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Abstract

It is known that unstable open-loop plants can be stabilized under constrained controls

only locally. To understand this fact, it is shown how bifurcations at in�nity are always

involved in the stabilizing process. These bifurcations are easily detected by studying the

Nyquist plots. The approach is illustrated with a concrete example of a anti-windup scheme

taken from the literature.

1 Introduction

The class of linear systems with saturating actuators has deserved the attention of researchers

in the last years as most practical systems have bounded control, see for instance (Bernstein

and Michel, 1995). In this context, the speci�c problem of stabilizing open-loop unstable plants

has been addressed in many recent papers, see in particular the theoretical results in (Zhao and

Jayasuriya, 1995).

However, it is our feeling that in order to achieve a deeper insight in the behavior of physical

dynamic systems, which are subject to hard (nonlinear) constraints (as is the case of control

systems, where actuator saturations cannot be avoided) a more frequent resort to bifurcation

theory must be done.

No doubt, in the particular case of control systems with saturation, the situation is changing,

since control engineers are more aware of the bene�ts that the tools of qualitative theory of

dynamical systems and especially bifurcation theory can report (Abed et al. , 1996). Nonetheless,

it seems still relevant to pay attention to some phenomena not yet well known by the majority

of practitioners. It should be mentioned that saturations can be responsible not only for local

bifurcations but for global ones (Aracil et al. , 1998).
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In this paper, we address a particular topic related to bifurcation theory, which is respon-

sible for certain global problems in control system with saturated inputs, namely the generic

appearance of bifurcations at in�nity. This phenomenon has been shown to be in the core of

windup problems (Aracil et al. , 1997) as well as in robustness issues of the system (Ponce et al. ,

1996). Also, it has important implications when a time-delay is present (Pagano et al. , 1997).

These concepts will be illustrated through an example (Middleton, 1996) from Chapter 20 of

the IEEE Control Handbook (Levine, 1996), devoted to systems with actuator saturation.

2 Preliminary results: Equilibria and limit cycles of nonlinear

SISO systems

In this section, some preliminary results about equilibria and limit cycles of nonlinear SISO

systems will be reviewed. More details about the methodology used can be found in (Tesi et

al. , 1997). Consider the following nonlinear control system in Rn, composed by a linear plant

_x = A�x+ b�u; (1)

subject to a nonlinear feedback de�ned by a memoryless function u = ��(y); where as usual

the output is a linear combination of the states, that is y = c�x: Equivalently,

_x = A�x� b��(c�x): (2)

Here � 2 R
m denotes a vector of parameters. The linear part can be described by the transfer

function G�(s) = c�(sI�A�)
�1
b� so that, assuming that A� is invertible, G�(0) = �c�A

�1
� b�

is the open-loop static gain. Alternatively, if D denotes the di�erential operator with respect to

time, the dynamical system can be represented by the scalar di�erential equation

q�(D)y(t) + p�(D)�[y(t)] = 0; (3)

where q� and p� are polynomials of degree n and n�1 respectively, so that G�(s) = p�(s)=q�(s).

As is well known, the expression (3) can be used to determine the equilibrium points of the

system. If ye is the output value corresponding to an equilibrium steady state then Dye = 0

and D�(ye) = 0, and so

q�(0)y
e + p�(0)�(y

e) = 0: (4)

If A� is invertible then the above equation is equivalent to

ye = �G�(0)�(y
e): (5)

Otherwise, when detA� = 0, then q�(0) = 0 and Eq. (4) becomes

�(ye) = 0; (6)

where it has been assumed that p�(0) 6= 0.

Suppose that ye is a solution of Eq. (5) or a solution of Eq. (6) when q�(0) = 0. By

linearizing �(y) around ye, the stability character of the corresponding equilibrium point can be

obtained by considering the roots of the characteristic polynomial of the perturbation equation

[q�(D) + p�(D)�0(ye)]�y(t) = 0; (7)
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where the apostrophe (0) denotes the derivative of the function with respect to its argument.

Thus, if �0(ye) 6= 0, it su�ces to study the polynomial

q�(�) + p�(�)�
0(ye) = 0; (8)

and that can be graphically made by plotting G�(j!) and using the Nyquist criterion about

the point �1=�0(ye) in the complex plane. Note also that for �0(ye) = 0 the characteristic

polynomial of (8) reduces to q�(�) and so the stability of the equilibrium point coincides with

the stability character of the open-loop system.

