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Abstract

A novel directional forgetting algorithm is developed based on a decomposition of the

information matrix. This algorithm performs exponential forgetting only to a speci�ed part

of the information matrix, thus preventing the problem known as estimator windup which is

a characteristic of the standard exponential forgetting algorithm. This algorithm is able to

track fast parameter changes and is similar in complexity to the standard least square algo-

rithm. The superior performance of the algorithm is veri�ed via theoretical and simulation

studies.

1 Introduction

The exponential forgetting(EF) recursive least squares(RLS) algorithm is a well known method

for on-line parameter estimation. Its main drawback is the so-called estimator windup which

occurs when the system input is not persistently excited as shown in (�Astr�om and Wittenmark,

1995,Ch.11). A number of modi�cations to the exponential forgetting algorithm have been

proposed in order to overcome this drawback. Among them a notable one is the directional

forgetting(DF) strategy suggested by H�agglund(1985) and Kulhav�y(1987). The basic idea is

that we should forget old data only in the direction where the new one is coming from. When

the input is not persistently excited, then in some directions no information about the system

dynamics is available. Therefore, the forgetting operation should be applied only to the part of

the information matrix, where new information is available from the input and output data.

There are many possibilities to implement the directional forgetting strategy. Kulhav�y(1987)

proposed a directional forgetting algorithm which can prevent estimator windup. However, it

has been recognized that in this algorithm all eigenvalues of the information matrix are not

bounded from above as shown in (Bittanti et al., 1990). This means that in some directions the

algorithm will eventually lose its tracking capability. In particular, this algorithm is not suitable

for tracking jump changes in parameters. An alternative approach to directional forgetting is

developed by Parkum et al.(1992) who called their method selective forgetting(SF). Although

the name is di�erent, this approach can also be viewed as a kind of the DF method. In the

SF method, eigenvectors of the information matrix are used as references for determining the

direction of incoming data, and the corresponding eigenvalues are used as indicators of the

amount of information coming in the eigenvectors' direction. This consideration provides very
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useful insights into the way in which the directional forgetting strategy may be implemented

e�ectively. A drawback of the SF method is that the eigenvalues and eigenvectors have to be

computed at each update, which greatly increases the computational requirement compared to

the standard EF algorithm.

In this paper, a new algorithm for directional forgetting is developed based on a decompo-

sition of the information matrix. Through the matrix decomposition, the directional forgetting

can be implemented in an e�ective way. In this approach, only a speci�ed part of the information

matrix is forgotten at each update. Under the condition of persistent excitation, the algorithm

has the same behavior as that of the standard EF algorithm, which means the dynamic tracking

performance is good. When excitation is poor, windup does not occur because nothing is for-

gotten in the part of the information matrix, which is orthogonal to the excited space in some

sense. Compared with various modi�cations to the EF algorithm, the new algorithm is simple in

the sense that there are only two adjustable constants that need to be prespeci�ed. A detailed

analysis of the properties of the resultant algorithm is also given. Finally, a simulation example

is given that compares the proposed algorithm with the SF algorithm.

2 Matrix Decomposition and Directional Forgetting

Before describing the new algorithm, let us have a look at the update equation for the information

matrix in the EF algorithm, which is given by

R(t) = �R(t � 1) + '(t)'T (t) (1)

where 0 < � < 1 is the forgetting factor. From the above equation, it can be seen that the

old data in R(t� 1) is forgotten uniformly in all directions and continuously in time regardless

of the new information content associated with '(t). This does not cause any problems if the

input is persistently excited, because the information forgotten at time t in any direction can

be compensated by the data vectors '(t); '(t+1); � � �. However, when the input does not excite

the system in all directions, then continuous forgetting in all directions will lead to the loss of

some information in certain directions(some eigenvalues of R(t) will tend to zero), because no

compensation in these directions is available. This is the reason why estimator windup occurs.

The above observation motivated the proposal of the directional forgetting algorithm. That

is, forgetting should be restricted to the directions where the new data is coming from. In order

to implement the directional forgetting e�ectively, one should �rst connect the information

matrix R(t)(or its inverse P (t)) with the data vector '(t) in terms of some 'spatial' relationship.

