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Abstract

The problem of H∞ filtering of stationary discrete-time linear systems with stochastic
uncertainties in the state space matrices is addressed, where the uncertainties are modeled
as white noise. The relevant cost function is the expected value of the standard H∞ perfor-
mance index with respect to the uncertain parameters. A previously developed stochastic
bounded real lemma is applied which results in a modified Riccati inequality. This inequality
is expressed in a linear matrix inequality form whose solution provides the filter parameters.
The method proposed is applied also to the case where, in addition to the stochastic uncer-
tainty, other deterministic parameters of the system are not perfectly known and are assumed
to lie in a given polytope. The problem of mixed H2/H∞ filtering for the above system is
also treated. The theory developed is demonstrated by a simple tracking example.

1 Introduction

The analysis and design of controllers and estimators for systems with stochastic uncertainties,
which ensure a worst case performance bound in the H∞ style, have received recently much
attention (Boyd et al., 1994; Costa and Kubrusly, 1996; Dragan and Morozan, 1997; Dragan
and Stoica, 1998; El Ghaoui, 1995; Gershon et al., 1998; Hinriechsen and Pritchard, 1998).
An approach in which the parameter uncertainties are modeled as white noise processes in a
linear system has been developed in (Boyd et al., 1994; Dragan and Stoica, 1998; Gershon
et al., 1998) for the discrete-time state-feedback problem, and in (Dragan and Morozan, 1997;
El Ghaoui, 1995) for continuous-time counterpart. The estimation problem of stochastic systems
has been solved in (Dragan and Morozan, 1997; Hinriechsen and Pritchard, 1998) and (Dragan
and Stoica, 1998; Gershon et al., 1998) for the continuous-time and the discrete-time cases,
respectively. Such models of uncertainty are encountered in many areas of applications (see
Costa and Kubrusly, 1996 and the references therein).

Recently, the solution of the output-feedback problem for stochastic time-varying uncertain
systems has been obtained for both the finite and infinite time cases (Gershon et al., 1998). This
solution is based on solving the filtering part using a Luenberger-type observer, and applying
a filtering-type bounded real lemma (BRL). It results in a modified-Riccati recursion, which
guarantees a given H∞ estimation level, while minimizing an upper-bound on the covariance
∗This work was supported by the C&M Maus Chair at Tel Aviv University.
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of the estimation error. The latter minimization was an indispensable part of the solution
procedure there. The case of stationary filtering is also treated in (Gershon et al., 1998).

An alternative and a more common approach considers the uncertainties to lie in a convex-
bounded domain (polytopic type). This approach has been adopted by (Geromel and deOliviera,
1998; Geromel et al., 1998; Palhares et al., 1998). In (Palhares and Peres, 1998), applying the
known H∞ BRL (deSouza and Xie, 1992) on the uncertain system, a Riccati inequality has
been obtained whose solution over the whole uncertainty polytope guarantees the existence of a
solution to the problem by a single filter. This Riccati inequality has been expressed in a linear
matrix inequality (LMI) form that is affine in the uncertain parameters. A single solution to
the latter for all the vertices of the uncertainty polytope produced the required result (Gahinet,
1996). The mixed H2/H∞ problem has also been solved in (Palhares and Peres, 1998).

In the present paper we treat the general case where the stochastic uncertainty appears in
all the system matrices, and where we allow for correlations between the uncertain parameters.
This problem has been partially treated in (Dragan and Stoica, 1998), however, the system
there did not allow for uncertainty in the measurement matrix and for correlations between the
parameters.

