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Abstract

This paper presents an overview in existing representations of Fuzzy Cognitive Maps (FCM) and a new
approach in the formulation of Fuzzy Cognitive Maps is examined. The description and construction of Fuzzy
Cognitive Maps (FCM) is briefly represented and some new ideas for the modeling of Fuzzy Cognitive Maps are
presented. Research in this area was mainly focalized on the representation, construction and application of
FCM, and now in this paper different types and mathematical description of Fuzzy Cognitive Maps are examined
and FCMs are mathematically transformed in forms that are analogous to Recurrent Neural Networks. This
similarity stimulates the investigation of Forward Accessibility for discrete-time FCM models. Finally, an
example of a process is presented and it is formulated in form that controllability aspects can be examined.

1. Introduction

Fuzzy Cognitive Map (FCM) methodology is a symbolic representation for the description and
modeling of complex system. Fuzzy Cognitive Maps describe different aspects in the behavior of a
complex system in terms of concepts; each concept represents a state or a characteristic of the system
and these concepts interact with each other showing the dynamics of the system. FCMs illustrate the
whole system by a graph showing the cause and effect along concepts, and are a simple way to
describe the system’s model and behavior in a symbolic manner, exploiting the accumulated
knowledge of the system. A Fuzzy Cognitive Map integrates the accumulated experience and
knowledge on the operation of the system, as a result of the method by which it is constructed, i.e.,
using human experts that know the operation of system and its behavior in different circumstances.
Moreover, Fuzzy Cognitive Map utilizes learning techniques, which have implemented in Neural
Network Theory, in order to train Fuzzy Cognitive Map and choose appropriate weights for its
interconnections.

At first, a political scientist Axelrod (1976) introduced cognitive maps for representing social
scientific knowledge and describing the methods that are used for decision making in social and
political systems. Then Kosko (1986, 1992) enhanced the power of cognitive maps considering fuzzy
values for the concepts of the cognitive map and fuzzy degrees of interrelationships between concepts.
After this pioneering work, Fuzzy Cognitive Maps attracted the attention of scientists from many
fields and have been used in a variety of different scientific problems.
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2. Different Representation of Fuzzy Cognitive Maps

2.1.1 Fuzzy Cognitive Maps of Type I

Fuzzy Cognitive Maps are fuzzy signed graphs with feedback (Stylios et al., 1997a). They consist of
nodes-concepts &

L
 and interconnections HLM  between concept &

L
 and concept & M . A Fuzzy Cognitive

Map models a dynamic complex system as a collection of concepts and cause and effect relations
between concepts. A simple illustrative picture of a Fuzzy Cognitive Map is depicted in Figure 1,
consisted of five nodes-concepts.
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Figure 1.  A simple Fuzzy Cognitive Map
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Interconnections HLM  among concepts are characterized by a weight ZLM  that describes the grade of

causality between two concepts. Weights take values in the interval [-1,1]. The sign of the weight
indicates positive causality ZLM  �  between concept &

L
 and concept & M , which means that an

increase of the value of concept &
L
 will cause an increase in the value of concept & M  and a decrease

of the value of concept &
L
 will cause a decrease in the value of concept & M . When there is negative

causality between two concepts, then ZLM % � ; the increase in the first concept means the decrease in

the value of the second concept and the decrease of concept &
L
 causes the increase in value of & M .

When there is no relationship between concepts, then ZLM = � . The strength of the weight ZLM

indicates the degree of influence between concept &
L
 and concept & M .

Generally, the value of each concept is calculated, computing the influence of other concepts to the
specific concept, by applying the calculation rule of equation (1):

[ W I [ W ZL M ML

M
M L

Q

� � � � � �= −
=
≠

∑ �

�

                                                                          (1)

Where [ WL � �  is the value of concept &
L
 at time W , [ WM � �−�  is the value of concept & M  at time W −� ,

