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Reliable computation of the input-state-output relations in
autoregressive representations of multivariable systems
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P.O. Box 18, 182 08 Prague, Czech Republic

Abstract

Input-state-output analysis of systems with external variables on equal footing is pursued through a
numerical algorithm for processing a set of linear differential equationsin the form of an autoregres-
sive representation. Instead of resorting to the computation of elementary polynomial operations,
numerically robust routinesfrom numerical linear algebraare used to compute an implicit state-space
realization in the form of a minimal driving variable representation. The representation is used to
detect candidate inputs among the external variables. The algorithm is based on polynomial matrix
to state space conversionsleading to application of well-proven methods of numerical linear algebra
such as Gram-Schmidt orthonormalization, Householder transformations, and the singular value de-
composition.
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1 Introduction

Analysis of dynamic systems relies on our ability to capture that signals describing a system at one time
are interrelated, not only with other signals at that time, but in a special way with signals at other times.
In continuous time, p dynamic relations among p + m scalar signals are often formulated in a set of p
scalar differential equations with p + m scalar variables. The set of equations may be described in the

form of asingle equation
d
P (%) w(t) = 0 (o

where P € RP*(P+™) [s] isapolynomial matrix with full normal rank p. The vector w accommodates the
p + m scalar variables. A polynomia matrix equation of the form (1) is called the AR (autoregressive
representation) and the entries of w are referred to as the externa variables of the underlying system.
The external variables w are said to be on equal footing; we draw no distinction between the input and
output nature of the scalar entries in the vector w.

The main thrust of the paper is to present a reliable agorithm for minimal externally equivaent
state-space redization of ARs, and to use the algorithm to determine al input-state-output relations
defined on a given AR by considering w as a collection of input variables « and output variables y.
External equivalence of ARsis studied in Blomberg and Ylinen (1983). For acomplete list of externally
equivalent operations on a general system of differential equations, see Schumacher (1988).
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Of course, not every entry in w may act as an input to a causal system. Candidate input-state-
output relations are determined by (p 4 m)-dimensioned permutation matrices but not every such matrix
imposes an input-state-output relation. The sth input-state-output relation may be specified in the form

vi(t) | _ W
B [ui(t) ] = M) 5
B %xi(t) = Ajz;i(t) + Bju;(t) @)
Y; (t) = Cﬂ?(t) + Diui (t)

where I1; isthe relevant permutation matrix. The situation is depicted in Figure 1.

21 22 23 ............. Ek

Figure 1. input-state-output relations

The main results are outlined in Section 2. Section 3 covers some standard materia to be used in the
sequel. Section 4 describes an agorithm for minimal externally equivalent state-space realization of (1).
The algorithm is a prerequisite for the detection of the input-state-output relations whose specification is
subject to the algorithm in Section 5. Last before conclusions, in Section 6 we discuss the observability
properties of the minimal externally equivalent realization and realizations in the form (2).

2 Mainresaults

The main results are Algorithm 4.1 — anumerically reliable algorithm for state-space redlization of ARs
(autoregressive representations) associated with full norma row rank polynomia matrices — and the
observation that, related to the AR in the form (1), al input-state-output relations X; of the form (2) may
be described by observable but not necessarily controllable state-space realizations with a common set
of observability indices.

Algorithm 4.1 does not require the computation of elementary polynomia operations. The algorithm
isbased oninvariant subspace methods with orthonormal bases. Computationally, the algorithm relieson
Gram-Schmidt orthonormalization, Householder transformations, and the singular value decomposition.

3 Prdiminaries

The invariant subspace methods in Algorithm 4.1 rely on the maximal controlled invariant subspace
contained in a given subspace. A state-space realization
da(t) = Ax(t)+ Bu(t)
y(t) = Ca(t)

is used as a conceptua tool to perform externaly equivalent transformations on (1). The maximal
controlled invariant subspace with respect to the pair (A, B) such that this subspace is contained in ker C'

3)
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is denoted by V*(A, B, kerC). The interest isin V*(A, B, ker C') and its orthogonal complement.
Extensive details about invariant subspace methods are omitted and may be found in Wonham (1979),
Hautus (1983), and the monograph by Basile and Marro (1992).

