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Abstract

Discrete-time state space models are proposed for direct implementation of the discrete-

time linear-quadratic regulator (DLQR) with not all the state variables but only the output

of the plant measured. The case of non zero both the set point and disturbance is considered,

by using an appropriate internal model corrector. Including this corrector to the augmented

plant the considered case is transformed to usual DLQR stabilisation problem with zero set

point. Using the proposed state determination and internal model corrector the modi�ed

DLQR design technique, giving a partially prescribed pole placement, is described. Finally,

the method is illustrated in an example.

1 Introduction

The linear quadratic regulator (LQR), both in the continuous- and discrete -time versions is now

a classical problem being the subject of many papers and books e.g. remind here only two early

papers of Kalman (1960) and of Letov (1960) and two contemporary books: of Anderson and

Moore (1990) and of Dorato et al (1995). The latter book contains a compact recapitulation of

the state of art concerning this problem.

It should be realised that usual LQR stabilisation problem in both the versions takes only

into account the transients resulting from initial states with no external excitation. This means

that the zero set point is then considered. The so called LQ tracking problems admit external

excitations (non-zero set point and/or disturbance) but have unrealistic assumption that the

excitations are known in advance in the whole control horizon.

Another possibility for accounting a non zero set point and/or disturbance is the internal

model approach of Francis and Wonham (1976).

In the present paper the original state space models are proposed and used for derivation of

the discrete-time transfer function (TF) of the regulator with using discrete-time, linear quadratic

regulator (DLQR) technique. The modi�ed DLQR problem is formulated in which the internal

model corrector is used. Especially the integrator and=or oscillator are internal model correctors

corresponding to constant and=or sinusoidal excitations. Further on, the modi�ed DLQR design
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is proposed making it possible to obtain a partially prescribed pole placement of the closed-loop

(CL) system. Finally, the method is illustrated in an example.

The contribution of the paper is in the state space model proposal which together with

applied internal model corrector and an appropriate performance index creates the modi�ed

DLQR design, giving a partially prescribed pole placement of the CL system.

2 State space Model I

Consider the discrete-time plant described by the transfer function (TF)

G(z) =
Y (z)

U(z)
=

b0z
l + b1z

l�1 + :::+ bl

zn + a1z
n�1 + :::+ an

(1)

where l < n; Y (z) = Z[y(t)], U(z) = Z[u(t)], Z is the symbol of the Z transform; y(t) and u(t)
are the output and input signals, t = 0; 1; 2::: is the discrete time and an 6= 0. Assume that the

numerator and denominator of (1) are relatively prime polynomials. Determine the state I in

the form

�x1(t) = y(t+ n�m� 1)
................................................................

�xn�m(t) = y(t)
�xn�m+1(t) = y(t� 1) + �1u(t� 1)

(2)

�xn�m+2(t) = y(t� 2) + �1u(t� 2) + �2u(t� 1)
::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

�xn(t) = y(t�m) + �1u(t�m) + :::+ �mu(t� 1)
where m is an integer such that l � m � n � 1 and �i; i = 1; 2; :::;m are constant coe�cients

which will be determined further on.

Replacing t in (2) by t+ 1, using notation (2) as well as resulting from (1) equation

y(t+ n�m) + :::+ an�my(t) + an�m+1y(t� 1) + :::+ any(t�m) = (3)

= b0u(t+ l �m) + b1u(t+ l �m� 1) + :::+ blu(t�m)

we obtain the state space model I, n-dimensional in the form

�x(t+ 1) = �A�x(t) + �Bu(t); y(t) = �C�x(t) (4)

where �x(t) = [�x1(t); �x2(t); :::; �xn(t)]
T , u(t), y(t) are scalars,

�A =

2
666664

�a1 ; �a2 ; :::; �an�1 ; �an

1 ; 0 ; :::; 0 ; 0
0 ; 1 ; :::; 0 ; 0
::: ::: ::: ::: ::: ::: :::

0 ; 0 ; :::; 1 ; 0

3
777775

(5)

and �B and �C are column and row vectors, respectively, with components �Bi and �Ci; i = 1; 2; :::; n
determined by

�B1 = b0;
�Bi = 0; for 2 � i � n�m;
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(6)

