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Abstract

An approach to the generation of stopping rules in parametric identification
problems is proposed on the basis of the computation of a statistic of the difference
between two successive estimates. This statistic is also used for fault detection in
the Kalman filter. The developeddecision rules are applied to a linear system identification
problem.Experimental resultsare presentedto demonstratethe performance of the proposed
algorithms.

1. Introduction

The identification of dynamic objects described by difference equations of a known
order, but with unknown coefficients, entails the estimation of these coefficients, i.e.,
it is a parametric problem. It is always attended by the problem of determining
the stopping time of the computations or what essentially amounts to the
verification of sufficiency of the number of observations when a prescribed
accuracy is attained on the part of the computed estimates.

The results of the general mathematical theory of optimal stopping rules [1-3],
a latter-day branch of probability theory, have not enjoyed any appreciable
application in the generation of stopping rules in parametric identification
problems. This situation is attributable to the complexity of adapting various
statistical tests of a general nature to real applied problems and algorithms.

The application of the rules proposed in [4,5] for stopping of the identification
process runs into several difficulties, one of which is the need to specify an
admissible error ellipsoid or an admissible measure of this ellipsoid.

In this article we propose a stopping rule that is free of these shortcomings; it
is based on the comparison of a statistic of the difference between two successive
estimates with a predetermined confidence limit of the chi-square distribution.
The indicated statistic is also used for fault detection in the Kalman filter.

2. Generation of stopping rules

We introduce the following stopping rule in applicationto multidimensional parametric
identification problems:

ri2 = (97 _eAi—l)T DA_(; (eAl _eAi—l) SE, (1)
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where D,, is the covariancematrix of the discrepancybetweentwo successiveestimates 6.

and 6._,, ande is a predetermined small number.
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We assume that the well-developed theory of Kalman filtering is used to estimate the
parameters from a sequence of observations with Gaussian tolerances of the measumment
and system noise. In this situation the Kalman filter yields an estimate with expected value

equal to the estimatedquantity and a Gaussiandistribution function. The dlscrepancye Q a

then has a normal distribution as well, since it is a linear combination of two Gaussian
random variables [6]. With these considerations in mind we know that the statistic
r’ has a X distribution with n degrees of freedom (n is the number of dimensions
of the vector 8 ), and the threshold values of r* can be found by determining the
tabulated values of the x* distribution for a given level of significance.

It is evident from relation (1) that the smaller the value of r*, the greather
will be the consistency of the estimates. Usually in the testing of consistency in
such cases the lower limit of the confidence interval must be equal to zero, and
the upper limit is determined by the level of significance a,.

To test the consistency of the estimates, we adopt the level of significance a,,
which corresponds to the confidence coefficient B,=1-o,. We specify the threshold
X~ in terms of this probability, using the distribution of the investigated statistic
r’:

P{xz < xél} =B,0<p <1

We stop the estimation process when r’<xg’ since further observations yield
insignificant improvement of the identified model and are deemed impractical in
this event. If the quadratic form r’ is larger than or equal to the specified
threshold xg,’,estimation should be continued.

This stopping rule can be used to make a timely decision to stop the
estimation process in the identification of dynamic systems, and it does not
require large computational expenditures.

3. Fault detection in the Kalman filter

The chi-square test discussed above can also be used to troubleshoot the
Kalman filter. The statistic r* must be compared with the confidence limit of the
X* distribution determined from the expression

P{x2 <x2}=B,0<B, <1

and a decision must be made on the basis of the rule

r’<xs,, the Kalman filter is operating normally;
r’>xg,’, faults are present.

Consequently, by comaring the above-defined statistic r* with the confidence
limits obtained for the corresponding X’ distribution it is possible to solve two
problems at once: to determine the stopping time of the identification process and
to detect faults in the Kalman filter in due time.
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Figure 1 shows a graph of the probability density function of the X’
distribution with n=4 degrees of freedom and the computed confidence limits for
B,=1-0,=0.2 and [B,=1-0,=0.95 (a, is the level of significance), where the numerals
indicate: 1) the zone of stopping of observations; 2) the zone of estimation; 3) the
fault-detection zone.

