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Abstract

   In this paper a new model and an optimal pole-placement control for the Macpherson suspension system are

investigated. The focus in this new modeling is the rotational motion of the unsprung mass. The two generalized

coordinates selected in this new model are the vertical displacement of the sprung mass and the angular

displacement of the control arm.  The vertical acceleration of the sprung mass is measured, while the angular

displacement of the control arm is estimated.  It is shown that the conventional model is a special case of this

new model since the transfer function of this new model coincides with that of the conventional one if the lower

support point of the damper is located at the mass center of the unsprung mass.  It is also shown that the

resonance frequencies of this new model agree better with the experimental results.  Therefore, this new model

is more general in the sense that it provides an extra degree of freedom in determining a plant model for control

system design.  An optimal pole-placement control which combines the LQ control and the pole-placement

technique is investigated using this new model.  The control law derived for an active suspension system is

applied to the system with a semi-active damper, and the performance degradation with a semi-active actuator is

evaluated.  Simulations are provided.

1  Introduction

In this paper, a new model of the suspension system of the Macpherson type for control system design

and an optimal pole-placement control for the new model are investigated. The roles of a suspension
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system are to support the weight of the vehicle, to isolate the vibrations from the road, and to maintain

the traction between the tire and the road. The suspension systems are classified into passive and

active systems according to the existence of a control input. The active suspension system is again

subdivided into two types: a full active and a semi-active system based upon the generation method of

the control force. The semi-active suspension system produces the control force by changing the size

of an orifice, and therefore the control force is a damping force.  The full active suspension system

provides the control force with a separate hydraulic power source. In addition, the suspension systems

can be divided, by their control methods, into a variety of types: In particular, an adaptive suspension

system is the type of suspension system in which controller parameters are continuously adjusted by

adapting the time-varying characteristics of the system. Adaptive methods include a gain scheduling

scheme, a model reference adaptive control, a self-tuning control, etc.

   The performance of a suspension system is characterized by the ride quality, the drive stability, the

size of the rattle space, and the dynamic tire force.  The prime purpose of adopting an active

suspension system is to improve the ride quality and the drive stability.  To improve the ride quality,

it is important to isolate the vehicle body from road disturbances, and to decrease the resonance peak

at or near 1 Hz which is known to be a sensitive frequency to the human body.

   Since the sky-hook control strategy, in which the damper is assumed to be directly connected to a

stationary ceiling, was introduced in the 1970's, a number of innovative control methodologies have

been proposed to realize this strategy.  Alleyne and Hedrick[3] investigated a nonlinear control

technique which combines the adaptive control and the variable structure control with an experimental

electro-hydraulic suspension system.  In their research, the performance of the controlled system was

evaluated by the ability of the actuator output to track the specified skyhook force.  Kim and Yoon[4]

investigated a semi-active control law that reproduces the control force of an optimally controlled

active suspension system while de-emphasizing the damping coefficient variation.  Truscott and

Wellstead[5] proposed a self-tuning regulator that adapts the changed vehicle conditions at start-up

and road disturbances for active suspension systems based on the generalized minimum variance

control.  Teja and Srinivasa[6] investigated a stochastically optimized PID controller for a linear

quarter car model.

   Compared with various control algorithms in the literature, research on models of the Macpherson

strut wheel suspension are rare.  Stensson et al.[8] proposed three nonlinear models for the

Macpherson strut wheel suspension for the analysis of motion, force and deformation.  Jonsson[7]

conducted a finite element analysis for evaluating the deformations of the suspension components.

These models would be appropriate for the analysis of mechanics, but are not adequate for control

system design.  In this paper, a new control-oriented model is investigated.

