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Abstract

The stability of a nonlinear observer for systems with uncertainties usually requires some

su�cient conditions. The Lipschitz condition is a restrictive condition which many classes of

systems may not satisfy. In this paper we consider a class of systems with two uncertain parts;

one which satis�es the Lipschitz condition, whilst the other does not satisfy the Lipschitz

condition but is a bounded uncertainty. Sliding mode theory is applied to yield feedforward

compensation control to stabilize the error estimation system with non-Lipschitz uncertainty.

New su�cient conditions for stability of the Thau observer are proposed. These conditions

ensure the stability of the nonlinear observer by selecting a suitable observer gain matrix.

1 Introduction

A state observer for nonlinear systems was presented by Thau (1973) and extended by Kou et

al. (1975). These methods do not include a systematic technique for the construction of the

observer. However these observers satisfy a su�cient condition for the asymptotic stability of

error system. In fact, there is not a straightforward method for selecting the observer gain to

satisfy the su�cient condition. Rajamani (1998) and Rajamani et al. (1998) studied the Thau

observer by considering the distance of unobservability (Eising, 1984) and the matrix condition

number of the eignvector matrix of the error system.

Walcott and �ak (1987, 1990) discussed the state observation of nonlinear dynamic systems

with bounded nonlinearities/uncertainties. They presented an observer design method using

Lyapunov and min-max methods. Their approach requires the matching condition and is linked

to the strictly positive real condition. Yaz and Azemi (1993) presented a method for designing an

observer for nonlinear deterministic and stochastic systems, and used the continuous (boundary

layer) gain given by Walcott and �ak (1987). Edwards and Spurgeon (1994) modi�ed the Utkin

observer (1992) and extended the discontinuous observer to nonlinear systems. They developed

a robust discontinuous observer.

Dorling and Zinober (1983) compared the full and reduced order Luenberger observers with

the Utkin observer. They reported some di�culty in the selection of an appropriate constant

switched gain to ensure that the sliding mode occurs, and discussed the elimination of chattering.

However, the unmatched uncertainty was shown to a�ect the ideal dynamics prescribed by the

chosen sliding surface.

�
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Koshkouei and Zinober (1995) presented methods for designing an asymptotically stable

observer, and studied the existence of the sliding mode and stability of state reconstruction

systems of MIMO linear systems including a disturbance input.

In this paper we consider nonlinear systems with two uncertain parts; one part satisfying the

Lipschitz condition, whilst the other does not, but is bounded. We generalize the condition given

by Rajamani (1998) and Rajamani et al. (1998), and also propose a new su�cient condition

for selecting the observer gain matrix without needing the solution of the Riccati equation.

The sliding mode observer is presented and the stability of the error estimation systems is

ensured if conditions such as matched uncertainty and the Lipschitz condition hold. Without

these conditions, the method guarantees only that the trajectories enter a ball, with centre an

equilibrium point, in �nite time, and remain inside thereafter (Koshkouei and Zinober, 1998).

A su�cient condition for satisfying the Thau condition is given in Section 2. The nonlinear

sliding mode observer is discussed in Section 3. An example illustrating the results is presented

in Section 4.

In this paper �M (�), �m(�) �max(�) and �min(�) refer to the largest singular value, the smallest
singular value, the largest and the smallest eigenvalue of (�), respectively. We also use p.d.,

p.d.s. and u.p.d.s. for positive de�nite, positive de�nite symmetric and unique positive de�nite

symmetric. In addition, P1 > P2 indicates that P1 � P2 is a p.d. matrix and the H
1

norm is

de�ned as kGk
1

= sup
!

�max (G(iw)).

