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Abstract

In this paper we consider the following problem: Given a dynamical system, described by a

di�erential equation, determine an appropriate measure for the energy stored in the system.

This problem is of great importance because it is related directly to fundamental concepts

such as stability, passivity, and optimality.

First, we solve the problem for linear dynamical systems. We realize the linear di�erential

equation using a linear electrical circuit, so that the energy stored in the system is just the

energy stored in the circuit's components. This leads to an intuitive proof of the Routh-

Hurwitz stability criterion. In addition, we use the energy balance in the circuit to derive

passivity and optimality relations.

Then, we extend the results to a class of nonlinear systems by replacing the linear com-

ponents in the circuit with more general nonlinear ones. We derive explicit storage functions

for passivity analysis of these nonlinear systems and for the formulation and explicit solution

of a novel nonlinear optimal control problem.

Keywords: Nonlinear systems, stability, passivity, optimal control.

1 Introduction

Energy is a fundamental concept in the study of dynamical systems. The energy stored in the

system and its rate of change are intimately related to stability, passivity, and optimality.

Unfortunately, even if we are given a mathematical model of the system, it is generally very

di�cult to derive a meaningful energy function. Consequently, it is often very di�cult to �nd

a suitable Lyapunov function for stability analysis, or a suitable storage function for passivity

analysis in the case of a system with inputs and outputs.

In this paper, we utilize the following age-old1 idea{given a mathematical model of the

system, realize it as an electrical circuit and then de�ne the system's energy as the energy

stored in the circuit's components{to derive some new results:

� An intuitive physically-based proof of the Routh-Hurwitz (RH) stability criterion;

� A simple explicit storage function for a class of passive nonlinear systems;

�Corresponding author: Prof. Gideon Langholz, Department of Electrical Engineering - Systems, Tel Aviv

University, Tel Aviv 69978. Tel. 972-3-6408738, Fax. 972-3-6407221, Email: langholz@eng.tau.ac.il.
1See for example, (Hirsch & Smale, 1974, Ch. 10).
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� An extension of H2 optimal control to a large class of nonlinear systems. In particular,

we show that if the solution of a certain Riccati equation is positive-de�nite and diagonal,

then a large class of nonlinear optimal control problems has a simple explicit closed-form

solution.

We begin with the relatively simple case of linear dynamical systems. The mathematical

model of the system is a characteristic polynomial D(s). We show how to realize D(s) using

an autonomous electrical circuit comprising of capacitors, inductors and resistors. If these

components are all positive, then they are passive and the energy stored in the circuit can never

increase. On the other hand, if there is a sign change among the components, then at least

one component is gaining energy, and the total energy of the circuit increases. This sign-change

condition immediately brings to mind the RH stability criterion. Indeed, we will see that our

approach yields a very intuitive proof for this criterion.

Adding inputs and outputs to our autonomous linear electrical circuit, we use the energy

stored in the circuit as a storage function for passivity analysis. Because passivity and optimality

are fundamentally related (Sepulchre et al., 1997), this leads to a simple and intuitive derivation

of the optimal H2 in�nite-time regulator.

Furthermore, since stability, passivity, and optimality are directly related to the energy stored

in the electrical circuit, we can extend our results to the nonlinear case simply by replacing the

linear components in the circuit with the more general nonlinear ones and modifying the energy

function appropriately.

This leads to the derivation of explicit storage functions and passivity relations for a class of

nonlinear systems. Also, based again on the relationship between passivity and optimality, we

can formulate and explicitly solve a nonlinear H2 optimal control for these nonlinear systems.

The rest of the paper is organized as follows. In Section 2 we examine linear dynamical

systems by realizing them using a linear electrical circuit. We relate stability, passivity, and

optimality of the system to the electrical circuit, leading to a simple proof of the RH stability

criterion and to a simple derivation of the optimal H2 regulator. In Section 3 we extend these

results to a class of nonlinear systems and show how the expression for the stored energy must be

modi�ed. Using the energy we derive new results regarding stability, passivity, and optimality

of these nonlinear systems. The �nal section concludes.

2 Linear Systems

In this section we show that a linear dynamical system, described by a characteristic polynomial

D(s), can be realized as a linear electrical circuit by using the information contained in the RH

array of D(s). Furthermore, we show how the energy stored in the circuit's components can be

used to study stability, passivity, and optimality. As a by-product we obtain an intuitive proof

of the RH stability criterion.

