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Abstract

Given a path of nonconstant curvature, local asymptotic stability can be proven for the
general n-trailer whenever the curvature can be considered as the output of an exogenous
dynamical system. It turns out that the controllers that provide convergence to zero of the
tracking error chosen for the path following problem are composed of a prefeedback that
input-output linearizes the system plus a linear part that can be chosen in an optimal way.

1 Introduction

In the path following problem for nonholonomic wheeled vehicles (see (Canudas de Wit, 1998)
for a survey), the longitudinal dynamics, expressing how fast the path is covered, is normally
of secondary importance with respect to the lateral dynamics expressing a notion of distance
(i.e. a tracking error) of the vehicle form the path by means of a tracking criterion. This is
equivalent to say that the longitudinal speed input can be an a priori given function, for example
a nonnull constant. If the tracking error used is a scalar, the system to analyze is basically a
SISO system with drift from the steering input to the tracking error. When the curvature of
a path to follow can be modeled as the output of a neutrally stable dynamical system, then
the path following problem can be formulated as an output regulation problem in the nonlinear
setting proposed by (Isidori and Byrnes, 1990). The curvature can, in fact, be considered as a
known exogenous disturbance and the output of the system, corresponding to the tracking error
of the path following criterion, can be rendered independent from it by input-output linearizing
the system with a static change of input. With the error independent from the curvature, if the
relative degree of the system is well defined, the output zeroing manifold is the only invariant
manifold that solves the regulation problem. This is equivalent to say that local asymptotic
stability to the nonconstant steady state is achieved by and only by the controllers composed
of a prefeedback that input-output linearizes the system plus a linear part that can be chosen
in an optimal (linear) fashion. If we choose as tracking criterion the one proposed in (Altafini
and Gutman, 1998) based on the so-called off-tracking distance, whose peculiarity is that it
keeps the whole vehicle (and not a single guidepoint on the vehicle) at a reduced distance from
the path, then the relative degree between the steering angle and the corresponding tracking
error is equal to 2 whereas for the criteria normally used it is higher: for example taking as
guidepoint the midpoint of the last axle would give a relative degree equal to n + 1 in the
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n-trailer system. We choose input-output linearization because it is easier to obtain than input-
state linearization, see (Sampei et al., 1991), which requires more involved calculations for the
n-trailer configuration that we are going to use. Moreover, input-state linearization is not
achievable in case some of the trailers present kingpin hitching. We show that instead, under
some regularity assumptions, the off-tracking criterion implies a well-defined relative degree also
for this more general configuration.

It must be noticed that the whole analysis is local and that, due to the singularities of the
Frenet frame representation used here, there is no way to formally prove a well-behaved transient
even for admissible (wrong) initial conditions that are too close to the limits of the region of
attraction. This can be intended as a direct consequence of the fact that the rigid motion of the
“chained” mechanism occurs along a path of varying curvature which implies a variable width
of the region of definition.

2 Kinematic model for the general n-trailer and Frenet frames

Suppose we have a general n-trailer system with m (m ≤ n) of the trailers hooked at a distance
Mi form the preceding axle, see Fig. 1. Assume that each body is composed of one single axle.

θ0θ1

θn

nj+1θ
Lnj

MnjLn
j
+1

Ln
Ln-1

θnj

θnj-1
θn-1

Figure 1: The general n-trailer system.

The nonholonomic constraints on the points Pi (below called nonholonomic points) originate
from the assumption of rolling without slipping of the wheels.

If we call n1, . . . , nm, nj < nj+1, nm < n the indices of the axles having nonnull off-
hitching (Mnj 6= 0) we can group together the axles between two consecutive steering wheels:
{0, 1, . . . , n1} , . . . , {nj−1 + 1, nj−1 + 2, . . . , nj − 1, nj} , . . . , {nm + 1, nm + 2, . . . , n− 1, n}. We
do not consider the case of two consecutive axles having off-hitching. A kinematic model for
this system in cartesian coordinates was obtained in (Altafini, 1998):

θ̇nj+1 =
vnj+1 tan(θnj − θnj+1)

Lnj+1
−

Mnj θ̇nj
Lnj+1 cos(θnj − θnj+1)

