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ABSTRACT

In this study, we use the Hopfield neural network (HNN) for identifying parameters
of a nonlinear system. We use a linearization process and develop the equations for a
parameter identification algorithm. We use a scalar time varying problem and a complex
nine-state nonlinear problem to demonstrate the potential of this method.

1 INTRODUCTION

Parameter estimation plays a crucial role in the field of control engineering.  If the underlying
physics does not lend itself to derive equations of motion (for example by using Newton’s second law)
easily, then parameter estimates are crucial in arriving at a model for the process to be studied. Even
where equations of motion are readily derived, accurate estimation of the parameters associated with
the process is crucial for the design of a control law. Another area where parameter identification is
useful is in the area of  post flight trajectory analysis; a more urgent need arises in a damaged process
or aircraft where quick and accurate estimates of system parameters can mean the difference between
recovery and total loss. Consequently, there has been and continues to be a lot of studies and
development of new methods in the area of parameter estimation.

The capability of artificial neural networks (ANN) to model the behavior of large classes of
uncertain nonlinear dynamical systems within a certain accuracy has made it very popular recently in
the areas of signal processing, pattern recognition, system identification and optimal control. Neural
networks have a natural advantage over other methods for online calculations in the sense that they are
massively parallel in their processing structure and therefore, take less computation time. Thanks to
Hopfield’s distinguished work (Hopfield 1982, 1984, 1985), there has been a multitude of papers
using recurrent neural networks for linear system solvers, control (Cetinkunt, 1993; Shen, 1997) and
pattern recognition (Jagannathan, 1996; Bruyne, 1998; Habib, 1996; Shen, 1997).  While feedforward
networks are static mapping between two information domains, the structure of recurrent neural
networks incorporates dynamical behavior through feedback connections. Because of the feedback, the
input to the plant gets connected with the output of the plant. Many researcher and scientists have
begun to use this new tool in their fields. Cichocki and Unbehauen’s extensive and thorough research
of linear systems (1992, No.2) concentrates on algebraic equations. They present several network
configurations and compare their speeds in finding inverses and solutions to linear systems of
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algebraic equations. Raol applies recurrent neural networks to linear and time invariant dynamical
systems (1994, No.6; 1995, No.2; 1996, No.4). He has developed a system of equations for parameter
identification using several recurrent networks. Our work is similar to Raol’s, however, we present
proofs of convergence and boundedness and extend the application to highly nonlinear problems.
Lyashevskiy uses his network mapping strategy (1997; 1998) to identify parameters in a nonlinear
system that can be written into a linear form. Amin, Gerhart and Rodin have special insight in
Hopfield neural networks and network structure. Based on that, they proposed a new recurrent high-
order neural networks (1997). They developed Lyapunov based theorems to show that convergence of
their higher-order recurrent networks, which are more complex than the networks used in our study. A
lot of network structures and their convergence or robustness analysis are also being done by other
researchers, such as Kim and Liews (1997, No.8), Kambhampati (1998), Stubberud (1991). All these
show their novel ideas about recurrent networks, but they are more complex to realize.

In this study, we use Hopfield recurrent neural network for online estimation of parameters.
There are a few papers in the literature that shows this kind neural network’s potential for parameter
identification. The focus of this study is to develop an algorithm to deal with nonlinear systems, which
are more common engineering processes and demonstrate its effectiveness through applications. We
present nonlinear examples of stable and unstable systems where our methods yield accurate
estimates. We also discuss the working mechanism of the network with respect to its parameters in
achieving convergence.

2 HOPFIELD NEURAL NETWORK STRUCTURE

We present the dynamics of the Hopfield neural networks in this section. The dynamics of the
network are defined by the following system of first-order differential equation

c
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g u t w v t ij
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where                                                     v t f u tj j j( ) ( ( ))=                                                              (2)

It is assumed that the nonlinear function f ( )⋅ f( ) ⋅relating the output v tj ( )  v tj ( )of neuron to its activation

potential u tj ( ) u tj ( ) is a continuous function and therefore differentiable. We also assume the inverse of

the nonlinear activation function exists, so that one can write

u t f v tj j j( ) ( ( ))= −1            (3)

According to (Hopfield, 1982, 1984, 1985), an energy (Lyapunov) function of this recurrent neural
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For log sigmoid, tangent sigmoid and linear activation function,

d

dv
f v

j
j j
− ≥1 0( )  for all v tj ( )                      (6)
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Thus, for the energy function E defined above, it has
dE

dt
< 0  for v j ≠ 0                    (7)

From Lyapunov theory, we know that:
� This function E is a Lyapunov function of the Hopfield neural network (HNN)
� The model is stable in accordance with the Lyapunov’s theorem

3 PARAMETER IDENTIFICATION OF DYNAMIC SYSTEMS

This section describe a general nonlinear dynamic system and then use a linearization method
to linearize it. Based on Hopfield Neural Network theory, we compute the network’s weights and
biases. Boundedness and convergence are also given.

