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Abstract

The topics of Identification and Robust Control have a rich history and have reached
a level of considerable maturity. A difficulty, however, is that the two fields have evolved
along different lines and now have many incompatibilities. The aim of this paper is to
raise awareness to this problem and to suggest alternative formulations that may lead to
a better match between the fields. One possible line of attack on the problem is proposed
together with illustrations showing the merits of approaching this problem from alternative
perspectives.

1 Introduction

The subject of robust control has been central to research endeavours in the area of systems and
control over the past 4 or 5 decades, see e.g. (Zhou et al., 1995; Dahleh and Diaz-Bobillo, 1995;
Bhattacharyya et al., 1995). Modern robust control design procedures include H∞ methods,
(Doyle et al., 1989; Grimble, 1994; Stoorvogel, 1992; Balas et al., 1993), `1 methods (Dahleh
and Diaz-Bobillo, 1995) and so on.

A typical starting point for contemporary robust control algorithms is that one has available
hard bounds on the model uncertainty. This has led to substantial interest in the problem
of obtaining error bounds from experimental data, see, e.g. (Belforte et al., 1990; Helmicki
et al., 1991; Makila and Partington, 1991; Milanese and Belforte, 1982; Norton, 1987; Lau et al.,
1992), etc. However, these bounds have been predicated on the existing formulations of robust
control and have thus focused on hard bounds in the frequency domain. This formulation of the
problem disregards the fact that virtually all of the existing literature on the subject of system
identification has been based on a probabilistic noise assumption which leads to statistical error
bounds, see e.g. (Söderström and Stoica, 1989; Ljung, 1987). This dichotomy is philosophically
objectionable, even if in practice, users feel they have adequate answers to the dual problems of
identification and robust control.

In the light of the above arguments, the aim of this paper is to put the case for a better
match between robust control and system identification. This will actually lead us to reexamine
the existing wisdom regarding both fields. We hasten to add that our objective is not necessarily
to lay down a final solution to the question. Instead, we hope that by bringing the two fields
∗CIDAC is an Australian Government funded Special Research Centre.
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together we can inspire continued R&D effort which takes account of the totality of the problem
rather than allowing one side to “call the shots”.

With respect to system identification, our aim is, not only to obtain an estimated model, but
also to give a quantification of the expected errors associated with that model. We recognize two
sources of errors. Firstly, disturbances and measurement noise (present in all real data) induce,
so-called, variance errors. Secondly, the impossibility of obtaining a complete description of the
system within the hypothesised model structure induces, so-called, undermodelling or bias errors.
Our aim is to give a consistent paradigm for quantifying the effect of both these errors on the
estimated model. The study of the first of these error sources is the basis of traditional statistical
theory. However, the undermodelling error component lies outside the scope of traditional
approaches. For this reason, there has been ongoing interest in this topic, especially in the
context of identification for robust control design.

In recent literature, undermodelling errors have been studied from several alternative per-
spectives (see e.g. (Ninness and Goodwin, 1995)). The existing approaches can be broadly
classified into two streams, depending upon the type of error bounds computed. On the one
hand, by characterising the undermodelling error sources as deterministic one can obtain “hard”
L∞-type error bounds. On the other hand, by characterising the undermodelling error sources as
stochastic one can obtain “soft” variance-type error bounds. We remark that this classification,
however, does not exhaust the possibilities to assess the model quality; see e.g. (Ljung and Guo,
1997).

The stochastic characterisation of modelling errors due to noise has been widely accepted as
having a high degree of validity in practice (Goodwin and Payne, 1977; Ljung, 1987; Söderström
and Stoica, 1989). It is therefore of interest to examine the possibility of extending this approach
to undermodelling. A first step towards a stochastic characterisation of undermodelling errors
was proposed in (Goodwin and Salgado, 1989), in which the “true” system model was embedded
in an underlying stochastic process in the frequency domain. A further step in developing this
paradigm was suggested in (Goodwin et al., 1992), where a maximum likelihood procedure
was proposed for estimating the parameters in the distribution of the embedded process, thus
providing a self-contained mechanism for going from observed plant data to estimated model and
associated error bounds. A practical case study of this methodology is described in (Tøffner-
Clausen, 1996). More recently, it has been proposed in (Goodwin et al., 1999a) that a more
appropriate characterisation of the undermodelling would be as a multiplicative error which
forms a non-stationary (random walk) stochastic process in the frequency domain. An additional
feature of this approach is that it significantly simplifies the estimation of the parameters of the
embedded process and, in particular, yields a closed-form expression for the total model error
quantification due to noise and undermodelling. We will give brief details of this formulation
below.

Turning to robust control; traditionally this has assumed the presence of hard error bounds.
This is clearly inconsistent with soft bounds of the type described above. We will thus suggest an
alternative approach to robust control which makes use of the type of model error quantification
provided by the identification procedures in common use. In particular, we will aim to use
statistical confidence bounds. With this type of bound it is unreasonable to guarantee stability,
instead the focus here is to minimize the variance from a nominal design, which, inter alia will
ensure that stability is addressed in a probabilistic sense. The essential idea of the procedure we
describe is to modify a nominal controller so as to minimize the expected variation (variance)
of the actual system performance from an a priori given desired performance.
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2 Model Description

We consider a single-input single-output linear dynamic system having an unknown transfer
function g(jω); ω ∈ (0,∞). Our objective is to fit a model of the form g0(jω; θ) to plant
input-output data by estimating θ by θ̂.

