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Abstract

In this paper, an adaptive nonlinear control scheme is designed to solve the problem of
controlling the relative pose between a robot camera and a rigid object. The image-based
visual system of the camera-object interaction is expressed in terms of global coordinates
fully defined in the image plane, then a discrete time interaction model is derived, since
the visual sampling time is not negligible at the actual state of technology. By exploiting
nonlinear controllability properties, a nonlinear control law is designed based on Lyapunov’s
direct method. Moreover, we propose a 3-D estimation procedure based on prediction errors
to cope with the unknown depth of the object. Experimental results with a 6-DOF robot
manipulator in eye-in-hand configuration validate the theoretical framework.

1 Introduction

Visual servoing systems use camera sensors inside the control loop to accomplish tasks in un-
structured environments (Hill and Park, 1979). This approach can be used to improve, using
noncontact measurements, the adaptability of robotic systems with respect to both environmen-
tal uncertainties in positioning tasks, and inaccuracy of the robot’s kinematic model. Typical
applications are robotic manipulation, teleoperation and mobile robots. Concerning the control
aspects, two main paradigms can be outlined: position-based and image-based servoing (Espiau
et al., 1992), (Allotta et al., 1998). In the first one, the error is defined in 3D space based on
image feature extraction and relative pose estimation. In image-based servoing, instead, any
visual task is described in the image plane as a desired evolution of object appearance towards a
goal one, since the error is computed in terms of image features. Although image-based systems
have been largely investigated and they are now well established, few approaches have been pro-
posed to study formally controllability properties and 3-D parameters estimation. In (Hashimoto
et al., 1996), the controllability of a linearizated visual system is studied, and a visual tracking
system is proposed to cope with redundant features based on a linear quadratic (LQ) method.
In (Papanikolopoulos and Khosla, 1993), adaptive control schemes are formulated to track image
features with an eye-in-hand system using optimal control approach, however, stability analysis
of the visual closed-loop system is not carried out. In this paper, adaptive nonlinear design is
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applied to image-based visual systems, to solve the problem of robot camera-object relative posi-
tioning. The state space manifold in which the system is defined is the Special Euclidean group,
the image-based visual system is expressed in global coordinates fully defined in the image plane,
and nonlinear controllability analysis is carried out. Then a discrete time interaction model is
derived, since the visual sampling time is not negligible at the actual state of technology. In
structured environments, the system a priori knows the depth of object’s points, in this case
no adaptation law is needed, and the designed control system ensures global uniform asymp-
totic stability of the image plane reference setpoint. In unstructured environments, the depth
of object’s points is not known, and to find a stabilizing feedback is a difficult task to accom-
plish, since the system is MIMO (multi input-multi output), nonlinear, and with time-varying
unknown parameters. We use a 3-D estimation procedure based on prediction errors (Slotine
and Li, 1993) to cope with the unknown depth of the object.

Since the state space coordinates are fully defined in the image space, allowing 3-D param-
eters adaptation from 2-D information, the system does not require any calibration procedure.
The image-based visual system is independent of the number of features (i.e. image points)
being tracked, thus allowing acquisition of redundant visual features, which guarantees full-rank
condition of the interaction matrix. Experimental results, obtained with a robotic system con-
sisting in a PUMA 560 endowed with a camera on its wrist (eye-in-hand configuration), show
that system performance is satisfactory in the positioning with respect to generic objects.

The paper is organized as follows. In Sect. 2, visual modeling issues are addressed, image-
based coordinates are introduced, and nonlinear controllability properties of the image-based
system are shown. In Sect. 3, the adaptive nonlinear control system is designed and stability
analysis is carried out. Sect. 4 reports results of robotic experiments carried out to validate the
theoretical framework. Finally, in Sect. 5 the major contribution of the paper is summarized.

Notations A \ B denotes subtraction between sets A and B. In ∈ <n×n denotes the identity
matrix. 0n×m ∈ <n×m is a matrix of zeros. diag(xi) ∈ <n×n is the diagonal matrix with the
elements of x = [x1, . . . , xn]T ∈ <n. so(3) denotes the vector space of the skew-symmetric
matrices, an element of so(3) is indicated with x∧, where x ∈ <3. Given a vector space V on
the field <, ∀v,w ∈ V , < v,w > denotes their euclidean scalar product. ⊕ denotes the direct
sum of vector spaces. Given a nonlinear input-affine smooth system ẋ = f(x) +

∑m
1 gi(x)ui,

x ∈ X the state space manifold, and u ∈ U the set of piecewise constant inputs, TxX denotes
the tangent space of X at x. F∗x indicates the tangent map at x of F :M→N , beingM, and
N smooth manifolds. V∞(X ) indicates the Lie algebra of smooth vectors fields on X , C denotes
the accessibility algebra (i.e the smallest subalgebra of V∞(X ) that contains f, g1, . . . , gm),
C(x) = {f(x) : f(x) ∈ C} is the associated accessibility distribution.