3.1 DYNAMIC SYSTEM DESCRIPTION

Consider a nonlinear dynamic system, which can be described in state space form as
& ( , )x F A x Bu= +                     (8)

where x is a nx1 vector, u is a px1 control input, and F(A,x) is a certain kind of nonlinear function that
can be described as the following forms,
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where fi ( , )• • is nonlinear in x.
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In F(A, x), each row can have different number of term, like m m mn1 2, , ,L . One can pick the

longest row, which has mk  terms. Make other rows also have mk  terms by adding zeros at the end.
Here for simplicity but without losing generality, we suppose they all have equal number (m) of terms.
To identify A and B, which are matrices of parameters associated with the system, the key point is to
get the parameters out of every term in every row and make them coefficients of the terms in valued.
In order to realize this transformation, we need to linearize the given nonlinear dynamic system.

3.2 NONLINEAR SYSTEM LINEARIZATION

Linear systems have been studied very extensively, and are always relatively easy to deal
with. To identify parameters in system which contains nonlinear terms, like Eq.(8), we are going to
change each nonlinear element fij(aij, x) in F(A, x) into a linear form. However, the original system
should satisfy some criteria in order to be able to use some linear representations. The following
definitions and theorem are assumed to hold with respect to the nonlinear systems under study.

Definition 1 (Vidyasagar, 1993) For an autonomous system, & ( )x f x=  , f ( )0 0=  (i.e. x=0 is an

equilibrium), f  is     continuously differentiable. Let A
f

x x

=
=

∂
∂ 0

(i. e. let A denote the Jacobian matrix

of f evaluated at x=0), R(x)=f(x)-Ax, then if it turns out that lim
( )

x

R x

x=
=

0
0  i.e. the Taylor series

expansion of  f(x) =Ax + R(x), the system &z Az=  is called the linearization of the nonlinear system
around the equilibrium x=0.

Definition 2 (Vidyasagar, 1993) Given the non-autonomous system,
&( ) [ , ( )]x t f t x t=        (12)

Suppose that f t( , )0 0=  ∀ t≥ 0        (13)
and  that f is a C1 function. Define

A
f t x

x x

≡ 



 =

∂
∂
( , )

0

       (14)

f t x f t x A t x1( , ) ( , ) ( )≡ −        (15)

Then by the definition of the Jacobian, it follows that for fixed t≥ 0, if it is true that

 limsup
( , )

x t

f t x

x= ≥
=

0 0

1 0        (16)

then the system & ( ) ( )z A t z t=             (17)
is called the linearization or linearized system of (12) around the origin.

Theorem (Vidyasagar, 1993) Consider the system (12). Suppose that (13) holds and that f ( )•  is

continuously differentiable. Define A(t), f t x1( , ) as in (14), (15), respectively, and assume that (1)

Eq.(16) holds, and (2) A( )•  is bounded. Under these conditions, if 0 is an exponentially stable

equilibrium of the linear system & ( ) ( )z A t z t= , then it is also an exponentially stable equilibrium of
the system (12).

Note, above theorems and definitions are all based on the equilibrium being at the origin.
However, it is only for convenience and can be relaxed. Note that we can follow the proof of this
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theorem outlined in (Vidyasagar, 1993), to extend its validity to where the equilibrium need not be the
origin.

