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Abstract

In this paper a special class of systems of ordinary differential equations is considered.
This class is particularly common both in biological and medical field and is denoted as
S-Systems.

The problem we deal with is the estimation of a set of unknown parameters given a set of
observational data. The procedure we now propose arises from the requirement to overcome
the main difficulties typical of the iterative gradient based methods. The main idea of the
method is that of approximating each state variable by a fitting process and then splitting
the overall estimation problem into a set of simpler independent problems, thus lessening the
difficulty concerning great parameter vector dimensions. Each subproblem reduces to the
minimization of a differential residual and in particular cases it simply requires the solution
of an overdetermined algebraic linear system.

1 Introduction

Various differential equation models have been proposed in the literature to represent popula-
tion growth in biology, with different degrees of complexity and sophistication, but a canonical
approach to complex system modeling, namely the S-System approach, has recently gained great
interest and looks particularly attractive (Voit, 1991). The approach is based on a formalism for
the analysis of complex biological systems called the Power Law Formalism. Such a formalism,
resulted from a combination of ideas stemming from biochemistry and network theory, proved
to be particularly suitable for expressing synergetic and saturation phenomena in biological
systems, from which the term S-System derives. It assumes the following regularly structured
system of nonlinear ordinary differential equations as modeled in the S-System canonical form:

ẋi(t) = αi

n∏
k=1

xk(t)gik − βi
n∏
k=1

xk(t)hik , i = 1, · · · , n, t ∈ [t0, tf ]. (1)

It represents the dynamics of a system in terms of the time derivatives of the components xi > 0
relevant to the system behaviour, which are expressed as the difference between all the influences
that increase xi and all the influences that decrease xi. More specifically, referring to dynamic
growth models, the two right-hand side terms of (1) represent the metabolic and catabolic terms
respectively.
∗Email: seatzu@diee.unica.it.
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The S-System canonical form (1) is only one of the many possible realization within the
power-law formalism. A particularly suited canonical form for dynamic growth models, which
presents monotonicity in rates (Torsella et al., 1991), is the Half-System canonical form:

ẋi(t) = γi

n∏
k=1

xk(t)lik , i = 1, · · · , n, t ∈ [t0, tf ] (2)

where xi > 0 and γi and lik are real constants ∀i, k.
All different types of canonical forms can be reduced to each other by means of proper

recasting techniques (Voit, 1991).
The constant parameters αi, βi, γi, gik, hik, lik, concisely introduced above, are called state

parameters and their estimation is crucial for guaranteeing reliable quantitative representation
of the dynamic behaviour of the real systems modeled, when resorting to computer simulation.

In this paper we deal with the problem of estimating these parameters when a set of obser-
vational data on state variables is available.

The most popular estimation methods consist in the minimization of an integral residual
with respect to the unknown parameters. The integral residual is defined as the sum of the
square differences between the solution of the system of ordinary differential equations (ODE’s)
at a discrete set of points and the sampling data. Such a minimization is generally performed
recurring to iterative gradient based algorithms (Bard, 1974; Corriga et al., 1997; Varah, 1982;
Voit, 1996). Even if in some cases they produce satisfactory results, all these methods present
the following drawbacks: the convergence is local and a criterion of effective choice of the
initial parameter vector does not exist; when the parameters are constrained, the computational
complexity of the iterative methods excessively increases; they do not allow to simplify the
problem in case of linearity with respect to parameters; since the computational complexity of
such methods excessively increases with the number of unknown parameters, they can only be
useful when solving problems with small dimensions.

The method we now propose aims to overcome the difficulties mentioned above. It is inspired
by the identification procedure proposed by Varah in (Varah, 1982). It mainly consists of two
phases. In the first one observational data are fitted in a finite-dimensional space which provides
both an evaluation of the initial state and a data noise filtering. Since fitting functions are
known analytically, they can be differentiated and evaluated, together with their derivatives,
in an arbitrary set of time instants in [t0, tf ]. At this point, the whole estimation problem
can be decoupled into n independent estimation problems: one for each state equation. The
i-th unknown vector of parameters can then be evaluated by minimizing a differential residual
defined as the sum of the square differences between the two terms of the i-th state equation
when state variables are replaced by fitting curves evaluated in an arbitrarily chosen set of time
instants.