And then, one performs the forgetting operation on R(t) based on this relationship. Kulhav�y

used the Bayesian estimation scheme to get a directional forgetting algorithm without giving an

explicit relationship between R(t) and the data vector. In the SF approach, the eigenvectors of

P (t) are used to determine the directions of the data vectors with the added cost of computing

the eigenvectors and the eigenvalues at each update. Here, we propose a directional forgetting

algorithm based on a decomposition of the information matrix. Our approach is motivated by

the observations made in (�Astr�om and Wittenmark,1995, Ch.11). We extend their work by

proposing a complete information matrix decomposition theory.

Our approach is started by decomposing the information matrix R(t � 1) into two parts

before performing forgetting

R(t� 1) = R1(t� 1) +R2(t� 1) (2)

where R1(t� 1) is assumed to satisfy the following equation

R1(t � 1)'(t) = 0; '(t) 6= 0 (3)
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which means that '(t) is in the kernel space of R1(t� 1). The matrix R2(t� 1) represents that

part of R(t�1) which should be forgotten. Since R(t) is positive de�nite, it is required that both

R1(t� 1) and R2(t� 1) are nonnegative de�nite. For R1(t� 1) we have the following lemma.

Lemma 1. Assume that R1(t�1) satis�es (3). Then the image space of R1(t�1) is orthogonal

to '(t), that is

ImR1(t� 1) � �?(t) (4)

where �?(t) denotes the orthogonal complement of '(t)

�?(t) = fx : hx; '(t)i = 0g (5)

Proof. This lemma is easy to prove by noting that the image space ImR1(t� 1) is spanned by

the columns of R1(t � 1), and each column of R(t� 1) is orthogonal to '(t).

Obviously, if we let the rank of R1(t� 1) be n� 1, then we have

ImR1(t� 1) = �?(t) (6)

Therefore, by letting R1(t � 1) satisfy (3), we establish an orthogonal relationship between

R1(t� 1) and '(t). In fact, if one looks at the image spaces of R1(t� 1) and '(t)'T(t), one will

�nd they are orthogonal to each other.

Now we turn to R2(t� 1), which is characterized by the following equation

R2(t� 1)'(t) = R(t� 1)'(t) (7)

With (3) and (7), R1(t � 1) or R2(t � 1) may not be determined uniquely. We need to add

some restriction on the rank of R1(t� 1) and R2(t� 1). Because the new information is coming

in the form '(t)'T (t) and the rank of '(t)'T(t) is 1, it is reasonable to require that the rank

of R2(t � 1) is 1 and the rank of R1(t � 1) is n � 1(n is the order of R(t)). With these rank

conditions, R2(t � 1) is found to be

R2(t� 1) = �(t)[R(t� 1)'(t)][R(t� 1)'(t)]T (8)

where �(t) is a scalar and is given by

�(t) =
1

'T (t)R(t� 1)'(t)
(9)

In order to ensure that �(t) is well-de�ned, '(t) must be a nonzero vector. In fact, to ensure

the algorithm is well-behaved, we need to set a dead zone for '(t). The algorithm is not activated

unless '(t) is outside the dead zone. Therefore, when '(t) is within the dead zone, we have

�(t) = 0; if j'(t)j < � (10)

where � can be determined based on the noise level in data. In the following, it is assumed that

j'j � � unless the opposite situation is mentioned.

From equation (8), one can get R1(t� 1) as

R1(t� 1) = R(t� 1)� �(t)[R(t� 1)'(t)][R(t� 1)'(t)]T (11)

The matrix R1(t� 1) satis�es (3). Furthermore, R1(t� 1) has the following properties.

Lemma 2. Assume that R(t� 1) is positive de�nite. Then the matrix R1(t� 1) given by (11)

is nonnegative de�nite and its rank is n � 1.
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Proof. Consider the following spectral radius

�[R2(t� 1)R�1(t� 1)] = �[�(t)R(t� 1)'(t)'T(t)] (12)

The rank of the matrix �(t)R(t�1)'(t)'T(t) is 1, and hence the matrix has only a single nonzero

eigenvalue. From the fact that the sum of eigenvalues of a matrix is equal to its trace, we can

see that the nonzero eigenvalue is equal to 1. Therefore, we get �[R2(t � 1)R�1(t � 1)] = 1.

