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1 Introduction

Consider the following controlled system

ẋ = F (x) +Bu
y = Cx,

(1)

where x ∈ Rn is the physical state of the system, y ∈ Rm is the output, u ∈ U ⊂ R` is the
control, F : Rn → Rn is a differentiable at 0 vector field, B,C are given real matrices of the sizes

n× `, m×n, respectively. Denote by A the Frechet derivative (the Jacobi matrix)
[
∂Fi
∂xj

(0)
]n
i,j=1

of the vector field F evaluated at 0, and rewrite the system (1) as follows

ẋ = Ax+Bu+ f(x)
y = Cx,

(2)

where f(x) = o(|x|) (here and below | · | stays for Euclidean norm in a finite-dimensional space).
According to the general theory of ordinary differential equations (see, for example (Arnold,

1992; Hubbard and West, 1991)), if the eigenvalues of the matrix A have negative real parts,
then under absence of any control (i.e. if u ≡ 0), the corresponding solution of the system (2)
starting at x(0) satisfies the following estimate

|x(t)| ≤M exp (−λ t) |x(0)|, t ≥ 0, (3)
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where the constants λ > 0, M > 0 do not depend on |x(0)|, and |x(0)| is sufficiently small. This
fact is sometimes called the first Lyapunov method in stability theory. This method provides, as
we see, the (local) exponential stability of the zero solution with respect to small perturbations
of initial data.

For the controlled system (2) with an arbitrary matrix A, it is always possible (see for example
(Sontag, 1989; Wonham, 1979; Litsyn et al., 1998)) to make the zero solution exponentially
stable using a linear feedback control u = Gx, provided that the pair (A,B) is controllable and
rank C = n (which describes the case of complete observability of the solution). This justifies
an analog of the first Lyapunov method for controlled system like (2).

However, it is known that in practice the case of complete observability is rather an exception
than the rule. The most typical and interesting situation for applications is therefore the case
when rank C < n.

Let us consider an illustrating example where A =
(

0 1
−1 0

)
, B =

(
0
1

)
, C = (1, 0) This is

nothing, but the classical harmonic oscillator where we can only observe the physical state and
control the velocity. In this case, the matrix A is perturbed by a matrix of rank 1 representing
any linear control u = Gy chosen. It can be shown (Artstein, 1996) that no ordinary linear
controls of the form u = Gy asymptotically stabilize the solutions of the linearized system (2),
so that stability properties of (2) essentially depend on the nonlinearity f(x), or more precisely,
on the higher order terms, rather than the linear ones, in the Taylor expansion of the function
F (x) at 0 (as e. g. in the Lyapunov test for weak source in the Hopf bifurcation; see (Arnold,
1992), or (Hubbard and West, 1991, p. 292) for details). As it is pointed out by Sontag (1989,
Example 6.2.1) and Artstein (1996, Example 3.1), no stabilization can be achieved by means of
nonlinear autonomous controls of the type u(x) = col {0, u2(y)} as well.

However, one will be able to stabilize systems like the above harmonic oscillator if one
uses special feedback controls called hybrid feedback controls (abbr. HFC) (Nerode and Kohn,
1993; Artstein, 1996). Such controls can often stabilize systems where the ordinary feedback
paradigm does not work (see e.g. (Litsyn et al., 1998)). On one side, HFC generalizes the
classical autonomous control u(t) = u(y(t)), on the other side, the discrete nature of this control
makes its realization easier in practice.

In (Litsyn et al., 1998) the question whether it is possible to stabilize an arbitrary linear
system of the form (2) with f ≡ 0 was formulated and positively answered.

There is no doubt that also the problem of how to stabilize quasi-linear controlled systems
like (2) with small non-linear perturbations f , where the linearized system is supposed to be
asymptotically stable, is of interest. Recently, some breakthrough attempts to extend the Lya-
punov stability theory to investigate the asymptotic stability of systems with HFCs have been
undertaken (see e.g. (Branicky, 1994, 1995), and references therein). However, as far as we know,
no complete solution of the discussed problem has been achieved by now (even for 2×2 systems).

In this paper, we will try to contribute to this problem in a way described below.
Namely, we shall justify the first Lyapunov method for controlled 2× 2 systems of the type

(2), where A =
(

0 1
−1 0

)
, B =

(
0
1

)
, C = (1, 0), and u(·) is an elementary hybrid control

(see e.g. Artstein (1996, Example 5.2)). The technique to be used will be based on direct
calculations rather than on the method of Lyapunov functions. Referring the reader to Section
6 for further explanations, let us only remark here that the dynamics of such systems does
not fit in with the traditional framework to study stability properties of ordinary differential
equations and, probably, autonomous switched systems investigated in (Branicky, 1994, 1995).
For example, trajectories of systems with HFCs may have intersections (which is impossible
in ”usual” autonomous systems), and it may even happen that two trajectories stick together
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resulting in a new single trajectory.