We use the techniques of (Li and Fu, 1997) as applied in the solution of the deterministic
polytopic problem (Geromel and deOliviera, 1998; Palhares and Peres, 1998). Necessary and
sufficient conditions are derived for the existence of a solution in terms of LMIs. Our solution
is based on a previously developed stochastic BRL (Gershon et al, 1998). The latter solution is
extended to the case where the deterministic part of the system matrices lie in a convex bounded
domain of a polytopic-type. Our theory is also applicable to the case where the covariance
matrices of the stochastic parameters are not perfectly known and lie in a polytopic domain.
We also solve the mixed H2/H∞ problem where, of all the filters that solve the stochastic H∞
filtering problem, the one that minimizes an upper-bound on the estimation error variance is
found. The applicability of our method is demonstrated in a gain-scheduled estimation example.
We treat there a guidance motivated tracking problem and compare the results with those
obtained by the Kalman-filter.

Notation: Throughout the paper the superscript ‘T ’ stands for matrix transposition, Rn
denotes the n dimensional Euclidean space, Rn×m is the set of all n×m real matrices, and the
notation P > 0, (respectively, P ≥ 0) for P ∈ Rn×n means that P is symmetric and positive
definite (respectively, semi-definite). The space of square summable functions over [0 ∞] is
denoted by l2[0 ∞], and ||.||2 stands for the standard l2-norm, ||u||2 = (Σ∞k=0u

T
k uk)

1/2. We also
denote by E

v
{·} expectation with respect to v, by Tr{·} the trace of a matrix and by δij the

Kronecker delta function.

2 Problem Formulation

We consider the following system:

xk+1 = (A+Dvk)xk + (B1 +Grk)wk, x0 = 0
yk = (C + Fζk)xk +D21wk

zk = Lxk

(1)

where xk ∈ Rn is the system states, yk ∈ Rr is the measurement, wk ∈ Rq is the exogenous
disturbance signal, zk ∈ Rm is the state combination to be estimated and {vk}, {rk} and {ζk}
are standard random scalar sequences with zero mean that satisfy:

E{vkvj} = δkj , E{rkrj} = δkj , E{ζkζj} = δkj , E{ζkvj} = αkδkj , |αk| < 1, ∀k, j ≥ 0.
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and where {rk} is uncorrelated with {vk} and {ζk}.
We consider the following filter for the estimation of zk:

x̂k+1 = Af x̂k +Bfyk, x̂0 = 0
ẑk = Cf x̂k.

(2)

Denoting
ek = xk − x̂k, ξTk =

[
xTk x̂Tk

]
and z̃k = zk − ẑk, (3a-c)

we define, for a given scalar γ > 0, the following performance index

JS
4
= E

v,ζ,r

{
||z̃||22 − γ

2||wk||22
}
. (4)

The problems addressed in this paper are :

i) Stochastic H∞ filtering problem: Given γ > 0, and assume that wk may depend only
on the present and the past values of xk, find an asymptotically stable linear filter of the form
(2) that leads to an estimation error z̃k for which JS of (4) is negative for all nonzero {wk} where
{wk} ∈ l2[0 ∞).

ii) Stochastic mixed H2/H∞ filtering problem: Of all the asymptotically stable filters
that solve problem (i), find the one that minimizes an upper-bound on the estimation error
variance :

lim
k→∞

E
w,v,ζ,r

{
z̃Tk z̃k

}
.

3 Solutions

3.1 A BRL for systems with stochastic uncertainty

We bring first the lemma that was derived in (Gershon et al., 1998) for the system

xk+1 = (A+D1vk +D2ζk)xk + (B +Grk)wk
zk = Lxk

(5)

where the scalar sequences {vx}, {rk} and {ζk} are defined in section 2. The exogenous distur-
bance {wk} is assumed to be of finite energy and may depend only on current and past values
of the state-vector. Considering the cost function

Ĵ = E
v,r,ζ

{
||zk||22 − γ

2||wk||22
}

and using the arguments of (Gershon et al., 1998) the following holds:
Lemma 1 (Gershon et al., 1998): Consider the system of (5). Given γ > 0, a necessary
and sufficient condition for Ĵ to be negative for all nonzero {wk} where {wk} ∈ l2[0 ∞) is that
there exists a solution Q to

