix R(x). As

indicated elsewhere in this chapter, Q(x) is required to be positive semidefinite for all expected

values of x, and R(x) is required to be positive definite for all expected values of x. Selecting matrix

functions that meet these requirements for all values of the state vector is not generally practical.
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The approach advocated in Mracek and Cloutier (1997) and that employed here is to select Q and R

to be constant matrices at first, and then explore the payoffs in scheduling these constant matrices as

functions of key state vector components.

Two major criteria have been found useful in the selection of Q(x), R(x) weighting matrices.

Unlike the classical linear-quadratic regulator problem, assuring the positive semidefiniteness of the

Q matrix and the positive definiteness of the R matrix are not sufficient to guarantee global

stability. In the presence of large variations in the state variables, stability can be guaranteed only if

the Riccati matrix P(x) satisfies the inequality (Cloutier, 1997):

0)()()()()()( 1 <−− − xPxBxRxBxPxQP T&

This criterion can be used to iteratively refine the selection of the Q(x), R(x) matrices. Initial Q and

R can be selected to be identity matrices. Test runs can then be used to determine the rate of change

of the P(x) matrix, and then to make modifications to the Q, R matrices. This iterative refinement

will allow the selection of Q and R matrices that ensure the closed-loop system stability for all

expected values of x. However, this choice of Q(x) and R(x) may not produce the desired

performance characteristics for the integrated guidance/control law.

A second guideline for the selection of the Q(x) and R(x) matrices is based on Bryson’s rule

(Bryson and Ho, 1975) for the design of linear quadratic regulators. According to Bryson and Ho

(1975), the Q and R matrices in the infinite-time linear-quadratic optimal control problem can be

chosen as:
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The subscript “max” denotes the maximum permissible values, and ts is the desired settling time.

For the present research, the choice of the weighting matrices that resulted in reasonably good

performance characteristics turned out to be:

[ ]( )01+2.0e 01,+2.0e 08,-1.0e 08,-1.0e 0,  100, 100, ,100diagonalQ =

R = 1e5*diagonal([1 1 1]);

These matrices were obtained after several numerical experiments. Note that the state weight

corresponding to the velocity component U has been set to zero, due to the fact that the integrated

guidance/control system is not expected to control this state variable. Although it is desirable to

change the weighting matrices as a function of the engagement geometry,  due to the preliminary

nature of the present research, the weighting matrices are maintained constant throughout an

engagement.
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In future work, one of the criteria for the selection of state dependent weighting matrices could

be the range to the target. For instance, lower state weights can be used when the missile is far away

from the target, and as the missile approaches the target, the state weights can be tightened. A

reverse strategy can be used for the control weighting matrix: higher magnitudes when the missile is

far from the target, and smaller magnitudes as the missile approaches the target. This will ensure

agile behavior while avoiding unnecessary actuator saturation. In this way, the closed-loop system

response can be tailored to approximate the behavior of a finite time-horizon integrated

guidance/control law. Note that such range or time-to-go based scheduling strategy is automatically

built into more traditional guidance laws like the proportional navigation and augmented

proportional navigation guidance laws (Bryson and Ho, 1975).

A more flexible design approach to ensure agile missile response is to employ a command

generation system in the integrated guidance/control loop. The command generator will allow a

control system to use high loop gains while providing a saturation-free closed-loop system

response. In the integrated guidance/control problem, the command generator will enable the

implementation of desired terminal conditions. The following section will discuss the command

generator in further detail.

3.4. Command Generation

Since the SDRE formulation is essentially an infinite time formulation, when faced with an

error, it will immediately attempt to correct the error. This can lead to actuator saturation followed

by large transients in the state variables, with the potential for the closed-loop system to go

unstable. On the other hand, slowing the system down to prevent actuator saturation can lead to

sluggish system response, with the possibility for large miss distances. The use of a command

generator can alleviate these difficulties.

The design flexibility available with the use of a command generator has been amply

demonstrated in linear system design literature (Wolovich, 1994). The two degree-of-freedom

design philosophy12 employs a command shaping network to obtain the desired tracking

characteristics, and a feedback compensator is used to achieve the desired closed-loop system

stability and robustness characteristics. These two subsystems can be used to achieve overall design

objectives without sacrificing stability, robustness or the tracking behavior. From an

implementation point of view, the two degree-of-freedom design process allows high gain control

laws that will not saturate the actuators.