2 Basic notions and definitions

Consider a general nonlinear system

ẋ = F (x, u)
y = c(x), F (0, u) ≡ 0,

(4)

where x ∈ Rn describes the physical state of the process (”plant”) y ∈ Rm is the output, that
is, the quantity which can be measured, and the control u is a element of a fixed subset U of
the space R`.

The question is how to choose a control strategy u(·), so that a prescribed state, say x = 0,
becomes stable. Only the quantity that can be measured, namely the output y, can be used by
the control. In the classical output feedback paradigm, one tries to find a feedback u(y) = u(c(x))
making the zero solution asymptotically stable. If the feedback u(y) is continuous, solutions to
the resulting differential equation are well defined (for the formal definition of a stabilizer under
the continuity assumption see Definition 2.2 in (Artstein, 1996)).

However, the output feedback may fail to stabilize even quite simple systems. This justifies
a need to modify the ”classical” output feedback approach.

We will follow our previous paper (Litsyn et al., 1998) to specify our setting. Let us start
with some exact definitions.

Definition 2.1. (see e.g. (Artstein, 1996)) The system (4) is stabilizable by a control u(·)
(u− stabilizable), if two following conditions hold:

(a) For any ε > 0 there is δ > 0 such that every solution x(t) of the system (4) with the
property |x(0)| < δ satisfies the inequality sup

t≥0
|x(t)| < ε.

(b) x(t) → 0 as t → ∞, the convergence being uniform w.r.t. the starting point x(0) taken
from an arbitrary compact set K ⊂ Rn.

Definition 2.2. Denoting by Z the set of all admissible controls, we say that the system (4)
is Z−stabilizable if there exists a control u ∈ Z under which (4) is u−stabilizable.

A typical automaton is given by a triple A = (Q, I,M), where
(i) Q is a set of all possible automaton states (locations), cardQ ≤ ℵ0;
(ii) the set I contains the input alphabet, card I ≤ ℵ0;
(iii) the transition map M : Q× I → Q indicates the location after a transition time, based

on the previous location q and input i at the time of transition.
The automaton is supposed to follow solutions of the system (4). This fact is described by

another given triplet B = (T, i, q0) where
(iv) T : Q→ (0,∞) is a mapping which sets a period T (q) between transitions times,
(v) i : Rm → I is a function providing the element i(y) of the alphabet I for any output y

of the system (4),
(vi) and q0 = q(τ0) is a state of the automaton at the initial time τ0.
The case τ0 = −∞ is excluded from our considerations, so that later on we can assume,

without loss of generality, that τ0 = 0.

Definition 2.3 ((Litsyn et al., 1998)). By an automaton, we mean a 6-tuple ∆ =
(Q, I,M, T, i, q0).

For arbitrary sets X, Y (topological spaces X, Y ) we denote by P(X,Y ) (resp. C(X,Y ))
the set of all functions (resp. continuous functions) from X to Y .
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Now, for any automaton ∆ satisfying (i)-(vi) we define by induction a Volterra operator
F∆ : C([0,∞), Rm)→ P([0,∞), Q). For each y ∈ C([0,∞), Rn) F∆ is given by:

1. (F∆y)(0) = q(0); τ1 = T (q(0)); (F∆y)(t) ≡ q(0), t ∈ [0, τ1);
2. (F∆y)(τ1) = M(q(0), i(y(τ1))) := q(τ1); τ2 = τ1 + T (q(τ1));

(F∆y)(t) = q(τ1), t ∈ [τ1, τ2);

3. If τ0, τ1, . . . , τk and the values (F∆y)(t) for t ∈ [0, τk) are already known, then τk+1 and
(F∆y)(t) for t ∈ [τk, τk+1) are defined by the equalities

(F∆y)(τk) = M(q(τk−1), i(y(τk))) := q(τk); τk+1 = τk + T (q(τk));
(F∆y)(t) ≡ q(τk), t ∈ [τk, τk+1).

Definition 2.4. A control u(·) of the type

u(t) = Φ(y(t), (F∆y)(t)), (5)

where Φ : Rm×Q→ R` is a certain function, will be addressed as a hybrid feedback control
(abbr. HFC).

Further on we shall denote by Hσ the class of all HFCs described in Definition 2.4. Thus,
any control u ∈ Hσ is uniquely defined by the pair (∆,Φ), consisting of an automaton ∆ =
(Q, I,M, T, i, q0) and a function Φ : Rm × Q → R`. Below we use the following notation:
u = (∆,Φ) ∈ Hσ.

We will need some special subclasses of the class Hσ:
H0 := {(∆,Φ) ∈ Hσ | Φ(y, q) does not depend on q}, it is the class of ordinary (not hybrid)

controls.
Hn := {(∆,Φ) ∈ Hσ | cardQ ≤ n, card I ≤ n}, n = 1, 2, . . .
He :=

∞
∪
n=1
Hn is the class of elementary HFCs (Artstein, 1996).

