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1 Introduction

Learning, apparently, is the result of making mistakes. The procedure is to make observations,
construct a model, and validate the model against new data. Validation is perhaps a misnomer,
as one can never prove that a model will be able to accurately predict the future. More precisely,
the data can falsify a model, i.e., the model may prove to be incapable of fully explaining the
data. Hence, instead of validation, we use the more precise, but awkward term: unfalsification.
In this paper we will show how unfalsification can be used for direct iterative adaptive control,
i.e., the control parameters are adjusted directly.

Uncertainty model unfalsification using finite time domain data, which is the underlying ba-
sis for the work presented in this paper, was first described by Poolla et al. (1992). Earlier work
using frequency domain data was presented in (Smith and Doyle, 1989), and some precursers to
unfalsification can be found in (Kosut et al., 1992). Further extensions and applications to plant
uncertainty model unfalsification can be found in (Kosut, 1995), (Kosut, 1996), (Kosut and
Anderson, 1997), and (Livestone et al , 1995). A method employing a probabistic description of
dynamic uncertainty is given in (Goodwin et al., 1992). The origin of the ideas for direct con-
troller unfalsification are presented by Safonov and Tsao (1997) and the references therein. The
mathematical basis for unfalsification of linear-time-invariant systems can be found in (Grenan-
der and Szebo, 1958) and (Foias and Frazho, 1990). Computations using convex programming
is discussed in (Woodley et al., 1998, 1999).

The roots of iterative adaptive control can be traced to the dual control concept (see, e.g.,
(Åström and Wittenmark, 1995, Ch. 7)), which typically involves indirect adaptation, i.e.,
identification followed by control parameter adjustment. A survey of iterative identification
and control schemes is given in (Gevers, 1993). Of particular relevance to the work presented
here – for purposes of comparison – is (Zang et al., 1991), (Åström, 1993), and (Åström and
Nilsson, 1994) which describe how data filters can be selected to make the identification and
control criteria merge; the windsurfer approach to adaptation and learning, as described in (Lee
et al , 1993, 1995), where the closed-loop bandwidth is gradually increased every iteration; and
(Hjalmarsson et al., 1994), which describes a direct iterative controller design method.

2 Iterative Adaptive Control

A generic iterative adaptive control system is depicted in figure 1. The adaptive part of the
controller consists of a parameter estimator and a control design algorithm connected in series
through a sample and hold. The latter is what makes the system “iterative.” That is, the next
controller design is based on data collected while the previous controller was in place.

The system consists of two feedback “loops” each operating at different sampling rates.
The inner loop, operating at the fast rate, consists of the plant and controller, where u is
the control input to the plant, y is the sensed output from the plant, and r is the reference
command to the controller. The outer loop, operating at the slow rate, consists of the plant
parameter estimator and control parameter design, The sequence of parameter estimates, θ̄, are
produced at the end of every data collection interval of `-samples, and hence, depend on the prior
applied sequence of controller parameters, α̂, which are based on θ̂, the prior plant parameter
sequence, and so on. Thus, θ̂ and α̂, are piece-wise constant vector sequences, i.e., constant
over every `-samples. Specifically, during the i-th iteration (`-data collection interval), that is,
for t = 1 + (i − 1)`, . . . , i`, let θi` ∈ Rp denote the plant parameters and let αi` ∈ Rq denote
the corresponding control parameters. The relation between θi` and αi` is typically algebraic and
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Figure 1: Iterative adaptive control system.

depends on the design procedure, i.e.,

αi` = α?(θi`) (1)

Let (yi, ui) ∈ S` × S` denote1 the plant output and input data recorded during the i-th data
collection period, i.e.,

yi =
{
y1+(i−1), . . . , yi`

}
ui =

{
u1+(i−1), . . . , ui`

} (2)

After every data collection period of ` samples, a new parameter estimate, denoted by θi+1
` , is

determined by solving an optimization problem of the form2,

θi+1
` = arg min

θ ∈ Θ
ρi`(θ) (3)

where Θ ⊂ Rp is the set of possible parameters, which in most cases is simply Rp. The objective
function, ρi`(θ), depends on the data (yi, ui) ∈ S` × S`, as denoted by the superscript i and the
subscript `, and on θ, where the precise dependence is determined by the estimation and/or
control design criterion. For “indirect adaptive” schemes, the criterion is related to providing a
good fit to the data based on an assumed uncertainty model for the plant system. Hence, α =
α?(θ) simply denotes how the plant uncertainty model parameters relate to the corresponding
control design parameters. For the “direct adaptive” schemes, as the name implies, the control
parameter is itself adjusted, i.e., α ≡ θ, and the criterion is directly related to closed-loop
performance. Actually even in the indirect case, the criterion is constructed to be as close as
possible to a closed-loop performance criterion or at least useful for control design.