Z ML  is the weight of the interconnection between concept & M  and concept &
L
 and I  is the sigmoid

function: I
H [

=
+ −
�

�
λ

Other proposed squeezing functions are the WDQK� �[ , WDQK� �[

�
 and others that will convert the

result of the multiplication into the fuzzy interval [0,1] or [-1,1], where concepts can take values.
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At each time step, values for all concepts of Fuzzy Cognitive Map change and recalculate according to
equation (1). The calculation rule for each simulation step of FCM includes calculation of new values
for all the concepts. It is consisted of a Q[�  vector ;  which gathers the values of Q  concepts, and the
matrix : = ≤ ≤> @

�

ZLM L M Q�
 which gathers the values of the causal edge weights for the Fuzzy Cognitive

Map, where the dimension of the matrices is equal to the number Q  of the distinct concepts, which
consist the map. So the new state vector ;  of the FCM at time W  is calculated according to the
equation:

; : ;� � � � ��W I W= −7
�                                                                     (2)

2.1.2 Construction and learning for FCM I

It must be mentioned that the use of experts is very critical in the designing and development of Fuzzy
Cognitive Maps. Experts who have knowledge and experience on the operation and behavior of the
system are involved in the determination of concepts, interconnections and assigning casual fuzzy
weights to the interconnections (Kosko, 1992; Stylios and Groumpos, 1999)

Generally, Fuzzy Cognitive Maps can be trained, using learning algorithms in a similar way as in
neural networks theory. Proposed learning algorithms belong to the unsupervised learning algorithms.
During the training period of FCM, the weights of the map change with a first-order learning law that
is based on the correlation or differential Hebbian learning law:

′ = − + ′ ′Z Z [ [LM LM L M                                                                            (3)

So ′ ′[ [L M  �  if values of concepts &
L
 and  & M  move in the same direction, and  ′ ′[ [L M % �  if values

of concepts &
L
 and & M  move in opposite directions; therefore, concepts which tend to be positive or

negative at the same time will have strong positive weights, while those that tend to be opposite will
have strong negative weights.

2.2  FCMs of Type II

A new calculation rule of Fuzzy Cognitive Maps is proposed, which take into consideration the
previous value of each concept. Fuzzy Cognitive Map will have one time step memory capabilities,
the last value of each concept is involved in the determination in the new value of concept and so the
values of concepts will have a slight variance after each simulation step. Here, in order to take into
account these observations, a new formulation is presented. Namely, we propose the following
equation:

[ W I N [ W : N [ WL M ML

M
M L

Q

L� � > � � � �@= − + −
=
≠

∑�
�

�
� �                                                   (4)

Where [ W
L
� �  is the value of concept &

L
 at time W , [ W

L
� �−�  is the value of concept &

L
 at time

W −� , [ WM � �−�  is the value of concept & M  at time W −� , and :ML  is the weight of the interconnection

from & M  to &
L
, and I  is a threshold function. The parameter N

�
 represents the proportion of the

contribution of the previous value of the concept in the computation of the new value and the N
�

expresses the influence from the interconnected concepts in the configuration of the new value of the
concept ix . The two parameters N

�
 and N

�
 satisfy the equation:

 � �
� �

< ≤N N�                                                                                 (5)
A more general and compact mathematical model for Fuzzy Cognitive Maps is proposed by the

following equation:
       ; : ; ;� � > � � �� � ��@W I N W N W= − + −

�
�

�
�

7                                                         (6)
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Therefore, equation 6 computes the new state vector ; , which results from the multiplication of
the previous, at time t, state vector ;  by the edge matrix :  and the adding of a fraction of the past
values of concepts. The new state vector holds the new values of the concepts after the interaction
among concepts of the map. The interaction was caused by the change in the value of one or more
concepts.

It is proposed the values of two parameters to vary during the training period of the FCM, starting
with a high value for parameter N

�
, near to 1, and a low value for parameter, N

�
near to zero, and then

to converge to equal values. Generally, the values of two parameters are dependent on each specific
FCM.

