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Abstract

The trajectory interception approach in its original form, as previously introduced in

(Michalska, 1996) primarily applies to systems whose controllability Lie algebra is nilpotent

and involves only Lie brackets of relatively low order. High order Lie brackets in the control-

lability Lie algebra of the system lead to excessively complex formulations of the open-loop

trajectory interception problem which can no longer be solved analytically (in terms of the

parameters which represent the values of a feedback control for an extended system). The

purpose of this paper is to demonstrate that even in such di�cult cases the trajectory ap-

proach can still be made use of. The model of a mobile robot with trailer used in this paper

is not nilpotent and requires system motion in the directions of third order Lie brackets. To

compensate for the lack of nilpotency of the original model, a nilpotent approximation of the

system is introduced. System decomposition is further employed to obtain an analytically

solvable trajectory interception problem formulation. The example of the mobile robot with

trailer has the most complex algebraic structure of all the systems to which the trajectory

interception problem was ever applied.
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1 Introduction

The purpose of this article is to demonstrate how the novel approach for the synthesis of time-

varying stabilizing feedback for drift free systems , presented in (Michalska, 1996; Michalska et

al., 1998) , can be utilized to construct stabilizing feedback controls for systems whose complexity

was previously thought to inhibit its application. The system considered here is a kinematic

model of a mobile robot with a trailer which is characterised by the presence of non-integrable

velocity constraints. It is well known that systems of this type cannot be stabilized by continuous

static feedback, see (Brockett, 1983), and that the dependence of a stabilizing feedback control

on time is essential, see (Coron, 1992). Many synthesis approaches have been proposed, see

for example (Pomet, 1992), but rely heavily on the existence of suitable time-varying Lyapunov

functions, which are often di�cult to �nd, or else rely on the existence of speci�c coordinate
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transformations which bring such systems to chained or power forms. On the other hand, the

approach which employs the \trajectory interception" concept of (Michalska, 1996; Michalska

et al., 1998), does not rely on the construction of a suitable control-Lyapunov function nor

coordinate transformation. In this approach, a standard stabilizing feedback control for a Lie

bracket extension of the system model is constructed �rst. The basic idea is then to formulate

an open loop control problem whose task is to deliver a control which steers the original system

to a point along the trajectory of the extended system at the end of a given time horizon [0; T ],

provided that both trajectories evolve from the same initial condition. For the open-loop problem

to be solved only once, it is essential that its solution is independent of the actual value of this

initial condition. This requires the open-loop control problem to be restated in terms of ows

of both systems and solved in suitable (logarithmic) coordinates on an associated Lie group.

A periodic continuation of the solution to the open-loop problem is �nally combined with the

feedback control for the extended system to yield a time-varying feedback control which stabilizes

the original system by insuring that its trajectory intercepts with a corresponding trajectory of

the extended system with frequency 1=T . The approach of (Michalska, 1996; Michalska et al.,

1998), however, primarily applies to systems which are nilpotent and whose controllability Lie

algebras contain only Lie brackets of order one. The presence of higher order Lie brackets in

the system's controllability Lie algebra results in an excessively complex (impossible to solve

analytically) formulation of the trajectory interception problem with a very large number of

equations describing the evolution of the ow of such systems.

In the above context, the contributions of this paper are listed as follows:

� Using a model of a mobile robot with trailer, which is a system which fails to be nilpotent

and whose controllability Lie algebra involves brackets of order three, it is demonstrated

that the application of the trajectory interception approach of (Michalska, 1996; Michalska

et al., 1998) is not limited to systems with simple structures. The primary purpose of this

paper is hence not to demonstrate superiority of a speci�c control system design but to

explore the feasibility of the trajectory interception approach in designing feedback controls

for systems with complicated algebraic structures by breaking down the original models

into simpler sub-systems and working with approximations.

� To compensate for the lack of nilpotency, the introduction of an approximate model,

which generates a nilpotent controllability Lie algebra, is shown to be possible. A further

decomposition of the approximate model permits huge simpli�cation of the di�erential

equations describing the evolution of the logarithmic coordinates in the open-loop problem

formulation, enabling the application of the trajectory interception approach.

