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Abstract

Outliers occur regularly enough in real-world measurement data to constitute a significant
practical problem that is not adequately addressed by traditional smoothing filters designed
to reduce the effects of high-frequency noise. To address this problem, this paper describes
a simple data cleaning filter for outlier detection and removal which is based on a causal
moving data window that is appropriate to real–time applications like closed loop control.
This filter is an extension of the well–known median filter: the observed data point yk is
compared to the median y†k of present and past data points. If the distance between these
points is large relative to a specified threshold, yk is declared an outlier and replaced with
a more reasonable value y?k. In the most favorable circumstances alters the above described
data cleaning filter only outliers (e.g., shot noise) and does not modify nominal data points.
Simple implementations of this filter require few tuning parameters and no explicit process
model is required for filter tuning. This paper presents some useful tuning guidelines based
on simple characterizations of the nominal variation seen in outlier-free portions of the data.
To illustrate the utility of this filter, applications are presented for both real data examples
and a simulation example where the exact results are known and performance can be assessed
more precisely. It is also demonstrated that the data cleaning filter described here can be
combined with traditional linear smoothing filters to achieve both protection against outliers
and effective noise reduction, but the outlier filter should preceed the noise filter to achieve
these results.

1 Introduction

Outliers or anomalous data points occur frequently in measurement data. We have seen this
behavior in a variety of industrial process datasets, blood pressure measurements, helicopter
pitch angle measurements, and speed measurements on flexible shafts. A specific example is
the shaft speed measurement data shown in Fig. 1; the “spikes” evident in this dataset are
clearly inconsistent with the majority of the data values (approximately 20000 samples). In
some control applications (particularly those using derivative control), these outliers can have
an extremely damaging effect on controller performance. This paper describes the real-time
extension of a simple nonlinear digital filter (Ling et al. (1984); Astola and Kuosmanen (1997);
Pearson (1999)) which has proven to be quite effective in removing outliers for off–line data
analysis. The goal of our work is to extend these ideas to a filter that allows on–line real–
time applications. We state the basic ideas behind the new on–line filter in Section 2 and call
it throughout the paper the data cleaning filter. This data cleaning filter is a generalization
of the median filter (Gallagher and Wise (1981); Astola et al. (1987); Astola and Kuosmanen
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(1997)) and appears to be equally effective in removing outliers but introduces less distortion
in the nominal part of the data (ideally, none). Thus, under normal operating conditions, the
data cleaning filter has no effect on control system performance, but in the presence of outliers,
control system performance can improve significantly. The results of applying the data cleaning
filter to the flexible shaft data are shown in Fig. 2, which illustrates both its intent and its
performance: the objective here is not smoothing (a task better suited to noise filters like those
discussed in Hamming (1983)), but rather the automatic replacement of severe outliers with
values that are more consistent with the rest of the dataset. We also want to remark at this
point that whenever we refer to linear filters we mean linear noise filters.

The simplest version of the data cleaning filter involves only three tuning parameters, and this
paper considers both the practical determination of these tuning parameters and an interesting
extensions of the basic data cleaning filter, also suitable for real-time applications.
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Figure 1: Original shaft speed dataset.

2 Description of the data cleaning filter

We assume that the generation of outliers can be described by the additive outlier model, popular
in robust time-series analysis (Denby and Martin (1979); Martin and Yohai (1986)):

yk = xk + ok. (1)

Here {yk} is the measured data sequence, {xk} is the “nominal” data sequence we are interested
in and {ok} represents a sequence of contaminating outliers. The values of the sequence {ok}
are assumed to be zero except for a few time instances when the magnitude of {ok} is “large”
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Figure 2: Filtered shaft speed dataset.

relative to the nominal variation seen in the data. We seek an approximation of xk based only
on the current and past data observations yk−j for k ≥ j ≥ 0, in contrast to the non-causal
(off–line) smoother described previously in Ling et al. (1984); Astola and Kuosmanen (1997)
that also assume knowledge of future values, i.e. yk+j for j > 0. Specifically, yk and the past
N − 1 data values yk−j are stored in a data window Wk of width N :

Wk = {yk−N+1, yk−N+2, . . . , yk}. (2)

The data values in this window are rank–ordered to obtain

Rk = {yk(1) ≤ y
k
(2) ≤ · · · ≤ y

k
(N)}, (3)

and the median y†k of the sequence Rk is computed as:

y
†
k =

{
yk((N+1)/2) for N odd

(yk(N/2) + yk(N/2+1))/2 for N even.
(4)

The median value y†k provides a nominal reference against which the current data point yk is

evaluated; specifically, define the distance dk between yk and y†k:

dk = |y†k − yk|. (5)

If this distance exceeds some specified threshold Tk ≥ 0, we declare yk to be an outlier and
replace it with a prediction y?k to obtain the filtered data sequence {fk} with:

fk =

{
yk if dk ≤ Tk
y?k if dk > Tk.

(6)
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To see the possible range of behavior of the data cleaning filter, it is useful to consider the two
extreme limits, Tk = 0 and Tk = +∞. In the first case, the outlier selection criterion is always
satisfied, so the filter output is simply fk = y?k; this limit corresponds to the most aggressive
data filtering since the sequence yk is always modified, in general. Conversely, if Tk = +∞,
the outlier selection criterion can never be satisfied and fk = yk; in other words, no filtering
is performed in this limit. If an intermediate threshold value Tk can be chosen appropriately
and if yk does not correspond to an anomalous data point, the data sequence is unmodified
(fk = yk = xk), but if an outlier occurs at time k, then yk will lie far from the median value
in the data window and will be replaced with the prediction y?k. Thus, under normal operating
conditions, the data cleaning filter does not alter the measured sequence and thus has no effect
on control system performance. In the presence of outliers, these will be removed and therefore
the control system performance can improve significantly.

