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Abstract

In this paperH,, control of high index and non-regular linear descriptor systems is addressed.
Based on a generalization of the bounded real lemma (BRL) to index one systems, all controllers
solving theH ., control problem can be characterized via biaffine matrix inequalities (BMIs). These
inequalities imply a certain structure of candidate matrix solutions. Making use of this structure,
standard linear algebra tools can be used in order to show the equivalence of the BMI synthesis
conditions to a numerically appealing characterization of the solution offthecontrol problem
via linear matrix inequalities (LMIs). We also address the computation of full- and reduced order
controllers.

1 Introduction

Descriptor systems (sometimes also referred to as Differential-algebraic-equation (DAE), singular or
semistate systems) describe a broad class of systems which are not only of theoretical interest but also
have great practical significance. Models of chemical processes for example typically consist of differen-
tial equations describing the dynamic balances of mass and energy while additional algebraic equations
account for thermodynamic equilibrium relations, steady-state assumptions, empirical correlations, etc.
(Pantelidest al, 1988; Kumar and Daoutidis, 1997). In mechanics descriptor system descriptions, that
are typically of index less or equal than three, result from holonomic and non-holonomic constraints
(Schipphaus, 1995). Also in electronics and even in economics descriptor descriptions are frequently
encountered (Luenberger, 1979).

Descriptor systems are able to describe a system behavior that cannot be captured by “non-descriptor”
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systems (i.e. ssystems governed only by differential equations) (Verghede 1981). Therefore in-

dex reduction techniques (i.e. reduction of a descriptor description to an ODEs (Parethtle988))
necessarily are connected to a loss of information. Due to this fact in recent years much work has been
focused on analysis and design techniques for descriptor systems (see (Campbell, 1980; Dai, 1989)). For
linear systems many of the standard design techniques for non-descriptor systems have been extended
to descriptor systems. Based on a generalizatiof-spectral factorization (Greeet al., 1990) also

H, controller design for descriptor systems was established recently (Takahal994). However the
approach in (Takabat al., 1994) is restricted to the so called DGKF assumptions (Deykd., 1989).

These assumptions, that are rather restrictive for practical applications, were overcome in (Masubuchi
et al, 1997) by means of a Riccati inequality approach.

In our paper we present an elementary linear algebra approach to the synthesis problem, which is almost
completely based on the equivalence (Skeébal., 1998)

pPrupPiT < 0

QTLHQTLT < 0 (1)

I+ PXQ+(PXQ)"<0 < {
for matricesII = IIT € R™™", P € R™™, Q € R*", X € IR™**. Here P1 denotes a matrix
of maximal full row rank such thaP-P = 0, i.e. the rows ofP+ represent a basis of the left null
space ofP. This approach reveals the similarities and differences betwggrcontrol of descriptor
systems and the “classical” LMI approach towafds, control of non-descriptor systems (Gahinet and
Apkarian, 1994; Iwasaki and Skelton, 1994). Especially this approach provides the possibility to discuss
the existence of reduced order controllers for descriptor systems.
The paper is structured as follows: Firstly the necessary background on descriptor systems is provided
and a characterization of the aim Hf,, control design for descriptor systems, i.e. an analysis result, is
given. Then, in the main part of the paper, the LMI conditions for the existence of a sub-optimal output
feedback controller in descriptor form are derived. These conditions are constructive in the sense, that
their solution transforms the (nonlinear) analysis conditions for the closed loop system into numerically
tractable LMI conditions for the controller matrices.

2 Linear descriptor systems and a generalized version of the bounded real
lemma

We consider the descriptor system
Ex(t) = Az(t) + Bw(t), y(t) = Cx(t) 2)

with descriptor variable:(t) € IR"*, input variablew(t) € IR™, output variabley € IR"v, constant
guadratic matrices!, F, and constant matricd3, C' of compatible dimension.

