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Abstract
An internally stable Algorithmic Internal Model Control (AIMC) strategy that uses linear or nonlinear

model state feedback is proposed for unstable systems. The closed loop responses are those that would be
obtained from a two degree of freedom IMC control system, if it were internally stable. Results of several
simulations demonstrate the validity of the approach.

1. Introduction
The control of inherently stable processes have spurred very significant advances within the

framework of internal model type control structures [6, 7, 8, 10]. Such control structures
incorporate an online or “internal” model of the controlled process to directly infer how disturbances
have influenced the controlled variable and take appropriate control action to counter the
disturbances. A major practical advantage of such control systems is that they readily accommodate
constraints on both the control efforts and controlled variables [6]. Control effort constraints are
even more important in the control of inherently unstable processes.

As shown by Morari and Zafiriou [10], internal model control (IMC) can be used to design two
degree of freedom controllers for unstable processes, but can not be used for implementation due to
the internal instability of the IMC structure. This internal instability arises from two sources: (1) In
an unstable process, the effect of disturbances, which enter through the process, on the controlled
variable grows without bound, and (2) Differences between the model and process states grow
without bound. To avoid internal stability problems, Morari and Zafiriou [10] recommend
implementing the IMC control system as a standard two degree of freedom feedback control system,
with the controller and set point filter designed to yield the same transfer functions as the IMC
system. Unfortunately, the controller in such implementations can itself be unstable unless the IMC
filter time constant is increased substantially beyond that required for robust performance.
Algorithmic Internal Model Control (AIMC) described in this work provides an internally stable
method for implementing two degree of freedom IMC for unstable systems that does not require
increasing the filter time constant beyond that required for robust performance. The implementation
method also readily accommodates both linear and nonlinear processes and control effort saturation.
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To explore the properties of stabilizing AIMC we first study two linear processes (first and
second order). For the first order plus dead time process, a block diagram description of AIMC is
obtained and its equivalence to a two degree of freedom IMC system is shown. The suggested AIMC
strategy is then extended to nonlinear systems, and it is shown that it applies equally well to rather
general nonlinear processes. Simulation examples are provided for both linear and nonlinear cases.

2.  Algorithmic Internal Model Control
It is relatively easy to rearrange the structure of an internal model control system to estimate

process disturbances, which are bounded, rather than, as is usual in IMC, the effects of the
disturbances, which are unbounded, and thus eliminate one source of instability in the IMC
structure. However, a more profound restructuring is needed to insure that the mismatch between the
model and process states does not grow without bound. To accomplish the required restructuring, we
define AIMC in terms of a sequence of tasks for a sampled system because the task description
seems simpler and more natural. The tasks define the structure just as block diagrams define the
structure of IMC. The AIMC tasks are:
(1)  At each sampling time specify a desired behavior between the set point and the controlled

variable. This behavior is that of a dynamical system driven by the set point and estimated
disturbance. The dynamical system is generally composed of the IMC filter cascaded with the
portion of the process model that the IMC controller does not invert. The initial state of the
dynamical system is reset at each sampling time to the state of the model obtained in task (3)
below.

(2)  Estimate the disturbance entering the process, and, if there is a dead time between the control
effort and the output, extrapolate the disturbance forward in time by the amount of the dead
time.

(3)  Predict the process output one dead time into the future based on current measurements, current
and past controls, and the extrapolated disturbance. This step also provides projections of the
model states that are used to compute the desired trajectory in task (1).

(4)  Compute the control effort that forces the model to track the desired trajectory. For both linear
and non linear models, the required control effort is found by equating the rth derivative of the
minimum phase portion of the model output to the rth derivative of the desired dynamical
system, where r is the relative order of the model.

(5)  Go to the next sampling instant (or increase integration time in a simulation) and return to task
(1) above.

The above strategy is shown in Figure 1 as a computing flow diagram for clarity.
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Figure 1. General flow diagram for stabilizing AIMC

Methods for accomplishing the tasks in AIMC and for designing the controller and estimator
blocks in IMC depend on performance specifications, the process and disturbance models and the
accuracy of the models. Process models to be used in the proposed approach should have unique
trajectories for unique inputs. Further, the process outputs and states should depend continuously on
the process inputs at each instant of time (i.e. infinitesimal changes in input functions should not
cause jumps in the process outputs or states).

