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Abstract

A fault detection and identification algorithm, called the residual-sensitive fault detection
filter, is presented. The objective of the filter is to monitor certain faults called target faults
and block other faults which are called nuisance faults. This filter is derived from solving a
min-max problem which makes the residual sensitive to the target fault, but insensitive to
the nuisance faults. It is shown that this filter approximates the properties of the classical
fault detection filter such that in the limit where the weighting on the nuisance faults is zero,
the residual-sensitive fault detection filter is equivalent to the unknown input observer and
there exists a reduced-order filter. Fault detection filter designs can be obtained for both
linear time-invariant and time-varying systems.

1 Introduction

Any system under automatic control demands a high degree of system reliability and this requires
a health monitoring system capable of detecting any system, actuator and sensor fault as it occurs
and identifying the faulty component. One approach, analytical redundancy which reduces the
need for hardware redundancy, uses a modeled dynamic relationship between system inputs and
measured system outputs to form a residual process used for detecting and identifying faults.
Nominally, the residual is nonzero only when a fault has occurred and is zero at other times.

A popular approach to analytical redundancy is the detection filter which was first introduced
by (Beard, 1971) and refined by (Jones, 1973). It is also known as the Beard-Jones fault detection
filter. A geometric interpretation of this filter is given in (Massoumnia, 1986). Design algorithms
have been developed (White and Speyer, 1987; Douglas and Speyer, 1996, 1999) which improved
detection filter robustness. The idea of a detection filter is to put the reachable subspace of each
fault into invariant subspaces which do not overlap with each other. Then, when a nonzero
residual is detected, a fault can be announced and identified by projecting the residual onto
each of the invariant subspaces. Therefore, multiple faults can be monitored in one filter.

Another related approach, the unknown input observer (Massoumnia et al., 1989), simplifies
the detection filter problem by dividing the faults into a target fault and nuisance fault group
where the nuisance faults are placed into one unobservable subspace. Although only one fault can
be detected in each unknown input observer, additional flexibility in fault detection filter design
for robustness and time-varying system is obtained by using an approximate fault detection filter
(Chung and Speyer, 1998; Lee, 1994; Brinsmead et al., 1997; Chen and Speyer, 1999).
∗Email: chrobert@talus.seas.ucla.edu, speyer@seas.ucla.edu
†This work was sponsored by the California Department of Transportation, Agreement No. 65A0013, MOU

315 and Air Force Office of Scientific Research, Award No. F49620-97-1-0272

835

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999



In this paper, the residual-sensitive fault detection filter, motivated by (Chen and Speyer,
1999; Chung and Speyer, 1998) is presented. In (Chen and Speyer, 1999), it is shown that the
optimal stochastic fault detection filter has the same properties as the unknown input observer in
the limit where the disturbance attenuation bound is zero. However, the limiting filter can not be
determined directly from this formulation because as the sensor noise variance goes to zero, the
filter gain depends on its inverse. In contrast, the game-theoretic fault detection filter in (Chung
and Speyer, 1998) can be derived in the limit by using the result from singular optimal control
(Bell and Jacobsen, 1975). Also, these two approaches yield the same estimator equations with
similar but not identical Riccati equations when it is not in the limit. Therefore, a problem,
which is similar to the game-theoretic fault detection filter, but has the same result as optimal
stochastic fault detection filter, is formulated and solved. The result is called the residual-
sensitive fault detection filter. This filter, which is derived similarly to (Chung and Speyer, 1998),
is an approximation of the unknown input observer. Many properties obtained in (Chung and
Speyer, 1998) also apply to this filter. However, some new properties are given. For example, the
target fault direction is now explicitly in the filter gain calculations. This provides a mechanism
for enhancing the sensitivity of the filter to the target fault. Furthermore, the projector, which
annihilates the residual direction associated with the nuisance faults and was assumed in the
problem formulation of (Chung and Speyer, 1998), is not required to determine the filter gain.
Finally, the nuisance faults were generalized to include the invariant zero directions for the time-
invariant system. It is also shown that this filter has a minimal (C,A)-unobservability subspace
for the nuisance faults and is equivalent to the unknown input observer in the limit. However,
the filter gains in the limit are the result of solving a worst-case-design detection filter.

The problem is formulated in Section 2 and the solution is derived in Section 3. In Section 4,
some conditions for this problem have been derived by using a linear matrix inequality (Chung
and Speyer, 1998). In Section 5, the filter is derived for the limiting case (Bell and Jacobsen,
1975; Chung and Speyer, 1998). In Section 6, it is shown that the nuisance faults have been
put into an invariant subspace in the limit. For the time-invariant system, this subspace is the
minimal (C,A)-unobservability subspace, just like the unknown input observer. In Section 7,
for the time-invariant system, a reduced-order filter is derived in the limit (Chung and Speyer,
1998). In Section 8, numerical examples are given.

2 Problem Formulation

Consider a linear system,

ẋ = Ax+Bu (1a)
y = Cx (1b)

where system matrices A, B and C can be time-varying and all system variables belong to real
vector spaces x ∈ X , u ∈ U and y ∈ Y with n = dimX and m = dimY. From (Beard, 1971;
Massoumnia, 1986; White and Speyer, 1987; Chung and Speyer, 1998), any plant, actuator and
sensor fault can be modeled as an additive term in the state equation (1a). Therefore, a linear
system with q failure modes can be modeled by

ẋ = Ax+Bu+
q∑
i=1

F̄iµ̄i (2a)

y = Cx (2b)
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where F̄i can be time-varying and µ̄i belong to real vector spaces µ̄i ∈ M̄i with q̄i = dimM̄i.
The failure modes µ̄i are vectors that are unknown and arbitrary functions of time and are zero
when there is no failure. The failure signatures F̄i : M̄i → F̄i ⊆ X are maps that are known.
A failure mode µ̄i models the time-varying amplitude of a failure while a failure signature F̄i
models the directional characteristics of a failure. Assume the F̄i are monic so that µ̄i 6= 0
implies F̄iµ̄i 6= 0. In this paper, the residual-sensitive fault detection filter is designed to detect
only one fault and not to be affected by other faults. Therefore, let µ1 = µ̄1 be the target fault
and µ2 = [µ̄T2 , · · · , µ̄Tq ]T be the nuisance fault with q1 = q̄1 and q2 =

