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Abstract

An important class of controlled linear distributed parameter control systems are those
with boundary or point control. A survey of some existing adaptive control problems with
their solutions for the boundary or the point control of a linear stochastic distributed pa-
rameter systems is presented. The distributed parameter system is modeled by an evolution
equation with an infinitesimal generator for an analytic semigroup. Since there is boundary
or point control, the linear transformation for the control in the state equation is also an
unbounded operator. The unknown parameters in the model appear affinely in both the
infinitesimal generator of the semigroup and the linear transformation of the control. Strong
consistency is verified for a family of least squares estimates of the unknown parameters.
For a quadratic cost functional of the state and the control, the certainty equivalence control
is self-optimizing, that is the family of average costs converges to the optimal ergodic cost.
Another control problem considered here is when the control occurs on the boundary. The
“highest-order” operator is assumed to be known but the “lower-order” operators contain
unknown parameters. Furthermore, the linear operators of the state and the control on
the boundary contain unknown parameters. The noise in the system is a cylindrical white
Gaussian noise. The performance measure is an ergodic, quadratic cost functional. This
time for the identification of the unknown parameters a diminishing excitation is used that
has no effect on the ergodic cost functional but ensures sufficient excitation for strong con-
sistency. The adaptive control is the certainty equivalence control for the ergodic, quadratic
cost functional with switchings to the zero control.

1 Introduction

A survey of some existing adaptive control problems with their solutions for the boundary or
the point control of a linear stochastic distributed parameter systems is presented.

An important family of controlled linear, distributed parameter systems are those with
boundary or point control. Perturbations or inaccuracies in the mathematical model can of-
fer be effectively modeled by white noise. Since in many control situations there are unknown
parameters in these linear, stochastic distributed parameter systems, it is necessary to solve
a stochastic adaptive control problem. The unknown linear stochastic distributed parameter
system is described by an evolution equation where the unknown parameters appear in the
infinitesimal generator of an analytic semigroup and the unbounded linear transformation for
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the boundary control. The noise process is a cylindrical, white noise. A family of least squares
estimates is constructed from the observations of the unknown stochastic system. This family of
estimates is shown to be strongly consistent under verifiable conditions. A stochastic differential
equation is given for the family of estimates. The self-tuning and the self-optimizing properties
of an adaptive control law are investigated. If an adaptive control is seff-tuning, then it is shown
that the system satisfies some stability properties and the adaptive control is self-optimizing.
The certainty equivalence adaptive control, that is, using the optimal stationary control with
the estimates of the parameters, is shown to be self-optimizing; that is, the optimal ergodic cost
is achieved.

An important class of models for linear distributed parameter systems is the family that is
described by analytic semigroups. To model some perturbations or inaccuracies in these models,
it is often reasonable to consider stochastic, linear distributed systems. In many applications of
controlled linear distributed parameter system it is natural to consider that the control occurs
on the boundary or at discrete points because it is often unreasonable to expect that the control
can be applied throughout the domain.

If there is an ergodic, quadratic cost functional, then under suitable assumptions the optimal
control can be obtained from the solution of an algebraic or stationary Riccati equation. Typi-
cally the stochastic differential equation model for the stochastic, linear distributed parameter
system contains some unknown parameters so there is the problem of stochastic adaptive con-
trol. It is assumed that the “highest-order” operator is known but that “lower-order” operators
contain unknown parameters. The unknown operators include linear operators on the state on
the boundary and on the control on the boundary or at discrete points in the domain. When the
“highest-order” linear operator is known the analysis is simplified compared with the case when
this linear operator is unknown. In many applications it seems that this form for the unknowns
is a reasonable model.

For the identification of the unknown parameters that occur in the linear operator acting on
the control, it is necessary to ensure that there is sufficient excitation. This is accomplished by
a diminishing excitation which has no effect on the ergodic cost functional but ensures sufficient
excitation for strong consistency. This strong consistency is obtained for a family of least-
squares estimates. It is assumed that the analytic semigroup is stable. The control at time t is
required to be measurable with respect to the past (of the state process) until time t−∆ where
∆ > 0 is arbitrary but fixed. This assumption accounts for some natural delay in processing the
information for the construction of the control. No boundedness assumptions are made on the
range of the unknown parameters.

The adaptive control is the certainty equivalence control for the ergodic, quadratic cost func-
tional with switchings to the zero control. These switchings are determined to ensure stability
of the estimated infinitesimal generator and to satisfy a suitable boundedness for the control.