The filter in task 1 above allows the response speed of the dynamical system to be adjusted by
manipulating the filter time constant, thereby providing a means for tuning the control system to
achieve robustness in the case of modeling errors.  If the model is a perfect representation of the
process and exhibits minimum phase behavior, then the response of the process will be the same as
the response of the dynamic system described by this filter equation. Most commonly, the filter will
be chosen as a simple linear system with the same order as the relative order of the lag portion of the
process model. A linear dynamic system can be used without loss of performance even when the
process model is nonlinear provided that the model has no unstable transmission zeros [3].

The aim of task 2 is to obtain the disturbance estimate in such a way that the output of model,
driven by the estimated disturbance, matches the filtered process output. Since the process output is
often corrupted by noise, it is usually necessary to filter the measured output to prevent the noise
from causing excessive actuator action.  For linear and nonlinear systems we accomplish disturbance
estimation as shown in Figure 2. In this figure, making the signal w zero allows one to get d~ , a
filtered estimate of the disturbance (d) entering to the process. We used a Newton type algorithm for
constructing the disturbance estimate in such a way that the filtered process output and the model
output as shown in Figure 2 match exactly at each sampling instant making the signal w zero.
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Figure 2. Disturbance estimation

Prediction of process states one dead time into the future (task 3) simply involves applying past
controls and extrapolated disturbances to the model. (If the model is nonlinear, then the dead time is
the least time for a change in the control effort to appear in the output.) This prediction step
effectively ‘removes' the dead time from the control calculations in the same way that the Smith
Predictor ‘removes’ the dead time from the control system.

The degree of complexity in computing the controls to force the process model to track a desired
trajectory in task 4 depends mainly on the number of controls and output variables, and the order of
the process model. For this task, we use the linearizing model state feedback control approach
suggested in a previous paper by the authors (Berber & Brosilow 1998 [1]). This approach applies
to both linear and nonlinear processes.  One advantage of the model state feedback (MSF)
implementation is that it overcomes the potentially poor behavior of the standard IMC structure due
to control effort saturation. In an IMC system with a perfect model, control effort saturation is
ignored leading to sluggish responses, overshoots, or pseudo non minimum phase behavior. In MSF,
the control effort is calculated at each sampling instant based on the current model state and a
desired response starting from that same state.

While the AIMC tasks are most naturally applied to sampled processes, there is no conceptual
difficulty in passing to the limit of very small sampling times and thereby obtaining a continuous
version of AIMC. For the simple linear systems we provide the analytic calculations of the AIMC
tasks in continuous time and also provide the block diagram implementation for comparative
purposes, whereas for higher order linear systems and nonlinear systems we give only numerical
calculation procedures.

We applied the AIMC strategy to examples of several linear and nonlinear systems, with and
without parametric uncertainty. In all cases, the model was assumed to be a perfect representation of
the process. Simulations were done in MATLAB-SIMULINK  environment via numerical
computation. Results demonstrate that the AIMC strategy allows one to achieve performance which
is otherwise unachievable using classical single or two degree of freedom feedback control systems.

3.  Application to First Order Plus Dead Time Processes
 

Here we provide the application of the suggested stabilizing AIMC algorithm to a first order plus
dead time process, and show that this is equivalent to the two degree of freedom IMC system. The
argument follows that in Brosilow and Cheng [2].
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In the Laplace domain, a first order plus dead time process is given by

                                              θ

τ
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s
K

sp −

+
=

1
)(   (1)

where K is the process gain, τ is the process time constant (the process is unstable if τ < 0)
and θ is the process dead time.

For a clearer understanding of the control strategy, let us now consider the analytic calculation of
the control effort for such simple processes. Since the disturbance enters through the process, the
following equation holds;

    [ ])()()( sdsuspy +=        (2)
where y is the controlled process output

For the first task in AIMC, we choose the following first order filter as the lag portion of the
dynamic system to be followed.