∑q
i=2 q̄i. Then, (2a) can be

rewritten as

ẋ = Ax+Bu+ F1µ1 + F2µ2 (3a)

where F1 = F̄1 and F2 = [F̄2, · · · , F̄q]. Since the state x is unknown, its determination from the
min-max problem below produces the desired estimator. Therefore, the relation between the
data sequence y and the state (2b) should be modified as

y = Cx+ v (3b)

where v can be considered a contrivance which will be made large to detect the occurrence of µ1

and small to ensure that µ2 is not observed. In fact, it will turn out to be the residual process.
The mechanism for explicitly doing this is given by the formulation of the differential game and
the associated cost criterion given below.

There are two assumptions about the system (3). The first one ensures the separation of
faults µ1 and µ2 (Massoumnia, 1986; Chung and Speyer, 1998). The second one ensures a
nonzero residual in steady state when target fault µ1 occurs (Chen and Speyer, 1999).

Assumption 2.1. F1 and F2 are output separable.

Assumption 2.2. (C,A, F1) does not have transmission zero at origin.

The objective of blocking the nuisance fault while detecting target fault can be achieved by
solving the following min-max problem,

min
µ1

max
µ2

max
x(t0)

J (4)

where

J =
∫ t1

t0

(‖ µ1 ‖2Q−1
1
− ‖ µ2 ‖2Q̄−1

2
− ‖ y − Cx ‖2V̄ −1)dt− ‖ x(t0)− x̂0 ‖2Π0

(5)

subject to (3a). The current time is t1 and y, the measurement, is assumed given. Q1, Q̄2,
V̄ and Π0 are positive definite weightings. Let Q̄−1

2 = γQ−1
2 where γ is a small positive scalar

and Q−1
2 is positive definite because the interest will be on small Q̄−1

2 . The interpretation of
(5) is that µ1 tries to make the residual, y − Cx, large and µ2, x(t0) try to make y − Cx small.
Therefore, the fault detection and identification is achieved by blocking the nuisance fault µ2

from the residual while retaining the transmission from the target fault µ1. As discussed in
Sections 5 and 6, when γ becomes smaller, the residual is affected less by the nuisance fault and
in fact when γ goes to zero, the problem becomes singular and the nuisance fault is completely
blocked from the residual. In fact, the cost criterion could be viewed as being derived from a
disturbance attenuation problem with a bound γ if V̄ −1 = γV −1 and Π0 = γP−1

0 where V −1
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and P−1
0 would be the assumed weighting on measurement and initial condition uncertainties

in the disturbance attenuation problem, respectively. In the limit, the weightings V and P0 go
to zero such that V̄ and Π0 remain finite and positive definite. This again illustrates that v
is a construct, designed to produce a robust fault detection filter with limits consistent with
previous developments (Massoumnia et al., 1989). Also, note that the filter derived from worst
case design should still work well when the faults µ1 and µ2 are different from their optimal
strategies because the fault detection filter construction is based essentially on the direction
instead of the magnitude of the faults. In Section 6, it is shown that, for time-invariant system,
the nuisance fault µ2 has been put into its minimal (C,A)-unobservability subspace T2 in the
limit and similarly for the time-varying system. Therefore, it does not matter what µ2 is, the
residual will not be affected by µ2 at all. Also, since µ2 is in the unobservability subspace T2,
the residual would naturally be

r = Ĥ(y − Cx̂) (6)

where x̂ is the state estimate of the fault detection filter and

Ĥ : Y → Y , Ker Ĥ = CT2 , Ĥ = I − CT2[(CT2)TCT2]−1(CT2)T

Remark 1. The differential game solved for the game-theoretic fault detection filter in (Chung
and Speyer, 1998) is

min
x̂

max
µ2

max
y

max
x(t0)

J

where

J =
∫ t1

t0

(‖ ĤC(x− x̂) ‖2Q − ‖ µ2 ‖2γM−1 − ‖ y − Cx ‖2γV −1)dt− ‖ x(t0)− x̂0 ‖2γP−1
0

subject to

ẋ = Ax+Bu+ F2µ2

Note that the target fault µ1 is not included in the differential game and the system. Also, the
projector Ĥ is defined apriori.

3 Solution

In this section, the min-max problem (4) will be solved. The variational Hamitonian of the
problem is

H =‖ µ1 ‖2Q−1
1
− ‖ µ2 ‖2γQ−1

2
− ‖ y − Cx ‖2V̄ −1 +λT (Ax+Bu+ F1µ1 + F2µ2)

where λ(t) ∈ Rn is a continuously differentiable Lagrange multiplier. Then, take the first-order
variation with respect to µ1, µ2 and x, respectively. The first-order necessary conditions imply
that (Bryson and Ho, 1975) optimal strategies and dynamics for the Lagrange multiplier are

µ∗1 = −Q1F
T
1 λ (7a)

µ∗2 =
1
γ
Q2F

T
2 λ (7b)

λ̇ = −ATλ− CT V̄ −1(y − Cx) (7c)
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with boundary conditions,

λ(t0) = Π0[x∗(t0)− x̂0] (7d)
λ(t1) = 0 (7e)

By substituting (7a) and (7b) into (3a) and combining with (7c), the two-point boundary value
problem requires the solution to[

ẋ∗

λ̇

]
=
[

A 1
γF2Q2F

T
2 − F1Q1F

T
1

CT V̄ −1C −AT
] [

x∗

λ

]
+
[

Bu
−CT V̄ −1y

]
(8)

with boundary conditions (7d) and (7e). Note that x∗ is now the state using the optimal
strategies (7a) and (7b). The form of (7d) suggests that

λ = Π(x∗ − x̂) (9)

where Π(t0) = Π0, x̂(t0) = x̂0 and x̂ is an intermediate state. Differentiate (9) and by using (8)
and (9),

