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Abstract

This paper discusses algorithms for attitude determination using GPS differentia phase measurements,
assuming that the cycle integer ambiguities are known. The problem of attitude determination is posed as a
parameter optimization problem. One proposed set of optimal solutions, which includes solutions of Wahba's
problem, is based on least squares fit of some attitude parameters to a set of vector measurements. The use of
these algorithms requires the conversion of the basic GPS scalar phase measurements into unit vectors.

Another possible approach is based on a least squares fit of the attitude quaternion to the GPS phase
measurements themselves. The cost function of the fit is given in the literature in the most straightforward
formulation as a function of the attitude matrix. The paper presents the conversion of the matrix-based cost
function to a quaternion-based cost function, which corresponds to the cost function minimized by QUEST.
However, unlike the QUEST cost function, the converted cost function is not a simple quadratic form, therefore
the simple QUEST solution is not applicable in this case. Three iterative solutions for finding the optimal
guaternion are derived. The first algorithm is a linearly convergent one whose convergence rate is slow. The
other two converge very fast.

The agorithms presented in this paper can handle cases of planar antenna arrays and thus cover a
deficiency in earlier algorithms. The efficiency of the new algorithms is demonstrated through numerical
examples.

|. Introduction

Attitude determination using GPS carrier signals has been given a considerable attention in the last
decade (Cohen, 1992; Lightsey et al., 1994). Much attention was given to concept, hardware, and
algorithm development as well as to testing. Algorithms for GPS attitude determination given
differential phase measurements can be broken into integer resolution and attitude calculations. Several
methods for integer resolution were presented in the literature (see e.g. Cohen, 1992; Conway et d.,
1996). In this work we assume that the integer ambiguity is solved and we are concerned only with
attitude calculation. The problem of attitude determination can be expressed as the problem of
minimizing the cost function

r(De)—lg 2 B.-al D¢s/|’ (1)
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with respect to D where S; be a unit vector in the direction of an observed GPS satellite which is
designated as satellite number i, e is the reference (earth) coordinate system in which s; is resolved, a

is the body coordinate system, a; is the jm axis of the latter system, D3 is the transformation matrix
frometo a, and B;; is the processed phase measurement. The transpose is denoted by T and p; isa

weight given to the measurement related to the i satellite. It is assumed that the componentsof S; in
e are known. Note that we are considering a planar problem; that is, only two components of B are
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measured for each satellite. The components are projections on the body coordinate axes of processed
phase measurements.

The purpose of thiswork is to find algorithms, which yield the attitude matrix (or other equivalent
attitude parameterizations) that, minimizesr .

I1. Attitude Deter mination using GPS Vectorized Observations

Severd efficient algorithms for attitude determination based on a least squares fit of the attitude to
vector measurements were introduced in the past. To make use of these agorithms, the phase
measurements have to be converted into vector measurements in the body coordinate system as follows.
By
s Bai y

2
d1- 85 - 83)

> (D> D> D~

Sa = )

ceoooNc

Note that the third component of s, is chosen to be the positive root of the expression in parentheses.
This was done since only the signas of those GPS satellites which are above the antenna plane, and

thus in the positive direction of the a5 axis, are received by the antennae. The vector S, , resolved in

earth reference coordinates, is denoted by S;. . The latter is easily computed since both the satellite and
the vehicle positions are known in earth coordinates. With the pairs S;,, Sje onhand, i =12...,n, one
can replace Eq. (1) by the following cost function introduced by Wahba

, 1¢ 2
r'(Dg) =5 & Pifsa- Disel 3

and use QUEST (Shuster and Oh, 1981), or other similar algorithms, to obtain a weighted least squares
atitude quaternion fit which minimizesr'. For the sake of comparison between QUEST, which

operates on measured vectors, and the algorithms that will be developed later, which operate on phase
measurements, a short description of QUEST is given next.