(1)

vnj+1 = vnj cos(θnj − θnj+1) +Mnj sin(θnj − θnj+1)θ̇nj (2)
j ∈ {1, . . . ,m}

θ̇nj+i =
vnj+i tan(θnj+i−1 − θnj+i)

Lnj+i
(3)

vnj+i = vnj+i−1 cos(θnj+i−1 − θnj+i) (4)
j ∈ {0, 1, . . . ,m} , i ∈ {2, 3, . . . , nj+1 − nj} , n0 = 0 and nm+1 = n.
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where θi is the orientation angle of the i− th axle, vi its translational velocity, Li is the distance
between the i-th axle Pi and the hitching point of the same trailer β1

4
= θ0 − θ1 is the steering

angle. The n-trailer system has two inputs, corresponding to translational and steering actions
of the car pulling the trailers. At the kinematic level, we can consider these two inputs to be
the steering speed ω

4
= β̇1 and the translational speed vn of the last trailer. The configuration

state can be completed by considering the two coordinates of one of the points Pi.
Under the assumption that the path is sufficiently smooth and that the curvature has an

upper bound, a particularly useful local frame to describe the lateral dynamics of the path
following problem decoupled from the longitudinal one is the so-called Frenet frame i.e. a frame
moving on the path having origin on the orthogonal projection of the point of interest. In
(Altafini and Gutman, 1998), the tracking criterion introduced consists in considering n + 1
frames simultaneously, one for each nonholonomic point. Each of the curvilinear frames (see

z i-1

z i

z i+1

θγi

θγi+1

P
Pi+1
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i-1P β
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Figure 2: Frenet frames associated with the nonholonomic points Pi.

Fig. 2) is represented by two coordinates (sγi , θγi) where sγi is the line integral along the path to
follow, up to the actual projection of the point Pi on the path itself and θγi is the orientation of
the frame with respect to the inertial frame. In the Frenet frame, the point Pi is represented by
the signed distance zi between the point itself and its orthogonal projection and by the relative
orientation angle θ̃i.

The decoupling property of the Frenet frame has already been used by several authors for
the path following problem (see (Sampei et al., 1991; Micaelli and Samson, 1993)). We also use
it but substituting the tracking criterion normally used zn → 0 (Samson, 1995) (or an equivalent
one based on another of the distances zi) with the sum of the signed distances:

n∑
i=0

zi → 0 (5)

It can be noticed that for a nonzero curvature neither the θi nor the θγi tend to a steady

state in the path following problem, but their difference θ̃i
4
= θi − θγi , i ∈ {0, 1, . . . , n} can

have an equilibrium value if κγ = const. The same observation is valid also for the the angles

βi
4
= θi−1 − θi, i ∈ {1, . . . , n}. Therefore it is convenient to transform the dynamic equations

of θi and θγi into the corresponding equations for θ̃i and βi. We can group together all the 4
equations relative to each point Pi. When there is off-axle hitching the equations for the node
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Pnj+1 (first node of each steering train, except for the driving cart) are:



ṡγnj+1

żnj+1

˙̃
θnj+1

β̇nj+1

 = vnj+1



cos θ̃nj+1

1−κγ(sγnj+1 )znj+1

sin θ̃nj+1

tanβnj+1−
Mnj
Lnj

tanβnj

Lnj+1

(
1+

Mnj
Lnj

tanβnj tanβnj+1

) − cos θ̃nj+1 κγ(sγnj+1 )

1−κγ(sγnj+1 )znj+1

tanβnj
Lnj cosβnj+1

−
tanβnj+1

Lnj+1
+

Mnj tanβnj
Lnj+1Lnj


(6)

j ∈ {0, 1, . . . ,m}, n0 = 0. For the other nonholonomic points the corresponding Mnj+i are 0
so the formulae simplify to:

ṡγnj+i

żnj+i

˙̃
θnj+i

β̇nj+i


= vnj+i



cos θ̃nj+i

1−κγ(sγnj+i )znj+i

sin θ̃nj+i
tanβnj+i

Lnj+i
−

cos θ̃nj+i κγ(sγnj+i )

1−κγ(sγnj+i )znj+i

tanβnj+i−1

Lnj+i−1 cosβnj+i
−

tanβnj+i

Lnj+i


(7)

j ∈ {0, 1, . . . ,m}, i ∈ {2, 3 . . . , nj+1 − nj}, nm+1 = n, where

vnj+i =
vn∏m

k=j+1

(
1 + Mnk

Lnk
tanβnk tanβnk+1

)∏n
k=nj+i+1 (cosβk)