LHσ := {(∆,Φ) ∈ Hσ | Φ(y, q) linearly depends on y} is the class of linear HFCs.
LHe := LHσ ∩ LHe, LHn := LHσ ∩ LHn, n = 0, 1, 2, . . .
It is natural to call HFCs belonging the class LHe elementary, while the subclass LHn can

be addressed as the class of HFCs with n locations.
It is clear that

H0 = H1 ⊂ H2 ⊂ . . . ⊂ Hn ⊂ Hn+1 ⊂ He ⊂ Hσ
∪ ∪ ∪ ∪ ∪ ∪ ∪
LH0 = LH1 ⊂ LH2 ⊂ . . . ⊂ LHn ⊂ LHn+1 ⊂ LHe ⊂ LHσ

.

However, these inclusions need some comments.
1. The class H0 consists of ordinary (nonlinear) feedback controls which are of the type

u = Φ(y), where Φ : Rm → R`. It is also evident that LH0 is nothing, but the class of linear
feedback controls of the form Φx = Gx for some `× n-matrix G.

2. Evidently, H1 = H0, i.e. in case Q degenerates into a singleton, any hybrid feedback
control is given by a feedback control of the type u = f(y) with a given function f : Rm → R`.

3. An elementary hybrid system is that with a finite number of locations Q = {q1, . . . , qn}
(see (Artstein, 1996)). An elementary hybrid system gives rise to an elementary HFC. In
our notation, an elementary HFC is nothing but n-HFC (or HFC of the class Hn) for some
natural number n. A typical elementary (or, more general, discrete) hybrid system’s dynamic is
continuous, and the solution satisfies (4) on the intervals (τi, τi+1] if u = Φ(y, qi). In (Artstein,
1996) more specific examples of HFCs belonging to the classes H2, LH2, H3, LH3 are given.
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4. In (Litsyn et al., 1998) the following result is proved: under assumptions of controllability
of the pair (A,B) and observability of the pair (A,C) any linear system (2) of an arbitrary order
with f ≡ 0 is Hσ-stabilizable. Let us observe that, in fact, the stabilizing control constructed in
(Litsyn et al., 1998) belongs to the set Hσ \ (LHσ ∪He).

By the present paper we intend to start investigating stability properties of nonlinear sys-
tems like (4). Our specific objective in this paper is a detailed study of a perturbed harmonic
oscillator, i.e. a specific nonlinear 2 × 2 system. This system cannot be stabilized by ordi-
nary H0-controls, but, as we will show, it admits stabilization by more general LH3-controls
introduced in (Artstein, 1996, Example 5.2).

3 LH3-controls for a perturbed harmonic oscillator and formulation of the main
result

Consider the following controlled system

ξ̇ = η + f1(ξ, η),
η̇ = −ξ + f2(ξ, η) + u,

y = ξ

(6)

(known as a perturbed harmonic oscillator).
If we assume ξ, η to be the coordinates of a point x ∈ R2, then we get the following matrix

representation of the system (6):

ẋ = Ax+Bu+ f(x)
y = Cx,

where A =
(

0 1
−1 0

)
, B =

(
0
1

)
, C = (1, 0).

We are going to investigate an asymptotic behaviour of the trajectories of the controlled
system (6), or its equivalent matrix form.

We refer the reader to the paper (Artstein, 1996) where the author introduces a specific
HFC u belonging to the class LH3 which stabilizes the corresponding linear harmonic oscillator
(f ≡ 0). This HFC (which is also described below) will be denoted in this paper by A(δ).

We shall use Definitions 2.3, 2.4 to define the HFC A(δ). To do it we put

(∆,Φ) = ((Q, I,M, T, i, q0),Φ),

where Q = {q+, q−, qd}, I = {I+, I−}, q0 ∈ Q are arbitrary abstract objects, while the functions
M : Q× I → Q, T : Q→ (0,∞), i : R1 × I → Q, Φ : R1 ×Q→ R1 are given by

M(q+, I+) = M(qd, I+) = q+, M(q−, I−) = M(qd, I−) = q−; M(q+, I−) = M(q−, I+) = qd,

T (q+) = T (q−) = δ, T (qd) =
π

4
− δ;

i(ξ) =
{
I1, if ξ ≥ 0
I2, if ξ < 0

;

Φ(ξ, q+) = Φ(ξ, q−) = 0, Φ(ξ, qd) = −3ξ.

Let us remark that we slightly modified the definition of A(δ) as compared with the paper
(Artstein, 1996, Example 5.2) (in (Artstein, 1996) it is assumed that T (qd) = π/4 − 2δ). This
modification was done just for the sake of a technical convenience and does not really matter.
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We observe now that A(δ) ∈ LH3.
It was shown in (Artstein, 1996) that the linear system

ξ̇ = η,
η̇ = −ξ. (7)

with the control u ∈ A(δ) is asymptotically stable if δ > 0 is small enough. We again remind
the reader that it is impossible to stabilize this system via ”ordinary” feedback controls.

The main result of the present paper is a generalization of the above linear theorem proved
by Artstein to the case of controlled systems (6) with small nonlinear perturbations.

