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Abstract— In this work, two techniques of robust control (LQG/LTR and LMI), applied to a
power electric system, are available via stability radii of the system. The structured
uncertainties of the nominal model are considered in both designs. A set of models is
generated considering the combinations of the parametric uncertainties. The structured
singular values of the both systems are analysed.
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1 - Introduction

In this work, two techniques of robust control , LQG/LTRingar Quadratic
Gaussian/Loop Transfer Recovemnd LMIs (inear Matrix Inequalitiey [1], [2], [5], [6], [9],

[11], [12], [18], [25], [26], [27] and [28] are available via singular value structured of the system.
The control of load-frequency in a two-area model of an electric system are considered. The
structured uncertainties of the plant are considered too on the analysis of the real and complex radii.

The interconnection of electric power systems brings advantages from the operation point
of view and, among these advantages, one of the most important is the possibility of power
exchange in critical periods. In order to make this interconnected operation possible, a rigorous
control of the frequency in the entire system, through a process called automatic load-frequency
control, is necessary [28].

The controllers designed by the classic methods have been working in a satisfactory way.
However, the growth of the load demand has lead the systems to operate frequently close to critical
conditions, and more efficient controllers are needed tdlistalbhe systems at these points of
operation.

The main contributions of this work are: analysis of the stability radii, structured singular
values of the systemu{analysis) and the uncertainty matrices that do the system unstable
considering two methodologies of control design, LMI and LQG/LTR, in an electrical system. In
[28] was done a model of one electrical system with two areas connected and two control systems
were designed and compared. Here, they are compared considering the stability robustness of the
system taking into account the parameter variations, in specific ranges, of the model. The main
guestion that will be answered is: what are the distances of the instability of both systems?

2 - Power system modelling

The controllers were designed for a system with 5 buses and 2 generators, which can be
obtained in [24]. By reducing this system to the constant e.m.f.’s behind the transient reactances of
the generator buses, the non-linear dynamic equations that describe its dynamic behaviour are
obtained:
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5=51—52 =W —w2
My = P~ E12G11+C12$el’?5 + D12 €0SO —diw

Moo = P — E22G22 +Cp15end + Dyqc08d —dowo
) 1
T1Pm1 = prefl_r_w_l ~ Pt
1
o 1
T2Pm2 = Pref2 —sz ~ Pm2 -

The data for this model are presented in table 1 (the basis values are 100 MVA and 138 kV).

Table 1.Values of the nominal model parameters.

Parameter Nominal Value
Inertia constant of generator 1,jm 0.2650 p.u. / rad?s
Inertia constant of generator 2,jm 0.0050 p.u. / rad?s
Damping of load 1 (9 1.0610 p.u. / rad/s
Damping of load 2 (1) 1.3263 p.u. / rad/s
Speed regulations of the generatoys,jr| 0.0400 p.u.

Time constants of the turbines ¢,) 0.3000 s

Considering the linear system equations, the state space model of the nominal plant is
obtained. This model is described in section 6, with integrators already introduced to the input. In
this plant, the input variables are the reference powers of the speed reglatarandApes), the
outputs are the angular speed of the generAtod) @nd the power transfer anglAd] and the state
variables are the mechanical powers of the generadipfs &ndAp..,), the angular speedad; and
Awy) and the power transfer angle between these generA®rsTbe constant 2 comes from the
linearization of the terms associated with the power transfer through the |sed€D;cos). All
the variables of the linearized model represent variations around a fixed operation point and, then,
the objective of the controller is to keep the speed variatioego load variations and uncertainties
in the system model, inside the specified limits.

2.1 - Uncertainty ranges

The variation ranges of the model parameters were obtained from the maximum and
minimum values presented in [7] and [8] (see table 2), for damping, speed regulation and time
constants of the turbines. For the line power, it was assumed a variation of 10% in the transmitted
power, and this range was checked later with load flow simulations. Uncertainties in the inertia
constants were not considered.

Table 2. Uncertainties in the nominal model parameters.