2 The exact and approximate kinematic models and their de-

composition into subsystems

The model of a mobile robot with trailer considered below has the most complex algebraic

structure of all systems to which the trajectory interception approach was ever applied. It
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Figure 1: Model of a mobile robot with trailer

represents a �ve dimensional systems with control de�ciency order three, possessing a non-

nilpotent controllability Lie algebra which contains Lie brackets of depth one, two, and three.

The kinematic model of the robot, see (La�erriere et al., 1993), can be formulated in terms of

the following state space equations :

_x1 = cos x3 cos x4 u1

_x2 = cos x3 sin x4 u1

_x3 = u2

_x4 =
1

l
sin x3 u1

_x5 =
1

d
sin (x4 � x5) cos x3 u1 (1)

where x1, x2 are the Cartesian coordinates of the centre of mass of the car, x3 is the steering

angle, x4 and x5 are the angles which the main axes of the car and trailer make with the x1

axis, respectively, see Figure 1. Assuming for simplicity that l = d = 1 and re-de�ning variables

(x1; x2; x3; x4; x5) = (z1; z4; z3; z2; z5) the model can be written in a compact form :

_z = g1(z)u1 + g2(z)u2; z 2 IR5 (2)

g1(z) = cos z3 cos z2
@

@z1
+ sin z3

@

@z2
+ cos z3 sin z2

@

@z4
+ cos z3 sin (z2 � z5)

@

@z5

g2(z) =
@

@z3
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The following Lie brackets:

g3(z)
def

= [g1; g2](z) = sinz3 cosz2
@

@z1
� cosz3

@

@x2
+ sinz3 sinz2

@

@z4
+ sinz3 sin(z2 � z5)

@

@z5

g4(z)
def

= [g1; g3](z) = �sinz2 @

@z1
+ cosz2

@

@z4
+ cos(z2 � z5)

@

@z5

g5(z)
def

= [g1; g4](z) = �sinz3 cosz2 @

@z1
� sinz3 sinz2

@

@z4
� (sinz3 sin(z2 � z5)� cosz3)

@

@z5

show that the LARC condition for complete controllability is satis�ed :

spanfgi(z); i = 1; :::; 5g = IR5; for all z 2 IR5 (3)

It should be noted that the span (3) now contains a vector �eld g5 which is a Lie bracket of depth

three. Theoretically, the trajectory interception approach, see (Michalska, 1996; Michalska et

al., 1998), could be applied directly to the model (2) and would produce a time varying feedback

which stabilizes the system to the origin (without the loss of generality, also to any desired set

point). However, due to the presence of a third order Lie bracket in the span (3), the equations

governing the evolution of the ows of (2) would be exceedingly di�cult to solve. In attempt

to facilitate the solution of the trajectory interception problem, we thus consider the following

decomposition of the original model in which the trajectory interception approach needs only

be applied to subsystem S1:

S1 :

2
64

_z1

_z2

_z3

3
75 =

2
64
cosz2 cosz3

sin z3

0

3
75 u1 +

2
64
0

0

1

3
75 u2 (4)

S2 :

"
_z4

_z5

#
=

"
sin z2 cos z3

cos z3 sin (z2 � z5)

#
u1

def

=

"
f1(z)

f2(z)

#
u1 (5)

By de�ning x
def

= (z1; z2; z3), subsystem S1 can be written as:

_x = f1(x)u1 + f2(x)u2; x 2 IR3 (6)

f1(x) = cos z2 cos z3
@

@z1
+ sin z3

@

@z2

f2(x) =
@

@z3

Subsystem S1 is controllable as it satis�es:

spanff1(x); f2(x); f3(x)g = IR3; for all x 2 IR3

where

f3(x)
def

= [f1; f2](x) = sin z3 cos z2
@

@z1
� cos z3

@

@z2

However, it can be easily veri�ed that the Lie algebra L(f1; f2) is not nilpotent. Since the

trajectory interception approach applies primarily to nilpotent systems, we next consider the
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following approximation to subsystem S1, valid in some neighbourhood of the origin (which,

without the loss of generality, is assumed to be the desired set point):