We assume that there exists some (unknown) θ ∈ Rp such that

g(jω) = g0(jω; θ) + δg(ω), (1)

where δg represents the undermodelling error. The core idea of the model error quantification
procedure proposed here is to think of δg as a particular realization of a stochastic process;
i.e. δg is given a probabilistic interpretation similar to that which we typically ascribe to noise
and disturbances (Goodwin and Salgado, 1989; Goodwin et al., 1992). More will be said below
about the specifics of the frequency domain embedded process. Note that we do not assume the
existence of a value θ0 ∈ Rp such that g0(jω; θ0) = g(jω). On the contrary, (1) implies that the
model class g0(jω; θ) is fundamentally inadequate. We suggest that this coincides with practical
reality.

We will approach the problem of estimating the transfer function in two stages. We first
show how g(jω) can be estimated for ω belonging to a finite set of (not necessarily equally
spaced) frequencies {ω1, . . . , ωm}. Then, we show how the parameter vector θ can be estimated
along with the embedded undermodelling parameters in the frequency domain.

3 Transfer Function Point Estimation

Suppose that we are given a set of sampled input-output data of length N with sampling
period T . In going from time domain data to an estimate of g(jω), we assume a periodic input
comprising m sine waves of frequencies {ω1, . . . ωm}1. (This is not crucial but simplifies the
description of the algorithm.) Thus,

u(t) =
m∑
`=1

A` cos(ω`t),

where

ω` =
k`2π
NT

, with k` ∈ {1, . . . , N}, (2)

We aim to obtain a first “raw” estimate of the transfer function at these frequencies. As-
suming that the data are collected under steady state conditions, the corresponding sampled
output response is given by

y(kT ) =
m∑
`=1

A`g
R(ω`) cos(ω`kT )−

m∑
`=1

A`g
I(ω`) sin(ω`kT ) + v(kT ),

where the true frequency response of the plant satisfies g(jω`) = gR(ω`)+jgI(ω`) and {v(kT )}Nk=1

is a noise process.
1For simplicity we assume that no ω` = 0 and that the phases are all zero. The theory can be trivially extended

otherwise.
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The above formulation suggests that gR and gI can be estimated using correlation methods.
Specifically, we propose

ĝR(ω`) =
2

A`N

N∑
k=1

y(kT ) cos(ω`kT ), (3)

ĝI(ω`) = − 2
A`N

N∑
k=1

y(kT ) sin(ω`kT ). (4)

Actually, it can be readily shown that these are the optimal least squares estimates. For
future reference, we call the estimates given in (3), (4), “transfer function point estimates”.

4 Stochastic Embedding of the Noise Process

Note that bias errors need not be considered at this stage since we are fitting the model on
a frequency by frequency basis. Within this context, it is standard in system identification to
assume that the noise process {v(kT )}Nk=1 is a realization of a time-domain stochastic process.
For simplicity we assume here that the noise is a realization of a stationary uncorrelated sequence
of variance δ2

v , that is

E{V V ′} = δ2
vI, (5)

where V = [v(T ), v(2T ), . . . , v(NT )]′. Clearly other (coloured noise) processes can be dealt with
similarly.

5 Quantification of Errors in Transfer Function Point Estimates

We can use standard least squares theory to quantify the effect of V on the estimated frequency
response. We start by writing equations (3), (4) in vector form as

Ĝ = (Φ′Φ)−1Φ′Y, (6)

where

Ĝ =
[
ĝR(ω1), ĝI(ω1), . . . , ĝR(ωm), ĝI(ωm)

] ′,
Y = [y(T ), y(2T ), . . . , y(NT )] ′

Φ =


cos(ω1T ) sin(ω1T ) . . . sin(ωmT )
cos(ω12T ) sin(ω12T ) . . . sin(ωm2T )

...
...

. . .
...

cos(ω1NT ) sin(ω1NT ) . . . sin(ωmNT )


× diag [A1,−A1,A2,−A2, . . . ,Am,−Am].

Note that Φ′Φ = diag [A2
1, A

2
1, . . . , A

2
m, A

2
m]N/2, due to nature of the input signal.

Using (5), the error in the estimated transfer function can be quantified as (Goodwin and
Payne, 1977, Theorem 2.3.1)

E
{

(Ĝ−G)(Ĝ−G)′
}

=
(
Φ′Φ

)−1
σ2
v ,

4



Proceedings of the 7th Mediterranean Conference on Control & Automation (med99) – Haifa, Israel – June 28–30, 1999

where G =
[
gR(ω1), gI(ω1), . . . , gR(ωm), gI(ωm)

]′
. Since Φ

′
Φ is diagonal, the stochastic process[

g̃R(ω`)
g̃I(ω`)

]
=
[
ĝR(ω`)
ĝI(ω`)

]
−
[
gR(ω`)
gI(ω`)

]
(7)

is an uncorrelated process in the frequency domain having non-stationary variance

E

{[
g̃R(ω`)
g̃I(ω`)

] [
g̃R(ωn)
g̃I(ωn)

]′}
= D`δ(ω` − ωn), (8)

D` ,
2σ2

v

A2
`N

[
1 0
0 1

]
.

