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Abstract

In this paper we consider the state estimation problem for the nonlinear kinematic equa-

tions of a rigid body observed under low pass sensors. On the way to solve that problem,

the convergence of a state estimator for a generic stable time-varying linear system is shown.

The problem is motivated from a walking robot application where inclinometers and gyros

are the sensors used. We show that a non local high gain observer exists for the nonlinear

rigid body kinematic equations and that it under a small angle assumption is possible to

use one inclinometer only to estimate two angles.

Keywords: nonlinear state estimation, rigid body motion, linear time-varying systems, expo-
nential observers, inclinometers

1 Introduction

In this paper we consider the state estimation problem for the nonlinear kinematic equations of a
rigid body observed under low pass sensors. On the way to solve that problem, the convergence of
a state estimator for a generic stable time-varying linear system is shown. Such a problem arises
in many applications, for example, a legged mobile robot. For a walking robot, of paramount
importance from a control perspective is a reliable estimate of pitch and roll. One kind of sensors
that are often used for this kind of application are rate gyroscopes (gyros) measuring angular
velocities. Even though gyros often have excellent bandwidth, the integrated signal providing
angle measurements will never be reliable over an extended period of time. One type of sensors
that provide an absolute angle reference are inclinometers. With pre�ltering inclinometers can
be modeled as low pass �lter.

As is well known, the kinematics for rigid body are nonlinear. In this paper we consider �rst
the state estimation problem where both pitch and roll are measured by inclinometers. We show
that in this case, for an operating range that is reasonable for applications such as a walking
robot, an observer with exponentially decaying error exists. We should emphasize here that this
is not a local result. Then we consider the case where only one of the inclinometers is available.
This is naturally more di�cult and we show that for small angles there exists an exponential
observer provided the system is \properly" excited. We should also point out that in the scenario
we consider, the linearized version of the kinematics will be time-varying. Finally we illustrate
the results with some simulations.

�This work was sponsored in part by SSF through the Centre for Autonomous Systems and in part by TFR.
yfhenrikr, hug@math.kth.se
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2 Problem formulation

Consider the kinematics for a rotating rigid body which can be found in standard textbooks
[Isidori(1995)] and are

_R = S(!)R (1)

where R 2 SO(3) is the coordinate transformation relating a body �xed (B) frame to an inertial
system (N ) according to xB = RxN . S(!) is the scew-symmetric wedge matrix

S(!) =

2
4 0 !3 �!2
�!3 0 !1
!2 �!1 0

3
5

where !i is the components of the angular velocity vector expressed in the body �xed frame. A
parameterization of SO(3) suitable for this application is the yaw-pitch-roll ( ; �; �) parameter-
ization

R =

2
4 c c� s c� �s�
�s�c� + c s�s c c�+ s s�s� c�s�
s s�+ c s�c� s s�c�� c s� c�c�

3
5

de�ning local coordinates around R = I. This parameterization is suitable for many applications
as the angles have an intuitive meaning and also, typical motions for mobile land robots are such
that j�j; j�j < �

2
for which the parameterization is unique. In these coordinates the kinematics

(1) are given by

_� = cos�!2 � sin�!3
_� = !1 + sin� tan �!2 + cos � tan �!3

where we only consider pitch (�) and roll (�).
The sensors at hand are the rate gyro measuring the angular velocities ! and the inclinometers

measuring � and � for which we use a �rst order model

_y1 = �1(� � y1) (2)

_y2 = �2(�� y2) (3)

where �i = 1=Ti is the inverse time constant of the inclinometer. Introducing x1 = [�; �]T and
x2 = [y1; y2]

T the system can be written as

_x1 = m(x1)!
_x2 = �x1 � �x2
y = Cx

(4)

where

m(x1) =

�
0 cos � � sin�
1 sin� tan � cos� tan �

�

and
� = diag(�1; �2)

and
C = [ 0 I ]

In this paper we consider the problem of reconstructing the pitch and roll from sensor mea-
surements. Through out the paper, we assume that the measurements for ! are accurate enough,
therefore they will be considered as known time-varying inputs to the pitch and roll equations.
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3 Observers with two inclinometers

In this section we construct an observer for the case where both pitch and roll are measured.
Using a high gain approach we show how to design an exponential observer that covers the range
up to �

6
for the absolute value of the pitch angle. This is of course not a local result.

It will prove necessary to introduce bounds on the pitch angle �. For our walking robot that
is under development now [Wallentin et al.(1998)Wallentin, Jansson, and Andersson], we expect
our control algorithms would keep the pitch in the range ��

6
< � < �

6
. The sensor time constants

1
�i

are the results of pre�ltering and can be chosen as design parameters. We make the following
assumption.