So equilibrium points are related to the solutions of (5)-(6). Due to parameter modi�cations,

they can undergo bifurcations when one or more of their eigenvalues cross the imaginary axis of

the complex plane. The phenomenon can be visualized by observing the polar plot. Taking for

instance a solution of (5), when a parameter movement makes to change the relative position of

the plot of the transfer function with respect to the point �1=�0(ye) a bifurcation phenomenon

must be involved.

Apart from equilibria, other important invariant sets that organize the dynamics of the

system are limit cycles, i.e. isolated periodic orbits. To determine approximately periodic orbits

and their stability, a describing function approach can be used. Taking only in consideration

memoryless nonlinearities, a �rst harmonic analysis by means of the determining equation

1 +N(A)G�(j!) = 0; (9)

where N(A) is the corresponding describing function, can be done by looking at the intersections

of the graphics G�(j!) and �1=N(A). The stability of predicted limit cycles can be deduced

from Loeb criterion, see (Moiola and Chen, 1983) but also (Llibre and Ponce, 1996).

3 Generic bifurcations for systems with constrained controls

After some rescaling if needed and without loss of generality, suppose that the nonlinearity is

the normalized saturation function �(y) = sgn(y)minfjyj; 1g, as shown in Fig. 1. From (5) the

equilibrium points can be determined by solving the equation

�
1

G�(0)
ye = �(ye): (10)

Note �rst the degeneration corresponding to G�(0) = �1, where there appears an in�nity of

nonisolated equilibrium points. If G�(0) < �1, the system has three equilibrium points, the

origin and the points corresponding to ye = �G�(0), and only one equilibrium point (at the

origin) otherwise, see Fig. 1.

From Eq. (8) and using that �0(0) = 1, the stability of the origin (or closed-loop stability)

is governed by the characteristic polynomial

Q�(�) = q�(�) + p�(�): (11)

If the origin is stable one must have as a necessary condition that

Q�(0) = q�(0) + p�(0) > 0: (12)

Analogously, the stability of the symmetric pair of equilibria that exist for 1 + G�(0) < 0 is

given by q�(�) (the open-loop characteristic polynomial), since then �0(ye) = 0 in Eq. (8). Note

that when q�(0) 6= 0 and the origin is stable, from (12) one has that

Q�(0) = q�(0)[1 +G�(0)] (13)
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Figure 1: Equilibrium points of the system according to G�(0).

is positive and so, if there are other equilibria, they are unstable since q�(0) < 0. Reciprocally,

if they are stable then q�(0) > 0 and from (13) the origin must be unstable.

Therefore two di�erent bifurcations related to a change in the number of equilibrium points

are possible. First, a degenerate pitchfork bifurcation (to be denoted by P0) occurs at G�(0) =

�1, giving rise to two new equilibrium points. Note that from (13) an eigenvalue associated with

the equilibrium at the origin vanishes when 1+G�(0) = 0. Second, for q�(0) = 0 we have another

pitchfork bifurcation (denoted by P1) where the two additional equilibrium points disappear

(appear) going to (coming from) in�nity. We will say that P1 represents a pitchfork bifurcation

at in�nity.

Considering only the equilibrium at the origin, other bifurcations (not giving rise to new

equilibria) can take place when a change of its stability is produced by moving parameters, so

that one or a pair of eigenvalues crosses the imaginary axis. From (11) and (12), one eigenvalue

changes its sign if

q�(0) � 0; and p�(0) = 0 (14)

to become negative, and this phenomenon does not imply any change in the number of equilibria.

This represents a saddle-node bifurcation of the origin and will be denoted by SN0. Again from

(11), a crossing of a pair of eigenvalues occurs for the values of � such that

q�(j!) + p�(j!) = q�(j!)[1 +G�(j!)] = 0; (15)

where it is assumed q�(j!) 6= 0, that is, the open-loop dynamics has no poles in the imaginary

axis. The phenomenon generically corresponds with the so called Hopf bifurcation and is associ-

ated to the birth of a limit cycle along with the change of the origin stability. It will be denoted

by H0 and from (15) it corresponds with parameter values in the set

H0 = f� 2 R
m : 9! > 0 with G�(j!) = �1g: (16)

This bifurcation can be interpreted in terms of the describing function analysis and visualized

by means of the Nyquist plot evolution as parameters change. As is well known, the describing

function of the saturation in (9) veri�es 0 < N(A) � 1 for every value of A > 0, and then
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�1=N(A) 2 (�1;�1]. Therefore, from (9), if the polar plot of G�(j!) does not intercept the

interval (�1;�1] then we have no periodic orbits. Assuming that this is the case, a parameter

change such that G�(j!) begins to cut �1=N(A) implies that the system undergoes a bifurcation

giving rise to a limit cycle.