Theorem 3.1. There exist positive numbers δ, M , λ such that for any Lebesgue-measurable
function f : R2 → R2, satisfying |f(x)| = o(|x|), |x| → 0, one can point out ε > 0 for which
any solution x(t) of the system (6) controlled by the HFC u = A(δ), satisfies the estimate

|x(t)| ≤M exp(−λ t)|x(0)|, t ≥ 0. (8)

for an arbitrary initial value x(0), |x(0)| ≤ ε. The theorem implies the following

Colollary 3.2. Let B =
(

0
1

)
, C = (1, 0). Then there exist positive numbers δ, M , λ such

that for any differentiable function F : R2 → R2, F (0) = 0 with the Jacobi matrix (evaluated at

0) J :=
[
∂Fi
∂xj

(0)
]n
i,j=1

=
(

0 1
−1 0

)
, one can point out ε > 0 for which any solution x(t) of the

non-linear system
ẋ = F (x) +Bu
y = Cx,

controlled by the HFC u = A(δ), satisfies the estimate (8) for an arbitrary initial value x(0),
|x(0)| ≤ ε.

As an example, let us consider a 2× 2 Hamiltonian system with one degree of freedom. The
system is described by the Newton equation

ξ̈ = F (ξ), (9)

where F : R → R is a differentiable function (Arnold, 1992). The equation (9) can also be
rewritten as follows:

ξ̇ = η,
η̇ = F (ξ),

(10)

where ξ is the state coordinate of the oscillator, η is the velocity, η̇ is the acceleration, while F
describes the corresponding force field.

In applications, it may be possible to control the acceleration η̇ as the function depending on
the coordinate ξ(t) evaluated at any time t. We consider therefore the following control system

ξ̇ = η,
η̇ = F (ξ) + u.

(11)

If F (0) = 0, F ′(0) = −1, the (linearized) system will be of the form (7), so that no ”ordinary”
feedback control u(ξ), (u ∈ H0) can get the spectrum of the system’s matrix out of the imaginary
axis. Thus, the linearized system cannot be asymptotically stable. As it was mentioned in
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the introduction, in such a case we cannot say much about asymptotic properties of the non-
linearized system, unless we have an additional information about the higher derivatives of the
function F (x).

On the other hand, as it follows from (Artstein, 1996) the linearized system (11) is stabilizable
by the HFC u = A(δ) (Artstein, 1996). Using our Theorem 3.1 and Corollary 3.2 above we
immediately get

Corollary 3.3. There exist δ,M, λ > 0, such that for any differentiable function F : R→ R,
F (0) = 0, F ′(0) = −1 one can point out ε > 0, for which any solution x(t) of (11) controlled
by the HFC u = A(δ), admits the asymptotic estimate (8) if the initial value x(0) satisfies the
condition |x(0)| ≤ ε.

For example, Corollary 3.3 can be applied to the non-linear pendulum which is a well-known
”test” object in mechanics (see, for example, (Arnold, 1992)):

ξ̈ = − sin ξ.

There exist more specific examples of (6) which are not stabilizable by any ”ordinary” feedback
control, but which (according to Theorem 3.1) admit stabilization via hybrid feedback controls.
We just mention here two nonlinear systems which are used in (Hubbard and West, 1991,
Chapter 9) to illustrate two kinds of an asymptotic behaviour near the equilibrium:{

ξ̇ = η + ξ2

η̇ = −ξ
(center);

{
ξ̇ = η + ξη2

η̇ = −ξ + ξη − η2
(weak source).

Assume we are able to influence the velocity η̇ by making use of values of the state coordinate
ξ, only. Our Corollary 3.3 guarantees then that the HFC u = A(δ) asymptotically stabilizes
both systems in the vicinity of 0.

Remark 3.4. In fact, Theorem 3.1 and all the corollaries contain even more information
about stability properties of the system in question. Namely, the zero solution of the quasi-linear
equation (6) is not only asymptotically stable, but also exponentially stable, and this stability is
uniform with respect to the perturbations f := col {f1, f2}.

The next two sections include a proof of Theorem 3.1. We start with two (rather technical)
auxiliary lemmas in Section 4 and use them in Section 5 to give a proof of our main result
(Theorem 3.1).

4 Some auxiliary results

Let T, a, b, c, τ1, τ2, α1, α2 > 0 be arbitrary. By E(T, a, b, c, τ1, τ2, α1, α2) we denote a set of
functions r : [0, T ]→ (0,∞), satisfying the following conditions:

1) For any t ∈ [0,min{a, T}]
r(t) ≤ b · r(0). (12)

2) If T ≥ a, then there exist a finite increasing sequence t0, t1, . . . t2m ∈ [0,∞) such that

t0 ∈ [0, a], tm ≤ T < tm + τ1 + τ2,

r(t) ≤ c · r(t2n), t ∈ [t2n,min{T, t2n+2}], n = 0, . . . , m. (13)

Moreover, for m > 0

t2n+i − t2n+i−1 ≤ τi, i = 1, 2, n = 0, . . . , m− 1; (14)
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r(t2n+i)
r(t2n+i−1)

≤ αi, i = 1, 2, n = 0, . . . , m− 1. (15)

Notice that if T < a, then r should satisfy the estimate (12), only; if T ≥ a, then m cannot
be zero; if T > a+ τ1 + τ2 then necessarily m > 0. Lemma 4.1 below is of technical nature and
should be regarded as a rather convenient tool to study the dynamics |x(t)| of a system with a
HFC. The lemma will be essentially used in the proof of Theorem 3.1 in Section 5.

