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Abstract

In this paper the problem of including the robot dynamics in the control loop of visual
servoing systems is considered. After introducing the image-based visual interaction model
between a robot camera and a rigid object parametrized by a finite number of image features,
the problem of local feedback stabilization is considered, in both the cases of interconnection
to a linear subsystem and to a nonlinear open-chain manipulator. The proposed control
system design uses backstepping approach to ensure local stablity of the equilibrium of the
whole system, assuming that the linear subsystem is minimum phase of relative degree one.
In the case of inclusion of the nonlinear lagrangian dynamics of the robot, the obtained
control law is similar to the well-known computed torque law. A case study is also reported
to validate the developed control design, approximating the robot and its local controller by
a diagonal linear subsystem.

1 Introduction

Image-based visual servo systems (Hill and Park, 1979) permit to control the relative pose
between a robot camera and a finite number of image features which parametrize a visual
target. In image-based servoing (Weiss et al., 1987), any visual task is described in the image
plane as a desired evolution of image features towards a goal one. Even if image-based systems
have been largely investigated (Feddema and Mitchell, 1989; Espiau et al., 1992; Grosso et al.,
1996; Hashimoto et al., 1996; Colombo and Allotta, 1999) and they are now well established,
few approaches have been proposed to include explicitely the robot dynamics in the visual servo
loop. In (Papanikolopoulos and Khosla, 1993), the visual servo system consists in a camera
mounted on the wrist of a PUMA robot, and a PD scheme with gravity compensation is used to
compute the actuated joints torques of the manipulator. In (Corke and Good, 1996), a PUMA
robot is used as a pan/tilt head to realize high-performance visual feedback, dynamic effects are
taken into account by modeling the inner position/velocity loop of the robot. In (Kelly et al.,
1997), the lagrangian dynamics of the manipulator are included in the visual servo design, the
authors consider the case of a planar robot with a fixed camera viewing the robot workspace.

In this paper, the problem of the inclusion of robot dynamics in the control loop of the visual
system is solved by applying backstepping approach. The dynamic visual model of interaction
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between the robot camera and the image features parameters is viewed as a smooth input-affine
nonlinear system. Assuming the existence of a local smooth stabilizing control law for the
visual system, the stabilization of the interconnected system including the robot dynamics is
addressed. Two architectures are considered: dynamic look-and-move systems and direct visual
servos. In the first case, the controller realizes an outer loop, it generates a twist screw fed to
an inner position/velocity controller, the robot dynamics compensated with the local controller
is modeled as a linear subsystem, whose effects are included in the visual loop. In the case of
direct visual servos, the image-based controller provides directly the robot joint torques, and
the full lagrangian dynamics of the open-chain manipulator is included explicitly in the control
system design. The designed control system ensures Lyapunov stability and convergence to a
local invariant set in the state space. Sufficient conditions which guarantee local and global
asymptotic stability around the set of desired image features are also discussed. A case study is
reported to validate the developed approach. The problem of controlling the pose of the robot
camera mounted on a 6-DOF manipulator with respect to a rigid object is addressed, by using
the proposed control system design. The robot and its local controller are modeled as a diagonal
linear subsystem.

The paper is organized as follows. In Sect. 2, visual modeling issues are considered, by intro-
ducing the dynamic interaction model. In Sect. 3, the control system is designed and stability
analysis is carried out. Sect. 4 reports an application of the proposed approach, simulation
results are carried out to validate the framework. Finally, in Sect. 5 the major contribution of
the paper is summarized.