2.1 Realization and the Routh-Hurwitz array

Consider a linear electrical circuit consisting of n + 1 linear components (capacitors, induc-

tors, and resistors). Each linear component is de�ned by a voltage-current relation and a

parameter (namely, capacitance, inductance, and resistance). Denote these parameters by

K = (K1;K2; :::;Kn+1)
T and de�ne the state-variables xi, i = 1; 2; :::; as the voltages on the

capacitors and the currents through the inductors. Using Kirchho�'s laws we can derive the

circuit's state-space description _x = Ax, and the characteristic polynomial P (s) = det(sI�A) =

pns
n + pn�1s

n�1 + :::+ p0.
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This process can be viewed as a transformation: T : (K1;K2; :::;Kn+1) ! (p0; p1; :::; pn).

Hence, if we can �nd the inverse transformation T�1, then, given the coe�cients of a character-

istic polynomial, we would be able to determine the parameters of the components in the linear

circuit that implements it. The purpose of this section is to show that this inverse transformation

is nothing but (a slightly modi�ed version of) the RH array.

We de�ne a modi�ed version of the RH array as follows:

� Given a characteristic polynomial D(s), calculate the RH array as usual.

� Divide each element in the �rst column of the RH array by the element right above it (the

�rst element is left unchanged).

For example, the conventional RH array for D(s) = s3 + 3s2 + 16s+ 30 is:

1 16

3 30

6 0

30

and the modi�ed one is:
1 16

3 30

2 0

5

(1)

To explain the usefulness of (1) consider the electrical circuit depicted in Fig. 1. It consists

of four linear components whose voltage-current relationships2 are shown in Fig. 1, where Ki,

i = 1; :::; 4, are constants.

_x1

_x3

K4(K2x2 + _x3)

K1x1

K3x3

_x2

K2x2

Figure 1: A third-order system

Using Kirchho�'s laws, we obtain the state-space equation: _x = Ax, where x = (x1; x2; x3)
T

and

A =

0
@ 0 K2 0

�K1 0 K3

0 �K2 �
K3

K4

1
A (2)

2These components are actually two capacitors, an inductor, and a resistor. However, we use the \black-box"

notation because we are going to generalize them to nonlinear components in the sequel.
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and the characteristic polynomial is P (s) = det(sI�A) = s3+K3

K4
s2+K2(K1+K3)s+

1
K4
K1K2K3.

It is easy to verify that for the particular choice: (K4;K3;K2;K1) = (1; 3; 2; 5) we obtain:

P (s) = s3 + 3s2 + 16s+ 30 = D(s)

Notice though, that (1; 3; 2; 5) is exactly the �rst column of the (modi�ed) RH array we obtained

for D(s) (see (1)). In other words, the values in the �rst column are just the parameters of the

components required to implement D(s) using our electrical circuit. More generally, we have:

Theorem 1 Given a characteristic polynomial D(s) = sn + dn�1s
n�1 + ::: + d0, let z denote

the vector of elements in the �rst column of the modi�ed RH array of D(s). Then, D(s) can be

realized as an electrical circuit containing n + 1 linear components (capacitors, inductors, and

resistors). Furthermore, the parameters Ki of these components are the entries of the vector z.

Proof. See the Appendix.

Special cases arise when a zero entry appears in the �rst column of the RH array because,

then, z cannot be constructed. However, it can be shown that our approach can be easily

extended to handle these cases as well.

Once D(s) is realized as an electrical circuit we can associate with it the energy stored in

this circuit. For example, for the circuit in Fig. 1:

V (x) =

Z
K1x1(t) _x1(t)dt+

Z
K2x2(t) _x2(t)dt+

Z
K3x3(t) _x3(t)dt

=
1

2
(K1x

2
1 +K2x

2
2 +K3x

2
3)

= xTPx (3)

where P = diag(K1

2
; K2

2
; K3

2
). The rate of change of the energy is:

_V = 2xTPAx = �
1

K4
K2

3x
2
3

which is just the power dissipated by the resistor.

We can use V for stability analysis. Indeed, it is easy to verify that, if all the Ki's are

positive, then V is a Lyapunov function guaranteeing asymptotic stability3; if all the Ki's are

negative, then the same holds with �V . On the other hand, if there is a sign-change among

the Ki's, then we can use V (or �V ) to prove that the system is unstable. Thus, a necessary

and su�cient condition for asymptotic stability is that there will be no sign-changes among the

Ki's.

