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Abstract 

In this study, we propose a new method to control multi-input multi-
output (MIMO) systems optimally. The method is based on a rule-
base derived optimally, which is then interpolated by neural networks. 
The idea is originally based on the knowledge-based artificial neural 
networks (KBANN) which perform interpolation in the rule space of 
an expert system. 
 
Keywords: Optimal control, neural networks, rules based 
systems, interpolation. 
 
I.INTRODUCTION 
 
The design of controllers for MIMO systems has always been a 
hard problem even for the linear ones [1]. The only prevailing 
idea used in the control of linear MIMO system is decoupling, 
if possible at all. During the last 10-15 years there have been 
serious attacks on this problem by methods that are especially 
constructed to control nonlinear plants, such as neuro-control 

 
1 {tuncay,lebleb}@ec.eee.metu.edu.tr, {cozgen, halici}@metu.edu.tr 

Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

511



and sliding mode control techniques. Just to mention a few of 
those studies recently done, one may look at (Nie 1997), 
(Shogested and Postlethwaite 1997), (Ahmed and Tasaddug 
1998), (Linker and Nyogesu 1996), (Utkin 1970). Most of these 
techniques are quite complicated and possibly working for a 
particular case only. 

 
The fuzzy control techniques had limited application in 

MIMO systems control mainly because of the facts that the 
derivation of rules is not easy (usually not available) and the 
number of rules is too high, depending on the number of 
outputs and states. 

 
Ours is a new attempt to this unsettled problem using a rule-

base combined with neural networks. The idea is originally 
based on the knowledge-based artificial neural networks 
(KBANN) which perform interpolation in the rule space of an 
expert system (Towell and Shavlih 1994). On the other hand 
there are interesting details and generalizations (that we have 
developed together with an interesting case study) which have 
been discussed in the following sections. 
 
 
1.1 PROBLEM DEFINITION 
 

It is assumed that a MIMO plant is given with a known 
mathematical model as shown below  

( ) ( ) ( )( )
( ) ( )( )txgty

tutxftx
=
= ,
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                      (1)                                               

 
where nRtutxftx ∈))(),((),( , mRtu ∈)(  and 

pRtxgty ∈))((),(  . There is a reference signal P
d Rty ∈)(  

and the system output )(ty  is supposed to track it. Thus the 
controller to be developed has the model the reference tracking 
controller structure. 
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2.CONTROLLER 
 

It is based on a rule-base and the rules are developed by 
making use of the mathematical model of the plant in an 
optimal sense. That is, since model is available, by partitioning 
the state-space and the output-space and defining a 
representative for each partition, one can determine the control 
signals (i.e. rules) optimally, using a suitably chosen cost 
function. 
 
 
2.1 RULE DERIVATION 
 

Suppose that each component of the state vector has Ni, 
k  

components. Then there is a total of 
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to be derived. If the system state is initially at the i-th partition 
(the representative of which is xi) and the system's initial and 
final or desired stated are at partitions Ov and Ok (their 
representatives are yv and yk, respectively), the associated rule 
can be found optimally by solving the optimal control problem 
of minimizing the cost function  
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Subject to the state equation  
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Usually H, Q and R are diagonal matrices with suitably chosen 
diagonal entries. The vector function yd (t) can be taken as any 
smooth function with  
 

vd yy =)0(  , kfd yty =)(  

0)()0( ==
••

fdd tyy  
 
In addition, the constraints on u(t), that is, |ui (t)| ≤ Bi

can be easily incorporated in our steepest descent like optimal 
control problem solver (Haykin 1996) . 
 
2.2 NEURAL NETWORK 
 

In order to be able to generate the control inputs so that the system 
output trajectory follows an optimal path between arbitrarily specified 
initial and final output states, one has to train a multilayer perceptron-
like neural network [8]. This neural network should accept present 
state x(0) and output y(0), and desired output y(tf ) as its inputs and 
should generate the optimal control signal u(t) to accomplish the task. 
For training, input signals produced by optimal control and initial and 
final points of outputs should be used. It is interesting to note that, at 
least theoretically, the neural network is a semi-infinite dimensional 
one [9], [10] in the sense that it is a mapping between the finite 
dimensional input space and the infinite dimensional output space 
(i.e., control functions). In practice, the neural network can produce 
the samples of the control signal. After training, the neural network 
acts as a real-time optimal controller. 
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3. CASE STUDY 
 

The dynamic response and control of the steam-jacketed kettle 
shown in figure 1 are to be considered. The system consists of a 
kettle through which water flows at a variable rate w lb/time. 
The inlet water temperature Ti, is 40 °F, which may vary with 
time. The kettle water, which is well agitated, is heated by 
steam condensing in the jacket at temperature Tv. This is a 
three-input two output nonlinear system. Flow rate of inlet 
water, flow rate of outlet water and flow rate of steam are the 
inputs for the system. Temperature and the mass of the water 
inside the kettle are outputs. 
 