1
1
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+

=
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sf
ε

(3)

where ε is the filter time constant, or tuning parameter for the speed of response.

From Figure 2 the disturbance estimate is given by:

)(),()(),()()(
~ 1 susfsysfspsde dd

s εεθ −= −− (4)

In the above, the filter used for disturbance estimation is chosen to be the same form as the
controller filter, but the filter time constant εd is, in general, smaller than that of the controller filter
whose purpose is to accommodate modeling errors, and not just excessive noise amplification.

A prediction of the disturbance for θ time units into the future is also needed. The simplest
possible prediction is to assume that the disturbance remains constant at the currently estimated
value. That is

                                  d t d t( ) ( )− + = −θ σ θ   for  0 ≤ σ ≤ θ        (5)

Prediction of the process state at t + θ also involves projecting the effect of past controls. The
output and the state of a first order system are the same, so estimation of the current state is simply
the output or some suitable filtered version thereof. Prediction of the state one dead time ahead
requires projection of the current state, past controls, and the projected disturbances. For the
continuous representation,

)()1()()()( //)(/ θσθσθ τθθ τσθτθ −−+−+=+ −+ −+−− ∫ tdeKdueKtyety
t

t
t      (6)

The integral on the right is the convolution integral evaluated over a period θ, starting from time
t. (Note that when σ = t the integrand is )(/ θτθ −− tue , while when σ = t + θ the integrand is u(t) so
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that only past controls are needed for the projection.) Because the integral is evaluated over a finite
period, it remains bounded even when τ is negative.

The control u(t) is chosen to make the process model follow a desired linear system as it moves
toward the set point. The model given by  (1) can be expressed in the time domain as

                           ))()(()()( tdtuKtyty
dt
d +=+++ θθτ     (7)

The desired output response, yd(t), to a set point change and the disturbance is:

                                        spdd ytyty
dt
d =+++ )()( θθε        (8)

Since the desired response always starts from the projected model state,(i.e. )()( θθ +=+ tytyd ),then
)( θ+ty  from (7) will track )( θ+tyd from (8) if we choose u(t) to make the derivatives of )( θ+ty

and )( θ+tyd equal to each other. From (7) and (8) this requires:

                            εθτθ /))((/))())()((( +−=+−+ tyytytdtuK dsp                  (9)

Setting )()( θθ +=+ tytyd , projecting d(t) from (5) as d(t -θ ) and solving for u(t) gives:

                            Ktyytdtu sp /))()/1()/(()()( θετετθ +−++−−=                   
(10)

Figure 3 gives the block diagram for the continuous version of the AIMC algorithm for a first
order plus dead time process.. This figure comes from equation, (1), (4), (5) and the transforms of
equations (6) and (10).

Figure 3.  AIMC block diagram for FOPDT process
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By (a lot of) block diagram algebra, one can show that the transfer functions between the output,
y(s), and the disturbance, d(s), and set point, r(s) for figure 3 are the same as for figure 4 below.
However, figure 3 is internally stable even when the process is unstable (i.e. τ < 0), while the
diagram of figure 4 is internally unstable. To see why this is so, we note that the transform of the
integral in (6), as derived in Appendix A, is:

               L { } )(
1

)1()(
/

/)( su
s

eeKdueK
st

t

t

+
−=−

−−+ −+−∫ τ
σθσ

θτθθ τσθ (11)

The right hand side of this equation implies that integral in (6) can be evaluated as

                      )()()( //)( θσθσ τθθ τσθ −−=− −+ −+−∫ txetxdueK
t

t
t (12)

where x(t) is given by the solution of

                                           τ d
dt

x t x t Ku t( ) ( ) ( )+ =      (13)

Equation (12) is a valid method of computation only for stable x(t). If x(t) is unstable, the right
hand side of  the equation  (12)  is the difference between two numbers growing without bound and
infinite precision is required to get a finite result. This difficulty is the reason why the two degree of
freedom IMC control system given in Figure 4 is computationally equivalent to the AIMC structure
only for stable systems.