Actually, we can derive this conclusion in a more intuitive manner. If all theKi's are positive,

then all the circuits components are passive and any initial energy will dissipate and lead to

lim
t!1

x(t) = 0. The same holds, symmetrically, if all the Ki's are negative. On the other hand, if

there is a sign change among the Ki's, then at least one component is gaining energy and the

circuit is unstable.

This is related to the (modi�ed) RH array because the Ki's constitute its �rst column, hence,

we immediately obtain:

Theorem 2 Given a characteristic polynomial D(s) = sn + dn1s
n�1 + ::: + d0, let z denote

the vector of elements in the �rst column of the modi�ed RH array of D(s). Then, D(s) is

asymptotically stable if and only if there are no sign changes among the elements of z.

3Note that Eq. (2) implies that the the only trajectory contained in the set fxjx3 = 0g is x = 0.
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The rational behind the RH stability criterion can now be explained as follows. Given a

linear di�erential equation (in the form of a characteristic polynomial), realize it as an electrical

circuit and examine the behavior of the circuit's energy, which depends only on the signs of the

circuit's components.

A natural generalization comes to mind: Given a nonlinear di�erential equation, realize it as

an electrical circuit and use the energy stored in the circuit as a Lyapunov function to analyze

its stability. Thus, the idea behind the RH stability criterion can be extended to the nonlinear

case. We demonstrate this approach in Section 3.1.

Note that other proofs of the RH stability criterion (e.g., Chapellat et al., 1990; Parks, 1962)

are in general less intuitive than ours because they are based on mathematical abstractions

rather than on physical entities.

In the following two subsections we obtain well-known results on passivity and optimality of

linear systems directly from the analysis of an electrical circuit. This will allow the derivation

of new results for the nonlinear case in Section 3.

2.2 Passivity

In this section we use the energy balance in the electrical circuit to derive some passivity relations.

Consider, for example, the circuit in Fig. 2 which consists of three linear components and two

K2x2

K1x1

K3(K2x2)

_x1

b1u1

� b2u2

_x2

Figure 2: A linear circuit with sources

sources: a current source in parallel with the capacitor and a voltage source in series with the

inductor. Kirchho�'s laws now yield:

_x = Ax+Bu (4)

where x = (x1; x2)
T , u = (u1; u2)

T ,

A =

�
0 K2

�K1 �K3K2

�
; and B =

�
b1 0

0 b2

�
(5)

The energy stored in the circuit is the energy stored in the capacitor and inductor, namely:

V (x) = xTPx; P = diag(
K1

2
;
K2

2
) (6)

The power supplied by the two sources is:

b1u1K1x1 + b2u2K2x2 = 2xTPBu = 2yTu
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where we de�ne the circuit's outputs as:

y =

�
y1
y2

�
= BTPx (7)

If all the circuit's components are passive, then the increase in the energy stored in the

system cannot be greater than the power supplied by the sources, that is:

_V � 2yTu

Indeed, this is easily veri�ed by calculating:

_V = 2xTP (Ax+Bu)

= xT (PA+ATP )x+ 2xTPBu (8)

� 2yTu

where we used the fact that PA+ATP � 0. In other words, the system de�ned by (4) and (7)

is passive with respect to the storage function S(x) = 1
2
V (x).

In general, however, the components in the circuit are not necessarily passive, hence, V (x)

in (6) is no longer a valid storage function because the Ki's might be negative. Instead, let

V (x) = xTPx, where P is some non-negative de�nite matrix. To derive passivity relations for
_V in this case, we rewrite (8) as:

_V = xT (PA+ATP � PBBTP + PBBTP )x+ 2xTPBu

= �xTQx+ yTy + 2yTu (9)

where we denote:

Q = PBBTP � PA�ATP (10)

Hence, if we can �nd matrices P � 0 and Q � 0 so that (10) holds, then:

_V � yTy + 2yTu

that is, the system is dissipative with respect to the storage function S(x) = 1
2
V (x) and the

supply rate 1
2
yTy+yTu (or, in the terminology of (Sepulchre et al., 1997), the system is Output

Feedback Passive (�1
2
)).

Note that Eq. (10) is just the famous Riccati equation arising in optimal control theory.

Indeed, we can easily relate the above derivation to the linear-quadratic regulator problem.

