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Abstract: Adaptive techniques based on neural-networks are investigated in an
application to the identification and subsequent on-line control of a process
exhibiting nonlinearities and typical disturbances. The method proposed consists of a
novel identification technique based on extended memory adaptation (EMA) and an
efficient implementation of the predictive control based on a nonlinear programming
method.  A forced circulation evaporator was chosen as a realistic nonlinear case
study for the techniques discussed in the paper.
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 1. INTRODUCTION
 
 
 In recent years, there has been much research on the use of neural networks in control,

especially in problems where nonlinearity dominates. With an increasing focus on performance and
profit, conventional control technology cannot cope well with changing plant conditions and
dynamics. A successful control system should be able to respond to changing demands and
standards, and should be trying to satisfy many requirements at once- not only keeping the plant
output within some limits but also doing so inexpensively, quick and efficiently. Model-based
techniques utilise some parameterized model of the plant from which a suitable control-law can then
be designed (Wellstead, 1991). It is common that both model and controller are linear, with the
parameters of each adapted over time to account for plant nonlinearities. This approach forms the
basis of many of the popular adaptive control techniques, such as pole-placement and minimum-
variance self-tuning control (Wellstead, 1991) and model predictive control techniques (Clarke,
1987;  Richalet,  1992). In (Narendra, 1990) it was proposed the enhancement of model-based
control strategies, such as indirect adaptive control, by replacing the linear models with nonlinear
representations, based on neural networks (NN).  Similarly it has been shown that predictive control
techniques could be improved by including a nonlinear model of the plant (Hernandez, 1990). In
particular the dynamic matrix control (DMC) was extended by using a nonlinear predictive model of
the process, based on feedforward neural networks. Neural networks offer a flexible structure that
can map arbitrary nonlinear functions, making them ideally suited for the modelling and control of
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 complex, nonlinear systems (Hunt et al., 1992). They are particularly appropriate for multivariable
applications, where they can readily characterise the interactions between different inputs and
outputs. The training of these networks can be performed off-line and subsequently be augmented as
part of an on-line adaptive scheme. A further benefit is that the neural architecture is inherently
parallel, distributed and has the potential for real time implementation. The goal of this paper is to
show that, provided with appropriate accelerated adaptation techniques and control structures,
neural networks can be used to adaptively control a wide range of nonlinear processes at a useful
level of performance. The method proposed consists of a novel identification technique based on
extended memory adaptation (EMA) and an efficient implementation of the predictive control based
on a nonlinear programming algorithm.

 The organisation of the paper is as follows. In Section 2 the nonlinear system identification
structures with NN and the novel  adaptation technique EMA is proposed and analysed. In Section 3
an efficient implementation of predictive control using a feedforward neural network as the plant's
nonlinear model is presented. In Section 4 the predictive control algorithm proposed is combined
with the EMA method to form an adaptive neural predictive control (ANPC) structure. Section 5
shows the simulation results of adaptive control for a multivariable nonlinear process. Conclusions
are presented in Section 6.

2.  NEURAL NONLINEAR MODELING

In the areas of control and systems engineering, the feedforward networks, such as the
multi-layer perceptron (MLP), radial basis function (RBF) networks, and the cerebellar model
articulation controller (CMAC) network seem to have attracted most attention (Hunt, et al., 1995).
This is undoubtely due to their ability to represent arbitrary, multidimensional, nonlinear mappings,
a powerful feature that can be readily incorporated within nonlinear modeling and control structures
(Narendra, 1990). It has been proved that MLP can represent any nonlinear mapping between input
and output with arbitrary accuracy (Hornik, et al., 1989). A general model structure suitable for
representing the dynamics of a wide range of nonlinear systems is the nonlinear auto-regressive with
exogeneous signals (NARX) model defined by:

y k f y k y k ny( ) ( ( ), , ( ),= - -1 K u k d u k d n e ku( ), , ( )) ( )- - - - +1 K                (1)

where y(k) and u(k) are the sampled process output,

Fig. 1. Configuring a NN as an NARX model. Switch in position A gives predictor operation,
position B gives model operation.
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Fig. 2. Integration of extended-memory into the identification structure.

d represents the process dead-time and f(.) is an unknown nonlinear function to be identified. It is
important to note a distinction between two different modes of operation of a trained neural network
NARX model. In eq. (1), the network requires both input and output data from the process as inputs,
and it predicts the process output a single time step into the future, yn(k). In this predictor structure,
a trained network cannot, therefore, be used independently from the plant, or to provide long range
predictions. This two tasks can be achived by operating a trained network in the model structure:

y k f y k y k nn n n y( ) ( ( ), , ( ),= - -1 K u k d u k d nu( ), , ( ))- - - -1 K                    (2)

where yn(k) is the model predicted output of the network. In eq.(2), the network is supplied with
input data, u(k), and the network outputs, yn(k), are delayed and fed back to the network inputs to
project predictions of the  process output further into the future. The difference between these two
modes of network operation are illustrated in Fig. 1.