_x = ~f1(x)u1 + ~f2(x)u2; x 2 IR3 (7)

~f1(x) =
@

@z1
+ z3

@

@z2
; ~f2(x) =

@

@z3

and verify that it satis�es the LARC controllability condition, as necessary for the control

construction:

spanf ~f1(x); ~f2(x); ~f3(x)g = IR3; for all x 2 IR3

where, ~f3(x)
def

= [ ~f1; ~f2](x) = � @

@z2

The Lie brackets multiplication table for L( ~f1; ~f2):

[ ~f1; ~f2] = ~f3 [ ~f1; ~f3] = [ ~f2; ~f3] = 0

shows that the controllability Lie algebra L( ~f1; ~f2) is now nilpotent. The trajectory interception

approach can thus be applied directly to steer the approximate subsystem S1, as explained

below.

3 Time-varying stabilizing feedback synthesis for subsystem S1

The trajectory interception approach, as �rst presented in (Michalska, 1996), requires the con-

struction of an extended system for the approximation to subsystem S1 :

_x = ~f1(x)v1 + ~f2(x)v2 + ~f3(x)v3; x 2 IR3 (8)

The importance of this algebraic extension lies in the fact that, unlike the original subsystem

S1, it permits instantaneous motion in the \missing" Lie bracket direction ~f3 = [ ~f1; ~f2] .

Once the extended system is constructed, the solution of the stabilization problem for the

approximation to S1 involves two steps:

1). The construction of a time-invariant feedback law which stabilizes the extended system (8).

2). The solution of a parametrized trajectory interception problem in the logarithmic parame-

ters which e�ectively provides for `pointwise equivalence' of the ows of the original and

extended systems, (7) and (8). A periodic continuation of this solution is then composed

with the feedback for the extended system to produce the �nal stabilizing control law for

both the approximate and the original subsystem S1.
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3.1 Stabilization of the extended system

Without the loss of generality, we �rst choose a quadratic Lyapunov function V : IR3 ! IR, so

that V (x)
def

= 1

2

P
3

i=1
x2
i
. It can be shown that the extended system (8) can be made (locally)

asymptotically stable by introducing the following feedback control:

~vi(x)
def

= �L ~fi
V (x); i = 1; 2; 3 (9)

because, along the controlled extended system trajectories

d

dt
V (x) =

3X
i=1

[L ~fi
V (x)]2 < 0

unless dV (x) = 0, i.e. unless x = 0, which is due to the fact that spanf ~f1; :::; ~f3g = IR3.

It can be shown that discretization of the above control in time, with su�ciently high sampling

frequency 1

T
, does not prejudice stabilization in that if the feedback control (9) is substituted

by the discretized \sample and hold" feedback control:

~vT
i
(x(t))

def

= ~vi(x(nT )); t 2 [nT; (n+ 1)T );

n = 0; 1; ::; i = 1; :::; 3 (10)

then the latter also stabilizes the system if T is small enough. This leads to a parametrized,

asymptotically stable, controlled extended system:

_x = ~f1a1 + ~f2a2 + ~f3a3 (11)

where ai
def

= ~vT
i
(x(t)), i = 1; :::; 3, are constant over each interval [nT; (n+ 1)T ), n = 0; 1; ::: .

Proposition 1 (Michalska et al., 1998) Suppose the controlled extended system (8) is expo-

nentially stable. Then, for any compact region R � M which contains the origin, there exists

a constant T > 0 such that the extended system with sample-and-hold feedback, (11), is also

exponentially stable with region of attraction R.

