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Abstract

The identification of a linear discrete-time control system’s loop gain is addressed. The
classical Kalman filter theory for linear control systems is extended and the control system’s
state and loop gain are jointly estimated. Explicit formulae for the loop gain’s (unbiased)
estimate and estimation error covariance are derived.

1 Introduction

Feedback, and the reliance on high gain action, are used to mitigate the ill effects of the un-
structured environment where the controlled plant is operating. At the same time, the benefits
of feedback control, and, in particular, high gain action, are severely circumscribed by sen-
sor noise (Houpis and Pachter, 1997). System identification entails the estimation of a control
system’s parameters from measurements on the system’s inputs and outputs (Ljung, 1987); as
such, system identification lends itsef well to integration into modern feedback control synthesis,
because no additional hardware, i.e., sensors or actuators, above and beyond the components
used in conventional feedback control, are required. The incorporation of system identification
into feedback control law synthesis calls for additional signal processing, however, a reduction
in plant uncertainty is achieved. Therefore, lower gains in the feedback control law are possible.
Hence, there is a strong incentive for the incorporation of system identification into control law
synthesis and the employment of indirect adaptive control. Unfortunately, system identification,
which entails the estimation of all the plant’s parameters, resides in the realm of nonlinear fil-
tering. It is however recognized that of paramount importance in control law design is accurate
information on the control matrix parameters, e.g., in flight control one then refers to the “con-
trol derivatives” (Chandler et al., 1998). Now, in linear control systems, and provided that the
dynamics matrix is known, the exclusive estimation of the parameters of the control matrix only
is reducible to a problem in linear regression, and therefore, is amenable to analysis using linear
mathematics. Hence, a rigorous, i.e., an unbiased, estimate of the parameters of the control
matrix can be obtained. In this paper a simplified version of this problem is addressed and
an algorithm for the estimation of a control system’s critical loop gain parameter is developed.
The inclusion of a “forgetting factor” into this basic algorithm will afford on-line operation.
Thus, a mechanization of an indirect adaptive control system which incorporats the loop gain
identification algorithm developed in this paper is possible.
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1.1 Problem Statement

The linear discrete-time control system is considered,

xk+1 = Axk +Kbuk + Γwk, k = 0, 1, ..., N − 1, E(wkw
T
k ) = Q (1)

xo = N (xo, Pox) (2)
K = N (Ko, PoK ) (3)

yk+1 = Cxk+1 (4)

zk+1 = yk+1 + υk+1, E(υk+1υ
T
k+1) = R (5)

In the special case of a single output, the measurement equation (5) is

zk+1 = yk+1 + υk+1, υk+1 = N(0, σ2) (6)

The control system’s state xk ∈ <n. The dynamics matrix A, the control matrix b, the
observation matrix C and the vector Γ are known. The respective process and sensor noise
intensities, Q and R (or σ) are also known. In addition, the prior information specified in eqs.
(2) and (3) is provided. It is required to identify the scalar loop gain K, given the input sequence
u0, u1, ..., uN−1 and the measurements record z1, z2, ..., zN . An stimate of the control system’s
state is also obtained.

Here, the loop gain parameter K is treated as an unknown and an algorithm for the iden-
tification of K is developed. Hence, e.g., in the flight control application, one can now handle
control surface failure: Obviously, for an unfailed plant (aircraft) the loop gain K = 1 (by
definition), viz., K is unity, until a failure at time tf forces K < 1.

In this paper the identification of the control system’s loop gain K is undertaken. The
classical Kalman filter theory for linear control systems (Maybeck, 1982) is extended and the
control system’s state and loop gain are jointly estimated. Explicit formulae for the loop gain’s
(unbiased) estimate and estimation error covariance are derived. The state estimate and the
covariance of the state estimation error are also obtained. The main develoment is undertaken
in Section 2 and the results are summarized and discussed in Section 3. Concluding remarks are
made in Section 4.