Clearly (8) depends on the unknown quantity σ2
v . However, an unbiased estimate of σ2

v can
be obtained by standard statistical methods (Goodwin and Payne, 1977, Theorem 2.4.1) as

σ̂2
v =

1
N − 2m

(Y − ΦĜ)′(Y − ΦĜ). (9)

Finally, the covariance (8) can be estimated by replacing σ2
v by its unbiased estimate (9).

6 Stochastic Embedding of the Transfer Function

It has been common practice in identification (indeed throughout all of statistics) to assume
that the only source of errors is random noise. However, as remarked earlier, we do not wish
to assume that g(jω`) = g0(jω`; θ) for any value of θ. For instance it can be argued, (Goodwin
et al., 1992), that the “optimal” model order is obtained when the bias errors are comparable to
variance errors. Thus presumably one is ignoring the reality of 50% of the errors if one neglects
bias errors. The crucial question is then, how should we think of the undermodelling error. To
get a “feel” for this problem consider the simple case of an unmodelled pole; i.e.,

g(s) = g0(s)
(

1
τs+ 1

)
,

which yields

g(s)− g0(s) = g0(s)
(

τs

τs+ 1

)
. (10)

This, admittedly trivial, expression reveals two important qualitative features:

• Multiplicative errors are scaled and thus do not have units.

• The multiplicative error, in this example, has a magnitude which grows with frequency (at
least up until the frequency 1/τ , which we take to be beyond the frequencies of interest).

Of course, in practice, we cannot expect to have such a simple description for the under-
modelling as in (10). However, we use this to make a leap of faith and hypothesise that the
undermodelled process can be embedded in a non-stationary stochastic process whose variance
grows with frequency. At first glance this may appear bizarre but, it is perhaps no more bizarre
than assuming the noise process is a stochastic process. (After all, it was Albert Einstein who
said “God doesn’t play dice”). The simplest non-stationary process with increasing variance is
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a random walk in the frequency domain. This process has the conceptual advantage of having
high complexity in the realization space but a relatively simple probabilistic description.

To be precise, we will assume that there exists a θ (unknown), a θ̄ (known) and a σ2
ε

(unknown) such that the real and imaginary parts of g(jω) have the form

gR(ω) = gR0 (ω; θ) + gR0 (ω; θ̄)λR(ω) ,
gI(ω) = gI0(ω; θ) + gI0(ω; θ̄)λI(ω) ,

(11)

where {λR(ω)} and {λI(ω)} are two zero-mean independent processes having uncorrelated in-
crements, that is

λR(ω) =
∫ ω

0
dε(s) , λI(ω) =

∫ ω

0
dε(s) , (12)

with E{dε(s)dε(s)} = σ2
εds, and

E{λR(ω`)λR(ωn)} = E{λI(ω`)λI(ωn)}

=
∫ min(ω`,ωn)

0
σ2
εds

= min(ω`, ωn)σ2
ε . (13)

The value θ̄ in (11) could be taken, for example, as any a priori estimate of the nominal
model parameters. One could alternatively take the value θ̄ = θ as unknown. This, however,
would lead to a significant increase in the complexity of work required to estimate θ. Since the
model is an abstraction of reality, it seems that taking θ̄ known is a reasonable simplification.
(Actually in the sequel we will take θ̄ as the estimate provided by a second least squares step.)

Finally, for purposes of illustration, we will model the nominal transfer function g0(jω; θ) in
terms of a given set of basis functions b1(ω), . . . , bp(ω). For example, we could use Orthonormal
Bases (Wahlberg, 1991; Van den Hof et al., 1993; Ninness and Gustafsson, 1997).

We define the vectors B(ω) = [b1(ω), . . . , bp(ω)], BR(ω) =
[
bR1 (ω), . . . , bRp (ω)

]
and BI(ω) =[

bI1(ω), . . . , bIp(ω)
]

where the latter two vectors contain the real and imaginary parts of the basis
functions. We thus assume (11) to be parameterised as

gR(ω) = BR(ω)θ +BR(ω)θ̄λR(ω) ,
gI(ω) = BI(ω)θ +BI(ω)θ̄λI(ω) .

