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Abstract
Related to the error dynamics of an adaptive system, averaging theorems are developed for coupled
differential equations which consist of ordinary differential equations and a parabolic partia differential equation.
The results are then applied to the convergence analysis of the parameter estimate errors to zero in the model
reference adaptive control of a nonautonomous parabolic partial differential equation with slowly time varying
parameters.
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1 Introduction

In recent control literature the adaptive control/identification of distributed parameter systems are
getting more attention (Balas, 1983; Baumeister and Scondo, 1987; Kobayashi, 1988; Banks and
Kunisch, 1989; Miyasato, 1990; Hong and Bentsman, 1992; Bentsman et al., 1992; Hong and
Bentsman, 1994a,b; Demetriou and Rosen, 1994; Hong, 1997; Baumeister et al., 1997). There have
been increasing efforts for the last severa years in explicit incorporation of time-varying parameters
into adaptive control analysis (Tsakalis and loannou, 1993). Also the averaging method has been
emerged as a powerful tool for the analysis of adaptive algorithms. The aim of this note is to bring
these two streams together with the hope that the averaging method can yield extrainsights on the ada-
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ptive control process in the presence of time-varying parameters. The adaptive control design follows
that in (Hong and Bentsman, 1994a), which dealt with an autonomous parabolic plant, but the
presence of time-varying parameters considered here calls for new averaging theorems. It is shown
that asimilar design methodology can be extended to the systems with time-varying coefficients.

In Section I, the model reference adaptive control (MRAC) of atime-varying parabolic system is
firstly introduced with the Lyapunov redesign method. In Section Ill, averaging theorems are
developed for coupled ordinary and partial differential equations, which are mativated from the error
dynamics of the adaptive control. Next the convergence of parameter errors to zero is investigated
through averaging. Even both the treatment of time-varying parameters of the parabolic system and
the averaging analysis for coupled ODE/PDE are new, the main focus of this note is to show the
convergence of parameter errors to zero through averaging. For detailed construction of adaptive
controller or related issues refer to (Astrom and Wittenmark, 1995; Sastry and Bodson, 1989; Bank
and Kunisch, 1989). In this manuscript, B, C and L denote generic constants.

2 Problem setup

Consider a nonautonomous parabolic partial differential equation as
Xt = a(et)Xy +b(et)x +u, OEXEL, t20, (2.1

X(0,t) = ga(t), x(Lt)=gp(t),
X(%,0) =Xg(X) ,

where u=u(xt) is the control input, x =x(xt) is the distributed state, x; =dx/dt, and

Xy =1 2 / 2 . The coefficients a(et) and b(et) are bounded slowly varying parameters, where e
indicates the slowly varying nature of the system. Specifically in heat transfer they are referred to as
heat conductivity and radiation factor, respectively. Assume 0<e <<1, so that the variation is slow,
i.e. da(et)/dt =O(e) and db(et)/dt = O(e) . However, the amplitude variations of the parameters are
large, i.e. a(et) =0O(1), b(et) =0 . For instance, a(et) =2- sin(et), b(et) =- 2+ cos(et) would
be plausible examples.
Along with system (2.1) consider areference model with the same boundary conditions as
Xmt = a8mXmex T bXm 1, OEXE1L, t30 (2.2
Xm(0.) = Ga(t) , Xm(Lt) = gp (1),
Xm(%,0) =Xmo(X) s
where the subscript m stands for model, and r =r(x,t) isthe reference signal. Note that g, (t) and
Op(t) could also be thought as the boundary reference signals. Constant coefficients a,, >0 and
by, <0 are assumed.
Now adopting the procedure in (Hong and Bentsman, 1994a), consider a control law of the form
U= (ay - &)Xy + (O - DX +1 (2.3)
where & and b are adaptive estimates to be specified. Substituting (2.3) into (2.1) yields the closed
loop plant equation as

X¢ = (@ - A)Xy + (B - D)X +1 (2.4)

2208



Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

D _D. ~
where a=a- a, b =b- b arethe parameter estimation errors. Note that if a =b =0, then (2.4) is
exactly the same as (2.2).

derived.