Parameter] Minimum Maximum Unit
dy 1.0000 3.0000 p.u. (MVA) / rad/s
do 1.0000 3.0000 p.u. (MVA) / rad/s
1,1 0.1000 0.5000 S
Prie 0.4462 0.5454 p.u.
I, 0.0394 0.0406 p.u.
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3 LQGILTR controller design

After determining the uncertainties in the model, the post-multiplicative error is calculated, for
a range of frequencies from i@ 1G rad/s, generating the stability robustness barrier. Then, three
performance criteria are defined (whesgis the reference signal frequency) :

1. Reference signal tracking with maximum error of 1 %uig 10° rad/s ;

2. Perturbation rejection with maximum error of 1 %dgr< 107 rad/s ;

3. Plant variation sensibility inferior to 10 % far, < 10 rad/s.

The Kalman Filter is included for loop shaping and, after that, the recovery procedure is
applied, see this procedure in [5], [6], [26], [27] and [28]. The singular values generated by this
process (fop = 10%) are shown in Fig. 1. The observer and controller gains obtained are
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Figure 1. Target loop recovery.

4 - Linear Matrix Inequalities (LMIs) applied to the observer-based controller

The application of Linear Matrix Inequalities in the problem of controlling a linear system subjected
to uncertainties is growing considerably in the last years [1, 9, 11, 12, 18]. In this design
methodology, the observer-based controller is presented in a LMI structure, with the objective of
stabilizing a control system subjected to structured uncertainties by the optimization of LMIs. A
more detailed description of this problem can be seen in [1].

Consider the linear system, subjected to uncertainties,

X(t) = (A+ AA))X(L) + (B+AB(t)u(t) 1)
y(t) = (C +AC(1))x(t)

wherex(t), u(t), y(t), A, B and C are the states, inputs, outputs and their respective constant
matrices with appropriate dimensions, defined in equation 1.
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8= Sa () 0B()= 3 (B

Ac() = _ilxi (G 2)
|:

The scalar functionai(t), G(t) andy;(t) are Lebesgue measurable and

@)1, BOL kO <1 . ®3)

A, Bi andC, are matrices with known uncertainties, which are assumed to be constant and
to have rank 1, given by

A=do , Bi=fg, Ci=hiji . 4
If these matrices do not have unitary rank, it is possible to decompose them in order to
obtain a sequence of rank 1 matrices. Scalaand s are defined forB; and Ci, respectively.

Constant matrices T, W, S, U, V and Y represent the time-varying uncertainties, which are the
upper bound of these uncertainties.

AP . a3 .
T= zlididi':DLD1 W= ZVI fifileVF1
i=1 i=1
A R p -
S= ishﬂpTHSH’ us= Yo 0'=0'("0
i=1 i=1
A4

V=3v7'gg'=G V"G

AT

Y= 35t SY (5)
where -
D=[d: ..dj FE[f,..€, H=Z[hs ..h
O%[o: ...ql, ) G=lg: ..q ) IZ i1
L =diag(ly ..T,), Vv =diag @ ... %),
§2 diag (§ ... §). (6)

Consider the state observer with the form

At) = AzZ(t)=Bu(t)~Lim (Ct) = y(1)) ()

wherez(t) [J R is the state observdr,, (nxq) is the gain matrix of the observel(t) [/ R" is the
input signal defined by(t) = -Kini z(t) and Kini (mxn) is the state feedback gain matrix. The
stability of the system can be analyzed looking at the dynamics of thee@réix(t) - z(t) and of
the states, respectively given by the following system of equations :

(1) =[A+ AA=(B+ 4B )Kny (1) + (B + 4B )K (1)
&t) =(AA-ABKpi — L AC)X(t) + (A= Ly C + ABKjpyi )e(t) (8)
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The quadratic Lyapunov functio¥(x,e) = xX’Px + e'P,e is used to verify asymptotic
stability for the system of eq. (8. andP, are (nxn) positive definite matrices.