2 Adaptive Boundary and Point Control of Linear Stochastic
Distributed Parameter Systems

The unknown linear stochastic distributed parameter system with boundary or point control is
formally described by the following stochastic differential equation

dX(t;α) = (A(α)X(t;α) +B(α)U(t))dt+ ΦdW (t),
X(0;α) = X0 (2.1)
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where X(t;α) ∈ H; H is a real, separable, infinite-dimensional Hilbert space; (W (t), t ≥ 0) is a
cylindrical Wiener process on H; Φ ∈ L(H), α = (α1, . . . , αq); and t ≥ 0.

The probability space is denoted (Ω,F , P ), where P is a probability measure that is induced
from the cylindrical Wiener measure and F is the P -completion of the Borel σ-algebra on Ω. Let
(Ft, t ≥ 0) be an increasing P -complete family of σ-algebras of F such that Xt is Ft-measurable
for t ≥ 0 and (〈`,W (t)〉,Ft, t ≥ 0) is a martingale for each ` ∈ H. A(α) is the infinitesimal of
an analytic semi group on H. For some β ≥ 0, the operator −A(α) + βI is strictly positive,
so that the fractional powers (−A(α) + βI)γ and (−A(α)∗ + βI)γ and the spaces Dγ

A(α) =
D((−A(α) + βI)γ) and Dγ

A∗(α) = D((−A∗(α) + βI)γ) with the graph norm topology for γ ∈ R

can be defined, It is assumed that B(α) ∈ L
(
H1, D

ε−1
A(α)

)
, where H1 is a real, separable Hilbert

space and ε ∈ (0, 1) (cf. assumption (A4) below). For the solution of (2.1) on [0, T ], the control
(U(t), t ∈ [0, T ]) is an element of Mp

W (0, T,H1), where Mp
W (0, T,H1) = {u : [0, T ]×Ω→ H1, is

(Ft)-nonanticipative and E
∫ T

0 |u(t)|pdt <∞} and p > max(2, 1/ε) is fixed.
A selection of the following assumptions are used subsequently.
(A1) The family of unknown parameters are the elements of a compact set K.
(A2) For α ∈ K, the operator Φ∗(−A∗(α)+βI)−1/2+δ is Hilbert–Schmidt for some δ ∈

(
0, 1

2

)
.

(A3) There are real numbers M > 0 and ω > 0 such that, for t > 0 and α ∈ K,

|S(t;α)|L(H) ≤Me−ωt

and

|A(α)S(t;α)|L(H) ≤Mt−1e−ωt,

where (S(t;α), t ≥ 0) is the analytic semigroup generated by A(α).
(A4) For all α1, α2 ∈ K, D(A(α1)) = D(A(α2)), Dδ

A(α1) = Dδ
A(α2) and Dδ

A∗(α1) = Dδ
A∗(α2) for

δ ∈ R.
(A5) For each α ∈ K and x ∈ H, there is a control uα,x ∈ L2(R+,H1) such that

y(·) = S(·;α)x+
∫ ·

0
S(· − t;α)B(α)uα,x(t)dt ∈ L2(R+,H).

(A6) The operator A(α) has the form

A(α) = F0 +
q∑
i=1

αiFi,

where Fi is a linear, densly defined operator on H for i = 0, 1, . . . , q such that ∩qi=0D(F ∗i ) is
dense in H.

It is well known that the strong solution of (2.1) may not exist, so usually the mild solution
of (2.1) is used, that is,

X(t;α) = S(t;α)X0 +
∫ t

0
S(t− r;α)B(α)U(r)dr +

∫ t

0
S(t− r;α)ΦdW (r), (2.2)

where S(t;α) = etA(α). The mild solution is equivalent to the following inner product equation:
For each y ∈ D(A∗(α)),

〈y,X(T ;α)〉 = 〈y,X(0)〉+
∫ t

0
〈A∗(α)y,X(s;α)〉ds+

∫ t

0
〈Φ(α)y, U(s)〉ds〈Φ∗y,W (t)〉, (2.3)
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where Φ(α) = B∗(α) ∈ L
(
D1−ε
A∗(α),H1

)
. (X(t;α), t ∈ [0, T ]) is a well-defined process in

Mp
W (0, T,H) (see (Duncan et al., 1994)).