Thus, based on the definitions and the theorem, we can have

f a h x f a h x f a h x x x x xij ij ij ij ij ij ij ij ij( ( )) ( ( )) ( ) ( ) ( )* ’ ’ * * *= + ⋅ − + −∆ 2        (18)

Since f a h xij ij ij( ( ))* = 0  ( x* is the equilibrium point)

And ∆ ( )*x x− → 0  as x is in the neighborhood of x* . Then,

f a h x f a h x a h x x x x x a g xij ij ij ij ij ij ij ij ij ij( ( )) ( ( )) ( ) ( ) ( ) ( )’ * ’ * * *≈ ⋅ − + − ≡∆ 2      (19)

Where g x f a h x h x x xij ij ij ij ij( ) ( ( )) ( ) ( )’ * ’ * *= ⋅ −
So, the whole nonlinear vector becomes
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Each row in F(A,x) is now a sum of linear terms in x. Note, that all the unknown parameters appear as
coefficients of the terms in F(A,x). Now, we will relate F(A,x) to the energy function and weights of
the neural networks.

3.3 COMPUTATION OF WEIGHTS AND BIASES

The error dynamics between the plant and the model with unknown parameters  are given by
                                              e A B x x F A x B us s( , , ) & ( , )= − −                                                     (21)
The subscript “s” denotes the system containing estimated parameters. The energy function of the
neural network is defined as
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where T is time period during which data are collected.
The equilibrium point for the energy function occurs when the partial derivatives ∂ ∂E As ,

∂ ∂E Bs are zero. The derivatives of the energy function E with respect to parameters aij and bij  are
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If we define Ai , Bi to represent ith row of A and B respectively, and V as vector consisting of columns
of matrices A and B, then we get
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We can rewrite Eq.(23) and (24) in terms of the elements of V , like (Raol, 1996) as
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Now we can relate the parameter identification formulations in Eq.(26) and (27) in terms of weights of
the Hopfield neural network, as

dE
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W V I
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where Wsr  are the weights of Hopfield neural network to be used in parameter identification;

Isr represents the biases in the neural network.
For 1 ≤ ≤s mn
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For a more compact representation, define

[ ]G g g gj j j jm

T

= 1 2, , ,L        (33)

Note that, in terms of Gj , the linearized model representation becomes

&x A G B uj j
T

j j
T= +  (34)

We can write the parameter identification formulation as
dE

dV
WV I= +            (35)
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where W (weight) and I (bias) are set as following,
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Now, we will relate this formulation to the dynamics of a Hopfield neural network. The network
dynamics can be written in the following form (Cichocki, 1992)

dV
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WV I= − = − +µ µ( )       (38)

In order to find the expression for µ, we choose tangent sigmoid as our nonlinear activation function
and rewrite Eq. (5) to get
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By using Eq.(40) into Eq.(38), we get
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Comparing Eq. (41) with Eq. (37), we observe that
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and [ ]µ µ µ µ= +diag 1 2 L mn np .

3.4 BOUNDEDNESS ANALYSIS
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In this section, we outline a proof of boundedness of estimates at each step. Discretization of
Eq.(42) and using Eq.(23), (24) and (34) in parameter vi , assuming a small time step t and t+∆t, we
have
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If vi belongs to bij , gij will be changed to uj , we get
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 is bounded; Since g xij ( ) is bounded at each x, and uj , the control a dither signal

is bounded. This implies that
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3.5 CONVERGENCE ANALYSIS

In this section, we present a proof convergence of modeled parameters to their true values.
Note, that this proof is applicable for both time-invariant and time-varying parameters. From Eq.(20),
we rewrite the nonlinear function as
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































≡

×

×

× × × × ×

1 1

2 2

1 1

2 1

1

1

2

1

0 0

0 0

0 0

M

L

L

M M O M

L

M        (46)

omitting the argument x with Gs , and where

( )
( )

( )
A

A

A

A

s

T

m
T

m

n
T

m n m n

=





















×

×

× × ×

1 1

2 1

1

0 0

0 0

0 0

L

L

M M O M

L
( )

 and G

G

G

G

s

n m n

=



















× ×

1

2

1

M

( )

then, the cost function is
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( ) ( )E
T

x A G B u x A G B u dts s s

T T

s s s= − − − −∫
1

2 0
& &        (47)

The right hand side of Eq.(46) can be expanded as

E
T

G A A G u B u G A B u u B A G x

xA G G A x x B u u B x x x dt

s
T

s
T

s s
T

s
T

s
T

s
T

s
T

s
T

s s

T

s s s
T

s
T T

s
T

s
T T

= + + +

− − − − +

∫
1

2 0
(

& & & & & &)
       (48)

In order to help with derivations further, we introduce trace operations:

( ) ( )A B CD tr BAD CT T T T

1 1 1 1× ×=        (49)

By observing that the left part of Eq.(49) is a scalar, we can write another equation

