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Abstract

In this paper, the Loop Transfer Recovery design procedure is extended to non stabilizable systems. After a
brief description of the systems considered in this paper, we revisit some results concerning the RPIS
(Regulator Problem with Internal Stability), and give the structure of the controller. Thereafter we consider the
LTR dual approach and stress the particular configuration of the output sensitivity function of the closed-loop
system. We show that it is sufficient to recover only a part of the sensitivity function to guarantee the stability
robustness of the loop. Finally the adjustment rules which lead to the desired result are described.

1 Introduction

It is well-known that full-state linear-quadratic regulators and Kalman-Bucy filters have attractive
robustness properties, but that these properties disappear in the case of observer-based linear control
systems (Andersoet al, 1990; Doyle, 1977; Safonat al, 1977). One of the most popular way of
designing robust controllers is then to use the well-known Loop Transfer Recovery techniques. These
consist in choosing an appropriate parametrization of the compensator design, so as to recover a
robust target loop. A wide range of sophisticated adjustment rules has been proposed in the last two
decades, and provides attractive solutions for the control of detectable ahzabtalplants (Doyle

et al, 1979;1981; Kwakernaak, 1972; Niemagtral, 1991; Saberet al, 1993; Steiret al, 1977).

However, there is no so clear theory when the system is not asymptotically stabilizable. In the case of
eigenvalues at the origin, for example, there are some techniques which consist in "placing them to
the left of it, the distance being much smaller than the required bandwith" (Maciejowski, 1989). The
recovery step is then performed on the resulting stable system. This method would give approximate
LTR, probably sufficient but not satisfactory for some general setting.

In this paper, systems composed of a stabilizable plant and an non stabilizable exosystem are
considered, and we attempt to solve the recovery problem without any approximation of the unstable
poles. The class of the systems under consideration is illustrated in figure 1.
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Figure 1 : Configuration of the systems for which RPIS is solvable

Both the system and the controller are finite dimensional LTI systems. The system is composed of a
stabilizable part (represented by the stafeand a non stabilizable one (stage The measurement
vectory contains the quantities to minimizg € €) and possible additional measurgg. (We stress

the fact that the possible additional measures are assumed to concern only the exosystem.

This paper proposes an extent of the LTR techniques to such systems. Following Kwakernaak
(Kwakernaak, 1972), we will focus here on the dual LTR (or LTR at the output). In this case (Doyle
et al.,, 1981) one first chooses a observer gain to give some desired properties to a particular target
transfer function. In a second step, one calculates a state feedback gain which allows to recover this
target transfer function. However, since the exosystem is unstable, direct application of this technique
is not possible here. The idea is to decompose the state feedback in two parts : the first one is devoted
to solve the disturbance decoupling problem (occultation of the exosystem (Wonham, 1985)) the
second one to the stabilisation of the plant and the recovery problem.

The remainder of this paper is thus organized as follows.

We begin in section 2 with an application, to our configuration, of the solution of the RPIS
(Regulation Problem with Internal Stability) as it is given in (Wonham, 1985). A simple interpretation

of it (de Larminat, 1995) will help us to understand the organization of the closed loop system and the
way we tackle the recovery problem.

In Section 3 the dual recovery procedure is discussed in detail. We adapt the concept of sensitivity
recovery as developed in (Niemann et al., 1991) to the considered systems. It turns out that there is no
need to recover the whole target sensitivity function to guarantee the stability robustness of the loop.
We show that partial, but sufficient, recovery is feasible, and we present the appropriate design
procedure.

Section 4 is devoted to concluding comments.

2 The regulator Problem with Internal Stability

Consider the LTI system described by the following state-space representation (notations are
consistent with figure 1) :
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KO0 A AOXOD (B0
HooH Ho A FHeod HHY
=

MO0 T, €00
.00 Ho  c.Hd0f

Be(t)=y,(t)

(2.1)

The dimension of the vectouwsande are equal.
The system is supposed to be detectable, even in the lackyghteasurement, but not stabilizable;
the crucial point here is that or{l,;, B,) is assumed to be stabilizable.

Also note thaA ,, B,,C,,)is supposed to be of minimum phase and right invertible. These last two
hypothesis are needed for the recovery procedure detailled in section 2.3 giStdin 1977).