In the integrated guidance/control problem, the command generator uses the current target

position and velocity components with respect to the missile, desired boundary conditions and

expected point of interception to synthesize a geometric command profile. The command profile

can be re-computed at each time instant, allowing for the correction of computational errors made
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during the previous step. Such an approach will distribute the control power requirements over the

interception time, thereby allowing a fast responding closed-loop system that does not produce

unnecessary actuator saturation.

The command profile can be computed from the initial conditions and the interception

requirements. The initial conditions on the missile position and velocity are specified, and the

terminal position of the missile must coincide with the target. In the case of a terminal aspect angle

requirement, the terminal velocity component may also be specified. Since there are four conditions

to be satisfied, a cubic polynomial is necessary to represent the command profile. Note that if the

terminal aspect angle requirement is absent, a quadratic polynomial is sufficient for generating

commands. The independent variable of the cubic polynomial can be chosen as the state variable

not being controlled, namely, the position difference between the missile and the target along the X

body axis of the missile. Additionally, since the desired final miss distance is zero, the leading term

in the cubic polynomial can be dropped. With this, the commanded trajectory profiles will be of the

form:
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Figure 5 illustrates a typical commanded trajectory profile.

The coefficients a1, a2, a3, b1, b2, b3 can be computed using the boundary conditions as:
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Note that the command profiles do not require the specification of time-to-go, but need the

specification of the closing rate along the X-body axis. Target interception will be achieved if the

SDRE integrated control law closely tracks the commands. In case of agile targets, it may be useful

to include a certain amount of anticipatory characteristics in the command generator. This will

effectively introduce additional “phase lead” in the integrated guidance/control loop, potentially
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resulting in decreased miss distances. These and other advanced command generation concepts will

be investigated during future research.

Xb

Yb

Intercept
Point:

Ybf, Zbf =0
Ybf, Zbf  Specified
.     .

Current
Point:

Yb0, Zb0 ,

Yb0, Zb0
Specified

.     .

Fig. 5. Commanded Trajectory Profile

Although the cubic polynomial command generators were implemented in the pitch and yaw

planes, in the interests of maintaining simplicity during the present research, only the leading terms

were used for generating the commands. The next section will present the simulation results using

the integrated guidance/control law for three engagement scenarios.

3.5. Integrated Guidance/Control System Performance Evaluation

As discussed in the previous sections, the integrated SDRE guidance/control system consists of

a command generator, and an SDRE control law. A schematic block diagram of the integrated

guidance/control system is given in Figure 6.

SDRE
Control Law

Command
Generator

Missile
Dynamics

Target States:
Xb, Yb, Zb
Xb, Yb, Zb
.       .      .

Ybc, Zbc
Missile
States

Fig. 6. Integrated Guidance/Control System

A six degree-of-freedom missile simulation set up during earlier research projects (Menon et

al., 1996)is used to evaluate the performance of the integrated guidance/control law. This

simulation incorporates a nonlinear missile model, together with sensor/actuator dynamics and

vehicle flexibility effects. In the interests of saving computational time, the sensor/actuator

dynamics and the flexibility effects are not included in the present simulation runs. A point-mass

target model is included in the simulation runs. Euler integration method with a step size of 1

millisecond is used in all the simulation runs.
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The engagement scenarios illustrated here assume that the missile is flying at an altitude of

50000 feet, and at a Mach number of 5. The airframe is initially trimmed at an angle of attack and

angle of sideslip of 0.1 degrees. The missile down range and cross-range positions in the inertial

frame at the initial time instant are assumed to be zero. The results for three engagement scenarios

will be given in the following.

3.5.1. Crossing Target

The first scenario chosen to illustrate the performance of the integrated SDRE guidance/control

law is that of a crossing target. The target is assumed to be located at 10000 feet down range, -300

feet cross range and 50300 feet in altitude. It has 100 feet/s velocity along the cross range and

altitude directions. The missile/target trajectories in the vertical and horizontal plane are given in

Figure 7. The target trajectories are denoted by dashed lines in these figures.

The oscillations observed in the lateral components at the initial time are the result of lightly

damped body rate dynamics. This low damping in the body rate dynamics is largely the result of

trying to obtain fast response using pure proportional feedback. These responses can be further

refined by a more careful choice of the weighting matrices in the SDRE design process, and through

the use of dynamic compensators. Frequency weighting terms in the performance index can also

help realize the desired closed-loop system response.
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Fig. 7. Interception of a Crossing Target

 The interception occurred at about 2.1 seconds, with a miss distance of about 20 feet. Analysis

has shown that the miss distance arises primarily due to the differences in the performance of the

integrated guidance/control system between the vertical and horizontal planes, and not because of

any inherent limitations of the SDRE control law formulation. Thus, the integrated control system

drove the Yb error to zero a few milliseconds before driving the Zb error to zero. Note that this miss
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distance can be made arbitrarily small through the use of an improved command generator, perhaps

including a certain amount of “lead”. Additional refinements include the use of integral feedbacks

on the two position components. These improvements will be pursued during future research.