This data filtering approach corresponds to the class of decision-based filters discussed in
Astola and Kuosmanen (1997) and apparently first proposed in the image processing literature
(Ling et al. (1984)). Application of the data cleaning filter to off-line process control applications
(in particular, empirical model identification) is described in Pearson (1999). For real-time
applications, practical implementation of the data cleaning filter requires specification of the
following four attributes:

1. the algorithm for determining the value of the filter output y?k with which outliers are
replaced,

2. the threshold Tk (which can depend on the time index k),

3. the window width N , and

4. filter initialization (i.e., how fk is defined for k < N).

These issues are discussed in detail in the following sections, after which filter performance is
examined for three examples, one based on simulations for which exact results are known and
two based on real datasets.

3 Outlier replacement strategies

Many different ways to determine the prediction y?k are possible. One of the simplest and

analytically most interesting possibilities is median replacement, for which y?k = y†k. In this case,
the maximally aggressive data cleaning filter obtained by taking Tk = 0 for all k corresponds
to the causal median filter, discussed in some detail in the next section. Analogously, other
possible replacement strategies would be to take y?k to be the output of any other filter —
linear or nonlinear — based on the data in the window Wk; in particular, any of the nonlinear
filters described in Astola and Kuosmanen (1997) could be considered here. In general, the
disadvantage of linear filters is that if any of the other data points in the window Wk are
outliers, the response of the linear filter is likely to be a poor prediction of the uncontaminated
data value xk at time k. In particular, it is important to note that successive outlier patches
occur in some applications, and linear predictions y?k can be expected to perform poorly in
such cases. The possibility of patchy outliers is also an important consideration with respect to
window width selection and is discussed further in connection with that problem.

Another particularly interesting replacement strategy is to replace anomalous values with
the last valid data point. Specifically, define y?k = yk−j where j is the smallest integer such
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that |yk−j − y
†
k| ≤ Tk. This replacement strategy sometimes yields much better results than

the median replacement strategy, as the following simple example illustrates. Suppose the
uncontaminated sequence {xk} is monotonically increasing, from which it follows that

xk ≥ xk−i ≥ x
†
k, (7)

for all i < N+1
2 (assume N odd for simplicity). In this case, if the last valid data point occurs

for j < N+1
2 , it follows that xk−j is a better estimate of xk than y†k = x†k. Conversely, there

are sequences for which median replacement provides better results than the last valid point
strategy described here. For example, if xk is a periodic sequence with period 2 (i.e., a binary
oscillation), median replacement is a better strategy. This replacement strategy is also the one
used throughout the rest of the paper especially in the examples in Section 9 and 10.

4 The causal median filter

Because it is the most aggressive data cleaning filter with median replacement, consideration of
this special case can provide some useful insights into the general behavior of this data cleaning
filter. Further, many results are available for the off-line (non–causal) median filter, generally
considered in the symmetric form (Gallagher and Wise (1981)). In particular, the output mk of
the symmetric median filter is the median value from the 2H + 1-point moving data window:

WMk
= {yk−H , . . . , yk−1, yk, yk+1, . . . , yk+H}. (8)

Characterizations are available for the root sequences of this median filter, defined as those
sequences {rk} that are invariant under the application of the filter. In particular, following
Astola et al. (1987), define the following sequence features:

1. A constant neighborhood is a region of at least H + 1 consecutive data points with the
same value.

2. An edge is a monotonically increasing or decreasing sequence of points surrounded on both
sides by constant neighborhoods not destroying the monotonicity.

It can be shown (Gallagher and Wise (1981)) that a sequence of finite length can only be a root
sequence for the non–causal median if it consists entirely of constant neighborhoods and edges.
In the case of infinitely long sequences, periodic binary sequences can also be root sequences of
a median filter; the period of these root sequences depends on the window width of the filter
(see Astola et al. (1987)).

It is clear from the definitions that, if N = 2H+1, the output yk of the real-time median filter
considered here corresponds to the symmetric median filter delayed by H samples: y†k = mk−H .
The following results follow immediately from this observation.

Proposition 4.1 If {rk} is a root sequence for the symmetric median filter of width N = 2H+1,

the response of the causal median filter is y†k = rk−H.

Proposition 4.2 If {rk} is a root of both the symmetric median filter of width N = 2H+1 and
the causal median filter, it is periodic with period H.

This result, together with the characterization of finite length root sequences for the symmetric
median filter noted above lead immediately to the following result:
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Proposition 4.3 The only finite-length sequences {rk} that are roots of both the symmetric
median filter of width N = 2H + 1 and the causal median filter are constant, i.e. rk = c for all
k.

The significance of this last result follows from the fact that the class of finite root sequences
for the median filter is rather large and includes many “nice” sequences that we might wish
to preserve unmodified in the process of outlier removal. In particular, the class of symmetric
median filter root sequences includes all finite length monotone sequences. This observation
immediately implies the following result:

Corollary 4.1 The only monotonic root sequences for the causal median filter are constant.