Since Dg is a known function of the attitude quaternion (Wertz, 1984), q, then r (Dg) can be

replaced by w(q) where
2

18 .
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It can be shown that g*, the g which minimizesw(q), is the same g which maximizes the cost function

1
h(a)=74a"Kq (5)
where
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and where
g 18
m, = a P (7.9) =—a PiSiaSie (7.b)
i=1 ni=1
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1 &
B=—a PiSaSie (7.0) S=B+B' (7.d)
ni=1
1 3 ,
z=—a Pi(Sia” Sie) (7.€)
mn i=1

The matrix | is the third order identity matrix. It turns out that g* is the eigenvector which corresponds
to the largest eigenvalue of K. QUEST?® is an agorithm which yields this g*.

[11. Attitude Deter mination Using GPS Phase M easur ements Dir ectly
I1l.a: Cost function conversion to quadratic forms
Recall Eq. (1)
e 18 & Tee |2
r(Da)—Za pia|Bji - 8;Dgs (8)
i j

We wish to find D§ which minimizes r (D). Since, as mentioned earlier, D is a known function of

the attitude quarternion, g, then r (D3) can be replaced by J(q) where

18 & T e 2
J(a) =Za Pia |Bji - q Da(Q)3i| 9)

I

In order to facilitate the search for the quarternion g* which minimizes Jq) the latter is now converted
into a function of matrix quadratic forms. To meet this end define

C;=sal (10.3) E; =C; +Cj (10.b)
p; =4, s (10.0) m; :a;si (10.d)
and then define
& - mil | p;u
Li=é J Trq | = (11)
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It can be shown that (Bar-Itzhack et al., 1998)
THe —~T
a;D;(g)s;=q'L;q (12)
Subgtitution of Eq. (12) into Eq. (9) yields

2

18 &
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Define

Fj = B;l (14)

ji ji
then since qTq =1, one can write
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Bji =a'F ;q (15)
therefore
Bji'qT Ljiq:qT[Fji' L;ild (16)
Let
My =pi(Fji- L) (17)

then using Egs. (16) and (17) in Eq. (13) the following is obtained

18 & ¢ 2
Aa)=,8 & M;q (18)
i
or
1 .68 ¢ u
Ja)=,a'éa aM;dq'M;iq (19)
ei i U

I11.b: Thefirst algorithm for finding the optimal g (Stegpest Descent)

The problem of finding the matrix Dg which minimizes r(D3), defined in Eq. (1), has been
transformed into finding g that minimizes J(q) of either Eq. (18) or Eq. (19). Unfortunately J(q), is
quartic in g whereas the cost function which has to be optimized when solving Wahba's problem is only
quadratic in g. For this reason the QUEST solution is not suitable in the present case. One needs to use
some other methods for minimizing J(q). An iterative solution is suggested here which is based on the
gradient projection technique®.

Consider the cost function of Eq. (19). Suppose that as a result of the iterative technique to reduce
J, g, was computed at the k™ iteration. Perform now the k + 1% iteration by changing q as follows

qk+1:qk+eh (20)

where h isafour element column matrix which determines the direction one moves from ¢, to (4 in

R* and e is the distance one moves in this direction. Substituting Eq. (20) into Eq. (19) yields the
following cost function at (| ;4

>('D

1 2p 2 u
Jeh) =7 (a +en)'eéa a Mji(qk+eh)<qk+eh)TM,-i§<qk+eh) (21)
j
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For a given direction, h, one wishes to move at a distance e which will minimize J; that is, one wants to
move from Ji = J(qy) to Jr41 = J(Qy+1) at the steepest descent route. The rate of descent of J from

point g, to point Q.4 IS the derivative of J with respect to e at the point e = 0. When performing
this operation on J, given in Eqg. (21), the following is obtained

én 2
ga a M,.qquM ;h (22)
i

Note that the last equation yields the rate of descent but not necessarily the steepest one. While moving
from Qi to gy 47 thefollowing normality constraint of the quaternion of rotation has to be satisfied.
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-
9(@°qq-1=0 (23)