2 Nonlinear Lipschitz Observer Design

Consider the nonlinear system

_x(t) = Ax(t) +Bu(t) + f(t; x; u) + ��(t) (1)

y(t) = Cx(t) (2)

where x 2 R
n is the state variable, A 2 R

n�n, B 2 Rn�m, u 2 Rm is the control, C 2 R
m�n, y 2

R
m is the output, � 2 R

n�m the perturbation input map and � 2 R
m the bounded disturbance

input, i.e. there exists a positive real number M such that k�k � M . f(t; x; u) is an uncertain

nonlinear function which satis�es the Lipschitz condition, with respect to x, with Lipschitz

constant L, i.e.

kf(t; x1; u)� f(t; x2; u))k � Lkx1 � x2k (3)

We assume that (A;C) is an observable pair. Suppose �rst that � = 0. Then a robust observer

for the system (1)-(2) may be selected as

_̂x = Ax̂+Bu+H(y � ŷ) + f(t; x̂; u) (4)

ŷ = Cx̂ (5)

where H 2 R
n�m is the observer gain matrix. The state estimation error is de�ned as e = x� x̂.

Subtracting (1) from (4) gives the dynamical reconstruction error system

_e = (A�HC)e+ f(t; x; u)� f(t; x̂; u) (6)

ey = Ce (7)

where ey = y � ŷ is the output reconstruction error. Let P be the u.p.d.s. solution of the

Lyapunov equation (LE)

(A�HC)TP + P (A�HC) = �Q (8)
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with Q an arbitrary p.d.s. matrix. The well-known Thau condition (1973) for the stability of

the system (6) is

L <
�min(Q)

2�max(P )

(9)

The maximum value of the ratio �min(Q)=�max(P ) is obtained for Q = I (Patel and Toda, 1980)

and then

L <
1

2�max(P )
(10)

The straightforward method for selecting the observer gain H to satisfy (9) or (10) is not known.

Here we present a method to clarify the relationship between the eigenvalues (A�HC) and L.

For simplicity assume Ac = A�HC.

Theorem 2.1 Assume �max(Ac +AT
c ) < 0. Then condition (9) is satis�ed if

L <
�min(Q)

2�max(Q)
j�max(Ac +AT

c )j (11)

Proof: Since Ac < 0, �max(Ac +AT
c ) < 0 and Q > 0, we have (Lancaster, 1970)

�max(P ) � �max(Q)

j�max(Ac +AT
c )j

So

�min(Q)

2�max(P )
� �min(Q)

2�max(Q)
j�max(Ac +AT

c )j (12)

yielding (9).

The condition �max(Ac + AT
c ) < 0 is a limitation condition. This condition is satis�ed in rare

cases such as stable diagonal matrices and stable symmetric matrices.

Consider the Lyapunov function

V (e) = eTPe (13)

Then

_V = eT
�
AT
c P + PAc

�
+ eTP (f(t; x; u)� f(t; x̂; u)) + (f(t; x; u)� f(t; x̂; u)Pe) (14)

Since for any matrices X, Y and any positive number � > 0,

�

�
1

�
X � Y

�T �1

�
X � Y

�
� 0

then

XTY + Y TX � 1

�
XTX + �Y TY; 8� > 0
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For any � > 0

eTP (f(t; x; u)�f(t; x̂; u))+(f(t; x; u)�f(t; x̂; u))Pe � �eTPPe+
1

�
kf(t; x; u)� f(t; x̂; u)k2

= �eTPPe+
1

�
L2 kx� x̂k2

= �eTP 2e+
1

�
L2kek2 (15)

Therefore (14) and (15) imply

_V � eT
�
AT
c P + PAc + �P 2 +

1

�
L2I

�
e (16)

Hence, if

AT
c P + PAc + �P 2 +

1

�
L2I < 0 (17)

then _V < 0. When � = L2 the result is the same as given by Rajamani (1998) and Rajamani

et al. (1998). Let � > 0. If P is a solution of the algebraic Riccati equation (ARE)

AT
c P + PAc + �P 2 +

�
1

�
L2 + �

�
I = 0 (18)

then P satis�es the inequality (17). The algebraic Riccati inequality (ARI) condition (17) can

be transformed into the linear matrix inequality problem (LMI)�
AT
c P + PAc + �P 2 + �I L

L ��
�
< 0 (19)

Now we present necessary and su�cient conditions for the existence of a p.d.s. solution of the

ARE (18).