In contrast to standard linear systems with= I, system (2) withrank(E) < n, may have no solution,

one solution, or even multiple solutions. In general the solutions exhibit impulsive behavior (i.e. are
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generalizedsolutions (Doetsch, 1971)) even if the inpwt-) is continuous (Dai, 1989). A necessary
and sufficient condition for the existence and uniqueness of a solution is, that the g8neilA is
regular, i.e. det(sE — A) # 0 (Dai, 1989). Regular descriptor systems are tersiagbleif {s|s €
C,det(sE—A) = 0} C ¢~ (Dai, 1989). If the pencitE — A issingular, i.e.det(sE — A) # 0 it can be
shown (Gantmacher, 1959) that the unforced-{ = 0) descriptor system admits non-trivial solutions

to the homogeneous initial value problem. Therefore the following reformulation of the term “internal
stability” seems natural:

Definition 2.1 A descriptor system is said to heternally stableif it is regular, stable, and has no
impulsive solutions.

Internal stable descriptor systems are system equivalent to asymptotically stable non-descriptor systems
(Gantmacher, 1959). Therefore thk, norm of internal stable systems (2) can be defined agfthe

norm of the equivalent non-descriptor system. However, analysis of (2) by a two step procedure, namely
firstly to establish internal stability and then to compute Ehg norm of the associated non-descriptor
system, is complicated and furthermore such an procedure cannot be applied to synthesis of descriptor
systems since the open loop description may be unstable or even singular. For this reason we derive a
simple characterization of internal stable descriptor systems (2) witfi.,amorm bound:

Proposition 2.1 The system (2) is internally stable and the transfer matiixwith T (s) := C(sE —
A)~'Bis H., norm bounded, i.6|Tx|| < v for a giveny > 0, if and only if there exists a matriX
such that the matrix inequalities

ATX + XTa XTB C7T
E'X =X"E>0, BupcX):= BTX —~I 0| <0 (3)
C 0 —~I

hold true.

Remark. For a given system (2) the inequalities (3) constitute analysis LMIX inDue to the (1,1)
element inB4 5 ¢1(y, X) the matrixX is always non-singular. Wity = I andETX = XTE > 0

we getX = XT > 0. Therefore Proposition 2.1 contains the bounded real lemma for non-descriptor
systems (Scherer, 1990) as special case.

Proof. We only show sufficiency here. The lengthy proof of necessity can be found in (Rehm and
Allgdwer, 1998a).

Assume (3) holds true for some mattkk. By means of a Schur complement argument (Beyal.,

1994) B4 p,cp(7, X) < 0is equivalent to
col'[t o][c o
v <0 4)
0 I| |0 —~I||0 I

In view of the Weierstrass canonical form (Gantmacher, 1959) of a descriptor system we frequently use the term “index
one system” instead of “regular system without impulsive solution”.

ATX+XTA XTB
BTX 0
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The (1,1)- entry in (4) impliesAT X + XTA + %CTC < 0anddueto (3)we gedTX + XTA <0,
ETX = XTE > 0. These inequalities imply internal stability of (2) (Masubuetal,, 1997, Lemma 2).
Now definey(¢) := ¢TET X ¢. Differentiation along trajectories of (2) renders

T
ATX+XTA XTB

BTX 0

o)) = € (BT xew) + €7 ()X T Bé() = [f 9

dt w(t)

Together with (3) (pre- and post-multiplied k" (¢), w™ (t)] and {i((?)} respectively) and (2) we derive

d

—V(&(t)) +

T . .
! z(t)] F 0 ] [zi(t)] <o, with equality for

0 —AI| |wi(t) w(t) =0, z(t) = 0.

Integration fromt = 0tot = T with T > 0, £(0) := 0 together with¢ " (T)ET X £(T) > 0 renders
fOT |2]|? — 7?||w]||? dt < 0, i.e. the time domain condition for af., norm bound. O

In the following section we will use this analysis tool in order to derive necessary and sufficient condi-
tions for the existence of-@asuboptimal controller.