Conversely, non-constant infinite-length root sequences do exist for the causal median filter:

Theorem 4.1 Any period 2 sequence {sk} is a root sequence for any causal median filter of odd
width N = 2H + 1.

Proof 4.1 If {sk} is periodic with period 2, it assumes only two distinct values, one for k even
and the other for k odd. Since the data window Wk contains an odd number of points, it will
contain H + 1 points with value sk and H points with value sk−1. Hence, the median value in
the data window is sk and the output of the median filter is simply y†k = sk.

The practical consequences of these results are that only very special sequences of rather
limited interest are invariant under the application of the real-time median filter. Hence, the
causal median filter does not appear to be a particularly good data cleaner for real-time control
applications: at best, it introduces a delay of H samples with its attendant phase shift, and at
worst, it distorts the nominal data sequence we wish to preserve. This point is seen clearly in
Fig. 3, which shows a detailed view of a portion of one of the helicopter data sequences discussed
later in this paper, overlaid with the response of the causal median filter; in particular, note
both the successful outlier rejection at k ' 120 and the significant distortions of the nominal
data variation indicated with arrows. Consequently, if we consider data cleaning filters based
on median replacement (i.e., y?k = y†k), it is important not to make the threshold values Tk too
small in order to avoid these difficulties. These results stand in marked contrast to those for
the symmetric median filter, widely used in signal processing applications in part because its
associated root sequence class includes so many useful sequences (e.g., edges in image processing
applications). Conversely, it is also important not to make these threshold values too large since
the filter then offers no outlier protection at all.

5 Threshold selection

Ideally, we would like all nominal data sequences {xk} to be a root sequence of the data clean-
ing filter, and it is clear from the results presented in the previous section that, for median
replacement, this behavior is only possible if Tk is chosen large enough. The following discus-
sion describes several different strategies for threshold specification and presents some detailed
recommendations, based on different assumptions concerning the behavior of the nominal data
sequence and the outliers. One basic approach is to use pre-defined thresholds Tk, specified on
the basis of knowledge about the measurements and the system generating the data but inde-
pendent of the data sequence {yk}. Alternatively, it is also possible to use thresholds Tk that
are computed from the data sequence. The following discussion considers both approaches and
concludes with some ideas on how to combine them.
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Figure 3: Helicopter data and causal median filter response (indicated by thick dots).

Fixed thresholds

In principle, the simplest approach to threshold selection is to choose a fixed value of Tk based
on general knowledge of the “typical” variation of the data sequence. For example, given knowl-
edge of the time between measurements and the dominant dynamics of the physical system, it
may be possible to establish limits on the range of measurement variation we could reasonably
expect to observe in N successive samples. Choosing Tk somewhat larger than this value could
then provide a basis for rejecting outlying observations. The difficulty with this approach is that
it rests on certain assumptions about the nominal process changes (e.g., variations in operating
conditions, external disturbances, etc.) that are responsible for the observed data variations.
Unexpectedly large changes in these operating conditions or disturbances can result in large
changes in measured responses that are not measurement anomalies, but rather legitimate pro-
cess responses to which the control system should respond. For this reason, it appears to be
more desirable to allow Tk to depend on some reliable estimate of the nominal variation seen
in the measurement data. One effective implementation of this idea is the MAD-based data
cleaning filter described next.

MAD scale based threshold

The basic philosophy behind using data-dependent thresholds is to first estimate the range
of variation of the nominal data sequence {xk} and then assess each observation yk with respect

to the median y†k (taken as representative of the center of the nominal data sequence) and this
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estimated range of variation. Almost certainly, the best known estimate of variability is the
standard deviation, but this range estimate is unsuitable because it is highly susceptible to out-
liers itself (Huber (1981); Davies and Gather (1993); Astola and Kuosmanen (1997)). A better
alternative is the median absolute deviation (MAD), defined as follows for the data window Wk.

First, compute the median y
†
k and the distances dk of each data point from this reference value

as in Eqs. (4) and (5). Next, rank-order these distances to obtain the sequence

d(1) ≤ d(2) ≤ · · · ≤ d(N). (9)

The (un-normalized) MAD scale estimate Sk is defined as the median absolute deviation from
the median, which is simply the median of this list, determined analogously to Eq. (4). This
scale estimate is often normalized to S̃k = Sk/0.6745 ' 1.4826Sk to make it an unbiased estimate
of the standard deviation for Gaussian data (Huber (1981)). The key point, however, is that
the MAD scale estimate is much more robust with respect to outlier contamination than the
usual standard deviation estimate, which is inflated badly enough by the presence of outliers
that simple rejection rules like “declare yk suspicious if it lies more than 3 standard deviations
from the mean” frequently fail to detect any outliers if more than one are present in the sample.

One of the principal outlier detection strategies considered in this paper is the Hampel
identifier (Davies and Gather (1993)), obtained by setting

Tk = cSk (10)

for some constant c ∈ R+, chosen independent of the data in the window Wk. To see how this
constant should be chosen, it is useful to first consider some general properties of the MAD scale
estimate Sk. For convenience, we will assume the window width is an odd integer and write it
as N = 2H + 1; qualitatively analogous results would be obtained for even window widths, with
some minor differences in detail and resulting in somewhat more complex expressions, as in Eq.
(4). Under this assumption, it follows that Sk = d(H+1), implying that H + 1 of 2H + 1 data

points (i.e., approximately 50% of the data) lie in the interval [y†k − Sk, y
†
k + Sk]. Further, note

that in the notation of Eq. (3), the median is y†k = y(H+1); hence, H + 1 data points (including
the median) lie in each of the intervals

y(1) ≤ y(2) ≤ · · · ≤ y(H) ≤ y(H+1)

and
y(H+1) ≤ y(H+2) ≤ · · · ≤ y(2H) ≤ y(2H+1).