Consequently, a passing of the graph of G�(j!) through �1 should correspond, recalling Eq.

(16), with a Hopf bifurcation at the origin H0, and is associated to the birth of a limit cycle

of small amplitude. As it has been already noted, this bifurcation implies a stability change of

the origin, what is graphically con�rmed, since �1 = �1=�0(0) and the relative position of this

point with respect to the plot of the transfer function G�(j!) changes.

But a second possibility for the graph of G�(j!) is to begin to cut the interval (�1;�1]

from the left, that is in the large amplitude points of the graph of �1=N(A). The corresponding

bifurcation will be denoted by H1, and we will say that the system undergoes a Hopf bifurcation

at in�nity , see (Llibre and Ponce, 1997) for a more mathematical treatment in the planar case.

A necessary condition for this phenomenon can be derived as follows. Let !c > 0 denote a value

of ! such that ImG�(j!c) = 0. Then, assuming that this condition de�nes implicitly !c as a

function of � in some open set M � R
m, the parameter values �� 2 M corresponding to H1

will satisfy lim�!�� G�(j!c(�)) = �1; so that

H1 � f� 2 R
m : 9! � 0 with q�(j!) = 0g: (17)

It should be noticed that in the H1-case no changes of the local stability of the origin are

required.

Of course, other more complicated situations are also possible, but here we want only to

remark the di�erent character between local bifurcations (P0, SN0, H0) and global ones (P1,

H1).

4 Application to windup problems

Consider the following example (Middleton, 1996) shown in Fig. 2, where an unstable open loop

plant is controled with a PI controller with saturation. This example is used by the author to

illustrate the undesirable e�ects of the actuator saturation.

1

s - 1

r= 0

-

+ e(t) u (t)a y(t)
7 s + 5

u(t)

G (s) G(s)
1

s

Figure 2: Open-loop unstable system with actuator saturation.

In (Middleton, 1996) is shown that a step change of 0:8 units in the system reference leads it

out of control. No explanation is given about what actually happens. The fact is that the system

has an unstable limit cycle that encircles the origin, as is easily checked using the describing

function method (Fig. 3a) or simply by constructing the corresponding state portrait (Fig.

3b). Probably that is implicit for the author, but we think that this is quite relevant as the

appearance of the limit cycle is a global phenomenon due to the nonlinearity.
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Figure 3: System without anti-windup for kT = 7 and a = �1: a) polar plot of GT (j!); b) state

portrait (x1; x2).

The system in Fig. 2 is equivalent to the one in Fig. 4. This last �gure shows the conventional

separation of the linear and nonlinear part, which gives rise to a representation amenable to

describing function method. The linear part is such that

GT = G1G =
k1(s+ k2)

s

k

s+ a
;

and the nonlinearity �(u) is a normalized saturation.

The parameters in the concrete case of (Middleton, 1996) take the values k1 = 7, k1k2 = 5,

k = 1 and a = �1. However, a generic case will be analysed here �xing only k2 = 5=7, in order

to get universality and take advantage of the bifurcation point of view.

.
u  (t)

)
a

φ(

- G   G1

u(t)

Figure 4: Equivalent scheme of the system without anti-windup.

De�ning kT = kk1 and � = (a; kT ), we write q�(s) = s(s+ a), p�(s) = kT (s+ k2), so that

Q�(s) = s2 + (a+ kT )s+ kTk2:

Therefore, the system is closed loop stable if kT > 0 and a + kT > 0. Applying the concepts

of previous section, we see from (14) that a saddle-node bifurcation SN0 appears for kT = 0,

and then for kT < 0 the system becomes unstable. Also, from (17) we detect a Hopf bifurcation

at in�nity H1 for a = 0 that gives rise to one unstable limit cycle of great amplitude for

kT < a < 0, limiting the attraction basin of the origin. This region of local stability, see Fig. 5,
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ends to the left in the line 0 < kT = �a where, recalling (15)-(16), a Hopf bifurcation (denoted

by Hu
0
) is produced. This bifurcation makes the operating point unstable, giving rise to the

disappearance of the unstable limit cycle. It should be remarked that the stability is global for

a > 0 and kT > 0, but only local for a < 0 and a+kT > 0. In Fig. 6 the bifurcations diagram of

the system for a positive value of kT is displayed. This diagram shows the loci of equilibria and

limit cycles as parameter a varies. It is clear that the Hopf bifurcation at in�nity Hu
1
, which

gives rise to the unstable limit cycle and thus a limited attraction basin, is responsible of the

global troubles with the actuator saturation for this open-loop unstable plant (a < 0).