Introducing the state error e=x - X, the following state error equation is

& = (am - A)eg + (B - b)e- (@Xpmoc +bXm) (2.5)
e0,t) =eLt) =0,
e(x,0) =Xg(X) - Xmo(X) -

Now, consider afunctional V:L,(01)" R? ® R* suchthat
1 1 2
V(t)==(ee)+—(a“+b°), 2.6
(t) 2< ) 2e( ) (2.6)
1
where (%) is the inner product in space L,(01) defined as (h,g) = Qh(x,t)g(x,t)dx, and with
theinduced norm| X|. Differentiating (2.6) with respect to t along (2.5) yields
V(t)=(e6)+ = (a& +bb)
e

1.0

=am(ex.ex) +bm(ee) +5§ (e e)- (BXmu) +—=2a% (2.7)
e € g
b (e6)- (exy)+ b2
+ g (e€)- (ex >+e ;
Choose
a =e(<e,e)o(>+<e,xm>)- sa- a, (2.83)
6=e(<e,e>+<e,xm>)— sb-D. (2.8b)

where s is a positive constant (s -modification, see Tsakalis and loannou, 1993). Substituting
(2.8ab) into (2.7) yields.
V =-an(ey.e) +bplee)
i .2
-s_la +b2+9a+—7 +a%+__ §1+—T -a%+—
26T e Sg é Sg € Sg é

9 (2.9)
ﬂ

jeond ‘<\_C

5 o~
£-a1|¢” +a,(@b).
where a; and a, are positive constants. The existence and uniqueness of the solutions of (2.5) and

(2.8a,b) are addressed in Appendix A. Now the above development is summarized as follows
Theorem 1: Consider egquations (2.5) and (2.8a,b). Assume that a and b are bounded with
bounded derivatives. Then, all signalsin the closed loop are uniformly ultimately bounded.
Proof: The conclusion directly follows by extending the work of (Corless and Leitmann, 1981).

Remark 1: If a and b are constant, i.e. a=b=0, then a, in (2.9) can be set to zero. This
implies that (2.6) is a Lyapunov function and therefore the stability of an equilibrium point
(e,a,B)z(0,0,0) is guaranteed. Furthermore, the convergence of state error e to zero is aso
guaranteed by Barbalat's Lemma (Narendra and Annaswamy, 1989) or by the uniqueness and
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semigroup properties of the solution (Hong, 1997). In our case, however, the time-varying behavior of
the system does not allow this situation in general.
Remark 2: It will be shown in Section I11, however, that if the system is Slowly varying, a and

b converge to zero and therefore a, converges to zero. This will eventually achieve the model
following control problem for the time-varying plant. In averaging analysis, the adaptation law is also
assumed slow, but it is relatively faster than the time-varying behavior of the plant.

Remark 3: The differential equations for the controller parametersin (2.3) are written as

a= e((e, e )+ <e,xmxx>)— sa,
b= e(ee) +(exm))- sb.

Two things are noted for (2.10): The tuning laws are implementable and the positive constant S has

been intentionally introduced to improve the robustness of the adaptive system. It is remarked that the

same conclusions of averaging analysis can be deduced with or without this s -modification.
Now we turn to the analysis of parameter error convergence to zero through averaging. Define

(2.10)

g=|a B]T , then (2.8a,b) can be written as follows

q=¢f(t.q,6e) (2.11)
Notethat f (¥ isafunctional of e rather than afunction of e. The explicit appearance of time t as
an argument in  f comes from the exogenous signa x . The first e in front of f denotes the
adaptation gain and the second e, as an argument of f , denotes the existence of dow-varying

parameters. If thetwo e’sare different, the bigger one can be chosen as the representative one.
In (Bentsman et al., 1992; Hong and Bentsman, 1994b), averaged systems corresponding to (2.8a,b)
have been explicitly computed. Associated with (2.5) afrozen state g q (¥ isdefined through

& = @m- ey g+ On- b)e Q- Ko Xmld (2.12)
where parameters a and b are assumed to be frozen, and

&g =8 g (x0)/1t,

Cuxt =ﬂ2q d-(x,t)/‘ﬂxz.