Then by using Theorem 7.7.3 in (Horn and Johnson, 1985,Ch.7), one can get

R1(t� 1) = R(t� 1)� R2(t� 1) � 0 (13)

which1 shows that R1(t� 1) is nonnegative de�nite.

One can show that the rank of R1(t� 1) is n� 1 by proving that the dimension of its kernel

space is 1. For this propose, assume that there is a nonzero vector x which belongs to the kernel

space. That is, x satis�es

R1(t � 1)x = 0 (14)

This is equivalent to the following equation

R(t� 1)x� �(t)R(t� 1)'(t)'T(t)R(t� 1)x

= R(t� 1)(x� �(t)['T (t)R(t� 1)x]'(t)) = 0

The matrix R(t � 1) is positive de�nite, therefore the above equation has only a zero solution

given by

x = �(t)['T (t)R(t� 1)x]'(t) (15)

Equation (15) indicates that the kernel space of R1(t � 1) is spanned by '(t), and hence its

dimension is 1.

Thus, the matrix R(t� 1) has been decomposed into a matrix of rank n� 1(R1(t� 1)) and

a matrix of rank of 1(R2(t� 1)). Applying exponential forgetting only to the small rank matrix

R2(t� 1)(refer to equation (1)), the update equation for the information matrix becomes

R(t) = R1(t� 1) + �R2(t� 1) + '(t)'T(t)

= �R(t� 1) + '(t)'T (t) (16)

where �R(t � 1) denotes the modi�ed information matrix,

�R(t� 1) = (I �M(t))R(t� 1) (17)

M(t) = (1� �)�(t)R(t� 1)'(t)'T (t) (18)

Equation (17) also represents the time update equation(refer to (Parkum et al.,1992)).

Let

N(t) = I �M(t) (19)

where N(t) is called forgetting matrix. One can observe that N(t) has the same function as that

of the forgetting factor � in the EF method. We have the following lemma for N(t).

Lemma 3. N(t) is nonsingular. Furthermore, there is an eigenvalue of N(t) which is equal to

�, and the other eigenvalues are equal to 1.

1in this paper, for symmetric matrices A and B, A � B(A > B) means A�B is positive semide�nite(de�nite).
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Proof. First note that the rank of M(t) is 1 and it has only a single nonzero eigenvalue. Let

this eigenvalue be �1. By using the same arguements as used in the proof for Lemma 2, one can

get

�1 = trace[M(t)] = (1� �)�(t)'T (t)R(t� 1)'(t) = 1� � (20)

By using the fact that �[N(t)] = 1��[M(t)], where �[�] denotes eigenvalue, the lemma is proven.

For the modi�ed information matrix �R(t� 1) we have the following lemma.

Lemma 4. If R(t) is positive de�nite and 0 < � < 1, then �R(t) is also positive de�nite.

Proof. Equation (17) can be rewritten as

�R(t� 1) = R(t� 1)�M(t)R(t� 1) (21)

If R(t� 1) is nonsingular, then according to Theorem 7.7.3 in (Horn and Johnson, 1985,Ch.7),
�R(t� 1) is positive de�nite if and only if

�([M(t)R(t� 1)][R(t� 1)]�1) = �(M(t)) < 1 (22)

where �(�) denotes the spectral radius of a matrix. From the proof for Lemma 3, we know that

�(M(t)) = 1� � < 1, therefore �R(t� 1) is positive de�nite.

Noting that M(t)R(t� 1) is nonnegative de�nite, then from (21) we get

�R(t� 1) � R(t� 1) (23)

Inequality (23) means that the old information is forgotten(discounted) at each update. The for-

getting operation is performed through the forgetting matrix N(t), and therefore is not uniform

in all directions.

