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Abstract

This paper deals with the sampled-data H∞ control problem where both the discrete-time
part of the controller and the A/D (sampler) and D/A (hold) converters are design parame-
ters. It is known that the optimal sampler and hold that solve this problem have continuous
(exponential) waveforms and thus are not readily implementable on digital hardware. In
this respect, in this paper the problem is treated subject to waveform constraints on hold
and sampling functions. In partricular, the generalized hold is constrained to be piecewise-
constant and the generalized sampler is constrained to have piecewise impulse waveform.

The paper presents complete solution to this problem. A separation between the de-
sign of the sampler and the hold is established. Moreover, some interesting interpretations
of the resulting sampled-data controller are discussed. In particular, it is shown that the
(sub) optimal hold attempts to “reconstruct” the H∞ state-feedback control law of the single-
rate sampled-data control system with faster sampling period.

1 Introduction

Digital controllers connected to continuous-time plants via A/D (sampler) and D/A (hold) con-
verters are widely used in industry owing to their lower price, enhanced reliability and flexibility
in comparison with their analog counterparts.

The conventional design of sampled-data control systems uses either a pure discrete-time or
a pure continuous-time design approach (Åström and Wittenmark, 1989), due to the difficulties
in dealing with the continuous-time behavior of sampled-data systems. The first approach is
based on the discretization of both the plant and control goals and the design of the controller is
carried out in the discrete-time domain, while in the second one a continuous-time controller is
first designed, then discretized and digitally implemented. Both approaches are strongly based
on approximations that may be justified only if the sampling rate is “sufficiently fast.” This
assumption, however, might not be satisfied in practice.

The modern approach to the design of digital controllers for continuous-time plants takes ex-
plicitly into consideration the inter-sampling system behavior, by performing the design directly
in continuous-time. Such a design, however, is more difficult then the pure continuous- or pure
discrete-time design because: i) the over-all control system is time-varying even when both the
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plant and the digital controller are time-invariant, and ii) the designer has to deal simultaneously
with continuous- and discrete-time signals (and, in some cases, also with requirements). Various
mathematical tools (like “systems with jumps” and “lifting”) were developed and used in order
to overcome these difficulties and to solve the H2 and the H∞ sampled-data control problems
under different assumptions (see (Chen and Francis, 1995) and the references therein). Owing
to the more accurate design, the fast sampling requirement is relaxed. Yet, in most of these
works, only the digital controller is designed, while the sampler and hold devices are taken to be
the “ideal” sampler and the zero-order hold respectively, without taking into consideration the
plant dynamics and the control goals. This assumption limits the control system performance
when the sampling rate is not “fast” enough with respect to the plant dynamics.

Early attempts to incorporate the sampler and, particulary, the hold in the design process
(Chammas and Leondes, 1978; Kabamba, 1987) took into consideration only the discrete-time
closed-loop performance. As a result, significant improvements of the discrete-time performance
were usually achieved at the expense of a poor inter-sampling behavior and undesirable robust-
ness properties (Feuer and Goodwin, 1994). The design of sampling and/or hold functions on
the basis of continuous-time H2 and H∞ (sub)optimal performance was treated in (Juan and
Kabamba, 1991; Tadmor, 1992; Sun et al., 1993; Mirkin et al., 1997a). On one hand, analysis
and simulations of those results show that the “sufficiently fast sampling” assumption can be
further relaxed by using the generalized A/D and D/A converters instead of the zero-order hold
and the ideal sampler. On the other hand, these generalized sampling and hold functions are
not easily implementable, mainly because they all have continuous waveforms.

A possible way to implement the generalized sampling and hold functions designed in (Tad-
mor, 1992; Mirkin et al., 1997a) is to use custom built analog hardware. Such an approach,
however, may diminish the advantages of using a sampled-data controller instead of an analog
one. Hence, programmable digital hardware is likely to be more adequate for the realization of
those functions. The simplest way to implement them, using existing A/D and D/A converters
that can digitally modulate the controller and the plant outputs, is to discretize the continuous
waveform of the generalized hold and sampling functions. That is, to approximate them by
piecewise constant and piecewise impulse functions, respectively. This method however may
inherit the pitfalls of the approximation based sampled-data control design.

The H2 optimal design of the hold and the sampling functions with piecewise constant and
piecewise impulse waveforms, respectively, was considered by Kahane et al. (1999b). Simulations
have shown that the resulting A/D and D/A converters have control capabilities comparable
with those based on the generalized unrestricted sampling and hold functions, yet they are easy
to implement.

Encouraged both by the implementability advantages and by the control capabilities of
the H2 optimal A/D and D/A converters developed in (Kahane et al., 1999b), in this paper,
we incorporate waveform constraints into the H∞ design process of the generalized sampling
and hold functions. This paper presents the solution to the H∞ optimization problem where
the sampling and hold functions are free design parameters yet restricted to have piecewise
constant and piecewise impulse waveforms, respectively. Like in (Kahane et al., 1999b), the
solution is obtained by transforming the control problem into a pure discrete LTI one using the
continuous- and the discrete-time lifting techniques (Chen and Francis, 1995). The computations
are carried out using advanced continuous-time lifting techniques (Mirkin and Palmor, 1999)
and some recently developed mathematical tools for discrete-time lifting (Kahane et al., 1999a).
Consequently, the resulting formulae are explicit (i.e., expressed in terms of the original plant
parameters) and provide a meaningful interpretation to the solution.

This paper is organized as follows. Section 2 assembles the mathematical background needed
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in this paper: Subsection 2.1 briefly reviews the discrete-time lifting technique, while Subsec-
tion 2.2 collects some facts concerning a more efficient way of dealing with the parameters of
the discrete-lifted plants, based upon dynamical systems operating over a finite time interval.
The H∞ optimization problem of the sampled-data setup based on piecewise impulse/constant
sampling and hold functions is formulated in Section 3. In Section 4 this problem is reduced to a
standard H∞ optimization problem in the lifted domain, while in Section 5 the lifted solution is
presented and some of its interesting properties are discussed. The lifted solution is “peeled-off”
back to the time domain in Section 6, which presents the complete solution and various prop-
erties and interpretations of the H∞ suboptimal piecewise constant hold and piecewise impulse
sampler. Some concluding remarks are presented in Section 7.