2.1.  Extended-Memory  Adaptation Technique

In  off-line training it is difficult to assure the conditions for a good generalisation of the
neural networks hence the on-line training is always necessary in control applications. In fact, the
training should ideally occur exclusively on-line, with the neural networks learning at high speed
from any initial set of weights. In order to make neural control a viable alternative to industrial
control of processes, there is a pressing necessity for efficient on-line training algorithms. The
purpose of this section is to present a new technique, denoted Extended-Memory Adaptation
(EMA), for improving the convergence characteristics of adaptive identification. To convert the
learning procedure to an adaptive algorithm the single pattern generated by the tapped delay lines
(TDLs) from the process sample at each time-step is applied to the NN to obtain a small increment
of adaptation at each time-step as shown in Fig. 2.

To make the procedure adaptive over time the context of application of learning rule has
been changed from batch to single pattern presentation environment. A Multiple-Input Multiple-
Output (MIMO) model suitable for identification can be expressed in terms of q(k) , the set of
unknown parameters, past values of the inputs and outputs, and modelling errors e(k) :

y k f k y k y k ny( ) ( ( ), ( ), , ( ),= - -q 1 K u k u k n e ku( ), , ( )) ( )- - +1 K                    (3)

At time step k each weight wji , connecting the input of node i on each layer, to the output of node j
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on the preceding layer, is updated using  :

w

w k w k e k w k w k

ji ji

j i j i i j i j i

( )

( ) ( ) ( ) ( ( ) ( ) )

0

1 1 2

=

= - + + - - -

g

a b
                        (4)

where aÎR+ is the learning rate , 0 < b < 1 is the momentum factor, ei(k) is the backpropagated
error value corresponding to the input to the sigmoid function calculated for node i during the
presentation of the pattern  q(k) derived from process time k. The addition of a momentum term in
the learning rule can greatly accelerate convergence. The random variable gji is independently
selected for each weight from a distribution with zero mean and small variance.
This recursive equation is applied to each weight at each time-step k of the plant operation. A
distinction should be made between iteration q and time step k. The updated weight wji (q,k) is
calculated using the extended recursive equation set below:
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             (5)

The method proposed retains some process patterns that can represent an approximation to the
nonlinear process dynamics. The extended memory (EM) accepts a new pattern q(k) from the
process at each time step k and discards the oldest pattern q(k-np). The EM elements q(k) , q(k-1) ,
... , q(k-np+1) are each used in nc cycles to update the weights at each time-step. The recursive
equation set can be written as follows:

w

w w k

w q k w q k e p w q k w q k
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j i j i

j i j i i j i j i
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=
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             (6)

where:  l is a cycle counter for nc cycles of the pattern memory which are performed at time step k ,
p indicated the time step origin of the pattern selected from the EMA is chosen in random order
from its index range (k - np +1 , k). At each selection of p and execution of the recursion , the
iteration count q is incremented, up to ncnp. By applying   the supervised learning rule using all the
patterns of the EM for learning at each time step, the rule drives the weight vector  of the network
towards one that minimises the error corresponding to the approximate mapping represented in the
EM patterns. The random order of presentation ensures that the sampled pattern order does not
adversely affect the learning rule dynamics. The EM adaptation algorithm is summarised as follows:
1. sample inputs and outputs of the process.
2. shift and update the TDL elements.
3. if TDL are not full, restart at step 1 at next time step.
4. construct a training pattern from elements of TDLs and the latest process output sample.
5. execute neural network to calculate one-step ahead prediction.
6. insert the new pattern into the EM.
7. if the EM size > np , remove the oldest pattern.
8. train network for nc cycles of up to np EM patterns presentation ( randomised order).

2.2.  EM parameters

The learning rule is repeated np x nc times at each time-step. The parameter np determines
the length of moving average effect on the patterns. It is set as a balance between speed of
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adaptation and accuracy of model. It is analogous to the forgetting factor commonly used in linear
adaptive control theory  (Mills et al., 1996). Using various situation typical values of  nc and np for
various nominal conditions and objectives have been compiled in table 1.