1S` denotes the set of scalar sequences of length `, i.e., x ∈ S` ↔ x = { xt | t ∈ [1, `] } where t are the
uniformy spaced integer samples.

2The optimization operation “arg min” as used here and throughout the paper is to be understood to mean
the minimizing argument, or if there is no unique minimum, then “arg min” refers to the set of (local) minima,
i.e., arg min f(x) = { x | fx(x) = 0, fxx(x) > 0 }.
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2.1 Convergence

Convergence analysis is very difficult because the data (yi, ui) ∈ S` × S` depends on all past
control parameter switchings

{
α1
` , . . . , α

i
`

}
, which in turn depend on all past plant parameter

estimates
{
θ1
` , . . . , θ

i
`

}
. However, for long data collection periods, provided that all past con-

trollers are stabilizing, the system memory of past controllers fades. Hence, in the limit, with
infinite data collected during every iteration, the data collected during the i-th interval only
depends on the last parameter values (αi, θi), i.e.,

lim
`→∞

yi = y(αi), lim
`→∞

ui = u(αi), αi = α?(θi) (4)

Similarly, the objective function becomes,

lim
`→∞

ρi`(θ) = ρ(θ, αi), αi = α?(θi) (5)

So in the limiting case of infinite data, the parameter estimation step at iteration i is,

θi+1 = arg min
θ ∈ Θ

ρ(θ, αi), αi = α?(θi) (6)

As observed in (Hjalmarsson et al., 1995), for infinite data, convergent parameter values are
equivalently fixed-points of the mapping Γ : Rp 7→ Rp, where

Γ(θ) = arg min
ψ ∈ Θ

ρ(ψ, α) subject to α = α?(θ) (7)

Hence, if θ̂ is a fixed-point, then

θ̂ = arg min
ψ ∈ Θ

ρ(ψ, α̂), α̂ = α?(θ̂) (8)

and must satisfy the necessary condition for optimality, namely,

∂

∂θ
ρ(θ, α?(θ̂))

∣∣∣∣
θ = θ̂

= 0 (9)

However, the minimizer, θopt, of ρ(θ, α?(θ)) satisfies,

∂

∂θ
ρ(θ, α?(θ))

∣∣∣∣
θ = θopt

= 0 (10)

As pointed out in (Hjalmarsson et al., 1995), the fixed-point θ̂ is not likely to be the same
as θopt. So it appears that iterative schemes have a built-in flaw. Even if the infinite-data
estimation criterion, ρ(θ, α?(θ)), is constructed to be a sensible control criterion, no iterative
algorithm can be guaranteed to reach the minimum, or at least a local minimum. This has led
some researchers to seek another path, e.g., in (Hjalmarsson et al., 1994) the authors show how
to obtain an unbiased estimate of the gradient (and Hessian) of error signals with respect to
control paramters by performing a series of specialized experiments. Incidentally, this “flawed”
property of iterative schemes of adaptation is a recrudescence of the identical property of all
slowly varying parameter adaptive algorithms, e.g., see (Anderson et al., 1986), (Phillips et al.,
1988), or the chapter on averaging analysis in (Åström and Wittenmark, 1995).