1.1 Notation

The notation throughout the paper is fairly standard. M ′ means the transpose of a matrix M,
O∗— the adjoint of a Hilbert space operator O, and O1/2— the square root of O = O∗ ≥ 0. As
usual, D denotes the open unit disc. Rn denotes the n-dimensional Euclidean space, L2n[0, h]

denotes the Hilbert space of square integrable Rn-valued functions on the interval [0, h] and
l2n[0, ν− 1] denotes the Hilbert space of Rn valued sequences defined over a finite time interval
[0, ν− 1]. When the dimensions are irrelevant or clear from the context we will write R, L2[0, h]

and l2[0, ν− 1]. The notation L2 is the shortcut for L2[0,∞].
A “bar” above a variable (ζ̄) denotes discrete-time signals in Rn, while “vector” and “breve”

(~ζ and ζ̆) — denote discrete-time signals in the discrete- and continuous-lifted domains, respec-
tively. Also, we put forward the following operator notation which improves the readability of
formulae when both finite and infinite dimensional input/output spaces are involved: a bar (or,
in the discrete-lifted domain, a vector) indicates an operator Ō (~O) with both input and output
spaces finite dimensional; grave accent — Ò, when the input space is finite dimensional and the
output infinite dimensional one; acute accent — Ó, when the input space is infinite dimensional
and the output finite dimensional one; and finally breve — Ŏ, when both input and output spaces
are infinite dimensional.

The compact block notation
[
A B

C D

]
denotes (matrix- or operator-valued) transfer func-

tions either in s or in z domain in terms of their state-space realization. To distinguish linear
time-invariant (LTI) systems in the time domain from their corresponding transfer functions,
the former are denoted by script capital letters, so G(s) and Ḡ(z) imply the transfer functions of
the LTI systems G and Ḡ, respectively. Finally, RicD denotes the discrete-time Riccati function
(for definition and properties see (Mirkin et al., 1997b)) defined over a subset called dom(RicD)

and which has a one-to-one correspondence with the stabilizing solution of the discrete-time
algebraic Riccati equations (DARE).

2 Preliminaries

This section containes some preliminary results, which are required in the sequel. Subsection 2.1
briefly reviews the discrete-time lifting technique and underlines the difficulties arising from its
application to the analysis and design of control systems having a multi-rate nature. Subsec-
tion 2.2 presents a brief exposition of the results of Kahane et al. (1999a) concerning i) the
representation of the parameters of discrete-lifted plants as discrete-time dynamical systems op-
erating over a finite time interval, and ii) some important conections between the discrete-time
lifted domain and the discrete time domain.
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2.1 The discrete-time lifting technique

The notion of discrete-time lifting consists on establishing a one-to-one correspondence between
a discrete-time periodically shift-varying system and a shift-invariant one (but with higher input
and output dimensions). Thus it enables the use of the well-established LTI tools for the analysis
and design of periodically shift-varying systems, like those arising in many multi-rate sampled-
data control problems.

Define the discrete-time lifting operator W̄ν (Chen and Francis, 1995), which transforms the
R
n valued sequences to the Rnν valued ones, as follows:

~ξ = W̄νξ̄ ⇐⇒ ~ξ[k] =


ξ̄[νk]

ξ̄[νk+ 1]
...

ξ̄[νk+ ν− 1]

.
The usefulness of this operator follows from the fact that for a ν-periodic system Ḡ its lifting
~G
.
= W̄νḠW̄−1

ν is shift-invariant. Also, since W̄ν is an isomorphism, the stability properties are
preserved under lifting, and since the restriction of W̄ν to `p is an isometry, induced norms of
the original system are equivalent to norms of the lifted one.

Lifting however, increases the input and output dimensions. For example, let Ḡ be a discrete-
time LTI system with the following transfer matrix:

Ḡ(z)
.
=

[
A B

C D

]
, (1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m. Its lifting, ~G, is also shift-invariant (Chen
and Francis, 1995), and:

~G(z)
.
=

[
~A ~B
~C ~D

]
=


Aν Aν−1B Aν−2B . . . B

C D 0 . . . 0

CA CB D . . . 0
...

...
...

. . .
...

CAν−1 CAν−2B CAν−3B . . . D

. (2)

In principle, (2) describes a standard discrete-time system. Hence, dealing with ~G is conceptually
not more complicated than with Ḡ. Moreover, the state dimensions in (1) and (2) are equal.
Yet the input and output dimensions of ~G increase by the factor ν with respect to those of Ḡ.
That, in turn, “blows up” the matrices ~B, ~C, ~D. Consequently, numerical difficulties associated
with lifted solutions increase rapidly as ν grows. This fact reduces the effectiveness of lifting,
especially for large lifting frames ν. Moreover, when Ḡ is not finite dimensional, but rather the
result of a continuous-time lifting, the direct treatment of ~B, ~C, and ~D as block-matrices does
not appear to be helpful.

2.2 A representation of the lifted parameters using dynamical systems

As follows from the discussion at the end of the previous section, treating the lifted parameters
as block-matrices limits the efficiency of the discrete-time lifting.

Similar problems arise when the so-called continuous-time lifting (Bamieh et al., 1991; Chen
and Francis, 1995) is applied. In that case the parameters of the lifted plants become infinite-
dimensional operators. Thus, a direct manipulation over those parameters is considerably more
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difficult than over the parameters in (2). It was shown in (Mirkin and Palmor, 1999), however,
that those difficulties can be overcome by representing the parameters of continuous lifted plants
as continuous-time dynamical systems with two-point boundary conditions (STPBC) of the form

ẋ(t) = Ax(t) + Bu(t), t ∈ [0, h],

y(t) = Cx(t) +Du(t),

Ωx(0) + Υx(h) = 0 ,

and by replacing the manipulations over the infinite-dimensional operators with operations over
STPBC. By a subsequent extension of the results of Gohberg and Kaashoek (1984), the latter
manipulations can easily be performed in the state-space, in terms of the matrix parameters of
the original plants.

This fact suggests that the manipulations over the parameters of ~G in (2) can also be sim-
plified by treating them not as unstructured matrices, but rather as a representation of discrete
dynamical systems.

A straightforward extension of the results of Mirkin and Palmor (1999) to the case of
the discrete-time lifting can be constructed using three components: the class of discrete-time
STPBC, also defined by Gohberg and Kaashoek (1984), the discrete impulse operator Īθ, and
the discrete-time sampling operator Ī∗θ.

i) The discrete-time STPBC are linear operators ~O : l2[0, ν − 1] 7→ l2[0, ν − 1], described by
the state equations

~O :


x[k+ 1] = Ax[k] + Bu[k], k = 0, . . . , ν− 1,

y[k] = Cx[k] +Du[k],

Ωx[0] + Υx[ν] = 0,

where the square matrices Ω and Υ shape the boundary condition of the state vector x.
The boundary conditions are said to be well-posed if det(Ω + AνΥ) 6= 0 and, in this case,
the map y = ~Ou is well defined ∀u ∈ l2[0, ν− 1].

For the purpose of this paper only the particular case of the causal discrete-time STPBC
(where Ω = I and Υ = 0) is required. We denote these systems using the compact block
notation

~O =

[
A B

C D

]ν−1

0

,

and present here only their solution:

y[k] = C

k−1∑
j=0

Ak−j−1Bu[j] +Du[k] , k = 0, . . . , ν− 1.