3 Averaging analysis

Consider a coupled system as
q° =ef(t,qe,ee,et), (3.1)
e = (am - 5e)e%( + (bm - Ee)ee - [5exmxx +b %y - (3.2
(3.1) and (3.2) correspond to (2.11) and (2.5), respectively. The superscript e is affixed to denote the

variablesin fast time t prior to atime scaling. An averaged system associated with (3.1) isintroduced
as

qav(t) =efav(qav(t)’et) (33)
where the averaged function is defined by
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fav(CIav’et) = lim lC\?HT f(s Qav.€° (s )1et)ds (34)
Te¥ T
if the limit existsuniformly in t. Itisassumedthat |f(s,0,0,0) £ B, and |f,,(0,0) £ B. Withanew
timescale (dowtime) t =et, (3.3) can be rewritten as
dalt) = fay@at)t) (3.9)
The closeness of the two solutions of primary system (3.1) and averaged system (3.3) is now
investigated. With a sufficiently small e, (3.1) isintegrated in t and is re-scaled to the ow time

t =et asfollows
1

Ge) =a°te ) =a°(O) +eg)” fods | (36)

where fq = f (s q%(s).e(s),es ) The subscript e denotes the re-scaled variable in the slow time.
Similarly, for averaged system (3.3) and re-scaled system (3.5) the following is obtained

Gal) =Oayte™) =aa(0) +eQ) fala(es ) e ) (37)
Now subtract (3.7) from (3.6), then we have

Do) =0e)-aalt) =D (0 +1c(t), (3.8)
where

D (0)=q°(0) - da(0), (3.9)

Ie(t)=e(‘§e Tty - Tay@a(es)es)]s (3.10)

By introducing a frozen state as an intermediate state between fg and f,,, the evaluation of (3.10)
can be carried out in two stages as follows
le)=lealt) +1ealt),

where IeA(t)zec‘ie-l[fs - 16 ,da(es ) 6 (e ) (5 ).65 )| s | (3.12)
) =e) [5.0a(e5) & ayes)(5).65 )~ Tay(aa(es ) es )]s . (3.13)

Note that the first integral 14 (t ) deals with the approximation of the fast system fg by the frozen
system f; 9a (¥, whereas the second integral |g(t) deals with the approximation of the frozen
system f; a (3 by theaveraged system f,, (3 .

Now, specific bounds for both integrals (3.12), (3.13) are obtained. For proper implication, a
bound for the second integral 15(t ) isfirstly derived asfollows.

leg) £Cr(e), O£t £T, (3.19)
where Cr(e)® 0 as e ® 0. Detailed derivations of (3.14) are gathered in Appendix B. In obtaining
(3.14), agenera Lipschitz conditionon f has been assumed

|f(s q.et)- f(s,q¢edt (1)| £ Lo - q¢+Lyfe- e¢+ Lyt -t ¢, Ly=constant>0.(3.15)

The satisfaction of (3.15) for our case is obvious. Now for the first integral It ), a bound as
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following is obtained

lealt )|=ede'l\f@,qe(s),ee(s),es)- £5 .0 (65 ). (e )5 )16 )| s

1 (3.16)
\t e e Q
Eeli(y EIDe(es)]+[€°(6)- s gy(e)()| 90
It isshown in Appendix C that (3.15) again ensures
Jle ! e
3 He (S)- € g, (es) (S )H ds £B. (3.17)
Finally, the combination of (3.8), (3.14) and (3.16)-(3.17) yields
€
|De (t )| £ |De (O)| +14 Q|De (S)|dS +Cq(e) +e4B. (3.18)
The Bellman-Gronwall inequality then gives
D, )| £ e (D (0) +Cr () +eLyB), OEL £T (3.19)
which againimplies
sup Do (t)] = sup [de(t)- da(t) £ Br(e) (3.20)
Oft £T Oft £T

where Br(e)® Oas e® 0.

All above development is now summarized as follows.
Theorem 2: Consider (3.1)-(3.2) and (3.3) with appropriate regularity conditions. Then for fixed
T and sufficiently small e

sup [31°(1)- day (1) € Br (€) (3:2)

oas%

where Br(e)® Oas e® 0.

Remark 4: Theorem 2 asserts the closeness of the two solutions of (3.1) and (3.3) for sufficiently
small e. It does not yet connect the stability properties between (3.1)-(3.2) and (3.3). However with
further assumptionson f,, the following theorem can be stated.