Moreover, for the RPIS to be solvable we need to assume that the following Sylvester system has a
solution (Wonham, 1985; de Larminat, 1995) :
CAL T, — T A+ BG= A

ula = G (2.2)

If such a solution exists, the system described in the previous state space representation can be
rewritten in such a way that (see appendix A) :

A12 = Bl C:"a

C. =0 (2.3)

So, in the re-arranged configuration (see A.7), the non stabilizable part of the system involves a
disturbanced = G, X, , additive to the control input(see figure 2).

| d
u_ A,L I % =AX+B(ud | | e
: e=C,x |

C

Figure 2 : Equivalence with an additive input disturbance

The full-state feedback law for the regulator problem with internal stability (RPIS) is now
straightforward :
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(X,
u= —[ Ky Ke B<2B (2.4)

where K, stabilizes the subsyster (, B,) and whereK_, = G, rejects the disturbanck
Finally, an observer is included, in order to define the complete output feedback controller :

K(1) = A9+ BUY+ K(XI- &)XY

U N N , (2.5)

U0 = —Ka X, () = G %(9

The observer gai, will be calculated through the Kalman-Bucy formalism, and the feedback gain
K. via the Linear-Quadratic optimization.

Our goal is now to check that robust stability of the loop (the exosystem being outside) can be ensured
via the LTR design procedure despite the particular configuration of the problem.

3 Sensitivity Recovery Design Techniques
3.1 Introduction

Classically, the first step of the LTR design procedure consists in defining a target loop which has

desirable properties in terms of stability margins. Then, the second step lies in minimizing the

difference between the loop of the observer-based control system and the target loop.

In this paper we prefer to discuss the sensitivity recovery rather than the loop transfer recovery
(Niemann et al., 1991). The reason is that when a plant is unstable, the sensitivity recovery error
remains stable, which is not the case for the loop transfer recovery error.

Moreover, we consider the dual LTR where the Kalman-Bucy Filter is defined as a target loop, in

place of the full-state Linear Quadratic Control of the LTR primal approach.

3.2 Properties of the target loop sensitivity function
In this section we deal with the first step of the LTR design procedure, which consists in choosing a

target loop with good robustness properties. The target loop considered here is a Kalman-Bucy filter
loop, the output sensitivity function of which is given below :

5 =(1+T)" (3.1)
with
L(9=dsl- A7 K, (3.2)

whereK. is the gain of the observer (see eq. 2.5).

As there are two output signalsandy,, the sensitivity function will be partitioned into
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= _Egon :Suzg
021 22

(0]

(3.3)

where the block dimensions are fixed by thosg ahdy,.

The target sensitivity functior‘g0 satisfies the well-known robustness property (Andersbml.,
1990) :

S, (- jw) S( )< | (3.4)

And a few technical manipulations show that the same property applies to the sutﬁ]ﬂtr(see
Appendix B).

Sa(—iw) Su( W) < | (3.5)

3.3 Recovery procedure

Consider the output sensitivity function of the closed-loop system :

-1
s, =(1+ L) (3.6)
wherelL = GK is the loop transfer function of the control system.

The sensitivity functionS has a particular configuration which derives from the structure of the
system (see Appendix C).

$011 S)lZD
S, = 3.7
»=Ho | (3.7)
One can notice thaB,, =0 and S,, = I, while S, #0 and S,, # | due to the Kalman-Bucy

synthesis of the observer. This implies that the recovery of the complete sensitivityE_’.(argﬂt

never be possible.

However, note that that the robust stability of the loop is only linked to the properties of the
sensitivity functionS ;. It does not depend d,,, which represents the sensitivity of the outyui

the measurement noise through the feedforward branch (remembgrcdrabnly be a measure of the
exosystem).

As a consequence, it is sufficient tit, asymptotically recovers the target functié;]11 for the

robust stability of the loop to be guaranteed.
Hence, it remains to be shown ti&t asymptotically recovers the target functié;;11 despite the

non stabilizable part of the system.

Let the output sensitivity recovery error be defined as the difference between the target loop
sensitivity function and the sensitivity function of the observer-based control system.
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Eso(9=S(3- (> (3.8)
Niemann et al. (1991) have shown that the output sensitivity recovery error satisfies

Es o(9= M,(9 S( 5. (3.9)
where M (s) = (sl- A+ BK) K . (3.10)

M_(s) is called the recovery matrix for the plant output node.
From (2.1), (2.3) and (2.5) ,

e BGD _D<f11 K: O
SN S o PR A L AR o

SoM (s) can be expanded into

00BI-A,+BK, ~BG+BGO Ky K0

M (S) BO szBB 0 SI_Azz B g(fﬂ KfZZ% (512
or

_ = O
MJ$:§AQ A+ BK) 0 B KigD 615

0 C,olsi - Ay) "Bz Kizp

The state feedback gaik, results from a Linear-Quadratic Control minimizing the following
criterion :

I=f(uU)TRUY+ XD Q X)) di (3.14)
whereR is a non-zero matrix, ar@, is defined as :