Note that a causal discrete-time STPBC is always well-posed.

ii) The discrete impulse operator Īθ : Rn 7→ l2[0, ν − 1], θ = 0, . . . , ν − 1 is defined in the
following manner:

ζ = Īθη ⇐⇒ ζ[k] =

{
η, if k = θ

0, else.
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iii) The adjoint Ī∗θ : l2[0, ν− 1] 7→ R
n of the Hilbert space operator Īθ, is given by:

η = Ī∗θζ[k] ⇐⇒ η = ζ[θ],

and, in fact, it is the discrete-time sampling operator.

These operators, together with the causal discrete-time STPBC allows one to introduce the
following simple representation for the parameters of the discrete-lifted plant ~G in (2):

[
~A ~B
~C ~D

]
=

[
Ī∗ν−1 0

0 I

] A A B

A 0 B

C C D

ν−1

0

[
Ī0 0

0 I

]
. (3)

By using this representation, the involved manipulations over the high dimensional matrix
parameters of the lifted plant are replaced by operations over STPBC. The latter manipulations
can be performed in the state space, in terms of the low-dimensional parameters of the original
plant. Thus, the computational efficiency of the discrete-time lifting technique is considerably
improved, and the structures of the original problems are preserved.

Unfortunately, not all the operations over the discrete-lifted parameters can be performed us-
ing this STPBC-based representation. The reason is that unlike the class of the continuous-time
STPBC, the class of the discrete-time STPBC is not closed under the adjoint (when det(A) = 0)
and inverse (when det(D) = 0) operations. At the same time, singular A and D appear fre-
quently in the sampled-data control problems (Chen and Francis, 1995).

To overcome this difficulty, Kahane et al. (1999a) developed a representation for the discrete-
lifted parameters, based on a broader class of discrete-time dynamical systems operating over a
finite time interval. To this end they defined the class of the discrete-time implicit descriptor
systems with two-point boundary conditions (DIDS), that is, systems of the form

Ex[k+ 1] = Fx[k] +Gy[k] +Hu[k], k = 0, . . . , ν− 1,

Ωx[0] + Υx[ν] = 0.

The theory of DIDS was developed in (Kahane et al., 1999a), and it was shown that i) this class
of systems is closed under all the required operations, and ii) the manipulations over DIDS can
also be performed in the state space using computations over the low-dimensional parameters of
the original plant only. Consequently, the DIDS-based representation preserves the advantages
of that based on STPBC and, in addition, covers all possible singularities in the description of
Ḡ.

By using the DIDS-based representation for the discrete-lifted parameters, Kahane et al.
(1999a) were able to establish some important connections between the discrete-time lifted
domain and the discrete time domain. One of those, concerning the relations between the
stabilizing solution to the DARE associated with the discrete-lifted plant ~G and that to the
DARE associated with the original plant Ḡ, is presented in the sequel.

Let J be an appropriately dimensioned square matrix and associate with Ḡ, (1), the equation

A ′XA− X+ C ′JC+ (A ′XB+ C ′JD)F = 0, (4)

where F is the gain matrix associated with (4):

F
.
= −(B ′XB+D ′JD)−1(B ′XA+D ′JC).
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Figure 1: General sampled-data setup in time domain.

Equation (4) is the well known DARE, and finding its stabilizing solution is a crucial step
in solving various discrete-time control problems, such as H2 (J = I) and H∞ (J =

[
I

−I

]
)

optimizations (Chen and Francis, 1995; Zhou et al., 1995).
Similarly, associate with ~G the equation:

~A∗X~A− X+ ~C∗J~C+
(
~A∗X~B+ ~C∗J~D

)
~F = 0, (5)

where

~F
.
= −

(
~B∗X~B+ ~D∗J~D

)−1(~D∗J~C+ ~B∗X~A
)
.

Equation (5) is also a DARE, which arises in many multi-rate sampled-data optimization prob-
lems, see, e.g., (Chen and Qiu, 1994).

The next Lemma is important for the reasoning to follow.

Lemma 1 (Kahane et al. (1999a)). A matrix X = X ′ is the stabilizing solution to DARE
(4) if and only if it is the stabilizing solution to DARE (5). Moreover, if X is the stabilizing
solution to those DARE’s, then ~A+ ~B~F = (A+ BF)ν and

~F =


F

F(A+ BF)
...

F(A+ BF)ν−1

.

3 Problem formulation

The purpose of this section is to formulate the sampled-data H∞ control problem where the
sampling and hold functions are design parameters restricted to have piecewise constant and
piecewise impulse waveforms, respectively. This problem will be defined in terms of the feedback
setup illustrated in Fig. 1, where P is a continuous-time generalized plant and w, z, y and u are
the continuous-time exogenous input, the regulated output, the measured output and the control
signal, respectively. The sampled-data controller consists of three devices: a digital controller
K̄, a sampler Sh and a hold Hh. The three devices are assumed to be synchronized and with a
given sampling period h. The generalized plant P,

P =

[
P11 P12
P21 P22

]
=

[
P1•
P2•

]
=
[

P•1 P•2
]

is assumed to be LTI, with the following state-space representation:

P(s) =

 A B1 B2
C1 0 D12
C2 0 0

. (6)
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The matrix D11 is taken to be zero in order to simplify the derivations and to obtain more
transparent results. The conditions D21 = 0 and D22 = 0 ensure that the sampler Sh operates
over proper signals (i.e., the measured output is pre-filtered, if necessary, by an anti-aliasing
filter before sampling).

As is done commonly in the literature (see Kabamba (1987); Araki (1993) for instance) the
generalized (zero-order) hold and the sampler are assumed to act on the output of the digital
controller ū[k] and on the measured output y(t) respectively, to generate:(

Hhū
)
(kh+ τ) = φH(τ)ū[k], ∀τ ∈ [0, h) (7a)

and

(
Shy

)
[k] =

∫h−

0
φS(τ)y(kh

− − τ)dτ (7b)

for some generalized hold and sampling functions φH and φS defined on the interval [0, h).
During the inter-sample, the hold function φH shapes the form of the control signal, while the
sampling function φS is used to weight the plant output.