Using the following matrix inversion lemma

(A+ BCD)�1 = A�1 �A�1B(C�1 +DA�1B)�1DA�1 (24)

and letting A = �R(t � 1), B = '(t), C = 1 and D = 'T (t) in (16), one can obtain the update

equation for the covariance matrix

P (t) = �P (t� 1)�
�P (t� 1)'(t)'T(t) �P (t� 1)

1 + 'T (t) �P (t� 1)'(t)
(25)

where �P (t � 1) is the modi�ed covariance matrix and is de�ned by the following equation for

j'(t)j > �

�P (t� 1) = P (t � 1)N�1(t)

= P (t � 1) +
1� �

�

'(t)'T (t)

'T (t)P�1(t � 1)'(t)
(26)

and for j'(t)j � �, �P (t� 1) is de�ned by

�P (t� 1) = P (t � 1) (27)

In fact, equations (26) and (27) are the time update equations for the covariance matrix. One

can �nd that when the data vector '(t) is very small(j'(t)j < �), the update equation (25) is
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exactly the same as the standard least squares method. This is reasonable because when the

data carries little new information(j'(t)j � �), there is no need to forget the old data.

As a summary, the proposed algorithm can be represented by the following equations

�̂(t) = �̂(t� 1) +K(t)[y(t)� 'T (t)�̂(t � 1)] (28)

K(t) = P (t)'(t) =
�P (t� 1)'(t)

1 + 'T (t) �P (t� 1)'(t)
(29)

�P (t� 1) = P (t � 1) +
1� �

�

'(t)'T (t)

'T (t)R(t� 1)'(t)
; j'(t)j > � (30)

�P (t� 1) = P (t � 1); j'(t)j � � (31)

P (t) = �P (t� 1)�
�P (t� 1)'(t)'T(t) �P (t� 1)

1 + 'T (t) �P (t� 1)'(t)
(32)

R(t) = [I �M(t)]R(t� 1) + '(t)'T(t) (33)

M(t) = (1� �)
R(t� 1)'(t)'T(t)

'T (t)R(t� 1)'(t)
; j'(t)j > � (34)

M(t) = 0; j'(t)j � � (35)

(36)

The update equation for the information matrix is included in the algorithm because R(t � 1)

is needed in updating �P (t� 1).

Finally, let us have a look on how the eigenvalues of P (t) is updated during the modi�cation.

Consider the modi�ed covariance matrix when the data vector j'(t)j � �, given by (26). Noting
�P (t) = �R�1(t) and inequality (23), one gets

�P (t� 1) � P (t � 1) (37)

Based on this inequality one can further get(Horn and Johnson, 1985, Ch. 7)

�i[ �P (t� 1)] � �i[P (t� 1)]; for i=1,2,� � �,n (38)

where the eigenvalues of �P (t� 1) and P (t � 1) are arranged in the same order. Inequality (38)

indicates that all eigenvalues are non-decreasing when modifying P (t� 1) according to (26). In

fact, some of the eigenvalues are increasing if '(t) 6= 0. In particular, we have the following

lemma.

Lemma 5. Consider the modi�ed covariance matrix (26). If '(t) is in the direction of one

eigenvector of P (t � 1), then one of the eigenvalues of �P (t� 1) is given by

�p[ �P (t� 1)] =
1

�
�q[P (t � 1)]; p; q 2 [1; 2; � � �; n] (39)

and all other eigenvalues of �P (t� 1) are given by

�i[ �P (t � 1)] = �i[P (t � 1)]; i 6= p; i 6= q (40)

Proof. Because P (t�1) is positive de�nite and hence is diagonalizable, P (t�1) can be written

as

P (t � 1) =
nX
i=1

�i(t � 1)vi(t� 1)vT
i
(t� 1) (41)
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where vi(t � 1) and �i(t � 1) are the orthonormal eigenvectors and eigenvalues of P (t � 1)

respectively. If '(t) is in the direction of vp(t� 1), that is, '(t) = j'(t)jvp(t� 1), then from (26)

we get

�P (t� 1) =
nX
i=1

�i(t� 1)vi(t� 1)vT
i
(t � 1) +

1� �

�
�p(t� 1)vp(t� 1)vT

p
(t� 1) (42)

From equation (42), one can see that �P (t � 1) has the same eigenvectors as P (t � 1). The

eigenvalue of �P (t� 1) associated with vp(t� 1) is �p(t� 1)=�, and the other eigenvalues are the

same as those of P (t � 1). This proves (39) and (40).