(8)

j ∈ {0, 1, . . . ,m}, i ∈ {1, 2 . . . , nj+1 − nj}.
Since we are only interested in the problem of following a given path, the velocity vn can

be neglected as input and assumed to be a given (nonull) open-loop function, for example a
constant. Considering only one of the actuators as free input implies then that the system we
obtain has a drift component. Calling:

pi =
[
sγi zi θ̃i, βi

]T
The subsystem (6)-(7) can be expressed more compactly as:

ṗi = Fi
(
pi, βi+1

, κγ(sγi), vn
)

(9)

i ∈ {2, . . . , n}, where we have defined:

β
i

4
= [βi . . . βn]

For the nonholonomic points P1 and P0, the equations are function also of the steering input
ω. Assuming n1 > 1, we get

ṗ1 =


ṡγ1

ż1
˙̃
θ1

β̇1

 = v1


cos θ̃1

1−κγ(sγ1 )z1

sin θ̃1

tanβ1

L1
− cos θ̃1 κγ(sγ1 )

1−κγ(sγ1 )z1

0

+


0
0
0
1

ω = F1

(
p1, β1

, κγ(sγ1), vn
)

+ G1 ω
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In P0 there is no equation for β:

ṗ0 =

 ṡγ0

ż0
˙̃
θ0

 = v0


cos θ̃0

1−κγ(sγ0 )z0

sin θ̃0

sinβ1

L1
− cos θ̃0 κγ(sγ0 )

1−κγ(sγ0 )z0

+

 0
0
1

ω = F0

(
p0, β1

, κγ(sγ0), vn
)

+ G0 ω

Again, v1 and v0 are calculated using (8).
The whole configuration state is represented by

p =
[
pn, pn−1, . . . ,p0

]T
, p ∈ D

where the domain of definition D and the singularity locus of the general n-trailer are discussed
in (Altafini, 1998) and the dynamic equations of the system are:

ṗ =


Fn
Fn−1

...
F1

F0

+


0
0
...
G1

G0

ω = F(p) + Gω (10)

In order to consider simultaneously the error distances of all the nonholonomic points Pi from
the path, we take as output the sum of the n+ 1 signed distances zi:

y = [0 1 0 0 0 1 0 0 . . . 0 1 0 0 0 1 0]p
4
= Hp (11)

Considering multiple frames on the same rigid body leads to redundant description of the
system. To recover the original dynamic equations, a number of constraints must be added.
They express the rigid body assumption with respect to the curvilinear abscissae representation
and they depend on line integrals that cannot be resolved in closed form. However, for our
stabilization purposes they can simply be neglected and we can work with the overparameterized
system (10)-(11), see again (Altafini and Gutman, 1998) for a complete formulation.

3 Input-output feedback linearization

We need to introduce the notion of relative degree of a nonlinear system. For this and the
other concepts used in the remaining of the paper, like Lie derivative, input-state and input-
output feedback linearization, zero dynamics etc. we remand the reader to any standard text
on nonlinear control systems, like (Isidori, 1995).

Definition 1 The SISO nonlinear system

ẋ = F (x) +G(x)u
y = H(x)

where F : D → R
n, G : D → R

n and H : D → R are sufficiently smooth functions in D ∈ Rn ,
is said to have relative degree r, 1 ≤ r ≤ n if:

1. LGLk
FH(x) = 0 0 ≤ k < r− 1

2. LGLr−1
F H(x) 6= 0
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∀x in a region D0 ∈ D.

In practice, the relative degree of a system corresponds to the number of times the output
function H(x) has to be derived in order to have the input appearing explicitly on it.

In what follow we will assume that M0 = 0 i.e. that there is no off-axle connection on the
driving unit. In fact, if M0 6= 0 the general n-trailer does not have a well-defined relative degree.

The following proposition can be proven by direct calculation

Proposition 1 The n-trailer system (10)-(11) with the tracking criterion (5) has relative degree
2.

For these “chains” the relative degree reflects the complexity of the simplest possible con-
troller needed to stabilize the system.

The general n-trailer cannot be input-state feedback linearized i.e. cannot be transformed
into the classical Brunowsky-like canonical form nor can be trivialized to a system without zero
dynamics because of the off-axle hitches.

