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Abstract

The FNS closed-loop control for assisted walking of paraplegics is studied on the five-link
biped model. The design objectives is that the tracking errors of the joint angles reference
trajectories must be reasonably bounded. The disturbances affecting the musculoskeletal
model come mainly from the uncertain nonlinear dynamics of the muscle actuator. Two
robust control schemes are proposed: the Sliding Mode control and the LQR control with
fuzzy gain scheduling. The fuzzy scheduler output provides the relative degree (weights)
of the system uncertainty according to the joint angles tracking error. These fuzzy weights
schedules the appropriate gain from the control gain vs. tracking error interpolated function.
It turns out that the additional tuning of the control moments by the muscle inverse dynam-
ics Neural Network is essential for the successful tracking. The extensive simulations show
that the performance of the Neural Network static learning depends on the initial position
of the musculoskeletal system, and the Neural Network weights initialization. The simula-
tion results demonstrate that the desired uncertainty attenuation properties of the proposed
control algorithms have been achieved. These control schemes can be used as a prototype of
the real FNS control schemes.

1 Introduction

Functional Neuromuscular Stimulation (FNS) is the application of controlled electrical currents
to the neuromuscular system with the aim of restoring control over abnormal or absent skeletal
movement. FNS has been developed as a rehabilitative technology for people with spinal cord
injuries. In this case the muscles and nerves above and below the spinal cord injury may still be
functional, while the communication pathway from the motor control centers in the brain and
musculature system has been served. FNS offers a method of potentially controlling the portion
of the body that lost communication with the brain, providing a suitable electric signal (pulse)
via electrodes to the paralyzed muscles.

Control of the motor response in FNS is generally achieved by varying the current-pulse
duration or amplitude and thus the number of motor units. This technique is termed recruitment
modulation of muscle force. The term temporal summation refers to the gradation of force by
varying the rate of excitation of motor units and, as result, the force produced by each motor
unit. Thus it may be seen that although the fundamental contractile element of muscle is the
muscle fiber, the fundamental element of muscle control is the motor unit.
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Most of the present successful FNS control schemes are open-loop approaches. Frequently
their prespecified stimulation parameters are determined by trial-and-error. For instance, during
crutch and walker-supported ambulation, the control signals are adjusted in the laboratory until
the desired lower extremity movements are produced (Kralj and Bajd, 1989). These systems
show the following main problems (Allin and Inbar, 1986; Abbas and Chizeck, 1995) which must
be addressed before FNS systems can be used on a clinical basis:

1. Each patient is different. The musculoskeletal properties vary from person to person and
the stimulation parameters must be customized for each individual in order to generate a
proper control signal and, as result, a proper movement.

2. Musculoskeletal system properties may change while the system is functioning. For exam-
ple, system properties change due to muscle fatigue.