Figure 4a. Two degree of freedom IMC control system equivalent to Figure 3 for Stable Processes

In figure 4a, q(s) and qd(s) are:

Disturbance
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where                     τθτε /)/1( −−≡ ea

An alternate, internally stable, implementation of figure 4a for unstable processes suggested by
Morari and Zafiriou (1989) is the simple feedback system of figure 4b.

Figure 4b Alternate Feedback Configuration of Figure 4a

The controller, c(s), in figure 4b must be implemented as a single transfer function (or a single set
of differential equations) where any dead times are replaced by finite order (Pade) approximations in
order for the control system to be internally stable for an unstable process. Further, the controller
c(s) must be stable. At a minimum, this means that the right half plane zeros at s=-1/τ (τ < 0) in the
numerator and denominator of c(s) must be made to cancel exactly. Further, the denominator of c(s)
must not have any additional right half plane zeros. Unfortunately, for small values of the filter time
constants ε, and εd, the denominator of c(s) does have additional right half plane zeros, and the
control system given by figure 4b is unstable even for perfect models, whereas the control system
given by figure 3 will be stable.

From figure 4a, the response of the system in figure 3 to disturbances and set point changes for a
perfect model is:
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By the definition of a in (15) the term in brackets in (16) has a zero at s = –1/τ for any values of ε
and εd.
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The time domain response for a step input in set point is an exponential rise which approaches a step
as the time constant, ε, approaches zero. The time domain response to a step disturbance for ε=εd=0
is

        y(t) = 0 for 0 ≤ t ≤ θ
     = (1-e-t/τ)K θ ≤ t ≤ 2θ                                              (16a)

= 0             2θ  <  t 

No controller without a priori knowledge of when the step disturbance will occur can give a better
response than (16a). When ε and εd are greater than zero, the response is the same as that given by
(16a) for t ≤ 2θ, and is the sum of exponentials given below for t ≥ 2θ.

                        y t e et td( ) ( )/ ( )/= +− − − −α βθ ε θ ε2 2   ;   t > 2θ    (16b)

where α ≡ (1-a)c ; β ≡ (1-a)(1-c)+a-e-(θ/τ) ; and c  ≡ (1-ε/εd)-1

Notice that in (16b), y(2θ)=1- e-(θ/τ)  so that y is continuous at t=2θ.

Results of applying the strategy given by figure 3 to an unstable process where K=1, τ = -1,
θ = .8 are presented in Figures 5 and 6 for disturbance rejection and set point tracking respectively.
Figure 5 shows the output and control effort responses to a step disturbance of 1 introduced at time
t= 0. Figure 6 shows the set point tracking capability of the control system. In these simulations,
controller filter and disturbance estimation filter are chosen to be ε =1, εd = 1. These figures also
compare the results of AIMC to those obtained from figure 4b where the controller c(s) is
approximated by the PID controller computed as in Lee et al. [9]( i.e

))1018/(.359.)27.8/(11(62.1)( +++−≅ ssssc . The differences between the AIMC controller and the
PID controller are due to the fact that for ε =1, εd = 1, the PID controller is not a very good
approximation to the controller, c(s), in figure 4b. Indeed, the controller c(s) becomes unstable when
ε = εd < .83.
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Figure 5. Regulatory response of first order linear system

Figure 6. Servo response of first order linear system
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4.   Application  of AIMC to a Second Order Linear System

The example process is:
                                         θ

ττ
se

ss
Ksp −

++
=

)1)(1(
)(

21

                  (17)

where τ1 = 1, τ2 = -1.1 and  θ =1.

A perfect model was assumed in all simulations.  The AIMC control algorithm of Section 2 was
implemented according to the specified tasks as follows:

• The desired trajectory is set as a second order filter;

                                             ε ε2 2&& &y y y yf f f sp+ + =                                          (18)

• Disturbance is estimated as described in Figure 2.
 
