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Abstract

The problem of the energy level stabilization for Hamiltonian systems in presence of

disturbances is considered. First, it is shown that for 1-DOF systems under su�ciently

small uniformly bounded force disturbances the speed-gradient control law ensures ultimate

boundedness of energy error. As an auxiliary result the new su�cient conditions for ultimate

boundedness of Lyapunov function along the trajectories of nonlinear nonstationary dynam-

ical system are obtained. Second, for n-DOF systems with dissipation-like disturbances the

bounds for achievable energy level are given.

1 Introduction

In the paper we consider the problem of energy level stabilization for Hamiltonian systems in

presence of disturbances. This problem is of interest in the oscillations control area where the

level of energy determines the mode of oscillations. For Hamiltonian systems stabilization of

energy level is equivalent to stabilization of a certain invariant manifold in phase space. The

special case when the desired level of energy is equal to its minimum value (stabilization of

equilibrium) is well studied, see e.g. (Nijmeijer and van der Schaft, 1990; Rumyantsev, 1970).

In (Fradkov, 1996; Andrievsky et al., 1996) the speed-gradient control was used to solve the

problem for arbitrary desired value of energy. It was shown that the stabilization of energy level

is achieved if there is no equilibria in the initial energy layer (between the initial and the desired

levels of energy). In (Fradkov et al., 1997; Shiriaev and Fradkov, 1998; Fradkov and Pogromsky,

1998) further development of the result was given. However no results concerning behavior of

the closed loop systems under disturbances were available so far.

In this paper we extend the results of (Fradkov, 1996) in two directions. Firstly, the case of

presence of the bounded input (force) disturbances is considered. For a broad class of controlled

one-degree-of-freedom Hamiltonian systems we state that under uniformly bounded input dis-

turbances with su�ciently small bound D > 0 the speed-gradient control law ensures ultimate

boundedness of error between actual value of energy and desired one. Moreover the upper bound
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of the error tends to zero as D ! 0. Secondly, for n-DOF systems with disturbances satisfying

the dissipation-like inequality the bounds for the energy level achievable by a bounded control

are obtained.

The di�culty of the input disturbances case is that the time derivative of Lyapunov function

is not negative semide�nite even for large values of V. Hence methods of papers (Fradkov, 1996;

Fradkov et al., 1997; Shiriaev and Fradkov, 1998) essentially based on assumption _V � 0 and

the standard theorems on ultimate boundedness (like Yoshizawa's theorem) are not applicable.

In this paper we exploit the fact that trajectories of the system "pass through" the regions of

sign inde�niteness of Lyapunov function's time derivative. Based on this circumstance under

some further conditions it is possible to show that the ultimate boundedness of V holds along

an arbitrary trajectory of system. We prove the corresponding lemma in section 3. Proof of

the main result reduces to checking the lemma conditions for closed loop system "Hamiltonian

system + speed-gradient control law + disturbances".

The paper is organized as follows. In section 2 the results on the Speed-gradient energy

control of Hamiltonian systems without disturbances are recalled from (Fradkov and Pogromsky,

1998). In section 3 we state the auxiliary lemma on su�cient conditions for ultimate boundedness

of Lyapunov function along the trajectories of a nonlinear time-varying dynamical system. The

result for the 1-DOF systems is presented in Section 4, while the case of n-DOF systems with

dissipation is considered in Section 5. In Section 6 the example of the energy control of pendulum

is considered.