According to Rosenbrock (1970), the set of observability indicesof astate-spacerealization (A, B, C, D)
may be read off following a similarity transformation into a staircase form

A B
[C D]L Ag1 A | By (%)
C, 0 |D

where (A11, B1,C1, D) is an observable redlization of the transfer function realized by (A, B, C, D).
The similarity transformation 7" may rely on a product of orthogonal matrices in the form of Householder
matrices whose successive right-hand side application transforms (A, B, C, D) into the form

Ay Aip 0 0 B
Az Az A3z 0 B,
Apn Aur Ay 0 B, ®)
Aun Apue Aus 0 B,
Apvrin Apriz Aus Aps1,pt1 | Busa
C 0 0 0 D |

with 4;; € R"*"™ fori,5 =1,2,---,u. Theintegers n; are defined such that

ny = trankC
ny = rank Aiit ©)
Ny - rank A,_1,
CirandA;;11,1=1,2,---,u— 1, arein the lower echelon form. In particular, if (3) is observable, then
Ayy1, 41 isvoid.
4 State-spacerealization of ARs
A polynomia matrix P € RP*(P+™) [s] may be defined in terms of a matrix polynomial
P(s) = Py+Pis+ Pys>+ -+ Ps
and manipulated as an array of coefficient matrices P, € RP*(®+m) =0, 1, ..., . The following

algorithm is based on external equivalence of linear systems in the form (1). The result is a minimal
externally equivaent state-space realization of (1). The concept of external equivalence implies that
minimal realizations of ARs are in the form of observable but not necessarily controllable state-space
redizations. If (A,B,C,D) and (A’,B’',C',D") are externdly equivalent minima realizations, then
there exist nonsingular matrices S and R along with amatrix K such that

A B'"l [SYA+BK)S S 'BR
[C’ D’] _[ (C+DK)S DR |’ )
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Algorithm 4.1 (State-space realization of ARS) Let P e R*(@+m) [s] be a full-row-rank polynomial
matrix without zero columns.

1. Define A, B, C, H, J € R***® such that

I 10
A7 |0
c 0 |:=
H J 0 o I " 0
P P B 0P
0 0 1|0
0 0 I 0|0 |

2. Apply Algorithm 4.2 to A, B, C, H, J specified by Sep 1. Theresult is described by Ai1, Bia,
Hy, Jy e R***. Definenew A, B, C, H, J € R***® such that

A B Al HY
c 0 = | B, 0 (8)
H J 0o -I

3. Apply Algorithm 4.2 to A, B, C, H, J specified by (8). The result is described by A1y, Bie, Hy,
Jo € R***. Define A, B, C, D, J € R*** such that

A B Al HY
C D| = | B, J |. (©)
0 J 0 I

4. Apply the orthogonal matrix T, = [ T} T | —specified by (15) in Algorithm 4.2 —to obtain

Al HT
el e B R I P R
T 12 Y2 0T1T2'

0Ty Ty 0 I

Then P (4)w(t) = 0 admits an externally equivalent state-space realization

dr(t) = (A+ BC)x(t) + Byo(t)

w(t) = ToCx(t)+Tiv(t) (10)

where w arethe external variables, x are the state variables, and v are the driving variables. In addition,
(10) has the minimal dimz and the minimal dimv amongst all externally equivalent realizations of
P(Lywt)=0.

Because of the necessity to introduce v, the state-space redlization (10) is called the DVR (driving
variable representation) of the system representation (1).
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Throughout Algorithm 4.1 the dimensions of the externally egquivalent realizations are successively
deflated on the grounds that if a state-space realization (A, B, C, D) isastrongly observable!, then

rank[ sI— A —B]

. -B
c D = dlmA—i—rank[ D]'
The latter result is a part of a useful theorem in Hautus (1983). In the context of Algorithm 4.1, the
full-column rank system matrix

(11)

sI—A —-B
C D

guarantees existence of a certain unimodular transformation which validates the deflation. In particular,
the deflation is subject to Algorithm 4.2, where (A, B, C, D) of (11) is defined by (Asgg, B2y, Cs,0) of
Step 3 and Step 4.

