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                                                     ABSTRACT
In the robust tracking problem with two-output plants it is shown that if the plant is unstable, the
numerators corresponding to the two outputs cannot be unrelated. However, if the plant is stable,
the two parts of the plant can be unrelated and in fact, the compensator which solves the problem
incorporates an “inverse internal model” of the exogenous signal.

1.  INTRODUCTION

The linear multivariable robust tracking problem has been addressed for over 25 years, having
achieved a degree of maturity in the solution of the main issues. In the mid 70’s the problem was
studied, among others, in the state-space/matrix formulation by Davison (1976), in the state-
space/geometric approach by Francis and Wonham (1975), in the state-space/Laplace transform
by Ferreira (1976)  and by Desoer and Wang (1980).
In the early / mid 80’s the problem in the input–output /Laplace transform was solved by Vidya-
sagar (1985) for one-output plant, one-degree-of-freedom compensator, by Sugie and Yoshikawa
(1986) for one-output plant, two-degree-of-freedom compensator and by Sugie and Vidyasagar
(1989) for the general problem, namely, two-output plant, two-degree-of-freedom compensator
Most recently Howze and Bhattacharyya (1997) addressed the issue of the robustness with re-
spect to perturbations of the compensator in the scalar problem with one-output plant, two-
degree-of-freedom compensator.
The present paper addresses a conjecture made by Sugie and Vidyasagar (1989), namely, that the
numerators of the two-output plant have to be related if the robust tracking problem is to have a
solution.
In this paper, after the set-up of the problem in the following section, we show in the third section
that indeed the problem has no solution with unstable plant if the numerators are unrelated, but in
the fourth section it is shown that if the plant is stable, the problem does have a solution ,which is
somehow surprising: the compensator must incorporate an “inverse internal model” of the exoge-
nous signal.

2. SETTING-UP THE PROBLEM

Notation and abbreviations: The set of  proper and stable rational functions, a principle ideal
domain (Vidyasagar, 1985), is denoted by  S. The set of matrices with elements in  S  is denoted
by   M(S). R  is the field of real numbers. Left coprime will be abbreviated by  l. c. , right co-
prime will be abbreviated by  r. c.

In the figure  z(s)  and  r(s)  are  q-valued vectors,  u(s)  is a  m-valued vector and  y(s)  is a  p-
valued vector.
                        P1 (s)

     P (s)  =                         represents the given plant.
                         P 2 (s)
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      C(s)  =    [ C1 (s)        -C2 (s)]       is the compensator to be designed.

  z(s)                                      u(s)                                                                               r(s)

   (q)                                                                       [C 1 (s),      -C 2 (s)]                      (q)

                                                                    (m)

                  y(s)
                    (p)

Omitting henceforth the argument (s) when convenient,  we have:

                                    z  =  P1 u ,      y  =   P2 u ,    u =  C1 r  -  C2 y .

P1 ,   P2  ,   C1   and   C2   are proper rational matrices and have the appropriate dimensions.
P2   is assumed strictly proper for convenience in terms of well - posedness and because this is the
case in most practical situations. This assumption might be dropped easily. The exogenous signal
r  is assumed proper.  P1  and  P2   are assumed to have full rank. All the factorizations in the

paper are over  S.

                      P1                      N 1

Let    P  =                   =                        D 1−   ,  a  r. c.  factorization.
                       P 2                      N 2

Let  C =   [C1       -C2 ]   =   D c
-1 [ N c1         - N c2 ]    ,  a  l. c. factorization.

We assume that the exogenous signal  r  has all its poles in the closed right complex plane; those
are the relevant poles, since the modes corresponding to stable poles decay asymptotically to zero.
This assumption is standard in the literature of the servo problem, but might be easily dropped.

r  =   D r
-1  N r  r 0  ,

where  D r   is a known matrix,   N r   need not be known, D r   and   N r   are  l. c. and   r 0   is

an arbitrary vector of real numbers.

α m   will denote the largest invariant factor of  D r .

We use the standard definition of  closed loop stability. It is known (Desoer and Gündes, 1988)

that if the closed loop is stable,   cD  ,  2cN ,   D  and  N 2   can be chosen, without loss of gener-

ality such that

                                               cD  D   +    2cN  N 2     =    I  ,           (1)

where  I  is the identity matrix.

 P1 (s)

P 2 (s)
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Let  H  be the transfer function matrix between  z  and  r .  Asymptotic tracking is said to take
place if and only if the loop is stable and

                                                   ( I  -  H ) r   ∈   M(S)                                                    (2)

Straightforward calculations give, in view of (1):

                                                   H  =   N1  Nc1 .                                                                (3)

Perturb the plant,  P →  P* .  Let  H* be the resulting transfer matrix between  z  and  r .
We say that  C  is a robust tracking compensator if and only if the perturbed closed loop is stable
and

                                                  ( I  -  H* ) r   ∈   M(S) ,                                               (2*)

whatever be the perturbation in a given set.

