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Abstract

We consider the Korteweg{de Vries{Burgers (KdVB) equation on the interval [0; 1]. Mo-
tivated by poor decay rates of a recently proposed control law by Liu and Krstic which
keeps some of the boundary conditions as homogeneous, we propose a strengthened set of
feedback boundary conditions. We establish stability properties of the closed{loop system
and illustrate the performance improvement by a simulation example.
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1 Introduction

The Korteweg{de Vries{Burgers (KdVB) equation is one of the simplest nonlinear mathematical

models displaying the features of both dispersion and dissipation. It serves as a model of long

waves in shallow water and some other physical phenomena. The usual and simplest setting in

which the controlled and uncontrolled KdVB equation or the simpler KdV equation is considered

is either the case of periodic boundary conditions (Biler, 1984b; Bona et al., 1996, 1992; Russel

and Zhang, 1995) or the case where the spatial domain is the whole real line (Biler, 1984a;

Bona and Smith, 1975). As a next step in the analysis of a system it is natural to consider the

controllability (Rosier, 1997) and stabilization (Zhang, 1994) on a bounded domain. In a recent

work Liu and Krstic (1998) consider a boundary feedback stabilization problem for a KdVB

equation on a �nite spatial interval. Our paper is motivated by relatively poor performance of

the controller in (Liu and Krstic, 1998) which we have observed in numerical simulations. In this

paper we propose a more aggressive control law that achieves better performance. Our control

law can be implemented via any of the following three variables actuated at one boundary with

u held at zero at the other boundary: (ux; uxx), (u; ux), (u; uxx). The uncontrolled versions of

some of these problems are known not to be asymptotically stable. An example of a physical

problem where our control law would be implementable is the water channel setup with boundary
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actuation discussed in Rosier (1997). In Section 2 we prove the stability and existence of solutions

of the resulting boundary controlled KdVB equation. In Section 3 we provide a numerical

example after a brief description of the �nite di�erence numerical method we used.

2 Stabilization

Consider the Korteweg{de Vries{Burgers equation

wt � �wxx + �wxxx + wwx = 0; x 2 [0; 1]; t > 0; (2.1)

with �, � > 0 and with some initial data

w(x; 0) = w0(x); x 2 [0; 1]: (2.2)

Liu and Krstic (1998) proposed the control law

w(0; t) = 0; (2.3)

wx(1; t) = 0; (2.4)

wxx(1; t) =
1

�

�
c+

1

9c
w2(1; t)

�
w(1; t); (2.5)

where c > 0, and showed that it globally asymptotically stabilizes the zero solution. Unfortu-

nately, as we shall see in Section 3, the choice wx(1; t) = 0 results in slow convergence to zero.

For this reason, in this paper we seek and �nd a more aggressive boundary condition that also

uses wx(1; t) for feedback:

w(0; t) = 0; (2.6)

wx(1; t) = �
1

�

�
c+

1

9c
w2(1; t)

�
w(1; t); (2.7)

wxx(1; t) =
1

�2

�
c+

1

9c
w2(1; t)

�
2

w(1; t): (2.8)

It is clear that, since (2.7) and (2.8) are invertible functions, this control law can be implemented

via any of the following three variables at the 1-boundary: (ux; uxx), (u; ux), (u; uxx).

De�nition 1. Let H1

0
(0; 1) = fw 2 H1(0; 1) : w(0) = 0g: A function w 2 C

�
[0; T ];H1

0
(0; 1)

�
is

said to be a weak solution of equation (2.1), (2.2), (2.6), (2.7), (2.8) if w satis�es

Z T

0

�
(w;'t)� � (wx; 'x)� � (wx; 'xx)� (wwx; ')

�
dt

=

Z T

0

 
�

�2

�
c+

1

9c
w2(1; t)

�
2

+

�
c+

1

9c
w2(1; t)

�!
w(1; t)'(1; t) dt

+
�

�

Z T

0

�
c+

1

9c
w2(1; t)

�
w(1; t)'x(1; t)� (w0; '(0)) dt (2.9)

for any ' 2 C1
�
[0; T ];H2(0; 1)

�
with '(0; t) = 'x(0; t) = '(x; T ) = 0; (x; t) 2 [0; 1] � [0; T ],

where (�; �) denotes the usual scalar product in L2(0; 1):
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Theorem 1. For any initial data w0 2 H
1

0
and for any T > 0 system (2.1), (2.2), (2.6), (2.7),

(2.8) has a unique weak solution w(x; t) with

1. Global exponential stability in the L2{sense:

kw(t)k � kw0ke
��t ; 8t � 0 ; (2.10)

2. Global asymptotic and semi{global exponential stability in the H1-sense: there exist k > 0

such that

kw(t)kH1 � kkw0kH1e
kkw0k2

H1e��t=2 ; 8t � 0 : (2.11)

Essentially the same statements hold for system (2.1), (2.2), (2.3), (2.4), (2.5) with di�erent

constant k. Since (2.10) and (2.11) are conservative energy estimates, they do not provide basis

for a comparison of the two controllers.

