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Abstract

In this paper combined algorithms for the control of non-triangular nonlinear systems
with unmatched uncertainties will be presented. The controllers consist of a combination
of Dynamical Adaptive Backstepping (DAB) and Sliding Mode Control (SMC) of first and
second order. In order to solve a tracking problem, the DAB algorithm (a generalization
of the backstepping technique) makes use of virtual functions as well as tuning functions
to construct a transformed system for which a regulation problem has to be solved. The
new state is extended by an (n − ρ)-th order subsystem in canonical form where n is the
order of the original system and ρ is the relative degree. The role of the sliding mode
control is to replace the last step of the design of the control law to obtain more robustness
towards disturbances and unmodelled dynamics. The main advantages of the second order
sliding mode algorithm are the prevention of chattering, higher accuracy and a significant
simplification of the control law. A comparative study of these first and second order sliding
controllers will be presented.

1 Introduction

The control of nonlinear systems with uncertainties is a challenging problem which has been the
subject of research for many years. The various backstepping control design algorithms (Jiang
and Praly, 1991; Kanellakopoulos et al., 1991; Krstić et al., 1992) provide a systematic framework
for the design of tracking and regulation strategies suitable for large classes of nonlinear systems.
The adaptive backstepping algorithm has enlarged the class of nonlinear systems controlled via
a Lyapunov-based control law to uncertain systems transformable into the parametric strict
feedback (PSF) form and the parametric pure feedback (PPF) form. In general, local stability
is achieved for systems in the PPF form, whilst global stability is guaranteed for systems in
the PSF form (Kanellakopoulos et al., 1991). These two forms can be seen as special structural
triangular forms of nonlinear systems which are adaptively input-output linearizable with the
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linearizing output y = x1. A more general algorithm, the Dynamical Adaptive Backstepping-
SMC (DAB-SMC) algorithm, has been developed (Rios-Boĺıvar et al., 1995), which allows one
to design a dynamical adaptive controller by following an input-output linearization procedure
based upon the backstepping approach with tuning functions (Krstić et al., 1992). It is applicable
to both triangular and nontriangular uncertain observable minimum phase nonlinear systems.
The role of the sliding mode control is to achieve more robustness towards disturbances and
unmodelled dynamics. To control an even larger set of systems and to simplify the control law,
the SMC part of the DAB design (Rios-Boĺıvar et al., 1996), introduced to achieve robustness,
can be effectively substituted with a second order sliding mode control (SOSMC) (Bartolini
et al., 1996). Using a suitable sliding function σ and a discontinuous law for the (n − ρ)-th
derivative of the control (system order n, relative degree ρ), one can guarantee that the sliding
mode condition σ = 0, σ̇ = 0 is reached in finite time. The main advantages of the second
order sliding mode algorithm are the prevention of chattering, higher accuracy and a significant
simplification of the control law.

We consider here a comparison between the DAB-SMC algorithm and the DAB-SOSMC
algorithm, and present a comparative example. This paper is organized as follows: Section 2
outlines the combined backstepping algorithm. Section 3 outlines the extension to the second
order sliding mode case (SOSMC). Section 4 presents a comparative example by application of
the two algorithms to the adaptive regulation of a nonlinear continuous chemical process, namely
the isothermal continuously stirred tank reactor. Conclusions are presented in Section 5.

2 Dynamical Adaptive Backstepping SMC

The Dynamical Adaptive Backstepping-SMC (DAB-SMC) algorithm is based upon a combi-
nation of dynamical input-output linearization and the adaptive backstepping algorithm with
tuning functions. Its applicability to both triangular and nontriangular systems is guaranteed,
but it requires that the controlled plant be observable and minimum phase. The observability
condition is required to guarantee the existence of a local nonlinear mapping which transforms
the plant into a suitable error system form, whilst the need for the minimum phase property
is to guarantee stability of the closed-loop system. At the final step of this algorithm, a slid-
ing surface is defined in terms of the error variables and both an update law and a dynamical
discontinuous feedback law are synthesized (Rios-Boĺıvar et al., 1997).