Theorem 3: Consider (3.1)-(3.2) and (3.3) with appropriate regularity conditions. Assume further
that averaged system (3.3) is exponentially stable, then the trivial solutions q€(t) =0, €®(t) =0 are
exponentialy stable for sufficiently small e.

Proof: The proof follows exactly that of Theorem 4.3 in (Hong and Bentsman, 19944).

4 Application and Simulations

In this section the averaging theorems are applied to the convergence analysis of the controller
parameter errorsto zero.

1) Linear Analysis: To see an explicit expression for the averaged system, (2.5) and (2.8a,b) are
linearized, following the work of Anderson et al. (1986), around zero. Then, we have

aze<eXmy>-a (3.222)
b=e< eXy, > -b(3.22b)
& = amee +bme- (A +0Xpm), €(0,) =e(L,t) =0, &(x,0) =0 (3.23)
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Xmt = 8mXmoc T 0mXm + 1 Xm (0,t) =X (L t) = 0, X (X%,0) =0 (3.24)
Note that all initial conditions are set to zero since they do not affect the final form of averaged system.
The solution of (3.24) with r(x,t) =f (x) isof theform
g f n - kit
Xm(xt) =@ | ~(1- &) n(x) (3.29)
—1 *n
n=1
where Kk, =a,(np)?- by, | o(X)=sin(npx), and f,=2<f(X),j ,(X)>. Similaly, the

solution of (3.23) is of the form

e(x,t) = ag@ Skn(t-S)E (s)dsa (X) (3.26)

n=1

P faP)? - kitys | kt\F
where Fp(t) = -2 < aXp +0X 1, j n(¥) >= ”k—(l— e n)a—k—”(l— e )b
n n

The substitution of (3.25) and (3.26) into (3.22a,b) and the application of (3.4) to the right hand
side of (3.22a,b) yield

At 2 T )]

St w L m UL LTS,

B4 8 & fo’(p) L0 ol v S(en)d (3.27)
8 =1 2kn3 n=12kn3 H

=eAq +2nd Term

where tr A<0 and det A>0 (see Hong and Bentsman (1994b)). Note that if & and b are amost
periodic functions, the second term in (3.27) becomes zero. Therefore, the trivial solution of (3.27) is
exponentially stable if there exists at least one f, * 0, which is one of the Fourier coefficients of

f (X), whichisthecasethat f (x)* O on at least oneinterval of nonzero measure. Combined with the
results of Theorem 3, this implies that the zero equilibrium of (2.5) and (2.8ab) is uniformly

asymptotically stable, and that there is a neighborhood of zero equilibrium where both a and b
have exponential convergence to zero.
2) Frozen State Analysis: The error dynamics with a frozen state error equation are defined by

(2.8ab) and (2.12), where

d and b in (2.12) are assumed to be frozen. The solution of (2.12) isin
the same form of (3.26) except ki, = (an, - 5)(np)2 - (b, - 6) . The averaged system corresponding
to (2.5) and (2.8a,b) will be nonlinear. Since the stability of the zero equilibrium of a nonlinear system
can be determined by the linearized system at that equilibirum point, the result of case 1) already
implies the stability of the zero solution of case 2).
3) Simulations: Let the plant be given with homogeneous boundary conditions as

Xt = a(et)X, +b(et)x +u, 0Ex£1, t20

x(0,t) =x(1,t) =0, x(x,0) =0.2sin(px)
where a(et) and b(et) are unknown time-varying coefficients. In simulations, however, they are
assumed to be 2.5- sin(et) and O, respectively, with e =0.1. Let the reference model be
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Xmt = 0% +9.0, OEXE£1, t3 0.

Xm(0.t) =X (L) =0, Xp(x,0) = - sin(px)
The adaptive gain in (2.10) is chosen as 0.4. Fig. 1 and Fig. 2 show the behaviors of the reference
model and the plant, respectively. Fig. 3 shows the exponential convergence of state error e(x,t) to

zero. Fig. 4 shows the exponential convergence of the estimated parameter a(t) to the plant
parameter a(et).