• Process output is projected into the future by integrating the model equation (17) from the current

time, tk, to tk+θ based on current measurement, current and past controls, and the extrapolated
disturbances. In the time domain, and in presence of d introduced through the process, (17)
becomes:

                                         τ τ τ τ1 2 1 2&& ( )& ( )y y y K u d+ + + = +      (19)

In the course of integration, the effect of past controls on the projection was taken into account by
shifting the past trajectory of the control effort forward in time by θ units. Since the derivative of
the process output constitutes one of the states of this model, this projection implies that, not only
the process output but also its first derivative was projected into the future.

• To calculate the control so that the model output tracks the filter output given by  (18), the AIMC
control law requires that the second derivative of the model output, from (19) be equal to the
second derivative of the desired trajectory from (18). This gives:

u t
K

y d
K

y t
K

y tk sp k k( ) &( ) ( )= − + + −



 + + −



 +

τ τ
ε

τ τ
τ τ
ε θ

τ τ
ε

θ1 2
2 1 2

1 2 1 2
2

1 2 1
1      (20)

In the derivation of the above equation, the first derivative of the filter output was made equal to
the first derivative of the model output. All model states are projected one dead time into the future,
and the control effort is calculated from this equation with output and its first derivative being
evaluated at time  tk+θ.

Results from the application of the stabilizing AIMC strategy to the unstable process, given by
(17) are shown in Figures 7-9. Figures 7 and 8 depict the performance of the controller for set point
tracking and disturbance rejection (under an introduced disturbance of  d = 1 through the process at
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t=0). Figure 9 shows the transient behavior of the system under a set point change of r = 1 and a
disturbance of d= - 0.3. All these simulations were done with ε = εd = 1. For this example, the
controller c(s) is stable for ε = εd > .36. However, to get a PID controller which yields a good
response requires ε = εd > 3.

Figure 7. Second order linear system, Set Point Response

Figure 8. Second order linear system, response to a step disturbance

Figure 9. Second order system, under set point change and step disturbance
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5.  Application to Nonlinear Systems

To illustrate the applicability of the algorithm to nonlinear systems, we have chosen two examples
one stable and the other unstable. The stable example was studied by Soroush and Kravaris [11]. It
considers a CSTR in which the following parallel reactions take place:

                         DAUUA kkk  → → → 321 ;21

where   U1 and  U2  are undesired side products, and D is the desired product.

Feed to the reactor is free of any products. The control objective is to keep the reactor
temperature at its set point at 400 °K. This is a stable operating point corresponding to high
conversion. Manipulating variable is the heat input to the reactor (Q). Following standard
assumptions and considering that the concentration of D does not affect the reactor temperature,
mass balance for A and energy balance give the reactor model:

τ
AAi

AdAAA

CC
CkCkCkC

−+−−−= 5.0
2

3
1

&           (21)

cV
QTT

c
CkhCkhCkh

T iAddAA

ρτρ
+−+∆−∆−∆−=

5.0
22

3
11&           (22)

The kinetic rate constants follow the Arrhenius relation,  ki=koi exp(-Eai/RT). The operating and
kinetic parameters are given in Table 1. The presence of steady state multiplicities makes the reactor
start-up a true control problem, because if the necessary steady state heat input is applied to the
reactor in open loop it reaches the lowest conversion operating point instead of the highest
conversion set point.

                  Table 1.  Parameters for the CSTR with parallel reactions

R R=8.345 kJ/(kmol.K)
k01 k01= 2x103 m6/(kmol2.s)
k02 k02= 3.4x106 kmol05/(m-1.5.s)
k0d k0d= 2.63x105  s-1

E01 E01= 4.9x104 kJ/kmol
E01 E01= 6.5x104 kJ/kmol
E01 E01= 5.7x104 kJ/kmol
-∆H1 -∆H1=4.5x104 kJ/kmol
-∆H2 -∆H2=5.0x104 kJ/kmol
-∆Hd -∆Hd=6.0x104 kJ/kmol
ρ ρ=1000 kg/m3

C c=4.2 kJ/(kg.K)
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The performance of the AIMC controller for start-up to reach the desired operating state is
compared to two other nonlinear controllers, namely, model state feedback (MSF) as presented by
Berber and Brosilow (Kluwer, 1998), and global linearizing control (GLC in Two Degree of
Freedom Output Feedback form) of Soroush and Kravaris [11]. Tuning parameters for AIMC was ε
= εd =50 whereas for GLC  β1 = γ1= -0.98. Maximum control effort was set to 30. Results are
shown in Figures 10a, b. The results show that all controllers perform similarly for set point
tracking.

