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Abstract:

This paper presents a new method for tuning PI and PID controllers for models commonly used in
process control. The proposed method is based on the satisfaction of more than one control design
objectives. The design objectives are the satisfaction of certain phase and gain margin, the
maximization of the resonant frequency and the minimization of a weighted integral of squa-red
error. In solving the multiobjective optimization problem obtained, a simplified goal attain-ment
formulation is proposed. The usefulness of the proposed method is demonstrated through
simulation examples and a comparison with well known tuning formulas is also provided.

1 Introduction

A great number of PID controller tuning methods is now available to the designer of process
control systems. Most of them are based on the satisfaction of single design objectives, such as the
decay ratio, phase and gain margins, resonant peak and frequency, overshoot and certain error integral
criteria (Astrom and Hagglund, 1995). However, these methods have several shortcomings that stem
from the fact that all degrees of freedom , namely the controller adjustable parameters, are consumed
in order to satisfy a single objective.

It is now widely recognized that the solutions of numerous design problems, in various branches of
engineering, are incomplete because they fail to take into account all the important characteristics of
the particular problem (Brayton et al., 1981). Controller design problems are among them. The
problem that the controller designer faces is the simultaneous satisfaction of several criteria that are
posed either on the time or on the frequency domain.

Zakian and Al-Naib (1973) were the first to suggest that control design problems should be posed
as the satisfaction of more than one design objectives while Kreisselmeier and Steinhauser (1979)
were the first to translate a control design problem into a set of performance objectives.

Harris and Mellichamp (1985) proposed a method for tuning PID controllers based on a combined
performance index. This performance index is the weighted sum of common controller design objecti-
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ves posed in the frequency domain. Repetitive solution of complex nonlinear equation is essential for
the calculation of performance index for given controller parameters. Abbas and Sawyer (1996) based
on the technique known as the e-constraint method for solving multiobjective optimization problems,
proposed a new method for tuning controllers of given structure ( such as PID controllers). The design
objectives used were posed in the time domain and simulation of the systems dynamic response,
under closed loop conditions, is used for the evaluation of each design objective.

The purpose of this study is to propose a new methodology for tuning PI and PID controllers that is
based on a compromise between certain design objectives posed in the frequency as well as in the time
domain. The study is concentrated on models commonly used to describe chemical processes such as
first order plus delay time and integrator plus delay time models. Approximate equations for the
calculation of the design objectives are summarized and a proper and simplified formulation of the
goal attainment method for solving multiobjective optimization problems is proposed. It is shown that
using these simplifications the computational effort is greatly reduced. In order to demonstrate the
effectiveness of the proposed method and also to provide a comparison with well known tuning
formulas, three simulation examples are given. In these examples the steps of the proposed method are
further clarified and general guidelines for the application of the method are given.

2 Multiobjective Optimization and the Goal Attainment Method

In what follows a brief introduction of the multiobjective optimization theory is given. The
interested reader is referenced to Clark and Westerberg, (1983), Grauer et al., (1984) and Steuer
(1986) for a detailed discussion of the subject.

Suppose that the controller parameters are denoted by the vector ¢=(c;....,c,)", R , Where R is
called the input space. In the case where we have m control design objectives, they are expressed in
vector form as

.

f(c)=(f1(c). . (c)) ORT (1)

where R is called the output space and f(c) is a point in the output space. It is desired to minimize

each fi(c), iLIM={1,2, . . ., m}, but some of the f; will conflict with each other. In other words, a
K

change in ¢, from ¢ to ¢ +Ac increases some of the f; but at the same time decreases some others.
In searching for the best controller design, it is desirable to move in directions Ae, in the input
space , that satisfy the following (in the output space)
Af; =f,(c+Ac)-f;(9<0, iOM )
i.e., the vector Af defined on the output space, should have only non-positive components. The Pareto
critical point, is any point in the input space where no Ae exists for which equation (2) to hold. The set
of the Pareto critical points is called the Pareto optimal set. The image of a Pareto critical point is
called a noninferior point and the set of all noninferior points is called the noninferior solution set. The

set of points qDRm such that there exists ¢0J R where q=f(c) is called the attainable set, denoted by Q,
ie.