3.2 The trajectory interception problem (TIP) for subsystem S1

To construct a time-varying control law such that the trajectories of the controlled approximate

model (7) intersect the trajectories of the controlled extended system (8), with a period T , we

state the following problem:

TIP: Find control functions mi(a; t), i = 1; 2, in the class of functions which are Holder contin-

uous in a
def

= [a1; :::; a3], and piece-wise continuous and locally bounded in t, such that for any

initial condition x(0) = x the trajectory xa(t;x; 0) of the extended, parametrized system (11)

intersects the trajectory xm(t;x; 0) of the approximate model (7) with controls mi, i = 1; 2:

_x =
2X

i=1

~fimi(a; t) (12)

precisely at time T , so that xa(T ;x; 0) = xm(T ;x; 0).

It is possible to show the following result.
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Theorem 1 (Michalska et al., 1998) Suppose that a solution to the TIP problem can be found.

Then, the controls:

~ui(x)
def

= mi(~v
T (x); t); i = 1; 2 ~vT

def

= [~vT1 ; :::; ~v
T

3 ]

provide a time varying asymptotically stabilizing feedback for the approximate system (7), with

region of attraction R of Proposition 1.

Since the algebra L( ~f1; ~f2; ~f3) is �nite dimensional, it is possible to employ the formalism of (Wei

et al., 1964) to obtain a solution to TIP. The latter is based on considering a formal equation

for the evolution of ows of both (7) and (8) :

_S(t) = S(t) (
3X

i=1

Xiwi); (13)

S(0) = I (14)

with w3 = 0 in the case of (7).

It is well known that the solution of (13)-(14) describes, via an evaluation homomorphism which

maps each ~Xi into the corresponding ~fi, i = 1; :::; 3, the ows of both : system (7) with controls

ui = wi, i = 1; 2, and system (8) with vi = wi, i = 1; :::; 3. It is also a basic fact from algebra

that this solution and can be expressed locally by

S(t) =
3Y

i=1

exp(i(t)Xi) (15)

where the functions i, i = 1; ::; 3 are called the logarithmic coordinates of the corresponding ow.

Although this representation is not necessarily global, the di�erential equations determining the

evolution of these parameters can be obtained easily, see for example (Wei et al., 1964) for such

a calculation and, in our particular case, read :

_1 = a1

_2 = a2

_3 = �1a2 + a3

The TIP in logarithmic coordinates now takes the form of a trajectory interception problem for

the following two \control systems":

CS1 :

8><
>:

_1 = a1

_2 = a2

_3 = �1a2 + a3

CS2 :

8><
>:

_1 = m1

_2 = m2

_3 = �1m2

with common initial conditions i(0) = 0, i = 1; ::; 3. The TIP in the logarithmic coordinates

can thus be re-stated as follows :

TIP in logarithmic coordinates: Find control functions mi(a; t), i = 1; 2, in the class of

functions which are Holder continuous in a
def

= [a1; :::; a3] and piece-wise continuous, and
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locally bounded in t, such that the trajectory t 7! a(t) of CS1 intersects the trajectory

t 7! m(t) of CS2 in which

m(a; t)
def

= [m1(a; t);m2(a; t); 0]
T (16)

at time T , so that

a(T ) = m(T ) (17)

Complete controllability of CS1 and CS2 guarantees existence of solutions to the TIP. One such

solution can be calculated as follows.

The controls mi(a; t), i = 1; 2, can be sought in the form

m1 = b1 + b3 sin(
2�

T
t)

m2 = b2 + b4 cos(
2�

T
t)

where bi, i = 1; ::; 4 are some unknown coe�cients. The above are substituted into CS2, and the

systems CS1 and CS2 are integrated symbolically, to yield respective solutions a(T ) and m(T )

in terms of parameters a and b. The equation a(T ) = m(T ) is then also solved symbolically

to deliver the values for the unknown coe�cients bi(a), i = 1; :::; 4 as functions of the control

parameters a = [a1; a2; a3] and T :

b1 = a1; b2 = a2;

b3 = b4 = �3:54491pa3=
p
T :

which reects that two solutions were found.