   Fig. 1 shows a sketch of the Macpherson strut wheel suspension.  Fig. 2 depicts the conventional

quarter car model of the Macpherson strut wheel suspension for control system design.  In the
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conventional model, only the up-down movements of the sprung and the unsprung masses are

incorporated.  As are shown in Fig. 1 and Fig. 3, however, the sprung mass, which includes the axle

and the wheel, is also linked to the car body by a control arm.  Therefore, the unsprung mass can

rotate besides moving up and down.  Considering that better control performance is being demanded

by the automotive industry, investigation of a new model that includes the rotational motion of the

unsprung mass and allows for the variance of suspension types is justified.

   The Macpherson type suspension system has many merits, such as an independent usage as a

shock absorber and the capability of maintaining the wheel in the camber direction.  The control arm

plays several important roles: it supports the suspension system as an additional link to the body,

completes the suspension structure, and allows the rotational motion of the unsprung mass.  However,

the function of the control arm is completely ignored in the conventional model.

   In this paper, a new model which includes a sprung mass, an unsprung mass, a coil spring, a

damper, and a control arm is introduced for the first time.  The mass of the control arm is neglected.

For this model, the equations of motion are derived by the Lagrangian mechanics.  The open loop

characteristics of the new model is compared to that of the conventional one.  The frequency

responses and the natural frequencies of the two models are analyzed under the same conditions.

Then, it is shown that the conventional 1/4 car model is a special case of the new model.  An optimal

pole-placement control, which combines the LQ control and the pole-placement technique, is applied

to the new model.  The closed loop performance is analyzed.  Finally, the optimal pole-placement

law, derived for the active suspension system, is applied to the semi-active suspension system which is

equipped with a continuously variable damper for the purpose of investigating the degradation of the

control performance.

   The results in this paper are summarized as follows.  A new model for the Macpherson type

suspension system that incorporates the rotational motion of the unsprung mass is suggested for the

first time.  If the lower support point of the shock absorber is located at the mass center of the

unsprung mass, the transfer function, from road disturbance to the acceleration of the sprung mass, of

the new model coincides with that of the conventional one.  Therefore, the new model is more

general, from the point of view that it can provide an extra degree of freedom in determining a plant

model for control design purpose.  In the frequency response analysis, the natural frequencies of the

new model agree better with the experimental results.  An optimal pole-placement control, which

combines the LQ control and the pole-placement technique, is applied to the new model.  The control

law, derived for a full active suspension, is applied to the semi-active system with a continuously

variable damper.  It is shown that a small degradation of control performance occurs with a

continuously variable damper.
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2. Conventional Model

Fig. 2 shows the conventional model that depicts the vertical motions of the sprung and the unsprung

masses.  All coefficients in Fig. 2 are assumed to be linear.  The equations of motion are

arutuspussuu

dauspussss

fzzkzzczzkzm

ffzzczzkzm
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The state variables are defined as: us zzx −=1 , the suspension deflection; szx &=2 , the velocity of the

sprung mass; ru zzx −=3 , the tire deflection; uzx &=4 , the velocity of the unsprung mass[10].  Then,

the state equation is
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3. A New Model

The schematic diagram of the Macpherson type suspension system is shown in Fig. 3.  It is composed

of a quarter car body, an axle and a tire, a coil spring, a damper, an axle, a load disturbance and a

control arm.  The car body is assumed to have only a vertical motion.  If the joint between the

control arm and the car body is assumed to be a bushing and the mass of the control arm is not

neglected, the degrees of freedom of the whole system is four.  The generalized coordinates in this

case are sz , d , 1θ  and 2θ .  However, if the mass of the control arm is ignored and the bushing is

assumed to be a pin joint, then the degrees of freedom becomes two.

   As the mass of the control arm is much smaller than those of the sprung mass and the unsprung

mass, it can be neglected.  Under the above assumption, a new model of the Macpherson type

suspension system is introduced in Fig. 4.  The vertical displacement sz  of the sprung mass and the
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rotation angle θ  of the control arm are chosen as the generalized coordinates.  The assumptions

adopted in Fig. 4 are summarized as follows.

  1. The horizontal movement of the sprung mass is neglected, i.e. the sprung mass has only the

vertical displacement sz .