Consider a single-input single-output nonlinear system with linearly parameterized uncer-
tainty

ẋ = f0(x) + Φ(x)θ +
(
g0(x) + Ψ(x)θ

)
u (1)

y = h(x)

where x ∈ <n is the state; u, y ∈ < the input and output respectively; and θ = [θ1, . . . , θp]T is a
vector of unknown parameters. f0, g0 and the columns of the matrices Φ,Ψ ∈ <n×p are smooth
vector fields in a neighbourhood R0 of the origin x = 0 with f0(0) = 0, g0(0) 6= 0; and h is a
smooth scalar function defined in R0.

The steps leading to the design of the dynamical adaptive sliding mode compensator follow
an input-output linearization procedure in which both a control dependent nonlinear mapping
and a tuning function are constructed. In order to characterize the class of nonlinear systems
for which this procedure is applicable, we set up a nonlinear mapping by considering the output
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y(t) and its first n− 1 time derivatives as follows

ẏ =
∂h

∂x
ẋ =

∂h

∂x

[
f0(x) + Φ(x)θ + (g0(x) + Ψ(x)θ)u

]
(2)

Due to the presence of the unknown parameter vector θ we rewrite (2) as

ẏ = L1
h(x, θ̂, u) (3)

=
∂h

∂x

[
f0(x) + Φ(x)θ̂ + (g0(x) + Ψ(x)θ̂)u

]
+ ω1(θ − θ̂)

where θ̂ is an estimate of θ, and the vector ω1 is defined as

ω1 =
∂h

∂x

(
Φ(x) + uΨ(x)

)
(4)

In other words, (3) may be rewritten as

ẏ = L1
h(x, θ̂, u) = L̂1

h(x, θ̂, u) + ω1(θ − θ̂) (5)

with
L̂1
h(x, θ̂, u) :=

∂h

∂x

[
f0(x) + Φ(x)θ̂ + (g0(x) + Ψ(x)θ̂)u

]
(6)

The second time derivative of the output is

ÿ =
∂
(
L1
h

)
∂x

ẋ+
∂
(
L1
h

)
∂θ̂

˙̂
θ +

∂
(
L1
h

)
∂u

u̇

=
∂
(
L1
h

)
∂x

[
f0(x) + Φ(x)θ + (g0(x) + Ψ(x)θ)u

]

+
∂
(
L1
h

)
∂θ̂

˙̂
θ +

∂
(
L1
h

)
∂u

u̇ (7)

which can be rewritten as

ÿ = L2
h(x, θ̂, u, u̇) = L̂2

h(x, θ̂, u, u̇) + ω2(θ − θ̂) (8)

with

L̂2
h :=

∂
(
L1
h

)
∂x

[
f0(x) + Φ(x)θ̂ + (g0(x) + Ψ(x)θ̂)u

]

+
∂
(
L1
h

)
∂θ̂

˙̂
θ +

∂
(
L1
h

)
∂u

u̇ (9)

and

ω2 =
∂
(
L1
h

)
∂x

(
Φ(x) + uΨ(x)

)
(10)

By proceeding successively in this manner, we obtain the j-th time derivative of the output

y(j) = Ljh(x, θ̂, u, . . . , u(j−1)) = L̂jh(x, θ̂, u, . . . , u(j−1))

+ωj(θ − θ̂) (11)
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with

L̂jh :=
∂
(
Lj−1
h

)
∂x

[
f0(x) + Φ(x)θ̂ + (g0(x) + Ψ(x)θ̂)u

]

+
∂
(
Lj−1
h

)
∂θ̂

˙̂
θ +

j−2∑
k=0

∂
(
Lj−1
h

)
∂u(k)

u(k+1) (12)

and

ωj =
∂
(
Lj−1
h

)
∂x

(
Φ(x) + uΨ(x)

)
(13)

The expression (11) is valid if the relative degree is one. The general expression for systems
with well-defined relative degree, i.e. 1 ≤ ρ ≤ n, has the form

y(j) = Ljh(x, θ̂, u, . . . , u(j−ρ)) = L̂jh(x, θ̂, u, . . . , u(j−ρ))

+ωj(θ − θ̂) (14)

with

L̂jh :=
∂
(
Lj−1
h

)
∂x

[
f0(x) + Φ(x)θ̂ + (g0(x) + Ψ(x)θ̂)u

]

+
∂
(
Lj−1
h

)
∂θ̂

˙̂
θ +

j−ρ−1∑
k=0

∂
(
Lj−1
h

)
∂u(k)

u(k+1) (15)