But all is not lost for iterative schemes – well, it may be for “convergence,” but not for
unfalsification. In fact, this leads to an interesting philosphical issue – a debate, perhaps –
discussed briefly in section 8 on convergence vs. unfalsification.
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3 Parametrization and Performance

3.1 Parametrization

We will assume throughout that the control is given by,

u = C(α)(r − y) (11)

where for fixed α ∈ Rq, C(αi) ∈ LTI3 The controller parameters, α, are to be adaptively
adaptively adjusted. There are of course mant possible ways to parametrize the controller.
For example, the control parameters, α, can consist of all the numerator and denominator
transfer function coefficients up to a specified degree, thereby restricting the controller order.
For example, all order-n controllers can be parametrized as follows:4

C(α) = N(α)D(α)−1

N(α) = b0 + b1z
−1 + · · ·+ bnz

−n

D(α) = 1 + a1z
−1 + · · ·+ anz

−n

α = [a1 · · · an b0 · · · bn]T ∈ R2n+1

(12)

Another paramtrization is all the PI controllers, i.e.,

C(α) = αP + αI
z−1

1− z−1
, α = [αP αI ]T ∈ R2 (13)

3.2 Performance

We would like the closed-loop system to behave like the reference system,

yref = Tref r (14)

for a specified system Tref ∈ LTI. “Behave like” can have a variety of meanings. For example, it
could mean that the output error, y−Tref r, should be small relative to the size of the command
r. An example of such a specification is that5 ,

‖y − Tref r‖rms ≤ ρ‖r‖rms, ∀‖r‖rms <∞ (15)

In this case, we are not looking for a response to a specific r, such as a sinusoid at one frequency
or a step, rather, for every possible r such that ‖r‖rms < ∞. For example, if the plant system
is given by,

y = Pu (16)

where P ∈ LTI, and the controller is given by,

u = C(r − y) (17)

with C ∈ LTI, then (15) is equivalent to,

‖T (P,C)− Tref‖H∞ ≤ ρ (18)
3LTI is the set of linear-time-invariant systems with rational transfer functions.
4z−k denotes the k-delay operator.

5The RMS-norm of a sequence (technically a semi-norm) is defined as
∥∥x∥∥

rms
=

(
lim
`→∞

1

`

∑̀
t=1

x2
t

)1/2
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with T (P,C) given by,
T (P,C) = (1 + PC)−1PC (19)

This is clearly a measure of the error between the transfer functions of the closed-loop and
reference systems. Hence, for a given controller parametrization, C(α) ∈ LTI, and a given plant
parametric model, P (θ) ∈ LTI, the optimal control design (1) is,

α?(θ) = arg min
α
‖T (P (θ), C(α))− Tref‖H∞ (20)

Hence, the designed closed-loop system T (P (θ), C(α?(θ)) is the closest H∞ approximation to
Tref , the reference system. Since it is unrealistic to expect that the plant is in the model set,
i.e., P 6= P (θ), it follows that the actual, or achieved closed-loop system, T (P,C(α?(θ)), may
be quite different. Of course the most desirable goal is,

αopt = arg min
α
‖T (P,C(α))− Tref‖H∞ (21)

The performance measure can be modified to penalize control activity, e.g.,

‖y − Tref r‖2rms + λ‖u‖2rms ≤ ρ
2‖r‖2rms, ∀‖r‖rms <∞ (22)

Again, if the plant and controller are LTI, then this measure is equivalent to,∥∥∥∥∥
[
T (P,C)− Tref

λQ(P,C)

]∥∥∥∥∥
H∞

≤ ρ (23)

where
Q(P,C) = (1 + PC)−1C (24)

4 Uncertainty Model Unfalsification

4.1 Unfalsification

The generic uncertainty model unfalsification problem is as follows:

Given scalar data sequences e, v ∈ S`, establish necessary and sufficient conditions
for the existence of a disturbance sequence w ∈ S` and a causal system ∆ such that

w ∈W(σ), ∆ ∈∆(δ) (25)

and which are consistent with the model

et = wt + (∆v)t, t ∈ [1, `] (26)

The sets W(σ) and ∆(δ) denote, respectively, a set of sequences with norm bounded by σ
and a set of systems with gain bounded by δ.
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4.2 Uncertainty Model Forms

The data sequence e is often obtained as the prediction error associated with an assumed model
of the system, and v is a function of other sensed signals, the choice reflecting the type of
dynamic uncertainty, or model error. For example, consider the standard prediction error form
in (Ljung, 1987),

e = H−1(y − Pu), P,H ∈ LTI (27)

If v = u, then ∆ represents additive model error, i.e., the uncertainty model set is given by,