2.3 Optimality

In this section we use the fundamental relation between passivity and optimality (Sepulchre

et al., 1997, Ch. 3) to derive a simple exposition of the linear-quadratic optimal regulator

(Anderson & Moore, 1990).

We rewrite (9) as:

xTQx+ uTu = � _V + (u+ y)T (u+ y) (11)

De�ning:

J(x(t0);u) =

Z
1

t0

[x(t)TQx(t) + uT (t)u(t)]dt
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we obtain from (11):

J(x(t0);u) = V (x(t0))� lim
t!1

V (x(t)) +

Z
1

t0

(u+ y)T (u+ y)dt (12)

Now, let U be the set of controllers that yield, in the closed-loop system, lim
t!1

x(t) = 0 and

consider the problem of �nding u 2 U that minimizes J . Using (12) and the fact that V (0) = 0,

we immediately see that this optimal controller is just u = �y = �BTPx and that the minimal

value of J is V (x(t0)). Note that if there exists a matrixQ > 0 that solves (10), then u = �BTPx

indeed belongs to U .

Since the power supplied by the sources is 2yTu, then setting u = u = �y corresponds to

maximizing the power that the sources extract from the circuit. This yields a very intuitive

explanation of the optimal regulator.

Note that we have related passivity and optimality directly to the energy stored in the circuit.

This will allow us to derive nonlinear versions of our results by using nonlinear circuits.

3 Nonlinear Systems

In this section we extend the previous results to nonlinear systems. Consider now the circuit

depicted in Fig. 3. Note that it is a modi�cation of the linear circuit in Fig. 2 (without the

sources), namely, we have replaced the linear components of Fig. 2 with the more general

nonlinear ones. In particular, we can obtain the linear circuit by setting fi(x) = Kix, i = 1; 2; 3.

f1(x1)

f3(f2(x2))

_x1

_x2

f2(x2)

Figure 3: Nonlinear electrical circuit

The state-space equations4 are now:

_x1 = f2(x2) (13)

_x2 = �f1(x1)� f3(f2(x2))

and the energy stored in the circuit at time t is:

V (x(t)) = V (x(t0)) +

Z
t

t0

f1(x1(�)) _x1(�)d� +

Z
t

t0

f2(x2(�)) _x2(�)d�

4Throughout this paper we implicitly assume that the nonlinear functions satisfy conditions that guarantee

existence and uniqueness of solutions.
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= V (x(t0)) +

Z
x1(t)

x1(t0)

f1(y)dy +

Z
x2(t)

x2(t0)

f2(y)dy

=

Z
x1(t)

0

f1(y)dy +

Z
x2(t)

0

f2(y)dy (14)

where we assume that the initial state at time t0 is x(t0) = 0.

The derivative of V , along the trajectories of (13), is simply:

_V = f1(x1) _x1 + f2(x2) _x2

= f1(x1)f2(x2) + f2(x2)(�f1(x1)� f3(f2(x2)))

= �f2(x2)f3(f2(x2)) (15)

which is just the power dissipated by the nonlinear resistor.

A simple yet important observation follows. Given a nonlinear system in the form (13) it can

be realized immediately as the circuit in Fig. 3, pointing to a natural candidate for the system's

energy, namely, the energy V (x) stored in the circuit's components.

3.1 Nonlinear stability analysis

If we can realize a nonlinear system by an electrical circuit, we can use the associated energy V

for stability analysis. We demonstrate this in the following example.

Example 1 (Lotka-Volterra systems)

Consider the following second-order Lotka-Volterra system (Hubbard & West, 1995):

_x = (2� y)x (16)

_y = (3x� 1)y

where x(t) and y(t) can attain only non-negative values (e.g., they represent sizes of populations).

Hence, we are interested in the behavior of the system only in the open �rst quadrant: M =

f(x; y) : x > 0; y > 0g.

De�ning the coordinate transformation: x1 = ln(x) and x2 = ln(y) yields:

_x1 = 2� ex2 (17)

_x2 = 3ex1 � 1

Compared with (13), we see that (17) can be realized using our nonlinear electrical circuit

(Fig. 3) with:

f1(x) = 1� 3ex; f2(x) = 2� ex; f3(x) = 0

In this case, (14) and (15) become:

V (x1; x2) = x1 � 3ex1 + 2x2 � ex2

and
_V (x1; x2) = 0

respectively. Or, in terms of our original variables:

V (x; y) = ln(x)� 3x+ 2 ln(y)� y (18)
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Figure 4: Contours of V (x; y)

(note that V is well-de�ned on M) and

_V (x; y) = 0

Note that we have solved the problem of associating an appropriate energy function with the

system (16) by realizing it as a nonlinear electrical circuit and using the energy stored in the

components of the circuit. In view of Theorem 1, what we have done can clearly be considered

an extension of the idea behind the RH stability criterion.