2 Image-Based Visual Modeling

In this section, the image-based visual system of camera-object interaction is derived in the state
space form, and controllability properties are analyzed.

2.1 State Space Representation

Assume that the object of interest is rigid, the relative motion between the camera and the
object is a rigid body transformation (Murray et al., 1994), the configuration space of the
camera-object relative motion is the Special Euclidean group SE(3) = <3 × SO(3), where
SO(3) indicates the Special Orthogonal group. In the following quantities will be expressed
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in terms of the camera frame < c >= {ic, jc,kc}. Let Γ be the region of the object’s surface
visible from the camera, and xi = [xi, yi, zi]

T , i = 1, . . . , n ∈ <3 be n points of Γ, which define
global coordinates of the configuration space X = SE(3) (i.e at each x = [xT

1 , . . . ,x
T
n]T ∈ Γ

corresponds only one valid configuration g(x) ∈ X , and ∀g ∈ X , ∃1x with which can be
identified). In the following, to simplify notation, the statement x ∈ X indicates that x are
global coordinates of an element of X . Consider the relative twist coordinates of camera with
respect to the object u = [uT

Tu
T
R]T, where uT = [u1, u2, u3]T is the relative translational

velocity, and uR = [u4, u5, u6]T is the relative angular velocity, by stacking the equation of
rigid body kinematics: ẋi = −uT + x∧i uR, i = 1, . . . , n, the following nonlinear, input-affine,
and driftless smooth system is derived:

ẋ = H(x)u =

−I3 x∧1
. . .
−I3 x∧n

u , (1)

where x ∈ X is the state vector, and u ∈ U is the control input vector. Assume a full perspective
camera model with fixed focal length f and optical axis kc, the optical flow equations can be
derived from system (1) by a change of state coordinates. Namely, define the diffeomorphism:

p = Φ(x) =

Φ1(x)
. . .

Φn(x)

 ,

Φi(x) =

 pxipyi
pzi

 =

 f xizif yizi
zi

 , i = 1, . . . , n , (2)

in the region Xc = X \ {x ∈ X : zi = 0, i = 1, . . . , n}, where the first two equations represent
the full perspective camera transformation. The expression of the tangent map Φ∗x in the
coordinates x results in the following block diagonal matrix:

∂Φ(x)
∂x

=

A(x1) . . . 03×3

. . .
03×3 . . . A(xn)

 ,

A(xi) =


f
zi

0 −f xi
z2
i

0 f
zi
−f yi

z2
i

0 0 1

 , i = 1, . . . , n , (3)

which is nonsingular in the region Xc. The system in the new coordinates has equations:

ṗ ==

−A(x1) A(x1)x∧1
. . .

−A(xn) A(xn)x∧n


x=Φ-1

(p)

u . (4)

Consider the vector of the image points p = [pT
1 , . . . ,p

T
n]T , pi = [pxi , pyi ]

T , i = 1, . . . , n, in the
sequel it is assumed that n > 3 (i.e. redundant image features), and p defines global coordinates
of the configuration space Xc. Then the expression of the system (4), in the coordinates p
results:

ṗ = G(p)u =

 G1(p1)
. . .

Gn(pn)

u , Gi(pi) =
[
aT
xi bT

xi
aT
yi bT

yi

]
, (5)
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where the following vectors have been defined:

aT
xi =

[
− f
zi
, 0,

pxi
zi

]
bT
xi =

[
pxipyi
f

, − f −
p2
xi

f
, pyi

]

aT
yi =

[
0, − f

zi
,
pyi
zi

]
bT
yi =

[
f +

p2
yi

f
,
pxipyi
f

, − pxi

]
, i = 1, . . . , n . (6)

The system is defined on the smooth manifold Xc, p ∈ Xc is the state vector, u ∈ U is the
control input vector, and the depths of object’s points zi, i = 1, . . . , n are considered time-
varying parameters of the system. The following assumption will be used in the next sections,
and concerns the rank of the interaction matrix G(p).

Assumption 1 The matrix G(p) is full-rank (i.e. rank(G(p)) = 6), ∀p ∈ Xc, and ∀zi ∈
< \ {0}, i = 1, . . . , n.