2 Speed-gradient energy control of Hamiltonian systems

A convenient mathematical description for a controlled oscillatory system is the Hamiltonian

form. It allows an explicit description of surfaces of constant energy which unforced oscillatory

motions belong to. The Hamiltonian form of controlled plant equations is as follows:

_qi =
@Hc(q; p; u)

@pi
; _pi = �

@Hc(q; p; u)

@qi
; i = 1; : : : ; n; (1)

where q = col(q1; : : : ; qn), p = col(p1; : : : ; pn) are the vectors of generalized coordinates and

momenta, respectively, Hc(q; p; u) is the controlled Hamiltonian function, and u(t) 2 Rm is the

control input (generalized force). The model (1) can be also rewritten as follows

�
_q = rpHc(q; p; u);

_p = �rqHc(q; p; u):
(2)

Let H(q; p) = Hc(q; p; 0) be the \internal" Hamiltonian describing the unforced system

�
_q = rpH(q; p);

_p = �rqH(q; p):
(3)

Consider the following control goal

H(q(t); p(t))! H�; when t!1: (4)

In what follows we assume that the Hamiltonian is linear in control:

Hc(q; p; u) = H(q; p) +H1(q; p)
Tu;
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where H(q; p) is the internal Hamiltonian and H1(q; p) is an m-dimensional vector of interaction

Hamiltonians (Nijmeijer and van der Schaft, 1990). De�ne the Poisson bracket for smooth

functions f(q; p) and g(q; p) in a standard manner

[f; g] =
nX
i=1

�
@f

@pi

@g

@qi
�
@f

@qi

@g

@pi

�
:

If the functions f; g are the vector-functions then the Poisson bracket is de�ned componentwise.

For example if the function f is scalar and g is an m-dimensional vector (column) then [f; g]

is an m-dimensional co-vector (row). More generally, if f and g are an l-dimensional and m-

dimensional vectors, respectively, then [f; g] is an l �m matrix.

To �nd the control algorithm providing the goal (4) according to the Speed-gradient

method (Fradkov, 1996; Fradkov and Pogromsky, 1998) �rst the objective function is intro-

duced

Q(x) =
1

2
(H(q; p)�H�)

2 ; (5)

where x = col(q; p). Then the control goal (4) is reformulated as follows

Q(x(t))! 0 when t!1: (6)

To design the SG algorithm calculate _Q:

_Q = (H �H�)

�
@H

@p
_p+

@H

@q
_q

�
= (H �H�)[H;H1]u (7)

and the speed gradient: ru
_Q = (H�H�)[H;H1]

T . The linear and relay forms of Speed-gradient

control algorithms are as follows:

u = �
(H �H�)[H;H1]
T ; (8)

u = �
sign f(H �H�)[H;H1]
Tg ; (9)

where 
 > 0 is the gain factor. We may consider also the general speed pseudogradient algorithm

u = � ((H �H1)[H;H1]
T ) ; (10)

where  is a smooth vector function with values in Rm which satis�es the strict pseudogradient

condition  (z)Tz > 0 for z 6= 0. To analyze the behavior of the system with algorithm (10) the

following result can be used (Fradkov and Pogromsky, 1998).

Theorem 1 Let the their �rst and second derivatives of the functions H;H1 be bounded on the

set 
0 = fx : Q(x) � Q0g for some Q0 > 0.

Then the algorithm (10) with x(0) 2 
0 ensures u(t) ! 0 when t ! 1 and ensures either

the goal (4) or convergence [H;H1](x(t))! 0 when t!1.

If, additionally, the following two conditions hold:

H1. For any c 6= H� there exists " > 0 such that any nonempty connected component of the

set D";c = fx : j[H(x); H1(x)]j � "; jH(x)� cj � "g \ 
0 is bounded.

H2. The largest invariant setM � D0 of the free system (i.e. the setM of whole trajectories

of (3) contained in D0), where D0 = fx : [H(x); H1(x)] = 0g\
0, consists of �nite or countable

number of isolated points.
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Then any solution of the system (2), (10) either achieves the goal (4) or tends to a point of

the set D0 which is an equilibrium of the free system (3). Moreover, the set of initial conditions

from which the solution of (2), (10) tends to unstable1 equilibrium of the free system has zero

Lebesgue measure.

Corollary 1 If D0 is empty, i.e. [H;H1](x) 6= 0 for x 2 
0, then the control goal is achieved

for all x(0) 2 
0.