In other words, the time derivatives of the output are obtained by the application of the following
recursively defined operator

L0
h = h(x) (16)

Ljh :=
∂
(
Lj−1
h

)
∂x

[
f0(x) + Φ(x)θ + (g0(x) + Ψ(x)θ)u

]

+
∂
(
Lj−1
h

)
∂θ̂

˙̂
θ +

j−ρ−1∑
k=0

∂
(
Lj−1
h

)
∂u(k)

u(k+1) 1 ≤ j ≤ n

which also characterizes the control dependent nonlinear mapping

z = Ξ(x, θ̂, u, . . . , u(n−ρ−1)) =


y

y(1)

...
y(n−1)

 =


L0
h

L1
h
...
Ln−1
h

 (17)

Assumption 2.1 System (1) is locally observable, i.e. the mapping (17) satisfies the rank
condition

rank
∂Ξ(·)
∂x

= n (18)

in a subspace R1 ⊂ R0 ⊂ <n.

Assumption 2.2 System (1) is minimum phase in R1 ⊂ R0 ⊂ <n.
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For observable minimum phase nonlinear systems of the form (1), the general problem of
adaptively robustly tracking a bounded desired reference signal yr(t) with smooth and bounded
derivatives can be solved through the DAB-SMC algorithm summarized as follows:

Coordinate transformation

z1 := y − yr(t) = h(0)(x)− yr(t) (19)
zk := ĥ(k−1)(·)− y(k−1)

r (t) + αk−1(·), 2 ≤ k ≤ n

with

ĥ(k) =
∂ĥ(k−1)

∂θ̂
τk +

∂ĥ(k−1)

∂x

[
f0 + Φθ̂ + (g0 + Ψθ̂)v1

]

+
k−ρ−1∑
i=1

∂ĥ(k−1)

∂vi
vi+1 +

∂ĥ(k−1)

∂t
(20)

ωk =

(
∂ĥ(k−1)

∂x
+
∂αk−1

∂x

)(
Φ(x) + uΨ(x)

)
(21)

αk = zk−1 +

(
k−1∑
i=2

zi
∂ĥ(i−1)

∂θ̂
+
k−1∑
i=3

zi
∂αi−1

∂θ̂

)
ΓωTk

+
k−ρ−1∑
i=1

∂αk−1

∂vi
vi+1 +

∂αk−1

∂θ̂
τk +

∂αk−1

∂t

+
∂αk−1

∂x

[
f0 + Φθ̂ + (g0 + Ψθ̂)v1

]
+ ckzk (22)

τk = Γ
k∑
i=1

ωTk zk 1 ≤ k ≤ n− 1 (23)

Sliding surface
Define the sliding surface

σ = k1z2 + k2z2 + . . .+ kn−1zn−1 + zn = 0 (24)

with the design parameters ki, i = 1, . . . , n− 1, chosen such that the polynomial

p(s) = k1 + k2s+ . . .+ kn−1s
n−2 + sn−1 (25)

in the complex variable s is Hurwitz.

Parameter update law

˙̂
θ = τn = τn−1 + Γσ

(
ωTn +

n−1∑
i=1

kiω
T
i

)
(26)
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Dynamical adaptive SMC law

v̇1 = v2

v̇2 = v3

... (27)

v̇n−ρ =
1
∆

[
y(n)
r (t)− ∂ĥ(n−1)

∂t
− ∂αn−1

∂t

−
(∂ĥ(n−1)

∂θ̂
+
∂αn−1

∂θ̂

)
τn

−
n−ρ−1∑
i=1

(∂ĥ(n−1)

∂vi
+
∂αn−1

∂vi

)
vi+1

−
(∂ĥ(n−1)

∂x
+
∂αn−1

∂x

)(
f0 + Φθ̂ + (g0 + Ψθ̂)v1

)
−
n−1∑
i=2

(∂ĥ(n−1)

∂θ̂
+
∂αn−1

∂θ̂

)
ziΓ
(
ωTn +

n−1∑
i=1

kiω
T
i

)

+
n−1∑
i=1

ki
(∂ĥ(n−1)

∂θ̂
+
∂αn−1

∂θ̂

)
(τn − τi)

+
n−1∑
i=1

ki
( i−1∑
j=2

zj
∂ĥ(j−1)