Motivated by the technological requirements, we constrain in this paper the hold and the
sampling functions to have the following piecewise constant and piecewise impulse waveforms,
respectively:

φH(τ) = φH[i], ∀τ ∈ [h iν , h
i+1
ν ), i = 0, . . . , ν− 1

φS(τ) =

µ−1∑
j=0

φS[j] δ(τ−µ−1−j
µ
h−),

where ν and µ are any two natural numbers called, in the sequel, the constrained divisions.
Hence, the sampler and the hold assumed throughout this paper act in the following manner:(

Hhū
)
(kh+ τ) = φH[i] ū[k], ∀τ ∈ [h iν , h

i+1
ν ), i = 0, . . . (ν− 1) (8a)

and

(
Shy

)
[k] =

µ−1∑
j=0

φS[j] y
(
(k−µ−1−j

µ
)h−

)
. (8b)

The operation of the A/D and the D/A converters (8) is as follows. The measured output y(t) is
ideally sampled µ times during one sampling period h by the piecewise impulse sampler Sh. The
samples are weighted by the gain function φS[j] and then summed to generate ȳ[k] — the input
to the digital controller at the time instance kh. Since the weighting and summation operations
can not be processed instantaneously, the ȳ fed into the digital controller at the time instance
kh contains information about the measured output prior to kh. The output from the digital
controller at the time instance kh is shaped by the gain function φH[i] of the piecewise constant
hold Hh in order to generate the control signal u(t), which changes its value ν times during one
sampling period h in a piecewise constant manner. Note that the A/D and D/A converters (8)
digitally modulate the controller and the plant outputs, hence they are readily implementable
by means of digital hardware.

The purpose of this paper is to solve the following H∞ optimization problem:
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OPH∞ : Given the generalized plant P, (6), the sampling period h and the constrained divisions
ν and µ, find (if they exist) the discrete part of the controller K̄ and the hold and
sampler gain functions φH[i] and φS[j], such that the sampled-data system in Fig. 1 is
internally stable and the H∞ norm of the closed-loop operator from w to z is less than
a given γ > 0.

It is worthwhile noting that under an arbitrary choice of the gain functions φS[j] and φH[i]

and any LTI K̄, the system in Fig. 1 is h-periodic in continuous-time. With a slight abuse of
notation, we use the term H∞ norm to denote the L2 induced norm of the periodic operator
from w to z (see Bamieh and Pearson (1992) for a discussion on the extension of the H∞ system
norm notion to periodic systems).

In the sequel, the K̄, Sh and Hh solving the OPH∞ are referred to as H∞ suboptimal digital
controller, sampler and hold, respectively. The H∞ sub-optimality of these devices is understood
as the ability to design K̄, Sh and Hh so that the overall sampled-data controller Ksd = HhK̄Sh
is γ-suboptimal.

The treatment of the OPH∞ is complicated by the inherent periodicity of the sampled-data
system and by its hybrid continuous/discrete nature. To overcome those difficulties, a similar
approach to the one used by Kahane et al. (1999b), will be followed here. In the next section, the
OPH∞ will be lifted by applying the continuous- and discrete-time lifting techniques. Then, it
will be reformulated in the lifted domain, where the problem reduces to a rather standard, pure
discrete and time-invariant H∞ optimization. The solution in the lifted domain to this equivalent
optimization problem will be presented in Section 5, and the results will be “peeled-off” back
to the time domain in Section 6.

4 The lifted problem

The purpose of this section is to reduce the OPH∞ to a standard optimization problem in the
lifted domain. Toward this end, observe that

Hh = HZOH
hu W̄−1

ν ΦH, ΦH
.
=

 φH[0]
...

φH[ν− 1]

, hu
.
= h/ν,

and

Sh = UhΦSW̄µS
IS
hy , ΦS

.
=
[
φS[0] . . . φS[µ− 1]

]
, hy

.
= h/µ,

where

Uh is the unit time delay operator that provides a time delay of h,

HZOH
hu

is the zero order hold:
(
HZOH
hu

ū
)
(ihu + τ) = ū[i], ∀τ ∈ [ihu, (i+ 1)hu),

SIS
hy

is the ideal predictive sampler:
(
SIS
hy
y
)
[j] = y

(
(j+ 1)h−

y

)
.

Using these relations and the continuous- and discrete-time lifting operations, the sampled-
data control setup in Fig. 1 is converted to the equivalent one shown in Fig. 2. The usefulness of
this conversion follows from the fact that, after lifting, all the subsystems in Fig. 2 are discrete-
time LTI systems. Moreover, all the given information is contained in the lifted plant P̆,

P̆
.
=

[
Wh

W̄µS
IS
hy

]
P

[
W−1
h

HZOH
hu

W̄−1
ν

]
=

[
P̆11 P̀12

Ṕ21 P̄22

]
=
[

P̆•1 P̀•2

]
=

[
P̆1•
Ṕ2•

]
,
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Figure 2: The sampled-data setup in the lifted domain.

while all the design parameters are “absorbed” into the controller K̄eq,

K̄eq(z)
.
= z−1ΦHK̄(z)ΦS

.
=

[
Ak,eq Bk,eq
Ck,eq 0

]
. (9)

The backward shift operator z−1 was absorbed into the controller in order to preserve the state
dimension of P̆.

In the sequel, the LTI plant P̆ is assumed to have the following state-space realization:

P̆(z) =

 Ā B́1 B̄2

C̀1 D̆11 D̀12

C̄2 D́21 D̄22

 =

 Ā B́

C̀1 D̆1•
C̄2 D́2•

 =

[
Ā B́1 B̄2

C̀ D̆•1 D̀•2

]
. (10)

The OPH∞ reduces then to the following equivalent problem:

OPeqH∞ : Given the LTI discrete-time generalized plant P̆, (10), find (if such exists) an LTI strictly
proper controller K̄eq that internally stabilizes the plant P̆ and for which the H∞ norm
of the closed-loop operator from w̆ to z̆ is less than a given γ > 0.

Note that, disregarding the fact that the lifted plant P̆ has infinite input/output dimensions, the
OPeqH∞ is a standard discrete-time, H∞ optimization problem with a strictly proper controller.

Also note that, having the γ-suboptimal solution in the lifted domain, the H∞ suboptimal
digital controller K̄, as well as the H∞ suboptimal hold and sampler gain matrices ΦH and ΦS,
can be found by “peeling-off” K̄eq in the following manner. Find any two matrices ΦH and Ck
such that Ck,eq = ΦHCk and find any two matrices ΦS and Bk such that Bk,eq = BkΦS. Then,
using (9), the optimal controller K̄ is as follows:

K̄(z) = z

[
Ak Bk
Ck 0

]
, Ak = Ak,eq.

5 Solution in the lifted domain

The goal of this section is to solve the OPeqH∞ . As already explained, this is a rather standard
discrete-time LTI H∞ optimization problem, with the additional constraint that the controller
must be strictly proper. This kind of problems was discussed in detail for the case of finite
dimensional pure discrete plants in (Mirkin, 1997) and for the case of continuous-lifted plants
in (Mirkin et al., 1997a).

Start by imposing the following assumptions on the generalized plant (10):
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(A1): The pair
(
Ā, B̄2

)
is stabilizable;

(A2): The pair
(
Ā, C̄2

)
is detectable;

(A3): The operator
[
Ā− ejθI B̄2

C̀1 D̀12

]
is left invertible ∀θ ∈ [0, 2π);

(A4): The operator
[
Ā− ejθI B́1

C̄2 D́21

]
is right invertible ∀θ ∈ [0, 2π).

