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Abstract

An  approach  to  the  generation  of  stopping  rules  in  parametric  identification
problems  is  proposed  on  the  basis  of  the  computation  of  a  statistic  of  the  difference
between  two  successive  estimates. This  statistic  is  also used  for  fault  detection  in
the  Kalman  filter. The  developed  decision  rules  are  applied  to  a  linear  system  identification
problem. Experimental  results are  presented  to  demonstrate  the  performance  of  the  proposed
algorithms.

1. Introduction

     The  identification  of  dynamic  objects  described  by  difference  equations  of  a  known
order, but  with  unknown  coefficients, entails the  estimation  of  these  coefficients, i.e.,
it  is  a  parametric  problem. It  is  always  attended  by  the  problem  of  determining
the  stopping  time  of  the  computations  or  what  essentially  amounts  to  the
verification  of  sufficiency  of  the  number  of  observations  when  a  prescribed
accuracy  is  attained  on  the  part  of  the  computed  estimates.
     The  results  of  the  general  mathematical  theory  of  optimal  stopping  rules   [1-3],
a  latter-day  branch  of  probability  theory,  have  not  enjoyed  any  appreciable
application  in  the  generation  of  stopping  rules  in  parametric  identification
problems. This  situation  is  attributable  to  the  complexity  of  adapting  various
statistical  tests  of  a  general  nature  to  real  applied  problems  and  algorithms.
    The  application  of  the  rules  proposed  in  [4,5] for  stopping  of  the  identification
process  runs  into  several  difficulties, one  of  which  is  the  need  to  specify  an
admissible  error  ellipsoid  or  an  admissible  measure  of  this  ellipsoid.
     In  this  article  we  propose  a  stopping  rule  that  is  free  of  these  shortcomings; it
is  based  on  the  comparison  of  a  statistic  of  the  difference  between  two  successive
estimates  with  a  predetermined  confidence  limit  of  the  chi-square  distribution.
The  indicated  statistic  is  also  used  for  fault  detection  in  the  Kalman  filter.

2. Generation of stopping rules

     We  introduce  the  following  stopping  rule  in  application  to  multidimensional  parametric
identification  problems:

                  r Di i i
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where  D
i∆θ  is  the  covariance  matrix  of  the  discrepancy  between  two  successive  estimates  $θi

and  $θi −1,  and  ε  is  a  predetermined  small  number.
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We  assume  that  the  well-developed  theory  of  Kalman  filtering  is  used  to  estimate  the
parameters  from  a  sequence  of  observations  with  Gaussian  tolerances  of  the  measurement  errors
and  system  noise.  In  this  situation  the  Kalman  filter  yields  an  estimate  with  expected  value

equal  to  the  estimated  quantity  and  a  Gaussian  distribution  function.  The  discrepancy  $ $θ θi i− −1

then  has  a  normal  distribution  as  well, since  it  is  a  linear  combination  of  two  Gaussian
random  variables  [6]. With  these  considerations  in  mind  we  know  that  the  statistic
r2  has  a  χ2 distribution  with  n  degrees  of  freedom  (n  is  the  number  of  dimensions
of  the  vector  θ  ), and  the  threshold  values  of   r2   can  be  found  by  determining  the
tabulated  values  of  the  χ2  distribution  for  a  given  level  of  significance.
     It  is  evident  from  relation  (1)  that  the  smaller  the  value  of  r2 , the  greather
will  be  the  consistency  of  the  estimates.  Usually  in  the  testing  of  consistency  in
such  cases  the  lower  limit  of  the  confidence  interval  must  be  equal  to  zero,  and
the  upper  limit  is  determined  by  the  level  of  significance  α1.
     To  test  the  consistency  of  the  estimates, we  adopt  the  level  of  significance   α1,
which  corresponds  to  the  confidence  coefficient  β1=1-α1. We  specify  the  threshold
χβ

2  in  terms  of  this  probability, using  the  distribution  of  the  investigated  statistic
r2:

                                           { }P χ χ β ββ
2 2

1 11
0 1< = < <, .

     We  stop  the  estimation  process  when   ri

2<χβ1

2,  since  further  observations  yield
insignificant  improvement  of  the  identified  model  and  are  deemed  impractical  in
this  event. If  the  quadratic  form   r2  is  larger  than  or  equal  to  the  specified
threshold  χβ1

2,estimation  should  be  continued.
     This  stopping  rule  can  be  used  to  make  a  timely  decision  to  stop  the
estimation  process  in  the  identification  of  dynamic  systems, and  it  does  not
require  large  computational  expenditures.