∂θ̂
+

i−1∑
j=3

zj
∂αj−1

∂θ̂

)

−
n−1∑
i=1

ki(−zi−1 − cizi + zi+1)− κ
(
σ + β sign(σ)

)]
with

v1 = u; ∆ =

(
∂ĥ(n−1)

∂vn−ρ
+
∂αn−1

∂vn−ρ

)
where the ci’s are constant design parameters and Γ = ΓT > 0 is the adaptation gain matrix.
The control u is obtained implicitly as the solution of the nonlinear time-varying differential
equation (27). A complete description and proof of the DAB-SMC algorithm can be found in
(Rios-Boĺıvar et al., 1997; Rios-Boĺıvar, 1997) and a symbolic algebra design toolbox is available
(Rios-Boĺıvar and Zinober, 1997).

The stability of the closed-loop system is proved by considering the Lyapunov function

V =
1
2

n−1∑
i=1

z2
i +

1
2
σ2 +

1
2

(θ − θ̂)TΓ−1(θ − θ̂) (28)

whose time derivative is given by

V̇ = −zTQz − κβ|σ| (29)

where Q is a symmetric matrix with the following form

Q =


c1 + κk2

1 . . . κk1kn−1 κk1

κk2k1 . . . κk2kn−1 κk2
...

. . .
...

...
κkn−1k1 . . . cn−1 + κk2

n−1 −1
2 + κkn−1

κk1 . . . −1
2 + κkn−1 κ


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Noting that the determinants of the principal minors of Q are all positive, a sufficient condition
to guarantee that Q is positive definite is

|Q| =
[
− 1

4
+ κ(cn−1 + kn−1)

] n−2∏
i=1

ci

−1
4
κ
n−2∑
i=1

(c1 . . . ci−1k
2
i ci+1 . . . cn−2) > 0. (30)

Therefore, stability is guaranteed and asymptotic output tracking is achieved. Moreover, since
the condition σσ̇ ≤ 0 holds, a sliding mode is generated on the sliding surface σ = 0. Asymptotic
output regulation is achieved whenever the desired output yr is constant.

3 Dynamical Adaptive Backstepping Second-Order SMC

The Dynamical Adaptive Backstepping Second-Order SMC (DAB-SOSMC) algorithm is simply
an extension of the Dynamical Adaptive Backstepping (DAB) algorithm. The conditions on its
applicability are therefore the same as those on the DAB algorithm. The main advantages of
the DAB-SOSMC algorithm are the prevention of chattering, higher accuracy and a significant
simplification of the control law.

The DAB algorithm is extended to incorporate second-order sliding in the following way:
Suppose that we halt the DAB procedure at the calculation of the zn−1 error variable and use,
instead of zn,

y1 = zn−1 + czn−2 (31)

With this substitution

V̇ = −
n−3∑
k=1

ckz
2
k + f1(x, v, θ̂)( ˙̂

θ − τn−3) + (θ − θ̂)TΓ−1(− ˙̂
θ + τn−3)

+(1 + c2)zn−2żn−2 − cy1żn−2 − cẏ1zn−2 (32)

Because zn−1 is selected such that

żn−2 = f2(x, v, θ̂)(θ − θ̂) + f3(x, v, θ̂)( ˙̂
θ − τn−2)− cn−2zn−2 − zn−3 (33)

(32) can be rewritten as

V̇ = −
n−2∑
k=1

ckz
2
k + f̃1(x, v, θ̂)( ˙̂

θ − τn−2) + (θ − θ̂)TΓ−1(− ˙̂
θ + τn−2 − cΓzn−1ω

T
n−2)

−c2cn−2z
2
n−2 − cy1żn−2 − cẏ1zn−2 (34)

where

f1(x, v, θ̂) =

(
n−3∑
i=2

zi
∂ĥ(i−1)

∂θ̂
+
n−3∑
i=3

zi
∂αi−1

∂θ̂

)
f2(x, v, θ̂) = ωn−2

f3(x, v, θ̂) = f1(x, v, θ̂)

f̃1(·) is a suitable smooth function of its arguments, and IS-stability (Sontag, 1989) can be proved

with respect to y1, ẏ1, provided that they are bounded signals and that ˙̂
θ = τn−2− cΓωTn−2zn−1.
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If a way to steer y1 to zero in finite time can be found, the overall closed-loop error system
has the form

˙̃z = Ãz z̃ + W̃ (θ − θ̂) (35)
˙̂
θ = ΓW̃ T z̃ (36)

where z̃ = [z1, . . . , zn−1]T , the matrix Ãz has the following skew-symmetric form

Ãz =


−c1 1 0 . . . 0
−1 −c2 1 + %2,3 . . . %2,n−1

0 −1− %2,3 −c3 . . . %3,n−1
...