(14)

7 Parameter Estimation in the Model

We next use the frequency domain data Ĝ given by (6) to estimate the parameter θ. From (7)
and (8) we have that the observed quantities ĝR(ω`), ĝI(ω`) satisfy[

ĝR(ω`)
ĝI(ω`)

]
=
[
gR(ω`)
gI(ω`)

]
+
[
g̃R(ω`)
g̃I(ω`)

]
, (15)

where {g̃R(ω`), g̃I(ω`)}m`=1 is an uncorrelated vector process (in the frequency domain) having
covariance D` as in (8). Combining (15), (14) and (12), we have

ĝR(ω`) = BR(ω`)θ +BR(ω`)θ̄λR(ω`) + g̃R(ω`) ,
ĝI(ω`) = BI(ω`)θ +BI(ω`)θ̄λI(ω`) + g̃I(ω`) ,

(16)
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where λR and λI are given by (12). In this model, {ĝR, ĝI} is the given set of m observed
quantities, {g̃R, g̃I} are white noise processes (in the frequency domain) having variance (8),
where σ2

v can be reasonably estimated as in (9), and {λR, λI} are uncorrelated processes (in
the frequency domain) having unknown covariance structure (13). We will add the further
assumption that

{g̃R, g̃I} and {λR, λI} are uncorrelated . (17)

To write (16), (12) in vector form, we define

Λ = diag
[
λR(ω1), λI(ω1), . . . , λR(ωm), λI(ωm)

]

G̃ =


g̃R(ω1)
g̃I(ω1)

...
g̃R(ωm)
g̃I(ωm)

 , and B =


BR(ω1)
BI(ω1)

...
BR(ωm)
BI(ωm)

 .

Then, the model (16) becomes

Ĝ = Bθ + ΛBθ̄ + G̃. (18)

We then have:

Lemma 1. (Parameter Estimation) An unbiased estimator for θ is given by the least-squares
estimate

θ̂ = (B′B)−1B′Ĝ , (19)

with associated model:

Ĝ0(ω) = B(ω)θ̂ (20)

The error covariance for θ̂ satisfies:

E{(θ̂ − θ)(θ̂ − θ)′} = (B′B)−1B′(Ωσ2
ε +Aσ2

v)B(B′B)−1 , (21)

where

Ω = diag[Bθ̄]



ω1 ω1 . . . ω1

ω1 ω2 . . . ω2
...

...
. . .

...
ω1 ω2 . . . ωm

⊗ I2×2

diag[Bθ̄] (22)

A =
2
N

diag[A1,A1,A2,A2, . . . ,Am,Am]−2 . (23)

Proof. From (19) and (18) we have that θ̂ = (B′B)−1B′(Bθ + ΛBθ̄ + G̃).
It follows that

θ̂ − θ = (B′B)−1B′(ΛBθ̄ + G̃) (24)

7
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using (17), we obtain

E{(θ̂ − θ)(θ̂ − θ)′} = (B′B)−1B′[E{ΛBθ̄θ̄′B′Λ}+ E{G̃G̃′}]B(B′B)−1 ,

which yields (21) on noting that

E{ΛBθ̄θ̄′B′Λ} = Ωσ2
ε , (25)

which follows from (13), and

E{G̃G̃′} = Aσ2
v , (26)

which follows from (8).

An unbiased estimate of the covariance error given in (21) is obtained using the estimate of
σ2
v given by (9), and the following estimate of the undermodelling parameter σ2

ε .

Lemma 2. (Estimation of σ2
ε) An unbiased estimate of σ2

ε is

σ̂2
ε =

(Ĝ− Bθ̂)′(Ĝ− Bθ̂)
trace[(I − B(B′B)−1B′)Ω]

− trace[(I − B(B′B−1B′)A]
trace[(I − B(B′B−1B′)Ω]

σ2
v . (27)

Proof. By introducing the shorthand notation P = I−B(B′B)−1B′ we write, from (18) and (19),

E{(Ĝ− Bθ̂)′(Ĝ− Bθ̂)} = E{(ΛBθ̄ + G̃)′P (ΛBθ̄ + G̃)}
= trace[PE{ΛBθ̄θ̄′B′Λ + G̃G̃′}] (using (17))
= trace[P (Ωσ2

ε +Aσ2
v)] (using (25) and (26))

= trace[PΩ]σ2
ε + trace[PA]σ2

v ,

and hence E{σ̂2
ε} = σ2

ε as claimed.

Here again, we can replace σ2
v in (27) by its unbiased estimate from (9).

8 Quantification of Modelling Errors

The final estimated model is Ĝ0(ω) as in (20). The associated total modelling error (including
the effects of noise and undermodelling) at any frequency ωn is

Ge(ωn) =
[
gRe (ωn)
gIe(ωn)

]
, Ĝ0(ωn)−G(ωn) = B(ωn)θ̂ −G(ωn) , (28)

where

G(ωn) =
[
gR(ωn)
gI(ωn)

]
and B(ωn) =

[
BR(ωn)
BI(ωn)

]
.

The following result gives expressions for Ge(ωn) and its covariance under the proposed
non-stationary stochastic embedding.