Theorem 2.2 Assume G = ~C(sI �Ac)
�1 with ~C =

p
�+ L2=�I. Then P = P T satisfying the

ARE (18) if and only if kGk
1
< 1=

p
�. Moreover, P is a p.d. matrix.

Proof: The proof results straightforwardly from Theorem 3.7.1 in the book by Green and

Limebeer (1995). Since Ac is a stable matrix and P is the observability gramian of

�
Ac;

�
~Cp
�P

� �
;

P is a p.d. matrix.

If � = L2, then a necessary and su�cient condition for the existence of a p.d.s. solution P

of the ARE (18) is that kGk
1
< 1=L. The following lemma links the spectral condition on the

appropriate Hamiltonian matrix with a p.d. solution of the ARE (18).

Lemma 2.1 Assume

H =

2
4 Ac �I

�
�
1

�
L2 + �

�
I �AT

c

3
5

The Hamiltonian matrix H has no eigenvalue on the imaginary axis if and only if the ARE (18)

has a p.d.s. solution P .
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Proof: The proof is directly obtained from Lemma 3.7.3 in the book by Green and Limebeer

(1995).

We now �nd a relationship between the Lipschitz constant L and the eigenvalues of Ac. The

following lemma is needed.

Lemma 2.2 (Shapiro, 1974) Assume A is a stable matrix. Let P be the solution of the LE

ATP + PA = �Q (20)

where Q is a p.d.s. matrix. Then the following inequalities hold

�max(P ) � �max(Q)

2�max(A)
; �min(P ) � �min(Q)

2�min(A)
(21)

Theorem 2.3 Let � > 0, � > 0 and Ac = A � HC with A and C as in (6). Assume that

�min(Ac) �
p
L2 + �� and P is a p.d.s. solution of (18). Then

�max(Ac)�
p
�2max(Ac)� (L2 + ��)

�
� �max(P ) �

�max(Ac) +
p
�2max(Ac)� (L2 + ��)

�
(22)

�min(Ac)�
q
�2min(Ac)� (L2 + ��)

�
� �min(P ) �

�min(Ac) +
q
�2min(Ac)� (L2 + ��)

�
(23)

Proof: Consider (18). Ac is a stable matrix. Using Lemma 2.2 with Q = �P 2 +
�
1
�
L2 + �

�
I

yields

�max(P ) �
1

�
L2 + �+ ��max(P

2)

2�max(Ac)

=

1

�
L2 + �+ ��2max(P )

2�max(Ac)
(24)

which equivalent to

��2max(P )� 2�max(Ac)�max(P ) +
1

�
L2 + � � 0 (25)

The inequality (25) holds if and only if (22) is satis�ed. From (21)

��2min(P )� 2�min(Ac)�min(P ) +
1

�
L2 + � � 0 (26)

which gives (23).

The condition �min(Ac) �
p
L2 + �� is a necessary condition for satisfying (22) and (23).

If

L <
�

2
�
�max(Ac) +

p
�2max(Ac)� (L2 + ��)

�

then

L <
1

2�max(P )
(27)
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where P is a p.d.s. solution of (8) or (18) with Q = �P 2 +

�
1

�
L2 + �

�
I. However, if (27)

holds, then the error system may not be stable, because P in (10) yields the maximum value

�min(Q)=�max(P ) for Q = I (and not Q = �P 2 +

�
1

�
L2 + �

�
I).

Lemma 2.3 Assume P is a p.d.s. solution of the LE

AT
c P + PAc +

1

�
L2I +Q = 0 (28)

where Q > 0 is an arbitrary p.d.s. matrix and � > 0. Then P is also the solution of ARI (17) if

� <
�min(Q)

�2max(P )
= Lp (29)

Proof: Assume P is a p.d.s. solution of (27). Then for any vector e

eT
�
AT
c P + PAc + �P 2 +

1

�
L2I

�
e � eT

��Q+ �P 2
�
e

� eT
���min(Q) + ��2max(P )

�
e

< 0

The following theorem is a direct result of Lemma 2.3.