J(σ, δ) = { y, u | y = Pu+H∆u+Hw, w ∈W(σ), ∆ ∈∆(δ) }

If v = Gu, then ∆ represents multiplicative model error, i.e., the uncertainty model set becomes,

J(σ, δ) = { y, u | y = Pu+H∆Gu+Hw, w ∈W(σ), ∆ ∈∆(δ) }

There are clearly many variations one could include, e.g., combinations of additive and
multiplicative model errors, co-prime factor uncertainty, and so on, ultimately leading to the
uncertainty structures descibed by the more inclusive linear fractional representation familiar in
robust control design, e.g., (Newlin and Smith, 1998). In addition, the error could be obtained
from a parametric prediction error model with parameters associated with transfer function
coefficients which characterize the input/output and disturbance dynamics, i.e.,

e(θ) = H(θ)−1 (y − P (θ)u) (28)

with θ ∈ Θ, the set of parameters for which the predictor is stable (Ljung, 1987).

4.3 Disturbance Uncertainty

There are many ways to characterize the disturbance set W(σ). For example, consider the
following sets of finite sequences:

• Rms-bounded noise

Wrms(σ) =
{
w ∈ S`

∣∣∣∣ 1
`
‖w‖2 ≤ σ2

}
(29)

• Time-domain white noise (Paganini, 1996)

Wwht time(γ,m) =
{
w ∈ S` | |rw(τ)| ≤ γrw(0)

}
(30)

where rw(τ) is the auto-correlation of w,

rw(τ) =
1
`

`−τ∑
t=1

wtwt+τ , τ ∈ [0,m− 1] ≤ ` (31)

Observe that rw(0) = ‖w‖2/`.

• Frequency-domain white noise (Massoumnia and Kosut, 1993)

Wwht freq(σ, ε,m) =
{
w ∈ S`

∣∣∣ |eig {Rm(w)} /σ2 − 1| ≤ ε
}

(32)

where

Rm(w) =

 rw(0) · · · rw(m− 1)
...

. . .
...

rw(m− 1) · · · rw(0)

 (33)
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The disturbance set Wrms(σ) is the simplest of choices for deterministically characterizing
“noise.” The main advantage is that it is a convex set and therefor easy to handle in op-
timization. However, there are no restrictions preventing correlation with inputs and so the
“worst-case” can occur. As shown above, characterizations of deterministic sets which resemble
white noise have been examined in (Massoumnia and Kosut, 1993) in the frequency domain
with application to system identification and in (Paganini, 1996) for both time and frequency
domains with application to robust control. The set Wwht time(γ,m) is essentially one of the
standard white noise test where γ is chosen from χ2 distribution tables; m is the lag window
used to smooth the correlation function. The set Wwht freq(σ, ε,m) is shown in (Massoumnia
and Kosut, 1993) to also be useful for white noise testing; m again is the lag window, σ2 is the
rms-level of w and hence, the average level of the spectrum of w, and ε ∈ (0, 1) determines the
“flatness” of the spectrum. Clearly these latter sets do preserve the character of white noise,
but they are not convex. However, they are no worse than quadratic and so may be quite
amenable to conjugate-gradient methods of optimization. The work reported in (Kruger and
Poolla, 1998) shows a two-step procedure involving a Kalman filter for unfalsifiying stochastic
disturbance signals.

4.4 Gain-Bounded Dynamic Uncertainty

Uncertain dynamics can also be characterized in a number of ways. Consider the following
gain-bounded, time-invariant (TI) dynamic uncertainty sets:

• Linear (LTI)

∆LTI(δ) = { ∆ ∈ LTI | ‖∆v‖rms ≤ δ‖v‖rms, ∀‖v‖rms <∞ } (34)

Since ∆ ∈ LTI, the gain bound condition is equivalent to the frequency domain bound:

|∆(ejω)| ≤ δ, ω ∈ [−π, π] (35)

• Incrementally nonlinear (INTI)

∆INTI = { ∆ ∈ TI | ‖∆v1 −∆v2‖rms ≤ δ‖v1 − v2‖rms, ∀‖v1‖rms, ‖v2‖rms <∞ } (36)

• Nonlinear (NTI)

∆NTI = { ∆ ∈ TI | ‖∆v‖rms ≤ δ‖v‖rms, ∀‖v‖rms <∞ } (37)

4.5 Unfalsification

Consequences of unfalsification are summarized in the following.