8
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Theorem 1. (Modelling Error Quantification) At any frequency ωn, the modelling error Ge(ωn)
in (28) has the form

Ge(ωn) = B(ωn)QG̃+ [B(ωn)QΛB − L(ωn)B(ωn)]θ̄ , (29)

where Q = (B′B)−1B′ and L(ωn) = diag[λR(ωn), λI(ωn)].
Without loss of generality, we assume that ωn is such that ωk−1 ≤ ωn < ωk, where ωk−1

and ωk are two consecutive frequencies of the test set (2). Then the error covariance Γ(ωn) ,
E{Ge(jωn)G′e(jωn)} is given by the expression

Γ(ωn) = Kv(ωn)σ2
v +Kε(ωn)σ2

ε , (30)

where

Kv(ωn) = B(ωn)QAQ′B′(ωn)

Kε(ωn) = B(ωn)QΩQ′B′(ωn) + (diag[B(ωn)θ̄])2ωn −Ψ(ωn)−Ψ′(ωn) (31)

with A, Ω given in (23), (22), respectively, and

Ψ(ωn) = B(ωn)Q



diag[B(ω1)θ̄]ω1
...

diag[B(ωk−1)θ̄]ωk−1

diag[B(ωk)θ̄]ωn
...

diag[B(ωm)θ̄]ωn


diag[B(ωn)θ̄] .

Proof. The expression (29) is obtained by replacing θ̂ − θ from (24) in

Ge = B(ωn)θ̂ −B(ωn)θ − L(ωn)B(ωn)θ̄ ,

= B(ωn)(θ̂ − θ)− L(ωn)B(ωn)θ̄ .

Using (17), (25) and (26), we have

Γ = E{GeGe′}
= E{[B(ωn)QΛBθ̄ − L(ωn)B(ωn)θ̄][B(ωn)QΛBθ̄ − L(ωn)B(ωn)θ̄]′}

+E{[B(ωn)QG̃][B(ωn)QG̃]′}
= B(ωn)QAQ′B(ωn)′σ2

v +B(ωn)QΩQ′B(ωn)′σ2
ε

+E{[L(ωn)B(ωn)θ̄][L(ωn)B(ωn)θ̄]′}︸ ︷︷ ︸
(∗)

−B(ωn)QE{ΛBθ̄[L(ωn)B(ωn)θ̄]′}︸ ︷︷ ︸
(∗∗)

−(∗∗)′ .

From (25) and (22) evaluated at the single frequency ωn we have (∗) = (diag[B(ωn)θ̄])2ωnσ
2
ε .

In a similar way it can be shown that (∗∗) = Ψ(ωn)σ2
ε . Putting everything together yields

(30)–(31).

When using (30) in practice one may simply replace σ2
v and σ2

ε by the unbiased estimates of
these quantities given in (9) and (27).

9
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Theorem 1 gives a simple expression for model error quantification. The component of this
quantification due to noise is relatively standard. However, the key novelty here is that we have
treated noise and undermodelling in a consistent framework. In particular, the first term on the
RHS of (30) describes the effect of noise whilst the second captures the effect of undermodelling.
Of course, the utility of the result ultimately depends on its capacity to represent the kinds of
real errors met in practice. Perhaps the embedded process we have used is excessively simple
but, at least, we believe it is a step in the right direction. Anyway, to again quote Einstein
‘God may be subtle but He isn’t plain mean’. Indeed, simulation studies with different types
of systems has shown that the methodology described above gives remarkably good (and quite
intricate) quantifications of model error - see Figure 1 for a selection of estimated models and
associated error quantifications.
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Figure 1: Example of Model Error Quantification. (Since this is a simulation example, we can
show the true frequency response - the solid line. The estimated models are given by the dashed
lines and the cloud of dots correspond to the expected total model errors at the 70% confidence
level. The different plots correspond to increasing model complexity and it can be seen that the
corresponding model error quantification, in this example, gives a good indication of the actual
errors).
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9 Robust Controller Design

We next turn to the question of robust control design. Since, we have argued above for a
stochastic quantification of total model errors (due to noise and undermodelling) resulting from
the identification phase, our aim here will be to utilize this error quantification as the basis
for robust control design. This will again lead us to depart from traditional thinking on this
problem.

As a starting point, let us assume that Ĝ0(ω) is used to obtain a preliminary design which
leads to acceptable performance when applied to the nominal model. This design will typically
account for the usual control design issues such as non-minimum phase behaviour, the available
input range, unstable poles etc. (Goodwin et al., 1999b). Let us say that this has been achieved
with a nominal controller C0 and that the corresponding nominal sensitivity function is S0. Of
course, the true plant is assumed to satisfy (28)-(30) and hence the value S0 will thus not be
achieved in practice. Thus there will be some variability of the achieved sensitivity S from S0.

Our strategy will be to modify the nominal controller so as to minimize the expected variation
of the actual system performance from the a priori desired performance as measured by S0.

At this point it is convenient to change the notation for the nominal estimated model by
introducing

Ḡ0(jω) = BR(ω)θ̂ + jBI(ω)θ̂ ; Ḡ0(s) =
N0(s)
D0(s)

where N0(s) and D0(s) are polynomials with D0(s) monic. We also define the true plant transfer
function as Ḡ(jω) = gR(ω) + jgI(ω) and the error between the estimated nominal model and
true system as Ḡe(jω) = gRe (ω) + jgIe(ω).