−Q+ATQA+ATQBΘ−1BTQA+ LTL+DT
1 QD1 +DT

2 QD2 + α[DT
1 QD2 +DT

2 QD1] < 0

which satisfies Θ > 0, where

Θ
4
= γ2Iq −BTQB −GTQG.
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3.2 Stochastic H∞-filtering

Problem (i) is solved by applying Lemma 1. Considering the system of (1) and the definitions
of (3b) we obtain

ξk+1 = [Ã+ D̃1vk + D̃2ζk]ξk + [B̃ + G̃rk]wk
z̃k = C̃ξk

(6)

where

Ã =

[
A 0

BfC Af

]
, B̃ =

[
B1

BfD21

]
, G̃ =

[
G

0

]
,

D̃1 =

[
D 0

0 0

]
, D̃2 =

[
0 0

BfF 0

]
, C̃ =

[
L −Cf

]
. (7a-f)

We arrive at the following result:

Theorem 1: Consider the system of (6) and (4). Given γ > 0, a necessary and sufficient
condition for JS to be negative for all nonzero {wk}, where wk ∈ l2[0 ∞), is that there exist

R = RT ∈ Rn×n, W = W T ∈ Rn×n, , Z ∈ Rn×r, S ∈ Rn×n and T ∈ Rm×n,

such that
Σ(R,W,Z, S, T, γ2) > 0 (8)

where

Σ(R,W,Z, S, T, γ2)
4
=



R 0 0 0 0

0 W 0 0 0

0 0 R 0 0

0 0 0 W 0

0 0 0 0 W

0 0 0 0 0

0 0 0 0 0

−ATR −ATW − CTZT − ST −DTR −DTW − αFTZT −ᾱFTZT

0 ST 0 0 0

−BT1 R −BT1 W −D
T
21Z

T 0 0 0

0 0 0 0 0

0 0 −RA 0 −RB1 0

0 0 −WA− ZC − S S −WB1 − ZD21 0

0 0 −RD 0 0 0

0 0 −WD − αZF 0 0 0

0 0 −ᾱZF 0 0 0

R 0 0 0 −RG 0

0 W 0 0 −WG 0

0 0 R 0 0 TT − LT

0 0 0 W 0 −TT

−GTR −GTW 0 0 γ2Iq 0

0 0 T − L −T 0 Im



(9)
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In the latter case, a filter in the form of (2) that achieves the negative JS is given by:

Af = −W−1S, Bf = −W−1Z and Cf = T. (10a-c)

Proof : Applying Lemma 1 on (6) and (7a-f) we obtain the following Riccati inequality

−Q+ ÃTQÃ+ ÃTQB̃Θ̃−1B̃TQÃ+ C̃T C̃ + D̃T
1 QD̃1 + D̃T

2 QD̃2 + α[D̃T
2 QD̃1 + D̃T

1 QD̃2] < 0

Θ̃
4
= γ2Iq − B̃TQB̃ − G̃TQG̃ (11a,b)

Noticing that

D̃T
1 QD̃1 + D̃T

2 QD̃2 + αD̃T
2 QD̃1 + αD̃T

1 QD̃2 = (D̃1 + αD̃2)TQ(D̃1 + αD̃2) + ᾱ2D̃T
2 QD̃2

where ᾱ
4
= (1− α2)0.5, (11a) is written as

−Q+ ÃTQÃ+ ÃTQB̃Θ̃−1B̃TQÃ+ C̃T C̃ + (D̃1 + αD̃2)TQ(D̃1 + αD̃2) + ᾱ2D̃T
2 QD̃2 < 0

(12)
The latter can be readily put in the following LMI form

Γ̂(Q)
4
=



−Q−1 0 0 0 Ã B̃ 0

0 −Q−1 0 0 (D̃1 + αD̃2) 0 0

0 0 −Q−1 0 ᾱD̃2 0 0

0 0 0 −Q−1 0 G̃ 0

ÃT (D̃1 + αD̃2)T ᾱD̃T
2 0 −Q 0 C̃T

B̃T 0 0 G̃T 0 −γ2Iq 0

0 0 0 0 C̃ 0 −Im


< 0, (13)

where we look for Q > 0 that satisfies the LMI.
Similarly to (Palhares and Peres, 1998), Q and Q−1 are partitioned as

Q
4
=
[
X M

MT U

]
and Q−1 4=

[
Y N

NT V

]
.