3 The H,, control problem for descriptor systems

We consider a generalized plant descripfion

Ex(t) = Az(t)+ Biw(t)+ Boul(t) (5)
T: Z(t) = Cla:(t) + an(t) + Dlzu(t)
y(t) = CQ:B(t) + DQl’w(t) (5)

with x(t) € R™, w(t) € R", uw € R"™, z(t) € IR"*, andy € IR" denoting the descriptor
variables, the external input variables, the control input variables, the external output variables, and the
measurement variables, respectivélyand A are square constant matrices wherexplicitly is allowed

to be singular, i.erank(E) =: r, < n,. The remaining matrices are constant matrices of appropiate
dimensionrank £ = r < n. By means of the auxiliaray variables (¢), z2(t), x3(t)

x1(t) = x(t)
xz(t) = an(t) + DuU(t) (6)
333(75) = Dgl’w(t)
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it is always possible to reformulate (5) as

E 0 0 ibl A 0 0 I Bl BQ
0 0 0 i'BQ =10 -1 0 To| + D11 w + Dlg u
0 0 0 _j33 0 0 —1I I3 D21 0
(7)
i 1 Ty
z=|Ci 10| |m|  y=|C 0 1|2,
_ 3 3

i.e. as a system (5) with new descriptor variable= [z, 1, z3]T andD1; = 0, D15 = 0, Dg; = 0. In

the following we therefore assume a plant description (5) Mith= 0. Also without loss of generality
(Rehm and Allgwer, 1998Db) it is possible to assume tlhats given as

I.. 0
E=|"7" . 8
i ®
The control problem is to find a dynamic output feedback contréiler
/ = ¢
K - EKC(t) AKC(t) + BKy(t)’ C(t) €R ) EK _ ITK 0 Tk < ne (9)
u(t) = Ck((t) + Dgy(t) 0 0

with Ex, A € IR™*"¢ (i.e. the controller is in descriptor formBx € IR™<*™, Cx € IR™*"<, and
Dy € IR™*™ such that the closed loop system

Ea(t) = Au€(t) + Baw(t), &(t) € RM=+n<)

z(t) = Caé(t) (10)
with
E 0 A+ ByDgCs BsC B
Ecl = ’ c — 2R 2K ) Bcl = ! ) Ccl = |:Cl Onz ><nC:|
0 EK BKCQ AK Ongxnw

(11)

is internally stable and such that thg,, norm of the closed loop is bounded by a given numbper 0,
i.e.[|Gulloo < v with Gu(s) == Ca(sEaq — Aa) ") B

In view of the bounded real lemma for descriptor systems (Proposition 2.1) the problem can be re-
formulated as the problem to find matricég, Bk, Ck, Dy, andX such that the inequalities

E}X =XTE >0, (12)
B[AclvBclaCcl}(’y’ X) < 0 (13)
hold true. In a sequence of propositions we will now establish, thahdméinearinequalities (12),
(13) are equivalent to certain LMI conditions. For simplicity of notation we assume henceforth, that the
number of descriptor variables and the number of dynamic modes of plant and controller are equal (i.e.

ng = n¢, rp = 1¢). The necessary modifications for the examination of reduced order controllers are
discussed in connection with the LMI synthesis conditions.
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Proposition 3.1 Consider a plant (5) withD;; = 0, a matrix E' as in (8) and a controller as in (9).
Define matrices

- T
A 0 0 B 0 I P= [B 0 0}7
AO = s = ’ ) = N (14)
0 0, L, 0 C; 0] Q= [c 0 o} .
Then the inequalities (12), (13) equivalently can be written as
EYx =xTE, >0, PtortT <0, QTwQ™T < 0, with (15)
A X1+ XxTAY By X7 Tcl AFX +XxT4A) X'B, C}
P = BY —I 0 , U= BYx —I 0 |. (16)
C'CZX_l 0 —~I Cy 0 —~I

Proof. We make use of the fact that the controller data occurs in (13) in an affine way, i.e. (13) can be
written as

1. B X'B
U+ Px0Q + (Px0Q)" <0, with := [°5X “FK| pe=| 0 |. (17)
Cx Dg
0
With the explicit expression
X 0 O
Py =P'X;T,  X;:=lo 1 o
0o 0 I
of Pi+ and the application of (1) to (17) the claift-® P+t < 0, QT w Q™1 < 0 follows immediately
from® = X; TwXx; O

Although we removed the controller matrices in this characterization, it is also not computationally
attractive since the inequalities (15) contain the malifirs well as the invers& —!. This problem can

be overcome by an explicit parameterizatiomdand X —!. A possible solutionX of (15) is necessarily
non-singular andz} X = XTE,, implies thatX andX ! can be written as