These assumptions are the counterparts of the standard assumptions imposed on a discrete-time
generalized plant in order to guarantee input-output stabilizability and non-singularity of the
H∞ optimization problem.

The solution to the OPeqH∞ requires the following two H∞ DARE’s:

X̄ = Ā ′X̄Ā+ C̀∗1C̀1 − (B́∗X̄Ā+ D̆∗1•C̀1)
∗(D̆∗1•D̆1• − γ2E11 + B́∗X̄B́)−1(B́∗X̄Ā+ D̆∗1•C̀1) (11a)

Ȳ = ĀȲĀ ′ + B́1B́
∗
1 − (ĀȲC̀∗ + B́1D̆

∗
•1)(D̆•1D̆

∗
•1 − γ2E11 + C̀ȲC̀∗)−1(ĀȲC̀∗ + B́1D̆

∗
•1)
∗, (11b)

where E11 =
[
I 0
0 0

]
.

Using (11), necessary and sufficient conditions for the existence of a solution to the OPeqH∞ ,
as well as a particular solution can be established:

Theorem 1. Given plant (10) such that the assumptions (A1)–(A4) are satisfied, the following
statements are equivalent:

i) There exists a controller K̄eq which solves OPeqH∞.

ii) The DARE’s (11) have stabilizing solutions X̄ ≥ 0 and Ȳ ≥ 0 such that∥∥∥∥[ X̄1/2 0

0 I

][
Ā B́1

C̀1 D̆11

][
Ȳ1/2 0

0 I

]∥∥∥∥
2

≤ γ. (12)

Moreover, if the conditions of part i) hold, then the matrix Z̄ .
= (I − γ−2ȲX̄)−1 is well defined

and one controller that solves OPeqH∞ is

K̄eq(z) =

[
Ā+ B́F̀+ Z̄L̄2(C̄2 + D́2•F̀) −Z̄L̄2

F̄2 0

]
, (13)

where:

F̀
.
= −(D̆∗1•D̆1• − γ2E11 + B́∗X̄B́)−1(B́∗X̄Ā+ D̆∗1•C̀1) =

[
F̀1
F̄2

]
, (14a)

Ĺ
.
= −(ĀȲC̀∗ + B́1D̆

∗
•1)(D̆•1D̆

∗
•1 − γ2E11 + C̀ȲC̀∗)−1 =

[
Ĺ1 L̄2

]
. (14b)

The solution presented in Theorem 1 is not readily implementable, since it is not clear how to
verify assumptions (A1)–(A4) and how to compute the parameters of K̄eq in (13). Nevertheless,
it reveals some interesting properties of the solution to OPH∞ . In particular:
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Remark 1. It is clear from (9) that the hold functionΦH is completely absorbed into the ‘C’-part
of the sampled-data controller K̄eq, while the sampling function ΦS is contained in its ‘B’-part.
Although the ‘B’-part of K̄eq containes the coupling term Z̄, the latter can be absorbed into the
discrete-time part of the controller. Consequently, by comparing (9) with (13) in Theorem 1, the
H∞ suboptimal hold and sampler are characterized by the operators F̄2 and L̄2, respectively. On
the other hand, by inspecting (14) and (11), it is seen that F̄2 (hence, also the optimal generalized
piecewise constant hold) depends only on the parameters of P1•— the subsystem from w and
u to z. Similarly, L̄2 (hence, also the optimal generalized piecewise impulse sampler) depends
only on the parameters of P•1— the subsystem from w to z and y. Hence, there is a separation
between the designs of the H∞ suboptimal Hh and Sh in the sense that the hold design does not
depend on the measurement y(t), and the sampler design does not depend on the control action
u(t). However, both designs are affected by the subsystem from w to z hence the separation
is not complete, unlike in the H2 design case (Kahane et al., 1999b). This is similar to the
separation between the designs of the generalized sampler and hold in the unconstrained case
(Mirkin et al., 1997a) and in contrast to other works in the literature (Tadmor, 1992; Mirkin
and Rotstein, 1997), where the H∞ suboptimal unconstrained sampler depends on the hold.

Remark 2. Theorem 1 presents a sampled-data controller K̄eq which solves, in the lifted domain,
the OPH∞ . From the discussion at the end of the previous section it is clear, however, that the
separation of K̄eq into K̄, ΦH and ΦS is not unique. One possible choice is:

ΦH = F̄2, (15a)
ΦS = −L̄2, (15b)

and then

K̄(z) = z

[
Ā+ B́F̀+ Z̄L̄2(C̄2 + D́2•F̀) Z̄

I 0

]
. (15c)

From implementation point of view, however, other separations might be advantageous.

Remark 3. Note that the formal solution to OPeqH∞ is exactly the same as the solution to the
H∞ optimization problem defined in the lifted domain by Mirkin et al. (1997a) for the case
of the unconstrained generalized sampling and hold functions. This is due to the fact that in
both cases the same idea was used: to reduce a periodically varying control problem to an
equivalent one which is time invariant in the lifted domain. Yet the lifted domains in which
those two problems were defined are different: for the H∞ design problem of the unconstrained
generalized sampling and hold functions only the continuous-time lifting was required, while for
the OPH∞ the discrete-time lifting had to be used, in addition, due to its muti-rate nature.
Consequently, eventhough the lifted problems have the same formal solution, the “peeling-off”
process of the solution to OPeqH∞ will be different.

6 Main results

This section is devoted to peeling-off the lifted solution given in Theorem 1. This will result in
the readily implementable solution to OPH∞ in terms of the original plant parameters. A short
discussion on the properties and the interpretations of the H∞ suboptimal piecewise impulse
sampling and piecewise constant hold functions will follow.
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Let

ΣH
.
= exp



0 −D ′12C1 −B ′2 −D ′12D12
0 A γ−2B1B

′
1 B2

0 −C ′1C1 −A ′ −C ′1D12
0 0 0 0

hu
=


I ΣH12 ΣH13 ΣH14
0 ΣH22 ΣH23 ΣH24
0 ΣH32 ΣH33 ΣH34
0 0 0 I

, (16a)

ΣS
.
= exp

([
A −B1B

′
1

γ−2C ′1C1 −A ′

]
hy

)
=

[
ΣS11 ΣS12
ΣS21 ΣS22

]
, (16b)

and

Π
.
=

[
ΣH22 ΣH23
ΣH32 ΣH33

]ν
=

[
Π11 Π12
Π21 Π22

]
, (16c)

where: hu
.
= h/ν and hy

.
= h/µ. Define the following two matrix pairs:

(Λν, ∆ν)
.
=

 0 0 0

I 0 0

0 I 0

,
 ΣH12 ΣH13 ΣH14
ΣH22 ΣH23 ΣH24
ΣH32 ΣH33 ΣH34

 , (17a)

(Λµ, ∆µ)
.
=

 0 0 0

I 0 0

0 I 0

,
 0 C2 0

Σ ′S11 Σ ′S21 Σ ′S11C
′
2

Σ ′S12 Σ ′S22 Σ ′S12C
′
2

 . (17b)

The usefulness of these matrix pencils follows from the fact that, as shown in (Mirkin et al.,
1997b), the solutions to the H∞ DARE’s associated with the continuous-time lifted plants

P̆1•H
.
= WhuP1•

[
W−1
hu

HZOH
hu

]
and P̆•1S

.
=

[
Why

SIS
hy

]
P•1W

−1
hy

can be computed directly from

the deflating subspaces of the extended symplectic pencils (Λν, ∆ν) and (Λµ, ∆µ), respectively.
The computation of the L2[0, h] induced norm of the subsystem from w to z is also required:

γ0
.
= ||P11||L2[0,h].