( ) ( )D C BA tr BAD CT T T T

1 1 1 1× ×=        (50)

Also it is easy to see from Eq.(49) and (50)

( ) ( )A B D tr BADT T T

1 1 1 1× ×=              (51)

( ) ( )D BA tr BADT T

1 1 1 1× ×=        (52)

Thus, Eq.(48) will be rearranged using results produced by Eq.(49-52) as

E tr A
T

G G dt A tr B
T

uu dt B

tr A
T

G u dt B tr A
T

G x dt

tr B
T

ux dt
T

x

s s s
T

T

s
T

s
T

T

s
T

s s
T

T

s
T

s s
T

T

s
T

T
T

= 











+ 











+ 











− 











− 











+

∫ ∫

∫ ∫

∫

1

2

1

2

1

2

1

2

1

2

1

2

0 0

0 0

0

&

& & &xdt
T

0∫

       (53)

Two other important trace operations are given by

( )∂
∂A

tr ABA ABT = 2        (54)

( )∂
∂A

tr ABD D BT T=        (55)

By using Eq.(54) and (55), and with & ( , )x F A x B u A G B up p p s p= + = +  we can get the following

equations:

∂
∂A

tr A
T

G G dt A A
T

G G dt
s

s s s
T

T

s
T

s s s
T

T1

2

1
0 0∫ ∫











= 



        (56)

∂
∂A

tr B
T

uu dt B
s

s
T

T

s
T1

2
0

0∫












=        (57)

∂
∂A

tr A
T

G u dt B B
T

uG dt
s

s s
T

T

s
T

s s
T

T1 1
0 0∫ ∫











= 



        (58)

( ) ( )∂
∂A

tr A
T

G A G B u dt
T

A G B u G dt
s

s s p s p

T

p s p s
T

T1 1
0 0

+











= +∫ ∫        (59)

∂
∂A

tr B
T

ux dt
s

s
T

T1
0

0
&∫











=        (60)
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∂
∂A

tr
T

x xdt
s

T
T1

0
0
& &∫



 =        (61)

So, the derivatives of cost function Eq.(53) with respect to parameter matrix As and Bs are

( ) ( )∂
∂

E

A
A A

T
G G dt B B

T
uG dt

s
s p s s

T
T

s p s
T

T

= − 



 + − 



∫ ∫

1 1
0 0

       (62)

Similarly,

( ) ( )∂
∂

E

B
A A

T
G u dt B B

T
uu dt

s
s p s

T
T

s p
T

T

= − 



 + − 



∫ ∫

1 1
0 0

       (63)

Combine Eq.(61) and (62) and letting them to be zero for minimum error,

[ ]A A B B T
G G dt

T
G u dt

T
uG dt

T
uu dt

s p s p

s s
T

T

s
T

T

s
T

T
T

T
− −

















=
∫ ∫
∫ ∫

1 1

1 1 0
0 0

0 0

       (64)

Or

[ ]A A B B
T

G G G u

uG uu
dts p s p

s s
T

s
T

s
T T

T

− − ⋅








 =∫

1
0

0
       (65)

Or

[ ] [ ]A A B B
T

G

u
G u dts p s p

s

s
T T

T
− − ⋅









 =∫

1
0

0
       (66)

From Eq.(65), we find so long as

[ ]1
0

0T

G

u
G u dt

s

s
T T

T 







 ≠∫

A A B Bs p s p→ →and  asymptotically.

Hence, the proof.

4 SIMULATION RESULTS

In this section, we present two numerical examples, which demonstrate the potential of the
Hopfield neural network based parameter estimation method.

4.1 CASE 1

This case is a scalar example, where the dynamics is nonlinear and the time-varying parameter
is embedded inside the nonlinearity.

& sin( )x ax bu= +        (67)

where a t b= − = −5 8,       
To identify parameter a in this nonlinear dynamic system, the linearization process is used. Since its
equilibrium is 0, its linearization form is

 &x ax bu= +        (68)
Then, we need to check whether Eq.(66) can be linearized to Eq.(68). Since

lim
sin( )

x

ax ax

x→

−
=

0
0        (69)
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Referencing to Definition 1, it can be concluded that Eq.(68) is indeed a linearization of Eq.(66). To

calculate the relevant weight and bias, we get, by defining the identified parameters as V a b T= [ , ] ,

W
x xu

ux u
=











2

2        (70)

[ ]I xx xu
T

= & &        (71)

By using the scheme given by section 3, we can compute the values of parameter a, b and the
state trajectory. These are shown in Figures 1 to 3. Both of the parameters a and b show similar
convergence.