Definition [9]: The system of eq. (1) is asymptotically stable if there exists a consfaR
such that the derivative of the Lyapunov functiéx,e),related to the system of eq. (8ptisfies
the limit v (x,e,t)< -a(|x|f+|le|p) for all x, e O R" andt OR given any admissible;(0), B;(0 andx;()
. Let

Km= —RBP.  and Lm= +Ps'CRo?% 9)

& €o

wheree,, €, [ R are positive constant®; [7R™™ andR, [J R are chosen constant matrices. Using
egs. (2) to (6) and (8) - (9) and the fundamental inequality2g&kp® for any a, b real scalars, the
following equation can be obtained :

| 1 a

Q -=~PBR'BP
|:| c c c
V(xet)<-[x €|O0 1 & %E (10)
- —PRBRBP, Q, H
H & H

where

Q. =-AP -PA+2PBR'BP -2 PBR'GVGR ‘BP -2 PFVF'P -PDLD'P, -20 '[0-1 31§
SC SC SC SO
O - A - - . . -
= -AP, -PA+PRZ[BR*-R'GVIGR )B-FVF]- DD - 2070~ L 381y (11)
E. O &
Q,=-AP,-PA-PDLD'P, —EPOFVF'P +2c 'R'C TS 'RHSH'R'C —EPCBI{IG'\?‘IGI{IB'PC
SC o SO SC

2

=-AP -PA-P, E}ED'—3 FVF'EZL +1c '(2R0‘1 -RHH 'Ro‘l)c—— PBR'GV 'GR'B'P, (12)
EC EO EC

Adding EQ: - £Qc) in Q. (Qc is a symmetric positive definite matrix), the right side of eq.
(10) can be divided in two parts,

vV (x,e,)s -X o, x -[X €] o, Ek% (13)
igm
5 e -LrBrR'BERY
wheree, 2[Q.-&Qd ©,2 0 | €c 0.
F=RBRBR Q, o
H & H

Theorem 1 If there are positive constants.,s,, symmetric positive definite matriceg P

P, and diagonal positive definite matricés V, S so thate, > 0 and e, > 0, the linear system
(8), with Kmi and L, defined in (9), is asymptotically stable.

Proof. See [9].

Theorem 1 states sufficiency conditions for the robustness of the controller through
feedback of all states. Theorem 2 below presents an adaptation of theorem 1 to an LMI form.
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Theorem 2 If there are positive constants and &, symmetric positive definite matrices
W, W, R, R, Q., and Q and diagonal positive definite matricas,S,v so that the following
conditions are satisfied

B >, 25.BR7'G' WO WJ' W, B
. A = -~
) Ac= B3R 'B'5,2 Vv 0 0 0 0>0 (14)
0 © 0
o ow, 0 L 0 0 7
0w, 0 0 S 0 O
H w 0 0 0 3Q'H
and
0 o, 6C'R™ PD PF P O
. A ! _
i) Ao= H4'RO 'Co, S 0 o0 0 B>O, (15)
U pp 0 L/i2 o0 o O
0 ° e 0
o F'P, 0 0 V 0 O
H p 0 o o &5Q7H
where

®. =-W.A- AW+25.BR* B- FVF2 DLD
®,=-APR - PA+25,CR*C-452P.BR°'GVGR ! B P-3.°P.BR. ‘B RQ'RBR !B P

_ A A _ A - . . ..
and L= (% v =v?, 5=57 then, the linear system with uncertainties, where K and L are
defined in eq. (9), is asymptotically stable.

Proof. See [9].
The following design procedure can be established.

1. Choose the matrica3. andR;, so that the optimization problem P1 has a non-empty set
of feasible solutionsM., W,,V , L,S,d.), whereM, andW, are symmetric positive definite

matrices,v , L and s are diagonal positive definite matrices andis a scalar.
P1: min f,(Mc, W,V ,L,S ,5.) = tr(M,) (16)
MC1 WC1 \71 E’§’6C

subjected toM. 1 2>0,A>0, M, W, V, L, S ,5,>0
gl Wpg
17)

2. Calculatev , L ,S andPCéWC'l. Choose symmetric positive definite matri€gsandR,
so that the optimization problem P2 has a non-empty set of feasible solMign3,(,s,)
with matricesP, andM, and a scalas, .