5 Conclusions

In this note averaging theorems are developed for coupled ordinary and partia differential
eguations and applied to the asymptotic convergence analysis of parameter estimate errors to zero in
the model reference adaptive control of atime-varying parabolic partial differential equation.
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Appendix A. Existence and Uniqueness

Rewrite nonlinear error equations (2.5) and (2.8a,b), replaced by a=4a- a and b =b- b, in the
following form

z=At)z+F(t,2), z(0) =z, (A.1)

2215



Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

Sam+a- 9 +bn+b-B) 0 04§ \
& 02 g So® 0 00

At) = & 0 s 0a=50 -s o
e U a 4
: 0 0 -5y g0 0 -sf
8 :

&a- A + (0~ DXy
F(t,2) = & e(eey) +ee mex>
2. e(ee) +e(exny)

[ent] eny enly en Y e

2
where Aq(t) (am +a- a)ﬂ— + (b +b- b) Define astate spaceas H = L2(Ol) R?, and
D(A) =1le.ab)i H:el H2(01)NHE(01) withe(0) =0=e(1),and4,bT R}. (A2)
Note that the boundary conditions of (2.5) have been incorporated in the space H 2(0,1) N Hé(o,l) :

which is the domain of the differential operator A;. D(A) is dense, and A is a closed operator
(Walker, 1980).

For zl D(A)
) ) ) \ A
(A7), = Qle(x)g(am ta- 8 ! e(z)() +(bm +b- b)e(x)gudx- sa?- sh?
2] ix a
| a)p ? by €2 52 . g2
£l (am+a- a)p +(bm +b- b)]qe (X)d)(- sa‘-sb (A3)
£—Cl<z,z>H ,

where C; = min{(am +a-ap?- (bm +b- 6),5} >0,and (a,+a- a)3 Da3 0 is assumed. Now
by the linearity of A, we see that wl - A is monotone (accretive) for every w £C;. Hence
A:D(AT H® H is the infinitesmal  generator of a linear  process

{s®}so ={[E.0), A®), Bt) }1so on H (See (Walker, 1980), Theorem 3.2, p. 92). Note that the first
component E(t,0) is generated by A;. Note aso that E(t,0)ey is the strong solution of the
evolution equation &(t) = Age(t) for every eyl D(Ap).
Now set z= (e,é,B) and z¢= (eﬂ;é',ﬁ'). Then
IF(t.2)- F& 293, =[(a- amoc+ (- Bix- (a- &Ximec- (b- tS')xm”2
+e%)(€,60) * (EXmo) - (€900 + (¥ - (e¥ef) - (PXmoc) |
+e?|(e.€) +(exm)- (e¥e) +(e4e) - (ehef - (ehxm)|”
oA ~ A2 N
£ [Xmeod 78~ &1 +[xm| - ] +ez§|exx||2+|I><m><x||2 +||eQx||2§J|e- of?
#4280 + ]+l of?

Hence  |F(t,2)- F(t,29|, £Cyfz- 24, (A.4)
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where C, isaconstant. Therefore F:H ® H islocally Lipschitz continuousin H . Thusaunique

solution exists. Finally the solution of (2.5) can be written in the following variation of constant
formula (Henry, 1981; Pazy, 1983)

e(t) = E(t,0)e(0) + QtE(t,t - 8 et ) - BE X))t | (A5)

where E(t,s) istheevolution operator associated with A, inthespace L,(01) .

Appendix B. Bound (3.14)

Following the work of (Solo, 1996), the integral (3.13) is divided into small pieces as follows.
Introduce a sequence of increasing integers N, ® ¥ as e® 0 such that {ne} is an increasing

sequence:
Ne =i=d—e® ¥ as e®O0.
eNg e
Then, (3.13) can be written as
Ne
leg(9) =de A e(s(l - Dde ), (B.1)
1=1
where
: g detings
o) =28, "1 Ga(e5), e (e (50,65 ) fay(aates)es o |

and O£s£T.Inthesequel it will be shown that
jet)® 0, (B.2)
as e® O uniformlyin O£t £T . Therefore, the following result holds

D
lleg(sS)|£CT(e)=T sup|j o(t)® O, (B.3)
Oft £T

as e® 0.
Toprove (B.2) j o(t) isconsidered into three pieces as follows

Je) =] ealt)+] en) +j eclt),

where
) =00 " r a0 )m ey €285 )- 16 .Gal)a gy @)t s (Bad
o) =000 ™16 dal).a )6t ) farlat oS (8.4b)
=100 ™ ala))- faltates)esJds (B.4<)

