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BALANCED REALIZATION OF FLEXIBLE STRUCTURES
WITH GENERAL DAMPING: A POWER SERIES APPROACH

Yoram Halevi!
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Haifa 32000, ISRAEL

Abstract

A method of approximating the balanced realization for lightly damped flexible structures is
presented. The damped system is treated as a perturbation from the undamped system, and the
controllability and observability gramians, as well as the balancing transformation are given as a
power series in the perturbation scaling factor. The approximation utilizes the special structure of
the system i.e. the positive definitness of the inertia, damping and stiffness matrices, and the fact
that the damping is small., to obtain closed form expressions for the series coefficient matrices.
These expressions lead to interesting structural properties, which are discussed and related to
physical properties of vibrating systems. The results can be obtained at any level of accuracy by
appropriate truncation of the series.

1 Introduction

The problem of approximating a high-order, linear, time invariant dynamic system by a lower order
model is one of the fundamental problems of system theory and has received renewed interest in the last
two decades. The method that represents the beginning of the new era in model order reduction is the
truncated balanced realization method (Moore, 1982 Pernebo and Silverman, 1983). In this method a
state transformation is used to obtain a realization with controllability and observability gramians which
are diagonal and equal. This identifies the strong modes of the system which are retained while other
modes are truncated. The method is heuristic and formally does not incorporate any explicit criterion.
However, it is closely related to L2 minimization, (Kabamba, 1985, Hyland and Bernstein, 1985,
Halevi, 1992) and in many cases results in reduced models which are near optimal in that sense.
Moreover, reduced models obtained by this method have guarantees bound on the H_ error (Enns, 1984).
There is a considerable volume of works dealing with the properties and applications of the truncated
balanced realization method and its usefulness seems to be evident.
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The computational aspects have also been considered and efficient and reliable numerical algorithms for
a general system were presented (Laub et al, 1987, Safonov and Chiang, 1989). Nevertheless the main
problem in the application of the method to structures seems to be the computational burden. The steps
that are involved in this method are

a) Calculating the controllability and observability gramians.
b) Calculating the balancing transformation and the balanced realization.
¢) Truncation of the balanced realization.

The orders of models of structures can be as large as hundreds of thousands and steps a) and b) in such
cases may require unacceptably long computation time. Another source of difficulty is the fact that due
to the small damping, the system matrices contain terms which may be several orders of magnitude
apart.

Several works deal with the application of the truncated balanced realization to structures (Mottershead
and Friswell. 1993, Williams, 1990 and 1994, Gawronski and Juang 1990, and Gawronski 1996 and
1997) and the algorithms there exploit some properties particular to those systems. There are two main
differences between those methods and the method that is proposed in this paper. First, most of the
methods consider systems with modal damping while we consider the case of a general damping
matrix. Secondly, they consider the exact solution of the balancing problem of while we look for an
approximate one.

In undamped or lightly damped structures the most common method of order reduction is modal
truncation, which is a special case of the method of partial fraction expansion. In general, i.e. for
systems that may be overdamped or with large damping factor, this method does not yield good
approximations. However, for undamped systems with disjoint natural frequencies it gives the optimal
approximation, and, by continuity, good approximations for systems with proportional light damping.
where the accuracy depends on the level of damping and the distance between the natural frequencies.
When the damping matrix has a general structure the modal methods are no longer accurate and cannot
be applied

The main idea in the suggested method is to express the lightly damped system as a small perturbation
from the undamped and to write the gramians as a power series in the perturbation scalar factor. The
analysis that follows gives closed form formulas for the coefficients of the series as well as for the
balancing transformation. For light damping only a few terms are required to calculate the gramians for
the desired accuracy and thus a substantial reduction in the computation is achieved.

The material is organized as follows. Section 2 contains the statement of the problem and some
preliminary results. In section 3 the power series approximation of the controllability gramian is
introduced and calculated. Section 4 discusses these results from a deterministic time domain
interpretation of the controllability gramian. In section 5 the dual results for the observability gramian
are derived. The approximated balancing transformation is given in section 6. The results of the paper
are summarized in section 7.