3. Fault detection in the Kalman filter

     The  chi-square  test  discussed  above  can  also  be  used  to  troubleshoot  the
Kalman  filter. The  statistic  r2  must  be  compared  with  the  confidence  limit  of  the
χ2  distribution  determined  from  the  expression

                                           { }P χ χ β ββ
2

2
2

2 20 1< = < <, .

and  a  decision  must  be  made  on  the  basis  of  the  rule

                  ri

2≤χβ2

2,  the  Kalman  filter  is  operating  normally;
                  ri

2>χβ2

2,  faults  are  present.

     Consequently, by  comaring  the  above-defined  statistic   ri

2  with  the  confidence
limits  obtained  for  the  corresponding  χ2  distribution  it  is  possible  to  solve  two
problems  at  once: to  determine  the  stopping  time  of  the  identification  process  and
to  detect  faults  in  the  Kalman  filter  in  due  time.
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     Figure 1  shows  a  graph  of  the  probability  density  function  of  the  χ2

distribution  with  n=4  degrees  of  freedom  and the  computed  confidence  limits  for
β1=1-α1=0.2  and  β2=1-α2=0.95  (α2  is  the  level  of  significance), where  the  numerals
indicate: 1) the  zone  of  stopping  of  observations; 2) the  zone  of  estimation; 3) the
fault-detection  zone.

                                          
                                                   Fig.1.The domain of possible Kalman
                                                             filter employment

     It  is  evident  from  Fig. 1  that  the  domain  of  potential  aplication  of  the  Kalman
filter  is  partitioned  into  three  zones. Estimation  is  assumed  to  continue  as  the
value  of  the  statistic   ri

2  is  determined  between  the  confidence  limits  χβ1

2  and  χβ2

2.
If   ri

2<χβ1

2,  the  estimation  process  should  be  stopped,  since  further  observations  are
assumed  to  yield  insignificant  improvement  of  the  accuracy  of  estimation . If
ri

2>χβ2

2,  faults  are  present   in  the  Kalman  filter,  inducing  large  deviations  of  the
estimates.   In  this  case  a  decision  is  made  as  to  the  need  for,  and  the  character
of,  corrective  actions  in  the  estimation  process.
     The  expressions  for  the  areas  shown  in  Fig. 1  are  written  in  the  form

                     β χ χ β χ χ β β χ χ
χ

χχχ
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      In  the  solution  of  a  number  of  applied  problems  the  threshold  χβ2

2  (the  upper
confidence  limit)  can  be  replaced  by  χ β( )/1 2

2

1+ .  It  is  then  no  longer  necessary  to

use  two  levels  of  significance.  However, this  substitution  is  feasible  only  for
isolated  special  cases,  when  the  required  probability  of  a  correct  decision  as  to
normal  operation  of  the  Kalman  filter  is  not  too  high,  owing  to  the  small  value
of  β1 .
      Allowing  for  the  fact  that  the  stated  problems  of  generating  stopping  rules
and  troubleshooting  the  Kalman  filter  are  separate  problems  and  can  require  the
use  of  different  levels  of  significance , two levels  of  significance  α1  and  α2  are
recommended  for  the  general  treatment  of  the  proposed  approach.

2136

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



4.Computation of the covariance matrix of the discrepancy between two
successive estimates

        Let  us  consider  a  linear   system  of  the  form

                                                  y x i ni i
T= =θ; , ,1                          (2)

where  [ ]x p p pi
T

i i i
m= 1 2, , ,...,   is  the  vector  of  the  input  variables ;

[ ]θ T
ma a a a= 0 1 2, , ,...,   is  the  vector  of  the  unknown  parameters (the  parameters

being  estimated).
      The  output  signal  of  the  object  yi  is  recorded  by  a  measuring  instrument

                                  zi=yi+hi,

where hi  is  the  measurement  error  with  a  zero  mean  and  the  variance  σ2.
       To  estimate   the  parameters  of  system  (2)   an algorithm  takes  into  account
the  errors  of  the  input  variables  is  presented  in  [7]:
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        (3)

where  Ki  is  the  gain  of  the  filter  being  examined  ; Pi  is  the  covariance  matrix  of
the  errors  of  the  estimates; Dxi  is  the  covariance  matrix  for input  standard  signals
errors.
      We  investigate  the  problem  of  determining  the  covariance  matrix  of  the
discrepancy  between  successive  estimates. The  estimates  $θi −1  and  $θi   are

determined  from  sets  of  successive  measurements   { }z z z Zi
i

1 2 1 1
1, ,..., −

−=

and{ }z z z z Zi i
i

1 2 1 2, ,..., ,− = , respectively:

                         { } { }$ / ; $ / .θ θ θ θi i
i

i i
iE Z E Z− −

−= =1 1 1
1

2

      These  estimates  of  the  parameters  are  correlated,  since  common  data  are  used
.  The  correlation  between  them  is  also  attributable  to  shared  initial  conditions
and  shared  system  noise.
     We  consider  the  magnitude  of  the  discrepancy  between  two  successive
estimates:

                                           β θ θi i i
*

$ $ .= − −1
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       Since  the  Kalman  filter  (3)  is  linear, the  investigated  estimates  are  unbiased  , i.e.,

{ }E iβ * .= 0

      The  covariance  for  βi
∗   is  written  in  the  form

                                       { }E P P P P Di i
T T T

iβ β θ
∗ ∗ = + − − =1 2 21 12 ∆ ,     (4)

where  P1  and  P2  are  the  covariance  matrices  of  the  errors  of  two  successive  estimates $θi  and
$θi −1  respectively, and  P12 and P21 are  the  cross  covariance  matrices  between  the  errors  of

mentioned  estimates,  P12=P21

T  [8].
      Consequently, to  compute  the  covariance  of  the  difference  between  two
successive  estimates  of  the  Kalman  filter, it  is  necessary to  obtain  the  cross  terms
of  the  covariance  of  the  error  of  the  extended  state  vector

                                                 P
P P

P Pex T=






1 12

12 2

.

      Algorithms  for  determining  the  extended  covariance  Pex  are  described  in  detail
in   [8,9].
      Once  P1,P2, and  P12  have  been  found, Eq.(4) is  used  to  determine  the  covariance
matrix  D∆θi ,and  a  comparison  of  the  statistic  ri

2  computed  from  this  matrix  with
the  confidence  limits  obtained  of  the  corresponding  χ2 distribution  leads  to
decisions  whether  to  stop   the  estimation  process  and  whether  the  synthesized
Kalman  filter  is  operating  normally.
      The  covariance  matrix   D∆θicalculation  is  usually  a  very  diffucult  problem,
because  it  requires  the  determination  of  the  cross  covariance  between  errors  of
two  considered  estimates  $θi  and  $θi −1 .

      Investigated  estimates  of  Kalman  filter  $θi  and  $θi −1  are  evaluated  based  on  the
same  sistem  state  model,  their  initial  conditions  are  equal, the  initial  covariances
of  errors  of  mentioned  estimates  and  the  initial  cross  covariance  between  them
are  also  equal.  Then  the  covariance  matrix  D∆θimay  be  written  in  the  form

                                          D∆θi=P2-P1=Pi-1-Pi.

 5.Experimental results

     For  example  we  shall  investigate  the problem  of  calibration  of  measuring
devices.

 Usually,  the  calibration  of  any  measuring  device  is  made  by  the  help  of  the
taken  as  etalon  standard  measuring  instrument.  But,  each  standard  instrument
also  reproduces  signals  with  some  definite  errors  (even  if  they  are  very  small). If
these  errors  are  not  taken  into  account  during  calibration  process,  the  final
results  will  contain  several  errors.
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 A new  algorithm  taking  into  account  the  errors  of  the  standard  instrument is
presented in  [7] with  following  initial  conditions:

     1)Calibration characteristics of  the  measuring  device (in  the  present case,
differential  pressure  gage)is described  by  2 order polynomial as  follows:

                                      y(p) = a0 + a1 p + a2 p
2 ,                                                      (5)

      2)It  is  assumed,  that  the  standard   instrument   used  for  calibration  also  have  some  small
errors.

3)  Measurements  contain  random  Gaussian  noises  (hi ) with  a  zero  mean

                                      zi = a0 + a1pi + a2 pi
2 + hi .

  The  coefficients  in  the polynomial (4)  are  evaluated  in  [7]  by  the algorithm  (3).
  In  the  calculations  the  following data  and initial conditions are  taken:

                                    σpi= 0,00026 ;   σi  = 0,0026,

where   σpi is   the standard  error  deviation of  the standard  measuring  instrument, σiis  the
standard  error  deviation of  the differential  pressure  gage.

