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Abstract 

       We consider a problem of a modal  P-regulator synthesis for a linear multivariable dynamical system with 
uncertain ( interval) parameters.  The designed  regulator  has to place all coefficients of the system 
characteristic polynomial within assigned intervals. We developed  the approach proposed in (Dug  et al., 
1990) and proved the direct correlation between  system controllability  and  existence of a  modal P- regulator. 
 
1 INTRODUCTION 
  
    The problem of  closed-loop stability is an important topic of  feedback controller design when 
perturbancies and/or uncertainties can  affect a control system. This paper is devoted to a solution of  
robust modal P-regulator synthesis problem for a plant with uncertain parameters described by 
intervals with the given bounds. On  practice such a plant can be considered as a linear dynamical 
system with interval parameters. Two alternative methods of  modal regulator synthesis for a control 
system with interval parameters in a state-space have been considered in  (Dug  et al., 1990;  Smag, 
1997). In this paper we develop the approach  (Dug  et al., 1990) and present a new proof of solvability 
conditions of the problem  based on the latest research in the area of interval analysis. 
 
2 PROBLEM STATEMENT 
 
    We consider a linear time invariant dynamical multivariable system in state-space   
  

dx/dt = [A]x +[B]u                                                             (1) 
 

where  x = x(t)  is an  n state vector and  u= u(t)  is  an  r  input vector. The elements [aij], [bik]  (i, 
j=1,...,n, k=1,..,r)  of    n× n  matrix  [A]  and  n× r  matrix  [B]  are  interval (interval numbers) with 
the known upper and  lower bounds ( Moor, 1966).  These matrices describe sets of  matrices  A∈ [A],  
B∈ [B] with real elements a ij ∈  [aij],  bik ∈  [bik]. 
     It is necessary to find an  r× n  matrix  K  with real elements (gain coefficients  kij , i=1,...,r,  
j=1,..,n ) for a robust  feedback state control (in other words, a modal  P--regulator) 
     

           u = Kx                                                                      (2) 
which ensures the inclusions 
 

det (sI - A - BK)  ⊆   [D(s)]                                                      (3) 
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for every real  A∈ [A],  B∈ [B].  In (3)  [D(s)]  is an assigned asymptotic stable n  degree polynomial  
with  interval coefficients [d i], i=0,1,...,n-1 
 

[D(s)] =  sn   + [dn-1]s  n-1 + ...+ [d1 ]s  + [d 0 ].                                         (4) 
 
The  mentioned  interval polynomial may be described as a set of asymptotic stable polynomials   
D(s) =sn   + dn-1s  n-1 + ...+ d1 s + d 0   with real coefficients di ∈  [di]. Different methods can be used in 
order to find  interval coefficients of   [D(s)] (Khar, 1979). 
 If a  characteristic polynomial of  closed-loop system  dx/dt = (A +BK)x  can be presented as  
 

det(sI - A -BK) =  sn   + βn-1s  n-1 + ...+ β1 s  + β 0                                                             (5) 
 
then inclusion (3) takes the following form 
 

                            βi  ∈  [di] ,  i= 0, ..., n-1.                                                  (6) 
 
3  MAIN RESULT 

 
 For the given problem we  consider two cases:  r =1, r ≥ 2. 
 Case  r =1.  Suppose  that  [B] = [b] is a  column vector,  K = k is a  row vector.                                                                                                      
 Definition 1 (Dug  et al., 1990). A pair ( [A], [b] ) is controllable for any A ∈  [A],  b ∈ [b]  if 
a square interval controllability matrix 
 

                [Y] = ( [b], [A]∗[b], ... , [A]n-1∗[b] )                                           (7) 
 

satisfies the condition 
                                      0 ∉ Det [Y] .                                                               (8) 

 
In (8) Det <•> denotes the interval extension ( Moor, 1966) of the function det <•>. In (7)  and further  
the sign '∗'  is a multiplication of two  intervals .  It is one of interval- arithmetical operations 
introduced in ( Moor, 1966). 
 Consider an interval n × n matrix 
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and  an interval  n  row vector  
 

 [f]  =  ( [do] Θ [αo], [d1] Θ [α1], ... , [dn-1] Θ [αn-1] )                                    (10) 
 

where  [αn-1] ,..., [αo] are interval coefficients of the characteristic polynomial of the matrix [A]:   
[φ(s)]  =  sn   + [αn-1]s  n-1  + ...+ [α1 ]s  + [α 0 ]   which  may be considered  as an interval  extension of 
the rational function  φ(s)  =  sn   + αn-1s  n-1  +  ...+  α1 s  + α 0 ,   A∈ [A];  Θ - is a nonstandart interval 
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subtraction (Mark, 1977) for  the intervals  [a] = [al , as]   and  [b] = [bl , bs] defined as  [a] Θ [b] = 
{min(al - bl ,  as -  bs) ,  max(al - bl ,  as -  bs)}. 
 
