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Abstract

In this paper, we investigate the implications for robust sampled-data feedback design of mini-
mum phase sampling zeros appearing in the transfer function of discrete-time plants. Such zeros may
be obtained by zero-order hold (ZOH) sampling of continuous-time models having relative degree
two or greater. In particular, we address the robustness of sampled-data control systems to multiplica-
tive uncertainty in the model of the continuous-time plant. We argue that lightly damped controller
poles, which may arise from attempting to cancel, or almost cancel, sampling zeros of the discretized
plant are likely to introduce peaks into the fundamental complementary sensitivity function near the
Nyquist frequency. This in turn makes the satisfaction of necessary conditions for robust stability
difficult for all but the most modest amounts of modeling uncertainty in the continuous-time plant.
SomeH,- and H ., -optimal discrete-time and sampled data designs may lead to (near-) cancellation,
and we therefore argue that their suitability is restricted.

1 Introduction

For single-input, single-output (SISO) systems of relative degrethe corresponding discrete-time
transfer function arising from zero-order hold (ZOH) sampling has unity relative degree for all but a
finite set of sampling periods. The additional- 1 discrete-time zeros are called the sampling zeros
(Astrom et al, 1984; Hagiwareet al, 1993), and the cancellation of minimum phase sampling zeros

by lightly damped controller poles has for many years been closely linked to problems with undesirable
intersample ripple of either the regulated output or the control signal—for a partial listAs#ére and
Wittenmark, 1984, p. 116, pp. 226-227, and pp. 232—-234), (Morari and Zafiriou, 1989, pp. 169-170),
(Chen and Francis, 1995, pp. 156-161), (Stephanopoulos, 1984, p. 648), (Gebdlih986; Tesfaye

and Tomizuka, 1993), (Ogunnaike and Ray, 1994, pp. 972-977), and (Sanchis and Albertos, 1995). Inre-
cent years, however, renewed interest in analysis and synthesis methods which directly take into account
intersample behaviour has lead to direct sampled-data control synthesis techniques in which notions of
pole-zero cancellations and sampling zeros play no role (Chen and Francis, 1991b; Khargonekar and
Sivashankar, 1991; Bamieh and Pearson, 1992b; Chen and Francis, 1995), and (Dullerud, 1996).

In this paper, we focus on the role of sampling zeros and their effect on the robust stability of sampled-
data control systems, in which continuous-time plants are controlled by digital compensators in conjunc-
tion with appropriate sample and hold devices. While modern sampled-data control synthesis techniques
typically avoid consideration of sampling zeros, it is argued in this paper that these zeros can have a
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substantial effect on the robust stability of sampled-data feedback systems, whether or not they arise
explicitly during the synthesis procedure.

The key tools used in this paper are the fundamental sensitivity and complementary sensitivity func-
tions (denotedby,, (s) andTryy (s)) introduced by Freudenberg al. (1995) in the study of fundamental
design limitations for sampled-data feedback control systems; see also (Braslavsky, 1995; Freudenberg
et al, 1997). While these functions are not transfer functions in the usual sense, they do play a key
role in governing the tracking and disturbance rejection response of sampled-data systems, and are more
readily calculated than the complete sampled-data frequency response (Yamamoto and Khargonekar,
1996). Most importantly for this paper, however, is that a necessary condition for stability in the pres-
ence of multiplicative uncertainty in the continuous-time plant can be stated in terms of the fundamental
complementary sensitivity function (Freudenbetgl., 1995, Theorem 1).

In this paper, we show that digital controllers which rely on cancellation of minimum phase sampling
zeros by lightly damped controller poles have poor robustness to unmodeled high-frequency plant dy-
namics. This has direct implications for those formulations of discrete-tHi;reand H ,.-optimal control
synthesis problems which lead to cancellation of all minimum-phase plant zeros—including those arising
through sampling—unless otherwise constrained (Goh and Safonov, 1993). Furthermore, the frequency-
domain formulation removes the need for dealing explicitly with pole-zero cancellations, so that the
robustness of modern sampled-dafa- and H,-optimal controllers can also be addressed. For con-
trollers designed by these direct methods which lead to near (as opposed to exact) cancellations between
minimum phase plant zeros and controller poles, this suggests further research is required to clarify the
robustness margins of direct sampled-data controllers to unstructured uncertainty in the continuous-time
plant model. The results of this paper might therefore be used in conjunction with known necessary and
sufficient conditions for robust stability in the presence of linear, time-invariant perturbations, which re-
quire the solution of infinite dimensional structured singular value problems (Dullerud and Glover, 1993,
1995).