The main advantages of the proposed estimation method can be summarized as follows: it
enables us to split the overall estimation problem into a set of simpler independent problems
with reduced parameter vector dimensions, thus lessening the difficulty of large scale problems;
it is also possible to take into account the parameter constraints with a modest computational
effort; whenever the model can be linearized with respect to the unknown parameters, as al-
ways happens in the Half-System case, the estimation problem reduces to the solution of an
overdetermined algebraic linear system.

In order to test the performance of the proposed method with respect to the prediction
reliability, several simulations have been carried out both on Half-Systems and S-Systems.

B-splines have been considered for fitting.
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The robustness of the numerical procedure has also been tested affecting data with different
noise levels.

The paper is structured as follows. In Section 2 the fitting based method is described in
detail. The results of numerical simulations are presented in Section 3. In the Appendix a
brief review of B-splines, used as basis functions for data fitting, is firstly given. Finally, the
Nelder-Mead simplex algorithm, used for multivariate minimization, is summarized.

2 The fitting based method

Let pi = (αi, gi1, · · · , gin, βi, hi1, · · · , hin)T , i = 1, · · · , n, be the vector of unknown parameters
relative to the i-th ordinary differential equation of system (1). Furthermore, let yi ∈ IRN ,
i = 1, · · · , n, be a data vector corresponding to the i-th state variable xi. The problem is to
determine the parameter matrix

P = [p1,p2, · · · ,pn] =



α1 · · · αi · · · αn
g11 · · · gi1 · · · gn1
...

...
...

...
...

g1n · · · gin · · · gnn
β1 · · · βi · · · βn
h11 · · · hi1 · · · hn1

...
...

...
...

...
h1n · · · hin · · · hnn


,

such that the associated solution {x1(t,P ), · · · , xn(t,P )} of system (1) is in good agreement
with data matrix Y = (y1, · · · ,yn).

The estimation parameter method we propose consists in the following two phases:

1. Choose a finite-dimensional space Φ = span{ϕ0, ϕ1, · · · , ϕm}, which approximates each
state variable. Then, using data matrix Y , a fitting for each state function is performed in
Φ providing both an evaluation of the initial state and a data noise filtering. It associates
an analytical function ψi to each data vector yi, i = 1, · · · , n.

2. Take a set of M > 2(n+ 1) values t0 ≤ t̄1 < t̄2 < · · · t̄M ≤ tf and minimize in R2(n+1) the
n following differential residuals:

RD(pi) =
M∑
r=1

[ψ̇i(t̄r)− fi(t̄r, ψi(t̄r,pi))]2, i = 1, · · · , n, (3)

where fi(·) is the right hand side of the i-th equation of system (1) in which xi(t) and ẋi(t)
have been replaced by ψi(t) and ψ̇i(t) respectively, both evaluated at t̄r.

As will be shown in detail when dealing with the numerical simulations, B-splines (de Boor,
1978) provide a valid tool for state variable fitting. Note that other basis functions, in particular
Legendre polynomials (Isaacson, 1966) and Wavelets (Chui, 1992), can be effective as well.

We remark that state variables approximation enables us to realize a decoupling of the
whole system into a set of n uncorrelated ODE’s. As a result, instead of estimating a matrix in
R

2(n+1)×n, we have to estimate n vectors in R2(n+1) thus lessening the difficulty of large scale
problems.
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Furthermore, this method is particularly effective whenever the model, even if nonlinear with
respect to the state variables, can be linearized with respect to the unknown parameters, as
quite always happens in the Half-Systems. More specifically, let us suppose that state variables
in system (2) are monotone (a common property of many biological state functions) and so,
without loosing generality, we can assume that all γi are strictly positive, which implies that
linearization with respect to the unknown parameters can be simply obtained by taking the
logarithms of both the left and right end sides of the system equations. Substituting in system
(2) the approximating functions ψi(t) obtained via fitting, and resorting to logarithms, we obtain
the following algebraic linear system:

∆i(t) = Γi +
n∑
k=1

Xk(t)lik i = 1, · · · , n

where
∆i(t) = ln(ψ̇i(t)), Γi = ln(γi), Xk(t) = ln(ψk(t)).

