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Abstract
In this paper we present several results concerning the structure of optimal solutions for infinite-

dimensional optimal control problems. The primary area of applications of these problems concerns
models of regional economic growth, cattle ranching models and systems with distributed parame-
ters and boundary controls arising in certain engineering applications. We are concerned with the
existence of an overtaking optimal trajectory over an infinite horizon. The existence result that
we obtain extends the result of Carlson, Haurie and Jabrane (1987) to a situation where the tra-
jectories are not necessary bounded. We show that an optimal trajectory defined on an interval
[0, T ] is contained in a small neighborhood of the optimal steady-state in the weak topology for all
t ∈ [0, T ] \ E where E ⊂ [0, T ] is a measurable set such that the Lebesgue measure of E does not
exceed a constant which depends only on the neighborhood of the optimal steady-state and does
not depend on T . Moreover, we show that the set E is a finite union of intervals and their number
does not exceed a constant which depends only on the neighbborhood.

In this paper we present several results concerning the structure of optimal solutions for
infinite-dimensional optimal control problems. The primary area of applications of these prob-
lems concerns models of regional economic growth discussed in (Isard and Liossatos, 1979) cattle
ranching models proposed in (Derzko and Sethi, 1980) and systems with distributed parameters
and boundary controls arising in certain engineering applications (Barbu, 1980; Fattorini, 1968).
We are concerned with the existence of an overtaking optimal trajectory over an infinite horizon.
The existence result that we obtain extends the result of Carlson, Haurie and Jabrane (1987) to a
situation where the trajectories are not necessary bounded. We show that an optimal trajectory
defined on an interval [0, T ] is contained in a small neighborhood of the optimal steady-state
in the weak topology for all t ∈ [0, T ] \ E where E ⊂ [0, T ] is a measurable set such that the
Lebesgue measure of E does not exceed a constant which depends only on the neighborhood
of the optimal steady-state and does not depend on T . Moreover, we show that the set E is a
finite union of intervals and their number does not exceed a constant which depends only on the
neighborhood.

We consider a system described by the following input-output relationship:

(1) x(t) = S(t)x0 +
∫ t

0
S(t − s)Bu(s)ds, t ∈ I

where I is either [0,∞) or [0, T ] (0 ≤ T < ∞), E and F are separable Hilbert spaces, x0 ∈ E,
{S(t) : t ≥ 0} is a strongly continuous semigroup on E with generator A, u(·) ∈ L2

loc(I;F ), the
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space of all strongly measurable functions u(·) : I → F , which are square-integrable on every
finite interval ∆ ⊂ I, and B : F → E is a bounded linear operator.

Thus x(·) is the mild solution of the state equation

x′(t) = Ax(t) + Bu(t), t ∈ I,

x(0) = x0

where A is a possibly unbounded, closed and densely defined operator in E.
In addition we know (see (Balakrishnan, 1976)) that although a mild solution need not be

absolutely continuous it does satisfy the following mild differential equation for any y ∈ D(A∗):

(d/dt) < x(t), y >=< x(t), A∗y > + < Bu(t), y > a.e. t ∈ I,

lim
t→0+

< x(t), y >=< x0 , y >

where A∗ is the adjoint operator associated with A, with domain D(A∗).
We impose the following additional constraints on state and control:

x(t) ∈ X, t ∈ I where X is a convex and closed subset of E

and
u(t) ∈ U(x(t)) ⊂ F, t ∈ I where U(·) : X → 2F

is a point to set mapping which is convex valued and such that

αU(x1) + (1 − α)U(x2 ) ⊂ U(αx1 + (1 − α)x2), x1 , x2 ∈ X, α ∈ [0, 1]

and if un ∈ U(xn ), n = 1, 2, . . . and un → u, xn → x as n → ∞ in the weak topology, then
u ∈ U(x).

The perfomance of the system is evaluated by the cost functional

J(T1 , T2 , x, u) =
∫ T2

T1

f(x(t), u(t))dt

where f : E × F → R1 is a convex functional which is lower semicontinuous on E × F and
satisfies the following growth condition:

there exist K1 > 0 and K > 0 such that:

(2) f(x, u) ≥ K(||x||2 + ||u||2) for each x ∈ E, u ∈ F satisfying ||x||2 + ||u||2 > K1 .

A function x : I → E where I is either [0,∞) or [0, T ] (T > 0) will be called a trajectory if
there exists u(·) ∈ L2

loc(I;F ) (referred to as a control) such that the pair (x, u) satisfies (1) and

x(t) ∈ X, u(t) ∈ U(x(t)), t ∈ I.

A trajectory-control pair x̂ : [0,∞) → E, û : [0,∞) → F is overtaking (resp. weakly
overtaking) optimal if for any other trajectory-control pair x : [0,∞) → E, u → [0,∞) → F
satisfying x(0) = x̂(0)

lim sup
t→∞

[J(0, t, x̂, û) − J(0, t, x, u)] ≤ 0,

(resp. lim inf
t→∞ [J(0, t, x̂, û) − J(0, t, x, u)] ≤ 0).
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These are the optimality concepts used in (Brock and Haurie, 1976). For other contributions
to the theory of optimal control on an infinite horizon making use of these solution concepts
see (Carlson et al., 1991; Feinstein and Luenberger, 1981; Leizarowitz, 1985; Zaslavski, 1995;
Zaslavski, 1996a; Zaslavski, 1996b).