Fig. 4 depicts contours of the function V (x; y) in (18) (i.e., curves that satisfy V (x; y) =

const:). Since _V (x; y) = 0 along the trajectories of (16), we immediately conclude that these

contours are just the trajectories of the dynamical system (16). Note that the oscillatory be-

havior depicted in Fig. 4 agrees with our interpretation of the system as the combination of a

(nonlinear) capacitor and a (nonlinear) inductor with no resistor. Hence, our approach led, in a

very simple manner, to a complete analysis of the behavior of (16) in M .

3.2 Passivity

In Section 2.2 we used the energy stored in our linear circuit to derive passivity relations. We

now extend these results to the nonlinear case. Consider the nonlinear circuit depicted in Fig. 5,

which is a generalization of the circuit in Fig. 2. The state-space equations are now:

_x1 = f2(x2) + b1u1 (19)

_x2 = �f1(x1)� f3(f2(x2)) + b2u2

First, we assume that all the circuit's components are passive. For example, let f1(x) =

K1 tanh(x) , f2(x) = K2 tanh(x), and f3(x) = K3x, Ki > 0 (i = 1; 2; 3). In this case, (19)

becomes:

_x = A tanh(x) +Bu (20)

where tanh(x) = (tanh(x1); tanh(x2))
T , and A and B are given by Eq. (5).

The energy stored in the circuit is:

V (x) = K1 ln(cosh(x1)) +K2 ln(cosh(x2)) = 2p1 ln(cosh(x1)) + 2p2 ln(cosh(x2))
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f2(x2)

f1(x1)

f3(f2(x2))

_x1

b1u1

� b2u2

_x2

Figure 5: Nonlinear circuit with inputs

where the pi's are diagonal elements of the matrix P (recall that P = diag(K1

2
; K2

2
)). The power

supplied by the sources is:

b1u1K1 tanh(x1) + b2u2K2 tanh(x2) = 2uTBTP tanh(x)

Hence, if we de�ne the circuit's outputs as:

y = BTP tanh(x) (21)

then we must have, just as in the linear case, _V � 2yTu. Indeed:

_V = 2p1 tanh(x1) _x1 + 2p2 tanh(x2) _x2

= 2 tanhT (x)P _x

= 2 tanhT (x)P (A tanh(x) +Bu)

= tanhT (x)(PA+ATP ) tanh(x) + 2yTu

� 2yTu (22)

Note that the transition from the �rst to the second line in (22) is possible only because P is

diagonal.

Equation (22) implies that the system de�ned by (20) and (21) is passive with respect to

the storage function S(x) = 1
2
V (x).

Now, let us consider the more general case in which the nonlinear components of the circuit

are not necessarily passive. Let V (x) = xTPx where P is a non-negative de�nite matrix.

Rewriting (22) yields:

_V = tanhT (x)(PA +ATP � PBBTP + PBBTP ) tanh(x) + 2yTu

= � tanhT (x)Q tanh(x) + yTy + 2yTu (23)

where Q is de�ned in (10). Hence, if we can �nd a diagonal matrix P � 0 and a matrix Q � 0 so

that (10) holds, then the system is dissipative with respect to the storage function S(x) = 1
2
V (x)

and the supply rate 1
2
yTy + yTu.

Note that we are not restricted to using components de�ned by the function tanh(�), but we

can follow (Kaszkurewicz & Bhaya, 1993) and de�ne the more general set of possible functions:
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De�nition 1 (The set Sc)

Let Sc be the set of all functions f(�) : R! R satisfying:

� f(�) is continuous

� f(0) = 0, and for all other x 2 R: xf(x) > 0

�
R
x

0
f(y)dy !1 as jxj ! 1

Note that the last two properties imply that if V (x) =
R
x

0
f(y)dy, where f 2 Sc, then V (x) is

positive-de�nite and radially unbounded.