Figure 10a. Reactor start-up profile, comparison of three controllers

Figure 10b. Control effort in reactor start-up corresponding to Figure 10a

To test the AIMC and compare it to GLC for regulatory behavior, an unmeasured step
disturbance of  +20 °K was introduced to the feed temperature. Tuning parameters were the same as
those in the set point tracking. The performance of the two controllers are indistinguishable when the
tuning parameters in GLC were set as β1 = γ1= -0.99, as shown in Figures 11a, b.
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Figure 11a. Regulatory performance of AIMC and GLC to a step disturbance

Figure 11b. Control effort in reactor start-up corresponding to Figure 11a.

The second nonlinear example was previously presented by Calvet and Arkun [4, 5] originating
from the work of Uppal et al. [12]. This example considers a continuous stirred tank reactor in
which a first order, exothermic, irreversible reaction is taking place. The dimensionless model
equations are given by:

& ( ) ( / )x x D x e da

x
x

x

1 1 1
1

21 2= − + − −+ ν         (21a)

1202
)/(1

122 )()1( 2 duxxexBDxx x
x

a

x

++−−−+−= + ββν&         (21b)

     where:   x1 and x2 are the dimensionless composition and temperature
                   Da, B,ν, β and  x20  are the standard dimensionless parameters
                   d1 and d2 are the dimensionless feed temperature and feed composition
                   fluctuations [4].
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In this work, d2 is assumed to be zero. A step disturbance was introduced by assigning a specified
value to the term d1.  With the parameters Da = 0.072, B = 8, β = 0.3, ν = 20, and x20 = 0, the CSTR
exhibits an ignition/extinction behavior. The control problem is to operate the reactor at the unstable
operating condition uop = -0.20, x1

op = 0.5 and x2
op = 3.03. The reactor is initially assumed to be

operating at a stable steady state of x1 = 0.2 and x2 = 1.33.
Simulation results when the AIMC structure is implemented are given in Figures 12-14. The two

plots in Figure 12 show the response of the dimensionless temperature to a step change in set point
for two different values of the filter time constant. Tuning parameters used were ε=1 and ε=2. The
transition of the process variable reflects a linear behavior, and is smooth allowing the reactor to be
operated at an unstable operating point by the AIMC algorithm.

Figure 12. Nonlinear system under a step change; process variable and control effort

Figures 13a and 13b present the transient behavior of the process variable and the control effort
when  an unmeasured step disturbance of d1 =.3 is introduced to the process.  Figure 13c shows the
estimated step disturbance that makes the model output equal to the process output if it were
introduced to the model as an additive signal to the control effort similar to the linear case. It is to be
noted that the estimated additive step disturbance of de=1 is equivalent to the specified unmeasured
disturbance of d=.3 at the steady state. The disturbance estimation given in figure 13c also makes the
model and process output match at each sampling time throughout the transient. It is seen that this
disturbance is successfully compensated by the AIMC system and the reactor is kept at the unstable
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operating point using two different filter time constants. Figure 14 shows the behavior of the AIMC
system for a set point change and an unmeasured disturbance of d1= 0.3. The controller successfully
tracks the set point under the influence of the unmeasured disturbance.

Figure 13. Nonlinear system under an unmeasured disturbance; process variable, control effort and
disturbance estimate
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Figure 14. Nonlinear system under step change and disturbance;
process variable and control effort

6.  Conclusions

The problem of the control of unstable systems has been tackled, and a solution that is applicable to
linear as well as nonlinear processes is provided. An algorithmic IMC algorithm, applicable to a very
broad range of process models, is presented to stabilize the unstable processes. For a first order plus
dead time process, AIMC is analytically equivalent to the two degree of freedom IMC. AIMC,
however, is internally stable for unstable models whereas the classical implementation of two degree
of freedom IMC is not. Simulations show that AIMC can be effectively used for both stable and
unstable linear and nonlinear processes.
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Appendix  A.     Laplace Transform of the Effect of  Past Controls on the Future
                           Process Output