Algorithm 4.2 (Tool in Algorithm 4.1) Let A, B, C, H, J € R*** specify

da(t) = Axz(t)+ Bo(t)
0 = Cz(t) (12)
w(t) = Hz(t)+ Ju(t)

— a state-space realization with external variables w, state variables z, and driving variables v.

1. Find an orthonormal basis (&1, ..., &) for V*(A, B, ker C') defined as the largest subspace V
such that

(i) Viscontrolled invariant for (A, B),
(i) VYV CkerC.

2. Wrap a feedback v — v + K« around (12) such that a state-space realization

Lp(t) = (A+BK)z(t) + Bo(t)
0 = Cx(t) 13)
w(t) = (H+JK)z(t)+ Jo(t)

is obtained such that
V*(A+BK) = V*(A,B,kerC)
isa simpleinvariant subspace.

3. Find (¢g41, - - -, &) —the orthonormal complement to the basis of V* —and apply the orthogonal
matrix

T = [&.. & &k1---&n |

1An observable state-space realization is strongly observable if the realization remains observable under arbitrary regular
state feedback, see (7).
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as a similarity transformation matrix in (13). In the new coordinates, (13) is described in the
Kalman form

0=[0 C ][i;g;] (14)
wy = [ 1m0 ]+

where A € REXE

4. Orthogonally transform v in (14) such that — in the new coordinates — Bs is in a column-
compressed form. If T;, isthe relevant orthogonal transformation matrix, then

Bi1 Bis By
e 2

such that By has full column rank.
Then (12) is externally equivalent to the state-space realization

do(t) = Ana(t) + Biav(t)

w(t) = Hiz(t) + Jov(t). (16)

In (12)—(16), = and v denote different quantities. For example, although the interpretation of = and v
remains intact, the dimension of v in (16) isless than the dimension of the quantity denoted by v in (14).
On the other hand, throughout the algorithm, w denotes one and the same quantity.

In (16), dimz and dimwv need not be the minimal dimensions amongst al externaly equivalent
state-space redlizations of (12); dim « is minimal following the second application of Algorithm 4.2 in
Algorithm 4.1.

4.1 Example

This example illustrates Algorithm 4.1 on the problem of minimal externally equivalent realization of
the system described in (1). The relevant polynomia matrix,

P(s) = [ Pi(s) Po(s) ]
[ —0.335% + 7.35s + 4.39 1.74s +1.89s + 1.7  —0.785> +3.82s — 1
Pi(s) = 0.195% 4 0.674s +1.99  0.037s% 4 0.524s + 0.833 0.84s —0.78
| —0.1952 —0.934s — 5.29 —0.037s% + 0.3265 — 1.29 —0.45s + 1.57
[ 2.61s2 — 15.45 — 8.4 2.025> +12.25s — 10.4
Py(s) = —0.195? —2.45 —3  0.44s%2 +1.58s —4.5 |,
0.19s2 +s—1.5  —0.445%2 —0.79s + 9.9

isdepicted in Figure 2.
After thefirst application of Algorithm 4.2, the externally equivaent — yet non-minimal — state-space
redlization of (1) isin theform

dpt) = Ana(t) + Biov(t)

w(t) = Hyz(t) + Jov(t) (17)
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Figure 2: a“Lego” diagram of P (4)

where

[ —3.9343 —1.8439 —1.2948 09519  8.4347 54079 -6.0072  1.5706 —1.9460 W
0.1048 —-0.0221  0.3310 —0.2001 —-3.3537 —0.6842  0.8980 —0.6633  0.4515
—0.0091  0.0961  0.0600 —0.0516 —0.3322 —-0.2577  0.0831 —1.0669  0.0512
—0.0062 —0.0737 —0.0902  0.0668  0.6952  0.2930 —-0.1815 0.1384  0.9012
A = 0.0255  0.4602  0.5197 -0.3902 -—-3.9045 -1.7354 0.0164 —-0.7782  0.5577
0.9799 —-0.5963 -—0.6297  0.4788  4.6254  2.1545 —-1.2011  0.9225 —-0.6640
0.1392 —-0.7998 -0.2117  0.3647 —-0.6396 13914 0.6141 —-0.3160  0.1093
2.5244 —-0.0403 —-0.3952  0.3317 34177  0.8074  1.5872  0.7549 —0.0210