3. Mechanical disturbances to the musculoskeletal system are always present.

Feedback control is an obvious choice to improve open-loop control performances. Nevertheless
its performance have been limited by absence of the accurate system model, inaccurate output
measurements, effects of the muscle fatigue, and the difficulty of controlling muscle contractions
to the degree necessary for well-coordinated motions. These difficulties are strongly coupled
together. The lack of knowledge about musculoskeletal biomechanics and the dynamics of the
human body, that made it very difficult to implement closed-loop control schemes for anything
beyond the simplest of motor tasks ( Yamaguchi, 1989). To overcome these limitations a modern
control designs use such hybrid control schemes as neural network based adaptive feedforward
control and feedback control (Abbas and Chizeck, 1995), or mixed fuzzy logic and adaptive
control (Vukobratovic and Timcenko , 1996).
In our research we are dealing with the design of a closed-loop robust controller for FNS assisted
walking (i.e. standing and ambulation with crutches (Kralj and Bajd, 1989)). In practice a four
channel stimulator with surface electrodes is used for this clinical application of FNS, since the
simplified description of the desired movement can lead to a significant reduction in the number
of muscles needed to be stimulated. It is apparent that the major motions during locomotion
take place in the sagittal plane and involve extension/flexion at the hip and knee and dorsiflex-
ion/plantarflexion at the ankle.
The main extensor muscles of the knee are grouped together under the name quadriceps group.
It is responsible for advancing the swinging leg during walking. All four muscles in the quadri-
ceps group are innervated by the femoral nerve. The harmstring group of muscles extend the
hip and/or flex the knee. In walking, as the foot leaves the ground to take a step forwards, the
harmstrings contract momentarily, in order to reduce the load on the partially flexed leg. As
hip flexion begins and the leg starts to move forward, the harmstrings immediately relax thus
allowing knee extension in the swinging leg to occur. The harmstrings are supplied by branches
of the sciatic nerve. The most important dorsiflexor of the ankle is the tibialis interior. It is used
in walking to bend the foot up and so prevent stubbing of the toes as the swinging leg advances.
This muscle is innervated by a branch of the peroneal nerve. The two large and powerful muscles
responsible for plantarflexion of the ankle are the gastrocnemius and the soleus. Both muscles
are active during the toe-off phase of the walking cycle.
The described processes can be modeled on a simplified skeletal models that are known as the
biped. The biped is a class of legged system that attempt to imitate the human-type locomotion.
During preliminary analysis and computer simulation the 5-link humanwise biped robotic model
is used. This model is sufficiently complicated and nonlinear to make a control law design to be
very difficult. It has attracted throughout the years the attention of researches, and for today,
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nearly all known control algorithms have been used to control the biped locomotion. Meanwhile,
in these algorithms the actuator dynamics have not been taken into account at all or have been
defined as an ideal DC motor dynamics.
In the case of FNS we have a muscle as a highly nonlinear saturated actuator. Muscle dynamics
include nonlinear time-varying and stimulation history dependent activation dynamics, contrac-
tion dynamics, force-length dependence, and force-velocity dependence. The uncertainty about
these dynamics behaviour can seriously degrade the controller performance. The specific to FNS
closed-loop control problem is the low limit of 20 Hz of the harmstrings and quadriceps stimu-
lation frequency. There is no any insurance that control robustness would be preserved by the
such low frequency control signal. The above-listed constraints on the control of the nonlinear
coupled biped locomotion dynamic combined with uncertain saturated muscle dynamic make
Functional Neuromuscular Stimulation a very challenging control problem.
Today a lot of FNS control schemes are based on the Neural Network algorithms which strive
to find a proper weights of the heuristic open-loop control net. In our research we try to explore
this approach further combining the Neural Network schemes with a robust control algorithms.
This is apparent since by definition a robust controller is insensitive to parametric and model
uncertainties. The recent investigation (Tzafestas et al. , 1996) examine the effectiveness of
robust Sliding Mode control applied to human-sized biped robots but not to the physiological
model. The Sliding Mode control is based on Lyapunov stability theory, and has a good rep-
utation in controlling the nonlinear uncertain systems, s.a. the robotic systems. The classical
LQR control is an example of the optimal (robust) control. It is known for optimal disturbance
attenuation for the model reference control of the linear system. But even in the case of the LQR
control the system can lose stability as result of the high frequency update of the optimal control
gain (Shimkin and Feuer, 1988). In order to avoid this the fuzzy gain scheduling algorithm is
proposed (Passino and Yurkovich, 1998). It takes as inputs the joint angles tracking errors and
provides as outputs the values of the control gains according to the specifically derived fuzzy
rules.
It must be stressed again that in the FNS problem, the robust performances of the LQR and the
Sliding Mode controllers may not be preserved by the low frequency stimulation and highly non-
linear actuator behaviour. In these conditions, the controller’s efficiency can be increased by the
coupling of robust control algorithms with Neural Networks that account for muscle dynamics
and predict the muscle dynamics parameters variations. Such hybrid system can help to solve a
highly complicated control problem of the nonlinear musculoskeletal system that contains model
and parametric uncertainties, and inviolated physiological constraints on control signals.
This work presents the design of a neurofuzzy enhanced closed-loop robust controller for FNS
assisted walking. The proposed control scheme consists of the Neural Network tuned robust
Sliding Mode and LQR controllers with fuzzy gain scheduling.
This work is organized as follows. Section 2 contains general block-scheme chart of the control
problem. In Section 3 we described a 5-link biped locomotion model and a musculoskeletal
model. Section 4 contains the derivation of the continuous-time LQR controller with fuzzy gain
scheduling and Sliding Mode controllers. Section 5 describes the Neural Network based stimu-
lator block. Section 6 presents the simulation results, and
section 7 presents the conclusions and our future research plans.
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2 General Structure of the Control Problem
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Figure 1: Block-scheme of the control problem.