�Bi = �i�n+m; for n�m+ 1 � i � n
�Cn�m = 1 and �Ci = 0 for i 6= n�m

The constants �i are chosen so that the terms u(t+ i) for i 6= 0 are eliminated in (4). After

derivations we obtain

�i = �
1

an
(bl�i+1 + an�i+1�1 + an�i+2�2 + :::+ an�1�i�1); (7)

i = 2; 3; :::;m; �1 = �
bl

an

3 Regulator-Observer Transfer Function

From solving DLQR problem described by (4) - (7) and the performance index

�I =
NX
t=0

[�xT (t+ 1) �Q�x(t+ 1) + ru
2(t)] (8)

(where �Q is a symmetric semipositive weighting matrix of the state, r is a small positive number

and N !1) the following feedback law is obtained

u = ��k�x = ��k1�x1 � �k2�x2 � :::� �kn�xn (9)

Here �k is n-dimensional vector with constant components �ki; i = 1; 2; :::; n, which may be

calculated using e.g. dlqr MATLAB function.

The regulator-observer equation and corresponding TF �R(z) may be derived by substituting

(2) to (9) and rearranging the terms containing u(t+ i):

�R(z) = �
U(z)

Y (z)
= �

�k1z
n�1 + �k2z

n�2 + :::+ �kn
zm + p1z

m�1 + :::+ pm
(10)

where pi, i = 1; 2; :::m are dependent upon �i and �ki. For m = n� 1 the TF �R(z) is proper with
(n� 1)-th order polynomials both in numerator and denominator.

The closed-loop (CL) system composed of the plant (4) and feedback (9) is optimal in steady

state and has n-th order characteristic equation. However, then all the state variables must be

measured which usually is not possible. Note, that the CL system composed of the plant (1)

and regulator (10) is of order (n + m). Therefore the latter, second system may have worse

performances than the �rst one. The �rst CL system is optimal in steady state (N !1). Then,
there arises the question: whether and in which sense the second system is optimal ? The answer

to this question will be given in Section 5.

4 State Space Model II

Consider the plant described by the TF (1). The assumption an 6= 0 is now not needed. Deter-

mine the state II in the form

x̂1(t) = y(t+ n�m� 1); x̂2(t) = y(t+ n�m� 2); :::; x̂n�m(t) = y(t);
x̂n�m+1(t) = y(t� 1); x̂n�m+2(t) = y(t� 2); :::; x̂n(t) = y(t�m);
x̂n+1(t) = u(t� 1); x̂n+2(t) = u(t� 2); :::; x̂n+m(t) = u(t�m) (11)
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where l � m � n� 1 and the notation used is the same as previously.

Replacing t in (11) by t + 1, using notation (11) and the equation (3), we now obtain the

state space model II in the form

x̂(t+ 1) = Âx̂(t) + B̂u(t); y(t) = Ĉx̂(t) (12)

where x̂(t) = [x̂1(t); x̂2(t); :::; x̂n+m(t)]T is (n+m)-dimensional and the formulas determining the

matrix Â and vectors B̂; Ĉ are dependent upon relation between m and l.

It may be shown that the elements Âi;j of the (n+m)� (n+m) matrix Â are determined

as follows:

Â1;j = �aj; for 1 � j � n;
Â1;j = 0; for n+ 1 � j � n+m� l � 1; n+ 1 � n+m� l � 1;
Âi;j = bj�n�m+l; for n+m� l � j � n+m; m > l;

Âi;j = 0; for 2 � i � n; j 6= i� 1;
Âi;i�1 = 1; for 2 � i � n;

(13)

Ân+1;j = 0; for 1 � j � n+m;
Âi;j = 0; for n+ 2 � i � n+m; j 6= i� 1;
Âi;i�1 = 1; for n+ 2 � i � n+m:

The column and row vectors B̂ and Ĉ with components B̂i and Ĉi , i = 1; 2; :::; n + m,

respectively, are determined by

B̂1 = b0, for m = l; B̂1 = 0, for m > l;

B̂i = 0, for i � 2; i 6= n+ 1, B̂n+1 = 1;
Ĉn�m = 1; Ĉi = 0, for i 6= n�m.

(14)

Note that both the state space models: I (n-dimensional described in Section 2) and II

((n + m)-dimensional described in this Section) have the same TF (1). The �rst model is

controllable and observable, while the second is controllable but not observable.