 Theorem.  If a pair  ([A ],[b]) is controllable and the following inclusion takes place for an 
assigned asymptotic stable interval polynomial (4) 
 

M[f] (M[P] )-1∗[P]  ⊂ [f] ,                                               (11) 
 

then a  modal state regulator  u = kx  exists and it can be calculated as follows: 
 

k = M[f] (M[P] )-1                                                                                         (12) 

 
where M[•] denotes a real matrix(vector) the elements of which are the  midpoints ( Moor, 1966) of the 
interval elements of matrix(vector). For an interval number [a] we have: M[a] = M[al , as] = (al  +   as)/2.    
 
 Proof.  A pair ([A ],[b]) is referred to as  a controllable if and only if all pairs (A,b),  A∈ [A],  
b∈ [b] are controllable.  It is known (Owens, 1978) that if a pair (A,b),  A∈ [A],  b∈ [b] is controllable, 
then a row vector k can be calculated  as  
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+  (α 0 , α1,,...,αn-1 )   =  (d0,  d1  dn-1)                                       (13) 

 
where α 0 , α1,,...,αn-1  are  the coefficients of the characteristic polynomial of  A;  d 0 , d1 , . . . , d n-1  are the 
coefficients of  a  chosen asymptotically stable polynomial D(s) =  sn   + dn-1s  n-1 + ...+ d1 s  + d 0   with   
di ∈  [di] ,  i= 0,...,n-1. 
 The elements of the row vectors in the left hand side of (13) are rational functions of the 
element of  k , A,  b ( Note that  αi , i =  0 ,..., n-1 are multilinear  functions of the elements of  A ). We 
denote the left hand side of (13) by  f( k, A, b) and find an interval extension F(k, [A], [b])  of the 
function f( k, A, b) for A∈ [A],  b∈ [b] . As a result we have the expression   
 

          F(k, [A], [b]) = k∗ [P] + ( [α 0 ], [α1],,...,[αn-1])                            (14) 
 
where the n × n interval matrix [P] is defined from (9); [αi ], i =  0,...,n-1 are an interval extension of 
the rational function αi (A),  A∈ [A]. 
 We need to find a real row vector  k satisfying the following inclusion 
 

 k∗ [P] + ( [α 0 ], [α1],...,[αn-1]) ∈ ([d 0 ] , [d1 ] , ... ,[dn-1])                       (15) 
 

 Then for every  A∈ [A]  and  b∈ [b]  equality (13)  with appropriate di ,  i=0,...,n-1 will be satisfied  
and all real di ,  i=0,...,n-1 will belong to the assign intervals   di ∈  [di] ,  i=0,...,n-1. 
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  The left hand side of (15) is a sum of an unknown interval row vector  k∗[P]  and the known 
interval row  vector ( [α 0 ], [α1],,...,[αn-1] ). Using  the nonstandart subtraction Θ of  interval arithmetic 
we can represent inclusion (15) as 
 

k∗ [P] ∈ [f] .                                                         (16) 
 
The solution of (16) for a real  n  row vector k is  known as a particular case of the total linear interval 
tolerance problem (Dobr  et al., 1990) . In common case the solution can be an interval vector  [ k ].  In 
our case we can calculate real  k  from (12)  if  M[P]  is nonsingular n × n matrix and condition  (11) 
takes place (Dobr  et al., 1990). The Theorem is proved. 
 
 Corollary.  As it follows from the Theorem  the controllability of  the pair ([A ],[b])  is a 
necessary condition for a modal regulator   u = kx  existence . 
 
 Remark 1. The elements of the interval vector  [f] are  so called proper intervals for which  the 
inequalities w[di] > w[αi  ], i=0,...,n-1 hold. Here w[•] denotes a width of an interval number [•]( Moor, 
1966). For  an interval number [a]  we have:  w[a] = w[al , as] = (as- al ).  If some of the inequalities are  
not satisfied then we can increase the width of the appropriate interval coefficients [di],  i=0,...,n-1. 
 
 Remark 2. Condition (11) can be always guaranteed by increasing the widths of the assigned 
interval polynomial coefficients  [di]. Therefore, a stabilizing (non-modal) state feedback  control u = 
kx exists if and only if  the pair ([A ],[b])  is controllable. 
 
