
Grid-based ATM Switch Architecture: a new
fault-tolerant space-division switch fabric architecture

H.S. Laskaridis1, A.A. Veglis2, G.I. Papadimitriou3 and A.S. Pombortsis4

1,3,4 Dept. of Informatics, School of Science
2Computer Lab, School of Journalism & Mass Communication

Aristotle University of Thessaloniki, 54006 Thessaloniki - Greece

Abstract
Asynchronous Transfer Mode (ATM) is the switching and multiplexing technology chosen to be used in

the implementation of B-ISDN, because of its superiority in fast packet switching. However, the use of ATM
switches with large number of input and output ports has been proven to be a bottleneck in wide area ATM
networks. In this paper we propose a new space-division grid-based ATM switch architecture with fault tolerant
characteristics.

1 Introduction
ATM is the switching and multiplexing technology chosen to be used in the implementation of B-

ISDN, because of its superiority in fast packet switching. The use of ATM in Wide Area Networks has
revealed the necessity of ATM switches with large number of input and output ports. However, it has
become obvious that there is a bottleneck in Wide Area ATM Networks, which is not due to medium’s
bandwidth (fiber optic with extremely high bandwidth) but due to switches’ throughput. More
precisely, the bottleneck is located in the “cell switch fabric”, which is the core of the ATM switch, as
described in (Chen and Liu, 1995). A lot of research effort is now focused on switch fabric
architectures in order to increase the throughput of the switch fabric, while keeping the complexity at a
reasonable level.

ATM switch fabric architectures are divided into four categories by Chen and Liu (1995):
1. Shared-medium architectures,
2. Shared-memory architectures,
3. Fully interconnected architectures, and
4. Space-division architectures

The disadvantages of all proposed architectures belonging to the first three categories become
obvious when we attempt to scale to switches with large number of input and output ports (e.g. 1024 ×
1024). Firstly, throughput is found to be poor and secondly the hardware requirements are sometimes
just not applicable (e.g. shared memory with extremely high transfer rate).

For the above-mentioned reasons, a great research effort is converged on space-division
architectures. The majority of them are based on Banyan multistage interconnection network (e.g.
Alimuddin et al., 1995; Tobagi et al., 1991; Urushidani, 1991; Giacopelli et al., 1991; Lee et al., 1994;
Oktug et al., 1997), and their aim is to improve its throughput and alleviate its major disadvantage:
being internally blocking.

E-mail addresses:
1 haris@ccf.auth.gr
2 veglis@jour.auth.gr
3 gp@csd.auth.gr
4 apombo@csd.auth.gr

2442

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

In this paper, we propose a new space-division switch architecture, called Grid-based ATM
Switch Architecture (GASA). This architecture is not based on Banyan networks, and its topology is
grid-based. The grid is formed by switching elements (SE’s). One of the main characteristics of the
proposed architecture is the number of switching elements, which is equal to the number of input and
the number of output ports. Taking under consideration the fact that central routing control in large-
scale ATM switches is usually proved to be another bottleneck, GASA is designed to be self-routing.

GASA also shows an excellent behavior regarding fault-tolerance, caused by the existence of
multiple paths between any input-output pair. The minimal conditions under which we have disruption
of communication between functional switching elements are studied, along with the necessary
modifications in the switch architecture, in order to support fault-tolerant routing.

The rest of the paper is organized as follows: In section 2 the overall architecture is presented in
detail. The routing algorithm, executed in each switching element, is described in Section 3. In Section
4 fault tolerance is briefly discussed. In Section 5 we present the shared-memory architecture of each
SE, which can easily support any kind of priorities. The analytical model of the switch architecture is
studied in Section 6, as well as simulation results.