Table 1   Typical values for parameters nc and np

   condition     np    nc

base case    50   10
fast adaptation    20   15
low computation    20   10
complex mapping    80   10
noisy samples    90   15

In the case study simulations we demonstrate greatly enhanced identification performance in
adaptive control structures and also the possibility of starting identification and control at the same
time with no a priori knowledge of the plant.

3. NONLINEAR PREDICTIVE CONTROL

The complexity of developing a phenomenological model for the process and the
nonlinearities of its dynamics, make very attractive the use of an artificial neural network for the
identification and predictions of the plant outputs. Fixed NN models, identified off-line have been
used with various model-based control structures (Saint Donat et al., 1991).
Prediction using neural networks

The prediction algorithm uses the output of the plant ‘s model to predict the plant’s dynamics to an
arbitrary input from the current time k to some future time k+n. This is accomplished by time
shifting equations for yn(k) and netj(k) by n resulting in

( )y k n w f net k n bn j j j
j

nh

( ) ( ( )+ = + +

=

å
1

                                                  (7)
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where fj(.) is the output function for the jth node of the hidden layer, netj(n) is the activation level of
the jth node's output function, nh is the number of hidden nodes in the hidden layer, wj is the weight
connecting the jth hidden node to the output node ,wj,i is the weight connecting the ith input node to
the jth hidden  node, bj  the bias on the jth hidden node, b the bias on the output node. The first
summation of (8) breaks the input into two parts represented by the conditional.

The condition where n-Nu < i handles the previous future values of u up to u(k+Nu-1). The
condition where n-Nu > i sets the inputs from  u(k+Nu) to u(k+n) equal to u(k+Nu). The next
summations of (8) handles the recursive part of prediction. This feeds back the network output yn(k)
for n or ny times, which ever is smaller. The last summation of (8) handles the previous values of y.
Using quadratic cost function and the predicted model it is possible to calculate the optimal control
strategy for an nonlinear model predicted by using NN. The cost function in predictive control is
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chosen as :

[ ] [ ]J r k j y k j j u k jn
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= =
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2 2

11

2

l D                                       (9)

where r is the required process output, yn is the NN model output, u is the process input, N1 and N2

define  the prediction horizon, Nu the control horizon and l is a sequence of control weighting
factors. A suitable choice for N1 is to make it equal to the process delay between input and output,
d+1 in eq.(1). N2 is then set to define the prediction horizon beyond this point and it represent the
number of time-steps in the future for which the process response is recursively predicted as a result
of the proposed control action sequence u(k) , ..., u (k+Nu-1) executed over the control horizon Nu .
Control actions after the control horizon are held constant equal to the value u(k+Nu-1). With
Newton-Raphson (NR) method, J is minimized   iteratively   to   determine   the   best

[ ]u n u k u k u k Nu

T
( ) ( ) ( ) ( )= + + +1 2K                                        (10)

The improved convergence rate of NR is computationally costly, but is justified by the high
convergence rate. The NR update rule for u n( )+ 1 is:
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In order to avoid the computation of the inverse of the Hessian matrix, equation (11) is rewritten in

the form of a system of linear equations: ( )
¶

¶

¶

¶

2

2 1
J

u
n u n u n

J

u
n( ) ( ) ( ) ( )+ - =  which is solved for

x u n u n= + -( ) ( )1  by using the LU decomposition. When solving for x, calculation of each
element of the Jacobian and Hessian is needed for each NR iteration.

4. ADAPTIVE NEURAL PREDICTIVE CONTROL

A schematic of the neural-network predictive control (NNPC) structure is illustrated in Fig.
3. This structure has a number of attributes that make it an appealing strategy to adopt in comparison
to other neural-network control schemes. The  NNPC  does not require training of networks in
addition to a forward mode, as required with internal model control (Hunt et al., 1992). A major
advantage of the NNPC is that the process input is optimally computed to take into account of future
predictions of the process response up to a defined horizon. This enable the scheme to anticipate
future process outputs, which achieves smooth transient responses to set-point changes and the
ability to take early corrective action against disturbances. The adaptive scheme (Fig. 3) is obtained
by combining with the EM adaptation presented in Section 2. Adaptive Neural Predictive Control
(ANPC) algorithm is as follows :
1. sample inputs and outputs of the process.
2. shift and update the TDL elements.
3. if TDL are not full , restart at step 1 at next time step.
4. use the NN model to predict the estimate yn.
5. construct a training pattern from elements of TDLs  and the latest output sample.
6. insert the new pattern in EM (if the EM size > np remove the oldest pattern).
7. train network for nc cycles of up to np  EM patterns (randomised order).
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8. use TDL values and proposed control actions to predict future process trajectory.
9.  evaluate performance objective function.
10. improve proposed control actions and go to step 10 , until optimised.
11. output the control actions calculated for time-step k to the process.