The FNS control problem (Fig.1) is formulated as a tracking of the joint reference trajecto-
ries (angles) with the prescribed performance.
Reference trajectories that reference joint angles qr, velocities q̇r and accelerations q̈r are calcu-
lated before every walking step from the ouput angles measurements and healthy subject gait
data (Oderkerk and Inbar, 1991). It is a difficult task to track a healthy subject gait since
paraplegic subject cannot repeat fully the movements of the healthy body. The reference angle
trajectories qr of a subject with the spinal cord injuries are obtained by minimizing the applied
moments at the cost of the stimulation time. These trajectories are founded to be in some
vicinity of the healthy subject reference trajectories q̂r .
The plant under consideration are the 5-link biped locomotion dynamics (section 3). These
dynamics are driven by the joint moments M from the musculotendon actuator. The employed
original descriptive model of the FNS stimulated muscle allows to simulate the variation in
recruitment of the muscle fiber motor units, the muscle fatigue and muscle spasticity effects
(section 3).
The stimulated muscles are driven by the FNS controller output signal PW that is a pulse
with proper pulsewidth. The controller block consists in the controller, muscle inverse dynamics
Neural Network, and the pulse stimulator. In our research we use alternatively Sliding Mode
and LQR controllers (section 4). Controller calculates the control joint torques u using the fuzzy
gain scheduling. These control torques are tuned by the Neural Network approximation of the
muscle dynamics inverse model (section 5). The pulse stimulator block transforms the resulted
torques ū to the muscle stimulation pulse with a proper pulsewidth PW . This transformation is
carried out by some reasonable force/pulsewidth approximation ( Dorgan and O’Malley, 1997),
that will be described later (section 5).
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3 Five-Link Biped Musculoskeletal Model

3.1 General assumptions

A five segment footless biped model (Fig.2) was chosen to simulate the human body. Five
segments are usually considered to be the minimum number needed to preserve important char-
acteristics of gait, such as the roles of the knee joints and upper body.
The following assumptions were made in the application of the model and stimulation scenario

• Only saggital plane motion was included.

• Only a single-leg-support phase was considered.

• Ground reaction forces were not taken into account.

• Walking is considered to occur only upon smooth level surface and to be completely undis-
turbed by external forces.

• It is assumed that paraplegics with good upper body strength and control will be able to
prevent falls and restore balance using crutches.

• The selectivity of the stimulation (of individual muscles) is assumed to be perfect.
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Figure 2: Five segment biped model.
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3.2 Dynamic equations of motion

The five segment biped is shown in Fig.2. It consists of the trunk segment and two legs, each
containing a shank and thigh segment. These links are connected via rotating joints. The
rotation sectors are limited by the physiological constraints. The matrix equation of its motion
is (Tzafestas et al. , 1996)

H(q)q̈ + C(q, q̇)q̇ + G(q) = M (1)

where
H(q) is a 5 × 5 moment of inertia matrix,
C(q, q̇) is a 5 × 5 matrix specifying centrifugal and Coriolis effects,
G(q) is a 5 × 1 gravity terms matrix ,
M is a 5 × 1 vector of applied joint torques (moments),
q, q̇, q̈ are 5 × 1 vectors of joint angles, velocities, and accelerations.
The inertia matrix H(q) is symmetric positive definite. It depends on the joint position q.
The centripetal torques vary with the square of individual joints velocities, while the Coriolis
torques vary with the products of velocities at different joints. The Eq.(1) is defined in detail in
Appendix.

3.3 FNS stimulated muscle model

Muscle is a neural controlled mechanical impedance, meaning that the neural input determines
the relation between the numbers of recruited motor units and output active force. For our re-
search the comprehensive muscle model ( Dorgan and O’Malley, 1997) was specially adapted for
simulation of the main physiological processes in electrically stimulated muscles. The processes
in the system are modeled at 100 Hz frequency sampling, and the stimulation frequency is 20
Hz. Recruitment level z(k) and resulted muscle forces f(k) are calculated at the start of each
stimulation period 50ms and are held constant through it (same as in (Abbas and Chizeck,
1995)).
The muscle model is described by the mutually coupled second order dynamics of the active
n(k) and postactive r(k) motor units (MU) of the stimulated muscle fibers:

z(k + 1) =

{
sat[0.5 arctan(10PW (k + 1) − 4) + 0.2146], if k + 1 mod 5 = 0
z(k), otherwise

n(k + 1) = sat[0.8n(k) + (1 − r(k) − n(k))z(k + 1)]
r(k + 1) = sat[0.4r(k) + 0.05n(k)sign[n(k) − 0.45]