Fixd

20 xE

Fig.1.The domain of possible Kalman
filter employment

It is evident from Fig. 1 that the domain of potential aplication of the Kalman
filter is partitioned into three zones. Estimation is assumed to continue as the
value of the statistic r’ is determined between the confidence limits xs,° and Xg,”.
If r’<xs’, the estimation process should be stopped, since further observations are
assumed to yield insignificant improvement of the accuracy of estimation . If
r’>xg,’, faults are present in the Kalman filter, inducing large deviations of the
estimates. In this case a decision is made as to the need for, and the character
of, corrective actions in the estimation process.

The expressions for the areas shown in Fig.1 are written in the form

B = [ (X)X, = [ F(X*)dX*B, ~ B, = [f(X*)x

2
Xpy

In the solution of a number of applied problems the threshold Xg,> (the upper
confidence limit) can be replaced by X(21+51)/2- It is then no longer necessary to

use two levels of significance. However, this substitution is feasible only for
isolated special cases, when the required probability of a correct decision as to
normal operation of the Kalman filter is not too high, owing to the small value
of B,.

Allowing for the fact that the stated problems of generating stopping rules
and troubleshooting the Kalman filter are separate problems and can require the
use of different levels of significance , two levels of significance o, and a, are
recommended for the general treatment of the proposed approach.
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4.Computation of the covariance matrix of the discrepancy between two
successive estimates

Let us consider a linear system of the form
y, = x'6;i =1n, (2)

where xiT:[],pi,piZ,...,pim] is the vector of the input Vvariables ;

N :[ao,al,az,...,am] is the vector of the unknown parameters (the parameters

being estimated).
The output signal of the object y. is recorded by a measuring instrument

Zizyi+hi’
where h, is the measurement error with a zero mean and the variance o’.

To estimate the parameters of system (2) an algorithm takes into account
the errors of the input variables is presented in [7]:

eAi = eAi—l + Ki (yi - XiTeAi—l)’

‘ - G -
| 0-iz +ei Il Dxiei -1 + XiT I:?—lxi ’
P_xx"P
Pi :R_l_ . AT|—1 |A| |—1T ]
0-i +ei—leiei—l + Xi I:?—lxi

where K. is the gain of the filter being examined ; P, is the covariance matrix of
the errors of the estimates; D, is the covariance matrix for input standard signals
errors.

We investigate the problem of determining the covariance matrix of the

discrepancy between successive estimates. The estimates 6., and OAI are

determined from sets of successive measurements {21,22,...,;_1}:21'1

and{zl,zz,...,;_l,;} = Z, , respectively:
6., =E{6./z}6 =E{g 12},

These estimates of the parameters are correlated, since common data are used
The correlation between them is also attributable to shared initial conditions
and shared system noise.
We consider the magnitude of the discrepancy between two successive
estimates:

~

B =6 -6,
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Since the Kalman filter (3) is linear, the investigated estimates are unbiased, i.e.,
E{g'} =0

The covariance fo3” is written in the form
E{B|DB|DT} =R+PF - Ple - P112- =Dpir 4

where P, and P, are the covariancematrices of the errors of two successiveestimatesd, and

~

0._, respectivelyand P, and P are the cross covariance matrices between the errors of

mentioned estimatesP_,=P, " [8].

Consequently, to compute the covariance of the difference between two
successive estimates of the Kalman filter, it is necessary to obtain the cross terms
of the covariance of the error of the extended state vector

LR R
Ca

Algorithms for determining the extended covariance P, are described in detail
in [8,9].

Once P,P,,and P, have been found, Eq.(4) is used to determine the covariance
matrix Dpe ,and a comparison of the statistic r’ computed from this matrix with
the confidence limits obtained of the corresponding x* distribution leads to
decisions whether to stop the estimation process and whether the synthesized
Kalman filter is operating normally.

The covariance matrix Dygcalculation is usually a very diffucult problem,
because it requires the determination of the cross covariance between errors of

~ ~

two considered estimates 6, and 6,_, .

1
Investigated estimates of Kalman filter OAI and @_1 are evaluated based on the

same sistem state model, their initial conditions are equal, the initial covariances
of errors of mentioned estimates and the initial cross covariance between them
are also equal. Then the covariance matrix Dygmay be written in the form

Dao=P,-P,=P_-P..