The theorem shows, loosely speaking, that algorithm (10) ensures the goal (4) almost always

unless there are \false" goals: stable or neutral equilibria of the free system which are reachable

from the initial point within the energy layer


0 = f(q; p) : jH(q; p)�H�j � jH(q(0); p(0))�H�jg :

In other words, the goal (4) will be achieved for almost all initial conditions from the set 
0 if

it does not contain local potential wells. Moreover, it is clear from the proof (see (Fradkov and

Pogromsky, 1998)) that the set of exceptional initial conditions is contained within a �nite or

countable number of manifolds, i.e., the complement of this set is open dense set in 
0.

The result of the Theorem 1 holds with obvious change of notations if the system (2) evolves

on a smooth 2n-dimensional manifold possessing standard Poisson structure (see (Nijmeijer and

van der Schaft, 1990)).

3 Lyapunov-type characterization of ultimate boundedness

By LFV (x) denote the Lie derivative of function V along vector �eld F . Suppose V :X ! Y

and Y1 � Y ; then by V �1
Y1

we denote

V �1
Y1

� fx 2 X : V (x) 2 Y1g : (11)

A function V :X ! R+ is called proper if for all � � 0 the set V �1
[0;�]

� fx 2 X : 0 � V (x) � �g is

compact.

Let X be an n-dimensional smooth manifold. Suppose F (x; t) is a time-dependent vector

�eld on X that is smooth on x, piecewise continuous on t, and bounded on any compact subset

of X uniformly on t. Consider the system

_x = F (x; t); (12)

where F is a nonstationary vector �eld on X . Suppose V :X ! R+ is a smooth (V 2 C1) proper

function. Consider the following properties of system (12).

Property 1. There exists a constant � � 0 s.t. LFV (x; t) � � for all x 2 X , t � 0.

Property 2. There exist positive constants v0, v3, 0 < v0 < v3 <1, and continuous functions

�,�:V �1
[v0;v3]

! R+ n f0g s.t. for arbitrary trajectory x0(�) of system (12) if

x0(t) 2 V
�1
[v0;v3]

n� for all t 2 [t1; t2] ;

where � � fx 2 X : LFV (x; t) < ��(x) for all t � 0g, then

1Instability of an equilibrium means that the Jacobi matrix of the system calculated at the equilibrium point

has at least one eigenvalue with positive real part.
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i) t2 � t1 � A for some constant A � 0, and

ii) there exists t3 > t2 s.t.

V (x0(t3))� V (x0(t1)) � �� (x0(t1)) ;

and for all t 2 (t2; t3)

x0(t) 2 V
�1
[v0;v3]

=) x0(t) 2 �:

We shall say that the system (12) satis�es the Assumption A if it has properties 1 and 2

and the corresponding constants v0, v3, �, A satisfy the condition �A < (v3 � v0))=2.

Now suppose the system (12) satis�es the Assumption A. Denote

v1 = v0 + �A

v2 = v3 � �A:
(13)

Obviously, v1 < v2.

Lemma 1. Suppose the system (12) satis�es the Assumption A. Let x(�) be arbitrary tra-

jectory of system (12) satisfying the condition x(t0) 2 V �1
[0;v2]

. Then x(t) 2 V �1
[0;v3]

for all t � t0

and there exists T � 0 such that x(t) 2 V �1
[0;v1]

for all t � t0 + T .