∑k−1
j=k−10 n(j)]

f(k + 1) =

{
sat[0.3f(k) + 0.21

∑k
j=k−4 n(j)], if k + 1 mod 5 = 0,

f(k), otherwise

(2)

where whole number of the muscle fiber MU is normalized to one. The model constants and
coefficients are fitted according to examples in ( Dorgan and O’Malley, 1997). The models for
agonists and antagonists muscles differ only in sign of parameters. The agonists muscle has the
positive recruitment and force, and the antagonists muscle has the negative ones.
The presented model Eqs.(2) reflects the physiological processes in muscle fibers during the
muscle excitation by the electric pulse from the stimulator. The active MU n(k+1) are recruited
from the pull of the available for activation purpose motor units [1 − r(k) − n(k)]. Only these
MU contribute to the overall force f(k + 1) generated by the muscle. After the stimulation the
previously active MU will become inactive, or postactive motor units r(k + 1). The postactive
MU don’t generate the muscle force, and their dynamics depend on stimulation history of the
previous 10 samplings. It is assumed that the postactive MU are released to the available for
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activation purpose MU for the aim of re-recruitment with a smaller rate than the available
MU are activated with. This assumption makes possible to model the significant nonlinearities
associated with muscle contraction, such as the muscle fatigue. This effect is caused by the
increasing in the stimulation intensity ( Gait et al., 1996), and is modeled as a large number of
the stored (unreleased) postactive MU

sign[n(k) − 0.45]
k−1∑

j=k−10

n(j)

in the r(k + 1) postactive motor units equation.
The main assumption on the application of this model is that the nonlinear behaviour of this
simulation model degrades the close-loop control performance in the same way as the muscle
dynamics in the real FNS applications ( Dorgan and O’Malley, 1997).

4 Proposed Robust Control Laws.

Consider the locomotion dynamics model Eq.(1). As it was shown above, the disturbances and
uncertainties in this system are inevitable. Hence the parameter matrices can be divided into a
nominal and perturbed parts

H(q) := H0(q) + ∆H(q)

C(q, q̇) := C0(q, q̇) + ∆C(q, q̇)

G(q) := G0(q) + ∆G(q)

The important reason to parameter perturbation are the state tracking errors

e(t) := q − qr (3)

which appears in the system matrices as the trigonometric functions arguments (Appendix).
The muscle actuator is an another source of uncertain bounded disturbances which are caused
by nonlinear dynamics of muscle Eq.(2). It should be pointed out that the part of the muscle
dynamic uncertainty is canceled by Neural Network inverse model. This allows to limit the
robust control gains to the physiologically reasonable values.
Hence we can rewrite the system model Eq.(1) as

(H0(q) + ∆H(q))q̈ + (C0(q, q̇) + ∆C(q, q̇))q̇ + (G0(q) + ∆G(q)) = M + d (4)

where d is a 5 × 1 vector of actuator dynamic uncertainties, or

H(q)q̈ + C(q, q̇)q̇ + G = M + µ (5)

where µ is the combined uncertainty.
These different forms of the plant equation will be used for the control laws derivation.

4.1 LQR control law with fuzzy gain scheduling

Consider the locomotion dynamics equation Eq.(4). It can be rewritten as

q̈ = (H0(q) + ∆H(q))−1[−(C0(q, q̇) + ∆C(q, q̇))q̇ − G + M + d] (6)
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and with the Eq.(3) we obtain

ë = (H0(q) + ∆H(q))−1(C0(q, q̇) + ∆C(q, q̇))ė + τ + H−1(q)d (7)

where
τ = H−1(q)[−q̈r − C(q, q̇)q̇r − G + M ] (8)

is the input signals vector.
The classical LQR control has a well known general form for τ → u

u = −R−1BT Pe (9)

where P is the numerical solution of the nonlinear Ricatti equation

Ṗ + PA + AT P − PBR−1BT P + Q = 0 (10)

and the system matrices A and B are formed from the Eq.(7) matrices H0,∆H,C0,∆C,G.
It is not recommended to calculate the control Eq.(9) on every simulation step, since the per-
sistent update of the control gain can cause the lost of the system stability (Shimkin and Feuer,
1988). Hence, some preliminary set of control gains is calculated off-line for the system Eq.(9).
During stimulation these gains are scheduled by the Fuzzy Gain Scheduling algorithm (Passino
and Yurkovich, 1998).
As it was already mentioned, the system matrices perturbations are caused by the tracking errors
of the joint angles, which entries the H and C matrices as the arguments of the trigonometric
functions (Appendix).
Define