Consequently, it follows that d(H+1) cannot exceed the smaller of the two subinterval widths
y(H+1)− y(1) and y2H+1− y(H+1). Further, since the minimum of two numbers is a lower bound
on their average, this observation implies

0 ≤ Sk ≤ min{y(H+1) − y(1), y(2H+1) − y(H+1)} ≤
y(2H+1) − y(1)

2
. (11)

It is useful to note that both of these limits are achievable: if H+1 data points have exactly the
same value yk, it follows that this data value is equal to the median y

†
k and Sk = 0; conversely,

if the smallest data value y(1) and the largest data value y(2H+1) are both repeated H times and
y(H+1) is their arithmetic average, Sk achieves the upper bound.

With respect to outlier detection and replacement, both of these limits of the MAD scale
estimator are undesirable, and both can occur in practice. In particular, quantization due to
A/D conversion or limited precision data storage (e.g., temperatures recorded only to the nearest
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tenth of a degree) can result in different data points within Wk having exactly the same value. If
this number exceeds H, the MAD scale estimate becomes zero and the thresholds defined in Eq.
(10) also go to zero, implying fk = y?k for any yk that differs from the median. To deal with this
difficulty, various alternatives (Astola and Kuosmanen (1997)) and corrections (Rousseeuw and
Leroy (1987)) have been proposed. Here, we advocate the use of a fixed lower bound, discussed
further at the end of this section. Conversely, note that if Sk achieves the upper bound in Eq.
(11) and c ≥ 1 in Eq. (10), no outlier rejection occurs regardless of the range of the data. In
either case, note that these difficulties are more likely to occur the smaller the data window
width is taken.

More generally, if we adopt the MAD-based threshold defined in Eq. (10), the following
two theorems provide useful guidance in selecting the constant c. The fundamental assumption
underlying both of these theorems is that the nominal data sequence {xk} satisfies the conditions
stated in the theorem. The results of the theorems provide lower limits for the constant c for
which these nominal data sequences are invariant under the data cleaning filter.

Theorem 5.1 Any monotonic sequence {xk} satisfying the growth rate restriction

|xi+2 − xi+1| ≤ m|xi+1 − xi| for some m ∈ [0, 1] and ∀i ∈ N (12)

is invariant under the data cleaning filter of width N = 4H + 1 provided c ≥ 1 +mH .

Proof 5.1 We prove the theorem for monotonically increasing sequences; the extension to mono-
tonically decreasing sequences is immediate. By monotonicity, it follows that the median is

x†k = xk−2H

and the basis for the proof is to show that

Ŝk
def
= xk−H − x

†
k = xk−H − xk−2H

is a lower bound for the MAD scale estimate Sk for any sequence satisfying Eq. (12). It follows
from condition (12) that for any ` > j,

xk−j − xk−` = (xk−j − xk−j−1) + · · ·+ (xk−`+1 − xk−`)

≤ m(xk−j−1 − xk−j−2) + · · ·+m(xk−` − xk−`−1) = m(xk−j−1 − xk−`−1).

From this inequality, it follows that

xk−j − xk−` ≤ m2[xk−j−2 − xk−`−2]

≤ · · ·

≤ mr[xk−j−r − xk−`−r]

for any r > 0. In particular, we have the result

xk−H − xk−2H︸ ︷︷ ︸
=x†

k

≤ mH(xk−2H︸ ︷︷ ︸
=x†

k

−xk−3H).

Since 0 ≤ m ≤ 1 and thus mH ≤ 1, it follows that

Ŝk = xk−H − x
†
k ≤ m

H(x†k − xk−3H),
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implying that no more than 2H + 1 of the 4H + 1 points in the data window lie in the interval
[x†k − Ŝk, x

†
k + Ŝk], thus establishing the claim that Ŝk ≤ Sk.

In the context of the data cleaning filter, the sequence {xk} will be invariant provided

xk − x
†
k ≤ cSk. (13)

To see that this condition is satisfied, note that

xk − x
†
k = xk − xk−H + xk−H − x

†
k

≤ (1 +mH)(xk−H − x
†
k︸ ︷︷ ︸

=Ŝk

).

Since Ŝk ≤ Sk, it follows that Eq. (13) is satisfied if c ≥ 1 +mH and the proof is complete.

This theorem establishes for example a lower bound for the threshold parameter to avoid
introducing any distortion into nominal sequences like monotonic step responses of first order
linear systems that settle out to constant limits. The following theorem establishes similar
threshold limits for sector bounded sequences like the one shown in Fig. 4. Specifically, we
define the following two types of sequences:

Definition 5.1 A sequence of type I satisfies the following four conditions

xk−2H = x†k (14)

0 < c1 ≤ c2 <∞ (15)

c1(2H − i) ≤ xk−i − x
†
k ≤ c2(2H − i) ∀ i ≤ 2H (16)

c1(2H − i) ≥ xk−i − x
†
k ≥ c2(2H − i) ∀ i > 2H (17)

for all k.