Remark: Recall (Vidyasagar, 1985) that if   F ∞  <  1 , with   F  ∈   M(S),  then   I  +  F  is

unimodular.

We have next a technical result:

Lemma

Let   ∆ D  ,  N∆   ∈ M(S)  be such that   I  +  cD D∆   +  N c2 ∆ N   is unimodular. Then there

exist  ε 1  , 2ε  ∈ R  and  Q 1  ,   Q 2  ∈  M(S)  such that

           ( I  + cD D∆   +  N c2  ∆ N  )
1−
  = I  - 1ε  cD  Q 1   - 2ε  N c2 Q 2                              (4)

Conversely, let 1ε , 2ε ∈ R  and  Q 1  , Q 2  ∈ M(S) be such that I  - 1ε cD Q 1  - 2ε N c2 Q 2    is

unimodular. Then there  exists    ∆ D  ,  N∆  ∈  M(S)   such that  (4)  holds.

Moreover,

                                 ∆ D   =   1ε  Q 1   (I  -  1ε  cD  Q 1   - 2ε N c2 Q 2 ) -1 ,

(5a)
              

                     N∆   =  2ε  Q 2  (I  -  1ε  cD  Q 1   - 2ε N c2 Q 2 ) 1−     

(5b)

                                    1ε  Q 1   =   ∆ D  ( I  + cD D∆   +  N c2  ∆ N  )
1−

(5c)

                                    2ε  Q 2  =   ∆ N  ( I  + cD D∆   +  N c2  ∆ N  )
1−
                            (5d)

Proof:
From (5a) and (5b), we have:

650

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



I  + cD D∆   +  N c2  ∆ N   =  I  +  cD  1ε  Q 1   (I  -  1ε  cD  Q 1   - 2ε N c2 Q 2 ) -1  +  N c2  2ε

Q 2  (I  -  1ε  cD  Q 1   - 2ε N c2 Q 2 ) 1−      =  (I  -  1ε  cD  Q 1   - 2ε N c2 Q 2  +  1ε  cD  Q 1   +

2ε N c2 Q 2 )  (I  -  1ε  cD  Q 1   - 2ε N c2 Q 2 ) 1−   =   (I  -  1ε  cD  Q 1   - 2ε N c2 Q 2 ) 1−  ,

which is (4).
By the same token, (4) is obtained from (5c) and (5d) also.
∇

Remark:

Q 1  ,  Q 2 ∈ M(S)  may be chosen arbitrarily and yet    I  -  1ε  cD  Q 1   - 2ε N c2 Q 2   will be

unimodular, provided  1ε  and  2ε   are  sufficiently small.  Indeed,

1ε  cD  Q 1   + 2ε N c2 Q 2 ∞   ≤    1ε  cD  Q 1 ∞    +  2ε N c2 Q 2 ∞   ,

1ε cD  Q 1 ∞   ≤   1ε  cD ∞  1Q ∞ ,             2ε 2cN  Q 2 ∞   ≤    2ε  2cN ∞  2Q ∞ .

So, according to the Remark before the Lemma, choose   1ε  ,  2ε  small enough, establishing

the claim.
∇      

Let  N∆   and  D∆   ∈    M(S)  be the perturbations of   N 2  and   D , respectively. The admissi-

ble  N∆   and    D∆   are such that   cD (D  + D∆ )  +  N 2c ( N 2  +  N∆ )  is unimodular. It is

clear that these perturbations are arbitrary, provide that the norms of  N∆   and  D∆   are suffi-

ciently small.

In their elegant  and important paper, Sugie and Vidyasagar (1989) assume that  1N  and  N 2  are

related by
                                          N 1 (s)  =  L(s)  N 2 (s) ,

(6)

where  the zeros and poles of   L  are disjoint from those of   rD .  Notice that   L   can be im-

proper and unstable (but of course N 1   is proper and stable, by definition). This relationship be-

tween   1N  and  N 2   is a rather mild one. The authors call it “mode readability”, a weaker con-

dition than “readability” , assumed by Davison (1976) and Francis and Wonham (1975), in which
L   is constant.
Sugie and Vidyasagar allow perturbations of  L  even though not arbitrary. We omit here the
class of allowed perturbations of   L  for the sake of brevity, remitting it to that paper.
Sugie and Vidyasagar make the following conjecture: the relationship (6) is necessary for robust
tracking.
We show in the next section that if the plant is unstable and the problem is to have a solution, 1N

and  N 2  cannot be unrelated, confirming somehow Sugie and Vidyasagar’s conjecture. In the

fourth section we show that if the plant is stable, the problem does have a solution when   P1   is
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held fixed. In this case, we will see that the compensator must incorporate an inverse internal
model of the exogenous signal.