P2: min fo(Mo, Po ,3,) = tr(My) (18)
M01 P0 160
subject to M, 10> 0,N\o>0,M,, P,, 5, >0. (29)
ol RO
3. CalculateK, andL, by eq. (9). Theorem 2 guarantees asymptotic stability for the
system (7).

The choices ofQ. and R. are similar to the choices of the weighting matrices of the
algebraic Riccati equations (ARESs). In the optimization problem P1, there is the advantage of
choosing the weighting matrices, L, S and the constart.. In a similar way, this freedom of
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choice is also valid for problem P2. Comparatively, the formulation of these problems via LMI has
more flexibility than the formulation via ARE. This flexibility is related to the rank 1 decomposition

of the weighting matrices and with the choice of the constamde,. When the solutions via ARE
are chosen, these decompositions must be made in such a way that simultaneous solutions for both
ARESs do exist, and this can be an exhaustive task. LMIs overcome this problem and there’s no need

to choose the constargsande,,.

5 - LMI controller design

Egs. (1) and (2) give the nominal plant and the uncertainty matrices, considering the system
with integrators we have:

0o 0 0 0 0 0 0 O
Ho 0 0 0 0 0 o 5
0o 0 0 1 -1 0 0 B
A:B 0 0 -18709 - 40038 0 37736 0g
B 0 0 9916 0 - 2122 0 200%
(33333 0 0 - 833333 0 - 33333 0
Ho 3333 o0 0 -833333 0 - .33333
100000 o0d 00100 00
B= C= 0
910000 of Hooo01o0 of
0 0 0 0 0 0O
0o 0 0 0 0 ¢
0 0 0 0 0 0 O
AA(t):%) 0 -Q187&(t) - 73168(t) 0 0 @
Bd) 0  9.91&(t) 0 - 38779%Kt) O %)
0 0 0 0 0 0 O
B o 0 0 0 0 ¢
M O0O0100@ M 0 -Q1873 - 73167 0 - 66666 00 .
D= , O= 0, and the matrices
%) 00010 0 0 99160 0 - 3877955 0o - .6666

F, G, H andJ are zeroes matrices. The same observer of the LQG/LTR design is used here. The
gain of this controller is
_[40740 0.0016 -16375 23707 0.9549 49417 0.1755]

K .= .
i %).0016 12875 138520 13923 537770 0.1078 32537(%

6 - Real and complex stability radii
6.1 - LQG/LTR Controller

The stability real radius is a problem that has been considered by several researchers of the
control theory [2], [3], [4], [10], [13], [14], [15], [16], [17]. This radius measures the capacity of a
matrix in preserving her stability when occur real perturbations.

In [22] is presented a general definition of the stability radius in the field K K&@.or
K=R) taking into account the structured singular value (ssv) of the system.wierhh. It is
possible to calculate singular vectors to generate a perturbation matrix in an appropriated mapping,
with a real parametey that belongs to (0,1]. Two algorithms to determine the frequency range
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where the maximum of the singular values of a transference matfii@”Mis contained and to
calculate the perturbation matrig JR™®, are used, see for more details [3] and [22]. The first
algorithm determines, too, the frequency that this maximum is given. The second algorithm utilizes
the singular vectors of a determined real matrix, of the transfer matrix M of the system, denoted by
P({). With this, the real stability radius can be calculated.

For the construction of the uncertainty matrix, the real and complex parts of the matrix
MOC™™ M=X+jY, are utilized. Three cases are implemented in the algorithm: when the matrix Y
is equal zero, when the rank of Y is equal one, and when the rank of Y is grater than 1.