Assumption 3.1

j�(t)j � �b; �b =
�
6
� �

3

j!i(t)j � !mi ; i = 2; 3
�i � 2; i = 2; 3

(5)

where � can be any small positive constant.

Theorem 3.1 Consider a Luenberger type observer for (4)

_̂x = f(x̂; !) + L(y �Cx̂)

x̂(0) =

�
0

y(0)

�
(6)

and let Assumption 3.1 be valid. Then, for each � > 0 there is an L such that the observer (6)

is an observer with exponential error decay and the error tends to zero for all initial j�(0)j � �b.

Proof

Let L = [LT1 L
T
2 ]

T . Consider the error dynamics

_~x1 = ~m(x1; x̂1; !)� L1~x2
_~x2 = � ~x1 � (� + L2)~x2

(7)

where

~x1 =

�
~�
~�

�

~x2 =

�
~y1
~y2

�
are the errors and where the nonlinear terms are given by

~m(x1; x̂1; !) =

�
cos �̂� cos �

sin �̂ tan �̂ � sin� tan �

�
!2

+

�
� sin �̂+ sin�

cos �̂ tan �̂ � cos� tan �

�
!3

The error dynamics (7) can be written

_~x(t) = A~x(t) +

�
~m(x1(t); x̂(t); !(t))

0

�

If we denote the transition matrix associated with A by

�(t) =

�
�11 �12

�21 �22

�
(8)

and recall that
~x2(0) = 0: (9)
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then by integrating (7) and using (8) and (9) we can write�
~x1
~x2

�
(t) =

�
�11(t)~x1(0)
�21(t)~x1(0)

�
+

Z t

0

�
�11(t � s) ~m
�21(t � s) ~m

�
ds (10)

It is now straightforward to show that if we take

L =

�
L1

L2

�
=

2
64

�c1 0
0 �c2

��1 � l1 0
0 �2 � l2

3
75

and choose li = 3l and ci = �2l2=� , for some l > 0 then

�11 = (2e�lt � e�2lt)I

�21 =
1

l
(e�lt � e�2lt)diag(�1; �2)

which are bounded by
jj�11(t)jj � 2e�lt

jj�21(t)jj � max(�1; �2)e
�lt; l > 1

where the norm used is the maximum norm.
To establish bounds on ~m, we use the mean value theorem stating that, for C1-functions,

g(x + a) � g(x) = g0(x+ �a)a where � 2 [0; 1]. For ~m this gives

jj ~mjj = (j!m2 j+ j!m3 j)max
�
tan(� + �~�);

1

cos2(� + �~�)

�
jj~x1(t)jj

for some � 2 [0; 1]. Now, assume that

j~�(t)j � �

2
� 2�

3
: (11)

It then holds that j� + �~�j < �
2
� � and thus

jj ~mjj � (j!m2 + !m3 j)max
�
tan(�

2
� �); 1

cos2(�=2��)

�
jj~x1(t)jj

= Kjj~x1(t)jj
where e(t) = jj [ ~xT1 ~xT2 ] jjT . Using these bounds we get from the error equations (7) that

e(t) �Me�lte(0) +

Z t

0

Me�l(t�s)Ke(s)ds

where M = max(�1; �2; 2) and e(t) = jj [ ~xT1 ~xT2 ]
T jj. De�ning p(t) = elte(t) it holds that

p(t) �Me(0) +

Z t

0

Me(s)ds

and with Gronwall-Bellmans lemma we obtain

p(t) �Me(0)eMKt

We now have an exponential bound on the errors

e(t) �Me(0)e�(l�MK)t: (12)

and for l > MK, the errors asymptotically tend to zero. To prove that the region j�j < �
6
�

�
6
; j~�j < �

3
� 2�

3
is an invariant set for the observer (6) we note that our choice of initial guesses

and the �-bound gives je(0)j � �
6
� �

3
, which in consequence guarantees that j�̂j � �

3
� 2�

3
+ �

6
� �

3
=

�
2
� � and thus (11) holds.
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4 Observers with one inclinometer

In this section we consider the problem of reconstructing both pitch and roll in the case where
only one inclinometer is available. Without loss of generality, we assume the inclinometer for
pitch is available. Solving this problem would be interesting if one of the inclinometers becomes
unreliable due to malfunction, or as a result of impact in one direction.