The influence of past controls on the predicted output y(t +θ ), represented by ym here, can be
evaluated through the following convolution integral:

                                     ym ≡ K e u dt

t

t
− − −

+

−∫ ( )/ ( )θ σ τ
θ

σ θ σ     

(A1)

To obtain the transform of (A1), we first express ym as the difference between two integrals, and
then change variables so as to get each of the integrals in standard convolution form as follows:
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       ym / K = e u dt
t

− − −
+

−∫ ( )/ ( )θ σ τ
θ

σ θ σ
0

  -  e u dt
t

− − − −∫ ( )/ ( )θ σ τ σ θ σ
0

  

   = e u dt
t

− − −
+

−∫ ( )/ ( )θ σ τ

θ

θ

σ θ σ   -  e u dt
t

− − − −∫ ( )/ ( )θ σ τ σ θ σ
0

             (A2)

since m(σ θ− )  is zero for σ< θ .

Now let φ σ θ= −  in the first integral and factor e-θ / τ  from the second integral. This gives

     ym / K = e u dt
t

− −∫ ( )/ ( )φ τ φ φ
0

 -  e-θ / τ e u dt
t

− − −∫ ( )/ ( )σ τ σ θ σ
0

                     (A3)

Transforming (A3) gives

                              L { }y Km / = 
u s
s
( )

τ + 1
  - 

( )( ( ))/e e u s
s

s− −

+

θ τ θ

τ 1

                        = 
1

1τs
u s+ ( )  - e

s
e u ss

−
−

+

θ τ
θ

τ

/

( )
1

Appendix B.    The Analyical Equivalence of  AIMC and Two Degree of Freedom
                         IMC

The Laplace transforms of  eqns. (10) and (6) in the text are, respectively,

               u(s) = - e-sθ d(s) + 
τ

εK
y SP(s) + 

( / )1 − τ ε
K

(es θ y(s))               (B1)

   [es θ y(s)] = e -θ / τy(s) + 
K e e

s

s( )/1
1

−
+

− −θ τ θ

τ
u(s) + K(1-e-θ / τ )e-sθd(s)          (B2)

Letting e-θ / τ ≡ b and rearranging terms gives

         [e-sθ y(s)] = b [y(s) - 
Ke
s

s−

+

θ

τ 1
u(s)] + 

K
sτ + 1

u(s) + K(1-b)e-sθ d(s)     

(B3)
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The term in parentheses in (B3) is measured output less the effect of all past controls on the output
as predicted by the model and as shown in Figure 4.
Let

                                                  de(s) ≡ y(s) - 
Ke
s

s−

+

θ

τ 1
u(s)                   (B4)

Substituting (B3) and (B4) into (B1) gives

  u(s) =
( / )1 − τ ε

K
 [bde(s) + 

K
s

u sτ + 1
( ) + K(1-b)e-sθ d(s)] + 

τ
εK

ySP(s) -e-sθ d(s)          (B5)

Rearranging terms to solve for u(s) from (B5) gives

                            [ ε
τ
s
s
+
+

1
1

] u(s) = - a de(s) + (a-1)Ke-sθ d(s) + ySP(s)      

(B5a)

where   a ≡ (1-ε τ/ )b  

From the manner in which e-sθ d(s) is computed, c.f. eqn. (2) in the text,

                                                 e-sθ d(s) = 
τ

ε
s
s Kd

+
+

1
1( )

de(s)     

(B6)

Substituting (B6) into (B5a) gives

                   u(s) = 
τ
ε
s

K s
+
+
1
1( )

[  ySP(s) - [a + (1-a)
( )τ
ε

s
sd

+
+
1
1
]de(s) ]     (B7)

Letting

qd(s) ≡ a + (1-a)
( )τ
ε

s
sd

+
+
1
1

and

q(s) ≡ τ
ε
s

K s
+
+
1
1( )

gives exactly the relationships shown diagrammatically in figure 4a.
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