2.2 Nonlinear Controllability

Controllability properties of the image-based visual system in Eq. (5) are established, by applying
nonlinear control theory (Isidori, 1989; Nijmeijer and van der Shaft, 1996).

Proposition 1 The system in Eq. (5) satisfies the accessibility rank condition, ∀p ∈ Xc.

Proof:
See Appendix A.

Proposition 2 The system in Eq. (5) is completely controllable.

Proof:
See Appendix A.

Given a reference setpoint p(d) =
[
p(d)T

1 , . . . ,p(d)T
n

]T

∈ Xc, p(d)

i =
[
p(d)
xi , p

(d)
yi

]T

, i = 1, . . . , n,

define the error vector p̃ = [p̃T
1 , . . . , p̃

T
n]T, where p̃i = pi − p

(d)

i i = 1, . . . , n.
The following result will be useful in the next section.

Lemma 1 Define q̃ = G(p)T p̃ ∈ <6, then q̃ = 0 if and only if p̃ = 0.

Proof:
See Appendix A.
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3 Adaptive Nonlinear Visual Servoing

In this section, the problem of finding a stabilizing feedback control of the image-based visual
system is addressed using Lyapunov-based design. The feedback stabilization of the equilibrium
p̃ = [p̃T

1 , . . . , p̃
T
n]T = 0 is a difficult task due to the presence of unknown depths zi, i = 1, . . . , n

of the object’s points. The sampling time of the visual servoing system is not negligible, since,
at the actual state of technology, typical values of control time-cycle are from 40ms to 80ms.
So that a discrete-time Lyapunov-based design of the visual servo system is derived. In order
to develop a discrete-time state space model of the image-based system, let us approximate the
optical flow by finite-differences equations (Papanikolopoulos and Khosla, 1993):

ṗxi(kT ) =
pxi((k + 1)T )− pxi(kT )

T

ṗyi(kT ) =
pyi((k + 1)T )− pyi(kT )

T
, (7)

where i = 1, . . . , n, and T is the visual sampling time. The discrete time visual model, hence,
results:

p((k + 1)T ) = p(kT ) +Gd(p(kT ))u , (8)

where Gd(p(kT )) = TG(p(kT )). In the sequel, to simplify notation, it has been used k instead
of kT . To stabilize the system (8), the following discrete-time control law has been designed:

u(k) = −σĜd(p(k))+p̃(k) , σ ∈ < . (9)

where Ĝd(p)+ = (Ĝd(p)T Ĝd(p))-1Ĝd(p)T is the Moore-Penrose pseudo-inverse of Ĝd(p). The
following adaptation law is used:

θ̂i(k + 1) = θ̂i(k)− γ(Ci(k)uT (k))Tepi(k), γ > 0 , (10)

θ̂i(k), i = 1, . . . , n is the estimate of the inverse of uncertain depth θi(k) = 1
zi(k) , Ĝd(p(k)) is

obtained by substituting the estimates in the expression of Gd(p(k)), and

Ci(k) = T

[
−f 0 pxi(k)
0 −f pyi(k)

]
. (11)

The prediction error epi(k) = d̂i(k)−di(k), i = 1, . . . , n uses the following linear parametrization
form:

di(k) = pi(k + 1)− pi(k)− T
[
bT
xi
bT
yi

]
uR = (Ci(k)uT (k))θi, i = 1, . . . , n , (12)

and d̂i(k) is obtained by substituting the estimates θ̂i(k), i = 1, . . . , n in the expression of di(k).
The following proposition formally establishs the properties of the proposed Lyapunov-based

control system design.
If it is assumed to know the depths zi, i = 1, . . . , n of the object’s points, which is true in

the case of robot operating in structured environments, the following result holds.

Proposition 3 If assumption 1 is satisfied, and the depths of the object’s points are known
(i.e. θ̂i(k) = θi(k), i = 1, . . . , n), the equilibrium p̃ = 0 of the system (8) is globally uniformly
asymptotically stable, provided that the control law in Eq. (9) is used with the control gain σ
chosen in the open interval (0, 2).
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Proof:
See Appendix A.

In the case of unstructured environment, the depths zi, i = 1, . . . , n are unknown time-
varying parameters of the visual system. The ultimate boundedness of the error vector p̃ can
be obtained whenever the matrix GdĜ

+

d remains positive definite along the current trajectory.
This property of the image-based visual servoing approach has been pointed out also in (Espiau
et al., 1992), where constant 3-D parameters are used to estimate the interaction matrix.