2 Problem statement and preliminaries

The dynamics of a flexible structure is given by

Mq(t) + Cq(t) + Kq(t) = Fu(t) 2.1

796



Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

where qDRN is a vector of generalized coordinates and ulJRM s a vector of generalized forces. The
inertia matrix M and the stiffness matrix K are symmetric and positive definite. That means that the
system does not have rigid body degrees of freedom, possibly because of a definition as the deviation
from the rigid body motion. The damping matrix C is nonnegative definite and may be singular.
However it is assumed that the system is asymptotically stable, i.e. all the solutions of

det(Ms? +Cs +K) =0 (2.2)
have strictly negative real part. A necessary and sufficient condition for that is that
Cpz0 0O (2.3)

where @ is a modeshape of the undamped system (M, K). Any C > 0, and generically all C = 0
satisfy this mild condition. Since systems with light damping are considered, C is small (one way to
express that ‘smallness’ is ||C|| << (|[M]| ||K||)1/ 2) and we use the parametrization

C= GCO (24)

1 >>a >0 is a scalar and ||Cg|| is (roughly) of the order of magnitude (||[M|| ||K||)1/ 2. Thus Co

contains information regarding the existence of damping elements, their connectivity and relative values.
Since the stability condition (2.3) is geometric it is a property of Cg only. Furthermore, it will be shown

later that the all the results of this paper are independent of the magnitude distribution between
o and Co.

The output, yORT consists of linear combinations of the generalized velocities.
y(t) =Hq(t) (2.5)

(The case of displacements output is analogous and will not be discussed in this paper). Defining the

state vector z = [qT qT]T , the state space realization of the system which has an order n = 2N is given

as
. O o I O 00 O
Z(t):% MK _M_ICEz(tH%d_lFEp(t) (2.6a)
y() =[0 Hy] z(t) (2.6b)

The first step in the derivation is the calculation of the modal form of the undamped system (M, K). To
simplify the analysis we assume that the natural frequencies of the system are distinct. Let Q be the
diagonal matrix of the natural frequencies and ® the mass normalized modal matrix. Then we have

DTMD =1 2.7

oK = Q? (2.8)

The state transformation z=Tx, where
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o 00
T= 2.9
b of @9
and
T O
T —gb M 2 O (2.10)
g 0 ® M
Results in the following realization, known as modal realization.
0o I O oo g
(1) = t) + t 2.11a
x(t) 12 _cDTCcD%(() EDTF%I() (2.11a)
y®=[0 H,®]x(t) (2.11b)

The frequently made assumption, e.g. (Williams, 1990 and 1994, Gawronski 1996) of modal damping
implies that oTCo is diagonal as well and that simplifies the derivation considerably. However this

assumption is not made here and ®TCd is considered to be a full symmetric matrix. An observation,
which is important for the subsequent derivation, is given as a lemma.

Lemma 2.1: If the system (2.11) is asymptotically stable the diagonal entries of oTCD are strictly
positive even if C is singular.

Proof : For nonnegative matrices the stability condition (2.3) implies that

(cDchD)i =@ Ce >00i 2.12)

3 Series approximation of the controllability gramian

We start with the realization (2.11) which is written as

X(t) = (A, +0A | )x(t) +Bu(t) (3.1a)
y =Hx (3.1b)
where
0o IO [0 0 0O 00
Av=0 ~2 A0 AF%) T [ B:EDT 0 H=[0 H,®] (3.2a-d)
0% og Ny FH

The Lyapunov equation which determines the controllability gramian Q is

(A, +aA)Q +Q(A, +aA )" +BB' =0 . (3.3)

It is well known that eq. (3.3) has a solution if and only if (Ag+0A4) does not have a pair of poles

which are symmetric about the origin (Kwakernnak and Sivan, 1972), which in our case means purely
imaginary poles. Hence no solution exists for 0=0 and a unique solution exists for o > 0. In (Halevi,
1999) it has been shown that the power series
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Q" :G_IQ—I +Qy +aQ, +---+0‘KQK (3.4)
is an adequate approximation since as o — 0, Q goes to infinity at a rate proportional to a™'.

To simplify the notation in the forthcoming derivation we define
c’=oTc,® (3.5)

F=o'FFlo (3.6)
The first step in the calculation of the gramians is substituting the series (3.4) into eq. (3.3) and

equating like powers of d. The following equations are obtained for a-l, a0 and ak k =1)
respectively.

AyQ_ +Q_ A, =0 (3.7)
AgQy+A1Q +QpA, +Q A, +BB =0 (3.8)
AQy +AQ "'QkAoT +Qk—1A1T =0 (3.9)

We partition each Qy to four square nxn sub-blocks as

M2 QU
Qr =Lt O (3.10)
kb Qb O
Then eq. (3.5) can be written as
Q. + QL Qb Q—l,aQZ =
0 : ' =0 (3.11)
E sym -Q Q—l,ab - (?—l,abQ E

Since the natural frequencies are distinct it follows immediately that Q_,,, =0 and that Q_, and

Q_,, are diagonal. Eq. (3.8) can now be written as

g)o,ab +Q0T,ab QO,b _QO,aQZ =

=0 (3.12)
H sym -Q%Qpu ~Qua@’ —C"Qy, —Q,C” +FH
The upper left sub-block implies that Qo is skew symmetric, which in turn implies that the diagonal
clements of Q°Q, ., are zero. By inspecting the diagonal entries of the lower right sub-block we find
that
F.