5.Experimental results

For example we shall investigate the problem of calibration of measuring
devices.

Usually, the calibration of any measuring device is made by the help of the
taken as etalon standard measuring instrument. But, each standard instrument
also reproduces signals with some definite errors (even if they are very small). If
these errors are not taken into account during calibration process, the final
results will contain several errors.
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A new algorithm taking into account the errors of the standard instrument is
presented in [7] with following initial conditions:

1)Calibration characteristics of the measuring device (in the present case,
differential pressure gage)is described by 2 order polynomial as follows:

y(p) saap+ap, (5)

2)It is assumed,that the standard instrument used for calibration also have some small
errors.
3) Measurements contain random Gaussian noisswiifn a zero mean

i Zat+apt+tap’th.

The coefficients in the polynomial (4) are evaluated7]nby the algorithm (3).
In the calculations the following data and initial conditions are taken:

o,i= 0,00026 ; o; = 0,0026,

where o, is thestandarderror deviationof the standard measuring instrument, ciis the
standard error deviation of tdéfferential pressure gage.

The range of changing sample pressuresigG 1600 bar.

The covariance matrix for input standard signals ef@prs

[0 0 0 B
D, = %) (0000262 0 o
H 0 4p?(0.000262H

As initial conditions the following values are chosen

Elo 0 OB
8= [0 1 2] ; PR=0 10 0n

H o0 104

The coefficients a,, & and & found by estimation via algorithm (3), are given in Fig.2,
and their errors variancesin Fig.3.The curvesin Fig.2 are characterizedbehaviorsof values
ao, 41, &2 from iteration number. As it can be seenfrom the curves after some iterations the
deviations of the investigated values are very small.
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Let us apply the developiy in this article stoppirg rule and fault detectiomn algorithns to
the differential pressure gage calibration problem.

The experimenth resuls are shown in Fig4 amd Fig.5 in which the thresholl (xs,°> and
Xs,) and r® statistic values are given respectively. We adopt the following
confidence coefficients: a) for stopping rule problem (,=0.01; b) for fault detection
problem B,=0.95. Their thresholds are: x3,*=0,115 and xp,’=7.8 respectively.
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Fig.4. r’ statistic values behaviours when Fig.5. r’ statistic values behaviours when
Kalman filter operates normally fault occurs in the Kalman filter
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It is evident from Fig. 4, in 5" calculation step r’ statistic value is less than
threshold value xg,’. Therefore in this case it is recomended to stop the estimation
process, since further  observations vyield insignificant improvement of the
estimated coefficients a, a and a and are deemed impractical.

Experimental fault detection result is shown in Fig.5( faults in measuremenichannel are
simulated adding 1 to the measurementesults in 6" and 14" estimation steps)lt is evident
from Fig.5, faults in the Kalman filter detected operatively with use presented statistic

6.Conclusions

We have thus proposeda new approachto the generationof stopping rules in parametric
identification problems on the basié the above-introducedstatistic r* with a x* distribution.
The computed statistic r? is also used to detect faults in the Kalman filter.

The domain of possible utilization of the Kalman filter is partitioned into three zones
accordingto our rule. When the value of r® lies betweenthe confidencelimits s> and Xp,”
(see Fig.1) of the corresponding X’ distribution, the decision is made to continue
the estimation. When r? attains the confidence limits, the decision is made to stop the
estimation processand, accordingly, the kind of corrective actions in the estimation processis
decided.

The stopping rule developed here has the advantage that its application does ndheequire
specification of an admissible error ellipsoid, whose construction representsan independent
problem.

In some cases it mde necessaryto processa large number of observationsin order for
the value of the statistic to reach the indicated “estimation stopping” threshold, resulting in
large expenditures of computer time. On the otiaerd, the processingof a smaller number of
observationslowers the accuracy of estimation. By the same token, if the “fault-detection”
threshold is too high, the effects falults in the Kalman filter tend to be smoothedout, and if
the thresholdis too low, the probability of false alarm increases.Consequentlythe choice of
these thresholds(the confidence limits of the x* distribution ) can have a decisive
influence on the efficient utilization of computer time.
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