From the Lipschitz condition (3.15), the first term (B.44) is bounded as

jea®|ELL  sup  [ga(es)- dalt)
te l£s £te'1+nes

+1h sup |e&s Gaes))- @ g.t) )| +Lyde.
te l£s fre ln,s

(B.5)
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To bound the first term in (B.5) we use the following

<Es

da(es)-dalt)=Q fo@a(t 9t Qo ¢
Since f,, (3 also obeysthe Lipschitz condition, it follows that

daes) - dal)] € Ly(h+[es - t[)les - t],
which again implies that
sSup |qa(es)' qalt )|£de5|—1(h+des) £deTLy(h+deT),
te s fte l+n,s
for O£t £T.
To bound the second term in (B.5), differentiate (2.12) with respectto q .

_ = ~ €0t q U Kmex U
e?l;q _(am' a)e(j(xl q +(bm' b)e[q,q - e u- é a

6&%q 0 éXm

where e[q’q _ Ta 1,?q(S )

(2.12) with respect to t , asimilar equation for qt,q is derived. The following results now hold from

and the other terms with subscripts are defined similarly. By differentiating

the parabolic boundedness lemma of Appendix D.
e g (s)/Mt|£8B,and |fq q(s)/Ta £B. (B.6)
Then the second term in (B.5) is bounded by

LB sup (les -t]|+[ga(es)- galt)|)£deC
te s fte l+n,s

by similar arguments given above. Finadly, we have

|j ealt )|£deB,
for O£t £T . Therefore, (B.2) holdsfor j g (t). Through similar analysis it can be shown that (B.2)
holdsfor j () and j o (t ), respectively. Q.E.D.

Appendix C. Fast state dynamics

In this appendix abound for the fast state e is obtained. Rewrite (2.5) as

& =(ay - 3)e +(bm— B)e— h(t,oT),
where h(t,a)z[xm xm]&. Denoting €&(t) =eet,qa(et)(t), the following approximate system is
introduced using (2.12)

d_te, efeu’ fa

dt Tt &gl Tt

= (am - @)éx +(bm- B)é— h(t,o’f)+efTé'"él‘J

&rq
where &, = xxet g, (et) (1) - Thus the error dynamics between e(t) and é(t) isobtained as
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& =e-&
~\ ~ e
=(an- a)ey +\by - bje- efT .
(om - )+ - B3 e 2
Now apply the parabolic boundedness lemma of Appendix D to deduce
[&] £ e8°

‘ﬂe

provided |f| £B, £ B. The first inequality follows from (3.15). The second one follows from

Appendix C, since ||| £ h.

Appendix D. Parabolic boundednesslemma

Lemma D: Consider the following time-varying parabolic system:
U =[am - a(®)]ug +[bm - b®)]u +h(x.t), (D.1)
u(0,t) =u(Lt) =0, u(x,0) =0.

Assume that ap, - a(t)® D, =constant, by, - b(t)3 0, and |[h|£B for al t where B is a
L

constant. Then, |u|£BD;¢q | »" T
n=1 a

Proof. The parabolic system (D.1) has a solution

¥
u(x ) =i n(un(), (D.2)
n=1
where u(t) satisfies
Un(®) = - kn®OUn®) +( n,h), (D.3)

kn (1) = (am - 2 (©)P)? + (b - (1))
Also the solution to (D.3) isgiven by

£ k d
un(® = gye X% (nj s,

Since kp(t)® Dyl 2 and |n| £ B, we have

1
un| £ c‘ie’ D a(t-9gsB £ BD% :
n

572
||u(x,t)||=ge§u§(t)- £ BD, 1%| 4+
n=1 2 el B

Which finally implies

asrequired.
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Time(sec) 0 0

Fig. 1. Solution of reference model (2.2): X (X,t) .

g(}{ By

Time(sec) 0 0

Fig. 2. Solution of plant (2.1) which follows (2.2): x(X,t).
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elx )

Parameter

1] 1 2 3 4 4 i 7 b 9 10
Time(zec)

Fig. 4. Exponential convergence of estimated parameter a(t) to plant parameter a(t).
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