The unknowns are {Γi} and {lik}. In such a case, minimizing RD(pi), for each i = 1, · · · , n, is
equivalent to solve, in the least squares sense, the n overdetermined systems

∆i(t̄r) = Γi +
n∑
k=1

Xk(t̄r)lik, r = 1, · · · ,M > n+ 1, (4)

for i = 1, · · · , n.
Our numerical experiments suggest that a good choice for M is M = 2(n+ 1). The solution

of system (4) by a QR technique enables us to compute Γi (therefore γi = eΓi) and lik for
k, i = 1, · · · , n.

Some a priori information on parameters, as the non-negativity or the variation between
their lower and upper bounds, can also be easily taken into account. The minimization of each
one of the n differential residuals RD(pi) can be performed by a standard method of quadratic
programming. In our numerical simulations, the routine qp of the Minimization Toolbox of
MATLAB (Matlab, 1997) has been used.

3 Numerical results

The effectiveness of the described procedure has been widely checked by means of a lot of
simulations concerning several S-Systems. In this paper we specifically refer to two different test
cases: an Half-System and an S-System.

To assess the numerical accuracy of the results, we chose a parameter matrix and an initial
state vector x(t0) for each model. Then state variables evolution is obtained by solving the
ODE’s system under consideration by means of the routine ode45 of MATLAB (Matlab, 1997).
In order to estimate the robustness of the method we considered both noiseless and noisy state
data. In all the cases examined, we only considered white noise, so that for each state variable,
the errors {εi} on data are assumed to be uncorrelated random values, each one with zero mean
value and a common variance σ2.

The numerical reliability of the method, with respect to state variables x̄i, i = 1, · · · , n, has
been estimated in terms of the parameter

% =
σN̄1/2

n∑
i=1

‖ x̄i ‖2
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where x̄i is a vector which gives the values of the state variable xi(t) at N̄ distinct time instants
and σ is the associated standard deviation. In our experiments, chosen N̄ and σ, the errors {εi}
have been generated by means of the Simulink Toolbox of MATLAB (Matlab, 1997).

Now, let us denote as P the parameter matrix to be identified and P̂ the recovered matrix.
Furthermore, let x(t,P ) and x̂(t, P̂ ) be the corresponding state variable vectors. Note that
x̂(t, P̂ ) has been generated assuming as initial state the value of the fitting curves at t = t0,
i.e., x̂i(t0) = ψi(t0), i = 1, · · · , n. Even if both x(t,P ) and x̂(t, P̂ ) depend from x(t0) and x̂(t0)
respectively, for sake of simplicity, we do not make explicit this fact.

A significant measure of the identification error, i.e., of the distance between the true matrix
P and the recovered one P̂ , is given by the function

E(P ) =
‖ P − P̂ ||F
||P ‖F

where the subscript F denotes the Frobenius norm 1.
A special point is to be stressed: in some models, even if the recovered matrix P̂ is far from

the true matrix P , state variables xi(t,P ) and x̂i(t, P̂ ), for i = 1, · · · , n, are approximately the
same in the time interval [t0, tf ]. This is not a drawback of the proposed estimation procedure.
It simply arises from the fact that the solution is not unique in general, but specifically depends
on the optimality criteria adopted. A unique solution can only be obtained by means of specific
analysis on physical constraints and/or the influence of each parameter on the system behaviour
(Corriga et al., 1997; Torsella et al., 1991; Voit, 1988). As a result, we cannot limit ourselves to
compare P and P̂ . We note that in real applications we are interested in obtaining a parameter
matrix P̂ such that the corresponding state variables are in good agreement with the real state
variables in a wider time interval than [t0, tf ]. For this reason, given a model and a data time
interval, we assume

EP (x) =
n∑
i=1

||xi(t,P )− x̂i(t, P̂ )||2
||xi(t,P )||2

as a measure of the effectiveness of the identification process, where t = (t1, t2, · · · , t100) is a

vector of 100 equally spaced points in the extended time interval [t0,
3
2
tf ].