Proof. First we claim that under the conditions of Lemma

V (x(t0)) 2 [v0; v2) =) V (x(t)) � V (x(t0)) + �A for all t � t0: (14)

Indeed, consider a set


 �
n
t � t0: x(t) 2 V

�1
[v0;v3]

n�
o
:

Since � is open set, we see that the set 
 2 R1 is a union of �nite or denumerable number of

disjoint closed intervals


 = [t1; t
0
1] [ [t2; t

0
2][ : : : ;

Consider the interval [t1; t
0
1]. It is clear that V (x(t1)) � V (x(t0)): Suppose there exists t

0 2 [t1; t
0
1]

such that V (x(t0)) > V (x(t0))+�A; then from property 1 it follows that t01�t1 � t0�t1 > A. The

last is in contradiction with the property 2. Then for all t 2 [t1; t
0
1] we have V (x(t)) � V (x(t0))+

�A < v3: In particular we get V (x(t01)) < v3. Then it is easily proved that V (x(t)) < V (x(t01))

for all t 2 [t01; t2]. Due to property 2 we have V (x(t2)) � V (x(t1)): Continuing in the same way,

we see that for all t 2 [t2; t
0
2] we have V (x(t)) � V (x(t0)) + �A < v3; and so on.

Now we claim that there exists TM > 0 such that from V (x(t0)) 2 [v0; v2) it follows that

V (x(t)) = v0 for some t 2 [t0; t0+ TM ]: Indeed, suppose V (x(t0)) 2 [v0; v2) and v0 � V (x(t)) �

v3 for any t 2 [t0; t0 + T ] where T > 0 is a constant. Denote

�0 = min
x: v0�V (x)�v3

� (x) > 0;

�0 = min
x: v0�V (x)�v3

� (x) > 0;

�1 = max
x: v0�V (x)�v3

� (x) � �0 > 0:

It is easy to prove that

V (t) � V3 �
�0�0

�0A + �A+ �1
(t� t0 �A); (15)

for all t 2 [t0; t0 + T ] : It follows that T � TM = (v3�v0)(�0A+�A+�1)

�0�0
+ A. Since V (x(t)) � v3 for

all t � t0, we obtain V (x(t�)) = v0 for some t� 2 [t0; t0 + TM ] : Finally from (14) it follows that

V (x(t)) � v0 + �A = v1 for all t � t0 + TM : This completes the proof.
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4 Case of 1-DOF systems under input disturbances

In what follows we consider the controlled Hamiltonian system on a 2n-dimensional smooth

manifold M governed by equations

_q = rpH(q; p); (16)

_p = �rqH(q; p) + �(q; p; t) + u: (17)

where, (q; p) 2 M , H(q; p) is Hamiltonian function of the free system, u 2 Rn is controlling

input and �(q; p; t) is vector-function of=20 disturbances. The form (16), (17) is more simple

than (2) since H1 = q in this case. On the other hand the presence of disturbances makes the

known results nonapplicable.

In this Section we consider the case when n = 1 and �(t) is piecewise continuous and

bounded: j�(�)j � D.

Suppose H(q; p) is a proper function onM , and H(q; p) = K(p)+P (q) where K:R! R+ is

a smooth positive de�nite convex
�
d2K
dq2

> 0
�
even (K(p) = K(�p)) function representing kinetic

energy and P (q) is smooth function with strict local minimum at a point q = 0, representing

potential energy.

Let h be a positive number. Consider a set

Xh � f(q; p): 0 � H(q; p) � hg : (18)

Suppose q = 0, p = 0 is the unique equilibrium point of free (u � 0, �(t) � 0) system (16), (17)

on the set Xh.

Consider the problem of energy level stabilization of system (16), (17) in presence of bounded

input disturbances. By H� denote the desired value of Hamiltonian function, 0 < H� < h.

Consider the control law (speed-gradient algorithm)

u = �
0 (H �H�)
@H

@p
; (19)

where 
0 > 0 is a gain.

Suppose h1; h2; h3 are positive constants satisfying the condition

0 < h1 < h2 < h3 < min fH�; h�H�g : (20)

The main result of the Section is the following theorem.

Theorem 2 For any constants h1; h2; h3 satisfying the condition (20) there exists D > 0 s.t.

for for any given initial condition (q; p)(0) 2 H�1
[H��h2;H�+h2]

trajectories of closed loop system

(16), (17), (19) satisfy (q; p)(t) 2 H�1
[H��h3;H�+h3]

for all t � 0 and there exists T > 0 s.t.