Lemma 4.1. We are supposed given some constants T, a, b, c, τ1, τ2, α1, α2 > 0, where α1 ·
α2 < 1. Then for any r ∈ E(T, a, b, c, τ1, τ2, α1, α2) we have

r(t) ≤M e−λtr(0), t ∈ [0, T ], (16)

where λ > 0, M > 0 are defined by

λ = − lnα1α2

τ1 + τ2
, M = b c eλ(a+τ1+τ2). (17)

Proof. We fix an arbitrary function r ∈ E(T, a, b, c, τ1, τ2, α1, α2).
1) The inequality (12) implies that

r(t) ≤ (b eλt)(e−λt)r(0) ≤ b eλae−λtr(0) ≤M e−λtr(0), t ∈ [0,min{a, T}] (18)

where the constants λ, M are defined by (17).
2) Let t ≤ a and let the numbers t0, t1, . . . t2m be chosen according to the definition of E(·).

Then the following two cases can occur:
a) m = 0. According to (13) and (12) we have ∀t ∈ [t0, T ]

r(t) ≤ c r(t0) ≤ b c eλae−λtr(0) ≤M e−λtr(0). (19)

Due to (18), the inequality r(t) ≤M e−λt is also valid ∀t ∈ [0, T ]. Thus, (16) is proved.
b) m > 0. For any t ∈ [t0, T ] we let n(t) = max{n ∈ Z | t ≥ 2n}. Then the formulae (14),

(13) imply that
r(t) ≤ c r(t2n(t)), t ∈ [t0, T ], (20)

and from (15) it follows that

r(t2n+2) ≤ α1α2f(t2n), n = 0, . . . , m− 1. (21)

According to (14) we get
t ≤ t0 + (τ1 + τ2)(n(t) + 1),

which in turn implies the estimate

n(t) ≥ t− t0
τ1 + τ2

− 1, t ∈ [t0, T ]. (22)

Finally, from (14), (20)–(22) and α1α2 < 1, we obtain

r(t) ≤ c e(lnα1α2)·n(t)r(t0) ≤ c · exp
{

(lnα1α2)
(
t− t0
τ1 + τ2

− 1
)}

r(t0) ≤M e−λtr(0)

which holds ∀t ∈ [t0, T ]. A similar inequality for t ∈ [0, t0] vytekaet is (18). The lemma is
thereby proved.
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Lemma 4.2. Let a function ζ : [0,∞)2 → [0,∞) satisfy the following conditions:
1) ζ(·, µ) is continuous for all µ ∈ [0,∞);
2) ζ(0, µ) = µ for all µ ∈ [0,∞);
3) there exist constants M > 0, ε > 0, λ > 0, such that for all t ≥ 0 the following implication

is true [
sup
s∈[0,t]

ζ(s, µ) ≤ ε
]

=⇒
[
∀s ∈ [0, t] ζ(s, µ) ≤M e−λs · µ

]
.

Then ∀µ ∈
(
0, ε
M + 1

)
ζ(t, µ) ≤M e−λt · µ, t ≥ 0.

Proof. Suppose, on the contrary, that this is not true. Then by virtue of the condition 3), for
some µ ∈

(
0, ε
M + 1

)
one can find t∗ > 0 such that ζ(t∗, µ) > ε.

Since ζ(0, µ) = µ < ε and ζ(·, µ) is continuous, we have

t1 := min{ t ∈ [0,∞) | ζ(t, µ) = ε } ∈ (0, t∗). (23)

Then ∀t ∈ (t1/2, t1) we obtain the estimate sup
s∈[0,t]

ζ(s, µ) ≤ ε, and according to the condition

3) of the lemma we get

ζ(t, µ) ≤Mµe−λt ≤ Mε

M + 1
e−λt ≤ ε e−λt1/2, t ∈ (t1/2, t1).

Because of the continuity of the function ζ(·, µ) at the point t1 we have

ζ(t1, µ) ≤ ε e−λt1/2 < ε,

which contradicts (23).

5 Proof of the Theorem 3.1

10. A definition of some constants.
Consider (6) with the HFC u = A(δ) where δ > 0 is an arbitrary fixed number satisfying

the following property

max
{

2 tan 2δ1,
√

6 sin2 δ1

}
< 1, ∀δ1 ∈ [0, δ]. (24)

We define three functions ωi : [0, 1)→ R as follows:

ω1(γ) =
(
π

4
− δ

)√
(1 + γ)(4 + γ)− arctan

(√
1 + γ

4 + γ
· cot (δ(1 + γ))

)
,

ω2(γ) =

√
4− γ
1− γ

· tan
(
π

2
+
π

4
(4δ − 1)

√
(1− γ)(4− γ)

)
− 1,

ω3(γ) =

√
4 + 6 sin2 δ

5
· e5πγ/4 − 1.