Ry 0 |M; O
1 |3 Rq| M3 My Sy =8 L,=LT
9 X - T I T T (18)
M 0K O =Ry K =Kj
M7 Mg| K3 Ky

andS;, Ry € IR™*"™, Sy, Ry € R(e=rp)x(na=rp) L1, K1 € R Ly, Ky € IR ¢—x)*(¢—"K) gnd
the other sub-matrices of appropriate dimension. Due to this partition ahd X ! a refinement of
(15) is possible:

Proposition 3.2 Assume the existence of matricésX ~! as in (18) such that (15) holds true. Define
Ajy € R™PXTr,

, Cr= [Cn 012} , Bune R, (19)
Cy1 € R™""r.

A A
Az Ago

By
Bis

A =: , B =:
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ThenP+dPLT <0, QT QLT < 0 equivalently can be written as

1 1T
jm By| [ARy+RIAT RIC, B jw By P
22 22 1
C1R —~I 0 < 0, Rp:= 20
Co 0 1To Y Co 0 0 0 0 (20)
0 0 By 0 =] | o o
= (I)()
T 1 T 1T
| [ATsorsfA sgB oF) [ o ¢ 0
22 BT T 22 <0, So:=1|"""]. (1
0 0 1 0 =] | ¢ o
= \I/()
Proof. We introduce the shorthand notation
S N, R M,
R::[R R},S::[s S],andX: “looxl= u 22
l 3 4 l 3 4 Nl Ml K ( )
for the indicated block partition in (18). The matricésV in (16) then become
AR+RYAT AM, By RTCY ATS+8TA AT™N, STBy Of
MIAT Mrct NFA 0 NIB; 0
o= v 0 0 MGl g " . w st . (@3)
ClR ClMu 0 —’)/I Cl 0 0 —’)/I
PL andQT+ can be expressed as
By 0 0 0 CIt 0 0 0
Pr=10 o0 o0 I|, QY™=]0 o1 0. (24)
0 010 0 0 0 I
Due to the zero column in (24) and (23) the inequalities in (15) are equivalent to
By 0 0] [AR+RTAT RT'CT By | [BI+ 0 0
0 I 0 CiR —~I 0 0 I 0| <O (25)
0 0 I Bf 0 I 0 0 I
= ¢’
cit 0 o] [ATS+STA ST™By Cf| [c3tT 0 0
0 I 0 Bf'S —~I 0 0o I of <o. (26)
0 0 I o 0 —~I 0 0 I

= v
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With Py := [B},0,0]T and Py := [C»,0,0]" the inequalities (25), (26) can be written as
Pyd' Pt <0, PV Pt <o. (27)
If we additionally introduce)s := [I,,,,0,0] andQy := [I,,, 0, 0] the inequalities
Qe 'Qp " <0, Qu QYT <0 (28)
are trivially fulfilled. Together with (1) the inequalities (27), (28) then become
33,6 : @' + PpfBQs + (PofQa)T <0, ¥+ PydQy + (PyéQy)™ <0 (29)
with matricess, ¢ of suitable dimension. Now we can spiity from &’ (and analogous fo¥):
' = Do + [Aly, Az, C, 0] R[1,0,0] + [1, 0,01 R} [Af, Agy, C'ly, 0] (30)

In conjunction with the corresponding inequality in (29) we end up with

T T T T R R T T T T
D+ Mz Am Gl OF B gy o o)t | (e A2 G2 O g (3
B 0 0 16} By 0 0
A final application of (1) renders the proposition. O

The inequalities (20), (21) are linear inequalitiesAn, Rs. However, these inequalities are based on
the assumption that matricés, X ! as in (18) actually exists. This problem partly is addressed in the
following proposition.

