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Abstract

This paper presents an approach to the control of a 
exible planar closed-chain linkage.

A very accurate dynamic model of the system is brie
y summarized. Such a model is then

employed to test a classical PD regulator in simulation to control a 
exible planar four-bar

linkage. The chosen PD control is described, and the most signi�cant results of the simulation

are presented and discussed.

1 Introduction

In the recent years, the interest for 
exible linkages has greatly risen in the �eld of robotics,

because operations at increasingly high speed are requested to manipulators. In order to meet

such strict dynamic requirements, new, lighter robot manipulators ought to be designed and

realized. The main problem preventing a widespread di�usion of light robots lies in the fact

that the links of such robots do not show a rigid-body behavior; hence, vibratory phenomena

need to be taken into account and accurately modeled and controlled. Such a problem seriously

a�ects the manipulator performances, because oscillations persist for a certain period of time

even after the desired position has been reached. Many techniques have been proposed in the

last years to reduce vibrations of 
exible linkages. Bayo et al. (1989) use an iterative frequency

domain approach based on inverse dynamics. Lee and Jee (1996) propose an H
1

robust control

of a 
exible slewing beam. Milford and Asokanthan (1994) use an adaptive control. Takashi

and Yamada (1994) use a neural network to control a single-link 
exible arm. Yigit (1994)

investigates the stability of a PD control for a two-link rigid-
exible manipulator. However, most

of the works in this �eld apply to single-link or a two-link planar manipulators. Multiple-link

closed chain manipulators have been less investigated so far, mainly because building an accurate

dynamic model proved to be a very challenging task. Dynamic models for 
exible multiple-

link manipulators have been proposed by Turcic and Midha (1984), Yang and Park (1996)

and Giovagnoni (1994). Controls of 
exible multiple-link manipulators have been proposed for

instance by Lopez-Linares et al. (1997). In this paper, the application of a classical PD regulator

to the control of a 
exible planar closed-chain four-bar linkage is presented. The dynamical

model used is the one proposed by Giovagnoni (1994), and it will be summarized in Section 2.

In Section 3 the designed PD control is described, and in Section 4 the most signi�cant results

of simulations are reported and discussed. In Section 5 some concluding remarks are given.
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2 Dynamic model

The dynamic model considered is taken from Giovagnoni (1994), who proposed an accurate

dynamic model of a 
exible multi-body system. In this Section we will just summarize the

model and provide the resulting equations, which are valid for whatever multi-body 
exible

planar linkage.

In the model, the total link motion is separated into a rigid motion and the elastic displace-

ment of any point of the system with respect to a rigid-link system, named ERLS (Equivalent

Rigid Link System). Referring to Figure 1, the total nodal motion bi of the i-th element is given

by the sum of the rigid motion ri of the node, belonging to the ERLS, and the nodal elastic

displacement ui:

bi = ri + ui (1)

Figure 1: Flexible link model

The displacements of all nodes can then be assembled into a unique vector, so that it is

possible to rewrite the equation above in vector form as

b = r+ u (2)

The kinematics of the ERLS is determined according to the ordinary rules for a chain of rigid

links. Hence, the vector q, containing the generalized coordinates (i.e. the degrees of freedom)

of the ERLS, completely de�nes the position of the rigid system. The rigid nodal velocities

and accelerations can then be expressed as functions of the velocities and accelerations of the

generalized coordinates of the ERLS, by virtue of the matrix of the sensitivity coeÆcients S(q):

_r = S(q) _q (3)

�r = S(q)�q+ _S(q; _q) _q (4)

where _r, �r are respectively the vectors of the rigid velocities and accelerations for all the

nodes. S(q), namely the sensitivity coeÆcient matrix for all the nodes, is an explicit function

of q, and its columns contain the rigid-body velocities corresponding to unit velocities of the

generalized coordinates of the ERLS.
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The model then considers each 
exible link to be subdivided into �nite elements. For any

generic point inside the �nite element considered, the position vector pi is the sum of the position

vector wi of the point in the ERLS and of its elastic displacement vector vi:

pi = wi + vi (5)

The displacements inside the �nite elements are de�ned using adequate interpolation func-

tions, according to the �nite elements theory.