This quantity can be computed as described in (Chen and Francis, 1995), and it is the lower
bound for the H∞ performance in sampled-data systems under an arbitrary choice of Sh and
Hh. Hence it is natural to consider only the cases where γ > γ0.

In the sequel we assume that:

(A1 ′): The pair
(
ΣH22, ΣH24

)
is stabilizable for any γ > γ0;

(A2 ′): The pair
(
C2, ΣS11

)
is detectable for any γ > γ0;

(A3 ′): The matrix

 ΣH12 ΣH14
ΣH22 − ejθI ΣH24
ΣH32 ΣH34

 is left invertible ∀θ ∈ [0, 2π) and any γ > γ0;

(A4 ′): The matrix
[
ΣS11 − ejθI ΣS12

C2 0

]
is right invertible ∀θ ∈ [0, 2π) and any γ > γ0;

Assumptions (A1 ′) and (A2 ′) are, in a sense (see (Mirkin et al., 1997b, Subsection 4.2)), the
counterparts of the standard assumptions on the stabilizability and detectability of P22. They
are necessary for the existence of solutions to OPH∞ . Moreover, as γ → ∞ these assumptions
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become necessary and sufficient for the existence of sampled-data stabilizing controllers for the
setup in Fig. 1. Assumptions (A3 ′) and (A4 ′) are the counterparts of the standard assumptions
on the absence of unit circle (or the imaginary axis, in the continuous-time case) zeros of the
subsystems from the control signal to the regulated output and from the exogenous input to the
measured output, respectively.

The next Lemma establishes an important relation between assumptions (A1 ′), (A3 ′) and
(A1), (A3), which were required for the solution to the OPeqH∞ in the lifted domain.

Lemma 2. Whenever γ > γ0 and OPH∞ is solvable, plant (6) satisfies assumptions (A1) and
(A3) if and only if it satisfies assumptions (A1 ′) and (A3 ′).

Proof. First, we reformulate assumptions (A1) and (A3) in terms of the parameters of P̆1•H. To
this end, note that

P̆1• = W̆νP̆1•H

[
W̆−1
ν

W̄−1
ν

]
, P̆1•H(z) =

[
ĀH B́1H B̄2H

C̀1H D̆11H D̀12H

]
.

Also note that assumptions (A1) and (A3) are actually (Lancaster and Rodman, 1995) the
necessary and sufficient conditions for the existence of the stabilizing solution to the H2 DARE
associated with P̆12. According to Lemma 1, this solution exists if and only if the H2 DARE
associated with P̆12H possesses a stabilizing solution. This solution, however, exists if and only
if the following conditions are satisfied:

(A1 ′′): The pair
(
ĀH, B̄2H

)
is stabilizable;

(A3 ′′): The operator
[
ĀH − ejθI B̄2H

C̀1H D̀12H

]
is left invertible ∀θ ∈ [0, 2π).

Hence, assumptions (A1) and (A3) both1 hold true iff so do (A1 ′′) and (A3 ′′).
Assume now that plant (6) satisfies assumptions (A1 ′), (A3 ′) and that OPH∞ is solvable.

Consequently:

i) (A3 ′′) is satisfied, since it is equivalent to (A3 ′) (Mirkin et al., 1997b, Lemma 6), and

ii) (A1) holds true, since it is a necessary condition for the existence of stabilizing controllers
for plant (6).

Thus, in order to complete the proof to the first part of this Lemma, we only have to show
that if assumption (A1) is satisfied, so is (A1 ′′). We prove that by contradiction. Assume that
the pair

(
ĀH, B̄2H

)
is not stabilizable. Hence, there exist |λ| ≥ 1 and η ∈ Rn, η 6= 0 such

that η ′
[
ĀH − λI B̄2H

]
= 0. It means that η ′ is the left eigenvector of ĀH associated with

the eigenvalue λ. Thus η ′ĀkH = λkη ′. Consequently, η ′ĀkHB̄2H = 0, ∀k = 0, . . . , ν − 1 and
η ′
(
ĀνH − λνI

)
= 0. This, in turn, leads to

η ′
[
Ā− λνI B̄2

]
= η ′

[
ĀνH − λνI Āν−1

H B̄2H . . . ĀHB̄2H B̄2H
]

= 0,

which means that
(
Ā, B̄2

)
is also not stabilizable, since |λ| ≥ 1⇒ |λν| ≥ 1.

1In fact, it is possible to prove that (A1) is equivalent to (A1 ′′) and (A3) is equivalent to (A3 ′′). Yet this proof
is more involved and not essential for the reasoning to follow.
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To prove the second part of this Lemma, we consider the state-feedback single-rate sampled-
data H∞ optimization problem for the plant

ẋ(t) = Ax(t) + B1w(t) + B2u(t), (18a)
z(t) = C1x(t) +D12u(t), (18b)

where both the zero-order hold and the ideal sampler operate with the sampling period hu. We
claim that, if assumptions (A1 ′′), (A3 ′′) are satisfied and the OPH∞ for plant (18) possesses a γ
suboptimal solution, so does this single-rate optimization problem. Then, according to (Mirkin
et al., 1997b, Lemma 5), the solution to this problem exists only if assumption (A1 ′) holds true.
The fact that (A3 ′) and (A3 ′′) are equivalent, completes the proof.

To prove this claim, let assumptions (A1 ′′) and (A3 ′′) be satisfied and suppose that the
OPH∞ for plant (18) possesses a solution. According to Theorem 1, the stabilizing solution X̄
to the H∞ DARE (11a), satisfies∥∥∥∥[ X̄1/2B́1D̆11

]∥∥∥∥
2

≤ γ⇐⇒ ρ
(
B́∗1X̄B́1 + D̆∗11D̆11

)
≤ γ.

Note that the hermitian matrix B́∗1X̄B́1 + D̆∗11D̆11 has the form

B́∗1X̄B́1 + D̆∗11D̆11 =

[
? ?