2.3  FCM of Type III

Another formulation of FCMs will be presented and it is beyond the initial definition of Fuzzy
Cognitive Maps, which do not allow any concept to influence itself (Kosko, 1986). Now, a concept
can take into account its own past value with a weight Z

LL
. In this way, FCM will be close to Type II

and the calculation rule will be similar to the equation 4:

[ W I [ W : : [ WL M ML

M
M L

Q

LL L� � > � � � �@= − + −
=
≠

∑ � �
�

                                                        (7)

where [
L
 is the value of concept &

L
 at time W , [ W

L
� �−�  is the value of concept &

L
 at time W −� ,

[ WM � �−�  is the value of concept & M  at time W −� , and :ML  is the weight of the interconnection from

& M  to &
L
, :

LL
 is the weight with which the previous value of concepts participate in the calculation of

the new and I  is a threshold function.
A more compact form will be:

; : ;� � � � ��W I W= −7
�                                                                       (8)

where :  has nonzero diagonal elements. In equation 2, all diagonal elements of matrix :  were
zero.
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Figure 2.  A Fuzzy Cognitive Map of Type III
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This Type III of FCM must be examined in terms of his stability. There is a high possibility to be
driven to a limit cycle or to be unstable, as there will be a constant increase in the value of each
concept as a result of the influence that each concept has to itself. Fuzzy Cognitive Maps of type III
will be useful to describe the behavior of some special systems under some circumstances.
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3. New mathematical formulation of Fuzzy Cognitive Maps considering inputs to concepts.

3.1. General Description

A new type of Fuzzy Cognitive Maps is proposed, assuming that each concept has an external input,
which influence the concept with a weight and it is taking into account in the calculation rule (figure
3). This type of FCMs are very similar to the Recurrent Neural Networks (Albertini and Pra, 1995),
which are used as models whose parameters must fit to input/output data, minimizing a cost function
and for which the controllability, observability and forward accessibility have been examined (Sontag
and Sussmann, 1997; Albertini and  Sontag, 1994).

Fuzzy Cognitive Map of type I with the assumption of the existence of external input to every node
is considered. The value of each node of the map is calculated according to the following equation:

[ W I $[ W %X W� � � � � � ��+ = +�                                                         (9)
For the FCM of the figure 3, it is:
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where [ W
�
� �  is the state of the node C1  at time t and [ W

�
�� �+  is the state of the node C1  at time

t+1, this new state is calculated by the input X W
�
� �  with the respective weight Z

�
 and  the influence of

the other nodes Z [ W Z [ W
�� � �� �

� � � �+ .
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Figure 3.  A simple Fuzzy Cognitive Map
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This is the discrete time model of the system, with the assumption that values of concepts change
step by step:

 [ W I $[ W %X W� � � � � � ��+ = +�                                                               (10)

\ W &[ W� � � �=                                                                                 (11)
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Generally, under nonlinearity conditions on f(.) and nondegenerity conditions on the matrix B,
necessary and sufficient conditions for indentifiability, controllability and observability are given in
terms of algebraic assumptions on the matrices A, B, C.

3.2 Controllability and Forward Accessibility for Discrete-Time FCM models

Fuzzy Cognitive Map system is said to be controllable if for every two states of the concept &
L  the [

L

�

and [
L

�  there is a sequence of controls or inputs u[0],u[1],….u[k] in the discrete time case, or a control

function u(t) for W 7∈>�� @ in the continuous time case, which steers [
L

�  to [
L

� .
This notion is quite strong and it usually very hard to study for nonlinear systems as the examined

FCM model which is characterized by hard nonlinearities. For this reason a proposed approach is the
study for the weaker notion of forward accessibility.

A control system is said to be forward accessible, if for every initial state [
L

� , the set of points to

which [
L

�  can be steered, contains an open subset of the state space.

The controllability for linear systems (I [ [� �=  or the system [ W $[ W %X W� � � � � �+ = +� ) is

satisfied if the UDQN Q> � @$ , %− =λ for every λ ∈& .

Albertini and Pra (1995) proved that under some conditions for I ���  and % , the system is forward

accessible if UDQN Q> � @$ % = .
The examined FCM model has dynamics that are described by the difference equation:

   �� [ W I $[ W %X W� � � � � � ��+ = +�                                                  (13)

X W 5P� �∈ ,  $ 5
Q[Q∈ % 5

Q[P∈

In (Albertini and Pra,1995), the necessary conditions for the forward accessibility attribute of such
systems have been described

3.2.1  Sufficient Condition I

Theorem
/HW � D V\VWHP RI ���� ZKHUH WKH IXQFWLRQ I ���  and the matrix % , satisfy the n-IP property (n-

,QGHSHQGHQFH SURSHUW\�� 7KHQ � LV IRUZDUG DFFHVVLEOH LI DQG RQO\ if  UDQN Q> � @$ % = .