(Quip)i :Fu?i (3.13)

Q.1.., which is diagonal as well, is given by

799



Proceedings of the 7th Mediterranean Conference on Control and Automation (MED99) Haifa, Israel - June 28-30, 1999

%
=il (3.14)
2C)w?

il

(@5 = i

i

Substituting Q-CI)-, ab = —Qq ap into the lower right sub-block we obtain

QO,abQZ _QZQO,ab :COQ—Lb +Q—1)bco -F (315)

which leads, fori # j, to

(COQ—I,b + Q—l,bCO _?)ij
(3.16)

Qow)ij =

2 2
A more explicit formula is

CS ((Q -1b )ii + (Q -1b )JJ )_ ﬁl_]

(.17)
W~y

(Qo)ab)ij =

Since Q,,, 1s skew symmetric only the upper triangular part (j>1) needs to be calculated. To find the

diagonal entries of Q,, and Q,, we consider now eq. (3.9) with k=1.

g)l,ab +QEab Ql,b _(Ql,ag22 _QO,abCO %—0 (3 18)
-0 —0 02— _ 05 )
Q sym Ql,ab Ql,ab C Qo,b Qo,bC ﬁ

As m the discussion that follows eq. (3.12), the upper left sub-block implies that Q,, is skew
symmetric, hence the diagonal elements of —Q’Q,,, -Q/,,Q are zero. The diagonal entries of the

lower right sub-block are therefore

2(C"); Q)i =0, (3.19)

but since (C°); #0 it follows that (Q,,); =0. Hence
0,b

Qop =Qp, =0 (3.20)

Using this, it is concluded that

Qi =0 (3.2

Writing the (1,j) and (j,1) entries of the upper-right sub-block, recalling that Q, , and Q,,, are symmetric
we have

Qup)ij Q)i 03]2 = Qo Co)ij (3.22)

Q)i —(Q1)§ W =(Qy,C*)yi (3.23)

These equations vield, for i # j
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Q)5 = (Qo’abCO)jg _(on’abCO)ij (3.24)

(L)J _(L)i

(")J2 (Qo,ab c’ )ji -y (Qo,ab c’ )i.

_ y
Q) = o (3.25)
Continuing to k=2 we obtain
0. +QLa Qi =Q,, 2’ o (3.26)
_o? 0T 0?-C°0.. -0, . (" '
a sym Qz,ab Qz,ab Ql,b Ql,b E

As in eq. (3.18), Q.. is skew-symmetric and as such does not affect the diagonal elements of the
lower-right sub-block. Comparing these elements to zero we obtain

1 n
e, @€ (3.27)
i3l

Qp)i =

and from the upper-right sub-block of (3.18)

Q)i = (QLb )ﬁ _(E?O)abCO)ﬁ (3.28)

1

After Qi is known, the lower-right sub-block of (3.26) completely determines (the skew symmetric)
Q... which is given by

(COQLb )ji + (COQLb )ij

(3.29)
W~y

Q 2ab)ij =

Examining k=3 reveals, similar to what follows (3.18) that the diagonal matrices Q,, and Q. are zero.
The derivation then repeats itself for odd and even terms. It is summarized in the following Theorem.

Theorem 4.1: The matrices Q. of the series (3.4) are given by

%ﬁag 2cFF§-iw2 } 0 B

Q_1 = 0 i . {i}[l (330)
g 0 diag 2e7)H
_ 0o QO,ab 0
Qo = gzgyab 0 % (3.31)
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where
E!Cij Q)i + Qo)) — (i
% W’ -w’
Qo) ZE (3.32)
0 0 i=]j
k=2m-1
@y, 0 0d
Q=0 0 (3.33)
‘ 00 Qe
where
Ew_lz (Qk_l,abco )Jl _(*)12 (Qk—l)abco )1_] ) ¢ )
g W - '
(Qup)y =0 (3.34)
o 1 o 0 ..
————> Q)€ i=
E ((‘:0)ii _]%1 k.b/y ] .]
0 i
g W - i
(Qu.)y =0 (3.35)
E (Qk,b )ii - ((Qk—l,abc0 )ﬁ ; :j
U 2
0 0
k=2m
O0 QuupUO
Qe = O (3.36)
) %zlz,ab 0 |:|
where
E(COQk—l,b )ji + (COQk—l,b )ij o
17]
g W -
Q) =0 (3.37)
O o
0 0 i=j
O
O
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4 Properties of the controllability gramian series