Consider the quadratic cost functional

J(X0, U, α, T ) =
∫ T

0
[〈QX(s), X(s)〉+ 〈PU(s), U(s)〉]ds, (2.4)

where T ∈ (0,∞], X(0) = X0, Q ∈ L(H), P ∈ L(H1) are selfadjoint operators satisfying

〈Qx, x〉 ≥ r1|x|2, (2.5)

〈Py, y〉 ≥ r2|y|2 (2.6)

for x ∈ H, y ∈ H1 and constants r1 > 0 and r2 > 0.
For adaptive control, the control policies (U(t), t ≥ 0) that are considered are linear feedback

controls, that is,
U(t) = K(t)X(t), (2.7)

where (K(t), t ≥ 0) is an L(H,H1)-valued process that is uniformly bounded almost surely
by a constant R > 0. Let ∆ > 0 be fixed. It is assumed that the L(H,H1)-valued process
(K(t), t ≥ 0) has the property that K(t) is adapted to σ(X(u), u ≤ t−∆) for each t ≥ ∆ and
it is assumed that (K(t), t ∈ [0,∆]) is a deterministic, operator-valued function. For such an
admissible adaptive control there is a unique solution of (2.1) with K(t) = K̃(X(s), 0 ≤ s ≤
t − ∆). If ∆ = 0 then (2.1) may not have a unique solution. Furthermore, the delay ∆ > 0
accounts for some time that is required to compute the adaptive feedback control law from the
observation of the solution of (2.1).

Two more assumptions, (A7) and (A8) are given that are used for the verification of the
strong consistency of a family of least squares estimates of the unknown parameter vector α.
Define K ⊂ L(H,H1) as

K = {K ∈ L(H,H1) : |K|L(H,H1) ≤ R}

where R is given above.
Assume that B(α) is either independent of α ∈ K or has the form

B(α) = Φ∗(α) (2.8)

where Φ(α) = B̂∗A∗(α) ∈ L(D1−ε
A∗(α), H1) and the operator B̂ ∈ L(H1, D

ε
A(α)) is given.

(A7) There is a finite dimensional projection P̃ on H with range in ∩qi=1D(F ∗i ) such that
iP̃ΦΦ∗i∗

P̃
> 0 where iP̃ : H → P̃ (H) is the projection map and B(α) is either independent of α

or has the form (2.8). In the latter case there is a finite dimensional projection P̃ on H and a
constant c > 0 such that

|P̂ (I +K∗B̂∗)F ∗P̃ |L(H) > c

is satisfied for all F ∈ {F1, . . . , Fq} and K ∈ K.
It is easy to verify that if H is infinite dimensional, B̂ ∈ L(H1, H) is compact and (F ∗i )−1 ∈

L(H) for i = 1, 2, . . . , q then (A7) is satisfied.
Let (U(t), t ≥ 0) be an admissible control, denoted generically as U(t) = K(t)X(t), where

(X(t), t ≥ 0) is the (unique) mild solution of (2.1) using the above admissible control. Let

A(t) = (aij(t)) (2.9)
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and
Ã(t) = (ãij(t)) (2.10)

where

aij(t) =
∫ t

0
〈P̃FiX(s), P̃FjX(s)〉ds (2.11a)

if B does not depend on α or

aij(t) =
∫ t

0
〈P̃ (Fi + FiB̂K(s))X(s), P̃ (Fj + FjB̂K(s))X(s)〉ds (2.11b)

if B(α) has the form (2.8) and

ãij(t) =
aij(t)
aii(t)

. (2.12)

It is easy to verify that the integrations in (2.11a) and (2.11b) are well defined.
For the verification of the strong consistency of a family of least squares estimates of the

unknown parameter vector, the following assumption is used.
(A8) For each admissible adaptive control law, (Ã(t), t ≥ 0) satisfies

lim inf
t→∞

|detÃ(t)| > 0 a.s.

3 Parameter Identification

For the identification of the unknown parameters in the linear stochastic distributed parameter
system (2.1), a family of least squares estimates are formed. In this section it is assumed that
β = 0, that is, −A(α) is strictly positive. Let P̃ be the projection given in (A7). The estimate
of the unknown parameter vector at time t, α̂(t), is the minimizer of the quadratic functional of
α, L(t;α), given by

L(t;α) = −
∫ t

0
〈P̃ (A(α) +B(α)K(s))X(s), dP̃X(s)〉

+
1
2

∫ t

0
|P̃ (A(α) +B(α)K(s))X(s)|2ds, (3.1)

where U(s) = K(s)X(s) is an admissible adaptive control.