3.1 First model

In this subsection, we consider the following Half-System already treated in (Sanna et al., 1998,
Seatzu, to appear, Torsella et al., 1991):

ẋ1(t) = γ1x1(t)l11x2(t)l12x3(t)l13

ẋ2(t) = γ2x1(t)l21x2(t)l22x3(t)l23

ẋ3(t) = γ3x1(t)l31x2(t)l32x3(t)l33

t ∈ [t0, tf ].

Such a system is particularly suited to describe dynamic growth models which present mono-
tonicity in rates. As a consequence, we assume that parameters γ1, γ2 and γ3 are positive.

We further assume that observational data are generated by matrix

P = (p1,p2,p3) =


10 10 10
1 −1 −0.75
−1 1 −0.5
−1 −1 1

 ,
1Given a matrix A = Aij , i = 1, · · · ,m, j = 1, · · · , n, ||A||F = (

∑n
i=1

∑n
j=1 |aij|

2)1/2.
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Figure 1: Half-System: comparison between xi(t,P ) and x̂i(t, P̂ ), i = 1, 2, 3, corresponding to the 1-st
row data of Table 1.

which is therefore the parameter matrix we want to recover.
We consider both noiseless and noisy data. In particular we introduce two different noise

levels.
Furthermore, we assume that state variables are available at 10 equally spaced points in the

time interval [0, 18]. In fact, by several numerical simulations it has been observed that the
accuracy of the results does not increase significantly when the observational data exceed in
number such a value.

Thanks to the regularity of the actual growth curves, the choice of cubic B-splines of degree
m = 3 resulted to be satisfactory.

The main numerical results are summarized in Table 1 where the a priori information on
parameters, the noise levels and the values of the quality indexes EP (x) and E(P ) are reported.

Furthermore, as in (Sanna et al., 1998; Seatzu, to appear) we assume known the sign of {lij}.
Numerical simulations have been performed even in absence of such an hypothesis. Results
show that even if a perfect state reconstruction is obtained in a time interval wider than that
of observational data, the estimated parameters are quite different from the exact ones.

To illustrate the results of the estimation procedure we compare x(t,P ) with x̂(t, P̂ ). Fig-
ure 1 shows the results corresponding to the first row in Table 1, i.e. when the only a priori
information on parameters concern the sign of lij , i, j = 1, 2, 3, and sampled data are noiseless.
Circles are representative of the available data. As it can be seen, the two set of curves are

practically coincident in the whole time interval [t0,
3
2
tf ].

Finally, the accuracy of the results relative to the case reported in the last row of Table 1
can be evaluated by looking at Figure 2. In such a case, accordingly with the value of EP (x)
in Table 1, the two sets of curves are not perfectly coincident outside the time interval of
observational data. However, differences are quite negligible.
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A priori

information
ρ EP (x) E(P )

sign(lij) i, j = 1, 2, 3 0 0.21 · 10−5 1.12

sign(lij) i, j = 1, 2, 3 10−2 0.36 · 10−2 0.89

sign(lij) i, j = 1, 2, 3 5 · 10−2 0.71 · 10−2 0.89

sign(lij) i, j = 1, 2, 3

8 ≤ γi ≤ 12, j = 1, 2, 3
0 8.67 · 10−5 0.20

sign(lij) i, j = 1, 2, 3

8 ≤ γi ≤ 12, j = 1, 2, 3
10−2 0.34 · 10−2 0.23

sign(lij) i, j = 1, 2, 3

8 ≤ γi ≤ 12, j = 1, 2, 3
5 · 10−2 0.61 · 10−2 0.24

sign(lij) i, j = 1, 2, 3

γi = 10, j = 1, 2, 3
0 0 0

sign(lij) i, j = 1, 2, 3

γi = 10, j = 1, 2, 3
10−2 0.30 · 10−2 0.10

sign(lij) i, j = 1, 2, 3

γi = 10, j = 1, 2, 3
5 · 10−2 0.61 · 10−2 0.12

Table 1: Half-System: fitting based method with B-Splines of degree m = 3.
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Figure 2: Half-System: comparison between xi(t,P ) and x̂i(t, P̂ ), i = 1, 2, 3, corresponding to the last
row data of Table 1.
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3.2 Second model

Now, let us consider the following S-System (Seatzu, to appear):