The paper is organized as follows. §2, we review the notion of the frequency response of sampled-
data systems as presented in the work of Freuderddemt (1995), Braslavsky (1995), and Braslavsky
et al. (1998). In33 we use this frequency-domain based framework to investigate the implications of
cancellation (or near-cancellation) of sampling zeros on the fundamental complementary sensitivity op-
eratorTy,, (s). In §4, we apply the results @B to a recent example of a direct sampled-ddaoptimal
controller (Yamamoto, 1996). While this example is striking in its demonstration of how sampled-data
design can substantially improve intersample ripple in comparison with the associated classical con-
troller, the corresponding fundamental complementary sensitivity function indicates very poor stability
robustness to multiplicative plant uncertainty, a fact borne out by simulation experiments.

2 Frequency response of sampled-data systems

The steady-state response of a stable sampled-data feedback system to a sinusoidal input consists of
a fundamental component at the frequency of the input, together with all of its aliases, i.e. harmonics
located at integer multiples of the sampling frequené;st(dm and Wittenmark, 1984; Goodwin and
Salgado, 1994). In this section, we introduce the assumptions, notation and definitions needed in the
sequel for dealing with the fundamental components of the responge)ah Figure 1 to output distur-
bancesi(t), measurement noisgt) and commands(t). The reader is referred to (Freudenbetal,,
1995) for a more complete exposition.

Consider the single-input, single-output sampled-data feedback system in Figure 1R{eaed
F(s) are the transfer functions of the continuous-time plant and anti-aliasing €iiét,) is the transfer
function of the digital controllery(¢), d(t) andn(t) are the command, output disturbance and noise
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Figure 1: Unity feedback sampled-data control system

signals,u(t) is the control input, ang(t) is the system output. The sampling period is denoted’by
the sampling frequency hys = 27/T, and the Nyquist frequency byx = 7/T. The frequency range

N = (—wn, wn] is termed the baseband.
A rational function ofs (respectively,z) is minimum phasé it has no zeros in the open right half-

plane (respectively, in the complement of the closed unit disk {z : |z| < 1}). Likewise, a rational
function of s (respectively,z) is stableif it has no poles in the closed right half-plane (respectively, in

the complement of the open unit digk 2 {z:|z| < 1}.

We shall assume that the plant, prefilter and controller are each free of unstable hidden modes, that
P(s) is rational and propet#'(s) is rational, strictly proper, and has no closed right half-plane poles or
zeros, and that’y(z) is rational and proper. We restrict attention to a zero-order hold (ZOH) defined by

u(t) = uy, for kT <t < (k+1)T,
for a discrete input sequenée;, }7° ,. The associated frequency response function of the ZOH is

1 — efsT

H(s) =~

(1)

The discrete transfer function of the series connection of hold, plant, prefilter and sampler is given
by (Middleton and Freudenberg, 1995)

(FPH)q4(2) £ Z{St{L{F(s)P(s)H (s)}}}, 2)

and is referred to as thdiscretized plant Opting for this somewhat unconventional notation has the
distinct advantage of allowing the role of the anti-aliasing filter and the frequency response of the hold
function to remain completely clear at all times. Define thscrete sensitivityand complementary
sensitivity functions

A 1

1+ (FPH)q(2)Ca(2)

Sa(z) 3

and N
Ty(z) = (FPH)q(2)Cq(2)Sa(2). (4)

Definition 2.1 (Hybrid sensitivity and complementary functions) Define thefundamental sensitivity
and complementary sensitivity functiorsy

Stn(s) 2 1= ZP(s) () CaeT)Sa(e T F(s) ©
and )
Thun(s) = - P(s)H(s)Ca(e)Sa(eT) F (s) ®)
respectively.
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The functionsSt,,, (s) and T, (s) are not transfer functions in the conventional sense, since they
are not equal to the ratio of transformed input and outputs signals. Nevertheless, they do govern the
baseband component of the steady-state response to sinusoidal inputs, and therefore play a key role
in the overall response. To discuss steady-state behaviour, we assume the absence of unstable pole-zero
cancellations in the produ¢F P H)4(z)Cy4(z), that all poles of54(z) lie within D, and that the standard
non-pathological sampling conditions are satisfied (Kalragal, 1963), from which exponential and
Lo input—output stability follow (Francis and Georgiou, 1988; Chen and Francis, 1991a).