2 The Overall Architecture
The main characteristic of GASA is the number of the necessary SE’s, which is minimal, in

comparison to other switching architectures. More specifically it is equal to the number of input ports
and the number of output ports. Each SE is directly connected to an input module, an output module
and its 2 – 4 (depending on its position in the grid) neighbor SE’s. Links between SE’s are bi-
directional while links between SE’s and input or output modules are unidirectional. Internal links’
rate is equal to incoming and outgoing links’ rate and no speed-up factor is deployed in the present
implementation. A 16×16 switch is presented in figure 1. The number of switching elements, the
number of unidirectional links and the number of hops are presented in tables 1, 2 and 3 respectively,
in comparison to those of a Banyan network.

Input
module

Output
module

Switching
element

Fig. 1. A 16×16 GASA switch

Each SE has an address, a Switching Element ID (SE ID) which is used in routing, as explained in
the following section. The SE ID is a binary number whose length (in bits) depends on the size of the
switch. Addresses are assigned in a recursive way, as demonstrated in figure 2, in a way similar to the
one used in the hyper-cube architecture (although the SE’s are not linked in the same way).

It is also worth noting that for reasons of homogeneous implementation of the routing algorithm,
a 2-bit prefix is added when expanding from N×N square switch to 2N×2N non-square switch (e.g.

2443

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

from 16×16 to 32×32), although a single-bit prefix would be adequate for having each SE uniquely
identified.

16×16 32×32 64×64
Banyan () Nlog2/N 2⋅ 32 80 192

GASA N 16 32 64
Table 1. Number of switching elements

16×16 32×32 64×64
Banyan ()1NlogN 2 +⋅ 80 192 448

GASA N4N6 − (square grid) or

2
N6N6 − (non-square grid)

80 168 352

Table 2. Number of links

16×16 32×32 64×64
Banyan Nlog2 4 5 6

GASA (average) 2.50 3.88 5.25
Table 3. Number of hops

00 00 00 01

00 1100 10

01 00 01 01

01 1101 10

10 00 10 01

10 1110 10

11 00 11 01

11 1111 10

Switch 16×16
prefix 00

Switch 16×16
prefix 01

(a) (b)

Switch 16×16
prefix 00

Switch 16×16
prefix 01

Switch 16×16
Prefix 10

Switch 16×16
 Prefix 11

(c)
Fig. 2. Switching element addressing scheme

(a) a 16×16 switch (b) creating a non-square 32×32 switch (c) creating a square 64×64 switch

2444

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

3 Routing algorithm
GASA is a self-routing architecture. Each SE is capable of routing incoming cells towards their

destination, using only the destination SE ID. When a new cell arrives, the corresponding input
module searches for the source VPI/VCI and port number in a lookup table, in order to find the
destination output port and the corresponding destination SE ID. The destination SE ID is placed in
the tag (header) of the cell used internally in the switch (for a complete description of the cell tag refer
to Section 5).

The following routing algorithm for a 16×16 switch is executed in each SE independently of its
position on the grid. In this algorithm, SE_ID[a] denotes the ath bit of the SE ID of the current SE,
SE_ID[a,b] denotes the ath and bth bits of the SE ID, and Dest_SE_ID[a] denotes the ath bit of the
SE ID of the destination SE.

If Dest_SE_ID[1,2] <> SE_ID[1,2] then
Route on (1,2)

Else
If Dest_SE_ID[3,4] <> SE_ID[3,4] then

Route on (3,4)
Else

Send to output module

Procedure Route on (a,b)
If Dest_SE_ID[a] <> SE_ID[a] then

If Dest_SE_ID[a] = 0 then
Send to North

Else {Dest_addr[a]=1}
Send to South

Else {Dest_SE_ID[a] = SE_ID[a], but Dest_SE_ID[b] <> SE_ID[b]}
If Dest_SE_ID[b] = 0 then

Send to West
Else

Send to East

Each cell is initially routed to the proper “quadrant” of the grid, based on the first two bits of the
destination SE ID, then routed to the proper SE, based on the last two bits, and then moved to the
corresponding output module.