Since (Palhares and Peres, 1998) [
Y In

In X

]
> 0,

we therefore require below that

Y > 0, and X > Y −1.

We also note that I −XY = MNT is of rank n. Defining :

J
4
=
[
Y In

NT 0

]
and J̃

4
= diag

[
QJ, QJ, QJ, QJ, J, I I

]
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we pre- and post-multiply (13) by J̃T and J̃ , respectively. Using (7a-f) we obtain that (13) is
equivalent to the requirement that

−Y −In 0 0 0 0

−In −X 0 0 0 0

0 0 −Y −In 0 0

0 0 −In −X 0 0

0 0 0 0 −Y −In
0 0 0 0 −In −X

0 0 0 0 0 0

0 0 0 0 0 0

Y AT Y ATX + Y CTZT + ẐT Y DT Y DTX + αY FTZT 0 ᾱY FTZT

AT ATX + CTZT DT DTX + αFTZT 0 ᾱFTZT

BT1 BT1 X +DT21Z
T 0 0 0 0

0 0 0 0 0 0

0 0 AY A B1 0

0 0 XAY + ZCY + Ẑ XA+ ZC XB1 + ZD21 0

0 0 DY D 0 0

0 0 XDY + αZFY XD + αZF 0 0

0 0 0 0 0 0

0 0 ᾱZFY ᾱZF 0 0

−Y −In 0 0 G 0

−In −X 0 0 XG 0

0 0 −Y −In 0 Y LT − ẐT

0 0 −In −X 0 LT

GT GTX 0 0 −γ2Iq 0

0 0 LY − Ẑ L 0 −Im



< 0, X > Y −1 > 0 (14)

where we define
Z
4
= MBf , Z̃

4
= CfN

T and Ẑ
4
= MAfN

T . (15)

Pre- and post-multiplying (14) by Υ and ΥT , respectively, where

Υ
4
= diag{

[
R 0

−R In

]
,

[
R 0

−R In

]
,

[
R 0

−R In

]
,

[
R 0

−R In

]
,

[
R 0

−R In

]
, Iq, Im},

and where we denote
R
4
= Y −1,

we obtain, defining

S
4
= ẐR and T

4
= Z̃R (16)

the requirement of (8), where we replace X −R by W and multiply the resulting inequality by
-1. If a solution to (8) exists it follows from (15) that

Af = M−1ẐN−T , Bf = M−1Z and Cf = Z̃N−T . (17)

Denoting the transfer function matrix of the filter of (2) by Hẑy we find that :

Hẑy(ρ) = Z̃N−T (ρI −M−1ẐN−T )−1M−1Z,
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where ρ is the Z-transform variable. The latter equation is similar to:

Hẑy(ρ) = Z̃(ρMNT − Ẑ)−1Z = Z̃[ρ(I −XY )− Ẑ]−1Z,

and (10) follows using (16). 222

Due to the affinity of Σ of (8) in A, B1, C and D21, the result of Theorem 1 can be easily
extended to the case where these matrices lie in convex bounded domain. In this case, it is
required that (8) holds for all the vertices of the uncertain polytope for a single assembly of
(R, S, Z, T,W ).