ẋ1(t) = α1x1(t)g11x2(t)g12x3(t)g13x4(t)g14xg15
5 − β1x1(t)h11x2(t)h12x3(t)h13x4(t)h14xh15

5

ẋ2(t) = α2x1(t)g21x2(t)g22x3(t)g23x4(t)g24xg25
5 − β2x1(t)h21x2(t)h22x3(t)h23x4(t)h24xh25

5

ẋ3(t) = α3x1(t)g31x2(t)g32x3(t)g33x4(t)g34xg35
5 − β3x1(t)h31x2(t)h32x3(t)h33x4(t)h34xh35

5

ẋ4(t) = α4x1(t)g41x2(t)g42x3(t)g43x4(t)g44xg45
5 − β4x1(t)h41x2(t)h42x3(t)h43x4(t)h44xh45

5

ẋ5(t) = 0

t ∈ [0, 14].

The parameter values to be recovered have been taken from (Voit, 1996) and the matrix to
be identified is the following:

P ′ =


9.5 · 10−5 −1 0.72 0 0.72 1 6 · 10−5 0 1 1 1 0

3.2 0.5 0.57 0 0 0 0.2 0 1 0 0 0
5 0.5 0.7 0 0 0 0.2 0 0 0.7 0 0

0.36 −0.4 1 0 0 0 0.75 −0.13 0 0 0.8 0
0 ? ? ? ? ? 0 ? ? ? ? ?


where the numbers at the question marks are irrelevant.

In this subsection we only present the main results of a wider series of experiments carried out
at different noise levels, different number of observational data and different a priori information
on parameters. In particular Table 2 shows the results of the estimation when data are both
noiseless and noisy. Both situations have been examined when considering N = 10 and N = 25.

In the case at hand [t0, tf ] = [0, 14] and data are equally spaced within it.
The regularity of the state variable curves justifies once again the choice of m = 3.
As it can be deduced from Table 2, the accuracy of the estimation does not increase signifi-

cantly with the number of available data. It is worthwhile to note that in this case the method
reveals less robustness with respect to data noise than in the Half-System case. This fact can
be justified by considering that now linearization with respect to unknown parameters has not
been possible. In addition, a greater number of unknown parameters has to be identified.

As in the previous case, to illustrate the results of the estimation procedure we compare the
state variable behavior corresponding to the true matrix P and the initial state vector x(t0) with
that obtained by means of the estimated matrix P̂ and the initial state vector x̂(t0) = ψ(t0).
Figure 3 shows the results relative to the second row of Table 2, i.e., when no a priori information
on parameters is available and data are affected by noise characterized by ρ = 10−3 and N = 10.
In both cases, the two set of curves are not coincident neither in the time interval [t0, tf ]. This is
in accordance with the value of E(x) reported in the last column of Table 2. However, differences
are not significant when evaluated in percentage.

It is important to remark that in such a case more classical procedures, which do not enable
us to divide the whole problem into n independent sub-problems, cannot be usefulness since the
number of unknown parameters is excessive.

4 Conclusions

In this paper we dealt with a special class of ODE’s systems particularly common in biological
and medical field and denoted as S-Systems.
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N
A priori

information
ρ EP (x) E(P )

10 – 0 2.54 · 10−2 0.89

10 – 10−3 8.04 · 10−2 1.01

25 – 0 2.79 · 10−2 0.83

25 – 10−3 5.41 · 10−2 0.95

10 αi, βi, i = 1, · · · , 5 0 4.86 · 10−2 0.19

10 αi, βi, i = 1, · · · , 5 10−3 5.84 · 10−2 1.05

25 αi, βi, i = 1, · · · , 5 0 3.94 · 10−2 0.12

25 αi, βi, i = 1, · · · , 5 10−3 4.92 · 10−2 0.97

Table 2: S-system: fitting based method with B-Splines of degree m = 3.
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Figure 3: S-System: comparison between xi(t,P ) and x̂i(t, P̂ ), i = 1, 2, 3, corresponding to the 2-nd row
data of Table 2.
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A method for the estimation of the unknown parameters in such a class of dynamical systems,
given a set of observational data, has been proposed. Its effectiveness has been widely checked.
The main idea of the method is that of fitting data in a finite dimensional space so that data
knowledge is transformed into the knowledge of analytical functions. In such a way, the whole
estimation problem can be decoupled into a set of simpler subproblems.