We start by looking at the physical interpretation of the results obtained in section 3. There are several
point of view regarding the controllability gramian, but the deterministic time domain seems to provide
the best insight for our analysis. Assume for simplicity single input and let u(t) be a unit impulse and
g(t) the state response. Then

Q, = (g, (Vdt @.1)
0

We start with the fact that being a sum of zero (for odd k) and skew symmetric matrices (for even k) Q.
is a skew symmetric matrix. Notice that (Qub); = Qixvj and that xy,;(t) = X;(t) . Hence

(Qu), = & (08; et “2)
0

and

Q) + (@), = Jl8: (V2,0 + 8,08, (Ot
0

= [dlg, (Dg, (D] 3)
0
= gi(0)g;(©) —g;(0)g;(0) =0

At t=0 both displacements are zero because due to the impulse force there is a jump in the velocity but
not in the displacement. At t— o they go to zero as a result of the stability of the system. This skew
symmetry is independent of the special properties of the system such as symmetry, definiteness or small
damping. It is common to all stable A matrices of the form

0 10
A= H‘ <[
4

The second topic is the orders of O in the various sub-matrices. For small o it can be shown that

~ap.t —op .t
g (H0X;e !sinwt+ayX;e J sin ;t 4.4)
i#]

and consequently

. —(XBit —aBit . ‘O‘Bjt
g, (t) Dw,X;e cosw;t+a-af; X;e sin wit+_§_ijije coswity (4.5)
i#]

This expressions, together with the following formulas
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Ol g7! +o(a); _ .
o —ap.t —-ap-t gﬁl 1=
fle 1sinwt)e J sinwt)dt = 7 (4.6)
0 E Yo +o(a’) i# ]
w0 —0f-t —-ap -t 5
fe 1 sinwtye ) cos w;t)dt = uijO(O +o(0?) 4.7

0
lead to the same orders of magnitudes that were found in the previous section.

Another interesting question is the accuracy and the convergence properties of the series (3.4). First we
have the following result.

Lemma 4.1: Let C=0,C,; and C=0,C, be two factorizations of C. Then

Q? :E';—qui @.8)

Proof: Q. is inversely proportional to C and then the coefficients of the recursion (4.34)-(4.39) are
linear in C.

An immediate consequence of Lemma 4.1 is that QZa,* =QlLa,"*. Hence the terms in the power series

(3.4) are independent of the factorization of C. The accuracy of the approximation, for a given number
of terms, and also the convergence of the series to the true gramian, are properties of the damping
matrix C. The only role of a is to let Cy have a convenient magnitude from a numerical point of view.
Choosing 0=1 leads to a different interpretation of the series (3.4). It can be looked at as a recursive
algorithm for the solution of the Lyapunov equation.

Q= 5Q, (4.9)
k=11

Qi =1(Q) (4.10)

where the summation stops when a certain convergence criterion is met.

5 Calculation of the observability gramian
The observability gramian is given by
P(A, +0A)+(A, +0A) ' P+C'C=0. (5.1)

The same reasoning as for the controllability gramian applies also to this equation and therefore the
same type of power series is used for P.

P* =a7'P_ +P, +aP, +...+a"Py (5.2)

The counterpart results for the observability gramian are analogous to the results in section 4 and are
given by the following theorem.

Theorem 5.1: The matrices Py of the series (5.2) are given by
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G} o 0
BT {ﬁ— 3
= g 2 JH
oo Py, O
P, = 5 (5.4
° %&ab 0 g
where
E[CS (P ¥ Pop)y) _ﬁij £
0 W’ -w? IJ
d ! '
Py )i = E (.3)
0 0 1=]
k=2m-1
|:IPka 0 U
Po=0, 0 (5.6)
70 P
where
ijz (Pk—l,abCO )ji _wiz @k—habco )ij (£
1£]
g W -
(Pev)ii =0 G.7)
O
(P, )i (C*); =]
E (CO)H Jz k,b/1 ]
|:| #1
0 0 ) 2
gp ko1 C ji P )ij Boj i i#]
H oo -
(P.): =0 (5.8)
D ) b o i=]
0 kbl k-lab~ [ M =)
O
=
k=2m
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Py ap0
P, = ! (5.9)
“ %kT,ab 0 E

where

fern, eren B

(,0(,0

i%]

mOoOOoOoom O
<
|
—

Pran )i (5.10)