However, what really matters in the path following problem is the tracking error, in our case
the output of the system, not the whole state.

The low relative degree suggests that input-output feedback linearization is easily attained
for our system: in fact it is enough to derive the output (11) twice and cancel the corresponding
dynamics by means of a change of input. From

y =
n∑
i=0

zi

we get:

ẏ = LFHp =
n∑
i=0

vi sin θ̃i =

=
m∑
j=0

nj+1−nj∑
i=i

vn sin θ̃nj+i∏m
k=j+1

(
1 + Mnk

Lnk
tanβnk tanβnk+1

)∏n
k=nj+i+1 (cosβk)

+ v0 sin θ̃0

In order to have a well-defined relative degree, we have already assumed that the driving unit
has no off-axle connection, i.e. M0 = 0. For sake of simplicity, we require here also that M1 = 0.
The case with M1 6= 0 does not differ except for the more involved formulation of the domain
of definition and will be treated in the example of Section 4.1. In fact, when differentiating
the above expression a second time we need to isolate the terms in θ̃0 and β1 whose derivatives
introduce the input ω. With M0 = M1 = 0, it can be noticed that they appear only in the term
v0 sin θ̃0. Calling p the state obtained from p excluding β1 and θ̃0, we have:

ÿ = L2
FHp+ LGLFHpω =

∂ẏ

∂p
ṗ +

∂ẏ

∂β1
β̇1 +

∂ẏ

∂θ̃0

˙̃
θ0 =

=
∂ẏ

∂p
ṗ + v2

0 cos θ̃0

(
sinβ1

L1
− cos θ̃0κγ(sγ0)

1− κγ(sγ0)z0

)
+ v0

(
sin θ̃0 tanβ1 + cos θ̃0

)
ω

The term
(

sin θ̃0 tanβ1 + cos θ̃0

)
is singular ⇐⇒ tan(θ̃0 − β1) = ±∞ ⇐⇒ θ̃0 − β1 = π

2 modπ.

Since θ̃0−β1 = θ1−θγ0 the singularities are function of how much the path is “bending” between
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the projections on the path of P0 and P1. Therefore in D ∩
{

(θ̃0, β1) s.t. θ̃0 − β1 ∈
]
−π

2 ,
π
2

[}
the input transformation:

ω =
−L2
FHp+ u

LGLFHp
=
−
(
∂ẏ
∂p ṗ + v2

0 cos θ̃0

(
sinβ1

L1
− cos θ̃0κγ(sγ0 )

1−κγ(sγ0 )z0

))
+ u

v0

(
sin θ̃0 tanβ1 + cos θ̃0

) (12)

is a diffeomorphism that reduces the input-output dynamics to the chain of integrators

ÿ = u (13)

that can be stabilized using linear control theory provided that the system is minimum phase.
The zero dynamics is obtained confining the dynamics of the system to the so-called Output-
Zeroing Manifold

Z∗ = {p ∈ D s.t. y = ẏ = ÿ = 0}

In practice, it is obtained adding to the original system (10) the conditions y = 0, ẏ = 0 and
the input

ω =
−L2
FHp

LGLFHp

and it represents the part of the system equation which is not anymore connected to the output
after the change of input. The motion of the system restricted to Z∗ is obtained, for example,
eliminating the variables z0 and θ̃0 by means of

z0 = −
n∑
1

zi (14)

θ̃0 = arcsin

− m∑
j=0

nj+1−nj∑
i=i

vn sin θ̃nj+i

v0
∏m
k=j+1

(
1 + Mnk

Lnk
tanβnk tanβnk+1

)∏n
k=nj+i+1 (cosβk)


The local asymptotic stability of the zero dynamics can be easily proven for a path of constant
curvature using Lyapunov linearization. The chain of integrators (13) can now be stabilized in
an “optimal” fashion for example using Linear Quadratic theory. Any output feedback of the
form

u = k1y + k2ẏ (15)

with k1 < 0, k2 < 0 is a locally asymptotically stabilizer for the whole system.
We will see in next Section that this condition is sufficient to prove asymptotic stability

also for paths of varying curvature. To understand this, it can be noticed that input-output
linearization renders the tracking error dynamics independent from the curvature κγ of the path.
The zero dynamics instead is still function of the value of the curvature between sγ0 and sγn so,
when κγ is varying, the dynamic system on Z∗ is nonautonomous and does not have a constant
equilibrium point to which to stabilize the system.
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4 Following a path of varying curvature as an output regulation
problem