Theorem 2.4 Assume � > 0 and P is a p.d.s. solution of the LE (28). The error system (6) is

asymptotically stable if

� <
�min(Q)

�2max(P )
(30)

The gain observer matrix H can be found straightforwardly by using the LQ method. The

following theorem gives a method for selecting the observer gain matrix H so that the stability

of the error system (35) is guaranteed.

Theorem 2.5 Let P be a p.d.s. solution of the ARE

AP + PAT � 2PCTR�1CP +
1

�
L2I +Q = 0 (31)

where R and Q are p.d.s. matrices. The error system (35) is asymptotically stable with H =

PCTR�1 if

� <
�min(Q)

�2max(P )
(32)

Proof: Let H = PCTR�1. Then (31) can be rewritten as (28). Since the condition (17) holds,

Theorem 2.4 yields the desired result.

Remark 2.1 The proof of Lemma 2.3 shows that condition (29) can be changed to the weaker

condition Q��P 2 > 0. Then the results of Lemma 2.3, Theorems 2.4 and 2.5 hold for Q��P 2 > 0

rather than (29), (30) and (32).
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3 Nonlinear Sliding Mode Observer Design

Now consider f(t) 6= 0. In this case, the observer (4) may not guarantees an asymptotically

stable error system (6). However, this can be accomplished by utilizing sliding mode observer

techniques.

Sliding observers potentially o�er advantages similar to those of sliding controllers, in partic-

ular, inherent robustness to parametric uncertainty and straightforward application to important

classes of systems. Here, suitable state estimation of the system (1) is considered so that the

estimate of the state is close to the actual state. This yields a reconstruction error system which

is asymptotically stable or ultimately bounded. An observer for the system (1) is assumed to be

in the form

_̂x = Ax̂+Bu+H(y � ŷ) + f(t; x̂; u) (33)

ŷ = Cx̂ (34)

where v 2 R
m is an external discontinuous feedforward compensation signal and � 2 R

n�m is

the feedforward injection map such that C� is a nonsingular matrix. Subtracting (1) from (34)

gives the dynamical reconstruction error system

_e = (A�HC)e+ f(t; x; u)� f(t; x̂; u) + �� � �v (35)

ey = Ce (36)

The ideal sliding mode for the system (34) satis�es ey = 0; _ey = 0 (Utkin, 1992). The virtual

equivalent feedforward input is given by

veq = (C�)�1C (Ae+ f(t; x; u)� f(t; x̂; u) + ��) (37)

From (35) and (37) the reduced order system

_e = (I � �(C�)�1C)Ae+ (I � �(C�)�1C) (�� + f(t; x; u)� f(t; x̂; u)) (38)

is obtained, with m of the eigenvalues of (I � �(C�)�1C)A zero and the n �m remaining ei-

genvalues assignable (Utkin, 1992).

Assumption: (Matching Condition)

Assume that there exists an m�m matrix D such that

� = �D (39)

then the disturbance and the uncertain nonlinear term do not a�ect the reduced order systems

because of (38).

Suppose that the observer gain matrix H is selected satisfying (18). Let

v =W
Ce

kCek (40)

where W is an m�m diagonal p.d. matrix with

�min(W ) �MkDk�max(CP
�1CT )

�min(CP�1CT )
(41)

2356

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



and P is a p.d.s. solution of the ARE (18). Let

� = P�1CTW�1 (42)

Noting that C� is a nonsingular matrix and W is a p.d. matrix, C�W is nonsingular and

�min(C�W ) = �min(CP
�1CT ) 6= 0

The quadratic stability of the reconstruction error system is guaranteed by (41) and (42). If

Ce 6= 0, then the time derivative _V satis�es

_V = eT
�
AT
c P + PAc

�
+ eTP (f(t; x; u)� f(t; x̂; u)) + (f(t; x; u)� f(t; x̂; u))Pe

+ 2eTCTW�1D� � 2eTCT Ce

kCek
� eT

�
AT
c P + PAc + �P 2 +

1

�
L2I

�
e+ 2 keTCT k �kW�1DkM � 1

�

� eT
�
AT
c P + PAc + �P 2 +

1

�
L2I

�
e+ 2 keTCT k

�
1

�min(W )
kDkM � 1

�

< 0 (43)

since

�min(W ) �MkDk�max(CP
�1CT )