ec = cos(e) for H(q) matrix
es = sin(e) for C(q, q̇) matrix

and recall that the musculoskeletal system dynamics have the physiological constraints on the
joint angles, and consequently on the joint angles tracking error, to be in one π period, as
opposed to the case of the biped robot with rotational joints. For extreme perturbations cases
(cos(eij) = 1 => sin(eij) = 0) the tracking errors don’t have simultaneously the same impact
on the both system matrices. Hence, for these and the nominal cases (zero errors), the control
gains can be calculated off-line and then interpolated some control gain vs. relative tracking
error function. The relative tracking error for every joint is considered as

δei = eci − esi (11)

These errors are the input for the fuzzy logic membership functions (Fig.3) for every joint. The
membership functions (’neglarge’- negative large, ’poslarge’- positive large, ’posnegsmall’- posi-
tive or negative small), - indicate the degree to which the linguistic value appropriately describes
the δei certain value. The number of the membership functions is not limited to three. It can
be increased, or they can be smoothed to the gaussian form. The fuzzy output provides the rel-
ative degree (weights) of the system uncertainty according to the relative tracking error. These
fuzzy weights schedules the appropriate gain from the control gain vs. relative tracking error
interpolated function.
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Figure 3: Fuzzy gain scheduler: the membership functions for the relative tracking error
(’neglarge’- negative large, ’poslarge’ - positive large, ’posnegsmall’ - positive or negative small).

4.2 Proposed Sliding Mode control law

Let rewrite the Eq.(5) of the dynamics of 5-joint biped rigid musculoskeletal system

H(q)q̈ + C(q, q̇)q̇ + G = M + H(q)µ (12)

The next properties of Eq.(12) can be exploited:
(P1) H(q) is symmetric positive definite matrix for all q ∈ <5

(P2) the terms in Eq.(5) are uniformly bounded.
Let qr the desired trajectory to be tracked and define the following vector signal

s(t) = ė + Λe (13)

where Λ ∈ <5×5 is an arbitrary, constant, symmetric positive-definite matrix.
Then

ė = −Λe + s (14)

Note that as e → 0, s = q̇ − q̇r and Eq.(5) is rewritten

Hṡ + Hq̈r + C(s + q̇r) + G = M + Hµ (15)

Consider a Lyapunov function

V =
1
2
sT s > 0 (16)

Differentiating Eq.(16)

V̇ = sT H−1[M − Hq̈r − C(s + q̇r) − G + Hµ] (17)
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The problem is to find control u s.t.,
V̇ < 0 (18)

Consider
u = H(q̈r − s) + C(s + q̇r) + G − γHsign(s) (19)

where γ > µ.
Hence with M → u

V̇ = −sT s − sT γsign(s) + sT µ < 0 (20)

Therefore the tracking error e converges to zero asymptotically and the control Eq.(19) the one
we should employ.
Finally, a continious sliding entry of controller Eq.(19) is used to avoid chattering

us = −γH
s

||s|| + δ
(21)

Control Eq.(21) implementation depends from more detailed knowledge about bounds on the
uncertainty µ(t), that can be estimated, for example, by some special fuzzy logic algorithm.

5 Muscle Inverse Dynamics Neural Network and Pulse Stimu-
lator Block
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Figure 4: The muscle inverse dynamics Neural Network architecture.
The proposed robust controllers are insensitive to the model uncertainties due to their flex-

ibility in control gains. Meanwhile, in the case of the large perturbation, the high control gains
are unfeasible because of the physiological constraints on the joint torques. One of the ways to
reduce the system uncertainty is to cancel the actuator (muscle) unknown nonlinear dynamics.
To do this the muscle inverse dynamics Neural Network makes the approximate cancellation
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of the FNS muscle dynamics. The exact cancellation seems to be impossible and unnecessary,
since the applied robust controllers can deal with the reasonably bounded uncertainties.
The applied Neural Network (Fig. 4) is implemented in the backpropagation algorithm. Its
input signals are the estimation of the applied moments M̃ (k − 1), control moment u(k), and
the next sample reference moments Mr(k + 1). The output signals are the tuned joint control
moments ū.
In order to decouple the musculoskeletal dynamics the joint moments Mi are transformed to the
joint muscle forces Fi. The details on the linear connection of the joint moments to the joint
muscle forces can be found in Appendix. The musculoskeletal dynamics decoupling allows to
design the separate muscle inverse dynamics Neural Network (NNi) for every joint. According
to the legend of the Fig.5 the input vector is