We assume that we design a nominal controller C0(s) = P (s)
L(s) to stabilize the nominal model

Ḡ0(s) = N0(s)
D0(s) . The nominal closed-loop poles are assumed to satisfy the following Diophantine

equation

D0(s)L(s) +N0(s)P (s) = E(s) (32)

where E(s) is stable. The nominal sensitivity function S0(s) for this design is then given by

S0(s) =
D0(s)L(s)
E(s)

(33)

and the complementary sensitivity function is

T0(s) =
N0(s)P (s)
E(s)

(34)

the achieved sensitivity, S1 using C0 applied to the true plant will be given by

S1 =
1

1 + C0Ḡ
(35)

Our intention for robust design is to adjust the controller (i.e. replace C0 by some other
controller C, leading to a sensitivity S2) so that the ‘distance’ between the sensitivity S2 and S0

is minimized. Such a ‘mission’ is difficult using the description of sensitivity in (35) because of

11
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the nonlinear dependence on C0 and Ḡ. This difficulty is mitigated by using the Youla param-
eterisation of all stabilizing controllers, (Youla et al., 1976). In terms of this parameterisation,
the class of all controllers that stabilize the nominal model Ḡ0(s) can be expressed as

C(s) =
P (s) +D0(s)Q̃(s)
L(s)−N0(s)Q̃(s)

(36)

where Q̃(s) is a stable and proper transfer function. We will adjust C(s) by choosing Q̃(s). For
notational convenience, we also introduce Q0(s) and Q(s) defined respectively by

Q0(s) =
C0(s)

1 + C0(s)Ḡ0(s)

=
D0(s)P (s)
E(s)

(37)

Q(s) =
C(s)

1 + C(s)Ḡ0(s)

=
D0(s)P (s)
E(s)

+
D0(s)2

E(s)
Q̃(s) (38)

Note that the sensitivity function S2 obtained using C(s) applied to the true plant is

S2(s) =
1

1 + C(s)Ḡ(s)

=
1−Q(s)Ḡ0(s)
1 +Q(s)Ḡe(s)

(39)

Here S2 is a function of the uncertainty Ḡe(s). Observe that S2 and S0 denote respectively
the sensitivity achieved when the plant is Ḡ and the controller is parameterized by Q, and the
sensitivity when the plant is Ḡ0 and the controller is parameterized by Q0. Our design will be
aimed at minimizing an appropriate measure of the following error with respect to Q̃

S2 − S0 =
1−Q(s)Ḡ0(s)
1 +Q(s)Ḡe(s)

− (1−Q0(s)Ḡ0(s)) (40)

Unfortunately, (S2 − S0) is a nonlinear function of both Q and Ḡe which makes direct min-
imization of the error function a difficult task leading to non-convex solutions (Goodwin and
Miller, 1998). As an alternative, we apply a standard procedure in optimization by choosing a
suitable weighting function on the error to achieve linearisation. A suitable candidate for the
weighting function is W1(s) = 1 +Q(s)Ḡe(s) leading to

W1(s)(S2(s)− S0(s)) = (1−Q(s)Ḡ0(s))− (1−Q0(s)Ḡ0(s))(1 +Q(s)Ḡe(s)) (41)

Actually, this turns out to be simply a particular approximation to S2 − S0.
Selecting the L2 norm as the measure of the error, we define the following loss function to

be minimized with respect to Q̃

J2 = ||E
{
|W1(S2 − S0)|2

}
|| =

∫ ∞
−∞

E
{
|W1(jω)(S2(jω)− S0(jω)|2

}
dω

=
∫ ∞
−∞

E
{
|(1−Q(jω)Ḡ0(jω))− (1−Q0(jω)Ḡ0(jω))(1 +Q(jω)Ḡe(jω))|2

}
dω (42)

The weighted error function has the following properties.

12



Proceedings of the 7th Mediterranean Conference on Control & Automation (med99) – Haifa, Israel – June 28–30, 1999

Lemma 3. Let Q(jω) be defined by Equation (38). Then if Q̃ is stable, the weighted error is
stable and has the following form

W1(S2 − S0) = −D0N0

E
Q̃−

(
LP

E2
+
S0

E
Q̃

)
ḠeD

2
0 (43)

Proof. The result follows on substituting Equations (40) and (38) into Equation (41) and ob-
serving that the denominator of the error consists of the polynomial E and the denominator of
Q̃.

Lemma 4. For the modelling errors described in sect. 8, the loss function E
{
||W1(S2 − S0)||22

}
can be written as

J2 =
∫ ∞
−∞
|D0N0

E
|2|Q̃|2dω +

∫ ∞
−∞
|LP
E2

+
S0

E
Q̃|2|D2

0|E
{
|Ḡe|2

}
dω (44)

Proof. The result follows from Proposition 1 by observing that the model errors are unbiased,
i.e. E{Ḡe} = 0.