0.2460  0.0227  0.1579 -0.0629 —-1.6933 —0.4160 0.7625 —0.3845  0.2869 J

0.0548 —0.3051
0.1640 —0.2455
0.02290 —0.0342
—0.0393  0.0588
Bi, = | 02236 —0.3348
—0.2684  0.4018

0.1667  0.2266

0.2559  —0.5904
| —0.8676 —0.4104

0.0391  0.8369 —0.0227  0.0391 -0.2225 0.2670  0.0692 —0.0420  0.0193
0.0054 —0.0227  0.9968  0.0054 —0.0310 0.0372  0.0096 —0.0059  0.0027
H, = | —-0.0093 0.0391  0.0054 0.9907  0.0533 —0.0639 -0.0166  0.0101 —0.0046

0.0533 —0.2225 -0.0310 0.0533  0.6966  0.3640  0.0944 —-0.0573  0.0263
—-0.0639  0.2670  0.0372 -0.0639 0.3640  0.5632 —0.1133  0.0688 —0.0315

and J, is azero matrix.
After the second application of Algorithm 4.2, the externaly equivalent — now minimal — state-
space redization of (1) isin the form

La(t) = Az(t)+ Bo(t)

w(t) = Hz(t)+ Ju(t) (18)
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where A, B, H, and J are specified by

[—3.0501  3.3934 —2.4642 1.1425 —0.2319 | —2.3112  6.12527
1.1593 —1.1881 1.1629 1.0333 —0.7791 1.3914 —1.1079
0.7715  3.8256 —0.0321  1.0318 —0.4277 | —2.2707  4.5775

—1.1503  5.0813 —4.6348 —0.2695 1.7085 | —4.6585  5.5119
A B 1.6010 —4.6996  0.9751 —1.2808  0.6162 | 2.7191 —6.9995

[ ] 0.1461  0.1084 —0.2155 —0.2791 —-0.5389 | 0.0678 —0.7397

—-0.1432  0.3390 0.1717 03784  0.5432 | 0.1655 —0.5442

—0.2067 —0.1553  0.0193  0.0599  0.0246 | —0.9358 —0.1919

0.6455 0.3574  0.0843 —0.0610  0.2635 | —0.2607 —0.0535
0.0730  0.7425 -0.1687  0.0227 —0.2461 | —0.1558  0.3421 |

In (17) and (18) we use the same abuse of notation asin (12)—16).

5 Input-state-output relationsin ARs
In this section, we present an algorithm for the computation of the state-space realizations related to the
input-state-output relations within agiven AR of the form (1).

Algorithm 5.1 (Input-state-output relationsin a minimal DVR) Consider aminimal DVR (F,G, H, J),
and the following sequence of operations.
1. Permute the rows of J to obtain a nonsingular matrix .J, such that

Mw(t) = [Z;Pun[j;]w.

2. Apply astate-feedback transformation i — F' + G K where K isconstructed suchthat (F, G, H, J)
is transformed to
La(t) = (F+GK)z(t) + Go(t)
mw(t) = | DK oy o | .
0 Jo

3. Transform the present driving variables v in accordance with u := Jv to bring (19) into
La(t) = (F+GK)z(t) + GJy 'u(t)

Mw(t) = [Hl J:)‘IlK]x(t)Jr [Jl‘;?_l]u(t).

(19)

Then (F + GK,GJ;l,Hl + 1K, J1J2*1) isa“minimal” state-space realization driven by external
variables. Thisrealization isrelated to the given minimal DVR (F, G, H, J) through

[y(t)] — ()

where II is a non-unique but fixed permutation matrix obtained in Step 1.

As shown in Step 1, the total number & of input-state-output relations in a given minimal DVR, and
thence in (1), depends on the number of combinations to choose anonsingular J» from J, that is,

1gkg<p+m>. (20)

m
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5.1 Example

Let usillustrate Algorithm 5.1 on the problem of detection and specification of every input-state-output
relation (2) in the system representation (1). The polynomia matrix P isdisplayed in Example 4.1.

We start off at the minimal DVR (18) and apply Algorithm 5.1 to all admissible permutation matrices
I1;. In agreement with (20), the true number of relationsis k = 9. That is, one of the 10 relations is
nonexistent since the relevant I1 yields asingular Js.

