
Kalman Bucy Filtering for Singular Output-Noise
Covariance

F. Carravetta�

Ist. Anal. Sist. ed Inf. del CNR.
A. Germaniy

Dip. Ing. Elettrica.
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Abstract

For a linear Gaussian stochastic system, the filtering problem is considered, when the
covariance matrix of the observation noise is not invertible. A method that allows to build
up the optimal filter in a number of cases is presented.

. . .

1 Introduction

Let us consider the linear stochastic system:

dX(t) = AX(t)dt+ FdW(t);

dY(t) = CX(t)dt+GdW(t);
1.1) (1)

where W(t) 2 IRm is the standard Wiener process, X(t) 2 IRn, Y(t) 2 IRq, m � q. X(0) is a
Gaussian, zero mean random variable with covariance 	X(0), and Y(0) = 0.

The filtering problem for system (1.1), (1.2) was solved by Kalman and Bucy [1] in the case
of a nonsingular output-noise covariance GGT. By denoting bX the mean-square optimal state-
estimate, the equations of the Kalman-Bucy filter are the following:

dbX(t) = AbX(t)dt + �
FGT + P(t)CT

�
(GGT)-1(dY(t)- CbX(t)dt); (1.3)

Ṗ(t) = AP(t) + P(t)AT + FFT - (FGT + P(t)CT)(GGT)-1(FGT + P(t)CT)
T
;

endowed with the initial conditions:

bX(0) = EfX(0)g = 0; P(0) = 	X(0): (1:4)

In this paper we consider the filtering problem for system (1.1), (1.2) when the covariance
of observation noise, GGT, is singular. In this case the classical Kalman-Bucy theory can not
be used. Moreover, an expression of the optimal filter is up to now not available. In [2] an

�Email: carravetta@iasi.rm.cnr.it
yEmail: germani@ing.univaq.it
zEmail: manes@ing.univaq.it

1320

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



�-optimal solution is given for this problem. More exactly, the output-noise covariance is re-
placed with (GGT+ �I), and the convergence towards the optimum of the state-estimate given
by the Kalman-Bucy filter, when � goes to zero, is proved. However, this method is not very
feasable in that it is ill-conditioned for small �, so that any practical implementation would
introduce large numerical errors that can not be controlled.

Nevertheless, in this paper we present a method to build up the optimal filter for singular
GGT in a number of cases. An algorithm is proposed, that gives, within a number of steps
equal to the system state-dimension n, the answer about the question of whether the optimal
filter can be defined using our method or not. In the case of a positive answer of the algorithm,
the way to obtain the optimal filter is described.

2 Main result

Let us consider the sequence of matrices f�k; k � 0g defined as follows:

dim(�k) = q̄k � q̄k; q̄k = q-

k-1X
i=0

qi; qk = rank(Gk) � q̄k; G0 = G; Gk+1 = � 00

kCkF;Ck+1 = � 00

kCkA;

(2.5)
Moreover, for k̄ � 0, let us define the matrix M

k̄
:

M
k̄
=

2
6664
� 0

0
G

� 0

1
G1

...
� 0

k̄
G
k̄

3
7775 ; (2.6)

where it is understood that: if for some i one has � 0

i
Gi = 0, then this null block is removed.

Theorem 2.1.

i) There exists a sequence of matrices f�k; k � 0g that satisfies (2.5).

ii) If there exists a k̄ � 0 such that rank(M
k̄
) = q, then k̄ � n and there exists the optimal filter for

system (1.1), (1.2).
Proof.

Let us consider the output equation (1.2), and rename Y0 = Y, C0 = C, G0 = G. Let
rank(G0) = q0 < q, (remind that dim(G) = q� p). Then, there exists a matrix �0 such that:

dim(�0) = q� q; �0 =

�
� 0

0

� 00

0

�
; rank(� 0

0
G) = q0; � 00

0
G = 0: (2.7)

Let us decompose �0Y0 as

�0Y0 =

�
Y 0

0

Y 00

0

�
;

where dim(Y 0

0
) = q0, and dim(Y 00

0
) = q - q0 = q̄1, where the definition of q̄k given in (2.5) has

been used. By exploiting the output equation (1.1), and the properties of �0 given by (2.7) one
has:

dY 0

0 = � 0

0C0Xdt+ � 0

0G0dW;dY 00

0 = � 00

0C0Xdt; 2.8

from which, in particular, it follows the existence of the time derivative: Ẏ 00

0
. Let us define

Y1
�= Ẏ 00

0
= � 00

0
C0X; (2.9)
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and let us calculate its stochastic differential:

dY1 = dẎ 00

0
= � 00

0
C0dX = � 00

0
C0AXdt+� 00

0
CFdW = C1Xdt+G1dW; (2.10)

where (1.1) has been used and:

C1
�=� 00

0
CA; G1

�=� 00

0
CF:

with rank(G1) = q1 < q̄1, (note that dim(G1) = q̄1 � p).
By iterating the above described procedure, one has in general, at the k-th step:

dY 0

k
= � 0

k
CkXdt+ � 0

k
GkdW;dY 00

k
= � 00

k
CkXdt: $

and
dYk+1 = Ck+1Xdt+Gk+1dW;

where
Yk+1

�= Ẏ 00

k

and
Ck+1 = � 00

k
CkA; Gk+1 = � 00

k
CkF:

As it is immediately recognized, the above defined sequences of matrices: f�kg, fCkg, fGkg agree
with the ones defined by the relations (2.5). Therefore, the point i) of the theorem is proved.