In this paper we consider only the case of small angles. Then the nonlinear dynamics can be
simpli�ed as

_� = �!3(t)� + !2
_� = !3(t)� + !1
_y = �� � �y

(13)

which is linear but time varying.
We show now that under some rather mild conditions there exist exponential observers for

the system.
Let us �rst rewrite (13) into the matrix form:

_x = A(t)x+ B!

y = Cx

where x = [�; �; y]T , C = [0 0 1] and

A(t) =

2
4 0 �!3(t) 0
!3(t) 0 0
� 0 ��

3
5 (14)

Theorem 4.1 Suppose !3(t) is such that the following observability condition is satis�ed:Z T

0

��(t+ s; t)C�C�(t+ s; t)ds � �I; (15)

for some � > 0, T > 0 and any t � 0 where �(t; s) is the transition matrix of A(t). Then there

exists an exponential observer in the following form:

_̂x = A(t)x̂� L(t)(Cx̂ � y(t)) (16)

Remark: (15) is ful�lled for example by constant !3 6= 0 and for !3 = sin(t).
Before we give a constructive proof for the theorem, we have to show a general result for linear
time-varying systems, which, we believe, is new and interesting in its own right.

Proposition 4.1 Consider

_x = A(t)x

y = Cx

If there exists a P (t), 0 < mI � P (t) �MI such that

A�P + PA+ _P � 0

and there exist � > 0 and T > 0 such that for any t � 0Z T

0

��(t+ s; t)C�C�(t+ s; t)ds � �I;

where �(t; s) is the transition matrix of A(t), then

_̂x = A(t)x̂ � P (t)�1C�(Cx̂� y(t))

is an observer with exponentially decaying error.
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Wewill prove the proposition at the end of the section. Let us �rst use it to show Theorem 4.1.

Proof of Theorem 4.1:

For system (13), let

P (t) = I +

�
��T ��
��T 0

�
(17)

where �(t) satis�es

_� =

� �� �!3(t)
!3(t) ��

�
�+

�
�

0

�
�(0) = 0

(18)

Then a trivial calculation gives that

V (x; t) = xTP (t)x (19)

is a Lyapunov function for (13), or in other words,

_P (t) +A(t)P (t) + P (t)AT (t) = Q � 0

Now we only need to show P (t) is bounded below and above:

mI < P (t) < MI

To show this, note that (18) has a Lyapunov function V1(x; t) = jjxjj2 with _V1 = �2� jjxjj2 and
thus is exponentially stable. Therefore � is bounded and as a consequence, P (t) is bounded
above.
To show that P (t) is bounded below we consider the eigenvalues. It is tedious but
straightforward to �nd the minimal eigenvalue

�min = 1 +
jj�jj2�

p
jj�jj4+ 4jj�jj2
2

for which it holds that �min > 0 and for bounded �, �min � � > 0.
Therefore, the hypotheses of Proposition 4.1 are satis�ed and if we take L(t) = P (t)�1C�, (16)
in Theorem 4.1 is an exponential observer, provided the observability condition is also ful�lled.
Now we prove Proposition 4.1. Before we proceed with the proof, we need the following two
lemmas [Brocket(1970)].

Lemma 4.1 Let K(�) 2 L1(0;+1) be n� n-matrix function. Consider the system

_z = K(t)z: (20)

Assume that Z
1

t0

jz(t)j2 dt � c2 jz (t0)j2 (21)

for any solution z(�) of (20) and any t0 � 0 with the constant c > 0 being independent of z(�)
and t0.

Then and only then,

jz(t)j � bjz(t0)je�r(t�t0)
for some b > 0; r > 0.

Lemma 4.2 Let �(�) 2 L2 ([t0;+1)! Rn) and � > 0. Denote

�(t) :=

Z �

0

�(t+ s) ds 8t � t0: (22)

Then �(�) 2 L2 ([t0;+1)! Rn) and ���(�)��
2
� �j�(�)j2: (23)
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Proof: By using the Cauchy-Schwartz inequality, we get

���(t)�� � p
�

 Z t+�

t

j�(s)j2 ds
!1=2

:

Hence, Z
1

t0

���(t)��2 dt � �

Z
1

t0

dt

Z t+�

t

j�(s)j2 ds = �

Z
1

t0

j�(s)j2 ds
Z s

s��

dt = �2j�(�)j22:

Thus, �(�) 2 L2 and (23) is true.
Now we are ready to prove the proposition.
Proof: Denote

z = x(t)� x̂:

Then
_z = Az � P�1C�Cz (24)

and
d

dt
(z�Pz) = z�

�
PA+A�P + _P

�
z � 2z�C�Cz � �2jCzj2:

So, for any two instants t � t0 � 0,

z(t)�P (t)z(t) � z(t0)
�P (t0)z(t0) � 2

Z t

t0

jCz(s)j2 ds;

Therefore
z(t)�P (t)z(t) � z(t0)

�P (t0)z(t0) �M jz(t0)j2;