0 = [Π̇ + ΠA+ATΠ + Π(
1
γ
F2Q2F

T
2 − F1Q1F

T
1 )Π− CT V̄ −1C]x∗

− [Π̇ +ATΠ + Π(
1
γ
F2Q2F

T
2 − F1Q1F

T
1 )Π]x̂−Π ˙̂x+ ΠBu+ CT V̄ −1y

Add and subtract ΠAx̂ and CT V̄ −1Cx̂,

0 = [Π̇ + ΠA+ATΠ + Π(
1
γ
F2Q2F

T
2 − F1Q1F

T
1 )Π− CT V̄ −1C](x∗ − x̂)

−Π ˙̂x+ ΠAx̂+ ΠBu+ CT V̄ −1(y − Cx̂)

Therefore, (9) is a solution to (8) if

−Π̇ = ΠA+ATΠ + Π(
1
γ
F2Q2F

T
2 − F1Q1F

T
1 )Π− CT V̄ −1C , Π(t0) = Π0 (10)

Π ˙̂x = ΠAx̂+ ΠBu+ CT V̄ −1(y − Cx̂) , x̂(t0) = x̂0 (11)

Substitute the µ∗1 (7a), µ∗2 (7b) and (9) into the cost J (5),

J∗ =
∫ t1

t0

(− ‖ x∗ − x̂ ‖2
Π( 1

γ
F2Q2FT2 −F1Q1FT1 )Π

− ‖ y − Cx∗ ‖2V̄ −1)dt− ‖ x∗(t0)− x̂0 ‖2Π0

Add the identical zero term ‖ x∗(t0)− x̂0 ‖2Π(t0) − ‖ x∗(t1)− x̂(t1) ‖2Π(t1) +
∫ t1
t0

d
dt ‖ x∗ − x̂ ‖2Π dt

= 0 to J∗,

J∗ =
∫ t1

t0

[− ‖ x∗ − x̂ ‖2
Π( 1

γ
F2Q2FT2 −F1Q1FT1 )Π

− ‖ y − Cx∗ ‖2V̄ −1

+ (Πẋ∗ −Π ˙̂x)T (x∗ − x̂) + (x∗ − x̂)T Π̇(x∗ − x̂) + (x∗ − x̂)T (Πẋ∗ −Π ˙̂x)]dt

Note that ‖ x∗(t1)− x̂(t1) ‖2Π(t1)= 0 because of the boundary condition (7e). Substitute ẋ∗ from
(8), (10) and (11) into J∗, J∗ can be reduced to

J∗ =
∫ t1

t0

− ‖ y − Cx̂ ‖2V̄ −1 dt
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Therefore, the optimal filter is (11) subject to (10).

Remark 2. The Riccati equation for the game-theoretic fault detection filter (Chung and
Speyer, 1998) is

−Π̇ = ΠA+ATΠ +
1
γ

ΠF2MF T2 Π + CTHTQHC − CT V̄ −1C

and the filter is the same as (11).

Remark 3. The filter (11) and the Riccati equation (10) are the same as the optimal stochastic
fault detection filter (Chen and Speyer, 1999).

The sufficient condition for (11) to be stable is given in theorem 3.1.

Theorem 3.1. The optimal filter (11) is stable if

1
γ
F2Q2F

T
2 − F1Q1F

T
1 ≥ 0

Proof. The stability of (11) depends on the eigenvalues of the closed-loop A matrix,

Acl = A−Π−1CT V̄ −1C

Substitute this into (10),

Π̇ + ΠAcl +ATclΠ = −Π(
1
γ
F2Q2F

T
2 − F1Q1F

T
1 )Π− CT V̄ −1C

If Π̇ + ΠAcl +ATclΠ < 0, Lyapunov’s Stability Theorem implies the eigenvalues of Acl are in
the open left-half plane. Since Π and CT V̄ −1C are positive definite, the sufficient condition for
Π̇ + ΠAcl +ATclΠ < 0 is 1

γF2Q2F
T
2 − F1Q1F

T
1 ≥ 0.

Note that Q1 is a free parameter which can be tuned to meet this sufficient condition.

Remark 4. The stability of the residual-sensitive fault detection filter depends on the target
fault’s weighting Q1 because the optimization problem is trying to make the residual sensitive to
the target fault µ1 and sometimes µ1 might destabilize the filter. However, the game-theoretic
fault detection filter (Chung and Speyer, 1998) does not have this concern because the target fault
is not in the problem formulation.

4 Conditions for the Nonpositivity of the Cost

In this section, the cost (5) is converted into an equivalent linear matrix inequality. Sufficient
conditions for optimality for the singular control problem can be derived from the linear matrix
inequality for the limiting case. The linear matrix inequality, associated with the solution
optimality, is just the left half of the saddle point inequality,

J(µ∗1, µ2, x(t0), v) ≤ J(µ∗1, µ
∗
2, x(t0)

∗, v∗) = 0 ≤ J(µ1, µ
∗
2, x(t0)

∗, v∗)

The asterisk indicates that the optimal strategy is being used for that element.
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Substitute the optimal µ∗1 (7a) into the cost J (5) and adjoin with the constraint (3a) by a
Lagrange multiplier, (x− x̂)TΠ,

J =
∫ t1

t0

[‖ x− x̂ ‖2
ΠF1Q1FT1 Π

− ‖ µ2 ‖2γQ−1
2
− ‖ y − Cx ‖2V̄ −1

+ (x− x̂)TΠ(Ax+Bu+ F1µ1 + F2µ2 − ẋ)]dt− ‖ x(t0)− x̂0 ‖2Π0

Add and subtract (x− x̂)TΠAx̂ and (x− x̂)TΠ ˙̂x to J ,

J =
∫ t1

t0

[‖ x− x̂ ‖2ΠA − ‖ µ2 ‖2γQ−1
2
− ‖ y − Cx ‖2V̄ −1 +(x− x̂)TΠF2µ2

− (x− x̂)TΠ(ẋ− ˙̂x) + (x− x̂)T (ΠAx̂+ ΠBu−Π ˙̂x)]dt− ‖ x(t0)− x̂0 ‖2Π0

Integrate (x− x̂)TΠ(ẋ− ˙̂x) by parts and substitute (3a) into J . Then, add and subtract
x̂TATΠ(x− x̂) to J ,