4.2 CASE 2

Now consider a more difficult practical nonlinear higher dimensional problem in aircraft
dynamics as shown (Lyshevski, 1998). We apply this nonlinear identification concept developed in
section 3.2 and 3.3, to identify the unknown parameters of a twin-tail supercritical swept wing aircraft.
The relevant dynamics are described by a set of nonlinear differential equations.

&( )

&

&

&
&

&

&

&

&

&

( )

cos tan sin tan

x t

v

q

p

r

Ax Bu F x

A

v

q

p

r

B

p r

c pr cHR
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FL

C

R

=



































= + +

=



































+

























+

− −
+

α

θ
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φ
ψ

α

θ
β

φ
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δ
δ
δ
δ
δ
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α β α β
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31 32 ( )

cos sin
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cos sin cos cos

r p
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c qp c qr

c qp c qr

q r

q r

2 2
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1 1

−
−
−
+
−
+
+

































− −

φ φ
α α

θ φ θ φ
θ φ θ φ

      (72)

where
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A =

− − − − − −
− −

−

− − −
− −

− −

0 009 053 0 24 9 8 0 46 0 095 014 0 0

0 001 0 68 1 0 012 0 037 0 005 0 0

0 0002 2 7 053 0 0 009 0 0062 0 028 0 0

0 0 0 0 0 0 0 0 0

0 001 0 69 0 42 018 0 72 0 086 015 0 0

0 00002 11 0 041 0 007 26 4 9 053 0 0

0 00001 17 0 098 0 011 7 4

. . . . . . .

. . . . .

. . . . . .

. . . . . . .

. . . . . .

. . . . . 0 037 082 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

. .



































B =

− − −
− − − −
− − − −

− − −
− − −

− − −














0 093 0 093 0 045 0 045 0 07 013

0 28 0 28 0 0068 0 0068 0 0049 0

25 25 059 059 35 0

0 0 0 0 0 0

0 015 0 015 0 36 0 36 0 083 0 051

0 24 0 24 9 8 9 8 0 26 0 37

0 38 0 38 019 019 052 4 6

0 0 0 0 0 0

0 0 0 0 0 0

. . . . . .

. . . . .

. . .

. . . . . .

. . . . . .

. . . . . .





















C

c c

c c

c c

=



































=
−

−



































0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

10667 0 0156

0 0

0 0

0 0319 14713

0 7087 0 0319

0 0

0 0

31 32

61 62

71 72

. .

. .

. .

  

C has components which are products of moments of inertia Ix , Iy , Iz , Ixz , which are all constants. v is
the forward velocity [m/sec]; α is the angle of attack [rad]; q is the pitch rate [rad/sec]; θ is the pitch
angle [rad]; β is the sideslip angle [rad]; p is the roll rate [rad/sec]; r is  the yaw rate [rad/sec]; φ is the
roll angle [rad]; ψ is the yaw angle [rad]; δHR and δHL are the deflections of the right and left horizontal
stabilizers [rad]; δFR and δFL are the deflections of the right and left flaps [rad]; δC and δR are the
canard and rudder deflections [rad].

The unknown matrices A, B and C are to be identified. Following the method outlined in
section 3, we set the weight W and bias I using Eq.(36) and (37) as
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( ) ( )

( ) ( )
( ) ( )
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
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









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








∫

×

1

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
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        (73)

( ) ( ) ( ) ( ) ( ) ( )[ ]I
T

i G i G i G i u i u i u dtT T T T T T
T T

= − ∫ ×
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1 1
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3 3
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Compared with the true values, we find that the estimated values are nearly the same
(differences lie between 0-3%). Figure 4 to Figure 30 represent the plots of some parameters in A and
B and trajectories of states. For some of them that do not show full convergence, we use the last values
at the end of one iteration as initial values for the next iteration and recompute. All converge after the
third pass to reach equilibrium.

The converged values of A , B and C are given below.

A =

− − − − − −
− −

−

− − −
− −

−

0 0090 05299 0 2400 9 8 0 4598 0 0950 01400 0 0

0 001 0 6874 0 9976 0 01236 0 0370 0 0050 0 0

0 0002 2 7027 05299 0 0 0090 0 0062 0 0279 0 0

0 0 0 0 0 0 0 0 0

0 001 0 6888 0 4201 01763 0 7159 0 0860 01503 0 0

0 00002 10999 0 0411 0 0069 26 4 9046 05273 0 0

0 00001 17015 0 0981 0

. . . . . . .