2 Recursive System Identification Algorithm

Since the unknown loop gain K is a constant, we augment the dynamics as follows.

Kk+1 = Kk (7)

Hence, the augmented state dynamics evolve in <n+1 and are(
xk+1

Kk+1

)
=
(
A ukb
0 1

)(
xk

Kk

)
+
(

Γ
0

)
wk (8)

and the measurement equation is

zk+1 =
(
C

... 0
)( xk+1

Kk+1

)
+ υk+1 (9)

The prior information at time k is(
xk

Kk

)
= N

((
x̂k

K̂k

)
, Pk(x,K)

)
(10)
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where

Pk(x,K)
=
(
Pkxx pkxK

pT
kxK

pkKK

)
(11)

is the estimation error covariance matrix.

Note: The estimation error covariance matrix is partitioned as follows:

Pkxx ∈ <n×n, pkxK
∈ <n, pkKK

∈ <1.

Hence, before the zk+1 measurement is recorded, the augmented state(
xk+1

Kk+1

)
= N

((
A ukb
0 1

)(
x̂k

K̂k

)
,

(
A ukb
0 1

)
Pk(x,K)

(
AT 0
ukb

T 1

)
+
(

ΓQΓT 0
0 0

))
= N

((
Ax̂k + K̂kbuk

K̂k

)
,

APkxxA
T + uk(APkxK

bT +
bpT

kxK
AT ) + u2

kpkKK
bbT + ΓQΓT

...

...
ApkxK

+ ukpkKK
b

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
... · · · · · · · · · · · · · · · · · ·

pT
kxK

AT + ukpkKK
bT

... pkKK




Next, apply the Bayesian estimation formula

x̂+ = x̂− +K [z −Hx̂] , (12)

viz., (
x̂k+1

K̂k+1

)
=
(
Ax̂k + K̂kbuk

K̂k

)
+K

(
zk+1 − ( C

... 0 )
(
Ax̂k + K̂kbuk

K̂k

))
=
(
Ax̂k + K̂kbuk

K̂k

)
+K

(
zk+1 − CAx̂k − ukK̂kCb

)
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where the Kalman gain

K =


APkxxA

T + uk(ApkxK
bT + bpT

kxK
AT )

+u2
kpkKK

bbT + ΓQΓT

...

...
ApkxK

+ ukpkKK
b

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
... · · · · · · · · · · · · · · · · · ·

pT
kxK

AT + ukpkKK
bT

... pkKK

×
(
CT

0

)
× {CAPkxxA

TCT + uk[CApkxK
(Cb)T + (Cb)(CApkxK

)T ]

+ u2
kpkKK

(Cb)(Cb)T + CΓQΓTCT +R}−1

=


APkxxA

TCT + uk[ApkxK
(Cb)T + b(CApkxK

)T ]
+u2

kpkKK
b(Cb)T + ΓQΓTCT

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
(CApkxK

)T + ukpkKK
(Cb)T

×
{CAPkxxA

TCT + uk[CApkxK
(Cb)T + Cb(CApkxK

)T ]

+ u2
kpkKK

(Cb)(Cb)T + CΓQΓTCT +R}−1 (13)

Finally,

Pk+1(x,K)
= Pk(x,K)

−KHPk(x,K)
(14)

Hence, we calculate

Pk+1(x,K)
=


APkxxA

T + uk(ApkxK
bT +

bpT
kxK

AT ) + u2
kpkKK

bbT + ΓQΓT

...

...
ApkxK

+ ukpkKK
b

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
... · · · · · · · · · · · · · · · · · ·

pT
kxK

AT + ukpkKK
bT

... pkKK

−



{APkxxA
TCT + uk[ApkxK

(Cb)T + b(CApkxK
)T ]

+u2
kpkKK

b(Cb)T + ΓQΓTCT } × {CAPkxxA
TCT

+uk[CApkxK
(Cb)T + (Cb)(CApkxK

)T ] + u2
kpkKK

(Cb)(Cb)T

+CΓQΓTCT +R}−1 × [CAPkxxA
T + uk(CApkxK

bT

+CbpT
kxK

AT ) + u2
kpkKK

CbbT + CΓQΓT ]

...