J =
∫ t1

t0

[‖ x− x̂ ‖2
Π̇+ΠA+ATΠ−ΠF1Q1FT1 Π

− ‖ µ2 ‖2γQ−1
2
− ‖ y − Cx ‖2V̄ −1 +(x− x̂)TΠF2µ2

+ µT2 F
T
2 Π(x− x̂) + (x− x̂)T (ΠAx̂+ ΠBu−Π ˙̂x) + (ΠAx̂+ ΠBu−Π ˙̂x)T (x− x̂)]dt

− ‖ x(t0)− x̂0 ‖2Π0−Π(t0) − ‖ x(t1)− x̂(t1) ‖2Π(t1)

By expanding ‖ y − Cx ‖2
V̄ −1 into ‖ (y − Cx̂)− C(x− x̂) ‖2

V̄ −1 ,

J =
∫ t1

t0

[‖ x− x̂ ‖2
Π̇+ΠA+ATΠ−ΠF1Q1FT1 Π−CT V̄ −1C

− ‖ µ2 ‖2γQ−1
2
− ‖ y − Cx̂ ‖2V̄ −1

+ (x− x̂)TΠF2µ2 + µT2 F
T
2 Π(x− x̂)

+ (x− x̂)T (−Π ˙̂x+ ΠAx̂+ ΠBu+ CT V̄ −1(y − Cx̂))
+ (−Π ˙̂x+ ΠAx̂+ ΠBu+ CT V̄ −1(y − Cx̂))T (x− x̂)]dt

− ‖ x(t0)− x̂0 ‖2Π0−Π(t0) − ‖ x(t1)− x̂(t1) ‖2Π(t1)

Substitute the optimal filter (11),

J =
∫ t1

t0

{
[
(x− x̂)T µT2

][ Π̇ + ΠA+ATΠ−ΠF1Q1F
T
1 Π− CT V̄ −1C ΠF2

F T2 Π −γQ−1
2

][
x− x̂
µ2

]
− ‖ y − Cx̂ ‖2V̄ −1}dt− ‖ x(t0)− x̂0 ‖2Π0−Π(t0) − ‖ x(t1)− x̂(t1) ‖2Π(t1)

Therefore, the sufficient conditions for J ≤ 0 are[
Π̇ + ΠA+ATΠ−ΠF1Q1F

T
1 Π− CT V̄ −1C ΠF2

F T2 Π −γQ−1
2

]
≤ 0

Π0 −Π(t0) ≥ 0
Π(t1) ≥ 0

The sufficient conditions for J ≤ 0 in the limit where γ → 0 are

ΠF2 = 0 (12a)

Π̇ + ΠA+ATΠ−ΠF1Q1F
T
1 Π− CT V̄ −1C ≤ 0 (12b)

More details about the limit will be discussed in next section.
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5 Limiting Case

In this section, the min-max problem (4) is solved in the limit where γ → 0. In the limit, the
cost J (5) becomes

J =
∫ t1

t0

(‖ µ1 ‖2Q−1
1
− ‖ y − Cx ‖2V̄ −1)dt− ‖ x(t0)− x̂0 ‖2Π0

(13)

This is a singular problem with respect to µ2. Therefore, the Goh transformation has been used
to make it become nonsingular. Let

φ1(t) =
∫ t

t0

µ2(τ)dτ (14a)

α1 = x− F2φ1 (14b)

Differentiate (14b) and by using (3a),

α̇1 = Aα1 +Bu+ F1µ1 +B1φ1 (15)

where B1 = AF2 − Ḟ2. Substitute (14b) into the limiting cost (13),

J =
∫ t1

t0

[‖ µ1 ‖2Q−1
1
− ‖ φ1 ‖2FT2 CT V̄ −1CF2

− ‖ y − Cα1 ‖2V̄ −1 +(y − Cα1)T V̄ −1CF2φ1

+ φT1 F
T
2 C

T V̄ −1(y − Cα1)]dt− ‖ α1(t+0 ) + F2φ1(t+0 )− x̂0 ‖2Π0
(16)

Then, the new min-max problem is

min
µ1

max
φ1

max
α1(t+0 )

J (17)

subject to (15).
The variational Hamitonian of the problem is

H =‖ µ1 ‖2Q−1
1
− ‖ φ1 ‖2FT2 CT V̄ −1CF2

− ‖ y − Cα1 ‖2V̄ −1 +(y − Cα1)T V̄ −1CF2φ1

+ φT1 F
T
2 C

T V̄ −1(y − Cα1) + λT (Aα1 +Bu+ F1µ1 +B1φ1)

where λ(t) ∈ Rn is a continuously differentiable Lagrange multiplier. Then, take the first-order
variation with respect to µ1, φ1 and α1, respectively.

µ∗1 = −Q1F
T
1 λ (18a)

φ∗1 = (F T2 C
T V̄ −1CF2)−1[BT

1 λ+ F T2 C
T V̄ −1(y − Cα1)] (18b)

λ̇ = −ATλ− CT V̄ −1(y − Cα1)T + CT V̄ −1CF2φ
∗
1 (18c)

and

φ∗1(t
+
0 ) = −(F T2 Π0F2)−1F T2 Π0[α∗1(t

+
0 )− x̂0] (18d)

λ(t+0 ) = Π0[α∗1(t
+
0 ) + F2φ

∗
1(t

+
0 )− x̂0] (18e)

λ(t1) = 0 (18f)
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Substitute (18d) into (18e),

λ(t+0 ) = [Π0 −Π0F2(F T2 Π0F2)−1F T2 Π0][α∗1(t
+
0 )− x̂0] (19)