The routing algorithm has the following characteristics:
• all cells follow shortest paths,
• all cells do not follow paths of the same length, but this is not of major importance because
• all cells from SE A to SE B follow the same path, which justifies the absence of reassembly

buffers.
Next we demonstrate the expandability of the routing algorithm. The algorithm for a 32×32 or a

64×64 switch is presented:

If Dest_SE_ID[1,2]<>SE_ID[1,2] then
Route on (1,2)

Else
If Dest_SE_ID[3,4]<>SE_ID[3,4] then

Route on (3,4)
Else

If Dest_SE_ID[5,6]<>SE_ID[3,4] then
Route_on (5,6)

Else
Send to output module

(The Route on (a,b) procedure remains the same.)

2445

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

Example: The following example demonstrates the routing process of a cell from SE 14 (11 10)
to SE 0 (00 00).

SE_ID Conditions checked Decision
11 10 Dest_SE_ID[1,2]≠SE_ID[1,2]

Dest_SE_ID[1]≠SE_ID[1]
Dest_SE_ID[1]=0

Send to North

11 00 Dest_SE_ID[1,2]≠SE_ID[1,2]
Dest_SE_ID[1]≠SE_ID[1]
Dest_SE_ID[1]=0

Send to North

01 10 Dest_SE_ID[1,2]≠SE_ID[1,2]
Dest_SE_ID[2]≠SE_ID[2]
Dest_SE_ID[2]=0

Send to West

00 11 Dest_SE_ID[1,2]=SE_ID[1,2]
Dest_SE_ID[3,4]≠SE_ID[3,4]
Dest_SE_ID[3]≠SE_ID[3]
Dest_SE_ID[3]=0

Send to North

00 01 Dest_SE_ID[1,2]=SE_ID[1,2]
Dest_SE_ID[3,4]≠SE_ID[3,4]
Dest_SE_ID[4]≠SE_ID[4]
Dest_SE_ID[4]=0

Send to West

00 00 Dest_SE_ID[1,2]=SE_ID[1,2]
Dest_SE_ID[3,4]=SE_ID[3,4]

Send to output
module

The disadvantage of the architecture is that it is internally blocking. Two to four cells may require
to be transmitted simultaneously from a SE over the same outgoing link. This problem can be solved
by using an internal shared buffer in each SE. Manhattan Street Networks, which have similar
topology but different routing algorithm, employ deflection routing to overcome this problem, as
described and analyzed in (Choudhury and Li, 1991; Choudhury and Maxemchuk, 1991). The
drawback of deflection routing is that cells from a source to a destination do not always follow the
same path. Different paths that cells may follow, may have different lengths, which makes the use of
reassembly buffers mandatory. This way hardware complexity increases. This is the reason why a
deterministic algorithm was preferred in GASA.

4 Fault tolerance
The fact that GASA is not “single-path” architecture (i.e. there are more than one paths between

each pair of SE’s) enables GASA switches to show great characteristics regarding fault tolerance.
Neither additional links between SE’s nor additional SE’s are necessary, in contrast to the so-called
“dilated” networks (e.g. Lee et al., 1994; Itoh, 1991). However, in order to enable fault tolerance in
GASA, some adjustments should be made:
1. There should be a central unit controlling and resolving faults, from now on called "Fault

Recovery Control Unit" (FRCU).
2. There should be bi-directional links connecting each switching element to the FRCU.
3. There should be hardware in each port of each switching element able to identify and report faulty

links.
4. The routing algorithm should be adjusted, in order to be able to operate under a slightly different

way when FRCU announces a fault.
The adjusted architecture is presented in figure 3 (the input and output modules are omitted for

simplicity reasons).
When a fault occurs in a SE, its neighbors identify the problem by the fact that the corresponding

link goes down. FRCU considers the combination of reports that it receives and concludes whether

2446

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

there is a faulty link or a faulty SE. In the former case, nothing has to be done by FRCU, while in the
latter case, FRCU has to “inform” all SE’s to disregard cells that are destined to the faulty switching
element.

