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Abstract

In this paper we investigate the possibility of having an input-output model, having
a speci�c structure, for observable multi-input multi-output systems with vector relative
degree. The interest in this input-output form arises from the fact that the model has
been extensively used in control design, including sliding mode control. Since the subclass
of systems having this speci�c structure is extremely restrictive, we suggest an alternative
approach.

1 Introduction

Atassi and Khalil (1997) pose but do not answer the following question: what subclass of
nonlinear state-space systems will admit the input-output (i/o) model of the form

y
(ni)
i = pi(�) +

pX

j=1

qij(�)u
mj

j ; 1 � i � p (1)

where pi(�) and qij(�) are functions of yk; : : : ; y
(nk�1)
k ; uk; : : : ; u

(mk�1)
k , k = 1; : : : ; p, and the

matrix Q(�) = [qij(�)] is nonsingular over the domain of interest. Note that y(k) (resp. u(k)),
k 2 IN , denotes the k-th time-derivative of y (resp. u). The interest in the form (1) comes
from the fact that this model has been used extensively in control design such as in adaptive
control (Khalil, 1996), in robust servomechanism design (Mahmoud and Kahlil, 1997) and in
variable structure control (Oh and Khalil, 1995). Their motivation was to demonstrate that, as
in the single-input single-output case, any observable system with vector relative degree has an
input-output model that �ts the form (1). The assumption of vector relative degree, although
quite restrictive, plays a crucial role in making possible a straightforward extension of many
results developed for single-input single-output systems. Unfortunately, this turned out not to
be true with respect to the problem considered, as shown via counterexamples in (Atassi and
Khalil, 1997). They then suggested, again through examples, that by extra di�erentiation of
part of the input-output equations one can make the model �t the form (1). By di�erentiating
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the system-de�ning input-output equations one gets a model, which is transfer equivalent to
the original system, but not in the irreducible (or minimal ) form. The state equations that
correspond to this input-output model are not accessible (Lin, et al.) which is probably not
desirable. Note that the di�culties linked with the extra di�erentiation in output tracking were
mentioned by Atassi and Khalil (1997) as well.

In this paper we will �rst indicate a subclass of state equations that �ts the form (1).
Unfortunately, this subclass of state-space systems is extremely restrictive. Next, we suggest
an alternative approach to extra di�erentiation, motivated by the observation that the form (1)
in (Khalil, 1996; Mahmoud and Khalil, 1997; Oh and Khalil, 1995) is desirable for the reason
that it is easily invertible (i.e. it can be easily solved for the highest derivatives of the control).
Our approach is based upon van der Schaft's algorithm converting the set of i/o di�erential
equations into an equivalent but row-reduced form (with respect to input variables), which
yields the inversion of an (almost) arbitrary set of i/o di�erential invertible systems and not just
the restrictive subclass of invertible systems, having the vector relative degree.

2 The class of nonlinear state-space systems

Consider a nonlinear system of the form

_x = f(x) +
Pp

j=1 gj(x)uj
yi = hi(x); i = 1; : : : ; p

(2)

where x = (x1; : : : ; xn) is the state, u = (u1; : : : ; up) 2 IRp is the control, y = (y1; : : : ; yp) 2 IRp

is the output, and f; g1 : : : ; gp are smooth vector �elds, while h1; : : : ; hp are smooth functions.
We make the following assumptions concerning (2):

Ass 1 The system (2) is locally observable.
Ass 2 The system (2) has a well-de�ned vector relative degree (r1; : : : ; rp) on an open set

X of the state space; see (Isidori, 1995) for the de�nition.
By observability we mean that the state can be derived from y, u and their time deriva-

tives. Then, there exist p integers n1; : : : ; np, called observability indices such that (Krener and
Respondek, 1989)

� n1 � n2 � � � � � np

�
P

ni = n

� dim[spanfyi; _yi; : : : ; y
(ni�1)
i ; i = 1; : : : ; pg] = n

The assumption of well-de�ned vector relative degree incorporates the assumption that the
decoupling matrix is nonsingular. It is known (Nijmeijer and van der Schaft, 1990) that system
(2) satisfying assumption Ass 2 can, after a change of state variables, be expressed as follows:

_xi1 = xi2
...