4 Experimental Results

The proposed adaptive nonlinear control design has been implemented on an eye-in-hand robotic
system. The phisical system, on which the approach was tested, consists of a PUMA 560 robot
arm with a Sony CCD camera mounted on its wrist. Camera optics data-sheets provide a raw
value for focal length and pixel dimensions; the remaining intrinsic parameters of the camera are
not considered. The robot is commanded by the MARK III controller (implementing the inner
loop), and—for the outer loop—a PC MMX 200 Mhz equipped with an Imaging Technology
frame grabber. The MARK III controller operates under VAL II programs and communicates
with the PC through the ALTER real time protocol using an RS-232 serial interface. All the
acquisition and control activities running in the PC are executed under the HARTIK kernel (But-
tazzo, 1993), which is specifically designed to support real-time control applications with timing
constraints. The control system was implemented as a multitasking application. A task τact

with period Tact = 28ms, reads commands (i.e. the control velocity screw) from a CAB (Cyclic
Asynchronous Buffer), and sends them to the robot controller via ALTER. The control task
τctr with a period of Tctr = 80ms performs the visual analysis (i.e. active contour tracking),
computes the velocity screw according to Eqs. (9), (10), and sends the commands to τact. Fi-
nally, a task τvis displays the status of the system. A hardware-dependent communication level
ensures a correct timing table with the physical devices. Quadratic B-spline active contours are
used to track the projection of Γ in the image plane (Colombo and Allotta, 1999). The image
points p are computed using directly the 2-D time evolution of the B-spline control points. Any
experiment with the system begins by bringing the robot in the desired configuration; there an
active contour is initialized with the goal image appearance of the target object. After recording
the n control points of the goal contour, the robot is moved to the initial configuration, while
the current active contour continues tracking the object appearance. Finally, the robot is moved
according to the designed control system.

n = 12 control points of the active contour are used as image points p, in order to obtain
robust visual acquisition of the object. The values of estimated depth parameters are initialized
to ẑi = 1

θ̂i
= 200mm, i = 1, . . . , 12, in all the following experiments, thus providing a coarse

initial estimation with an error up to 50% with respect to the real values. Infinite impulse
response digital filters were used for smoothing visual measurements. The following cases are
addressed:

1. 2-D displacement: the initial and desired pose of the camera are in planes parallel to
the object’s plane;

2. 3-D generic displacement: the initial and desired pose of the camera are 3-D generic
configurations.
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In the first experiment (2-D displacement), the eye-in-hand robotic system executes a relative
positioning task with the following values of state variables. The initial state of system of Eq. (5)
and the desired state are: p(0) = [−1.90 2.22 −2.07 1.35 −2.14 0.64 −2.14 −0.17 −1.50 −0.27 −
0.98 −0.33−0.37 −0.43 −0.25 0.30 −0.16 1.08 −0.08 1.92 −0.74 2.06 −1.36 2.19]T, and p(d) =
[0.30 3.15 0.17 2.28 0.09 1.57 0.08 0.74 0.72 0.62 1.24 0.561.86 0.44 1.99 1.18 2.09 1.97 2.19 2.81 1.52
2.96 0.90 3.11]T.

Table 1: Desired and reached configurations (encoder measurements) of the robot end-effector :
experiments 1, 2. The quantities “o,” “a” and “t” are the Orientation, Altitude and Tool angles
(degrees), respectively, used by VAL II to represent the end-effector orientation. End-effector
translations “x,” “y” and “z” are in mm.

x y z o a t

goal(1) 70.0 751.6 -115.5 -89.9 89.9 0.0

reached(1) 69.7 739.3 -115.0 175 88.5 -94.9

goal(2) -9.5 701.5 -287.5 89.4 61.2 179

reached(2) -3.7 706.2 -283.1 87. 60.1 177.6

The image points errors and the estimated depths are plotted in Figs. 1.a and 1.b. Figs. 1.c
and 1.d show the components of the requested camera velocity twist. Table 1 reports the errors
in terms of reached end-effector’s pose. In the second experiment (3-D generic displacement),
the initial state is p(0) = [0.99 1.26 0.76 0.46 0.57 − 0.33 0.44 − 0.92 1.08 − 1.12 1.63 −
1.32 2.01 − 1.41 2.18 − 0.86 2.38 − 0.07 2.53 0.55 2.12 0.76 1.53 1.02]T, and the desired state
is p(d) = [−2.66 2.70 − 2.80 1.34 − 2.90 − 0.00 − 2.95 − 0.99 − 1.90 − 1.05 − 0.97 − 1.15 −
0.36 − 1.12 − 0.25 0.18 − 0.14 1.13 − 0.06 2.20 − 0.75 2.37 − 1.75 2.54]T. Figs. 2.a and 2.b
show the resulting image points errors and the estimated depths, while the components of the
requested camera velocity twist are plotted in Figs. 2.c and 2.d. Table 1 shows the errors in
terms of reached end-effector’s pose.