...

...

...

...

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
...

[(CApkxK
)T + ukpkKK

(Cb)T ]× {CAPkxxA
TCT

+uk[CApkxK
(Cb)T + (Cb)(CApkxK

)T ] + u2
kpkKK

(Cb)(Cb)T

+CΓQΓTCT +R}−1 × [CAPkxxA
T + uk(CApkxK

bT

+CbpT
kxK

AT ) + u2
kpkKK

CbbT + CΓQΓT ]

...

...

...

...
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...

...

...

...

...

{APkxxA
TCT + uk[ApkxK

(Cb)T + b(CApkxK
)T ]

+u2
kpkKK

b(Cb)T + ΓQΓTCT } × {CAPkxxA
TCT

+uk[CApkxK
(Cb)T + (Cb)(CApkxK

)T ] + u2
kpkKK

(Cb)(Cb)T

+CΓQΓTCT +R}−1 × (CApkxK
+ ukpkKK

(Cb))

... · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

...

...

...

[(CApkxK
)T + ukpkKK

(Cb)T ]× {CAPkxxA
TCT

+uk[CApkxK
(Cb)T + (Cb)(CApkxK

)T ] + u2
kpkKK

(Cb)(Cb)T

+CΓQΓTCT +R}−1 × (CApkxK
+ ukpkKK

(Cb))



(15)

Thus,

Pk+1xx = [APkxxA
T + uk(ApkxK

bT + bpT
kxK

AT ) + u2
kpkKK

bbT

+ΓQΓT ]{[APkxxA
T + uk(ApkxK

bT + bpT
kxK

AT )

+ u2
kpkKK

bbT + ΓQΓT ]−1 − CT {CAPkxxA
TCT

+uk[CApkxK
(Cb)T + (Cb)(CApkxK

)T ] + u2
kpkKK

(Cb)(Cb)T

+CΓQΓTCT +R}−1C}[APkxxA
T + uk(ApkxK

bT + bpT
kxK

AT )

+u2
kpkKK

bbT + ΓQΓT ] (16)

Next, recall the complete Matrix Inversion Lemma (MIL):

Lemma 1 Assume relevant matrices are compatible and invertible. Then

(A1 −A2A
−1
4 A3)−1 = A−1

1 +A−1
1 A2(A4 −A3A

−1
1 A2)−1A3A

−1
1 (17)

Applying the MIL to the expression in the outer curly brackets from eq. (16), viz,

{[APkxxA
T + uk(ApkxK

bT + bpT
kxK

AT ) + u2
kpkKK

bbT + ΓQΓT ]−1

− CT {CAPkxxA
TCT + uk[CApkxK

(Cb)T + (Cb)(CApkxK
)T ]

+ u2
kpkKK

(Cb)(Cb)T + CΓQΓTCT +R}−1C}−1

where we set

A1 = [APkxxA
T + uk(ApkxK

bT + bpT
kxK

AT ) + u2
kpkKK

bbT + ΓQΓT ]−1

A2 = CT

A3 = C

A4 = {CAPkxxA
TCT + uk[CApkxK

(Cb)T + (Cb)(CApkxK
)T ]