Assuming that A,B1, C, and D21 lie in the following uncertainty polytope

Ω̄
4
= {(A,B1, C,D21)|(A,B1, C,D21) =

l∑
i=1

τi(Ai, B1i, Ci, D21,i); τi ≥ 0;
l∑

i=1

τi = 1}.

and denoting the set of the l vertices of this polytope by Ψ̄ we obtain the following result:
Corollary 1: Consider the system of (1) and (2). The performance index of (4) is negative

for a given γ > 0, for any energy bounded nonzero {wk} and for any (A,B1, C,D21) ∈ Ω̄ if (8) is
satisfied for all the vertices in Ψ̄ by a single (R,Z, S, T,W ). In the latter case the filter matrices
are given by (10).

3.3 Robust mixed Stochastic H2/H∞ filtering

The mixed stochastic H2/H∞ filter design is achieved by considering the filters that satisfy the
H∞ requirement and finding the one that minimizes an upper-bound on the estimation error
variance. The latter is described by the following H2 objective function :

J2 = lim
k→∞

E
w,v,r,ζ

{
z̃Tk z̃k

}
= ||Hz̃w||22,

where Hz̃w is the transference in the system of (6), from w to z̃, and where we assume that the
pair (A,C) of (1) is observable.

Denoting

P̄
4
= lim

k→∞
E

w,v,r,ζ

{
ξkξ

T
k

}
,

we readily find that :
||Hz̃w||22 = Tr{C̃P̄ C̃T }

where P̄ = limk→∞ Pk and

−Pk+1 + ÃPkÃ
T + D̃1PkD̃

T
1 + D̃2PkD̃

T
2 + α(D̃1PkD̃

T
2 + D̃2PkD̃

T
1 ) + B̃B̃T = 0.

We are interested in deriving the corresponding observability-type result (Zhou et al., 1996)
taking into account the stochastic nature of {vk}, {ζk}, {rk}. Considering the following recursion

Q̃k = ÃT Q̃k+1Ã+ D̃T
1 Q̃k+1D̃1 + D̃T

2 Q̃k+1D̃2 + α(D̃T
1 Q̃k+1D̃2 + D̃T

2 Q̃k+1D̃1) + C̃T C̃,

we obtain :

Tr{Pk+1Q̃k+1−PkQ̃k} = Tr{[ÃPkÃT+D̃1PkD̃
T
1 +D̃2PkD̃

T
2 +α(D̃1PkD̃

T
2 +D̃2PkD̃

T
1 )+B̃B̃T ]Q̃k+1}

−Tr{Pk[ÃT Q̃k+1Ã+ D̃T
1 Q̃k+1D̃1 + D̃T

2 Q̃k+1D̃2 + α(D̃T
1 Q̃k+1D̃2 + D̃T

2 Q̃k+1D̃1) + C̃T C̃]}.
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Since
lim
k→∞

Tr{Pk+1Q̃k+1 − PkQ̃k} = 0

and Tr{αβ} = Tr{βα} it follows that:

Tr{C̃P̄ C̃T } = Tr{B̃T Q̃B̃}

where
Q̃ = lim

k→∞
Q̃k.

Defining :

Γ(Q̃) = −Q̃+ ÃT Q̃Ã+ D̃T
1 Q̃D̃1 + D̃T

2 Q̃D̃2 + α(D̃T
1 Q̃D̃2 + D̃T

2 Q̃D̃1) + C̃T C̃,

and denoting the set

Ω
4
= {Q̂|Γ(Q̂) ≤ 0 ; Q̂ > 0},

we obtain from the monotonicity property of the equation Γ(Q̃) = 0 that

JB = Tr{B̃T Q̂B̃} ≥ Tr{B̃T Q̃B̃}, ∀Q̂ ∈ Ω. (18)

To solve the stochastic mixed H2/H∞ problem we seek to minimize an upper-bound on JB
over Ω. Namely, assuming that there exists a solution to (12) we consider the following LMI:

Γ̃(Q̄,H)
4
=
[
H −B̃T Q̄

−Q̄B̃ Q̄

]
> 0, Q̄ ∈ Ω (19)

where we want to find Q̄ and H that minimize

Jτ = Tr{H}. (20)

It follow from (12) that

−Q+ ÃTQÃ+ C̃T C̃ + (D̃1 + αD̃2)TQ(D̃1 + αD̃2) + ᾱ2D̃T
2 QD̃2 < −ÃTQB̃Θ̃−1B̃TQÃ

Restricting, therefore, Q̄ of (19) to the set of the solutions to (13), we clearly have that Q̄ ∈ Ω.
We are looking for Q and H that satisfy Γ̂(Q) < 0 and Γ̃(Q,H) > 0 so that Tr(H) is minimized.

Notice that the matrix built from the first and sixth column and row blocks in (13) resembles
Γ̃. Hence Q of (12) satisfies also (19) for H = γ2Iq. This is in accordance with the well known
fact that the solution to the H∞ problem is an upper-bound to the solution of the corresponding
H2 problem (Bernstein and Haddad, 1989). We are clearly looking for a tighter bound on JB.

The minimization of (20) can be put in LMI form that is affine in Bf , by pre- and post-
multiplying (19) by diag{I, JT } and diag{I, J}, respectively, substituting for B̃ (using (7) and
(17)) and pre- and post-multiplying the result by Λ̄ and Λ̄T , respectively, where :

Λ̄
4
= diag{I,

[
R 0

−R In

]
}.

We obtain the following result :
Theorem 2: Consider the system of (6) and (4). Given γ > 0, a filter that yields JS <
0 for all nonzero {wk} ∈ l2[0 ∞) and minimizes (18) is obtained if there exists a solution
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(R, S, Z, T,W,H) to (8). The minimizing filter is obtained by simultaneously solving (8) and
Ῡ > 0 and minimizing (20), where

Ῡ
4
=


H −BT

1 R −BT
1 W −DT

21Z
T

−RB1 R 0

−WB1 − ZD21 0 W

 .
The filter matrices are given then by (10).

4 Example

We illustrate the use of the above theory in a guidance motivated tracking problem, where a
scheduled estimation is obtained in spite of significant noise intensity that is encountered in the
measurement of the scheduling parameter.

Consider the system
ẋ1 = x2

ẋ2 = ω

where x1 is the relative separation between an interceptor and an evader, normal to a collision
course, x2 is its derivative, with respect to time, and ω represents the relative interceptor-evader
maneuvers. The state x2 has to be estimated via the following measurements :

y = x1/R+ v1

Rm = R(1 + v2) (21a-b)

where v1 and v2 are, additive and multiplicative white noise zero-mean signals in the bearing
measurement and the measurement Rm of the range R, respectively. These noise signals stem
from the characteristics of the measuring devices. Substituting (21b) in (21a) we have

y = x1(1 + v2)/Rm + v1.

Given the variances of v1 and v2, it is desired to obtain an estimate that is scheduled by the
measurement of Rm and achieves a given H∞ estimation level. We solve the problem in discrete-
time and we, therefore, apply sampling of period T. The resulting discrete-time system is the
one described in (1) with D = 0, G = 0,

A =

[
1 T

0 1

]
, B =

[
T 2/2 0

T 0

]
, D21 =

[
0 ρ̄

]
and L =

[
0 1

]
.

The measurement of Rk is, then, given by

Rm,k = Rk(1 + ζk).

The time-varying matrix Ck in (1) is

Ck =
[

1
Rmk

0
]
,

and the time-varying version of F in (1) becomes Fk =
[

σ
Rmk

0
]
, where σ is the standard

deviation error.
In our example we take T = 0.025sec, ρ̄ = 0.001, and σ = 0.3. The discretized version of the

range Rk is
Rk = Vc(50− k/40), k ∈ [0, N ], Vc = 300msec
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where N = 1880 is taken to match a time range of [0, 47] sec. Since Ck varies significantly
during the system operation in k ∈ [0 N ], we consider it to be uncertain, varying in the
interval described by the two vertices [g1 0] and [g2 0] where

g1
4
= 1/Rm1 = 1/15, 000, and g2

4
= 1/RmN = 1/900.