By substituting (18a), (18b) into (15) and (18b) into (18c), a two-point boundary value problem
with boundary conditions (19) and (18f) results for satisfying[

α̇∗1
λ̇

]
=
[

Ā −F1Q1F
T
1 +B1(F T2 C

T V̄ −1CF2)−1BT
1

CT H̄T V̄ −1H̄C −ĀT
] [

α∗1
λ

]
+
[
Bu+B1(F T2 C

T V̄ −1CF2)−1F T2 C
T V̄ −1y

−CT H̄T V̄ −1H̄y

]
(20)

where Ā=A−B1(F T2 C
T V̄ −1CF2)−1F T2 C

T V̄ −1C and H̄ = I−CF2(F T2 C
T V̄ −1CF2)−1F T2 C

T V̄ −1.
Note that α∗1 is now the state using the optimal strategies (18a) and (18b). The form of (19)
suggests that

λ = S(α∗1 − x̂) (21a)

S(t+0 ) = Π0 −Π0F2(F T2 Π0F2)−1F T2 Π0 (21b)
x̂(t+0 ) = x̂0 (21c)

where x̂ is an intermediate state. Differentiate (21a) and by using (20) and (21a), the following
dynamic filter structure results

−Ṡ=S[A−B1(F T2 C
T V̄ −1CF2)−1F T2 C

T V̄ −1C]+[A−B1(F T2 C
T V̄ −1CF2)−1F T2 C

T V̄ −1C]TS

+ S[−F1Q1F
T
1 +B1(F T2 C

T V̄ −1CF2)−1BT
1 ]S − CT H̄T V̄ −1H̄C (22)

S ˙̂x=SAx̂+ SBu+ [SB1(F T2 C
T V̄ −1CF2)−1F T2 C

T V̄ −1 + CT H̄T V̄ −1H̄](y − Cx̂) (23)

subject to (21b) and (21c).
By substituting the optimal µ∗1 (18a), φ∗1 (18b), φ∗1(t

+
0 ) (18d) and (21a) into the cost J (16),

the cost becomes

J∗ =
∫ t1

t0

[‖ α∗1 − x̂ ‖2S[F1Q1FT1 −B1(FT2 C
T V̄ −1CF2)−1BT1 ]S

− ‖ y − Cα∗1 ‖2H̄T V̄ −1H̄ ]dt

− ‖ α∗1(t+0 )− x̂0 ‖2Π0−Π0F2(FT2 Π0F2)−1FT2 Π0

Add the identical zero term ‖ α∗1(t+0 )− x̂0 ‖2S(t+0 )
− ‖ α∗1(t1)− x̂(t1) ‖2S(t1) +

∫ t1
t0

d
dt ‖ α∗1 − x̂ ‖2S

dt = 0 to J∗,

J∗ =
∫ t1

t0

[‖ α∗1 − x̂ ‖2S[F1Q1FT1 −B1(FT2 C
T V̄ −1CF2)−1BT1 ]S

− ‖ y − Cα∗1 ‖2H̄T V̄ −1H̄

+ (Sα̇∗1 − S ˙̂x)T (α∗1 − x̂) + (α∗1 − x̂)T Ṡ(α∗1 − x̂) + (α∗1 − x̂)T (Sα̇∗1 − S ˙̂x)]dt

Note that ‖ α∗1(t1)− x̂(t1) ‖2S(t1)= 0 because of the boundary condition (18f). Substitute α̇∗1 from
(20), (22) and (23) into J∗, J∗ can be reduced to

J∗ =
∫ t1

t0

− ‖ y − Cx̂ ‖2H̄T V̄ −1H̄ dt

Therefore, the optimal filter is (23) subject to (21c), (22) and (21b). Note that the second part of
the optimization problem is solved differently as (Chung and Speyer, 1998) but is consistent with
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the derivation of the optimization problem solved in Section 3. Also, this makes the derivation
clearer and more compact.

If F T2 C
T V̄ −1CF2 fails to be positive definite, (17) is still a singular problem because it

needs the inverse, (F T2 C
T V̄ −1CF2)−1. Then, the Goh transformation has to be used until it is

nonsingular. There are two types of singularity.
1. If F T2 C

T V̄ −1CF2 = 0, repeat the Goh transformation,

φ2(t) =
∫ t

t0

φ1(τ)dτ

α2 = α1 −B1φ2

α̇2 = Aα2 +Bu+ F1µ1 +B2φ2

B2 = AB1 − Ḃ1

2. If F T2 C
T V̄ −1CF2 ≥ 0, the Goh transformation is applied only on the singular part.

The transformation process is stopped if BT
1 C

T V̄ −1CB1 is positive definite. Otherwise,
continue the transformation as above until there exists Bk such that BT

k−1C
T V̄ −1CBk−1 is

positive definite and the min-max problem (4) becomes

min
µ1

max
φk

max
αk(t+0 )

J

where

J =
∫ t1

t0

[‖ µ1 ‖2Q−1
1
− ‖ φk ‖2BTk−1C

T V̄ −1CBk−1
− ‖ y − Cαk ‖2V̄ −1 +(y − Cαk)T V̄ −1CBk−1φk

+ φTkB
T
k−1C

T V̄ −1(y − Cαk)]dt− ‖ αk(t+0 ) + B̄φ̄(t+0 )− x̂0 ‖2Π0

and B̄ = [F2 B1 B2 · · · Bk−1], φ̄ = [φT1 φT2 · · · φTk ]T and subject to

α̇k = Aαk +Bu+ F1µ1 +Bkφk

Following the same procedure, the solution to this problem is

S ˙̂x=SAx̂+SBu+[SBk(BT
k−1C

T V̄ −1CBk−1)−1BT
k−1C

T V̄ −1+CT H̄T V̄ −1H̄](y−Cx̂) (24a)
x̂(t+0 )= x̂0

−Ṡ=S[A−Bk(BT
k−1C

T V̄ −1CBk−1)−1BT
k−1C

T V̄ −1C]

+ [A−Bk(BT
k−1C

T V̄ −1CBk−1)−1BT
k−1C

T V̄ −1C]TS

+ S[−F1Q1F
T
1 +Bk(BT

k−1C
T V̄ −1CBk−1)−1BT

k ]S − CT H̄T V̄ −1H̄C (24b)

S(t+0 )=Π0 −Π0B̄(B̄TΠ0B̄)−1B̄TΠ0

where H̄ = I − CBk−1(BT
k−1C

T V̄ −1CBk−1)−1BT
k−1C

T V̄ −1.
Theorem 5.1 shows that the solution (24b) satisfies the sufficient conditions (12) in Section 4

and this implies that S is the limit of Π.