2 Image-Based Visual Modeling

Consider a rigid object of interest, which is in the visual field of the camera, denote with γ the
projection in the image plane of the object’s visible surface Γ, i.e γ = π(Γ), where π denotes
a camera projection model (e.g. full perspective, para-pespective, orthographic (Mundy and
Zisserman, 1992)). Assume that the image patch γ can be parametrized by a finite number
of geometrical features p = [p1, . . . , pnp ]T, p ∈ P, which are, in general, image points. Let us
associate to γ a finite number of image features, they are real-valued quantities algebrically
computed from one or more geometrical features, i.e w = sp(p), being sp a smooth map.
Examples of image features used in the letterature are image points (Papanikolopoulos and
Khosla, 1993; Castano and Hutchinson, 1994; Hashimoto et al., 1996), parameters of geometrical
primitives (line, plane, circle, ellipse) in the image plane (Espiau et al., 1992), and area of the
projected surface (Weiss et al., 1987). Assume that the set of image features is a smooth manifold
W of dimension nw ≤ 6, let us indicate with w = [w1, . . . , wnw ]T the local coordinates of an
element w of W. Let D be an open subset of SE(3), the Special Euclidean group, and assume
that the two set W and D are smooth diffeomophic manifolds. Hence, there exists a smooth
map F : D → W, such that ∀d ∈ D, there exists coordinate chart (D,φ) of D and (W,ψ) of
W, with d ∈ D, and F (d) ∈ W. The dynamic visual model of interaction can be, in principle,
computed considering the tangent map F∗d of F at d, in local coordinates results:

ẇ =
∂(ψ ◦ F ◦ φ−1)

∂d
ḋ , (1)

where ∂(ψ◦F◦φ−1)

∂d is the analytic image jacobian of the system, and d ∈ <nd are local coordinated
of an element of D. Since the expression of the map F is usually unknown or too complicated
to be used (it is related to the problem of calibration of the visual system), the dynamic visual
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Figure 1: Block diagramm of the image-based servoing system.

model is usually derived geometrically, by using the optical flow equations (Koenderink, 1986):
ṗi = U(pi, zi)u, where pi = π(P i) is the projection of the cartesian point P i according π. zi
is the depth of the point P i, and u is the vector of relative twist coordinates between camera
and object. Then, by using the algebric relation between the image features and geometrical
features, the dynamic visual model can be expressed in the form:

ẇ =
np∑
i=1

∂sp
∂pi

U(pi, zi)u . (2)

Even if in some cases the relation between the image and geometrical features is expressed in the
implicit form sp(w,p) = 0, the dynamic model of interaction can be still derived (see (Espiau
et al., 1992)). The image-based visual model is a smooth input-affine nonlinear system ẇ =
G(w,z)u, defined on the smooth manifold W, with time-varying parameters z = [z1, . . . , znp ]T,
and which is without the drift term. Visual interaction model with drift can be also considered
by extending the dynamics (2), in order to derive a model which include also the velocity of
image features as state variables, i.e. defined in the tangent bundle W × TwW (see (Conticelli
and Allotta, 1998) for an example). The visual model is, in general, of the form ẇ = f(w) +
G(w)u, denote with w(d) the desired constant state, in the error coordinate x = w −w(d) the
visual subsystem has equation: ẋ = f(x) + G(x)u. In the next section, we use the following
assumption.

Assumption 1 There exists a local smooth stabilizing feedback: y = α(x), α(0) = 0, and a
function V (x) : <m → < such that the region Ωl(x) = {x ∈ <m : V (x) < l}, l > 0, is bounded,
and ∂V (x)

∂x (f(x) +G(x)α(x)) ≤ 0, ∀x ∈ Ωl.

The feedback law α(x) locally stabilizes the equilibrium x = 0 in the sense of Lyapunov, by
applying La Salle theorem.

3 Backstepped Visual Servoing

In this section, we consider both the cases of dynamic look-and-move and direct visual servo
systems. The backstepping approach is used to construct control laws which include the robot
dynamics in the visual servo loop.
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3.1 Dynamic Look-and-Move Systems

In the case of dynamic look-and-move systems, the robotic system (see Fig. (1)) consists in the
dynamics of the manipulator and a local position/velocity controller. It is assumed that the latter
permits to compensate the nonlinear dynamics of the manipulator, such that the composition
of the two systems can be described by a linear subsystem. The following proposition provides
a control system design taking into account both the linear subsystem and the dynamic visual
model of interaction (visual subsystem). The control system generates the velocity twist of the
camera fed to the position/velocity inner loop of the robot.