2

Z t

t0

jCz(s)j2 ds �M jz(t0)j2:

By assumption a�Pa � mjaj2. So we have

mjz(t)j2 � z(t)�P (t)z(t) �M jz(t0)j2;

jz(t)j �
r
M

m
jz(t0)j; (25)Z

1

t0

jCz(s)j2 ds � M

2
jz(t0)j2; (26)

Solving the error equation we have

z(t+ s) = �(t+ s; t)z(t) �
Z t+s

t

�(t+ s; �)�(�) d�| {z }
's(t)

: (27)

where �(t) = P�1C�Cz(t). Let t; s � 0; s � T where T is the constant from the assumption.
Since the matrix A(t) is Lyapunov stable, k�(t+ �; t)k � � <1 for all � � 0. So, in (27),

j's(t)j � �

Z t+T

t

j�(�)j d�| {z }
�(t)

(28)

where, by Lemma 4.2,

j�(�)j2 � �T j�(�)j2 � �
1

m
kC�k

r
M

2
T jz (t0)j : (29)
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Now we get Z T

0

jC�(t+ s; t)z(t)j2 ds =
Z T

0

jC (z(t + s) + 's(t))j2 ds

� 2

Z T

0

jCz(t+ s)j2 ds+ 2

Z T

0

jC's(t)j2 ds

Then,Z
1

t0

dt

Z T

0

jC�(t+ s; t)z(t)j2 ds � 2

Z
1

t0

dt(

Z T

0

jCz(t+ s)j2 ds+
Z T

0

jC's(t)j2 ds)

� 2

Z
1

t0

jCz(r)j2dr
Z r

maxft0;r�Tg

dt+ 2

Z
1

t0

TkCk2�(t)dt

� TM (1 +
T 2

m2
�2kCk4)jz(t0)j2:

On the other hand,Z
1

t0

dt

Z T

0

jC�(t+ s; t)z(t)j2 ds =
Z

1

t0

 
z(t)�

"Z T

0

��(t+ s; t)C��(t + s; t)C ds

#
z(t)

!
dt:

Then the observability hypothesis yieldsZ 1

t0

dt

Z T

0

jC�(t+ s; t)z(t)j2 ds � "

Z 1

t0

jz(t)j2 dt:

Thus, Z 1

t0

jz(t)j2 dt � TM

"

�
1 +

T 2

m2
�2kCk4

�
jz(t0)j2:

This means that the system (24) satis�es the hypotheses of Lemma 4.1. In other words, the
assumptions of Lemma 4.1 are ful�lled with respect to the matrix-function:

K(t) := A(t) � P (t)�1C�C: (30)

Therefore, the error tends to zero exponentially.

5 Simulations

5.1 High gain state estimation for rigid body motion.

To illustrate the results in section 3, consider a rigid body (4) equipped with the sensors
described in section 2. Let it be subject to the angular velocities
! = [1 sin(2�t) 0:7 sin(�t) 7 sin(6�t)]: Let the time constants be given by �i = 1 and take for
instance � = 0:15 in Assumption 3.1. Then it holds (12) that l > 690 guarantees convergent
estimates. Let the initial state be given by [�; �; y1; y2](0) = [�=6� 1:1�; �=8; 0; 0]. As can be
seen in �gure 1, our choice of initial values and angular velocities give pitch angles within the
prescribed bounds. From the �gure it is also obvious that the inclinometer output is not
suitable for control purposes.
Applying the proposed high gain observer, the errors converge to zero as expected. For this case
the convergence is considerably faster than the bound (12) which also is shown in the �gure.

5.2 State Estimation with one inclinometer

In section 4 it was shown that, for small angles it is possible to estimate pitch and roll using
only an inclinometer for the pitch angle. To illustrate this, we consider a motion generated by
[� � y1](0) = [�

8
��
8

0] and ! = [0 0 sin t]. In �gure 2, pitch, roll, estimates and errors are
given. The observer is seen to converge.
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Figure 1: Estimation with two inclinometers.
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Figure 2: Estimation with one inclinometer

6 Summary

We have studies the state estimation problem for rigid bodies where the sensors used are
inclinometers and gyros. The existence of an exponential observer of high gain type is shown.
If one inclinometer is out of order or unreliable due to for example a sudden impact it is still
possible to estimate pitch and roll given small angles and strong observability. Future work
amounts to considering other observers such as extended Kalman �lters and to build an
experimental sensor platform and study the algorithms performance in the real world.
Inclinometers are sensitive to translational accelerations so it is likely that a switching scheme
based on acceleration triggering has to be considered. Finally the sensor system will be
implemented on a walking robot.
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