Theorem 5.1.

S
[
Bk−1 Bk−2 · · · B1 F2

]
= 0

Ṡ + SA+ATS − SF1Q1F
T
1 S − CT V̄ −1C ≤ 0
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Proof. Multiply (24b) by Bk−1 from the right and subtract SḂk−1 from both sides,

d

dt
(SBk−1) = −[AT − SF1Q1F

T
1 + (SBk − CT V̄ −1CBk−1)(BT

k−1C
T V̄ −1CBk−1)−1BT

k ]SBk−1

It is a homogeneous differential equation and its boundary condition is zero because S(t+0 ) is a
projector that maps B̄ to zero and Bk−1 is contained in B̄. Therefore SBk−1 = 0. Similarly,
multiply (24b) by Bk−2 from the right and subtract SḂk−2 from both sides,

d

dt
(SBk−2) = −[AT − SF1Q1F

T
1 + (SBk − CT V̄ −1CBk−1)(BT

k−1C
T V̄ −1CBk−1)−1BT

k ]SBk−2

Therefore, SBk−2 = 0 because its boundary condition is zero. Iterate this procedure by using
Bk−3, · · · , B1, F2,

S
[
Bk−1 Bk−2 · · · B1 F2

]
= 0

To prove the second part of this theorem, (24b) can be rewritten as

Ṡ + SA+ATS − SF1Q1F
T
1 S − CT V̄ −1C

= −(BT
k S −BT

k−1C
T V̄ −1C)T (BT

k−1C
T V̄ −1CBk−1)−1(BT

k S −BT
k−1C

T V̄ −1C)

and it is non-positive definite.

Remark 5. The filter (24a) and Riccati equation (24b) will also be the limiting solution for the
optimal stochastic fault detection filter.

6 Properties of the null space of S

In this section, some properties of the null space of S are given. Theorem 6.1 shows that the null
space of S is a (C, A)-invariant subspace. Theorem 6.2 shows that the null space of S contains
the minimal (C, A)-invariant subspace of F2. For the time-invariant system, after modifying
the nuisance fault direction, the invariant zero directions of (C,A, F2) are also in the null space
of S. Therefore, KerS = T2 by the definition of minimal (C, A)-unobservability subspace (Mas-
soumnia, 1986). The unknown input observer (Massoumnia et al., 1989) and Beard-Jones fault
detection filter also put the fault into a minimal (C, A)-unobservability subspace.

Theorem 6.1. KerS is a (C,A)-invariant subspace.

Proof. Consider the ’state matrix’ of the estimator, (24a),

Acl = S[A−Bk(BT
k−1C

T V̄ −1CBk−1)−1BT
k−1C

T V̄ −1C − CT H̄T V̄ −1H̄C]

Since S is positive semi-definite with a nontrivial null space, there exists a state transformation
Γ such that

ΓTS(t)Γ =
[
S̄(t) 0
0 0

]
(25)
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where S̄(t) is symmetric and positive definite. Multiply Acl by ΓT from the left and Γ from the
right.

ΓTAclΓ =
[
S̄ 0
0 0

]
Γ−1[A−Bk(BT

k−1C
T V̄ −1CBk−1)−1BT

k−1C
T V̄ −1C − CT H̄T V̄ −1H̄C]Γ

4
=
[
S̄ 0
0 0

] [
Ā11 Ā12

Ā21 Ā22

]
=
[
S̄ 0
0 0

] [
Ā11 0
Ā21 Ā22

]
(26)

where Ā12 = 0 is shown in (31) in Section 7. If the error e initially lies in KerS,

Γ−1e =
[

0
ē

]
∈ Ker

[
S̄ 0
0 0

]
In the absence of exogenous inputs, (26) implies that Γ−1e will be propagated by way of

d

dt
(Γ−1e) =

[
S̄ 0
0 0

] [
0

Ā22ē

]
This shows the error will never leave KerS. Therefore, KerS is a (C,A)-invariant subspace.

Theorem 6.2. KerS contains the minimal (C,A)-invariant subspace of F2.

Proof. The minimal (C,A)-invariant subspace of F2 is Bk−1, Bk−2 · · ·B1, F2 (Massoumnia,
1986; Chung and Speyer, 1998). Therefore, the following is needed to be shown.

S
[
Bk−1 Bk−2 · · · B1 F2

]
= 0

SBk 6= 0

Theorem 5.1 already shows the first part. To prove the second part, multiply (24b) by BT
k from

the left and Bk from the right,

− d

dt
(BT

k SBk) = −ḂT
k SBk −BT

k SḂk +BT
k S[A−Bk(BT

k−1C
T V̄ −1CBk−1)−1BT

k−1C
T V̄ −1C]Bk

+BT
k [A−Bk(BT

k−1C
T V̄ −1CBk−1)−1BT

k−1C
T V̄ −1C]TSBk

+BT
k S[−F1Q1F

T
1 +Bk(BT

k−1C
T V̄ −1CBk−1)−1BT

k ]SBk −BT
k C

T H̄T V̄ −1H̄CBk

If SBk = 0, H̄CBk = 0 which is not true. Therefore, SBk 6= 0 and KerS contains the minimal
(C,A)-invariant subspace of F2.