In what follows we will try to asymptotically stabilize the system to paths whose curvature
is varying in a given class of functions. We will treat the problem as an Output Regulation
Problem in which the error y(·) has to asymptotically reject the variation of curvature kγ(sγ)
intended as a persistent input generated by a dynamical system. In the classical context of
linear time-invariant, finite-dimensional systems, this geometric control problem was first solved
by Davison (Davison, 1976) and Francis and Wonham (Francis and Wonham, 1976) based on
the assumption that the external command can be modeled as the output of an autonomous
system called the exosystem. The solution was then extended to the nonlinear case by Isidori
and Byrnes (Isidori and Byrnes, 1990).

The presence of a known “disturbance” acting as a persistent input, called exogenous input,
implies that the steady state of the system is varying depending only on the exogenous input
and not on the initial conditions of the system (that have to be in an appropriate neighborhood
of the origin). In our case the exogenous input of the system is the curvature function kγ(·) of
the path. To be consistent with our control problem, the curvature has to be upper bounded: in
fact it is intuitively clear that too hight a curvature implies that a steady state for the tracking
criterion (5) does not exist.

We need to introduce a few definitions and results whose proof can be looked up in (Isidori,
1995).

The properties of persistence in time and of boundedness of the exogenous input are com-
pactly described by the notion of neutral stability of the exogenous system. A system is said
neutrally stable if it is both Lyapunov stable and Poisson stable. Lyapunov stability is required
for the boundedness of the states of the exogenous system while Poisson stability implies per-
sistence of the trajectories. An example of neutrally stable system is any periodic system. A
necessary condition for a system to be neutrally stable is that its first order approximation has
all the eigenvalues on the imaginary axis. The assumption of Poisson stability can obviously be
relaxed: this implies that the exogenous system is stable and has a subsystem that tends to an
invariant manifold corresponding to the eigenvalues of the first order approximation that lie on
the open left half of the complex plane. In our case, the exogenous system has to represent how
the curvature is evolving along the path γ. Looking at system (10), we can see that at every
time instant the curvature has n + 1 “entries” in the equations, corresponding to the values of
curvature in different positions along the path. For the nonholonomic point Pi, if the curvature
function is given in terms of the curvilinear abscissa

κγi = κγ(sγi)

then we can think of it as generated by a dynamical system

κ
′
γi =

dκγi
dsγi

= γ (κγi) i = 0, 1, . . . n (16)

where the independent variable is the curvilinear abscissa sγi and the output equation is the
identity. In order to couple this exogenous system with the remaining part of the equations,
we have to rescale it as a function of time, expressing sγi as sγi(t) i.e. substituting the space
derivatives of eq. (16) with the corresponding time derivatives:

κ̇γi =
dκγi
dt

=
dκγi
dsγi

dsγi
dt

= vγiγ (κγi) = ṡγiγ (κγi) (17)

2052

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99)  Haifa, Israel - June 28-30, 1999



The exogenous equation is the same for all the nonholonomic points (since the reference path
is the same) but the initial values of κγi are different since they express the value of the curva-
ture at the initial curvilinear abscissa sγi(0). The presence of the term ṡγi does not spoil the
“exogenousness” of the system (17): it is in fact possible to rescale the whole system (10) as a
function of the curvilinear abscissa yielding a completely time-independent system in which the
terms ṡγi obviously disappear. Provided we can prove well-posedness and asymptotic stability
of the problem in the time-dependent scale, then in the formulation (17) the ṡγi locally represent
terms which are monotone, bounded and continuous (if the path has continuous curvature) since
they represent the projections on the path of the translational velocities vi of the nonholonomic
points Pi. For example for forward motion (vi > 0):

0 < ṡγi ≤ vi

Therefore the neutral stability of (16) implies the neutral stability of (17) and viceversa. In fact,
the eigenvalues of the first order approximation are on the imaginary axis in both cases. For
all times t we have sγn(t) < sγn−1(t) < . . . < sγ0(t) but the delay between sγi(t) and sγi−1(t)
is variable according to the curvature of the path in the interval sγi−1(t) − sγi(t) and to the
position and orientation of the vehicle with respect to the path.