Pi = [F̃i(k − 1) ui Fri(k + 1)]

and R = 3, S1 = 1, S2 = 1. The input layer transfer function is G1 = logsig nonlinear function,
and the hidden layer transfer function G2 = purelin linear function. In all, the Neural Network
function for every muscle has the following form

F̄i = purelin{W2i logsig[W1 iPi + b1i] + b2i} (22)

The network with such architecture is well known as a general function approximator. It can
approximate any static function with a finite number of discontinuities, given sufficient neurons
in the hidden layer (Demuth and Beale, 1996). Such static learning achieves if not perfect, but
acceptable cancellation of the time dependent muscle dynamics.
The network is trained on-line by the estimated value of the joint muscle applied force F̃i(k).
This estimation is separately obtained from the measured joints angles and velocities. The
training vector is

Pi = [F̃i(k − 1) F̃i(k) Fri(k + 1)]

It is obvious that the initial weights and biases W1(0),W2(0), b1(0), b2(0) have a great impact on
the successful approximation of the muscle dynamics. These weights can be determined during
some preliminary stimulations that are the necessary part of any FNS procedure.
The pulse stimulator uses the Neural Network tuned control signal F̄i as an argument to a
pusewidth/force function approximation. This function is a second-order linear system (Lan
et al., 1991) with known parameters, which is driven by the the nonlinear, pulsewidth dependent
input function–Muscle Recruitment Characteristic (MRC) ( Dorgan and O’Malley, 1997)

f(k + 1) = af(k) + bf(k − 1) + MRC(PW, q, t) (23)

The Muscle Recruitment Characteristic is the relationship between the pulse width and the
steady state force during stimulation. It is the static nonlinearity with time-varying parameters
( Fig.5). It can be interpretered as the fraction of muscle activated by each stimulus pulse. As
the pulse width is varied, the number of fibers recruited varies, as does the amount of force
generated by muscle. Although the MRC parameters vary during stimulation, its static view
can be learned beforehand (Allin and Inbar, 1986). The MRC role in Eq.(23) is to aggregate all
muscle dynamics uncertainties into the input signal in order to linearize the muscle dynamics.
During stimulation the Neural Network learn the nonlinear muscle dynamics, and the Eq.(23)
can be alternatively defined as

f(k + 1) = a(q, t)f(k) + b(q, t)f(k − 1) + MRC(PW ) (24)

2241

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



The Eq.(24) makes possible to refine the static pusewidth/force function approximation, since
the muscle dynamics is learned, and the pulsewidth PW is known.
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Figure 5: Muscle recruitment characteristic curve used by the stimulator block.

6 Simulation studies.

The simulation scenario framework of the FNS assisted walking was taken from (Oderkerk and
Inbar, 1991). Physical parameters of the 5-link biped model and simulation parameters are given
in Table I.

shank’s mass m kg 4.55
thigh’s mass m kg 7.63
trunk’s mass m kg 49.00
shank’s length l m 0.4309
thigh’s length l m 0.4551
trunk’s length l m 0.8270
stimulation pulse frequency Hz 20
process sampling frequency Hz 100