Proof of Theorem 1. The proof of well{posedness goes exactly as in (Liu and Krstic, 1998).

It is based on linearization of the system and the application of the Banach �xed point theorem.1

In order to prove the stability results we use energy estimates. These estimates are also part

of the well{posedness proof as a priori estimates. The use of derivatives of order higher than

the regularity claimed in this theorem is justi�ed in (Liu and Krstic, 1998).

First take the L2{inner product of (2.1) with w to obtain

Z
1

0

wtw dx� �

Z
1

0

wxxw dx+ �

Z
1

0

wxxxw dx+

Z
1

0

wxw
2 dx = 0: (2.12)

Using mainly integration by parts, we can write the various terms asZ
1

0

wtw dx =
1

2

d

dt
kw(t)k2; (2.13)

��

Z
1

0

wxxw dx = �� wxwj
1

0
+ �kwx(t)k

2

= ��wx(1; t)w(1; t) + �kwx(t)k
2

=

�
c+

1

9c
w2(1; t)

�
w2(1; t) + �kwxk

2; (2.14)

�

Z
1

0

wxxxw dx = � wxxwj
1

0
� �

Z
1

0

wxxwx dx

= �
1

�2

�
c+

1

9c
w2(1; t)

�
2

w2(1; t) �
�

2
w2

x

��1
0

=
�

2�2

�
c+

1

9c
w2(1; t)

�
2

w2(1; t) +
�

2
w2

x(0; t); (2.15)

1For solutions corresponding to more regular initial conditions that are compatible with the boundary condi-

tions further regularity statements hold and are stated in (Liu and Krstic, 1998). The regularity statements hold

at least locally in time in our case too. Density argument shows that relaxing the regularity of the initial data we

are left with the present form of the theorem.

1343

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



and Z
1

0

wxw
2 dx =

1

3
w3(1; t) �

1

18c
w4(1; t) +

c

2
w2(1; t): (2.16)

Substituting (2.13){(2.16) into (2.12) and simplifying the resulting inequality we obtain

d

dt
kw(t)k2 + 2�kwxk

2 +

�
�c2

�2
+ c

�
w2(1; t) +

�
1

9c
+

2�

9�2

�
w4(1; t) +

�

81c2�2
w6(1; t) � 0:

(2.17)

As a �rst consequence of (2.17) we obtain, using Poincar�e's inequality, the inequality

d

dt
kw(t)k2 � �2�kwx(t)k

2
� �2�kw(t)k2; (2.18)

which implies (2.10), i.e. the global exponential stability in the L2 sense:

kw(t)k � kw0ke
��t: (2.19)

Returning back to (2.17), multiplying it by e�t and using (2.19) we get

d

dt

�
e�tkw(t)k2

�
+ 2�e�tkwx(t)k

2 + e�t
�
�c2

�2
+ c

�
w2(1; t) + e�t

�
1

9c
+

2�

9�2

�
w4(1; t)

+
�e�t

81c2�2
w6(1; t) � �e�tkw(t)k2 � �kw0k

2e��t: (2.20)

Integrating (2.20) with respect to time we obtain

e�tkw(t)k2 +

Z t

0

e��
�
kwx(�)k

2 + w2(1; �) + w4(1; �) + w6(1; �)
�
d� �Mkw0k

2: (2.21)

Next, we take the L2{inner product of (2.1) with �wxx to obtain

�

Z
1

0

wtwxx dx+ �kwxxk
2
� �

Z
1

0

wxxxwxx dx�

Z
1

0

wwxwxx dx = 0: (2.22)

The various terms of (2.22) can be written in the following way.

�

Z
1

0

wtwxx dx = � wtwxj
1

0
+

1

2

d

dt
kwxk

2

= �wt(1; t)wx(1; t) +
1

2

d

dt
kwxk

2

=
1

�
wt(1; t)

�
c+

1

9c
w2(1; t)

�
w(1; t) +

1

2

d

dt
kwxk

2

=
1

2

d

dt

�
kwxk

2 +
c

�
w2(1; t) +

1

18�c
w4(1; t)

�
; (2.23)

�

Z
1

0

wxxxwxx dx =
�

2
w2

xx

��1
0
=

�

2�4

�
c+

1

9c
w2(1; t)

�
4

w2(1; t)�
�

2
w2

xx(0; t); (2.24)
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Z
1

0

wxwwxx dx � kw(t)kL1

Z
1

0

jwxwxxj dx

� kw(t)kL1kwx(t)kkwxx(t)k

�
1

2�
kw(t)k2L1kwx(t)k

2 +
�

2
kwxx(t)k

2

�
1

2�
kwx(t)k

4 +
�

2
kwxx(t)k

2: (2.25)