Remark 1. This loss function has intuitive appeal. The first term on the right hand side rep-
resents the ‘bias’ error. It can be seen that this term is zero if Q̃ = 0. On the other hand, the
second term in (44) represents the ‘variance’ error. For E(|Ḡe|2) = 0 (no model uncertainty),
clearly the minimum of the loss function is reached if Q̃ = 0, i.e. we leave the controller unal-
tered. As the magnitude of the uncertainty increases, the minimization will place more emphasis
on the reduction of the ‘variance’ error.

The methodology to be presented below applies equally well to stable and unstable open
loop systems (see (Wang and Goodwin, 1998)). However, for the sake of clarity, we will consider
the stable open loop case. In this special case, we can make the choices E(s) = D0(s)2, P (s) =
0, L(s) = D0(s). Then (38) becomes Q(s) = Q0(s) + Q̃(s) and (44) becomes

J2 =
∫ ∞
−∞
{|Ḡ0(jω)|2|Q̃(jω)|2 + |S0(jω)Q0(jω) + S0(jω)Q̃(jω)|2trace[Γ(ω)]}dω (45)

where Γ(ω) is the covariance of the total modelling error as in (30).
Let α = G0, β = S0Q0, ξ = trace[Γ] and γ = S0 . Equation (44) can be written in a more

compact form as

||E
{
|W1(S2 − S0)|2

}
|| =

∫ ∞
−∞
|α|2|Q̃|2dω +

∫ ∞
−∞
|β + γQ̃|2ξdω (46)

We then have the following result.

Theorem 2. Assume

• Ḡ0 is strictly proper with no zeros on the imaginary axis;

• ξ has as analytical spectral density which can be factorised as ξ = σ(jω)σ(−jω).

Then |α|2 + |γ|2ξ has a spectral factor which we label H and the loss function J2 is minimized
by choosing

Q̃ = − 1
H
× Stable part of

ξ|δ|2Q0

H∗

Proof. The result follows on using standard procedures for completing the square (Kucera,
1979).
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10 Incorporating Integral Action

The methodology given above can be readily extended to include integral action. Assuming that
the nominal controller C0 contains an integrator, from Equation (36), the final controller will
also do so if Q̃ has the form

Q̃(s) = sQ̃′(s) (47)

with Q̃′ stable and strictly proper. There are a number of ways to enforce this constraint. A
particularly simple way is to change the loss function to

J ′ =
∫ ∞
−∞

E
{
|W2|2|S2 − S0|2

}
dw. (48)

where

|W2|2 =
|W1|2

ω2
=
|1 +QḠe|2

ω2

Remark 2. The term 1
ω2 acts as an additional weighting function on the weighted error (41).

This weighting function tends to infinity at zero frequency which puts heavy weight on the ac-
curacy of the optimal solution at zero frequency. The finiteness of J ′ at ω = 0 is ensured by
the existence of integrators in both the nominal and robust controllers, as a consequence, both
S0 and S2 contain jω as a factor. In principle, we can select additional weighting functions in
Equation (41) to reflect other performance requirements for the robust controller.

Since C0 contains an integrator, we can write L(jω) = jωL′(jω). Then we obtain the
following results which describe the robust controller in the case of integral action.

Theorem 3. Under the same conditions as proposition 3, the value for Q̃′ is

Q̃′ = − 1
H
∗ stable part of

{
ξ|δ|2Q0

sH∗

}

11 Embellishments

As stated earlier, the robust control algorithm can be extended to the open loop unstable case.
Another embellishment is to replace the true error quantification ξ by a suitable approximation.
The latter may be useful for cases when ξ is presented in the form of experimental data or when
the plant has a transcendental transfer function.

We write J2 as

J2 =
∫ ∞
−∞
|H|2|Q̃+

ξ|S0|2Q0

|H|2
|2dω +

∫ ∞
−∞

ξ|S0|2|Q0|2(1− ξ|S0|2

|H|2
)dω. (49)

Let

F (jω) =
ξ(ω)|S0(jω)|2

|H(jω)|2

Note that F (jω) is an even function of ω which then can be approximated by

F (jω) ≈ F̃ (jω) + F̃ (−jω) (50)

14
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where F̃ (s) is a stable, rational transfer function of some predetermined degree. Since the second
term of righthand side of the cost function is independent of Q̃, the minimum of the cost function
is achieved by setting

Q̃(s) ≈ −(F̃ (s)Q0(s) +R(s)) (51)

where R(s) is the stable part of the partial fraction of F̃ (−s)Q0(s).
The approximation of the even function F (jω) in the form of Equation (50) is in the same

spirit as ideas used in the context of Wiener filtering (see (Lee, 1960)). Specifically, we assume
F̃ (s) has the following structure

F̃ (s) =
N∑
i=1

ciLi(s) (52)

where Li(s), i = 1, 2, . . . , N , are suitably chosen orthonormal functions. Li(jω) satisfies the
orthonormal properties

1
2π

∫ ∞
−∞
|Li(jω)|2dω = 1 (53)

and

1
2π

∫ ∞
−∞

Li(jω)Lk(jω)dω = 0 (54)

where k 6= i. The coefficients of the approximation in Equation (52) are then given by, for
i = 1, 2, . . . , N ,

ci =
1

4π

∫ ∞
−∞

F (ω)(Li(jω) + Li(−jω))dω (55)