(i) Finite-Data Test

Given data sequences e, v ∈ S`, there exists a sequence w ∈ S` and a causal system
∆ such that,

et = wt + (∆v)t, t ∈ [1, `] (38)

with w ∈Wrms(σ) if and only if

1
`
‖w‖2 ≤ σ2 (39)

and such that:
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• ∆ ∈∆LTI(δ) if and only if,

T {e− w}T T {e− w} − δ2T {v}T T {v} ≤ 0 (40)

with (T {e} , T {v} , T {w}) the `×` Toeplitz matrices formed from the sequences
(e, v, w), respectively, e.g.,

T {e} =


e1 0 · · · 0
e2 e1 · · · 0
...

...
. . .

...
e` e`−1 · · · e1


• ∆ ∈∆INTI(δ) if and only if, ∀m− n = 0 : ` and ∀t ∈ [1, `],

‖(zn − zm)(e− w)‖L2[1,t] ≤ δ‖(z
n − zm)v‖L2[1,t] (41)

where zk is the k-forward shift operator, i.e., if x = { x1, x2, . . . } then zkx =
{ 0, . . . , 0, x1, x2, . . . } with k-zeros.

• ∆ ∈∆NTI(δ) if and only if ∀t ∈ [1, `],

‖e− w‖L2[1,t] ≤ δ‖v‖L2[1,t] (42)

(ii) Uncertainty Tradeoff

The (σ, δ) boundary between falsified and unfalsified uncertainty models for a given
finite data set with w ∈Wrms and ∆ ∈∆µ(δ), µ = LTI, INTI, NTI is determined
by solving:

σµ(δ) = min
{
`−1‖e−∆v‖L2[1,`] | ∆ ∈∆µ(δ)

}
, 0 ≤ δ ≤ δµ (43)

with
δµ = min { δ | et = (∆v)t, t ∈ [1, `], ∆ ∈∆µ(δ) } (44)

(iii) Nesting

For all δ ≥ 0,
σNTI(δ) ≤ σINTI(δ) ≤ σLTI(δ) (45)

and
δNTI < δINTI < δLTI (46)

Comments
(1) The results in part (i) for ∆ ∈ ∆LTI(δ) and the necessity for ∆ ∈ ∆NTI(δ) (which is

the same as the necessary and sufficient conditions for gain-bounded linear-time-varying (LTV)
systems) is found in (Poolla et al., 1992). Proof of the remaining results in (i) can be found in
(Kosut and Anderson, 1997).

(2) The tradeoff and nesting results follow from convexity of the uncertainty sets. All the
results can be extended when the error is formed from the ARX parametric prediction error
model with efficient computations using LMIs, (Boyd et al., 1994). Output error and other
linear fractional parameter forms are not convex sets, and the nesting and tradeoff results are
thus not guaranteed. Details are in (Kosut, 1995, 1996; Kosut and Anderson, 1997).
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5 Controller Unfalsification

In a series of papers by Safonov et al.(see (Safonov and Tsao, 1997) and the references therein),
it is shown how to directly falsify a candidate controller before it is implemented. The procedure
for controller unfalsification is essentially the same as that for uncertainty model unfalsification,
but applied to the closed-loop specification. Specifically, the closed-loop specification (15) can
be viewed as the uncertainty model set,

J(ρ) = { y, r | ‖y − Tref r‖rms ≤ ρ‖r‖rms , ∀‖r‖rms <∞ } (47)

The goal is to adjust the parameters α ∈ Rq such that the controller,

u = C(α)(r − y) (48)

makes ρ as small as possible. From the previous discussion on unfalsification of uncertainty mod-
els, without any further assumptions about the plant system, the specification set is equivalently
expressed as,

J(ρ) = { y, r | y − Tref r = ∆r, ∆ ∈∆NTI(ρ) } (49)

We could impose the additional assumption that the closed-loop system is LTI. Thus, setting
∆ ∈∆LTI(ρ), the specification becomes the LTI uncertainty set,

J(ρ) =
{
y, r

∣∣∣ y − Tref r = ∆r, ‖∆‖H∞ ≤ ρ
}

(50)

Although it may be of interest, and even important, to postulate both NTI and LTI uncertainty
sets, for the remainder of this paper assume that ∆ ∈ ∆NTI(ρ), and hence, (49) is the closed-
loop specification. Further discussion along these lines can be found in (Kosut and Anderson,
1997).