We can now generalize our previous result:

Theorem 3 Consider the nonlinear system:

_x = Af(x) +Bu

where f(x) = (f1(x1); :::; fn(xn))
T , with fi(�) 2 Sc, i = 1; :::; n. Suppose that there exist Q � 0

and P � 0, with P = diag(p1; :::; pn), that solve (10) and de�ne the systems outputs as:

y = BTP f(x)

Then, the system is dissipative with respect to the storage function

S(x) =

nX
i=1

pi

Z
xi(t)

0

fi(y)dy

and the supply rate 1
2
yTy + yTu.

3.3 Optimality

We can use the relation between passivity and optimality to formulate and solve a nonlinear

optimal control problem. We begin by rewriting (23) as:

tanhT (x)Q tanh(x) + uTu = � _V + (u+ y)T (u+ y) (24)

De�ning:

J(x(t0);u) =

Z
1

t0

[tanhT (x(t))Q tanh(x(t)) + uT (t)u(t)]dt

we obtain from (24):

J(x(t0);u) = V (x(t0))� lim
t!1

V (x(t)) +

Z
1

t0

(u+ y)T (u+ y)dt (25)

Now, let U be the set of controllers that yield, in the closed-loop system, lim
t!1

x(t) = 0 and

consider the problem of �nding u 2 U that minimizes J . Using (25) and the fact that V (0) = 0,

we immediately see that this optimal controller is just u = �y = �BTP tanh(x) and that the

minimal value of J is V (x(t0)). Note that if there exists a matrix Q > 0 that solves (10), then

u = �BTP tanh(x) indeed belongs to U .

More generally, we obtain the following extension of the linear-quadratic H2 optimal regu-

lation problem to the nonlinear case.

1583

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



Theorem 4 Consider the nonlinear system5:

_x = Af(x) +Bu (26)

x(t0) = x0

where f(x) = (f1(x1); :::; fn(xn))
T , with fi 2 Sc for i = 1; :::; n. De�ne the cost functional:

J(x0; t0;u) =

Z
1

t0

[fT (x(t))Qf(x(t)) + uT (t)u(t)]dt (27)

where Q > 0 is a symmetric matrix, and denote the minimal cost:

J(x0; t0) = min
u2U

J(x0; t0;u) (28)

If there exists a positive-de�nite and diagonal matrix P = diag(p1; :::; pn) that solves (10), then:

J(x0) = 2

nX
i=1

pi

Z
xi(t0)

0

fi(y)dy (29)

and the optimal controller, yielding J , is given by:

u(t) = �BTP f(x(t)) (30)

Theorem 4 �rst appeared in (Margaliot & Langholz, 1999a) for the particular case fi(x) =

tanh(kix), ki > 0. It turns out that in this case, the optimal controller is in fact a fuzzy

controller and this result supplies a theoretical explanation for the well-demonstrated success of

fuzzy controllers. The extension to the H1 framework is quite straight forward (see (Margaliot

& Langholz, 1999b)).

4 Conclusions

In this paper we studied the following problem: Given the mathematical model of a dynamical

system, �nd a meaningful measure of the energy stored in the system.

The problem was �rst considered in the framework of linear systems. Here, the mathematical

model is a characteristic polynomial. We showed that it can be realized by an electrical circuit

composed of three types of linear components. The energy of the system is then just the energy

stored in the circuit's components. This led to a very intuitive proof of the famous Routh-

Hurwitz stability criterion.

For the more general case of linear systems with inputs, we used the energy stored in the

circuit as a storage function and derived passivity relations based on the energy balance in the

circuit. Using the relation between passivity and optimality we also formulated and solved, in a

very intuitive manner, the in�nite-time H2 optimal regulation problem.

As the concepts of stability, passivity, and optimality are related directly to the electrical

circuit, we were able to extend these results to a class of nonlinear systems by replacing the

linear components in the circuit with more general nonlinear components. We showed how to

de�ne the energy that is stored in the circuit and how to use this energy for nonlinear stability,

passivity, and optimality analysis and synthesis. In particular, we were able to give an intuitive

derivation of a class of nonlinear optimal control problems enjoying a simple explicit solution.