Here, the limits of the ssv and the real and complex stability radii of one electric system
controlled via two techniques LQG/LTR and LMI, are given. We display too, the perturbation
matrices that can cause the instability of the system. The complex stability radius is

ABC)=0 SIC(w 1 - A)~LB]

D[wmin ,Wmax |

-
uelC(iw 1 - A~1e1H
0
0

0
DDDDEDI

wherew is the frequency where the maximum of the greatest complex ssv of the system is given.

The real structured singular value is

(C(ie1-A) Bl = inf oo oM Y ImM
(,0 - =
KR won- 2EymM  ReM

where theo2(.) is the second singular value. The real stability radius is given by

H—l
— . * —
"WABCI=D o HelCUiw 1 -A)T1BID
[ 0
Efo D[‘"min ’wmaX] O

For any MIC™" we have the following inequalities
pr(M) < p(M)< 0 (M)
wherepg(.) and o (.) denote spectral radius and maximum singular value. Wéein
R ReC(wil -A)™B)  -yIm(C(wil -A)™B)
o20Cell =4 "Bl T2l m(c(wil -A)*B)  RelC(wil ~A)B)

W TJowmom]
yo(0.q
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we have the complex ssv. The function that describe the real ssv in the frequency, with
minimization iny, is

U[Cawjl —A)'B] = = ReflC(wil - A)1BE -y mT (] —A)_lB%E.

oM M) inf o2 Un

y0(01] ﬁé/_llm ﬁC(wjl —A)_lBﬁ Re@C(le —A)_lBﬁ gﬁ

The first controller analyzed is the designed via LQG/LTR methodology. We consider the
nominal plant with integrators, the uncertainty matrixq,/Agiven bellow, the observer gain
(designed via Kalman filter), &l and the controller gain (designed via Linear Quadratic Gaussian
regulator), Gg, given above.

M 0 0 0 0 0 o;
0o 0 0 0 0 of
Ader= 0 0 0 0 0 0 o0
D 0 -0187a -7.316% 0 0 of
® 0 9916 0 -387795& 0 OO
B o 0 0 0 0 o
B o 0 0 0 0 Of

a, b, c e d belong to [-1,1] with appropriated combinations. In the following, the real and complex
stability radius for the controller l§c are given

KLoc(6)=Gigq (W-A-Adel+B,Gigq+HiCr) "His.

We have 625 combinations of the system uncertainties, for these models we fix a
determined parametric uncertainty changing the resting, this procedure was done for all parametric
uncertainty. For each combination we have one model. The following results were obtained
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Figure 5 - Real (a) and complex (b) stability radiuss@s models, LQG/LTR controller for the
power electric system.

The figure 5 displays that the real radius has more variations €jg.itis more sensible to
the parametric uncertainties, than the complex radius. The complex radius are always smaller or
eqgual than the real radius.

Table 3
Real and complex SSV and real and complex stability radii - LQG/LTR controller
We 256.8650 W, 319.7072

HelCigqli W 1-Aig)) "Bigd] 1.5883€+004 | |o[Cioq(j 0 1-Agg) "Bigg 1.4625e+004

rc(Arqg:Biag: Ciag) 6.29626-005 A(A1qBiag Ciag) 6.8374€-005
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Matrix M in the frequencyo,

M= [14725.5141 - 25.9620i 126.1546 — 44.8778i O
H - 5.8840 + 14.4441i 16.2713 + l731.3838iH

For any MIC™" we have the following inequalities:

Pr(M) < u(M)< o (M).
0<pr(M)= 1.4620e+0041.4726e+004

and the perturbation matrix of the system is

[J0.00006795682 —0.000007490900]

A=r 0
H-0.00000764289 -0.00006772480

VSE-C R a=0b=1c=-1d=-1

16000 :

14000 -~ - : S
s s s s l [®HP®M11

12000 fi------- Rt T TR

plex

10000 ffl - - -- ] A A A

———————————————————————————————————————————————————————

sev_teal ot
W
O
)
o

5000 ] ------ T T AU E—

000

2000 |--N: - e S e SRS SRR

1.5 2 25 3oy 35
Freq. w radisec w 107

Figure 6 - Real and complex ssv for the LQG/LTR controller.