From solving DLQR problem described by (12)-(14) and the performance index

Î =
NX
t=0

[x̂T (t+ 1)Q̂x̂(t+ 1) + ru
2(t)] (15)

(where Q̂ is a symmetric, semipositive matrix, r is a small positive number and N ! 1) the

following feedback law is obtained

u = �k̂x̂ = �k̂1x̂1 � k̂2x̂2 � :::� k̂n+mx̂n+m (16)

The regulator-observer TF results from substitution of (11) into (16) and has the form

R̂(z) = �
k̂1z

n�1 + k̂2z
n�2 + :::+ k̂n

zm + k̂n+1z
m�1 + :::+ k̂n+m

(17)

Thus, for m = n� 1 the TF R̂(z) is proper, while for m = n� 2 it has the order of numerator

higher by one of that of denominator and is not implementable.
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5 Discussion of the Solutions

Note that the CL system composed of the plant described by the state space model II (12)-(14)

and the feedback (16) realises the optimal steady state DLQR solution. Note that in the feedback

(16) all the (n+m) state variables are known at time t which results from determination (11) of

the state x̂(t). The regulator (17) results directly from (16) and (11), and the state space model

II described by (12)-(14) describes the plant (1). Therefore, it results:

Corollary 1. The CL system composed of the plant (1) and regulator (17) realises the

optimal steady state DLQR solution of the problem (12) - (15).

Another situation is in the case of the CL system composed of the plant (1) and the regulator

(10). Though, the latter regulator results from substitution (2) to (9) the resulting CL system

is of (n +m)-th order, while the CL system (4)-(7), (9) is of n-th order. This means that the

CL system (1), (10) does not realise the optimal steady state DLQR solution of the problem

(4), (8). But, both the state space models, I (4)-(7) and II (12)-(14) describe the same plant

(1). For m = n� 1 the regulators (10) and (17) have the same structure i.e. the numerator and

denominator polynomials of (10) and (17) have the same orders. If additionally �xT �Q�x � x̂T Q̂x̂

then both the problems have the same plant, performance index and structure of resulting reg-

ulators. Therefore we have:

Corollary 2. If �xT �Q�x � x̂T Q̂x̂ and m = n� 1, then both the regulators (10) and (17) are

the same and realise the optimal steady state DLQR solution of the problem (12) - (15).

From comparison of (2) and (11) it results that the components of the state �x(t) are deter-
mined by some linear combinations of components of the state x̂(t), i.e. �x(t) = Hx̂(t), where H
is the n� (n+m) matrix with elements dependent upon �i; i = 1; 2; :::;m. Thus the equality

�xT �Q�x � x̂Q̂x̂ is ful�lled if Q̂ = HT �QH.

5.1 Pole placement Choice

By means of the appropriate choice of the matrix Q̂ e.g. for the state space model II it is

possible to establish an appropriate locus of (n� 1) roots of CL system. Really, if we choose the

matrix Q̂ so that

Q̂ = f
T
f; f = [f1; f2; :::; fn; 0; :::; 0] (18)

(where dimf = n+m and fi, i = 1; 2; :::; n are appropriately chosen) then the performance index

(15) takes the form

I =
NX
t=0

["2(t+ 1) + ru
2(t)]; N !1 (19)

where
"(t) = fx̂(t); "

2(t) = x̂
T (t)Qx̂(t) (20)

Substituting (11) and (18) into (20) and then replacing t by t+m we obtain

f1y(t+ n� 1) + f2y(t+ n� 2) + :::+ fny(t) = "(t+m) (21)

Minimisation of (19) especially for r! 0 means that "(t) and also "(t+m) tends to zero when
t!1. This means that when r tends to zero, then (n� 1) roots of the characteristic equation
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of the CL system determined by the steady state DLQR solution of the problem (12)-(14), (19)

tend to the roots of the equation

f1z
n�1 + f2z

n�2 + :::+ fn = 0 (22)

Thus, by means of an appropriate choice of the coe�cients fi, i = 1; 2; :::; n, we may place (n�1)
roots of the CL system, freely.

Corollary 3. The solution of the steady state DLQR problem (12)-(14), (19) for r ! 0
determines the CL system for which (n�1) roots of the characteristic equation tend to the roots

of the equation (22).