Q:{q OR™| CEOR™: q:f(c)} 3)

The boundary of Q, denoted by 0Q, is of great interest in the context of multiobjective
optimization. The definitions given above are illustrated in Figure 1 for the case where there are only
two objectives. Any point in the interior of the attainable set has a neighbor for which the values of
both f; and f; are reduced. Points on the boundary, between points A and B do not have this property.
A movement between the points A and B and on the boundary requires a trade-off: decreasing the one
objective in the expense of increasing the other.

The utopia point is defined as the point in the input space with coordinates given by the solution of
the following, scalar optimization problems
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Figure 1. Graphical representation of the main definitions in MOP.

min f, , i0OM 4

Cc
Solution of a multiobjective optimization problems can be achieved in two ways. First, we can
combine all objectives into a single one; a weighted sum

FO) =Y W, (9 5)

where w;>0 gives the relative importance of minimizing fi(c). Furthermore, each w; must take into
account the relative magnitudes or scales associated with fi(c), which may be specified in different
units. This formulation gives rise to an unconstrained minimization problem. A similar approach is
based on the solution of the following minimax problem

min rnia>{wifi c} (6)

where the weights are chosen as above. Second, we can generate the noninferior solution set and then
find the best compromise solution by placing relative importance on the different objectives.

In this work, solution of the multiobjective optimization problem is achieved using the goal
attainment method. In this method, noninferior solution vectors are found by solving the following
problem (Gembicki and Haimes, 1975)

min Z
zZ,C
subject to @)
where w;>0 are the weighting coefficients and z is an unrestricted scalar variable. The values of £* can
be thought as the desired levels of the performance index fi(c) (goals). The product zw; is the degree of

under- or overattainment of the goal £,

In the formulation given by equation (7) the designer expresses his intuitive knowledge of the pro-
blem through the selection of the weighting coefficients w;. Heuristics are usually used in the selection
of appropriate weights. However, at the beginning of a design, it is impossible to specify, in the ad hoc
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manner described above, the relative importance of each objective function. Hence, the design process
is based on the adaptively revised assessment of the relative importance of each one of the various
objectives and interaction between the designer and the optimization process is considered essential.

In order to avoid these problems, the method of Nye and Tits (1986) is used in this study.
According to this method normalized objectives are defined by the transformation

~ f (c)-f°
fi (C) = '()—' (8)
G B

where f; and f; are two chosen levels of satisfaction for the i objective function called the good and
the bad level, respectively. They correspond to the higher and lower amount of designers satisfaction
associated with each fi(c). Nye and Tits (1986) used the following rule of uniform satisfaction/
dissatisfaction for choosing the good and bad values: all objectives should provide to the designer the
same level of satisfaction or dissatisfaction when they achieve their good and bad values, respectively.

Thus, the following, modified goal attainment formulation is used in this study

min z
zZ,C
subject to 9)
f(c)-w,z<0

In this formulation the worst level of designers dissatisfaction, over all design objectives, is
minimized and the weighting coefficients w; can now be set equal to one, since the levels of
satisfaction/dissatisfaction are uniform. However, the weighting coefficients are included in the

proposed formulation in order to be able to ensure that hard constraints, such as stability requirements,
never become active.