_xiri�1
= xiri

_xiri = ai(x; z) +
Pp

j=1 bij(x; z)uj
_z = c(x; z) + d(x; z)u
yi = xi1; i = 1; : : : ; p

(3)

Moreover, if the distribution G = spanfg1; : : : ; gpg is involutive, then d(x; z) = 0.
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In (3) part of the state components are directly related to the outputs:

xi1 = yi
xi2 = _yi

...

xiri = y
(ri�1)
i ; i = 1; : : : ; p

(4)

The other state coordinates can be obtained from

y
(ri)
i = ai(x; z) +

Pp
j=1 bij(x; z)uj

y
(ri+1)
i = a1i (x; z; u) +

Pp
j=1 bij(x; z) _uj

y
(ri+2)
i = a2i (x; z; u; _u) +

Pp
j=1 bij(x; z)�uj

...

y
(ni�1)
i = ani�ri�1i (x; z; u; _u; : : : ; u(ni�ri�2)) +

Pp
j=1 bij(x; z)u

(ni�ri�1)
j

(5)

which from the observability assumption (Ass 1) yields

z = �(yi; : : : ; y
(ni�1)
i ; i = 1; : : : ; p; u; : : : ; u(��1)) (6)

where � = max(n1 � r1; : : : ; np � rp):
Finally, we obtain

y
(ni)
i = a

(ni�ri)
i (x; z; u; _u; : : : ; u(ni�ri�1)) +

pX

j=1

bij(x; z)u
(ni�ri)
j (7)

which, after substituting x and z from (4) and (6), gives an i/o model, corresponding to the
state-space equation (2) under the assumptions Ass 1 and 2:

y
(ni)
i = pi(�) +

pX

j=1

qij(�)u
ni�ri
j ; 1 � i � p: (8)

Here pi(�) and qij(�) are functions of yk ; : : : ; y
(nk�1)
k , k = 1; : : : ; p, u; : : :; u(��1).

Note that the paper (Atassi and Khalil, 1997) suggests the use of van der Schaft's algorithm
to eliminate the states in order to get the i/o representation of (2). Though it might be useful
for (2) in its most general form, we do not believe that this is necessary for systems having the
vector relative degree and being in the normal form.

2.1 A subclass of the state equations that �ts the form (1)

It is clear from (8) (and this con�rms the observation of (Atassi and Khalil, 1997) obtained via
counterexamples) that the i/o model of system (2) satisfying Ass 1 and 2 does not necessarily �t
the form (1). The next theorem provides a special case when the state-space system (2) admits
the i/o model that �ts the form (1).

Theorem 1 An observable state-space system of the form (2) with a well-de�ned vector rel-
ative degree (r1; : : : ; rp) admits an input-output model of the form (1), if the following condition
is satis�ed:

n1 � r1 = n2 � r2 = : : := np � rp
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where ni, i = 1; : : : ; p are the observability indices of the system (2). Moreover, the matrix Q(�)
in the form (1) is actually obtained from the decoupling matrix of (2) provided the state variables
x and z are expressed, via (4) and (6), in terms of inputs, outputs and their time derivatives.

Of course, the converse is not necessarily true. There exist even single-input single output
systems having the form (1), not having a state-space realization.

Proof. Denote n1� r1(= n2� r2 = � � � = np� rp) by m. Under the observability assumption
we now obtain from (6)

z = 
(yi; : : : ; y
(ni�1)
i ; ui : : : ; u

(m�1)
i ; i = 1; : : : ; p) (9)

This yields

y
(ni)
i = pi(�) +

pX

j=1

qij(�)u
m
j ; 1 � i � p (10)

where pi(�) and qij(�) are functions of yk; : : : ; y
(nk�1)
k ; uk; : : : ; u

(m�1)
k , for k = 1; : : : ; p, and the

matrix Q(�) = [qij(�)], the decoupling matrix of the system, is nonsingular over the domain of
interest because of Ass 2.

Note that the state space system with a diagonal decoupling matrix does not necessarily
admit an i/o model of the form (1).

3 Alternative approach to extra di�erentiation

The i/o model (8), obtained from the normal form (3) by eliminating the state variables x

and z, can be implicit in the highest derivatives of the inputs, depending on the value � =
max(n1� r1; : : : ; np� rp). As demonstrated by Example 2 in (Atassi and Khalil, 1997), one can
bring the i/o equation by extra di�erentiations into the form (1).

As mentioned by Atassi and Khalil (1997), converting the i/o equation to look like (1), shows
that (8) is invertible. If it is invertible (and obviously it is because of Ass 2), the inverse can
be found by di�erentiating certain equations (perhaps repeatedly) until one reaches the stage
where the highest derivatives of the inputs are multiplied by a nonsingular matrix.

It seems to us that the form (1) is necessary basically for the reason that it is easily invertible.
So, we believe that this form is not actually necessary if we could solve (8) with respect to the
highest derivatives of input. In this section we recall the result of van der Schaft (1989a) about
inverting the arbitrary set of input/output di�erential equations

'i(y; _y; : : : ; y
(n); u; _u; : : :; u(n)) = 0; i = 1; : : : ; p (11)

which of course includes (8) but is much more general. Applying the result of van der Schaft,
there is no need for any assumption about the vector relative degree (Ass 2).

Let us �rst recall some terminology. The order �i of 'i(�) with respect to the input variables
u is de�ned as the largest integer such that

@'i

@u
(�i)
j

6= 0 (12)

for some j 2 f1; : : : ; pg, i.e. �i is the highest time-derivative of the input component appearing
non-trivially in 'i.