Proposition 1 Consider the interconnected system:

ẋ = f(x) +G(x)y
ξ̇ = Aξ +Bu

y = Hξ , (3)

where x ∈ <m is the state of the visual subsystem, y ∈ <p is the velocity screw of the camera, ξ ∈
<n is the state of the linear subsystem, and u ∈ <p is the robot command. Assume that:

• (1) holds;

• the linear subsystem is minimum phase of vector relative degree {1, . . . , 1};

by using the control law:

u = (HB)−1[−K(y −α(x))−G(x)T(
∂V (x)
∂x

)T −HAξ + α̇(x)] , (4)

where the matrix K is positive definite, then the state of the whole system [xT, ξT]T is locally
bounded and converges to the largest invariant set contained in M(x, ξ) = {[xT, ξT]T : V̇ (x) =
0, y = α(x)}. Moreover, if ∂V (x)

∂x (f(x) + G(x)α(x)) < 0, then the equilibrium [xT, ξT]T = 0
is locally asymptotically stable.

Proof:
By using system theory (Isidori, 1989), there exists a linear change of coordinates which put the
linear subsystem in the normal form:

ẏ = HA ξ +HB u

µ̇ = A0 µ+B0 y , (5)

where µ ∈ <n−p, and the matrix A0, which defines the zero dynamics, is Hurwitz by assumption.
It is easy to prove that the required diffeomorphism is φ(ξ) = [y1, . . . , yp, σ1ξ, . . . , σn−pξ], where
σT
i ∈ <n, i = 1, . . . , n− p is a basis of Ker BT. Consider the semi-positive definite function:

Va(x, ξ) = V (x) + (y −α(x))T(y −α(x)) , (6)

The first derivative of Va(x, ξ), by using (4), results:

V̇a(x, ξ) =
∂V (x)
∂x

(f(x) +G(x)y) + (y −α(x))T(H Aξ +H Bu− α̇(x))

=
∂V (x)
∂x

(f(x) +G(x)α(x)) + (y −α(x))T(G(x)T(
∂V (x)
∂x

)T +HAξ +HBu− α̇(x))

≤ −(y −α(x))T K(y −α(x)) , (7)
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which is semi-negative definite. Notice that, since the linear subsystem has vector relative degree
{1, . . . , 1} the matrix (H B) is nonsingular. It follows that the variables x, and y are locally
bounded. Moreover, since A0 is Hurwitz, then µ is also bounded. By applying La Salle theorem,
the whole state [xT, ξT]T converges to the largest invariant set contained in M(x, ξ). Notice
that the control law (4) can be written in the form u = (HB)−1(ν −HAξ), where the vector ν
is obviously defined. Hence, the subsystem:

ẋ = f(x) +G(x)y
ẏ = ν , (8)

can be decoupled from the internal dynamics µ̇ = A0µ + B0y. Consider the definite positive
function (6), defined in the state [xT,yT]T, and by using the fact that ∂V (x)

∂x (f(x)+G(x)α(x)) <
0, the first derivative of Va(x,y) results negative definite, infact V̇a(x,y) < −(y−α(x))T K(y−
α(x)) ≤ 0. It follows that the equilibrium [xT, yT]T = 0 is locally asymptotically stable.
Finally, since A0 is Hurwitz, it is simple to show (see (Krstić et al., 1995)) that the internal
dynamics is also asymptotically stable, which concludes the proof.

Remark 1 Assume also that V (x) is radially unbounded and ∂V (x)
∂x (f(x) + G(x)α(x)) ≤

0, ∀x ∈ <m, by applying the Global Invariant Set Theorem (Slotine and Li, 1993), the state
of the whole system [xT, ξT]T is globally bounded and converges to the largest invariant set con-
tained in M(x, ξ). Moreover, if ∂V (x)

∂x (f(x)+G(x)α(x)) < 0, then the equilibrium [xT, ξT]T = 0
is globally asymptotically stable.