 
 
 

Figure 1 
steam-jacketed kettle 
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3.1. ANALYSIS of the KETTLE  
 

The following assumptions are made for the kettle: 
 

1. The heat loss to the atmosphere is negligible. 
2. The thermal capacity of the kettle wall, which separates 

stem from water, is negligible compared to that of water in 
the kettle. 

3. The thermal capacity of the outer jacket wall, adjacent 
to the surroundings, is finite, and the temperature of this 
jacket wall is uniform and equal to the steam temperature at 
any instant. 

4. The kettle water is sufficiently agitated to result in a 
uniform temperature. 

5. The flow of heat from the steam to the  water in the 
kettle is described by the expression  

( )ov TTUq −=  
where  
 q=flow rate of heat Btu/(hr)(ft2) 
 U=overall heat transfer coefficient, Btu / (hr) (ft2)(°F) 
 Tv=steam tempreture  °F 
 To=water temperature °F 
 
The mathematical model of the kettle can be obtained by 
employing the ideas of energy and mass balance on the water 
side first, and then on the steam side next. The symbols used 
throughout this analysis are defined below: 
 
Ti= Temperature of inlet water. °F 
To = Temperature of outlet water °F 
wi  = flow rate of inlet water, lb/time 
wo   = flow rate of outlet water, lb/time 
wv = flow rate of steam, lb/time 
wc = flow rate of condensate from kettle, lb/time 
m = mass of water inside the kettle, lb 
m1 = mass of jacket wall, lb  
V = volume of the jacket steam space, ft3 
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C = heat capacity of water Btu / ( lb)( °F) 
C1 = heat capacity of metal in jacket wall Btu / ( lb)( °F) 
A = cross sectional area for heat exchange 
t = time 
Hv = specific enthalpy of steam entering, Btu / lb 
Hc = specific enthalpy of steam leaving, Btu / lb 
Uv = specific internal energy of steam in jacket, Btu / lb 
ρv = density of steam in jacket, lb / ft3 
 
Writing energy balance and mass balance equations for water 
and steam side we obtain 
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So, the state, input and output vectors are, respectively                                   
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3.2. SIMULATION RESULTS 

 
In our simulation, the temperature range is [40 °F, 180 °F] and 

mass (i.e., the level of the water inside the kettle.) range is   [20 
lb, 30 lb]. There is no need to partition the rest of the states 
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because these are related with the temperature of the steam 
flowing into the jacket. Since the temperature of the steam 
flowing into is constant, single partition is enough for these 
states. The temperature range is divided into seven regions and 
mass range into two regions. Therefore, we have to produce 
7x7x2x2=196 rules from the optimal control procedure and 
then use these 196 rules in the training of the neural networks. 
Since there are three inputs, three separate neural networks, 
each of them have four inputs, two hidden layers having 100 
and 50 neurons respectively, and an output layer consisting of 
25 neurons, have been constructed.  
 

 
 
Figure 1, * desired trajectory, _ trajectory from neuro-controller 
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After training, neural networks work as real time controllers for 
the system. For example, if we take the initial values for outlet 
water temperature and mass of the water as [20 lb, 42 °F] and 
reference inputs as [30 lb, 62 °F], the results from neural 
networks are given in figures 2, 3, 4 and 5 together with the 
results from the optimal control procedure. In figure 6, water 
temperature in the kettle which is controlled by a neural 
network in real time is given with the desired trajectory. 

Figure 2. * output from optimal control, _ output from neural 
network.  
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Figure 3. * Output from optimal control, _ output from neural 

network 
 

 
It can be seen from figure 1 that the online optimal neuro-

controller can bring the system into the desired output states 
through a desired trajectory. The desired trajectories for the 
output states are also given in figure 1. 
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Figure 5 
* output from optimal control 
_ output from neural network 

 
 
In figure 6, a bell-shaped output state trajectory for one of the 
output states, the temperature of the water inside the kettle, is 
given, the neuro-controller achieves to produce control inputs to 
follow the given trajectory which can be seen in figure 6.  
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Figure 6 
* Desired trajectory 

 _ Trajectory produced by the inputs from online neural 
network controller 

 
 
4. CONCLUSIONS 
 
In this work, an optimal neurocontroller has been suggested for 
controlling MIMO systems. The ideas presented were checked 
by simulation studies on a simple steam-jacketed kettle system. 
The preliminary results obtained so far have shown that the 
suggested method is worth pursuing further. The only 
disadvantage of the method (according to us) is that the number 
of rules to be derived in a complex plant control can be 
prohibitively high which also makes the derivation time too 
long. On the other hand, the method is very simple and can be 
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made adaptive with some effort. Studies are continuing to 
generalize the method to cover the disturbance rejection and 
robustness problems as well.  
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