+ u2
kpkKK

(Cb)(Cb)T + CΓQΓTCT +R} ,

we obtain
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{[APkxxA
T + uk(ApkxK

bT + bpT
kxK

AT ) + u2
kpkKK

bbT + ΓQΓT ]−1 − CT {CAPkxxA
TCT

+uk[CApkxK
(Cb)T + (Cb)(CApkxK

)T ] + u2
kpkKK

(Cb)(Cb)T + CΓQΓTCT +R}−1C}−1

= [APkxxA
T + uk(ApkxK

bT + bpT
kxK

AT ) + u2
kpkKK

bbT + ΓQΓT ] + [APkxxA
T

+uk(ApkxK
bT + bpT

kxK
AT ) + u2

kpkKK
bbT + ΓQΓT ]CT {{CAPkxxA

TCT + uk[CApkxK
(Cb)T

+(Cb)(CApkxK
)T ] + u2

kpkKK
(Cb)(Cb)T + CΓQΓTCT +R} − C[APkxxA

T + uk(ApkxK
bT

+bpT
kxK

AT ) + u2
kpkKK

bbT + ΓQΓT ]CT }−1C[APkxxA
T + uk(ApkxK

bT + bpT
kxK

AT )
+u2

kpkKK
bbT + ΓQΓT ]

Reducing the above gives

[APkxxA
T + uk(ApkxK

bT + bpT
kxK

AT ) + u2
kpkKK

bbT + ΓQΓT ]{[APkxxA
T + uk(ApkxK

bT

+bpT
kxK

AT ) + u2
kpkKK

bbT + ΓQΓT ]−1 + CTR−1C}[APkxxA
T + uk(ApkxK

bT + bpT
kxK

AT )
+u2

kpkKK
bbT + ΓQΓT ]

Hence, eq. (16) can now be reduced to:

Pk+1xx = {[APkxxA
T + uk(ApkxK

bT + bpT
kxK

AT )

+ u2
kpkKK

bbT + ΓQΓT ]−1 + CTR−1C}−1 (18)

In addition,

pk+1KK
= pkKK

− [(CApkxK
)T + ukpkKK

(Cb)T ]{CAPkxxA
TCT

+ uk[CApkxK
(Cb)T + (Cb)(CApkxK

)T ] + u2
kpkKK

(Cb)(Cb)T

+ CΓQΓTCT +R}−1(CApkxK
+ ukpkKK

(Cb)) (19)

and

pk+1xK
= ApkxK

+ ukpkKK
b− {APkxxA

TCT + uk[ApkxK
(Cb)T

+ b(CAPkxK
)T ] + u2

kpkKK
b(Cb)T + ΓQΓTCT } ×

{CAPkxxA
TCT + uk[CApkxK

(Cb)T + (Cb)(CApkxK
)T ]

+ u2
kpkKK

(Cb)(Cb)T + CΓQΓTCT +R}−1(CApkxK

+ ukpkKK
(Cb)) (20)

We also partition the Kalman gain vector as follows

K =
(
Kx

KK

)
(21)

where

Kx = {APkxxA
TCT + uk[ApkxK

(Cb)T + b(CApkxK
)T ]

+ u2
kpkKK

b(Cb)T + ΓQΓTCT } × CAPkxxA
TCT

+ uk[CApkxK
(Cb)T + (Cb)(CApkxK

)T ] + u2
kpkKK

(Cb)(Cb)T

+ CΓQΓTCT +R}−1 (22)
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and

KK = [(CApkxK
)T + ukpkKK

(Cb)T ]{CAPkxxA
TCT

+ uk[CApkxK
(Cb)T + (Cb)(CApkxK

)T ] + u2
kpkKK

(Cb)(Cb)T

+ CΓQΓTCT +R}−1 (23)

Hence,

x̂k+1 = Ax̂k + K̂kbuk +Kx(zk+1 − CAx̂k − K̂kCbuk) (24)

K̂k+1 = K̂k +KK(zk+1 − CAx̂k − K̂kCbuk) (25)

3 Results

The above derivations are summarized in the following.

Theorem 2 Consider the following linear estimation problem: The linear dynamical system is

xk+1 = Axk +Kbuk + Γwk, k = 0, 1, ..., N − 1, E(wkw
T
k ) = Q (26)

The prior information is

xo = N (x̄o, Pox) (27)
K = N (Ko, PoK ) (28)

The output signal

yk+1 = Cxk+1 (29)

and the observation equation is

zk+1 = yk+1 + υk+1, E(υk+1υ
T
k+1) = R. (30)

The martices A, b, C and Γ are known. The respective process noise and measurement noise
covariance matrices, Q and R, are also known.