Taking into account (24), we have

lim
γ→0

ωi(γ) = ωi(0) < 0, i = 1, 2, 3.
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This implies existence of a number γ ∈ (0, 1) for which

ωi(γ) < 0, i = 1, 2, 3. (25)

Finally, fix an arbitrary γ ∈ (0, 1) satisfying (25) and put

λ = −4 ln (ω3(γ) + 1)
5π

, M = exp
{
πγ

(
2

1− γ
+

1
4

)
+ λ

(
2π

1− γ
+

5π
4

)}
. (26)

By definition, λ > 0, M > 0.

20. Some inequalities related to the dynamics of (6) with u = A(δ).
Let us fix an arbitrary Lebesgue measurable function f :=col {f1, f2} : [0,∞)→ R2, satisfying

|f(x)| = o(|x|) for x→ 0, as well as an arbitrary initial state q0 ∈ {q+, q−, qd} of the automaton.
Consider a trajectory x(t) of (6) which starts at x(0). If x(0) = 0, then, evidently, x ≡ 0

which proves (8).
Assume now that x(0) 6= 0.
Let Γ be the plane transformation given by ξ = r cosϕ, η = r sinϕ. The Jacobi matrix

of the transformation will be called J . Then any solution x(t) = (ξ(t), η(t)) of (6) is uniquely
determined by a pair of functions r : [0,∞) → [0,∞), ϕ : [0,∞) → R/(2πZ) where ξ(t) =
r(t) cosϕ(t), η(t) = r(t) sinϕ(t).
In what follows we assume that the function ϕ takes values from the interval (−π, π]. We let
also h = col {h1, h2} := J−1fΓ.

Within any interval S = (s1, s2) ⊂ [0,∞) where the automaton does not change its location,
the solution x(t) satisfies one of the following systems of differential equations:

( q(t) = q+, t ∈ S ) ∨ ( q(t) = q−, t ∈ S ) =⇒
{
ṙ
r = h1(r, ϕ)
ϕ̇ = −1 + h2(r, ϕ),

( q(t) = qd, t ∈ S ) =⇒
{
ṙ
r = −3

2 sin 2ϕ+ h1(r, ϕ)
ϕ̇ = −1− 3 cos2 ϕ+ h2(r, ϕ).

Clearly, |h(r, ϕ)| = o(1), and r → 0 uniformly with respect to ϕ. For the number γ, defined
in the item 10 of the proof, one can find ε > 0 such that

|hi(r, ϕ)| ≤ γ, ∀r ∈ [0, ε], ∀ϕ, i = 1, 2.

We fix now an interval (s1, s2) ⊂ [0,∞). The estimates above imply the following statements:
1) If ∀t ∈ (s1, s2), r(t) ≤ ε, and either q(·) ≡ q+, or q(·) ≡ q+ on (s1, s2), then

−γ ≤ ṙ(t)
r(t)

≤ γ, −1− γ ≤ ϕ̇(t) ≤ −1 + γ, t ∈ (s1, s2). (27)

2) If ∀t ∈ (s1, s2), r(t) ≤ ε and q(·) ≡ qd on (s1, s2), then

−γ − 3
2

sin 2ϕ(t) ≤ ṙ(t)
r(t)

≤ γ − 3
2

sin 2ϕ(t),

−1− γ − 3 cos2 ϕ(t) ≤ ϕ̇(t) ≤ −1 + γ − 3 cos2 ϕ(t), t ∈ (s1, s2).
(28)

Integrating these inequalities, we obtain the following:
1) If ∀t ∈ (s1, s2), r(t) ≤ ε, and either q(·) ≡ q+, or q(·) ≡ q+ on (s1, s2), then
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(1− γ)(s2 − s1) ≤ ϕ(s1)ϕ(s2) ≤ (1 + γ)(s2 − s1), (29)

r(s2)
r(s1)

≤ eγ(s2−s1). (30)

2) If ∀t ∈ (s1, s2), r(t) ≤ ε and q(·) ≡ qd on (s1, s2), then

ψ(1 + γ, ϕ)
∣∣∣ϕ=ϕ(s1)

ϕ=ϕ(t2)
≤ s2 − s1 ≤ ψ(1− γ, ϕ)

∣∣∣ϕ=ϕ(s1)

ϕ=ϕ(s2)
, (31)

where ψ is given by

ψ(α, ϕ) =
1√

α(α+ 3)
arctan

(√
α

α+ 3
tanϕ

)
. (32)

If, in addition, ϕ([s1, s2]) ⊂ [0, π/2] (modπ), then

r(s2)
r(s1)

≤
√

1 + γ + 3 cos2 ϕ(s1)
1 + γ + 3 cos2 ϕ(s2)

eγ(s2−s1). (33)

In the items 30–60 below we fix an arbitrary T ∈ (0,∞) and assume that the estimate

r(t) ≤ ε, t ∈ [0, T ] (34)

holds true.
We shall investigate the dynamics of the system (6) for various T . We notice first that (27)

and (28) imply ϕ̇(t) < 0, ṙ(t) ≤ γ (∀t ∈ [0, T ]). Therefore,

r(t) ≤ eγtr(0) ≤ e
2πγ

1− γ r(0), t ∈
[
0,min

{
2πγ

1− γ
, T

}]
. (35)

We shall also assume in the three forthcoming items of the proof that T ≥ 2π
1− γ .