3 Process and Controller Model

Most of the chemical processes exhibit monotone or essentially monotone step response and can be
divided into two broad classes. The first class corresponds to self-regulating or stable processes that
are usually described by the following first order plus delay time (FOPDT) model
K Pe—ds

10
1s+1 (10)
where Kp is the process gain, 7 the time constant and d the delay time. The second class corresponds to

systems that show no self-regulation (unstable systems) that can be described by the integrator plus
delay time (IPDT) model

Gp(9) =

—-ds

(11)

The IPDT model can be seen as a limit of the FOPDT model with large values of the time constant.
In this study it is assumed that the controller used is the well known and extensively used PI
controller having the following model

K
Ge(9) = f

i% (12)
T,sU

In tuning the PI controller the designer tries to satisfy several objectives considering the
performance as well as the robustness of the closed loop system. A great number of tuning methods is
now available for achieving single objectives such as decay ratio, phase and gain margins, resonant
peak and frequency, overshoot and certain error integral criteria. However, these tuning methods are
criticized for being case dependent. This means that when the same tuning method is applied to
models of the same structure, but with different parameters, the closed loop response obtained may
vary considerably.

Ge(9 = Kc%-"‘
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In what follows, a number of simplified expressions for the calculation of phase and gain margins,
resonant frequency and error integral indices are going to be summarized. These expressions are valid
for processes that are adequately described by FOPDT and IPDT models and controlled using PI
controllers.

FOPDT. Ho et al. (1995) have shown that when a PI controller is used in order to control a process
that is described by FOPDT model, then, the phase and gain margins achieved can be approximated by

the following equations
0 0 nh
A,=—T o0+ 142879 T (13)
4K oK ¢ nd T1,0H

13- —0-KK 0 (14)

Tt
=—+
2

m

where 6=d/t, A, is the gain margin and ®,, is the phase margin. The resonant peak, Mp, is defined as

M, =m - GcGp (15)
o |1+ GG,

and the frequency at which this maximum occurs is called resonant frequency (w ). The closest point
to the (-1,0) point on a Nyquist plot occurs at a frequency near to frequency g the gain crossover
frequency, defined as the smallest frequency for which the following condition holds

|Gc(jwe)Gp(jo )| =1 (16)

Often 0); is a good approximation to & (Rohrs ef al., 1993) and can be calculated by the following
approximation (Ho et al., 1995)

_®u *(5)(Aw -9
A3 -1 {17

Nishikawa ef al. (1984) have shown that for the case of FOPDT models quite acceptable closed
loop response is obtained when the PI controller tuning is based on the minimization of the following
weighted integral of squared error (WISE)

Juse ) = [(98")" o (19)
0

where t is the time and e(t) the error (deviation) between the desired and the real response of the
process. The parameter A is chosen to satisfy

dwg

_Y
A=— 19
P (19)

where P, is the ultimate period and the parameter vy is assigned skillfully so as to get the desired
damping of the closed loop response. The Laplace transform of the weighted error can in general be
written as the ratio of two polynomials in s, i.e.

L[e(t)e“]=% (20)
where
D(s-A\)=g+ a8+ +a, s+ a (1)
and
N(S=A)N(-s+A)= B $"?+ B & *+.+ h, 5+ | (22)

Then, Jwisg is obtained by the ratio of two determinants as follows (Newton et al., 1957)
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-1 1 B
Jwise = (_ 1) E H: (23)
where H, is the Hurwitz determinant of D(s-A) and B, is obtained from H, by replacing the first row
by (bo,b],...,bn_]).
IPDT For the case of open loop unstable systems, that can be adequately described by IPDT model
and are controlled using PI controllers, Kookos et al. (1997) have shown that phase and gain margins
can be approximated by the equations

no-10 ap

b, =— -— 24
M 20 a 2n 4

_ a0l 2 12
Au=p 4{n+(T[ 48)"?} (25)

where the parameters o and B are given by
o :L (26)
2K K d
p=al @1
T

|
Kookos et al., have also shown that equation (16) holds true for the case of IPDT model.
Furthermore, they have shown that the WISE method of Nishikawa et al., when applied to systems
modeled as IPDT systems, gives quite acceptable PI controller tunings.
It is interesting to note that, in the cases where the model under study is given by

Ge(s
G'P(s):#i)l, T>71 (28)

where the transfer function Gp(s) is given by equations (10) or (11), then, the method presented in this
section is also applicable by using a PID controller of the following form

g 1
Gc(9= K@+ —O1+ 1S 29
c(9= K2 - bS) (29)
and using tp=T'.