5

7
k  = 

oH u

2

o

a

GLOBAL 

LOCAL
STABILITY

u
o

STABILITY

0

H

SNo

k 

k  =-aT

T

UNSTABLE

Figure 5: Bifurcation set in the parameter plane (a; kT ) for the system without anti-windup.

u
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Figure 6: Bifurcations diagram of the system without anti-windup, for kT > 0.

The diference between local and global phenomena is more crucial when analysing the solu-
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tion given in Fig. 7, where it is proposed an anti-integral windup scheme (Middleton, 1996). This

scheme corrects only the local e�ects and if, as will be seen, the unstable limit cycle disappears,

new equilibria are born and the global phenomena remain.

-

+
G(s)

ue(t) a(t)u(t)
+

G  (s)

G  (s)

1

u
1

u
2

r= 0

2

φ (u)

AW Control

y(t)

-

Figure 7: Diagram of the system with anti-windup.

2

u(t) u  (t)a

1- (G   G + G   ) 

φ(.)

Figure 8: Equivalent scheme of the system with anti-windup.

The anti-windup scheme proposed in (Middleton, 1996) is such that G1(s) = (7s+5)=(s+5),

G2(s) = �5=(s + 5) and G(s) = 1=(s � 1). If the system reference is considered equal to zero,

then this scheme is equivalent to the one shown in Fig. 8. To verify this equivalence it should be

considered that the constraints on the control variable are only included in the control law and

not in the plant because of redundancy. It should be remarked that with the change of scheme

the type of the linear system has varied from type 1 to type 0. This change of type is deeply

related with the global changes, as will be seen in what follows.

The linear part now results to be

GT = G1G+G2 =
k1(s+ k2)

s+ b

k

s+ a
�

b

s+ b
;

and then

GT (0) =
kT k2

ab
� 1;

being b = 5 and the other parameters as above.

In the case considered, where a = �1 and all the other parameters b, k, k1, and k2 are

positive, it is clear that GT (0) < �1. So the shape of the polar plot of GT (j!) and the state

portrait of the system are the ones shown in Fig. 9. This �gure has been plotted with the same

scale of Fig. 3 to remark the e�ects of the anti-windup on the system gain. Recalling the results
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Figure 9: System with anti-windup: a) polar plot of GT (j!); b) state portrait (x1; x2).

in Sec. 3, it is deduced that now the closed loop system has in the state space two saddles,

further than the equilibrium point at the origin.

To gain a wider perspective on what actually happens it is worthy to analyse Fig. 10 where

the di�erent behavior regions of system behavior are displayed in the (a; kT ) plane. In this �gure

it is shown that again for a > 0 and kT > 0 the system is globally stable. However, for a < 0 it

is only locally stable due to a pitchfork bifurcation at in�nity P1. This bifurcation gives rise to

two equilibria (saddles) whose stable manifolds limit again the attraction basin of the origin.

Using the ideas previously developed, other bifurcation lines limit the local stability pa-

rameter region. At a = �kT the system undergoes a Hopf bifurcation at the origin H0. The

dashed curve of Fig. 10 corresponds to double saddle connection bifurcation points (DSC),

and intersects in the point T the line of Hopf bifurcation points H0, separating supercritical

Hopf bifurcation points Hs
0
from subcritical ones Hu

0
. The DSC bifurcation is a more complex

phenomenon that is far from the scope of this paper, see (Guckenheimer and Holmes, 1983).

For more details, see (Aracil et al. , 1997).

In this way it is concluded that the anti-windup scheme (even improving the local behavior

at the equilibrium point) does not solve at all the global problems. The unstable limit cycle

has disappeared but instead two saddles have arised giving rise to new global di�culties. For

instance in (Middleton, 1996) it is said that for a step change of 1.0 units the system recovers

the operating point. That is true, but for 1.2 units it gets again out of control. So the advantage

in a global setting is more limited than thought. The qualitative analysis proposed here could

help to better understand the global problems involved in the design and how to improve it.

5 Conclusions

In this paper, bifurcations at in�nity have been shown to be in the core of global state-space

problems raised by the nonlinear structure of systems with constrained controls. Some insight

has been gained regarding the behavior problems in systems with actuator saturations, and in

particular for an anti-windup scheme.
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