Definition 5.2 A sequence of type II satisfies the following four conditions

xk−2H = x†k (18)

0 > c1 ≥ c2 > −∞ (19)

c1(i− 2H) ≥ xk−i − x
†
k ≥ c2(i− 2H) ∀ i ≤ 2H (20)

c1(i− 2H) ≤ xk−i − x
†
k ≤ c2(i− 2H) ∀ i > 2H (21)

for all k.

Fig. 4 shows a (part of a) sequence of type I.Eq. (16) and (17) simply define the sector bounds
for sequences of type I. The same holds for Eq. (20) and (21) for sequences of type II.

Theorem 5.2 Any sequence {xk} of type I or II is invariant under the MAD-based data cleaning
filter of width N = 4H + 1 if c > 2c2/c1.

Proof 5.2 We prove the theorem for type I sequences, noting that the extension to type II signals
is immediate. First, note that {xk} is invariant under the MAD-based data cleaning filter if and
only if

xk − x
†
k ≤ cSk, (22)
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Figure 4: A sector-bounded, type I sequence {xk}. The dots represent data points.

implying the theorem holds if c is chosen so that this condition is satisfied for the largest possible
deviation xk−x

†
k and the smallest possible value of Sk. For a type I sequence, the largest possible

deviation is xk − x
†
k = 2Hc2, and the smallest possible value for Sk occurs when 2H + 1 points

are as close to x†k as possible. This closest possible configuration occurs when the points xk−3H

through xk−H lie on the line with the smallest possible slope (i.e., c1) passing through the median

x
†
k = xk−2H. (This configuration is shown in Fig. 4 for H = 4.) The median distance dk−i

determined by this point configuration is Sk = dk−H = dk−3H = Hc1. Thus, condition (22) will
be satisfied if c > (2Hc2)/(Hc1) = 2c2/c1.

Corollary 5.1 If a subsequence of width 4H+1 of a sequence {xk} satisfies the four conditions
of a type I or II sequence then the point xk (the last point of the subsequence) is unchanged by
the MAD based data cleaning filter of width N = 4H + 1 if c > 2c2/c1.

Note that condition (14) in the definition of a type I sequence implies that {xk} is a root
sequence for the symmetric (non–causal) median filter of width 4H + 1. Analogously, condition
(18) implies that any type II sequence is also a root sequence for this symmetric (non–causal)
median filter. In particular, note that any strictly increasing sequence {xk} satisfying

c1 ≤ |xk − xk−1| ≤ c2

is a type I sequence for arbitrary H and any strictly decreasing sequence satisfying this condition
is a type II sequence. In practical terms, Theorem 5.2 establishes restrictions on the large class
of well-behaved root sequences for the off-line median filter that are sufficient to permit these
sequences to also be invariant under the causal MAD-based data cleaning filter, provided the

1120

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



threshold parameter c is taken large enough. Note that this result highlights the fundamental
trade-off between the requirements of off-line data cleaning with the median filter where arbitrary
monotonic sequences are invariant and arbitrary amplitude impulses are eliminated, and the
requirements of on-line data cleaning where only certain monotonic sequences are invariant and
only impulses of sufficiently large amplitude are eliminated.

As another interesting corollary to Theorem 5.2, note that any line with positive slope c1 sat-
isfies the type I conditions for c2 = c1 and any line with negative slope satisfies the corresponding
type II conditions. Consequently, the MAD-based data cleaning filter will leave straight lines
invariant if and only if c ≥ 2. Also, note that if the normalized MAD scale estimate 1.4826Sk
is used as a robust replacement for the standard deviation estimate in the “3σ edit rule,” this
choice would correspond to taking c ' 4.45. Again, it is important to emphasize the inherent
trade-off here: the larger we take c, the less likely the MAD-based data cleaning filter will distort
the nominal data sequence {xk}, but if c is taken too large the filter will cease to be effective in
detecting and rejecting outliers. Probably the simplest way to choose a reasonable value for c
is to examine both nominal and contaminated data subsequences; in particular, if nominal data
subsequences of type I or II can be identified that play an important role in the whole data
sequence, the results of Theorem 5.2 can be used to establish practical lower bounds for c.

Combining both approaches

Probably the greatest practical difficulty with the MAD-based data cleaning filter is that the
MAD scale estimate can assume the value 0 for quantized data sequences containing H + 1
identical values in a data window of width 2H + 1. For example, if the nominal data sequence
{xk} is a step of arbitrary amplitude, it cannot be invariant under the MAD-based causal data
cleaning filter for any choice of c since Sk = 0 for a step sequence. As noted earlier, other robust
scale estimators are available that do not suffer this limitation and one possible alternative is to
use with one of these other estimators instead of the MAD scale estimator. Conversely, another
possibility is to combine the MAD scale estimator with a fixed lower bound for Tk, to obtain the
threshold:

Tk = max{cSk, Tkmin}. (23)

Here Sk is the MAD scale estimate, c is the constant discussed at length in the previous section,
and Tkmin > 0 is a fixed minimum value for Tk. In practice, this minimum value could be chosen
from knowledge of the measurement noise level or analog-to-digital converter resolution (e.g.,
choose Tkmin such that changes less than m least significant bits cannot be rejected as outliers).
Note that under this criterion, steps up to amplitude Tkmin are invariant under the data cleaning
filter, but impulses of this amplitude are also invariant, so this minimum value should not be
chosen too large. This strategy was used in the examples discussed in Section 9 and 10 of this
paper.