  2. The unsprung mass is linked to the car body in two ways.  One is via the damper and the other is

via the control arm.  θ  denotes the angular displacement of the control arm.

  3. The values of sz  and θ  will be measured from their static equilibrium points.

  4. The sprung and the unsprung masses are assumed to be particles.

  5. The mass and the stiffness of the control arm are ignored.

  6. The coil spring deflection, the tire deflection and the damping forces are in the linear regions of

their operating ranges.

   Let ( AA zy , ), ( BB zy , ) and ( CC zy , ) denote the coordinates of point A, B and C, respectively, when

the suspension system is at an equilibrium point.  Let the sprung mass be translated by sz  upward,

and the unsprung mass be rotated by θ  in the counter-clockwise direction.  Then, the following

equations hold.

0=Ay (4a)

sA zz = (4b)
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where 0θ  is the initial angular displacement of the control arm at an equilibrium point.   Let

0' θαα += .  Then, the following relations are obtained from the triangle OAB.
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rCsrC zlzzz −−−−+=− ))sin()(sin( 00 θθθ (5c)

where, 22
BAl lla += , BAl llb 2= .

3.1 Equations of Motion

The equations of motion of the new model are now derived by the Lagrangian mechanics.  Let T ,

V  and D  denote the kinetic energy, the potential energy and the damping energy of the system,

respectively.  Then, these are
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Substituting the derivatives of (4e), (4f) and (5a,b,c) into (6a,b,c) yields
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Finally, for the two generalized coordinates szq =1  and θ=2q , the equations of motion are obtained

as follows
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   Now, introduce the state variables as [ ] [ ]Tss
T zzxxxx θθ &&=4321 .  Then, (8)-(9) can be

written in the state equation as follows.
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3.2 Linearization

In order to compare the characteristics of (10) with that of the conventional model, (10) is linearized at

the equilibrium state where )0,0,0,0(),,,( 4321 == eeeee xxxxx .  Then, the resulting linear equation is
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4.  Comparison of Two Models

In the conventional model, where the road input is rz& , the output variables were assumed to be the

accelerations of the sprung mass sz&&  and the unsprung mass uz&& . In (12), however, while the road

input is the displacement rz , the outputs are the acceleration of the sprung mass sz&&  and the angular

displacement of the control arm θ . Thus, the output variable that can be compared between the two

models is the acceleration of the sprung mass sz&& .  To be able to compare the two models, the road

input in the new model is modified to the velocity rz& .

   First, it is shown that the conventional model and the new model coincide if the lower support

point of the shock absorber in the new model is located at the mass center of the unsprung mass.  Let
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The output equation of (12) becomes

)()()()( 31 tfDtfDtCxty da ++= (12)′
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where,
















=

0100

00
s

Cp

s

Cs

m
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m

lk
C , 














=

0

1

1 smD , 












−
=

0

1

3 smD .

   For the above equations (11)′ and (12) ′, the transfer function from a road velocity input rsz  to the

acceleration of the sprung mass is exactly the same as (3).  That is, the conventional model, as such,

is a special case of the new model where CB ll =  and 00 =θ .  Thus, the new model is more general,

from the point of view that it has an extra degree of freedom in validating the real plant with

experimental data.

   For comparing the two models, the following parameter values of a typical Macpherson type

suspension system are used:

Kgms 453= , Kgmu 71= , mNc p sec/1950 ⋅= ,

mNk s /658,17= , mNk t /887,183= , Nf d 0= ,

ml A 66.0= , mlB 34.0= , and  mlC 37.0= .

   As compared in Table 1, the first frequency of the conventional model is located below 1 Hz,

whereas the that of the new model is located at 1.25 Hz.  Since the real plant has its first resonance

frequency at 1.2 Hz, the results of the new model better agree with the experimental results.  As it is

important to decrease the resonance peak near 1 Hz to improve the ride quality, it is claimed that the

new model, which reveals the exact locations of resonance frequencies, is a better model.