�min(CP�1CT )
�MkDk

and P is satis�ed (18). If Ce = 0, v = veq and

_V = eT
�
AT
c P + PAc

�
+ eTP (f(t; x; u)� f(t; x̂; u)) + (f(t; x; u)� f(t; x̂; u)Pe)

+2eTPP�1CTW�1D� � 2eTPP�1CTW�1veq

� ��eT e+ 2eTCTW�1D� � 2eTCTW�1veq

= ��eT e
< 0 (44)

4 Example

Consider an observer with

A =

�
0 1

1 �1
�
; C =

�
0 1

�

(Rajamani, 1998). Assume that the uncertainty term is a Lipschitz function with Lipschitz

constant L. Let Q = 5I, R = 1 and � = 0:05. Then

H = PCTR�1 =

�
2:3420

1:8948

�

where

P =

�
9:3227 2:3420

2:3420 1:8948

�
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is the u.p.d.s. solution of the ARE (31) with the eigenvalues 9:9995 and 1:2180. The eigenvalues

of Ac = A�HC are �0:5797 and �2:3151. Since

0:05 = � <
�min(Q)

�2max(P )
= Lp = 0:0501

the condition (29) is satis�ed. Therefore P is also the solution of ARI (17). In fact, the eigenvalues

of

AP + PAT � 2PCTR�1CP +
1

�
L2I + �P 2

are �0:0005 and �4:9258. So the error system is asymptotically stable for L � 0:2536.

Now let � = 0:005. The eigenvalues of the p.d.s. solution P of the ARE (31) are 31:6089

and 3:0624. So Lp = 0:05004 and the condition (29) is satis�ed if L � 0:3250 which guarantees

that P is also the solution of the ARI (17). The eigenvalues of

AP + PAT � 2PCTR�1CP +
1

�
L2I + �P 2

are �0:0044 and �4:9531. In this case, the observer gain vector is

H =

�
4:1486
3:6787

�

The eigenvalues of A �HC are �0:8149 and �3:8637. If we set � = 0:001, then Lp = 0:0010.

The system is asymptotically stable if L � 0:2410. The observer gain is then

H =

�
6:1383

5:6586

�

and the eigenvalues A�HC are �0:8909 and �5:7678.

This method also allows us to select the observer gain vector H with prespeci�ed eigenval-

ues of Ac and then test the stability condition. Suppose that it is desired to �nd the observer

gain H so that the eigenvalues of Ac = A�HC are �6:2840 � 5:3911i, then

H =

�
69:5526

11:5680

�

Let Q = 5I and � = 0:001. The eigenvalues of the p.d.s. matrix P , the p.d.s. solution of

(28), are 70:3252 and 0:9925. P is also the solution of the Lyapunov inequality (17) because the

eigenvalues

AcP + PAT
c +

1

�
L2I + �P 2

are �0:0544 and �4:9990 with L = 0:14. The condition (30) is satis�ed for values of L � 0:14.

By selecting � = 0:01, the condition (30) is satis�ed for L � 0:1670.

5 Conclusions

A nonlinear observer design approach for a class of nonlinear systems has been studied in this

paper. The uncertainties and nonlinearities of this class of systems include two parts; one

satisfying the Lipschitz condition and the second not satisfying the Lipschitz condition but
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is bounded. We have presented some criteria to test the stability of the error system when

the system equation includes uncertainty satisfying the Lipschitz condition. If uncertainties in

the system contain a bounded uncertainty, a discontinuous feedforward compensation input is

needed to compensate the presence of the time-dependent uncertainty which does not satisfy

the Lipschitz condition. The stability of the error system is guaranteed with a discontinuous

feedforward input and some conditions on the uncertainty.
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