Denote by x̂k and K̂k the respective estimates of the state at time k, xk, and the loop gain,
K, given the measurements record z1, ..., zk, the input sequence u0, ..., uk−1, and the prior infor-

mation on xo and K. The covariance of the estimation error of the
(
xk

K

)
vector is denoted

by the partitioned matrix Pk =
(
Pkxx pkxK

pT
kxK

pkKK

)
Initially, set

x̂o = x̄o, K̂o = Ko, Poxx = Pox , po
KK

= PoK , poxK = 0.

Then for k = 0, 1, ..., N − 1, the state and gain estimates are

x̂k+1 = Ax̂k + K̂kbuk +Kx(zk+1 − CAx̂k − K̂kCbuk) (31)

K̂k+1 = K̂k +KK(zk+1 − CAx̂k − K̂kCbuk) (32)
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where the Kalman gains

Kx = {APkxxA
TCT + uk[ApkxK

(Cb)T + b(CApkxK
)T ]

+ u2
kpkKK

b(Cb)T + ΓQΓTCT } × {CAPkxxA
TCT

+ uk[CApkxK
(Cb)T + (Cb)(CApkxK

)T ]

+ u2
kpkKK

(Cb)(Cb)T + CΓQΓTCT +R}−1 (33)

and

KK = [(CApkxK
)T + ukpkKK

(Cb)T ]× {CAPkxxA
TCT

+ uk[CApkxK
(Cb)T + (Cb)(CApkxK

)T ]

+ u2
kpkKK

(Cb)(Cb)T + CΓQΓTCT +R}−1 (34)

Furthermore, the estimation error covariances are

Pk+1xx = {[APkxxA
T + uk(ApkxK

bT + bpT
kxK

AT )

+ u2
kpkKK

bbT + ΓQΓT ]−1 + CTR−1C}−1 (35)

pk+1KK
= pkKK

− [(CApkxK
)T + ukpkKK

(Cb)T ]{CAPkxxA
TCT

+ uk[CApkxK
(Cb)T + (Cb)(CApkxK

)T ] + u2
kpkKK

(Cb)(Cb)T

+ CΓQΓTCT +R}−1(CApkxK
+ ukpkKK

(Cb)) (36)

and

pk+1xK
= ApkxK

+ ukpkKK
b− {APkxxA

TCT + uk[ApkxK
(Cb)T

+ b(CApkxK
)T ] + u2

kpkKK
b(Cb)T + ΓQΓTCT } ×

{CAPkxxA
TCT + uk[CApkxK

(Cb)T + (Cb)(CApkxK
)T ]

+ u2
kpkKK

(Cb)(Cb)T + CΓQΓTCT +R}−1 ×
(CApkxK

+ ukpkKK
(Cb)) (37)

Remark 3 An application of the MIL will reduce the number of matrix inversions such that
only the low-order matrix

CAPkxxA
TCT + uk[CApkxK

(Cb)T + (Cb)(CApkxK
)T ] + u2

kpkKK
(Cb)(Cb)T + CΓQΓTCT +R

needs to be inverted.