Now de�ne the p�pmatrix A(y; _y; : : : ; y(n); u; _u; : : : ; u(n)) as the matrix with (i; j)-th element
given by (12).
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De�nition 1. The set of the higher-order i/o di�erential equations (11) is said to be locally
row-reduced with respect to control if for all (y; _y; : : : ; y(n); u; _u; : : : ; u(n)) about the solution point
(�y; �u)

rank A(�) = p:

In the linear case, the row-reduced form means that the polynomial matrix, de�ning the set
of equations (11), is row proper.

Theorem 2. (Van der Schaft, 1989b) A set of higher order di�erential equations having a
solution point (�y; �u), is, under certain constant rank assumptions, locally equivalent about (�y; �u)
to a set of higher-order di�erential equations of the form

~'i(y; _y; : : : ; y
(n); u; _u; : : :; u(n)) = 0; i = 1; : : : ; �p (13)

~'i(y; : : : ; y
(n)) = 0; i = �p+ 1; : : : ; p (14)

satisfying
�1 � �2 � � � � ��p

where �i's are the orders of ~'i's and for i = 1; : : : �p

@ ~'i(�)

@u
(�i)
i

6= 0; (15)

and
@ ~'i(�)

@u
(�)
j

= 0; (16)

for �j � � � �i, j < i.
As an immediate consequence of the above theorem one has the following de�nition:
De�nition 2. (Van der Schaft, 1989b) Consider an i/o di�erential system (11) which can

be transformed into the form (13) and (14). The system is called invertible if �p = p.
Let d be the largest integer such that �d = 0. Then by the implicit function theorem we can

solve locally for u1; : : : ; ud from the �rst d equations of (13):

ui = ki(ud+1; : : : ; up; y1; : : : ; yp); i = 1; : : : ; d (17)

Furthermore, assuming invertibility, we obtain from the other equations

u
(�i)
i = ki(y; : : : ; y

(k�1); uj ; : : : ; u
(�j�1)
j ; j = d+ 1; : : : ; p); i = d+ 1; : : : ; p (18)

4 Examples

Below we will consider two input-output models, studied in (Atassi and Khalil, 1997). Both
models are global, with the �rst one having n1 = 3; n2 = 1; m1 = m2 = 1, and the second one
having n1 = n2 = 2; m1 = m2 = 1. In both cases, however, the matrix Q is singular. We will
show, how one can invert those models on the basis of the results by van der Schaft (1989b).

Example 1. Consider the i/o model

y
(3)
1 � 2y

(1)
2 y2 + y

(2)
1 � y22 � u1 � au2 � u

(1)
1 � au

(1)
2 = 0

y
(1)
2 � y

(2)
1 + y22 + (1� b)u1 + (a� 1)u2 = 0
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In order to invert the model, we have to transform it via equivalence transformations into
an equivalent form (13) satisfying (15)-(16). First, we permute the equations (to obtain 0 =

�1 � �2 = 1) and then replace the equation '2(�) = 0 by an equation '
(1)
1 (�)+ (1� b)'2(�) which

does not depend anymore on u
(1)
1 . That way we have obtained the desired equations satisfying

(15)-(16)

y
(1)
2 � y

(2)
1 + y22 + (1� b)u1 + (a� 1)u2 = 0

�by
(3)
1 + 2by2y

(1)
2 + y

(2)
2 + (1� b)y

(2)
1 � (1� b)y22 � (1� b)u1 � a(1� b)u2 � (1� b)u

(1)
2 = 0:

Finally, the system of equations can be solved for u1 and u
(1)
2 :

u1 =
1

1� b
[y
(2)
1 � y

(1)
2 � y22 + (1� a)u2]

u
(1)
2 =

1

1� b
[�by

(3)
1 + 2by2y

(1)
2 + y

(2)
2 ]� u1 + y

(2)
1 � y22 � au2

Example 2. Consider the other example

y
(2)
1 � y22 � y

(1)
2 + (b� 1)u1 + (1� a)u2 = 0

y
(2)
2 + y

(1)
2 � bu1 � u2 � bu

(1)
1 � u

(1)
2 = 0

We replace the equation '2(�) = 0 by

'2(�) +
b

b� 1
'
(1)
1 (�)

to obtain
y
(2)
1 � y22 � y

(1)
2 + (b� 1)u1 + (1� a)u2 = 0

y
(2)
2 + y

(1)
2 � bu1 � u2 � u

(1)
2 +

b

b� 1
[y
(3)
1 � 2y2y

(1)
2 � y

(2)
2 ] +

b(1� a)

b� 1
u
(1)
2 = 0

Finally the system of equations can be solved for u1 and u
(1)
2 :

u1 =
1

1� b
[y
(2)
1 � y22 � y

(1)
2 � (1� a)u2]

u
(1)
2 =

1� b

1� ab
[y
(2)
2 + y

(1)
2 � bu1 � u2]�

b

1� ab
[y
(3)
1 � 2y2y

(1)
2 � y

(2)
2 ]
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