Remark 2 Assume that the inner loop decouples the robot dynamics such that each degree of
freedom of the robot can be modeled by a SISO (single input - single output) linear subsystem of
the form:

ẏi = hiAi ξi + hibi ui

µ̇i = A0i µi + b0i yi, i = 1, . . . , N , (9)

where N is the number of degrees of freedom. If each linear subsystem is minimum phase and
has relative degree 1, then the diagonal linear subsystem obtained by stacking the Eqs. (9) is
also minimum phase and has vector relative degree {1, . . . , 1} by construction, hence it satisfies
the assumption of Prop. 1.

3.2 Direct Visual Servo Systems

In the case of direct visual servo systems, the robotic system (see Fig. (1)) consists in the dynam-
ics of the manipulator, without any local position controller. The following proposition provides
a control system design taking into account both the nonlinear dynamics of the manipulator
and the dynamic visual model of interaction (visual subsystem). The control system generates
directly the joints actuator torques.

Proposition 2 Consider the interconnected system:

ẋ = f(x) +G(x)y
A(q)q̈ + B(q, q̇)q̇ + C(q) = τ

y = J(q)q̇ , (10)
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where x ∈ <m is the state of the visual subsystem, y ∈ <p is the velocity screw of the cam-
era, q, q̇ ∈ <n are respectively the robot joints angles and their velocities, τ ∈ <p is the vector
of actuator torques, A(q) is the inertial matrix of the robot, B(q, q̇) is the Coriolis matrix,
and C(q) is the gravity term. Assume that:

• (1) holds;

• each joint of the robot is actuated, and the robot system is square i.e. n = s = p;

by using the control law:

τ = A(q)[−K(q̇ −α(x, q))− J(q)TG(x)T(
∂V (x)
∂x

)T + α̇(x, q))] +B(q, q̇)q̇ + C(q) , (11)

where the matrix K is positive definite, and α(x, q) = J(q)−1α(x), then the state of the whole
system [xT, qT, q̇T]T is locally bounded and converges to the largest invariant set contained in
M(x, q, q̇) = {[xT, qT, q̇T]T : V̇ (x) = 0, q̇ = α(x, q)}. Moreover, if ∂V (x)

∂x (f(x)+G(x)α(x)) <
0, then the equilibrium [xT, qT, q̇T]T = [0, qT *, 0]T is locally asymptotically stable, where q*

is the robot configuration corresponding to x = 0.

Proof:
Consider as output of the robot system the joints angles, from Eq. (10), it follows that q̈ =
A(q)−1(τ − B(q, q̇)q̇ − C(q)), and, since detA(q) 6= 0, ∀q ∈ <n, the robot has vector relative
degree {2,. . . ,2}, which implies that the total relative degree is equal to the dimension of the
robot state space, hence there is no internal dynamics. Consider the semi-positive definite
function:

Va(x, q, q̇) = V (x) + (q̇ −α(x, q))T(q̇ −α(x, q)) , (12)

The first derivative of Va(x, q, q̇), by using (11), results:

V̇a(x, q, q̇) =
∂V (x)
∂x

(f(x) +G(x)y) + (q̇ −α(x, q))T(q̈ − α̇(x, q))

=
∂V (x)
∂x

(f(x) +G(x)α(x)) + (q̇ −α(x, q))T

(q̈ − α̇(x, q) + J(q)TG(x)T(
∂V (x)
∂x

)T)) ≤ (q̇ −α(x, q))T(A(q)−1(τ −B(q, q̇)q̇

−C(q))− α̇(x, q) + J(q)TG(x)T(
∂V (x)
∂x

)T) ≤ −(q̇ −α(x, q))T K(q̇ −α(x, q)) , (13)

which is semi-negative definite. It follow that the whole state of the interconnected system
[xT, qT, q̇]T is locally bounded. By applying La Salle theorem, the whole state converges to
the largest invariant set contained in M(x, q, q̇). Assume that ∂V (x)

∂x (f(x) + G(x)α(x)) <

0, the first derivative of Va(x, q, q̇) results: V̇a(x, q, q̇) < −(q̇ − α(x, q))T K(q̇ − α(x, q)) ≤
0, then, by La Salle theorem, the whole state converges to the largest invariant set contained
in {[xT, qT, q̇]T : q̇ = α(x, q)}. The following argumentation proves that this invariant
set is simply the point [xT, qT, q̇T]T = [0, qT *, 0]T, where q* is the robot configuration
corresponding to x = 0. Since ∂V (x)