Theorem 3.1 Let (K(t), t ≥ 0) be an admissible feedback control law. Assume that (A2), (A6)–
(A8) are satisfied and α0 ∈ K0. Then the family of least squares estimates (α̂(t), t > 0), where
α̂(t) is the minimizer of (3.1), is strongly consistent, that is,

Pα0

(
lim
t→∞

α̂(t) = a0

)
= 1, (3.2)

where α0 is the true parameter vector.

Proof. See (Duncan et al., 1994).

For the applications of identification and adaptive control it is important to have recursive
estimators of the unknown parameters. Let 〈F̃ (s)x, y〉 be the vector whose ith component is
〈P̃Fi(I + B̂K(s))x, y〉. Using (2.1) we have

α̂(t) = A−1(t)
∫ t

0
〈F̃ (s)X(s), dP̃X(s)− P̃F0X(s)ds〉. (3.3)
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Since A−1(t) satisfies the differential equation

dA−1(t) = −A−1(t)dA(t)A−1(t),

the differential of (3.3) satisfies

dα̂(t) = A−1(t)〈F̃ (t)X(t), dP̃X(s)− P̃A(α̂(t))(I + B̂K(t))X(t)dt〉. (3.4)

4 Optimality for an Adaptive Control

The certainty equivalence, optimal ergodic control law is self-tuning and self-optimizing. The
self-tuning property is obtained by using the continuity of the solution of a stationary Riccati
equation with respect to parameters in the topology induced by a suitable operator norm. Since
the unbounded operator B(α) appears in the linear transformation of the control in (2.1), this
operator topology is more restrictive than for bounded linear transformations on the Hilbert
space. This continuity property is also used to show that the certainty equivalence control
stabilizes the unknown system in a suitable sense.

The self-optimizing property is formulated for a self-tuning adaptive control in the following.

Theorem 4.1 Assume that (A1)–(A4), (A6)–(A8) are satisfied. Let (α̂(t), t ≥ 0) be the family
of least squares estimates where α̂(t) is the minimizer of (3.1). Let (K(t), t ≥ 0) be an admissible
adaptive control law such that

K(t) = −P−1Ψ(α̂(t−∆))V (α̂(t−∆)) (4.1)

where Ψ(α) = B∗(α) and V (α) is the solution of the formal stationary Riccati equation (see
(Duncan et al., 1994) for details) for α ∈ K. Then the family of estimates (α̂(t), t ≥ 0) is
strongly consistent,

lim
t→∞

K(t) = k0 a.s. (4.2)

in L(H,H1) where k0 = −P−1Ψ(α0)V (α0) and

lim
T→∞

1
T
J(X0, U, α0, T ) = TrΠ(V (α0)) a.s. (4.3)

where U(t) = K(t)X(t) and Π(V ) is given in the following corollary.

Proof. See (Duncan et al., 1994).

Corollary. Let V ∈ L(H) be self adjoint such that V ∈ L(H,D1−ε
A∗ ) and |〈V x,Ax〉| ≤ k|x|2 for

x ∈ D(A), where k > 0. Assume that one of the following conditions is satisfied:
(i) F is Hilbert-Schmidt
(ii) V is nuclear
(iii) V ∈ L(Dδ−(1/2)

A , D
(1/2)−δ
A∗ ).

Then for all 0 ≤ τ ≤ t ≤ T ,

〈V X(t), X(t)〉 − 〈V X(t), X(t)〉 =
∫ t

τ
[h(X(s)) + 2〈U(s),ΦV X(s)〉+ Π(V )]ds

+ 2
∫ t

τ
〈Φ∗V X(s), dW (s)〉 a.s.

where h is the continuous extension of 2〈V x,Ax〉 on H, and for (i) and (ii) Π(V ) = TrV ΦΦ∗

and, for (iii) Π(V ) = Tr(R∗(β))δ−(1/2)V ΦΦ∗(R∗(β))(1/2)−δ.
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5 Adaptive Boundary Control of Linear Stochastic Distributed
Parameter Systems Described by Analytic Semigroups

The stochastic system is described by the stochastic evolution equation

dX(t; a) = [A0 +A1(α) +A0BC(a)]X(t;α)dt
+A0BD(α)U(t)dt+GdW (t)