The range of changing sample pressures is 0 ≤ pi ≤ 1600 bar.
The  covariance  matrix  for input  standard  signals errors [9]:

                              D

p
xi

i

=
















0 0 0

0 000026 0

0 0 4 000026

2

2 2

( . )

( . )

.

As initial conditions the following values   are chosen

               θ0
T=   [0   1   2 ]  ;            P0

10 0 0

0 10 0

0 0 10

=
















.

     The  coefficients   a0,  a1  and  a2  found  by  estimation  via  algorithm  (3),  are  given  in  Fig.2,
and   their  errors  variances  in  Fig.3. The  curves  in  Fig.2  are  characterized  behaviors  of  values
�0, �1, �2  from  iteration  number.  As  it  can  be  seen  from  the  curves  after    some  iterations  the
deviations  of  the  investigated  values  are  very  small.
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      Fig.2. a0, a1, a2 coefficients  values               Fig.3. Variances  of  the  errors value
                         behaviours                                                     Da0, Da1, Da2

      Let  us  apply  the  developing  in  this  article  stopping  rule  and  fault  detection  algorithms  to
the  differential  pressure  gage  calibration  problem.
      The  experimental  results  are  shown  in  Fig.4  and  Fig.5, in  which  the  threshold  (χβ1

2  and
χβ2

2)  and  r2  statistic  values  are  given  respectively. We  adopt  the   following
confidence  coefficients:  a) for  stopping  rule  problem  β1=0.01;  b) for  fault  detection
problem  β2=0.95.  Their  thresholds  are: χβ1

2=0,115  and  χβ2

2=7.8  respectively.

   r2                                                                                  r2

                                    i                                                                         i

 Fig.4. r2 statistic values behaviours when       Fig.5. r2 statistic values behaviours when
           Kalman filter operates normally                        fault occurs in the Kalman filter
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      It  is  evident  from  Fig. 4,  in  5th  calculation  step  r2  statistic  value  is  less  than
threshold  value  χβ1

2. Therefore  in  this  case  it  is  recomended  to  stop  the  estimation
process, since  further   observations  yield  insignificant  improvement  of  the
estimated  coefficients  a0,  a1  and  a2   and  are  deemed  impractical.
      Experimental  fault  detection  result  is  shown  in  Fig.5 (  faults  in  measurement  channel  are
simulated    adding  1  to  the  measurement  results  in  6th  and  14th  estimation  steps). It  is  evident
from  Fig.5, faults  in  the  Kalman  filter  detected  operatively   with  use  presented  statistic  r2.

6.Conclusions

      We  have  thus  proposed  a  new  approach  to  the  generation  of  stopping  rules  in  parametric
identification  problems  on  the  basis  of  the  above-introduced  statistic  r2  with  a  χ2 distribution.
The  computed  statistic  r2  is  also  used  to  detect  faults  in  the  Kalman  filter.
      The  domain  of  possible  utilization  of  the  Kalman  filter  is  partitioned  into  three  zones
according  to  our  rule. When  the  value  of  r2  lies  between  the  confidence  limits  χβ1

2  and  χβ2

2

(see  Fig.1)  of  the  corresponding χ2 distribution , the  decision  is  made  to  continue
the  estimation.  When  r2  attains  the  confidence  limits,  the  decision  is  made  to  stop  the
estimation  process  and,  accordingly,  the  kind  of  corrective  actions  in  the  estimation  process  is
decided.
      The  stopping  rule  developed  here  has  the  advantage  that  its  application  does  not  require  the
specification  of  an  admissible  error  ellipsoid,  whose  construction  represents  an  independent
problem.
      In  some  cases  it  may  be  necessary  to  process  a  large  number  of  observations  in  order  for
the  value  of  the  statistic  to   reach  the  indicated  “estimation  stopping”  threshold,  resulting  in
large  expenditures  of  computer  time. On  the  other  hand,  the  processing  of  a  smaller  number  of
observations  lowers  the  accuracy  of  estimation.  By  the  same  token,  if  the  “fault-detection”
threshold  is  too  high,  the  effects  of  faults  in  the  Kalman  filter  tend  to be  smoothed  out, and  if
the  threshold  is  too   low, the  probability  of  false  alarm  increases.  Consequently, the  choice  of
these  thresholds (the  confidence  limits  of  the  χ2 distribution  ) can  have  a  decisive
influence  on  the  efficient  utilization  of  computer  time.
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