At the implementation stage of the �nal feedback control, all the terms involving square roots of

the extended discretized controls ai, such as
p
ai, must naturally be substituted by sign(ai)

pjaij.
3.3 Time varying stabilizing controls for subsystem S1

Using the solution to the TIP problem, the time varying stabilizing controls for subsystem S1

are �nally given by

u1(x) = (~vT1 (x) + b3(~v
T

3 (x)) sin(
2�

T
t))

u2(x) = (~vT2 (x) + b3(~v
T

3 (x)) cos(
2�

T
t)) (18)

where, b3 = �3:54491
q
~vT
3
(x)=

p
T .

Since the algebraic structure of the system model is preserved during the approximation of this

model, as can be seen by comparing Lie brackets of f1; f2; f3, with those of ~f1; ~f2; ~f3 and the Lie

algebraic controllability conditions for the original and approximated subsystem S1, then the

control strategy constructed for the approximate model of S1 is also stabilizing when applied
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to the original subsystem S1 provided that ~vT (x) in (18), is replaced by the sample-and-hold

control, vT (x), for the original S1.

For faster convergence, vT
i
can be replaced by k vT

i
, i = 1; 2; 3, where k is any positive constant.

In fact, k = 3 was used in simulations. Finally, since the time-varying feedback so constructed

turns out to be very robust with respect to model-system error, continuous feedback can be

employed instead of the piece-wise constant sample-and-hold.

4 Stabilizing control algorithm for the robot with trailer

The time varying feedback control constructed for subsystem S1 must now be complemented

by a control which also takes account of subsystem S2. Stabilization of S2 requires generating

motion of the entire system in the direction of the second order Lie bracket [g1; [g1; g2]], which

can be achieved by application of sinusoidal controls such as, for example : u1(t) = sin(2�
T
t),

u2(t) = cos(4�
T
t), with u3(t) = 0, see (Murray et al., 1993). This observation leads to a control

algorithm for the entire system consisting of subsystems S1 and S2, in which the symbolN (S; �)
denotes the �-neighbourhood of a set S.

Stabilizing algorithm for a mobile robot with trailer:

Repeat the following steps until su�cient accuracy is achieved in reaching the origin:

Data : � > 0

Step a: Apply the controls (18) to original system (2) until its trajectories converge to N (S1; �),
where :

S1 def

= fz 2 IR5 : z1 = z2 = z3 = 0; z4 6= 0; z5 6= 0g

(b): To generate motion along g4 = [g1; [g1; g2]], apply the following controls

u1 = k1 sin(
2�

T
t)

u2 = k2 cos(
4�

T
t) (19)

until the system trajectories converge to N (S2; �), where :

S2 def

= fz 2 IR5 : z4 = 0 & sin z2 cos z3 = 0g
= fz 2 IR5 : z4 = z2 = 0g

(c): Again apply the control (18) until the system trajectories converge to N (S3; �) :

S3 def

= fz 2 IR5 : z1 = z2 = z3 = z4 = 0; z5 6= 0g
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(d): To generate motion along g5 = [g1; [g1; [g1; g2]]], apply the following controls

u1 = k3 sin(
2�

T
t)

u2 = k4 cos(
6�

T
t) (20)

until its trajectories converge to N (S4; �) :

S4 def

= fz 2 IR5 : z5 = 0 & f2(z) = 0g
= fz 2 IR5 : z5 = 0 & sin (z2 � z5) cos z3 = 0g = fz 2 IR5 : z5 = z2 = 0g

(e): Set � := �

2
.

Simulation results are depicted in Figures 2 - 3 which con�rm the applicability of combined

decomposition and trajectory interception approach. In simulations, the values k1 = �2, k1 =
�3, k3 = �2:8, k4 = 5, and T = 1:2 were used.
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Figure 2: Mobile robot with trailer : Plots of the controlled state trajectories t 7! ((z1(t); :::; z5(t))

versus time.
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Figure 3: Mobile robot with trailer : Plots of the controlled state trajectories z1(t) versus z4(t),

and Lyapunov function V (z(t)) = 1
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P
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2
i
(t) along the controlled state trajectories.
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