  Case  r≥≥ 2.   
         Definition 2.  System (1) is called a controllable if and only if  for any  A ∈  [A] and  B ∈ [B]  
the following equality takes place  
 

rank  [ B, AB, ... , An-1 B]  = n.                                              (17) 
 
  Suppose that  for any A ∈  [A] and  B ∈ [B]  the pair  ([A] , [B])  is controllable. Moreover, 
assume that for any A ∈  [A] and  B ∈ [B] the pair (A,B) is a cyclic pair  (Owens, 1978). Then we can 
(almost always) find a real  r vector  q which guarantees the controllability of the pair  ([A] , [B]∗q), 
i.e. the n × n interval controllability matrix  [Y1] = ( [B]∗q, [A]∗[B]∗q, ... , [A]n-1∗[B]∗q) satisfies the 
condition (8). Considering  [b] = [B]∗q and using the Theorem we can calculate a real row vector  k  
from  formula (12). Then the  r × n  real matrix  K  results from  the formula 
 

K = qk.                                                                      (18) 
 

If the cyclic condition is violated for some A∗ ∈  [A] and  B ∗∈ [B] , then we can use the property 
(Wonh, 1974)  that 'almost  always' a feedback matrix  K  exists for a controllable pair (A∗, B∗) such 
that the pair ( A∗+ B∗K,  B∗ )      is cyclic. 
 Thus,    the controllability of the interval pair  ([A] , [B])  is a basic solvability condition for 
existence of a stabilizing P-regulator. 
 In conclusion an algorithm may be used for  modal P- regulator calculation. 
 Step 1. Analyse the controllability of a pair  ([A] , [B]) for all A ∈  [A] and  B ∈ [B]. If this 
pair is not controllable then the problem has no solution. 
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 Step 2. If  r =1  then  go to step 3  otherwise chose some  real numbers as the elements of  r 
vector  q. Calculate [b] = [B] ∗q. If the pair  ([A] , [B]∗q) is controllable  then go to step 3  else chose 
another vector q. 
 Step 3. Analyse inclusions (11). If the inclusion are not hold  for some  [di] then increase the 
width of  the interval [di]. 
 Step 4.  Calculate  n vector k  from formula (12). 
 Step 5. If  r =1 then  K =k . If  r≥ 2 then K = qk . 
 
4 EXAMPLE 
 
Consider a  stabilization  control problem for a helicopter longitudinal motion speed; the  helicopter  
longitudinal  motion can be described by linear dynamical  state-space model  (1) with  n = 3, r =2 and  
the matrices 
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where the elements of [A] and [B] are (Khleb, 1980): 
 
[a11 ] = [ -0.031, -0.0128 ], [a12  ] = [ -3.4, -0.1 ], [a21]=[-0.00077, -0.0007], 
[a22  ] = [-0.32, -0.31], [a 13 ]  = [-9.8, -9,8],  [b11 ] = [-18, -15],   

[b22  ] =  [-3,3, -3 ].                                                               (20)                                 
 
In the vector  x = ( x1, x2, x3)t   x1  is a deviation of the longitudinal motion projection, x2  is an angular 
speed deviation, x3  is a pitch angular deviation. 
 It is necessary to find  such a  real  2 × 3 matrix  K  that for every real  A ∈  [A] and  B ∈ [B] 
the characteristic polynomial coefficients of  the closed-loop matrix  A + BK  are located within the 
interval coefficients of the given interval stable polynomial 
 

[D(s)] =  s3   + [3, 4]s 2 + [2, 8 ]s  + [0.5 , 5.5 ].                                   (21) 
 

 The  controllability analysis of  ([A] , [B])  shows that this pair is controllable for all A ∈  [A] 
and  B ∈ [B] . 
 We chose  q = ( 0.8, 1.2 )t  and compute the vector 
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The pair ([A] , [b]) is controllable because  the condition from (8) is satisfied:  
0∉Det ([b],[A]∗[b],[A]2∗[b] ). Then  from formula (9) we can calculate 
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where  [α1],  [α2] are the coefficients of the characteristic polynomial  of [A]: [φ(s)] = det (sI-[A]) =   
s3  + [α2] s 2 + [α1]s  + [α0] with [α2] = [0.3228, 0.351],  [α1] = [0.00135,  0.00985],   
[α0] = [-0.007546,  -0.00686]. 
     We find row vector  

[f]  =  ( [do] Θ [αo], [d1] Θ [α1 ], [d2] Θ [α2] )  = 
( [0.5075,  5.50686], [1.99865, 7.99015], [2.6772, 3.649] ) 

 
and verify inclusions (11). The inclusions are guaranteed, therefore, we can calculate 
 

k = M[f] (M[P])-1 = (-0.0793,  1.116,  1.2477) 
 
Then the gain matrix of modal P-regulator can be computed as  
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9977.08228.00634.0

qkK  
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