Denote the responses 9ft) to each ofd(t), n(t) andr(t) by yq(t), yn(t) andy.(t), respectively,
whered(t) = e/t t > 0,n(t) = ¢/t > 0 andr(t) = ¢/“!;t > 0. Then, ag — oo (Freudenberg
et al, 1995):

Yd(t) = Ydss(t), Yn(t) = ynss(t), andyc(t) — yrss(t),

where
0

Yass(t) = Stan(jw)e™! — 3 Tj(jw)el @ Thwst ©)
k=—o0

k0

Ynss (1) = —Thun (jw)e?®t — 37 Ty (jw)ed @Thes)t, (8)
k=—00

k40
and

o0

Yrss(t) = Trun (jw)e?™t — S Tj,(jw)el TRt 9)
k=—o00

k#0
where

1>

%P(s +jkw)H(s + jkw)Ca(eT)Sa(eTVF(s),  k£0 (10)

is thekth harmonic response function.

Tk(s)

3 Implications of sampling zero cancellation

We now consider the consequences for robust stability of cancellations between minimum phase sam-
pling zeros appearing in the discretized plant, and poles of the digital conitllewhile state-space
frameworks sometimes obscure the role of pole-zero cancellations, it is nevertheless well known that
cancellations of the form just described are a feature in several different classes of discréfg-tand
H.-optimal control problems (Sabest al, 1995; Tsakt al,, 1992; Goh and Safonov, 1993). Moreover,
for direct sampled-data control synthesis in which no exact cancellations occur, the frequency-domain
approach of this paper nonetheless provides quantitative and qualitative information about the likely
implications for robustness of near pole-zero cancellations.

We assume that a controllé¥; has been designed to ensure the nominal stability of the feedback
system in Figure 1, and consider the effect of multiplicative uncertainty of the form

P'(s) = P(s)(1 + W(s)A(s)), (11)

whereA(s) is proper and stable, aiil (s) is a stable weighting function used to represent the frequency
dependence of the modeling error. It was shown in (Freudergierly 1995) that anecessargondition
for the closed loop system to remain stable for/a{ls) satisfying

|A(jw)| < 1, VweR
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is that
W (jw) Tt (Jw)| < 1, VweR. (12)

SinceTy,, (jw) is readily calculated from (6), and the weighting functidf(s) reflects the designers
uncertainty in the continuous-time plant model, condition (12) is very useful for assessing the robust
stability properties of a given controller to unstructured plant uncertainty of various kinds. For instance,
by representing a single high-frequency pole as multiplicative uncertainty, it is possible to estimate the
maximum time constant of a neglected lag for which a given controller maintains stability. If the true
plant has transfer function

1
P'(s) = P(S)T—{—l, 0< Tp < Tmax,
p

it follows that an appropriate choice of weight is (Skogestad and Postlethwaite, 1996, p. 267):

Tmax$S
W(s) = P (13)
Tuning Tmax UNtil condition (12) is just barely satisfied then gives a useful indication of the likely robust-
ness (or otherwise) of a given control design.

The simplicity of condition (12) is a direct consequence of ignoring the effect of aliases on the
closed-loop response. By taking these aliases into account, it is possible to use the results of Dullerud
and Glover (1993) to state a stronger necessary condition for closed-loop stability (Freudsrdierg
1997) whose testing requires only a little more effort than (12):

W (jw)Ttun (jw)| +w [Saa(jw)| < 1, w € Oy, (14)
where A
w= inf |[W(jw)l, (15)
wg QN

andSgq(s) is thefidelity function

Shd(s) = Stun(s) — Sa(e*")
= _Tfun(s) + Td(BST)- (16)

Conditions (12) and (14) both indicate that controllers leading to large pedKs,itijw)| are likely
to have their nominal stability destroyed by only modest high-frequency deviations of the continuous-
time plant from the nominal modét(s). In the remainder of this section, we show how controllers which
cancel, or almost cancel, minimum phase sampling zeros of the discretized plani mesressarily lead
to these undesirable peaks| T, (jw)| near the Nyquist frequency.

We start by writing

1

Trn(s) = ?F(S)P(S)H(S)Cd( ) (sT)
- %“’Pm( TS

Suppose that the discretized pldhtP H)4(z) has a minimum phase zerg, say, near1, which is
exactly cancelled by a pole in the controllgf. Since the zero at; no longer appears in the discrete
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complementary sensitivity functioffy; (zp) # 0, andTt,, (s) consequently has a pole &t where

1 In 20| + 1
So = T n|zp jTargzo
1 .
= o+ jf”’ o small and negative,
= 0+ jwN. (18)

Thus the pole inl,,(s) at so ensures| T, (jwn)| > 1, with undesirable consequences for robust
stability.