It is important to realize that the absence of complete plant information, viz., the uncer-
tainty in the loop gain parameter K, causes both the loop gain and the state estimation error
covariances to be dependent on the input signal - see, e.g., eqs. (35)-(37). This is a major
departure from the classical state estimation paradigm in linear control theory. Thus, the loop
gain estimate K̂ (and alo the loop gain estimation error covariance) are now time depedent; ob-
viously, the best loop gain estmate is obtained at the end of the estimation interval, at time N .
In addition, the algorithm - provided loop gain and state estimates are correlated. Furthermore,
the loop gain and state estimates’ dependence on the input signal is nonlinear. The input signal
dependence of the loop gain and state estimation error covariances, is a unique manifestation of
the dual control effect.
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Corollary 4 Consider the classical Kalman filter paradigm where K is known, i.e., K=1. In
this special case

poKK = 0, poxK = 0, pkKK
= 0, pkxK

= 0 for all k = 1, 2, ...

and it follows that

Pk = Pkxx (38)
Kk = 0 (39)

Kx = (APkxxA
T + ΓQΓT )CT {CAPkxxA

TCT + CΓQΓTCT +R}−1 (40)

Pk+1xx = [(APkxxA
T + ΓQΓT )−1 + CTR−1C]−1 (41)

Thus, the classical Kalman filter formulae are recovered.

Remark 5 If xo is known, viz., xo = N (x̄o, 0), i.e, Pox = 0, and only the loop gain parameter
K is not known, i.e., Poxx = 0, poxK = 0, one nevertheless has to deal with an uncertain x at

time k (even if Γ = 0 and if there is no process noise), and one must propagate
(

x̂k

K̂k

)
and

Pk(n+1)×(n+1)
.

Corollary 6 Special case: C is a row vector (≡ scalar measurement).
Then the estimation algorithm is

x̂k+1 = Ax̂k + K̂kbuk +Kx(zk+1 − CAx̂k − K̂k(Cb)uk) (42)

K̂k+1 = K̂k +Kk(zk+1 − CAx̂k − K̂k(Cb)uk) (43)

where the Kalman gain for state estimation

Kx =
1
X
{APkxxA

TCT + uk[(Cb)ApkxK
+ (CApkxK

)b] + u2
k(Cb)pkKK

b+ ΓQΓTCT } (44)

and where the scalar X,

X = CAPkxxA
TCT + 2uk(Cb)CApkxK

+ u2
k(Cb)2pkKK

+ CΓQΓTCT +R (45)

The Kalman gain for loop gain estimation is

KK =
[CApkxK

+ uk(Cb)pkKK
]

X
(46)

Finally, the estimation error covariances are

Pk+1xx = {[APkxxA
T + uk(ApkxK

bT + bpT
kxK

AT ) + u2
kpkKK

bbT + ΓQΓT ]−1 +
1
R
CTC}−1 (47)

pk+1KK
= pkKK

− [CApkxK
+ uk(Cb)pkKK

]2

X
(48)

pk+1xK
= ApkxK

+ ukpkKK
b− CApkxK

+ uk(Cb)pkKK

X

{APkxxA
TCT + uk[(Cb)ApkxK

+ (CApkxK
)b] + u2

k(Cb)pkKK
b+ ΓQΓTCT } (49)

1665

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



4 Conclusions

An algorithm for the identification of a control system’s loop gain is presented. The derived
algorithm yields joint estimates of both the system’s state and the loop gain. The loop gain/state
estimation algorithm is being referred to as a system identification algorithm, and rightfully so.
Our assertion is not just contingent on the obvious, viz., the (crucial) loop gain plant parameter
is now estimated - this, vis a vis the classical Kalman filtering paradigm where the estimation of
the state of a completely known linear system is exclusively addressed. Indeed, our estimation
algorithm, while superficially similar to the classical linear Kalman filtering algorithm, entails
time-varying dynamics. Moreover, in contrast to the classical linear Kalman filtering algorithm,
in our algorithm 1) The loop gain and state estimates and the respective covariances of the
estimation errors are dependent on the input signal, and 2) The input signal is processed in
a nonlinear fashion. Thus, a unique instance, where the dual effects of control are at work, is
analyzed. At the same time, and most importantly, unbiased estimates of the loop gain and of
the system’s state, and the respective estimation errors’ covariances, are obtained. This lays
the foundation for on-line control system loop gain identification and indirect adaptive and
reconfigurable control.
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