When the uncertainty ξ(ω) is given as discrete frequency response data, ie ξ(ωk) (k =
0, 1, 2, . . .M) or the nominal modelG0(s) contains pure delays, Ḡ0(jω) and S0(jω) are discretized
into Ḡ0(jωk) and S0(jωk), k = 0, 1, . . .M . Then

F (jωk) =
ξ(ωk)|S0(jωk)|2

|H(jωk)|2
(56)

where

|H(jωk)|2 = G0(jωk)G0(−jωk) + ξ(ωk)S0(jωk)S0(−jωk)

Equation (55) can then be approximated by using numerical integration to yield

ci ≈
1
π

M∑
k=0

F (jωk)Real(Li(jωk))(ωk − ωk−1) (57)

A particular choice for the functions, Li(s) are the Laguerre functions where for some p > 0

Li(s) =
√

2p
(s− p)i−1

(s+ p)i
(58)
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Alternatively one could use Kautz networks (Kautz, 1992) which allow the description of arbi-
trary stable poles including complex poles. For ζi > 0 and ωi > 0, i = 1, 2, 3...N2 , the general
form of Kautz filters are given by

L2i−1(s) =
√

2ζiωi
[s2 − 2ζ1ω1s+ ω2

1] . . . [s2 − 2ζi−1ωi−1s+ ω2
i−1][s+ ωi]

[s2 + 2ζ1ω1s+ ω2
1] . . . [s2 + 2ζi−1ωi−1s+ ω2

i−1][s2 + 2ζiωis+ ω2
i ]

(59)

and

L2i(s) =
√

2ζiωi
[s2 − 2ζ1ω1s+ ω2

1] . . . [s2 − 2ζi−1ωi−1s+ ω2
i−1][s− ωi]

[s2 + 2ζ1ω1s+ ω2
1] . . . [s2 + 2ζi−1ωi−1s+ ω2

i−1][s2 + 2ζiωis+ ω2
i ]

(60)

12 Illustrative Example

As an illustration of the above procedure, we will apply it to a real laboratory heat exchange.
This heat exchange is used for undergraduate control experiments and, inter-alia, has a pure
time delay. The true system is, of course, unknown in this case but it is approximately of the
form:

Ḡ(s) ' Ke−sT

(τs+ 1)

where, depending on the operating point, K,T,τ lie in the ranges [1.5, 2.2]; [0.1, 0.2] and [0.38,
0.42] respectively.

Data was collected from the system by injecting sinusoidal signals as described in Section 3
- see Figure 2. We elect to model the system by a second order Laguerre Model. Figure 3 shows
the Nyquist plot of the empirical transfer function estimates, Ĝ(ω) (the stars), the estimated
model Ḡ0(jω) (the solid line) and total model error quantification via (30) (the cloud of dots).
The nominal estimated model and nominal controller were given by

Ḡθ(s) =
−3.4s+ 33.7

s2 + 9.2s+ 21.3

Q0(s) =
s2 + 9.2s+ 21.3

(s+ 10)2
∗ 100

33.7

(As a matter of interest, the poles of the Laguerre basis functions were obtained by minimizing
the total error as described via Γ in (30).)

The procedure described in section 11 was used to obtain an approximation based on the un-
certainty description - see Figure 4. The controller was redesigned using the procedure outlined
in sections 10 and 11 leading to the “robust” controller

Q(s) =
2.04(s4 + 22.1s3 + 177.8s2 + 623.3s+ 809.1)

(s+ 9.95)2(s+ 5.1)2

Figure 5 shows the step responses of the physical system using the nominal and robust
controllers at different operating points. The enhanced performance of the robust controller is
evident.

This example is admittedly simple but it serves to illustrate that the two phases of identifi-
cation and robust control design are indeed made compatible by the suggested formulation.
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Figure 2: Plant Input-Output Data.

13 Conclusions

This paper has proposed a solution to the robust control problem which consistently combines
system identification and robust control design. We have also shown how undermodelling and
noise can be treated in a philosophically consistent fashion within the system identification
phase. Apart from the technical issue posed, the paper also serves to survey many ideas that
underlie aspects of modelling, identification, and control system design.

It is hoped that the paper might inspire others to take a fresh (and unprejudiced) look at
the problems of identification and robust control from alternative perspectives from those which
are currently favoured.

There are so many open questions for those who are looking for interesting research topics.
These include:

• Extension of the undermodelling procedures to cover the common forms of undermodelling
found in practice (including nonlinear elements such as deadzones, hysteresis, stiction, etc)

• Adding a stability constraint to the robust design procedure

• Deliniating those cases where the controller performance is limited by plant characteristics
(non-minimum phase behaviour etc) from those where model uncertainty is the key limiting
factor

• Implications for the design of experiments during the identification stage.

• Robust model predictive control accounting for control and state constraints.
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Figure 5: Step Responses with Nominal and Robust Controllers
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