In applications one may use an appropriate lower order polynomial (22) e.g. of the second

order establishing only two roots of the characteristic equation.

The stability of the CL system resulting from solving the steady-state DLQR problem (12)-

(14), (19) is a necessary demand. Below, one from the known su�cient stability conditions is

reminded (compare (Dorato et al, 1995, p. 176)).

Stability condition. The CL system resulting from solving the steady-state LQR problem

(12)-(14), (19) is asymptotically stable if the pair (Â; B̂) is controllable and the pair (Â; f) is
observable.

6 Modi�ed DLQR Problem

Till now, the CL system with zero set point was considered. This results from the fact that the

usual steady-state DLQR problem takes only into account the transients resulting from initial

states with zero external excitation.

Consider the CL system shown in Fig. 1. Assume that the signals w(t) and d(t) are di�erent,
but both ful�l the following di�erence equation

~u(t+ p) + d1~u(t+ p� 1) + :::+ dp~u(t) = 0 (23)

This means that the equation (23) is ful�lled if we substitute ~u(t) = w(t) or ~u(t) = d(t). The

fact that the signals w and d are di�erent results from di�erent initial conditions of the equation

(23) used for generating both the signals.

If for instance w1(t) = �w = const and z1(t) = Asin(!t + ') then the equation (23) takes the

Figure 1: Closed-loop system.

form

~u(t+ 3)� (1 + 2cos!)~u(t+ 2) + (1 + 2cos!)~u(t+ 1)� ~u(t) = 0 (24)
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The signals w1(t) and z1(t) with any �w , A and ' are the solutions of the equation (24) with

appropriate initial conditions.

Consider the corrector described by the TF

U(z)

V (z)
= C(z) =

1

zp + d1z
p�1 + :::+ dp

(25)

which in denominator has the polynomial corresponding to the equation (23); V (z) = Z[v(t)] is
the input of the corrector.

The augmented plant described by the TF

E(z)

V (z)
= �G(z) = C(z)G(z) (26)

is of (n + p) order and has all the modes of the plant (1) and of the corrector (25). Thus, the

error e = y1 + d�w appearing in the CL system shown in Fig.1 can be obtained directly as the

output of the augmented plant (26) for some appropriate initial conditions. This fact justi�es

the used notation E(z) = Z[e(t)] for the augmented plant output.

Let

x
�(t+ 1) = A

�
x
�(t) +B

�
v(t); e(t) = C

�
x
�(t) (27)

be the state equation of the augmented plant (26) derived by using the formulas (11)-(14). It

means that the state components x�i (t) are determined by the formulas (11) in which the variables

x̂i(t), y(t), u(t) and n are replaced by x�i (t); e(t); v(t) and n+ p, respectively, and the elements

of (n + p +m) � (n + p +m) matrix A� and of (n + p +m) vector B� are determined by the

appropriately modi�ed formulas (13), (14).

Using the performance index

�I =
NX
t=0

[x�T (t+ 1)Q�
x
�(t+ 1) + rv

2(t)]; N !1 (28)

where Q� = fT f , by the appropriate choice of (n+ p) components of the (n+ p+m) vector f ,
we may establish maximum (n+ p� 1) roots of the CL system.

It is easy to note that the formulas (27), (28) determine the usual steady state DLQR sta-

bilisation problem with zero set point.

Thus, the considered problem with non zero w and dmay be solved using a modi�ed MATLAB

function (called dlqr1, which uses fast conergence of the solution of dynamic Riccati equation)

for the case of zero excitations. It is worthwhile to note that the dlqr MATLAB function, used to

the DLQR problem with the state space model II usually gives no result, therefore this function

needs some modi�cation. On the other hand the solution may be usually obtained by means of

the function dlqr when the state space model I is used.

Applying an appropriate MATLAB function to the matrices A�; B�; Q� and r we obtain

similarly as (16)

v(t) = �kx�(t) = �k1x
�

1(t)� k2x
�

2(t)� :::� kn+p+mx
�

n+p+m(t) (29)

The regulator-observer TF results from substituting the state components x�i (t) determined by

modi�ed formulas (11) into (29)

R1(z) =
V (z)

E(z)
= �

k1z
n+p�1 + k2z

n+p�2 + :::+ kn+p

zm + kn+p+1z
m�1 + :::+ kn+p+m

(30)
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Finally the regulator for the CL system which contains the observer and the internal model

corrector takes the form

R(z) =
U(z)

E(z)
= C(z)R1(z) (31)

It is easy to note that for m = n� 1 the TF R(z) is proper with polynomials of (n+ p� 1) order
both in numerator and denominator.