6 The window–width

At least three factors influence the choice of the width N of the data window Wk on which
the data cleaning filter is based. First is the fact that both the median y†k and the MAD scale
estimate Sk become less variable as N increases. Although this observation might appear to
argue in favor of large data windows, it is important to remember that outliers in the dynamic
applications considered here correspond to violations of local variation patterns seen in the data.
For example, the change from approximately 1.0 to approximately 2.0 over the 2, 000 point
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Figure 5: Isolated and patchy outliers.

interval from k ' 1.0 × 104 to k ' 1.2 × 104 in Fig. 1 is not anomalous, but the change just
before k ' 1.0 × 104 from approximately 1.0 to approximately 0 that occurs over just a few
samples clearly is anomalous. Consequently, it is important to choose N small enough that the
data window Wk gives a measure of the local dynamics on a time scale that is appropriate to
the problem under consideration.

Conversely, it is important not to take N too small, either. In particular, note that successive
patches of anomalous values can and do arise, as illustrated in Fig. 5 which shows another
segment of one of the helicopter datasets discussed later in this paper. In this example, an
isolated outlier occurs at k ' 75, a patch of two successive outliers occurs at k ' 160, and a
patch of three successive outliers occurs at k ' 315. Note that, despite their resistance to the
effects of outliers, both the median and the MAD scale estimate will be completely determined
by a patch of H + 1 successive outliers of identical or similar value in a data cleaning filter of
width N = 2H+ 1. Consequently, if patchy outliers are possible in a particular application, it is
important to choose the window width N larger than twice the width of the widest anticipated
outlier patch.

7 Filter initialization

Here, we consider sequences {yk} defined for k ≥ 1; therefore, because it contains N − 1 past
data values, the window Wk is not well defined for k < N . However, practical implementation of
a real-time data cleaning filter requires the filter output fk to be defined for all k. One possible
approach is to simply take fk = yk for k < N ; although this approach is easily implemented, it
has the disadvantage that it offers no protection against outliers in the first N − 1 points of the
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data sequence yk.
A second possible filter initialization is to define yk−N = y1 for k < N , making Wk well-

defined for all k. This approach is frequently adopted in median filter applications (Gallagher
and Wise (1981)) and is the approach used in the examples in Section 9 and 10. The disadvantage
of this method is that if the first data point happens to be an outlier, it is likely to be replicated
under this initialization scheme. Specifically, note that for k ≤ N , the N point data window
Wk contains N + 1 − k copies of y1 and the k − 1 additional data values y2 through yk. If
k < (N + 2)/2, it follows that the majority of the values in Wk are y1, implying that the median

value is y†k = y1. If |yk − y
†
k| > Tk, it follows that the good data value yk will be replaced

with y?k; in the median replacement strategy considered here, the anomalous data value y1 will
be replicated approximately N/2 times. A possibly useful variation of this filter initialization
is to make the threshold value Tk large for k < N to decrease the likelihood of replicating an
initial outlier y1. The threshold Tk could then be decreased monotonically with increasing k

until k = N .
Finally, a third possible filter initialization would be to replace the N point data window

Wk with a window of length k for k < N . For k = 1, Wk = {y1} so f1 = y1 under the median

replacement scheme considered here. Similarly, for k = 2, Wk = {y1, y2}, the median y†2 is the
average of these values and the MAD scale estimate is |y2 − y1|/2; if c ≥ 1, it then follows that
f2 = y2. For 3 ≤ k < N , the filter output fk is simply the response of the k-point data cleaning
filter with the threshold parameter Tk determined the same way as for k ≥ N .

8 Recursive filters

An interesting extension of the symmetric median filter is the recursive median filter, obtained
by replacing the data window WMk

defined in Eq. (8) with the recursive window:

WRk = {fk−H , . . . , fk−1, yk, yk+1, . . . , yk+H}. (24)

Here, fk−j represents the previous filter output obtained at time k− j. This non–causal off–line
filter is described in the paper by Nodes and Gallagher (1982) where a number of interesting
characteristics are described. First, it is shown that a sequence {rk} is a root sequence for the
recursive median filter if and only if it is also a root sequence for the standard median filter.
Secondly, a characteristic feature of the standard median filter is that any finite-length sequence
will be reduced to a root sequence of the median filter after a finite number of standard median
filter iterations (Gallagher and Wise (1981)); for the recursive median filter defined by Eq. (24),
it is shown that any finite length sequence is reduced to a root sequence in one iteration. Finally,
it is also noted that for any non-root sequence {yk}, the root sequence {rk} obtained by recursive
applications of the standard median filter and the root sequence {r′k} obtained by the recursive
median filter are generally different.

This idea may also be applied to the causal data cleaning filters considered in this paper.
Specifically, define the recursive causal data cleaning filter by replacing the data window Wk

defined in Eq. (2) with the recursive window:

Vk = {fk−2H , . . . , fk−H−1, yk−H , yk−H+1, . . . , yk}.

Note that this expression defines a data window of width N = 2H + 1 that contains H previous
filtered data values fk−j, H unfiltered past data values yk−j, and the current data value yk; for
convenience, these N values will be denoted vk−j for j = 0, 1, . . . ,N . Subsequent processing is

the same as in the nonrecursive data cleaning filter described previously: the median value v†k is
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computed from this data window, distances δk−j = |vk−j − v
†
k| from the median are computed,

and yk is declared an outlier and replaced if δk > Tk. In principle, any subset of past data
values yk−j from the window Wk could be replaced with the filtered data values fk−j, but it is
important that no more than H filtered data values be used since if the filter ever generates a
sequence of H + 1 successive outputs with the same value, all subsequent outputs would also
have this same value independent of the unfiltered data in the window for that case.