Table 1.  Comparison of the two models for a typical suspension system

New model

Conventional model

CB ll =
ml

ml

C

B

37.0

34.0

=
=

Poles
-1.85±5.79I

-14.04±50.40i
-1.85±5.79i

-14.04±50.40i
-1.50±7.70i

-10.92±48.30i

Resonances
(Damping ratio)

0.97 Hz (0.30)
8.33 Hz (0.27)

0.97 Hz (0.30)
8.33 Hz (0.27)

1.25 Hz (0.20)
7.88 Hz (0.23)

   The frequency responses of the two models, with the same road input, are compared in Fig. 5.

There are substantial differences in the resonance frequencies and peaks between the two models.  A

tendency of the new model is that the smaller the BC ll /  is, the lower the resonance frequency is.  All

the above observations are summarized as follows:

  (1) The conventional model is considered as a special case of the new model where CB ll = .
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  (2) The location of the first resonance frequency is higher in the new model than it is in the

conventional one. This better agrees with the experimental results. The damping ratio, however, is

lower in the new model.

  (3) For the second resonance frequency, both the location and the damping ratio are lower in the

new model.

5.  Optimal Pole-Placement Control: Active Case

In this section, an optimal pole-placement control which combines the LQ control and the pole-

placement technique for the new model is presented.  The closed loop system is designed to have

desired characteristics by means of the pole-placement technique, while minimizing the cost function,

as defined by the weightings of the input, state and output of the system, as follows.

   The considered linear time-invariant system and the performance index are
mn

r RuRxzBuBAxx ∈∈++= ,,21& (13)

0,0,}{
2

1

0

>≥+= ∫
∞

RQdtRuuQxxJ TT (14)

where A , 1B  and 2B  are defined in (11).  For given Q  and R , the optimal control law and the

optimal closed loop system are

KxxMBRu s
T −=−=

∆
−

1
1 (15)

FxxMBRBAx s
T

∆
− =−= )( 1

1
1& (16)

where 0≥sM  is the solution of the Riccati equation below.

01
1

1 =+−+ − QMBRBMAMMA s
T

sss
T (17)

   The solution of the Riccati equation, sM , can be obtained in another approach as follows. Let
TBRBS 1

1
1

−= .  Introduce a Hamiltonian matrix H  as









−−
−

= TAQ

SA
H (18)

The Jordan decomposition of H  is of the form

Λ= XHX

where X  and Λ  contain the eigenvectors and the eigenvalues of H , respectively.  Then, the

following relationship is known [9].









Λ

Λ








=









uus

us

us

us F

YY

XX

YY

XX
H

0

0)(
(19)
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where F  is the closed loop system matrix defined in (16), )(FΛ  denotes an eigen matrix in which

the eigenvalues of F  appear in diagonal terms, )(Fu Λ−=Λ , [ ]TT
s

T
s YX  consists of the eigenvectors

of H  corresponding to the eigenvalues of F , and [ ] [ ]TT
s

T
s

TT
u

T
u YXYX −= . Furthermore, sM  and

uM  are determined as follows.
1−= sss XYM (20)
1−= uuu XYM (21)

where su MM −= .

   In the problem of shifting the eigenvalues of the closed loop system by α2−  further to the left,

where the α  is said to be the degree of relative stability of the optimal pole-placement problem, the

following theorem holds.

Theorem[9]: For given Q  and R  let sΛ  be the spectrum of optimal system (16).  Let the degree of

relative stability be p=α .  Let Q  be perturbed by

upMQ 2−=∆ (22)

where uM  is the negative (semi) definite solution given by (21).  Then, )( pFΛ , the spectrum of the

optimal closed system obtained with the modified weighting matrix, QQQp ∆+= , is

pIF ss 2)( −Λ=Λ (23)

where pF  denotes the closed loop system matrix resulted from pQ .   ¡ à

Design Procedure

1) Select Q  and R , and design a LQR controller.

