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Abstract

The row-by-row decoupling problem is studied for linear delay systems. The struc-
tural approach is used to design a decoupling precompensator. The realization of the
given precompensator by static state feedback is studied. Using various structural and
geometric tools, a detailed description of the feedback is given, in particular, derivative
of the delayed new reference can be needed in the realization of the precompensator.

1 Introduction

The structure at infinity or the Smith-McMillan form at infinity are well known tools for
the characterization of the solvability of some control problems such as model matching,
disturbance decoupling, row-by-row decoupling. For linear finite dimensional systems see
(Silverman and Kitapçi, 1983) for instance. For linear infinite dimensional systems and in
the particular case of bounded operators, the structure at infinity was introduced by Hau-
tus (1975), described in several equivalent ways and used to solve some control problems in
(Malabre and Rabah, 1990). The particular case of delay systems was studied in (Malabre
and Rabah, 1993). However the structure at infinity defined there is too weak to insure
a good solution for control problems: indeed the potential precompensators may be antic-
ipative as it was pointed out in (Sename et al, 1995). In (Rabah and Malabre, 1996) we
introduced the concept of strong structure at infinity which is more convenient for infinite
dimensional systems (and for delay systems as a particular case). This structure is only
well defined for some classes of systems. The positive result is that if this structure at in-
finity is well available then all potential solutions of control problems are non-anticipative
and may be realized by static state feedback. Here we use, as in (Rabah and Malabre,
1998) for the disturbance rejection, the weak structure at infinity of the system in order to
design a precompensator achieving decoupling, then this precompensator is decomposed in
two parts: a strong proper precompensator which may be realized by static state feedback
and a weak proper precompensator which can be realized by generalized static state feed-
back, feedback which contains the derivative of the new control. The results given here are
in a general form at least for systems with commensurate delays. If the new control is not
smooth enough, then the decoupling problem cannot be solvable by generalized static state
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feedback.
The paper is organized as follows. In Section 2 we describe the delay system considered
in the paper and the problem of decoupling. In Section 3 we give basic notions and recall
classical results concerning linear systems without delays, then we recall some notions
and results for systems with delays in Section 4. In Section 5 we solve the row-by-row
decoupling problem for delay systems in a general framework.

2 System description and problem formulation

2.1 System description

We consider the linear time-invariant systems with delays described by:
�

_x(t) = A0x(t) + A1x(t � 1) + B0u(t)
y(t) = C0x(t)

(1)

where x(t) 2 X � R
n is the state, u(t) 2 U � R

m is the control input, y(t) 2 Y � R
m is the

output to be controlled. In order to simplify the notation and some computations, we limit
ourself to systems with single delay in the states. All results and considerations given here
remain valid for systems with several commensurate delays in the state, the control and
the output.

The transfer function matrix of the system (1) is

T (s; e�s) = C0(sI �A0 � A1e
�s)�1B0

which may be expanded as follows

T (s; e�s) =
1P
j=0

Tj(s)e�js; (2)

where
Tj(s) = C0(sI �A0)

�1
�
A1(sI � A0)

�1
�j
B0:

Each matrix Tj(s) may be decomposed using the following constant matrices introduced by
Kirillova and Churakova and compared with other tools in (Tsoi, 1978):

Qi(j) = A0Qi�1(j) +A1Qi�1(j � 1);

Q0(0) = I; Qi(j) = 0; i < 0 or j < 0:
(3)

We have

Tj(s) =
1X
i=0

C0Qi(j)B0s
�(i+1):

Another expression which will be used in this paper is the following one

T (s; e�s) =
1X
i=0

0
@ iX

j=0

C0Qi(j)B0e
�js

1
A s�(i+1): (4)

These expressions may be obtained by a simple calculation using the relations (3), see
(Sename et al, 1995; Tsoi, 1978).
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2.2 Problem formulation

Let be given the system (1). Find a precompensator K(s; e�s) such that

T (s; e�s)K(s; e�s) = diag fh1(s; e
�s); : : : ; hm(s; e

�s)g

and which may be realized by generalized static state feedback of the form

u = F (e�s)x+G(s; e�s)v;

without anticipation. That is, the closed loop system, say TF;G(s; e
�s) is such that:

TF;G(s; e
�s) = diag fh1(s; e

�s); : : : ; hm(s; e
�s)g:

This means that F (e�s) and G(s; e�s) may be decomposed as

F (e�s) = F0 + F1e
�s + F2e

�2s + � � � ;

G(s; e�s) = G0 +G1(s)e
�s +G2(s)e

�2s + � � � ;

with (possible) polynomial matrices Gi(s); i � 1. This assumption allows to give a more
general solution for a very large class of delay systems. If the problem is solvable we say
that the row-by-row decoupling problem is solvable. The corresponding precompensator
K(s; e�s) is called realizable or causal.

3 Finite dimensional systems

The basic notion used is this paper is the notion of properness. Let us recall in this section
the case of a classical linear system given by:

�
_x(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

(5)

where x(t) 2 X � R
n is the state, u(t) 2 U � R

m is the control input, y(t) 2 Y � R
m is the

output to be controlled. The transfer function matrix of the system is

T (s) = C(sI � A)�1B:

The matrix T (s) is rational and strictly proper, the properness being defined by the follow-
ing.

Definition 3.1 A complex valued function f(s) is called proper if lim f(s) is finite when
jsj ! 1. It is called strictly proper if this limit is 0. A matrix B(s) is biproper if it is proper
and its inverse is also proper.

As for linear systems in finite dimensional spaces one considers in fact only rational func-
tions, properness means that the degree of the numerator is less than or equal to the
degree of the denominator and strictly properness means that the equality cannot hold. A
fundamental result is the existence of a canonical form at infinity (Smith-McMillan form
at infinity) for strictly proper matrices (but also for general rational matrices).
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Theorem 3.2 There exist (non unique) biproper matrices B1(s) and B2(s) such that

B1(s)T (s)B2(s) =

�
�(s) 0
0 0

�
;

where �(s) = diagfs�n1 ; : : : ; s�nrg. The integers ni are called the order of the zeros at infinity
and the list of integers fn1; : : : ; nrg is the structure at infinity and is noted by �1(C;A;B)
or �1T (s).

The structure at infinity allows to describe the behavior of the system at time t = 0.

Another important tool which is useful to characterize several properties of linear sys-
tems is the maximal (A;B)-invariant subspace contained in KerC, see (Wonham, 1985).
It will be noted by V�(KerC;A;B). We shall also use the alternative expression of this
subspace given by Hautus:

V�(KerC;A;B) = fx 2 KerC : x = (sI �A)�(s)�B!(s)g ;

with strictly proper � and ! such that �(s) 2 KerC for jsj > s0. The following result is well
known and established by several authors. Let B denote the image of B.

Theorem 3.3 The following propositions are equivalent:

1. There exists a biproper precompensator K(s) such that

T (s)K(s) = diag fh1(s); : : : ; hm(s)g

2. There exist a feedback law u = Fx +Gv, such that

C(sI �A �BF )�1BG = diag fh1(s); : : : ; hm(s)g

3. The global structure at infinity is equal to the union of the row’s structures at infinity:

�1(C;A;B) =

2
4

�1(c1; A; B)
...

�1(cm; A; B)

3
5 ;

where �1 denotes the canonical form at infinity for the given system, ci; i = 1; : : : ; p
being the rows of the matrix C

4. ImB =
Pm

i=1 ImB \ V�(Ci; A; B), where Ci =
Tm
j 6=iKer cj ;

5. The so-called Falb-Wolovich matrix

D =

2
4
c1A

n1�1B
...

cmA
nm�1B

3
5 ;

is invertible. The integers ni; i = 1; : : : ; m are the order of the zero at infinity of each
row subsystem: ciAni�1B 6= 0 and ciA

jB = 0 for j < ni � 1.

The relation between the precompensator K(s) and the feedback law (F;G) is given by

K(s) =
�
I � F (sI �A)�1B

��1
G: (6)
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PROOF: For the proofs see for example (Falb and Wolovich, 1967; Wonham, 1985; Com-
mault et al., 1986) and references given there. We need later the proof of the equivallence
of the statements 1) and 4). Let us give a direct proof of this equivallence.