X(0;α) = x (5.1)

in a separable Hilbert space H with inner product 〈·, ·〉 where A0 is the infinitesimal generator
of an exponentially stable analytic semigroup (S0(t), t ≥ 0) on H, A0 = A∗0, α ∈ K ⊂ R

q. Let
Dγ
A for γ ∈ R be the domain of the fractional power (−A0)γ with the (−A0)γ graph norm. Let

B ∈ L(H1, D
ε
A) for some ε ∈ (0, 1), A∗1(α) ∈ L(Dη

A, H) for some η ∈ [0, 1), C(α) ∈ L(H,H1) and
D(α) ∈ L(H2,H1) for each value of α ∈ K where H1 and H2 are separable Hilbert spaces. The
formal process (W (t), t ≥ 0) is a cylindrical Wiener process with the incremental covariance the
identity, I ∈ L(H), that is defined on a probability space (Ω,F , P ) with a filtration (Ft, t ≥ 0).
For p ≥ 2 let Mp

W (H2) = ∩T>0M
p
W (0, T,H2) where

Mp
W (0, T,H2) =

{
U |U : [0, T ]× Ω→ H2, (U(t), t ≥ 0)

is (Ft) adapted and E

∫ T

0
|U(t)|pdt <∞

}
. (5.2)

The control process (U(t), t ≥ 0) in (5.1) is assumed to belong to the space Mp
W (H2) for some

fixed p > max((1/ε), 1/(1− η)) and p ≥ 2.
For the control problem, the following ergodic, quadratic cost functional is used

J(α,U) = lim sup
t→∞

1
t
J(t, x, α, U) (5.3)

where

J(t, x, α, U) =
∫ t

0
[〈Q1X(s, α), X(s;α)〉+ 〈Q2U(s), U(s)〉]ds

and Q1 = D∗1 ∈ L(H), Q1 ≥ 0, Q2 = D∗2 ∈ L(H2) and Q2 ≥ cI, c > 0.
For the remainder of this section the dependence of A1(·), C(·) and D(·) on the parameter

α is suppressed because only general properties of the solution of (5.1) are investigated that are
valid for each fixed value of α. A solution of (5.1) is understood as a mild solution, that is, an
H-valued process (X(t), t ≥ 0) that satisfies (almost surely)

X(t) = S0(t)x+
∫ t

0
S0(t− r)A1X(r)dr +

∫ t

0
A0S0(t− r)BDU(r)dr

+
∫ t

0
A0S0(t− r)BCX(r)dr + Z(t) (5.4)

where

Z(t) =
∫ t

0
S0(t− r)GdW (t). (5.5)
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The operator S0(t− r)A1 is identified with its (unique) extension as an element of L(H) which
exists because

|S0(t− r)A1x| ≤
c

(t− r)η
|x| (5.6)

for x ∈ D(A0), 0 ≤ r < t ≤ T and some c > 0 where A∗1(a) ∈ L(Dη
A,H) and the analyticity of

S0(·) are used. To ensure that the stochastic integral (5.5) is a “nice” process it is assumed that
the following condition is satisfied

(C1) (−A0)−δG is Hilbert-Schmidt for some 0 ≤ d < 1
2 .

If A0 has a compact resolvent then it is easy to verify that (C1) is equivalent to the following
condition

(C1′)
∫ T

0 t2δ−1|S0(t)G|2HSdt <∞ for each T > 0 where | · |HS is the Hilbert-Schmidt norm on
L(H). There is a unique mild solution of (5.1) with continuous sample paths.

In a similar way we can obtain the existence and the uniqueness for the solution of (5.1) with
a feedback control U(t) = K(t)X(t) where K(t) = K̃(t,X(u), u ≤ t−∆), ∆ > 0 is fixed, K(·)
is deterministic on [0,∆] and K(·) : R+ × Ω→ L(H,H2) is uniformly bounded and measurable
and adapted to (Ft−∆, t ∈ R+). The equation

X(t) = S0(t)x+
∫ t

0
S0(t− r)A1X(r)dr +

∫ t

0
A0S0(t− r)BCX(r)dr

+
∫ t

0
A0S0(t− r)BDK(r)X(r)dr + Z(t) (5.7)

can be treated similarly to (5.4). The feedback control is an element of Mp
W (H2).

6 Parameter Estimation

To estimate the parameters of the unknown system (5.1) a family of least squares estimates is
given that is shown to be strongly consistent. Some additional conditions are introduced.