Definition
The n-IP property for functionI ���  and the matrix % , is satisfied if :

1. I  is differentiable and ′ ≠I [� � � for all [ 5∈ ;

2. for E
L
≠ �  for all L Q= �������  where E

L
 L Q= ������� , the rows of the matrix % ;

3. For �≤ ≤N Q  let 2
N
be the set of all the subsets of ������Q: ?of cardinality N  and D D

Q�
�����  arbitrary

real numbers. Then the functions J , 2, N
� ∈; @ , J 5 5

,

P
� →  given by J X I D E X

, L L

L ,

� � � �= ′ +
∈

∏  are

linearly independent.
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Special Case

The n-IP property is given as a joint property of functionI ��� and matrix % , but in the framework of

the FCM, functionI ���  is a given activation function, the sigmoid function.  For this particular case,
only the “genericity” condition is necessary for the IP property:

1. for E
L
≠ � for all L Q= �������  and  _ _ _ _E E

L M≠  for every  L M Q� ������= � , L M≠  for the rows of the matrix

%

3.2.2 Sufficient Condition II

Theorem
/HW �   a system of (13) where the functionI ���  and the matrix % , satisfy the n-WIP property (n-

Weak Independence property). If there exists a matrix + ∈5
P[Q  such that:

a.  The matrix � �$ %++ is invertible

b.  the rows of the matrix >� � @$ %+ %+ −�
DUH DOO QRQ]HUR� WKHQ � LV IRUZDUG DFFHVVLEOH�

Definition
The n-WIP property for functionI ���  and the matrix % , is satisfied if :

1. I  is differentiable and ′ ≠I [� � � for all [ 5∈ ;

2. for E
L
≠ � for all L Q= �������  where E

L
 L Q= ������� , the rows of the matrix % ;

3. Let D D
Q�

�����  be arbitrary real numbers, then the functions from 5
P  to 5 I D EX

L L
� � ��′ + −�  for

L Q= �����  are linearly independent.

3.3 Future research

In the case that not all the concepts of Fuzzy Cognitive Maps have nonzero inputs (every row of %

not to be nonzero), provided that $  is appropriately chosen it must be mentioned that the system may
be controllable. This is very important and it is subject of future research.

Moreover, this work can accompany with research results presented in (Kosko, 1997) where
stability of Fuzzy Cognitive Maps has been examined in terms of the eigenvalues of the weight
connection matrix $ .  It must be mentioned that in (Stylios and Groumpos, 1998) proofs of theorems
are presented in detail.

4. Practical Process Control Problem

This control problem has presented in (Stylios et al., 1997b) and it describes the application of Fuzzy
Cognitive Map model in a well-known problem in process industry is shown. Through this example it
will become clear how a Fuzzy Cognitive Map is constructed, how concepts are chosen, how are
assigned values to the interconnections between concepts and eventually how this FCM models and
controls a process.
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Figure 4. The system of a simple process

The considered system consists of one tank and three valves that influence the amount of liquid in
the tank; figure 4 shows an illustration of the system. Valve 1 and valve 2 empty two different kinds of
liquid into tank 1, during the mixing of the two liquids a chemical reaction takes place into the tank.
Into the tank there is an instrument tool that measures the specific gravity of the liquid that is produced
into tank and when gravity takes value in the range between ( )*

PD[
 and ( )*

PLQ
, this means that the

desired liquid has been produced into tank. Moreover there is a limit on the height of liquid into tank,
which cannot excess an upper limit ( )+

PD[
 and a low limit ( )+

PLQ
. So the control target is to keep

these variables in the middle of their range of values:
* * *

+ + +

PLQ PD[

PLQ PD[

≤ ≤
≤ ≤

                                                                      (16)

In order to construct a Fuzzy Cognitive Map, which will model and control this simple system, the
concepts of the map must be determined. Concepts will stand for the variables and states of the plant,
as it is the height of liquid in the tank or the state of the valve. So a primitive FCM will have five
concepts and later any new concept, which will improve model and control of the system, can be
added:

Concept1 The amount of the liquid which tank1 contains. This amount is dependent on valve 1, valve
2 and valve 3.