Satisfying the constraint implies that when moving an incremental distance, g has to stay zero. In other

words, the rate of change of g has to be zero at the point q, . Put in analytic terms and using Egs. (23)

and (20) it means that
d d
Y = S +en)T(ae+en)-1 =0 (24)
dee 0 d e=0

which yields

qkh =0 (25)
Asfor h, sinceitisadirection, it is actualy a unit vector, therefore its length hasto be 1; that is,
hTh-1=0 (26)

Everything is ready now for the computation of the direction of the steepest descent. The direction of
the steepest descent is determined by h. The column matrix h is sought which yields the smallest (the
most negative) value of the derivative expressed by Eq. (23). Define this derivativeas Y (h) ; that is

Tég 02 T ‘:J
Y(h)Znga_. a M;akaiM;; Eh (27)

I

which is the function to be minimized with respect to h subject to the constraints expressed by Egs. (25)
and (26). As usual, this is being done by adding the constraints to Y (h) using the scalar Langrange

Multipliers, 1 ; and | 5, and minimizing the new function. Thus a new merit function, m(h), is
defined as follows
n 2
mh) = (& & M;i9kakM;i)h
i (28)
+14qch+15(hTh- 1)

Thisis the function which is to be minimized with respect to h. The concept of directional derivativeis
used to accomplish that. Accordingly, denote the direction of the steepest descent by h, then any other

direction, h, can be expressed as
h=hy,+nd (29)

where d is the direction from h to h, and n is the distance one has to move in this direction in order to
reach h starting at h . Substitution of the latter expression for h into Eq. (28) yields

> (Dr

An 2 u
mh, +nd) =g, €3 g M ,.qquM~+11IE(h o + nd)
j

('ID'D>

+ ,[(ho +nd)" (h +nd) - 1 (30)

A necessary condition for h, to be a stationary point is
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d—"‘ =0 "d (31)
dn n=0

Applying this condition to r‘r(ho + nd) of Eq. (30) yields

| &8 & T u . "
10y §a a M;qqMj +1,10+2 ;hoyd =0 d (32)
foer | 6 b
This condition can hold only if
188 ¢ . u T
qua a M;qagM;j +1410+2 ;h, =0 (33)
i
which yields
1 € & u
ho=- T(?é a MqeapM; +1 410, (34)
28 j H

Since h, hasto satisfy the condition of Eg. (25), then from the last equation

;1 6én 2 T u
'ri(?a a MjaqqeM; +141tg, =0 (35)
28i | H
which yields
1 €y ¢ u
Tga a QIMinkQIMink+|1QIQ|<|E=0 (36)

Since quk =1 thelast equation implies that

n 2
[o] [o]
l1=-4 A %M ;iaaeM;iay (37)
i
A comparison between the last equation and Eq. (19) indicates that

'y =-4)(a) (38)

Subgtitution of this result into Eq. (34) yields

1 €p 2 T u
hg =- T(?a a MM - 4oy )y (39)
28i ] H

In order to find | , substitute the last expression for h, into the constraint expressed in Eg. (26) to
obtain
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x1 02 T?cp 2 T l;l
5 9k a M;iaaeM i - 4)(qy)1a-
en 2 - u
ga a M;aaeM; - 4(ay )iy =1 (40)
i
Define
2 8 T
Ck=a a M;gaM; (41)
i
then using this definition, Eq. (40) can be written as
1
15 = Zq-IE[Ck - 43 )1][ i - 43(a ) ax (42)
which yields
1 2
15 = ZQICkaQk - 2qxJ(a)Cax +4agI(ax) ax (43)
The last equation can be written as
2
15 = ZQICkaQk - 23(ai)akCiax +43(ax ) “akd (44)
which after noting that qIquk =4J(qy) , can be written as
1 2 2
15 =zQICkaQk - 8)(ay )" +49(ay) (45)
Let
Vi = Gy (46)
then from Eq. (45) one obtains
1/2
él 2U
I 2 =i~ZVIVk - 4J(qk) EI (47)

In order to choose the appropriate sign for | , it is necessary to examine the second derivative of
m(h, + nd) with respect to n evaluated at n = 0. Using Eq. (30) it is evident that

dz
Wn(h0 + nd)‘ n=o=2dd (48)