The missile body velocity components corresponding to this intercept scenario are given in

Figure 8.
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Fig. 8. Temporal Evolution of Body Velocity Components

Note that the missile velocity along the longitudinal axis falls continuously due to the axial

force. The changes in the longitudinal velocity induced by the lateral maneuvers can be clearly

identified at the beginning of the longitudinal velocity history. The lateral velocity components

show larger changes at the beginning and gradually approach zero near the intercept. Note that this

behavior will change if the weighting matrices are made functions of time-to-go or range-to-go.
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Fig. 9. Angle of Attack and Angle of Sideslip Histories
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The angle of attack and angle of sideslip histories given in Figure 9 mirror the lateral velocity

component variations.

The missile roll, pitch, yaw rate histories are presented in Figure 10. Corresponding fin

deflections are given in Figure 11.
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Fig. 10. Roll, Pitch, Yaw Rate Histories

It may be observed that the body rates show a large initial transient, followed by rather modest

variations throughout the interception. The activity observed in the roll rate arises primarily due to

the coupling of this axis with the pitch and yaw axes through angle of attack, angle of sideslip and

the fin deflections.
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Fig. 11. Fin Deflection Histories
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3.5.2. Weaving Target

A weaving target model discussed in Section 2 is used to evaluate the response of the SDRE

integrated guidance/control system. The missile initial conditions were identical to the two previous

cases. The target is assumed to be located at 10000 feet in down range, 300 feet in cross range, and

50300 feet altitude. It is assumed to have a down range velocity of 3000 feet/s, cross range velocity

of 40 feet/s and a descent rate of 40 feet/s. A weaving amplitude of 50 feet, with a frequency of 2

rad/s is introduced in the horizontal plane. The weaving frequency amplitude and frequency are

chosen based on Reference 3.

The missile-target trajectories in the horizontal and the vertical planes are presented in Figure

12. The interception required about 5.8 seconds, and the terminal miss distance was about 9 feet.
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Fig. 12. Interception of a Weaving Target

As in the two previous cases, the miss distance could be largely attributed to the differences in

performance between the vertical and horizontal channels. Improved state-control weight selection

and controller scheduling with respect to range or time-to-go will result in significant improvements

in the miss distance.  A command generator including some lead can also contribute towards

reducing the miss distance.

The components of the body velocity vector are given in Figure 13. Unlike the two previous

scenarios, the lateral velocity components are continuously changing. The angle of attack and angle

of sideslip histories corresponding to this engagement  are illustrated in Figure 14. Roll, pitch, yaw

body rates are illustrated in Figure 15. Corresponding fin deflections are given in Figure 16.
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Fig. 13. Temporal Evolution of Body Velocity Components
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Fig. 14. Angle of Attack and Angle of Sideslip Histories
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Fig. 15. Roll, Pitch, Yaw Rate Histories
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Fig. 16. Fin Deflection Histories

As with the previous engagement scenario, due to the reactive nature of the SDRE

guidance/control law, most of the control activity is at the beginning of the engagement. Scheduling

the weighting matrices with respect to time-to-go or range to the target will change this behavior.

5. Conclusions

State Dependent Riccati Equation (SDRE) method for designing integrated guidance/control

systems for ship defense missiles was discussed this paper. A new state dependent coefficient form
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of the missile model was derived, and the integrated missile guidance/control system design was

formulated as an infinite time-horizon optimal control problem. The need for a command generator

was motivated, and a cubic command generator development was presented. Introduction of the

command generator allowed the control loop to use high gain without resulting in actuator

saturation. The command generator was also shown to be useful for meeting terminal aspect angle

constraints. The SDRE integrated guidance/control law performance was demonstrated in a

nonlinear six degree-of-freedom missile simulation for a crossing target and a weaving target.

Methods for further refining the SDRE integrated guidance/control law were discussed.

The analysis and numerical results presented in this paper amply demonstrate the feasibility of

designing integrated guidance/control systems for the next generation high-performance missile

systems.  Integrated design methods have the potential for enhancing missile performance while

simplifying the design process. This can result in a lighter, more accurate missile system for

effective defense against various Naval threats expected in the future.
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