∂x (f(x) + G(x)α(x)) < 0, it follows that x → 0, which
implies that y = α(x)→ 0, and, from the Eq. (10), q̇ → 0, which concludes the proof.
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Remark 3 Assume also that V (x) is radially unbounded and ∂V (x)
∂x (f(x) + G(x)α(x)) ≤

0, ∀x ∈ <m, then the state of the whole system [xT, qT, q̇T]T is globally bounded and con-
verges to the largest invariant set contained in M(x, q, q̇). If ∂V (x)

∂x (f(x) + G(x)α(x)) < 0,
then the equilibrium [xT, qT, q̇T]T = [0, qT *, 0]T is quasi-globally asymptotically stable.

Remark 4 The above result is quasi-global, in the sense that control law in Eq. (11) is undefined
in the points of the state space where the robot Jacobian J(q) is singular, infact the kinematic
inversion is required in computing the expression of α(x, q).

4 A case study

In this section, we apply the developed design approach in the case of controlling the pose of
the robot camera with respect to a rigid object, assuming affine transformation in the image
plane (Allotta et al., 1998). The image-based visual system consists of a PUMA 560 robot arm
with a Sony CCD camera mounted on its wrist. It is assumed that the object’s visible surface
is quasi-planar, with respect to camera frame the surface has equation: z(x, y) ≈ px + qy + c,
and a linear approximation of perspective projection (i.e. weak perspective) is used, with fixed
focal length f . It follows that changes in shape are modeled as 2-D affine transformations:

p2 − p2
c = A12(p1 − p1

c) , (14)

where {p1} and {p2} are two image points corresponding to the same object point at time t1,
t2, and the corresponding centroids of the image patch γ are p1

C and p2
C. The camera-object

interaction is described by the following dynamic model: ẇ = G(w, p, q, c)y, where y is the
relative velocity twist. The state vector is w = [pcx p

c
y a11 a12 a21 a22]T ∈ <2 ×GL(2), the first

two components are the centroid coordinate of the image patch γ, whether the others are the
elements of matrix A12. The interaction matrix G(w, p, q, c) results (Allotta et al., 1998):

−f
zc

0 pcx
c 0 −f pcy

0 −f
zc

pcy
c f 0 −pcx

a11p+a21q
c 0 a11

c 0 0 a21
a12p+a22q

c 0 a12
c 0 0 a22

0 a11p+a21q
c

a21
c 0 0 −a11

0 a12p+a22q
c

a22
c 0 0 −a12


,

where zc = c/(1−pp
c
x
f −q

pcy
f ) is the centroid depth expressed as function of image coordinates. De-

note withw(d) the desired constant state, in the error coordinates x = w−w(d) the visual subsys-
tem has equation: ẋ = G(x, p, q, c)y. By using the control law: y = α(x) = −G(x, p, q, c)−1Λx,
being Λ a positive definite matrix, then the function V (x) = 1

2x
Tx satisfies the assumption (1)

in a neighbourhood of the point x = 0, if the corresponding total relative degree at this point is
defined.

The PUMA robot is commanded by a local position controller (MARK III) implementing
the inner loop, it operates under VAL II programs and communicates with the PC through
the ALTER real time protocol using an RS-232 serial interface. Esperimental study (But-
tazzo et al., 1994) has shown that the PUMA robot dynamics compensated by the local posi-
tion controller can be modeled as a dominant pole linear system for each degree of freedom:
Yi(s) = a