3.  PERTURBING THE UNSTABLE PLANT

Theorem 1:
Perturb  D  and  N 2   “arbitrarily” (in the sense defined above), while maintaining   N 1   fixed.

Then the robust tracking problem has no solution.

Proof:
Perturb  D →  D  +  D∆    and fix  1N  and  N 2 .  Then, it is easy to obtain

z   = N 1  (I  +   cD  D∆ ) 1−  N 1c  r   =   N 1  (I  -  1ε  cD  Q 1  ) N 1c  r ,     in view of (4).

Hence,

                          e  =   r - z    =   [I   -  N 1  (I  -  1ε  cD  Q 1  ) N 1c  ] r

                                             =  (I  - N 1  N 1c ) r   +  N 1 1ε  cD  Q 1  N 1c  r .

Now, in view of (2) and (3) asymptotic tracking implies

                                            N 1 1ε  cD  Q 1  N 1c  r  ∈    M(S).

And from the definition of   r  we get

 N 1  cD  Q 1  N 1c  rD 1−   ∈    M(S).                       (7)

Now, in view of (2) and (3) it is clear that   N 1c   and   rD   are  r. c.

Let   N 1c  rD 1−   =:  A 1−  B ,    a  l. c.  factorization. It is clear that   A  and  rD      have the

same invariant factors.
Then, in view of (7), we have

                                                   N 1  cD  Q 1   A 1−    ∈    M(S).                                   (8)

Let   SA  be the Smith form of  A  and let  U  and  V   be unimodular matrices such that

A  =  U SA V .  Define    Q   =  Q 1  V –1  . Then from (8)

                                                   N 1  cD Q  SA
1−

     ∈    M(S).                                            (9)

Let   α j   be the invariant factors of  A,    j ∈ m , where  m = {1,2,...m}.

 Let  nj ,  j∈ p ,  be the columns of     N 1  cD .

Let  qki  be the elements of  Q  .  Choose  Q  such that

                                      qjm  =  1 ,    qki  =  0    ∀ ( k, i )  ≠   ( j, m) .

Then straightforward calculations from (9) give    nj α m 
-1  ∈   M(S) , ∀j  ∈  p , or,

                                                 N 1  cD  α m
-1  ∈   M(S) .                                                (10)

Now perturb   N 2   →   N 2  +  N∆  , fixing   D  and  N 1  . From the block diagram we obtain
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z   = N 1  (I   +   2cN  N∆  ) 1−  N 1c  r   =   N 1  (I  -   2ε 2cN  Q 2 ) N 1c  r ,

in view of (4).
Hence,

                     e  =   (I  -  N 1 N 1c ) r   +   N 1 2ε 2cN  Q 2 N 1c  r.

So, robust tracking implies, in view of (2) and (3),

N 1 2cN  Q 2 N 1c  r   ∈   M(S)   ⇒     N 1  2cN   Q 2 N 1c  rD 1−   ∈    M(S).

Defining matrices  A,   S A    as above (after (8)) and choosing an appropriate  matrix in the same

way as  Q  , we obtain

     N 1  2cN  α m
-1  ∈   M(S) .                                 (11)

From (10) and (11), we have

 α m
-1   N 1   [ cD   ,  2cN ]   ∈   M(S).

But from (1)  cD   and  2cN   are  l.c. , hence the last implies     α m
-1   N 1    ∈   M(S).

Hence there exists  N 11   ∈   M(S)  such that   N 1   =   mα  N 11  .

But from (2) and (3), there should exist    W   ∈   M(S)  such that

               N 11  N 1c  mα    +   W D r   =   I  .

And it is clear that there is no solution for this equation in  N 1c   and   W ,  since  mα I   and D r

are not  r. c. , proving the theorem.
∇

4. SOLUTION OF THE PROBLEM WITH STABLE PLANTS, P 1  AND P 2

UNRELATED

We have now   N 1   =   P 1  ,     N 2   =   P 2  ,    D  =  I .

 Perturb   P 2  →   P 2  +   ∆ ,    ∆   ∈  M(S),   P1    is fixed.