Q, = 4 C,Cl. (3.15)

The classical adjustment rule is then applied, assuming&haB(, C,)) is a minimum phase system
an right invertible (Steiet al, 1977). It follows that

11(SI A,+ B K ) - 0 pointwise insas 4 — . (3.16)

As a result, the recovery matiix (s) has the finite limit :
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9= 5 A K G- A) Kol @
22 2 21 2 2 22[]

Finally, substituting (3.17) into

Foal Era0 Man® Mo 05,(3 Su(3

Ee o Er w3 Mon® Mop(sHE (s Su0F 319)
yields

Eq ui(9 - O asp — o (3.19)
Now since

Ee a(j0) = Sl 0) ~ S 1), (3.20)

it follows that asymptotic recovery is obtained 8)r.

4 Conclusion

This paper has attempted to deal with the design of robust controllers for non stabilizable systems. A
two-step procedure has been proposed, concerning the systems for which the regulator problem with
internal stability is solvable . The first step consists in re-arranging the system via the RPIS solution.
The second step is devoted to the output sensitivity recovery, via an appropriate adjustment rule
(under the condition of minimum phase and right invertibility/f, 8,, C,,) ). A significant point of

the proof is that recovery can be performed in the presence of additional measures giving information
about the exosystem. These measures tackle the controller as feedforward inputs, and do not affect the
stability robustness of the loop.

Appendix A

Consider the LTI system described by the state differential equations :

X, O [AM A,00X, 0 B,O
%(2D DO Azz%%’(zgﬂo%u
oy, 0 €, C,O0X, O
B’zDZEO sz%%’(zg

]

(A.1)
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X, represents the stabilizable part of the system, Xanthe exosystem. The signal vectpris
composed of/,, the measure of the controlled output, andan additional measure concerning the
exosystem.

The stateX is transformed inta via

X=TX, (A.2)

O
0 (A.3)
O

Considering the transformation (A.2), the state-space representation equivalent to (A.1) is

D'(1[]: A, —ALH A+ T AOXO [Blmv
%0 Ho A, Hb.H Hof

(A.4)
Ly, U @11 - Cll-l; + ClZD (X, U
= DO C [l [l
20 [ 22 HIRIN

Define T, andG, as a solution of the Sylvester system (assumed to be solvable) (Wonham, 1985 ; de
Larminat, 1995) :

D— C,T.,+C,=0

A5

TATFA+T A= BG (49)
Substituting (A.5) into (A.4) yields :
X O A, BG DD<1D B, Du
%(2[] EO A, DB(ZD DOD (A6)
y,0_[€, 00040 |
3.0 Ho  C.HhHH
(A.6) may be rewritten as
X O DAM 0 DD<1D B, 0 (u+G )
T Ho  A.AR.H" HogU* &

. (A.7)

Eyl I:] II:11 O I:] |:}(l

3.0 Ho c.H&%H

Hence, the initial system has been reorganized into a new system, with a distullafaex,
additive to the input.
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Appendix B
Let the matrixM be defined as
M =8 (-jw) S( )~ |
M expands into :

_ ES—OTM(_ jw) Snl( w) + _ST21(_ w) _521( @) - |
=0
O M,

M

The matrixM is negative definite, which implies
Sha(= @) Sl 1)+ S~ ) S @) - 1<O.
(B.3) may be rewritten as

Soa (7 [00) Suu( ) <= o= ) Sl W)+ L
where S, (- jw) S,,( i) is positive definite.

It follows that

§0T11(_ jo) S)ll( w)< 1.

Appendix C

Consider the sensitivity function of the system described by (A.6)

S=(1+GK™

whereG andK are the plant and regulator transfer functions respectively.

G is written in the form :

G=C(sl- A" B,

which expands into

@11 0 Ol - A11 BlGa Dl D31[]

®“Ho c.HH o si-a,H Hof
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Let

=
“Ho wm,f €4

be a square matrix, witkl, andM, non singular.

The formula giving the inverse M is

MY -M,;"M,M ;'O

Mt=p C5
G0 wm® f (o)
Using this formula in (C.3) yields
-1
G= %311(9 - An) Blg (C.6)
B 0 B
The transfer of the regulator is a two-column matrix :
K=[K, K. (C.7)
Substituting (C.6) and (C.7) into (C.1) yields :
-1 1 -1
S= a +C11(S| - All) B K Cn( sl— 'IA.‘Ll) B }gg (C.8)

g 0 g

Use the formula (C.5) to check that the output sensitivity function has the form

5 0
g = eou Q2

o~ B 0 | (Cg)
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