Let (y`, u`, r`) ∈ S` × S` × S` denote the measured data for t ∈ [1, `], where ` is essentially
the current time. Define the corresponding measured performance error by,

ρ`meas = min
{
ρ
∣∣∣ ε` = ∆r`, ∆ ∈∆NTI(ρ)

}
(51)

where
εi = y` − Tref r

` (52)

¿From (42) it follows that the measured performance can be computes directly from,

ρ`meas = min
{
ρ
∣∣∣ ‖ε`‖L2[1,t] ≤ ρ‖r

`‖L2[1,t] , t ∈ [1, `]
}

(53)

This is a measure of the performance of the already implemented controller, which may have
already switched (adapted) several times. The question arises, could the existing data record
be informative about an untried candidate controller, say C(α), with respect to the measured
performance? To answer the question, consider, the following “thought experiment:”

If a candidiate controller C(α) had produced the measured plant output/input data
(y`, u`) ∈ S` × S`, then the reference input would have been the sequence r`(α) sat-
isfying

u` = C(α)
(
r`(α)− y`

)
(54)

Assuming the indicated inverse exists,

r`(α) = y` + C(α)−1u` (55)
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Thus, the error, ε`(α), would have been,

ε`(α) = y` − Tref r
`(α)

= Sref y
` − TrefC(α)−1u`

(56)

with
Sref = 1− Tref

Hence, the set of controller parameters that achieve a performance level, ρ, would
have been,

A`(ρ) =
{
α ∈ Rq

∣∣∣ ε`(α) = ∆r`(α), ∆ ∈∆NTI(ρ)
}

=
{
α ∈ Rq

∣∣∣ ‖ε`(α)‖L2[1,t] ≤ ρ‖r`(α)‖L2[1,t] , t ∈ [1, `]
} (57)

By this argument, A`(ρ) is the the set of all controller parameters which are unfalsified by
the available data, with respect to performance level ρ. This set can also be expressed as an
intersection of sets, i.e.,

A`(ρ) =
⋂

t∈[1,`]

{
α ∈ Rq

∣∣∣ ‖ε`(α)‖L2[1,t] ≤ ρ‖r
`(α)‖L2[1,t]

}
(58)

Hence, as we record more data, i.e., as ` increases, the unfalsified parameter set, A`(ρ), can
only get smaller. The falsified parameter set, its complement, therefor, monotonically increases.

It remains to choose a controller parameter to implement in the next sample, ` + 1. An
aggressive choice is one which produces the smallest ρ, i.e.,

(α`unf , ρ
`
unf ) = arg min

{
ρ
∣∣∣ α ∈ A`

unf (ρ)
}

(59)

A more cautious choice, reflecting the distribution of elements in A`
unf , is the average, or the

geometric center of the set, i.e.,

(α`unf , ρ
`
unf ) = arg avg

{
ρ
∣∣∣ α ∈ A`

unf (ρ)
}

(60)

No matter the choice, the control parameters are updated whenever the unfalsified performance
level, ρ`unf , is smaller than the measured performance, ρ`meas. Thus, the controller parameter
update rule is,

α`+1 =


α`unf , ρ`unf < ρ`meas

α`, ρ`unf ≥ ρ`meas
(61)

Clearly if the exogenous inputs are not sufficiently rich from iteration to iteration, then it is
likely that the control will not switch.

As discussed in (Safonov and Tsao, 1997), there are several advantages to this data-based
control design approach:

1. The approach is nonconservative; i.e., it gives “if and only if” conditions on the candidate
controller C(α) to be unfalsified.
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2. The unfalsified set of candidate controllers is determined from past data only – no can-
didate controller is implemented if it is falsified, and the test is applied without actually
implementing the candidate controller C(α).

Equally important, if the test fails, those candidate controllers, C(α), which have been
falsified, again without implementation, can all be discarded from any future consideration.

3. The test for controller unfalsification is “plant-model free.” No plant model is needed to
test its conditions. It depends only on the data, the controller, and the specification.