5Again, we assume that the equations have a unique solution and, furthermore, that the fi(�)'s are su�ciently

smooth.
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Appendix: Proof of Theorem 1

We begin by de�ning recursively a linear electrical circuit C(n), n = 1; 2; :::. The circuit C(1),

shown in Fig. 6(a), consists of the parallel connection of a capacitor and 1
 resistor. The circuit

C(2), shown in Fig. 6(b), is obtained by replacing the resistor in C(1) with the serial connection

of an inductor K2 and a 1
 resistor. For any n > 2, C(n) is de�ned recursively:

(a)

K1x1

_x1

_x1

(b)

K2x2

K1x1

_x1

K2x2 _x2

(c)

K2x2

K2x2 + x3

_x3

K3x3

_x1

K1x1

_x2

(d)

_x3

_x4

K2x2

K4x4

_x2

K4x4

K3x3

_x1

K1x1

Figure 6: The circuits (a) C(1), (b) C(2), (c) C(3), and (d) C(4)

� If n is odd then C(n) is the circuit obtained by replacing the resistor in C(n� 1) with the

parallel connection of a capacitor Kn and a 1
 resistor.

� If n is even then C(n) is the circuit obtained by replacing the resistor in C(n � 1) with

the serial connection of an inductor Kn and a 1
 resistor.

Fig. 6 depicts the circuits C(1)� C(4).

To obtain a state-space description of the circuit's dynamics we also de�ne state-space vari-

ables xi. Whenever we add a capacitor (inductor) with parameter Kn we add a state-space

variable xn, where Knxn is the capacitor's voltage (inductor's current).
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Lemma 1 The circuit C(n) de�ned above is described by the state-space equation: _x = A(n)x,

where x = (x1; :::; xn)
T and A(n) is the tridiagonal matrix:

A(n) =

0
BBBBBBBB@

0 K2

�K1 0 K3

�K2 0 K4

� � �

� � �

�Kn�2 0 Kn

�Kn�1 �Kn

1
CCCCCCCCA

(31)

Proof. A recursive proof follows immediately from the recursive de�nition of the circuit C(n). �

Let P (n)(s) = det(sI � A(n)) be the characteristic polynomial of C(n). It turns out that

the �rst column of the RH array of P (n)(s) has a particularly simple form.

Lemma 2 The �rst column of the RH array for P (n)(s) is:

1;Kn;KnKn�1;KnKn�1Kn�2; :::;KnKn�1Kn�2 � � �K1 (32)

Proof. De�ne the matrix M(n) = diag(1;K2;K2K3; :::;K2K3 � � �KN ). Then it is easy to verify,

using (31), that

M(n)A(n)M�1(n) =

0
BBBBBBBB@

0 1

�K1K2 0 1

�K2K3 0 1

� � �

� � �

�Kn�2Kn�1 0 1

�Kn�1Kn �Kn

1
CCCCCCCCA

That is,M(n)A(n)M(n)�1 is a Schwarz matrix (Ogata, 1967, Ch. 8). Now Theorem 5 in (Parks,

1962) (see also (Ogata, 1967, Theorem 8-10)) implies that the �rst column of the RH array of

the polynomial det(sI �M(n)A(n)M�1(n)) is:

1;Kn;KnKn�1;KnKn�1Kn�2; ::::;KnKn�1Kn�2:::K1

and since det(sI �M(n)A(n)M�1(n)) = det
�
M(n)(sI �A(n))M�1(n)

�
= det(M(n))det(sI �

A(n))det(M�1(n)) = det(sI �A(n)) = P (n)(s) this completes the proof. �

Note that Lemma 2 and the de�nition of the modi�ed RH array imply that the �rst column

in the modi�ed RH array of P (s) is just:

1;Kn;Kn�1;Kn�2; ::::;K1

In other words, constructing the RH for P (n)(s) retrieves the values of the parameters in the

circuit C(n) that we started with.

Finally, let D(s) be some monic characteristic polynomialD(s) = sn+dn�1s
n�1+:::+d0, and

let z = (1; z1; ::; zn) be the �rst column in the modi�ed RH array of D(s). Consider the circuit

C(n) with Kn = 1,Kn�1 = z1,...,K1 = zn, and let P (n)(s) be its characteristic polynomial. We

know that the �rst column in the modi�ed RH array of P (s) is just: 1;Kn;Kn�1;Kn�2; ::::;K1,

that is, the vector z. Hence, D(s) and P (n)(s) have the same modi�ed RH array6 and, therefore,

D(s) = P (n)(s). �

6Note that if two monic polynomials lead to RH arrays with an identical �rst column then they must be the

same polynomial (Parks, 1962). It is easy to see that this holds for modi�ed RH arrays as well.
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