The minimum of the second singular value of the matry B(given by:

HR[Cqu('q'l _Alqg)_lBqu] :\ﬁijnf g,

(‘dj[mn'(k)\/l] (0. _llm C (('0“ _Alqg)_lBqu R Clqg(('ojl _Alqg)_lBqu

lag

%Re(clqg ((JL)J' _Alqg)_lBqu) - ylm(clqg ((JL)J' _Alqg)_lBIEBg)%
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Figure 9: Real ssv for each frequency minimiseq -ihQG/LTR controller.
6.2 - LMI controller
The gain of the controller designed via Linear Matrix Inequality is given by:

_[40.740 0.0016 -16375 23707 0.9549 49417 0.1759]

KLMI_
[0.0016 12875 138520 13923 537770 0.1078 3253701

The real and complex radius for the same uncertainty combinations given above, are given
bellow for the following transfer function

Kim () =Kgmi(el- An+Ade|'BnK|mi-kaCn)'lka_

We have the following graphics
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Figure 10 - Real and complex radii for 625 models - controller designed via LMI for the power
electric system.

In the table 5 the real and complex radii and ssv of the LMI controller are given in the
frequencieswy, and w, . The matrices of the LMI controller are

Agmi = ArtAdel-BKmi-HiiCy

(3407400  -0.0016 437521 - 23707000 -1.0054 -4941700 -0.1755]
E -0.0016 -12875000 -1385199534 -1392300 -5378899979 -0.1078 -325370J
=0 0 0 -0.9917 1.0000 -0.0083 0 g
0 0 0 -7.0065 33131 -0.0420 3.7736 o
O 0 0 1040760 0 -226908 0 2000000
E 3.3333 0 -88539 -833333 03892 -3.3333 od
0 0 3.3333 0.4351 0 -89.6920 0 -33333]
Bam'=H s, Gmi=Kami;
Real and complex radii and ssv - LMI controller
W 893 o 997.5
C R
Mc[K ] 5.008e+003 Mr[K twmi] 4.8528e+003
re(Kumr) 1.9965e-004 A(Kwr) 2.0607e-004
Table 5.
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Matrix M on the frequency,

1 [0.7825-208895  -00172-0,0735 O
920419-6.0551 48585187+0.3810H

In the following we display the perturbation matrix of the system for the frequency

= C-0.0002046036 —0.0000109908)
H-0.0000109053 -0.0002057744

and for any NDC™™ we have the inequalities

Pr(M) < u(M)< o (M).
0<pr(M)= 4.8528e+0034.8586e+003

The graphic of the sgw:(M) is given in the figure 11.

YWSE-C R a=1b=1c=0.5d=-0.5%

000 T

S000

4000

3000

2000

sgv_teal _cotnplex

1000

O=cy, 05 1 1.5 2 2.5 o 3
Freq. w radisec. w 10T

Figure 11 - Real and complex ssv - LMI controller.

In the following, the graphic of the minimum structured singular values, in the frequency

domain, for the system controlled via Linear Matrix Inequalities is displayed in the figure 12.

a0l _ 4
MRLCL @l =ALy) B 1™ it o _RaaiLm(aal Ami) _BLMI @ ylmE:LM,(cql ALMI_)l BLwi
el ! yH(O]] l'”‘ﬁ:uvn(&!" = Awr) lBuvn@ Raﬁﬁ_w(ajl -Awm) Buvn@
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Figure 12 - Real ssv for each frequency minimiseg -ihMI controller.
CONCLUSION

In this paper we considered the real and complex stability radii and the structured singular
values of a power electric system controlled via two methodologies LQG/LTR and LMI. The
figures 5 and 10 display the behaviour of these radii for both systems. The variations of the radii
considering LMI controller are more intensifies than the radii for the system controlled via
LQG/LTR methodology. The real and complex radii of the LMI controller are bigger than the
LQGI/LTR controller radii. For this electric power system, the distance of the instability for the first
controller is bigger than the second controller. For a further research it is interesting to investigate
the generalisation for any system.
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