Each subproblem is independent from the others and can be solved by minimizing an appro-
priate differential residual. Many advantages, a part from the minor computational complexity,
arises when dealing with large scale problems and when dealing with systems that can be lin-
earized with respect to the unknown parameters.

The proposed method revealed to be effective in all the numerical examples considered.

Appendix

B-splines properties

Let Πm be the space of polynomials of degree at most m and τ ≡ {τi} a nondecreasing sequence
of real numbers. The i-th forward B-spline of degree m for the knot sequence τ , Bi,m(t), is
characterized by the following properties (de Boor, 1978):

• Bi,m(t) = 0 for t /∈ (τi, τi+m+1) and Bi,m(t) > 0 for t ∈ (τi, τi+m+1);

• Bi,m(t) ∈ Πm for t ∈ (τj , τj+1), ∀j;

• Bi,m(t) ∈ Cm−1(R).

Hence Bi,m(t) is a piecewise polynomial of degree m whose support is (τi, τi+m+1) and whose
first m + 1 derivatives are continuous everywhere. As a result, each interval (τi, τi+1) belongs
to the support of the B-splines Bi−m,m(t), · · · , Bi,m(t). Furthermore the B-splines, which are
strictly positive on their support, can be computed by the following three-term recurrence rela-
tionship (de Boor, 1978):

Bi,0(t) =
{

1, τi ≤ t ≤ τi+1

0, elsewhere

Bi,k(t) =
t− τi

τi+k+1 − τi
Bi,k−1(t) +

τi+k − t
τi+k − τi+1

Bi+1,k−1(t) k = 1, · · · ,m.
(5)

This relationship is numerically stable, as it enables us to compute Bi,k(t) by repeatedly
forming linear combinations of positive quantities, starting with the definition of Bi,0(t).

As usual we denote by Sτ,m the space of B-splines of degree m relative to the knot sequence
τ = {τi}. Note that if m is the degree of B-splines and M ≥ m+ 1 is the number of knots of τ ,
the dimension of the linear space Sτ,m is M∗ = M −m − 1. Hence each function s ∈ Sτ,m can
be expressed as follows

s(t) =
M∗∑
j=1

djBj,m(t).

Conversely, each function spanned as before belongs to Sτ,m.
In our numerical simulations, assuming that [t0, tf ] is the common domain of the state

variables and denoting by m the degree of B-splines, we choose knots as follows

τi = t0 + [i− (m+ 1)](tf − t0) i = 1, 2, · · · , 2(m+ 1).
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Furthermore, let || · ||2 be the Euclidean norm in RN . The best approximation, in the least
squares sense, of f̂ = (f1, · · · , fN )T in Sτ,m is

s∗(t) =
m+1∑
j=1

α∗jBj,m(t)

where α∗ = (α∗1, · · · , α∗m+1)T is the minimizer in Rm+1 of the quadratic function

Q(α) = ||f̂ − ŝ||22 =
N∑
i=1

(fi − s(ti))2 = ||Bα− f̂ ||22

where (B)ij = Bj,m(ti), i = 1, · · · , N , j = 1, 2, · · · ,m+ 1 and ŝ = (s(t1), · · · , s(tN ))T .

Nelder-Mead algorithm

In numerical simulations we used the routine fmins of MATLAB (Matlab, 1997) to minimize the
differential residual. It is an implementation of the Nelder-Meade simplex algorithm, described
in detail in (Dennis et al., 1987). It is a direct search method for finding a multivariate function’s
minimum. Let f(x1, x2, · · · , xn) be the function to be minimized. Then, at each iteration, the
new research direction is determined by evaluating f at n + 1 appropriately selected points
x̂1, x̂2, · · · , x̂n+1 ∈ Rn. These points are thought as vertices of an n-dimensional simplex. A
trial point is accepted or rejected depending on the value of f at that point compared with the
values of f at the vertices of the simplex. Fixed a positive value ε, iteration continues until the
diameter of the simplex is ≤ ε.
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