If the system is decouplable by precompensator (statement 1)), there exists a biproper
precompensator K(s) such that

C(sI �A)�1BK(s) = diag fh1(s); : : : ; hm(s)g :

The matrix K(s) may be written as K(s) = V +W (s), where V is a non singular matrix
and W (s) is strictly proper. Let vi and !i(s) be the i-th columns of the matrices V and W (s)
respectively. Then fvi; i = 1; : : : ; mg forms a basis in Rm. If we take

�i(s) = (sI �A)�1B(vi + !i(s));

then �i(s) 2 Ci. On the other hand �i(s) and !i(s) are strictly proper. Hence, for all i =
1; : : : ; m one has

Bvi 2 V�(Ci; A; B)

As fvi; i = 1; : : : ; mg forms a basis of U and B is assumed to be monic, then fBvi; i =
1; : : : ; mg is a basis of ImB. Hence (8) holds.

Conversely assume that condition 4) is satisfied. Then for fvi; i = 1; : : : ; mg linearly
independent, one has

Bvi = (sI � A)�i(s)� B!i(s)

with �i(s); !i(s) strictly proper and �i(s) 2 Ci, i.e. C�i(s) = ci�i(s). For V = [ v1 : : : vm ]
and W = [!1(s) : : : !m(s) ], if we define K(s) = V +W (s), then K(s) is biproper and

C(sI �A)�1BK(s) = diag [c1�1(s); : : : ; cm�m(s)] :

Hence the system is row-by-row decoupled by the precompensator K(s) and we have hi(s) =
ci�i(s).

4 Structural notions for delay systems

The transfer function matrix of a delay system is not rational. Moreover, it is not analytical
at infinity. The notions of properness must be precised.

Definition 4.1 A complex valued function f(s), analytical for <e(s) � s0, is called weak
proper if lim f(s) is finite when s 2 R tends to 1. It is called strictly weak proper if this limit
is 0. A matrix B(s) is weak biproper if it is weak proper and its inverse is also weak proper.
Weak proper is replaced by strong proper if the same occurs when s 2 C and <e(s)!1:

It is obvious that strong properness implies weak properness. If the function is analytical
at infinity both notions coincide, because the limits at infinity are the same.
The strong properness was used in (Hautus, 1975) and (Malabre and Rabah, 1990) in the
description of the structure at infinity for infinite dimensional systems. In (Malabre and
Rabah, 1993; Sename et al, 1995; Rabah and Malabre, 1998) the weak notion was used in
order to define the structure at infinity of delay systems and to solve some control problems.

Let us recall the following results using the weak properness and introduced in (Mal-
abre and Rabah, 1993; Rabah and Malabre, 1996).
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Theorem 4.2 There exist (non unique) weak biproper matrices B1(s; e�s) and B2(s; e�s)
such that

B1(s; e
�s)T (s)B2(s; e

�s) =

2
66664

�0(s) 0 � � � 0 0
0 �1(s)e

�s � � � 0 0
...

...
. . .

...
...

0 0 � � � �k(s)e
�ks 0

0 0 � � � 0 0

3
77775 ;

where �i(s) = diagfs�ni;1 ; : : : ; s�ni;ji g and ni;j � ni;j+1; i = 1; : : : ; k. The list of integer

fni;j ; i = 1; : : : ; k; j = j1; : : : ; jig

is called the weak structure at infinity of the system T (s; e�s) and is noted �w
1T (s; e

�s).

Some additional assumptions may insure that the weak structure at infinity also gives a
strong structure at infinity (the biproper matrices Bi are strongly biproper).

5 The row-by-row decoupling problem for delay systems

Our purpose is to give for a linear time delay system a more general solution for the row-
by-row decoupling problem.
The given problem was studied by several authors (Rekasius and Milzareck, 1977; Tzafes-
tas and Paraskevopoulos, 1973; Sename et al, 1995) but only partial solutions were given.
In (Rabah and Malabre, 1997) an abstract geometric approach is developed using Hau-
tus’ definition of (A;B)-invariant subspaces, however it is difficult to compute the used
subspace and the result given there is limited to the strong definition of properness. Our
approach developped first in (Rabah and Malabre, 1998) for the disturbance rejection prob-
lem is extended here to the row-by-row decoupling problem. The weak structure at infinity
given in the previous section allows to give the following general formulation and solution
for this control problem by generalized static state feedback.