Here, in the last step, we used the simple inequality kwkL1(0;1) � kwxk, which holds for w 2

H1

0
(0; 1). Introducing the notation

A(t) �
c

�
w2(1; t) +

1

18�c
w4(1; t) + kwx(t)k

2; (2.26)

b(t) � e�t
�
w2(1; t) + w4(1; t) + w6(1; t) + kwx(t)k

2
�
; (2.27)

and substituting (2.23){(2.25) into (2.22) we obtain

d

dt
A(t) + �kwxx(t)k

2
�

�

�4

�
c2w2(1; t) +

2

9
w4(1; t) +

1

81c2
w6(1; t)

�

�

�
c2 +

2

9
w2(1; t) +

1

81c2
w4(1; t)

�
� �w2

xx(0; t) +
1

�
kwx(t)k

4

�M
�
w2(1; t) + w4(1; t) + w6(1; t) + kwx(t)k

2
�

+M
�
w2(1; t) + w4(1; t) + w6(1; t) + kwx(t)k

2
�
A(t): (2.28)

Omitting the nonnegative second term on the left, using de�nitions (2.26) and (2.27) and mul-

tiplying (2.28) by e�t we get

d

dt

�
e�tA(t)

�
�Mb(t) +Me��tb(t)e�tA(t): (2.29)

After integration we obtain from here

e�tA(t) � A(0) +

Z t

0

Mb(�) d� +

Z t

0

Me��tb(�) (e��A(�)) d�

� A(0) +

Z t

0

Mb(�) d� +

Z t

0

Mb(�) (e��A(�)) d�: (2.30)

It follows now from Gronwall's inequality, estimate (2.21) and the de�nition of A(t) and b(t)

that

e�tA(t) �

�
A(0) +

Z t

0

Mb(�) d�

��
1 +

Z t

0

Mb(�)exp

�Z t

�

Mb(s) ds

�
d�

�

�
�
A(0) +Mkw0k

2
�
+
�
A(0) +Mkw0k

2
�
Mkw0k

2eMkw0k2 �Mkw0k
2

H1e
Mkw0k2

H1 :

(2.31)

Multiplying (2.31) by e��t, taking the square root, and using the de�nition of A(t) one more

time we arrive at the inequality

kw(t)kH1 � kkw0kH1e
kkw0k2

H1e��t=2; (2.32)

which proves (2.11), the semi{global exponential stability in the H1-sense. Due to the general

Sobolev embedding theorem H` (
) � Ck
�


�
, which holds for k � `�

n

2
, 
 � R

n , the solution

w(t; x) is continuous and bounded for all t � 0 and all x 2 [0; 1].
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3 A Numerical Example

In this section we compare the closed{loop system (2.1), (2.2), (2.6), (2.7), (2.8) to the open{

loop system as well as to the system (2.1){(2.5) through a numerical example. By the open{loop

system we mean the KdVB equation (2.1) with boundary conditions

w(0; t) = 0; (3.1)

wx(1; t) = w0
0
(1); (3.2)

wxx(1; t) = w00
0
(1): (3.3)

The existence of a solution of the uncontrolled system is obvious, at least on a �nite time interval.

It can be proven for example using Galerkin's method.

As a consequence of the third derivative in x and �rst derivative in t, it is necessary to use

0

0.5

1 0
0.2

0.4
0.6

−4

−2

0

2

4

t−axis
x−axis

w
−

a
x
is

0

0.5

1 0
0.2

0.4
0.6

−4

−2

0

2

4

t−axis
x−axis

w
−

a
x
is

(a) Uncontrolled System T = :75 (b) Two Derivatives Controlled, T = :75

0

0.5

1 0
0.2

0.4
0.6

−4

−2

0

2

4

t−axis
x−axis

w
−

a
x
is

0

0.5

1 0

1

2

3−4

−2

0

2

4

t−axis
x−axis

w
−

a
x
is

(c) Controlled Second Derivative, T = :75 (d) Controlled Second Derivative, T = 3

Figure 1: Comparison of Solutions

1346

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



very small time steps (� 10�9) in order to balance the very small number in the denominator

resulting from the cube of the spatial step. We are able to compensate in a certain extent the

very small time steps by rescaling the equation, i.e. compressing the time domain. We consider,

from the above reason, the scaled equation

ut � �0uxx + �0uxxx + puux = 0; x 2 [0; 1]; t > 0; (3.4)

with some initial data

u(x; 0) = u0(x); u0(0) = 0; (3.5)

and in the controlled case with boundary condition

u(0; t) = 0; (3.6)

ux(1; t) = �
p

�0

�
c+

1

9c
u2(1; t)

�
u(1; t); (3.7)

uxx(1; t) =
p2

�02

�
c+

1

9c
u2(1; t)

�
2

u(1; t); (3.8)

where �0, �0, c and p are positive constants. The transformation u(x; t) � w(x; pt) shows the

equivalence of system (2.1), (2.2), (2.6), (2.7), (2.8) to (3.4){(3.8) with � � �0=p and � � �0=p.