...
...

. . .
...

0 −%2,n−1 −%3,n−1 . . . 1 + %n−1,n−1


with

%i,j =

(
∂ĥ(i−1)

∂θ̂
+
∂αi−1

∂θ̂

)
ΓωTj , (37)

and W̃ is a suitable vector of length n− 1.

The skew-symmetric form of the matrix Ã is important for the stability of the system (35)-
(36), since the relation

Ãz + ÃTz = −2


c1 0 . . . 0
0 c2 . . . 0
...

...
. . .

...
0 0 . . . cn−1

 (38)

yields

V̇ = −
n−1∑
i=1

ciz
2
i (39)

with the quadratic Lyapunov function

V =
1
2
zT z +

1
2

(θ − θ̂)TΓ−1(θ − θ̂) (40)

By a proof analogous to that used in (Rios-Boĺıvar et al., 1995, 1997) for the DAB-system, it
can be proved that the stability of the overall system is guaranteed and that asymptotic tracking
is achieved.

Indeed, y1 = 0 can be considered as a sliding surface, i.e., σ(t) = y1(t) and ṡigma(t) = y2(t).
So, the second order subsystem directly involved in the sliding process is

ẏ1(t) = y2(t)
ẏ2(t) = k1(x, θ̂, u, . . . , u(n−ρ−1))− y(n)

r − cy(n−1)
r

+k2(x, θ̂, u, . . . , u(n−ρ−1))θ + θTk3(x, θ̂, u, . . . , u(n−ρ−1))θ

+

(
∂ĥ(n−2)

∂u(n−ρ−2)
+

∂α(n−2)

∂u(n−ρ−2)

)
un−ρ

(41)

With implicit symbol definitions, and setting χ = (x, θ̂, u, . . . , u(n−ρ−1), yr, . . . , y
(n)
r ), system (41)

can be rewritten as
ẏ1(t) = y2(t)
ẏ2(t) = H(χ) + β0(χ)w(t)

(42)
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with y2(t) not determinable because of the presence of uncertainties.
The following assumptions relevant to H(χ) and β0 = β0(χ) are made for the sake of sim-

plicity (actually more general cases can be dealt with via SOSMC, see (Bartolini et al., 1997)):

|H (χ)| < Hm (43)

0 < B1 ≤ β0 ≤ B2 (44)

Thus, taking into account (42)–(44), the problem of steering to zero in a finite time both y1(t)
and the unknown y2(t) (to attain the sliding regime on σ(t) = σ̇(t) = 0) can be associated with
the original control problem stated in Section 2.

In Bartolini et al. (1998) it has been proved that the control w(t) can be chosen as bang–bang
control (Kirk, 1970), switching between two values −WMax, +WMax. The classical switching
logic for a double integrator (H(χ) = 0, B1 = B2 = 1) is

w(t) =



−WMax

{
y1(t) > −1

2
y2(t)|y2(t)|
WMax

} ⋃
{
y1(t) = −1

2
y2(t)|y2(t)|
WMax

⋂
y1(t) < 0

}

+WMax

{
y1(t) < −1

2
y2(t)|y2(t)|
WMax

} ⋃
{
y1(t) = −1

2
y2(t)|y2(t)|
WMax

⋂
y1(t) > 0

}
(45)

This switching logic, instead of being based on the signs of y1(t) + (y2(t)|y2(t)|)/ (2WMax) and
y1(t), and therefore dependent upon both y1(t) and y2(t), can be expressed in terms of only
y1(t) which, by assumption, is available for measurement. Indeed, it is easy to verify that the
optimal trajectory is a sequence of two parabolic arcs. The second arc of the trajectory lies on
the switching line y1(t) + (y2(t)|y2(t)|)/(2WMax) = 0. The modulus of the y1(t) component of
the initial point of this second arc is equal to one half of the maximum modulus of the y1(t)
component of the points of the previous part of the trajectory (Bartolini et al., 1997).