Calling kγ = [kγn . . . kγ1 kγ0 ]T and sγ = [sγn . . . sγ1 sγ0 ]T , the complete system is then:

ṗ = F(p, κγ) + G(p)ω (18)
κ̇γ = ṡTγ Γ (κγ) (19)
y = Hp (20)

where Γ (κγ) has the diagonal structure: γ (κγn) 0
. . .

0 γ (κγ0)


In our case, the exogenous system has a single eigenvalue of multiplicity n + 1, therefore

relaxing the assumption of Poisson stability implies that we get asymptotic stability of the
exosystem i.e. the curvature tends to a constant value as the curvilinear abscissa tends to
infinity.

The right formulation for our case is named in (Isidori, 1995) the Full Information Output
Regulation Problem, meaning with this expression that the whole state is measurable, together
with the output of the exogenous system.

Given the nonlinear system (18) and the neutrally stable exogenous system (19), the output
regulation problem is solvable if there exists a map α(p, κγ) such that:

P1. the equilibrium p = 0 of

ṗ = F(p, 0) + G(p)α(p, 0)

is asymptotically stable in the first order approximation;

P2. there exist a neighborhood V ⊂ Π × K0
Γ of (0, 0) such that for each initial condition

(p(0), κγ(0)) ∈ V , the solution of (18) satisfies:

lim
t→0
Hp(t) = 0
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The statement P1 is a consequence of the Center Manifold Theory. In fact, given the system
(18)-(19), we know that the eigenvalues of the exogenous system are on the imaginary axis and
cannot be moved. So the problem is solvable if all the other eigenvalues of the system can be
moved to the open left half of the complex plane by means of a state feedback on the endogenous
input ω. If such a feedback can be found for κγ = 0, then the center manifold theory assures the
existence of an invariant manifold in a neighborhood of the origin whose graph is the solution
of an associated partial differential equation (see below). This is formulated in the following
theorem:

Theorem 1 (Isidori, 1995) Given the neutrally stable system (19) and assuming the existence
of an endogenous feedback law ω = α(p, 0), α(0, 0) = 0 such that the equilibrium p = 0 of

F (p, 0)) + G (p)α(p, 0)

is asymptotically stable in the first order approximation, then there exist mappings p = π(κγ)
and ω = α(π(κγ), κγ) defined in a neighborhood K◦Γ ⊂ KΓ of the origin with π(0) = 0 and
α(0, 0) = 0, which satisfy

∂π

∂κγ
Γ (κγ) = F (π(κγ), κγ)) + G (π(κγ))α(π(κγ), κγ)

∀κγ ∈ K◦Γ.

The theorem assures also the existence of a well-defined steady state response ∀ exogenous inputs
in K◦Γ.

In practice, what P1 says is that the fulfillment of the partial differential equation is reduced
to the the analysis of a linear system. Consider the Jacobian of F at the origin

Fe0 =
∂F(p, κγ)

∂p

∣∣∣∣
(0, 0)

From linear control theory it is deducted that the stabilizability of the pair (Fe0 ,G) is also a
necessary condition for the solution of P1.

The previous condition can be used to adapt the necessary and sufficient condition for the
solution of the Full Information Output Regulation Problem provided in (Isidori, 1995) to our
case.

Theorem 2 The full information output regulation problem is solvable if and only if (Fe0 , G)
is stabilizable and there exist mappings p = π(κγ) and ω = α(π(κγ), κγ) with π(0) = 0 and
α(0, 0) = 0, both defined in a neighborhood K◦Γ ⊂ KΓ satisfying the conditions:

∂π

∂κγ
Γ (κγ) = F (π(κγ), κγ)) + G (π(κγ))α(π(κγ), κγ) (21)

0 = Hπ(κγ) (22)

for all κγ ∈ K◦Γ.

The conditions (21) and (22) express the fact that the mapping p = π(κγ) which is rendered
locally invariant by the feedback law ω = α(π(κγ), κγ) has to be an output zeroing manifold of
the composite system. Due to the independence of the output equation (20) from the curvature
κγ , the output zeroing property is not related to the exogenous system but only to the exact
input-output feedback linearization. This is formalized in the following theorem.
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Theorem 3 Given the system (18)-(20), the Full Information Output Regulation Problem is
solvable by and only by the controllers composed of a prefeedback that input-output exactly lin-
earizes the system and of a stabilizing feedback for the resulting chain of integrators. All such
controllers have the following structure:

ω =
−L2
FHp+ k1y + k2ẏ

LGLFHp
(23)

∀ k1 < 0, k2 < 0.