For h, to be aminimum point, the second derivative has to be positive, therefore the positive sign has

to be chosen in the computation of | , in Eqg. (47). With this in mind and using the definition of C, ,
Eq. (39) iswritten as

ho =- i[Ck - 43(q ) o (49)
21|

1827



Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

Recall that h, is the direction of the steepest descent. Substituting the last expression for h, into Eq.
(20) yields

Ok+1 = | "7 |[Ck - 43(a, ]E;qk (50)
2
Findly, let
1
Wi = == Cx - 43(ay)1] (51)
21 5|
then Eq. (50) can be written as
Ois1 = (I - €W, )0y (52)

A value should be selected for e. In principle this can be done by substituting qy 1 of the last equation

into J(eh) given in Eq. (21) and then minimizing the result with respect to e. This, however, yields a
complicated third order algebraic equation in e whose solution has to be obtained at every time step.
Another possible approach is of finding empiricaly a suitable value for e. In summary the recursive
algorithm for minimizing the cost function of Eqg. (19) is asfollows:

1. Determine g , theinitial guessof g, and set k = 1.

n 2
2. Compute C, = aam jiqkq1k—M
i

3. Compute J(q ) = af Cyc G-
1
4. Compute W = W[Ck - 4J(qk)l].
2

5. Compute Q1 = (I - € Wi )y, -
6. If |qk+1- qk| £d where d is a pre-determined constant, then stop. Otherwise increase the
argument by 1 and go back to step 2.

I11.c: The second algorithm for finding the optimal g (Eigen Problem)

Using the definition of C(q) in Eq. (41), the merit function of Eq. (19) can be written as

J(@) =q'C(a)q (53)
now removed.

Recall that we wish to minimize J with respect to q where the latter has to satisfy the normality
condtraint of Eq. (23). To accomplish this, define the following Lagrange function

L(a,1)=J(a)- 21 (a"a- 1) =q"C(a)q- 2| (q'q- 1) (54)

That g which minimizes J subject to the constraint on g, is a stationary point of L. Moreover, | tooisa
stationary point of L. That is

L L
— =0 55. — =0 55.b
1 (55.9) q (55.b)
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When performing the differentiations and after some elaborate manipul ations one obtains the following
corresponding equations’

ADI=T A 1A (56)
a'q=1 ’

Eqg. (56) is a set of 5 nonlinear agebraic equations. Their solution yields the sought g. (It is still
necessary of course to show that the found g is a minimum point but this is quite easy). It was shown
(Nadler, 1998) that these equations have no analytic solution, which is similar to that, which gave rise
to QUEST. In the absence of an anaytic solution one naturaly seeks an iterative solution. One such
solution that immediately comes to mind is the following. Guess a starting g, use it to compute C in
Egs. (56), and then find the eigenvalues and eigenvectors of C. It was shown in (Nadler, 1998) that Jis
minimal when q is the unit eigenvector which corresponds to the smallest eigenvalue of C. Therefore
use this eigenvector as q for the following iteration. This agorithm, however, is problematic.
Experiments showed that its convergence was slow and near the end it aternated between two values,
none of which is the correct solution (Nadler, 1998). It was observed, however, that the two values
were amost symmetric about the correct solution. Therefore the agorithm was modified in the
following way. The solutions obtained from two consecutive iterations were averaged. The average
solution was then fed into the iterative agorithm, which was run twice again. The results of these two
iterations was averaged again and so on. A step by step description of the algorithm is as follows.

. Guess q, ,and set k =0.

. Compute C, (q;)-

. Find the eigenvalues and eigenvectors of C, (q,)-

. Set gy, to the eigenvector corresponding to the smallest eigenvalue of C, (q, ).

. Go once more to Step 2, repeat Steps 3 and 4.
. Replace q, .4 by the average of thelast two Q. ,;S.

N OO0 A W DN P

Af |qk+1 - qk| £ d where d is a pre-determined constant, then stop. Otherwise increase the argument
by 1 and go back to step 2.