2) Evaluate the performance of the LQR controller, and determine the eigenvalues that

need to be shifted.

3) Construct the Hamiltonian matrix H , and find the eigenvectors of H  corresponding

to the eigenvalues that need to be shifted.

4) Obtain
1−= iii XYM (24)

where [ ]Tii YX  is the matrix that is composed of the unstable eigenvectors corresponding to the

eigenvalues that need to be shifted, and the stable eigenvectors corresponding to the eigenvalues that

stay in their original locations.

5) Let ip  be the degree of relative stability of the eigenvalues that are to be shifted.

Calculate

,1 IpAA iii += −   where AA =0 (25)

,21 iiii MpQQ −= −  where QQ =0 (26)

6) Solve the Riccati equation with the modified matrices, or try the second method (20),
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to obtain the desired closed loop pole locations.

5.1 LQR

In this paper, it is assumed that the main purpose of the control system design is to improve the ride

quality.  Thus, to reduce the vertical acceleration of the sprung mass at the resonance frequency near

1 Hz, more weights are put on the state variables 1x  and 2x  that correspond to the displacement and

velocity of the sprung mass.  The weighting matrices initially selected are

2

1155

10

)10101010(
−

−−

=

=

R

diagQ
(27)

The closed loop eigenvalues with (27) are

}2377.488560.10,1971.72042.3{ iiC ±−±−=λ .

Compared to the open loop system, the resonance peak near 1 Hz of the controlled system is lower.

Due to length considerations, simulation results for (27) are omitted.

5.2 Optimal Pole-placement

In this section, the damping ratios of the two dominant poles are raised for the purpose of increasing

the rise time.  The damping ratio of the first resonance frequency is increased from 0.407 to 0.841 by

shifting the dominant pole, by –8, to the left.  Therefore, the eigenvalues of the closed loop system

are

}2377.488560.10,1971.72042.11{ iiopt ±−±−=λ .

   Fig. 6 compares the frequency responses of the open loop system and the optimal pole-placement

controller.  It is shown that the performance in the low frequency range, including 1 Hz, has been

significantly improved with the optimal pole-placement controller.  Fig. 7 shows the time domain

responses when passing over a speed bump which is cm10  in height and m.0  in length.  Also, note

the great improvement in the settling time.

6. Application to a Semi-Active Damper

In this section, the optimal pole-placement technique, discussed in Section 5, is applied to a semi-

active damper.  The purpose of this section is to figure out how much the control performance of the

active control is degraded when the control law, derived for an active actuator, is applied to a plant

with a semi-active actuator.
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   If the actuator in Fig. 4 is a semi-active type, the passive damper and the actuation part involving

the arrow sign need to be combined as one variable damper.  In deriving the equations of motion for a

semi-active damper, the equation of motion for the coordinate rz  is the same as equation (8).

However, the equation of motion for θ  needs to be modified as follows.

saB

ll

l
ls

rCsCt

ll

ls
sCuCu

fl
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d
bk

zlzlk

ba

bc
zlmlm

−=
−−

+−−

−−−−+−+

−−
−

+−+
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))'cos((

)['sin(
2

1

)))sin()(sin()(cos(

))'cos((4

)'sin(
)cos(

2
1

000

0
2

0
2

θα
θα

θθθθθ

θα
θθα

θθθ
&

&&&&

(28)

where saf  stands for a semi-active control force.  The system matrix A  of (11) needs to be

modified as follows.



















=

00

1000

00

0010

4341

2321

aa

aa
A (29)

where 21a , 23a , 41a  and 43a  are the same as in Section 3.2.

6.1 Continuously Variable Damper

Fig. 8 shows the damping force characteristics of a typical continuously variable damper used for the

simulations in this paper.  Detailed descriptions for the variable damper are omitted.  In general, the

damping force of a semi-active damper is adjusted by changing the size of an orifice.  In Fig. 8, the

x -axis represents the relative velocity of the rattle space, and the y -axis denotes the generated

damping force.  The three curves represents three different damping force characteristics

corresponding to the three current inputs of 0 ampere, 0.8 ampere, and 1.6 ampere.  The curve with

the highest slope denotes the characteristics of 0 ampere control input, which denotes the most hard

damping effect.