FRCU

Fig. 3. Fault-tolerant adjusted GASA

If a SE discovers that one of its links is not operational, and it has not received a notification from
FRCU that the corresponding neighbor is faulty, it concludes that there is only a link fault. Cells that
should normally be routed over the faulty link, are sent to some other output port (different from the
one that the cells arrived from).

Considering that each switching element has at least two neighbors, we conclude that the minimal
conditions (i.e. worst case scenarios) under which there is disruption of communication between
operational switching elements SEx and SEy are the following:
• Fault in 2 links: source switching element SEx is in grid ’s corner and both outgoing links are

down, or destination switching element SEy is in grid ’s corner and both incoming links are down.
Probability of this scenario to occur:

2failure) link(prob

2

links# total

2
⋅










• Fault in 2 switching elements: source switching element SEx or destination switching element SEy

is in grid ’s corner and both neighbor switching elements are down.
Probability of this scenario to occur:

2failure) SE(prob

2

N

2
⋅










If the SE’s under study are not in grid ’s corners, then 3 or 4 links and/or neighbor switching
elements should go down in order to have disruption of communication.

5 Switching Element Architecture
Although the number of SE’s in GASA is significantly smaller than the corresponding in Banyan

networks, the hardware complexity is quite higher. There are SE’s with 2, 3 or 4 neighbor SE’s.
However the architecture deployed should be similar in all SE’s, independently of the number of

2447

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

inputs/outputs ports. For this reason, a shared memory architecture is deployed. Specifically, in
(Hashemi et al., 1997) a shared-buffer switch architecture is proposed, which is deployed in our
switch.

The disadvantage of using a shared-buffer architecture for an n×n switch is that the shared buffer
has to operate at a rate n times higher than each link rate. In other words the throughput of the shared
buffer has to be n times greater than each link rate. However, this is not a major problem in our switch,
because 3 ≤ n ≤ 5.

On the other hand the advantage of using a shared buffer architecture in contrast to using separate
queues (one for each output port) is that we have better memory utilization. In other words, we need
less memory in order to obtain the same cell loss probability. Next the operation of the shared queue is
described.

Each queue consists of groups of cells. Each group is consisted of cells that will be transmitted
over different outgoing links during the same timeslot. Cells entering the SE enter the queue from the
head of the queue and start searching for their position (figure 4). Each cell is placed in the end of the
first group that does not have a cell for the same outgoing link and makes all cells buffered in the
following slots to move one slot backwards.

n input
lines

n output
lines

Shared queue

Routing
algorithm

Fig. 4. Shared-buffer switching element architecture

If priorities are used, then each incoming cell is not simply looking for the first group with no
other cell trying to use the same outgoing link, but its Priority Control field (figure 5) is also
compared to the corresponding field of already buffered cells that will use the same outgoing link. If
the new cell has higher priority than the buffered cell, the new cell replaces the old one, which starts
searching for a new position moving backwards. Otherwise, the new cell keeps searching its position
in the buffer.

In order for the above scheme to operate, the use of a tag is necessary. The internal structure of a
cell is presented in figure 5. The cell tag is inserted by the input module, when the cell enters the
switch. It has 4 fields. The values of the first two fields, “Destination SE ID” and “Priority Control”,
are assigned only once by the input modules. On the other hand, the values of the third and fourth field
are updated by each SE and are used in the operation of the SE. The “Output port ID” field is set by
the routing algorithm, based on the next SE the cell has to move to (north, south, west, east, or output
module). The “End of group” field is set by the queue control to delimit each group.