Table I: Physical and simulation parameters of the 5-link biped model.
The simulation results for the LQR and Sliding Mode control are presented on the Fig.(6-9).
The stance and swing joints are defined according to the stick-figure initial position at the be-
ginning of the simulation.
During simulation the so-called sliding style of walking was tested (Fig.6(a,b), Fig.8(a,b)). The
advantage of this style lies in the quasilinear character of the locomotion dynamics: the stance
leg would be lifted up slightly, and the swing would be transferred ahead on a nearly straight
trajectory with a minimal offset distance from the ground. The sliding walking allows the appli-
cation of relatively small and linear moments. The reasonable assumption was made about the
perfect control on the trunk segment. Its simulation results are presented only on the stick-figure
sequence (Fig.6(a), Fig.8(a)).
The simulation trials demonstrate the stable locomotion of the musculoskeletal model. The
stick-figure sequences show that LQR control produce more smoothed walking then the Sliding
Mode controller. This can be explained by the LQR control better adaptation to the linearized
movements, possibly as a result of the fuzzy gain scheduling. It seems that LQR controlled
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muscle behaviour is more efficient then in Sliding Mode control case (compare Fig.6 and Fig.8)
at the cost of an increase in the joint moments values (Fig.6(c), Fig.8(c)).
The differences between the control and applied moments (Fig.6(c), Fig.8(c)) reveal that the
Neural Network has difficulties to exact cancellation of muscle dynamics. It turns out that the
Network weights convergence and the learning performance depends greatly on the proper net-
work initialization. Meanwhile, numerous simulations show that without the Neural Network
tuning the muscle force saturates, as a result of the high gain control values. The comparison
of the first, second, and the third steps on the stick-figure sequence (Fig.6(a), Fig.8(a)) proves
that the quality of the walking improves with every step. The stick-figure sequence get closer
to resemble the desired sliding style of walking. Such progress is explained by the Neural Net-
work successful learning of the muscle dynamics. Hence, the Neural Network tuning is not only
necessary, but possible, for the proper tracking. The deficiency of its application is that it can
operates only in some region of the musculoskeletal model initial conditions. For this purpose the
center of the mass is transferred with the help of the crutches to some proper initial conditions
at the end of the step. During simulation the end of the step is defined when the swinging leg
is put ahead of the stance leg. This transfer is assumed leaves unchanged the muscle dynamics
parameters, such as active and postactive MU number, and the force level (Fig.7, Fig.9). It is
accomplished in 0.3 sec., and has been displayed on the stick-figures sequences only.
From the simulation results of the above two cases, we found that the tracking errors are reason-
ably bounded (Fig.6(b), Fig.8(b)). Hence the desired uncertainty attenuation properties of the
proposed designs have been achieved. They can be used as a prototype of the real FNS control
schemes.

7 Conclusions

In this paper, we have proposed the neurofuzzy enhanced robust control algorithms for FNS
assisted walking of paraplegics. The LQR control with fuzzy gain scheduling and the Sliding
Mode control were tested. The computer simulations demonstrate the potentials of these robust
control schemes in FNS applications. It reveals also the necessity of the additional tuning of the
control moments by the muscle inverse dynamics Neural Network. Considering the effect of the
fuzzy gain scheduling notice that the LQR control provides more smooth locomotion than the
Sliding Mode control at the cost of an increase in the joint moments values. These moments
match the moments from the experimental results ( Yamaguchi, 1989; Yamaguchi and Zajac,
1991).
The decision what FNS controller is favorable can be made only during the practical verifications
on paraplegic subjects. In the view of fact that it is desired to test the presented computer
simulation results experimentally, we are planning in the future to advance the computer model
by the muscle fatigue and spasticity effects.
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Figure 6. Three step sequence simulation. Joint angles, stick-figure sequence, and joint
moments: LQR control with the fuzzy gain scheduling.

2244

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



0 0.5 1 1.5 2 2.5
−1

−0.5

0
P

u
ls

e
W

id
th

 (
m

S
E

C
) Stance Shank: Muscle dynamics variation during the simulation

0 0.5 1 1.5 2 2.5
−1

0

1

R
e

c
ru

it
m

e
n

t

0 0.5 1 1.5 2 2.5
−1

−0.5

0

A
c
ti
v
e

 M
U

0 0.5 1 1.5 2 2.5
−0.4

−0.2

0

P
o

s
ta

c
ti
v
e

 M
U

0 0.5 1 1.5 2 2.5
−1

−0.5

0

F
o

rc
e

time (sec)
a)

0 0.5 1 1.5 2 2.5
−1

−0.5

0

P
u

ls
e

W
id

th
 (

m
S

E
C

) Stance Thigh: Muscle dynamics variation during the simulation

0 0.5 1 1.5 2 2.5
−2

−1

0

R
e

c
ru

it
m

e
n

t

0 0.5 1 1.5 2 2.5
−1

−0.5

0

A
c
ti
v
e

 M
U

0 0.5 1 1.5 2 2.5
−0.4

−0.2

0

P
o

s
ta

c
ti
v
e

 M
U

0 0.5 1 1.5 2 2.5
−1

−0.5

0

F
o

rc
e

time (sec)
b)

0 0.5 1 1.5 2 2.5
−1

−0.5

0

P
u

ls
e

W
id

th
 (

m
S

E
C

) Swing Thigh: Muscle dynamics variation during the simulation

0 0.5 1 1.5 2 2.5
−2

−1

0

R
e

c
ru

it
m

e
n

t

0 0.5 1 1.5 2 2.5
−1

−0.5

0

A
c
ti
v
e

 M
U

0 0.5 1 1.5 2 2.5
−0.4

−0.2

0

P
o

s
ta

c
ti
v
e

 M
U

0 0.5 1 1.5 2 2.5
−1

−0.5

0

F
o

rc
e

time (sec)

c)