4. The data which falsifies a controller may be open loop data or data generated by some
other control law which may or may not be in the parametric set.

5. Controller falsification implies falsification of any underlying uncertainty model for the
plant model, based on the same data, which would have resulted in the same controller.
The converse, however, is not true: a falsified uncertainty model of the plant does not imply
falsification of a controller based on this falsified uncertainty model. As a result, using the
same data set, direct controller unfalsification can produce less conservative control than
plant unfalsification followed by robust control design.

Computional Issues

Solving for ρmeas is clearly easy. However, the optimization problem for (ρunf , αunf ) has two
difficulties. First, it is not in general convex, hence, there is no guaranty of finding the opti-
mum. For PID and/or lead-lag type controllers, which have a small number of parameters, a
combinatorial search is very effective as has been shown in (Safonov and Tsao, 1997) and will
be demonstrated in the example in section 7. Difficulties with the optimization are to be ex-
pected, because in essence, we are trying to solve the fixed-order control design problem, which
is generically hard even when the plant is known. In the case here, the plant is not known, and
the problem is compounded further by using data! But, as in the output error identification
problem, there are some instances where there are no local minima for parameters restricted to
a region where a certain transfer function is passive (Ljung, 1987, Ch.10,p.301). Even if this
could be applied here, obviously more assumptions about the plant are required.

The second issue is that the problem size increases as time goes on because more data is
recorded, effectively adding more constraints. We offer an approximate solution to this problem
in the next section on iterative unfalsification. Essentially the data is only recorded over a fixed
length window which slides along with current time.

Other methods for dealing with these computational difficulties are presented in (Woodley
et al., 1998, 1999). A reformulation of the performance specification allows the problem to be
cast as a convex optimization. Dealing with the ever increasing problem size is addressed by
developing recursive methods which provide outer and inner ellipsoid bounds on earlier data,
hence compressing the earlier data into matrices on the order of the parameters. This is akin
to least-squares estimation which compresses prior information into parameter sized covariance
matrices.

6 Iterative Controller Unfalsification

In this section the unfalsification paradigm is used to develop an iterative direct adaptive con-
troller.
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During the i-th iteration (data collection period) the controller is held fixed at C(αi) ∈ LTI,
i.e.,

u = C(αi)(r − y) (62)

Suppose each data collection period contains ` samples, where (yi, ui, ri) ∈ S` × S` × S` is the
data measured. Define the corresponding measured performance error by,

ρimeas = min
{
ρ
∣∣∣ εi = ∆ri, ∆ ∈∆NTI(ρ)

}
(63)

where
εi = yi − Tref r

i (64)

Caveat emptor – This definition of measured performance for the i-th data collec-
tion period is reasonable only if the period data length, `, is sufficiently large so as to
make negligible any effects due to controller adjustments or exogenous disturbances
in previous periods. Assume from now on that this is the case.

¿From (42) it follows that the measured performance is given by,

ρimeas = min
{
ρ
∣∣∣ ‖εi‖L2[1,t] ≤ ρ‖r

i‖L2[1,t] , t ∈ [1, `]
}

(65)

Based soley on the data collected in the i-th period, the set of unfalsified controller parameters
that achieve a performance level, ρ, is,

Ai
`(ρ) =

{
α ∈ Rq

∣∣∣ ‖εi(α)‖L2[1,t] ≤ ρ‖r
i(α)‖L2[1,t] , t ∈ [1, `]

}
(66)

It folows that the set of all controller parameters which are unfalsified, with respect to perfor-
mance level ρ, up to and including the i-th interval, is the intersection of these sets, i.e.,

Ai(ρ) =
⋂

j∈[1,i]

Ai
`(ρ) (67)

As before, it remains to choose a controller to implement in the next iteration. The aggressive
choice produces the smallest ρ, i.e.,

(αiunf , ρ
i
unf ) = arg min

{
ρ
∣∣∣ α ∈ Ai(ρ)

}
(68)

whereas the cautious choice, reflecting the distribution of elements in Ai, is the average, or the
geometric center of the set, i.e.,

(αiunf , ρ
i
unf ) = arg avg

{
ρ
∣∣∣ α ∈ Ai

unf (ρ)
}

(69)