(C5) The semigroup generated by A0 + C(α) is stable for each a where C(α) = A1(α) +
[C∗(α)Ψ]∗ and Ψ ∈ L(D1−ε

A ,H1) is the extension of B∗A0.
(C6) The linear operators A1(α), C(α) and D(α) have the following form:

A1(α) = A10 +
q1∑
i=1

αiA1i,

C(α) = C0 +
q1∑
i=1

αiCi,

D(α) = D0 +
q∑
i=1

αiDi,

where A∗1i ∈ L(Dη
A,H), Ci ∈ L(H,H1) for i = 0, . . . , q1 and Di ∈ L(H2,H1) for i = 0, q1 +

1, . . . , q. Define the linear operators Ci and Bi as follows Ci = A1i + [C∗i Ψ]∗ for i = 0, . . . , q1

and Bi = [D∗i Ψ]∗ for i = 0, q1 + 1, . . . , q. Clearly Ci ∈ L(H,D−γA ) for i = 0, . . . , q1, where
γ = max(1− ε, η) and Bi ∈ L(H2, D

ε−1
A ).

(C7) There is a finite dimensional projection P̃ : D−1
A → P̃ (D−1

A ) ⊂ H and (P̃Bi, i =
q1 + 1, . . . q) are linearly independent and for each nonzero B ∈ R

q1 ,

tr
q1∑
i=1

βi(P̃ (Ci))
∫ ∆

0
S(r;α0)GG∗S∗(r;α0)dr

q1∑
i=1

βi(P̃ (Ci))∗ > 0,
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where (S(t;α0), t ≥ 0) is the C0-semigroup with the infinitesimal generator A0 + C(α0).
Let (Ω,F , P ) denote a probability space for (5.1) where P includes a measure induced from

the cylindrical Wiener process and a family of independent random variables for a diminishingly
excited control introduced subsequently. F is the P -completion of an appropriate σ-algebra on
ω and (Ft, t ≥ 0) is a filtration so that the cylindrical Wiener process (W (t), t ≥ 0), the solution
(X(t), t ≥ 0) of (5.1) and the diminishingly excited control are adapted to (Ft, t ≥ 0).

For the adaptive control problem it is convenient to enlarge the class of controls to M̃p
W (H2) =

∩T>0M̃
p
W (0, T,H2) where

M̃p
W (0, T,H2) =

{
U |U : [0, T ]× Ω→ H2,

(U(t), t ≥ 0) is (Ft)-adapted and
∫ T

0
|U(s)|pds <∞ a.s.

}
.

It is elementary to verify that the regularity properties of the sample paths of the solution of
(5.1) with U ∈Mp

W (H2) carry over to U ∈ M̃p
W (H2).

A family of least squares estimates (α̂(t), t ≥ 0) of the true parameter vector α0 is defined
as the solution of the following affine stochastic differential equation

dα̂(t) = Γ(t)[ϕ(t)× (dP̃X(t)− P̃ (A0 + C0)X(t)dt

− P̃B0U(t)dt− ϕ(t) · α̂(t)dt],
α̂(0) = α(0), (6.1)

where U ∈ M̃p
W (H2).

Let α̂(t) = α0 − α̂(t) for t ≥ 0. The process (α̂(t), t ≥ 0) satisfies the following stochastic
differential equation

dα̂(t) = −Γ(t)[ϕ(t)× (ϕ(t) · α̂(t)dt+ P̃GdW (t))],
α̂(0) = α0 − α(0). (6.2)

Since dΓ/dt = −Γ(t)[ϕ(t)× ϕ(t)]Γ(t), Γ(0) = αI we have

α̂(t) = −Γ(t)Γ−1(0)α̂(0)− Γ(t)
∫ t

0
(ϕ(s)× P̃GdW (s)). (6.3)

The control is a sum of a desired (adaptive) control and a diminishing excitation control. Let
(Zn, n ∈ N) be a sequence of H2-valued, independent, identically distributed, random variables
that is independent of the cylindrical Wiener process (W (t), t ≥ 0). It is assumed that EZn = 0
and the covariance of Zn is Λ for all n where Λ is positive and nuclear and there is a σ > 0 such
that |Zn|p ≤ s a.s. Choose ε̃ ∈ (0, 1/2) and fix it. Define the H2-valued process (V (t), t ≥ 0) as

V (t) =
[t/∆]∑
n=0

Zn

nε̃/2
1[n∆,(n+1)∆)(t). (6.4)