9 A simulation example

The following simulation example is presented to provide an assessment of the data cleaning
filter in a setting where precise performance evaluations are possible. In contrast to the real
data applications considered in the next section, it is possible in this example to distinguish
clearly between the fundamental system response of interest, observation noise, and outliers;
consequently, it is possible to say precisely how many outliers are detected, how many are
missed, and how many non-outlying valid data points are distorted by the different data cleaning
strategies considered here. Specifically, this example considers the response of the linear discrete-
time system:

G(z) =
z − 0.3

(z − 0.4)(z − 0.5)(z − 0.6)
,

to the following random step input sequence {u(k)}. At each time instant k:

1. The input lies in the range −5 ≤ u(k) ≤ 5

2. There is a 10% probability that the input changes (i.e., that u(k) 6= u(k − 1))

3. If the input does change, the new value u(k) is drawn from a uniform distribution on the
interval [u(k − 1)− 0.25, u(k − 1) + 0.25], corresponding to ±5% of the total input range.

A typical response of the system to a 10000 point input sequence is shown in Fig. 6. The
observed data sequence {y(k)} is of the form

y(k) = v(k) + e(k) + o(k),

where {v(k)} is the linear system response shown in Fig. 6, {e(k)} represents observation noise,
and {o(k)} is the contaminating outlier sequence. In this example, the observation noise is
an independent, identically distributed sequence of uniform random variables on the interval
[−0.5, 0.5] and the outliers are an independent sequence of discrete random variables, assuming
the values 0 with 95% probability, +10 with 2.5% probability, and −10 with 2.5% probability.
A typical observed sequence is shown in Fig. 7. The results of applying the causal median filter
and the outlier filter described in this paper to this observed sequence are shown in Figs. 8 and
9, respectively. Both figures show error plots, i.e. the difference between the filtered and the
unfiltered sequence. In both cases, a window width of N = 7 was used, and the data cleaning
filter used the threshold Tk defined in Eq. (23) with the MAD scale factor c = 5 and the lower
limit Tkmin = 0.75.

It is clear from these figures that many of the outliers are found and removed in both cases.
More specifically, the observed sequence contains 472 outliers, all of which are removed by the
median filter and all but 2 of which are removed by the less aggressive data cleaning filter.
Conversely, this data cleaning filter modifies only 2.2% of the valid data points while the median
filter modifies 88.6% of the valid points. These results are consistent with the high levels of
distortion noted for the causal median filter in the preceeding sections of this paper; clearly,
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Figure 6: Noise-free simulation response.

the optimal trade-off between distortion of the uncontaminated part of the data sequence and
outlier rejection will be application-dependent, but these results again suggest that the causal
median filter is likely to be too aggressive in all but the most outlier-sensitive applications.

It was noted in the introduction that the data cleaning filters considered here are intended
to reject outliers and are distinct from linear filters typically used for noise suppression (Ham-
ming (1983)). This point is important enough to bear repeating and the following comparisons
illustrate two important aspects of this difference. First, Fig. 10 shows the results of applying a
linear smoothing filter to the observed data sequence {y(k)} and then computing the difference
to the nominal system output sequence {v(k)}. More specifically, the following first-order linear
filter was used:

`(k) = 0.4`(k − 1) + 0.6y(k). (25)

Note that the steady-state gain of this linear filter is 1 and it is typical of linear smoothing filters
used in process control applications. It is clear from Fig. 10 that, although the outliers are
attenuated somewhat, they are certainly not eliminated; in particular, the performance of this
filter with respect to outlier suppression is substantially poorer than that of either the median
filter or the data cleaning filter shown in Figs. 8 and 9. What is less clear from Fig. 10 is that in
addition to attenuating the outliers somewhat, the linear filter defined by Eq. (25) also broadens
them, effectively converting isolated outliers into outlier patches. This observation follows from
the fact that isolated outliers may be viewed as impulses, so the response of any linear filter
to an outlier-contaminated data sequence will be the sum of the filtered nominal data sequence
and a sequence of randomly spaced copies of the filter’s impulse response. The requirements
for smoothing (i.e., observation noise suppression) and outlier rejection are therefore strongly in
conflict: the impulse response should decay “slowly enough” for smoothing but “rapidly enough”
to avoid spreading isolated outliers into outlier patches.

The second important point here is that it is possible to gain the advantages of both linear
smoothing filters and nonlinear outlier rejection filters by combining them. This point is illus-
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Figure 7: Observed output sequence with noise and outliers.

trated in Fig. 11, which shows the sequence obtained by first applying the data cleaning filter
considered previously, then applying the linear filter defined in Eq. (25) and finally computing
the difference to the nominal system output sequence {v(k)}. Because the outlier filter removes
almost all of the contamination from the observed data sequence, the task of the linear filter is
reduced to the smoothing for which it is well suited. Conversely, it is important to note the order
here: nonlinear filtering for outlier removal should always be done before linear filtering for noise
suppression. In particular, if the order of these operations is reversed, very little benefit from
the data cleaning filter can be expected: outliers present in the data sequence will be partially
attenuated and broadened by the linear filter, making them harder to detect and remove by the
data cleaning filter.
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Figure 8: The first 1000 datapoints of the difference between the causal median filter output
f(k) and the noisy system output y(k).
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Figure 9: The first 1000 datapoints of the difference between the data cleaning filter output
f(k) and the noisy system output y(k).
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Figure 10: The first 1000 datapoints of the difference between noisy system output y(k) after
linear noise filtering with the filter defined by Eq. (25) and the noise free system output v(k).
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Figure 11: The first 1000 datapoints of the difference between noisy system output y(k) after
outlier filtering and afterwards noise filtering with filter (25) and the noise free system output
v(k).
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10 Two real data examples