Proof: While the derivation can be done directly along the same lines as for Q, it is easier to use the
state transformation

D—Q‘2 o

T= 5.11
Q 0 15 ( )
Then it follows that
—02 0
A':T'IAT:%) QongT (5.12)
g -aC'O
and
H'=HT=[O CIJTHV]:H (5.13)

Hence the matrices P,'=TTP, T are given by the formulas for Q, with
k k k

H=¢"H H, "o (5.14)
replacing F . Due to the structure of the transformation T the inverse transformation from P, to Py is as
follows. Py ' remains unchanged, Py ,;"is pre-multiplied by Q*and Py ,' is pre and post-multiplied

by Q. This leads to (5.3)-(5.10).

6 Balancing

In sections 3 and 5 the power series for the controllability and observability gramians were derived. At
this point one can calculate these matrices to the desired accuracy and then balance exactly, using any
standard method, to get the balanced realization of the system. However, the motivation for the
approximations was to reduce the amount of computational and to see the effect of the damping on the
results. We therefore continue and present now an approximation of the balancing transformation.

First recall that a state transformation T changes the gramians in the following way

Q-Q=T7'QT" P_P=T'PT
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A transformation is called balancing if in the new realization Q" and P’ are diagonal and equal. As a
first step towards the approximated balanced realization we employ the state transformation

7', o0
T,=0 b1 O (6.1)
g 0 T, 8

where

~ /4
T, = diag%% Q (6.2)
i E

This transformation is diagonal and is merely scaling of the state variables. Then

-1 = 3~ = A
Q':% Z-'_(}Ql,a +a %,a t.. QO,ab +a Q2,ab t.. E (6 3)
= T, 2~ T -1 = 35 :
B Quap t0°Quyy +.. O Z+0Qu, +a'Qsy, +..
e %(_12+a131)a +0°Py, +.. Py +0°P, o % 6.4)
5 T 25 T -1 5 35 :
8 Poaw TO°Py a Z+GPLb +a’Py, +.8
where
~ ~ 1/2
Z:diagg%é (6.3)
B G B
and

— 4 4 = _a a4 = _oa -1
Qra =Tor QQu QT . Qb =Tor QupTor - Qrap =Ty QQy 4 Ty
= Al a4 05 = A
Peo =Q TyPaTiQ 7, Pepy =T PepTors  Peap =2 Ty Py ap Tin

Considering only the leading elements of order o™ the system is already balanced. This is the “almost
balanced realization” in (Gawronski, 1997). For further refinement we apply the second transformation

2 0
T, _d+a’D, O‘Lzl 0 (6.6)
H oL, I+a“D,H

This structure of T, is a result of a formal development as in sections 3 and 5 but for the sake of brevity
only the correct form is given. Since o is small

2 _ _ a
T, ng (L,L, -D,) , oL, g 67)
H -aL, I[+a“(L,L, -D,)H
The purpose of this second transformation is to cancel the O O terms. They disappear if
SP. )+ (0. ).
(Ll)ij - 1( O,ab)l_] _](Qo,ab)lj (68)

s?-57

] 1
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_ zi(lso,ab)ji +zj(60,ab )ii
(L2)j = 52 52

] 1

(6.9)

L)y =—(Ly)y (6.10)

The exact values of the diagonal of L;, L,, as well as the matrices D,, D, affect only higher order terms
whose analysis is beyond the scope of this paper. The gramians of the final realization are given by

%}'IZ+0(G) o(a?) E

Q'=g O (6.11)
E o(a?) (x'IZ+o(0()%
%}'IZ+0(G) o(a?) E

P'=Q 0 (6.12)
E o(a?) a‘lz+o(a)g

7 Summary

A method for approximating the controllability gramian, the observability gramian and the balancing
transformation for a lightly damped structure was presented. The actual structure was presented as a
small perturbation from an undamped system where the small parameter o multiplied a
‘non-dimensional” matrix C,. Then in the analysis that was carried out, the gramians were expressed by
a power series in O, where closed form formulas for the coefficient matrices were given. That enables
the simple calculation of the gramians to a desired level of accuracy and an approximated balancing
transformation. The approximation was also investigated from a deterministic time domain
interpretation of the controllability gramian.
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