 Theorem 2:
Let  P1  be fixed and  P2  arbitrarily perturbed (in the sense defined above). Then  C   is a robust
tracking compensator if and only if it stabilizes the closed loop system and

a)     ( I  -  P1 N 1c ) rD 1−   ∈   M(S)

b)     P1 2cN  α m
-1  ∈  M(S) .

Proof:
The perturbed transfer matrix between  z  and  r  is

                     H*  =  P1 ( I  + 2cN  ∆  )-1 N 1c      =   P1 ( I  -  ε 2cN   Q ) N 1c   ,
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in view of (4).
Hence, asymptotic tracking takes place if and only if the closed loop is stable and

                         [ I  -  P1 ( I  -  ε 2cN  Q ) N 1c ] rD 1−   ∈  M(S) .                                   (12)

From (2) and (3) it is clear that condition  a) of the theorem is necessary for asymptotic tracking
with the nominal plant  ( ∆  = 0 ). Then from (12) and  a) we must have:

                                 P1 2cN  Q N 1c  rD 1−   ∈  M(S) .

Now proceed as in the development after (8), defining  A ,  S A   and so on. We obtain likewise:

                                                    P1 2cN  α m
-1  ∈   M(S) .

The sufficiency of the conditions follows at once from (12).
∇

We have next the condition for the solvability of the problem. Recall (Wolovich, 1978) that two
matrices  A  and  B  are externally skew prime (e.s.p.) iff there exist matrices  X  and  Y such that
A X  +  Y B  =  I .

Theorem 3:
Assume that the plant is stable. Fix  P1  and perturb  P2  as in theorem 2. Then there exists a ro-
bust tracking compensator  C  if and only if   P1  and  Dr  are  e.s.p.

Proof:
The necessity of the condition is a direct consequence of  a)  of theorem 2. For the sufficiency,

find  N 1c   such that  a)  of theorem 1 is satisfied.  Next do  2cN    =  2cN  α m   and find   2cN

and  cD    such that the closed loop is stabilized, which can always be found whatever be  P2

stable, since  I   and    α m P2  are right coprime.
∇

5. CONCLUDING  REMARKS

1.  The problem handled in the last  section has no solution with one-degree-of-freedom feedback

compensator. Indeed, conditions  a)  and  b) of theorem 1 contradict each other if   N 1c   =

2cN .

2.  It is important to note that with our assumptions, the problem of the last section has a simple

solution without feedback, namely,  2cN  =  0.  So, it is clear that it would make sense to imple-

ment the feedback solution only if it would be necessary for other reasons. This would be the case
if there were disturbances to be rejected affecting, say, the plant, or  between the plant and the
compensator.
3.   The result presented in the last section contrasts evidently with the so called internal model
principle: see Francis and Wonham (1975) and Davidson (1976) and, more recently, Sugie and
Vidyasagar (1989). According to the internal model principle, in order to obtain robust tracking,
the compensator must incorporate a replicated internal model of the exogenous signal.
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Now, in condition  b)  of our theorem 2, we have an “inverse internal model”  in the sense that the
exogenous poles affect the numerator of the feedback channel of the compensator, not the de-
nominator of it.
The apparent contradiction is solved when we consider the assumptions previous to the results. In
our paper we assume that  P1  is fixed, while in the three papers mentioned above a relationship is
assumed between  P1  and  P2 , namely,  P1  =  L P2 . In the first two papers quoted above,  L  is a
fixed matrix of real numbers and then it is said that  z  is “readable” from  y . In the paper by Su-
gie and Vidyasagar  L  is a rational matrix, not necessarily proper, and whose zeros and poles are
disjoint from the exogenous modes; besides,  L is perturbable in a restricted sense and  the
authors call  z   “mode readable” from  y. It is clear that mode readability is a weaker condition
than readability. Sugie and Vidyasagar believe that mode readability is a necessary condition for
robust tracking. We assumed that  P1  is fixed, while  P2  is arbitrarily perturbed, so in our as-
sumption there is no mode readability and a fortiori no readability. And it was proved that neither
one is necessary if the plant is stable.
4.  It might be added that   P1  and  P2   being not related does not mean necessarily that they refer
to two distinct plants. So, for example, if

             a 1       0                                                                b 1       b 2                    c 1         0

A =                               ,  a 1   and   a 2 <  0 ,    B  =                         ,    C  =                            ,

            0        a 2                                                               0       b 3                        0         c 2

we obtain    P1 (s)  =          b 1  c 1    ,         b 2  c 1         ,        P 2 (s)  =      0 ,          b 3  c 2          .

                                          s  - a 1              s  - a 1                                                 s  - a 2

5. A practical situation of theorem 2 might occur, say, when   P1    would refer to the digital part,

so in most cases virtually unperturbable, of a plant.
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