[11.d: Thethird algorithm for finding the optimal g (Newton-Raphson)
The classic approach to the solution of Egs. (56) is the Newton-Raphson approach. Its steps are as

follows. Define

€C(a)q- | qu

—a 1

f(x) = a
é d'g-1 g

(57)

where x" =[q" |l ]. To solve the equation f (x) = O iteratively we compute first the Jacobian J where

f
3= 1) (58)
Ix
For the f defined in Egs. (57) J takes the form (Nadler, 1998)
€2C(q) + D(q)-11 |- qu
3= @ T(q) I oq‘i‘ (59)
é 2q a

where
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n m

D(q) = é é q'M ;iAM i (60)
i=1 j=1
Then iterate as follows
X1 = Xy - J-l(xk)xf(xk) (61)

When convergence occurs the first four eements of x congtitute the sought g.

V. Examples

In this example there were five GPS satellites, where s;, 1 =1,2,...,5 were the unit vectors to the
five satellites. They were given the following values

€0.953u é 01950 é 04320 é 0316U 05770
5, =@0095; S, =g 0976; s3=50250 s, =g 06325 5= 577!
80.288H & 00974 & 0864 & 0.708j 05774

The vectors S; were expressed in the reference coordinate system. The vectors a, and a, were the x
and y coordinate axes of the body system, a, in which we performed the computations. Thus

aj =1 0 0] a;=[0 1 O

The transformation matrix, D, from the reference to the body coordinates and its corresponding
guarternion were

¢ 0713 0659 0.241y
D5=g 0579 0359 0.732 q" =[0423, 0047, 0.376, 0823
& 039 - 0.661 0.638f

The corresponding Euler angles of this attitude were

y = 42.7530°
q=- 13.9390°
f = 489390°

For this geometry the nominal phase measurements were

Bll = 0811 Blz = 0527 Bl3 = - 0270 Bl4 = 0362 Bls = 0931
B, =-0307 B, =053 B,= 0790 B, = 0928 B, =0295

IV.a: Vectorized phase measurements.

When vectorizing the phase measurements according to Eq. (2), and using QUEST to compute g*,
the achieved accuracy is

lq- g* <140
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Next, zero-mean random measurement error was added to the GPS phase measurements. The respective
standard deviation of the error for each of the five satellites were

s,=001 s,=005s3=003 s, =002 s5 =002

The errors themselves were errorsin B i+ thet is, in the projection of s, the unit vector to satellitei, on

the body coordinate system axis j. When again vectorizing the phase measurements according to Eq.
(17), and using QUEST to compute the optimal attitude quaternion, g*, the following quaternion error
was achieved

lo- g*<0.0131

corresponding errors in yaw, pitch, and roll were obtained

dy = 1.145°
dg= 1.011°
df =- 0.227°

IV.b: Direct phase measurements.

Instead of using the vectorized measurements and consequently the QUEST algorithm, here we find
the attitude quaternion using the iterative algorithms which we developed for finding g* directly from
the phase measurements themselves. In other words, we use the three iterative agorithm to find the
quaternion which minimizes J of Eq. (19).

I1V.b.1: Using algorithm 1 (Steepest Descent)

Using the preceding data we started the iteration with the arbitrarily chosen initial quaternion
q' =[0451, 0107, 0.215, 0859]

which corresponds to the following initial attitude estimation error expressed in terms of Euler angles

dy = 14.05°
dg =- 14.78°
df = 0.802°

The optima iteration step size was found empirically to be e = 2.75. The iterative solution settles on
qT =[042363, 0.04862, 037751, 0.82198]

and the final attitude estimation error in terms of yaw, pitch and roll was

dy =- 0.251°
dg =- 0.110°
df =- 0.035°

Observing the convergence rate of the recurrent solutions to the correct one reveals that the convergence
rate was only linear; however, the final accuracy of the iterative solution was better than that of the
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QUEST solution when applied to the vectorized phase measurements. An error analysis reveals that the
error associated with the QUEST solution contains a term that does not exist when using the cost
function J(q) of Eq. (19) to find g. The term is a function of the GPS satellite elevations with respect to
the antenna coordinates z-axis. This term diminishes when the elevations are high. This is the reason
why we obtained better results when using the iterative solution which minimizes Jq). The two
solutions are, of course, identical when they process ideal measurements.