Output
port ID

Priority
Control

Destin.
SE ID

ATM cell

End of
group

Tag

Fig. 5. Internal cell structure

It is worth noting that there are several ways that the “Priority Control” field could be used. For
example the value assigned by the input module could be based on the Quality of Service that is
requested for the corresponding virtual connection. Or it could be a function of the “age” of the cell in
the switch (which means that each SE should be able to update this field). The field could also be split
into two sub-fields in order to combine the two priority control schemes. However, priority control

2448

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

schemes will not be further discussed in this paper. In the following we assume that all cells are of
equal priority.

6 Performance analysis

6.1 Analytical model
The analytical model is based on the analysis presented in (Valdimarsson, 1995). The following

assumptions concerning the operation of the switch are made:
1. Cells’ arrivals from input x to output y follow a Bernoulli distribution with rate rxy. No assumption

about uniform distribution of incoming traffic to the outputs is made.
2. During a timeslot 0 to n cells arrive in each SE from its incoming links, and 0 to n cells depart

from the SE over its outgoing links.
3. No “grant” signals are exchanged between the SE’s prior to cell transmissions. An arriving cell

that cannot find space in the shared buffer is discarded.
4. The analytical model is a discrete time model, although technically there is nothing preventing the

switch from operating asynchronously.
All the notations employed in the analysis can be found in table 4.

N Number of inputs – Number of outputs – Number of switching elements
SEx Switching element with SE ID x
nx Number of inputs / outputs in SEx

B Buffer size in each SE
plxy Path length between SEx and SEy

R = [rxy] “Load matrix”: the traffic load from SEx to SEy is rxy

L = [lxy] “Link load matrix”: the traffic load over the link from SEx to SEy is lxy

lxy = 0, if SEx to SEy are not neighbors
lxx = rxx (for conventional reasons)

linput,x Load on link connecting SEx to its input module
lx,output Load on link connecting SEx to its output module
ó Current length of a shared queue
s Current length of a virtual queue

)ó,s(State of a virtual queue: virtual queue contains s cells, while there are ó cells in
the switching element

)ó,s(ð i State probability of virtual queue i

)ó,s|ó,s(ë 1122i Transition probability of virtual queue i, from state)ó,s(11 to)ó,s(22

)k,k(p ii “Arrival probability”: probability that cells arriving at the SE during a timeslot
will lead to transition of virtual queue i from state)ó,s(to state)kó,ks(i ++ ,
under the assumption that there are no cell departures and there is infinite buffer
space (B).

)m,m(q ii “Departure probability”: probability that cells departing from the SE during a
timeslot will lead to transition of virtual queue i from state)ó,s(to state

)mó,ms(i −− , under the assumption that there are no cell arrivals.
i
xt Throughput of virtual queue i, which belongs to SEx under the specific load

tx Total throughput of SE x

Lprx Cell loss probability of SEx

xì Average queue length of SE x

Table 4. Notations - Definitions

2449

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

In order to perform our analysis we employ an equivalent model for the SE: we consider each SE
having a dedicated queue per output port (from now on called “virtual queue”). However we do not
pose any restrictions on the length of each virtual queue. We only pose restrictions on the summation
of lengths of the queues belonging to the same switching element:

Bsó
1xn

0j
j ≤= ∑

−

=

This way the model remains accurate.
First of all we have to calculate the link load matrix. Each element of this matrix represents the

load of a link:
∑= vwxy rl , ∀ v, w: the path from SEv to SEw passes over the link (x,y) (1)

(i.e. the link from SEx to SEy).
∑
∀

=
y

xyx,input rl (2)

∑
∀

=
y

yxoutput,x rl (3)

The values of rxy should be such that lxy ≤ 1, for each x, y, in order to prevend massive cell loss. This is
something that the Connection Admission Control (CAC) algorithm should take care of.