Clearly we have that
lim
t→∞
|V (t)| = 0 a.s. (6.5)
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and for each l1, l2 ∈ H∗2 = H2,

lim
t→∞

1
t1−ε̃

∫ t

0
〈l1, V (s)〉〈l2, V (s)〉ds = lim

t→∞

1
t1−ε̃

[t/∆]∑
i=1

〈l1, Zi〉〈l2, Zi〉
iε̃

∆ + o(1)

= ∆ε̃(1− ε̃)−1〈Λl1, l2〉 a.s. (6.6)

It is assumed that Zn ∈ Fn∆ and Zn is independent of Fs for s < n∆ for all n ∈ N.
The diminishingly excited control is

U(t) = Ud(t) + V (t) (6.7)

for all t ≥ 0.

7 Adaptive Control

In this section a self-optimizing adaptive control is constructed for the unknown linear stochastic
system with the ergodic quadratic cost functional using the family of least squares estimates
(α̂(t), t ≥ 0) that satisfies (6.1).

The family of admissible controls U(∆) is

U(∆) =

{
U :U(t) = Ud(t) + U1(t), Ud(t) ∈ F((t−∆) ∨ 0)

and U1(t) ∈ σ(V (s), (t−∆) ∨ 0 ≤ s ≤ t) for all t ≥ 0,

U ∈ M̃p
W (H2), lim sup

t→∞

|X(t)|2

t
= 0 a.s., and

lim sup
t→∞

1
t

∫ t

0
(|X(s)|2 + |U(s)|2)ds <∞ a.s.

}
. (7.1)

Define the H2-valued (control) process (U0(t), t ≥ ∆) by the equation

U0(t) = −Q−1
2 B̃∗(t−∆)P (t−∆)

×
(
S(∆; t−∆)X(t−∆) +

∫ t

t−∆
S(t− s; t−∆)B̃(t−∆)Ud(s)ds

)
, (7.2)

where B̃∗(t) = (B∗(α̂(t)))∗, S(τ ; t) = eτA(t), and A(t) is defined as

A(t) =

{
A0 + C(α̂(t)) if A0 + C(α̂(t)) is stable,
Ã otherwise,

(7.3)

and Ã is a fixed stable infinitesimal generator (that is, the associated semigroup is stable) such
that Ã = A0 + C(α1) for some parameter vector α1, P (t) is the minimal solution of the Riccati
equation using A(t) and B̃∗(t). It will be clear by the construction of Ud that U0 ∈ U(∆).

Define two sequences of stopping times (σn, n = 0, 1, . . . ) and (τn, n = 1, 2, . . . ) as follows:

σ0 ≈ 0

σn = sup
{
t ≥ τn :

∫ s

0
|U0(r)|pdr ≤ τ δns for all s ∈ [τn, t)

}
(7.4)

τn = inf
{
t > σn−1 + 1 :

∫ t

0
|U0(r)|pdr ≤ t1+δ/2 and |X(t−∆)|2 ≤ t1+δ/2

}
. (7.5)
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where δ > 0 is fixed and (1+δ)/2 < 1−ε and U0 is given by (6.2). It is clear that (τn−σn−1) ≥ 1
on {σn−1 <∞} for all n ≥ 1.

Define the adaptive control (U∗(t), t ≥ 0) by the equation

U∗(t) = Ud(t) + V (t) (7.6)

for t ≥ 0 where

Ud(t) =

{
0 if t ∈ [σn, τn+1) for some n ≥ 0,
U0(t) if t ∈ [τn, σn) for some n ≥ 1

and U0(t), V (t) satisfy (6.2), (5.6), respectively. It is clear that Ud ∈ M̃p
W (H2).

Theorem 7.1 If (C1)–(C7) are satisfied then the adaptive control (U∗(t), t ≥ 0) for (5.1) given
by (7.6) is an element of U(∆) and is self-optimizing, that is,

inf
U∈U

lim sup
t→∞

1
t
J(x, U, α0, t)

= lim
t→∞

1
t
J(x, U∗, α0, t)

= Tr(−A0)δPGG∗(−A0)−δ + TrB̃∗PR(∆)PB̃Q−1
2 a.s., (7.7)

where J is given above.

Proof. See (Duncan et al., 1996).