Table 1. DVR and input-state-output relations: the eigenvalues

DVR —4.8912 —1.9901 —0.0190 1.4883 4+ 2.0620:  1.4883 — 2.0620¢
345 —6.5255 3.7205+4.6790:  3.7205 — 4.6790¢ —0.5080 1.0894

245 —5.4749 —0.3803 4+ 0.8238: —0.3803 — 0.8238: 0.2919 4.5899

235 —5.2878 4.2668 —1.0133 —0.1743 0.8414

234 | 1.6786+4.4807¢  1.6786 — 4.4807: —0.2076 0.5884 +1.2782¢  0.5884 — 1.2782:
145 —6.8694 —3.4594 1.1632 4+ 3.1445¢  1.1632 — 3.1445¢ 0.0041

135 —6.7409 —0.0524 4 3.6321: —0.0524 — 3.6321: 0.1841+0.2442;  0.1841 — 0.2442;
134 —8.0647 2.1589+6.9930:  2.1589 — 6.9930¢ —0.1704 2.7106

124 | —2.8104 + 5.42837 —2.8104 — 5.4283: —1.1650 —0.1369 1.0167

123 | —2.2040 4 6.7448¢ —2.2040 — 6.7448: 1.5163 —0.2379+ 0.0401: —0.2379 — 0.0401¢

In Table 1, the first row specifies the eigenvalues of a minimal externaly equivalent state-space
realization of (1) while the remaining nine rows list the eigenvalues of the nine state-space realizations
representing the nine input-state-output relations in (1). For example “345” denotes the relation where
y, the vector of outputs, occupies the positions {3, 4,5} of the external variables vector w.

The application of Algorithm 5.1 revealed the nonexistence of an input-state-output relation between
entries at the positions {1, 2,5} of w asoutputs and {3,4} asinputs.

6 Observability properties

Theminimal externally equivalent realization of (1) —intheform of aDV R — generalizestheredization
of aleft polynomia MFD (matrix fraction description). Recall that state-space redlization of left MFDs
may be organized to yield minimal (externally equivalent) state-space representations in the form of
observable but not necessarily controllable realizations (Wolovich, 1971).

The DVR is not only observable but also strongly observable, that is, the DVR remains observable
under arbitrary regular state feedback transformations. Similarly to minimal redlizations of left MFDs,
minimal DVRs need not be controllable. The set of observability indices related to a DVR (and the
relevant input-state-output relations) may be studied as described in Section 3. Construction of the
Hessenberg form (5) is useful to show that, given afixed (1), the set of observability indices of either
input-state-output relation equals the set of observability indices of the minima DVR.

By Algorithm 5.1, the input-state-output relations are described in terms of observable but not
necessarily controllable state-space realizations whose dimension equals the dimension of the minimal
DVR. The dimension isthe McMillan degree of the underlying system.
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7 Conclusions

A reliableagorithm for minimal externally equival ent state-spacerealization of systemsdescribed by ARs
(autoregressiverepresentations) was presented. For uncontrollable systemstherealizationsare observable
non-minimal state-space realizations because external equivalence of ARs covers both the controllable
and uncontrollable dynamics. The algorithm can be useful in CAD of control systems (CADCS) based
on polynomia matrices; it replaces the computation of elementary polynomial operations by reliable
numerical methods such as Gram-Schmidt orthonormalization, Householder transformations, and the
singular value decomposition.

The elementary polynomial operations are avoided by applying an innovative technique for state-
space redlization. The technique does not require polynomia matricesin a (row) reduced form. Minimal
externally equivalent realizations are obtained in a successive conversion based on invariant subspace
methods with orthonormal bases. A Matlab implementation of the algorithm is partly based on Grace
et al. (1990) and the software appendix to Basile and Marro (1992). For comparison, the conventional
algorithm (Wolovich, 1971) would require transformation to a row reduced form, modulo polynomial
matrix division, and constant matrix inversion for specification of every single input-state-output relation,

cf. Kraffer (1993).

Finally, observability properties of the minimal externally equivalent realizations were studied along
with the observability properties of the underlying input-state-output relations. The resulting connections
are useful in better understanding the applicability of polynomial matricesin control system design.
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