Assume that the extremal value along each parabolic arc can be evaluated, and denote its
abscissa with yMax. Then, the previous considerations can be summarized by the algorithm
presented in Bartolini et al. (1998), briefly recalled here for the reader’s convenience.

Algorithm 1

i) Set α∗ ∈ (0, 1] ∩
(

0,
3B1

B2

)
.

ii) Set ymax = y1(0).
Repeat, for any t > 0, the following steps:

(a) If [y1(t)− 1
2ymax][ymax − y1(t)] > 0 then set α = α∗ else set α = 1.

(b) If y1(t) is extremal value then set ymax = y1(t).

(c) Apply the control law

w(t) = −αWMaxsign{y1(t)− 1
2
ymax}

Until the end of the control time interval.
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Algorithm 1 is equivalent to optimal control for the special case H[χ] = 0, B1 = B2 = 1,
y1(0)y2(0) > 0, α∗ = 1. Yet, it is valid also with H[χ] 6= 0, B1 6= B2 6= 1, y1(0)y2(0) not
necessarily positive, in the sense that it allows the origin of the y1(t), y2(t) state space to be
reached in a finite time. Indeed, in Bartolini et al. (1997) the following result has been proved.

Theorem 3.1 Given the state equation (42), with bounds as in (43)–(44), and y2(t) not available
for measurement, then, for any y1(0), y2(0) the control strategy defined by Algorithm 1 with
the additional constraint

WMax > max
(
Hm

α∗B1
;

4Hm

3B1 − α∗B2

)
(46)

causes the generation of a sequence of states with coordinates (ymaxi , 0) featuring the contraction
property |ymaxi+1 | < |ymaxi |, i = 1, 2, . . . . Moreover, the convergence of the system trajectory
to the origin of the state plane takes place in a finite time.

The convergence in a finite time of the sequence {ymaxj} implies the convergence to zero of
the phase trajectories, since in any time interval [tmaxj , tmaxj+1 ] the maximum value of |y2(t)| is
bounded by a function of

√
|ymaxj | and this latter becomes zero in a finite time (Bartolini et al.,

1997).
In summary, the procedure proposed to design the control for uncertain nonlinear systems

satisfying the mentioned assumptions can be expressed in algorithmic form as follows:

Algorithm 2

i) Apply the DAB algorithm until Step n− 1, computing z1, . . . , zn−1

(i.e. ĥ(1), . . . , ĥ(n−2), α1, . . . , αn−2);

ii) Design zn as y1 = zn−1 + czn−2;

iii) Apply Algorithm 1 to the system

ẏ1 = y2

ẏ2 = H(z, v) + β0(z, v)w(t)

where w(t) = u(n−ρ), z = [z1, . . . , zn−1, y1, y2], v = [u, . . . , u(n−ρ−1)],
H(·), β0(·) suitable functions to be upper bounded.

4 Comparative Example: Continuously Stirred Tank Reactor

Consider the following nonlinear third order dynamic model (see (Kravaris and Palanki, 1988))
of a Continuously Stirred Tank Reactor (CSTR) in which an isothermal liquid-phase, multicom-
ponent chemical reaction takes place

ẋ1 = 1− (1 +Da1)x1 +Da2x
2
2

ẋ2 = Da1x1 − x2 − (Da2 +Da3)x2
2 + u (47)

ẋ3 = Da3x
2
2 − x3

y = x3

with

• x1: normalized concentration CA/CAF of a species A

• x2: normalized concentration CB/CAF of a species B
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• x2: normalized concentration CC/CAF of a species C

• CAF : the feed concentration of the species A (mol ·m−1)

• u: the ratio of the per-unit volumetric molar feed rate of species B, denoted by NBF , and
the feed concentration CAF , i.e. u = NBF /FCAF

• F : volumetric feed rate (m3s−1)

• Da1 = k1V/F constant parameter

• Da2 = k2V CAF /F constant parameter

• Da3 = k3V CAF /F constant parameter

• V : the volume of the reactor (m3)

• k1, k2, k3: first order rate constants (s−1)

The system has a constant stable equilibrium point, for every constant volumetric feed rate
value u = U , which is located in a minimum phase region of the system (Sira-Ramı́rez and
Delgado, to be published)