Our numerical simulation is based on a fully discrete, implicit scheme of second order accu-

racy, using three time level quadratic approximation in time and central di�erence scheme in

space, which is derived using the �nite volume method (Ferziger and Peric, 1996). In accordance

with the �nite volume method we consider equation (3.4) integrated with respect to x over a

small interval (which is called control volume, usually denoted by [w; e] and whose center is a

grid point). We obtain Z e

w

ut dx� �0 uxj
e
w + �0 uxxj

e
w + p

Z e

w

uux dx = 0: (3.9)

In an implicit scheme an important goal is to keep most of the expressions at the highest time

level. Keeping this in mind, the last (quadratic) term of (3.9) is linearized in the following way:Z e

w

uux dx =
1

2
u2
����
e

w

=
1

2
un+1un

����
e

w

; (3.10)

where the superscript n+1 denotes the highest time level. Using the notation ~Un � (un
1
; un

2
; : : : unN )

T
�

(u(tn; x1); u(tn; x2); : : : u(tn; xN ))
T and the aforementioned discretization and linearization, (3.9)

gives us the following di�erence equation on a uniform grid:

h
3un+1i � 4uni + un�1i

k
� �0

un+1i+1 � 2un+1i + un+1i�1

h
+ �0

un+1i+2 � 2un+1i+1 + 2un+1i�1 � un+1i�2

2h2

+
p

8

�
un+1i+1 + un+1i

� �
uni+1 + uni

�
�

p

8

�
un+1i + un+1i�1

� �
uni + uni�1

�
= 0; (3.11)

where n = 2; 3; : : : , i = 2; : : : ; N � 2. We use the notation k for the increment in time and h

for the space mesh size. Equation (3.11) provides us a linear system with a sparse, band state

matrix. Two initial vectors are required to start our three time level scheme: ~U1 and ~U2. The

�rst vector ~U1 is the initial function u0(x) itself, and ~U2 was obtained from this vector using

the one step Euler method.
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At the boundaries x = 0 and x = 1 we use half control volumes. The boundary conditions

at x = 1 provide a straightforward modi�cation in the linear system after the linearization

un+1x

��
x=1

= gnxu
n+1
N ; (3.12)

un+1xx

��
x=1

= gnxxu
n+1
N ; (3.13)

where

gnx � �
p

�0

�
c+

1

9c
(unN )

2

�
;

gnxx �
p2

�02

�
c+

1

9c
(unN )

2

�
2

: (3.14)

At the boundary x = 0, in order to obtain the necessary value outside the interval [0; 1], we use

extrapolation based on the equation (3.4) reduced to the ODE

��0uxx + �0uxxx = 0: (3.15)

We omit the details of these simple calculations. The boundary conditions of the uncontrolled

system and system (2.1){(2.5) are handled similarly. The resulting sparse linear system is

solved using the preconditioned BiConjugate Gradient Stabilized method implemented in a C++

templated library (Barrett et al., 1994; Dongara et al., 1994). The computation was performed

on a 300MHz, 130Mb memory Sun SPARC Workstation and, due to the small time step, it

required several hours to reach one time unit with the numerical solution.

As an example, we consider the (KdVB) equation (3.4) with parameters �0 = 1, �0 = 10,

p = 100 and with initial function

u0(x) = 20x3(x� 1:001): (3.16)

The time step we use is k = 10�9 with �nal time T = 10�2, and spatial step h = 5 � 10�3.

In the case when only the second derivative is controlled a �nal time of T = 3 � 10�2 was

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

t−axis

L2  Norms

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

t−axis

H1  Norms

Figure 2: Comparison of Norms

� � � : Uncontrolled, ��: Controlled Second Derivative, |: Controlled First and Second Derivative
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required in order to see signi�cant convergence. The scaling p = 100 corresponds to an unscaled

Korteweg{de Vries{Burgers system with parameters � = 0:01, � = 0:1 on a time interval [0; 1].

In the controlled case the control gain was c = 0:1. As we can see in Figure 1, the uncontrolled

solution seems to converge to a nontrivial stationary solution. While both controlled systems

converge to zero [parts (b) and (c) of Figure 1], the case when the �rst derivate is kept at

zero at x = 1 and only the second derivative is controlled by feedback shows poor convergence

relative to our controller (3.7){(3.8). In fact, Figure 2 shows that the di�erences between the

rates of convergence are signi�cant both in the L2 and in the H1 sense.
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