s+a Ui(s), i = 1, ..6, where s denote the Laplace variable, and a = 14rad/sec is the
dominant pole of the robotic system. Hence, the linear subsystem has state space equation:
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ξ̇ = Aξ + Bu, y = Hξ, where A = −aI6, B = I6, H = aI6, being I6 the identity matrix.
The assumptions of Prop (1) are satisfied, since the linear subsystem has vector realative de-
gree {1, . . . , 1}, and there is no zero dynamics. We apply the control law (4) to this dynamic
look-and-move system, quadratic B-spline active contours are used to track the projection of
the image patch (Colombo and Allotta, 1999). A trial is reported in order to show the perfor-
mance of the proposed control design. The matrix of control gains have been chosen diagonal,
namely Λ = diag(0.1, 0.1, 0.1, 0.1, 0.1, 0.1), and K = diag(10, 10, 10, 10, 10, 10). The initial state
is x0 = [0 0 1 0 0 1]T, corresponding to the 3-D parameters pi = −1.5, qi = −0.86, and ci = 800.
The desired state is x(d) = [0 0 − 0.98 − 2.3 3.43 0.98]T, corresponding to the 3-D parameters
pf = −0.5, qf = −0.28, and cf = 400 (there are also dual parameters due to ambiguity). Notice
that initial 3-D coefficients can be determined by a predefined open-loop motion of the camera.
Plots of the centroid coordinates of γ and of the elements of the matrix A12 are shown in Figs. 2.a
and Fig. 2.b; Figs. 2.c and Fig. 2.d show 3-D orientation and distance parameters; Fig. 2.e and
Fig. 2.f show the components of the requested camera velocity twist. Th desired values are also
shown.

The simulation results show the convergence of state error and the asymptotic stability of
the whole system as formally proven in Prop. 1. The above result is quasi-global, infact the
control law in Eq. (4) is undefined in the points of the state space where also the total relative
of the visual subsytem is undefined.

5 Conclusions

The problem of the inclusion of robot dynamics in the control loop of the visual system is
solved by applying backstepping approach. A smooth input-affine nonlinear system describes
the dynamic visual interaction between the robot camera and the image features, this system
is interconnected with the robot manipulator, realizing a dynamic look-and-move system or
direct visual servo. In both cases, the designed control system ensures Lyapunov stability and
convergence to a local invariant set in the state space. Sufficient conditions which guarantee local
and global asymptotic stability around the set of desired image features are provided. As case
study, the problem of controlling the pose of the robot camera monted on a 6-DOF manipulator
with respect to a rigid object is addressed, and simulation results are reported.
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Krstić, M., I. Kanellakopoulos, and P. Kokotović (1995). Nonlinear and Adaptive Control Design, John
Wiley & Sons, Inc.

Mundy, J. and A. Zisserman (1992). “Projective geometry for machine vision,” in Geometric Invariance
in Computer Vision, MIT Press.

Papanikolopoulos, N. P. and P. K. Khosla (1993). “Adaptive robot visual tracking: theory and experi-
ments,” IEEE Trans. Autom. Contr., 38, no. 3, pp. 429–445.

Slotine, J. J. and W. Li (1993). Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, New Jersey.

Weiss, L., A. Sanderson, and C. Neuman (1987). “Dynamic sensor-based control of robots with visual
feedback,” IEEE Journal of Robotics and Automation, 3, no. 5, pp. 404–417.

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99)  Haifa, Israel - June 28-30, 1999

2348



0 20 40 60
−1.5

−1

−0.5

0

0.5

1
x 10

−3

seconds

      Centroid coordinates

−  Xc

−− Yc

0 20 40 60
−3

−2

−1

0

1

2

3

4

seconds

      Elements of matrix A

−  a11

−− a12

−. a21

.. a22

a) b)

0 20 40 60
−1.6

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

seconds

      3−D orientation parameters

−− p

−. q

0 20 40 60
200

300

400

500

600

700

800

seconds

      3−D distance parameter

c) d)

0 20 40 60
−150

−100

−50

0

50

100

seconds

      Transl. velocity input

−  vx

−− vy
−. vz

0 20 40 60
−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

seconds

      Angul. velocity input

−  wx

−− wy

−. wz

e) f)

Figure 2: Simulation results: a) centroid coordinates xc, yc; b) elements aij ; c) 3-D orientation pa-
rameters p, q; d) distance parameter c; e) camera velocity components; d) camera angular velocity
components.
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