For time-invariant system, it is important to discuss the invariant zero directions of (C,A, F2)
when designing the fault detection filter. It is shown that the invariant zeros will be included with
the eigenvalues of the fault detection filter if associated invariant zero directions are not included
in the invariant subspace of F2 (Massoumnia, 1986; Massoumnia et al., 1989). Therefore, the
null space of S includes at least the invariant zero directions associated with the invariant zeros
on the right-half plane and jω-axis because the filter is stable which is shown in Section 7.
However, the invariant zeros on the left-half plane might be part of the filter eigenvalues since
there is no guarantee that associated invariant zero directions are in the null space of S. It is
important that the filter can assign its eigenvalues freely because the invariant zeros might be
ill-conditioned. This could be done by modifying the nuisance fault direction to enforce the null
space of S to include the invariant zero directions. The invariant zero of (C,A, F2) is defined by[

zI −A F2

C 0

] [
ν
w

]
= 0 (27)
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where z is the invariant zero and ν is the invariant zero direction. If the nuisance fault direction
is changed to [F2 ν], Assumption 2.1 in Section 2 is not satisfied. However, if the nuisance
fault direction is changed to ν, the null space of S will be span{ν Aν A2ν · · · Akν} which
is equivalent to span{F2 AF2 · · · Ak−1F2 ν} according to (27). This guarantees that every
invariant zero directions are in the null space of S. If (C,A, ν) has invariant zero, the same
procedure above will be repeated until there is no invariant zero. From theorems 6.1, 6.2 and
using modified nuisance fault direction, the null space of S is the minimal (C, A)-unobservability
subspace. Note that the null space of S can be obtained apriori and it is fixed for the time-
invariant system. This is very important for deriving the reduced-order filter in Section 7.

Remark 6. If the nuisance fault direction is not modified, the invariant zero directions associ-
ated with invariant zeros of (C,A, F2) on the right-half plane and jω-axis should be included in
the null space of S(t+0 ) in (21b). This could be done by making the null space of Π0 contain these
invariant zero directions.

Remark 7. This modification of the nuisance fault direction can also apply to the game-
theoretic fault detection filter and it makes the game-theoretic fault detection filter also equiva-
lent to an unknown input observer.

7 Reduced-Order Filter

In this section, a reduced-order filter is derived for the limiting residual-sensitive fault detection
filter (24a) for the time-invariant system. It is shown that this reduced-order filter can completely
block the nuisance fault. Also, the sufficient condition for this filter to be stable is given.

Consider the state transformation Γ in (25), it can be computed apriori because KerS can
be obtained apriori in terms of the system matrices A, C and F2. Note that Γ is not unique.
Apply the transformation Γ to the system matrices,

Γ−1AΓ =
[
A11 A12

A21 A22

]
Γ−1B =

[
M1

M2

]
CΓ =

[
C1 C2

]
Γ−1F1 =

[
N1

N2

]
Γ−1Bk =

[
G1

G2

]
Γ−1Bk−1 =

[
D1

D2

]
Since SBk−1 = 0, ΓTSΓΓ−1Bk−1 = S̄D1 = 0 implies D1 = 0. Then,

Γ−1Bk−1 =
[

0
D2

]
Also, apply this transformation to the estimator state,

η̂ =
[
η̂1

η̂2

]
= Γ−1x̂
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to transform (24a) into[
S̄ 0
0 0

][ ˙̂η1
˙̂η2

]
=
[
S̄ 0
0 0

][
A11 A12

A21 A22

][
η̂1

η̂2

]
+
[
S̄ 0
0 0

][
M1

M2

]
u

+ {
[
CT1
CT2

]
H̄T V̄ −1H̄ +

[
S̄ 0
0 0

] [
G1

G2

]
(
[

0 DT
2

] [ CT1
CT2

]
V̄ −1

[
C1 C2

] [ 0
D2

]
)−1

[
0 DT

2

] [ CT1
CT2

]
V̄ −1}(y −

[
C1 C2

] [ η̂1

η̂2

]
)

Then, it can be transformed into two equations,

S̄ ˙̂η1 = S̄A11η̂1 + S̄A12η̂2 + S̄M1u

+ [S̄G1(DT
2 C

T
2 V̄
−1C2D2)−1DT

2 C
T
2 V̄
−1 + CT1 H̄

T V̄ −1H̄](y − C1η̂1 − C2η̂2) (28a)

0 = CT2 H̄
T V̄ −1H̄(y − C1η̂1 − C2η̂2) (28b)

From (28b),

H̄C2 = 0 (29)

because y − C1η̂1 − C2η̂2 is arbitrary. Also, apply the transformation Γ on (24b),

0 = S̄[A12 −G1(DT
2 C

T
2 V̄
−1C2D2)−1DT

2 C
T
2 V̄
−1C2] (30a)

− ˙̄S = S̄[A11 −G1(DT
2 C

T
2 V̄
−1C2D2)−1DT

2 C
T
2 V̄
−1C1]

+ [A11 −G1(DT
2 C

T
2 V̄
−1C2D2)−1DT

2 C
T
2 V̄
−1C1]T S̄

+ S̄[−N1Q1N
T
1 +G1(DT

2 C
T
2 V̄
−1C2D2)−1GT1 ]S̄ − CT1 H̄T V̄ −1H̄C1 (30b)

From (30a),

A12 −G1(DT
2 C

T
2 V̄
−1C2D2)−1DT

2 C
T
2 V̄
−1C2 = 0 (31)

because S̄ is positive definite. Put (29) and (30a) into (28a), the reduced-order filter is

˙̂η1 =A11η̂1+M1u+[G1(DT
2 C

T
2 V̄
−1C2D2)−1DT

2 C
T
2 V̄
−1+S̄−1CT1 H̄

T V̄ −1H̄](y − C1η̂1) (32)

subject to (30b). The dimension of this reduced-order filter is n− dim(KerS) = n− dim T2

where T2 is the minimum (C, A)-unobservability subspace of F2. The residual (6) becomes

r = Ĥ(y − C1η̂1)

Theorem 7.1 shows that the reduced-order filter (32) can completely block the nuisance
fault. The sufficient condition for (32) to be stable is given in theorem 7.2 and the stability of
the reduced-order residual-sensitive fault detection filter depends on the target fault’s weighting
Q1.
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Theorem 7.1. The error between the plant states and estimator states is not affected by
nuisance fault µ2.