Then, once the system kinematics has been de�ned, the di�erential equations of motion for

the 
exible system are obtained by expressing the dynamic equilibrium of the system thru the

virtual work principle (again, refer to (Giovagnoni, 1994) for an exhaustive proof). A set of

coupled equations for the dynamic analysis of a chain of 
exible bodies is thus obtained, namely

the following system of di�erential equations (where we have removed the dependence from the

generalized coordinates q for clarity):

M(�r+ �u) + 2Mc _u+ �M _u+ �K _u+Ku = fg + f (6)

STM(�r+ �u) + 2STMc _u+ �STM _u = ST (fg + f) (7)

where the elements appearing in the above equations are de�ned as follows:

� _u, �u are respectively the vectors of the elastic velocities and accelerations for all nodes;

� M is the mass matrix for all elements, which is built by assembling the mass matrices for

each element, obtained by integrating the elements' densities over their volumes;

� Mc is the matrix arising from Coriolis contributions;

� K is the sti�ness matrix for all elements, built by assembling the sti�ness matrices of all

elements;

� fg is the vector of the generalized gravity forces;

� f is the vector of the generalized external loads;

� � and � are the Rayleigh damping coeÆcients.

The system of di�erential equations (6)-(7) expressing the dynamics of the linkage is divided

into two subsystems. Equation (6) expresses the nodal equilibrium for all nodes, namely the

equivalent loads applied on every node must be in equilibrium. Equation (7) expresses the

overall equilibrium of the ERLS, i.e. all the equivalent nodal loads applied to the linkage must

produce no work for a virtual displacement of the ERLS.

The system (6)-(7) can then be further rearranged, by expressing the vector r as a function

of the generalized accelerations and velocities of the ERLS through the matrix of the sensitivity

coeÆcients:

�r = S�q+ (
X
j

_qj
@S

@qj
) _q (8)

Thus, Eqs. (6)-(7) can be rewritten as:
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Figure 2: Flexible four bar linkage under test

M �u+MS�q = t(u; _u;q; _q) (9)

STM �u+ STMS�q = ST t(u; _u;q; _q) (10)

where t accounts for all the forces excluding those directly related to the second derivatives

of the generalized coordinates.

From Eqs. (9)-(10) it is straightforward to obtain a system that enables one to directly

compute the elastic accelerations �u and the accelerations of the generalized coordinates �q:"
M MS

STM STMS

# "
�u

�q

#
=

"
t

ST t

#
(11)

Once the accelerations (�u; �q) are computed, the velocities ( _u; _q) and displacements (u;q) of the

system can be obtained by integration, using for example the Runge-Kutta method. The model

described in this Section proved to be very accurate in reproducing the dynamic behavior of a

chain of 
exible link. Namely, the results of simulation tests were in excellent agreement with

experimental data (Giovagnoni, 1994).

3 The PD Control

The model built in the former Section provides a very powerful tool to evaluate the dynamic

variables of the system (accelerations, velocities and displacements of the generalized coordinates

and of the nodes). Hence, no estimator of any sort needs to be employed to evaluate the system

dynamics, when applying a control in simulation. The test case used in our simulations is a

four-link closed-chain planar manipulator (see Figure 2), set in a horizontal plane so as to neglect

the gravity e�ects. Its mechanical features are:

Links lengths

� AB = 0.360 m

� BC = 0.528 m

� CD = 0.636 m
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Figure 3: Control scheme

� DA = 0.332 m (�xed frame)

Masses and inertia

� concentrated inertia at joint A=3:971 � 10�4kg m2

� concentrated mass at joint B=0:040 kg

� concentrated mass at joint C=0:040 kg

� concentrated inertia at joint D=1:656 � 10�4kg m2

� linearly distributed mass of the links = 0.272 kg/m

The realized PD control has been implemented in the Matlab-Simulink simulation environ-

ment. The scheme of the control is shown in Figure 3.