IV.b.2: Using agorithm 2 (Eigen Problem)

The same data that was used in the previous example, was used here too only that he iteration

started with §, =[05, 0.5, 0.5, 0.5] and IA0 = 0. This choice of initial quaternion corresponds to
the following initial angular errors:

dy =- 47.2470°
dq = - 13.9390°
df =- 41.0610°

After 13 iterations the solution settled on

015 =[0.42099, 0.04887, 0.37599, 0.82401]

The corresponding final attitude estimation error in terms of yaw, pitch and roll was

dy =- 0.092°
dq=- 0.286°
df = 0.192°

and the absolute value of the difference between the fina quaternion and the true quaternion was

o - g5/ =0.0030

IV.b.3: Using adgorithm 3 (Newton-Raphson)

The exact same data that was used in the previous example was used here too. After only 9
iterations the solution settled on practically the same final quaternion as did the previous agorithm.

Differencesin the final Euler angles between the two algorithms were of the order of 10° 12 degrees.

V. Conclusions

This paper presented agorithms for attitude determination using phase difference between GPS
signals arriving at different antennae. Since the number of measurements is greater than the number of
the unknown attitude parameters, and since the phase measurements are corrupted by noise, it is
advantageous to find the attitude as a least squares fit. The cost function to be minimized in the fitting
processisthat givenin Eqg. (1).

It was shown that the phase measurements can be easily converted into vector measurements. Then
the cogt function becomes the one given in Eqg. (3), and the least squares fit can be found using one of
the available algorithms like QUEST.
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The paper treats another possible approach, which is based on a least squares fit of the attitude
guaternion to the basic GPS phase measurements. In the literature the cost function of the attitude fit is
given as a function of the attitude matrix; that is, in the form of Eq. (3). It is, however, desirable to
express the cost function as a function of the attitude quaternion. This stems from the success attained
in quaternion fitting to vector measurements, which was achieved using QUEST. The paper presents
the conversion of the matrix-based cost function to a quaternion-based cost function, which is givenin
Egs. (18) and (19). The latter corresponds to Eq. (5), the cost function minimized by QUEST. A
comparison between the latter function, and that of Eqg. (18) reveds that unlike the case of vector
measurements, where the cost function reduces to a quadratic form of a symmetric matrix, in the case
of phase measurements, the cost function is a sum of squares of quadratic forms, therefore a simple
QUEST-like solution is not applicable in this case.

A possible solution to the problem of finding g* which minimizes J(q) of Eq. (18) is an iterative one.
Indeed, the paper presents such a solution. It is based on the gradient projection technique, which was
used to develop a steepest descent search for the loca minimum of the cost function. It was found
though that the iteration process converged slowly. Therefore afaster converging algorithm was sought.

To meet this end, a Lagrange function was defined that included the quaternion unity-constraint. The
conditions required for the Lagrange function to be stationary yielded five nonlinear algebraic equations
with five unknowns, four of which were the components of the optimal quaternion. Four of the
equations had the form of eigen-value/eigen-vector problem, therefore a corresponding iterative
algorithm was developed. Another algorithm, which was developed for solving the set of five nonlinear
algebraic equations, was a Newton-Raphson agorithm. It was shown that not only did the latter two
algorithms reached the solution very fast, their accuracy was better than that of QUEST, particularly
when the elevation of the GPS satellites was low. This was so because the measurement errors were
amplified by low elevation when the phase measurements were converted to vector measurements, a
step aways needed when QUEST is used.

Finaly, it should be noted that the algorithms presented in this work cover a deficiency in earlier
work in that they are aso applicable to attitude determination systems employing planar antenna
arrays.
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