Conversely, if the zero of the discretized pld#tP H)4(z) is not cancelled by a controller pole,
Ty(z) and (FPH)q4(z) share a common zero a§, so no such pole appearsTh;,(s) for s = jwy.
If, however, the controlleC’y has a pole at;, with z; = 2z, (as is the situation with near pole-zero
cancellations)Ty(zy) = 0 since the discretized plant zeroatis not cancelled by a controller pole,
Ty(z1) = 1l and|(FPH)q(z1)| = 0sincez; = z,. Thus depending on the proximity ef and z,
Trun (jw) might still be unacceptable large over a range of frequencies.

It is also possible to interpret (17) in terms of engineering rules of thumb applied to digital control
design. Specifically, since

1 | F(jw)P(jw)H (jw)

| Ttun (Jw)| = T (FPH)d(eij) |Td(6jWT)|7 weR, (19)

large peaks irft,,(jw) are avoided by ensuring th&k, (e/“T)| is sufficiently small at frequencies

where the discrepancy between the frequency responses of the continuous-time and discretized plants,
F(jw)P(jw)H (jw) and(FPH)4(e’*T) respectively, is large, i.e. near the Nyquist frequency. This is
therefore consistent with the guideline of restricting the closed-loop bandwidth to no more than around
one-fifth the Nyquist frequency.

4 Example

In this section we show how the fundamental complementary sensitivity function and the robust stability
necessary condition (12) can be used to assess the robust stability of both a classical disciége-time
optimal controller and its sampled-data counterpart. The example we consider in this section originally
appeared in (Yamamoto, 1996); see also (Haral, 1996) for details of the same design procedures
applied to a different plant.

The plant is open-loop unstable, with transfer function

1

P = —
(s) $2+2s—10

(20)
With a sample period” = 0.2 s, zero-order hold, and anti-aliasing filtgi(s) = 1, the corresponding
discretized plant transfer function

0.0182(z + 0.8768)

(FPH)a(2) = =0 1218) (> — 1.5893) (21)

clearly exhibits a sampling zero at= —0.8768. The controller

282.95(z — 0.3768)
(= + 2.8880)(z + 0.8768)

Cai(2) = (22)
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Response to unit step change in w
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Figure 2: Response to unit step input disturbance applied atttisad) for three different controllers.
Key: Cgi: - - -, Csq: —, Cpp: =.m.m.

minimizes theH> norm of the closed-loop transfer function from an additive input disturbanappear-
ing on the control input to plant outpyt That is, the discrete-time controlléfy; minimizes the energy
in the pulse response of the closed-loop system feoto y, and clearly cancels the sampling zero of
(FPH)gy.

The second controller we consider is

179.5(z — 0.3955)

(z + 1.7765) (2 + 0.9493)° (23)

C’sd (z) =

which minimizes the average of responses to unit intensity impulses appliedver the periodo0, T'),

and thus captures the intersample behaviour of the closed-loop system more satisfactorily. This controller
is designed by solving a purely discrete-tirAig-optimal control problem for an appropriately defined
auxiliary discrete-time system obtained from the underlying continuous-time plant and the sampling
periodT (Khargonekar and Sivashankar, 1991; Bamieh and Pearson, 1992a), and will be referred to as
the sampled-data controller.

Figure 2 shows the simulated response to a unit amplitude stepaipplied at timef = 0 s of the
controllersCy; (- - -) andCgq (—). While the discrete-timéf,-optimal controller has a steady-state gain
somewhat smaller than the sampled-data controller, a substantial intersample ripple withOpesod
(corresponding to the Nyquist frequenoy, = 57/ rad/s) is present in the discrete-time design. Note
that the intersample ripple with the sampled-data controller is small, despite the presence of a very lightly
damped pole at = —0.9493 in Cy,.

Also shown as a dash-dotted line (-.-.-.) in Figure 2 is the step response corresponding to the con-

troller 56.4101(z — 0.4218)
. z — U
) 24
Cop(2) 2 + 0.5651 “

obtained by cancelling the stable pole of the discretized glBfRH )4 at z = 0.4218, and placing two
poles of the discrete-time transfer function fresto y at the origin.
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Fundamental complementary sensitivity function (Tfun)
50 . —————— . ———————

Tfun [dB]
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Figure 3: Fundamental complementary sensitivity function magnit{iig, (jw)|) for three different
controllers. Key:Cys: - - -, Csq: —, Cpp: =.m.m.