X1 =
1 +Da2X

2
2

1 +Da1

X2 = (1 +Da1)

−1 +
{

1 + 4
(
U +

Da1

1 +Da1

)(
Da2 +Da3 +Da1Da3

1 +Da1

)} 1
2

2 (Da2 +Da3 +Da1Da3)

 (48)

X3 = Da3X
2
2

The operating region of the system is, of course, the strict orthant in <3, where all concentrations
are positive. In other words,

χ = {x ∈ <2, s.t. xi > 0 for i = 1, 2, 3}

We assume that the constant parameters Da1, Da2 and Da3 are all constant but unknown.
Thus, system (47) can be rewritten as

ẋ1 = 1− x1 + ϕT1 (x1, x2)θ
ẋ2 = −x2 + u+ ϕT2 (x1, x2)θ (49)
ẋ3 = −x3 + ϕT3 (x2)θ
y = x3

with θ = [θ1 θ2 θ3]T = [Da1 Da2 Da3]T the unknown parameter vector and

ϕT1 = [−x1 x2
2 0] ; ϕT2 = [x1 − x2

2 − x2
2] ; ϕT3 = [0 0 x2

2]

Both the DAB-SMC algorithm and the DAB-SOSMC algorithm can be applied to system (49)
to synthesize a dynamical adaptive controller for its robust regulation.
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4.1 DAB-SMC algorithm

Applying the DAB-SMC algorithm, we synthesize a dynamical adaptive SMC compensator for
the regulation of system (49) using the Symbolic Algebra DAB-SMC MATLAB Toolbox (Rios-
Boĺıvar and Zinober, 1997). This compensator is characterized by:

Coordinate transformation

z1 = y −X3 = x3 −X3

z2 = −x3 + ϕT3 (x2)θ̂ + c1z1 (50)

z3 = α(x, θ̂) +
∂ϕT3
∂x2

θ̂u

Sliding surface
σ = k1z1 + k2z2 + z3 = 0

Parameter update law

˙̂
θ = τ3 = τ2 + Γσ(k1ϕ3 + k2ω2 + ω3) (51)

= Γ
[
z1ϕ3 + z2ω2 + σ(k1ϕ3 + k2ω2 + ω3)

]
with

ωT2 = (c1 − 1)ϕT3 (x2) +
∂ϕT3
∂x2

θ̂ϕT2 (x1, x2)

ωT3 =
∂α

∂x1
ϕT1 (x1, x2) +

( ∂α
∂x2

+
∂2ϕT3
∂x2

2

θ̂u
)
ϕT2 (x1, x2)

+
∂α

∂x3
ϕT3 (x2) (52)

α(x, θ̂) = z1 − (c1 − 1)x3 −
∂ϕT3
∂x2

θ̂x2 + ωT2 θ̂

+ϕT3 Γ(z1ϕ3 + z2ω2) + c2z2

Dynamical adaptive SMC law

u̇ =
1

∂ϕT3
∂x2

θ̂

[
− (k2 + z2)ϕT3 (τ3 − τ2)− k1(−c1z1 + z2)

−ωT3 θ̂ − k2(−z1 − c2z2 + z3)− ∂α

∂x1
(1− x1)

−
( ∂α
∂x2

+
∂2ϕT3
∂x2

2

θ̂u
)
(−x2 + u) +

∂α

∂x3
x3

−
(∂α
∂θ̂

+ u
∂ϕT3
∂x2

)
τ3 − κ(σ + βsign(σ))

]
(53)

where Γ = ΓT > 0 is a diagonal matrix containing the adaptation parameter gains.
Finally, by satisfying the stability condition (30)

|Q| = [− 1
4

+ κ(c2 + k2)]c1 −
1
4
κk2

1c2 > 0

the output y = x3 asymptotically converges to the desired value X3.

2371

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99)  Haifa, Israel - June 28-30, 1999



4.2 DAB-SOSMC algorithm

The combined DAB-SOSMC algorithm can be applied to synthesize a dynamical adaptive dis-
continuous controller for the robust regulation of system (49).