Now, let us suppose that there exists a k̄ such that rank(M
k̄
) = q. Then we can define a

vector Y 2 IRq:

Y =

2
6664
Y 0

Y 0

1

...
Y 0

k̄

3
7775 ;

so that
dY = A

k̄
Xdt+M

k̄
dW; (2.13)

where

A
k̄
=

2
6664
� 0

0
0 : : : 0

0 � 0

1
� 0

0
0

. . .
...

� 0

k̄-1
� � �� 0

0

3
7775
2
6664

C

CA
...

CAk̄-1

3
7775 :

Let us denote �t(�) the �-algebra generated by a process f�(s); s � tg and �(X1; :::; Xl) the
�-algebra generated by the random variables X1; :::; Xl. Moreover, for any given algebra of

-subsets, namely F , let us denote with �(F) the smallest �-algebra containing F . It results
�(�t(Y) [ �(Y(0); Ẏ(0); :::; Y(k̄))) = �t(Y), for any t. Indeed, as it is easily recognized by the
above described procedure, the map Y ! Y is invertible, provided that the random variables
Y(0); Ẏ(0):::; Y(k̄)(0) are given. Therefore there exists the optimal filter for the system (1.1), (1.2)
and it results to be given by to the Kalman-Bucy filter applied to system (2.13). Moreover,
noting that

M
k̄
=

2
6664
� 0

0
0 : : : 0

0 � 0

1
� 0

0
0

. . .
...

� 0

k̄-1
� � �� 0

0

3
7775
2
6664

G

CF
...

CAk̄-1F

3
7775 :
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the request rank(Mk) = q (that is Mk is a full rank matrix) implies that the matrix O
k̄
=

[GT (CF)T : : : (CAk̄-1F)T]T has (column) rank equal to q. If k̄ � n, by the Cayley-Hamilton
theorem it follows that rank(On) = rank(O

k̄
) that is, the rank no more increase for increasing

k̄. The proof of ii) is then completed. �

Theorem 2.1 allows us to define the following algorithm, giving the number k̄, and the
matrices f�0; :::; �k̄

g. The algorithm is composed by the following steps:

1) let k = 0, Gk = G. 1a) If rank(Gk) = q̄k and k � n then k̄ = k, and go to step 2). Else compute
�k such that rank(� 0

k
Gk) = qk, � 00

k
Gk = 0, compute Gk+1 = � 00

k
CkF, Ck+1 = � 00

k
CkA, increase k

by one, and repeat 1a).

2) If k > n then stop, the algorithm fails, else return k̄ and f�0; :::; �k̄
g.

Theorem 2.1 assures that the algorithm terminates in a finite number of steps (less or equal
to the state dimension n), giving the answer to the question of whether it is possible to build up
the optimal filter (using this method) or not. In the case of a positive answer, the optimal state-
estimate, X̂(t) = E(X=�t(Y)), t � 0, of system (1.1), (1.2), can be obtained by an application of
the Kalman Bucy filter to the equivalent system composed by the state equation (1.1) and the
output equation (2.13). The filter should be inizialized with X̂(0) = E(X(0)=�(Y(0); Ẏ(0); :::; Y(k̄)(0)))

The process Y can be practically obtained from process Y by using derivative devices ans
following the procedure described in the proof of Theorem 2.1Ẇe stress that the output-derivatives
involved in the definition of the equivalent observation Y are noise-free, and then well suited,
in that they are derivable functions. This guarantees reasonable errors in the output of the
derivative-device.

3 Concluding remark

The proposed filter is a continuous map Y ! bX. This makes the filter practically imple-
mentable, provided that a good approximation is available for Y , or in other words, a good
approximation for the derivatives required by the construction procedure of Y . This can be
achieved for suitably smooth output trajectories. A comparison with the �-method, mentioned
in the Introduction, show that no ill-conditioning problems arise in this case (because of the
continuity of the proposed filter).

It can be shown that when k̄ = 1 the filter can be implemented without approximations if
the following white noise model is assumed for the output of system (1.1)

y(t) = CX(t) +Gn(t): (3:14)

In this case the original Kalman-Bucy structure of the filter can be manipulated to obtain an
implementation that does not need the explicit computation of the transformation Y ! Y of
the output process.

It’s well known (??) that. . . . ?, Ch. 10), however, pointed out that. . .
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