Theorem 5.1 The following propositions are equivalent:

1. The weak structure at infinity verifies:

�w
1(C0; A0; A1; B0) =

2
4
�w
1(c1; A0; A1; B0)

...
�w
1(cp; A0; A1; B0)

3
5 ;

where ci’s are the rows of the matrix C0.

2. The matrix

D0 =

2
4

c1Qn1�1(k1)B0
...

cmQnm�1(km)B0

3
5 ;

is invertible, where for each row i the integers ni and ki are such that: ciQni�1(ki)B0 6= 0
and ciQjB0 = 0 for j < ni � 1 and j < ki.
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3. The row-by-row decoupling problem for the delay system (1) is solvable by a weak
biproper precompensator :

T (s; e�s)K(s; e�s) = diag
�
h1(s; e

�s); : : : ; hm(s; e�s)
	
:

4. The decoupling problem is solvable by generalized static state feedback

u = F (e�s)x+ G(s; e�s)v;

where

F (e�s) = F0 + F1e
�s + � � � ;

G(s; e�s) = G0 +G1(s)e
�s + � � � ;

with (possible) polynomial matrices Gi(s); i � 1; G0 = D�10 and constant matrices
Fi; i 2 N. The relation between the precompensator K(s; e�s) and the feedback law

u = F (e�s)x+G(s; e�s)v

is given by
K(s; e�s) =

�
I � F (e�s)(sI �A(e�s))�1B0

��1
G(s; e�s);

where A(e�s) = A0 +A1e
�s.

PROOF: Suppose that the condition 1) is verified. The integers ni and ki for i = 1; : : : ; m
describe the weak structure at infinity of each row i. Then

T (s; e�s) = diag
n
s�n1e�k1s; : : : ; s�nme�kms

o
(D0 +W (s; e�s)) (7)

and W (s; e�s) is strictly weak proper. If D0 is not invertible, then by elementary operations
one can reduce some column of D0 and then the global structure at infinity would not co-
incide with diag fs�n1e�k1s; : : : ; s�nme�kmsg, which is not possible by hypothesis. This gives
that 2) holds.

Suppose that 2) is verified. Then from the factorisation 7 (which is always true), one
has D0 +W (s; e�s) weak biproper, because

lim
R3s!1

(D0 +W (s; e�s) = D0:

Then K(s; e�s) = (D0 +W (s; e�s))
�1 is also biproper and

T (s; e�s)K(s; e�s) = diag
n
s�n1e�k1s; : : : ; s�nme�kms

o
;

which means that 3) holds.

Assume now that the decoupling problem is solvable by a weak biproper compensator
and let us show that there also exists a solution by generalized static state feedback. Let
us first note that 3) implies 1) (and 2)) This means that one can define from (7)

K(s; e�s) =
�
D0 +W (s; e�s)

��1
;
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and then
K�1(s; e�s) = D0 +W1(s; e

�s) +W2(s; e
�s);

where D0 =
P1

j=0 C0Q��1(�+ j)e�jsB0, where � and � denote for each row i the integers ni
and ki respectively (as in the matrix of Falb-Wolovich). The matrix W1(s; e

�s) is the strong
proper part of W (s; e�s):

W1(s; e
�s) =

1X
j=0

1X
i=1

C0Qi+��1(�+ j)B0s
�ie�js;

and W2(s; e
�s) = W (s; e�s)�W1(s; e

�s). The matrix W2(s; e
�s) contains generalized proper

terms like se�s. Then D0 +W1(s; e
�s) is strong biproper. Let us denote

K1(s; e
�s) = (D0 +W1(s; e

�s))�1;

and K2(s; e�s) = K(s; e�s) �K1(s; e�s). The matrix K2(s; e�s) contains generalized proper
terms like se�s as W2(s; e

�s). The precompensator K1(s; e
�s) is strongly biproper and may

be realized by static state feedback, see (Rabah and Malabre, 1996), (Sename et al, 1995)
where additional conditions are given in order to insure the strong biproperness of the
precompensator and the feedback is explicetely designed:

F 1(e�s) = F0 + F1e
�s + F2e

�2s + � � � ;

G1(e�s) = G1
0 +G1

1e
�s +G1

2e
�2s + � � � ;

where, for example, G1
0 = D�10 and

F0 = �G1
0

2
4

c1Qn1(k1)
...

cmQnm(km)

3
5

the other matrices are computed as in (Rabah and Malabre, 1996) and (Sename et al, 1995).
This gives

K1(s; e
�s) =

�
I � F 1(e�s)(sI �A(e�s))�1B0

��1
G1(e�s):

Taking F (e�s) = F 1(e�s) and

G2(s; e�s) =
�
I � F (e�s)(sI � A(e�s))�1B0

�
K2(s; e

�s);

one obtains

K1(s; e
�s) +K2(s; e

�s) =
�
I � F (e�s)(sI � A(e�s))�1B0

��1 �
G1(e�s)) +G2(s; e�s)

�
:

Then
K(s; e�s) =

�
I � F (e�s)(sI �A(e�s))�1B0

��1
G(s; e�s);

with G(s; e�s) = G1(e�s) +G2(s; e�s). Hence 4) is satisfied.

If the decoupling problem is solvable by generalized static state feedback, then

T (s; e�s)K(s; e�s) = diag
�
h1(s; e

�s); : : : ; hm(s; e�s)
	
:

with weak biproper K(s; e�s) and hi(s; e�s) 6= 0 for each i. This gives, for each i:

ci(sI � A(e�s)�1B0K(s; e�s) = [ 0 � � � hi(s; e
�s) � � � 0 ]
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and then each row i of the system has the structure at infinity of

[ 0 � � � hi(s; e
�s) � � � 0 ]

and this gives 1). This ends the proof.

Corollary 5.2 If in the theorem weak structure (or properness) is replaced by the strong
one, then the feedback contains only static terms, no derivative of the reference is needed.

PROOF: The assumptions of the corollary imply that the weak structure at infinity is
also the strong structure at infinity (Rabah and Malabre, 1996), this gives K(s; e�s) =
K1(s; e�s), and then G(s; e�s) = G1(e�s) and F = F 1(e�s). The precompensator is realiz-
able by static state feedback. No derivation of the delayed reference is needed.

In Theorem 5.1, the “geometric” formulation was omitted (statement 4 in Theorem 3.3).
The following proposition gives an analogous result. In order to formulate this result let us
introduce a Hautus’ (A;B)-invariant subspace for delay systems (see (Malabre and Rabah,
1993) for the introduction of this tool and application to disturbance decoupling for de-
lay systems and (Rabah and Malabre, 1997) for the same statements in terms of strong
properness and for the design of strong decoupling precompensator).

For

Ci =
m\
j 6=i

Ker cj ;

let V�(Ci; A(e�s); B0); i = 1; : : : ; m be the subspaces

V�(Ci; A(e
�s); B0) =

�
x 2 Ci : x = (sI � A(e�s))�(s)� B0!(s)

	
;

with strictly weak proper � and ! such that �(s) 2 Ci for s > s0.

Theorem 5.3 The system (1) is decouplable iff

ImB0 =
mX
i=1

ImB0 \ V�(Ci; A(e
�s); B0); (8)

with ImB0 \ V�(Ci; A(e�s); B0) 6= 0.

PROOF: The proof is the same as the proof of the equivallence of statements 1) and 4) for
the Theorem 3.3 (see Section 3). We need only to replace V� by V�, the matrices A by A(e�s)
and B by B0.

Note that the statements and some details of the proofs must be reformulated if this system
has delay in control and output

6 Conclusion

In order to solve in a general form and without prediction the row-by-row decoupling prob-
lem for delay systems we use the weak structure at infinity which is well defined for linear
time delay systems. The general solution is of feedback type. However we need some
smoothness of the new reference v. This is the counterpart of the generality. For practical
use this means that if the reference is not smooth enough, we need in fact very high gain
in approximation. The results given here may be also considered, with some modification,
for more general delay systems: systems with distributed delays or of neutral type.
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