Experiment 1 concerns the case of 2-D displacement of the camera, it validates the proposed
adaptive nonlinear control approach, ensuring convergence of image points errors towards the
equilibrium p̃ = 0, and providing the estimates of object points’s depth. After Tc = 100 s, the
maximum magnitude of the position error in terms of reached end-effector’s pose is 12.29 mm
(see Table 1). Experiment 2 concerns a 3-D generic camera displacement: in this case there is
also a large mismatch between initial and desired configurations. The results show a satisfactory
accurancy in the positioning of the camera, since, after Tc = 100 s, the maxiumum magnitude
of the position error is 5.89 mm (see Table 1).

5 Conclusions

The problem of camera-object relative positioning is addressed by nonlinear controllability analy-
sis and adaptive nonlinear control system design in discrete time. The image-based visual system
is expressed in terms of global coordinates fully defined in the image plane. Then a discrete time
model is derived, since the visual sampling time is not negligible. In case of known depth of the
object, the designed control law ensures global uniform asymptotic stability of the image plane
reference setpoint. 3-D estimation procedure based on prediction errors is used to cope with the
unknown depth of the object. Robotic experiments show the effectiveness of the approach, and
the satisfactory accuracy in the positioning of the camera.
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A Appendix

Proof of Prop. (1):

Proof:
From assumption 1, and the definition of the accessibility algebra, it follows that dimC(p) ≥
rankG(p) = dimXc ∀p ∈ Xc, hence dimC(p) = dimXc, ∀p ∈ Xc.

Proof of Prop. (2):

Proof:
Let G = {G(p)u : u ∈ U} be the family of the vector fields on Xc. Since G is symmetric
(i.e. G(p)u ∈ G implies −G(p)u ∈ G), and Xc is connected, from Prop. (1), it follows the
thesis (Nijmeijer and van der Shaft, 1996).

Proof of Lemma (1):

Proof:
The necessity is obvious. Assume that G(p)T p̃ = 0, taking as global coordinates of the sys-
tem (5) the error vector p̃, yields G(p̃ + p(d))T p̃ = G(p̃)T p̃ = 0, where G(p̃) = [m1, . . . ,m6]
is the expression of G(p) in the error coordinates. Consider the distribution spanned by the
vector fields mi, i = 1, . . . , 6, ∆(p̃) = ImG(p̃) = span{m1, . . . ,m6}. Given p̃ 6= 0 ∈ Xc, since
from linear algebra, KerG(p̃)T ⊕ ∆(p̃) = <2n, it is sufficient to show that p̃ ∈ ∆(p̃). Infact
p̃ ∈ Xc ∼= Tp̃Xc, from Prop (1), it results C(p̃) = Tp̃X (Chow’s theorem). Finally, from assump-
tion 1, a dimensional argumentation shows that C(p̃) = ∆(p̃), hence p̃ ∈ ∆(p̃), which concludes
the proof.

Proof of Prop. (3):

Proof:
Consider the following Lyapunov function candidate:

V (p̃(k)) = p̃(k)Tp̃(k) , (13)

which is time-invariant, positive definite and radially unbounded. The first order variation of
V (p̃), using Eq. (9), results:

∆V (p̃(k)) = p̃(k + 1)Tp̃(k + 1)− p̃(k)Tp̃(k) = (−2σ + σ2)p̃(k))TGd(p(k))Gd(p(k))+p̃(k) ,(14)

where it has been used the fact that

Gd(p(k))+ TGd(p(k))TGd(p(k))Gd(p(k))+ =
Gd(p(k))(Gd(p(k))Gd(p(k))T)-TGd(p(k))TGd(p(k))
(Gd(p(k))Gd(p(k))T)-1Gd(p(k))T =
Gd(p(k)(Gd(p(k))Gd(p(k))T)-TGd(p(k))T . (15)

By assumption 1, and lemma (1), V̇ (p̃) is negative definite, if the control gain σ is chosen in
the open interval (0, 2).
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Figure 1: First experiment (n = 12 control points of spline used): a) image points errors; b)
estimated depths of object’s points; c) camera velocity components; d) camera angular velocity
components.
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Figure 2: Second experiment (n = 12 control points of spline used): a) image points errors; b)

estimated depths of object's points; c) camera velocity components; d) camera angular velocity

components.
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