Finally, we consider two real data sequences. The first is the shaft speed measurement data
sequence1 shown in Fig. 1 and discussed previously in the introduction. As noted earlier,
many outliers are evident in this aplication as can be seen in Fig. 1. This typical data sequence
consists of 20000 points. The cleaned data sequence shown in Fig. 2 was obtained using the data
cleaning filter described in this paper with window width N = 9 and the threshold Tk specified
by Eq. (23) with c = 3 and Tkmin = 0.08. The scaling factor c was chosen with the help of
Theorem 5.1 and the lower threshold bound Tkmin takes the noise level present in the data into
considerations. This figure illustrates the effectiveness of the data cleaning filter since all of the
large spikes evident in the original data sequence have been removed. For comparison, Fig. 12
shows the results of applying the causal median filter of the same width to this data sequence.
Visually, the median filter appears to be more effective in outlier removal here, but as in the
previous examples, it is important to consider the question of distortion of the nominal data.
Although it is not possible to distinguish “outliers” from “good data points” with certainty in
this example, it is useful to again compare the fraction of data points modified by each of these
two data cleaning filters. In this example, the data cleaning filter modifies 1.2% of the points in
the dataset, compared with 77.1% for the median filter. Although the small-amplitude spikes
remaining in Fig. 2 suggest that Tk may be set too large in the data cleaning filter considered
in this example, the large fraction of data values changed by the median filter again suggests
that taking Tk = 0 is probably too aggressive.
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Figure 12: Median filtered shaft speed dataset.

The second real data example2 considered here comes from a small remote–controlled heli-

1The dataset was provided by D. Farruggio from a flexible mechanical shaft used as a student laboratory
experiment at the Automatic Control Laboratory at ETH, Zürich.

2The data was provided by J.Chapuis of the IMRT, ETH, Zürich.
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copter, currently in development at the ETH, Zürich (Chapuis et al. (1997)). Two sequences
from this dataset were shown in Figs. 3 and 5 and a third is shown in Fig. 13, which depicts a
sequence of approximately 9000 values of a variable used to control the helicopter pitch angle. As
in the previous example, outliers are clearly evident as spikes in this data sequence; here, these
spikes result from noise in the triggering circuits of the digital counters from which these control
signals are generated. Further, close examination of this dataset reveals that some of these
outliers occur in small patches, as in the other data sequence shown in Fig. 5. Figs. 14 and 15
show the results obtained by applying the data cleaning filter and the median filter, respectively,
to this contaminated data sequence. In both cases, the window width is N = 13. This choice is
based on the fact that outlier patches up to width 6 occure in the data sequence. The outlier
filter is based on Eq. (23) with a scaling factor c = 3 which is chosen according to Theorem 5.2.
The lower threshold bound Tkmin is 0.25 taking the limited precision (through A/D conversion)
of the helicopter data into account. Comparing the visual appearance of these plots, it appears
that both filters are about equally effective in removing outliers from this dataset, but it is again
worth examining the extent to which these filters change this dataset. Here, the data cleaning
filter changes less than 2.5% of the data values, while the median filter changes approximately
65.8% of these values. Because the nominal variation evident in this data sequence is mostly
monotonic, most of the distortion introduced by the causal median filter is the 6 sample delay
of the causal median filter relative to the symmetric median filter. In closed loop control ap-
plications, this delay corresponds to a phase advance which generally reduces stability margins.
Since the real-time outlier filter described here appears to offer nearly identical outlier rejection
with no phase advance, it appears to be the better choice for this application.
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Figure 13: Helicopter pitch angle control variable.
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Figure 14: Pitch angle control variable after outlier filtering.

11 Conclusions

This paper describes a simple outlier filter based on a causal moving data window that is
appropriate to real–time applications like closed loop control. If the current data value yk lies
too far from the median value in the data window, it is declared an outlier and replaced with a
more realistic value y?k. Otherwise, the filter leaves yk unmodified. The main advantage of this
filter is that it is simple and universal since no process model is needed for the filter tuning. The
basic concept has been described here, and its application to simple real data examples has been
presented to illustrate its effectiveness. An important special case of this data cleaning filter
is the causal median filter, also described here and corresponding to a “maximally aggressive”
data cleaning filter. In the examples considered here, the causal median filter generally appears
to be too aggressive, introducing undesirable distortion into the nominal (i.e., uncontaminated)
part of the observed data sequence. To aid in selecting an effective but less aggressive data
cleaning filter, some useful tuning guidelines are given, based on simple characterizations of the
nominal part of the data. In addition, it is useful to note that the nonlinear data cleaning filters
described here may be used together with linear noise smoothing filters for reducing the effects
of high-frequency measurement noise, but these linear filters should always follow the nonlinear
data cleaning filters so that outlier replacement preceeds linear smoothing.
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Figure 15: Pitch angle control variable after median filtering.
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