To assess the robust stability of the feedback systems corresponding to the three cofityoltess
andC,p,, we evaluate the fundamental complementary sensitivity funcfigpgjw) up to a maximum
frequency of2wy rad/s. From Figure 3, both the discrete-time and sampled-data controllers lead to
peaks in|Tt,, (jw)| Nnearw = wy = 15.7 rad/s. In view of the necessary condition in (12), we should
therefore expect poor robustness for both of these feedback systems to uncertainty in the continuous-
time plant model at frequencies around, where|Tt,, (jw)| is large. By way of comparison, the value
of |Ttun (jwn)| for the pole-placement controll€r;,, is some 20 dB lower than the peak 0%, and
almost 50 dB lower than the corresponding value(gy, so that improved stability margins are expected
compared with either controller.

Equation (19) pinpoints the reason for the large peak@:in (jw)| for the Cy, andCyq controllers.

That is, while there is a substantial gap between the continuous-time and discrete-time plant frequency
responses at = wy due to the sampling zero {FPH )q:
1 |F(jwn)P(jwx)H (jwn)

— . ~ 12 dB
T |~ (FPH)a(e"7) ’

the corresponding value of the discrete-time complementary sensitivity furf@tj¢e“~"')| is compar-
atively large for controller€’y; andCyq, as shown in Figure 4. In contragfy (e/“NT)| = —18 dB for
the pole-placement controller, which does not cancel the plant sampling zere at0.8768 (as does
Cyqt) nor almost cancel it (as doégy).

To give a concrete example of the poor robustness implied by the peak valdgg, 6fw)|, consider
the effect of a single neglected high-frequency pole in the continuous-time plant:

P'(s) = ! ! 0<7<m (25)
(2 +2s —10) (1ps + 1)’ — P mae

A little experimentation shows that the necessary condition (12) is just barely satisfiédfavhen
Tmax = 0.0003 s andW (s) is chosen as in (13), indicating extreme sensitivity to neglected high-
frequency dynamics in the continuous-time plant. For the sampled-data con@gll¢he necessary
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Continuous— and discrete—time frequency response
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Figure 4: (a) Continuous- and discrete-time plant frequency response. Key: continuous-time
(|F(jw)P(jw)H (jw)|): —, discrete-time T|(FPH)q(e’“T)|): - - - (b) Discrete complementary sen-
sitivity function magnitude |4 (e’“T|) for three different controllers. KeyCy;: - - -, Csq: —, Cpp!

condition is satisfied when.,,, = 0.01 s, which is an improvement ovéry;, but still indicates poor
sensitivity to neglected dynamics. For the pole-placement controller, the necessary condition (12) is
satisfied for weighting function (13) whemn,,, = 0.1 S.

Figure 5 shows the simulated response to a unit amplitude ste@pplied at time = 0 s for each
of the controllersCy;, Csq andC),,, applied to the plant (25), wherg = 0.01 s. For both controllers
Cq4t andCyq with large peak values dfft,, (jw)| at the Nyquist frequency, the robustness is quite poor.
Indeed, neither feedback system maintains stability when the true plant includes agele-dtd0 rad/s.
In contrast, the responses of the controllgy, for plants P(s) and P'(s) are virtually identical, and
repeated simulation experiments with the controflgy, indicate that stability is maintained even when
the bandwidth of the neglected pole is somewhat less than 10 rad/s.

5 Conclusions

In this paper, we have investigated the role of sampling zeros on the robustness of sampled-data control
systems to uncertainty in the underlying continuous-time plant model. It has been argued that very lightly
damped controller poles (which may arise from attempting to cancel, or almost cancel, minimum phase
zeros of the discretized plant neat) are likely to introduce peaks into the fundamental complementary
sensitivity function near the Nyquist frequency. In turn, excessively large pedfg,iftjw)| make the
satisfaction of the necessary condition (12) difficult for all but the most modest amounts of modeling
uncertainty in the continuous-time plant. Expressed another way, controllers which cancel, or almost
cancel, minimum-phase sampling zeros of the discretized plant closd w@re virtually assured of
violating design guidelines recommending the closed-loop bandwidth be no more than around one-fifth
the Nyquist frequency. This may therefore restrict the suitability of discretefimeand H,,-optimal

design procedures (or their sampled-data counterparts) which lead to (near-) cancellation of all minimum-
phase plant zeros.
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Response to unit step change in w: plant with neglected pole at s=—100
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Figure 5: Response to unit step input disturbance applied atttisad) for three different controllers,
with plant including unmodeled pole at= —100 rad/s. Key:Cy;: - - -, Csqa: —, Cpp: ==~
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