0 0.5 1 1.5 2 2.5
−1

0

1

P
u

ls
e

W
id

th
 (

m
S

E
C

) Swing Shank: Muscle dynamics variation during the simulation

0 0.5 1 1.5 2 2.5
−1

0

1

R
e

c
ru

it
m

e
n

t

0 0.5 1 1.5 2 2.5
−1

0

1

A
c
ti
v
e

 M
U

0 0.5 1 1.5 2 2.5
−0.5

0

0.5

P
o

s
ta

c
ti
v
e

 M
U

0 0.5 1 1.5 2 2.5
−1

0

1

F
o

rc
e

time (sec)
d)

Figure 7. Three step sequence simulation. Stimulation parameters (normalized number of
units): Pulsewidth, recruitment, and stimulated muscle force: LQR control with the fuzzy gain
scheduling.
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Figure 8. Three step sequence simulation. Joint angles, stick-figure sequence, and joint
moments: Sliding Mode control.
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Figure 9. Three step sequence simulation. Stimulation parameters (normalized number of
units): Pulsewidth, recruitment, and stimulated muscle force: Sliding Mode control.
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A Description of the biped locomotion dynamic equations

The dynamic equations of motion for the 5 DOF skeletal model that presented in Fig(2) are given in
matrix form in Eq.(5).

H(q)q̈ + C(q, q̇)q̇ + G(q) = M (25)

Here we present detailed description of this equation (Furusho and Masubuchi, 1986)
Taking the leg segment first, the elements of matrices H1 , C1 , G1 for i, j = 1, .., 4, are
for i < j

H1(j, i) = lilj cos(qi − qj )[−mjpj +
4∑

e=j

me ] (26)

for i = j

H1(j, j) = l2j [mjpj (pj − 2)
4∑

e=j

me ] + Ij (27)

for i > j
H1(j, i) = H1(i, j) (28)

for i < j

C1(j, i) = q̇j li lj sin(qi − qj )[mj pj −
4∑

e=j

me ] (29)

for i = j
C1(j, i) = 0 (30)

for i > j
C1(j, i) = −C1(i, j) (31)

and

G1(j) = gl1sin(qi)[mj pj −
4∑

e=j

me ] (32)

where mi is the mass of ith link,
li is the length of ith link,
pi is the center of mass of ith link,
Ii is the moment of inertia of ith link,
g is the acceleration due to gravity.
Next, the equation of motion are found for the three segment chain containing the shank and thigh
segments, now considered as massless, connected to the torso segment.
Hence the elements of matrices H2 , C2 , G2 for i, j = 1, .., 3, are
for i < j

H2(j, i) = lilj cos(qi − qj )[−mjpj +
3∑

e=j

me ] (33)

for i = j

H2(j, j) = l2j [mjpj (pj − 2)
3∑

e=j

me ] + Ij (34)

for i > j
H2(j, i) = H2(i, j) (35)

for i < j

C2(j, i) = q̇j li lj sin(qi − qj )[mj pj −
3∑

e=j

me ] (36)
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for i = j
C2(j, i) = 0 (37)

for i > j
C2(j, i) = −C2(i, j) (38)

and

G2(j) = glj sin(qi)[mjpj −
3∑

e=j

me ] (39)

These two sets of matrix equations are then combined into one five row matrix equation as follows.
For i, j = 1, 2:

H(j, i) = H1(j, i) + H2(j, i) (40)
C(j, i) = C1(j, i) + C2(j, i) (41)
G(j, i) = G1(j, i) + G2(j, i) (42)

for i = 1, 2

H(5, i) = H2(3, i) (43)
C(5, i) = C2(3, i) (44)

for i, j = 3, 4

H(j, i) = H1(j, i) (45)
C(j, i) = C1(j, i) (46)

G(j) = G1(j) (47)

and

H(5, 5) = H2(3, 3) (48)
C(5, 5) = C2(3, 3) (49)

G(5) = G2(3) (50)

The elements of the moment vector E are
for j < 4

E(j) = Mj − Mj+1 (51)

for j = 4
E(j) = M4 (52)

for j = 5
E(j) = M5 − M3 (53)
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