(q; p)(t) 2 H�1
[H��h1;H�+h1]

for all t � T .

Proof. Consider a function V = 1=2 (H �H�)
2. Let

v0 =
1

8
h21; (21)

v3 =
1

2
h23: (22)
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Clearly

V �1
[0;v0]

= H�1�
H��

h1
2
;H�+

h1
2

�;
V �1
[0;v3]

= H�1
[H��h3;H�+h3]

:

The time derivative of function V along the trajectories of closed loop system (16), (17),

(19) is

_V =
@V

@H
_H =

@V

@H

�
@H

@q
_q +

@H

@p
_p

�
= (H �H�)

@H

@p

�
�(�)� 
0(H �H�)

@H

@p

�
:

Further

_V � �
0(H �H�)
2

�
@H

@p
= 20

�2

+ �(H �H�)
2

�
@H

@p

�2

+ 1=4��2(�)

for arbitrary � > 0. By choosing � < 
0 we get

_V � �
(H �H�)
2

�
@H

@p

�2

+��: (23)

where 
 = 
0 � � > 0, �� = 1
4�
D2 > 0. It follows from (23) that the closed loop system (16),

(17), (19) has property 1.

Now let us prove that the closed loop system has property 2. First, due to properties of

kinetic energy K(p) (recall that K(p) is a smooth positive de�nite convex even function) we get

that @H=@p = @K=@p is odd strictly increasing function of p. Denote L = limp!1 j@K=@pj.

The inverse function (@K=@p)�1 is de�ned on the interval (�L; L). Let

� = D2=8�;

p0 = (@K=@p)�1

�r
D2

2
�h2
1

�
;

(24)

where p0 is well de�ned for su�ciently small D > 0. Using (23) and (24), we get that for

su�ciently small D > 0 from V 2 [v0; v3] and _V � �� it follows that jpj � p0.

Second, we claim that for su�ciently small D > 0 there exist B > 0 such that from

V 2 [v0; v3] and jpj � p0 it follows that j _pj � B. Indeed, due to properties of potential energy

P (q) and from the fact that q = 0, p = 0 is the unique equilibrium point of free system in Xh

we get that ����@P@q (q)
���� > 0 for all q 2 P�1

(0;v3]
:

Further, for su�ciently small D > 0 from V 2 [v0; v3] and jpj � p0 it follows that P (q) �

v0 �K(p0): Let

B =
1

2
inf

jqj2P
�1

[v0�K(p0);v3]

=

����@P@q (q)
���� > 0:

Obviously ����@P@q (q)
���� � 2B: (25)

On the other hand for su�ciently small D > 0 from V 2 [v0; v3] and jpj � p0 it follows that

j
 (H(t)�H�)
@H

@p
j+ j�(t)j � B: (26)
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Finally, combining (17), (25), (26), we obtain

j _p(t)j � B: (27)

Let A = 2P0=B. It is easy to see that for arbitrary trajectory of closed loop system (16),

(17), (19) from V (t) 2 [v0; v3] and jp(t)j � p0 for all t 2 [t1; t2] it follows from (27) that

t2 � t1 � A: (28)

Now let us prove that there exist t3 > t2 and � > 0 such that _V (t) < �� for all t 2 (t2; t3)

and

V (x0(t3))� V (x0(t1)) � ��:

Denote

q0 = min

�
jqj : P (q) =

H� � h3

2

�
:

Consider a strip

� =
�
(q; p) : q 2

�
q(t2); q

0
0

�
; jq00j = q0; signq

0
0 = �signq(t2)

	
:

We claim that there exists an instant t3 > t2 such that q(t3) = q00 and for all t 2 (t2; t3)

i) (q; p)(t) 2 �

ii) jp(t)j > p0:

Put

K0 =
@K

@p
(p0) =

s
D2

2
�h21
:

Due to properties of K(p) and continuity of _q(t) it is su�cient to prove that

iii) sign _q(t2) = � sign q(t2)

iv) j _qj > K0 on the strip �:

From (16) and due to properties of K(p) we have sign _q(t2) = sign p(t2). Further, by de�nition

of t2 we get
djp(t2)j

dt
> 0; therefore, sign _p(t2) = sign p(t2). Finally, from (17), (25), (26) and due

to properties of P (q) we get sign _p(t2) = � sign q(t2).=20 Combining the above, we obtain iii).

Ful�llment of iv) follows from iii), (17), (25), (26), and from the continuity arguments.

Let us estimate V (t3)� V (t1). We have

V (t2)� V (t1) � �A! 0 as D ! 0:

On the other hand

V (t3)� V (t2) � �

t3Z
t2


 (H(t)�H�)
2

�
@H

@p

�2

(t)dt+��(t3 � t2) �

�

t3Z
t2




 
(H(t)�H�)

2

�
@H

@p

�2

(t)�
1

2
h21K

2
0

!
dt � �

1

2

h21

t3Z
t0
2

�
@H

@p

�2

dt =
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�
1

2

h21

t3Z
t0
2

_q2(t)dt � �
1

2

 = h21

1

t3 � t02

0
B@

t3Z
t0
2

_q(t)dt

1
CA

2

= �2
h21
1

t3 � t
0
2

(q0)
2 :

It is easy to see that

t3 � t
0
2 �

2q0

C
;

where

C =

�
@H

@p

��1�H� � h3

2

�
:

Then

V (t3)� V (t2) � �
h21q0C:

Let

� =
1

2

h21q0C > 0:

Then for su�ciently small D > 0 we get

V (t3)� V (t1) � �� < 0:

We see that all conditions of Lemma 1 are ful�lled. From Lemma 1 it follows that there exist

D > 0 s.t. for for any given initial condition (q; p)(0) 2 V �1
[0;v2]

trajectories of closed loop system

(16), (17), (19) satisfy (q; p)(t) 2 H�1
[0;v3]

for all t � 0 and there exists T > 0 s.t. (q; p)(t) 2 H�1
[0;v1]

for all t � T , where v1 = v0+A��, v2 = v3�A�
�. Since A, �� ! 0 as D ! 0, from (21), (22)

we see that for su�ciently small D > 0

V �1
[0;v1]

� H�1

[h1;h�1 ]
;

H�1

[h2;h�2]
� V �1

[0;v2]
:

The statement of Theorem 2 follows.

5 Energy control of n-DOF Hamiltonian systems

Consider again the controlled Hamiltonian system with disturbances (16), (17) and suppose that

the disturbance function �(�) satis�es the inequality

k�(q; p; t)k � %kpk (29)

for some % > 0. Inequality (29) means that the disturbances vanish at the zero-momentum

manifold. It holds, e.g. for disturbances caused by viscous damping.

Below the conditions guaranteeing achievement of the goal (4) are established.

Theorem 3 Consider the system (16), (17) under condition (29) and the following assump-

tions.

A1. H(q(0); p(0))� H� and the set 
 = f(q; p) : H(q(0); p(0))� H(q; p) � H�g is bounded.

A2. The Hamiltonian satis�es the inequalities H(q; 0) � 0 and for some � > 0

H(q; p)�H(q; 0)� �kpk2: (30)
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A3. rpH(q; p) 6= 0 8(q; p) 2 
.