Coordinate transformation

z1 = y −X3 = x3 −X3

z2 = −x3 + ϕT3 (x2)θ̂ + c1z1 (54)

Sliding surface
y1 = σ = z2 + cz1 = 0

Auxiliary system

y1 = z2 + cz1

y2 = (c− 1 + c1)
(
x3 − ϕ3

T θ
)

+
∂ϕ3

∂x2

T (
−x2 + u+ ϕ2

T θ
)
θ̂ + ϕ3

T ˙̂
θ (55)

Parameter update law

˙̂
θ = τ2 = τ1 + Γ(−cz2ϕ3) (56)

= Γ
[
z1ϕ3 − cz2ϕ3

]
where Γ = ΓT > 0 is a diagonal matrix containing the adaptation parameter gains.

Dynamical adaptive SOSMC law
Using Algorithm 1

ẇ = −αWMaxsign
{
y1 −

1
2
y1max

}
(57)

Algorithm 1 guarantees y1 and y2 to be bounded and dependent upon y1(0) and y2(0) (Bartolini
et al., 1998). It is always possible to choose c1, c in such a way that V̇2 < −c1z

2
1 − cz2

2 during
the reaching phase, obtaining V̇2 = −(c(c1c+ 1) + c+ c1)z1 on the intersection of the manifolds
described by the equations y1 = 0, and ẏ1 = 0. This guarantees that z1 → 0, and z2 → 0.
Moreover, y1 (which replaces the z3 error variable of the pure DAB algorithm) tends to zero in
finite time.

4.3 Simulations

Computer simulations were performed using both the DAB-SMC and DAB-SOSMC designed
control laws for the robust regulation of a CSTR with the following “unknown” parameters

Da1 = 3.0 ; Da2 = 0.5 ; Da3 = 1.0

The desired equilibrium, corresponding to a constant value of u given by U = 1, is obtained as

X1 = 0.3467 ; X2 = 0.8796 ; X3 = 0.7753
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whilst the design parameters for the DAB-SMC law were selected to be

c1 = 2 , c2 = 1 , c3 = 2 , Γ = 2I3 , κ = 2 , β = 1 , k1 = 1

and for the DAB-SOSMC law

c1 = 2 , c = 1 , Γ = 2I3 , WMax = 500

Fig. 1 shows the DAB-SMC controlled CSTR output responses, whilst Fig. 2 depicts the DAB-
SOSMC controlled output responses. It can be seen that the DAB-SMC controlled responses
exhibit good transient performance to the equilibrium point, whilst achieving parameter conver-
gence and very small control chatter. The DAB-SOSMC controlled responses exhibit good tran-
sient performance but only output tracking of the system can be guaranteed, i.e. x3 → 0.7753
as t increases, but the x1 and x2 states do not tend to the equilibrium values corresponding
to U = 1. The overshoot transients of the states x1, x2 and x3 are much larger for SOSMC.
However, in comparison to the DAB-SMC algorithm, the DAB-SOSMC algorithm removes chat-
tering completely from the control law and makes use of a simpler control, achieving a significant
reduction in the number of computations.
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Figure 1: DAB-SMC Controlled responses of the Isothermal CSTR.
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Figure 2: DAB-SOSMC Controlled responses of the Isothermal CSTR.

5 Conclusions

In this paper two different combined algorithms for the control of non-triangular nonlinear sys-
tems with unmatched uncertainties have been presented: the Dynamical Adaptive Backstepping-
SMC (DAB-SMC) algorithm, based upon a combination of dynamical input-output linearization
and the adaptive backstepping algorithm with tuning functions; and the Dynamical Adaptive-
Second Order SMC (DAB-SOSMC) algorithm, based upon an extension of the DAB algorithm
which combines the DAB algorithm with higher order sliding and bang-bang control. The ap-
plication of both of these combined algorithms to a nonlinear continuous chemical process has
also been presented. The mathematical model satisfies the minimum phase and observability
conditions which are stringent conditions for the applicability of these control design approaches.
Since the relative degree of the example is less than the corresponding system order, the de-
signed compensators are dynamical, i.e. derivatives of the control input are involved. Both the
DAB-SMC and SOSMC laws are synthesized in a systematic manner and the stability is proved
in both cases by using a quadratic Lyapunov function. From the computer simulations, it can
be seen that the adaptively controlled responses of these two approaches exhibit good transient
performance. The DAB-SMC algorithm exhibits only small control chatter and guarantees pa-
rameter convergence. The DAB-SOSMC algorithm, in contrast, only guarantees output tracking
but does remove chattering completely from the control law.
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