8 Conclusions

The identification methods presented in Section 7 are very promising in being applied to adaptive
control problems described in earlier sections. What makes these methods special is that the
method of verification of consistency associates a family of control problems to the identification
problem and the asymptotic behavior of the solutions of a family of stationary Riccati equations
from the control problem implies a persistent excitation property for the identification problem.
It means that a persistent excitation property is proved by control theory methods.

8.1 Future Research: Noise Modelled by the Fractional Brownian Motion

With the very recent development of Stochastic Calculus for Fractional Brownian Motion see
(Duncan et al., 1999) it will be natural to consider the identification problem for the stochastic
partial differential equation with fractional white noise as the input noise but first the theory
of stochastic partial differential equation with fractional Brownian motion needs to be well
established.

Since the pioneering work of Hurst (1951, 1956) and Mandelbrot (1983), the fractional Brow-
nian motions have played an increasingly important role in many fields of application such as
hydrology, economics and telecommunications.

Let 0 < H < 1. It is well-known that there is a Gaussian stochastic process (BH
t , t ≥ 0)

such that
E

(
BH
t

)
= 0 , E(BH

t B
H
s ) =

1
2
{
|t|2H + |s|2H − |t− s|2H

}
for all s, t ∈ R+. This process is called the fractional Brownian motion with Hurst parameter
H. To simplify the presentation, it is always assumed that the fractional Brownian motion is 0
at t = 0.
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If H = 1/2, then the corresponding fractional Brownian motion is the usual standard Brow-
nian motion. If H > 1/2, then the process (BH

t , t ≥ 0) exhibits a long-range dependence, that
is, if r(n) = cov(BH

1 , B
H
n+1 − BH

n ), then
∑∞

n=1 r(n) = ∞. A fractional Brownian motion is
also self-similar, that is, BH

αt has the same probability law as αHBH
t . A process satisfying this

property is called a self-similar process with the Hurst parameter H.
Since in many problems related to network traffic analysis, mathematical finance and many

other fields, the processes under study seem empirically to exhibit the self-similar properties and
the long-range dependent properties and since the fractional Brownian motions are the simplest
processes of this kind, it is important to have a systematic study of these processes and to use
them to construct other stochastic processes. One way to approach this is to follow by analogy
the methods for Brownian motion. In the stochastic analysis, the Brownian motion can be used
as the input (white) noise and many other processes (e.g. general diffusion processes) can be
constructed as solutions of stochastic differential equations. One powerful tool for determining
the solutions is the Itô formula. This theory of stochastic calculus for Fractional Brownian
Motion was developed by Duncan, Hu and Pasik-Duncan (1999).

8.2 Future Research: Generalization to Semilinear Systems

The identification methods described in this paper can be developed for semilinear stochas-
tic distributed parameter systems. In (Duncan et al., 1998) the adaptive control problem is
formulated and solved for the following semilinear stochastic distributed parameter system:

Let (X(t), t ≥ 0) be an H-valued, parameter dependent, controlled process that satisfies the
stochastic differential equation

dX(t) = (AX(t) + f(α,X(t))− u(t))dt+Q1/2dW (t)
X(0) = x

whereH is a real, separable Hilbert space with inner product 〈·, ·〉 and norm |·|, A : Dom(A)→ H
is a densely defined, unbounded linear operator on H, f(α, ·) : H → H for each α ∈ A ⊂ R

d

that is a compact set of parameters, (W (t), t ≥ 0) is a standard, cylindrical H-valued Wiener
process defined on a filtered probability space (Ω,F , (Ft),P) and Q1/2 ∈ L(H). The family of
admissible controls is

U = {u : R+ × Ω→ BR | u is measurable and (Ft) adapted}

where BR = {y ∈ H | |y| ≤ R} and R > 0 is fixed. A family of Markov controls, e.g.,
u(t) = ũ(X(t)), is also considered where ũ ∈ Ũ and

Ũ = {ũ : H → BR | ũ is Borel measurable}.

The cost functionals J(x, λ, u) and J̃(x, u) are given as

J(x, λ, u) = Ex,u

∫ ∞
0

e−λt(ψ(X(t)) + h(u(t)))dt

and

J̃(x, u) = lim inf
T→∞

Ex,u
1
T

∫ T

0
(ψ(X(t)) + h(u(t)))dt

where λ > 0, h : BR → R+ and ψ : H → R that describe a discounted and an ergodic control
problem, respectively.

It is very important to solve the identification problem for this model. It seems that some
identification methods described in this paper could be developed for semilinear stochastic sys-
tems with unknown parameters.
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