We define Adj(x) as the set of switching elements that are adjacent to SEx. The input and output
modules connected to the specific switching element are also considered neighbors and included in
Adj(x). We also define:
• adj(x,N): the north neighbor of SEx

• adj(x,S): the south neighbor of SEx

• adj(x,W): the west neighbor of SEx

• adj(x,E): the east neighbor of SEx

We assume that queue i in SEx is the queue corresponding to the link (x, y). In order to calculate
the probability of ki cells arriving in queue i, we first define:

• ∑= vw
i
N rp , ∀v,w: the path from SEv to SEw passes over the links (adj(x,N), x) and (x, y) - The

probability of a cell arriving in queue i from the north neighbor of SEx.

• ∑= vw
i
S rp , ∀v,w: the path from SEv to SEw passes over the links (adj(x,S), x) and (x, y) - The

probability of a cell arriving in queue i from the south neighbor of SEx.

• i
Wp , i

Ep are defined in similar way, for the west and east neighbors.

• ∑= xw
i
I rp , ∀w: the path from SEx to SEw passes over the link (x,y) - The probability of a cell

arriving in queue i from the input module of SEx.
The “arrival probability”, i.e. the probability that k cells arrive in SEx during a timeslot and ki of

them arrive in virtual queue i, is:

()() ()





−⋅−⋅




⋅= ∏∏∑ ∑ ∏

∈′∀
′

−∈∀
=

⊂∀
=
⊆∀ ∈∀ Dd

x),d,x(adj
1DDd

i
dx),d,x(adj

kD
)x(AdjD

ik1D
D1D 1D1d

i
1dii l1p1lp)k,k(p (4)

where |D| is the number of elements that subset D has. So in order to calculate this probability, we
consider all the combinations of k inputs sending cells (set D in eq. 4), while the rest of the inputs
(|Adj(x)| - k) do not send cells (set D in eq. 4). ki of these are destined to the virtual queue i (set D1 in
eq. 4), while the rest (k - ki) cells are destined to other virtual queues (set D - D1 in eq. 4).

Similarly, the “departure probability”, the probability that m cells depart from virtual queue i of
SEx during a timeslot is:

2450

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

()∑ ∏∏

∉=
⊂∀ ∈′

′
∈ 











−⋅=

D1d ,mD
:)x(AdjD Dd

)d,x(adj,x
Dd

)d,x(adj,xi l1l)m,0(q (5a)

()∑ ∏∏

∈=
⊂∀ ∈′

′
∈ 











−⋅=

D1d ,mD
:)x(AdjD Dd

)d,x(adj,x
Dd

)d,x(adj,xi l1l)m,1(q (5b)

1m ,0)m,m(q iii >= (5c)

where d1 is the direction in which virtual queue i transmits. In this case we consider all the
combinations of m output ports transmitting cells (set D in eq. 5), while the rest of them (|Adj(x)| - m)
do not transmit.

Having calculated arrival and departure probabilities, we are now able to calculate transition
probabilities and state probabilities for each queue i.

ii1212ii

xn

0k

xn

0m

k

0ik

m

0im
iiii1122i

mkss ,mkóó:m,m,k,k

)m,m(q)k,k(p)ó,só,s(ë

−+=−+=

⋅= ∑ ∑ ∑ ∑
= = = = (6)

∑ ∑
= =

⋅=
B

01ó
1122i

1ó

01s
11i22i)ó,só,s(ë)ó,s(ð)ó,s(ð (7)

Each queue has (B/2 + 1)(B + 1) states. The last equation represents a linear system of (B/2 +
1)(B + 1) equations with (B/2 + 1)(B + 1) variables, the state probabilities. The system can be solved
after replacing one of the equations with the following equation:

1ó),s(ð
B

0=ó

ó

0s
i =∑ ∑

=
 (8)

Troughput:

The throughput of virtual queue i under the specific load matrix, is: ∑
=

−=
B

0ó
i

i
x)ó,0(ð1t (9)

The total throughput of SEx is: ∑
∀

=
i

i
xx tt (10)

while the total throughput of the switch can be calculated over the virtual queues that correspond to
output ports connected to output modules. If such queues are called iout in each switching element,

then: ∑
−

=
=

1N

0x

outi
xtt (11)