? B́∗1HX̄B́1H + D̆∗11HD̆11H

]
,

where ? denotes irrelevant block terms. According to the Cauchy Theorem of separation (Gant-
macher, 1974):

ρ
(
B́∗1HX̄B́1H + D̆∗11HD̆11H

)
≤ ρ

(
B́∗1X̄B́1 + D̆∗11D̆11

)
≤ γ.

Since, as a direct application of Lemma 1, X̄ is also the stabilizing solution to the H∞ DARE
associated with the plant P̆1•H, we conclude, according to (Mirkin et al., 1997b, Theorem 2), that
the single-rate optimization problem defined for plant (18) possesses a γ suboptimal solution.

The main result of this paper can now be stated.

Theorem 2. Suppose plant (6) satisfies assumptions (A1 ′) – (A4 ′) and let ν = κµ for some
κ ∈ Z+/{0}. Then, for any γ > γ0, the following statements are equivalent:

i) There exist K̄, φH[i] and φS[j] which solve OPH∞.

ii) (Λν, ∆ν) ∈ dom(RicD), (Λµ, ∆µ) ∈ dom(RicD) and the following conditions are satisfied:

(a) X̄ν ≥ 0 and ρ(X̄νΠ12Π−1
22 ) < 1;

(b) Ȳµ ≥ 0 and ρ(Π−1
22 Π21Ȳµ) < γ

2;

(c) ρ
(
Ȳµ(Π22 + γ−2Π21Ȳµ)

−1X̄ν(Π
′
22 − Π ′12X̄ν)

−1
)
< γ2;

where (X̄ν, F̄2ν) = RicD(Λν, ∆ν) and (Ȳµ, L̄
′
2µ) = RicD(Λµ, ∆µ).

Furthermore, if the conditions of part ii) hold, then the matrix Z̄νµ
.
= (I−γ−2ȲµX̄ν)

−1 is well
defined and one possible choice for the sampled-data controller which solves the OPH∞ consists
of the discrete-time part:

K̄(z) = z

[
Z̄νµΘ12 +Θ22 Z̄νµ

I 0

]
, (19a)
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the generalized hold of the form (8a) with

φH[i] = F̄2ν
(
ΣH22 + ΣH24F̄2ν + ΣH23X̄ν

)i
, i = 0, . . . , ν− 1, (19b)

and of the generalized sampler of the form (8b) with

φS[j] =
(
ΣS11 + L̄2µC2ΣS11 + ȲµΣS21

)j
L̄2µ, j = 0, . . . , µ− 1, (19c)

where

Θ
.
=

[
ΣS11 + L̄2µC2ΣS11 + ȲµΣS21 L̄2µC2(ΣH22 + ΣH24F̄2ν + ΣH23X̄ν)

κ

0 (ΣH22 + ΣH24F̄2ν + ΣH23X̄ν)
κ

]µ
=

[
Θ11 Θ12
0 Θ22

]
.

Proof. Although assumptions (A1 ′)–(A4 ′) are, in general, not equivalent to (A1)–(A4), according
to Lemma 2 and its dual, the replacement of (A1)–(A4) with the more readily checkable condi-
tions (A1 ′)–(A4 ′) does not affect the solution to OPeqH∞ presented in Theorem 1. Consequently,
it is actually sufficient to prove that the solution presented in this Theorem is equivalent to the
one in Theorem 1. To this end, note that

P̆•1 =

[
W̆µ

W̄µ

]
P̆•1SW̆

−1
µ , P̆•1S(z) =

 ĀS B́1S

C̀1S D̆11S

C̄2S D́21S

.
Thus, as a direct application of Lemma 1, X̄ and Ȳ are the stabilizing solutions to the H∞
DARE’s (11) if and only if they are the stabilizing solutions to the H∞ DARE’s associated
with the plants P̆1•H and P̆•1S, respectively. Since it was assumed that γ > γ0 and by a direct
application of (Mirkin et al., 1997b, Lemma 7), the latter DARE’s have stabilizing solutions if
and only if (Λν, ∆ν) ∈ dom(RicD) and (Λµ, ∆µ) ∈ dom(RicD). Moreover, in this case, X̄ = X̄ν,
Ȳ = Ȳµ and Z̄ = Z̄νµ. Then, according to (Mirkin et al., 1997b, Lemma 8), the items (a)–(c)
are equivalent to the coupling condition (12).

Now, consider the separation of K̄eq into K̄, ΦH and ΦS sugested in (15). Denote by

F̀ν
.
=

[
F̀1ν
F̄2ν

]
and Ĺµ

.
=
[
Ĺ1µ L̄2µ

]
the stabilizing gain matrices of the H∞ DARE’s associated

with these plants, respectively. By using (Mirkin et al., 1997b, Lemma 7) again, the following
relations are established:

ÃH
.
= ĀH + B́1HF̀1ν + B̄2HF̄2ν = ΣH22 + ΣH24F̄2ν + ΣH23X̄ν,

ÃS
.
= ĀS + Ĺ1µC̀1S + L̄2µC̄2S = ΣS11 + L̄2µC2ΣS11 + ȲµΣS21.

On the other hand, it follows from Lemma 1 that

F̄2 =


F̄2ν
F̄2νÃH

...
F̄2νÃ

ν−1
H

, L̄2 =
[
L̄2µ ÃSL̄2µ . . . Ã

µ−1
S L̄2µ

]
,

which proves (19b) and (19c).
To complete the proof, the computational formula for the ‘A’ part of the digital controller,

given in (19a), will be derived. To this end, assume that µ is a divisor of ν or, in other words, that
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ν/µ = κ, where κ is a natural number. Also note that, in this case, P̄22
.
= W̄µS

IS
hy

P22H
ZOH
hu

W̄−1
ν

can be written as P̄22 = W̄µP̄22SW̄
−1
µ , where P̄22S

.
= SIS

hy
P22H

ZOH
hu

W̄−1
κ ,

P̄22S(z) =

[
ĀS B̄2S
C̄2S D̄22S

]
.

Denote B́S
.
=
[
B́1S B̄2S

]
and D́2•S

.
=
[
D́21S D̄22S

]
. Using the STPBC representation (3) of the

discrete-lifted parameters2, C̄2, D́2• and L̄2 can be represented as follows:

C̄2 =

[
ĀS ĀS
C̄2S C̄2S

]µ−1

0

Ī0, D́2• =

[
ĀS B́S

C̄2S D́2•S

]µ−1

0

, L̄2 = Ī∗µ−1

[
ÃS L̄2ν

ÃS L̄2ν

]µ−1

0

.

Using again the fact that ν/µ = κ, the operator F̀ can also be represented as a STPBC operating
over the finite time interval [0, µ− 1]:

F̀ =

[
ÃκH ÃκH
F̀κ F̀κ

]µ−1

0

Ī0, F̀κ
.
=


F̀ν

F̀νÃH
...