. . . . . .

. . . . . .

. . . . . . .

. . . . . .

. . . . . . .0109 7 4 0 0370 08226 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0

−



































B =

− − −
− − − −

− − − −

− − −
− − −

− − −

 0 0930 0 0930 0 0450 0 0450 0 0700 01300

0 2793 0 2797 0 0067 0 0069 0 0048 0

24 9999 24 9999 05900 05900 35000 0

0 0 0 0 0 0

0 0150 0 0150 0 3600 0 3600 0 0849 0 0510

0 2400 0 2401 9 8000 9 8001 0 2599 0 3701

0 3800 0 3799 01900 01890 05199 4 6001

0 0 0 0 0 0

0 0 0 0 0 0

. . . . . .

. . . . .

. . . . .

. . . . . .

. . . . . .

. . . . . .

































C =
−

−



































0 0

0 0
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0 0

0 0
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0 7090 0 0312

0 0

0 0

. .

. .

. .
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Let A1 denote the estimates of first row in A matrix, B1 denotes the estimates of the first row
in B matrix and so on. The histories of the parameter values are presented versus time. It can easily be
observed that some of the parameters reach convergences after just one pass but some of them
converge after two or three passes. For convergence, the simulation show that the neural network
parameters ρ and λ can be chosen arbitrarily as long as ρ > v j . Otherwise, vj will converges to ρ. The

bigger ρ, λ are, the faster the results will be. But they can lead to instability. For completion, the
history of states is also provided in Figure 4.

HNN results 

Real results

0 1 2 3 4 5 6
−10

−8

−6

−4

−2

0

2

4

6

8

10

Time (second)

a=
t−

5

Value of parameter a

0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Time (second)

x

Value of state x

    Figure 1 Parameter a trajectory of Case2 Figure 2 Trajectory of scalar state

0 1 2 3 4 5 6
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Time (second)

b=
−

8

Value of parameter b

HNN results
Real results

 
0.5 1 1.5 2 2.5 3 3.5 4

−6

−4

−2

0

2

4

6

8

10

Time (second)

st
at

es

All states of this system

   Figure 3 Parameter b trajectory of Case2 Figure 4 Trajectories of 9-state

1910

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



0.5 1 1.5 2 2.5 3 3.5 4

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Time (second)

A
1

Values of 1st row of A mattrix

0.5 1 1.5 2 2.5 3 3.5 4
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Time (second)

B
1

Values of 1st row of B mattrix

     Figure 5 Values of A1 from 1st iteration       Figure 6 Values of B1 from 1st iteration
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    Figure 7 Values of A1 from 2nd iteration       Figure 8 Values of B1 from 2nd iteration
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    Figure 9 Values of A1 from 3rd iteration     Figure 10 Values of B1 from 3rd iteration
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    Figure 11 Values of A2 from 1st iteration     Figure 12 Values of B2 from 1st iteration
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   Figure 13 Values of A3, C3 of 1st iteration     Figure 14 Values of B3 from 1st iteration
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   Figure 15 Values of A3, C3 of 2nd iteration     Figure 16 Values of B3 from 2nd iteration
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     Figure 17 Values of A5 from 1st iteration          Figure 18 Values of B5 1st iteration
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       Figure 19 Values of A5 2nd iteration                   Figure 20 Values of B5 2nd iteration
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         Figure 21 Values of A5 3rd iteration           Figure 22 Values of B5 3rd iteration
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     Figure 23 Values of A6, C6 of 1st iteration      Figure 24 Values of B6 from 2nd iteration
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    Figure 25 Values of A6, C6 of 2nd iteration       Figure 26 Values of B6 from 2nd iteration
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     Figure 27 Values of A7, C7 of 1st iteration       Figure 28 Values of B7 from 1st iteration
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    Figure 29 Values of A7, C7 of 2nd iteration       Figure 30 Values of B7 from 2nd iteration

5 CONCLUSIONS

A method to identify parameters of time-varying and time-invariant nonlinear systems has
been presented. Effectiveness of the method has been demonstrated through applications. Due to the
massively parallel nature of neural networks, this is a good candidate for online parameter estimation.
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