Lemma 5 indicates that only when the data vector '(t) is in the direction of one eigenvector

of P (t � 1), the eigenvalue associated with this eigenvector increases by the factor 1=� after

the modi�cation. This is quite di�erent from the modi�cation in the EF algorithm, where all

eigenvalues increase by the factor 1=� regardless of the direction of '(t). The proposed algorithm

has the ability to modify the information matrix according to its eigenvectors' directions. In

this sense, the algorithm presented here works in the same way as that of the selective forgetting

method of Parkum et al.(1992), where updates of the eigenvalues are performed based on direct

calculations of the eigenvalues and eigenvectors.

3 Simulation Example

In the previous section, it has been shown that the proposed algorithm has desirable theoretical

properties. In this section, its practical properties are examined via a simulation example. The

algorithm is compared with the selective forgetting(SF) method to show that the proposed

algorithm has almost the same property as that of the SF algorithm, but is easier to implement

in that it does not require explicit computation of the eigenvalues.

The modi�ed covariance matrix in SF method is given by Parkum et al.(1992) as

�P (t� 1) =
nX
i=1

�i(t� 1)

�i
vi(t� 1)vT

i
(t� 1) (43)

where �i(t� 1) is an eigenvalue of P (t� 1), and �i is the forgetting factor corresponding to �i.

It is argued that �i can be chosen as an increasing function of �i in (Parkum,1992). Then the

update equation for the ith eigenvalue of �P (t� 1) is given by

��i(t � 1) = f(�i(t� 1)) (44)

Although there are many possible choices for f(�), here we take the following one suggested by

Parkum et al.(1992).

f(x) =

(
x; x > �max

�min + (1� �min=�max)x; x � �max

(45)

The example is taken from (Parkum et al.,1992). The system to be estimated is given by

y(t) + ay(t� 1) = bu(t� 1) + e(t) (46)

where fe(t)g is a white noise sequence with variance 0:01. The parameters are given by

a =

(
�0:8 0 � t � 100

�0:4 t > 100
(47)
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b = 1:0; t � 0 (48)

The input to the system and output from the system are shown in �gure 1. The input is

persistently exciting for 0 � t � 350.
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Figure 1: Input(up) and output(down) of the system
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parameter estimates using the DF algorithm
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Figure 2: Parameter estimates using the proposed DF method

In order to give a fair comparison in terms of noise sensitivity between these algorithms, we

choose the � = 0:87 for the proposed method, and �min = 0:01; �max = 0:1 for the SF method.

Both algorithms are started with P0 = 1000I .

The results of the estimation using both methods are presented below. Figure 2 and �gure 3

show the parameter estimates. From these �gures we see that the tracking ability of both algo-

rithms is basically the same. Figure 2 shows that our algorithm is able to track fast parameter

changes, which is in sharp contrast to the DF method proposed in (Kulhav�y,1987). Like the SF

method, our algorithm also behaves well during the period when the input is a constant. This
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Figure 3: Parameter estimates using the SF method
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Figure 4: Trace of the covariance matrix
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is illustrated in �gure 4, where it can be seen that the trace of the covariance matrix tends to a

constant for both algorithms, and no windup occurs.

4 Conclusion

In this paper, a new directional forgetting algorithm based on the decomposition of the infor-

mation matrix has been developed. Theoretical and simulation studies have shown that this

algorithm has desirable properties, such as to forget old data according to incoming information

in various directions, the ability to track fast parameter changes, satisfactory dynamic behavior

and prevention of the windup phenomenon. The algorithm has almost the same order complex-

ity as the standard exponential forgetting algorithm, and the computational requirement is also

low. These properties make this algorithm a very attractive selection for on-line identi�cation.
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