F̀νÃ
κ−1
H

.
Based on the definition of P̄22S, the relations C̄2S = C2ĀS, D́2•S = C2B́S and B́SF̀κ = ÃκH−ĀS

can be derived. Using these relations and the standard formulas for the addition and the
multiplication of state-space systems, it is found that

L̄2(C̄2 + D́2•F̀) = Ī∗µ−1

 ÃS L̄2µC2Ã
κ
H

0 ÃκH

L̄2µC2Ã
κ
H

ÃκH
ÃS L̄2µC2Ã

κ
H L̄2µC2Ã

κ
H

µ−1

0

Ī0,

which proves (19a), since Ā+ B́F̀ = ÃνH = Θ22 (Lemma 1).

Remark 4. Note that each of the matrices given by (16) plays a different role in the solution
process. The matrix exponential ΣH in (16a) is required only for the computation of the hold
gain function φH[i]. Similarly, ΣS in (16b) is required only for the computation of the sampler
gain function φS[j], while the matrix Π given by (16c) affects only the conditions (a)-(c).

Remark 5. It is worthwhile noting that the assumption ν = κµ is required only to simplify the
derivation and the final formula of the main coefficient (the ‘A’ matrix) of the discrete-time
part of the controller K̄. Indeed, this assumption affects neither formulae (19b) and (19c) nor
conditions (a)-(c), which still apply in the general case.

Remark 6. Theorem 2 contains the solutions to some known optimization problems already
solved in the literature as particular cases. When γ → ∞, Theorem 2 actually solves the
H2 design problem of the generalized sampling and hold functions with waveform constraints
(Kahane et al., 1999b). When ν = µ = 1, the sampled-data controller HhK̄Sh is the solution
to the H∞ suboptimal single-rate sampled-data control problem (Bamieh and Pearson, 1992)
based on the zero-order hold and on the ideal sampler converters (ΦH and ΦS are absorbed into
the digital controller, thus becoming its ‘C’ and ‘B’ coefficients, respectively). In the case where

2This representation suffices since the derivation of the ‘A’ part of the digital controller requires only the
multiplication and the addition operations.
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µ = 1, Theorem 2 actually solves the input multi-rate (Araki, 1993) H∞ problem, which is a
particular case of the general H∞ multi-rate problem treated in (Chen and Qiu, 1994; Voulgaris
and Bamieh, 1993). It is worthwhile noting that Theorem 2 provides a simpler solution in this
case both from the computational and conceptual point of view.

The solutions to the piecewise constant hold function in (19b) and the piecewise impulse
sampling function in (19c) have interesting properties and interpretations. The remainder of
this section is devoted to the discussion of those properties.

The first property is the separation between the designs of the H∞ suboptimal piecewise
impulse sampler and piecewise constant hold in the sense that the hold design does not depend
on the measurement y(t), and the sampler design does not depend on the control action u(t).
The separation property, which has already been discussed in Remark 1, can be explained by
the fact that both the sampler and the hold are, in a sense, open-loop devices.

A nice interpretation for the H∞ suboptimal piecewise constant hold (19b) can be obtained
from the solution to the state-feedback single-rate sampled-data H∞ optimization problem for
the plant (18). Assume that, in this problem, both the zero-order hold and the ideal sampler
operate with the sampling period hu. Hence, the state vector satisfies the following equation:

x̄[i+ 1] = ĀHx̄[i] + B́1Hw̆[i] + B̄2Hū[i].

It was shown by Mirkin et al. (1997a) that the solution to this problem is based on the DARE
(X̄ν, F̄2ν) = RicD(Λν, ∆ν) (the same as the one used in Theorem 2) and that the resulting
state-feedback control law is ū[i] = F̄2νx̄[i]. Assume now that the disturbance w is given by
w̆[i] = F̀1νx̄[i]. The closed-loop state vector satisfies

x̄[i+ 1] = (ĀH + B́1HF̀1ν + B̄2HF̄2ν)x̄[i] = (ΣH22 + ΣH24F̄2ν + ΣH23X̄ν)x̄[i],

and, consequently, the control signal u(t) satisfies

u(kh+ ihu + τ) = F̄2ν(ΣH22 + ΣH24F̄2ν + ΣH23X̄ν)
ix̄[k], ∀ τ ∈ [0, hu).

On the other hand, it follows from (8a) and (19b) that the H∞ suboptimal piecewise constant
hold Hh produces the control signal

u(kh+ ihu + τ) = F̄2ν(ΣH22 + ΣH24F̄2ν + ΣH23X̄ν)
iū[k], ∀ τ ∈ [0, hu).

The comparison between the latter two expressions yields that the H∞ suboptimal piecewise
constant hold with a sampling period h attempts to “reconstruct” the H∞ state-feedback con-
trol law of the single-rate sampled-data control system with a ν times faster sampling period,
assuming that i) the digital controller produces at the k-th sampling instance an estimate of
the state vector of the plant at t = kh; and ii) the disturbance w̆[i] = F̀1νx̄[i] is the worst case
one. In other words, the H∞ suboptimal piecewise constant hold, much alike the H2 optimal
one (Kahane et al., 1999b), tries to compensate for the deterioration in the system performance
due to the insufficiently fast sampling rate, by imitating the control law of a faster H∞ subopti-
mal sampled-data controller. This is in contrast to an early design (Kabamba, 1987) where the
hold device was designed to outperform single-rate sampled-data controllers with faster sam-
pling rates. This property is similar to that of the generalized unconstrained hold developed in
(Mirkin et al., 1997a) which tries to imitate the continuous-time H∞ suboptimal state-feedback
control law.
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7 Conclusions

In this paper the H∞ sampled-data control problem has been treated assuming that not only
the digital controller but also the sampler and the hold are design parameters. Taking into
consideration implementation requirements, the designed sampler and hold have been treated
subject to waveform constraints. In particular, the hold has been assumed to belong to the class
of piecewise-constant hold functions with a given number ν of intersample corrections of the
control signal. The sampler has been assumed to average a given number µ of weighted mea-
surements, equally spread within the intersample (thus, piecewise-impulse waveform of the sam-
pling function). Necessary and sufficient conditions of the existence of a γ-suboptimal sampled-
data controller have been obtained and explicit formulae for the suboptimal sampler, hold, and
discrete-time part of the controller have been derived. It is believed that these results will be
helpful in many applications where the available sampling rate is insufficiently fast.

Note, that the formula for the discrete-time part of the controller was presented only for
the case where ν = κµ for a positive κ (the existence conditions as well as the formulae for the
sampler and hold are valid for arbitrary ν and µ). The reason is that the formula for the general
case turns out to be quite complicated. It is believed, however, that a simpler expression exists
and its derivation is currently investigated.
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