Proof. Define

η = Γ−1x =
[
η1

η2

]
e1 = η1 − η̂1

e2 = η2 − η̂2

Apply the transformation Γ on (3),

η̇1 = A11η1 +A12η2 +N1µ1 (33a)
η̇2 = A21η1 +A22η2 +N2µ1 +D2µ2

y = C1η1 + C2η2 + v (33b)

Using (32), (33) and (31), the error equation for the reduced-order filter is

ė1 = [A11 −G1(DT
2 C

T
2 V̄
−1C2D2)−1DT

2 C
T
2 V̄
−1C1 − S̄−1CT1 H̄

T V̄ −1H̄C1]e1

+N1µ1 − [G1(DT
2 C

T
2 V̄
−1C2D2)−1DT

2 C
T
2 V̄
−1 + S̄−1CT1 H̄

T V̄ −1H̄]v

This shows that the error is not affected by the nuisance fault µ2.

Theorem 7.2. The reduced-order filter (32) is stable if

−N1Q1N
T
1 +G1(DT

2 C
T
2 V̄
−1C2D2)−1GT1 ≥ 0

Proof. The stability of (32) depends on the eigenvalues of the closed-loop A matrix,

Ācl = A11 −G1(DT
2 C

T
2 V̄
−1C2D2)−1DT

2 C
T
2 V̄
−1C1 − S̄−1CT1 H̄

T V̄ −1H̄C1

Substitute this into (30b),

˙̄S + S̄Ācl + ĀTclS̄ = −S̄[−N1Q1N
T
1 +G1(DT

2 C
T
2 V̄
−1C2D2)−1GT1 ]S̄ − CT1 H̄T V̄ −1H̄C1

If ˙̄S + S̄Ācl + ĀTclS̄ < 0, Lyapunov’s Stability Theorem implies the eigenvalues of Ācl are in the
open left-half plane. Since S̄ and CT1 H̄

T V̄ −1H̄C1 are positive definite, the sufficient condition for
˙̄S + S̄Ācl + ĀTclS̄ < 0 is −N1Q1N

T
1 +G1(DT

2 C
T
2 V̄
−1C2D2)−1GT1 ≥ 0.

Note that Q1 is a free parameter which can be tuned to meet this sufficient condition.

Remark 8. The reduced-order filter (32) and reduced-order Riccati equation (30b) will also
be the limiting solution for the reduced-order optimal stochastic fault detection filter.

8 Example

In this section, two numerical examples are used to demonstrate the properties of the limiting
Riccati matrix S. In Section 8.1, a numerical example from (White and Speyer, 1987) shows
that the null space of S includes the nuisance fault direction and the invariant zero directions
associated with right-half plane invariant zeros. In Section 8.2, the previous example is modified
to have left-half plane invariant zeros and it shows that the null space of S includes only the
nuisance fault direction, but not the invariant zero directions associated with left-half plane
invariant zeros. It also shows that the left-half plane invariant zero directions will be in the null
space of S after the nuisance fault direction is modified.
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8.1 Example 1

This example is from (White and Speyer, 1987). The system matrices are

A =

 0 3 4
1 2 3
0 2 5

 , C =
[

0 1 0
0 0 1

]
, F1 =

 1
−0.5
0.5

 , F2 =

 −3
1
0


where F1 is the target fault direction and F2 is the nuisance fault direction. (C,A, F2) has an
invariant zero at 3 and the invariant zero direction is [1 0 0]T . The weightings are Q1 = 0.5,
Q2 = 1 and V̄ −1 = I. The steady-state solutions to the Riccati equation (10) when γ = 10−6

and limiting Riccati equation (22) are

Π =

 0.0000 0.0000 0.0000
0.0000 0.0010 −0.0002
0.0000 −0.0002 0.0964

 , S =

 0 0 0
0 0 0
0 0 0.0964


This example demonstrates that the nuisance fault direction F2 and the invariant zero direction
ν associated with right-half plane invariant zero are in the null space of S.

8.2 Example 2

This example is modified from previous example such that the invariant zero is in the left-half
plane instead of the right-half plane. The system matrices are the same except

A =

 0 3 4
−1 2 3
0 2 5


(C,A, F2) has an invariant zero at -3 and the invariant zero direction ν is [1 0 0]T . The weight-
ings are the same. The steady-state solutions to the Riccati equation (10) when γ = 10−6 and
limiting Riccati equation (22) are

Π =

 0.0307 0.0916 −0.0603
0.0916 0.2747 −0.1803
−0.0603 −0.1803 0.2150

 , S =

 0.0305 0.0915 −0.0601
0.0915 0.2746 −0.1802
−0.0601 −0.1802 0.2146


This shows that the null space of S includes only the nuisance fault direction F2, but not the
invariant zero direction ν. Also, the filter has an eigenvalue at -3. If the nuisance fault direction is
changed to ν and the weightings are the same, the steady-state solutions to the Riccati equation
(10) when γ = 10−12 and limiting Riccati equation (22) are

Π =

 0.0000 0.0000 0.0000
0.0000 0.0014 −0.0003
0.0000 −0.0003 0.0965

 , S =

 0 0 0
0 0 0
0 0 0.0964


This shows that the null space of S includes both the nuisance fault direction F2 and the invariant
zero direction ν. Note that span{F2 ν}= span{ν Aν}
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9 Conclusion

The residual-sensitive fault detection filter is derived from solving a min-max problem which
makes the residual sensitive to the target fault, but not to the nuisance fault. In the limit as
the nuisance fault weighting goes to zero, this filter is equivalent to an unknown input observer
which puts the nuisance fault into an unobservability subspace. Furthermore, there exists a
reduced-order filter in the limit. Since the target fault is explicit in this derivation, the reduced-
order filter is found with respect to the target fault direction and weighting. This filter also
extends the unknown input observer to a time-varying system.
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