6.2 Limited Control Action

Control law (15) assumes that there are no limits, in terms of the magnitude and the direction, to the

control input.  However, if a semi-active type actuator of Section 6.1 is used, the actuating force is

limited as follows
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



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≤
<<

≥
=

sasa

sasa

sasa

actual

fuiff

fufifu

fuiff

f (30)

where saf  and 
sa

f  denote the maximum and the minimum damping forces at a given relative

velocity.  As, for example, in Fig. 8 when the rattle space is extended at a relative velocity 1 sec/m ,

the maximum damping force is about 2700 N . This corresponds to 0A. At the same time the minimum

damping force is about 1400 N , which corresponds to 1.6A.

   Fig. 9 compares the accelerations of the sprung mass of passive, semi-active and active suspension

systems, when the magnitude and the frequency of the road input are 0.01 m  and 1 Hz.  Compared to

the passive system, both the semi-active and the active systems show a reduction in the magnitude of

the vertical acceleration.  Therefore, it is concluded that the control law, derived for an active

suspension system, may be applicable to a semi-active suspension system without resulting in much

degradation of control performance.  Fig. 10 compares the control forces applied to the plant by the

active and semi-active dampers together with the relative velocity of the damper.  In the case of the

semi-active damper, the occurrence of the phase lag is due to the actuation limitation.  This also

causes the phase difference in the response of the sprung mass acceleration in Fig. 9.  Fig. 11 shows

the current input applied to the continuously variable semi-active damper of Fig. 8.

7. Conclusions

In this paper a new control-oriented model, for the Macpherson type suspension system, that

incorporates the rotational motion of the control arm was investigated for the first time.  The

nonlinear equations of motion have been linearized at an equilibrium point.  It was shown that the

conventional model is a special case of the new model, i.e., if CB ll =  and 00 =θ , then the transfer

function of the new model coincides exactly with that of the conventional model. By changing the

length of the control arm, it is possible to design a wide range of plant models. An optimal pole-

placement controller, which combines the LQ control and the pole-placement method, was

investigated.  The control law was further applied to a semi-active suspension equipped with a

continuously variable damper.  When the active control law was applied to the semi-active damper, a

small degradation in the vertical acceleration of the sprung mass was noticed. However, the overall

performance was acceptable.  The new model proposed in this paper has applications in the areas of

dynamics analysis and control system design.
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Fig. 1  A sketch of the Macpherson strut wheel suspension

      

 k s  fa

 m s

 m u

 k t

 z r

 zu

 zs

 f d

pc

Fig. 2  Conventional quarter car model.
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1  :  g r o u n d
2  :  c h a s s i s
3  :  u p p e r  s t r u t
4  :  k n u c k l e  &  t i r e
5  :  c o n t r o l  a r m

Fig. 3  A schematic diagram of the Macpherson type suspension system.
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Fig. 4  A new quarter car model.
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( ⋅⋅⋅ conventional model,   new model )

Fig. 5  Frequency responses of the conventional and new models.

( ⋅⋅⋅ open loop system,   optimal pole-placement )

Fig. 6  Comparison of the frequency responses.
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( ⋅⋅⋅ open loop system,   optimal pole-placement )

Fig. 7  Comparison of the time domain responses.

Fig. 8  Damping force characteristics of a typical continuously variable damper.
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( -⋅- passive,   semi-active,  ⋅⋅⋅ active )

Fig. 9  Comparison of passive, semi-active, and active suspension systems.

( -⋅- active control force(desired),   semi-active damping force(generated), ⋅⋅⋅ relative velocity of the damper )
Fig. 10  Control forces.

Fig. 11  Current input applied to the continuously-variable damper in Fig. 8.
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