Proof. From Section 3, we know that the input-output feedback linearizing controller transform
the system into a chain of integrators. For this linear system, local asymptotic stability to paths
of constant curvature (and so also along the straight line path κγ = 0) can be assured by means
of the linear controller (15). Therefore, from Theorem 1 we deduce the existence of an invariant
manifold characterized by the map p = π(κγ) such that on its graph the conditions (21)-(22) are
satisfied. The necessity derives from the fact that in our case the output y(·) is independent of
κγ . This implies that the condition (22) is satisfied only on the zero output manifold. Therefore
the map π(·) whose graph solves the partial differential equation (21) is unique and corresponds
to the static change of input that input-output linearizes the system.

♦

Such a property is characteristic not only of our system (18)-(20) but of any control-affine SISO
system with relative degree for which only disturbance rejection is required i.e. in which the
exogenous system consists only of disturbances acting on the state space and not of signals to
be tracked by the output. Although it strictly reflects the underlying method used in the proofs
in (Isidori and Byrnes, 1990), this particular case is not explicitly mentioned in the literature.
We state it as corollary to Theorem 3.

Corollary 1 Given the neutrally stable exosystem

κ̇ = Γ(κ),

assume the SISO control-affine nonlinear system

ẋ = F (x, κ) +G(xκ)u
y = H(x)

where F : D → R
n, G : D → R

n and H : D → R are sufficiently smooth functions in D ∈ Rn

has relative degree r in a region D0 ⊂ D, then the Full Information Output Regulation Problem
is solvable if and only if the pair

(
∂F
∂x

∣∣
(0 0)

, G(0 0)
)

is stabilizable.

Proof. The argument is the same as Theorem 3. The assumption of relative degree assures the
nonsingularity of LGLr−1

F H(x) in D0 also under the exogenous input κ.

♦

What this means is that in the case of well-defined relative degree there is no need to solve
a partial differential equation to find the invariant manifold π(·), since the prefeedback (12)
provides the unique solution.

Also the problem of following a path of constant curvature can be reformulated as an output
regulation problem in which the exogenous input is a constant set point like the one generated
by the system κ̇γ = 0.
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4.1 Example

Consider a car pulling two trailers the first of which has off-axle hooking. This configuration
resembles in a more realistic way than the standard 3-trailer system for example the lorries that
normally run on our highways. Here we have that M1 6= 0, therefore the term LGLFHp instead
of having the expression in the denominator of eq. (12) has the more complex one:

LGLFHp =

= v3

cosβ1 cosβ2 cosβ3

[
sin θ̃0

(
tanβ1−M1

L1
tanβ2

)
+cos θ̃0

(
1+

M1
L1

tanβ1 tanβ2

)]
+sin θ̃1

(
M1
L1

tanβ2

)
(

1+
M1
L1

tanβ1 tanβ2

)2
cos2 β1 cos2 β2 cos2 β3

In a neighborhood of p = 0, cos θ̃0 is the dominant term, therefore as in (12), we can conclude
that there exist a subdomain of D in which the denominator LGLFHp is nonsingular.

The different behaviors of the linear controller used in (Altafini and Gutman, 1998) and of
the input-output linearizing controller (23) are compared for a sinusoidal path in Fig. 3 and
Fig. 4. The linear controller cannot achieve any steady state even though the tracking error
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(b) path curvature (top) and
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Figure 3: Following a path of sinusoidal curvature with the linear controller proposed in (Altafini
and Gutman, 1998).

remains bounded. For the second controller instead, the tracking error asymptotically converges
to zero.

5 Conclusion

This paper proposes a controller that locally asymptotically stabilizes a kinematic vehicle to a
path of smoothly varying curvature treating the problem as an output regulation problem in
which the curvature is seen as a known disturbance affecting the state but not the output (i.e.
the tracking error) of the system.
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Figure 4: Following the same sinusoidal path of Fig. 3 with the controller (23).
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