Proposition 3.3 A parameterization of, X ! as in (18) withE} X = XTE,, > 0 is possible if and
only if

S I

>0, S51>0, Ri >0 hold true. (32)
I R

In order to proof the proposition we need a basic matrix dilation result:

Proposition 3.4 (Gahinet and Apkarian, 1994) Suppose that; = X{,Y1; = Y5 € R™™ with
X11 > 0, Y71 > 0 are given. Let be a non-negative integer. Then there exists matri¢gse= IR"*",
Xgp = X, € R™", and

—1
X X Xn X Vi 7
Pl I R Dl B e (33)
. o xy T Xy I
ifand only if | >0, and rank |~ <n+r. (34)
I Y 11
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Proof.(of Proposition 3.3) ¢ Fro? X = X E,, we getthe parameterization (18). Duetak(EL X) =

T + 1, ESX > 0 is equivalent to

Sl N1 R1
NE Li||MF

My
Ky

N

Sl N1

1

(32). The rank condition in (34) is always fulfilled since we have= n, = r« =: r.

> 0. The parameterization (18) furthermore implies

= I, i.e. Ry > 0. Application of Proposition 3.4 then renders the inequalities

a

Theorem 3.1 Consider a plant (5) withD;; = 0, a matrix £’ as in (8) and a controller as in (9). The
H, control problem to render the closed loop system (10) internally stable Mithnorm ||G || < 7,
~ > 0 has a solution if and only if the linear matrix inequalities (20), (21), (32) have a solutigrb.

Proof. The theorem is a straightforward consequence of Proposition 3.1, 3.2, and 3.3 except one tech-
nical detail: in Proposition 3.1 the decoupled LMIs (20), (21) are derived under the nonlinear coupling
condition due to (18). The coupling betwegn, R; is captured by the LMIs from Proposition 3.3 but

for the remaining submatrices in (18) the point is open. An analysis of the proof of Proposition 3.1
shows, that the original inequality conditions due to the generalized bounded real lemma also affects the
submatriced;, S; (due to (30) and the corresponding inequality $gy. However, the reformulation

XTIy = Iy,

H1 =

Ry 0L, O
R3 Ry| 0 In,,
ME O[O0 0
M7 M| 0 0

HQ:

L, 0 |5 0
0 In,+,|S3 S
0 0 |[NTO
0 0 ‘N7 Ng

(35)

of (18) shows, that any restriction &, .S; does not affects the existence of a mafXi>such that (18) or
(35) holds true: IfR;, S;, i = 1(1)3 are given, we always can choose the matritgsN;, i € {1,7,8}
such thatll;, I, and thereforeX are non-singular, i.e. such that (18) holds true.

4 Controller Computation

|

Theorem 3.1 is an existence result which do not address the computation of the controller itself. This
issue is now discussed in some detail. Full order controller design consists of the following steps:

a) Solution of the LMIs (20), (21), (32) faR;, S;.

b) Parameterization of the LMIs (25), (26) witty, S7 from a) and solution foz;, .S;.

c) The matricesV;, M; in 11y, II, in (35) must be chosen such that, II; are non-singular. The
matrix X then can be computed a8 = TT,1IT; .
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d) With aknownmatrix X the generalized bounded real lemma inequdity, 5., c.,(7, X) < 0 for
the closed loop system is a linear inequality with respect to the controller variables. This inequality
can be solved by efficient numerical methods or, due to its special structure, by explicit formulas
(Skeltonet al., 1998).

If we want to consider reduced order controllers ¢e< r,) some minor modifications in the presented
proof are necessary: Additionally to the LMI conditions in Theorem 3.1 we then have to consider the
(non-convex) rank condition (34) from Proposition 3.4, i.e.

Sy 1
rank <r,+ r.
[I RJ -

With respect to controller computation the matriéés M, then must be chosen such thag, I1; have
full row rank.

5 Conclusions

We considered thé/., control problem for descriptor systems, that are allowed to be of high index and
even can be non-regular. Based on a generalization of the bounded real lemma we provided a novel
algebraic approach to the synthesis problem. The resulting LMI existence conditions parallels the ones
given in (Gahinet and Apkarian, 1994) for the non-descriptor case. Based on the synthesis conditions a
numerically reliable computation of the controller matrices is possible. Also the reduced order controller
case is treated within the presented framework. The controller renders the closed loop internally stable
and imposes ait/, norm constraint on the input/output behavior of the closed loop system. In future
work the similarities to the non-descriptor case may be used in order to translate the presented approach
to discrete time descriptor systems.
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