30. A definition of a switching sequence for the automaton defined on [0, T ].
First of all we note that if the locations q+ or q− are switched on within a sub-interval

[t1, t2] ⊂
[
0, 2π

1− γ
]
, then (35) holds, while in case the location qd is switched on within [t1, t2],

we will, by virtue of (31), have that

ϕ(t1)− ϕ(t2) ≤ 2 ·
(
π

4
− δ

)
≤ π

2
. (36)

A simple straightforward analysis of the trajectories’ behavior with different x(0) and q0 as well
as the observation that (29), (36) and (35) hold for t ∈

[
0, 2π

1− γ
]

imply that the automaton’s

location qd will be switched on at some time point t0 ∈
[
0, 2π

1− γ
]

for which

ϕ(t0) ∈
[
π

2
− δ(1 + γ),

π

2

]
. (37)

In other words, the time t = t0 is nothing, but a transition time of the automaton when the
latter comes to the location qd from another location (the number of previous switches to the
location qd does not matter here).

Continuing our proof we call by t0, t1, . . . , tm, respectively, all the transition times of the
automaton from a location qi to a different location qj 6= qi until the moment t = T (we ignore

1294

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



all ”switches” from q+ to q+ and from q− to q−). Assume without loss of generality that {ti} is
an increasing sequence. By now, we have just verified the fact that the time t0 does exist and
coincides with the time when the automaton gets to the location qd (see (37)). Note that the
number m depends on T and that we do not assume that m > 0. The case m = 0 is therefore
not excluded.

40. The dynamics of q(t) and ϕ(t) on [0, T ].
Let Td = π/4− δ, t∗ = min{T, t0 + Td}. By virtue of (31) we have

Td ≥ t− t0 ≥ ψ(1 + γ, ϕ)
∣∣∣ϕ(t0)

ϕ(t)
≥ ψ(1 + γ, ϕ)

∣∣∣π/2−2δ

ϕ(t)
,

where ψ is defined by (32). This and the inequality ω1(γ) < 0 (see (25)) imply that ϕ(t) ≥ 0.
Thus, in the case T ≥ t0 + Td we obtain that ϕ(t0 + Td) ≥ 0. For such T the estimates (31)

imply that

Td ≤ ψ(1− γ, ϕ)
∣∣∣ϕ(t0)

ϕ(t0+Td)
≤ ψ(1 + γ, ϕ)

∣∣∣π/2
ϕ(t0+Td)

.

¿From this and from the inequality ω2(γ) < 0 it immediately follows that ϕ(t0 + Td) ≤ π/4.
Assuming T ≥ t0 +Td, we can therefore define the time t1 = t0 +Td when switching from qd

to q+ occurs and where we also have 0 ≤ ϕ(t1) ≤ π/4.
According to (29), if the automaton’s location q+ is switched on, the function ϕ(t) will

decrease for t ≥ t1. It is also clear that no transition will occur as long as ϕ(t) > −π/2. If
m ≥ 2, then t2 becomes a time when the automaton switches over to the location qd, and due
to (29) we get

t2 ∈ [t1, t1 + π], ϕ(t2) ∈
[
−π

2
− δ(1 + γ),−π

2

]
.

This implies, in particular, that m ≥ 2 for T ≥ t1 + π.
Repeating this argument inductively between the transition times t2n and t2n+2, we arrive

at the following conclusion (referred in the sequel as Property A) describing the dynamics q(t)
and the sequence of the transition times {ti}.

Property A. Let T ≥ 2π
1− γ , τ1 = Td, τ2 = π. Then the sequence of transition times

t0, t1, . . . , t2m (from qi to qj, where qi 6= qj) possesses the following properties:
1) t0 ∈

[
0, 2π

1− γ
]
, ϕ(t0) ∈

[
π
2 − δ(1 + γ), π2

]
(modπ), q(t0) = qd;

2) t2m ≤ T ≤ t2m + τ1 + τ2;
3) If m ≥ 1, then for n = 0, 1, . . . m− 1 we have

0 < t2n+i − t2n+i−1 ≤ τi, i = 1, 2;

q(t2n+2) = qd, ϕ(t2n+2) ∈
[
π
2 − δ(1 + γ), π2

]
(modπ);

q(t2n+1) ∈ {q+, q−}, ϕ(t2n+1) ∈
[
0, π4

]
(modπ).