Assume the following
Assumption 1. The optimal steady state problem (OSSP) consisting of

Min f(x, u) over all (x, u) ∈ E × F satisfying

0 =< x,A∗y > + < Bu, y > for any y ∈ D(A∗), x ∈ X, u ∈ U(x)

has a solution (x̄, ū) with x̄ uniquely defined.
By the convexity assumptions already made on f,X, and U , the OSSP is a convex program-

ming problem in a Hilbert space. Thus there exists p̄ ∈ D(A∗) such that (see (Ekeland and
Temam, 1976; Rockafellar, 1969))

f(x̄, ū) ≤ f(x, u)− < x,A∗ p̄ > − < Bu, p̄ >

for every x ∈ X and u ∈ U(x). Let L : E × F → [0,∞) be defined by

L(x, u) = f(x, u) − f(x̄, ū)− < x,A∗ p̄ > − < Bu, p̄ > if x ∈ X and u ∈ U(x),

L(x, u) = ∞ otherwise.

Then we have L(x̄, ū) = 0. Furthermore, since L differs from f through an affine function of x
and u, it still satisfies the growth property (2) with f replaced by L.

Let I be either [0,∞) or [0, T ] (T > 0), x : I → E, u : I → F be a trajectory-control pair
and T1 , T2 ∈ I, T1 < T2 . We define

JL (T1 , T2 , x, u) =
∫ T2

T1

L(x(t), u(t))dt.

For a trajectory-control pair x : [0,∞) → E, u : [0,∞) → F we define

JL (0,∞, x, u) =
∫ ∞

0
L(x(t), u(t))dt.

For each T > 0 and each z ∈ E we define

σ(z, T ) = inf{J(0, T, x, u) : x : [0, T ] → E, u : [0, T ] → F

is a trajectory-control pair, x(0) = z}.
Now we present the following five results established in (Zaslavski, 1996b).

Theorem 1. Suppose that Assumption 1 holds and x : [0,∞) → E, u : [0,∞) → F is a
trajectory-control pair. Then one of the following relations holds:

(i) sup{|J(0, T, x, u) − Tf(x̄, ū)| : T ∈ (0,∞)} < ∞.
(ii) J(0, T, x, u)−Tf(x̄, ū) → ∞ as T → ∞. Moreover (i) holds if and only if JL (0, T, x, u) <

∞.
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Theorem 2. Suppose that Assumption 1 holds and r1 , r2 , r3 are positive numbers. Then there
exist ∆, r > 0 such that

||x(t)|| ≤ ∆, t ∈ [0, T ], JL (0, T, x, u) ≤ r

for each T > 0 and each trajectory-control pair x : [0, T ] → E, u : [0, T ] → F which has the
following properties:

(a) ||x(0)|| ≤ r2 , J(0, T, x, u) ≤ σ(x(0), T ) + r3 ;
(b) there is a trajectory-control pair y : [0,∞) → E, v : [0,∞) → F satisfying y(0) = x(0),

JL (0,∞, y, v) ≤ r1 .

The following result is an extension of Theorem 1 in (Carlson et al., 1987) to optimal trajec-
tories defined on finite intervals.

Theorem 3. Suppose that Assumption 1 holds, r1 , r2 , r3 are positive numbers and V is a
neighborhood of x̄ in the weak topology. Then there exists a number l > 0 such that

(T2 − T1)−1
∫ T2

T1

x(t)dt ∈ V

for each T ≥ l, each trajectory-control pair x : [0, T ] → E, u : [0, T ] → F which has properties
(a), (b) from Theorem 2 and each T1 , T2 ∈ [0, T ] satisfying T2 − T1 ≥ l.

Denote by F the set of all trajectory-control pairs x : [0,∞) → E, u : [0,∞) → F such that

L(x(t), u(t)) = 0 a.e. on [0,∞).

We say that F has property G if for any neighborhood V of x̄ in the weak topology there
exists a number tv > 0 such that x(t) ∈ V for each t ≥ tv and each trajectory-control pair
(x, u) ∈ F .

This property corresponds to property (S) in (Leizarowitz, 1985).
The following result describes the structure of “approximate” optimal solutions.

Theorem 4. Suppose that Assumption 1 holds and F has property G. Let r1 , r2 , r3 be positive
numbers and V be a neighborhood of x̄ in the weak topology. Then there exist an integer Q ≥ 1
and a number l > 0 such that for each T > 0 and each trajectory-control pair x : [0, T ] → E,
u : [0, T ] → F , which has properties (a), (b) from Theorem 2, there exists a sequence of intervals
[bj , cj ], j = 1, . . . q such that

1 ≤ q ≤ Q, 0 < cj − bj ≤ l, j = 1, . . . q and

x(t) ∈ V for each t ∈ [0, T ] \ ∪q
j=1[bj , cj ].

The following result is a generalization of Theorem 4 in in (Carlson et al., 1987) which
establishes the existence of an overtaking optimal solution in the subclass of bounded trajectories.

Theorem 5. Suppose that Assumption 1 holds and F has property G. Let x̃ : [0,∞) → E,
ũ : [0,∞) → F be a trajectory-control pair satisfying JL (0, T, x̃, ũ) < ∞. Then there exists
an overtaking optimal trajectory-control pair x∗ : [0,∞) → E, u∗ : [0,∞) → F such that
x∗(0) = x̃(0).

For the proofs of Theorems 1-5 see (Zaslavski, 1996b).
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