Loss probability:

We define ∑
ó

0=s
ix ó),s(ð=ó)(ð the probability of SEx having ó cells in its shared buffer. (The

summation is calculated over anyone of its virtual queues i). The cell loss probability in SEx is:

∑ ∑ ∑
=

>+
= = 











⋅=

Â

0ó

xn

Bkó
:0k

k

0ik
iixx)k,k(pó)(ðLpr (12)

2451

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

The pass probability of a cell moving from SEx to SEy is calculated over all switching elements
belonging to the path from SEx to SEy: ∏

→∈∀
−

)yx(pathz
z)Lpr1(

So the total cell loss probability of the switch under the specific traffic pattern is the “weighted”
average of loss probabilities of all paths:

∑ ∑ ∏
−

=

−

= →∈∀ 























−−⋅=

1N

0x

1N

0y)yx(pathz
z

xy
)Lpr1(1

load_total

r
Lpr (13)

where ∑ ∑
−

=

−

=
=

1N

0x

1N

0y
xyrload_total (14)

Delay:
In order to calculate the average delay of cells, we firstly calculate the average queue length, the

average path length and average throughput. The average length of SEx ’s shared queue is:

()∑ ⋅=
B

0=ó
xx ó)(ðóì (15)

and the average queue length of all switching elements is: ∑
−

=
1N

0=x
xì

N

1
ì (16)

The average path length is also calculated as a “weighted” average, taking under consideration the

traffic pattern (i.e. the load matrix): ∑ ∑
−

=

−

=
⋅=

1N

0x

1N

0y
xy

xy
avg pl

load_total

r
pl (17)

where plxy is the length (i.e. number of hops) of the path from SEx to SEy.

The average throughput is ∑
−

=
1N

0=x
xt

N

1
t (18)

Finally, average delay according to Little ’s law is:
t

plì
ô

avg⋅
= (19)

6.2 Simulation results
Based on the above analytical model it is difficult to evaluate the performance of the proposed

architecture. In order to overcome this obstacle we employ a simulation tool, simulating a 16 by 16
GASA switch. Several simulations with different traffic loads were contacted. More specifically we
use two loads for uniform traffic distribution with total load 0.5 and 0.65 respectively. Figure 6
presents the cell loss probability versus buffer capacity (in cell slots), and figure 7 the delay (in time
slots) again versus buffer capacity. From the figures it is obvious that for uniform load 0.5, GASA
appears to be working very smoothly with minimum loss of cells and also minimum delay. The
increase of the uniform load causes an increase of both cell loss and delay. This can be easily
explained due to the fact that many links between SE’s saturate and that causes an increase in the
buffer queues’ length.

To further investigate the behavior of the GASA we have also run simulations for two random
traffic patterns, with total loads 0.56 and 0.71 (figures 8 and 9). Checks were made to assure that lxy ≤
1. The architecture exhibits similar performance in the case of random loads. Cell loss probability and
delay are slightly higher because of the non-uniform distribution of load.

Overall the GASA architecture appears to have good performance in middle to high loads in both
uniform and random loads without the use of large buffer queues. We must emphasize that the buffer
size appearing in the figures is the buffer size of each SE.