50. The dynamics of r(t) on [0, T ].
Let a finite sequence t0, t1, . . . , t2m be chosen according to Property A. The estimates in

Property A imply that for ϕ(ti) the following holds:

−3
2

sin 2ϕ(t) < 0, t ∈ [t2n,min{T, t2n+2}], n = 0, 1, . . . ,m− 1.
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According to the two first inequalities in (27), (28) we get

ṙ(t)
r(t)

≤ γ, t ∈ [t2n,min{T, t2n+2}], n = 0, 1, . . . ,m− 1.

Thus, we obtain the estimate

r(t) ≤ r(t2n) eγ(t−t2n) ≤ e5πγ/4r(t2n), t ∈ [t2n,min{T, t2n+2}], n = 0, 1, . . . ,m− 1. (38)

Now, (30) and Property A imply that

r(t2n+2)
r(t2n+1)

≤ eγ(t2n−t2n−1) ≤ eπγ =: α2. n = 0, 1, . . . ,m− 1. (39)

Similarly, for n = 0, 1, . . . ,m− 1 the inequality (33) and Property A yield

r(t2n+1)
r(t2n)

≤
√

1 + γ + 3 cos2 ϕ(t2n)
1 + γ + 3 cos2 ϕ(t2n+1)

eγ(t2n+1−t2n) ≤

√
4 + 6 sin2 δ

5
eπγ/4 =: α1. (40)

60. According to the definition of the constants α1,α2 v (39) i (40) and the inequality
ω3(γ) < 0 (see (25)) we have α1α2 < 1. This, the estimates (35), Property A and the in-
equalities (38)–(40) imply that under the assumption (34) the function r(t) belongs to the class
E(T, a, b, c, τ1, τ2, α1, α2), introduced in Lemma 4.1, where τ1 = Td, τ2 = π, a postoyannye a, b,
c opredelyayutsya ravenstvami a = 2π

1− γ , b = exp
{ 2πγ

1− γ
}

, c = eπγ/4.
Applying Lemma 4.1, we conclude that ∀ T ∈ (0,∞)

[ r(t) ≤ ε, t ∈ [0, T ] ] =⇒
[
r(t) ≤ M e−λtr(0)

]
, (41)

where the constants λ > 0, M > 0 are defined by (26).

70. Finally, we define a function ζ : [0,∞)2 → [0,∞) as follows: ζ(t, µ) = |x(t)|, where x(t)
is a trajectory of (6) controlled by u = A(δ), and |x(0)| = µ. From (41) it follows that ζ satisfies
all the conditions of Lemma 4.2.

According to this lemma the inequality (8) holds true for all sufficiently small |x(0)| the
constants λ > 0, M > 0 being defined by (26). It is straightforward that the constants do not
depend on the choice of a function f : R2 → R2 satisfying |f(x)| = o(|x|). This completes the
proof of the theorem.

6 Final remarks

To prove Theorem 3.1 we employed an approach based on certain direct calculations applied
to the hybrid dynamics, rather than the method of Lyapunov functions widely used to study
asymptotic stability of various dynamical systems. This can be explained by a number reasons.

1. The dynamics described by the equation (6) equipped with the hybrid control u = A(δ)
is normally quite different from the standard dynamics arising from ordinary differential
equations. The dynamics of a hybrid system like (6) rather comes from delay equations
and inherits some of properties typical for them (see e.g., (Azbelev et al., 1996; Berezansky
and Braverman, 1995; Chukwu, 1992; Kolmanovski and Nosov, 1986)).
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2. Of course, one may try to use generalizations of the Lyapunov method to the case of
functional differential equations by introducing Lyapunov functionals (see (Chukwu, 1992;
Kolmanovski and Nosov, 1986)). We suspect that this, in principle, is possible, but one
should always remember that such a technique may lead to serious difficulties, both tech-
nical and ideological, related to the problem how to construct such functionals and how
to use them properly. One of the difficulties is that the operators one gets from (even
linear) systems with HFCs are usually nonlinear. Moreover, one should be prepared to
deal with differential equations with time lags depending on the solution itself (known as
systems with auto-control). A typical operator related to such a system is, in general,
discontinuous. It is not clear for us for the time being how to study such operators and
their (dis)continuity properties in functional spaces, and it is not clear for us either how
to deal with the corresponding Lyapunov functionals which cannot properly be defined
outside the trajectories of solutions. By these reasons, any usage of Lyapunov functionals
was beyond the scope of this particular paper.

3. We failed as well to use the machinery of the so-called multiple Lyapunov functions devel-
oped in (Branicky, 1994, 1995). In particular, we encountered a problem of how to pass
from the system (6) to a switching system in the sense of Branicky (1995). However, it
does not mean of course that it is impossible at all.

Moreover, we do believe that any further considerable progress in developing the Lyapunov
method focused on systems with HFCs could only occur in the form of either the method of
Lyapunov functionals, or the method of multiple Lyapunov functions for switching systems.
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