4 PI Controller Tuning using the Goal Attainment Method

The PI controller parameters, K¢ and T, , are adjusted so as to achieve the best compromise solution
to a chosen, vector form, objective function. The particular control objectives are the satisfaction of
certain phase and gain margins specifications, the maximization of the gain crossover frequency and
the minimization of the WISE performance index. The good level for each objective function is
chosen to correspond to the coordinates of the utopia point. The bad levels are chosen to represent
uniform levels of dissatisfaction.

In the sequel, a number of simulation examples are given in order to clarify the method proposed
above and also to provide a comparison of the proposed method with existing and well known tuning
methods.

4.1 Example 1: Second order plant with delay
Edgar et al. (1981), Edgar and Hougen (1981), Harris and Mellichamp (1985), Seborg et al. (1989)

and Abbas and Sawyer (1995) have extensively studied the following process model
-s
G(9=—2 (30)
(10s+ (56t )

Using process reaction curve analysis the following approximate model can be obtained
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e—2.88

(9= 12%+1 Gl

Based on the FOPDT approximation given by equation (31), a number of PI controller tunings
have been proposed (the reader can consult the references given above).

In order to apply the proposed method, the good values of the controller design objectives are
specified first. The values chosen are: 60° phase margin specification, 3.2 gain margin specification,
45 rad for the dux product specification while the good value for the WISE is calculated through the
solution of the scalar optimization problem

min JW|3E (32)
C1,C2

where the parameters c;, ¢, over which the optimum is searched, are given by
_ KpK ¢ _Hg1 IO

G o ' 2 H+etH (33)

The controller parameters that satisfy each design objective are easily calculated through the
simplified expressions given in the previous section. In this way, the utopia point is immediately
found. Then, the bad values, i.e. values that provide uniform levels of dissatisfaction for each
objective, have to be specified. To this end, extensive simulations were performed in order to examine
the associated levels of dissatisfaction as we move away from the optimal or good values. It was found
that a phase margin specification of 45°, a gain margin specification of 2.2, a dwg product
specification of 30 rad and a 10% increase of the WISE performance index correspond to roughly
uniform dissatisfaction levels.

Finally, the modified (with all weighting coefficients equal to one) goal attainment problem is
solved and the controller parameters are obtained. For the process described by equation (31) the
controller parameters are Kc=2.45 and 1,=12.96. In Figures 2.a and 2.b, the closed loop response
obtained is shown. For comparison, the close loop response obtained using the controller parameters
proposed by Harris and Mellichamp (1985), is also included in Figure 2. As it is depicted, the
proposed method yields grater overshoot and longer rise time when compared to the method of Harris
and Mellichamp. However, the proposed method has the advantage that the input peak and input effort
are smaller. Furthermore, the settling time achieved, when the proposed method is used, is
considerably smaller than the one obtained with Harris and Mellichamp tunings.

4.2 Example 2: Process with large delay time
Control of systems with large delay time is notoriously difficult (Astrom and Hagglund, 1995). The

transfer function given by

e—Ss

G(=—— 34

() (5+12(25+ ] (34)

has been studied by Yuwana and Seborg (1982), Jutan and Rodriguez (1984), Chen (1989), Lee et al.
(1990) and Krishnaswamy and Pangalah (1996) as a severe test of their tuning and identification
methods due to the large delay time involved. Using process reaction curve analysis the following

approximate model is obtained
e—4.55

(9= 295+ 1 G3)

The modified goal attainment problem is solved using the same good and bad values as in Example
1. The controller parameters obtained are Kc=0.424 and 17;=3.537. For comparison, the refined Ziegler-
Nichols tuning formula proposed by Astrom et al. (1992) and Astrom and Hagglund (1995) is also
applied. In Figures 3.a. and 3.b. the closed loop responses are shown. The superiority of the proposed
method over the method of Astrom et al. is clearly depicted. The reader is also encouraged to compare
the responses given in Figure 3 with the ones given in the references above.
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Figure 2.a Output response for Example 1.
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Figure 2.b. Input variation for Example 1.
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Figure 3.a. Output response for Example 2.
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Figure 3.b. Input variation for Example 2.