The "plant" block is a function realized in the Matlab language, that simulates the mechan-

ical behavior of the system according to the model described in Section 2. Due to the fact that

the system dynamics are obtained thru �nite elements method, we couldn't derive a nonlinear

explicit expression relating the inputs with the nodal coordinates of the form

_x = f(x; u)

(the problem of interpolating a set of overdetermined nonlinear equations by means of a single

\standard" nonlinear di�erential equation is currently under investigation). Thus, as a �rst step,

we considered a simple PD controller with the primary objective of stabilizing the rigid motion

of the structure while trying to reduce the numerous oscillatory modes present in the 
exible

structure. A preliminary analysis of the behavior of the linearized system for values of the free
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Figure 4: Complex plane location of poles and zeros for � = 1 rad
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coordinate in the range [0; 1] rad via simulation evidenced, in accordance with the theoretical

model, the presence of a �rst oscillatory mode at about 33 Hz and of a secondary oscillatory

mode whose frequency is at about 48 Hz. The transfer function from the torque input to the

free coordinate of the 
exible structure can thus roughly be approximated with two 0-symmetric

real poles, two couples of complex poles accompanied by two couples of complex zeros. Based

on this we designed a simple PD structure which was approximated with a zero-pole structure,

with the zero at �50

6
, the pole at �50 and a static gain of K = 10. The two experimentally

derived couples of poles and zeros along with the two real poles for a steady state con�guration

of the mechanism corresponding to a value of the free coordinate equal to 1 rad, are shown in

�gure 4.

4 Simulation results

All the simulations were run on a 300 MHz pentium and we used the Matlab-Simulink environ-

ment with integration method Runge-Kutta, �xed step with a 10�6 tolerance. The �rst case we

considered is that in which the system is fed a step reference value. We report in Figures 5,6 and

7 the dynamic behavior of the free coordinate, the vertical displacement of the midpoint of link

2, and the applied torque, respectively. Note that, due to the high gain used, the torque tends

to assume exceedingly large values (thus a saturation block should have been introduced) and

this in turn signi�cantly excites the �rst oscillatory mode, as evidenced by �gure 6, which af-

fects, in accordance with experimental results in Giovagnoni (1994), the free coordinate motion.

We then considered a �ltered step input, where the �lter is obtained by cascading two �rst
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Figure 5: Free coordinate, step response

order �lters with poles at p = �10 � 2
p
5. The advantages of this are evidenced in �gures 8,9

and 10: the smoother transition from zero to the reference value prevents the oscillatory modes

from being exceedingly excited, allows the system to better track the imposed input without

overshoot, and reduces by a factor of 30 the value of the applied torque. The payo� is obviously

given by a slower, although still reasonable, convergence to the steady state value.
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Figure 6: Midspan of link 2, vertical elastic displ., step response
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Figure 7: Applied torque, step response

5 Conclusions

In this paper we reported the simulated results of the application of a simple PD controller to a


exible planar closed chain four-bar linkage. Much emphasis was put on the excellent agreement

of the simulated results with the experimental behaviour of the real system, which allows the

designer to use the simulated model to e�ectively test whatever type of control structure. The

realized Matlab-Simulink function is still rather time-consuming (each simulation took roughly

1 hour on a 300 MHz Pentium) and further work is in the direction of developing a faster

approximated nonlinear model in explicit state space form allowing to perform synthesis of

more complex control structures which will be tested experimentally on a real 
exible four-bar

linkage.
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Figure 8: Free coordinate, �ltered step response
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Figure 9: Midspan of link 2, vertical displacement, �ltered step response

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

T
or

qu
e 

(N
 m

)

Figure 10: Applied torque, �ltered step response
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