Concept2 The state of the valve 1 (closed, open, partially opened).
Concept3 The state of the valve 2 (closed, open, partially opened).
Concept4 The state of the valve 3 (closed, open, partially opened).
Concept5 The reading on the instrument of specific gravity.

The real value of the physical magnitude that each concept represents is transformed in the range
[0,1] where concepts take values. After having selected the concepts that can represent the model of
the system and its operation behavior, the interconnections between concepts must be decided. At first,
it is decided for each concept with which other concept it will be connected. Then, the sign and weight
of each connection is determined. All this procedure has been done by a group of experts who have
experience on the system’s operation.

The connections between concepts are:

Event1    It connects concept 2 (valve 1) with concept1 (amount of liquid in the tank). It relates the
state of the valve 1 with the amount of the liquid in tank.

Event2 It relates concept 3 (valve 2) with concept1; valve 2 causes the increase or not of the amount
of liquid in tank.

Event3 It connects concept 4 (valve 3) with concept 1; the state of valve 3 causes the decrease or not
of the amount of liquid into tank.

Event4 It relates concept1 with concept 2; when the height of the liquid in tank is high, valve 1
(concept 2) needs closing and so the amount of incoming liquid into tank is reducing.

Event5 It connects concept 1 (tank) with concept 3; when the height of the liquid in tank is high, the
closing of valve 2 (concept 3) reduces the amount of incoming liquid.
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Event6 It connects concept 5 (the specific gravity) with concept 4 (valve 3). When the quality of the
liquid in the tank is the appropriate, valve 3 is opened and the produced liquid continues to
another process.

Event7 It shows the effect of concept 1 (tank) into concept 5 (specific gravity). When the amount of
liquid into tank is varied, this influence in the specific gravity of the liquid.

Event8 It relates concept 5 (specific gravity) with concept 2 (valve 1), when the specific gravity is
very low then valve 1 (concept 2) is opened and liquid comes into tank

Figure 5 shows the FCM that is used to describe and control this simple system, the initial value of
each concept, the interconnections and the weights between concepts are illustrated. The values of
concepts correspond with the real measurement of the physical magnitude. The values of the each
event (it represent the weight of each interconnection between concepts) has been determined by the
experts who designed the map. Experts have observed the influence of each concept to the others in
the real experimental system, and the assigned linguistic weight values for each interconnection,
which were transformed in fuzzy values.

Figure 5. The Fuzzy Cognitive Map who controls the process.

The Fuzzy Cognitive Map can be described by the following equation:
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It is assumed that all the concepts have inputs from the real system. Input for concept 1 is the
desired height of liquid in the tank and input for concept 5 is the desired specific gravity of the
produced liquid in the tank. So the equation will be:
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Outputs of this Fuzzy Cognitive Map are the values of concepts that represent the state of valves,
so:
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The squeezing function, which is used, is I [
H

[

� � =
+ −
�

�
λ  and the matrix %  with the weights Z

LL
,

will satisfy the IP property.
 It can be assumed that the inputs to the Fuzzy Cognitive Map are resulting from the transformation

of the measurements of the variables of the real system and/or their desired values.
In the case that there are less than n inputs then some of the rows of %  will be zero and the

controllability of FCM must be examined according to the relation of matrices $  and % .

5. Conclusions

In this paper different mathematical formulations of Fuzzy Cognitive Maps have been presented and
new types of Fuzzy Cognitive Maps have been examined. The new proposed type of FCM has a
mathematical representation very close to Recurrent Neural Networks, exploiting this attribute of
Fuzzy Cognitive Maps, the examination of Forward Accessibility and Controllability for Fuzzy
Cognitive Maps is presented. Some initial research results are discussed that they may open new
directions in the use of Fuzzy Cognitive Maps in Control Systems.
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