4.3 Example 3: Integrator plus delay time process

Integrator plus dead time (IPDT) model was found to be a suitable model for a number of chemical
processes. Chien and Fruehauf (1990), Tyreus and Luyben (1992), Friman and Waller (1994) and
Luyben (1996) suggested that using the IPDT model for feedback controller tuning has several
advantages. For SISO systems that contain two parameters, only one experiment is needed for the
estimation of these parameters. For MIMO systems the parameters of the off-diagonal elements of the
transfer function matrix can also be estimated during the relay experiment.

The process studied by Chien and Freuhauf (1990) and later by Tyreus and Luyben (1992) is
considered. Parameter values are Kp=0.2 %/min and d=7.4 min. The good and bad values used in the
modified, goal attainment formulation are the same as in the previous examples. The resulting
controller parameters are Kc=0.3685 and 1=42.6 and correspond to a=2.88 and f=0.695. These values
of the adjustable parameters o and (3, are also valid with any IPDT process model, irrespectively of the
particular numerical values of the model parameters.

In Figures 4.a and 4.b. the closed loop response to a set point step change is shown. 50% error in
the estimation of the time delay is assumed in this simulation. It is observed that the proposed method
gives quite acceptable results while the Chien and Fruehauf (CF) method yields an (marginally)
unstable closed loop system. The Tyreus and Luyben (TL) method gives a fairly conservative closed
loop response and the deviation between the actual and desired output remains significant even for
times up to 20d. At the same time the variation of the input variable is close to the one obtained by the
proposed method.

5 Conclusions

In this paper a new method for tuning PI or PID controllers for models commonly used in process
control is presented. The method is based on the simultaneous satisfaction of more than one control
objectives posed either in time or frequency domain. The problem is formulated as a multiobjective
optimization problem and is solved using a modified goal attainment technique. The proposed method
is compared with well known tuning methods through a number of simulation examples. The proposed
method gives satisfactory results for models such as integrator plus delay time models and first order
plus delay time models. Furthermore, the method is shown to give acceptable tunings even in the
extreme cases where the delay time is the dominant feature of the system under study. Thus, the
proposed method is applicable in a wide range of controller design problems commonly encountered
in process control giving satisfactory results.
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Figure 4.a. Output response for Example 3.
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Figure 4.b. Input variation for Example 3.

6 Nomenclature

¢ = vector of the design parameters

D(s) = denominator polynomial of the Laplace transform of the weighted error
d = delay time (min)

e(t) = deviation between the desired and actual output of the system
f; = 1 design objective

{9 = good level of design objectives

% = bad level of design objective

Gc = transfer function of the controller

Gp = transfer function of the process

H,, = Hurwitz determinant

J = performance index

K¢ = controller gain (%/%)

Kp = process gain (%/min)

K, = critical gain (%/%)

L = Laplace transformation operator
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Mp = maximum of the complementary sensitivity function
N(s) = numerator polynomial of the Laplace transform of the error
P, = ultimate period

Q = attainable set, defined in equation (3)

s = Laplace transform variable

t = time (min)

w; = weighting coefficient

z = unrestricted variable used in the goal attainment formulation
Ay = gain margin

a = adjustable parameter given in equation (26)

B = adjustable parameter given in equation (27)

v = adjustable parameter given in equation (19)

0 = dimensionless ratio

A = time weight

T; = reset time (min)

tcL = closed loop time constant (min)

@), = phase margin (rad)

o = frequency (rad/min)

¢ = gain crossover frequency (rad/min)

®; = resonant (rad/min)

®, = ultimate frequency (rad/min)
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