We then propose to update the control parameters whenever the unfalsified performance level,
ρiunf , is smaller than the best measured performance,

ρkmeas = min
j ∈ [1, i]

ρjmeas (70)

If not, then control is returned to C(αk), the controller which produced the best measured
performance. Thus, the controller parameter update rule is,

αi+1 =


αiunf , ρiunf < ρkmeas

αk, ρiunf ≥ ρkmeas
(71)

This is a slightly different procedure than in the previous “one-step-at-a-time” case. Here,
because the control is held fixed at C(αi) for a long time, we have (we assume) a good reading
of the performance with this control. In the previous formualtion, the control can switch at
every instant when new data is acquired.
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7 Simulation Example: PI Control

The iterative procedure is simulated with the following nonlinear plant system:

y = G
(
v +N(u)

)
G = .1z−1

1− .4z−1

N(u) =



0, |u| ≤ d

u− d, u > 0

u+ d, u < 0

‖v‖rms ≤ σ

(72)

The plant system is thus a linear system, G, driven by an RMS-bounded disturbance, v, and
controlled through a deadband nonlinearity, N(·), with deadband of size d. The control is given
by the PI control,

u = C(α)(r − y)

where

C(α) = αP +
αIz

−1

1− z−1
(73)

The reference system is

Tref =
(1− a)z−1

1− az−1
, a = exp(−2πfref)

Figures 2-5 show the results of the simulations. Each figure has two rows and four columns.
Each row corresponds to a different bandwidth (fref) of the reference system. The rows are as
follows:

• row 1: the initial output response, before adaptation, compared to the reference system
output.

• row 2: the final output response, after adaptation, compared to the reference system
output.

• row 3: the per iteration values of ρimeas, ρ
i
unf , and the H∞-norm of the error between the

linearized system and the reference system.

• row 4: the PI gains per iteration.

The simulations were performed under the following conditions:

• The control was initialized as the low gain integrator:

C =
.01z−1

1− z−1
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• A single repeating cycle of the reference input is given by:

r =


1 t = 1 : 200
−1 t = 201 : 400

0 t = 401 : 600

• There are two cycles of 4 iterations each of this reference.

– During cylce 1, the reference system bandwidth

fref = .005 hz

The results are shown in column 1 of all the figures.

– During cylce 2, the reference system bandwidth

fref = .05 hz

The results are shown in column 2 of all the figures.

• The deadband width (d) and RMS-disturbance level (σ) were set as follows:

figure 2 d = 0 σ = 0
figure 3 d = 0 σ = .1
figure 4 d = 1.5 σ = 0
figure 5 d = 1.5 σ = .1

We see in all cases that the iterative unfalsified adaptation works very well despite some extreme
variations and no prior knowledge about the plant system. Although not shown, the intermedite
time responses are not very much different than the final responses (after 4 iterations).

8 Convergence vs. Unfalsification

There are several intriguing aspects of unfalsification as applied to direct adaptive control. First,
existing data can be used to falsify an experiment you would like to perform, but cannot. Sec-
ondly, controllers can be proven to be unable to meet the closed-loop performance specification
without being implemented. This reduces the set of unfalsified controllers, and this reduction is
non-conservative. But what about convergence? The answer to this could be: why convergence?
If adaptation is meant to be used in the face of highly uncertain systems, which may exhibit large
variations over time and operating conditions, there is no convergence. We just keep throwing
away bad controllers. A well respected American football player, when asked why he was such
a good defender against the run, replied, “I just keep knock’n ’em down ’till I get to the one
with the ball.”
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Figure 2: Deadband width d = 0; RMS-disturbance σ = 0; reference bandwidth fref = .005 hz
(col 1), fref = .05 hz (col 2).
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Figure 3: Deadband width d = 0; RMS-disturbance σ = .1; reference bandwidth fref = .005 hz
(col 1), fref = .05 hz (col 2).
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Figure 4: Deadband width d = 1.5; RMS-disturbance σ = 0; reference bandwidth fref = .005 hz
(col 1), fref = .05 hz (col 2).
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Figure 5: Deadband width d = 1.5; RMS-disturbance σ = .1; reference bandwidth fref = .005
hz (col 1), fref = .05 hz (col 2).
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