The internal model equation should be of not to high order since it in�uences the order of

the CL system. Since the DLQR solution for a small r determines usually a high gain feedback

control, therefore the inclusion of the internal model corrector in some cases may be not needed.

7 Example

Let the discrete-time plant G(z) shown in Fig. 1 results from discretization of the continuous-

time plant K(s) with zero order hold and sampling period h = 0:1. Let

K(s) =
1

s2 + 2s+ 3
G(z) =

b0z + b1

z2 + a1z + a2
(32)

where b0 = 0:00467, b1 = 0:00437, a1 = �1:79161, a2 = 0:818731. We would like to design the

regulator R(z) for which the CL system works su�ciently accurately for any non zero constant

set point w = const 6= 0 and for sinusoidal disturbance �d(�t) = Asin(2�t+ ') with any amplitude

A and phase ' (�t-denotes the continuous time).

Further on, three di�erent regulators shall be designed.

7.1 DLQR Without Corrector

For the plant G(z) determined by (32), the formulas (11) with n = 2, m = 1 may be used for

determination of the state components.

Assuming f = [1; 0; 0] and choosing r = 0:001, the following TF of the regulator has been

obtained.

R1(z) =
U(z)

Y (z)
= �

k01z + k02

z + k03
(33)

where k01 = 65:4283, k02 = �45:3770, k03 = 0:2422 were calculated using a modi�ed dlqr1
MATLAB function. The roots of the characteristic equation of the CL system (32), (33) are:

z01 = 0:6219 + j0:2684; z02 = 0:6219 � j0:2684; z03 = 0.
The regulator (33), designed using usual steady state solution of DLQR problem with zero

excitation, was applied in the system shown in Fig. 1 having assumed non zero signals w and

d(t). The results of simulations performed with SIMULINK are shown in Fig. 2.

7.2 DLQR with Internal Model Corrector

The internal model di�erence equation for considered signals w = const 6= 0, �d(�t) = Asin(2�t+')
takes the form (24) with ! = 0:2. The latter value results from accounting that for sampling

period h = 0:1 it is �t = 0:1t. The corresponding internal model corrector (25) takes the form

C(z) =
1

z3 � 2:9601z2 + 2:9601z � 1
(34)
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Figure 2: Results of simulations for CL system with regulator R1(z).

Including the corrector (34) to the plant G(z) we obtain the augmented plant �G(z) = C(z)G(z)
of the �fth order. To derive the state space model II (27) we use the formulas (11) with n+p = 5,
m = 1 and e(t) = y1(t) + d(t)� w(t) (d(t) = �d(0:1t)): Determining

x
�

1(t) = e(t+ 3); x
�

2(t) = e(t+ 2); x
�

3(t) = e(t+ 1); x
�

4(t) = e(t);

x
�

5(t) = e(t� 1); x
�

6(t) = v(t� 1) (35)

and using (13), (14) (or deriving from (35) and the di�erence equation describing the augmented

plant �G(z) with components bi and ai in numerator and denominator, respectively) we obtain

x
�(t+ 1) =

2
66666664

�a1; �a2; �a3; �a4; �a5; b1

1; 0; 0; 0; 0; 0;
0; 1; 0; 0; 0; 0;
0; 0; 1; 0; 0; 0;
0; 0; 0; 1; 0; 0;
0; 0; 0; 0; 0; 0;

3
77777775
x
�(t) +

2
66666664

b0

0
0
0
0
1

3
77777775
v(t) (36)

Assuming f = [0; 0; 0; 1; 0; 0] and r = 0:001 we obtain �nally

R2(z) = �C(z)
k1z

4 + k2z
3 + k3z

2 + k4z + k5

z + k6
(37)

where k1 = 336:364, k2 = �970:798, k3 = 1117:01, k4 = �595:849, k5 = 123:076, k6 = 0:657
were calculated as previously. The roots of the characteristic equation of the CL system (32),

(34), (37) (and of the CL system (36), (29)) are: z1 = 0:5583 + j0:5445, z2 = 0:5583 � j0:5445,
z3 = 0:4730 + j0:2383, z4 = 0:4730 � j0:2383, z5 = 0:4612, z6 = 0.