Then the goal (4) is achieved in the system (16), (17) controlled by the algorithm (9) if

H� � �

�



%

�2

: (31)

Proof. It is su�cient to prove that _Q(q; p) < 0 in the set 
, if Q(q; p) 6= 0. Calculation of
_Q(q; p) and taking into account (29) and A2 yields

_Q = (H �H�)rpH(q; p)T�� jH �H�jkrpH(q; p)k


� jH �H�jkrpH(q; p)k(%kpk� 
)

� jH �H�jkrpH(q; p)k

0
@%
s
H(q; p)�H(q; 0)

�
� 


1
A : (32)

Therefore if H(q; p)< H�, then _Q(q; p) < 0 in the set 
 provided the inequality %
q

H�

�
� 


holds which is equivalent to (31).

6 Example: control of pendulum oscillations under distur-

bances

As an illustration of above results consider the problem of oscillation control of simple pendulum

under bounded force disturbances. The pendulum is described by the following equation

J �� +mgl sin� = u+�(t); (33)

where � is an angle of pendulum de�ned to be zero in the lower position, u is a controlling torque,

J , m, and l are the inertia, mass, = and length of pendulum respectively, g is an acceleration

due to gravity, �(t) are input disturbances, �(t) � D, where D > 0 is a constant.

The pendulum equation (33) can be represented in the form (16), (17) by choosing q = �,

p = J _� and

H(q; p) =
1

2J
p2 +mgl(1� cos q): (34)

For our purpose it is convenient to consider a cylinder with unit circle at the base�� < q � � as a

phase space of pendulum. It means that we identify the points (q1; p) and (q2; p) i� q2�q1 = 2�k;

where k is an integer number. Then it is easy to check that H(q; p) given by (34) is proper

function on cylindrical phase space. Further, the kinetic energy K(p) = 1
2J
p2 is a smooth

positive de�nite convex even function, and the potential energy P (q) = mgl(1�cosq) is smooth

function with strict local minimum at a point q = 0. Let h = 2mgl. Then the point (0; 0) is

a unique equilibrium point of free system on Xh de�ned by (18). We see that the system (33)

satisfy all the conditions of the Theorem 2. The control law (19) becomes

u = �
0 (H �H�) p: (35)
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In particular, it follows from Theorem 2 that the control law (35) drives the pendulum (33) from

any initial state (q (t0) ; p (t0)) satisfying H (q (t0) ; p (t0)) 2 (0; 2mgl) to the oscillatory mode of

given energy level H� 2 (0; 2mgl) with prescribed accuracy if the disturbances are of su�ciently

small intensity. Moreover during the swinging the pendulum does not turn into rotation mode.

The conditions of the Theorem 3 are also ful�lled in this case. Therefore we may conclude

that adding the viscous damping does not change qualitatively the behavior of the pendulum

controlled by the algorithm

u = �
sign ((H �H�)p) ; (36)

if 
 > %
p
2mgl=J, where % is damping coe�cient.

7 Conclusions

In the paper we address the problem of the Hamiltonian system energy control to the arbitrary

(not necessarily equilibrium) desired level in presence of disturbances. The problem of such kind

is important for control of oscillatory systems. However it was not considered in the previous

publications. For 1-DOF systems it is shown (Theorem 2) that under uniformly bounded input

disturbances with su�ciently small bound D > 0 the speed-gradient control law ensures ultimate

boundedness of error between actual value of energy and desired one. Moreover the upper bound

of the error tends to zero as D! 0. To prove this result an auxiliary Lemma 1 is stated which

gives su�cient conditions for ultimate boundedness of Lyapunov function along the trajectories

of nonlinear nonstationary system. Note that related results were obtained recently in (Aeyels

and Peuteman, 1997; Peuteman and Aeyels, 1998). The results of (Aeyels and Peuteman,

1997; Peuteman and Aeyels, 1998) establish conditions for asymptotic as well as for exponential

stability without assumption of negative semide�niteness for the time derivative of Lyapunov

function. These results are close in spirit to Lemma 1.

The case when the disturbances vanish on zero momentum submanifold turnes out to be

simpler. In this case similar Speed-gradient algorithm allows to achieve zero error in terms of

energy for n-DOF systems.
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