Fig. 3. Neural network (adaptive) predictive control scheme.

The adaptation of control strategy to the parameters changes of the model it is also considered. In
this case the nonlinear model is constructed and a control
strategy is adapted minimising a quadratic cost function in predictive control sense.

5.  CASE STUDY.  SIMULATION  RESULTS.

Neural control techniques have already been introduced in many industries, in particular to
the chemical and biochemical processes (Gomm et al., 1997; Mills et al., 1996). In this paper it is
considered a complex process simulation of a  forced circulation evaporator system. The process
diagram, variables, their description, normal operation states with measurements units and also the
simulation equations are presented in (Newley and Lee, 1989). In simulations was used Netlib
library with description from (Mills et al., 1996). There are three control actions P10(u1) , F20(u2) ,
F2(u3) , three major states X2(y1) , P2(y2) , L2(y3) and five possible disturbance sources F1 , F3 ,
X1 , T1 , and T20. The resulting process simulation is dynamically nonlinear, unstable, and
multivariable with strong interactions. An input-output neural model with ny=2 and nu=2 was
selected. The final network topology was selected to be 12-15-3 . The EM parameters were set to
nc=20 si np=50.

A sequence of test cases using the proposed method were conducted to verify multivariable
performance. Each of these cases consisted of three distinct components:

· initial start-up adaptation and stabilization ;
· setpoint following ;
· disturbance rejection ;

The first stage of the test reflects the mode of start-up. The initial states and setpoints are at the
standard operation values, each corresponding to zero after the normalisation. After a period was
allowed for initial adaptation and stabilisation of the process, a sequence of alternating setpoint step
( for X2) set to 1 , -1 , 1 , -1  was introduced. Finally it was introduced a large, unmeasured
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disturbance to the evaporator. The feed flow to the evaporator, F1, was reduced 25% from 10.0 to
7.5 Kg/min. The performance of each of the cases and their individual components were compared
using the Integrated Time-weighted Absolute Error (ITAE) measure. In this experiment the control
rate-of-change weight was set to 0.5 ( l = 0.5). The plot of the three outputs is shown in Fig.4 and
the control  actions, for N2 = 5 and Nu = 3 are presented in Fig. 5.

Fig. 4. Process response for ANPC with  Nu=3 , N2=5 and l = 0.5.

Fig. 5. Control actions for ANPC with Nu=3 , N2=5 and l = 0.5.

The process was quickly stabilized and the measurements had varied at most by only 5, 6 and
20% respectively from their operating values. The 20 % variation of y3 is associated with the
separator level, the unstable state of the process. The closed-loop responses indicate very good
control of all outputs.

The initial stabilization tends to have fewer, lower amplitude, slower cycles in comparison with
the case when the rate-of-change weight was set to zero. Several others experiments were realised to
investigate the effects of different values of the design variables within the control structure
(Constantin, N.,1997).
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The results obtained were in accord with those expected from using a predictive control
methodology.  It is seen that with no weighting of the control input good set-point tracking is
achieved; however, the control input exhibits large fluctuations and would cause undue actuator
wear in practice. For larger values of l , movement of the manipulated variable is dampened at the
expense of poorer set-point tracking. It was observed that increasing the prediction horizon had a
number of desirable effects. Good set-point tracking was maintained , whilst the control effort was
considerably reduced. These results demonstrate that improvements can be achieved with neural
network in practice. The ANPC method is better than the other approaches due to fast adaptation
and ability to address process nonlinearity. For time-varying processes, adaptation is the only means
by which the performance of the controller can be maintained.

6. CONCLUSIONS

This paper has discussed issues concerning the application of neural networks to the
modelling and control of nonlinear processes. A novel identification method is proposed to greatly
accelerate the real-time learning of nonlinear input-output mappings by feed-forward neural
networks. This identification method is combined with a multistep predictive control to provide an
adaptive neural predictive control (ANPC) strategy. The method is superior due to fast adaptation
and ability to address process nonlinearities. It is a viable adaptive control approach which can
achieve high performance when applied to nonlinear processes with high complexity.
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