The results of simulations for the CL system (32), (34), (37) are shown in Fig.3.

Figure 3: Results of simulations for CL system with regulator R2(z).
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7.3 DLQR with Partially Established Roots

To decrease the oscillations in the transient period now the vector f will be chosen so that two

roots of the CL system correspond to the roots of the CT system s1 = �0:5+j1:2 s2 = �0:5�j1:2
(this pair of roots, if it is dominant, give approximately 25% overshot of the step response).

Assuming f = [0; 0; 1;�1:8888; 0:9048; 0] (which establishes two roots z1 = exp(�0:05+j0:12) =
0:9444 + j0:1139 and z2 = exp(�0:05 � j0:12) = 0:9444 � j0:1139 of the CL system) and using

the same models (34), (36) we obtain

R3(z) = �C(z)
�k1z

4 + �k2z
3 + �k3z

2 + �k4z + �k5
z + �k6

(38)

where �k1 = 152:9672, �k2 = �514:6322, �k3 = 654:4318, �k4 = �373:6783, �k5 = 81:1897, �k6 =
0:4333 were calculated as previously. The roots of the characteristic equation of the CL system

(32), (34), (38) (and of the CL system (36) with corresponding state feedback) are: �z1 = 0:9444+
j0:1139, �z2 = 0:9444�j0:1139, �z3 = 0:5968+j0:4059, �z2 = 0:5968�j0:4059, �z5 = 0:5215, �z6 = 0

The results of simulations for the CL system (32), (34), (38) are shown in Fig.4

Figure 4: Results of simulations for CL system with regulator R3(z).

7.4 Results of Simulations

For all the three obtained regulators the responses of the CL system to the set point w(t) = 1(t)
(1(t) = 0 for t < 0 and 1(t) = 1 for t � 0) and to the disturbance �d(�t) = 1(�t� 7)Asin(2(�t � 7))
were calculated. From Fig. 2 it is shown that the CL system with regulator R1(z) has an error

in steady state both for the constant set point and the sinusoidal disturbance. The results of Fig.

3 show that the CL system with regulator R2(z) having internal model corrector has no steady

state errors for both the signals w and �d(�t). From Fig. 4 it results that the CL system having

regulator R3(z) designed with additional partial choice of pole placement has better response in

the transient interval.

It is worthwhile to note that in all the three considered cases the same regulators were

obtained by using the state space model I. The condition was that in derivations the same

performance index was used. In this case the usual dlqr MATLAB function gave good results.

Note, that the CL system working with each of the designed regulator has one zero root of its

characteristic equation. Additionally, it becomes that for each designed regulator the remaining

non zero roots are the same as for the CL system resulting from the model I in which all the

state components are available. When only the output is available and the designed regulators

are implemented then the CL systems have their order increased respectively by one and have the

additional zero root. It looks that it is a regularity which may be the subject of further researches.
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8 Conclusions

The proposed state space models make it possible to derive the regulator transfer function im-

plementable in feedback control with not all the states but only the output variable measured.

The appropriate choice of the weighting matrix Q makes it possible to establish a partial

placement of the poles of the CL system.

The problem with non-zero both the set point and the disturbance ful�lling the internal

model equation, may be transformed to the usual steady state DLQR stabilisation problem with

zero set point, by including the internal model corrector to the augmented plant and using one

of the proposed state space model. In this manner the solution of the usual steady state DLQR

stabilisation problem may be used for designing the regulator for the system with non-zero set

point and disturbance.

The integrator and=or oscillator corrector is a special case of the internal model corrector.

DLQR technique with using integrator-oscillator correctors makes it possible to design regulators

working accurately in steady state for any constant and sinusoidal set point and=or disturbance

with given frequency.

Similar modi�ed LQR design method can be applied for continuous-time systems. The main

di�erence is in the state space model in which in the place of output and control variables eval-

uated at times back shifted, some appropriate integrals of output and control should appear.
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