2452

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

1,E-06

1,E-05

1,E-04

1,E-03

1,E-02

1,E-01

10 20 30 40 50 60 70 80 90 100

buffer size

C
el

l l
o

ss
 p

ro
b

ab
it

lit
y

load=0.65

load=0.5

Fig. 6. Cell loss probability under uniform traffic pattern

0

4

8

12

16

10 20 30 40 50 60 70 80 90 100

buffer size

d
el

ay load=0.65

load=0.5

Fig. 7. Delay (in timeslots) under uniform traffic pattern

1,E-06

1,E-05

1,E-04

1,E-03

1,E-02

50 60 70 80 90 100 110

buffer size

C
el

l l
o

ss
 p

ro
b

ab
ili

ty

load = 0.57

load = 0.71

Fig. 8. Cell loss probability under non-uniform (random) traffic pattern

0

4

8

12

16

50 60 70 80 90 100 110

buffer size

d
el

ay

load = 0.57

load = 0.71

Fig. 9. Delay under non-uniform (random) traffic pattern

2453

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

7 Conclusions
We have presented and studied a new grid-based ATM switch fabric architecture, with minimal

number of switching elements and fault-tolerance capabilities. An analytical model was developed and
the fault tolerance capabilities of the architecture were briefly discussed. The behavior of the
architecture was evaluated with the help of simulation. The results indicate that the GASA architecture
produces good performance without employing very large buffers. Even in the case where large
buffers were employed in order to reduce cell loss probability, there was not a major increase on cell
delay, while the loss probability was decreased dramatically. This behavior was exhibited in both
uniform and random traffic patterns.

A future extension of this study may include the study of the architecture ’s behavior under real
traffic loads. As far as fault tolerance is concerned, a future study may include the development of an
analytical model that will evaluate the cell availability and the reliability of the GASA architecture, as
defined and analyzed in (Veglis et al., 1998).

References
T. M. Chen, and S.S. Liu (1995). ATM switching systems, Artech House, Boston.

M. Alimuddin, H.M. Alnuweiri, and R.W. Donaldson (1995). “The Fat Banyan ATM Switch”, Proc. IEEE
Infocom ’95, pp. 659-666.

F.A. Tobagi, T. Kwok, and F.M. Chiussi (1991). “Architecture, performance, and implementation of the Tandem
Banyan Fast Packet Switch”, IEEE Journal on Selected Areas in Communications, 9, no. 8, pp. 1173-1193.

S. Urushidani (1991). “Rerouting network: a high-performance self-routing switch for B-ISDN”, IEEE Journal
on Selected Areas in Communications, 9, no. 8, pp. 1194-1205.

J.N. Giacopelli, J.J. Hickey, W.S. Marcus, W.D. Sincoskie, and M. Littlewood (1991). “Sunshine: a high-
performance self-routing broadband packet switch architecture”, IEEE Journal on Selected Areas in
Communications, 9, no. 8, pp.1289-1298.

T.T. Lee, and S.C. Liew (1994). “Broadband packet switches based on dilated interconnection networks”, IEEE
Trans. on Communications, 42, no. 2/3/4, pp. 732-744.

S.F. Oktug, and M.U. Caglayan (1997). “Design and performance evaluation of a Banyan network based
interconnection structure for ATM switches”, IEEE Journal on Selected Areas in Communications, 15, no. 5, pp.
807-816.

M.R. Hashemi, and A. Leon-Garcia (1997). “The Single-Queue Switch: A Building block for switches with
programmable scheduling”, IEEE Journal on Selected Areas in Communications, 15, no. 5, pp. 785-794.

A.K. Choudhury, and V.O.K. Li (1991). “Performance analysis of deflection routing in the Manhattan Street
Network”, Proc. IEEE International Conference on Communications, pp. 1659-1665.

A.K. Choudhury, and N.F. Maxemchuk (1991). “Effect of a finite reassembly buffer on the performance of
deflection routing”, Proc. IEEE International Conference on Communications, pp. 1637-1646.

A. Itoh (1991). “A fault-tolerant switching network for B-ISDN”, IEEE Journal on Selected Areas in
Communications, 9, no. 8, pp. 1218 – 1226.

E. Valdimarsson (1995). “Queue analysis for shared buffer switching networks for non-uniform traffic”, Proc.
IEEE INFOCOM ’95, pp. 8-15.

A. Veglis, and A. Pomportsis (1998). “Cell Availability of multiple path ATM Switch”, Proc. 9th Mediterranean
Electrotechnical Conference (Melecon ’98), pp. 1313-1317.

2454

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

	HOME
	SESSION