The matrix Fk that corresponds to k = 0 and k = N is similarly considered as an uncertain
matrix lying in between

[
0.3g1 0

]
and

[
0.3g2 0

]
.

Application of Theorem 1 directly, or the use of the corresponding polytopic results in
(Palhares and Peres, 1998), would clearly cause an overdesign since it leads to a single H∞ filter
that satisfies the required estimation level over the whole intervals of uncertainty. Instead, since
we measure Rm,k, we may use this noisy measurement of Rk to schedule the filter at time k. This
scheduling is based on the fact that the LMI of (9) is affine in Φ = ZkCk and Ψ = ZkFk. Thus,
if there is a solution (W,S,Z, T,R) to (9) with a zero last column in Φ, it will produce Zk over
the whole uncertainty polytope. The solution Φ (Ψ is redundant for this purpose) yields Z1 and
ZN that correspond to Rm1 and RmN , respectively. Expressing Rmk as a convex combination
of Rm1 and RmN , say Rmk = αkRm1 + (1 − αk)RmN , α ∈ [0, 1], the matrix Zk that satisfies
ZkCk = Φ and ZkFk = Ψ is obtained by Zk = αkZ1 + (1 − αk)ZN . The corresponding Bfi in
(2) is, then, given at any instant i by

Bfi = αiBf1 + (1− αi)BfN , i ∈ [0, N ],

where Bf1 and BfN are obtained from Z1 and ZN by (10b). The matrices Af and Cf in (2) are
constant. They are obtained by (10a,c).

We solved the problem for γ = 30 where we also added the requirement for a minimum upper-
bound on the H2-norm of the estimation error. We obtained ZT1 =

[
−0.1142 −20.0476

]
,

BT
f1 =

[
1.9035 0.0887

]
, ZTN =

[
−1.8874 −333.0475

]
, and BT

fN =
[

31.8921 1.4825
]
.

The pair (Af , Cf ) is

Af =

[
0.9978 0.025

−0.0001 0.9999

]
, Cf =

[
0 1

]
.

The resulting scheduled estimate is given by ẑk = Cf x̂k where

x̂k+1 = Af x̂k + [αkBf1 + (1− αk)BfN ]yk, x̂0 = 0.

Fig. 1 describes the resulting estimation error for a randomly selected seed in the routine that
produced the white noise sequence {ζk}. We compare it to the one obtained by applying the
standard time-varying Kalman filter. It is shown that in spite of its stationary nature, and
the time-varying property of the problem, our estimate x̂k is considerably more robust at large
values of k where the changes in Ck are accentuated.

5 Conclusions

In the present paper we solve the problem of stationary stochastic H∞-filtering of discrete-time
linear systems using LMI techniques. The problem was solved before in (Gershon et al., 1998),
by restricting the filter to be of the Luenberger type. Using a Riccati recursion the solution was
obtained there only if in addition to the H∞ requirement an upper-bound on the covariance of
the estimation error is minimized in every instant. The solution of the present paper does not
depend on the latter minimization and is not restricted to a specific structure of the filter.
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Figure 1: Comparison between the H∞ and the Kalman Filters: Solid line – H∞, dashed line –
Kalman.

Using the LMI approach, the conditions for the existence of a solution to the problem were
obtained in term of LMIs that are affine in the system and the filter parameters. This affinity
allows also the consideration of deterministic uncertainty in the system, when the deterministic
part of the system matrices lie in a given polytopic type domain. Our solution entails overdesign
that stems from the quadratic stability nature of the solution. Under the requirement for this
type of stability, the conditions we obtained for the existence of a solution to the problem are
both necessary and sufficient.
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